Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2020 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147 #include "cpu-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
221
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
245
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
259
260 #define ELIMINATE_COPY_RELOCS 1
261
262 /* Return size of a relocation entry. HTAB is the bfd's
263 elf_aarch64_link_hash_entry. */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
265
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE (32)
269 #define PLT_SMALL_ENTRY_SIZE (16)
270 #define PLT_TLSDESC_ENTRY_SIZE (32)
271 /* PLT sizes with BTI insn. */
272 #define PLT_BTI_SMALL_ENTRY_SIZE (24)
273 /* PLT sizes with PAC insn. */
274 #define PLT_PAC_SMALL_ENTRY_SIZE (24)
275 /* PLT sizes with BTI and PAC insn. */
276 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE (24)
277
278 /* Encoding of the nop instruction. */
279 #define INSN_NOP 0xd503201f
280
281 #define aarch64_compute_jump_table_size(htab) \
282 (((htab)->root.srelplt == NULL) ? 0 \
283 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
284
285 /* The first entry in a procedure linkage table looks like this
286 if the distance between the PLTGOT and the PLT is < 4GB use
287 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
288 in x16 and needs to work out PLTGOT[1] by using an address of
289 [x16,#-GOT_ENTRY_SIZE]. */
290 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
291 {
292 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
293 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
294 #if ARCH_SIZE == 64
295 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
296 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
297 #else
298 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
299 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
300 #endif
301 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
302 0x1f, 0x20, 0x03, 0xd5, /* nop */
303 0x1f, 0x20, 0x03, 0xd5, /* nop */
304 0x1f, 0x20, 0x03, 0xd5, /* nop */
305 };
306
307 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_ENTRY_SIZE] =
308 {
309 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
310 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
311 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
312 #if ARCH_SIZE == 64
313 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
314 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
315 #else
316 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
317 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
318 #endif
319 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
322 };
323
324 /* Per function entry in a procedure linkage table looks like this
325 if the distance between the PLTGOT and the PLT is < 4GB use
326 these PLT entries. Use BTI versions of the PLTs when enabled. */
327 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
328 {
329 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
330 #if ARCH_SIZE == 64
331 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
332 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
333 #else
334 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
335 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
336 #endif
337 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
338 };
339
340 static const bfd_byte
341 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
342 {
343 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
344 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
345 #if ARCH_SIZE == 64
346 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
347 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
348 #else
349 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
350 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
351 #endif
352 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
353 0x1f, 0x20, 0x03, 0xd5, /* nop */
354 };
355
356 static const bfd_byte
357 elfNN_aarch64_small_plt_pac_entry[PLT_PAC_SMALL_ENTRY_SIZE] =
358 {
359 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
360 #if ARCH_SIZE == 64
361 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
362 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
363 #else
364 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
365 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
366 #endif
367 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
368 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
369 0x1f, 0x20, 0x03, 0xd5, /* nop */
370 };
371
372 static const bfd_byte
373 elfNN_aarch64_small_plt_bti_pac_entry[PLT_BTI_PAC_SMALL_ENTRY_SIZE] =
374 {
375 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
376 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
377 #if ARCH_SIZE == 64
378 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
379 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
380 #else
381 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
382 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
383 #endif
384 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
385 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
386 };
387
388 static const bfd_byte
389 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
390 {
391 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
392 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
393 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
394 #if ARCH_SIZE == 64
395 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
396 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
397 #else
398 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
399 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
400 #endif
401 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
402 0x1f, 0x20, 0x03, 0xd5, /* nop */
403 0x1f, 0x20, 0x03, 0xd5, /* nop */
404 };
405
406 static const bfd_byte
407 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_TLSDESC_ENTRY_SIZE] =
408 {
409 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
410 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
411 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
412 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
413 #if ARCH_SIZE == 64
414 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
415 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
416 #else
417 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
418 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
419 #endif
420 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
421 0x1f, 0x20, 0x03, 0xd5, /* nop */
422 };
423
424 #define elf_info_to_howto elfNN_aarch64_info_to_howto
425 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
426
427 #define AARCH64_ELF_ABI_VERSION 0
428
429 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
430 #define ALL_ONES (~ (bfd_vma) 0)
431
432 /* Indexed by the bfd interal reloc enumerators.
433 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
434 in reloc.c. */
435
436 static reloc_howto_type elfNN_aarch64_howto_table[] =
437 {
438 EMPTY_HOWTO (0),
439
440 /* Basic data relocations. */
441
442 /* Deprecated, but retained for backwards compatibility. */
443 HOWTO64 (R_AARCH64_NULL, /* type */
444 0, /* rightshift */
445 3, /* size (0 = byte, 1 = short, 2 = long) */
446 0, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_AARCH64_NULL", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0, /* dst_mask */
455 FALSE), /* pcrel_offset */
456 HOWTO (R_AARCH64_NONE, /* type */
457 0, /* rightshift */
458 3, /* size (0 = byte, 1 = short, 2 = long) */
459 0, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_dont, /* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_AARCH64_NONE", /* name */
465 FALSE, /* partial_inplace */
466 0, /* src_mask */
467 0, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 /* .xword: (S+A) */
471 HOWTO64 (AARCH64_R (ABS64), /* type */
472 0, /* rightshift */
473 4, /* size (4 = long long) */
474 64, /* bitsize */
475 FALSE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_unsigned, /* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 AARCH64_R_STR (ABS64), /* name */
480 FALSE, /* partial_inplace */
481 ALL_ONES, /* src_mask */
482 ALL_ONES, /* dst_mask */
483 FALSE), /* pcrel_offset */
484
485 /* .word: (S+A) */
486 HOWTO (AARCH64_R (ABS32), /* type */
487 0, /* rightshift */
488 2, /* size (0 = byte, 1 = short, 2 = long) */
489 32, /* bitsize */
490 FALSE, /* pc_relative */
491 0, /* bitpos */
492 complain_overflow_unsigned, /* complain_on_overflow */
493 bfd_elf_generic_reloc, /* special_function */
494 AARCH64_R_STR (ABS32), /* name */
495 FALSE, /* partial_inplace */
496 0xffffffff, /* src_mask */
497 0xffffffff, /* dst_mask */
498 FALSE), /* pcrel_offset */
499
500 /* .half: (S+A) */
501 HOWTO (AARCH64_R (ABS16), /* type */
502 0, /* rightshift */
503 1, /* size (0 = byte, 1 = short, 2 = long) */
504 16, /* bitsize */
505 FALSE, /* pc_relative */
506 0, /* bitpos */
507 complain_overflow_unsigned, /* complain_on_overflow */
508 bfd_elf_generic_reloc, /* special_function */
509 AARCH64_R_STR (ABS16), /* name */
510 FALSE, /* partial_inplace */
511 0xffff, /* src_mask */
512 0xffff, /* dst_mask */
513 FALSE), /* pcrel_offset */
514
515 /* .xword: (S+A-P) */
516 HOWTO64 (AARCH64_R (PREL64), /* type */
517 0, /* rightshift */
518 4, /* size (4 = long long) */
519 64, /* bitsize */
520 TRUE, /* pc_relative */
521 0, /* bitpos */
522 complain_overflow_signed, /* complain_on_overflow */
523 bfd_elf_generic_reloc, /* special_function */
524 AARCH64_R_STR (PREL64), /* name */
525 FALSE, /* partial_inplace */
526 ALL_ONES, /* src_mask */
527 ALL_ONES, /* dst_mask */
528 TRUE), /* pcrel_offset */
529
530 /* .word: (S+A-P) */
531 HOWTO (AARCH64_R (PREL32), /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 32, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_signed, /* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 AARCH64_R_STR (PREL32), /* name */
540 FALSE, /* partial_inplace */
541 0xffffffff, /* src_mask */
542 0xffffffff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 /* .half: (S+A-P) */
546 HOWTO (AARCH64_R (PREL16), /* type */
547 0, /* rightshift */
548 1, /* size (0 = byte, 1 = short, 2 = long) */
549 16, /* bitsize */
550 TRUE, /* pc_relative */
551 0, /* bitpos */
552 complain_overflow_signed, /* complain_on_overflow */
553 bfd_elf_generic_reloc, /* special_function */
554 AARCH64_R_STR (PREL16), /* name */
555 FALSE, /* partial_inplace */
556 0xffff, /* src_mask */
557 0xffff, /* dst_mask */
558 TRUE), /* pcrel_offset */
559
560 /* Group relocations to create a 16, 32, 48 or 64 bit
561 unsigned data or abs address inline. */
562
563 /* MOVZ: ((S+A) >> 0) & 0xffff */
564 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 16, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_unsigned, /* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 AARCH64_R_STR (MOVW_UABS_G0), /* name */
573 FALSE, /* partial_inplace */
574 0xffff, /* src_mask */
575 0xffff, /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
579 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
580 0, /* rightshift */
581 2, /* size (0 = byte, 1 = short, 2 = long) */
582 16, /* bitsize */
583 FALSE, /* pc_relative */
584 0, /* bitpos */
585 complain_overflow_dont, /* complain_on_overflow */
586 bfd_elf_generic_reloc, /* special_function */
587 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
588 FALSE, /* partial_inplace */
589 0xffff, /* src_mask */
590 0xffff, /* dst_mask */
591 FALSE), /* pcrel_offset */
592
593 /* MOVZ: ((S+A) >> 16) & 0xffff */
594 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
595 16, /* rightshift */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
597 16, /* bitsize */
598 FALSE, /* pc_relative */
599 0, /* bitpos */
600 complain_overflow_unsigned, /* complain_on_overflow */
601 bfd_elf_generic_reloc, /* special_function */
602 AARCH64_R_STR (MOVW_UABS_G1), /* name */
603 FALSE, /* partial_inplace */
604 0xffff, /* src_mask */
605 0xffff, /* dst_mask */
606 FALSE), /* pcrel_offset */
607
608 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
609 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
610 16, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 16, /* bitsize */
613 FALSE, /* pc_relative */
614 0, /* bitpos */
615 complain_overflow_dont, /* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
618 FALSE, /* partial_inplace */
619 0xffff, /* src_mask */
620 0xffff, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 /* MOVZ: ((S+A) >> 32) & 0xffff */
624 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
625 32, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 16, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_unsigned, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 AARCH64_R_STR (MOVW_UABS_G2), /* name */
633 FALSE, /* partial_inplace */
634 0xffff, /* src_mask */
635 0xffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
639 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
640 32, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 16, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
648 FALSE, /* partial_inplace */
649 0xffff, /* src_mask */
650 0xffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 /* MOVZ: ((S+A) >> 48) & 0xffff */
654 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
655 48, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 16, /* bitsize */
658 FALSE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_unsigned, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (MOVW_UABS_G3), /* name */
663 FALSE, /* partial_inplace */
664 0xffff, /* src_mask */
665 0xffff, /* dst_mask */
666 FALSE), /* pcrel_offset */
667
668 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
669 signed data or abs address inline. Will change instruction
670 to MOVN or MOVZ depending on sign of calculated value. */
671
672 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
673 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 17, /* bitsize */
677 FALSE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 AARCH64_R_STR (MOVW_SABS_G0), /* name */
682 FALSE, /* partial_inplace */
683 0xffff, /* src_mask */
684 0xffff, /* dst_mask */
685 FALSE), /* pcrel_offset */
686
687 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
688 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
689 16, /* rightshift */
690 2, /* size (0 = byte, 1 = short, 2 = long) */
691 17, /* bitsize */
692 FALSE, /* pc_relative */
693 0, /* bitpos */
694 complain_overflow_signed, /* complain_on_overflow */
695 bfd_elf_generic_reloc, /* special_function */
696 AARCH64_R_STR (MOVW_SABS_G1), /* name */
697 FALSE, /* partial_inplace */
698 0xffff, /* src_mask */
699 0xffff, /* dst_mask */
700 FALSE), /* pcrel_offset */
701
702 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
703 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
704 32, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 17, /* bitsize */
707 FALSE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_signed, /* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 AARCH64_R_STR (MOVW_SABS_G2), /* name */
712 FALSE, /* partial_inplace */
713 0xffff, /* src_mask */
714 0xffff, /* dst_mask */
715 FALSE), /* pcrel_offset */
716
717 /* Group relocations to create a 16, 32, 48 or 64 bit
718 PC relative address inline. */
719
720 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
721 HOWTO (AARCH64_R (MOVW_PREL_G0), /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 17, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 AARCH64_R_STR (MOVW_PREL_G0), /* name */
730 FALSE, /* partial_inplace */
731 0xffff, /* src_mask */
732 0xffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
736 HOWTO (AARCH64_R (MOVW_PREL_G0_NC), /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_dont, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
745 FALSE, /* partial_inplace */
746 0xffff, /* src_mask */
747 0xffff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
751 HOWTO (AARCH64_R (MOVW_PREL_G1), /* type */
752 16, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 17, /* bitsize */
755 TRUE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_signed, /* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 AARCH64_R_STR (MOVW_PREL_G1), /* name */
760 FALSE, /* partial_inplace */
761 0xffff, /* src_mask */
762 0xffff, /* dst_mask */
763 TRUE), /* pcrel_offset */
764
765 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
766 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
767 16, /* rightshift */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 TRUE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_dont, /* complain_on_overflow */
773 bfd_elf_generic_reloc, /* special_function */
774 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
775 FALSE, /* partial_inplace */
776 0xffff, /* src_mask */
777 0xffff, /* dst_mask */
778 TRUE), /* pcrel_offset */
779
780 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
781 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
782 32, /* rightshift */
783 2, /* size (0 = byte, 1 = short, 2 = long) */
784 17, /* bitsize */
785 TRUE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 bfd_elf_generic_reloc, /* special_function */
789 AARCH64_R_STR (MOVW_PREL_G2), /* name */
790 FALSE, /* partial_inplace */
791 0xffff, /* src_mask */
792 0xffff, /* dst_mask */
793 TRUE), /* pcrel_offset */
794
795 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
796 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
797 32, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 16, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
805 FALSE, /* partial_inplace */
806 0xffff, /* src_mask */
807 0xffff, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
811 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
812 48, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 16, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 AARCH64_R_STR (MOVW_PREL_G3), /* name */
820 FALSE, /* partial_inplace */
821 0xffff, /* src_mask */
822 0xffff, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
826 addresses: PG(x) is (x & ~0xfff). */
827
828 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
829 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
830 2, /* rightshift */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
832 19, /* bitsize */
833 TRUE, /* pc_relative */
834 0, /* bitpos */
835 complain_overflow_signed, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 AARCH64_R_STR (LD_PREL_LO19), /* name */
838 FALSE, /* partial_inplace */
839 0x7ffff, /* src_mask */
840 0x7ffff, /* dst_mask */
841 TRUE), /* pcrel_offset */
842
843 /* ADR: (S+A-P) & 0x1fffff */
844 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
845 0, /* rightshift */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
847 21, /* bitsize */
848 TRUE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_signed, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 AARCH64_R_STR (ADR_PREL_LO21), /* name */
853 FALSE, /* partial_inplace */
854 0x1fffff, /* src_mask */
855 0x1fffff, /* dst_mask */
856 TRUE), /* pcrel_offset */
857
858 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
859 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
860 12, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 21, /* bitsize */
863 TRUE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_signed, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
868 FALSE, /* partial_inplace */
869 0x1fffff, /* src_mask */
870 0x1fffff, /* dst_mask */
871 TRUE), /* pcrel_offset */
872
873 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
874 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
875 12, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 21, /* bitsize */
878 TRUE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont, /* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
883 FALSE, /* partial_inplace */
884 0x1fffff, /* src_mask */
885 0x1fffff, /* dst_mask */
886 TRUE), /* pcrel_offset */
887
888 /* ADD: (S+A) & 0xfff [no overflow check] */
889 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
890 0, /* rightshift */
891 2, /* size (0 = byte, 1 = short, 2 = long) */
892 12, /* bitsize */
893 FALSE, /* pc_relative */
894 10, /* bitpos */
895 complain_overflow_dont, /* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
898 FALSE, /* partial_inplace */
899 0x3ffc00, /* src_mask */
900 0x3ffc00, /* dst_mask */
901 FALSE), /* pcrel_offset */
902
903 /* LD/ST8: (S+A) & 0xfff */
904 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
905 0, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 12, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_dont, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
913 FALSE, /* partial_inplace */
914 0xfff, /* src_mask */
915 0xfff, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
918 /* Relocations for control-flow instructions. */
919
920 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
921 HOWTO (AARCH64_R (TSTBR14), /* type */
922 2, /* rightshift */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
924 14, /* bitsize */
925 TRUE, /* pc_relative */
926 0, /* bitpos */
927 complain_overflow_signed, /* complain_on_overflow */
928 bfd_elf_generic_reloc, /* special_function */
929 AARCH64_R_STR (TSTBR14), /* name */
930 FALSE, /* partial_inplace */
931 0x3fff, /* src_mask */
932 0x3fff, /* dst_mask */
933 TRUE), /* pcrel_offset */
934
935 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
936 HOWTO (AARCH64_R (CONDBR19), /* type */
937 2, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 19, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_signed, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 AARCH64_R_STR (CONDBR19), /* name */
945 FALSE, /* partial_inplace */
946 0x7ffff, /* src_mask */
947 0x7ffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 /* B: ((S+A-P) >> 2) & 0x3ffffff */
951 HOWTO (AARCH64_R (JUMP26), /* type */
952 2, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 26, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_signed, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 AARCH64_R_STR (JUMP26), /* name */
960 FALSE, /* partial_inplace */
961 0x3ffffff, /* src_mask */
962 0x3ffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
966 HOWTO (AARCH64_R (CALL26), /* type */
967 2, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 26, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_signed, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 AARCH64_R_STR (CALL26), /* name */
975 FALSE, /* partial_inplace */
976 0x3ffffff, /* src_mask */
977 0x3ffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 /* LD/ST16: (S+A) & 0xffe */
981 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
982 1, /* rightshift */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
984 12, /* bitsize */
985 FALSE, /* pc_relative */
986 0, /* bitpos */
987 complain_overflow_dont, /* complain_on_overflow */
988 bfd_elf_generic_reloc, /* special_function */
989 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
990 FALSE, /* partial_inplace */
991 0xffe, /* src_mask */
992 0xffe, /* dst_mask */
993 FALSE), /* pcrel_offset */
994
995 /* LD/ST32: (S+A) & 0xffc */
996 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
997 2, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 12, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 bfd_elf_generic_reloc, /* special_function */
1004 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
1005 FALSE, /* partial_inplace */
1006 0xffc, /* src_mask */
1007 0xffc, /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* LD/ST64: (S+A) & 0xff8 */
1011 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
1012 3, /* rightshift */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1014 12, /* bitsize */
1015 FALSE, /* pc_relative */
1016 0, /* bitpos */
1017 complain_overflow_dont, /* complain_on_overflow */
1018 bfd_elf_generic_reloc, /* special_function */
1019 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
1020 FALSE, /* partial_inplace */
1021 0xff8, /* src_mask */
1022 0xff8, /* dst_mask */
1023 FALSE), /* pcrel_offset */
1024
1025 /* LD/ST128: (S+A) & 0xff0 */
1026 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
1027 4, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 12, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
1035 FALSE, /* partial_inplace */
1036 0xff0, /* src_mask */
1037 0xff0, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Set a load-literal immediate field to bits
1041 0x1FFFFC of G(S)-P */
1042 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
1043 2, /* rightshift */
1044 2, /* size (0 = byte,1 = short,2 = long) */
1045 19, /* bitsize */
1046 TRUE, /* pc_relative */
1047 0, /* bitpos */
1048 complain_overflow_signed, /* complain_on_overflow */
1049 bfd_elf_generic_reloc, /* special_function */
1050 AARCH64_R_STR (GOT_LD_PREL19), /* name */
1051 FALSE, /* partial_inplace */
1052 0xffffe0, /* src_mask */
1053 0xffffe0, /* dst_mask */
1054 TRUE), /* pcrel_offset */
1055
1056 /* Get to the page for the GOT entry for the symbol
1057 (G(S) - P) using an ADRP instruction. */
1058 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
1059 12, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 21, /* bitsize */
1062 TRUE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont, /* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
1067 FALSE, /* partial_inplace */
1068 0x1fffff, /* src_mask */
1069 0x1fffff, /* dst_mask */
1070 TRUE), /* pcrel_offset */
1071
1072 /* LD64: GOT offset G(S) & 0xff8 */
1073 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
1074 3, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 12, /* bitsize */
1077 FALSE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont, /* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
1082 FALSE, /* partial_inplace */
1083 0xff8, /* src_mask */
1084 0xff8, /* dst_mask */
1085 FALSE), /* pcrel_offset */
1086
1087 /* LD32: GOT offset G(S) & 0xffc */
1088 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1089 2, /* rightshift */
1090 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 12, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_dont, /* complain_on_overflow */
1095 bfd_elf_generic_reloc, /* special_function */
1096 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1097 FALSE, /* partial_inplace */
1098 0xffc, /* src_mask */
1099 0xffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 /* Lower 16 bits of GOT offset for the symbol. */
1103 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1104 0, /* rightshift */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1106 16, /* bitsize */
1107 FALSE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont, /* complain_on_overflow */
1110 bfd_elf_generic_reloc, /* special_function */
1111 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1112 FALSE, /* partial_inplace */
1113 0xffff, /* src_mask */
1114 0xffff, /* dst_mask */
1115 FALSE), /* pcrel_offset */
1116
1117 /* Higher 16 bits of GOT offset for the symbol. */
1118 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1119 16, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 16, /* bitsize */
1122 FALSE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_unsigned, /* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1127 FALSE, /* partial_inplace */
1128 0xffff, /* src_mask */
1129 0xffff, /* dst_mask */
1130 FALSE), /* pcrel_offset */
1131
1132 /* LD64: GOT offset for the symbol. */
1133 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1134 3, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 12, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_unsigned, /* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1142 FALSE, /* partial_inplace */
1143 0x7ff8, /* src_mask */
1144 0x7ff8, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
1147 /* LD32: GOT offset to the page address of GOT table.
1148 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1149 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1150 2, /* rightshift */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 12, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_unsigned, /* complain_on_overflow */
1156 bfd_elf_generic_reloc, /* special_function */
1157 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1158 FALSE, /* partial_inplace */
1159 0x5ffc, /* src_mask */
1160 0x5ffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* LD64: GOT offset to the page address of GOT table.
1164 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1165 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1166 3, /* rightshift */
1167 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 12, /* bitsize */
1169 FALSE, /* pc_relative */
1170 0, /* bitpos */
1171 complain_overflow_unsigned, /* complain_on_overflow */
1172 bfd_elf_generic_reloc, /* special_function */
1173 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1174 FALSE, /* partial_inplace */
1175 0x7ff8, /* src_mask */
1176 0x7ff8, /* dst_mask */
1177 FALSE), /* pcrel_offset */
1178
1179 /* Get to the page for the GOT entry for the symbol
1180 (G(S) - P) using an ADRP instruction. */
1181 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1182 12, /* rightshift */
1183 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 21, /* bitsize */
1185 TRUE, /* pc_relative */
1186 0, /* bitpos */
1187 complain_overflow_dont, /* complain_on_overflow */
1188 bfd_elf_generic_reloc, /* special_function */
1189 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1190 FALSE, /* partial_inplace */
1191 0x1fffff, /* src_mask */
1192 0x1fffff, /* dst_mask */
1193 TRUE), /* pcrel_offset */
1194
1195 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1196 0, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 21, /* bitsize */
1199 TRUE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_dont, /* complain_on_overflow */
1202 bfd_elf_generic_reloc, /* special_function */
1203 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1204 FALSE, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE), /* pcrel_offset */
1208
1209 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1210 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1211 0, /* rightshift */
1212 2, /* size (0 = byte, 1 = short, 2 = long) */
1213 12, /* bitsize */
1214 FALSE, /* pc_relative */
1215 0, /* bitpos */
1216 complain_overflow_dont, /* complain_on_overflow */
1217 bfd_elf_generic_reloc, /* special_function */
1218 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1219 FALSE, /* partial_inplace */
1220 0xfff, /* src_mask */
1221 0xfff, /* dst_mask */
1222 FALSE), /* pcrel_offset */
1223
1224 /* Lower 16 bits of GOT offset to tls_index. */
1225 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 16, /* bitsize */
1229 FALSE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont, /* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1234 FALSE, /* partial_inplace */
1235 0xffff, /* src_mask */
1236 0xffff, /* dst_mask */
1237 FALSE), /* pcrel_offset */
1238
1239 /* Higher 16 bits of GOT offset to tls_index. */
1240 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1241 16, /* rightshift */
1242 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 16, /* bitsize */
1244 FALSE, /* pc_relative */
1245 0, /* bitpos */
1246 complain_overflow_unsigned, /* complain_on_overflow */
1247 bfd_elf_generic_reloc, /* special_function */
1248 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1249 FALSE, /* partial_inplace */
1250 0xffff, /* src_mask */
1251 0xffff, /* dst_mask */
1252 FALSE), /* pcrel_offset */
1253
1254 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1255 12, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 21, /* bitsize */
1258 FALSE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont, /* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1263 FALSE, /* partial_inplace */
1264 0x1fffff, /* src_mask */
1265 0x1fffff, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1269 3, /* rightshift */
1270 2, /* size (0 = byte, 1 = short, 2 = long) */
1271 12, /* bitsize */
1272 FALSE, /* pc_relative */
1273 0, /* bitpos */
1274 complain_overflow_dont, /* complain_on_overflow */
1275 bfd_elf_generic_reloc, /* special_function */
1276 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1277 FALSE, /* partial_inplace */
1278 0xff8, /* src_mask */
1279 0xff8, /* dst_mask */
1280 FALSE), /* pcrel_offset */
1281
1282 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1283 2, /* rightshift */
1284 2, /* size (0 = byte, 1 = short, 2 = long) */
1285 12, /* bitsize */
1286 FALSE, /* pc_relative */
1287 0, /* bitpos */
1288 complain_overflow_dont, /* complain_on_overflow */
1289 bfd_elf_generic_reloc, /* special_function */
1290 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1291 FALSE, /* partial_inplace */
1292 0xffc, /* src_mask */
1293 0xffc, /* dst_mask */
1294 FALSE), /* pcrel_offset */
1295
1296 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1297 2, /* rightshift */
1298 2, /* size (0 = byte, 1 = short, 2 = long) */
1299 19, /* bitsize */
1300 FALSE, /* pc_relative */
1301 0, /* bitpos */
1302 complain_overflow_dont, /* complain_on_overflow */
1303 bfd_elf_generic_reloc, /* special_function */
1304 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1305 FALSE, /* partial_inplace */
1306 0x1ffffc, /* src_mask */
1307 0x1ffffc, /* dst_mask */
1308 FALSE), /* pcrel_offset */
1309
1310 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 16, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
1318 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1319 FALSE, /* partial_inplace */
1320 0xffff, /* src_mask */
1321 0xffff, /* dst_mask */
1322 FALSE), /* pcrel_offset */
1323
1324 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1325 16, /* rightshift */
1326 2, /* size (0 = byte, 1 = short, 2 = long) */
1327 16, /* bitsize */
1328 FALSE, /* pc_relative */
1329 0, /* bitpos */
1330 complain_overflow_unsigned, /* complain_on_overflow */
1331 bfd_elf_generic_reloc, /* special_function */
1332 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1333 FALSE, /* partial_inplace */
1334 0xffff, /* src_mask */
1335 0xffff, /* dst_mask */
1336 FALSE), /* pcrel_offset */
1337
1338 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1339 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1340 12, /* rightshift */
1341 2, /* size (0 = byte, 1 = short, 2 = long) */
1342 12, /* bitsize */
1343 FALSE, /* pc_relative */
1344 0, /* bitpos */
1345 complain_overflow_unsigned, /* complain_on_overflow */
1346 bfd_elf_generic_reloc, /* special_function */
1347 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1348 FALSE, /* partial_inplace */
1349 0xfff, /* src_mask */
1350 0xfff, /* dst_mask */
1351 FALSE), /* pcrel_offset */
1352
1353 /* Unsigned 12 bit byte offset to module TLS base address. */
1354 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1355 0, /* rightshift */
1356 2, /* size (0 = byte, 1 = short, 2 = long) */
1357 12, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_unsigned, /* complain_on_overflow */
1361 bfd_elf_generic_reloc, /* special_function */
1362 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1363 FALSE, /* partial_inplace */
1364 0xfff, /* src_mask */
1365 0xfff, /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1369 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 12, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont, /* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1378 FALSE, /* partial_inplace */
1379 0xfff, /* src_mask */
1380 0xfff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1384 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1385 0, /* rightshift */
1386 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 12, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 bfd_elf_generic_reloc, /* special_function */
1392 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1393 FALSE, /* partial_inplace */
1394 0xfff, /* src_mask */
1395 0xfff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Get to the page for the GOT entry for the symbol
1399 (G(S) - P) using an ADRP instruction. */
1400 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1401 12, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 21, /* bitsize */
1404 TRUE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_signed, /* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1409 FALSE, /* partial_inplace */
1410 0x1fffff, /* src_mask */
1411 0x1fffff, /* dst_mask */
1412 TRUE), /* pcrel_offset */
1413
1414 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 21, /* bitsize */
1418 TRUE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1423 FALSE, /* partial_inplace */
1424 0x1fffff, /* src_mask */
1425 0x1fffff, /* dst_mask */
1426 TRUE), /* pcrel_offset */
1427
1428 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1429 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1430 1, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 11, /* bitsize */
1433 FALSE, /* pc_relative */
1434 10, /* bitpos */
1435 complain_overflow_unsigned, /* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1438 FALSE, /* partial_inplace */
1439 0x1ffc00, /* src_mask */
1440 0x1ffc00, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1444 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1445 1, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 11, /* bitsize */
1448 FALSE, /* pc_relative */
1449 10, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1453 FALSE, /* partial_inplace */
1454 0x1ffc00, /* src_mask */
1455 0x1ffc00, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1459 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1460 2, /* rightshift */
1461 2, /* size (0 = byte, 1 = short, 2 = long) */
1462 10, /* bitsize */
1463 FALSE, /* pc_relative */
1464 10, /* bitpos */
1465 complain_overflow_unsigned, /* complain_on_overflow */
1466 bfd_elf_generic_reloc, /* special_function */
1467 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1468 FALSE, /* partial_inplace */
1469 0x3ffc00, /* src_mask */
1470 0x3ffc00, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1474 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1475 2, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 10, /* bitsize */
1478 FALSE, /* pc_relative */
1479 10, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1483 FALSE, /* partial_inplace */
1484 0xffc00, /* src_mask */
1485 0xffc00, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1489 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1490 3, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 9, /* bitsize */
1493 FALSE, /* pc_relative */
1494 10, /* bitpos */
1495 complain_overflow_unsigned, /* complain_on_overflow */
1496 bfd_elf_generic_reloc, /* special_function */
1497 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1498 FALSE, /* partial_inplace */
1499 0x3ffc00, /* src_mask */
1500 0x3ffc00, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1504 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1505 3, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 9, /* bitsize */
1508 FALSE, /* pc_relative */
1509 10, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1513 FALSE, /* partial_inplace */
1514 0x7fc00, /* src_mask */
1515 0x7fc00, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1519 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 12, /* bitsize */
1523 FALSE, /* pc_relative */
1524 10, /* bitpos */
1525 complain_overflow_unsigned, /* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
1527 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1528 FALSE, /* partial_inplace */
1529 0x3ffc00, /* src_mask */
1530 0x3ffc00, /* dst_mask */
1531 FALSE), /* pcrel_offset */
1532
1533 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1534 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1535 0, /* rightshift */
1536 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 12, /* bitsize */
1538 FALSE, /* pc_relative */
1539 10, /* bitpos */
1540 complain_overflow_dont, /* complain_on_overflow */
1541 bfd_elf_generic_reloc, /* special_function */
1542 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1543 FALSE, /* partial_inplace */
1544 0x3ffc00, /* src_mask */
1545 0x3ffc00, /* dst_mask */
1546 FALSE), /* pcrel_offset */
1547
1548 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1549 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1550 0, /* rightshift */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1552 16, /* bitsize */
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
1555 complain_overflow_unsigned, /* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1558 FALSE, /* partial_inplace */
1559 0xffff, /* src_mask */
1560 0xffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
1562
1563 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1564 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1565 0, /* rightshift */
1566 2, /* size (0 = byte, 1 = short, 2 = long) */
1567 16, /* bitsize */
1568 FALSE, /* pc_relative */
1569 0, /* bitpos */
1570 complain_overflow_dont, /* complain_on_overflow */
1571 bfd_elf_generic_reloc, /* special_function */
1572 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1573 FALSE, /* partial_inplace */
1574 0xffff, /* src_mask */
1575 0xffff, /* dst_mask */
1576 FALSE), /* pcrel_offset */
1577
1578 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1579 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1580 16, /* rightshift */
1581 2, /* size (0 = byte, 1 = short, 2 = long) */
1582 16, /* bitsize */
1583 FALSE, /* pc_relative */
1584 0, /* bitpos */
1585 complain_overflow_unsigned, /* complain_on_overflow */
1586 bfd_elf_generic_reloc, /* special_function */
1587 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1588 FALSE, /* partial_inplace */
1589 0xffff, /* src_mask */
1590 0xffff, /* dst_mask */
1591 FALSE), /* pcrel_offset */
1592
1593 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1594 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1595 16, /* rightshift */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 16, /* bitsize */
1598 FALSE, /* pc_relative */
1599 0, /* bitpos */
1600 complain_overflow_dont, /* complain_on_overflow */
1601 bfd_elf_generic_reloc, /* special_function */
1602 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1603 FALSE, /* partial_inplace */
1604 0xffff, /* src_mask */
1605 0xffff, /* dst_mask */
1606 FALSE), /* pcrel_offset */
1607
1608 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1609 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1610 32, /* rightshift */
1611 2, /* size (0 = byte, 1 = short, 2 = long) */
1612 16, /* bitsize */
1613 FALSE, /* pc_relative */
1614 0, /* bitpos */
1615 complain_overflow_unsigned, /* complain_on_overflow */
1616 bfd_elf_generic_reloc, /* special_function */
1617 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1618 FALSE, /* partial_inplace */
1619 0xffff, /* src_mask */
1620 0xffff, /* dst_mask */
1621 FALSE), /* pcrel_offset */
1622
1623 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1624 32, /* rightshift */
1625 2, /* size (0 = byte, 1 = short, 2 = long) */
1626 16, /* bitsize */
1627 FALSE, /* pc_relative */
1628 0, /* bitpos */
1629 complain_overflow_unsigned, /* complain_on_overflow */
1630 bfd_elf_generic_reloc, /* special_function */
1631 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1632 FALSE, /* partial_inplace */
1633 0xffff, /* src_mask */
1634 0xffff, /* dst_mask */
1635 FALSE), /* pcrel_offset */
1636
1637 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1638 16, /* rightshift */
1639 2, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 bfd_elf_generic_reloc, /* special_function */
1645 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1646 FALSE, /* partial_inplace */
1647 0xffff, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1652 16, /* rightshift */
1653 2, /* size (0 = byte, 1 = short, 2 = long) */
1654 16, /* bitsize */
1655 FALSE, /* pc_relative */
1656 0, /* bitpos */
1657 complain_overflow_dont, /* complain_on_overflow */
1658 bfd_elf_generic_reloc, /* special_function */
1659 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1660 FALSE, /* partial_inplace */
1661 0xffff, /* src_mask */
1662 0xffff, /* dst_mask */
1663 FALSE), /* pcrel_offset */
1664
1665 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1666 0, /* rightshift */
1667 2, /* size (0 = byte, 1 = short, 2 = long) */
1668 16, /* bitsize */
1669 FALSE, /* pc_relative */
1670 0, /* bitpos */
1671 complain_overflow_dont, /* complain_on_overflow */
1672 bfd_elf_generic_reloc, /* special_function */
1673 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1674 FALSE, /* partial_inplace */
1675 0xffff, /* src_mask */
1676 0xffff, /* dst_mask */
1677 FALSE), /* pcrel_offset */
1678
1679 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1680 0, /* rightshift */
1681 2, /* size (0 = byte, 1 = short, 2 = long) */
1682 16, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_dont, /* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1688 FALSE, /* partial_inplace */
1689 0xffff, /* src_mask */
1690 0xffff, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692
1693 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1694 12, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 12, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_unsigned, /* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1702 FALSE, /* partial_inplace */
1703 0xfff, /* src_mask */
1704 0xfff, /* dst_mask */
1705 FALSE), /* pcrel_offset */
1706
1707 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1708 0, /* rightshift */
1709 2, /* size (0 = byte, 1 = short, 2 = long) */
1710 12, /* bitsize */
1711 FALSE, /* pc_relative */
1712 0, /* bitpos */
1713 complain_overflow_unsigned, /* complain_on_overflow */
1714 bfd_elf_generic_reloc, /* special_function */
1715 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1716 FALSE, /* partial_inplace */
1717 0xfff, /* src_mask */
1718 0xfff, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1722 0, /* rightshift */
1723 2, /* size (0 = byte, 1 = short, 2 = long) */
1724 12, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_dont, /* complain_on_overflow */
1728 bfd_elf_generic_reloc, /* special_function */
1729 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1730 FALSE, /* partial_inplace */
1731 0xfff, /* src_mask */
1732 0xfff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1736 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1737 1, /* rightshift */
1738 2, /* size (0 = byte, 1 = short, 2 = long) */
1739 11, /* bitsize */
1740 FALSE, /* pc_relative */
1741 10, /* bitpos */
1742 complain_overflow_unsigned, /* complain_on_overflow */
1743 bfd_elf_generic_reloc, /* special_function */
1744 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1745 FALSE, /* partial_inplace */
1746 0x1ffc00, /* src_mask */
1747 0x1ffc00, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1751 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1752 1, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 11, /* bitsize */
1755 FALSE, /* pc_relative */
1756 10, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1760 FALSE, /* partial_inplace */
1761 0x1ffc00, /* src_mask */
1762 0x1ffc00, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1766 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1767 2, /* rightshift */
1768 2, /* size (0 = byte, 1 = short, 2 = long) */
1769 10, /* bitsize */
1770 FALSE, /* pc_relative */
1771 10, /* bitpos */
1772 complain_overflow_unsigned, /* complain_on_overflow */
1773 bfd_elf_generic_reloc, /* special_function */
1774 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1775 FALSE, /* partial_inplace */
1776 0xffc00, /* src_mask */
1777 0xffc00, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1781 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1782 2, /* rightshift */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1784 10, /* bitsize */
1785 FALSE, /* pc_relative */
1786 10, /* bitpos */
1787 complain_overflow_dont, /* complain_on_overflow */
1788 bfd_elf_generic_reloc, /* special_function */
1789 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1790 FALSE, /* partial_inplace */
1791 0xffc00, /* src_mask */
1792 0xffc00, /* dst_mask */
1793 FALSE), /* pcrel_offset */
1794
1795 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1796 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1797 3, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 9, /* bitsize */
1800 FALSE, /* pc_relative */
1801 10, /* bitpos */
1802 complain_overflow_unsigned, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1805 FALSE, /* partial_inplace */
1806 0x7fc00, /* src_mask */
1807 0x7fc00, /* dst_mask */
1808 FALSE), /* pcrel_offset */
1809
1810 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1811 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1812 3, /* rightshift */
1813 2, /* size (0 = byte, 1 = short, 2 = long) */
1814 9, /* bitsize */
1815 FALSE, /* pc_relative */
1816 10, /* bitpos */
1817 complain_overflow_dont, /* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1820 FALSE, /* partial_inplace */
1821 0x7fc00, /* src_mask */
1822 0x7fc00, /* dst_mask */
1823 FALSE), /* pcrel_offset */
1824
1825 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1826 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1827 0, /* rightshift */
1828 2, /* size (0 = byte, 1 = short, 2 = long) */
1829 12, /* bitsize */
1830 FALSE, /* pc_relative */
1831 10, /* bitpos */
1832 complain_overflow_unsigned, /* complain_on_overflow */
1833 bfd_elf_generic_reloc, /* special_function */
1834 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1835 FALSE, /* partial_inplace */
1836 0x3ffc00, /* src_mask */
1837 0x3ffc00, /* dst_mask */
1838 FALSE), /* pcrel_offset */
1839
1840 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1841 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1842 0, /* rightshift */
1843 2, /* size (0 = byte, 1 = short, 2 = long) */
1844 12, /* bitsize */
1845 FALSE, /* pc_relative */
1846 10, /* bitpos */
1847 complain_overflow_dont, /* complain_on_overflow */
1848 bfd_elf_generic_reloc, /* special_function */
1849 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1850 FALSE, /* partial_inplace */
1851 0x3ffc00, /* src_mask */
1852 0x3ffc00, /* dst_mask */
1853 FALSE), /* pcrel_offset */
1854
1855 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1856 2, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 19, /* bitsize */
1859 TRUE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_dont, /* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1864 FALSE, /* partial_inplace */
1865 0x0ffffe0, /* src_mask */
1866 0x0ffffe0, /* dst_mask */
1867 TRUE), /* pcrel_offset */
1868
1869 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1870 0, /* rightshift */
1871 2, /* size (0 = byte, 1 = short, 2 = long) */
1872 21, /* bitsize */
1873 TRUE, /* pc_relative */
1874 0, /* bitpos */
1875 complain_overflow_dont, /* complain_on_overflow */
1876 bfd_elf_generic_reloc, /* special_function */
1877 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1878 FALSE, /* partial_inplace */
1879 0x1fffff, /* src_mask */
1880 0x1fffff, /* dst_mask */
1881 TRUE), /* pcrel_offset */
1882
1883 /* Get to the page for the GOT entry for the symbol
1884 (G(S) - P) using an ADRP instruction. */
1885 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1886 12, /* rightshift */
1887 2, /* size (0 = byte, 1 = short, 2 = long) */
1888 21, /* bitsize */
1889 TRUE, /* pc_relative */
1890 0, /* bitpos */
1891 complain_overflow_dont, /* complain_on_overflow */
1892 bfd_elf_generic_reloc, /* special_function */
1893 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1894 FALSE, /* partial_inplace */
1895 0x1fffff, /* src_mask */
1896 0x1fffff, /* dst_mask */
1897 TRUE), /* pcrel_offset */
1898
1899 /* LD64: GOT offset G(S) & 0xff8. */
1900 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1901 3, /* rightshift */
1902 2, /* size (0 = byte, 1 = short, 2 = long) */
1903 12, /* bitsize */
1904 FALSE, /* pc_relative */
1905 0, /* bitpos */
1906 complain_overflow_dont, /* complain_on_overflow */
1907 bfd_elf_generic_reloc, /* special_function */
1908 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1909 FALSE, /* partial_inplace */
1910 0xff8, /* src_mask */
1911 0xff8, /* dst_mask */
1912 FALSE), /* pcrel_offset */
1913
1914 /* LD32: GOT offset G(S) & 0xffc. */
1915 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1916 2, /* rightshift */
1917 2, /* size (0 = byte, 1 = short, 2 = long) */
1918 12, /* bitsize */
1919 FALSE, /* pc_relative */
1920 0, /* bitpos */
1921 complain_overflow_dont, /* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1924 FALSE, /* partial_inplace */
1925 0xffc, /* src_mask */
1926 0xffc, /* dst_mask */
1927 FALSE), /* pcrel_offset */
1928
1929 /* ADD: GOT offset G(S) & 0xfff. */
1930 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1931 0, /* rightshift */
1932 2, /* size (0 = byte, 1 = short, 2 = long) */
1933 12, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont,/* complain_on_overflow */
1937 bfd_elf_generic_reloc, /* special_function */
1938 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1939 FALSE, /* partial_inplace */
1940 0xfff, /* src_mask */
1941 0xfff, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1945 16, /* rightshift */
1946 2, /* size (0 = byte, 1 = short, 2 = long) */
1947 12, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_unsigned, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1953 FALSE, /* partial_inplace */
1954 0xffff, /* src_mask */
1955 0xffff, /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1959 0, /* rightshift */
1960 2, /* size (0 = byte, 1 = short, 2 = long) */
1961 12, /* bitsize */
1962 FALSE, /* pc_relative */
1963 0, /* bitpos */
1964 complain_overflow_dont, /* complain_on_overflow */
1965 bfd_elf_generic_reloc, /* special_function */
1966 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1967 FALSE, /* partial_inplace */
1968 0xffff, /* src_mask */
1969 0xffff, /* dst_mask */
1970 FALSE), /* pcrel_offset */
1971
1972 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1973 0, /* rightshift */
1974 2, /* size (0 = byte, 1 = short, 2 = long) */
1975 12, /* bitsize */
1976 FALSE, /* pc_relative */
1977 0, /* bitpos */
1978 complain_overflow_dont, /* complain_on_overflow */
1979 bfd_elf_generic_reloc, /* special_function */
1980 AARCH64_R_STR (TLSDESC_LDR), /* name */
1981 FALSE, /* partial_inplace */
1982 0x0, /* src_mask */
1983 0x0, /* dst_mask */
1984 FALSE), /* pcrel_offset */
1985
1986 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1987 0, /* rightshift */
1988 2, /* size (0 = byte, 1 = short, 2 = long) */
1989 12, /* bitsize */
1990 FALSE, /* pc_relative */
1991 0, /* bitpos */
1992 complain_overflow_dont, /* complain_on_overflow */
1993 bfd_elf_generic_reloc, /* special_function */
1994 AARCH64_R_STR (TLSDESC_ADD), /* name */
1995 FALSE, /* partial_inplace */
1996 0x0, /* src_mask */
1997 0x0, /* dst_mask */
1998 FALSE), /* pcrel_offset */
1999
2000 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
2001 0, /* rightshift */
2002 2, /* size (0 = byte, 1 = short, 2 = long) */
2003 0, /* bitsize */
2004 FALSE, /* pc_relative */
2005 0, /* bitpos */
2006 complain_overflow_dont, /* complain_on_overflow */
2007 bfd_elf_generic_reloc, /* special_function */
2008 AARCH64_R_STR (TLSDESC_CALL), /* name */
2009 FALSE, /* partial_inplace */
2010 0x0, /* src_mask */
2011 0x0, /* dst_mask */
2012 FALSE), /* pcrel_offset */
2013
2014 HOWTO (AARCH64_R (COPY), /* type */
2015 0, /* rightshift */
2016 2, /* size (0 = byte, 1 = short, 2 = long) */
2017 64, /* bitsize */
2018 FALSE, /* pc_relative */
2019 0, /* bitpos */
2020 complain_overflow_bitfield, /* complain_on_overflow */
2021 bfd_elf_generic_reloc, /* special_function */
2022 AARCH64_R_STR (COPY), /* name */
2023 TRUE, /* partial_inplace */
2024 0xffffffff, /* src_mask */
2025 0xffffffff, /* dst_mask */
2026 FALSE), /* pcrel_offset */
2027
2028 HOWTO (AARCH64_R (GLOB_DAT), /* type */
2029 0, /* rightshift */
2030 2, /* size (0 = byte, 1 = short, 2 = long) */
2031 64, /* bitsize */
2032 FALSE, /* pc_relative */
2033 0, /* bitpos */
2034 complain_overflow_bitfield, /* complain_on_overflow */
2035 bfd_elf_generic_reloc, /* special_function */
2036 AARCH64_R_STR (GLOB_DAT), /* name */
2037 TRUE, /* partial_inplace */
2038 0xffffffff, /* src_mask */
2039 0xffffffff, /* dst_mask */
2040 FALSE), /* pcrel_offset */
2041
2042 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
2043 0, /* rightshift */
2044 2, /* size (0 = byte, 1 = short, 2 = long) */
2045 64, /* bitsize */
2046 FALSE, /* pc_relative */
2047 0, /* bitpos */
2048 complain_overflow_bitfield, /* complain_on_overflow */
2049 bfd_elf_generic_reloc, /* special_function */
2050 AARCH64_R_STR (JUMP_SLOT), /* name */
2051 TRUE, /* partial_inplace */
2052 0xffffffff, /* src_mask */
2053 0xffffffff, /* dst_mask */
2054 FALSE), /* pcrel_offset */
2055
2056 HOWTO (AARCH64_R (RELATIVE), /* type */
2057 0, /* rightshift */
2058 2, /* size (0 = byte, 1 = short, 2 = long) */
2059 64, /* bitsize */
2060 FALSE, /* pc_relative */
2061 0, /* bitpos */
2062 complain_overflow_bitfield, /* complain_on_overflow */
2063 bfd_elf_generic_reloc, /* special_function */
2064 AARCH64_R_STR (RELATIVE), /* name */
2065 TRUE, /* partial_inplace */
2066 ALL_ONES, /* src_mask */
2067 ALL_ONES, /* dst_mask */
2068 FALSE), /* pcrel_offset */
2069
2070 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
2071 0, /* rightshift */
2072 2, /* size (0 = byte, 1 = short, 2 = long) */
2073 64, /* bitsize */
2074 FALSE, /* pc_relative */
2075 0, /* bitpos */
2076 complain_overflow_dont, /* complain_on_overflow */
2077 bfd_elf_generic_reloc, /* special_function */
2078 #if ARCH_SIZE == 64
2079 AARCH64_R_STR (TLS_DTPMOD64), /* name */
2080 #else
2081 AARCH64_R_STR (TLS_DTPMOD), /* name */
2082 #endif
2083 FALSE, /* partial_inplace */
2084 0, /* src_mask */
2085 ALL_ONES, /* dst_mask */
2086 FALSE), /* pc_reloffset */
2087
2088 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2089 0, /* rightshift */
2090 2, /* size (0 = byte, 1 = short, 2 = long) */
2091 64, /* bitsize */
2092 FALSE, /* pc_relative */
2093 0, /* bitpos */
2094 complain_overflow_dont, /* complain_on_overflow */
2095 bfd_elf_generic_reloc, /* special_function */
2096 #if ARCH_SIZE == 64
2097 AARCH64_R_STR (TLS_DTPREL64), /* name */
2098 #else
2099 AARCH64_R_STR (TLS_DTPREL), /* name */
2100 #endif
2101 FALSE, /* partial_inplace */
2102 0, /* src_mask */
2103 ALL_ONES, /* dst_mask */
2104 FALSE), /* pcrel_offset */
2105
2106 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2107 0, /* rightshift */
2108 2, /* size (0 = byte, 1 = short, 2 = long) */
2109 64, /* bitsize */
2110 FALSE, /* pc_relative */
2111 0, /* bitpos */
2112 complain_overflow_dont, /* complain_on_overflow */
2113 bfd_elf_generic_reloc, /* special_function */
2114 #if ARCH_SIZE == 64
2115 AARCH64_R_STR (TLS_TPREL64), /* name */
2116 #else
2117 AARCH64_R_STR (TLS_TPREL), /* name */
2118 #endif
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ALL_ONES, /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 HOWTO (AARCH64_R (TLSDESC), /* type */
2125 0, /* rightshift */
2126 2, /* size (0 = byte, 1 = short, 2 = long) */
2127 64, /* bitsize */
2128 FALSE, /* pc_relative */
2129 0, /* bitpos */
2130 complain_overflow_dont, /* complain_on_overflow */
2131 bfd_elf_generic_reloc, /* special_function */
2132 AARCH64_R_STR (TLSDESC), /* name */
2133 FALSE, /* partial_inplace */
2134 0, /* src_mask */
2135 ALL_ONES, /* dst_mask */
2136 FALSE), /* pcrel_offset */
2137
2138 HOWTO (AARCH64_R (IRELATIVE), /* type */
2139 0, /* rightshift */
2140 2, /* size (0 = byte, 1 = short, 2 = long) */
2141 64, /* bitsize */
2142 FALSE, /* pc_relative */
2143 0, /* bitpos */
2144 complain_overflow_bitfield, /* complain_on_overflow */
2145 bfd_elf_generic_reloc, /* special_function */
2146 AARCH64_R_STR (IRELATIVE), /* name */
2147 FALSE, /* partial_inplace */
2148 0, /* src_mask */
2149 ALL_ONES, /* dst_mask */
2150 FALSE), /* pcrel_offset */
2151
2152 EMPTY_HOWTO (0),
2153 };
2154
2155 static reloc_howto_type elfNN_aarch64_howto_none =
2156 HOWTO (R_AARCH64_NONE, /* type */
2157 0, /* rightshift */
2158 3, /* size (0 = byte, 1 = short, 2 = long) */
2159 0, /* bitsize */
2160 FALSE, /* pc_relative */
2161 0, /* bitpos */
2162 complain_overflow_dont,/* complain_on_overflow */
2163 bfd_elf_generic_reloc, /* special_function */
2164 "R_AARCH64_NONE", /* name */
2165 FALSE, /* partial_inplace */
2166 0, /* src_mask */
2167 0, /* dst_mask */
2168 FALSE); /* pcrel_offset */
2169
2170 /* Given HOWTO, return the bfd internal relocation enumerator. */
2171
2172 static bfd_reloc_code_real_type
2173 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2174 {
2175 const int size
2176 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2177 const ptrdiff_t offset
2178 = howto - elfNN_aarch64_howto_table;
2179
2180 if (offset > 0 && offset < size - 1)
2181 return BFD_RELOC_AARCH64_RELOC_START + offset;
2182
2183 if (howto == &elfNN_aarch64_howto_none)
2184 return BFD_RELOC_AARCH64_NONE;
2185
2186 return BFD_RELOC_AARCH64_RELOC_START;
2187 }
2188
2189 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2190
2191 static bfd_reloc_code_real_type
2192 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2193 {
2194 static bfd_boolean initialized_p = FALSE;
2195 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2196 static unsigned int offsets[R_AARCH64_end];
2197
2198 if (!initialized_p)
2199 {
2200 unsigned int i;
2201
2202 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2203 if (elfNN_aarch64_howto_table[i].type != 0)
2204 offsets[elfNN_aarch64_howto_table[i].type] = i;
2205
2206 initialized_p = TRUE;
2207 }
2208
2209 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2210 return BFD_RELOC_AARCH64_NONE;
2211
2212 /* PR 17512: file: b371e70a. */
2213 if (r_type >= R_AARCH64_end)
2214 {
2215 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2216 abfd, r_type);
2217 bfd_set_error (bfd_error_bad_value);
2218 return BFD_RELOC_AARCH64_NONE;
2219 }
2220
2221 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2222 }
2223
2224 struct elf_aarch64_reloc_map
2225 {
2226 bfd_reloc_code_real_type from;
2227 bfd_reloc_code_real_type to;
2228 };
2229
2230 /* Map bfd generic reloc to AArch64-specific reloc. */
2231 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2232 {
2233 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2234
2235 /* Basic data relocations. */
2236 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2237 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2238 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2239 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2240 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2241 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2242 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2243 };
2244
2245 /* Given the bfd internal relocation enumerator in CODE, return the
2246 corresponding howto entry. */
2247
2248 static reloc_howto_type *
2249 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2250 {
2251 unsigned int i;
2252
2253 /* Convert bfd generic reloc to AArch64-specific reloc. */
2254 if (code < BFD_RELOC_AARCH64_RELOC_START
2255 || code > BFD_RELOC_AARCH64_RELOC_END)
2256 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2257 if (elf_aarch64_reloc_map[i].from == code)
2258 {
2259 code = elf_aarch64_reloc_map[i].to;
2260 break;
2261 }
2262
2263 if (code > BFD_RELOC_AARCH64_RELOC_START
2264 && code < BFD_RELOC_AARCH64_RELOC_END)
2265 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2266 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2267
2268 if (code == BFD_RELOC_AARCH64_NONE)
2269 return &elfNN_aarch64_howto_none;
2270
2271 return NULL;
2272 }
2273
2274 static reloc_howto_type *
2275 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2276 {
2277 bfd_reloc_code_real_type val;
2278 reloc_howto_type *howto;
2279
2280 #if ARCH_SIZE == 32
2281 if (r_type > 256)
2282 {
2283 bfd_set_error (bfd_error_bad_value);
2284 return NULL;
2285 }
2286 #endif
2287
2288 if (r_type == R_AARCH64_NONE)
2289 return &elfNN_aarch64_howto_none;
2290
2291 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2292 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2293
2294 if (howto != NULL)
2295 return howto;
2296
2297 bfd_set_error (bfd_error_bad_value);
2298 return NULL;
2299 }
2300
2301 static bfd_boolean
2302 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2303 Elf_Internal_Rela *elf_reloc)
2304 {
2305 unsigned int r_type;
2306
2307 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2308 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2309
2310 if (bfd_reloc->howto == NULL)
2311 {
2312 /* xgettext:c-format */
2313 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2314 return FALSE;
2315 }
2316 return TRUE;
2317 }
2318
2319 static reloc_howto_type *
2320 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2321 bfd_reloc_code_real_type code)
2322 {
2323 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2324
2325 if (howto != NULL)
2326 return howto;
2327
2328 bfd_set_error (bfd_error_bad_value);
2329 return NULL;
2330 }
2331
2332 static reloc_howto_type *
2333 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2334 const char *r_name)
2335 {
2336 unsigned int i;
2337
2338 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2339 if (elfNN_aarch64_howto_table[i].name != NULL
2340 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2341 return &elfNN_aarch64_howto_table[i];
2342
2343 return NULL;
2344 }
2345
2346 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2347 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2348 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2349 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2350
2351 /* The linker script knows the section names for placement.
2352 The entry_names are used to do simple name mangling on the stubs.
2353 Given a function name, and its type, the stub can be found. The
2354 name can be changed. The only requirement is the %s be present. */
2355 #define STUB_ENTRY_NAME "__%s_veneer"
2356
2357 /* The name of the dynamic interpreter. This is put in the .interp
2358 section. */
2359 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2360
2361 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2362 (((1 << 25) - 1) << 2)
2363 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2364 (-((1 << 25) << 2))
2365
2366 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2367 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2368
2369 static int
2370 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2371 {
2372 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2373 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2374 }
2375
2376 static int
2377 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2378 {
2379 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2380 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2381 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2382 }
2383
2384 static const uint32_t aarch64_adrp_branch_stub [] =
2385 {
2386 0x90000010, /* adrp ip0, X */
2387 /* R_AARCH64_ADR_HI21_PCREL(X) */
2388 0x91000210, /* add ip0, ip0, :lo12:X */
2389 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2390 0xd61f0200, /* br ip0 */
2391 };
2392
2393 static const uint32_t aarch64_long_branch_stub[] =
2394 {
2395 #if ARCH_SIZE == 64
2396 0x58000090, /* ldr ip0, 1f */
2397 #else
2398 0x18000090, /* ldr wip0, 1f */
2399 #endif
2400 0x10000011, /* adr ip1, #0 */
2401 0x8b110210, /* add ip0, ip0, ip1 */
2402 0xd61f0200, /* br ip0 */
2403 0x00000000, /* 1: .xword or .word
2404 R_AARCH64_PRELNN(X) + 12
2405 */
2406 0x00000000,
2407 };
2408
2409 static const uint32_t aarch64_erratum_835769_stub[] =
2410 {
2411 0x00000000, /* Placeholder for multiply accumulate. */
2412 0x14000000, /* b <label> */
2413 };
2414
2415 static const uint32_t aarch64_erratum_843419_stub[] =
2416 {
2417 0x00000000, /* Placeholder for LDR instruction. */
2418 0x14000000, /* b <label> */
2419 };
2420
2421 /* Section name for stubs is the associated section name plus this
2422 string. */
2423 #define STUB_SUFFIX ".stub"
2424
2425 enum elf_aarch64_stub_type
2426 {
2427 aarch64_stub_none,
2428 aarch64_stub_adrp_branch,
2429 aarch64_stub_long_branch,
2430 aarch64_stub_erratum_835769_veneer,
2431 aarch64_stub_erratum_843419_veneer,
2432 };
2433
2434 struct elf_aarch64_stub_hash_entry
2435 {
2436 /* Base hash table entry structure. */
2437 struct bfd_hash_entry root;
2438
2439 /* The stub section. */
2440 asection *stub_sec;
2441
2442 /* Offset within stub_sec of the beginning of this stub. */
2443 bfd_vma stub_offset;
2444
2445 /* Given the symbol's value and its section we can determine its final
2446 value when building the stubs (so the stub knows where to jump). */
2447 bfd_vma target_value;
2448 asection *target_section;
2449
2450 enum elf_aarch64_stub_type stub_type;
2451
2452 /* The symbol table entry, if any, that this was derived from. */
2453 struct elf_aarch64_link_hash_entry *h;
2454
2455 /* Destination symbol type */
2456 unsigned char st_type;
2457
2458 /* Where this stub is being called from, or, in the case of combined
2459 stub sections, the first input section in the group. */
2460 asection *id_sec;
2461
2462 /* The name for the local symbol at the start of this stub. The
2463 stub name in the hash table has to be unique; this does not, so
2464 it can be friendlier. */
2465 char *output_name;
2466
2467 /* The instruction which caused this stub to be generated (only valid for
2468 erratum 835769 workaround stubs at present). */
2469 uint32_t veneered_insn;
2470
2471 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2472 bfd_vma adrp_offset;
2473 };
2474
2475 /* Used to build a map of a section. This is required for mixed-endian
2476 code/data. */
2477
2478 typedef struct elf_elf_section_map
2479 {
2480 bfd_vma vma;
2481 char type;
2482 }
2483 elf_aarch64_section_map;
2484
2485
2486 typedef struct _aarch64_elf_section_data
2487 {
2488 struct bfd_elf_section_data elf;
2489 unsigned int mapcount;
2490 unsigned int mapsize;
2491 elf_aarch64_section_map *map;
2492 }
2493 _aarch64_elf_section_data;
2494
2495 #define elf_aarch64_section_data(sec) \
2496 ((_aarch64_elf_section_data *) elf_section_data (sec))
2497
2498 /* The size of the thread control block which is defined to be two pointers. */
2499 #define TCB_SIZE (ARCH_SIZE/8)*2
2500
2501 struct elf_aarch64_local_symbol
2502 {
2503 unsigned int got_type;
2504 bfd_signed_vma got_refcount;
2505 bfd_vma got_offset;
2506
2507 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2508 offset is from the end of the jump table and reserved entries
2509 within the PLTGOT.
2510
2511 The magic value (bfd_vma) -1 indicates that an offset has not be
2512 allocated. */
2513 bfd_vma tlsdesc_got_jump_table_offset;
2514 };
2515
2516 struct elf_aarch64_obj_tdata
2517 {
2518 struct elf_obj_tdata root;
2519
2520 /* local symbol descriptors */
2521 struct elf_aarch64_local_symbol *locals;
2522
2523 /* Zero to warn when linking objects with incompatible enum sizes. */
2524 int no_enum_size_warning;
2525
2526 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2527 int no_wchar_size_warning;
2528
2529 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2530 uint32_t gnu_and_prop;
2531
2532 /* Zero to warn when linking objects with incompatible
2533 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2534 int no_bti_warn;
2535
2536 /* PLT type based on security. */
2537 aarch64_plt_type plt_type;
2538 };
2539
2540 #define elf_aarch64_tdata(bfd) \
2541 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2542
2543 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2544
2545 #define is_aarch64_elf(bfd) \
2546 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2547 && elf_tdata (bfd) != NULL \
2548 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2549
2550 static bfd_boolean
2551 elfNN_aarch64_mkobject (bfd *abfd)
2552 {
2553 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2554 AARCH64_ELF_DATA);
2555 }
2556
2557 #define elf_aarch64_hash_entry(ent) \
2558 ((struct elf_aarch64_link_hash_entry *)(ent))
2559
2560 #define GOT_UNKNOWN 0
2561 #define GOT_NORMAL 1
2562 #define GOT_TLS_GD 2
2563 #define GOT_TLS_IE 4
2564 #define GOT_TLSDESC_GD 8
2565
2566 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2567
2568 /* AArch64 ELF linker hash entry. */
2569 struct elf_aarch64_link_hash_entry
2570 {
2571 struct elf_link_hash_entry root;
2572
2573 /* Track dynamic relocs copied for this symbol. */
2574 struct elf_dyn_relocs *dyn_relocs;
2575
2576 /* Since PLT entries have variable size, we need to record the
2577 index into .got.plt instead of recomputing it from the PLT
2578 offset. */
2579 bfd_signed_vma plt_got_offset;
2580
2581 /* Bit mask representing the type of GOT entry(s) if any required by
2582 this symbol. */
2583 unsigned int got_type;
2584
2585 /* A pointer to the most recently used stub hash entry against this
2586 symbol. */
2587 struct elf_aarch64_stub_hash_entry *stub_cache;
2588
2589 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2590 is from the end of the jump table and reserved entries within the PLTGOT.
2591
2592 The magic value (bfd_vma) -1 indicates that an offset has not
2593 be allocated. */
2594 bfd_vma tlsdesc_got_jump_table_offset;
2595 };
2596
2597 static unsigned int
2598 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2599 bfd *abfd,
2600 unsigned long r_symndx)
2601 {
2602 if (h)
2603 return elf_aarch64_hash_entry (h)->got_type;
2604
2605 if (! elf_aarch64_locals (abfd))
2606 return GOT_UNKNOWN;
2607
2608 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2609 }
2610
2611 /* Get the AArch64 elf linker hash table from a link_info structure. */
2612 #define elf_aarch64_hash_table(info) \
2613 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2614
2615 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2616 ((struct elf_aarch64_stub_hash_entry *) \
2617 bfd_hash_lookup ((table), (string), (create), (copy)))
2618
2619 /* AArch64 ELF linker hash table. */
2620 struct elf_aarch64_link_hash_table
2621 {
2622 /* The main hash table. */
2623 struct elf_link_hash_table root;
2624
2625 /* Nonzero to force PIC branch veneers. */
2626 int pic_veneer;
2627
2628 /* Fix erratum 835769. */
2629 int fix_erratum_835769;
2630
2631 /* Fix erratum 843419. */
2632 erratum_84319_opts fix_erratum_843419;
2633
2634 /* Don't apply link-time values for dynamic relocations. */
2635 int no_apply_dynamic_relocs;
2636
2637 /* The number of bytes in the initial entry in the PLT. */
2638 bfd_size_type plt_header_size;
2639
2640 /* The bytes of the initial PLT entry. */
2641 const bfd_byte *plt0_entry;
2642
2643 /* The number of bytes in the subsequent PLT entries. */
2644 bfd_size_type plt_entry_size;
2645
2646 /* The bytes of the subsequent PLT entry. */
2647 const bfd_byte *plt_entry;
2648
2649 /* Small local sym cache. */
2650 struct sym_cache sym_cache;
2651
2652 /* For convenience in allocate_dynrelocs. */
2653 bfd *obfd;
2654
2655 /* The amount of space used by the reserved portion of the sgotplt
2656 section, plus whatever space is used by the jump slots. */
2657 bfd_vma sgotplt_jump_table_size;
2658
2659 /* The stub hash table. */
2660 struct bfd_hash_table stub_hash_table;
2661
2662 /* Linker stub bfd. */
2663 bfd *stub_bfd;
2664
2665 /* Linker call-backs. */
2666 asection *(*add_stub_section) (const char *, asection *);
2667 void (*layout_sections_again) (void);
2668
2669 /* Array to keep track of which stub sections have been created, and
2670 information on stub grouping. */
2671 struct map_stub
2672 {
2673 /* This is the section to which stubs in the group will be
2674 attached. */
2675 asection *link_sec;
2676 /* The stub section. */
2677 asection *stub_sec;
2678 } *stub_group;
2679
2680 /* Assorted information used by elfNN_aarch64_size_stubs. */
2681 unsigned int bfd_count;
2682 unsigned int top_index;
2683 asection **input_list;
2684
2685 /* JUMP_SLOT relocs for variant PCS symbols may be present. */
2686 int variant_pcs;
2687
2688 /* The offset into splt of the PLT entry for the TLS descriptor
2689 resolver. Special values are 0, if not necessary (or not found
2690 to be necessary yet), and -1 if needed but not determined
2691 yet. */
2692 bfd_vma tlsdesc_plt;
2693
2694 /* The number of bytes in the PLT enty for the TLS descriptor. */
2695 bfd_size_type tlsdesc_plt_entry_size;
2696
2697 /* The GOT offset for the lazy trampoline. Communicated to the
2698 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2699 indicates an offset is not allocated. */
2700 bfd_vma dt_tlsdesc_got;
2701
2702 /* Used by local STT_GNU_IFUNC symbols. */
2703 htab_t loc_hash_table;
2704 void * loc_hash_memory;
2705 };
2706
2707 /* Create an entry in an AArch64 ELF linker hash table. */
2708
2709 static struct bfd_hash_entry *
2710 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2711 struct bfd_hash_table *table,
2712 const char *string)
2713 {
2714 struct elf_aarch64_link_hash_entry *ret =
2715 (struct elf_aarch64_link_hash_entry *) entry;
2716
2717 /* Allocate the structure if it has not already been allocated by a
2718 subclass. */
2719 if (ret == NULL)
2720 ret = bfd_hash_allocate (table,
2721 sizeof (struct elf_aarch64_link_hash_entry));
2722 if (ret == NULL)
2723 return (struct bfd_hash_entry *) ret;
2724
2725 /* Call the allocation method of the superclass. */
2726 ret = ((struct elf_aarch64_link_hash_entry *)
2727 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2728 table, string));
2729 if (ret != NULL)
2730 {
2731 ret->dyn_relocs = NULL;
2732 ret->got_type = GOT_UNKNOWN;
2733 ret->plt_got_offset = (bfd_vma) - 1;
2734 ret->stub_cache = NULL;
2735 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2736 }
2737
2738 return (struct bfd_hash_entry *) ret;
2739 }
2740
2741 /* Initialize an entry in the stub hash table. */
2742
2743 static struct bfd_hash_entry *
2744 stub_hash_newfunc (struct bfd_hash_entry *entry,
2745 struct bfd_hash_table *table, const char *string)
2746 {
2747 /* Allocate the structure if it has not already been allocated by a
2748 subclass. */
2749 if (entry == NULL)
2750 {
2751 entry = bfd_hash_allocate (table,
2752 sizeof (struct
2753 elf_aarch64_stub_hash_entry));
2754 if (entry == NULL)
2755 return entry;
2756 }
2757
2758 /* Call the allocation method of the superclass. */
2759 entry = bfd_hash_newfunc (entry, table, string);
2760 if (entry != NULL)
2761 {
2762 struct elf_aarch64_stub_hash_entry *eh;
2763
2764 /* Initialize the local fields. */
2765 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2766 eh->adrp_offset = 0;
2767 eh->stub_sec = NULL;
2768 eh->stub_offset = 0;
2769 eh->target_value = 0;
2770 eh->target_section = NULL;
2771 eh->stub_type = aarch64_stub_none;
2772 eh->h = NULL;
2773 eh->id_sec = NULL;
2774 }
2775
2776 return entry;
2777 }
2778
2779 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2780 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2781 as global symbol. We reuse indx and dynstr_index for local symbol
2782 hash since they aren't used by global symbols in this backend. */
2783
2784 static hashval_t
2785 elfNN_aarch64_local_htab_hash (const void *ptr)
2786 {
2787 struct elf_link_hash_entry *h
2788 = (struct elf_link_hash_entry *) ptr;
2789 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2790 }
2791
2792 /* Compare local hash entries. */
2793
2794 static int
2795 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2796 {
2797 struct elf_link_hash_entry *h1
2798 = (struct elf_link_hash_entry *) ptr1;
2799 struct elf_link_hash_entry *h2
2800 = (struct elf_link_hash_entry *) ptr2;
2801
2802 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2803 }
2804
2805 /* Find and/or create a hash entry for local symbol. */
2806
2807 static struct elf_link_hash_entry *
2808 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2809 bfd *abfd, const Elf_Internal_Rela *rel,
2810 bfd_boolean create)
2811 {
2812 struct elf_aarch64_link_hash_entry e, *ret;
2813 asection *sec = abfd->sections;
2814 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2815 ELFNN_R_SYM (rel->r_info));
2816 void **slot;
2817
2818 e.root.indx = sec->id;
2819 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2820 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2821 create ? INSERT : NO_INSERT);
2822
2823 if (!slot)
2824 return NULL;
2825
2826 if (*slot)
2827 {
2828 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2829 return &ret->root;
2830 }
2831
2832 ret = (struct elf_aarch64_link_hash_entry *)
2833 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2834 sizeof (struct elf_aarch64_link_hash_entry));
2835 if (ret)
2836 {
2837 memset (ret, 0, sizeof (*ret));
2838 ret->root.indx = sec->id;
2839 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2840 ret->root.dynindx = -1;
2841 *slot = ret;
2842 }
2843 return &ret->root;
2844 }
2845
2846 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2847
2848 static void
2849 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2850 struct elf_link_hash_entry *dir,
2851 struct elf_link_hash_entry *ind)
2852 {
2853 struct elf_aarch64_link_hash_entry *edir, *eind;
2854
2855 edir = (struct elf_aarch64_link_hash_entry *) dir;
2856 eind = (struct elf_aarch64_link_hash_entry *) ind;
2857
2858 if (eind->dyn_relocs != NULL)
2859 {
2860 if (edir->dyn_relocs != NULL)
2861 {
2862 struct elf_dyn_relocs **pp;
2863 struct elf_dyn_relocs *p;
2864
2865 /* Add reloc counts against the indirect sym to the direct sym
2866 list. Merge any entries against the same section. */
2867 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2868 {
2869 struct elf_dyn_relocs *q;
2870
2871 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2872 if (q->sec == p->sec)
2873 {
2874 q->pc_count += p->pc_count;
2875 q->count += p->count;
2876 *pp = p->next;
2877 break;
2878 }
2879 if (q == NULL)
2880 pp = &p->next;
2881 }
2882 *pp = edir->dyn_relocs;
2883 }
2884
2885 edir->dyn_relocs = eind->dyn_relocs;
2886 eind->dyn_relocs = NULL;
2887 }
2888
2889 if (ind->root.type == bfd_link_hash_indirect)
2890 {
2891 /* Copy over PLT info. */
2892 if (dir->got.refcount <= 0)
2893 {
2894 edir->got_type = eind->got_type;
2895 eind->got_type = GOT_UNKNOWN;
2896 }
2897 }
2898
2899 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2900 }
2901
2902 /* Merge non-visibility st_other attributes. */
2903
2904 static void
2905 elfNN_aarch64_merge_symbol_attribute (struct elf_link_hash_entry *h,
2906 const Elf_Internal_Sym *isym,
2907 bfd_boolean definition ATTRIBUTE_UNUSED,
2908 bfd_boolean dynamic ATTRIBUTE_UNUSED)
2909 {
2910 unsigned int isym_sto = isym->st_other & ~ELF_ST_VISIBILITY (-1);
2911 unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1);
2912
2913 if (isym_sto == h_sto)
2914 return;
2915
2916 if (isym_sto & ~STO_AARCH64_VARIANT_PCS)
2917 /* Not fatal, this callback cannot fail. */
2918 _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
2919 h->root.root.string, isym_sto);
2920
2921 /* Note: Ideally we would warn about any attribute mismatch, but
2922 this api does not allow that without substantial changes. */
2923 if (isym_sto & STO_AARCH64_VARIANT_PCS)
2924 h->other |= STO_AARCH64_VARIANT_PCS;
2925 }
2926
2927 /* Destroy an AArch64 elf linker hash table. */
2928
2929 static void
2930 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2931 {
2932 struct elf_aarch64_link_hash_table *ret
2933 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2934
2935 if (ret->loc_hash_table)
2936 htab_delete (ret->loc_hash_table);
2937 if (ret->loc_hash_memory)
2938 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2939
2940 bfd_hash_table_free (&ret->stub_hash_table);
2941 _bfd_elf_link_hash_table_free (obfd);
2942 }
2943
2944 /* Create an AArch64 elf linker hash table. */
2945
2946 static struct bfd_link_hash_table *
2947 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2948 {
2949 struct elf_aarch64_link_hash_table *ret;
2950 size_t amt = sizeof (struct elf_aarch64_link_hash_table);
2951
2952 ret = bfd_zmalloc (amt);
2953 if (ret == NULL)
2954 return NULL;
2955
2956 if (!_bfd_elf_link_hash_table_init
2957 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2958 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2959 {
2960 free (ret);
2961 return NULL;
2962 }
2963
2964 ret->plt_header_size = PLT_ENTRY_SIZE;
2965 ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2966 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2967 ret->plt_entry = elfNN_aarch64_small_plt_entry;
2968 ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2969 ret->obfd = abfd;
2970 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2971
2972 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2973 sizeof (struct elf_aarch64_stub_hash_entry)))
2974 {
2975 _bfd_elf_link_hash_table_free (abfd);
2976 return NULL;
2977 }
2978
2979 ret->loc_hash_table = htab_try_create (1024,
2980 elfNN_aarch64_local_htab_hash,
2981 elfNN_aarch64_local_htab_eq,
2982 NULL);
2983 ret->loc_hash_memory = objalloc_create ();
2984 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2985 {
2986 elfNN_aarch64_link_hash_table_free (abfd);
2987 return NULL;
2988 }
2989 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2990
2991 return &ret->root.root;
2992 }
2993
2994 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2995
2996 static bfd_boolean
2997 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2998 bfd_vma offset, bfd_vma value)
2999 {
3000 reloc_howto_type *howto;
3001 bfd_vma place;
3002
3003 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
3004 place = (input_section->output_section->vma + input_section->output_offset
3005 + offset);
3006
3007 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
3008 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, r_type, place,
3009 value, 0, FALSE);
3010 return _bfd_aarch64_elf_put_addend (input_bfd,
3011 input_section->contents + offset, r_type,
3012 howto, value) == bfd_reloc_ok;
3013 }
3014
3015 static enum elf_aarch64_stub_type
3016 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
3017 {
3018 if (aarch64_valid_for_adrp_p (value, place))
3019 return aarch64_stub_adrp_branch;
3020 return aarch64_stub_long_branch;
3021 }
3022
3023 /* Determine the type of stub needed, if any, for a call. */
3024
3025 static enum elf_aarch64_stub_type
3026 aarch64_type_of_stub (asection *input_sec,
3027 const Elf_Internal_Rela *rel,
3028 asection *sym_sec,
3029 unsigned char st_type,
3030 bfd_vma destination)
3031 {
3032 bfd_vma location;
3033 bfd_signed_vma branch_offset;
3034 unsigned int r_type;
3035 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
3036
3037 if (st_type != STT_FUNC
3038 && (sym_sec == input_sec))
3039 return stub_type;
3040
3041 /* Determine where the call point is. */
3042 location = (input_sec->output_offset
3043 + input_sec->output_section->vma + rel->r_offset);
3044
3045 branch_offset = (bfd_signed_vma) (destination - location);
3046
3047 r_type = ELFNN_R_TYPE (rel->r_info);
3048
3049 /* We don't want to redirect any old unconditional jump in this way,
3050 only one which is being used for a sibcall, where it is
3051 acceptable for the IP0 and IP1 registers to be clobbered. */
3052 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
3053 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
3054 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
3055 {
3056 stub_type = aarch64_stub_long_branch;
3057 }
3058
3059 return stub_type;
3060 }
3061
3062 /* Build a name for an entry in the stub hash table. */
3063
3064 static char *
3065 elfNN_aarch64_stub_name (const asection *input_section,
3066 const asection *sym_sec,
3067 const struct elf_aarch64_link_hash_entry *hash,
3068 const Elf_Internal_Rela *rel)
3069 {
3070 char *stub_name;
3071 bfd_size_type len;
3072
3073 if (hash)
3074 {
3075 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3076 stub_name = bfd_malloc (len);
3077 if (stub_name != NULL)
3078 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3079 (unsigned int) input_section->id,
3080 hash->root.root.root.string,
3081 rel->r_addend);
3082 }
3083 else
3084 {
3085 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3086 stub_name = bfd_malloc (len);
3087 if (stub_name != NULL)
3088 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3089 (unsigned int) input_section->id,
3090 (unsigned int) sym_sec->id,
3091 (unsigned int) ELFNN_R_SYM (rel->r_info),
3092 rel->r_addend);
3093 }
3094
3095 return stub_name;
3096 }
3097
3098 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3099 executable PLT slots where the executable never takes the address of those
3100 functions, the function symbols are not added to the hash table. */
3101
3102 static bfd_boolean
3103 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3104 {
3105 if (h->plt.offset != (bfd_vma) -1
3106 && !h->def_regular
3107 && !h->pointer_equality_needed)
3108 return FALSE;
3109
3110 return _bfd_elf_hash_symbol (h);
3111 }
3112
3113
3114 /* Look up an entry in the stub hash. Stub entries are cached because
3115 creating the stub name takes a bit of time. */
3116
3117 static struct elf_aarch64_stub_hash_entry *
3118 elfNN_aarch64_get_stub_entry (const asection *input_section,
3119 const asection *sym_sec,
3120 struct elf_link_hash_entry *hash,
3121 const Elf_Internal_Rela *rel,
3122 struct elf_aarch64_link_hash_table *htab)
3123 {
3124 struct elf_aarch64_stub_hash_entry *stub_entry;
3125 struct elf_aarch64_link_hash_entry *h =
3126 (struct elf_aarch64_link_hash_entry *) hash;
3127 const asection *id_sec;
3128
3129 if ((input_section->flags & SEC_CODE) == 0)
3130 return NULL;
3131
3132 /* If this input section is part of a group of sections sharing one
3133 stub section, then use the id of the first section in the group.
3134 Stub names need to include a section id, as there may well be
3135 more than one stub used to reach say, printf, and we need to
3136 distinguish between them. */
3137 id_sec = htab->stub_group[input_section->id].link_sec;
3138
3139 if (h != NULL && h->stub_cache != NULL
3140 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3141 {
3142 stub_entry = h->stub_cache;
3143 }
3144 else
3145 {
3146 char *stub_name;
3147
3148 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3149 if (stub_name == NULL)
3150 return NULL;
3151
3152 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3153 stub_name, FALSE, FALSE);
3154 if (h != NULL)
3155 h->stub_cache = stub_entry;
3156
3157 free (stub_name);
3158 }
3159
3160 return stub_entry;
3161 }
3162
3163
3164 /* Create a stub section. */
3165
3166 static asection *
3167 _bfd_aarch64_create_stub_section (asection *section,
3168 struct elf_aarch64_link_hash_table *htab)
3169 {
3170 size_t namelen;
3171 bfd_size_type len;
3172 char *s_name;
3173
3174 namelen = strlen (section->name);
3175 len = namelen + sizeof (STUB_SUFFIX);
3176 s_name = bfd_alloc (htab->stub_bfd, len);
3177 if (s_name == NULL)
3178 return NULL;
3179
3180 memcpy (s_name, section->name, namelen);
3181 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3182 return (*htab->add_stub_section) (s_name, section);
3183 }
3184
3185
3186 /* Find or create a stub section for a link section.
3187
3188 Fix or create the stub section used to collect stubs attached to
3189 the specified link section. */
3190
3191 static asection *
3192 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3193 struct elf_aarch64_link_hash_table *htab)
3194 {
3195 if (htab->stub_group[link_section->id].stub_sec == NULL)
3196 htab->stub_group[link_section->id].stub_sec
3197 = _bfd_aarch64_create_stub_section (link_section, htab);
3198 return htab->stub_group[link_section->id].stub_sec;
3199 }
3200
3201
3202 /* Find or create a stub section in the stub group for an input
3203 section. */
3204
3205 static asection *
3206 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3207 struct elf_aarch64_link_hash_table *htab)
3208 {
3209 asection *link_sec = htab->stub_group[section->id].link_sec;
3210 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3211 }
3212
3213
3214 /* Add a new stub entry in the stub group associated with an input
3215 section to the stub hash. Not all fields of the new stub entry are
3216 initialised. */
3217
3218 static struct elf_aarch64_stub_hash_entry *
3219 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3220 asection *section,
3221 struct elf_aarch64_link_hash_table *htab)
3222 {
3223 asection *link_sec;
3224 asection *stub_sec;
3225 struct elf_aarch64_stub_hash_entry *stub_entry;
3226
3227 link_sec = htab->stub_group[section->id].link_sec;
3228 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3229
3230 /* Enter this entry into the linker stub hash table. */
3231 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3232 TRUE, FALSE);
3233 if (stub_entry == NULL)
3234 {
3235 /* xgettext:c-format */
3236 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3237 section->owner, stub_name);
3238 return NULL;
3239 }
3240
3241 stub_entry->stub_sec = stub_sec;
3242 stub_entry->stub_offset = 0;
3243 stub_entry->id_sec = link_sec;
3244
3245 return stub_entry;
3246 }
3247
3248 /* Add a new stub entry in the final stub section to the stub hash.
3249 Not all fields of the new stub entry are initialised. */
3250
3251 static struct elf_aarch64_stub_hash_entry *
3252 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3253 asection *link_section,
3254 struct elf_aarch64_link_hash_table *htab)
3255 {
3256 asection *stub_sec;
3257 struct elf_aarch64_stub_hash_entry *stub_entry;
3258
3259 stub_sec = NULL;
3260 /* Only create the actual stub if we will end up needing it. */
3261 if (htab->fix_erratum_843419 & ERRAT_ADRP)
3262 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3263 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3264 TRUE, FALSE);
3265 if (stub_entry == NULL)
3266 {
3267 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3268 return NULL;
3269 }
3270
3271 stub_entry->stub_sec = stub_sec;
3272 stub_entry->stub_offset = 0;
3273 stub_entry->id_sec = link_section;
3274
3275 return stub_entry;
3276 }
3277
3278
3279 static bfd_boolean
3280 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3281 void *in_arg)
3282 {
3283 struct elf_aarch64_stub_hash_entry *stub_entry;
3284 asection *stub_sec;
3285 bfd *stub_bfd;
3286 bfd_byte *loc;
3287 bfd_vma sym_value;
3288 bfd_vma veneered_insn_loc;
3289 bfd_vma veneer_entry_loc;
3290 bfd_signed_vma branch_offset = 0;
3291 unsigned int template_size;
3292 const uint32_t *template;
3293 unsigned int i;
3294 struct bfd_link_info *info;
3295
3296 /* Massage our args to the form they really have. */
3297 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3298
3299 info = (struct bfd_link_info *) in_arg;
3300
3301 /* Fail if the target section could not be assigned to an output
3302 section. The user should fix his linker script. */
3303 if (stub_entry->target_section->output_section == NULL
3304 && info->non_contiguous_regions)
3305 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
3306 "Retry without "
3307 "--enable-non-contiguous-regions.\n"),
3308 stub_entry->target_section);
3309
3310 stub_sec = stub_entry->stub_sec;
3311
3312 /* Make a note of the offset within the stubs for this entry. */
3313 stub_entry->stub_offset = stub_sec->size;
3314 loc = stub_sec->contents + stub_entry->stub_offset;
3315
3316 stub_bfd = stub_sec->owner;
3317
3318 /* This is the address of the stub destination. */
3319 sym_value = (stub_entry->target_value
3320 + stub_entry->target_section->output_offset
3321 + stub_entry->target_section->output_section->vma);
3322
3323 if (stub_entry->stub_type == aarch64_stub_long_branch)
3324 {
3325 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3326 + stub_sec->output_offset);
3327
3328 /* See if we can relax the stub. */
3329 if (aarch64_valid_for_adrp_p (sym_value, place))
3330 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3331 }
3332
3333 switch (stub_entry->stub_type)
3334 {
3335 case aarch64_stub_adrp_branch:
3336 template = aarch64_adrp_branch_stub;
3337 template_size = sizeof (aarch64_adrp_branch_stub);
3338 break;
3339 case aarch64_stub_long_branch:
3340 template = aarch64_long_branch_stub;
3341 template_size = sizeof (aarch64_long_branch_stub);
3342 break;
3343 case aarch64_stub_erratum_835769_veneer:
3344 template = aarch64_erratum_835769_stub;
3345 template_size = sizeof (aarch64_erratum_835769_stub);
3346 break;
3347 case aarch64_stub_erratum_843419_veneer:
3348 template = aarch64_erratum_843419_stub;
3349 template_size = sizeof (aarch64_erratum_843419_stub);
3350 break;
3351 default:
3352 abort ();
3353 }
3354
3355 for (i = 0; i < (template_size / sizeof template[0]); i++)
3356 {
3357 bfd_putl32 (template[i], loc);
3358 loc += 4;
3359 }
3360
3361 template_size = (template_size + 7) & ~7;
3362 stub_sec->size += template_size;
3363
3364 switch (stub_entry->stub_type)
3365 {
3366 case aarch64_stub_adrp_branch:
3367 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3368 stub_entry->stub_offset, sym_value))
3369 /* The stub would not have been relaxed if the offset was out
3370 of range. */
3371 BFD_FAIL ();
3372
3373 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3374 stub_entry->stub_offset + 4, sym_value))
3375 BFD_FAIL ();
3376 break;
3377
3378 case aarch64_stub_long_branch:
3379 /* We want the value relative to the address 12 bytes back from the
3380 value itself. */
3381 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3382 stub_entry->stub_offset + 16, sym_value + 12))
3383 BFD_FAIL ();
3384 break;
3385
3386 case aarch64_stub_erratum_835769_veneer:
3387 veneered_insn_loc = stub_entry->target_section->output_section->vma
3388 + stub_entry->target_section->output_offset
3389 + stub_entry->target_value;
3390 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3391 + stub_entry->stub_sec->output_offset
3392 + stub_entry->stub_offset;
3393 branch_offset = veneered_insn_loc - veneer_entry_loc;
3394 branch_offset >>= 2;
3395 branch_offset &= 0x3ffffff;
3396 bfd_putl32 (stub_entry->veneered_insn,
3397 stub_sec->contents + stub_entry->stub_offset);
3398 bfd_putl32 (template[1] | branch_offset,
3399 stub_sec->contents + stub_entry->stub_offset + 4);
3400 break;
3401
3402 case aarch64_stub_erratum_843419_veneer:
3403 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3404 stub_entry->stub_offset + 4, sym_value + 4))
3405 BFD_FAIL ();
3406 break;
3407
3408 default:
3409 abort ();
3410 }
3411
3412 return TRUE;
3413 }
3414
3415 /* As above, but don't actually build the stub. Just bump offset so
3416 we know stub section sizes. */
3417
3418 static bfd_boolean
3419 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
3420 {
3421 struct elf_aarch64_stub_hash_entry *stub_entry;
3422 struct elf_aarch64_link_hash_table *htab;
3423 int size;
3424
3425 /* Massage our args to the form they really have. */
3426 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3427 htab = (struct elf_aarch64_link_hash_table *) in_arg;
3428
3429 switch (stub_entry->stub_type)
3430 {
3431 case aarch64_stub_adrp_branch:
3432 size = sizeof (aarch64_adrp_branch_stub);
3433 break;
3434 case aarch64_stub_long_branch:
3435 size = sizeof (aarch64_long_branch_stub);
3436 break;
3437 case aarch64_stub_erratum_835769_veneer:
3438 size = sizeof (aarch64_erratum_835769_stub);
3439 break;
3440 case aarch64_stub_erratum_843419_veneer:
3441 {
3442 if (htab->fix_erratum_843419 == ERRAT_ADR)
3443 return TRUE;
3444 size = sizeof (aarch64_erratum_843419_stub);
3445 }
3446 break;
3447 default:
3448 abort ();
3449 }
3450
3451 size = (size + 7) & ~7;
3452 stub_entry->stub_sec->size += size;
3453 return TRUE;
3454 }
3455
3456 /* External entry points for sizing and building linker stubs. */
3457
3458 /* Set up various things so that we can make a list of input sections
3459 for each output section included in the link. Returns -1 on error,
3460 0 when no stubs will be needed, and 1 on success. */
3461
3462 int
3463 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3464 struct bfd_link_info *info)
3465 {
3466 bfd *input_bfd;
3467 unsigned int bfd_count;
3468 unsigned int top_id, top_index;
3469 asection *section;
3470 asection **input_list, **list;
3471 size_t amt;
3472 struct elf_aarch64_link_hash_table *htab =
3473 elf_aarch64_hash_table (info);
3474
3475 if (!is_elf_hash_table (htab))
3476 return 0;
3477
3478 /* Count the number of input BFDs and find the top input section id. */
3479 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3480 input_bfd != NULL; input_bfd = input_bfd->link.next)
3481 {
3482 bfd_count += 1;
3483 for (section = input_bfd->sections;
3484 section != NULL; section = section->next)
3485 {
3486 if (top_id < section->id)
3487 top_id = section->id;
3488 }
3489 }
3490 htab->bfd_count = bfd_count;
3491
3492 amt = sizeof (struct map_stub) * (top_id + 1);
3493 htab->stub_group = bfd_zmalloc (amt);
3494 if (htab->stub_group == NULL)
3495 return -1;
3496
3497 /* We can't use output_bfd->section_count here to find the top output
3498 section index as some sections may have been removed, and
3499 _bfd_strip_section_from_output doesn't renumber the indices. */
3500 for (section = output_bfd->sections, top_index = 0;
3501 section != NULL; section = section->next)
3502 {
3503 if (top_index < section->index)
3504 top_index = section->index;
3505 }
3506
3507 htab->top_index = top_index;
3508 amt = sizeof (asection *) * (top_index + 1);
3509 input_list = bfd_malloc (amt);
3510 htab->input_list = input_list;
3511 if (input_list == NULL)
3512 return -1;
3513
3514 /* For sections we aren't interested in, mark their entries with a
3515 value we can check later. */
3516 list = input_list + top_index;
3517 do
3518 *list = bfd_abs_section_ptr;
3519 while (list-- != input_list);
3520
3521 for (section = output_bfd->sections;
3522 section != NULL; section = section->next)
3523 {
3524 if ((section->flags & SEC_CODE) != 0)
3525 input_list[section->index] = NULL;
3526 }
3527
3528 return 1;
3529 }
3530
3531 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3532 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3533
3534 /* The linker repeatedly calls this function for each input section,
3535 in the order that input sections are linked into output sections.
3536 Build lists of input sections to determine groupings between which
3537 we may insert linker stubs. */
3538
3539 void
3540 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3541 {
3542 struct elf_aarch64_link_hash_table *htab =
3543 elf_aarch64_hash_table (info);
3544
3545 if (isec->output_section->index <= htab->top_index)
3546 {
3547 asection **list = htab->input_list + isec->output_section->index;
3548
3549 if (*list != bfd_abs_section_ptr)
3550 {
3551 /* Steal the link_sec pointer for our list. */
3552 /* This happens to make the list in reverse order,
3553 which is what we want. */
3554 PREV_SEC (isec) = *list;
3555 *list = isec;
3556 }
3557 }
3558 }
3559
3560 /* See whether we can group stub sections together. Grouping stub
3561 sections may result in fewer stubs. More importantly, we need to
3562 put all .init* and .fini* stubs at the beginning of the .init or
3563 .fini output sections respectively, because glibc splits the
3564 _init and _fini functions into multiple parts. Putting a stub in
3565 the middle of a function is not a good idea. */
3566
3567 static void
3568 group_sections (struct elf_aarch64_link_hash_table *htab,
3569 bfd_size_type stub_group_size,
3570 bfd_boolean stubs_always_before_branch)
3571 {
3572 asection **list = htab->input_list + htab->top_index;
3573
3574 do
3575 {
3576 asection *tail = *list;
3577
3578 if (tail == bfd_abs_section_ptr)
3579 continue;
3580
3581 while (tail != NULL)
3582 {
3583 asection *curr;
3584 asection *prev;
3585 bfd_size_type total;
3586
3587 curr = tail;
3588 total = tail->size;
3589 while ((prev = PREV_SEC (curr)) != NULL
3590 && ((total += curr->output_offset - prev->output_offset)
3591 < stub_group_size))
3592 curr = prev;
3593
3594 /* OK, the size from the start of CURR to the end is less
3595 than stub_group_size and thus can be handled by one stub
3596 section. (Or the tail section is itself larger than
3597 stub_group_size, in which case we may be toast.)
3598 We should really be keeping track of the total size of
3599 stubs added here, as stubs contribute to the final output
3600 section size. */
3601 do
3602 {
3603 prev = PREV_SEC (tail);
3604 /* Set up this stub group. */
3605 htab->stub_group[tail->id].link_sec = curr;
3606 }
3607 while (tail != curr && (tail = prev) != NULL);
3608
3609 /* But wait, there's more! Input sections up to stub_group_size
3610 bytes before the stub section can be handled by it too. */
3611 if (!stubs_always_before_branch)
3612 {
3613 total = 0;
3614 while (prev != NULL
3615 && ((total += tail->output_offset - prev->output_offset)
3616 < stub_group_size))
3617 {
3618 tail = prev;
3619 prev = PREV_SEC (tail);
3620 htab->stub_group[tail->id].link_sec = curr;
3621 }
3622 }
3623 tail = prev;
3624 }
3625 }
3626 while (list-- != htab->input_list);
3627
3628 free (htab->input_list);
3629 }
3630
3631 #undef PREV_SEC
3632
3633 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3634
3635 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3636 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3637 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3638 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3639 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3640 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3641
3642 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3643 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3644 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3645 #define AARCH64_ZR 0x1f
3646
3647 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3648 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3649
3650 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3651 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3652 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3653 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3654 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3655 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3656 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3657 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3658 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3659 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3660 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3661 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3662 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3663 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3664 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3665 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3666 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3667 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3668
3669 /* Classify an INSN if it is indeed a load/store.
3670
3671 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3672
3673 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3674 is set equal to RT.
3675
3676 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3677
3678 static bfd_boolean
3679 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3680 bfd_boolean *pair, bfd_boolean *load)
3681 {
3682 uint32_t opcode;
3683 unsigned int r;
3684 uint32_t opc = 0;
3685 uint32_t v = 0;
3686 uint32_t opc_v = 0;
3687
3688 /* Bail out quickly if INSN doesn't fall into the load-store
3689 encoding space. */
3690 if (!AARCH64_LDST (insn))
3691 return FALSE;
3692
3693 *pair = FALSE;
3694 *load = FALSE;
3695 if (AARCH64_LDST_EX (insn))
3696 {
3697 *rt = AARCH64_RT (insn);
3698 *rt2 = *rt;
3699 if (AARCH64_BIT (insn, 21) == 1)
3700 {
3701 *pair = TRUE;
3702 *rt2 = AARCH64_RT2 (insn);
3703 }
3704 *load = AARCH64_LD (insn);
3705 return TRUE;
3706 }
3707 else if (AARCH64_LDST_NAP (insn)
3708 || AARCH64_LDSTP_PI (insn)
3709 || AARCH64_LDSTP_O (insn)
3710 || AARCH64_LDSTP_PRE (insn))
3711 {
3712 *pair = TRUE;
3713 *rt = AARCH64_RT (insn);
3714 *rt2 = AARCH64_RT2 (insn);
3715 *load = AARCH64_LD (insn);
3716 return TRUE;
3717 }
3718 else if (AARCH64_LDST_PCREL (insn)
3719 || AARCH64_LDST_UI (insn)
3720 || AARCH64_LDST_PIIMM (insn)
3721 || AARCH64_LDST_U (insn)
3722 || AARCH64_LDST_PREIMM (insn)
3723 || AARCH64_LDST_RO (insn)
3724 || AARCH64_LDST_UIMM (insn))
3725 {
3726 *rt = AARCH64_RT (insn);
3727 *rt2 = *rt;
3728 if (AARCH64_LDST_PCREL (insn))
3729 *load = TRUE;
3730 opc = AARCH64_BITS (insn, 22, 2);
3731 v = AARCH64_BIT (insn, 26);
3732 opc_v = opc | (v << 2);
3733 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3734 || opc_v == 5 || opc_v == 7);
3735 return TRUE;
3736 }
3737 else if (AARCH64_LDST_SIMD_M (insn)
3738 || AARCH64_LDST_SIMD_M_PI (insn))
3739 {
3740 *rt = AARCH64_RT (insn);
3741 *load = AARCH64_BIT (insn, 22);
3742 opcode = (insn >> 12) & 0xf;
3743 switch (opcode)
3744 {
3745 case 0:
3746 case 2:
3747 *rt2 = *rt + 3;
3748 break;
3749
3750 case 4:
3751 case 6:
3752 *rt2 = *rt + 2;
3753 break;
3754
3755 case 7:
3756 *rt2 = *rt;
3757 break;
3758
3759 case 8:
3760 case 10:
3761 *rt2 = *rt + 1;
3762 break;
3763
3764 default:
3765 return FALSE;
3766 }
3767 return TRUE;
3768 }
3769 else if (AARCH64_LDST_SIMD_S (insn)
3770 || AARCH64_LDST_SIMD_S_PI (insn))
3771 {
3772 *rt = AARCH64_RT (insn);
3773 r = (insn >> 21) & 1;
3774 *load = AARCH64_BIT (insn, 22);
3775 opcode = (insn >> 13) & 0x7;
3776 switch (opcode)
3777 {
3778 case 0:
3779 case 2:
3780 case 4:
3781 *rt2 = *rt + r;
3782 break;
3783
3784 case 1:
3785 case 3:
3786 case 5:
3787 *rt2 = *rt + (r == 0 ? 2 : 3);
3788 break;
3789
3790 case 6:
3791 *rt2 = *rt + r;
3792 break;
3793
3794 case 7:
3795 *rt2 = *rt + (r == 0 ? 2 : 3);
3796 break;
3797
3798 default:
3799 return FALSE;
3800 }
3801 return TRUE;
3802 }
3803
3804 return FALSE;
3805 }
3806
3807 /* Return TRUE if INSN is multiply-accumulate. */
3808
3809 static bfd_boolean
3810 aarch64_mlxl_p (uint32_t insn)
3811 {
3812 uint32_t op31 = AARCH64_OP31 (insn);
3813
3814 if (AARCH64_MAC (insn)
3815 && (op31 == 0 || op31 == 1 || op31 == 5)
3816 /* Exclude MUL instructions which are encoded as a multiple accumulate
3817 with RA = XZR. */
3818 && AARCH64_RA (insn) != AARCH64_ZR)
3819 return TRUE;
3820
3821 return FALSE;
3822 }
3823
3824 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3825 it is possible for a 64-bit multiply-accumulate instruction to generate an
3826 incorrect result. The details are quite complex and hard to
3827 determine statically, since branches in the code may exist in some
3828 circumstances, but all cases end with a memory (load, store, or
3829 prefetch) instruction followed immediately by the multiply-accumulate
3830 operation. We employ a linker patching technique, by moving the potentially
3831 affected multiply-accumulate instruction into a patch region and replacing
3832 the original instruction with a branch to the patch. This function checks
3833 if INSN_1 is the memory operation followed by a multiply-accumulate
3834 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3835 if INSN_1 and INSN_2 are safe. */
3836
3837 static bfd_boolean
3838 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3839 {
3840 uint32_t rt;
3841 uint32_t rt2;
3842 uint32_t rn;
3843 uint32_t rm;
3844 uint32_t ra;
3845 bfd_boolean pair;
3846 bfd_boolean load;
3847
3848 if (aarch64_mlxl_p (insn_2)
3849 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3850 {
3851 /* Any SIMD memory op is independent of the subsequent MLA
3852 by definition of the erratum. */
3853 if (AARCH64_BIT (insn_1, 26))
3854 return TRUE;
3855
3856 /* If not SIMD, check for integer memory ops and MLA relationship. */
3857 rn = AARCH64_RN (insn_2);
3858 ra = AARCH64_RA (insn_2);
3859 rm = AARCH64_RM (insn_2);
3860
3861 /* If this is a load and there's a true(RAW) dependency, we are safe
3862 and this is not an erratum sequence. */
3863 if (load &&
3864 (rt == rn || rt == rm || rt == ra
3865 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3866 return FALSE;
3867
3868 /* We conservatively put out stubs for all other cases (including
3869 writebacks). */
3870 return TRUE;
3871 }
3872
3873 return FALSE;
3874 }
3875
3876 /* Used to order a list of mapping symbols by address. */
3877
3878 static int
3879 elf_aarch64_compare_mapping (const void *a, const void *b)
3880 {
3881 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3882 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3883
3884 if (amap->vma > bmap->vma)
3885 return 1;
3886 else if (amap->vma < bmap->vma)
3887 return -1;
3888 else if (amap->type > bmap->type)
3889 /* Ensure results do not depend on the host qsort for objects with
3890 multiple mapping symbols at the same address by sorting on type
3891 after vma. */
3892 return 1;
3893 else if (amap->type < bmap->type)
3894 return -1;
3895 else
3896 return 0;
3897 }
3898
3899
3900 static char *
3901 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3902 {
3903 char *stub_name = (char *) bfd_malloc
3904 (strlen ("__erratum_835769_veneer_") + 16);
3905 if (stub_name != NULL)
3906 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3907 return stub_name;
3908 }
3909
3910 /* Scan for Cortex-A53 erratum 835769 sequence.
3911
3912 Return TRUE else FALSE on abnormal termination. */
3913
3914 static bfd_boolean
3915 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3916 struct bfd_link_info *info,
3917 unsigned int *num_fixes_p)
3918 {
3919 asection *section;
3920 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3921 unsigned int num_fixes = *num_fixes_p;
3922
3923 if (htab == NULL)
3924 return TRUE;
3925
3926 for (section = input_bfd->sections;
3927 section != NULL;
3928 section = section->next)
3929 {
3930 bfd_byte *contents = NULL;
3931 struct _aarch64_elf_section_data *sec_data;
3932 unsigned int span;
3933
3934 if (elf_section_type (section) != SHT_PROGBITS
3935 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3936 || (section->flags & SEC_EXCLUDE) != 0
3937 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3938 || (section->output_section == bfd_abs_section_ptr))
3939 continue;
3940
3941 if (elf_section_data (section)->this_hdr.contents != NULL)
3942 contents = elf_section_data (section)->this_hdr.contents;
3943 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3944 return FALSE;
3945
3946 sec_data = elf_aarch64_section_data (section);
3947
3948 qsort (sec_data->map, sec_data->mapcount,
3949 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3950
3951 for (span = 0; span < sec_data->mapcount; span++)
3952 {
3953 unsigned int span_start = sec_data->map[span].vma;
3954 unsigned int span_end = ((span == sec_data->mapcount - 1)
3955 ? sec_data->map[0].vma + section->size
3956 : sec_data->map[span + 1].vma);
3957 unsigned int i;
3958 char span_type = sec_data->map[span].type;
3959
3960 if (span_type == 'd')
3961 continue;
3962
3963 for (i = span_start; i + 4 < span_end; i += 4)
3964 {
3965 uint32_t insn_1 = bfd_getl32 (contents + i);
3966 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3967
3968 if (aarch64_erratum_sequence (insn_1, insn_2))
3969 {
3970 struct elf_aarch64_stub_hash_entry *stub_entry;
3971 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3972 if (! stub_name)
3973 return FALSE;
3974
3975 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3976 section,
3977 htab);
3978 if (! stub_entry)
3979 return FALSE;
3980
3981 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3982 stub_entry->target_section = section;
3983 stub_entry->target_value = i + 4;
3984 stub_entry->veneered_insn = insn_2;
3985 stub_entry->output_name = stub_name;
3986 num_fixes++;
3987 }
3988 }
3989 }
3990 if (elf_section_data (section)->this_hdr.contents == NULL)
3991 free (contents);
3992 }
3993
3994 *num_fixes_p = num_fixes;
3995
3996 return TRUE;
3997 }
3998
3999
4000 /* Test if instruction INSN is ADRP. */
4001
4002 static bfd_boolean
4003 _bfd_aarch64_adrp_p (uint32_t insn)
4004 {
4005 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
4006 }
4007
4008
4009 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
4010
4011 static bfd_boolean
4012 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
4013 uint32_t insn_3)
4014 {
4015 uint32_t rt;
4016 uint32_t rt2;
4017 bfd_boolean pair;
4018 bfd_boolean load;
4019
4020 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
4021 && (!pair
4022 || (pair && !load))
4023 && AARCH64_LDST_UIMM (insn_3)
4024 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
4025 }
4026
4027
4028 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
4029
4030 Return TRUE if section CONTENTS at offset I contains one of the
4031 erratum 843419 sequences, otherwise return FALSE. If a sequence is
4032 seen set P_VENEER_I to the offset of the final LOAD/STORE
4033 instruction in the sequence.
4034 */
4035
4036 static bfd_boolean
4037 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
4038 bfd_vma i, bfd_vma span_end,
4039 bfd_vma *p_veneer_i)
4040 {
4041 uint32_t insn_1 = bfd_getl32 (contents + i);
4042
4043 if (!_bfd_aarch64_adrp_p (insn_1))
4044 return FALSE;
4045
4046 if (span_end < i + 12)
4047 return FALSE;
4048
4049 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
4050 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
4051
4052 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
4053 return FALSE;
4054
4055 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
4056 {
4057 *p_veneer_i = i + 8;
4058 return TRUE;
4059 }
4060
4061 if (span_end < i + 16)
4062 return FALSE;
4063
4064 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
4065
4066 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
4067 {
4068 *p_veneer_i = i + 12;
4069 return TRUE;
4070 }
4071
4072 return FALSE;
4073 }
4074
4075
4076 /* Resize all stub sections. */
4077
4078 static void
4079 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4080 {
4081 asection *section;
4082
4083 /* OK, we've added some stubs. Find out the new size of the
4084 stub sections. */
4085 for (section = htab->stub_bfd->sections;
4086 section != NULL; section = section->next)
4087 {
4088 /* Ignore non-stub sections. */
4089 if (!strstr (section->name, STUB_SUFFIX))
4090 continue;
4091 section->size = 0;
4092 }
4093
4094 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4095
4096 for (section = htab->stub_bfd->sections;
4097 section != NULL; section = section->next)
4098 {
4099 if (!strstr (section->name, STUB_SUFFIX))
4100 continue;
4101
4102 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4103 as long branch stubs contain a 64-bit address. */
4104 if (section->size)
4105 section->size += 8;
4106
4107 /* Ensure all stub sections have a size which is a multiple of
4108 4096. This is important in order to ensure that the insertion
4109 of stub sections does not in itself move existing code around
4110 in such a way that new errata sequences are created. We only do this
4111 when the ADRP workaround is enabled. If only the ADR workaround is
4112 enabled then the stubs workaround won't ever be used. */
4113 if (htab->fix_erratum_843419 & ERRAT_ADRP)
4114 if (section->size)
4115 section->size = BFD_ALIGN (section->size, 0x1000);
4116 }
4117 }
4118
4119 /* Construct an erratum 843419 workaround stub name. */
4120
4121 static char *
4122 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4123 bfd_vma offset)
4124 {
4125 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4126 char *stub_name = bfd_malloc (len);
4127
4128 if (stub_name != NULL)
4129 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4130 input_section->owner->id,
4131 input_section->id,
4132 offset);
4133 return stub_name;
4134 }
4135
4136 /* Build a stub_entry structure describing an 843419 fixup.
4137
4138 The stub_entry constructed is populated with the bit pattern INSN
4139 of the instruction located at OFFSET within input SECTION.
4140
4141 Returns TRUE on success. */
4142
4143 static bfd_boolean
4144 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4145 bfd_vma adrp_offset,
4146 bfd_vma ldst_offset,
4147 asection *section,
4148 struct bfd_link_info *info)
4149 {
4150 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4151 char *stub_name;
4152 struct elf_aarch64_stub_hash_entry *stub_entry;
4153
4154 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4155 if (stub_name == NULL)
4156 return FALSE;
4157 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4158 FALSE, FALSE);
4159 if (stub_entry)
4160 {
4161 free (stub_name);
4162 return TRUE;
4163 }
4164
4165 /* We always place an 843419 workaround veneer in the stub section
4166 attached to the input section in which an erratum sequence has
4167 been found. This ensures that later in the link process (in
4168 elfNN_aarch64_write_section) when we copy the veneered
4169 instruction from the input section into the stub section the
4170 copied instruction will have had any relocations applied to it.
4171 If we placed workaround veneers in any other stub section then we
4172 could not assume that all relocations have been processed on the
4173 corresponding input section at the point we output the stub
4174 section. */
4175
4176 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4177 if (stub_entry == NULL)
4178 {
4179 free (stub_name);
4180 return FALSE;
4181 }
4182
4183 stub_entry->adrp_offset = adrp_offset;
4184 stub_entry->target_value = ldst_offset;
4185 stub_entry->target_section = section;
4186 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4187 stub_entry->veneered_insn = insn;
4188 stub_entry->output_name = stub_name;
4189
4190 return TRUE;
4191 }
4192
4193
4194 /* Scan an input section looking for the signature of erratum 843419.
4195
4196 Scans input SECTION in INPUT_BFD looking for erratum 843419
4197 signatures, for each signature found a stub_entry is created
4198 describing the location of the erratum for subsequent fixup.
4199
4200 Return TRUE on successful scan, FALSE on failure to scan.
4201 */
4202
4203 static bfd_boolean
4204 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4205 struct bfd_link_info *info)
4206 {
4207 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4208
4209 if (htab == NULL)
4210 return TRUE;
4211
4212 if (elf_section_type (section) != SHT_PROGBITS
4213 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4214 || (section->flags & SEC_EXCLUDE) != 0
4215 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4216 || (section->output_section == bfd_abs_section_ptr))
4217 return TRUE;
4218
4219 do
4220 {
4221 bfd_byte *contents = NULL;
4222 struct _aarch64_elf_section_data *sec_data;
4223 unsigned int span;
4224
4225 if (elf_section_data (section)->this_hdr.contents != NULL)
4226 contents = elf_section_data (section)->this_hdr.contents;
4227 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4228 return FALSE;
4229
4230 sec_data = elf_aarch64_section_data (section);
4231
4232 qsort (sec_data->map, sec_data->mapcount,
4233 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4234
4235 for (span = 0; span < sec_data->mapcount; span++)
4236 {
4237 unsigned int span_start = sec_data->map[span].vma;
4238 unsigned int span_end = ((span == sec_data->mapcount - 1)
4239 ? sec_data->map[0].vma + section->size
4240 : sec_data->map[span + 1].vma);
4241 unsigned int i;
4242 char span_type = sec_data->map[span].type;
4243
4244 if (span_type == 'd')
4245 continue;
4246
4247 for (i = span_start; i + 8 < span_end; i += 4)
4248 {
4249 bfd_vma vma = (section->output_section->vma
4250 + section->output_offset
4251 + i);
4252 bfd_vma veneer_i;
4253
4254 if (_bfd_aarch64_erratum_843419_p
4255 (contents, vma, i, span_end, &veneer_i))
4256 {
4257 uint32_t insn = bfd_getl32 (contents + veneer_i);
4258
4259 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4260 section, info))
4261 return FALSE;
4262 }
4263 }
4264 }
4265
4266 if (elf_section_data (section)->this_hdr.contents == NULL)
4267 free (contents);
4268 }
4269 while (0);
4270
4271 return TRUE;
4272 }
4273
4274
4275 /* Determine and set the size of the stub section for a final link.
4276
4277 The basic idea here is to examine all the relocations looking for
4278 PC-relative calls to a target that is unreachable with a "bl"
4279 instruction. */
4280
4281 bfd_boolean
4282 elfNN_aarch64_size_stubs (bfd *output_bfd,
4283 bfd *stub_bfd,
4284 struct bfd_link_info *info,
4285 bfd_signed_vma group_size,
4286 asection * (*add_stub_section) (const char *,
4287 asection *),
4288 void (*layout_sections_again) (void))
4289 {
4290 bfd_size_type stub_group_size;
4291 bfd_boolean stubs_always_before_branch;
4292 bfd_boolean stub_changed = FALSE;
4293 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4294 unsigned int num_erratum_835769_fixes = 0;
4295
4296 /* Propagate mach to stub bfd, because it may not have been
4297 finalized when we created stub_bfd. */
4298 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4299 bfd_get_mach (output_bfd));
4300
4301 /* Stash our params away. */
4302 htab->stub_bfd = stub_bfd;
4303 htab->add_stub_section = add_stub_section;
4304 htab->layout_sections_again = layout_sections_again;
4305 stubs_always_before_branch = group_size < 0;
4306 if (group_size < 0)
4307 stub_group_size = -group_size;
4308 else
4309 stub_group_size = group_size;
4310
4311 if (stub_group_size == 1)
4312 {
4313 /* Default values. */
4314 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4315 stub_group_size = 127 * 1024 * 1024;
4316 }
4317
4318 group_sections (htab, stub_group_size, stubs_always_before_branch);
4319
4320 (*htab->layout_sections_again) ();
4321
4322 if (htab->fix_erratum_835769)
4323 {
4324 bfd *input_bfd;
4325
4326 for (input_bfd = info->input_bfds;
4327 input_bfd != NULL; input_bfd = input_bfd->link.next)
4328 {
4329 if (!is_aarch64_elf (input_bfd)
4330 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4331 continue;
4332
4333 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4334 &num_erratum_835769_fixes))
4335 return FALSE;
4336 }
4337
4338 _bfd_aarch64_resize_stubs (htab);
4339 (*htab->layout_sections_again) ();
4340 }
4341
4342 if (htab->fix_erratum_843419 != ERRAT_NONE)
4343 {
4344 bfd *input_bfd;
4345
4346 for (input_bfd = info->input_bfds;
4347 input_bfd != NULL;
4348 input_bfd = input_bfd->link.next)
4349 {
4350 asection *section;
4351
4352 if (!is_aarch64_elf (input_bfd)
4353 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4354 continue;
4355
4356 for (section = input_bfd->sections;
4357 section != NULL;
4358 section = section->next)
4359 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4360 return FALSE;
4361 }
4362
4363 _bfd_aarch64_resize_stubs (htab);
4364 (*htab->layout_sections_again) ();
4365 }
4366
4367 while (1)
4368 {
4369 bfd *input_bfd;
4370
4371 for (input_bfd = info->input_bfds;
4372 input_bfd != NULL; input_bfd = input_bfd->link.next)
4373 {
4374 Elf_Internal_Shdr *symtab_hdr;
4375 asection *section;
4376 Elf_Internal_Sym *local_syms = NULL;
4377
4378 if (!is_aarch64_elf (input_bfd)
4379 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4380 continue;
4381
4382 /* We'll need the symbol table in a second. */
4383 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4384 if (symtab_hdr->sh_info == 0)
4385 continue;
4386
4387 /* Walk over each section attached to the input bfd. */
4388 for (section = input_bfd->sections;
4389 section != NULL; section = section->next)
4390 {
4391 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4392
4393 /* If there aren't any relocs, then there's nothing more
4394 to do. */
4395 if ((section->flags & SEC_RELOC) == 0
4396 || section->reloc_count == 0
4397 || (section->flags & SEC_CODE) == 0)
4398 continue;
4399
4400 /* If this section is a link-once section that will be
4401 discarded, then don't create any stubs. */
4402 if (section->output_section == NULL
4403 || section->output_section->owner != output_bfd)
4404 continue;
4405
4406 /* Get the relocs. */
4407 internal_relocs
4408 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4409 NULL, info->keep_memory);
4410 if (internal_relocs == NULL)
4411 goto error_ret_free_local;
4412
4413 /* Now examine each relocation. */
4414 irela = internal_relocs;
4415 irelaend = irela + section->reloc_count;
4416 for (; irela < irelaend; irela++)
4417 {
4418 unsigned int r_type, r_indx;
4419 enum elf_aarch64_stub_type stub_type;
4420 struct elf_aarch64_stub_hash_entry *stub_entry;
4421 asection *sym_sec;
4422 bfd_vma sym_value;
4423 bfd_vma destination;
4424 struct elf_aarch64_link_hash_entry *hash;
4425 const char *sym_name;
4426 char *stub_name;
4427 const asection *id_sec;
4428 unsigned char st_type;
4429 bfd_size_type len;
4430
4431 r_type = ELFNN_R_TYPE (irela->r_info);
4432 r_indx = ELFNN_R_SYM (irela->r_info);
4433
4434 if (r_type >= (unsigned int) R_AARCH64_end)
4435 {
4436 bfd_set_error (bfd_error_bad_value);
4437 error_ret_free_internal:
4438 if (elf_section_data (section)->relocs == NULL)
4439 free (internal_relocs);
4440 goto error_ret_free_local;
4441 }
4442
4443 /* Only look for stubs on unconditional branch and
4444 branch and link instructions. */
4445 if (r_type != (unsigned int) AARCH64_R (CALL26)
4446 && r_type != (unsigned int) AARCH64_R (JUMP26))
4447 continue;
4448
4449 /* Now determine the call target, its name, value,
4450 section. */
4451 sym_sec = NULL;
4452 sym_value = 0;
4453 destination = 0;
4454 hash = NULL;
4455 sym_name = NULL;
4456 if (r_indx < symtab_hdr->sh_info)
4457 {
4458 /* It's a local symbol. */
4459 Elf_Internal_Sym *sym;
4460 Elf_Internal_Shdr *hdr;
4461
4462 if (local_syms == NULL)
4463 {
4464 local_syms
4465 = (Elf_Internal_Sym *) symtab_hdr->contents;
4466 if (local_syms == NULL)
4467 local_syms
4468 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4469 symtab_hdr->sh_info, 0,
4470 NULL, NULL, NULL);
4471 if (local_syms == NULL)
4472 goto error_ret_free_internal;
4473 }
4474
4475 sym = local_syms + r_indx;
4476 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4477 sym_sec = hdr->bfd_section;
4478 if (!sym_sec)
4479 /* This is an undefined symbol. It can never
4480 be resolved. */
4481 continue;
4482
4483 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4484 sym_value = sym->st_value;
4485 destination = (sym_value + irela->r_addend
4486 + sym_sec->output_offset
4487 + sym_sec->output_section->vma);
4488 st_type = ELF_ST_TYPE (sym->st_info);
4489 sym_name
4490 = bfd_elf_string_from_elf_section (input_bfd,
4491 symtab_hdr->sh_link,
4492 sym->st_name);
4493 }
4494 else
4495 {
4496 int e_indx;
4497
4498 e_indx = r_indx - symtab_hdr->sh_info;
4499 hash = ((struct elf_aarch64_link_hash_entry *)
4500 elf_sym_hashes (input_bfd)[e_indx]);
4501
4502 while (hash->root.root.type == bfd_link_hash_indirect
4503 || hash->root.root.type == bfd_link_hash_warning)
4504 hash = ((struct elf_aarch64_link_hash_entry *)
4505 hash->root.root.u.i.link);
4506
4507 if (hash->root.root.type == bfd_link_hash_defined
4508 || hash->root.root.type == bfd_link_hash_defweak)
4509 {
4510 struct elf_aarch64_link_hash_table *globals =
4511 elf_aarch64_hash_table (info);
4512 sym_sec = hash->root.root.u.def.section;
4513 sym_value = hash->root.root.u.def.value;
4514 /* For a destination in a shared library,
4515 use the PLT stub as target address to
4516 decide whether a branch stub is
4517 needed. */
4518 if (globals->root.splt != NULL && hash != NULL
4519 && hash->root.plt.offset != (bfd_vma) - 1)
4520 {
4521 sym_sec = globals->root.splt;
4522 sym_value = hash->root.plt.offset;
4523 if (sym_sec->output_section != NULL)
4524 destination = (sym_value
4525 + sym_sec->output_offset
4526 +
4527 sym_sec->output_section->vma);
4528 }
4529 else if (sym_sec->output_section != NULL)
4530 destination = (sym_value + irela->r_addend
4531 + sym_sec->output_offset
4532 + sym_sec->output_section->vma);
4533 }
4534 else if (hash->root.root.type == bfd_link_hash_undefined
4535 || (hash->root.root.type
4536 == bfd_link_hash_undefweak))
4537 {
4538 /* For a shared library, use the PLT stub as
4539 target address to decide whether a long
4540 branch stub is needed.
4541 For absolute code, they cannot be handled. */
4542 struct elf_aarch64_link_hash_table *globals =
4543 elf_aarch64_hash_table (info);
4544
4545 if (globals->root.splt != NULL && hash != NULL
4546 && hash->root.plt.offset != (bfd_vma) - 1)
4547 {
4548 sym_sec = globals->root.splt;
4549 sym_value = hash->root.plt.offset;
4550 if (sym_sec->output_section != NULL)
4551 destination = (sym_value
4552 + sym_sec->output_offset
4553 +
4554 sym_sec->output_section->vma);
4555 }
4556 else
4557 continue;
4558 }
4559 else
4560 {
4561 bfd_set_error (bfd_error_bad_value);
4562 goto error_ret_free_internal;
4563 }
4564 st_type = ELF_ST_TYPE (hash->root.type);
4565 sym_name = hash->root.root.root.string;
4566 }
4567
4568 /* Determine what (if any) linker stub is needed. */
4569 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4570 st_type, destination);
4571 if (stub_type == aarch64_stub_none)
4572 continue;
4573
4574 /* Support for grouping stub sections. */
4575 id_sec = htab->stub_group[section->id].link_sec;
4576
4577 /* Get the name of this stub. */
4578 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4579 irela);
4580 if (!stub_name)
4581 goto error_ret_free_internal;
4582
4583 stub_entry =
4584 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4585 stub_name, FALSE, FALSE);
4586 if (stub_entry != NULL)
4587 {
4588 /* The proper stub has already been created. */
4589 free (stub_name);
4590 /* Always update this stub's target since it may have
4591 changed after layout. */
4592 stub_entry->target_value = sym_value + irela->r_addend;
4593 continue;
4594 }
4595
4596 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4597 (stub_name, section, htab);
4598 if (stub_entry == NULL)
4599 {
4600 free (stub_name);
4601 goto error_ret_free_internal;
4602 }
4603
4604 stub_entry->target_value = sym_value + irela->r_addend;
4605 stub_entry->target_section = sym_sec;
4606 stub_entry->stub_type = stub_type;
4607 stub_entry->h = hash;
4608 stub_entry->st_type = st_type;
4609
4610 if (sym_name == NULL)
4611 sym_name = "unnamed";
4612 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4613 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4614 if (stub_entry->output_name == NULL)
4615 {
4616 free (stub_name);
4617 goto error_ret_free_internal;
4618 }
4619
4620 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4621 sym_name);
4622
4623 stub_changed = TRUE;
4624 }
4625
4626 /* We're done with the internal relocs, free them. */
4627 if (elf_section_data (section)->relocs == NULL)
4628 free (internal_relocs);
4629 }
4630 }
4631
4632 if (!stub_changed)
4633 break;
4634
4635 _bfd_aarch64_resize_stubs (htab);
4636
4637 /* Ask the linker to do its stuff. */
4638 (*htab->layout_sections_again) ();
4639 stub_changed = FALSE;
4640 }
4641
4642 return TRUE;
4643
4644 error_ret_free_local:
4645 return FALSE;
4646 }
4647
4648 /* Build all the stubs associated with the current output file. The
4649 stubs are kept in a hash table attached to the main linker hash
4650 table. We also set up the .plt entries for statically linked PIC
4651 functions here. This function is called via aarch64_elf_finish in the
4652 linker. */
4653
4654 bfd_boolean
4655 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4656 {
4657 asection *stub_sec;
4658 struct bfd_hash_table *table;
4659 struct elf_aarch64_link_hash_table *htab;
4660
4661 htab = elf_aarch64_hash_table (info);
4662
4663 for (stub_sec = htab->stub_bfd->sections;
4664 stub_sec != NULL; stub_sec = stub_sec->next)
4665 {
4666 bfd_size_type size;
4667
4668 /* Ignore non-stub sections. */
4669 if (!strstr (stub_sec->name, STUB_SUFFIX))
4670 continue;
4671
4672 /* Allocate memory to hold the linker stubs. */
4673 size = stub_sec->size;
4674 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4675 if (stub_sec->contents == NULL && size != 0)
4676 return FALSE;
4677 stub_sec->size = 0;
4678
4679 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4680 aligned, as long branch stubs contain a 64-bit address. */
4681 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4682 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4683 stub_sec->size += 8;
4684 }
4685
4686 /* Build the stubs as directed by the stub hash table. */
4687 table = &htab->stub_hash_table;
4688 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4689
4690 return TRUE;
4691 }
4692
4693
4694 /* Add an entry to the code/data map for section SEC. */
4695
4696 static void
4697 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4698 {
4699 struct _aarch64_elf_section_data *sec_data =
4700 elf_aarch64_section_data (sec);
4701 unsigned int newidx;
4702
4703 if (sec_data->map == NULL)
4704 {
4705 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4706 sec_data->mapcount = 0;
4707 sec_data->mapsize = 1;
4708 }
4709
4710 newidx = sec_data->mapcount++;
4711
4712 if (sec_data->mapcount > sec_data->mapsize)
4713 {
4714 sec_data->mapsize *= 2;
4715 sec_data->map = bfd_realloc_or_free
4716 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4717 }
4718
4719 if (sec_data->map)
4720 {
4721 sec_data->map[newidx].vma = vma;
4722 sec_data->map[newidx].type = type;
4723 }
4724 }
4725
4726
4727 /* Initialise maps of insn/data for input BFDs. */
4728 void
4729 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4730 {
4731 Elf_Internal_Sym *isymbuf;
4732 Elf_Internal_Shdr *hdr;
4733 unsigned int i, localsyms;
4734
4735 /* Make sure that we are dealing with an AArch64 elf binary. */
4736 if (!is_aarch64_elf (abfd))
4737 return;
4738
4739 if ((abfd->flags & DYNAMIC) != 0)
4740 return;
4741
4742 hdr = &elf_symtab_hdr (abfd);
4743 localsyms = hdr->sh_info;
4744
4745 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4746 should contain the number of local symbols, which should come before any
4747 global symbols. Mapping symbols are always local. */
4748 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4749
4750 /* No internal symbols read? Skip this BFD. */
4751 if (isymbuf == NULL)
4752 return;
4753
4754 for (i = 0; i < localsyms; i++)
4755 {
4756 Elf_Internal_Sym *isym = &isymbuf[i];
4757 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4758 const char *name;
4759
4760 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4761 {
4762 name = bfd_elf_string_from_elf_section (abfd,
4763 hdr->sh_link,
4764 isym->st_name);
4765
4766 if (bfd_is_aarch64_special_symbol_name
4767 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4768 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4769 }
4770 }
4771 }
4772
4773 static void
4774 setup_plt_values (struct bfd_link_info *link_info,
4775 aarch64_plt_type plt_type)
4776 {
4777 struct elf_aarch64_link_hash_table *globals;
4778 globals = elf_aarch64_hash_table (link_info);
4779
4780 if (plt_type == PLT_BTI_PAC)
4781 {
4782 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4783
4784 /* Only in ET_EXEC we need PLTn with BTI. */
4785 if (bfd_link_pde (link_info))
4786 {
4787 globals->plt_entry_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
4788 globals->plt_entry = elfNN_aarch64_small_plt_bti_pac_entry;
4789 }
4790 else
4791 {
4792 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4793 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4794 }
4795 }
4796 else if (plt_type == PLT_BTI)
4797 {
4798 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4799
4800 /* Only in ET_EXEC we need PLTn with BTI. */
4801 if (bfd_link_pde (link_info))
4802 {
4803 globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4804 globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4805 }
4806 }
4807 else if (plt_type == PLT_PAC)
4808 {
4809 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4810 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4811 }
4812 }
4813
4814 /* Set option values needed during linking. */
4815 void
4816 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4817 struct bfd_link_info *link_info,
4818 int no_enum_warn,
4819 int no_wchar_warn, int pic_veneer,
4820 int fix_erratum_835769,
4821 erratum_84319_opts fix_erratum_843419,
4822 int no_apply_dynamic_relocs,
4823 aarch64_bti_pac_info bp_info)
4824 {
4825 struct elf_aarch64_link_hash_table *globals;
4826
4827 globals = elf_aarch64_hash_table (link_info);
4828 globals->pic_veneer = pic_veneer;
4829 globals->fix_erratum_835769 = fix_erratum_835769;
4830 /* If the default options are used, then ERRAT_ADR will be set by default
4831 which will enable the ADRP->ADR workaround for the erratum 843419
4832 workaround. */
4833 globals->fix_erratum_843419 = fix_erratum_843419;
4834 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4835
4836 BFD_ASSERT (is_aarch64_elf (output_bfd));
4837 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4838 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4839
4840 switch (bp_info.bti_type)
4841 {
4842 case BTI_WARN:
4843 elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4844 elf_aarch64_tdata (output_bfd)->gnu_and_prop
4845 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4846 break;
4847
4848 default:
4849 break;
4850 }
4851 elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4852 setup_plt_values (link_info, bp_info.plt_type);
4853 }
4854
4855 static bfd_vma
4856 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4857 struct elf_aarch64_link_hash_table
4858 *globals, struct bfd_link_info *info,
4859 bfd_vma value, bfd *output_bfd,
4860 bfd_boolean *unresolved_reloc_p)
4861 {
4862 bfd_vma off = (bfd_vma) - 1;
4863 asection *basegot = globals->root.sgot;
4864 bfd_boolean dyn = globals->root.dynamic_sections_created;
4865
4866 if (h != NULL)
4867 {
4868 BFD_ASSERT (basegot != NULL);
4869 off = h->got.offset;
4870 BFD_ASSERT (off != (bfd_vma) - 1);
4871 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4872 || (bfd_link_pic (info)
4873 && SYMBOL_REFERENCES_LOCAL (info, h))
4874 || (ELF_ST_VISIBILITY (h->other)
4875 && h->root.type == bfd_link_hash_undefweak))
4876 {
4877 /* This is actually a static link, or it is a -Bsymbolic link
4878 and the symbol is defined locally. We must initialize this
4879 entry in the global offset table. Since the offset must
4880 always be a multiple of 8 (4 in the case of ILP32), we use
4881 the least significant bit to record whether we have
4882 initialized it already.
4883 When doing a dynamic link, we create a .rel(a).got relocation
4884 entry to initialize the value. This is done in the
4885 finish_dynamic_symbol routine. */
4886 if ((off & 1) != 0)
4887 off &= ~1;
4888 else
4889 {
4890 bfd_put_NN (output_bfd, value, basegot->contents + off);
4891 h->got.offset |= 1;
4892 }
4893 }
4894 else
4895 *unresolved_reloc_p = FALSE;
4896
4897 off = off + basegot->output_section->vma + basegot->output_offset;
4898 }
4899
4900 return off;
4901 }
4902
4903 /* Change R_TYPE to a more efficient access model where possible,
4904 return the new reloc type. */
4905
4906 static bfd_reloc_code_real_type
4907 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4908 struct elf_link_hash_entry *h)
4909 {
4910 bfd_boolean is_local = h == NULL;
4911
4912 switch (r_type)
4913 {
4914 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4915 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4916 return (is_local
4917 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4918 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4919
4920 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4921 return (is_local
4922 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4923 : r_type);
4924
4925 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4926 return (is_local
4927 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4928 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4929
4930 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4931 return (is_local
4932 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4933 : BFD_RELOC_AARCH64_NONE);
4934
4935 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4936 return (is_local
4937 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4938 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4939
4940 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4941 return (is_local
4942 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4943 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4944
4945 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4946 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4947 return (is_local
4948 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4949 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4950
4951 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4952 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4953
4954 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4955 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4956
4957 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4958 return r_type;
4959
4960 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4961 return (is_local
4962 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4963 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4964
4965 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4966 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4967 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4968 /* Instructions with these relocations will become NOPs. */
4969 return BFD_RELOC_AARCH64_NONE;
4970
4971 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4972 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4973 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4974 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4975
4976 #if ARCH_SIZE == 64
4977 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4978 return is_local
4979 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4980 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4981
4982 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4983 return is_local
4984 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4985 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4986 #endif
4987
4988 default:
4989 break;
4990 }
4991
4992 return r_type;
4993 }
4994
4995 static unsigned int
4996 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4997 {
4998 switch (r_type)
4999 {
5000 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5001 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5002 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5003 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5004 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5005 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5006 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5007 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5008 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5009 return GOT_NORMAL;
5010
5011 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5012 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5013 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5014 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5015 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5016 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5017 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5018 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5019 return GOT_TLS_GD;
5020
5021 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5022 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5023 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5024 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5025 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5026 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5027 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5028 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5029 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5030 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5031 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5032 return GOT_TLSDESC_GD;
5033
5034 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5035 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5036 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5037 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5038 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5039 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5040 return GOT_TLS_IE;
5041
5042 default:
5043 break;
5044 }
5045 return GOT_UNKNOWN;
5046 }
5047
5048 static bfd_boolean
5049 aarch64_can_relax_tls (bfd *input_bfd,
5050 struct bfd_link_info *info,
5051 bfd_reloc_code_real_type r_type,
5052 struct elf_link_hash_entry *h,
5053 unsigned long r_symndx)
5054 {
5055 unsigned int symbol_got_type;
5056 unsigned int reloc_got_type;
5057
5058 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
5059 return FALSE;
5060
5061 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
5062 reloc_got_type = aarch64_reloc_got_type (r_type);
5063
5064 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
5065 return TRUE;
5066
5067 if (!bfd_link_executable (info))
5068 return FALSE;
5069
5070 if (h && h->root.type == bfd_link_hash_undefweak)
5071 return FALSE;
5072
5073 return TRUE;
5074 }
5075
5076 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5077 enumerator. */
5078
5079 static bfd_reloc_code_real_type
5080 aarch64_tls_transition (bfd *input_bfd,
5081 struct bfd_link_info *info,
5082 unsigned int r_type,
5083 struct elf_link_hash_entry *h,
5084 unsigned long r_symndx)
5085 {
5086 bfd_reloc_code_real_type bfd_r_type
5087 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
5088
5089 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
5090 return bfd_r_type;
5091
5092 return aarch64_tls_transition_without_check (bfd_r_type, h);
5093 }
5094
5095 /* Return the base VMA address which should be subtracted from real addresses
5096 when resolving R_AARCH64_TLS_DTPREL relocation. */
5097
5098 static bfd_vma
5099 dtpoff_base (struct bfd_link_info *info)
5100 {
5101 /* If tls_sec is NULL, we should have signalled an error already. */
5102 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
5103 return elf_hash_table (info)->tls_sec->vma;
5104 }
5105
5106 /* Return the base VMA address which should be subtracted from real addresses
5107 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
5108
5109 static bfd_vma
5110 tpoff_base (struct bfd_link_info *info)
5111 {
5112 struct elf_link_hash_table *htab = elf_hash_table (info);
5113
5114 /* If tls_sec is NULL, we should have signalled an error already. */
5115 BFD_ASSERT (htab->tls_sec != NULL);
5116
5117 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5118 htab->tls_sec->alignment_power);
5119 return htab->tls_sec->vma - base;
5120 }
5121
5122 static bfd_vma *
5123 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5124 unsigned long r_symndx)
5125 {
5126 /* Calculate the address of the GOT entry for symbol
5127 referred to in h. */
5128 if (h != NULL)
5129 return &h->got.offset;
5130 else
5131 {
5132 /* local symbol */
5133 struct elf_aarch64_local_symbol *l;
5134
5135 l = elf_aarch64_locals (input_bfd);
5136 return &l[r_symndx].got_offset;
5137 }
5138 }
5139
5140 static void
5141 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5142 unsigned long r_symndx)
5143 {
5144 bfd_vma *p;
5145 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5146 *p |= 1;
5147 }
5148
5149 static int
5150 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5151 unsigned long r_symndx)
5152 {
5153 bfd_vma value;
5154 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5155 return value & 1;
5156 }
5157
5158 static bfd_vma
5159 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5160 unsigned long r_symndx)
5161 {
5162 bfd_vma value;
5163 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5164 value &= ~1;
5165 return value;
5166 }
5167
5168 static bfd_vma *
5169 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5170 unsigned long r_symndx)
5171 {
5172 /* Calculate the address of the GOT entry for symbol
5173 referred to in h. */
5174 if (h != NULL)
5175 {
5176 struct elf_aarch64_link_hash_entry *eh;
5177 eh = (struct elf_aarch64_link_hash_entry *) h;
5178 return &eh->tlsdesc_got_jump_table_offset;
5179 }
5180 else
5181 {
5182 /* local symbol */
5183 struct elf_aarch64_local_symbol *l;
5184
5185 l = elf_aarch64_locals (input_bfd);
5186 return &l[r_symndx].tlsdesc_got_jump_table_offset;
5187 }
5188 }
5189
5190 static void
5191 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5192 unsigned long r_symndx)
5193 {
5194 bfd_vma *p;
5195 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5196 *p |= 1;
5197 }
5198
5199 static int
5200 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5201 struct elf_link_hash_entry *h,
5202 unsigned long r_symndx)
5203 {
5204 bfd_vma value;
5205 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5206 return value & 1;
5207 }
5208
5209 static bfd_vma
5210 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5211 unsigned long r_symndx)
5212 {
5213 bfd_vma value;
5214 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5215 value &= ~1;
5216 return value;
5217 }
5218
5219 /* Data for make_branch_to_erratum_835769_stub(). */
5220
5221 struct erratum_835769_branch_to_stub_data
5222 {
5223 struct bfd_link_info *info;
5224 asection *output_section;
5225 bfd_byte *contents;
5226 };
5227
5228 /* Helper to insert branches to erratum 835769 stubs in the right
5229 places for a particular section. */
5230
5231 static bfd_boolean
5232 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5233 void *in_arg)
5234 {
5235 struct elf_aarch64_stub_hash_entry *stub_entry;
5236 struct erratum_835769_branch_to_stub_data *data;
5237 bfd_byte *contents;
5238 unsigned long branch_insn = 0;
5239 bfd_vma veneered_insn_loc, veneer_entry_loc;
5240 bfd_signed_vma branch_offset;
5241 unsigned int target;
5242 bfd *abfd;
5243
5244 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5245 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5246
5247 if (stub_entry->target_section != data->output_section
5248 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5249 return TRUE;
5250
5251 contents = data->contents;
5252 veneered_insn_loc = stub_entry->target_section->output_section->vma
5253 + stub_entry->target_section->output_offset
5254 + stub_entry->target_value;
5255 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5256 + stub_entry->stub_sec->output_offset
5257 + stub_entry->stub_offset;
5258 branch_offset = veneer_entry_loc - veneered_insn_loc;
5259
5260 abfd = stub_entry->target_section->owner;
5261 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5262 _bfd_error_handler
5263 (_("%pB: error: erratum 835769 stub out "
5264 "of range (input file too large)"), abfd);
5265
5266 target = stub_entry->target_value;
5267 branch_insn = 0x14000000;
5268 branch_offset >>= 2;
5269 branch_offset &= 0x3ffffff;
5270 branch_insn |= branch_offset;
5271 bfd_putl32 (branch_insn, &contents[target]);
5272
5273 return TRUE;
5274 }
5275
5276
5277 static bfd_boolean
5278 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5279 void *in_arg)
5280 {
5281 struct elf_aarch64_stub_hash_entry *stub_entry
5282 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5283 struct erratum_835769_branch_to_stub_data *data
5284 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5285 struct bfd_link_info *info;
5286 struct elf_aarch64_link_hash_table *htab;
5287 bfd_byte *contents;
5288 asection *section;
5289 bfd *abfd;
5290 bfd_vma place;
5291 uint32_t insn;
5292
5293 info = data->info;
5294 contents = data->contents;
5295 section = data->output_section;
5296
5297 htab = elf_aarch64_hash_table (info);
5298
5299 if (stub_entry->target_section != section
5300 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5301 return TRUE;
5302
5303 BFD_ASSERT (((htab->fix_erratum_843419 & ERRAT_ADRP) && stub_entry->stub_sec)
5304 || (htab->fix_erratum_843419 & ERRAT_ADR));
5305
5306 /* Only update the stub section if we have one. We should always have one if
5307 we're allowed to use the ADRP errata workaround, otherwise it is not
5308 required. */
5309 if (stub_entry->stub_sec)
5310 {
5311 insn = bfd_getl32 (contents + stub_entry->target_value);
5312 bfd_putl32 (insn,
5313 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5314 }
5315
5316 place = (section->output_section->vma + section->output_offset
5317 + stub_entry->adrp_offset);
5318 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5319
5320 if (!_bfd_aarch64_adrp_p (insn))
5321 abort ();
5322
5323 bfd_signed_vma imm =
5324 (_bfd_aarch64_sign_extend
5325 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5326 - (place & 0xfff));
5327
5328 if ((htab->fix_erratum_843419 & ERRAT_ADR)
5329 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5330 {
5331 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5332 | AARCH64_RT (insn));
5333 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5334 /* Stub is not needed, don't map it out. */
5335 stub_entry->stub_type = aarch64_stub_none;
5336 }
5337 else if (htab->fix_erratum_843419 & ERRAT_ADRP)
5338 {
5339 bfd_vma veneered_insn_loc;
5340 bfd_vma veneer_entry_loc;
5341 bfd_signed_vma branch_offset;
5342 uint32_t branch_insn;
5343
5344 veneered_insn_loc = stub_entry->target_section->output_section->vma
5345 + stub_entry->target_section->output_offset
5346 + stub_entry->target_value;
5347 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5348 + stub_entry->stub_sec->output_offset
5349 + stub_entry->stub_offset;
5350 branch_offset = veneer_entry_loc - veneered_insn_loc;
5351
5352 abfd = stub_entry->target_section->owner;
5353 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5354 _bfd_error_handler
5355 (_("%pB: error: erratum 843419 stub out "
5356 "of range (input file too large)"), abfd);
5357
5358 branch_insn = 0x14000000;
5359 branch_offset >>= 2;
5360 branch_offset &= 0x3ffffff;
5361 branch_insn |= branch_offset;
5362 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5363 }
5364 else
5365 {
5366 abfd = stub_entry->target_section->owner;
5367 _bfd_error_handler
5368 (_("%pB: error: erratum 843419 immediate 0x%" BFD_VMA_FMT "x "
5369 "out of range for ADR (input file too large) and "
5370 "--fix-cortex-a53-843419=adr used. Run the linker with "
5371 "--fix-cortex-a53-843419=full instead"), abfd, imm);
5372 bfd_set_error (bfd_error_bad_value);
5373 /* This function is called inside a hashtable traversal and the error
5374 handlers called above turn into non-fatal errors. Which means this
5375 case ld returns an exit code 0 and also produces a broken object file.
5376 To prevent this, issue a hard abort. */
5377 BFD_FAIL ();
5378 }
5379 return TRUE;
5380 }
5381
5382
5383 static bfd_boolean
5384 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5385 struct bfd_link_info *link_info,
5386 asection *sec,
5387 bfd_byte *contents)
5388
5389 {
5390 struct elf_aarch64_link_hash_table *globals =
5391 elf_aarch64_hash_table (link_info);
5392
5393 if (globals == NULL)
5394 return FALSE;
5395
5396 /* Fix code to point to erratum 835769 stubs. */
5397 if (globals->fix_erratum_835769)
5398 {
5399 struct erratum_835769_branch_to_stub_data data;
5400
5401 data.info = link_info;
5402 data.output_section = sec;
5403 data.contents = contents;
5404 bfd_hash_traverse (&globals->stub_hash_table,
5405 make_branch_to_erratum_835769_stub, &data);
5406 }
5407
5408 if (globals->fix_erratum_843419)
5409 {
5410 struct erratum_835769_branch_to_stub_data data;
5411
5412 data.info = link_info;
5413 data.output_section = sec;
5414 data.contents = contents;
5415 bfd_hash_traverse (&globals->stub_hash_table,
5416 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5417 }
5418
5419 return FALSE;
5420 }
5421
5422 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5423
5424 static bfd_boolean
5425 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5426 {
5427 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5428 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5429 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5430 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5431 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5432 }
5433
5434 /* Perform a relocation as part of a final link. The input relocation type
5435 should be TLS relaxed. */
5436
5437 static bfd_reloc_status_type
5438 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5439 bfd *input_bfd,
5440 bfd *output_bfd,
5441 asection *input_section,
5442 bfd_byte *contents,
5443 Elf_Internal_Rela *rel,
5444 bfd_vma value,
5445 struct bfd_link_info *info,
5446 asection *sym_sec,
5447 struct elf_link_hash_entry *h,
5448 bfd_boolean *unresolved_reloc_p,
5449 bfd_boolean save_addend,
5450 bfd_vma *saved_addend,
5451 Elf_Internal_Sym *sym)
5452 {
5453 Elf_Internal_Shdr *symtab_hdr;
5454 unsigned int r_type = howto->type;
5455 bfd_reloc_code_real_type bfd_r_type
5456 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5457 unsigned long r_symndx;
5458 bfd_byte *hit_data = contents + rel->r_offset;
5459 bfd_vma place, off, got_entry_addr = 0;
5460 bfd_signed_vma signed_addend;
5461 struct elf_aarch64_link_hash_table *globals;
5462 bfd_boolean weak_undef_p;
5463 bfd_boolean relative_reloc;
5464 asection *base_got;
5465 bfd_vma orig_value = value;
5466 bfd_boolean resolved_to_zero;
5467 bfd_boolean abs_symbol_p;
5468
5469 globals = elf_aarch64_hash_table (info);
5470
5471 symtab_hdr = &elf_symtab_hdr (input_bfd);
5472
5473 BFD_ASSERT (is_aarch64_elf (input_bfd));
5474
5475 r_symndx = ELFNN_R_SYM (rel->r_info);
5476
5477 place = input_section->output_section->vma
5478 + input_section->output_offset + rel->r_offset;
5479
5480 /* Get addend, accumulating the addend for consecutive relocs
5481 which refer to the same offset. */
5482 signed_addend = saved_addend ? *saved_addend : 0;
5483 signed_addend += rel->r_addend;
5484
5485 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5486 : bfd_is_und_section (sym_sec));
5487 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5488
5489
5490 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5491 it here if it is defined in a non-shared object. */
5492 if (h != NULL
5493 && h->type == STT_GNU_IFUNC
5494 && h->def_regular)
5495 {
5496 asection *plt;
5497 const char *name;
5498 bfd_vma addend = 0;
5499
5500 if ((input_section->flags & SEC_ALLOC) == 0)
5501 {
5502 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5503 STT_GNU_IFUNC symbol as STT_FUNC. */
5504 if (elf_section_type (input_section) == SHT_NOTE)
5505 goto skip_ifunc;
5506
5507 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5508 sections because such sections are not SEC_ALLOC and
5509 thus ld.so will not process them. */
5510 if ((input_section->flags & SEC_DEBUGGING) != 0)
5511 return bfd_reloc_ok;
5512
5513 if (h->root.root.string)
5514 name = h->root.root.string;
5515 else
5516 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5517 _bfd_error_handler
5518 /* xgettext:c-format */
5519 (_("%pB(%pA+%#" PRIx64 "): "
5520 "unresolvable %s relocation against symbol `%s'"),
5521 input_bfd, input_section, (uint64_t) rel->r_offset,
5522 howto->name, name);
5523 bfd_set_error (bfd_error_bad_value);
5524 return bfd_reloc_notsupported;
5525 }
5526 else if (h->plt.offset == (bfd_vma) -1)
5527 goto bad_ifunc_reloc;
5528
5529 /* STT_GNU_IFUNC symbol must go through PLT. */
5530 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5531 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5532
5533 switch (bfd_r_type)
5534 {
5535 default:
5536 bad_ifunc_reloc:
5537 if (h->root.root.string)
5538 name = h->root.root.string;
5539 else
5540 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5541 NULL);
5542 _bfd_error_handler
5543 /* xgettext:c-format */
5544 (_("%pB: relocation %s against STT_GNU_IFUNC "
5545 "symbol `%s' isn't handled by %s"), input_bfd,
5546 howto->name, name, __FUNCTION__);
5547 bfd_set_error (bfd_error_bad_value);
5548 return bfd_reloc_notsupported;
5549
5550 case BFD_RELOC_AARCH64_NN:
5551 if (rel->r_addend != 0)
5552 {
5553 if (h->root.root.string)
5554 name = h->root.root.string;
5555 else
5556 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5557 sym, NULL);
5558 _bfd_error_handler
5559 /* xgettext:c-format */
5560 (_("%pB: relocation %s against STT_GNU_IFUNC "
5561 "symbol `%s' has non-zero addend: %" PRId64),
5562 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5563 bfd_set_error (bfd_error_bad_value);
5564 return bfd_reloc_notsupported;
5565 }
5566
5567 /* Generate dynamic relocation only when there is a
5568 non-GOT reference in a shared object. */
5569 if (bfd_link_pic (info) && h->non_got_ref)
5570 {
5571 Elf_Internal_Rela outrel;
5572 asection *sreloc;
5573
5574 /* Need a dynamic relocation to get the real function
5575 address. */
5576 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5577 info,
5578 input_section,
5579 rel->r_offset);
5580 if (outrel.r_offset == (bfd_vma) -1
5581 || outrel.r_offset == (bfd_vma) -2)
5582 abort ();
5583
5584 outrel.r_offset += (input_section->output_section->vma
5585 + input_section->output_offset);
5586
5587 if (h->dynindx == -1
5588 || h->forced_local
5589 || bfd_link_executable (info))
5590 {
5591 /* This symbol is resolved locally. */
5592 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5593 outrel.r_addend = (h->root.u.def.value
5594 + h->root.u.def.section->output_section->vma
5595 + h->root.u.def.section->output_offset);
5596 }
5597 else
5598 {
5599 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5600 outrel.r_addend = 0;
5601 }
5602
5603 sreloc = globals->root.irelifunc;
5604 elf_append_rela (output_bfd, sreloc, &outrel);
5605
5606 /* If this reloc is against an external symbol, we
5607 do not want to fiddle with the addend. Otherwise,
5608 we need to include the symbol value so that it
5609 becomes an addend for the dynamic reloc. For an
5610 internal symbol, we have updated addend. */
5611 return bfd_reloc_ok;
5612 }
5613 /* FALLTHROUGH */
5614 case BFD_RELOC_AARCH64_CALL26:
5615 case BFD_RELOC_AARCH64_JUMP26:
5616 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5617 place, value,
5618 signed_addend,
5619 weak_undef_p);
5620 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5621 howto, value);
5622 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5623 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5624 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5625 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5626 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5627 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5628 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5629 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5630 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5631 base_got = globals->root.sgot;
5632 off = h->got.offset;
5633
5634 if (base_got == NULL)
5635 abort ();
5636
5637 if (off == (bfd_vma) -1)
5638 {
5639 bfd_vma plt_index;
5640
5641 /* We can't use h->got.offset here to save state, or
5642 even just remember the offset, as finish_dynamic_symbol
5643 would use that as offset into .got. */
5644
5645 if (globals->root.splt != NULL)
5646 {
5647 plt_index = ((h->plt.offset - globals->plt_header_size) /
5648 globals->plt_entry_size);
5649 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5650 base_got = globals->root.sgotplt;
5651 }
5652 else
5653 {
5654 plt_index = h->plt.offset / globals->plt_entry_size;
5655 off = plt_index * GOT_ENTRY_SIZE;
5656 base_got = globals->root.igotplt;
5657 }
5658
5659 if (h->dynindx == -1
5660 || h->forced_local
5661 || info->symbolic)
5662 {
5663 /* This references the local definition. We must
5664 initialize this entry in the global offset table.
5665 Since the offset must always be a multiple of 8,
5666 we use the least significant bit to record
5667 whether we have initialized it already.
5668
5669 When doing a dynamic link, we create a .rela.got
5670 relocation entry to initialize the value. This
5671 is done in the finish_dynamic_symbol routine. */
5672 if ((off & 1) != 0)
5673 off &= ~1;
5674 else
5675 {
5676 bfd_put_NN (output_bfd, value,
5677 base_got->contents + off);
5678 /* Note that this is harmless as -1 | 1 still is -1. */
5679 h->got.offset |= 1;
5680 }
5681 }
5682 value = (base_got->output_section->vma
5683 + base_got->output_offset + off);
5684 }
5685 else
5686 value = aarch64_calculate_got_entry_vma (h, globals, info,
5687 value, output_bfd,
5688 unresolved_reloc_p);
5689
5690 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5691 addend = (globals->root.sgot->output_section->vma
5692 + globals->root.sgot->output_offset);
5693
5694 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5695 place, value,
5696 addend, weak_undef_p);
5697 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5698 case BFD_RELOC_AARCH64_ADD_LO12:
5699 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5700 break;
5701 }
5702 }
5703
5704 skip_ifunc:
5705 resolved_to_zero = (h != NULL
5706 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5707
5708 switch (bfd_r_type)
5709 {
5710 case BFD_RELOC_AARCH64_NONE:
5711 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5712 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5713 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5714 *unresolved_reloc_p = FALSE;
5715 return bfd_reloc_ok;
5716
5717 case BFD_RELOC_AARCH64_NN:
5718
5719 /* When generating a shared object or relocatable executable, these
5720 relocations are copied into the output file to be resolved at
5721 run time. */
5722 if (((bfd_link_pic (info)
5723 || globals->root.is_relocatable_executable)
5724 && (input_section->flags & SEC_ALLOC)
5725 && (h == NULL
5726 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5727 && !resolved_to_zero)
5728 || h->root.type != bfd_link_hash_undefweak))
5729 /* Or we are creating an executable, we may need to keep relocations
5730 for symbols satisfied by a dynamic library if we manage to avoid
5731 copy relocs for the symbol. */
5732 || (ELIMINATE_COPY_RELOCS
5733 && !bfd_link_pic (info)
5734 && h != NULL
5735 && (input_section->flags & SEC_ALLOC)
5736 && h->dynindx != -1
5737 && !h->non_got_ref
5738 && ((h->def_dynamic
5739 && !h->def_regular)
5740 || h->root.type == bfd_link_hash_undefweak
5741 || h->root.type == bfd_link_hash_undefined)))
5742 {
5743 Elf_Internal_Rela outrel;
5744 bfd_byte *loc;
5745 bfd_boolean skip, relocate;
5746 asection *sreloc;
5747
5748 *unresolved_reloc_p = FALSE;
5749
5750 skip = FALSE;
5751 relocate = FALSE;
5752
5753 outrel.r_addend = signed_addend;
5754 outrel.r_offset =
5755 _bfd_elf_section_offset (output_bfd, info, input_section,
5756 rel->r_offset);
5757 if (outrel.r_offset == (bfd_vma) - 1)
5758 skip = TRUE;
5759 else if (outrel.r_offset == (bfd_vma) - 2)
5760 {
5761 skip = TRUE;
5762 relocate = TRUE;
5763 }
5764 else if (abs_symbol_p)
5765 {
5766 /* Local absolute symbol. */
5767 skip = (h->forced_local || (h->dynindx == -1));
5768 relocate = skip;
5769 }
5770
5771 outrel.r_offset += (input_section->output_section->vma
5772 + input_section->output_offset);
5773
5774 if (skip)
5775 memset (&outrel, 0, sizeof outrel);
5776 else if (h != NULL
5777 && h->dynindx != -1
5778 && (!bfd_link_pic (info)
5779 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5780 || !h->def_regular))
5781 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5782 else
5783 {
5784 int symbol;
5785
5786 /* On SVR4-ish systems, the dynamic loader cannot
5787 relocate the text and data segments independently,
5788 so the symbol does not matter. */
5789 symbol = 0;
5790 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5791 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5792 outrel.r_addend += value;
5793 }
5794
5795 sreloc = elf_section_data (input_section)->sreloc;
5796 if (sreloc == NULL || sreloc->contents == NULL)
5797 return bfd_reloc_notsupported;
5798
5799 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5800 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5801
5802 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5803 {
5804 /* Sanity to check that we have previously allocated
5805 sufficient space in the relocation section for the
5806 number of relocations we actually want to emit. */
5807 abort ();
5808 }
5809
5810 /* If this reloc is against an external symbol, we do not want to
5811 fiddle with the addend. Otherwise, we need to include the symbol
5812 value so that it becomes an addend for the dynamic reloc. */
5813 if (!relocate)
5814 return bfd_reloc_ok;
5815
5816 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5817 contents, rel->r_offset, value,
5818 signed_addend);
5819 }
5820 else
5821 value += signed_addend;
5822 break;
5823
5824 case BFD_RELOC_AARCH64_CALL26:
5825 case BFD_RELOC_AARCH64_JUMP26:
5826 {
5827 asection *splt = globals->root.splt;
5828 bfd_boolean via_plt_p =
5829 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5830
5831 /* A call to an undefined weak symbol is converted to a jump to
5832 the next instruction unless a PLT entry will be created.
5833 The jump to the next instruction is optimized as a NOP.
5834 Do the same for local undefined symbols. */
5835 if (weak_undef_p && ! via_plt_p)
5836 {
5837 bfd_putl32 (INSN_NOP, hit_data);
5838 return bfd_reloc_ok;
5839 }
5840
5841 /* If the call goes through a PLT entry, make sure to
5842 check distance to the right destination address. */
5843 if (via_plt_p)
5844 value = (splt->output_section->vma
5845 + splt->output_offset + h->plt.offset);
5846
5847 /* Check if a stub has to be inserted because the destination
5848 is too far away. */
5849 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5850
5851 /* If the branch destination is directed to plt stub, "value" will be
5852 the final destination, otherwise we should plus signed_addend, it may
5853 contain non-zero value, for example call to local function symbol
5854 which are turned into "sec_sym + sec_off", and sec_off is kept in
5855 signed_addend. */
5856 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5857 place))
5858 /* The target is out of reach, so redirect the branch to
5859 the local stub for this function. */
5860 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5861 rel, globals);
5862 if (stub_entry != NULL)
5863 {
5864 value = (stub_entry->stub_offset
5865 + stub_entry->stub_sec->output_offset
5866 + stub_entry->stub_sec->output_section->vma);
5867
5868 /* We have redirected the destination to stub entry address,
5869 so ignore any addend record in the original rela entry. */
5870 signed_addend = 0;
5871 }
5872 }
5873 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5874 place, value,
5875 signed_addend, weak_undef_p);
5876 *unresolved_reloc_p = FALSE;
5877 break;
5878
5879 case BFD_RELOC_AARCH64_16_PCREL:
5880 case BFD_RELOC_AARCH64_32_PCREL:
5881 case BFD_RELOC_AARCH64_64_PCREL:
5882 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5883 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5884 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5885 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5886 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5887 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5888 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5889 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5890 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5891 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5892 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5893 if (bfd_link_pic (info)
5894 && (input_section->flags & SEC_ALLOC) != 0
5895 && (input_section->flags & SEC_READONLY) != 0
5896 && !SYMBOL_REFERENCES_LOCAL (info, h))
5897 {
5898 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5899
5900 _bfd_error_handler
5901 /* xgettext:c-format */
5902 (_("%pB: relocation %s against symbol `%s' which may bind "
5903 "externally can not be used when making a shared object; "
5904 "recompile with -fPIC"),
5905 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5906 h->root.root.string);
5907 bfd_set_error (bfd_error_bad_value);
5908 return bfd_reloc_notsupported;
5909 }
5910 /* Fall through. */
5911
5912 case BFD_RELOC_AARCH64_16:
5913 #if ARCH_SIZE == 64
5914 case BFD_RELOC_AARCH64_32:
5915 #endif
5916 case BFD_RELOC_AARCH64_ADD_LO12:
5917 case BFD_RELOC_AARCH64_BRANCH19:
5918 case BFD_RELOC_AARCH64_LDST128_LO12:
5919 case BFD_RELOC_AARCH64_LDST16_LO12:
5920 case BFD_RELOC_AARCH64_LDST32_LO12:
5921 case BFD_RELOC_AARCH64_LDST64_LO12:
5922 case BFD_RELOC_AARCH64_LDST8_LO12:
5923 case BFD_RELOC_AARCH64_MOVW_G0:
5924 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5925 case BFD_RELOC_AARCH64_MOVW_G0_S:
5926 case BFD_RELOC_AARCH64_MOVW_G1:
5927 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5928 case BFD_RELOC_AARCH64_MOVW_G1_S:
5929 case BFD_RELOC_AARCH64_MOVW_G2:
5930 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5931 case BFD_RELOC_AARCH64_MOVW_G2_S:
5932 case BFD_RELOC_AARCH64_MOVW_G3:
5933 case BFD_RELOC_AARCH64_TSTBR14:
5934 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5935 place, value,
5936 signed_addend, weak_undef_p);
5937 break;
5938
5939 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5940 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5941 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5942 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5943 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5944 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5945 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5946 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5947 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5948 if (globals->root.sgot == NULL)
5949 BFD_ASSERT (h != NULL);
5950
5951 relative_reloc = FALSE;
5952 if (h != NULL)
5953 {
5954 bfd_vma addend = 0;
5955
5956 /* If a symbol is not dynamic and is not undefined weak, bind it
5957 locally and generate a RELATIVE relocation under PIC mode.
5958
5959 NOTE: one symbol may be referenced by several relocations, we
5960 should only generate one RELATIVE relocation for that symbol.
5961 Therefore, check GOT offset mark first. */
5962 if (h->dynindx == -1
5963 && !h->forced_local
5964 && h->root.type != bfd_link_hash_undefweak
5965 && bfd_link_pic (info)
5966 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5967 relative_reloc = TRUE;
5968
5969 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5970 output_bfd,
5971 unresolved_reloc_p);
5972 /* Record the GOT entry address which will be used when generating
5973 RELATIVE relocation. */
5974 if (relative_reloc)
5975 got_entry_addr = value;
5976
5977 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5978 addend = (globals->root.sgot->output_section->vma
5979 + globals->root.sgot->output_offset);
5980 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5981 place, value,
5982 addend, weak_undef_p);
5983 }
5984 else
5985 {
5986 bfd_vma addend = 0;
5987 struct elf_aarch64_local_symbol *locals
5988 = elf_aarch64_locals (input_bfd);
5989
5990 if (locals == NULL)
5991 {
5992 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5993 _bfd_error_handler
5994 /* xgettext:c-format */
5995 (_("%pB: local symbol descriptor table be NULL when applying "
5996 "relocation %s against local symbol"),
5997 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5998 abort ();
5999 }
6000
6001 off = symbol_got_offset (input_bfd, h, r_symndx);
6002 base_got = globals->root.sgot;
6003 got_entry_addr = (base_got->output_section->vma
6004 + base_got->output_offset + off);
6005
6006 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6007 {
6008 bfd_put_64 (output_bfd, value, base_got->contents + off);
6009
6010 /* For local symbol, we have done absolute relocation in static
6011 linking stage. While for shared library, we need to update the
6012 content of GOT entry according to the shared object's runtime
6013 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
6014 for dynamic linker. */
6015 if (bfd_link_pic (info))
6016 relative_reloc = TRUE;
6017
6018 symbol_got_offset_mark (input_bfd, h, r_symndx);
6019 }
6020
6021 /* Update the relocation value to GOT entry addr as we have transformed
6022 the direct data access into indirect data access through GOT. */
6023 value = got_entry_addr;
6024
6025 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
6026 addend = base_got->output_section->vma + base_got->output_offset;
6027
6028 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6029 place, value,
6030 addend, weak_undef_p);
6031 }
6032
6033 if (relative_reloc)
6034 {
6035 asection *s;
6036 Elf_Internal_Rela outrel;
6037
6038 s = globals->root.srelgot;
6039 if (s == NULL)
6040 abort ();
6041
6042 outrel.r_offset = got_entry_addr;
6043 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6044 outrel.r_addend = orig_value;
6045 elf_append_rela (output_bfd, s, &outrel);
6046 }
6047 break;
6048
6049 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6050 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6051 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6052 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6053 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6054 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6055 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6056 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6057 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6058 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6059 if (globals->root.sgot == NULL)
6060 return bfd_reloc_notsupported;
6061
6062 value = (symbol_got_offset (input_bfd, h, r_symndx)
6063 + globals->root.sgot->output_section->vma
6064 + globals->root.sgot->output_offset);
6065
6066 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6067 place, value,
6068 0, weak_undef_p);
6069 *unresolved_reloc_p = FALSE;
6070 break;
6071
6072 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6073 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6074 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6075 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6076 if (globals->root.sgot == NULL)
6077 return bfd_reloc_notsupported;
6078
6079 value = symbol_got_offset (input_bfd, h, r_symndx);
6080 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6081 place, value,
6082 0, weak_undef_p);
6083 *unresolved_reloc_p = FALSE;
6084 break;
6085
6086 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
6087 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
6088 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6089 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
6090 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
6091 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
6092 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
6093 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
6094 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
6095 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
6096 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6097 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6098 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6099 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6100 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6101 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
6102 {
6103 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6104 {
6105 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6106 _bfd_error_handler
6107 /* xgettext:c-format */
6108 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6109 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6110 h->root.root.string);
6111 bfd_set_error (bfd_error_bad_value);
6112 return bfd_reloc_notsupported;
6113 }
6114
6115 bfd_vma def_value
6116 = weak_undef_p ? 0 : signed_addend - dtpoff_base (info);
6117 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6118 place, value,
6119 def_value, weak_undef_p);
6120 break;
6121 }
6122
6123 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6124 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6125 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6126 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
6127 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6128 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
6129 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6130 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
6131 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6132 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
6133 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6134 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6135 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6136 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6137 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6138 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6139 {
6140 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6141 {
6142 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6143 _bfd_error_handler
6144 /* xgettext:c-format */
6145 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6146 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6147 h->root.root.string);
6148 bfd_set_error (bfd_error_bad_value);
6149 return bfd_reloc_notsupported;
6150 }
6151
6152 bfd_vma def_value
6153 = weak_undef_p ? 0 : signed_addend - tpoff_base (info);
6154 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6155 place, value,
6156 def_value, weak_undef_p);
6157 *unresolved_reloc_p = FALSE;
6158 break;
6159 }
6160
6161 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6162 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6163 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6164 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6165 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6166 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6167 if (globals->root.sgot == NULL)
6168 return bfd_reloc_notsupported;
6169 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6170 + globals->root.sgotplt->output_section->vma
6171 + globals->root.sgotplt->output_offset
6172 + globals->sgotplt_jump_table_size);
6173
6174 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6175 place, value,
6176 0, weak_undef_p);
6177 *unresolved_reloc_p = FALSE;
6178 break;
6179
6180 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6181 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6182 if (globals->root.sgot == NULL)
6183 return bfd_reloc_notsupported;
6184
6185 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6186 + globals->root.sgotplt->output_section->vma
6187 + globals->root.sgotplt->output_offset
6188 + globals->sgotplt_jump_table_size);
6189
6190 value -= (globals->root.sgot->output_section->vma
6191 + globals->root.sgot->output_offset);
6192
6193 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6194 place, value,
6195 0, weak_undef_p);
6196 *unresolved_reloc_p = FALSE;
6197 break;
6198
6199 default:
6200 return bfd_reloc_notsupported;
6201 }
6202
6203 if (saved_addend)
6204 *saved_addend = value;
6205
6206 /* Only apply the final relocation in a sequence. */
6207 if (save_addend)
6208 return bfd_reloc_continue;
6209
6210 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6211 howto, value);
6212 }
6213
6214 /* LP64 and ILP32 operates on x- and w-registers respectively.
6215 Next definitions take into account the difference between
6216 corresponding machine codes. R means x-register if the target
6217 arch is LP64, and w-register if the target is ILP32. */
6218
6219 #if ARCH_SIZE == 64
6220 # define add_R0_R0 (0x91000000)
6221 # define add_R0_R0_R1 (0x8b000020)
6222 # define add_R0_R1 (0x91400020)
6223 # define ldr_R0 (0x58000000)
6224 # define ldr_R0_mask(i) (i & 0xffffffe0)
6225 # define ldr_R0_x0 (0xf9400000)
6226 # define ldr_hw_R0 (0xf2a00000)
6227 # define movk_R0 (0xf2800000)
6228 # define movz_R0 (0xd2a00000)
6229 # define movz_hw_R0 (0xd2c00000)
6230 #else /*ARCH_SIZE == 32 */
6231 # define add_R0_R0 (0x11000000)
6232 # define add_R0_R0_R1 (0x0b000020)
6233 # define add_R0_R1 (0x11400020)
6234 # define ldr_R0 (0x18000000)
6235 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6236 # define ldr_R0_x0 (0xb9400000)
6237 # define ldr_hw_R0 (0x72a00000)
6238 # define movk_R0 (0x72800000)
6239 # define movz_R0 (0x52a00000)
6240 # define movz_hw_R0 (0x52c00000)
6241 #endif
6242
6243 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6244 it is used to identify the stub information to reset. */
6245
6246 struct erratum_843419_branch_to_stub_clear_data
6247 {
6248 bfd_vma adrp_offset;
6249 asection *output_section;
6250 };
6251
6252 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6253 section inside IN_ARG matches. The clearing is done by setting the
6254 stub_type to none. */
6255
6256 static bfd_boolean
6257 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6258 void *in_arg)
6259 {
6260 struct elf_aarch64_stub_hash_entry *stub_entry
6261 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6262 struct erratum_843419_branch_to_stub_clear_data *data
6263 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6264
6265 if (stub_entry->target_section != data->output_section
6266 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6267 || stub_entry->adrp_offset != data->adrp_offset)
6268 return TRUE;
6269
6270 /* Change the stub type instead of removing the entry, removing from the hash
6271 table would be slower and we have already reserved the memory for the entry
6272 so there wouldn't be much gain. Changing the stub also keeps around a
6273 record of what was there before. */
6274 stub_entry->stub_type = aarch64_stub_none;
6275
6276 /* We're done and there could have been only one matching stub at that
6277 particular offset, so abort further traversal. */
6278 return FALSE;
6279 }
6280
6281 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6282 sequence. In this case the erratum no longer applies and we need to remove
6283 the entry from the pending stub generation. This clears matching adrp insn
6284 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6285
6286 static void
6287 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6288 bfd_vma adrp_offset, asection *input_section)
6289 {
6290 if (globals->fix_erratum_843419 & ERRAT_ADRP)
6291 {
6292 struct erratum_843419_branch_to_stub_clear_data data;
6293 data.adrp_offset = adrp_offset;
6294 data.output_section = input_section;
6295
6296 bfd_hash_traverse (&globals->stub_hash_table,
6297 _bfd_aarch64_erratum_843419_clear_stub, &data);
6298 }
6299 }
6300
6301 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6302 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6303 link.
6304
6305 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6306 is to then call final_link_relocate. Return other values in the
6307 case of error. */
6308
6309 static bfd_reloc_status_type
6310 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6311 bfd *input_bfd, asection *input_section,
6312 bfd_byte *contents, Elf_Internal_Rela *rel,
6313 struct elf_link_hash_entry *h)
6314 {
6315 bfd_boolean is_local = h == NULL;
6316 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6317 unsigned long insn;
6318
6319 BFD_ASSERT (globals && input_bfd && contents && rel);
6320
6321 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6322 {
6323 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6324 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6325 if (is_local)
6326 {
6327 /* GD->LE relaxation:
6328 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6329 or
6330 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6331
6332 Where R is x for LP64, and w for ILP32. */
6333 bfd_putl32 (movz_R0, contents + rel->r_offset);
6334 /* We have relaxed the adrp into a mov, we may have to clear any
6335 pending erratum fixes. */
6336 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6337 return bfd_reloc_continue;
6338 }
6339 else
6340 {
6341 /* GD->IE relaxation:
6342 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6343 or
6344 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6345 */
6346 return bfd_reloc_continue;
6347 }
6348
6349 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6350 BFD_ASSERT (0);
6351 break;
6352
6353 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6354 if (is_local)
6355 {
6356 /* Tiny TLSDESC->LE relaxation:
6357 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6358 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6359 .tlsdesccall var
6360 blr x1 => nop
6361
6362 Where R is x for LP64, and w for ILP32. */
6363 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6364 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6365
6366 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6367 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6368 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6369
6370 bfd_putl32 (movz_R0, contents + rel->r_offset);
6371 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6372 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6373 return bfd_reloc_continue;
6374 }
6375 else
6376 {
6377 /* Tiny TLSDESC->IE relaxation:
6378 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6379 adr x0, :tlsdesc:var => nop
6380 .tlsdesccall var
6381 blr x1 => nop
6382 */
6383 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6384 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6385
6386 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6387 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6388
6389 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6390 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6391 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6392 return bfd_reloc_continue;
6393 }
6394
6395 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6396 if (is_local)
6397 {
6398 /* Tiny GD->LE relaxation:
6399 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6400 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6401 nop => add R0, R0, #:tprel_lo12_nc:x
6402
6403 Where R is x for LP64, and x for Ilp32. */
6404
6405 /* First kill the tls_get_addr reloc on the bl instruction. */
6406 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6407
6408 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6409 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6410 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6411
6412 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6413 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6414 rel[1].r_offset = rel->r_offset + 8;
6415
6416 /* Move the current relocation to the second instruction in
6417 the sequence. */
6418 rel->r_offset += 4;
6419 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6420 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6421 return bfd_reloc_continue;
6422 }
6423 else
6424 {
6425 /* Tiny GD->IE relaxation:
6426 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6427 bl __tls_get_addr => mrs x1, tpidr_el0
6428 nop => add R0, R0, R1
6429
6430 Where R is x for LP64, and w for Ilp32. */
6431
6432 /* First kill the tls_get_addr reloc on the bl instruction. */
6433 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6434 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6435
6436 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6437 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6438 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6439 return bfd_reloc_continue;
6440 }
6441
6442 #if ARCH_SIZE == 64
6443 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6444 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6445 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6446 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6447
6448 if (is_local)
6449 {
6450 /* Large GD->LE relaxation:
6451 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6452 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6453 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6454 bl __tls_get_addr => mrs x1, tpidr_el0
6455 nop => add x0, x0, x1
6456 */
6457 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6458 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6459 rel[2].r_offset = rel->r_offset + 8;
6460
6461 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6462 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6463 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6464 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6465 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6466 }
6467 else
6468 {
6469 /* Large GD->IE relaxation:
6470 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6471 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6472 add x0, gp, x0 => ldr x0, [gp, x0]
6473 bl __tls_get_addr => mrs x1, tpidr_el0
6474 nop => add x0, x0, x1
6475 */
6476 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6477 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6478 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6479 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6480 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6481 }
6482 return bfd_reloc_continue;
6483
6484 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6485 return bfd_reloc_continue;
6486 #endif
6487
6488 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6489 return bfd_reloc_continue;
6490
6491 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6492 if (is_local)
6493 {
6494 /* GD->LE relaxation:
6495 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6496
6497 Where R is x for lp64 mode, and w for ILP32 mode. */
6498 bfd_putl32 (movk_R0, contents + rel->r_offset);
6499 return bfd_reloc_continue;
6500 }
6501 else
6502 {
6503 /* GD->IE relaxation:
6504 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6505
6506 Where R is x for lp64 mode, and w for ILP32 mode. */
6507 insn = bfd_getl32 (contents + rel->r_offset);
6508 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6509 return bfd_reloc_continue;
6510 }
6511
6512 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6513 if (is_local)
6514 {
6515 /* GD->LE relaxation
6516 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6517 bl __tls_get_addr => mrs x1, tpidr_el0
6518 nop => add R0, R1, R0
6519
6520 Where R is x for lp64 mode, and w for ILP32 mode. */
6521
6522 /* First kill the tls_get_addr reloc on the bl instruction. */
6523 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6524 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6525
6526 bfd_putl32 (movk_R0, contents + rel->r_offset);
6527 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6528 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6529 return bfd_reloc_continue;
6530 }
6531 else
6532 {
6533 /* GD->IE relaxation
6534 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6535 BL __tls_get_addr => mrs x1, tpidr_el0
6536 R_AARCH64_CALL26
6537 NOP => add R0, R1, R0
6538
6539 Where R is x for lp64 mode, and w for ilp32 mode. */
6540
6541 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6542
6543 /* Remove the relocation on the BL instruction. */
6544 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6545
6546 /* We choose to fixup the BL and NOP instructions using the
6547 offset from the second relocation to allow flexibility in
6548 scheduling instructions between the ADD and BL. */
6549 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6550 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6551 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6552 return bfd_reloc_continue;
6553 }
6554
6555 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6556 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6557 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6558 /* GD->IE/LE relaxation:
6559 add x0, x0, #:tlsdesc_lo12:var => nop
6560 blr xd => nop
6561 */
6562 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6563 return bfd_reloc_ok;
6564
6565 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6566 if (is_local)
6567 {
6568 /* GD->LE relaxation:
6569 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6570
6571 Where R is x for lp64 mode, and w for ILP32 mode. */
6572 bfd_putl32 (movk_R0, contents + rel->r_offset);
6573 return bfd_reloc_continue;
6574 }
6575 else
6576 {
6577 /* GD->IE relaxation:
6578 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6579
6580 Where R is x for lp64 mode, and w for ILP32 mode. */
6581 insn = bfd_getl32 (contents + rel->r_offset);
6582 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6583 return bfd_reloc_ok;
6584 }
6585
6586 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6587 /* GD->LE relaxation:
6588 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6589 GD->IE relaxation:
6590 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6591
6592 Where R is x for lp64 mode, and w for ILP32 mode. */
6593 if (is_local)
6594 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6595 return bfd_reloc_continue;
6596
6597 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6598 if (is_local)
6599 {
6600 /* GD->LE relaxation:
6601 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6602
6603 Where R is x for lp64 mode, and w for ILP32 mode. */
6604 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6605 return bfd_reloc_continue;
6606 }
6607 else
6608 {
6609 /* GD->IE relaxation:
6610 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6611
6612 Where R is x for lp64 mode, and w for ILP32 mode. */
6613 insn = bfd_getl32 (contents + rel->r_offset);
6614 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6615 return bfd_reloc_continue;
6616 }
6617
6618 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6619 /* IE->LE relaxation:
6620 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6621
6622 Where R is x for lp64 mode, and w for ILP32 mode. */
6623 if (is_local)
6624 {
6625 insn = bfd_getl32 (contents + rel->r_offset);
6626 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6627 /* We have relaxed the adrp into a mov, we may have to clear any
6628 pending erratum fixes. */
6629 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6630 }
6631 return bfd_reloc_continue;
6632
6633 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6634 /* IE->LE relaxation:
6635 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6636
6637 Where R is x for lp64 mode, and w for ILP32 mode. */
6638 if (is_local)
6639 {
6640 insn = bfd_getl32 (contents + rel->r_offset);
6641 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6642 }
6643 return bfd_reloc_continue;
6644
6645 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6646 /* LD->LE relaxation (tiny):
6647 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6648 bl __tls_get_addr => add R0, R0, TCB_SIZE
6649
6650 Where R is x for lp64 mode, and w for ilp32 mode. */
6651 if (is_local)
6652 {
6653 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6654 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6655 /* No need of CALL26 relocation for tls_get_addr. */
6656 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6657 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6658 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6659 contents + rel->r_offset + 4);
6660 return bfd_reloc_ok;
6661 }
6662 return bfd_reloc_continue;
6663
6664 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6665 /* LD->LE relaxation (small):
6666 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6667 */
6668 if (is_local)
6669 {
6670 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6671 return bfd_reloc_ok;
6672 }
6673 return bfd_reloc_continue;
6674
6675 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6676 /* LD->LE relaxation (small):
6677 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6678 bl __tls_get_addr => nop
6679
6680 Where R is x for lp64 mode, and w for ilp32 mode. */
6681 if (is_local)
6682 {
6683 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6684 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6685 /* No need of CALL26 relocation for tls_get_addr. */
6686 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6687 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6688 contents + rel->r_offset + 0);
6689 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6690 return bfd_reloc_ok;
6691 }
6692 return bfd_reloc_continue;
6693
6694 default:
6695 return bfd_reloc_continue;
6696 }
6697
6698 return bfd_reloc_ok;
6699 }
6700
6701 /* Relocate an AArch64 ELF section. */
6702
6703 static bfd_boolean
6704 elfNN_aarch64_relocate_section (bfd *output_bfd,
6705 struct bfd_link_info *info,
6706 bfd *input_bfd,
6707 asection *input_section,
6708 bfd_byte *contents,
6709 Elf_Internal_Rela *relocs,
6710 Elf_Internal_Sym *local_syms,
6711 asection **local_sections)
6712 {
6713 Elf_Internal_Shdr *symtab_hdr;
6714 struct elf_link_hash_entry **sym_hashes;
6715 Elf_Internal_Rela *rel;
6716 Elf_Internal_Rela *relend;
6717 const char *name;
6718 struct elf_aarch64_link_hash_table *globals;
6719 bfd_boolean save_addend = FALSE;
6720 bfd_vma addend = 0;
6721
6722 globals = elf_aarch64_hash_table (info);
6723
6724 symtab_hdr = &elf_symtab_hdr (input_bfd);
6725 sym_hashes = elf_sym_hashes (input_bfd);
6726
6727 rel = relocs;
6728 relend = relocs + input_section->reloc_count;
6729 for (; rel < relend; rel++)
6730 {
6731 unsigned int r_type;
6732 bfd_reloc_code_real_type bfd_r_type;
6733 bfd_reloc_code_real_type relaxed_bfd_r_type;
6734 reloc_howto_type *howto;
6735 unsigned long r_symndx;
6736 Elf_Internal_Sym *sym;
6737 asection *sec;
6738 struct elf_link_hash_entry *h;
6739 bfd_vma relocation;
6740 bfd_reloc_status_type r;
6741 arelent bfd_reloc;
6742 char sym_type;
6743 bfd_boolean unresolved_reloc = FALSE;
6744 char *error_message = NULL;
6745
6746 r_symndx = ELFNN_R_SYM (rel->r_info);
6747 r_type = ELFNN_R_TYPE (rel->r_info);
6748
6749 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6750 howto = bfd_reloc.howto;
6751
6752 if (howto == NULL)
6753 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6754
6755 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6756
6757 h = NULL;
6758 sym = NULL;
6759 sec = NULL;
6760
6761 if (r_symndx < symtab_hdr->sh_info)
6762 {
6763 sym = local_syms + r_symndx;
6764 sym_type = ELFNN_ST_TYPE (sym->st_info);
6765 sec = local_sections[r_symndx];
6766
6767 /* An object file might have a reference to a local
6768 undefined symbol. This is a daft object file, but we
6769 should at least do something about it. */
6770 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6771 && bfd_is_und_section (sec)
6772 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6773 (*info->callbacks->undefined_symbol)
6774 (info, bfd_elf_string_from_elf_section
6775 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6776 input_bfd, input_section, rel->r_offset, TRUE);
6777
6778 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6779
6780 /* Relocate against local STT_GNU_IFUNC symbol. */
6781 if (!bfd_link_relocatable (info)
6782 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6783 {
6784 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6785 rel, FALSE);
6786 if (h == NULL)
6787 abort ();
6788
6789 /* Set STT_GNU_IFUNC symbol value. */
6790 h->root.u.def.value = sym->st_value;
6791 h->root.u.def.section = sec;
6792 }
6793 }
6794 else
6795 {
6796 bfd_boolean warned, ignored;
6797
6798 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6799 r_symndx, symtab_hdr, sym_hashes,
6800 h, sec, relocation,
6801 unresolved_reloc, warned, ignored);
6802
6803 sym_type = h->type;
6804 }
6805
6806 if (sec != NULL && discarded_section (sec))
6807 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6808 rel, 1, relend, howto, 0, contents);
6809
6810 if (bfd_link_relocatable (info))
6811 continue;
6812
6813 if (h != NULL)
6814 name = h->root.root.string;
6815 else
6816 {
6817 name = (bfd_elf_string_from_elf_section
6818 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6819 if (name == NULL || *name == '\0')
6820 name = bfd_section_name (sec);
6821 }
6822
6823 if (r_symndx != 0
6824 && r_type != R_AARCH64_NONE
6825 && r_type != R_AARCH64_NULL
6826 && (h == NULL
6827 || h->root.type == bfd_link_hash_defined
6828 || h->root.type == bfd_link_hash_defweak)
6829 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6830 {
6831 _bfd_error_handler
6832 ((sym_type == STT_TLS
6833 /* xgettext:c-format */
6834 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6835 /* xgettext:c-format */
6836 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6837 input_bfd,
6838 input_section, (uint64_t) rel->r_offset, howto->name, name);
6839 }
6840
6841 /* We relax only if we can see that there can be a valid transition
6842 from a reloc type to another.
6843 We call elfNN_aarch64_final_link_relocate unless we're completely
6844 done, i.e., the relaxation produced the final output we want. */
6845
6846 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6847 h, r_symndx);
6848 if (relaxed_bfd_r_type != bfd_r_type)
6849 {
6850 bfd_r_type = relaxed_bfd_r_type;
6851 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6852 BFD_ASSERT (howto != NULL);
6853 r_type = howto->type;
6854 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6855 contents, rel, h);
6856 unresolved_reloc = 0;
6857 }
6858 else
6859 r = bfd_reloc_continue;
6860
6861 /* There may be multiple consecutive relocations for the
6862 same offset. In that case we are supposed to treat the
6863 output of each relocation as the addend for the next. */
6864 if (rel + 1 < relend
6865 && rel->r_offset == rel[1].r_offset
6866 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6867 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6868 save_addend = TRUE;
6869 else
6870 save_addend = FALSE;
6871
6872 if (r == bfd_reloc_continue)
6873 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6874 input_section, contents, rel,
6875 relocation, info, sec,
6876 h, &unresolved_reloc,
6877 save_addend, &addend, sym);
6878
6879 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6880 {
6881 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6882 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6883 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6884 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6885 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6886 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6887 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6888 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6889 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6890 {
6891 bfd_boolean need_relocs = FALSE;
6892 bfd_byte *loc;
6893 int indx;
6894 bfd_vma off;
6895
6896 off = symbol_got_offset (input_bfd, h, r_symndx);
6897 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6898
6899 need_relocs =
6900 (!bfd_link_executable (info) || indx != 0) &&
6901 (h == NULL
6902 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6903 || h->root.type != bfd_link_hash_undefweak);
6904
6905 BFD_ASSERT (globals->root.srelgot != NULL);
6906
6907 if (need_relocs)
6908 {
6909 Elf_Internal_Rela rela;
6910 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6911 rela.r_addend = 0;
6912 rela.r_offset = globals->root.sgot->output_section->vma +
6913 globals->root.sgot->output_offset + off;
6914
6915
6916 loc = globals->root.srelgot->contents;
6917 loc += globals->root.srelgot->reloc_count++
6918 * RELOC_SIZE (htab);
6919 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6920
6921 bfd_reloc_code_real_type real_type =
6922 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6923
6924 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6925 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6926 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6927 {
6928 /* For local dynamic, don't generate DTPREL in any case.
6929 Initialize the DTPREL slot into zero, so we get module
6930 base address when invoke runtime TLS resolver. */
6931 bfd_put_NN (output_bfd, 0,
6932 globals->root.sgot->contents + off
6933 + GOT_ENTRY_SIZE);
6934 }
6935 else if (indx == 0)
6936 {
6937 bfd_put_NN (output_bfd,
6938 relocation - dtpoff_base (info),
6939 globals->root.sgot->contents + off
6940 + GOT_ENTRY_SIZE);
6941 }
6942 else
6943 {
6944 /* This TLS symbol is global. We emit a
6945 relocation to fixup the tls offset at load
6946 time. */
6947 rela.r_info =
6948 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6949 rela.r_addend = 0;
6950 rela.r_offset =
6951 (globals->root.sgot->output_section->vma
6952 + globals->root.sgot->output_offset + off
6953 + GOT_ENTRY_SIZE);
6954
6955 loc = globals->root.srelgot->contents;
6956 loc += globals->root.srelgot->reloc_count++
6957 * RELOC_SIZE (globals);
6958 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6959 bfd_put_NN (output_bfd, (bfd_vma) 0,
6960 globals->root.sgot->contents + off
6961 + GOT_ENTRY_SIZE);
6962 }
6963 }
6964 else
6965 {
6966 bfd_put_NN (output_bfd, (bfd_vma) 1,
6967 globals->root.sgot->contents + off);
6968 bfd_put_NN (output_bfd,
6969 relocation - dtpoff_base (info),
6970 globals->root.sgot->contents + off
6971 + GOT_ENTRY_SIZE);
6972 }
6973
6974 symbol_got_offset_mark (input_bfd, h, r_symndx);
6975 }
6976 break;
6977
6978 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6979 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6980 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6981 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6982 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6983 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6984 {
6985 bfd_boolean need_relocs = FALSE;
6986 bfd_byte *loc;
6987 int indx;
6988 bfd_vma off;
6989
6990 off = symbol_got_offset (input_bfd, h, r_symndx);
6991
6992 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6993
6994 need_relocs =
6995 (!bfd_link_executable (info) || indx != 0) &&
6996 (h == NULL
6997 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6998 || h->root.type != bfd_link_hash_undefweak);
6999
7000 BFD_ASSERT (globals->root.srelgot != NULL);
7001
7002 if (need_relocs)
7003 {
7004 Elf_Internal_Rela rela;
7005
7006 if (indx == 0)
7007 rela.r_addend = relocation - dtpoff_base (info);
7008 else
7009 rela.r_addend = 0;
7010
7011 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
7012 rela.r_offset = globals->root.sgot->output_section->vma +
7013 globals->root.sgot->output_offset + off;
7014
7015 loc = globals->root.srelgot->contents;
7016 loc += globals->root.srelgot->reloc_count++
7017 * RELOC_SIZE (htab);
7018
7019 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7020
7021 bfd_put_NN (output_bfd, rela.r_addend,
7022 globals->root.sgot->contents + off);
7023 }
7024 else
7025 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
7026 globals->root.sgot->contents + off);
7027
7028 symbol_got_offset_mark (input_bfd, h, r_symndx);
7029 }
7030 break;
7031
7032 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7033 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7034 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7035 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
7036 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7037 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7038 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7039 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
7040 {
7041 bfd_boolean need_relocs = FALSE;
7042 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
7043 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
7044
7045 need_relocs = (h == NULL
7046 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7047 || h->root.type != bfd_link_hash_undefweak);
7048
7049 BFD_ASSERT (globals->root.srelgot != NULL);
7050 BFD_ASSERT (globals->root.sgot != NULL);
7051
7052 if (need_relocs)
7053 {
7054 bfd_byte *loc;
7055 Elf_Internal_Rela rela;
7056 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
7057
7058 rela.r_addend = 0;
7059 rela.r_offset = (globals->root.sgotplt->output_section->vma
7060 + globals->root.sgotplt->output_offset
7061 + off + globals->sgotplt_jump_table_size);
7062
7063 if (indx == 0)
7064 rela.r_addend = relocation - dtpoff_base (info);
7065
7066 /* Allocate the next available slot in the PLT reloc
7067 section to hold our R_AARCH64_TLSDESC, the next
7068 available slot is determined from reloc_count,
7069 which we step. But note, reloc_count was
7070 artifically moved down while allocating slots for
7071 real PLT relocs such that all of the PLT relocs
7072 will fit above the initial reloc_count and the
7073 extra stuff will fit below. */
7074 loc = globals->root.srelplt->contents;
7075 loc += globals->root.srelplt->reloc_count++
7076 * RELOC_SIZE (globals);
7077
7078 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7079
7080 bfd_put_NN (output_bfd, (bfd_vma) 0,
7081 globals->root.sgotplt->contents + off +
7082 globals->sgotplt_jump_table_size);
7083 bfd_put_NN (output_bfd, (bfd_vma) 0,
7084 globals->root.sgotplt->contents + off +
7085 globals->sgotplt_jump_table_size +
7086 GOT_ENTRY_SIZE);
7087 }
7088
7089 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
7090 }
7091 break;
7092 default:
7093 break;
7094 }
7095
7096 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7097 because such sections are not SEC_ALLOC and thus ld.so will
7098 not process them. */
7099 if (unresolved_reloc
7100 && !((input_section->flags & SEC_DEBUGGING) != 0
7101 && h->def_dynamic)
7102 && _bfd_elf_section_offset (output_bfd, info, input_section,
7103 +rel->r_offset) != (bfd_vma) - 1)
7104 {
7105 _bfd_error_handler
7106 /* xgettext:c-format */
7107 (_("%pB(%pA+%#" PRIx64 "): "
7108 "unresolvable %s relocation against symbol `%s'"),
7109 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
7110 h->root.root.string);
7111 return FALSE;
7112 }
7113
7114 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
7115 {
7116 bfd_reloc_code_real_type real_r_type
7117 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
7118
7119 switch (r)
7120 {
7121 case bfd_reloc_overflow:
7122 (*info->callbacks->reloc_overflow)
7123 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
7124 input_bfd, input_section, rel->r_offset);
7125 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
7126 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
7127 {
7128 (*info->callbacks->warning)
7129 (info,
7130 _("too many GOT entries for -fpic, "
7131 "please recompile with -fPIC"),
7132 name, input_bfd, input_section, rel->r_offset);
7133 return FALSE;
7134 }
7135 /* Overflow can occur when a variable is referenced with a type
7136 that has a larger alignment than the type with which it was
7137 declared. eg:
7138 file1.c: extern int foo; int a (void) { return foo; }
7139 file2.c: char bar, foo, baz;
7140 If the variable is placed into a data section at an offset
7141 that is incompatible with the larger alignment requirement
7142 overflow will occur. (Strictly speaking this is not overflow
7143 but rather an alignment problem, but the bfd_reloc_ error
7144 enum does not have a value to cover that situation).
7145
7146 Try to catch this situation here and provide a more helpful
7147 error message to the user. */
7148 if (addend & ((1 << howto->rightshift) - 1)
7149 /* FIXME: Are we testing all of the appropriate reloc
7150 types here ? */
7151 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
7152 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
7153 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
7154 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
7155 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
7156 {
7157 info->callbacks->warning
7158 (info, _("one possible cause of this error is that the \
7159 symbol is being referenced in the indicated code as if it had a larger \
7160 alignment than was declared where it was defined"),
7161 name, input_bfd, input_section, rel->r_offset);
7162 }
7163 break;
7164
7165 case bfd_reloc_undefined:
7166 (*info->callbacks->undefined_symbol)
7167 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
7168 break;
7169
7170 case bfd_reloc_outofrange:
7171 error_message = _("out of range");
7172 goto common_error;
7173
7174 case bfd_reloc_notsupported:
7175 error_message = _("unsupported relocation");
7176 goto common_error;
7177
7178 case bfd_reloc_dangerous:
7179 /* error_message should already be set. */
7180 goto common_error;
7181
7182 default:
7183 error_message = _("unknown error");
7184 /* Fall through. */
7185
7186 common_error:
7187 BFD_ASSERT (error_message != NULL);
7188 (*info->callbacks->reloc_dangerous)
7189 (info, error_message, input_bfd, input_section, rel->r_offset);
7190 break;
7191 }
7192 }
7193
7194 if (!save_addend)
7195 addend = 0;
7196 }
7197
7198 return TRUE;
7199 }
7200
7201 /* Set the right machine number. */
7202
7203 static bfd_boolean
7204 elfNN_aarch64_object_p (bfd *abfd)
7205 {
7206 #if ARCH_SIZE == 32
7207 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7208 #else
7209 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7210 #endif
7211 return TRUE;
7212 }
7213
7214 /* Function to keep AArch64 specific flags in the ELF header. */
7215
7216 static bfd_boolean
7217 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7218 {
7219 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7220 {
7221 }
7222 else
7223 {
7224 elf_elfheader (abfd)->e_flags = flags;
7225 elf_flags_init (abfd) = TRUE;
7226 }
7227
7228 return TRUE;
7229 }
7230
7231 /* Merge backend specific data from an object file to the output
7232 object file when linking. */
7233
7234 static bfd_boolean
7235 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7236 {
7237 bfd *obfd = info->output_bfd;
7238 flagword out_flags;
7239 flagword in_flags;
7240 bfd_boolean flags_compatible = TRUE;
7241 asection *sec;
7242
7243 /* Check if we have the same endianess. */
7244 if (!_bfd_generic_verify_endian_match (ibfd, info))
7245 return FALSE;
7246
7247 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7248 return TRUE;
7249
7250 /* The input BFD must have had its flags initialised. */
7251 /* The following seems bogus to me -- The flags are initialized in
7252 the assembler but I don't think an elf_flags_init field is
7253 written into the object. */
7254 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7255
7256 in_flags = elf_elfheader (ibfd)->e_flags;
7257 out_flags = elf_elfheader (obfd)->e_flags;
7258
7259 if (!elf_flags_init (obfd))
7260 {
7261 /* If the input is the default architecture and had the default
7262 flags then do not bother setting the flags for the output
7263 architecture, instead allow future merges to do this. If no
7264 future merges ever set these flags then they will retain their
7265 uninitialised values, which surprise surprise, correspond
7266 to the default values. */
7267 if (bfd_get_arch_info (ibfd)->the_default
7268 && elf_elfheader (ibfd)->e_flags == 0)
7269 return TRUE;
7270
7271 elf_flags_init (obfd) = TRUE;
7272 elf_elfheader (obfd)->e_flags = in_flags;
7273
7274 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7275 && bfd_get_arch_info (obfd)->the_default)
7276 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7277 bfd_get_mach (ibfd));
7278
7279 return TRUE;
7280 }
7281
7282 /* Identical flags must be compatible. */
7283 if (in_flags == out_flags)
7284 return TRUE;
7285
7286 /* Check to see if the input BFD actually contains any sections. If
7287 not, its flags may not have been initialised either, but it
7288 cannot actually cause any incompatiblity. Do not short-circuit
7289 dynamic objects; their section list may be emptied by
7290 elf_link_add_object_symbols.
7291
7292 Also check to see if there are no code sections in the input.
7293 In this case there is no need to check for code specific flags.
7294 XXX - do we need to worry about floating-point format compatability
7295 in data sections ? */
7296 if (!(ibfd->flags & DYNAMIC))
7297 {
7298 bfd_boolean null_input_bfd = TRUE;
7299 bfd_boolean only_data_sections = TRUE;
7300
7301 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7302 {
7303 if ((bfd_section_flags (sec)
7304 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7305 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7306 only_data_sections = FALSE;
7307
7308 null_input_bfd = FALSE;
7309 break;
7310 }
7311
7312 if (null_input_bfd || only_data_sections)
7313 return TRUE;
7314 }
7315
7316 return flags_compatible;
7317 }
7318
7319 /* Display the flags field. */
7320
7321 static bfd_boolean
7322 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7323 {
7324 FILE *file = (FILE *) ptr;
7325 unsigned long flags;
7326
7327 BFD_ASSERT (abfd != NULL && ptr != NULL);
7328
7329 /* Print normal ELF private data. */
7330 _bfd_elf_print_private_bfd_data (abfd, ptr);
7331
7332 flags = elf_elfheader (abfd)->e_flags;
7333 /* Ignore init flag - it may not be set, despite the flags field
7334 containing valid data. */
7335
7336 /* xgettext:c-format */
7337 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7338
7339 if (flags)
7340 fprintf (file, _("<Unrecognised flag bits set>"));
7341
7342 fputc ('\n', file);
7343
7344 return TRUE;
7345 }
7346
7347 /* Find dynamic relocs for H that apply to read-only sections. */
7348
7349 static asection *
7350 readonly_dynrelocs (struct elf_link_hash_entry *h)
7351 {
7352 struct elf_dyn_relocs *p;
7353
7354 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
7355 {
7356 asection *s = p->sec->output_section;
7357
7358 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7359 return p->sec;
7360 }
7361 return NULL;
7362 }
7363
7364 /* Return true if we need copy relocation against EH. */
7365
7366 static bfd_boolean
7367 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7368 {
7369 struct elf_dyn_relocs *p;
7370 asection *s;
7371
7372 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7373 {
7374 /* If there is any pc-relative reference, we need to keep copy relocation
7375 to avoid propagating the relocation into runtime that current glibc
7376 does not support. */
7377 if (p->pc_count)
7378 return TRUE;
7379
7380 s = p->sec->output_section;
7381 /* Need copy relocation if it's against read-only section. */
7382 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7383 return TRUE;
7384 }
7385
7386 return FALSE;
7387 }
7388
7389 /* Adjust a symbol defined by a dynamic object and referenced by a
7390 regular object. The current definition is in some section of the
7391 dynamic object, but we're not including those sections. We have to
7392 change the definition to something the rest of the link can
7393 understand. */
7394
7395 static bfd_boolean
7396 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7397 struct elf_link_hash_entry *h)
7398 {
7399 struct elf_aarch64_link_hash_table *htab;
7400 asection *s, *srel;
7401
7402 /* If this is a function, put it in the procedure linkage table. We
7403 will fill in the contents of the procedure linkage table later,
7404 when we know the address of the .got section. */
7405 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7406 {
7407 if (h->plt.refcount <= 0
7408 || (h->type != STT_GNU_IFUNC
7409 && (SYMBOL_CALLS_LOCAL (info, h)
7410 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7411 && h->root.type == bfd_link_hash_undefweak))))
7412 {
7413 /* This case can occur if we saw a CALL26 reloc in
7414 an input file, but the symbol wasn't referred to
7415 by a dynamic object or all references were
7416 garbage collected. In which case we can end up
7417 resolving. */
7418 h->plt.offset = (bfd_vma) - 1;
7419 h->needs_plt = 0;
7420 }
7421
7422 return TRUE;
7423 }
7424 else
7425 /* Otherwise, reset to -1. */
7426 h->plt.offset = (bfd_vma) - 1;
7427
7428
7429 /* If this is a weak symbol, and there is a real definition, the
7430 processor independent code will have arranged for us to see the
7431 real definition first, and we can just use the same value. */
7432 if (h->is_weakalias)
7433 {
7434 struct elf_link_hash_entry *def = weakdef (h);
7435 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7436 h->root.u.def.section = def->root.u.def.section;
7437 h->root.u.def.value = def->root.u.def.value;
7438 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7439 h->non_got_ref = def->non_got_ref;
7440 return TRUE;
7441 }
7442
7443 /* If we are creating a shared library, we must presume that the
7444 only references to the symbol are via the global offset table.
7445 For such cases we need not do anything here; the relocations will
7446 be handled correctly by relocate_section. */
7447 if (bfd_link_pic (info))
7448 return TRUE;
7449
7450 /* If there are no references to this symbol that do not use the
7451 GOT, we don't need to generate a copy reloc. */
7452 if (!h->non_got_ref)
7453 return TRUE;
7454
7455 /* If -z nocopyreloc was given, we won't generate them either. */
7456 if (info->nocopyreloc)
7457 {
7458 h->non_got_ref = 0;
7459 return TRUE;
7460 }
7461
7462 if (ELIMINATE_COPY_RELOCS)
7463 {
7464 struct elf_aarch64_link_hash_entry *eh;
7465 /* If we don't find any dynamic relocs in read-only sections, then
7466 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7467 eh = (struct elf_aarch64_link_hash_entry *) h;
7468 if (!need_copy_relocation_p (eh))
7469 {
7470 h->non_got_ref = 0;
7471 return TRUE;
7472 }
7473 }
7474
7475 /* We must allocate the symbol in our .dynbss section, which will
7476 become part of the .bss section of the executable. There will be
7477 an entry for this symbol in the .dynsym section. The dynamic
7478 object will contain position independent code, so all references
7479 from the dynamic object to this symbol will go through the global
7480 offset table. The dynamic linker will use the .dynsym entry to
7481 determine the address it must put in the global offset table, so
7482 both the dynamic object and the regular object will refer to the
7483 same memory location for the variable. */
7484
7485 htab = elf_aarch64_hash_table (info);
7486
7487 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7488 to copy the initial value out of the dynamic object and into the
7489 runtime process image. */
7490 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7491 {
7492 s = htab->root.sdynrelro;
7493 srel = htab->root.sreldynrelro;
7494 }
7495 else
7496 {
7497 s = htab->root.sdynbss;
7498 srel = htab->root.srelbss;
7499 }
7500 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7501 {
7502 srel->size += RELOC_SIZE (htab);
7503 h->needs_copy = 1;
7504 }
7505
7506 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7507
7508 }
7509
7510 static bfd_boolean
7511 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7512 {
7513 struct elf_aarch64_local_symbol *locals;
7514 locals = elf_aarch64_locals (abfd);
7515 if (locals == NULL)
7516 {
7517 locals = (struct elf_aarch64_local_symbol *)
7518 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7519 if (locals == NULL)
7520 return FALSE;
7521 elf_aarch64_locals (abfd) = locals;
7522 }
7523 return TRUE;
7524 }
7525
7526 /* Create the .got section to hold the global offset table. */
7527
7528 static bfd_boolean
7529 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7530 {
7531 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7532 flagword flags;
7533 asection *s;
7534 struct elf_link_hash_entry *h;
7535 struct elf_link_hash_table *htab = elf_hash_table (info);
7536
7537 /* This function may be called more than once. */
7538 if (htab->sgot != NULL)
7539 return TRUE;
7540
7541 flags = bed->dynamic_sec_flags;
7542
7543 s = bfd_make_section_anyway_with_flags (abfd,
7544 (bed->rela_plts_and_copies_p
7545 ? ".rela.got" : ".rel.got"),
7546 (bed->dynamic_sec_flags
7547 | SEC_READONLY));
7548 if (s == NULL
7549 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7550 return FALSE;
7551 htab->srelgot = s;
7552
7553 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7554 if (s == NULL
7555 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7556 return FALSE;
7557 htab->sgot = s;
7558 htab->sgot->size += GOT_ENTRY_SIZE;
7559
7560 if (bed->want_got_sym)
7561 {
7562 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7563 (or .got.plt) section. We don't do this in the linker script
7564 because we don't want to define the symbol if we are not creating
7565 a global offset table. */
7566 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7567 "_GLOBAL_OFFSET_TABLE_");
7568 elf_hash_table (info)->hgot = h;
7569 if (h == NULL)
7570 return FALSE;
7571 }
7572
7573 if (bed->want_got_plt)
7574 {
7575 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7576 if (s == NULL
7577 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7578 return FALSE;
7579 htab->sgotplt = s;
7580 }
7581
7582 /* The first bit of the global offset table is the header. */
7583 s->size += bed->got_header_size;
7584
7585 return TRUE;
7586 }
7587
7588 /* Look through the relocs for a section during the first phase. */
7589
7590 static bfd_boolean
7591 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7592 asection *sec, const Elf_Internal_Rela *relocs)
7593 {
7594 Elf_Internal_Shdr *symtab_hdr;
7595 struct elf_link_hash_entry **sym_hashes;
7596 const Elf_Internal_Rela *rel;
7597 const Elf_Internal_Rela *rel_end;
7598 asection *sreloc;
7599
7600 struct elf_aarch64_link_hash_table *htab;
7601
7602 if (bfd_link_relocatable (info))
7603 return TRUE;
7604
7605 BFD_ASSERT (is_aarch64_elf (abfd));
7606
7607 htab = elf_aarch64_hash_table (info);
7608 sreloc = NULL;
7609
7610 symtab_hdr = &elf_symtab_hdr (abfd);
7611 sym_hashes = elf_sym_hashes (abfd);
7612
7613 rel_end = relocs + sec->reloc_count;
7614 for (rel = relocs; rel < rel_end; rel++)
7615 {
7616 struct elf_link_hash_entry *h;
7617 unsigned int r_symndx;
7618 unsigned int r_type;
7619 bfd_reloc_code_real_type bfd_r_type;
7620 Elf_Internal_Sym *isym;
7621
7622 r_symndx = ELFNN_R_SYM (rel->r_info);
7623 r_type = ELFNN_R_TYPE (rel->r_info);
7624
7625 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7626 {
7627 /* xgettext:c-format */
7628 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7629 return FALSE;
7630 }
7631
7632 if (r_symndx < symtab_hdr->sh_info)
7633 {
7634 /* A local symbol. */
7635 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7636 abfd, r_symndx);
7637 if (isym == NULL)
7638 return FALSE;
7639
7640 /* Check relocation against local STT_GNU_IFUNC symbol. */
7641 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7642 {
7643 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7644 TRUE);
7645 if (h == NULL)
7646 return FALSE;
7647
7648 /* Fake a STT_GNU_IFUNC symbol. */
7649 h->type = STT_GNU_IFUNC;
7650 h->def_regular = 1;
7651 h->ref_regular = 1;
7652 h->forced_local = 1;
7653 h->root.type = bfd_link_hash_defined;
7654 }
7655 else
7656 h = NULL;
7657 }
7658 else
7659 {
7660 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7661 while (h->root.type == bfd_link_hash_indirect
7662 || h->root.type == bfd_link_hash_warning)
7663 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7664 }
7665
7666 /* Could be done earlier, if h were already available. */
7667 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7668
7669 if (h != NULL)
7670 {
7671 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7672 This shows up in particular in an R_AARCH64_PREL64 in large model
7673 when calculating the pc-relative address to .got section which is
7674 used to initialize the gp register. */
7675 if (h->root.root.string
7676 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7677 {
7678 if (htab->root.dynobj == NULL)
7679 htab->root.dynobj = abfd;
7680
7681 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7682 return FALSE;
7683
7684 BFD_ASSERT (h == htab->root.hgot);
7685 }
7686
7687 /* Create the ifunc sections for static executables. If we
7688 never see an indirect function symbol nor we are building
7689 a static executable, those sections will be empty and
7690 won't appear in output. */
7691 switch (bfd_r_type)
7692 {
7693 default:
7694 break;
7695
7696 case BFD_RELOC_AARCH64_ADD_LO12:
7697 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7698 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7699 case BFD_RELOC_AARCH64_CALL26:
7700 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7701 case BFD_RELOC_AARCH64_JUMP26:
7702 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7703 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7704 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7705 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7706 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7707 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7708 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7709 case BFD_RELOC_AARCH64_NN:
7710 if (htab->root.dynobj == NULL)
7711 htab->root.dynobj = abfd;
7712 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7713 return FALSE;
7714 break;
7715 }
7716
7717 /* It is referenced by a non-shared object. */
7718 h->ref_regular = 1;
7719 }
7720
7721 switch (bfd_r_type)
7722 {
7723 case BFD_RELOC_AARCH64_16:
7724 #if ARCH_SIZE == 64
7725 case BFD_RELOC_AARCH64_32:
7726 #endif
7727 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7728 {
7729 if (h != NULL
7730 /* This is an absolute symbol. It represents a value instead
7731 of an address. */
7732 && (bfd_is_abs_symbol (&h->root)
7733 /* This is an undefined symbol. */
7734 || h->root.type == bfd_link_hash_undefined))
7735 break;
7736
7737 /* For local symbols, defined global symbols in a non-ABS section,
7738 it is assumed that the value is an address. */
7739 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7740 _bfd_error_handler
7741 /* xgettext:c-format */
7742 (_("%pB: relocation %s against `%s' can not be used when making "
7743 "a shared object"),
7744 abfd, elfNN_aarch64_howto_table[howto_index].name,
7745 (h) ? h->root.root.string : "a local symbol");
7746 bfd_set_error (bfd_error_bad_value);
7747 return FALSE;
7748 }
7749 else
7750 break;
7751
7752 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7753 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7754 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7755 case BFD_RELOC_AARCH64_MOVW_G3:
7756 if (bfd_link_pic (info))
7757 {
7758 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7759 _bfd_error_handler
7760 /* xgettext:c-format */
7761 (_("%pB: relocation %s against `%s' can not be used when making "
7762 "a shared object; recompile with -fPIC"),
7763 abfd, elfNN_aarch64_howto_table[howto_index].name,
7764 (h) ? h->root.root.string : "a local symbol");
7765 bfd_set_error (bfd_error_bad_value);
7766 return FALSE;
7767 }
7768 /* Fall through. */
7769
7770 case BFD_RELOC_AARCH64_16_PCREL:
7771 case BFD_RELOC_AARCH64_32_PCREL:
7772 case BFD_RELOC_AARCH64_64_PCREL:
7773 case BFD_RELOC_AARCH64_ADD_LO12:
7774 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7775 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7776 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7777 case BFD_RELOC_AARCH64_LDST128_LO12:
7778 case BFD_RELOC_AARCH64_LDST16_LO12:
7779 case BFD_RELOC_AARCH64_LDST32_LO12:
7780 case BFD_RELOC_AARCH64_LDST64_LO12:
7781 case BFD_RELOC_AARCH64_LDST8_LO12:
7782 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7783 if (h == NULL || bfd_link_pic (info))
7784 break;
7785 /* Fall through. */
7786
7787 case BFD_RELOC_AARCH64_NN:
7788
7789 /* We don't need to handle relocs into sections not going into
7790 the "real" output. */
7791 if ((sec->flags & SEC_ALLOC) == 0)
7792 break;
7793
7794 if (h != NULL)
7795 {
7796 if (!bfd_link_pic (info))
7797 h->non_got_ref = 1;
7798
7799 h->plt.refcount += 1;
7800 h->pointer_equality_needed = 1;
7801 }
7802
7803 /* No need to do anything if we're not creating a shared
7804 object. */
7805 if (!(bfd_link_pic (info)
7806 /* If on the other hand, we are creating an executable, we
7807 may need to keep relocations for symbols satisfied by a
7808 dynamic library if we manage to avoid copy relocs for the
7809 symbol.
7810
7811 NOTE: Currently, there is no support of copy relocs
7812 elimination on pc-relative relocation types, because there is
7813 no dynamic relocation support for them in glibc. We still
7814 record the dynamic symbol reference for them. This is
7815 because one symbol may be referenced by both absolute
7816 relocation (for example, BFD_RELOC_AARCH64_NN) and
7817 pc-relative relocation. We need full symbol reference
7818 information to make correct decision later in
7819 elfNN_aarch64_adjust_dynamic_symbol. */
7820 || (ELIMINATE_COPY_RELOCS
7821 && !bfd_link_pic (info)
7822 && h != NULL
7823 && (h->root.type == bfd_link_hash_defweak
7824 || !h->def_regular))))
7825 break;
7826
7827 {
7828 struct elf_dyn_relocs *p;
7829 struct elf_dyn_relocs **head;
7830 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7831
7832 /* We must copy these reloc types into the output file.
7833 Create a reloc section in dynobj and make room for
7834 this reloc. */
7835 if (sreloc == NULL)
7836 {
7837 if (htab->root.dynobj == NULL)
7838 htab->root.dynobj = abfd;
7839
7840 sreloc = _bfd_elf_make_dynamic_reloc_section
7841 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7842
7843 if (sreloc == NULL)
7844 return FALSE;
7845 }
7846
7847 /* If this is a global symbol, we count the number of
7848 relocations we need for this symbol. */
7849 if (h != NULL)
7850 {
7851 struct elf_aarch64_link_hash_entry *eh;
7852 eh = (struct elf_aarch64_link_hash_entry *) h;
7853 head = &eh->dyn_relocs;
7854 }
7855 else
7856 {
7857 /* Track dynamic relocs needed for local syms too.
7858 We really need local syms available to do this
7859 easily. Oh well. */
7860
7861 asection *s;
7862 void **vpp;
7863
7864 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7865 abfd, r_symndx);
7866 if (isym == NULL)
7867 return FALSE;
7868
7869 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7870 if (s == NULL)
7871 s = sec;
7872
7873 /* Beware of type punned pointers vs strict aliasing
7874 rules. */
7875 vpp = &(elf_section_data (s)->local_dynrel);
7876 head = (struct elf_dyn_relocs **) vpp;
7877 }
7878
7879 p = *head;
7880 if (p == NULL || p->sec != sec)
7881 {
7882 size_t amt = sizeof *p;
7883 p = ((struct elf_dyn_relocs *)
7884 bfd_zalloc (htab->root.dynobj, amt));
7885 if (p == NULL)
7886 return FALSE;
7887 p->next = *head;
7888 *head = p;
7889 p->sec = sec;
7890 }
7891
7892 p->count += 1;
7893
7894 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7895 p->pc_count += 1;
7896 }
7897 break;
7898
7899 /* RR: We probably want to keep a consistency check that
7900 there are no dangling GOT_PAGE relocs. */
7901 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7902 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7903 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7904 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7905 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7906 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7907 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7908 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7909 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7910 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7911 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7912 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7913 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7914 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7915 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7916 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7917 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7918 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7919 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7920 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7921 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7922 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7923 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7924 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7925 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7926 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7927 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7928 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7929 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7930 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7931 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7932 {
7933 unsigned got_type;
7934 unsigned old_got_type;
7935
7936 got_type = aarch64_reloc_got_type (bfd_r_type);
7937
7938 if (h)
7939 {
7940 h->got.refcount += 1;
7941 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7942 }
7943 else
7944 {
7945 struct elf_aarch64_local_symbol *locals;
7946
7947 if (!elfNN_aarch64_allocate_local_symbols
7948 (abfd, symtab_hdr->sh_info))
7949 return FALSE;
7950
7951 locals = elf_aarch64_locals (abfd);
7952 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7953 locals[r_symndx].got_refcount += 1;
7954 old_got_type = locals[r_symndx].got_type;
7955 }
7956
7957 /* If a variable is accessed with both general dynamic TLS
7958 methods, two slots may be created. */
7959 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7960 got_type |= old_got_type;
7961
7962 /* We will already have issued an error message if there
7963 is a TLS/non-TLS mismatch, based on the symbol type.
7964 So just combine any TLS types needed. */
7965 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7966 && got_type != GOT_NORMAL)
7967 got_type |= old_got_type;
7968
7969 /* If the symbol is accessed by both IE and GD methods, we
7970 are able to relax. Turn off the GD flag, without
7971 messing up with any other kind of TLS types that may be
7972 involved. */
7973 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7974 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7975
7976 if (old_got_type != got_type)
7977 {
7978 if (h != NULL)
7979 elf_aarch64_hash_entry (h)->got_type = got_type;
7980 else
7981 {
7982 struct elf_aarch64_local_symbol *locals;
7983 locals = elf_aarch64_locals (abfd);
7984 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7985 locals[r_symndx].got_type = got_type;
7986 }
7987 }
7988
7989 if (htab->root.dynobj == NULL)
7990 htab->root.dynobj = abfd;
7991 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7992 return FALSE;
7993 break;
7994 }
7995
7996 case BFD_RELOC_AARCH64_CALL26:
7997 case BFD_RELOC_AARCH64_JUMP26:
7998 /* If this is a local symbol then we resolve it
7999 directly without creating a PLT entry. */
8000 if (h == NULL)
8001 continue;
8002
8003 h->needs_plt = 1;
8004 if (h->plt.refcount <= 0)
8005 h->plt.refcount = 1;
8006 else
8007 h->plt.refcount += 1;
8008 break;
8009
8010 default:
8011 break;
8012 }
8013 }
8014
8015 return TRUE;
8016 }
8017
8018 /* Treat mapping symbols as special target symbols. */
8019
8020 static bfd_boolean
8021 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8022 asymbol *sym)
8023 {
8024 return bfd_is_aarch64_special_symbol_name (sym->name,
8025 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
8026 }
8027
8028 /* If the ELF symbol SYM might be a function in SEC, return the
8029 function size and set *CODE_OFF to the function's entry point,
8030 otherwise return zero. */
8031
8032 static bfd_size_type
8033 elfNN_aarch64_maybe_function_sym (const asymbol *sym, asection *sec,
8034 bfd_vma *code_off)
8035 {
8036 bfd_size_type size;
8037
8038 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
8039 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
8040 || sym->section != sec)
8041 return 0;
8042
8043 if (!(sym->flags & BSF_SYNTHETIC))
8044 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
8045 {
8046 case STT_FUNC:
8047 case STT_NOTYPE:
8048 break;
8049 default:
8050 return 0;
8051 }
8052
8053 if ((sym->flags & BSF_LOCAL)
8054 && bfd_is_aarch64_special_symbol_name (sym->name,
8055 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY))
8056 return 0;
8057
8058 *code_off = sym->value;
8059 size = 0;
8060 if (!(sym->flags & BSF_SYNTHETIC))
8061 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
8062 if (size == 0)
8063 size = 1;
8064 return size;
8065 }
8066
8067 static bfd_boolean
8068 elfNN_aarch64_find_inliner_info (bfd *abfd,
8069 const char **filename_ptr,
8070 const char **functionname_ptr,
8071 unsigned int *line_ptr)
8072 {
8073 bfd_boolean found;
8074 found = _bfd_dwarf2_find_inliner_info
8075 (abfd, filename_ptr,
8076 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
8077 return found;
8078 }
8079
8080
8081 static bfd_boolean
8082 elfNN_aarch64_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
8083 {
8084 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
8085
8086 if (!_bfd_elf_init_file_header (abfd, link_info))
8087 return FALSE;
8088
8089 i_ehdrp = elf_elfheader (abfd);
8090 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
8091 return TRUE;
8092 }
8093
8094 static enum elf_reloc_type_class
8095 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
8096 const asection *rel_sec ATTRIBUTE_UNUSED,
8097 const Elf_Internal_Rela *rela)
8098 {
8099 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
8100
8101 if (htab->root.dynsym != NULL
8102 && htab->root.dynsym->contents != NULL)
8103 {
8104 /* Check relocation against STT_GNU_IFUNC symbol if there are
8105 dynamic symbols. */
8106 bfd *abfd = info->output_bfd;
8107 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8108 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
8109 if (r_symndx != STN_UNDEF)
8110 {
8111 Elf_Internal_Sym sym;
8112 if (!bed->s->swap_symbol_in (abfd,
8113 (htab->root.dynsym->contents
8114 + r_symndx * bed->s->sizeof_sym),
8115 0, &sym))
8116 {
8117 /* xgettext:c-format */
8118 _bfd_error_handler (_("%pB symbol number %lu references"
8119 " nonexistent SHT_SYMTAB_SHNDX section"),
8120 abfd, r_symndx);
8121 /* Ideally an error class should be returned here. */
8122 }
8123 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8124 return reloc_class_ifunc;
8125 }
8126 }
8127
8128 switch ((int) ELFNN_R_TYPE (rela->r_info))
8129 {
8130 case AARCH64_R (IRELATIVE):
8131 return reloc_class_ifunc;
8132 case AARCH64_R (RELATIVE):
8133 return reloc_class_relative;
8134 case AARCH64_R (JUMP_SLOT):
8135 return reloc_class_plt;
8136 case AARCH64_R (COPY):
8137 return reloc_class_copy;
8138 default:
8139 return reloc_class_normal;
8140 }
8141 }
8142
8143 /* Handle an AArch64 specific section when reading an object file. This is
8144 called when bfd_section_from_shdr finds a section with an unknown
8145 type. */
8146
8147 static bfd_boolean
8148 elfNN_aarch64_section_from_shdr (bfd *abfd,
8149 Elf_Internal_Shdr *hdr,
8150 const char *name, int shindex)
8151 {
8152 /* There ought to be a place to keep ELF backend specific flags, but
8153 at the moment there isn't one. We just keep track of the
8154 sections by their name, instead. Fortunately, the ABI gives
8155 names for all the AArch64 specific sections, so we will probably get
8156 away with this. */
8157 switch (hdr->sh_type)
8158 {
8159 case SHT_AARCH64_ATTRIBUTES:
8160 break;
8161
8162 default:
8163 return FALSE;
8164 }
8165
8166 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8167 return FALSE;
8168
8169 return TRUE;
8170 }
8171
8172 /* A structure used to record a list of sections, independently
8173 of the next and prev fields in the asection structure. */
8174 typedef struct section_list
8175 {
8176 asection *sec;
8177 struct section_list *next;
8178 struct section_list *prev;
8179 }
8180 section_list;
8181
8182 /* Unfortunately we need to keep a list of sections for which
8183 an _aarch64_elf_section_data structure has been allocated. This
8184 is because it is possible for functions like elfNN_aarch64_write_section
8185 to be called on a section which has had an elf_data_structure
8186 allocated for it (and so the used_by_bfd field is valid) but
8187 for which the AArch64 extended version of this structure - the
8188 _aarch64_elf_section_data structure - has not been allocated. */
8189 static section_list *sections_with_aarch64_elf_section_data = NULL;
8190
8191 static void
8192 record_section_with_aarch64_elf_section_data (asection *sec)
8193 {
8194 struct section_list *entry;
8195
8196 entry = bfd_malloc (sizeof (*entry));
8197 if (entry == NULL)
8198 return;
8199 entry->sec = sec;
8200 entry->next = sections_with_aarch64_elf_section_data;
8201 entry->prev = NULL;
8202 if (entry->next != NULL)
8203 entry->next->prev = entry;
8204 sections_with_aarch64_elf_section_data = entry;
8205 }
8206
8207 static struct section_list *
8208 find_aarch64_elf_section_entry (asection *sec)
8209 {
8210 struct section_list *entry;
8211 static struct section_list *last_entry = NULL;
8212
8213 /* This is a short cut for the typical case where the sections are added
8214 to the sections_with_aarch64_elf_section_data list in forward order and
8215 then looked up here in backwards order. This makes a real difference
8216 to the ld-srec/sec64k.exp linker test. */
8217 entry = sections_with_aarch64_elf_section_data;
8218 if (last_entry != NULL)
8219 {
8220 if (last_entry->sec == sec)
8221 entry = last_entry;
8222 else if (last_entry->next != NULL && last_entry->next->sec == sec)
8223 entry = last_entry->next;
8224 }
8225
8226 for (; entry; entry = entry->next)
8227 if (entry->sec == sec)
8228 break;
8229
8230 if (entry)
8231 /* Record the entry prior to this one - it is the entry we are
8232 most likely to want to locate next time. Also this way if we
8233 have been called from
8234 unrecord_section_with_aarch64_elf_section_data () we will not
8235 be caching a pointer that is about to be freed. */
8236 last_entry = entry->prev;
8237
8238 return entry;
8239 }
8240
8241 static void
8242 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8243 {
8244 struct section_list *entry;
8245
8246 entry = find_aarch64_elf_section_entry (sec);
8247
8248 if (entry)
8249 {
8250 if (entry->prev != NULL)
8251 entry->prev->next = entry->next;
8252 if (entry->next != NULL)
8253 entry->next->prev = entry->prev;
8254 if (entry == sections_with_aarch64_elf_section_data)
8255 sections_with_aarch64_elf_section_data = entry->next;
8256 free (entry);
8257 }
8258 }
8259
8260
8261 typedef struct
8262 {
8263 void *finfo;
8264 struct bfd_link_info *info;
8265 asection *sec;
8266 int sec_shndx;
8267 int (*func) (void *, const char *, Elf_Internal_Sym *,
8268 asection *, struct elf_link_hash_entry *);
8269 } output_arch_syminfo;
8270
8271 enum map_symbol_type
8272 {
8273 AARCH64_MAP_INSN,
8274 AARCH64_MAP_DATA
8275 };
8276
8277
8278 /* Output a single mapping symbol. */
8279
8280 static bfd_boolean
8281 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8282 enum map_symbol_type type, bfd_vma offset)
8283 {
8284 static const char *names[2] = { "$x", "$d" };
8285 Elf_Internal_Sym sym;
8286
8287 sym.st_value = (osi->sec->output_section->vma
8288 + osi->sec->output_offset + offset);
8289 sym.st_size = 0;
8290 sym.st_other = 0;
8291 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8292 sym.st_shndx = osi->sec_shndx;
8293 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8294 }
8295
8296 /* Output a single local symbol for a generated stub. */
8297
8298 static bfd_boolean
8299 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8300 bfd_vma offset, bfd_vma size)
8301 {
8302 Elf_Internal_Sym sym;
8303
8304 sym.st_value = (osi->sec->output_section->vma
8305 + osi->sec->output_offset + offset);
8306 sym.st_size = size;
8307 sym.st_other = 0;
8308 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8309 sym.st_shndx = osi->sec_shndx;
8310 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8311 }
8312
8313 static bfd_boolean
8314 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8315 {
8316 struct elf_aarch64_stub_hash_entry *stub_entry;
8317 asection *stub_sec;
8318 bfd_vma addr;
8319 char *stub_name;
8320 output_arch_syminfo *osi;
8321
8322 /* Massage our args to the form they really have. */
8323 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8324 osi = (output_arch_syminfo *) in_arg;
8325
8326 stub_sec = stub_entry->stub_sec;
8327
8328 /* Ensure this stub is attached to the current section being
8329 processed. */
8330 if (stub_sec != osi->sec)
8331 return TRUE;
8332
8333 addr = (bfd_vma) stub_entry->stub_offset;
8334
8335 stub_name = stub_entry->output_name;
8336
8337 switch (stub_entry->stub_type)
8338 {
8339 case aarch64_stub_adrp_branch:
8340 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8341 sizeof (aarch64_adrp_branch_stub)))
8342 return FALSE;
8343 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8344 return FALSE;
8345 break;
8346 case aarch64_stub_long_branch:
8347 if (!elfNN_aarch64_output_stub_sym
8348 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8349 return FALSE;
8350 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8351 return FALSE;
8352 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8353 return FALSE;
8354 break;
8355 case aarch64_stub_erratum_835769_veneer:
8356 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8357 sizeof (aarch64_erratum_835769_stub)))
8358 return FALSE;
8359 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8360 return FALSE;
8361 break;
8362 case aarch64_stub_erratum_843419_veneer:
8363 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8364 sizeof (aarch64_erratum_843419_stub)))
8365 return FALSE;
8366 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8367 return FALSE;
8368 break;
8369 case aarch64_stub_none:
8370 break;
8371
8372 default:
8373 abort ();
8374 }
8375
8376 return TRUE;
8377 }
8378
8379 /* Output mapping symbols for linker generated sections. */
8380
8381 static bfd_boolean
8382 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8383 struct bfd_link_info *info,
8384 void *finfo,
8385 int (*func) (void *, const char *,
8386 Elf_Internal_Sym *,
8387 asection *,
8388 struct elf_link_hash_entry
8389 *))
8390 {
8391 output_arch_syminfo osi;
8392 struct elf_aarch64_link_hash_table *htab;
8393
8394 htab = elf_aarch64_hash_table (info);
8395
8396 osi.finfo = finfo;
8397 osi.info = info;
8398 osi.func = func;
8399
8400 /* Long calls stubs. */
8401 if (htab->stub_bfd && htab->stub_bfd->sections)
8402 {
8403 asection *stub_sec;
8404
8405 for (stub_sec = htab->stub_bfd->sections;
8406 stub_sec != NULL; stub_sec = stub_sec->next)
8407 {
8408 /* Ignore non-stub sections. */
8409 if (!strstr (stub_sec->name, STUB_SUFFIX))
8410 continue;
8411
8412 osi.sec = stub_sec;
8413
8414 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8415 (output_bfd, osi.sec->output_section);
8416
8417 /* The first instruction in a stub is always a branch. */
8418 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8419 return FALSE;
8420
8421 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8422 &osi);
8423 }
8424 }
8425
8426 /* Finally, output mapping symbols for the PLT. */
8427 if (!htab->root.splt || htab->root.splt->size == 0)
8428 return TRUE;
8429
8430 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8431 (output_bfd, htab->root.splt->output_section);
8432 osi.sec = htab->root.splt;
8433
8434 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8435
8436 return TRUE;
8437
8438 }
8439
8440 /* Allocate target specific section data. */
8441
8442 static bfd_boolean
8443 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8444 {
8445 if (!sec->used_by_bfd)
8446 {
8447 _aarch64_elf_section_data *sdata;
8448 size_t amt = sizeof (*sdata);
8449
8450 sdata = bfd_zalloc (abfd, amt);
8451 if (sdata == NULL)
8452 return FALSE;
8453 sec->used_by_bfd = sdata;
8454 }
8455
8456 record_section_with_aarch64_elf_section_data (sec);
8457
8458 return _bfd_elf_new_section_hook (abfd, sec);
8459 }
8460
8461
8462 static void
8463 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8464 asection *sec,
8465 void *ignore ATTRIBUTE_UNUSED)
8466 {
8467 unrecord_section_with_aarch64_elf_section_data (sec);
8468 }
8469
8470 static bfd_boolean
8471 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8472 {
8473 if (abfd->sections)
8474 bfd_map_over_sections (abfd,
8475 unrecord_section_via_map_over_sections, NULL);
8476
8477 return _bfd_elf_close_and_cleanup (abfd);
8478 }
8479
8480 static bfd_boolean
8481 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8482 {
8483 if (abfd->sections)
8484 bfd_map_over_sections (abfd,
8485 unrecord_section_via_map_over_sections, NULL);
8486
8487 return _bfd_free_cached_info (abfd);
8488 }
8489
8490 /* Create dynamic sections. This is different from the ARM backend in that
8491 the got, plt, gotplt and their relocation sections are all created in the
8492 standard part of the bfd elf backend. */
8493
8494 static bfd_boolean
8495 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8496 struct bfd_link_info *info)
8497 {
8498 /* We need to create .got section. */
8499 if (!aarch64_elf_create_got_section (dynobj, info))
8500 return FALSE;
8501
8502 return _bfd_elf_create_dynamic_sections (dynobj, info);
8503 }
8504
8505
8506 /* Allocate space in .plt, .got and associated reloc sections for
8507 dynamic relocs. */
8508
8509 static bfd_boolean
8510 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8511 {
8512 struct bfd_link_info *info;
8513 struct elf_aarch64_link_hash_table *htab;
8514 struct elf_aarch64_link_hash_entry *eh;
8515 struct elf_dyn_relocs *p;
8516
8517 /* An example of a bfd_link_hash_indirect symbol is versioned
8518 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8519 -> __gxx_personality_v0(bfd_link_hash_defined)
8520
8521 There is no need to process bfd_link_hash_indirect symbols here
8522 because we will also be presented with the concrete instance of
8523 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8524 called to copy all relevant data from the generic to the concrete
8525 symbol instance. */
8526 if (h->root.type == bfd_link_hash_indirect)
8527 return TRUE;
8528
8529 if (h->root.type == bfd_link_hash_warning)
8530 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8531
8532 info = (struct bfd_link_info *) inf;
8533 htab = elf_aarch64_hash_table (info);
8534
8535 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8536 here if it is defined and referenced in a non-shared object. */
8537 if (h->type == STT_GNU_IFUNC
8538 && h->def_regular)
8539 return TRUE;
8540 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8541 {
8542 /* Make sure this symbol is output as a dynamic symbol.
8543 Undefined weak syms won't yet be marked as dynamic. */
8544 if (h->dynindx == -1 && !h->forced_local
8545 && h->root.type == bfd_link_hash_undefweak)
8546 {
8547 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8548 return FALSE;
8549 }
8550
8551 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8552 {
8553 asection *s = htab->root.splt;
8554
8555 /* If this is the first .plt entry, make room for the special
8556 first entry. */
8557 if (s->size == 0)
8558 s->size += htab->plt_header_size;
8559
8560 h->plt.offset = s->size;
8561
8562 /* If this symbol is not defined in a regular file, and we are
8563 not generating a shared library, then set the symbol to this
8564 location in the .plt. This is required to make function
8565 pointers compare as equal between the normal executable and
8566 the shared library. */
8567 if (!bfd_link_pic (info) && !h->def_regular)
8568 {
8569 h->root.u.def.section = s;
8570 h->root.u.def.value = h->plt.offset;
8571 }
8572
8573 /* Make room for this entry. For now we only create the
8574 small model PLT entries. We later need to find a way
8575 of relaxing into these from the large model PLT entries. */
8576 s->size += htab->plt_entry_size;
8577
8578 /* We also need to make an entry in the .got.plt section, which
8579 will be placed in the .got section by the linker script. */
8580 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8581
8582 /* We also need to make an entry in the .rela.plt section. */
8583 htab->root.srelplt->size += RELOC_SIZE (htab);
8584
8585 /* We need to ensure that all GOT entries that serve the PLT
8586 are consecutive with the special GOT slots [0] [1] and
8587 [2]. Any addtional relocations, such as
8588 R_AARCH64_TLSDESC, must be placed after the PLT related
8589 entries. We abuse the reloc_count such that during
8590 sizing we adjust reloc_count to indicate the number of
8591 PLT related reserved entries. In subsequent phases when
8592 filling in the contents of the reloc entries, PLT related
8593 entries are placed by computing their PLT index (0
8594 .. reloc_count). While other none PLT relocs are placed
8595 at the slot indicated by reloc_count and reloc_count is
8596 updated. */
8597
8598 htab->root.srelplt->reloc_count++;
8599
8600 /* Mark the DSO in case R_<CLS>_JUMP_SLOT relocs against
8601 variant PCS symbols are present. */
8602 if (h->other & STO_AARCH64_VARIANT_PCS)
8603 htab->variant_pcs = 1;
8604
8605 }
8606 else
8607 {
8608 h->plt.offset = (bfd_vma) - 1;
8609 h->needs_plt = 0;
8610 }
8611 }
8612 else
8613 {
8614 h->plt.offset = (bfd_vma) - 1;
8615 h->needs_plt = 0;
8616 }
8617
8618 eh = (struct elf_aarch64_link_hash_entry *) h;
8619 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8620
8621 if (h->got.refcount > 0)
8622 {
8623 bfd_boolean dyn;
8624 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8625
8626 h->got.offset = (bfd_vma) - 1;
8627
8628 dyn = htab->root.dynamic_sections_created;
8629
8630 /* Make sure this symbol is output as a dynamic symbol.
8631 Undefined weak syms won't yet be marked as dynamic. */
8632 if (dyn && h->dynindx == -1 && !h->forced_local
8633 && h->root.type == bfd_link_hash_undefweak)
8634 {
8635 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8636 return FALSE;
8637 }
8638
8639 if (got_type == GOT_UNKNOWN)
8640 {
8641 }
8642 else if (got_type == GOT_NORMAL)
8643 {
8644 h->got.offset = htab->root.sgot->size;
8645 htab->root.sgot->size += GOT_ENTRY_SIZE;
8646 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8647 || h->root.type != bfd_link_hash_undefweak)
8648 && (bfd_link_pic (info)
8649 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8650 /* Undefined weak symbol in static PIE resolves to 0 without
8651 any dynamic relocations. */
8652 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8653 {
8654 htab->root.srelgot->size += RELOC_SIZE (htab);
8655 }
8656 }
8657 else
8658 {
8659 int indx;
8660 if (got_type & GOT_TLSDESC_GD)
8661 {
8662 eh->tlsdesc_got_jump_table_offset =
8663 (htab->root.sgotplt->size
8664 - aarch64_compute_jump_table_size (htab));
8665 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8666 h->got.offset = (bfd_vma) - 2;
8667 }
8668
8669 if (got_type & GOT_TLS_GD)
8670 {
8671 h->got.offset = htab->root.sgot->size;
8672 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8673 }
8674
8675 if (got_type & GOT_TLS_IE)
8676 {
8677 h->got.offset = htab->root.sgot->size;
8678 htab->root.sgot->size += GOT_ENTRY_SIZE;
8679 }
8680
8681 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8682 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8683 || h->root.type != bfd_link_hash_undefweak)
8684 && (!bfd_link_executable (info)
8685 || indx != 0
8686 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8687 {
8688 if (got_type & GOT_TLSDESC_GD)
8689 {
8690 htab->root.srelplt->size += RELOC_SIZE (htab);
8691 /* Note reloc_count not incremented here! We have
8692 already adjusted reloc_count for this relocation
8693 type. */
8694
8695 /* TLSDESC PLT is now needed, but not yet determined. */
8696 htab->tlsdesc_plt = (bfd_vma) - 1;
8697 }
8698
8699 if (got_type & GOT_TLS_GD)
8700 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8701
8702 if (got_type & GOT_TLS_IE)
8703 htab->root.srelgot->size += RELOC_SIZE (htab);
8704 }
8705 }
8706 }
8707 else
8708 {
8709 h->got.offset = (bfd_vma) - 1;
8710 }
8711
8712 if (eh->dyn_relocs == NULL)
8713 return TRUE;
8714
8715 /* In the shared -Bsymbolic case, discard space allocated for
8716 dynamic pc-relative relocs against symbols which turn out to be
8717 defined in regular objects. For the normal shared case, discard
8718 space for pc-relative relocs that have become local due to symbol
8719 visibility changes. */
8720
8721 if (bfd_link_pic (info))
8722 {
8723 /* Relocs that use pc_count are those that appear on a call
8724 insn, or certain REL relocs that can generated via assembly.
8725 We want calls to protected symbols to resolve directly to the
8726 function rather than going via the plt. If people want
8727 function pointer comparisons to work as expected then they
8728 should avoid writing weird assembly. */
8729 if (SYMBOL_CALLS_LOCAL (info, h))
8730 {
8731 struct elf_dyn_relocs **pp;
8732
8733 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8734 {
8735 p->count -= p->pc_count;
8736 p->pc_count = 0;
8737 if (p->count == 0)
8738 *pp = p->next;
8739 else
8740 pp = &p->next;
8741 }
8742 }
8743
8744 /* Also discard relocs on undefined weak syms with non-default
8745 visibility. */
8746 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8747 {
8748 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8749 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8750 eh->dyn_relocs = NULL;
8751
8752 /* Make sure undefined weak symbols are output as a dynamic
8753 symbol in PIEs. */
8754 else if (h->dynindx == -1
8755 && !h->forced_local
8756 && h->root.type == bfd_link_hash_undefweak
8757 && !bfd_elf_link_record_dynamic_symbol (info, h))
8758 return FALSE;
8759 }
8760
8761 }
8762 else if (ELIMINATE_COPY_RELOCS)
8763 {
8764 /* For the non-shared case, discard space for relocs against
8765 symbols which turn out to need copy relocs or are not
8766 dynamic. */
8767
8768 if (!h->non_got_ref
8769 && ((h->def_dynamic
8770 && !h->def_regular)
8771 || (htab->root.dynamic_sections_created
8772 && (h->root.type == bfd_link_hash_undefweak
8773 || h->root.type == bfd_link_hash_undefined))))
8774 {
8775 /* Make sure this symbol is output as a dynamic symbol.
8776 Undefined weak syms won't yet be marked as dynamic. */
8777 if (h->dynindx == -1
8778 && !h->forced_local
8779 && h->root.type == bfd_link_hash_undefweak
8780 && !bfd_elf_link_record_dynamic_symbol (info, h))
8781 return FALSE;
8782
8783 /* If that succeeded, we know we'll be keeping all the
8784 relocs. */
8785 if (h->dynindx != -1)
8786 goto keep;
8787 }
8788
8789 eh->dyn_relocs = NULL;
8790
8791 keep:;
8792 }
8793
8794 /* Finally, allocate space. */
8795 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8796 {
8797 asection *sreloc;
8798
8799 sreloc = elf_section_data (p->sec)->sreloc;
8800
8801 BFD_ASSERT (sreloc != NULL);
8802
8803 sreloc->size += p->count * RELOC_SIZE (htab);
8804 }
8805
8806 return TRUE;
8807 }
8808
8809 /* Allocate space in .plt, .got and associated reloc sections for
8810 ifunc dynamic relocs. */
8811
8812 static bfd_boolean
8813 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8814 void *inf)
8815 {
8816 struct bfd_link_info *info;
8817 struct elf_aarch64_link_hash_table *htab;
8818 struct elf_aarch64_link_hash_entry *eh;
8819
8820 /* An example of a bfd_link_hash_indirect symbol is versioned
8821 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8822 -> __gxx_personality_v0(bfd_link_hash_defined)
8823
8824 There is no need to process bfd_link_hash_indirect symbols here
8825 because we will also be presented with the concrete instance of
8826 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8827 called to copy all relevant data from the generic to the concrete
8828 symbol instance. */
8829 if (h->root.type == bfd_link_hash_indirect)
8830 return TRUE;
8831
8832 if (h->root.type == bfd_link_hash_warning)
8833 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8834
8835 info = (struct bfd_link_info *) inf;
8836 htab = elf_aarch64_hash_table (info);
8837
8838 eh = (struct elf_aarch64_link_hash_entry *) h;
8839
8840 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8841 here if it is defined and referenced in a non-shared object. */
8842 if (h->type == STT_GNU_IFUNC
8843 && h->def_regular)
8844 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8845 &eh->dyn_relocs,
8846 NULL,
8847 htab->plt_entry_size,
8848 htab->plt_header_size,
8849 GOT_ENTRY_SIZE,
8850 FALSE);
8851 return TRUE;
8852 }
8853
8854 /* Allocate space in .plt, .got and associated reloc sections for
8855 local ifunc dynamic relocs. */
8856
8857 static bfd_boolean
8858 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8859 {
8860 struct elf_link_hash_entry *h
8861 = (struct elf_link_hash_entry *) *slot;
8862
8863 if (h->type != STT_GNU_IFUNC
8864 || !h->def_regular
8865 || !h->ref_regular
8866 || !h->forced_local
8867 || h->root.type != bfd_link_hash_defined)
8868 abort ();
8869
8870 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8871 }
8872
8873 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8874 read-only sections. */
8875
8876 static bfd_boolean
8877 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8878 {
8879 asection *sec;
8880
8881 if (h->root.type == bfd_link_hash_indirect)
8882 return TRUE;
8883
8884 sec = readonly_dynrelocs (h);
8885 if (sec != NULL)
8886 {
8887 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8888
8889 info->flags |= DF_TEXTREL;
8890 info->callbacks->minfo
8891 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8892 sec->owner, h->root.root.string, sec);
8893
8894 /* Not an error, just cut short the traversal. */
8895 return FALSE;
8896 }
8897 return TRUE;
8898 }
8899
8900 /* This is the most important function of all . Innocuosly named
8901 though ! */
8902
8903 static bfd_boolean
8904 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8905 struct bfd_link_info *info)
8906 {
8907 struct elf_aarch64_link_hash_table *htab;
8908 bfd *dynobj;
8909 asection *s;
8910 bfd_boolean relocs;
8911 bfd *ibfd;
8912
8913 htab = elf_aarch64_hash_table ((info));
8914 dynobj = htab->root.dynobj;
8915
8916 BFD_ASSERT (dynobj != NULL);
8917
8918 if (htab->root.dynamic_sections_created)
8919 {
8920 if (bfd_link_executable (info) && !info->nointerp)
8921 {
8922 s = bfd_get_linker_section (dynobj, ".interp");
8923 if (s == NULL)
8924 abort ();
8925 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8926 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8927 }
8928 }
8929
8930 /* Set up .got offsets for local syms, and space for local dynamic
8931 relocs. */
8932 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8933 {
8934 struct elf_aarch64_local_symbol *locals = NULL;
8935 Elf_Internal_Shdr *symtab_hdr;
8936 asection *srel;
8937 unsigned int i;
8938
8939 if (!is_aarch64_elf (ibfd))
8940 continue;
8941
8942 for (s = ibfd->sections; s != NULL; s = s->next)
8943 {
8944 struct elf_dyn_relocs *p;
8945
8946 for (p = (struct elf_dyn_relocs *)
8947 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8948 {
8949 if (!bfd_is_abs_section (p->sec)
8950 && bfd_is_abs_section (p->sec->output_section))
8951 {
8952 /* Input section has been discarded, either because
8953 it is a copy of a linkonce section or due to
8954 linker script /DISCARD/, so we'll be discarding
8955 the relocs too. */
8956 }
8957 else if (p->count != 0)
8958 {
8959 srel = elf_section_data (p->sec)->sreloc;
8960 srel->size += p->count * RELOC_SIZE (htab);
8961 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8962 info->flags |= DF_TEXTREL;
8963 }
8964 }
8965 }
8966
8967 locals = elf_aarch64_locals (ibfd);
8968 if (!locals)
8969 continue;
8970
8971 symtab_hdr = &elf_symtab_hdr (ibfd);
8972 srel = htab->root.srelgot;
8973 for (i = 0; i < symtab_hdr->sh_info; i++)
8974 {
8975 locals[i].got_offset = (bfd_vma) - 1;
8976 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8977 if (locals[i].got_refcount > 0)
8978 {
8979 unsigned got_type = locals[i].got_type;
8980 if (got_type & GOT_TLSDESC_GD)
8981 {
8982 locals[i].tlsdesc_got_jump_table_offset =
8983 (htab->root.sgotplt->size
8984 - aarch64_compute_jump_table_size (htab));
8985 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8986 locals[i].got_offset = (bfd_vma) - 2;
8987 }
8988
8989 if (got_type & GOT_TLS_GD)
8990 {
8991 locals[i].got_offset = htab->root.sgot->size;
8992 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8993 }
8994
8995 if (got_type & GOT_TLS_IE
8996 || got_type & GOT_NORMAL)
8997 {
8998 locals[i].got_offset = htab->root.sgot->size;
8999 htab->root.sgot->size += GOT_ENTRY_SIZE;
9000 }
9001
9002 if (got_type == GOT_UNKNOWN)
9003 {
9004 }
9005
9006 if (bfd_link_pic (info))
9007 {
9008 if (got_type & GOT_TLSDESC_GD)
9009 {
9010 htab->root.srelplt->size += RELOC_SIZE (htab);
9011 /* Note RELOC_COUNT not incremented here! */
9012 htab->tlsdesc_plt = (bfd_vma) - 1;
9013 }
9014
9015 if (got_type & GOT_TLS_GD)
9016 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
9017
9018 if (got_type & GOT_TLS_IE
9019 || got_type & GOT_NORMAL)
9020 htab->root.srelgot->size += RELOC_SIZE (htab);
9021 }
9022 }
9023 else
9024 {
9025 locals[i].got_refcount = (bfd_vma) - 1;
9026 }
9027 }
9028 }
9029
9030
9031 /* Allocate global sym .plt and .got entries, and space for global
9032 sym dynamic relocs. */
9033 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
9034 info);
9035
9036 /* Allocate global ifunc sym .plt and .got entries, and space for global
9037 ifunc sym dynamic relocs. */
9038 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
9039 info);
9040
9041 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
9042 htab_traverse (htab->loc_hash_table,
9043 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
9044 info);
9045
9046 /* For every jump slot reserved in the sgotplt, reloc_count is
9047 incremented. However, when we reserve space for TLS descriptors,
9048 it's not incremented, so in order to compute the space reserved
9049 for them, it suffices to multiply the reloc count by the jump
9050 slot size. */
9051
9052 if (htab->root.srelplt)
9053 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
9054
9055 if (htab->tlsdesc_plt)
9056 {
9057 if (htab->root.splt->size == 0)
9058 htab->root.splt->size += htab->plt_header_size;
9059
9060 /* If we're not using lazy TLS relocations, don't generate the
9061 GOT and PLT entry required. */
9062 if (!(info->flags & DF_BIND_NOW))
9063 {
9064 htab->tlsdesc_plt = htab->root.splt->size;
9065 htab->root.splt->size += htab->tlsdesc_plt_entry_size;
9066
9067 htab->dt_tlsdesc_got = htab->root.sgot->size;
9068 htab->root.sgot->size += GOT_ENTRY_SIZE;
9069 }
9070 }
9071
9072 /* Init mapping symbols information to use later to distingush between
9073 code and data while scanning for errata. */
9074 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
9075 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9076 {
9077 if (!is_aarch64_elf (ibfd))
9078 continue;
9079 bfd_elfNN_aarch64_init_maps (ibfd);
9080 }
9081
9082 /* We now have determined the sizes of the various dynamic sections.
9083 Allocate memory for them. */
9084 relocs = FALSE;
9085 for (s = dynobj->sections; s != NULL; s = s->next)
9086 {
9087 if ((s->flags & SEC_LINKER_CREATED) == 0)
9088 continue;
9089
9090 if (s == htab->root.splt
9091 || s == htab->root.sgot
9092 || s == htab->root.sgotplt
9093 || s == htab->root.iplt
9094 || s == htab->root.igotplt
9095 || s == htab->root.sdynbss
9096 || s == htab->root.sdynrelro)
9097 {
9098 /* Strip this section if we don't need it; see the
9099 comment below. */
9100 }
9101 else if (CONST_STRNEQ (bfd_section_name (s), ".rela"))
9102 {
9103 if (s->size != 0 && s != htab->root.srelplt)
9104 relocs = TRUE;
9105
9106 /* We use the reloc_count field as a counter if we need
9107 to copy relocs into the output file. */
9108 if (s != htab->root.srelplt)
9109 s->reloc_count = 0;
9110 }
9111 else
9112 {
9113 /* It's not one of our sections, so don't allocate space. */
9114 continue;
9115 }
9116
9117 if (s->size == 0)
9118 {
9119 /* If we don't need this section, strip it from the
9120 output file. This is mostly to handle .rela.bss and
9121 .rela.plt. We must create both sections in
9122 create_dynamic_sections, because they must be created
9123 before the linker maps input sections to output
9124 sections. The linker does that before
9125 adjust_dynamic_symbol is called, and it is that
9126 function which decides whether anything needs to go
9127 into these sections. */
9128 s->flags |= SEC_EXCLUDE;
9129 continue;
9130 }
9131
9132 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9133 continue;
9134
9135 /* Allocate memory for the section contents. We use bfd_zalloc
9136 here in case unused entries are not reclaimed before the
9137 section's contents are written out. This should not happen,
9138 but this way if it does, we get a R_AARCH64_NONE reloc instead
9139 of garbage. */
9140 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9141 if (s->contents == NULL)
9142 return FALSE;
9143 }
9144
9145 if (htab->root.dynamic_sections_created)
9146 {
9147 /* Add some entries to the .dynamic section. We fill in the
9148 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9149 must add the entries now so that we get the correct size for
9150 the .dynamic section. The DT_DEBUG entry is filled in by the
9151 dynamic linker and used by the debugger. */
9152 #define add_dynamic_entry(TAG, VAL) \
9153 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9154
9155 if (bfd_link_executable (info))
9156 {
9157 if (!add_dynamic_entry (DT_DEBUG, 0))
9158 return FALSE;
9159 }
9160
9161 if (htab->root.splt->size != 0)
9162 {
9163 if (!add_dynamic_entry (DT_PLTGOT, 0)
9164 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9165 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9166 || !add_dynamic_entry (DT_JMPREL, 0))
9167 return FALSE;
9168
9169 if (htab->variant_pcs
9170 && !add_dynamic_entry (DT_AARCH64_VARIANT_PCS, 0))
9171 return FALSE;
9172
9173 if (htab->tlsdesc_plt
9174 && !(info->flags & DF_BIND_NOW)
9175 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
9176 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
9177 return FALSE;
9178
9179 if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI_PAC)
9180 && (!add_dynamic_entry (DT_AARCH64_BTI_PLT, 0)
9181 || !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0)))
9182 return FALSE;
9183
9184 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9185 && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9186 return FALSE;
9187
9188 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_PAC)
9189 && !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0))
9190 return FALSE;
9191 }
9192
9193 if (relocs)
9194 {
9195 if (!add_dynamic_entry (DT_RELA, 0)
9196 || !add_dynamic_entry (DT_RELASZ, 0)
9197 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9198 return FALSE;
9199
9200 /* If any dynamic relocs apply to a read-only section,
9201 then we need a DT_TEXTREL entry. */
9202 if ((info->flags & DF_TEXTREL) == 0)
9203 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
9204
9205 if ((info->flags & DF_TEXTREL) != 0)
9206 {
9207 if (!add_dynamic_entry (DT_TEXTREL, 0))
9208 return FALSE;
9209 }
9210 }
9211 }
9212 #undef add_dynamic_entry
9213
9214 return TRUE;
9215 }
9216
9217 static inline void
9218 elf_aarch64_update_plt_entry (bfd *output_bfd,
9219 bfd_reloc_code_real_type r_type,
9220 bfd_byte *plt_entry, bfd_vma value)
9221 {
9222 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9223
9224 /* FIXME: We should check the return value from this function call. */
9225 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9226 }
9227
9228 static void
9229 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9230 struct elf_aarch64_link_hash_table
9231 *htab, bfd *output_bfd,
9232 struct bfd_link_info *info)
9233 {
9234 bfd_byte *plt_entry;
9235 bfd_vma plt_index;
9236 bfd_vma got_offset;
9237 bfd_vma gotplt_entry_address;
9238 bfd_vma plt_entry_address;
9239 Elf_Internal_Rela rela;
9240 bfd_byte *loc;
9241 asection *plt, *gotplt, *relplt;
9242
9243 /* When building a static executable, use .iplt, .igot.plt and
9244 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9245 if (htab->root.splt != NULL)
9246 {
9247 plt = htab->root.splt;
9248 gotplt = htab->root.sgotplt;
9249 relplt = htab->root.srelplt;
9250 }
9251 else
9252 {
9253 plt = htab->root.iplt;
9254 gotplt = htab->root.igotplt;
9255 relplt = htab->root.irelplt;
9256 }
9257
9258 /* Get the index in the procedure linkage table which
9259 corresponds to this symbol. This is the index of this symbol
9260 in all the symbols for which we are making plt entries. The
9261 first entry in the procedure linkage table is reserved.
9262
9263 Get the offset into the .got table of the entry that
9264 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9265 bytes. The first three are reserved for the dynamic linker.
9266
9267 For static executables, we don't reserve anything. */
9268
9269 if (plt == htab->root.splt)
9270 {
9271 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9272 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9273 }
9274 else
9275 {
9276 plt_index = h->plt.offset / htab->plt_entry_size;
9277 got_offset = plt_index * GOT_ENTRY_SIZE;
9278 }
9279
9280 plt_entry = plt->contents + h->plt.offset;
9281 plt_entry_address = plt->output_section->vma
9282 + plt->output_offset + h->plt.offset;
9283 gotplt_entry_address = gotplt->output_section->vma +
9284 gotplt->output_offset + got_offset;
9285
9286 /* Copy in the boiler-plate for the PLTn entry. */
9287 memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9288
9289 /* First instruction in BTI enabled PLT stub is a BTI
9290 instruction so skip it. */
9291 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9292 && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9293 plt_entry = plt_entry + 4;
9294
9295 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9296 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9297 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9298 plt_entry,
9299 PG (gotplt_entry_address) -
9300 PG (plt_entry_address));
9301
9302 /* Fill in the lo12 bits for the load from the pltgot. */
9303 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9304 plt_entry + 4,
9305 PG_OFFSET (gotplt_entry_address));
9306
9307 /* Fill in the lo12 bits for the add from the pltgot entry. */
9308 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9309 plt_entry + 8,
9310 PG_OFFSET (gotplt_entry_address));
9311
9312 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9313 bfd_put_NN (output_bfd,
9314 plt->output_section->vma + plt->output_offset,
9315 gotplt->contents + got_offset);
9316
9317 rela.r_offset = gotplt_entry_address;
9318
9319 if (h->dynindx == -1
9320 || ((bfd_link_executable (info)
9321 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9322 && h->def_regular
9323 && h->type == STT_GNU_IFUNC))
9324 {
9325 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9326 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9327 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9328 rela.r_addend = (h->root.u.def.value
9329 + h->root.u.def.section->output_section->vma
9330 + h->root.u.def.section->output_offset);
9331 }
9332 else
9333 {
9334 /* Fill in the entry in the .rela.plt section. */
9335 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9336 rela.r_addend = 0;
9337 }
9338
9339 /* Compute the relocation entry to used based on PLT index and do
9340 not adjust reloc_count. The reloc_count has already been adjusted
9341 to account for this entry. */
9342 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9343 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9344 }
9345
9346 /* Size sections even though they're not dynamic. We use it to setup
9347 _TLS_MODULE_BASE_, if needed. */
9348
9349 static bfd_boolean
9350 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9351 struct bfd_link_info *info)
9352 {
9353 asection *tls_sec;
9354
9355 if (bfd_link_relocatable (info))
9356 return TRUE;
9357
9358 tls_sec = elf_hash_table (info)->tls_sec;
9359
9360 if (tls_sec)
9361 {
9362 struct elf_link_hash_entry *tlsbase;
9363
9364 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9365 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9366
9367 if (tlsbase)
9368 {
9369 struct bfd_link_hash_entry *h = NULL;
9370 const struct elf_backend_data *bed =
9371 get_elf_backend_data (output_bfd);
9372
9373 if (!(_bfd_generic_link_add_one_symbol
9374 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9375 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9376 return FALSE;
9377
9378 tlsbase->type = STT_TLS;
9379 tlsbase = (struct elf_link_hash_entry *) h;
9380 tlsbase->def_regular = 1;
9381 tlsbase->other = STV_HIDDEN;
9382 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9383 }
9384 }
9385
9386 return TRUE;
9387 }
9388
9389 /* Finish up dynamic symbol handling. We set the contents of various
9390 dynamic sections here. */
9391
9392 static bfd_boolean
9393 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9394 struct bfd_link_info *info,
9395 struct elf_link_hash_entry *h,
9396 Elf_Internal_Sym *sym)
9397 {
9398 struct elf_aarch64_link_hash_table *htab;
9399 htab = elf_aarch64_hash_table (info);
9400
9401 if (h->plt.offset != (bfd_vma) - 1)
9402 {
9403 asection *plt, *gotplt, *relplt;
9404
9405 /* This symbol has an entry in the procedure linkage table. Set
9406 it up. */
9407
9408 /* When building a static executable, use .iplt, .igot.plt and
9409 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9410 if (htab->root.splt != NULL)
9411 {
9412 plt = htab->root.splt;
9413 gotplt = htab->root.sgotplt;
9414 relplt = htab->root.srelplt;
9415 }
9416 else
9417 {
9418 plt = htab->root.iplt;
9419 gotplt = htab->root.igotplt;
9420 relplt = htab->root.irelplt;
9421 }
9422
9423 /* This symbol has an entry in the procedure linkage table. Set
9424 it up. */
9425 if ((h->dynindx == -1
9426 && !((h->forced_local || bfd_link_executable (info))
9427 && h->def_regular
9428 && h->type == STT_GNU_IFUNC))
9429 || plt == NULL
9430 || gotplt == NULL
9431 || relplt == NULL)
9432 return FALSE;
9433
9434 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9435 if (!h->def_regular)
9436 {
9437 /* Mark the symbol as undefined, rather than as defined in
9438 the .plt section. */
9439 sym->st_shndx = SHN_UNDEF;
9440 /* If the symbol is weak we need to clear the value.
9441 Otherwise, the PLT entry would provide a definition for
9442 the symbol even if the symbol wasn't defined anywhere,
9443 and so the symbol would never be NULL. Leave the value if
9444 there were any relocations where pointer equality matters
9445 (this is a clue for the dynamic linker, to make function
9446 pointer comparisons work between an application and shared
9447 library). */
9448 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9449 sym->st_value = 0;
9450 }
9451 }
9452
9453 if (h->got.offset != (bfd_vma) - 1
9454 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9455 /* Undefined weak symbol in static PIE resolves to 0 without
9456 any dynamic relocations. */
9457 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9458 {
9459 Elf_Internal_Rela rela;
9460 bfd_byte *loc;
9461
9462 /* This symbol has an entry in the global offset table. Set it
9463 up. */
9464 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9465 abort ();
9466
9467 rela.r_offset = (htab->root.sgot->output_section->vma
9468 + htab->root.sgot->output_offset
9469 + (h->got.offset & ~(bfd_vma) 1));
9470
9471 if (h->def_regular
9472 && h->type == STT_GNU_IFUNC)
9473 {
9474 if (bfd_link_pic (info))
9475 {
9476 /* Generate R_AARCH64_GLOB_DAT. */
9477 goto do_glob_dat;
9478 }
9479 else
9480 {
9481 asection *plt;
9482
9483 if (!h->pointer_equality_needed)
9484 abort ();
9485
9486 /* For non-shared object, we can't use .got.plt, which
9487 contains the real function address if we need pointer
9488 equality. We load the GOT entry with the PLT entry. */
9489 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9490 bfd_put_NN (output_bfd, (plt->output_section->vma
9491 + plt->output_offset
9492 + h->plt.offset),
9493 htab->root.sgot->contents
9494 + (h->got.offset & ~(bfd_vma) 1));
9495 return TRUE;
9496 }
9497 }
9498 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9499 {
9500 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9501 return FALSE;
9502
9503 BFD_ASSERT ((h->got.offset & 1) != 0);
9504 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9505 rela.r_addend = (h->root.u.def.value
9506 + h->root.u.def.section->output_section->vma
9507 + h->root.u.def.section->output_offset);
9508 }
9509 else
9510 {
9511 do_glob_dat:
9512 BFD_ASSERT ((h->got.offset & 1) == 0);
9513 bfd_put_NN (output_bfd, (bfd_vma) 0,
9514 htab->root.sgot->contents + h->got.offset);
9515 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9516 rela.r_addend = 0;
9517 }
9518
9519 loc = htab->root.srelgot->contents;
9520 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9521 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9522 }
9523
9524 if (h->needs_copy)
9525 {
9526 Elf_Internal_Rela rela;
9527 asection *s;
9528 bfd_byte *loc;
9529
9530 /* This symbol needs a copy reloc. Set it up. */
9531 if (h->dynindx == -1
9532 || (h->root.type != bfd_link_hash_defined
9533 && h->root.type != bfd_link_hash_defweak)
9534 || htab->root.srelbss == NULL)
9535 abort ();
9536
9537 rela.r_offset = (h->root.u.def.value
9538 + h->root.u.def.section->output_section->vma
9539 + h->root.u.def.section->output_offset);
9540 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9541 rela.r_addend = 0;
9542 if (h->root.u.def.section == htab->root.sdynrelro)
9543 s = htab->root.sreldynrelro;
9544 else
9545 s = htab->root.srelbss;
9546 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9547 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9548 }
9549
9550 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9551 be NULL for local symbols. */
9552 if (sym != NULL
9553 && (h == elf_hash_table (info)->hdynamic
9554 || h == elf_hash_table (info)->hgot))
9555 sym->st_shndx = SHN_ABS;
9556
9557 return TRUE;
9558 }
9559
9560 /* Finish up local dynamic symbol handling. We set the contents of
9561 various dynamic sections here. */
9562
9563 static bfd_boolean
9564 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9565 {
9566 struct elf_link_hash_entry *h
9567 = (struct elf_link_hash_entry *) *slot;
9568 struct bfd_link_info *info
9569 = (struct bfd_link_info *) inf;
9570
9571 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9572 info, h, NULL);
9573 }
9574
9575 static void
9576 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9577 struct elf_aarch64_link_hash_table
9578 *htab)
9579 {
9580 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9581 small and large plts and at the minute just generates
9582 the small PLT. */
9583
9584 /* PLT0 of the small PLT looks like this in ELF64 -
9585 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9586 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9587 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9588 // symbol resolver
9589 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9590 // GOTPLT entry for this.
9591 br x17
9592 PLT0 will be slightly different in ELF32 due to different got entry
9593 size. */
9594 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9595 bfd_vma plt_base;
9596
9597
9598 memcpy (htab->root.splt->contents, htab->plt0_entry,
9599 htab->plt_header_size);
9600 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9601 htab->plt_header_size;
9602
9603 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9604 + htab->root.sgotplt->output_offset
9605 + GOT_ENTRY_SIZE * 2);
9606
9607 plt_base = htab->root.splt->output_section->vma +
9608 htab->root.splt->output_offset;
9609
9610 /* First instruction in BTI enabled PLT stub is a BTI
9611 instruction so skip it. */
9612 bfd_byte *plt0_entry = htab->root.splt->contents;
9613 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9614 plt0_entry = plt0_entry + 4;
9615
9616 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9617 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9618 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9619 plt0_entry + 4,
9620 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9621
9622 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9623 plt0_entry + 8,
9624 PG_OFFSET (plt_got_2nd_ent));
9625
9626 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9627 plt0_entry + 12,
9628 PG_OFFSET (plt_got_2nd_ent));
9629 }
9630
9631 static bfd_boolean
9632 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9633 struct bfd_link_info *info)
9634 {
9635 struct elf_aarch64_link_hash_table *htab;
9636 bfd *dynobj;
9637 asection *sdyn;
9638
9639 htab = elf_aarch64_hash_table (info);
9640 dynobj = htab->root.dynobj;
9641 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9642
9643 if (htab->root.dynamic_sections_created)
9644 {
9645 ElfNN_External_Dyn *dyncon, *dynconend;
9646
9647 if (sdyn == NULL || htab->root.sgot == NULL)
9648 abort ();
9649
9650 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9651 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9652 for (; dyncon < dynconend; dyncon++)
9653 {
9654 Elf_Internal_Dyn dyn;
9655 asection *s;
9656
9657 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9658
9659 switch (dyn.d_tag)
9660 {
9661 default:
9662 continue;
9663
9664 case DT_PLTGOT:
9665 s = htab->root.sgotplt;
9666 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9667 break;
9668
9669 case DT_JMPREL:
9670 s = htab->root.srelplt;
9671 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9672 break;
9673
9674 case DT_PLTRELSZ:
9675 s = htab->root.srelplt;
9676 dyn.d_un.d_val = s->size;
9677 break;
9678
9679 case DT_TLSDESC_PLT:
9680 s = htab->root.splt;
9681 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9682 + htab->tlsdesc_plt;
9683 break;
9684
9685 case DT_TLSDESC_GOT:
9686 s = htab->root.sgot;
9687 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9688 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9689 + htab->dt_tlsdesc_got;
9690 break;
9691 }
9692
9693 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9694 }
9695
9696 }
9697
9698 /* Fill in the special first entry in the procedure linkage table. */
9699 if (htab->root.splt && htab->root.splt->size > 0)
9700 {
9701 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9702
9703 elf_section_data (htab->root.splt->output_section)->
9704 this_hdr.sh_entsize = htab->plt_entry_size;
9705
9706
9707 if (htab->tlsdesc_plt && !(info->flags & DF_BIND_NOW))
9708 {
9709 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9710 bfd_put_NN (output_bfd, (bfd_vma) 0,
9711 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9712
9713 const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9714 htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9715
9716 aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9717 if (type == PLT_BTI || type == PLT_BTI_PAC)
9718 {
9719 entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9720 }
9721
9722 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9723 entry, htab->tlsdesc_plt_entry_size);
9724
9725 {
9726 bfd_vma adrp1_addr =
9727 htab->root.splt->output_section->vma
9728 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9729
9730 bfd_vma adrp2_addr = adrp1_addr + 4;
9731
9732 bfd_vma got_addr =
9733 htab->root.sgot->output_section->vma
9734 + htab->root.sgot->output_offset;
9735
9736 bfd_vma pltgot_addr =
9737 htab->root.sgotplt->output_section->vma
9738 + htab->root.sgotplt->output_offset;
9739
9740 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9741
9742 bfd_byte *plt_entry =
9743 htab->root.splt->contents + htab->tlsdesc_plt;
9744
9745 /* First instruction in BTI enabled PLT stub is a BTI
9746 instruction so skip it. */
9747 if (type & PLT_BTI)
9748 {
9749 plt_entry = plt_entry + 4;
9750 adrp1_addr = adrp1_addr + 4;
9751 adrp2_addr = adrp2_addr + 4;
9752 }
9753
9754 /* adrp x2, DT_TLSDESC_GOT */
9755 elf_aarch64_update_plt_entry (output_bfd,
9756 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9757 plt_entry + 4,
9758 (PG (dt_tlsdesc_got)
9759 - PG (adrp1_addr)));
9760
9761 /* adrp x3, 0 */
9762 elf_aarch64_update_plt_entry (output_bfd,
9763 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9764 plt_entry + 8,
9765 (PG (pltgot_addr)
9766 - PG (adrp2_addr)));
9767
9768 /* ldr x2, [x2, #0] */
9769 elf_aarch64_update_plt_entry (output_bfd,
9770 BFD_RELOC_AARCH64_LDSTNN_LO12,
9771 plt_entry + 12,
9772 PG_OFFSET (dt_tlsdesc_got));
9773
9774 /* add x3, x3, 0 */
9775 elf_aarch64_update_plt_entry (output_bfd,
9776 BFD_RELOC_AARCH64_ADD_LO12,
9777 plt_entry + 16,
9778 PG_OFFSET (pltgot_addr));
9779 }
9780 }
9781 }
9782
9783 if (htab->root.sgotplt)
9784 {
9785 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9786 {
9787 _bfd_error_handler
9788 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9789 return FALSE;
9790 }
9791
9792 /* Fill in the first three entries in the global offset table. */
9793 if (htab->root.sgotplt->size > 0)
9794 {
9795 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9796
9797 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9798 bfd_put_NN (output_bfd,
9799 (bfd_vma) 0,
9800 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9801 bfd_put_NN (output_bfd,
9802 (bfd_vma) 0,
9803 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9804 }
9805
9806 if (htab->root.sgot)
9807 {
9808 if (htab->root.sgot->size > 0)
9809 {
9810 bfd_vma addr =
9811 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9812 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9813 }
9814 }
9815
9816 elf_section_data (htab->root.sgotplt->output_section)->
9817 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9818 }
9819
9820 if (htab->root.sgot && htab->root.sgot->size > 0)
9821 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9822 = GOT_ENTRY_SIZE;
9823
9824 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9825 htab_traverse (htab->loc_hash_table,
9826 elfNN_aarch64_finish_local_dynamic_symbol,
9827 info);
9828
9829 return TRUE;
9830 }
9831
9832 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
9833 static aarch64_plt_type
9834 get_plt_type (bfd *abfd)
9835 {
9836 aarch64_plt_type ret = PLT_NORMAL;
9837 bfd_byte *contents, *extdyn, *extdynend;
9838 asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9839 if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9840 return ret;
9841 extdyn = contents;
9842 extdynend = contents + sec->size;
9843 for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9844 {
9845 Elf_Internal_Dyn dyn;
9846 bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9847
9848 /* Let's check the processor specific dynamic array tags. */
9849 bfd_vma tag = dyn.d_tag;
9850 if (tag < DT_LOPROC || tag > DT_HIPROC)
9851 continue;
9852
9853 switch (tag)
9854 {
9855 case DT_AARCH64_BTI_PLT:
9856 ret |= PLT_BTI;
9857 break;
9858
9859 case DT_AARCH64_PAC_PLT:
9860 ret |= PLT_PAC;
9861 break;
9862
9863 default: break;
9864 }
9865 }
9866 free (contents);
9867 return ret;
9868 }
9869
9870 static long
9871 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9872 long symcount,
9873 asymbol **syms,
9874 long dynsymcount,
9875 asymbol **dynsyms,
9876 asymbol **ret)
9877 {
9878 elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9879 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9880 dynsymcount, dynsyms, ret);
9881 }
9882
9883 /* Return address for Ith PLT stub in section PLT, for relocation REL
9884 or (bfd_vma) -1 if it should not be included. */
9885
9886 static bfd_vma
9887 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9888 const arelent *rel ATTRIBUTE_UNUSED)
9889 {
9890 size_t plt0_size = PLT_ENTRY_SIZE;
9891 size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9892
9893 if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI_PAC)
9894 {
9895 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9896 pltn_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
9897 else
9898 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9899 }
9900 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9901 {
9902 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9903 pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9904 }
9905 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_PAC)
9906 {
9907 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9908 }
9909
9910 return plt->vma + plt0_size + i * pltn_size;
9911 }
9912
9913 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9914 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9915 It also allows a period initiated suffix to be added to the symbol, ie:
9916 "$[adtx]\.[:sym_char]+". */
9917
9918 static bfd_boolean
9919 is_aarch64_mapping_symbol (const char * name)
9920 {
9921 return name != NULL /* Paranoia. */
9922 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9923 the mapping symbols could have acquired a prefix.
9924 We do not support this here, since such symbols no
9925 longer conform to the ARM ELF ABI. */
9926 && (name[1] == 'd' || name[1] == 'x')
9927 && (name[2] == 0 || name[2] == '.');
9928 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9929 any characters that follow the period are legal characters for the body
9930 of a symbol's name. For now we just assume that this is the case. */
9931 }
9932
9933 /* Make sure that mapping symbols in object files are not removed via the
9934 "strip --strip-unneeded" tool. These symbols might needed in order to
9935 correctly generate linked files. Once an object file has been linked,
9936 it should be safe to remove them. */
9937
9938 static void
9939 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9940 {
9941 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9942 && sym->section != bfd_abs_section_ptr
9943 && is_aarch64_mapping_symbol (sym->name))
9944 sym->flags |= BSF_KEEP;
9945 }
9946
9947 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
9948 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
9949 for the effect of GNU properties of the output_bfd. */
9950 static bfd *
9951 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
9952 {
9953 uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9954 bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
9955 elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
9956 elf_aarch64_tdata (info->output_bfd)->plt_type
9957 |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
9958 setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
9959 return pbfd;
9960 }
9961
9962 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
9963 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
9964 for the effect of GNU properties of the output_bfd. */
9965 static bfd_boolean
9966 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
9967 bfd *abfd, bfd *bbfd,
9968 elf_property *aprop,
9969 elf_property *bprop)
9970 {
9971 uint32_t prop
9972 = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9973
9974 /* If output has been marked with BTI using command line argument, give out
9975 warning if necessary. */
9976 /* Properties are merged per type, hence only check for warnings when merging
9977 GNU_PROPERTY_AARCH64_FEATURE_1_AND. */
9978 if (((aprop && aprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
9979 || (bprop && bprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND))
9980 && (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
9981 && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
9982 {
9983 if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9984 || !aprop)
9985 {
9986 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9987 "all inputs do not have BTI in NOTE section."),
9988 abfd);
9989 }
9990 if ((bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9991 || !bprop)
9992 {
9993 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9994 "all inputs do not have BTI in NOTE section."),
9995 bbfd);
9996 }
9997 }
9998
9999 return _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
10000 bprop, prop);
10001 }
10002
10003 /* We use this so we can override certain functions
10004 (though currently we don't). */
10005
10006 const struct elf_size_info elfNN_aarch64_size_info =
10007 {
10008 sizeof (ElfNN_External_Ehdr),
10009 sizeof (ElfNN_External_Phdr),
10010 sizeof (ElfNN_External_Shdr),
10011 sizeof (ElfNN_External_Rel),
10012 sizeof (ElfNN_External_Rela),
10013 sizeof (ElfNN_External_Sym),
10014 sizeof (ElfNN_External_Dyn),
10015 sizeof (Elf_External_Note),
10016 4, /* Hash table entry size. */
10017 1, /* Internal relocs per external relocs. */
10018 ARCH_SIZE, /* Arch size. */
10019 LOG_FILE_ALIGN, /* Log_file_align. */
10020 ELFCLASSNN, EV_CURRENT,
10021 bfd_elfNN_write_out_phdrs,
10022 bfd_elfNN_write_shdrs_and_ehdr,
10023 bfd_elfNN_checksum_contents,
10024 bfd_elfNN_write_relocs,
10025 bfd_elfNN_swap_symbol_in,
10026 bfd_elfNN_swap_symbol_out,
10027 bfd_elfNN_slurp_reloc_table,
10028 bfd_elfNN_slurp_symbol_table,
10029 bfd_elfNN_swap_dyn_in,
10030 bfd_elfNN_swap_dyn_out,
10031 bfd_elfNN_swap_reloc_in,
10032 bfd_elfNN_swap_reloc_out,
10033 bfd_elfNN_swap_reloca_in,
10034 bfd_elfNN_swap_reloca_out
10035 };
10036
10037 #define ELF_ARCH bfd_arch_aarch64
10038 #define ELF_MACHINE_CODE EM_AARCH64
10039 #define ELF_MAXPAGESIZE 0x10000
10040 #define ELF_MINPAGESIZE 0x1000
10041 #define ELF_COMMONPAGESIZE 0x1000
10042
10043 #define bfd_elfNN_close_and_cleanup \
10044 elfNN_aarch64_close_and_cleanup
10045
10046 #define bfd_elfNN_bfd_free_cached_info \
10047 elfNN_aarch64_bfd_free_cached_info
10048
10049 #define bfd_elfNN_bfd_is_target_special_symbol \
10050 elfNN_aarch64_is_target_special_symbol
10051
10052 #define bfd_elfNN_bfd_link_hash_table_create \
10053 elfNN_aarch64_link_hash_table_create
10054
10055 #define bfd_elfNN_bfd_merge_private_bfd_data \
10056 elfNN_aarch64_merge_private_bfd_data
10057
10058 #define bfd_elfNN_bfd_print_private_bfd_data \
10059 elfNN_aarch64_print_private_bfd_data
10060
10061 #define bfd_elfNN_bfd_reloc_type_lookup \
10062 elfNN_aarch64_reloc_type_lookup
10063
10064 #define bfd_elfNN_bfd_reloc_name_lookup \
10065 elfNN_aarch64_reloc_name_lookup
10066
10067 #define bfd_elfNN_bfd_set_private_flags \
10068 elfNN_aarch64_set_private_flags
10069
10070 #define bfd_elfNN_find_inliner_info \
10071 elfNN_aarch64_find_inliner_info
10072
10073 #define bfd_elfNN_get_synthetic_symtab \
10074 elfNN_aarch64_get_synthetic_symtab
10075
10076 #define bfd_elfNN_mkobject \
10077 elfNN_aarch64_mkobject
10078
10079 #define bfd_elfNN_new_section_hook \
10080 elfNN_aarch64_new_section_hook
10081
10082 #define elf_backend_adjust_dynamic_symbol \
10083 elfNN_aarch64_adjust_dynamic_symbol
10084
10085 #define elf_backend_always_size_sections \
10086 elfNN_aarch64_always_size_sections
10087
10088 #define elf_backend_check_relocs \
10089 elfNN_aarch64_check_relocs
10090
10091 #define elf_backend_copy_indirect_symbol \
10092 elfNN_aarch64_copy_indirect_symbol
10093
10094 #define elf_backend_merge_symbol_attribute \
10095 elfNN_aarch64_merge_symbol_attribute
10096
10097 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10098 to them in our hash. */
10099 #define elf_backend_create_dynamic_sections \
10100 elfNN_aarch64_create_dynamic_sections
10101
10102 #define elf_backend_init_index_section \
10103 _bfd_elf_init_2_index_sections
10104
10105 #define elf_backend_finish_dynamic_sections \
10106 elfNN_aarch64_finish_dynamic_sections
10107
10108 #define elf_backend_finish_dynamic_symbol \
10109 elfNN_aarch64_finish_dynamic_symbol
10110
10111 #define elf_backend_object_p \
10112 elfNN_aarch64_object_p
10113
10114 #define elf_backend_output_arch_local_syms \
10115 elfNN_aarch64_output_arch_local_syms
10116
10117 #define elf_backend_maybe_function_sym \
10118 elfNN_aarch64_maybe_function_sym
10119
10120 #define elf_backend_plt_sym_val \
10121 elfNN_aarch64_plt_sym_val
10122
10123 #define elf_backend_init_file_header \
10124 elfNN_aarch64_init_file_header
10125
10126 #define elf_backend_relocate_section \
10127 elfNN_aarch64_relocate_section
10128
10129 #define elf_backend_reloc_type_class \
10130 elfNN_aarch64_reloc_type_class
10131
10132 #define elf_backend_section_from_shdr \
10133 elfNN_aarch64_section_from_shdr
10134
10135 #define elf_backend_size_dynamic_sections \
10136 elfNN_aarch64_size_dynamic_sections
10137
10138 #define elf_backend_size_info \
10139 elfNN_aarch64_size_info
10140
10141 #define elf_backend_write_section \
10142 elfNN_aarch64_write_section
10143
10144 #define elf_backend_symbol_processing \
10145 elfNN_aarch64_backend_symbol_processing
10146
10147 #define elf_backend_setup_gnu_properties \
10148 elfNN_aarch64_link_setup_gnu_properties
10149
10150 #define elf_backend_merge_gnu_properties \
10151 elfNN_aarch64_merge_gnu_properties
10152
10153 #define elf_backend_can_refcount 1
10154 #define elf_backend_can_gc_sections 1
10155 #define elf_backend_plt_readonly 1
10156 #define elf_backend_want_got_plt 1
10157 #define elf_backend_want_plt_sym 0
10158 #define elf_backend_want_dynrelro 1
10159 #define elf_backend_may_use_rel_p 0
10160 #define elf_backend_may_use_rela_p 1
10161 #define elf_backend_default_use_rela_p 1
10162 #define elf_backend_rela_normal 1
10163 #define elf_backend_dtrel_excludes_plt 1
10164 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10165 #define elf_backend_default_execstack 0
10166 #define elf_backend_extern_protected_data 1
10167 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10168
10169 #undef elf_backend_obj_attrs_section
10170 #define elf_backend_obj_attrs_section ".ARM.attributes"
10171
10172 #include "elfNN-target.h"
10173
10174 /* CloudABI support. */
10175
10176 #undef TARGET_LITTLE_SYM
10177 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10178 #undef TARGET_LITTLE_NAME
10179 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10180 #undef TARGET_BIG_SYM
10181 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10182 #undef TARGET_BIG_NAME
10183 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10184
10185 #undef ELF_OSABI
10186 #define ELF_OSABI ELFOSABI_CLOUDABI
10187
10188 #undef elfNN_bed
10189 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10190
10191 #include "elfNN-target.h"
This page took 0.258639 seconds and 4 git commands to generate.