Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2020 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147 #include "cpu-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
221
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
245
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
259
260 #define ELIMINATE_COPY_RELOCS 1
261
262 /* Return size of a relocation entry. HTAB is the bfd's
263 elf_aarch64_link_hash_entry. */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
265
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE (32)
269 #define PLT_SMALL_ENTRY_SIZE (16)
270 #define PLT_TLSDESC_ENTRY_SIZE (32)
271 /* PLT sizes with BTI insn. */
272 #define PLT_BTI_SMALL_ENTRY_SIZE (24)
273 /* PLT sizes with PAC insn. */
274 #define PLT_PAC_SMALL_ENTRY_SIZE (24)
275 /* PLT sizes with BTI and PAC insn. */
276 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE (24)
277
278 /* Encoding of the nop instruction. */
279 #define INSN_NOP 0xd503201f
280
281 #define aarch64_compute_jump_table_size(htab) \
282 (((htab)->root.srelplt == NULL) ? 0 \
283 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
284
285 /* The first entry in a procedure linkage table looks like this
286 if the distance between the PLTGOT and the PLT is < 4GB use
287 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
288 in x16 and needs to work out PLTGOT[1] by using an address of
289 [x16,#-GOT_ENTRY_SIZE]. */
290 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
291 {
292 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
293 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
294 #if ARCH_SIZE == 64
295 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
296 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
297 #else
298 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
299 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
300 #endif
301 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
302 0x1f, 0x20, 0x03, 0xd5, /* nop */
303 0x1f, 0x20, 0x03, 0xd5, /* nop */
304 0x1f, 0x20, 0x03, 0xd5, /* nop */
305 };
306
307 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_ENTRY_SIZE] =
308 {
309 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
310 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
311 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
312 #if ARCH_SIZE == 64
313 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
314 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
315 #else
316 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
317 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
318 #endif
319 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
322 };
323
324 /* Per function entry in a procedure linkage table looks like this
325 if the distance between the PLTGOT and the PLT is < 4GB use
326 these PLT entries. Use BTI versions of the PLTs when enabled. */
327 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
328 {
329 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
330 #if ARCH_SIZE == 64
331 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
332 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
333 #else
334 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
335 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
336 #endif
337 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
338 };
339
340 static const bfd_byte
341 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
342 {
343 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
344 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
345 #if ARCH_SIZE == 64
346 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
347 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
348 #else
349 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
350 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
351 #endif
352 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
353 0x1f, 0x20, 0x03, 0xd5, /* nop */
354 };
355
356 static const bfd_byte
357 elfNN_aarch64_small_plt_pac_entry[PLT_PAC_SMALL_ENTRY_SIZE] =
358 {
359 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
360 #if ARCH_SIZE == 64
361 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
362 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
363 #else
364 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
365 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
366 #endif
367 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
368 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
369 0x1f, 0x20, 0x03, 0xd5, /* nop */
370 };
371
372 static const bfd_byte
373 elfNN_aarch64_small_plt_bti_pac_entry[PLT_BTI_PAC_SMALL_ENTRY_SIZE] =
374 {
375 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
376 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
377 #if ARCH_SIZE == 64
378 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
379 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
380 #else
381 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
382 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
383 #endif
384 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
385 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
386 };
387
388 static const bfd_byte
389 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
390 {
391 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
392 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
393 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
394 #if ARCH_SIZE == 64
395 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
396 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
397 #else
398 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
399 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
400 #endif
401 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
402 0x1f, 0x20, 0x03, 0xd5, /* nop */
403 0x1f, 0x20, 0x03, 0xd5, /* nop */
404 };
405
406 static const bfd_byte
407 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_TLSDESC_ENTRY_SIZE] =
408 {
409 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
410 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
411 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
412 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
413 #if ARCH_SIZE == 64
414 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
415 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
416 #else
417 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
418 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
419 #endif
420 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
421 0x1f, 0x20, 0x03, 0xd5, /* nop */
422 };
423
424 #define elf_info_to_howto elfNN_aarch64_info_to_howto
425 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
426
427 #define AARCH64_ELF_ABI_VERSION 0
428
429 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
430 #define ALL_ONES (~ (bfd_vma) 0)
431
432 /* Indexed by the bfd interal reloc enumerators.
433 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
434 in reloc.c. */
435
436 static reloc_howto_type elfNN_aarch64_howto_table[] =
437 {
438 EMPTY_HOWTO (0),
439
440 /* Basic data relocations. */
441
442 /* Deprecated, but retained for backwards compatibility. */
443 HOWTO64 (R_AARCH64_NULL, /* type */
444 0, /* rightshift */
445 3, /* size (0 = byte, 1 = short, 2 = long) */
446 0, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_AARCH64_NULL", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0, /* dst_mask */
455 FALSE), /* pcrel_offset */
456 HOWTO (R_AARCH64_NONE, /* type */
457 0, /* rightshift */
458 3, /* size (0 = byte, 1 = short, 2 = long) */
459 0, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_dont, /* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_AARCH64_NONE", /* name */
465 FALSE, /* partial_inplace */
466 0, /* src_mask */
467 0, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 /* .xword: (S+A) */
471 HOWTO64 (AARCH64_R (ABS64), /* type */
472 0, /* rightshift */
473 4, /* size (4 = long long) */
474 64, /* bitsize */
475 FALSE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_unsigned, /* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 AARCH64_R_STR (ABS64), /* name */
480 FALSE, /* partial_inplace */
481 ALL_ONES, /* src_mask */
482 ALL_ONES, /* dst_mask */
483 FALSE), /* pcrel_offset */
484
485 /* .word: (S+A) */
486 HOWTO (AARCH64_R (ABS32), /* type */
487 0, /* rightshift */
488 2, /* size (0 = byte, 1 = short, 2 = long) */
489 32, /* bitsize */
490 FALSE, /* pc_relative */
491 0, /* bitpos */
492 complain_overflow_unsigned, /* complain_on_overflow */
493 bfd_elf_generic_reloc, /* special_function */
494 AARCH64_R_STR (ABS32), /* name */
495 FALSE, /* partial_inplace */
496 0xffffffff, /* src_mask */
497 0xffffffff, /* dst_mask */
498 FALSE), /* pcrel_offset */
499
500 /* .half: (S+A) */
501 HOWTO (AARCH64_R (ABS16), /* type */
502 0, /* rightshift */
503 1, /* size (0 = byte, 1 = short, 2 = long) */
504 16, /* bitsize */
505 FALSE, /* pc_relative */
506 0, /* bitpos */
507 complain_overflow_unsigned, /* complain_on_overflow */
508 bfd_elf_generic_reloc, /* special_function */
509 AARCH64_R_STR (ABS16), /* name */
510 FALSE, /* partial_inplace */
511 0xffff, /* src_mask */
512 0xffff, /* dst_mask */
513 FALSE), /* pcrel_offset */
514
515 /* .xword: (S+A-P) */
516 HOWTO64 (AARCH64_R (PREL64), /* type */
517 0, /* rightshift */
518 4, /* size (4 = long long) */
519 64, /* bitsize */
520 TRUE, /* pc_relative */
521 0, /* bitpos */
522 complain_overflow_signed, /* complain_on_overflow */
523 bfd_elf_generic_reloc, /* special_function */
524 AARCH64_R_STR (PREL64), /* name */
525 FALSE, /* partial_inplace */
526 ALL_ONES, /* src_mask */
527 ALL_ONES, /* dst_mask */
528 TRUE), /* pcrel_offset */
529
530 /* .word: (S+A-P) */
531 HOWTO (AARCH64_R (PREL32), /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 32, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_signed, /* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 AARCH64_R_STR (PREL32), /* name */
540 FALSE, /* partial_inplace */
541 0xffffffff, /* src_mask */
542 0xffffffff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 /* .half: (S+A-P) */
546 HOWTO (AARCH64_R (PREL16), /* type */
547 0, /* rightshift */
548 1, /* size (0 = byte, 1 = short, 2 = long) */
549 16, /* bitsize */
550 TRUE, /* pc_relative */
551 0, /* bitpos */
552 complain_overflow_signed, /* complain_on_overflow */
553 bfd_elf_generic_reloc, /* special_function */
554 AARCH64_R_STR (PREL16), /* name */
555 FALSE, /* partial_inplace */
556 0xffff, /* src_mask */
557 0xffff, /* dst_mask */
558 TRUE), /* pcrel_offset */
559
560 /* Group relocations to create a 16, 32, 48 or 64 bit
561 unsigned data or abs address inline. */
562
563 /* MOVZ: ((S+A) >> 0) & 0xffff */
564 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 16, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_unsigned, /* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 AARCH64_R_STR (MOVW_UABS_G0), /* name */
573 FALSE, /* partial_inplace */
574 0xffff, /* src_mask */
575 0xffff, /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
579 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
580 0, /* rightshift */
581 2, /* size (0 = byte, 1 = short, 2 = long) */
582 16, /* bitsize */
583 FALSE, /* pc_relative */
584 0, /* bitpos */
585 complain_overflow_dont, /* complain_on_overflow */
586 bfd_elf_generic_reloc, /* special_function */
587 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
588 FALSE, /* partial_inplace */
589 0xffff, /* src_mask */
590 0xffff, /* dst_mask */
591 FALSE), /* pcrel_offset */
592
593 /* MOVZ: ((S+A) >> 16) & 0xffff */
594 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
595 16, /* rightshift */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
597 16, /* bitsize */
598 FALSE, /* pc_relative */
599 0, /* bitpos */
600 complain_overflow_unsigned, /* complain_on_overflow */
601 bfd_elf_generic_reloc, /* special_function */
602 AARCH64_R_STR (MOVW_UABS_G1), /* name */
603 FALSE, /* partial_inplace */
604 0xffff, /* src_mask */
605 0xffff, /* dst_mask */
606 FALSE), /* pcrel_offset */
607
608 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
609 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
610 16, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 16, /* bitsize */
613 FALSE, /* pc_relative */
614 0, /* bitpos */
615 complain_overflow_dont, /* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
618 FALSE, /* partial_inplace */
619 0xffff, /* src_mask */
620 0xffff, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 /* MOVZ: ((S+A) >> 32) & 0xffff */
624 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
625 32, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 16, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_unsigned, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 AARCH64_R_STR (MOVW_UABS_G2), /* name */
633 FALSE, /* partial_inplace */
634 0xffff, /* src_mask */
635 0xffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
639 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
640 32, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 16, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
648 FALSE, /* partial_inplace */
649 0xffff, /* src_mask */
650 0xffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 /* MOVZ: ((S+A) >> 48) & 0xffff */
654 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
655 48, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 16, /* bitsize */
658 FALSE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_unsigned, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (MOVW_UABS_G3), /* name */
663 FALSE, /* partial_inplace */
664 0xffff, /* src_mask */
665 0xffff, /* dst_mask */
666 FALSE), /* pcrel_offset */
667
668 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
669 signed data or abs address inline. Will change instruction
670 to MOVN or MOVZ depending on sign of calculated value. */
671
672 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
673 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 17, /* bitsize */
677 FALSE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 AARCH64_R_STR (MOVW_SABS_G0), /* name */
682 FALSE, /* partial_inplace */
683 0xffff, /* src_mask */
684 0xffff, /* dst_mask */
685 FALSE), /* pcrel_offset */
686
687 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
688 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
689 16, /* rightshift */
690 2, /* size (0 = byte, 1 = short, 2 = long) */
691 17, /* bitsize */
692 FALSE, /* pc_relative */
693 0, /* bitpos */
694 complain_overflow_signed, /* complain_on_overflow */
695 bfd_elf_generic_reloc, /* special_function */
696 AARCH64_R_STR (MOVW_SABS_G1), /* name */
697 FALSE, /* partial_inplace */
698 0xffff, /* src_mask */
699 0xffff, /* dst_mask */
700 FALSE), /* pcrel_offset */
701
702 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
703 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
704 32, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 17, /* bitsize */
707 FALSE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_signed, /* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 AARCH64_R_STR (MOVW_SABS_G2), /* name */
712 FALSE, /* partial_inplace */
713 0xffff, /* src_mask */
714 0xffff, /* dst_mask */
715 FALSE), /* pcrel_offset */
716
717 /* Group relocations to create a 16, 32, 48 or 64 bit
718 PC relative address inline. */
719
720 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
721 HOWTO (AARCH64_R (MOVW_PREL_G0), /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 17, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 AARCH64_R_STR (MOVW_PREL_G0), /* name */
730 FALSE, /* partial_inplace */
731 0xffff, /* src_mask */
732 0xffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
736 HOWTO (AARCH64_R (MOVW_PREL_G0_NC), /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_dont, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
745 FALSE, /* partial_inplace */
746 0xffff, /* src_mask */
747 0xffff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
751 HOWTO (AARCH64_R (MOVW_PREL_G1), /* type */
752 16, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 17, /* bitsize */
755 TRUE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_signed, /* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 AARCH64_R_STR (MOVW_PREL_G1), /* name */
760 FALSE, /* partial_inplace */
761 0xffff, /* src_mask */
762 0xffff, /* dst_mask */
763 TRUE), /* pcrel_offset */
764
765 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
766 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
767 16, /* rightshift */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 TRUE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_dont, /* complain_on_overflow */
773 bfd_elf_generic_reloc, /* special_function */
774 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
775 FALSE, /* partial_inplace */
776 0xffff, /* src_mask */
777 0xffff, /* dst_mask */
778 TRUE), /* pcrel_offset */
779
780 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
781 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
782 32, /* rightshift */
783 2, /* size (0 = byte, 1 = short, 2 = long) */
784 17, /* bitsize */
785 TRUE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 bfd_elf_generic_reloc, /* special_function */
789 AARCH64_R_STR (MOVW_PREL_G2), /* name */
790 FALSE, /* partial_inplace */
791 0xffff, /* src_mask */
792 0xffff, /* dst_mask */
793 TRUE), /* pcrel_offset */
794
795 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
796 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
797 32, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 16, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
805 FALSE, /* partial_inplace */
806 0xffff, /* src_mask */
807 0xffff, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
811 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
812 48, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 16, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 AARCH64_R_STR (MOVW_PREL_G3), /* name */
820 FALSE, /* partial_inplace */
821 0xffff, /* src_mask */
822 0xffff, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
826 addresses: PG(x) is (x & ~0xfff). */
827
828 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
829 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
830 2, /* rightshift */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
832 19, /* bitsize */
833 TRUE, /* pc_relative */
834 0, /* bitpos */
835 complain_overflow_signed, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 AARCH64_R_STR (LD_PREL_LO19), /* name */
838 FALSE, /* partial_inplace */
839 0x7ffff, /* src_mask */
840 0x7ffff, /* dst_mask */
841 TRUE), /* pcrel_offset */
842
843 /* ADR: (S+A-P) & 0x1fffff */
844 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
845 0, /* rightshift */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
847 21, /* bitsize */
848 TRUE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_signed, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 AARCH64_R_STR (ADR_PREL_LO21), /* name */
853 FALSE, /* partial_inplace */
854 0x1fffff, /* src_mask */
855 0x1fffff, /* dst_mask */
856 TRUE), /* pcrel_offset */
857
858 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
859 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
860 12, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 21, /* bitsize */
863 TRUE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_signed, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
868 FALSE, /* partial_inplace */
869 0x1fffff, /* src_mask */
870 0x1fffff, /* dst_mask */
871 TRUE), /* pcrel_offset */
872
873 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
874 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
875 12, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 21, /* bitsize */
878 TRUE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont, /* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
883 FALSE, /* partial_inplace */
884 0x1fffff, /* src_mask */
885 0x1fffff, /* dst_mask */
886 TRUE), /* pcrel_offset */
887
888 /* ADD: (S+A) & 0xfff [no overflow check] */
889 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
890 0, /* rightshift */
891 2, /* size (0 = byte, 1 = short, 2 = long) */
892 12, /* bitsize */
893 FALSE, /* pc_relative */
894 10, /* bitpos */
895 complain_overflow_dont, /* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
898 FALSE, /* partial_inplace */
899 0x3ffc00, /* src_mask */
900 0x3ffc00, /* dst_mask */
901 FALSE), /* pcrel_offset */
902
903 /* LD/ST8: (S+A) & 0xfff */
904 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
905 0, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 12, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_dont, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
913 FALSE, /* partial_inplace */
914 0xfff, /* src_mask */
915 0xfff, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
918 /* Relocations for control-flow instructions. */
919
920 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
921 HOWTO (AARCH64_R (TSTBR14), /* type */
922 2, /* rightshift */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
924 14, /* bitsize */
925 TRUE, /* pc_relative */
926 0, /* bitpos */
927 complain_overflow_signed, /* complain_on_overflow */
928 bfd_elf_generic_reloc, /* special_function */
929 AARCH64_R_STR (TSTBR14), /* name */
930 FALSE, /* partial_inplace */
931 0x3fff, /* src_mask */
932 0x3fff, /* dst_mask */
933 TRUE), /* pcrel_offset */
934
935 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
936 HOWTO (AARCH64_R (CONDBR19), /* type */
937 2, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 19, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_signed, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 AARCH64_R_STR (CONDBR19), /* name */
945 FALSE, /* partial_inplace */
946 0x7ffff, /* src_mask */
947 0x7ffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 /* B: ((S+A-P) >> 2) & 0x3ffffff */
951 HOWTO (AARCH64_R (JUMP26), /* type */
952 2, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 26, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_signed, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 AARCH64_R_STR (JUMP26), /* name */
960 FALSE, /* partial_inplace */
961 0x3ffffff, /* src_mask */
962 0x3ffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
966 HOWTO (AARCH64_R (CALL26), /* type */
967 2, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 26, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_signed, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 AARCH64_R_STR (CALL26), /* name */
975 FALSE, /* partial_inplace */
976 0x3ffffff, /* src_mask */
977 0x3ffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 /* LD/ST16: (S+A) & 0xffe */
981 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
982 1, /* rightshift */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
984 12, /* bitsize */
985 FALSE, /* pc_relative */
986 0, /* bitpos */
987 complain_overflow_dont, /* complain_on_overflow */
988 bfd_elf_generic_reloc, /* special_function */
989 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
990 FALSE, /* partial_inplace */
991 0xffe, /* src_mask */
992 0xffe, /* dst_mask */
993 FALSE), /* pcrel_offset */
994
995 /* LD/ST32: (S+A) & 0xffc */
996 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
997 2, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 12, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 bfd_elf_generic_reloc, /* special_function */
1004 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
1005 FALSE, /* partial_inplace */
1006 0xffc, /* src_mask */
1007 0xffc, /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* LD/ST64: (S+A) & 0xff8 */
1011 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
1012 3, /* rightshift */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1014 12, /* bitsize */
1015 FALSE, /* pc_relative */
1016 0, /* bitpos */
1017 complain_overflow_dont, /* complain_on_overflow */
1018 bfd_elf_generic_reloc, /* special_function */
1019 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
1020 FALSE, /* partial_inplace */
1021 0xff8, /* src_mask */
1022 0xff8, /* dst_mask */
1023 FALSE), /* pcrel_offset */
1024
1025 /* LD/ST128: (S+A) & 0xff0 */
1026 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
1027 4, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 12, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
1035 FALSE, /* partial_inplace */
1036 0xff0, /* src_mask */
1037 0xff0, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Set a load-literal immediate field to bits
1041 0x1FFFFC of G(S)-P */
1042 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
1043 2, /* rightshift */
1044 2, /* size (0 = byte,1 = short,2 = long) */
1045 19, /* bitsize */
1046 TRUE, /* pc_relative */
1047 0, /* bitpos */
1048 complain_overflow_signed, /* complain_on_overflow */
1049 bfd_elf_generic_reloc, /* special_function */
1050 AARCH64_R_STR (GOT_LD_PREL19), /* name */
1051 FALSE, /* partial_inplace */
1052 0xffffe0, /* src_mask */
1053 0xffffe0, /* dst_mask */
1054 TRUE), /* pcrel_offset */
1055
1056 /* Get to the page for the GOT entry for the symbol
1057 (G(S) - P) using an ADRP instruction. */
1058 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
1059 12, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 21, /* bitsize */
1062 TRUE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont, /* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
1067 FALSE, /* partial_inplace */
1068 0x1fffff, /* src_mask */
1069 0x1fffff, /* dst_mask */
1070 TRUE), /* pcrel_offset */
1071
1072 /* LD64: GOT offset G(S) & 0xff8 */
1073 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
1074 3, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 12, /* bitsize */
1077 FALSE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont, /* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
1082 FALSE, /* partial_inplace */
1083 0xff8, /* src_mask */
1084 0xff8, /* dst_mask */
1085 FALSE), /* pcrel_offset */
1086
1087 /* LD32: GOT offset G(S) & 0xffc */
1088 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1089 2, /* rightshift */
1090 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 12, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_dont, /* complain_on_overflow */
1095 bfd_elf_generic_reloc, /* special_function */
1096 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1097 FALSE, /* partial_inplace */
1098 0xffc, /* src_mask */
1099 0xffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 /* Lower 16 bits of GOT offset for the symbol. */
1103 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1104 0, /* rightshift */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1106 16, /* bitsize */
1107 FALSE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont, /* complain_on_overflow */
1110 bfd_elf_generic_reloc, /* special_function */
1111 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1112 FALSE, /* partial_inplace */
1113 0xffff, /* src_mask */
1114 0xffff, /* dst_mask */
1115 FALSE), /* pcrel_offset */
1116
1117 /* Higher 16 bits of GOT offset for the symbol. */
1118 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1119 16, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 16, /* bitsize */
1122 FALSE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_unsigned, /* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1127 FALSE, /* partial_inplace */
1128 0xffff, /* src_mask */
1129 0xffff, /* dst_mask */
1130 FALSE), /* pcrel_offset */
1131
1132 /* LD64: GOT offset for the symbol. */
1133 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1134 3, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 12, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_unsigned, /* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1142 FALSE, /* partial_inplace */
1143 0x7ff8, /* src_mask */
1144 0x7ff8, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
1147 /* LD32: GOT offset to the page address of GOT table.
1148 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1149 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1150 2, /* rightshift */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 12, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_unsigned, /* complain_on_overflow */
1156 bfd_elf_generic_reloc, /* special_function */
1157 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1158 FALSE, /* partial_inplace */
1159 0x5ffc, /* src_mask */
1160 0x5ffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* LD64: GOT offset to the page address of GOT table.
1164 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1165 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1166 3, /* rightshift */
1167 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 12, /* bitsize */
1169 FALSE, /* pc_relative */
1170 0, /* bitpos */
1171 complain_overflow_unsigned, /* complain_on_overflow */
1172 bfd_elf_generic_reloc, /* special_function */
1173 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1174 FALSE, /* partial_inplace */
1175 0x7ff8, /* src_mask */
1176 0x7ff8, /* dst_mask */
1177 FALSE), /* pcrel_offset */
1178
1179 /* Get to the page for the GOT entry for the symbol
1180 (G(S) - P) using an ADRP instruction. */
1181 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1182 12, /* rightshift */
1183 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 21, /* bitsize */
1185 TRUE, /* pc_relative */
1186 0, /* bitpos */
1187 complain_overflow_dont, /* complain_on_overflow */
1188 bfd_elf_generic_reloc, /* special_function */
1189 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1190 FALSE, /* partial_inplace */
1191 0x1fffff, /* src_mask */
1192 0x1fffff, /* dst_mask */
1193 TRUE), /* pcrel_offset */
1194
1195 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1196 0, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 21, /* bitsize */
1199 TRUE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_dont, /* complain_on_overflow */
1202 bfd_elf_generic_reloc, /* special_function */
1203 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1204 FALSE, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE), /* pcrel_offset */
1208
1209 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1210 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1211 0, /* rightshift */
1212 2, /* size (0 = byte, 1 = short, 2 = long) */
1213 12, /* bitsize */
1214 FALSE, /* pc_relative */
1215 0, /* bitpos */
1216 complain_overflow_dont, /* complain_on_overflow */
1217 bfd_elf_generic_reloc, /* special_function */
1218 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1219 FALSE, /* partial_inplace */
1220 0xfff, /* src_mask */
1221 0xfff, /* dst_mask */
1222 FALSE), /* pcrel_offset */
1223
1224 /* Lower 16 bits of GOT offset to tls_index. */
1225 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 16, /* bitsize */
1229 FALSE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont, /* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1234 FALSE, /* partial_inplace */
1235 0xffff, /* src_mask */
1236 0xffff, /* dst_mask */
1237 FALSE), /* pcrel_offset */
1238
1239 /* Higher 16 bits of GOT offset to tls_index. */
1240 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1241 16, /* rightshift */
1242 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 16, /* bitsize */
1244 FALSE, /* pc_relative */
1245 0, /* bitpos */
1246 complain_overflow_unsigned, /* complain_on_overflow */
1247 bfd_elf_generic_reloc, /* special_function */
1248 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1249 FALSE, /* partial_inplace */
1250 0xffff, /* src_mask */
1251 0xffff, /* dst_mask */
1252 FALSE), /* pcrel_offset */
1253
1254 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1255 12, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 21, /* bitsize */
1258 FALSE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont, /* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1263 FALSE, /* partial_inplace */
1264 0x1fffff, /* src_mask */
1265 0x1fffff, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1269 3, /* rightshift */
1270 2, /* size (0 = byte, 1 = short, 2 = long) */
1271 12, /* bitsize */
1272 FALSE, /* pc_relative */
1273 0, /* bitpos */
1274 complain_overflow_dont, /* complain_on_overflow */
1275 bfd_elf_generic_reloc, /* special_function */
1276 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1277 FALSE, /* partial_inplace */
1278 0xff8, /* src_mask */
1279 0xff8, /* dst_mask */
1280 FALSE), /* pcrel_offset */
1281
1282 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1283 2, /* rightshift */
1284 2, /* size (0 = byte, 1 = short, 2 = long) */
1285 12, /* bitsize */
1286 FALSE, /* pc_relative */
1287 0, /* bitpos */
1288 complain_overflow_dont, /* complain_on_overflow */
1289 bfd_elf_generic_reloc, /* special_function */
1290 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1291 FALSE, /* partial_inplace */
1292 0xffc, /* src_mask */
1293 0xffc, /* dst_mask */
1294 FALSE), /* pcrel_offset */
1295
1296 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1297 2, /* rightshift */
1298 2, /* size (0 = byte, 1 = short, 2 = long) */
1299 19, /* bitsize */
1300 FALSE, /* pc_relative */
1301 0, /* bitpos */
1302 complain_overflow_dont, /* complain_on_overflow */
1303 bfd_elf_generic_reloc, /* special_function */
1304 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1305 FALSE, /* partial_inplace */
1306 0x1ffffc, /* src_mask */
1307 0x1ffffc, /* dst_mask */
1308 FALSE), /* pcrel_offset */
1309
1310 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 16, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
1318 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1319 FALSE, /* partial_inplace */
1320 0xffff, /* src_mask */
1321 0xffff, /* dst_mask */
1322 FALSE), /* pcrel_offset */
1323
1324 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1325 16, /* rightshift */
1326 2, /* size (0 = byte, 1 = short, 2 = long) */
1327 16, /* bitsize */
1328 FALSE, /* pc_relative */
1329 0, /* bitpos */
1330 complain_overflow_unsigned, /* complain_on_overflow */
1331 bfd_elf_generic_reloc, /* special_function */
1332 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1333 FALSE, /* partial_inplace */
1334 0xffff, /* src_mask */
1335 0xffff, /* dst_mask */
1336 FALSE), /* pcrel_offset */
1337
1338 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1339 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1340 12, /* rightshift */
1341 2, /* size (0 = byte, 1 = short, 2 = long) */
1342 12, /* bitsize */
1343 FALSE, /* pc_relative */
1344 0, /* bitpos */
1345 complain_overflow_unsigned, /* complain_on_overflow */
1346 bfd_elf_generic_reloc, /* special_function */
1347 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1348 FALSE, /* partial_inplace */
1349 0xfff, /* src_mask */
1350 0xfff, /* dst_mask */
1351 FALSE), /* pcrel_offset */
1352
1353 /* Unsigned 12 bit byte offset to module TLS base address. */
1354 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1355 0, /* rightshift */
1356 2, /* size (0 = byte, 1 = short, 2 = long) */
1357 12, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_unsigned, /* complain_on_overflow */
1361 bfd_elf_generic_reloc, /* special_function */
1362 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1363 FALSE, /* partial_inplace */
1364 0xfff, /* src_mask */
1365 0xfff, /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1369 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 12, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont, /* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1378 FALSE, /* partial_inplace */
1379 0xfff, /* src_mask */
1380 0xfff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1384 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1385 0, /* rightshift */
1386 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 12, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 bfd_elf_generic_reloc, /* special_function */
1392 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1393 FALSE, /* partial_inplace */
1394 0xfff, /* src_mask */
1395 0xfff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Get to the page for the GOT entry for the symbol
1399 (G(S) - P) using an ADRP instruction. */
1400 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1401 12, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 21, /* bitsize */
1404 TRUE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_signed, /* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1409 FALSE, /* partial_inplace */
1410 0x1fffff, /* src_mask */
1411 0x1fffff, /* dst_mask */
1412 TRUE), /* pcrel_offset */
1413
1414 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 21, /* bitsize */
1418 TRUE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1423 FALSE, /* partial_inplace */
1424 0x1fffff, /* src_mask */
1425 0x1fffff, /* dst_mask */
1426 TRUE), /* pcrel_offset */
1427
1428 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1429 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1430 1, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 11, /* bitsize */
1433 FALSE, /* pc_relative */
1434 10, /* bitpos */
1435 complain_overflow_unsigned, /* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1438 FALSE, /* partial_inplace */
1439 0x1ffc00, /* src_mask */
1440 0x1ffc00, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1444 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1445 1, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 11, /* bitsize */
1448 FALSE, /* pc_relative */
1449 10, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1453 FALSE, /* partial_inplace */
1454 0x1ffc00, /* src_mask */
1455 0x1ffc00, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1459 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1460 2, /* rightshift */
1461 2, /* size (0 = byte, 1 = short, 2 = long) */
1462 10, /* bitsize */
1463 FALSE, /* pc_relative */
1464 10, /* bitpos */
1465 complain_overflow_unsigned, /* complain_on_overflow */
1466 bfd_elf_generic_reloc, /* special_function */
1467 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1468 FALSE, /* partial_inplace */
1469 0x3ffc00, /* src_mask */
1470 0x3ffc00, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1474 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1475 2, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 10, /* bitsize */
1478 FALSE, /* pc_relative */
1479 10, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1483 FALSE, /* partial_inplace */
1484 0xffc00, /* src_mask */
1485 0xffc00, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1489 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1490 3, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 9, /* bitsize */
1493 FALSE, /* pc_relative */
1494 10, /* bitpos */
1495 complain_overflow_unsigned, /* complain_on_overflow */
1496 bfd_elf_generic_reloc, /* special_function */
1497 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1498 FALSE, /* partial_inplace */
1499 0x3ffc00, /* src_mask */
1500 0x3ffc00, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1504 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1505 3, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 9, /* bitsize */
1508 FALSE, /* pc_relative */
1509 10, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1513 FALSE, /* partial_inplace */
1514 0x7fc00, /* src_mask */
1515 0x7fc00, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1519 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 12, /* bitsize */
1523 FALSE, /* pc_relative */
1524 10, /* bitpos */
1525 complain_overflow_unsigned, /* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
1527 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1528 FALSE, /* partial_inplace */
1529 0x3ffc00, /* src_mask */
1530 0x3ffc00, /* dst_mask */
1531 FALSE), /* pcrel_offset */
1532
1533 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1534 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1535 0, /* rightshift */
1536 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 12, /* bitsize */
1538 FALSE, /* pc_relative */
1539 10, /* bitpos */
1540 complain_overflow_dont, /* complain_on_overflow */
1541 bfd_elf_generic_reloc, /* special_function */
1542 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1543 FALSE, /* partial_inplace */
1544 0x3ffc00, /* src_mask */
1545 0x3ffc00, /* dst_mask */
1546 FALSE), /* pcrel_offset */
1547
1548 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1549 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1550 0, /* rightshift */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1552 16, /* bitsize */
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
1555 complain_overflow_unsigned, /* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1558 FALSE, /* partial_inplace */
1559 0xffff, /* src_mask */
1560 0xffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
1562
1563 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1564 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1565 0, /* rightshift */
1566 2, /* size (0 = byte, 1 = short, 2 = long) */
1567 16, /* bitsize */
1568 FALSE, /* pc_relative */
1569 0, /* bitpos */
1570 complain_overflow_dont, /* complain_on_overflow */
1571 bfd_elf_generic_reloc, /* special_function */
1572 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1573 FALSE, /* partial_inplace */
1574 0xffff, /* src_mask */
1575 0xffff, /* dst_mask */
1576 FALSE), /* pcrel_offset */
1577
1578 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1579 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1580 16, /* rightshift */
1581 2, /* size (0 = byte, 1 = short, 2 = long) */
1582 16, /* bitsize */
1583 FALSE, /* pc_relative */
1584 0, /* bitpos */
1585 complain_overflow_unsigned, /* complain_on_overflow */
1586 bfd_elf_generic_reloc, /* special_function */
1587 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1588 FALSE, /* partial_inplace */
1589 0xffff, /* src_mask */
1590 0xffff, /* dst_mask */
1591 FALSE), /* pcrel_offset */
1592
1593 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1594 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1595 16, /* rightshift */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 16, /* bitsize */
1598 FALSE, /* pc_relative */
1599 0, /* bitpos */
1600 complain_overflow_dont, /* complain_on_overflow */
1601 bfd_elf_generic_reloc, /* special_function */
1602 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1603 FALSE, /* partial_inplace */
1604 0xffff, /* src_mask */
1605 0xffff, /* dst_mask */
1606 FALSE), /* pcrel_offset */
1607
1608 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1609 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1610 32, /* rightshift */
1611 2, /* size (0 = byte, 1 = short, 2 = long) */
1612 16, /* bitsize */
1613 FALSE, /* pc_relative */
1614 0, /* bitpos */
1615 complain_overflow_unsigned, /* complain_on_overflow */
1616 bfd_elf_generic_reloc, /* special_function */
1617 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1618 FALSE, /* partial_inplace */
1619 0xffff, /* src_mask */
1620 0xffff, /* dst_mask */
1621 FALSE), /* pcrel_offset */
1622
1623 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1624 32, /* rightshift */
1625 2, /* size (0 = byte, 1 = short, 2 = long) */
1626 16, /* bitsize */
1627 FALSE, /* pc_relative */
1628 0, /* bitpos */
1629 complain_overflow_unsigned, /* complain_on_overflow */
1630 bfd_elf_generic_reloc, /* special_function */
1631 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1632 FALSE, /* partial_inplace */
1633 0xffff, /* src_mask */
1634 0xffff, /* dst_mask */
1635 FALSE), /* pcrel_offset */
1636
1637 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1638 16, /* rightshift */
1639 2, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 bfd_elf_generic_reloc, /* special_function */
1645 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1646 FALSE, /* partial_inplace */
1647 0xffff, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1652 16, /* rightshift */
1653 2, /* size (0 = byte, 1 = short, 2 = long) */
1654 16, /* bitsize */
1655 FALSE, /* pc_relative */
1656 0, /* bitpos */
1657 complain_overflow_dont, /* complain_on_overflow */
1658 bfd_elf_generic_reloc, /* special_function */
1659 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1660 FALSE, /* partial_inplace */
1661 0xffff, /* src_mask */
1662 0xffff, /* dst_mask */
1663 FALSE), /* pcrel_offset */
1664
1665 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1666 0, /* rightshift */
1667 2, /* size (0 = byte, 1 = short, 2 = long) */
1668 16, /* bitsize */
1669 FALSE, /* pc_relative */
1670 0, /* bitpos */
1671 complain_overflow_dont, /* complain_on_overflow */
1672 bfd_elf_generic_reloc, /* special_function */
1673 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1674 FALSE, /* partial_inplace */
1675 0xffff, /* src_mask */
1676 0xffff, /* dst_mask */
1677 FALSE), /* pcrel_offset */
1678
1679 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1680 0, /* rightshift */
1681 2, /* size (0 = byte, 1 = short, 2 = long) */
1682 16, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_dont, /* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1688 FALSE, /* partial_inplace */
1689 0xffff, /* src_mask */
1690 0xffff, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692
1693 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1694 12, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 12, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_unsigned, /* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1702 FALSE, /* partial_inplace */
1703 0xfff, /* src_mask */
1704 0xfff, /* dst_mask */
1705 FALSE), /* pcrel_offset */
1706
1707 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1708 0, /* rightshift */
1709 2, /* size (0 = byte, 1 = short, 2 = long) */
1710 12, /* bitsize */
1711 FALSE, /* pc_relative */
1712 0, /* bitpos */
1713 complain_overflow_unsigned, /* complain_on_overflow */
1714 bfd_elf_generic_reloc, /* special_function */
1715 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1716 FALSE, /* partial_inplace */
1717 0xfff, /* src_mask */
1718 0xfff, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1722 0, /* rightshift */
1723 2, /* size (0 = byte, 1 = short, 2 = long) */
1724 12, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_dont, /* complain_on_overflow */
1728 bfd_elf_generic_reloc, /* special_function */
1729 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1730 FALSE, /* partial_inplace */
1731 0xfff, /* src_mask */
1732 0xfff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1736 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1737 1, /* rightshift */
1738 2, /* size (0 = byte, 1 = short, 2 = long) */
1739 11, /* bitsize */
1740 FALSE, /* pc_relative */
1741 10, /* bitpos */
1742 complain_overflow_unsigned, /* complain_on_overflow */
1743 bfd_elf_generic_reloc, /* special_function */
1744 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1745 FALSE, /* partial_inplace */
1746 0x1ffc00, /* src_mask */
1747 0x1ffc00, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1751 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1752 1, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 11, /* bitsize */
1755 FALSE, /* pc_relative */
1756 10, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1760 FALSE, /* partial_inplace */
1761 0x1ffc00, /* src_mask */
1762 0x1ffc00, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1766 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1767 2, /* rightshift */
1768 2, /* size (0 = byte, 1 = short, 2 = long) */
1769 10, /* bitsize */
1770 FALSE, /* pc_relative */
1771 10, /* bitpos */
1772 complain_overflow_unsigned, /* complain_on_overflow */
1773 bfd_elf_generic_reloc, /* special_function */
1774 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1775 FALSE, /* partial_inplace */
1776 0xffc00, /* src_mask */
1777 0xffc00, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1781 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1782 2, /* rightshift */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1784 10, /* bitsize */
1785 FALSE, /* pc_relative */
1786 10, /* bitpos */
1787 complain_overflow_dont, /* complain_on_overflow */
1788 bfd_elf_generic_reloc, /* special_function */
1789 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1790 FALSE, /* partial_inplace */
1791 0xffc00, /* src_mask */
1792 0xffc00, /* dst_mask */
1793 FALSE), /* pcrel_offset */
1794
1795 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1796 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1797 3, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 9, /* bitsize */
1800 FALSE, /* pc_relative */
1801 10, /* bitpos */
1802 complain_overflow_unsigned, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1805 FALSE, /* partial_inplace */
1806 0x7fc00, /* src_mask */
1807 0x7fc00, /* dst_mask */
1808 FALSE), /* pcrel_offset */
1809
1810 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1811 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1812 3, /* rightshift */
1813 2, /* size (0 = byte, 1 = short, 2 = long) */
1814 9, /* bitsize */
1815 FALSE, /* pc_relative */
1816 10, /* bitpos */
1817 complain_overflow_dont, /* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1820 FALSE, /* partial_inplace */
1821 0x7fc00, /* src_mask */
1822 0x7fc00, /* dst_mask */
1823 FALSE), /* pcrel_offset */
1824
1825 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1826 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1827 0, /* rightshift */
1828 2, /* size (0 = byte, 1 = short, 2 = long) */
1829 12, /* bitsize */
1830 FALSE, /* pc_relative */
1831 10, /* bitpos */
1832 complain_overflow_unsigned, /* complain_on_overflow */
1833 bfd_elf_generic_reloc, /* special_function */
1834 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1835 FALSE, /* partial_inplace */
1836 0x3ffc00, /* src_mask */
1837 0x3ffc00, /* dst_mask */
1838 FALSE), /* pcrel_offset */
1839
1840 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1841 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1842 0, /* rightshift */
1843 2, /* size (0 = byte, 1 = short, 2 = long) */
1844 12, /* bitsize */
1845 FALSE, /* pc_relative */
1846 10, /* bitpos */
1847 complain_overflow_dont, /* complain_on_overflow */
1848 bfd_elf_generic_reloc, /* special_function */
1849 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1850 FALSE, /* partial_inplace */
1851 0x3ffc00, /* src_mask */
1852 0x3ffc00, /* dst_mask */
1853 FALSE), /* pcrel_offset */
1854
1855 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1856 2, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 19, /* bitsize */
1859 TRUE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_dont, /* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1864 FALSE, /* partial_inplace */
1865 0x0ffffe0, /* src_mask */
1866 0x0ffffe0, /* dst_mask */
1867 TRUE), /* pcrel_offset */
1868
1869 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1870 0, /* rightshift */
1871 2, /* size (0 = byte, 1 = short, 2 = long) */
1872 21, /* bitsize */
1873 TRUE, /* pc_relative */
1874 0, /* bitpos */
1875 complain_overflow_dont, /* complain_on_overflow */
1876 bfd_elf_generic_reloc, /* special_function */
1877 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1878 FALSE, /* partial_inplace */
1879 0x1fffff, /* src_mask */
1880 0x1fffff, /* dst_mask */
1881 TRUE), /* pcrel_offset */
1882
1883 /* Get to the page for the GOT entry for the symbol
1884 (G(S) - P) using an ADRP instruction. */
1885 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1886 12, /* rightshift */
1887 2, /* size (0 = byte, 1 = short, 2 = long) */
1888 21, /* bitsize */
1889 TRUE, /* pc_relative */
1890 0, /* bitpos */
1891 complain_overflow_dont, /* complain_on_overflow */
1892 bfd_elf_generic_reloc, /* special_function */
1893 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1894 FALSE, /* partial_inplace */
1895 0x1fffff, /* src_mask */
1896 0x1fffff, /* dst_mask */
1897 TRUE), /* pcrel_offset */
1898
1899 /* LD64: GOT offset G(S) & 0xff8. */
1900 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1901 3, /* rightshift */
1902 2, /* size (0 = byte, 1 = short, 2 = long) */
1903 12, /* bitsize */
1904 FALSE, /* pc_relative */
1905 0, /* bitpos */
1906 complain_overflow_dont, /* complain_on_overflow */
1907 bfd_elf_generic_reloc, /* special_function */
1908 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1909 FALSE, /* partial_inplace */
1910 0xff8, /* src_mask */
1911 0xff8, /* dst_mask */
1912 FALSE), /* pcrel_offset */
1913
1914 /* LD32: GOT offset G(S) & 0xffc. */
1915 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1916 2, /* rightshift */
1917 2, /* size (0 = byte, 1 = short, 2 = long) */
1918 12, /* bitsize */
1919 FALSE, /* pc_relative */
1920 0, /* bitpos */
1921 complain_overflow_dont, /* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1924 FALSE, /* partial_inplace */
1925 0xffc, /* src_mask */
1926 0xffc, /* dst_mask */
1927 FALSE), /* pcrel_offset */
1928
1929 /* ADD: GOT offset G(S) & 0xfff. */
1930 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1931 0, /* rightshift */
1932 2, /* size (0 = byte, 1 = short, 2 = long) */
1933 12, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont,/* complain_on_overflow */
1937 bfd_elf_generic_reloc, /* special_function */
1938 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1939 FALSE, /* partial_inplace */
1940 0xfff, /* src_mask */
1941 0xfff, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1945 16, /* rightshift */
1946 2, /* size (0 = byte, 1 = short, 2 = long) */
1947 12, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_unsigned, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1953 FALSE, /* partial_inplace */
1954 0xffff, /* src_mask */
1955 0xffff, /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1959 0, /* rightshift */
1960 2, /* size (0 = byte, 1 = short, 2 = long) */
1961 12, /* bitsize */
1962 FALSE, /* pc_relative */
1963 0, /* bitpos */
1964 complain_overflow_dont, /* complain_on_overflow */
1965 bfd_elf_generic_reloc, /* special_function */
1966 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1967 FALSE, /* partial_inplace */
1968 0xffff, /* src_mask */
1969 0xffff, /* dst_mask */
1970 FALSE), /* pcrel_offset */
1971
1972 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1973 0, /* rightshift */
1974 2, /* size (0 = byte, 1 = short, 2 = long) */
1975 12, /* bitsize */
1976 FALSE, /* pc_relative */
1977 0, /* bitpos */
1978 complain_overflow_dont, /* complain_on_overflow */
1979 bfd_elf_generic_reloc, /* special_function */
1980 AARCH64_R_STR (TLSDESC_LDR), /* name */
1981 FALSE, /* partial_inplace */
1982 0x0, /* src_mask */
1983 0x0, /* dst_mask */
1984 FALSE), /* pcrel_offset */
1985
1986 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1987 0, /* rightshift */
1988 2, /* size (0 = byte, 1 = short, 2 = long) */
1989 12, /* bitsize */
1990 FALSE, /* pc_relative */
1991 0, /* bitpos */
1992 complain_overflow_dont, /* complain_on_overflow */
1993 bfd_elf_generic_reloc, /* special_function */
1994 AARCH64_R_STR (TLSDESC_ADD), /* name */
1995 FALSE, /* partial_inplace */
1996 0x0, /* src_mask */
1997 0x0, /* dst_mask */
1998 FALSE), /* pcrel_offset */
1999
2000 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
2001 0, /* rightshift */
2002 2, /* size (0 = byte, 1 = short, 2 = long) */
2003 0, /* bitsize */
2004 FALSE, /* pc_relative */
2005 0, /* bitpos */
2006 complain_overflow_dont, /* complain_on_overflow */
2007 bfd_elf_generic_reloc, /* special_function */
2008 AARCH64_R_STR (TLSDESC_CALL), /* name */
2009 FALSE, /* partial_inplace */
2010 0x0, /* src_mask */
2011 0x0, /* dst_mask */
2012 FALSE), /* pcrel_offset */
2013
2014 HOWTO (AARCH64_R (COPY), /* type */
2015 0, /* rightshift */
2016 2, /* size (0 = byte, 1 = short, 2 = long) */
2017 64, /* bitsize */
2018 FALSE, /* pc_relative */
2019 0, /* bitpos */
2020 complain_overflow_bitfield, /* complain_on_overflow */
2021 bfd_elf_generic_reloc, /* special_function */
2022 AARCH64_R_STR (COPY), /* name */
2023 TRUE, /* partial_inplace */
2024 0xffffffff, /* src_mask */
2025 0xffffffff, /* dst_mask */
2026 FALSE), /* pcrel_offset */
2027
2028 HOWTO (AARCH64_R (GLOB_DAT), /* type */
2029 0, /* rightshift */
2030 2, /* size (0 = byte, 1 = short, 2 = long) */
2031 64, /* bitsize */
2032 FALSE, /* pc_relative */
2033 0, /* bitpos */
2034 complain_overflow_bitfield, /* complain_on_overflow */
2035 bfd_elf_generic_reloc, /* special_function */
2036 AARCH64_R_STR (GLOB_DAT), /* name */
2037 TRUE, /* partial_inplace */
2038 0xffffffff, /* src_mask */
2039 0xffffffff, /* dst_mask */
2040 FALSE), /* pcrel_offset */
2041
2042 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
2043 0, /* rightshift */
2044 2, /* size (0 = byte, 1 = short, 2 = long) */
2045 64, /* bitsize */
2046 FALSE, /* pc_relative */
2047 0, /* bitpos */
2048 complain_overflow_bitfield, /* complain_on_overflow */
2049 bfd_elf_generic_reloc, /* special_function */
2050 AARCH64_R_STR (JUMP_SLOT), /* name */
2051 TRUE, /* partial_inplace */
2052 0xffffffff, /* src_mask */
2053 0xffffffff, /* dst_mask */
2054 FALSE), /* pcrel_offset */
2055
2056 HOWTO (AARCH64_R (RELATIVE), /* type */
2057 0, /* rightshift */
2058 2, /* size (0 = byte, 1 = short, 2 = long) */
2059 64, /* bitsize */
2060 FALSE, /* pc_relative */
2061 0, /* bitpos */
2062 complain_overflow_bitfield, /* complain_on_overflow */
2063 bfd_elf_generic_reloc, /* special_function */
2064 AARCH64_R_STR (RELATIVE), /* name */
2065 TRUE, /* partial_inplace */
2066 ALL_ONES, /* src_mask */
2067 ALL_ONES, /* dst_mask */
2068 FALSE), /* pcrel_offset */
2069
2070 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
2071 0, /* rightshift */
2072 2, /* size (0 = byte, 1 = short, 2 = long) */
2073 64, /* bitsize */
2074 FALSE, /* pc_relative */
2075 0, /* bitpos */
2076 complain_overflow_dont, /* complain_on_overflow */
2077 bfd_elf_generic_reloc, /* special_function */
2078 #if ARCH_SIZE == 64
2079 AARCH64_R_STR (TLS_DTPMOD64), /* name */
2080 #else
2081 AARCH64_R_STR (TLS_DTPMOD), /* name */
2082 #endif
2083 FALSE, /* partial_inplace */
2084 0, /* src_mask */
2085 ALL_ONES, /* dst_mask */
2086 FALSE), /* pc_reloffset */
2087
2088 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2089 0, /* rightshift */
2090 2, /* size (0 = byte, 1 = short, 2 = long) */
2091 64, /* bitsize */
2092 FALSE, /* pc_relative */
2093 0, /* bitpos */
2094 complain_overflow_dont, /* complain_on_overflow */
2095 bfd_elf_generic_reloc, /* special_function */
2096 #if ARCH_SIZE == 64
2097 AARCH64_R_STR (TLS_DTPREL64), /* name */
2098 #else
2099 AARCH64_R_STR (TLS_DTPREL), /* name */
2100 #endif
2101 FALSE, /* partial_inplace */
2102 0, /* src_mask */
2103 ALL_ONES, /* dst_mask */
2104 FALSE), /* pcrel_offset */
2105
2106 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2107 0, /* rightshift */
2108 2, /* size (0 = byte, 1 = short, 2 = long) */
2109 64, /* bitsize */
2110 FALSE, /* pc_relative */
2111 0, /* bitpos */
2112 complain_overflow_dont, /* complain_on_overflow */
2113 bfd_elf_generic_reloc, /* special_function */
2114 #if ARCH_SIZE == 64
2115 AARCH64_R_STR (TLS_TPREL64), /* name */
2116 #else
2117 AARCH64_R_STR (TLS_TPREL), /* name */
2118 #endif
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ALL_ONES, /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 HOWTO (AARCH64_R (TLSDESC), /* type */
2125 0, /* rightshift */
2126 2, /* size (0 = byte, 1 = short, 2 = long) */
2127 64, /* bitsize */
2128 FALSE, /* pc_relative */
2129 0, /* bitpos */
2130 complain_overflow_dont, /* complain_on_overflow */
2131 bfd_elf_generic_reloc, /* special_function */
2132 AARCH64_R_STR (TLSDESC), /* name */
2133 FALSE, /* partial_inplace */
2134 0, /* src_mask */
2135 ALL_ONES, /* dst_mask */
2136 FALSE), /* pcrel_offset */
2137
2138 HOWTO (AARCH64_R (IRELATIVE), /* type */
2139 0, /* rightshift */
2140 2, /* size (0 = byte, 1 = short, 2 = long) */
2141 64, /* bitsize */
2142 FALSE, /* pc_relative */
2143 0, /* bitpos */
2144 complain_overflow_bitfield, /* complain_on_overflow */
2145 bfd_elf_generic_reloc, /* special_function */
2146 AARCH64_R_STR (IRELATIVE), /* name */
2147 FALSE, /* partial_inplace */
2148 0, /* src_mask */
2149 ALL_ONES, /* dst_mask */
2150 FALSE), /* pcrel_offset */
2151
2152 EMPTY_HOWTO (0),
2153 };
2154
2155 static reloc_howto_type elfNN_aarch64_howto_none =
2156 HOWTO (R_AARCH64_NONE, /* type */
2157 0, /* rightshift */
2158 3, /* size (0 = byte, 1 = short, 2 = long) */
2159 0, /* bitsize */
2160 FALSE, /* pc_relative */
2161 0, /* bitpos */
2162 complain_overflow_dont,/* complain_on_overflow */
2163 bfd_elf_generic_reloc, /* special_function */
2164 "R_AARCH64_NONE", /* name */
2165 FALSE, /* partial_inplace */
2166 0, /* src_mask */
2167 0, /* dst_mask */
2168 FALSE); /* pcrel_offset */
2169
2170 /* Given HOWTO, return the bfd internal relocation enumerator. */
2171
2172 static bfd_reloc_code_real_type
2173 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2174 {
2175 const int size
2176 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2177 const ptrdiff_t offset
2178 = howto - elfNN_aarch64_howto_table;
2179
2180 if (offset > 0 && offset < size - 1)
2181 return BFD_RELOC_AARCH64_RELOC_START + offset;
2182
2183 if (howto == &elfNN_aarch64_howto_none)
2184 return BFD_RELOC_AARCH64_NONE;
2185
2186 return BFD_RELOC_AARCH64_RELOC_START;
2187 }
2188
2189 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2190
2191 static bfd_reloc_code_real_type
2192 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2193 {
2194 static bfd_boolean initialized_p = FALSE;
2195 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2196 static unsigned int offsets[R_AARCH64_end];
2197
2198 if (!initialized_p)
2199 {
2200 unsigned int i;
2201
2202 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2203 if (elfNN_aarch64_howto_table[i].type != 0)
2204 offsets[elfNN_aarch64_howto_table[i].type] = i;
2205
2206 initialized_p = TRUE;
2207 }
2208
2209 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2210 return BFD_RELOC_AARCH64_NONE;
2211
2212 /* PR 17512: file: b371e70a. */
2213 if (r_type >= R_AARCH64_end)
2214 {
2215 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2216 abfd, r_type);
2217 bfd_set_error (bfd_error_bad_value);
2218 return BFD_RELOC_AARCH64_NONE;
2219 }
2220
2221 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2222 }
2223
2224 struct elf_aarch64_reloc_map
2225 {
2226 bfd_reloc_code_real_type from;
2227 bfd_reloc_code_real_type to;
2228 };
2229
2230 /* Map bfd generic reloc to AArch64-specific reloc. */
2231 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2232 {
2233 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2234
2235 /* Basic data relocations. */
2236 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2237 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2238 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2239 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2240 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2241 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2242 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2243 };
2244
2245 /* Given the bfd internal relocation enumerator in CODE, return the
2246 corresponding howto entry. */
2247
2248 static reloc_howto_type *
2249 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2250 {
2251 unsigned int i;
2252
2253 /* Convert bfd generic reloc to AArch64-specific reloc. */
2254 if (code < BFD_RELOC_AARCH64_RELOC_START
2255 || code > BFD_RELOC_AARCH64_RELOC_END)
2256 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2257 if (elf_aarch64_reloc_map[i].from == code)
2258 {
2259 code = elf_aarch64_reloc_map[i].to;
2260 break;
2261 }
2262
2263 if (code > BFD_RELOC_AARCH64_RELOC_START
2264 && code < BFD_RELOC_AARCH64_RELOC_END)
2265 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2266 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2267
2268 if (code == BFD_RELOC_AARCH64_NONE)
2269 return &elfNN_aarch64_howto_none;
2270
2271 return NULL;
2272 }
2273
2274 static reloc_howto_type *
2275 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2276 {
2277 bfd_reloc_code_real_type val;
2278 reloc_howto_type *howto;
2279
2280 #if ARCH_SIZE == 32
2281 if (r_type > 256)
2282 {
2283 bfd_set_error (bfd_error_bad_value);
2284 return NULL;
2285 }
2286 #endif
2287
2288 if (r_type == R_AARCH64_NONE)
2289 return &elfNN_aarch64_howto_none;
2290
2291 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2292 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2293
2294 if (howto != NULL)
2295 return howto;
2296
2297 bfd_set_error (bfd_error_bad_value);
2298 return NULL;
2299 }
2300
2301 static bfd_boolean
2302 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2303 Elf_Internal_Rela *elf_reloc)
2304 {
2305 unsigned int r_type;
2306
2307 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2308 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2309
2310 if (bfd_reloc->howto == NULL)
2311 {
2312 /* xgettext:c-format */
2313 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2314 return FALSE;
2315 }
2316 return TRUE;
2317 }
2318
2319 static reloc_howto_type *
2320 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2321 bfd_reloc_code_real_type code)
2322 {
2323 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2324
2325 if (howto != NULL)
2326 return howto;
2327
2328 bfd_set_error (bfd_error_bad_value);
2329 return NULL;
2330 }
2331
2332 static reloc_howto_type *
2333 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2334 const char *r_name)
2335 {
2336 unsigned int i;
2337
2338 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2339 if (elfNN_aarch64_howto_table[i].name != NULL
2340 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2341 return &elfNN_aarch64_howto_table[i];
2342
2343 return NULL;
2344 }
2345
2346 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2347 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2348 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2349 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2350
2351 /* The linker script knows the section names for placement.
2352 The entry_names are used to do simple name mangling on the stubs.
2353 Given a function name, and its type, the stub can be found. The
2354 name can be changed. The only requirement is the %s be present. */
2355 #define STUB_ENTRY_NAME "__%s_veneer"
2356
2357 /* The name of the dynamic interpreter. This is put in the .interp
2358 section. */
2359 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2360
2361 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2362 (((1 << 25) - 1) << 2)
2363 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2364 (-((1 << 25) << 2))
2365
2366 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2367 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2368
2369 static int
2370 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2371 {
2372 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2373 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2374 }
2375
2376 static int
2377 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2378 {
2379 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2380 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2381 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2382 }
2383
2384 static const uint32_t aarch64_adrp_branch_stub [] =
2385 {
2386 0x90000010, /* adrp ip0, X */
2387 /* R_AARCH64_ADR_HI21_PCREL(X) */
2388 0x91000210, /* add ip0, ip0, :lo12:X */
2389 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2390 0xd61f0200, /* br ip0 */
2391 };
2392
2393 static const uint32_t aarch64_long_branch_stub[] =
2394 {
2395 #if ARCH_SIZE == 64
2396 0x58000090, /* ldr ip0, 1f */
2397 #else
2398 0x18000090, /* ldr wip0, 1f */
2399 #endif
2400 0x10000011, /* adr ip1, #0 */
2401 0x8b110210, /* add ip0, ip0, ip1 */
2402 0xd61f0200, /* br ip0 */
2403 0x00000000, /* 1: .xword or .word
2404 R_AARCH64_PRELNN(X) + 12
2405 */
2406 0x00000000,
2407 };
2408
2409 static const uint32_t aarch64_erratum_835769_stub[] =
2410 {
2411 0x00000000, /* Placeholder for multiply accumulate. */
2412 0x14000000, /* b <label> */
2413 };
2414
2415 static const uint32_t aarch64_erratum_843419_stub[] =
2416 {
2417 0x00000000, /* Placeholder for LDR instruction. */
2418 0x14000000, /* b <label> */
2419 };
2420
2421 /* Section name for stubs is the associated section name plus this
2422 string. */
2423 #define STUB_SUFFIX ".stub"
2424
2425 enum elf_aarch64_stub_type
2426 {
2427 aarch64_stub_none,
2428 aarch64_stub_adrp_branch,
2429 aarch64_stub_long_branch,
2430 aarch64_stub_erratum_835769_veneer,
2431 aarch64_stub_erratum_843419_veneer,
2432 };
2433
2434 struct elf_aarch64_stub_hash_entry
2435 {
2436 /* Base hash table entry structure. */
2437 struct bfd_hash_entry root;
2438
2439 /* The stub section. */
2440 asection *stub_sec;
2441
2442 /* Offset within stub_sec of the beginning of this stub. */
2443 bfd_vma stub_offset;
2444
2445 /* Given the symbol's value and its section we can determine its final
2446 value when building the stubs (so the stub knows where to jump). */
2447 bfd_vma target_value;
2448 asection *target_section;
2449
2450 enum elf_aarch64_stub_type stub_type;
2451
2452 /* The symbol table entry, if any, that this was derived from. */
2453 struct elf_aarch64_link_hash_entry *h;
2454
2455 /* Destination symbol type */
2456 unsigned char st_type;
2457
2458 /* Where this stub is being called from, or, in the case of combined
2459 stub sections, the first input section in the group. */
2460 asection *id_sec;
2461
2462 /* The name for the local symbol at the start of this stub. The
2463 stub name in the hash table has to be unique; this does not, so
2464 it can be friendlier. */
2465 char *output_name;
2466
2467 /* The instruction which caused this stub to be generated (only valid for
2468 erratum 835769 workaround stubs at present). */
2469 uint32_t veneered_insn;
2470
2471 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2472 bfd_vma adrp_offset;
2473 };
2474
2475 /* Used to build a map of a section. This is required for mixed-endian
2476 code/data. */
2477
2478 typedef struct elf_elf_section_map
2479 {
2480 bfd_vma vma;
2481 char type;
2482 }
2483 elf_aarch64_section_map;
2484
2485
2486 typedef struct _aarch64_elf_section_data
2487 {
2488 struct bfd_elf_section_data elf;
2489 unsigned int mapcount;
2490 unsigned int mapsize;
2491 elf_aarch64_section_map *map;
2492 }
2493 _aarch64_elf_section_data;
2494
2495 #define elf_aarch64_section_data(sec) \
2496 ((_aarch64_elf_section_data *) elf_section_data (sec))
2497
2498 /* The size of the thread control block which is defined to be two pointers. */
2499 #define TCB_SIZE (ARCH_SIZE/8)*2
2500
2501 struct elf_aarch64_local_symbol
2502 {
2503 unsigned int got_type;
2504 bfd_signed_vma got_refcount;
2505 bfd_vma got_offset;
2506
2507 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2508 offset is from the end of the jump table and reserved entries
2509 within the PLTGOT.
2510
2511 The magic value (bfd_vma) -1 indicates that an offset has not be
2512 allocated. */
2513 bfd_vma tlsdesc_got_jump_table_offset;
2514 };
2515
2516 struct elf_aarch64_obj_tdata
2517 {
2518 struct elf_obj_tdata root;
2519
2520 /* local symbol descriptors */
2521 struct elf_aarch64_local_symbol *locals;
2522
2523 /* Zero to warn when linking objects with incompatible enum sizes. */
2524 int no_enum_size_warning;
2525
2526 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2527 int no_wchar_size_warning;
2528
2529 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2530 uint32_t gnu_and_prop;
2531
2532 /* Zero to warn when linking objects with incompatible
2533 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2534 int no_bti_warn;
2535
2536 /* PLT type based on security. */
2537 aarch64_plt_type plt_type;
2538 };
2539
2540 #define elf_aarch64_tdata(bfd) \
2541 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2542
2543 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2544
2545 #define is_aarch64_elf(bfd) \
2546 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2547 && elf_tdata (bfd) != NULL \
2548 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2549
2550 static bfd_boolean
2551 elfNN_aarch64_mkobject (bfd *abfd)
2552 {
2553 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2554 AARCH64_ELF_DATA);
2555 }
2556
2557 #define elf_aarch64_hash_entry(ent) \
2558 ((struct elf_aarch64_link_hash_entry *)(ent))
2559
2560 #define GOT_UNKNOWN 0
2561 #define GOT_NORMAL 1
2562 #define GOT_TLS_GD 2
2563 #define GOT_TLS_IE 4
2564 #define GOT_TLSDESC_GD 8
2565
2566 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2567
2568 /* AArch64 ELF linker hash entry. */
2569 struct elf_aarch64_link_hash_entry
2570 {
2571 struct elf_link_hash_entry root;
2572
2573 /* Track dynamic relocs copied for this symbol. */
2574 struct elf_dyn_relocs *dyn_relocs;
2575
2576 /* Since PLT entries have variable size, we need to record the
2577 index into .got.plt instead of recomputing it from the PLT
2578 offset. */
2579 bfd_signed_vma plt_got_offset;
2580
2581 /* Bit mask representing the type of GOT entry(s) if any required by
2582 this symbol. */
2583 unsigned int got_type;
2584
2585 /* A pointer to the most recently used stub hash entry against this
2586 symbol. */
2587 struct elf_aarch64_stub_hash_entry *stub_cache;
2588
2589 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2590 is from the end of the jump table and reserved entries within the PLTGOT.
2591
2592 The magic value (bfd_vma) -1 indicates that an offset has not
2593 be allocated. */
2594 bfd_vma tlsdesc_got_jump_table_offset;
2595 };
2596
2597 static unsigned int
2598 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2599 bfd *abfd,
2600 unsigned long r_symndx)
2601 {
2602 if (h)
2603 return elf_aarch64_hash_entry (h)->got_type;
2604
2605 if (! elf_aarch64_locals (abfd))
2606 return GOT_UNKNOWN;
2607
2608 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2609 }
2610
2611 /* Get the AArch64 elf linker hash table from a link_info structure. */
2612 #define elf_aarch64_hash_table(info) \
2613 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2614
2615 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2616 ((struct elf_aarch64_stub_hash_entry *) \
2617 bfd_hash_lookup ((table), (string), (create), (copy)))
2618
2619 /* AArch64 ELF linker hash table. */
2620 struct elf_aarch64_link_hash_table
2621 {
2622 /* The main hash table. */
2623 struct elf_link_hash_table root;
2624
2625 /* Nonzero to force PIC branch veneers. */
2626 int pic_veneer;
2627
2628 /* Fix erratum 835769. */
2629 int fix_erratum_835769;
2630
2631 /* Fix erratum 843419. */
2632 erratum_84319_opts fix_erratum_843419;
2633
2634 /* Don't apply link-time values for dynamic relocations. */
2635 int no_apply_dynamic_relocs;
2636
2637 /* The number of bytes in the initial entry in the PLT. */
2638 bfd_size_type plt_header_size;
2639
2640 /* The bytes of the initial PLT entry. */
2641 const bfd_byte *plt0_entry;
2642
2643 /* The number of bytes in the subsequent PLT entries. */
2644 bfd_size_type plt_entry_size;
2645
2646 /* The bytes of the subsequent PLT entry. */
2647 const bfd_byte *plt_entry;
2648
2649 /* Small local sym cache. */
2650 struct sym_cache sym_cache;
2651
2652 /* For convenience in allocate_dynrelocs. */
2653 bfd *obfd;
2654
2655 /* The amount of space used by the reserved portion of the sgotplt
2656 section, plus whatever space is used by the jump slots. */
2657 bfd_vma sgotplt_jump_table_size;
2658
2659 /* The stub hash table. */
2660 struct bfd_hash_table stub_hash_table;
2661
2662 /* Linker stub bfd. */
2663 bfd *stub_bfd;
2664
2665 /* Linker call-backs. */
2666 asection *(*add_stub_section) (const char *, asection *);
2667 void (*layout_sections_again) (void);
2668
2669 /* Array to keep track of which stub sections have been created, and
2670 information on stub grouping. */
2671 struct map_stub
2672 {
2673 /* This is the section to which stubs in the group will be
2674 attached. */
2675 asection *link_sec;
2676 /* The stub section. */
2677 asection *stub_sec;
2678 } *stub_group;
2679
2680 /* Assorted information used by elfNN_aarch64_size_stubs. */
2681 unsigned int bfd_count;
2682 unsigned int top_index;
2683 asection **input_list;
2684
2685 /* JUMP_SLOT relocs for variant PCS symbols may be present. */
2686 int variant_pcs;
2687
2688 /* The offset into splt of the PLT entry for the TLS descriptor
2689 resolver. Special values are 0, if not necessary (or not found
2690 to be necessary yet), and -1 if needed but not determined
2691 yet. */
2692 bfd_vma tlsdesc_plt;
2693
2694 /* The number of bytes in the PLT enty for the TLS descriptor. */
2695 bfd_size_type tlsdesc_plt_entry_size;
2696
2697 /* The GOT offset for the lazy trampoline. Communicated to the
2698 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2699 indicates an offset is not allocated. */
2700 bfd_vma dt_tlsdesc_got;
2701
2702 /* Used by local STT_GNU_IFUNC symbols. */
2703 htab_t loc_hash_table;
2704 void * loc_hash_memory;
2705 };
2706
2707 /* Create an entry in an AArch64 ELF linker hash table. */
2708
2709 static struct bfd_hash_entry *
2710 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2711 struct bfd_hash_table *table,
2712 const char *string)
2713 {
2714 struct elf_aarch64_link_hash_entry *ret =
2715 (struct elf_aarch64_link_hash_entry *) entry;
2716
2717 /* Allocate the structure if it has not already been allocated by a
2718 subclass. */
2719 if (ret == NULL)
2720 ret = bfd_hash_allocate (table,
2721 sizeof (struct elf_aarch64_link_hash_entry));
2722 if (ret == NULL)
2723 return (struct bfd_hash_entry *) ret;
2724
2725 /* Call the allocation method of the superclass. */
2726 ret = ((struct elf_aarch64_link_hash_entry *)
2727 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2728 table, string));
2729 if (ret != NULL)
2730 {
2731 ret->dyn_relocs = NULL;
2732 ret->got_type = GOT_UNKNOWN;
2733 ret->plt_got_offset = (bfd_vma) - 1;
2734 ret->stub_cache = NULL;
2735 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2736 }
2737
2738 return (struct bfd_hash_entry *) ret;
2739 }
2740
2741 /* Initialize an entry in the stub hash table. */
2742
2743 static struct bfd_hash_entry *
2744 stub_hash_newfunc (struct bfd_hash_entry *entry,
2745 struct bfd_hash_table *table, const char *string)
2746 {
2747 /* Allocate the structure if it has not already been allocated by a
2748 subclass. */
2749 if (entry == NULL)
2750 {
2751 entry = bfd_hash_allocate (table,
2752 sizeof (struct
2753 elf_aarch64_stub_hash_entry));
2754 if (entry == NULL)
2755 return entry;
2756 }
2757
2758 /* Call the allocation method of the superclass. */
2759 entry = bfd_hash_newfunc (entry, table, string);
2760 if (entry != NULL)
2761 {
2762 struct elf_aarch64_stub_hash_entry *eh;
2763
2764 /* Initialize the local fields. */
2765 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2766 eh->adrp_offset = 0;
2767 eh->stub_sec = NULL;
2768 eh->stub_offset = 0;
2769 eh->target_value = 0;
2770 eh->target_section = NULL;
2771 eh->stub_type = aarch64_stub_none;
2772 eh->h = NULL;
2773 eh->id_sec = NULL;
2774 }
2775
2776 return entry;
2777 }
2778
2779 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2780 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2781 as global symbol. We reuse indx and dynstr_index for local symbol
2782 hash since they aren't used by global symbols in this backend. */
2783
2784 static hashval_t
2785 elfNN_aarch64_local_htab_hash (const void *ptr)
2786 {
2787 struct elf_link_hash_entry *h
2788 = (struct elf_link_hash_entry *) ptr;
2789 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2790 }
2791
2792 /* Compare local hash entries. */
2793
2794 static int
2795 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2796 {
2797 struct elf_link_hash_entry *h1
2798 = (struct elf_link_hash_entry *) ptr1;
2799 struct elf_link_hash_entry *h2
2800 = (struct elf_link_hash_entry *) ptr2;
2801
2802 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2803 }
2804
2805 /* Find and/or create a hash entry for local symbol. */
2806
2807 static struct elf_link_hash_entry *
2808 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2809 bfd *abfd, const Elf_Internal_Rela *rel,
2810 bfd_boolean create)
2811 {
2812 struct elf_aarch64_link_hash_entry e, *ret;
2813 asection *sec = abfd->sections;
2814 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2815 ELFNN_R_SYM (rel->r_info));
2816 void **slot;
2817
2818 e.root.indx = sec->id;
2819 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2820 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2821 create ? INSERT : NO_INSERT);
2822
2823 if (!slot)
2824 return NULL;
2825
2826 if (*slot)
2827 {
2828 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2829 return &ret->root;
2830 }
2831
2832 ret = (struct elf_aarch64_link_hash_entry *)
2833 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2834 sizeof (struct elf_aarch64_link_hash_entry));
2835 if (ret)
2836 {
2837 memset (ret, 0, sizeof (*ret));
2838 ret->root.indx = sec->id;
2839 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2840 ret->root.dynindx = -1;
2841 *slot = ret;
2842 }
2843 return &ret->root;
2844 }
2845
2846 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2847
2848 static void
2849 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2850 struct elf_link_hash_entry *dir,
2851 struct elf_link_hash_entry *ind)
2852 {
2853 struct elf_aarch64_link_hash_entry *edir, *eind;
2854
2855 edir = (struct elf_aarch64_link_hash_entry *) dir;
2856 eind = (struct elf_aarch64_link_hash_entry *) ind;
2857
2858 if (eind->dyn_relocs != NULL)
2859 {
2860 if (edir->dyn_relocs != NULL)
2861 {
2862 struct elf_dyn_relocs **pp;
2863 struct elf_dyn_relocs *p;
2864
2865 /* Add reloc counts against the indirect sym to the direct sym
2866 list. Merge any entries against the same section. */
2867 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2868 {
2869 struct elf_dyn_relocs *q;
2870
2871 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2872 if (q->sec == p->sec)
2873 {
2874 q->pc_count += p->pc_count;
2875 q->count += p->count;
2876 *pp = p->next;
2877 break;
2878 }
2879 if (q == NULL)
2880 pp = &p->next;
2881 }
2882 *pp = edir->dyn_relocs;
2883 }
2884
2885 edir->dyn_relocs = eind->dyn_relocs;
2886 eind->dyn_relocs = NULL;
2887 }
2888
2889 if (ind->root.type == bfd_link_hash_indirect)
2890 {
2891 /* Copy over PLT info. */
2892 if (dir->got.refcount <= 0)
2893 {
2894 edir->got_type = eind->got_type;
2895 eind->got_type = GOT_UNKNOWN;
2896 }
2897 }
2898
2899 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2900 }
2901
2902 /* Merge non-visibility st_other attributes. */
2903
2904 static void
2905 elfNN_aarch64_merge_symbol_attribute (struct elf_link_hash_entry *h,
2906 const Elf_Internal_Sym *isym,
2907 bfd_boolean definition ATTRIBUTE_UNUSED,
2908 bfd_boolean dynamic ATTRIBUTE_UNUSED)
2909 {
2910 unsigned int isym_sto = isym->st_other & ~ELF_ST_VISIBILITY (-1);
2911 unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1);
2912
2913 if (isym_sto == h_sto)
2914 return;
2915
2916 if (isym_sto & ~STO_AARCH64_VARIANT_PCS)
2917 /* Not fatal, this callback cannot fail. */
2918 _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
2919 h->root.root.string, isym_sto);
2920
2921 /* Note: Ideally we would warn about any attribute mismatch, but
2922 this api does not allow that without substantial changes. */
2923 if (isym_sto & STO_AARCH64_VARIANT_PCS)
2924 h->other |= STO_AARCH64_VARIANT_PCS;
2925 }
2926
2927 /* Destroy an AArch64 elf linker hash table. */
2928
2929 static void
2930 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2931 {
2932 struct elf_aarch64_link_hash_table *ret
2933 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2934
2935 if (ret->loc_hash_table)
2936 htab_delete (ret->loc_hash_table);
2937 if (ret->loc_hash_memory)
2938 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2939
2940 bfd_hash_table_free (&ret->stub_hash_table);
2941 _bfd_elf_link_hash_table_free (obfd);
2942 }
2943
2944 /* Create an AArch64 elf linker hash table. */
2945
2946 static struct bfd_link_hash_table *
2947 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2948 {
2949 struct elf_aarch64_link_hash_table *ret;
2950 size_t amt = sizeof (struct elf_aarch64_link_hash_table);
2951
2952 ret = bfd_zmalloc (amt);
2953 if (ret == NULL)
2954 return NULL;
2955
2956 if (!_bfd_elf_link_hash_table_init
2957 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2958 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2959 {
2960 free (ret);
2961 return NULL;
2962 }
2963
2964 ret->plt_header_size = PLT_ENTRY_SIZE;
2965 ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2966 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2967 ret->plt_entry = elfNN_aarch64_small_plt_entry;
2968 ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2969 ret->obfd = abfd;
2970 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2971
2972 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2973 sizeof (struct elf_aarch64_stub_hash_entry)))
2974 {
2975 _bfd_elf_link_hash_table_free (abfd);
2976 return NULL;
2977 }
2978
2979 ret->loc_hash_table = htab_try_create (1024,
2980 elfNN_aarch64_local_htab_hash,
2981 elfNN_aarch64_local_htab_eq,
2982 NULL);
2983 ret->loc_hash_memory = objalloc_create ();
2984 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2985 {
2986 elfNN_aarch64_link_hash_table_free (abfd);
2987 return NULL;
2988 }
2989 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2990
2991 return &ret->root.root;
2992 }
2993
2994 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2995
2996 static bfd_boolean
2997 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2998 bfd_vma offset, bfd_vma value)
2999 {
3000 reloc_howto_type *howto;
3001 bfd_vma place;
3002
3003 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
3004 place = (input_section->output_section->vma + input_section->output_offset
3005 + offset);
3006
3007 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
3008 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, r_type, place,
3009 value, 0, FALSE);
3010 return _bfd_aarch64_elf_put_addend (input_bfd,
3011 input_section->contents + offset, r_type,
3012 howto, value) == bfd_reloc_ok;
3013 }
3014
3015 static enum elf_aarch64_stub_type
3016 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
3017 {
3018 if (aarch64_valid_for_adrp_p (value, place))
3019 return aarch64_stub_adrp_branch;
3020 return aarch64_stub_long_branch;
3021 }
3022
3023 /* Determine the type of stub needed, if any, for a call. */
3024
3025 static enum elf_aarch64_stub_type
3026 aarch64_type_of_stub (asection *input_sec,
3027 const Elf_Internal_Rela *rel,
3028 asection *sym_sec,
3029 unsigned char st_type,
3030 bfd_vma destination)
3031 {
3032 bfd_vma location;
3033 bfd_signed_vma branch_offset;
3034 unsigned int r_type;
3035 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
3036
3037 if (st_type != STT_FUNC
3038 && (sym_sec == input_sec))
3039 return stub_type;
3040
3041 /* Determine where the call point is. */
3042 location = (input_sec->output_offset
3043 + input_sec->output_section->vma + rel->r_offset);
3044
3045 branch_offset = (bfd_signed_vma) (destination - location);
3046
3047 r_type = ELFNN_R_TYPE (rel->r_info);
3048
3049 /* We don't want to redirect any old unconditional jump in this way,
3050 only one which is being used for a sibcall, where it is
3051 acceptable for the IP0 and IP1 registers to be clobbered. */
3052 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
3053 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
3054 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
3055 {
3056 stub_type = aarch64_stub_long_branch;
3057 }
3058
3059 return stub_type;
3060 }
3061
3062 /* Build a name for an entry in the stub hash table. */
3063
3064 static char *
3065 elfNN_aarch64_stub_name (const asection *input_section,
3066 const asection *sym_sec,
3067 const struct elf_aarch64_link_hash_entry *hash,
3068 const Elf_Internal_Rela *rel)
3069 {
3070 char *stub_name;
3071 bfd_size_type len;
3072
3073 if (hash)
3074 {
3075 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3076 stub_name = bfd_malloc (len);
3077 if (stub_name != NULL)
3078 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3079 (unsigned int) input_section->id,
3080 hash->root.root.root.string,
3081 rel->r_addend);
3082 }
3083 else
3084 {
3085 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3086 stub_name = bfd_malloc (len);
3087 if (stub_name != NULL)
3088 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3089 (unsigned int) input_section->id,
3090 (unsigned int) sym_sec->id,
3091 (unsigned int) ELFNN_R_SYM (rel->r_info),
3092 rel->r_addend);
3093 }
3094
3095 return stub_name;
3096 }
3097
3098 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3099 executable PLT slots where the executable never takes the address of those
3100 functions, the function symbols are not added to the hash table. */
3101
3102 static bfd_boolean
3103 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3104 {
3105 if (h->plt.offset != (bfd_vma) -1
3106 && !h->def_regular
3107 && !h->pointer_equality_needed)
3108 return FALSE;
3109
3110 return _bfd_elf_hash_symbol (h);
3111 }
3112
3113
3114 /* Look up an entry in the stub hash. Stub entries are cached because
3115 creating the stub name takes a bit of time. */
3116
3117 static struct elf_aarch64_stub_hash_entry *
3118 elfNN_aarch64_get_stub_entry (const asection *input_section,
3119 const asection *sym_sec,
3120 struct elf_link_hash_entry *hash,
3121 const Elf_Internal_Rela *rel,
3122 struct elf_aarch64_link_hash_table *htab)
3123 {
3124 struct elf_aarch64_stub_hash_entry *stub_entry;
3125 struct elf_aarch64_link_hash_entry *h =
3126 (struct elf_aarch64_link_hash_entry *) hash;
3127 const asection *id_sec;
3128
3129 if ((input_section->flags & SEC_CODE) == 0)
3130 return NULL;
3131
3132 /* If this input section is part of a group of sections sharing one
3133 stub section, then use the id of the first section in the group.
3134 Stub names need to include a section id, as there may well be
3135 more than one stub used to reach say, printf, and we need to
3136 distinguish between them. */
3137 id_sec = htab->stub_group[input_section->id].link_sec;
3138
3139 if (h != NULL && h->stub_cache != NULL
3140 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3141 {
3142 stub_entry = h->stub_cache;
3143 }
3144 else
3145 {
3146 char *stub_name;
3147
3148 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3149 if (stub_name == NULL)
3150 return NULL;
3151
3152 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3153 stub_name, FALSE, FALSE);
3154 if (h != NULL)
3155 h->stub_cache = stub_entry;
3156
3157 free (stub_name);
3158 }
3159
3160 return stub_entry;
3161 }
3162
3163
3164 /* Create a stub section. */
3165
3166 static asection *
3167 _bfd_aarch64_create_stub_section (asection *section,
3168 struct elf_aarch64_link_hash_table *htab)
3169 {
3170 size_t namelen;
3171 bfd_size_type len;
3172 char *s_name;
3173
3174 namelen = strlen (section->name);
3175 len = namelen + sizeof (STUB_SUFFIX);
3176 s_name = bfd_alloc (htab->stub_bfd, len);
3177 if (s_name == NULL)
3178 return NULL;
3179
3180 memcpy (s_name, section->name, namelen);
3181 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3182 return (*htab->add_stub_section) (s_name, section);
3183 }
3184
3185
3186 /* Find or create a stub section for a link section.
3187
3188 Fix or create the stub section used to collect stubs attached to
3189 the specified link section. */
3190
3191 static asection *
3192 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3193 struct elf_aarch64_link_hash_table *htab)
3194 {
3195 if (htab->stub_group[link_section->id].stub_sec == NULL)
3196 htab->stub_group[link_section->id].stub_sec
3197 = _bfd_aarch64_create_stub_section (link_section, htab);
3198 return htab->stub_group[link_section->id].stub_sec;
3199 }
3200
3201
3202 /* Find or create a stub section in the stub group for an input
3203 section. */
3204
3205 static asection *
3206 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3207 struct elf_aarch64_link_hash_table *htab)
3208 {
3209 asection *link_sec = htab->stub_group[section->id].link_sec;
3210 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3211 }
3212
3213
3214 /* Add a new stub entry in the stub group associated with an input
3215 section to the stub hash. Not all fields of the new stub entry are
3216 initialised. */
3217
3218 static struct elf_aarch64_stub_hash_entry *
3219 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3220 asection *section,
3221 struct elf_aarch64_link_hash_table *htab)
3222 {
3223 asection *link_sec;
3224 asection *stub_sec;
3225 struct elf_aarch64_stub_hash_entry *stub_entry;
3226
3227 link_sec = htab->stub_group[section->id].link_sec;
3228 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3229
3230 /* Enter this entry into the linker stub hash table. */
3231 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3232 TRUE, FALSE);
3233 if (stub_entry == NULL)
3234 {
3235 /* xgettext:c-format */
3236 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3237 section->owner, stub_name);
3238 return NULL;
3239 }
3240
3241 stub_entry->stub_sec = stub_sec;
3242 stub_entry->stub_offset = 0;
3243 stub_entry->id_sec = link_sec;
3244
3245 return stub_entry;
3246 }
3247
3248 /* Add a new stub entry in the final stub section to the stub hash.
3249 Not all fields of the new stub entry are initialised. */
3250
3251 static struct elf_aarch64_stub_hash_entry *
3252 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3253 asection *link_section,
3254 struct elf_aarch64_link_hash_table *htab)
3255 {
3256 asection *stub_sec;
3257 struct elf_aarch64_stub_hash_entry *stub_entry;
3258
3259 stub_sec = NULL;
3260 /* Only create the actual stub if we will end up needing it. */
3261 if (htab->fix_erratum_843419 & ERRAT_ADRP)
3262 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3263 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3264 TRUE, FALSE);
3265 if (stub_entry == NULL)
3266 {
3267 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3268 return NULL;
3269 }
3270
3271 stub_entry->stub_sec = stub_sec;
3272 stub_entry->stub_offset = 0;
3273 stub_entry->id_sec = link_section;
3274
3275 return stub_entry;
3276 }
3277
3278
3279 static bfd_boolean
3280 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3281 void *in_arg)
3282 {
3283 struct elf_aarch64_stub_hash_entry *stub_entry;
3284 asection *stub_sec;
3285 bfd *stub_bfd;
3286 bfd_byte *loc;
3287 bfd_vma sym_value;
3288 bfd_vma veneered_insn_loc;
3289 bfd_vma veneer_entry_loc;
3290 bfd_signed_vma branch_offset = 0;
3291 unsigned int template_size;
3292 const uint32_t *template;
3293 unsigned int i;
3294 struct bfd_link_info *info;
3295
3296 /* Massage our args to the form they really have. */
3297 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3298
3299 info = (struct bfd_link_info *) in_arg;
3300
3301 /* Fail if the target section could not be assigned to an output
3302 section. The user should fix his linker script. */
3303 if (stub_entry->target_section->output_section == NULL
3304 && info->non_contiguous_regions)
3305 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
3306 "Retry without "
3307 "--enable-non-contiguous-regions.\n"),
3308 stub_entry->target_section);
3309
3310 stub_sec = stub_entry->stub_sec;
3311
3312 /* Make a note of the offset within the stubs for this entry. */
3313 stub_entry->stub_offset = stub_sec->size;
3314 loc = stub_sec->contents + stub_entry->stub_offset;
3315
3316 stub_bfd = stub_sec->owner;
3317
3318 /* This is the address of the stub destination. */
3319 sym_value = (stub_entry->target_value
3320 + stub_entry->target_section->output_offset
3321 + stub_entry->target_section->output_section->vma);
3322
3323 if (stub_entry->stub_type == aarch64_stub_long_branch)
3324 {
3325 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3326 + stub_sec->output_offset);
3327
3328 /* See if we can relax the stub. */
3329 if (aarch64_valid_for_adrp_p (sym_value, place))
3330 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3331 }
3332
3333 switch (stub_entry->stub_type)
3334 {
3335 case aarch64_stub_adrp_branch:
3336 template = aarch64_adrp_branch_stub;
3337 template_size = sizeof (aarch64_adrp_branch_stub);
3338 break;
3339 case aarch64_stub_long_branch:
3340 template = aarch64_long_branch_stub;
3341 template_size = sizeof (aarch64_long_branch_stub);
3342 break;
3343 case aarch64_stub_erratum_835769_veneer:
3344 template = aarch64_erratum_835769_stub;
3345 template_size = sizeof (aarch64_erratum_835769_stub);
3346 break;
3347 case aarch64_stub_erratum_843419_veneer:
3348 template = aarch64_erratum_843419_stub;
3349 template_size = sizeof (aarch64_erratum_843419_stub);
3350 break;
3351 default:
3352 abort ();
3353 }
3354
3355 for (i = 0; i < (template_size / sizeof template[0]); i++)
3356 {
3357 bfd_putl32 (template[i], loc);
3358 loc += 4;
3359 }
3360
3361 template_size = (template_size + 7) & ~7;
3362 stub_sec->size += template_size;
3363
3364 switch (stub_entry->stub_type)
3365 {
3366 case aarch64_stub_adrp_branch:
3367 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3368 stub_entry->stub_offset, sym_value))
3369 /* The stub would not have been relaxed if the offset was out
3370 of range. */
3371 BFD_FAIL ();
3372
3373 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3374 stub_entry->stub_offset + 4, sym_value))
3375 BFD_FAIL ();
3376 break;
3377
3378 case aarch64_stub_long_branch:
3379 /* We want the value relative to the address 12 bytes back from the
3380 value itself. */
3381 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3382 stub_entry->stub_offset + 16, sym_value + 12))
3383 BFD_FAIL ();
3384 break;
3385
3386 case aarch64_stub_erratum_835769_veneer:
3387 veneered_insn_loc = stub_entry->target_section->output_section->vma
3388 + stub_entry->target_section->output_offset
3389 + stub_entry->target_value;
3390 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3391 + stub_entry->stub_sec->output_offset
3392 + stub_entry->stub_offset;
3393 branch_offset = veneered_insn_loc - veneer_entry_loc;
3394 branch_offset >>= 2;
3395 branch_offset &= 0x3ffffff;
3396 bfd_putl32 (stub_entry->veneered_insn,
3397 stub_sec->contents + stub_entry->stub_offset);
3398 bfd_putl32 (template[1] | branch_offset,
3399 stub_sec->contents + stub_entry->stub_offset + 4);
3400 break;
3401
3402 case aarch64_stub_erratum_843419_veneer:
3403 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3404 stub_entry->stub_offset + 4, sym_value + 4))
3405 BFD_FAIL ();
3406 break;
3407
3408 default:
3409 abort ();
3410 }
3411
3412 return TRUE;
3413 }
3414
3415 /* As above, but don't actually build the stub. Just bump offset so
3416 we know stub section sizes. */
3417
3418 static bfd_boolean
3419 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
3420 {
3421 struct elf_aarch64_stub_hash_entry *stub_entry;
3422 struct elf_aarch64_link_hash_table *htab;
3423 int size;
3424
3425 /* Massage our args to the form they really have. */
3426 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3427 htab = (struct elf_aarch64_link_hash_table *) in_arg;
3428
3429 switch (stub_entry->stub_type)
3430 {
3431 case aarch64_stub_adrp_branch:
3432 size = sizeof (aarch64_adrp_branch_stub);
3433 break;
3434 case aarch64_stub_long_branch:
3435 size = sizeof (aarch64_long_branch_stub);
3436 break;
3437 case aarch64_stub_erratum_835769_veneer:
3438 size = sizeof (aarch64_erratum_835769_stub);
3439 break;
3440 case aarch64_stub_erratum_843419_veneer:
3441 {
3442 if (htab->fix_erratum_843419 == ERRAT_ADR)
3443 return TRUE;
3444 size = sizeof (aarch64_erratum_843419_stub);
3445 }
3446 break;
3447 default:
3448 abort ();
3449 }
3450
3451 size = (size + 7) & ~7;
3452 stub_entry->stub_sec->size += size;
3453 return TRUE;
3454 }
3455
3456 /* External entry points for sizing and building linker stubs. */
3457
3458 /* Set up various things so that we can make a list of input sections
3459 for each output section included in the link. Returns -1 on error,
3460 0 when no stubs will be needed, and 1 on success. */
3461
3462 int
3463 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3464 struct bfd_link_info *info)
3465 {
3466 bfd *input_bfd;
3467 unsigned int bfd_count;
3468 unsigned int top_id, top_index;
3469 asection *section;
3470 asection **input_list, **list;
3471 size_t amt;
3472 struct elf_aarch64_link_hash_table *htab =
3473 elf_aarch64_hash_table (info);
3474
3475 if (!is_elf_hash_table (htab))
3476 return 0;
3477
3478 /* Count the number of input BFDs and find the top input section id. */
3479 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3480 input_bfd != NULL; input_bfd = input_bfd->link.next)
3481 {
3482 bfd_count += 1;
3483 for (section = input_bfd->sections;
3484 section != NULL; section = section->next)
3485 {
3486 if (top_id < section->id)
3487 top_id = section->id;
3488 }
3489 }
3490 htab->bfd_count = bfd_count;
3491
3492 amt = sizeof (struct map_stub) * (top_id + 1);
3493 htab->stub_group = bfd_zmalloc (amt);
3494 if (htab->stub_group == NULL)
3495 return -1;
3496
3497 /* We can't use output_bfd->section_count here to find the top output
3498 section index as some sections may have been removed, and
3499 _bfd_strip_section_from_output doesn't renumber the indices. */
3500 for (section = output_bfd->sections, top_index = 0;
3501 section != NULL; section = section->next)
3502 {
3503 if (top_index < section->index)
3504 top_index = section->index;
3505 }
3506
3507 htab->top_index = top_index;
3508 amt = sizeof (asection *) * (top_index + 1);
3509 input_list = bfd_malloc (amt);
3510 htab->input_list = input_list;
3511 if (input_list == NULL)
3512 return -1;
3513
3514 /* For sections we aren't interested in, mark their entries with a
3515 value we can check later. */
3516 list = input_list + top_index;
3517 do
3518 *list = bfd_abs_section_ptr;
3519 while (list-- != input_list);
3520
3521 for (section = output_bfd->sections;
3522 section != NULL; section = section->next)
3523 {
3524 if ((section->flags & SEC_CODE) != 0)
3525 input_list[section->index] = NULL;
3526 }
3527
3528 return 1;
3529 }
3530
3531 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3532 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3533
3534 /* The linker repeatedly calls this function for each input section,
3535 in the order that input sections are linked into output sections.
3536 Build lists of input sections to determine groupings between which
3537 we may insert linker stubs. */
3538
3539 void
3540 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3541 {
3542 struct elf_aarch64_link_hash_table *htab =
3543 elf_aarch64_hash_table (info);
3544
3545 if (isec->output_section->index <= htab->top_index)
3546 {
3547 asection **list = htab->input_list + isec->output_section->index;
3548
3549 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
3550 {
3551 /* Steal the link_sec pointer for our list. */
3552 /* This happens to make the list in reverse order,
3553 which is what we want. */
3554 PREV_SEC (isec) = *list;
3555 *list = isec;
3556 }
3557 }
3558 }
3559
3560 /* See whether we can group stub sections together. Grouping stub
3561 sections may result in fewer stubs. More importantly, we need to
3562 put all .init* and .fini* stubs at the beginning of the .init or
3563 .fini output sections respectively, because glibc splits the
3564 _init and _fini functions into multiple parts. Putting a stub in
3565 the middle of a function is not a good idea. */
3566
3567 static void
3568 group_sections (struct elf_aarch64_link_hash_table *htab,
3569 bfd_size_type stub_group_size,
3570 bfd_boolean stubs_always_after_branch)
3571 {
3572 asection **list = htab->input_list;
3573
3574 do
3575 {
3576 asection *tail = *list;
3577 asection *head;
3578
3579 if (tail == bfd_abs_section_ptr)
3580 continue;
3581
3582 /* Reverse the list: we must avoid placing stubs at the
3583 beginning of the section because the beginning of the text
3584 section may be required for an interrupt vector in bare metal
3585 code. */
3586 #define NEXT_SEC PREV_SEC
3587 head = NULL;
3588 while (tail != NULL)
3589 {
3590 /* Pop from tail. */
3591 asection *item = tail;
3592 tail = PREV_SEC (item);
3593
3594 /* Push on head. */
3595 NEXT_SEC (item) = head;
3596 head = item;
3597 }
3598
3599 while (head != NULL)
3600 {
3601 asection *curr;
3602 asection *next;
3603 bfd_vma stub_group_start = head->output_offset;
3604 bfd_vma end_of_next;
3605
3606 curr = head;
3607 while (NEXT_SEC (curr) != NULL)
3608 {
3609 next = NEXT_SEC (curr);
3610 end_of_next = next->output_offset + next->size;
3611 if (end_of_next - stub_group_start >= stub_group_size)
3612 /* End of NEXT is too far from start, so stop. */
3613 break;
3614 /* Add NEXT to the group. */
3615 curr = next;
3616 }
3617
3618 /* OK, the size from the start to the start of CURR is less
3619 than stub_group_size and thus can be handled by one stub
3620 section. (Or the head section is itself larger than
3621 stub_group_size, in which case we may be toast.)
3622 We should really be keeping track of the total size of
3623 stubs added here, as stubs contribute to the final output
3624 section size. */
3625 do
3626 {
3627 next = NEXT_SEC (head);
3628 /* Set up this stub group. */
3629 htab->stub_group[head->id].link_sec = curr;
3630 }
3631 while (head != curr && (head = next) != NULL);
3632
3633 /* But wait, there's more! Input sections up to stub_group_size
3634 bytes after the stub section can be handled by it too. */
3635 if (!stubs_always_after_branch)
3636 {
3637 stub_group_start = curr->output_offset + curr->size;
3638
3639 while (next != NULL)
3640 {
3641 end_of_next = next->output_offset + next->size;
3642 if (end_of_next - stub_group_start >= stub_group_size)
3643 /* End of NEXT is too far from stubs, so stop. */
3644 break;
3645 /* Add NEXT to the stub group. */
3646 head = next;
3647 next = NEXT_SEC (head);
3648 htab->stub_group[head->id].link_sec = curr;
3649 }
3650 }
3651 head = next;
3652 }
3653 }
3654 while (list++ != htab->input_list + htab->top_index);
3655
3656 free (htab->input_list);
3657 }
3658
3659 #undef PREV_SEC
3660 #undef PREV_SEC
3661
3662 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3663
3664 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3665 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3666 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3667 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3668 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3669 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3670
3671 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3672 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3673 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3674 #define AARCH64_ZR 0x1f
3675
3676 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3677 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3678
3679 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3680 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3681 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3682 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3683 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3684 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3685 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3686 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3687 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3688 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3689 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3690 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3691 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3692 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3693 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3694 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3695 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3696 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3697
3698 /* Classify an INSN if it is indeed a load/store.
3699
3700 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3701
3702 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3703 is set equal to RT.
3704
3705 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3706
3707 static bfd_boolean
3708 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3709 bfd_boolean *pair, bfd_boolean *load)
3710 {
3711 uint32_t opcode;
3712 unsigned int r;
3713 uint32_t opc = 0;
3714 uint32_t v = 0;
3715 uint32_t opc_v = 0;
3716
3717 /* Bail out quickly if INSN doesn't fall into the load-store
3718 encoding space. */
3719 if (!AARCH64_LDST (insn))
3720 return FALSE;
3721
3722 *pair = FALSE;
3723 *load = FALSE;
3724 if (AARCH64_LDST_EX (insn))
3725 {
3726 *rt = AARCH64_RT (insn);
3727 *rt2 = *rt;
3728 if (AARCH64_BIT (insn, 21) == 1)
3729 {
3730 *pair = TRUE;
3731 *rt2 = AARCH64_RT2 (insn);
3732 }
3733 *load = AARCH64_LD (insn);
3734 return TRUE;
3735 }
3736 else if (AARCH64_LDST_NAP (insn)
3737 || AARCH64_LDSTP_PI (insn)
3738 || AARCH64_LDSTP_O (insn)
3739 || AARCH64_LDSTP_PRE (insn))
3740 {
3741 *pair = TRUE;
3742 *rt = AARCH64_RT (insn);
3743 *rt2 = AARCH64_RT2 (insn);
3744 *load = AARCH64_LD (insn);
3745 return TRUE;
3746 }
3747 else if (AARCH64_LDST_PCREL (insn)
3748 || AARCH64_LDST_UI (insn)
3749 || AARCH64_LDST_PIIMM (insn)
3750 || AARCH64_LDST_U (insn)
3751 || AARCH64_LDST_PREIMM (insn)
3752 || AARCH64_LDST_RO (insn)
3753 || AARCH64_LDST_UIMM (insn))
3754 {
3755 *rt = AARCH64_RT (insn);
3756 *rt2 = *rt;
3757 if (AARCH64_LDST_PCREL (insn))
3758 *load = TRUE;
3759 opc = AARCH64_BITS (insn, 22, 2);
3760 v = AARCH64_BIT (insn, 26);
3761 opc_v = opc | (v << 2);
3762 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3763 || opc_v == 5 || opc_v == 7);
3764 return TRUE;
3765 }
3766 else if (AARCH64_LDST_SIMD_M (insn)
3767 || AARCH64_LDST_SIMD_M_PI (insn))
3768 {
3769 *rt = AARCH64_RT (insn);
3770 *load = AARCH64_BIT (insn, 22);
3771 opcode = (insn >> 12) & 0xf;
3772 switch (opcode)
3773 {
3774 case 0:
3775 case 2:
3776 *rt2 = *rt + 3;
3777 break;
3778
3779 case 4:
3780 case 6:
3781 *rt2 = *rt + 2;
3782 break;
3783
3784 case 7:
3785 *rt2 = *rt;
3786 break;
3787
3788 case 8:
3789 case 10:
3790 *rt2 = *rt + 1;
3791 break;
3792
3793 default:
3794 return FALSE;
3795 }
3796 return TRUE;
3797 }
3798 else if (AARCH64_LDST_SIMD_S (insn)
3799 || AARCH64_LDST_SIMD_S_PI (insn))
3800 {
3801 *rt = AARCH64_RT (insn);
3802 r = (insn >> 21) & 1;
3803 *load = AARCH64_BIT (insn, 22);
3804 opcode = (insn >> 13) & 0x7;
3805 switch (opcode)
3806 {
3807 case 0:
3808 case 2:
3809 case 4:
3810 *rt2 = *rt + r;
3811 break;
3812
3813 case 1:
3814 case 3:
3815 case 5:
3816 *rt2 = *rt + (r == 0 ? 2 : 3);
3817 break;
3818
3819 case 6:
3820 *rt2 = *rt + r;
3821 break;
3822
3823 case 7:
3824 *rt2 = *rt + (r == 0 ? 2 : 3);
3825 break;
3826
3827 default:
3828 return FALSE;
3829 }
3830 return TRUE;
3831 }
3832
3833 return FALSE;
3834 }
3835
3836 /* Return TRUE if INSN is multiply-accumulate. */
3837
3838 static bfd_boolean
3839 aarch64_mlxl_p (uint32_t insn)
3840 {
3841 uint32_t op31 = AARCH64_OP31 (insn);
3842
3843 if (AARCH64_MAC (insn)
3844 && (op31 == 0 || op31 == 1 || op31 == 5)
3845 /* Exclude MUL instructions which are encoded as a multiple accumulate
3846 with RA = XZR. */
3847 && AARCH64_RA (insn) != AARCH64_ZR)
3848 return TRUE;
3849
3850 return FALSE;
3851 }
3852
3853 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3854 it is possible for a 64-bit multiply-accumulate instruction to generate an
3855 incorrect result. The details are quite complex and hard to
3856 determine statically, since branches in the code may exist in some
3857 circumstances, but all cases end with a memory (load, store, or
3858 prefetch) instruction followed immediately by the multiply-accumulate
3859 operation. We employ a linker patching technique, by moving the potentially
3860 affected multiply-accumulate instruction into a patch region and replacing
3861 the original instruction with a branch to the patch. This function checks
3862 if INSN_1 is the memory operation followed by a multiply-accumulate
3863 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3864 if INSN_1 and INSN_2 are safe. */
3865
3866 static bfd_boolean
3867 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3868 {
3869 uint32_t rt;
3870 uint32_t rt2;
3871 uint32_t rn;
3872 uint32_t rm;
3873 uint32_t ra;
3874 bfd_boolean pair;
3875 bfd_boolean load;
3876
3877 if (aarch64_mlxl_p (insn_2)
3878 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3879 {
3880 /* Any SIMD memory op is independent of the subsequent MLA
3881 by definition of the erratum. */
3882 if (AARCH64_BIT (insn_1, 26))
3883 return TRUE;
3884
3885 /* If not SIMD, check for integer memory ops and MLA relationship. */
3886 rn = AARCH64_RN (insn_2);
3887 ra = AARCH64_RA (insn_2);
3888 rm = AARCH64_RM (insn_2);
3889
3890 /* If this is a load and there's a true(RAW) dependency, we are safe
3891 and this is not an erratum sequence. */
3892 if (load &&
3893 (rt == rn || rt == rm || rt == ra
3894 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3895 return FALSE;
3896
3897 /* We conservatively put out stubs for all other cases (including
3898 writebacks). */
3899 return TRUE;
3900 }
3901
3902 return FALSE;
3903 }
3904
3905 /* Used to order a list of mapping symbols by address. */
3906
3907 static int
3908 elf_aarch64_compare_mapping (const void *a, const void *b)
3909 {
3910 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3911 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3912
3913 if (amap->vma > bmap->vma)
3914 return 1;
3915 else if (amap->vma < bmap->vma)
3916 return -1;
3917 else if (amap->type > bmap->type)
3918 /* Ensure results do not depend on the host qsort for objects with
3919 multiple mapping symbols at the same address by sorting on type
3920 after vma. */
3921 return 1;
3922 else if (amap->type < bmap->type)
3923 return -1;
3924 else
3925 return 0;
3926 }
3927
3928
3929 static char *
3930 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3931 {
3932 char *stub_name = (char *) bfd_malloc
3933 (strlen ("__erratum_835769_veneer_") + 16);
3934 if (stub_name != NULL)
3935 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3936 return stub_name;
3937 }
3938
3939 /* Scan for Cortex-A53 erratum 835769 sequence.
3940
3941 Return TRUE else FALSE on abnormal termination. */
3942
3943 static bfd_boolean
3944 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3945 struct bfd_link_info *info,
3946 unsigned int *num_fixes_p)
3947 {
3948 asection *section;
3949 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3950 unsigned int num_fixes = *num_fixes_p;
3951
3952 if (htab == NULL)
3953 return TRUE;
3954
3955 for (section = input_bfd->sections;
3956 section != NULL;
3957 section = section->next)
3958 {
3959 bfd_byte *contents = NULL;
3960 struct _aarch64_elf_section_data *sec_data;
3961 unsigned int span;
3962
3963 if (elf_section_type (section) != SHT_PROGBITS
3964 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3965 || (section->flags & SEC_EXCLUDE) != 0
3966 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3967 || (section->output_section == bfd_abs_section_ptr))
3968 continue;
3969
3970 if (elf_section_data (section)->this_hdr.contents != NULL)
3971 contents = elf_section_data (section)->this_hdr.contents;
3972 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3973 return FALSE;
3974
3975 sec_data = elf_aarch64_section_data (section);
3976
3977 qsort (sec_data->map, sec_data->mapcount,
3978 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3979
3980 for (span = 0; span < sec_data->mapcount; span++)
3981 {
3982 unsigned int span_start = sec_data->map[span].vma;
3983 unsigned int span_end = ((span == sec_data->mapcount - 1)
3984 ? sec_data->map[0].vma + section->size
3985 : sec_data->map[span + 1].vma);
3986 unsigned int i;
3987 char span_type = sec_data->map[span].type;
3988
3989 if (span_type == 'd')
3990 continue;
3991
3992 for (i = span_start; i + 4 < span_end; i += 4)
3993 {
3994 uint32_t insn_1 = bfd_getl32 (contents + i);
3995 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3996
3997 if (aarch64_erratum_sequence (insn_1, insn_2))
3998 {
3999 struct elf_aarch64_stub_hash_entry *stub_entry;
4000 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
4001 if (! stub_name)
4002 return FALSE;
4003
4004 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
4005 section,
4006 htab);
4007 if (! stub_entry)
4008 return FALSE;
4009
4010 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
4011 stub_entry->target_section = section;
4012 stub_entry->target_value = i + 4;
4013 stub_entry->veneered_insn = insn_2;
4014 stub_entry->output_name = stub_name;
4015 num_fixes++;
4016 }
4017 }
4018 }
4019 if (elf_section_data (section)->this_hdr.contents == NULL)
4020 free (contents);
4021 }
4022
4023 *num_fixes_p = num_fixes;
4024
4025 return TRUE;
4026 }
4027
4028
4029 /* Test if instruction INSN is ADRP. */
4030
4031 static bfd_boolean
4032 _bfd_aarch64_adrp_p (uint32_t insn)
4033 {
4034 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
4035 }
4036
4037
4038 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
4039
4040 static bfd_boolean
4041 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
4042 uint32_t insn_3)
4043 {
4044 uint32_t rt;
4045 uint32_t rt2;
4046 bfd_boolean pair;
4047 bfd_boolean load;
4048
4049 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
4050 && (!pair
4051 || (pair && !load))
4052 && AARCH64_LDST_UIMM (insn_3)
4053 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
4054 }
4055
4056
4057 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
4058
4059 Return TRUE if section CONTENTS at offset I contains one of the
4060 erratum 843419 sequences, otherwise return FALSE. If a sequence is
4061 seen set P_VENEER_I to the offset of the final LOAD/STORE
4062 instruction in the sequence.
4063 */
4064
4065 static bfd_boolean
4066 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
4067 bfd_vma i, bfd_vma span_end,
4068 bfd_vma *p_veneer_i)
4069 {
4070 uint32_t insn_1 = bfd_getl32 (contents + i);
4071
4072 if (!_bfd_aarch64_adrp_p (insn_1))
4073 return FALSE;
4074
4075 if (span_end < i + 12)
4076 return FALSE;
4077
4078 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
4079 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
4080
4081 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
4082 return FALSE;
4083
4084 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
4085 {
4086 *p_veneer_i = i + 8;
4087 return TRUE;
4088 }
4089
4090 if (span_end < i + 16)
4091 return FALSE;
4092
4093 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
4094
4095 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
4096 {
4097 *p_veneer_i = i + 12;
4098 return TRUE;
4099 }
4100
4101 return FALSE;
4102 }
4103
4104
4105 /* Resize all stub sections. */
4106
4107 static void
4108 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4109 {
4110 asection *section;
4111
4112 /* OK, we've added some stubs. Find out the new size of the
4113 stub sections. */
4114 for (section = htab->stub_bfd->sections;
4115 section != NULL; section = section->next)
4116 {
4117 /* Ignore non-stub sections. */
4118 if (!strstr (section->name, STUB_SUFFIX))
4119 continue;
4120 section->size = 0;
4121 }
4122
4123 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4124
4125 for (section = htab->stub_bfd->sections;
4126 section != NULL; section = section->next)
4127 {
4128 if (!strstr (section->name, STUB_SUFFIX))
4129 continue;
4130
4131 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4132 as long branch stubs contain a 64-bit address. */
4133 if (section->size)
4134 section->size += 8;
4135
4136 /* Ensure all stub sections have a size which is a multiple of
4137 4096. This is important in order to ensure that the insertion
4138 of stub sections does not in itself move existing code around
4139 in such a way that new errata sequences are created. We only do this
4140 when the ADRP workaround is enabled. If only the ADR workaround is
4141 enabled then the stubs workaround won't ever be used. */
4142 if (htab->fix_erratum_843419 & ERRAT_ADRP)
4143 if (section->size)
4144 section->size = BFD_ALIGN (section->size, 0x1000);
4145 }
4146 }
4147
4148 /* Construct an erratum 843419 workaround stub name. */
4149
4150 static char *
4151 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4152 bfd_vma offset)
4153 {
4154 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4155 char *stub_name = bfd_malloc (len);
4156
4157 if (stub_name != NULL)
4158 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4159 input_section->owner->id,
4160 input_section->id,
4161 offset);
4162 return stub_name;
4163 }
4164
4165 /* Build a stub_entry structure describing an 843419 fixup.
4166
4167 The stub_entry constructed is populated with the bit pattern INSN
4168 of the instruction located at OFFSET within input SECTION.
4169
4170 Returns TRUE on success. */
4171
4172 static bfd_boolean
4173 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4174 bfd_vma adrp_offset,
4175 bfd_vma ldst_offset,
4176 asection *section,
4177 struct bfd_link_info *info)
4178 {
4179 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4180 char *stub_name;
4181 struct elf_aarch64_stub_hash_entry *stub_entry;
4182
4183 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4184 if (stub_name == NULL)
4185 return FALSE;
4186 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4187 FALSE, FALSE);
4188 if (stub_entry)
4189 {
4190 free (stub_name);
4191 return TRUE;
4192 }
4193
4194 /* We always place an 843419 workaround veneer in the stub section
4195 attached to the input section in which an erratum sequence has
4196 been found. This ensures that later in the link process (in
4197 elfNN_aarch64_write_section) when we copy the veneered
4198 instruction from the input section into the stub section the
4199 copied instruction will have had any relocations applied to it.
4200 If we placed workaround veneers in any other stub section then we
4201 could not assume that all relocations have been processed on the
4202 corresponding input section at the point we output the stub
4203 section. */
4204
4205 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4206 if (stub_entry == NULL)
4207 {
4208 free (stub_name);
4209 return FALSE;
4210 }
4211
4212 stub_entry->adrp_offset = adrp_offset;
4213 stub_entry->target_value = ldst_offset;
4214 stub_entry->target_section = section;
4215 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4216 stub_entry->veneered_insn = insn;
4217 stub_entry->output_name = stub_name;
4218
4219 return TRUE;
4220 }
4221
4222
4223 /* Scan an input section looking for the signature of erratum 843419.
4224
4225 Scans input SECTION in INPUT_BFD looking for erratum 843419
4226 signatures, for each signature found a stub_entry is created
4227 describing the location of the erratum for subsequent fixup.
4228
4229 Return TRUE on successful scan, FALSE on failure to scan.
4230 */
4231
4232 static bfd_boolean
4233 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4234 struct bfd_link_info *info)
4235 {
4236 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4237
4238 if (htab == NULL)
4239 return TRUE;
4240
4241 if (elf_section_type (section) != SHT_PROGBITS
4242 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4243 || (section->flags & SEC_EXCLUDE) != 0
4244 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4245 || (section->output_section == bfd_abs_section_ptr))
4246 return TRUE;
4247
4248 do
4249 {
4250 bfd_byte *contents = NULL;
4251 struct _aarch64_elf_section_data *sec_data;
4252 unsigned int span;
4253
4254 if (elf_section_data (section)->this_hdr.contents != NULL)
4255 contents = elf_section_data (section)->this_hdr.contents;
4256 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4257 return FALSE;
4258
4259 sec_data = elf_aarch64_section_data (section);
4260
4261 qsort (sec_data->map, sec_data->mapcount,
4262 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4263
4264 for (span = 0; span < sec_data->mapcount; span++)
4265 {
4266 unsigned int span_start = sec_data->map[span].vma;
4267 unsigned int span_end = ((span == sec_data->mapcount - 1)
4268 ? sec_data->map[0].vma + section->size
4269 : sec_data->map[span + 1].vma);
4270 unsigned int i;
4271 char span_type = sec_data->map[span].type;
4272
4273 if (span_type == 'd')
4274 continue;
4275
4276 for (i = span_start; i + 8 < span_end; i += 4)
4277 {
4278 bfd_vma vma = (section->output_section->vma
4279 + section->output_offset
4280 + i);
4281 bfd_vma veneer_i;
4282
4283 if (_bfd_aarch64_erratum_843419_p
4284 (contents, vma, i, span_end, &veneer_i))
4285 {
4286 uint32_t insn = bfd_getl32 (contents + veneer_i);
4287
4288 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4289 section, info))
4290 return FALSE;
4291 }
4292 }
4293 }
4294
4295 if (elf_section_data (section)->this_hdr.contents == NULL)
4296 free (contents);
4297 }
4298 while (0);
4299
4300 return TRUE;
4301 }
4302
4303
4304 /* Determine and set the size of the stub section for a final link.
4305
4306 The basic idea here is to examine all the relocations looking for
4307 PC-relative calls to a target that is unreachable with a "bl"
4308 instruction. */
4309
4310 bfd_boolean
4311 elfNN_aarch64_size_stubs (bfd *output_bfd,
4312 bfd *stub_bfd,
4313 struct bfd_link_info *info,
4314 bfd_signed_vma group_size,
4315 asection * (*add_stub_section) (const char *,
4316 asection *),
4317 void (*layout_sections_again) (void))
4318 {
4319 bfd_size_type stub_group_size;
4320 bfd_boolean stubs_always_before_branch;
4321 bfd_boolean stub_changed = FALSE;
4322 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4323 unsigned int num_erratum_835769_fixes = 0;
4324
4325 /* Propagate mach to stub bfd, because it may not have been
4326 finalized when we created stub_bfd. */
4327 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4328 bfd_get_mach (output_bfd));
4329
4330 /* Stash our params away. */
4331 htab->stub_bfd = stub_bfd;
4332 htab->add_stub_section = add_stub_section;
4333 htab->layout_sections_again = layout_sections_again;
4334 stubs_always_before_branch = group_size < 0;
4335 if (group_size < 0)
4336 stub_group_size = -group_size;
4337 else
4338 stub_group_size = group_size;
4339
4340 if (stub_group_size == 1)
4341 {
4342 /* Default values. */
4343 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4344 stub_group_size = 127 * 1024 * 1024;
4345 }
4346
4347 group_sections (htab, stub_group_size, stubs_always_before_branch);
4348
4349 (*htab->layout_sections_again) ();
4350
4351 if (htab->fix_erratum_835769)
4352 {
4353 bfd *input_bfd;
4354
4355 for (input_bfd = info->input_bfds;
4356 input_bfd != NULL; input_bfd = input_bfd->link.next)
4357 {
4358 if (!is_aarch64_elf (input_bfd)
4359 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4360 continue;
4361
4362 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4363 &num_erratum_835769_fixes))
4364 return FALSE;
4365 }
4366
4367 _bfd_aarch64_resize_stubs (htab);
4368 (*htab->layout_sections_again) ();
4369 }
4370
4371 if (htab->fix_erratum_843419 != ERRAT_NONE)
4372 {
4373 bfd *input_bfd;
4374
4375 for (input_bfd = info->input_bfds;
4376 input_bfd != NULL;
4377 input_bfd = input_bfd->link.next)
4378 {
4379 asection *section;
4380
4381 if (!is_aarch64_elf (input_bfd)
4382 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4383 continue;
4384
4385 for (section = input_bfd->sections;
4386 section != NULL;
4387 section = section->next)
4388 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4389 return FALSE;
4390 }
4391
4392 _bfd_aarch64_resize_stubs (htab);
4393 (*htab->layout_sections_again) ();
4394 }
4395
4396 while (1)
4397 {
4398 bfd *input_bfd;
4399
4400 for (input_bfd = info->input_bfds;
4401 input_bfd != NULL; input_bfd = input_bfd->link.next)
4402 {
4403 Elf_Internal_Shdr *symtab_hdr;
4404 asection *section;
4405 Elf_Internal_Sym *local_syms = NULL;
4406
4407 if (!is_aarch64_elf (input_bfd)
4408 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4409 continue;
4410
4411 /* We'll need the symbol table in a second. */
4412 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4413 if (symtab_hdr->sh_info == 0)
4414 continue;
4415
4416 /* Walk over each section attached to the input bfd. */
4417 for (section = input_bfd->sections;
4418 section != NULL; section = section->next)
4419 {
4420 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4421
4422 /* If there aren't any relocs, then there's nothing more
4423 to do. */
4424 if ((section->flags & SEC_RELOC) == 0
4425 || section->reloc_count == 0
4426 || (section->flags & SEC_CODE) == 0)
4427 continue;
4428
4429 /* If this section is a link-once section that will be
4430 discarded, then don't create any stubs. */
4431 if (section->output_section == NULL
4432 || section->output_section->owner != output_bfd)
4433 continue;
4434
4435 /* Get the relocs. */
4436 internal_relocs
4437 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4438 NULL, info->keep_memory);
4439 if (internal_relocs == NULL)
4440 goto error_ret_free_local;
4441
4442 /* Now examine each relocation. */
4443 irela = internal_relocs;
4444 irelaend = irela + section->reloc_count;
4445 for (; irela < irelaend; irela++)
4446 {
4447 unsigned int r_type, r_indx;
4448 enum elf_aarch64_stub_type stub_type;
4449 struct elf_aarch64_stub_hash_entry *stub_entry;
4450 asection *sym_sec;
4451 bfd_vma sym_value;
4452 bfd_vma destination;
4453 struct elf_aarch64_link_hash_entry *hash;
4454 const char *sym_name;
4455 char *stub_name;
4456 const asection *id_sec;
4457 unsigned char st_type;
4458 bfd_size_type len;
4459
4460 r_type = ELFNN_R_TYPE (irela->r_info);
4461 r_indx = ELFNN_R_SYM (irela->r_info);
4462
4463 if (r_type >= (unsigned int) R_AARCH64_end)
4464 {
4465 bfd_set_error (bfd_error_bad_value);
4466 error_ret_free_internal:
4467 if (elf_section_data (section)->relocs == NULL)
4468 free (internal_relocs);
4469 goto error_ret_free_local;
4470 }
4471
4472 /* Only look for stubs on unconditional branch and
4473 branch and link instructions. */
4474 if (r_type != (unsigned int) AARCH64_R (CALL26)
4475 && r_type != (unsigned int) AARCH64_R (JUMP26))
4476 continue;
4477
4478 /* Now determine the call target, its name, value,
4479 section. */
4480 sym_sec = NULL;
4481 sym_value = 0;
4482 destination = 0;
4483 hash = NULL;
4484 sym_name = NULL;
4485 if (r_indx < symtab_hdr->sh_info)
4486 {
4487 /* It's a local symbol. */
4488 Elf_Internal_Sym *sym;
4489 Elf_Internal_Shdr *hdr;
4490
4491 if (local_syms == NULL)
4492 {
4493 local_syms
4494 = (Elf_Internal_Sym *) symtab_hdr->contents;
4495 if (local_syms == NULL)
4496 local_syms
4497 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4498 symtab_hdr->sh_info, 0,
4499 NULL, NULL, NULL);
4500 if (local_syms == NULL)
4501 goto error_ret_free_internal;
4502 }
4503
4504 sym = local_syms + r_indx;
4505 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4506 sym_sec = hdr->bfd_section;
4507 if (!sym_sec)
4508 /* This is an undefined symbol. It can never
4509 be resolved. */
4510 continue;
4511
4512 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4513 sym_value = sym->st_value;
4514 destination = (sym_value + irela->r_addend
4515 + sym_sec->output_offset
4516 + sym_sec->output_section->vma);
4517 st_type = ELF_ST_TYPE (sym->st_info);
4518 sym_name
4519 = bfd_elf_string_from_elf_section (input_bfd,
4520 symtab_hdr->sh_link,
4521 sym->st_name);
4522 }
4523 else
4524 {
4525 int e_indx;
4526
4527 e_indx = r_indx - symtab_hdr->sh_info;
4528 hash = ((struct elf_aarch64_link_hash_entry *)
4529 elf_sym_hashes (input_bfd)[e_indx]);
4530
4531 while (hash->root.root.type == bfd_link_hash_indirect
4532 || hash->root.root.type == bfd_link_hash_warning)
4533 hash = ((struct elf_aarch64_link_hash_entry *)
4534 hash->root.root.u.i.link);
4535
4536 if (hash->root.root.type == bfd_link_hash_defined
4537 || hash->root.root.type == bfd_link_hash_defweak)
4538 {
4539 struct elf_aarch64_link_hash_table *globals =
4540 elf_aarch64_hash_table (info);
4541 sym_sec = hash->root.root.u.def.section;
4542 sym_value = hash->root.root.u.def.value;
4543 /* For a destination in a shared library,
4544 use the PLT stub as target address to
4545 decide whether a branch stub is
4546 needed. */
4547 if (globals->root.splt != NULL && hash != NULL
4548 && hash->root.plt.offset != (bfd_vma) - 1)
4549 {
4550 sym_sec = globals->root.splt;
4551 sym_value = hash->root.plt.offset;
4552 if (sym_sec->output_section != NULL)
4553 destination = (sym_value
4554 + sym_sec->output_offset
4555 +
4556 sym_sec->output_section->vma);
4557 }
4558 else if (sym_sec->output_section != NULL)
4559 destination = (sym_value + irela->r_addend
4560 + sym_sec->output_offset
4561 + sym_sec->output_section->vma);
4562 }
4563 else if (hash->root.root.type == bfd_link_hash_undefined
4564 || (hash->root.root.type
4565 == bfd_link_hash_undefweak))
4566 {
4567 /* For a shared library, use the PLT stub as
4568 target address to decide whether a long
4569 branch stub is needed.
4570 For absolute code, they cannot be handled. */
4571 struct elf_aarch64_link_hash_table *globals =
4572 elf_aarch64_hash_table (info);
4573
4574 if (globals->root.splt != NULL && hash != NULL
4575 && hash->root.plt.offset != (bfd_vma) - 1)
4576 {
4577 sym_sec = globals->root.splt;
4578 sym_value = hash->root.plt.offset;
4579 if (sym_sec->output_section != NULL)
4580 destination = (sym_value
4581 + sym_sec->output_offset
4582 +
4583 sym_sec->output_section->vma);
4584 }
4585 else
4586 continue;
4587 }
4588 else
4589 {
4590 bfd_set_error (bfd_error_bad_value);
4591 goto error_ret_free_internal;
4592 }
4593 st_type = ELF_ST_TYPE (hash->root.type);
4594 sym_name = hash->root.root.root.string;
4595 }
4596
4597 /* Determine what (if any) linker stub is needed. */
4598 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4599 st_type, destination);
4600 if (stub_type == aarch64_stub_none)
4601 continue;
4602
4603 /* Support for grouping stub sections. */
4604 id_sec = htab->stub_group[section->id].link_sec;
4605
4606 /* Get the name of this stub. */
4607 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4608 irela);
4609 if (!stub_name)
4610 goto error_ret_free_internal;
4611
4612 stub_entry =
4613 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4614 stub_name, FALSE, FALSE);
4615 if (stub_entry != NULL)
4616 {
4617 /* The proper stub has already been created. */
4618 free (stub_name);
4619 /* Always update this stub's target since it may have
4620 changed after layout. */
4621 stub_entry->target_value = sym_value + irela->r_addend;
4622 continue;
4623 }
4624
4625 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4626 (stub_name, section, htab);
4627 if (stub_entry == NULL)
4628 {
4629 free (stub_name);
4630 goto error_ret_free_internal;
4631 }
4632
4633 stub_entry->target_value = sym_value + irela->r_addend;
4634 stub_entry->target_section = sym_sec;
4635 stub_entry->stub_type = stub_type;
4636 stub_entry->h = hash;
4637 stub_entry->st_type = st_type;
4638
4639 if (sym_name == NULL)
4640 sym_name = "unnamed";
4641 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4642 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4643 if (stub_entry->output_name == NULL)
4644 {
4645 free (stub_name);
4646 goto error_ret_free_internal;
4647 }
4648
4649 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4650 sym_name);
4651
4652 stub_changed = TRUE;
4653 }
4654
4655 /* We're done with the internal relocs, free them. */
4656 if (elf_section_data (section)->relocs == NULL)
4657 free (internal_relocs);
4658 }
4659 }
4660
4661 if (!stub_changed)
4662 break;
4663
4664 _bfd_aarch64_resize_stubs (htab);
4665
4666 /* Ask the linker to do its stuff. */
4667 (*htab->layout_sections_again) ();
4668 stub_changed = FALSE;
4669 }
4670
4671 return TRUE;
4672
4673 error_ret_free_local:
4674 return FALSE;
4675 }
4676
4677 /* Build all the stubs associated with the current output file. The
4678 stubs are kept in a hash table attached to the main linker hash
4679 table. We also set up the .plt entries for statically linked PIC
4680 functions here. This function is called via aarch64_elf_finish in the
4681 linker. */
4682
4683 bfd_boolean
4684 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4685 {
4686 asection *stub_sec;
4687 struct bfd_hash_table *table;
4688 struct elf_aarch64_link_hash_table *htab;
4689
4690 htab = elf_aarch64_hash_table (info);
4691
4692 for (stub_sec = htab->stub_bfd->sections;
4693 stub_sec != NULL; stub_sec = stub_sec->next)
4694 {
4695 bfd_size_type size;
4696
4697 /* Ignore non-stub sections. */
4698 if (!strstr (stub_sec->name, STUB_SUFFIX))
4699 continue;
4700
4701 /* Allocate memory to hold the linker stubs. */
4702 size = stub_sec->size;
4703 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4704 if (stub_sec->contents == NULL && size != 0)
4705 return FALSE;
4706 stub_sec->size = 0;
4707
4708 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4709 aligned, as long branch stubs contain a 64-bit address. */
4710 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4711 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4712 stub_sec->size += 8;
4713 }
4714
4715 /* Build the stubs as directed by the stub hash table. */
4716 table = &htab->stub_hash_table;
4717 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4718
4719 return TRUE;
4720 }
4721
4722
4723 /* Add an entry to the code/data map for section SEC. */
4724
4725 static void
4726 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4727 {
4728 struct _aarch64_elf_section_data *sec_data =
4729 elf_aarch64_section_data (sec);
4730 unsigned int newidx;
4731
4732 if (sec_data->map == NULL)
4733 {
4734 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4735 sec_data->mapcount = 0;
4736 sec_data->mapsize = 1;
4737 }
4738
4739 newidx = sec_data->mapcount++;
4740
4741 if (sec_data->mapcount > sec_data->mapsize)
4742 {
4743 sec_data->mapsize *= 2;
4744 sec_data->map = bfd_realloc_or_free
4745 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4746 }
4747
4748 if (sec_data->map)
4749 {
4750 sec_data->map[newidx].vma = vma;
4751 sec_data->map[newidx].type = type;
4752 }
4753 }
4754
4755
4756 /* Initialise maps of insn/data for input BFDs. */
4757 void
4758 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4759 {
4760 Elf_Internal_Sym *isymbuf;
4761 Elf_Internal_Shdr *hdr;
4762 unsigned int i, localsyms;
4763
4764 /* Make sure that we are dealing with an AArch64 elf binary. */
4765 if (!is_aarch64_elf (abfd))
4766 return;
4767
4768 if ((abfd->flags & DYNAMIC) != 0)
4769 return;
4770
4771 hdr = &elf_symtab_hdr (abfd);
4772 localsyms = hdr->sh_info;
4773
4774 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4775 should contain the number of local symbols, which should come before any
4776 global symbols. Mapping symbols are always local. */
4777 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4778
4779 /* No internal symbols read? Skip this BFD. */
4780 if (isymbuf == NULL)
4781 return;
4782
4783 for (i = 0; i < localsyms; i++)
4784 {
4785 Elf_Internal_Sym *isym = &isymbuf[i];
4786 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4787 const char *name;
4788
4789 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4790 {
4791 name = bfd_elf_string_from_elf_section (abfd,
4792 hdr->sh_link,
4793 isym->st_name);
4794
4795 if (bfd_is_aarch64_special_symbol_name
4796 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4797 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4798 }
4799 }
4800 }
4801
4802 static void
4803 setup_plt_values (struct bfd_link_info *link_info,
4804 aarch64_plt_type plt_type)
4805 {
4806 struct elf_aarch64_link_hash_table *globals;
4807 globals = elf_aarch64_hash_table (link_info);
4808
4809 if (plt_type == PLT_BTI_PAC)
4810 {
4811 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4812
4813 /* Only in ET_EXEC we need PLTn with BTI. */
4814 if (bfd_link_pde (link_info))
4815 {
4816 globals->plt_entry_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
4817 globals->plt_entry = elfNN_aarch64_small_plt_bti_pac_entry;
4818 }
4819 else
4820 {
4821 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4822 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4823 }
4824 }
4825 else if (plt_type == PLT_BTI)
4826 {
4827 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4828
4829 /* Only in ET_EXEC we need PLTn with BTI. */
4830 if (bfd_link_pde (link_info))
4831 {
4832 globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4833 globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4834 }
4835 }
4836 else if (plt_type == PLT_PAC)
4837 {
4838 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4839 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4840 }
4841 }
4842
4843 /* Set option values needed during linking. */
4844 void
4845 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4846 struct bfd_link_info *link_info,
4847 int no_enum_warn,
4848 int no_wchar_warn, int pic_veneer,
4849 int fix_erratum_835769,
4850 erratum_84319_opts fix_erratum_843419,
4851 int no_apply_dynamic_relocs,
4852 aarch64_bti_pac_info bp_info)
4853 {
4854 struct elf_aarch64_link_hash_table *globals;
4855
4856 globals = elf_aarch64_hash_table (link_info);
4857 globals->pic_veneer = pic_veneer;
4858 globals->fix_erratum_835769 = fix_erratum_835769;
4859 /* If the default options are used, then ERRAT_ADR will be set by default
4860 which will enable the ADRP->ADR workaround for the erratum 843419
4861 workaround. */
4862 globals->fix_erratum_843419 = fix_erratum_843419;
4863 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4864
4865 BFD_ASSERT (is_aarch64_elf (output_bfd));
4866 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4867 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4868
4869 switch (bp_info.bti_type)
4870 {
4871 case BTI_WARN:
4872 elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4873 elf_aarch64_tdata (output_bfd)->gnu_and_prop
4874 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4875 break;
4876
4877 default:
4878 break;
4879 }
4880 elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4881 setup_plt_values (link_info, bp_info.plt_type);
4882 }
4883
4884 static bfd_vma
4885 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4886 struct elf_aarch64_link_hash_table
4887 *globals, struct bfd_link_info *info,
4888 bfd_vma value, bfd *output_bfd,
4889 bfd_boolean *unresolved_reloc_p)
4890 {
4891 bfd_vma off = (bfd_vma) - 1;
4892 asection *basegot = globals->root.sgot;
4893 bfd_boolean dyn = globals->root.dynamic_sections_created;
4894
4895 if (h != NULL)
4896 {
4897 BFD_ASSERT (basegot != NULL);
4898 off = h->got.offset;
4899 BFD_ASSERT (off != (bfd_vma) - 1);
4900 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4901 || (bfd_link_pic (info)
4902 && SYMBOL_REFERENCES_LOCAL (info, h))
4903 || (ELF_ST_VISIBILITY (h->other)
4904 && h->root.type == bfd_link_hash_undefweak))
4905 {
4906 /* This is actually a static link, or it is a -Bsymbolic link
4907 and the symbol is defined locally. We must initialize this
4908 entry in the global offset table. Since the offset must
4909 always be a multiple of 8 (4 in the case of ILP32), we use
4910 the least significant bit to record whether we have
4911 initialized it already.
4912 When doing a dynamic link, we create a .rel(a).got relocation
4913 entry to initialize the value. This is done in the
4914 finish_dynamic_symbol routine. */
4915 if ((off & 1) != 0)
4916 off &= ~1;
4917 else
4918 {
4919 bfd_put_NN (output_bfd, value, basegot->contents + off);
4920 h->got.offset |= 1;
4921 }
4922 }
4923 else
4924 *unresolved_reloc_p = FALSE;
4925
4926 off = off + basegot->output_section->vma + basegot->output_offset;
4927 }
4928
4929 return off;
4930 }
4931
4932 /* Change R_TYPE to a more efficient access model where possible,
4933 return the new reloc type. */
4934
4935 static bfd_reloc_code_real_type
4936 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4937 struct elf_link_hash_entry *h)
4938 {
4939 bfd_boolean is_local = h == NULL;
4940
4941 switch (r_type)
4942 {
4943 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4944 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4945 return (is_local
4946 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4947 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4948
4949 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4950 return (is_local
4951 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4952 : r_type);
4953
4954 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4955 return (is_local
4956 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4957 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4958
4959 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4960 return (is_local
4961 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4962 : BFD_RELOC_AARCH64_NONE);
4963
4964 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4965 return (is_local
4966 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4967 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4968
4969 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4970 return (is_local
4971 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4972 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4973
4974 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4975 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4976 return (is_local
4977 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4978 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4979
4980 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4981 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4982
4983 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4984 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4985
4986 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4987 return r_type;
4988
4989 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4990 return (is_local
4991 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4992 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4993
4994 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4995 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4996 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4997 /* Instructions with these relocations will become NOPs. */
4998 return BFD_RELOC_AARCH64_NONE;
4999
5000 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5001 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5002 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5003 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
5004
5005 #if ARCH_SIZE == 64
5006 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5007 return is_local
5008 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
5009 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
5010
5011 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5012 return is_local
5013 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
5014 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
5015 #endif
5016
5017 default:
5018 break;
5019 }
5020
5021 return r_type;
5022 }
5023
5024 static unsigned int
5025 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
5026 {
5027 switch (r_type)
5028 {
5029 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5030 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5031 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5032 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5033 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5034 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5035 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5036 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5037 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5038 return GOT_NORMAL;
5039
5040 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5041 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5042 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5043 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5044 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5045 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5046 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5047 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5048 return GOT_TLS_GD;
5049
5050 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5051 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5052 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5053 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5054 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5055 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5056 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5057 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5058 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5059 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5060 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5061 return GOT_TLSDESC_GD;
5062
5063 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5064 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5065 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5066 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5067 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5068 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5069 return GOT_TLS_IE;
5070
5071 default:
5072 break;
5073 }
5074 return GOT_UNKNOWN;
5075 }
5076
5077 static bfd_boolean
5078 aarch64_can_relax_tls (bfd *input_bfd,
5079 struct bfd_link_info *info,
5080 bfd_reloc_code_real_type r_type,
5081 struct elf_link_hash_entry *h,
5082 unsigned long r_symndx)
5083 {
5084 unsigned int symbol_got_type;
5085 unsigned int reloc_got_type;
5086
5087 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
5088 return FALSE;
5089
5090 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
5091 reloc_got_type = aarch64_reloc_got_type (r_type);
5092
5093 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
5094 return TRUE;
5095
5096 if (!bfd_link_executable (info))
5097 return FALSE;
5098
5099 if (h && h->root.type == bfd_link_hash_undefweak)
5100 return FALSE;
5101
5102 return TRUE;
5103 }
5104
5105 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5106 enumerator. */
5107
5108 static bfd_reloc_code_real_type
5109 aarch64_tls_transition (bfd *input_bfd,
5110 struct bfd_link_info *info,
5111 unsigned int r_type,
5112 struct elf_link_hash_entry *h,
5113 unsigned long r_symndx)
5114 {
5115 bfd_reloc_code_real_type bfd_r_type
5116 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
5117
5118 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
5119 return bfd_r_type;
5120
5121 return aarch64_tls_transition_without_check (bfd_r_type, h);
5122 }
5123
5124 /* Return the base VMA address which should be subtracted from real addresses
5125 when resolving R_AARCH64_TLS_DTPREL relocation. */
5126
5127 static bfd_vma
5128 dtpoff_base (struct bfd_link_info *info)
5129 {
5130 /* If tls_sec is NULL, we should have signalled an error already. */
5131 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
5132 return elf_hash_table (info)->tls_sec->vma;
5133 }
5134
5135 /* Return the base VMA address which should be subtracted from real addresses
5136 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
5137
5138 static bfd_vma
5139 tpoff_base (struct bfd_link_info *info)
5140 {
5141 struct elf_link_hash_table *htab = elf_hash_table (info);
5142
5143 /* If tls_sec is NULL, we should have signalled an error already. */
5144 BFD_ASSERT (htab->tls_sec != NULL);
5145
5146 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5147 htab->tls_sec->alignment_power);
5148 return htab->tls_sec->vma - base;
5149 }
5150
5151 static bfd_vma *
5152 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5153 unsigned long r_symndx)
5154 {
5155 /* Calculate the address of the GOT entry for symbol
5156 referred to in h. */
5157 if (h != NULL)
5158 return &h->got.offset;
5159 else
5160 {
5161 /* local symbol */
5162 struct elf_aarch64_local_symbol *l;
5163
5164 l = elf_aarch64_locals (input_bfd);
5165 return &l[r_symndx].got_offset;
5166 }
5167 }
5168
5169 static void
5170 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5171 unsigned long r_symndx)
5172 {
5173 bfd_vma *p;
5174 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5175 *p |= 1;
5176 }
5177
5178 static int
5179 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5180 unsigned long r_symndx)
5181 {
5182 bfd_vma value;
5183 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5184 return value & 1;
5185 }
5186
5187 static bfd_vma
5188 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5189 unsigned long r_symndx)
5190 {
5191 bfd_vma value;
5192 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5193 value &= ~1;
5194 return value;
5195 }
5196
5197 static bfd_vma *
5198 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5199 unsigned long r_symndx)
5200 {
5201 /* Calculate the address of the GOT entry for symbol
5202 referred to in h. */
5203 if (h != NULL)
5204 {
5205 struct elf_aarch64_link_hash_entry *eh;
5206 eh = (struct elf_aarch64_link_hash_entry *) h;
5207 return &eh->tlsdesc_got_jump_table_offset;
5208 }
5209 else
5210 {
5211 /* local symbol */
5212 struct elf_aarch64_local_symbol *l;
5213
5214 l = elf_aarch64_locals (input_bfd);
5215 return &l[r_symndx].tlsdesc_got_jump_table_offset;
5216 }
5217 }
5218
5219 static void
5220 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5221 unsigned long r_symndx)
5222 {
5223 bfd_vma *p;
5224 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5225 *p |= 1;
5226 }
5227
5228 static int
5229 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5230 struct elf_link_hash_entry *h,
5231 unsigned long r_symndx)
5232 {
5233 bfd_vma value;
5234 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5235 return value & 1;
5236 }
5237
5238 static bfd_vma
5239 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5240 unsigned long r_symndx)
5241 {
5242 bfd_vma value;
5243 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5244 value &= ~1;
5245 return value;
5246 }
5247
5248 /* Data for make_branch_to_erratum_835769_stub(). */
5249
5250 struct erratum_835769_branch_to_stub_data
5251 {
5252 struct bfd_link_info *info;
5253 asection *output_section;
5254 bfd_byte *contents;
5255 };
5256
5257 /* Helper to insert branches to erratum 835769 stubs in the right
5258 places for a particular section. */
5259
5260 static bfd_boolean
5261 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5262 void *in_arg)
5263 {
5264 struct elf_aarch64_stub_hash_entry *stub_entry;
5265 struct erratum_835769_branch_to_stub_data *data;
5266 bfd_byte *contents;
5267 unsigned long branch_insn = 0;
5268 bfd_vma veneered_insn_loc, veneer_entry_loc;
5269 bfd_signed_vma branch_offset;
5270 unsigned int target;
5271 bfd *abfd;
5272
5273 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5274 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5275
5276 if (stub_entry->target_section != data->output_section
5277 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5278 return TRUE;
5279
5280 contents = data->contents;
5281 veneered_insn_loc = stub_entry->target_section->output_section->vma
5282 + stub_entry->target_section->output_offset
5283 + stub_entry->target_value;
5284 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5285 + stub_entry->stub_sec->output_offset
5286 + stub_entry->stub_offset;
5287 branch_offset = veneer_entry_loc - veneered_insn_loc;
5288
5289 abfd = stub_entry->target_section->owner;
5290 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5291 _bfd_error_handler
5292 (_("%pB: error: erratum 835769 stub out "
5293 "of range (input file too large)"), abfd);
5294
5295 target = stub_entry->target_value;
5296 branch_insn = 0x14000000;
5297 branch_offset >>= 2;
5298 branch_offset &= 0x3ffffff;
5299 branch_insn |= branch_offset;
5300 bfd_putl32 (branch_insn, &contents[target]);
5301
5302 return TRUE;
5303 }
5304
5305
5306 static bfd_boolean
5307 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5308 void *in_arg)
5309 {
5310 struct elf_aarch64_stub_hash_entry *stub_entry
5311 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5312 struct erratum_835769_branch_to_stub_data *data
5313 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5314 struct bfd_link_info *info;
5315 struct elf_aarch64_link_hash_table *htab;
5316 bfd_byte *contents;
5317 asection *section;
5318 bfd *abfd;
5319 bfd_vma place;
5320 uint32_t insn;
5321
5322 info = data->info;
5323 contents = data->contents;
5324 section = data->output_section;
5325
5326 htab = elf_aarch64_hash_table (info);
5327
5328 if (stub_entry->target_section != section
5329 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5330 return TRUE;
5331
5332 BFD_ASSERT (((htab->fix_erratum_843419 & ERRAT_ADRP) && stub_entry->stub_sec)
5333 || (htab->fix_erratum_843419 & ERRAT_ADR));
5334
5335 /* Only update the stub section if we have one. We should always have one if
5336 we're allowed to use the ADRP errata workaround, otherwise it is not
5337 required. */
5338 if (stub_entry->stub_sec)
5339 {
5340 insn = bfd_getl32 (contents + stub_entry->target_value);
5341 bfd_putl32 (insn,
5342 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5343 }
5344
5345 place = (section->output_section->vma + section->output_offset
5346 + stub_entry->adrp_offset);
5347 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5348
5349 if (!_bfd_aarch64_adrp_p (insn))
5350 abort ();
5351
5352 bfd_signed_vma imm =
5353 (_bfd_aarch64_sign_extend
5354 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5355 - (place & 0xfff));
5356
5357 if ((htab->fix_erratum_843419 & ERRAT_ADR)
5358 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5359 {
5360 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5361 | AARCH64_RT (insn));
5362 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5363 /* Stub is not needed, don't map it out. */
5364 stub_entry->stub_type = aarch64_stub_none;
5365 }
5366 else if (htab->fix_erratum_843419 & ERRAT_ADRP)
5367 {
5368 bfd_vma veneered_insn_loc;
5369 bfd_vma veneer_entry_loc;
5370 bfd_signed_vma branch_offset;
5371 uint32_t branch_insn;
5372
5373 veneered_insn_loc = stub_entry->target_section->output_section->vma
5374 + stub_entry->target_section->output_offset
5375 + stub_entry->target_value;
5376 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5377 + stub_entry->stub_sec->output_offset
5378 + stub_entry->stub_offset;
5379 branch_offset = veneer_entry_loc - veneered_insn_loc;
5380
5381 abfd = stub_entry->target_section->owner;
5382 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5383 _bfd_error_handler
5384 (_("%pB: error: erratum 843419 stub out "
5385 "of range (input file too large)"), abfd);
5386
5387 branch_insn = 0x14000000;
5388 branch_offset >>= 2;
5389 branch_offset &= 0x3ffffff;
5390 branch_insn |= branch_offset;
5391 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5392 }
5393 else
5394 {
5395 abfd = stub_entry->target_section->owner;
5396 _bfd_error_handler
5397 (_("%pB: error: erratum 843419 immediate 0x%" BFD_VMA_FMT "x "
5398 "out of range for ADR (input file too large) and "
5399 "--fix-cortex-a53-843419=adr used. Run the linker with "
5400 "--fix-cortex-a53-843419=full instead"), abfd, imm);
5401 bfd_set_error (bfd_error_bad_value);
5402 /* This function is called inside a hashtable traversal and the error
5403 handlers called above turn into non-fatal errors. Which means this
5404 case ld returns an exit code 0 and also produces a broken object file.
5405 To prevent this, issue a hard abort. */
5406 BFD_FAIL ();
5407 }
5408 return TRUE;
5409 }
5410
5411
5412 static bfd_boolean
5413 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5414 struct bfd_link_info *link_info,
5415 asection *sec,
5416 bfd_byte *contents)
5417
5418 {
5419 struct elf_aarch64_link_hash_table *globals =
5420 elf_aarch64_hash_table (link_info);
5421
5422 if (globals == NULL)
5423 return FALSE;
5424
5425 /* Fix code to point to erratum 835769 stubs. */
5426 if (globals->fix_erratum_835769)
5427 {
5428 struct erratum_835769_branch_to_stub_data data;
5429
5430 data.info = link_info;
5431 data.output_section = sec;
5432 data.contents = contents;
5433 bfd_hash_traverse (&globals->stub_hash_table,
5434 make_branch_to_erratum_835769_stub, &data);
5435 }
5436
5437 if (globals->fix_erratum_843419)
5438 {
5439 struct erratum_835769_branch_to_stub_data data;
5440
5441 data.info = link_info;
5442 data.output_section = sec;
5443 data.contents = contents;
5444 bfd_hash_traverse (&globals->stub_hash_table,
5445 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5446 }
5447
5448 return FALSE;
5449 }
5450
5451 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5452
5453 static bfd_boolean
5454 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5455 {
5456 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5457 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5458 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5459 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5460 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5461 }
5462
5463 /* Perform a relocation as part of a final link. The input relocation type
5464 should be TLS relaxed. */
5465
5466 static bfd_reloc_status_type
5467 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5468 bfd *input_bfd,
5469 bfd *output_bfd,
5470 asection *input_section,
5471 bfd_byte *contents,
5472 Elf_Internal_Rela *rel,
5473 bfd_vma value,
5474 struct bfd_link_info *info,
5475 asection *sym_sec,
5476 struct elf_link_hash_entry *h,
5477 bfd_boolean *unresolved_reloc_p,
5478 bfd_boolean save_addend,
5479 bfd_vma *saved_addend,
5480 Elf_Internal_Sym *sym)
5481 {
5482 Elf_Internal_Shdr *symtab_hdr;
5483 unsigned int r_type = howto->type;
5484 bfd_reloc_code_real_type bfd_r_type
5485 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5486 unsigned long r_symndx;
5487 bfd_byte *hit_data = contents + rel->r_offset;
5488 bfd_vma place, off, got_entry_addr = 0;
5489 bfd_signed_vma signed_addend;
5490 struct elf_aarch64_link_hash_table *globals;
5491 bfd_boolean weak_undef_p;
5492 bfd_boolean relative_reloc;
5493 asection *base_got;
5494 bfd_vma orig_value = value;
5495 bfd_boolean resolved_to_zero;
5496 bfd_boolean abs_symbol_p;
5497 bfd_boolean via_plt_p;
5498
5499 globals = elf_aarch64_hash_table (info);
5500
5501 symtab_hdr = &elf_symtab_hdr (input_bfd);
5502
5503 BFD_ASSERT (is_aarch64_elf (input_bfd));
5504
5505 r_symndx = ELFNN_R_SYM (rel->r_info);
5506
5507 place = input_section->output_section->vma
5508 + input_section->output_offset + rel->r_offset;
5509
5510 /* Get addend, accumulating the addend for consecutive relocs
5511 which refer to the same offset. */
5512 signed_addend = saved_addend ? *saved_addend : 0;
5513 signed_addend += rel->r_addend;
5514
5515 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5516 : bfd_is_und_section (sym_sec));
5517 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5518
5519 via_plt_p = (globals->root.splt != NULL && h != NULL
5520 && h->plt.offset != (bfd_vma) - 1);
5521
5522 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5523 it here if it is defined in a non-shared object. */
5524 if (h != NULL
5525 && h->type == STT_GNU_IFUNC
5526 && h->def_regular)
5527 {
5528 asection *plt;
5529 const char *name;
5530 bfd_vma addend = 0;
5531
5532 if ((input_section->flags & SEC_ALLOC) == 0)
5533 {
5534 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5535 STT_GNU_IFUNC symbol as STT_FUNC. */
5536 if (elf_section_type (input_section) == SHT_NOTE)
5537 goto skip_ifunc;
5538
5539 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5540 sections because such sections are not SEC_ALLOC and
5541 thus ld.so will not process them. */
5542 if ((input_section->flags & SEC_DEBUGGING) != 0)
5543 return bfd_reloc_ok;
5544
5545 if (h->root.root.string)
5546 name = h->root.root.string;
5547 else
5548 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5549 _bfd_error_handler
5550 /* xgettext:c-format */
5551 (_("%pB(%pA+%#" PRIx64 "): "
5552 "unresolvable %s relocation against symbol `%s'"),
5553 input_bfd, input_section, (uint64_t) rel->r_offset,
5554 howto->name, name);
5555 bfd_set_error (bfd_error_bad_value);
5556 return bfd_reloc_notsupported;
5557 }
5558 else if (h->plt.offset == (bfd_vma) -1)
5559 goto bad_ifunc_reloc;
5560
5561 /* STT_GNU_IFUNC symbol must go through PLT. */
5562 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5563 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5564
5565 switch (bfd_r_type)
5566 {
5567 default:
5568 bad_ifunc_reloc:
5569 if (h->root.root.string)
5570 name = h->root.root.string;
5571 else
5572 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5573 NULL);
5574 _bfd_error_handler
5575 /* xgettext:c-format */
5576 (_("%pB: relocation %s against STT_GNU_IFUNC "
5577 "symbol `%s' isn't handled by %s"), input_bfd,
5578 howto->name, name, __FUNCTION__);
5579 bfd_set_error (bfd_error_bad_value);
5580 return bfd_reloc_notsupported;
5581
5582 case BFD_RELOC_AARCH64_NN:
5583 if (rel->r_addend != 0)
5584 {
5585 if (h->root.root.string)
5586 name = h->root.root.string;
5587 else
5588 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5589 sym, NULL);
5590 _bfd_error_handler
5591 /* xgettext:c-format */
5592 (_("%pB: relocation %s against STT_GNU_IFUNC "
5593 "symbol `%s' has non-zero addend: %" PRId64),
5594 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5595 bfd_set_error (bfd_error_bad_value);
5596 return bfd_reloc_notsupported;
5597 }
5598
5599 /* Generate dynamic relocation only when there is a
5600 non-GOT reference in a shared object. */
5601 if (bfd_link_pic (info) && h->non_got_ref)
5602 {
5603 Elf_Internal_Rela outrel;
5604 asection *sreloc;
5605
5606 /* Need a dynamic relocation to get the real function
5607 address. */
5608 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5609 info,
5610 input_section,
5611 rel->r_offset);
5612 if (outrel.r_offset == (bfd_vma) -1
5613 || outrel.r_offset == (bfd_vma) -2)
5614 abort ();
5615
5616 outrel.r_offset += (input_section->output_section->vma
5617 + input_section->output_offset);
5618
5619 if (h->dynindx == -1
5620 || h->forced_local
5621 || bfd_link_executable (info))
5622 {
5623 /* This symbol is resolved locally. */
5624 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5625 outrel.r_addend = (h->root.u.def.value
5626 + h->root.u.def.section->output_section->vma
5627 + h->root.u.def.section->output_offset);
5628 }
5629 else
5630 {
5631 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5632 outrel.r_addend = 0;
5633 }
5634
5635 sreloc = globals->root.irelifunc;
5636 elf_append_rela (output_bfd, sreloc, &outrel);
5637
5638 /* If this reloc is against an external symbol, we
5639 do not want to fiddle with the addend. Otherwise,
5640 we need to include the symbol value so that it
5641 becomes an addend for the dynamic reloc. For an
5642 internal symbol, we have updated addend. */
5643 return bfd_reloc_ok;
5644 }
5645 /* FALLTHROUGH */
5646 case BFD_RELOC_AARCH64_CALL26:
5647 case BFD_RELOC_AARCH64_JUMP26:
5648 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5649 place, value,
5650 signed_addend,
5651 weak_undef_p);
5652 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5653 howto, value);
5654 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5655 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5656 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5657 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5658 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5659 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5660 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5661 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5662 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5663 base_got = globals->root.sgot;
5664 off = h->got.offset;
5665
5666 if (base_got == NULL)
5667 abort ();
5668
5669 if (off == (bfd_vma) -1)
5670 {
5671 bfd_vma plt_index;
5672
5673 /* We can't use h->got.offset here to save state, or
5674 even just remember the offset, as finish_dynamic_symbol
5675 would use that as offset into .got. */
5676
5677 if (globals->root.splt != NULL)
5678 {
5679 plt_index = ((h->plt.offset - globals->plt_header_size) /
5680 globals->plt_entry_size);
5681 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5682 base_got = globals->root.sgotplt;
5683 }
5684 else
5685 {
5686 plt_index = h->plt.offset / globals->plt_entry_size;
5687 off = plt_index * GOT_ENTRY_SIZE;
5688 base_got = globals->root.igotplt;
5689 }
5690
5691 if (h->dynindx == -1
5692 || h->forced_local
5693 || info->symbolic)
5694 {
5695 /* This references the local definition. We must
5696 initialize this entry in the global offset table.
5697 Since the offset must always be a multiple of 8,
5698 we use the least significant bit to record
5699 whether we have initialized it already.
5700
5701 When doing a dynamic link, we create a .rela.got
5702 relocation entry to initialize the value. This
5703 is done in the finish_dynamic_symbol routine. */
5704 if ((off & 1) != 0)
5705 off &= ~1;
5706 else
5707 {
5708 bfd_put_NN (output_bfd, value,
5709 base_got->contents + off);
5710 /* Note that this is harmless as -1 | 1 still is -1. */
5711 h->got.offset |= 1;
5712 }
5713 }
5714 value = (base_got->output_section->vma
5715 + base_got->output_offset + off);
5716 }
5717 else
5718 value = aarch64_calculate_got_entry_vma (h, globals, info,
5719 value, output_bfd,
5720 unresolved_reloc_p);
5721
5722 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5723 addend = (globals->root.sgot->output_section->vma
5724 + globals->root.sgot->output_offset);
5725
5726 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5727 place, value,
5728 addend, weak_undef_p);
5729 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5730 case BFD_RELOC_AARCH64_ADD_LO12:
5731 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5732 break;
5733 }
5734 }
5735
5736 skip_ifunc:
5737 resolved_to_zero = (h != NULL
5738 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5739
5740 switch (bfd_r_type)
5741 {
5742 case BFD_RELOC_AARCH64_NONE:
5743 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5744 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5745 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5746 *unresolved_reloc_p = FALSE;
5747 return bfd_reloc_ok;
5748
5749 case BFD_RELOC_AARCH64_NN:
5750
5751 /* When generating a shared object or relocatable executable, these
5752 relocations are copied into the output file to be resolved at
5753 run time. */
5754 if (((bfd_link_pic (info)
5755 || globals->root.is_relocatable_executable)
5756 && (input_section->flags & SEC_ALLOC)
5757 && (h == NULL
5758 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5759 && !resolved_to_zero)
5760 || h->root.type != bfd_link_hash_undefweak))
5761 /* Or we are creating an executable, we may need to keep relocations
5762 for symbols satisfied by a dynamic library if we manage to avoid
5763 copy relocs for the symbol. */
5764 || (ELIMINATE_COPY_RELOCS
5765 && !bfd_link_pic (info)
5766 && h != NULL
5767 && (input_section->flags & SEC_ALLOC)
5768 && h->dynindx != -1
5769 && !h->non_got_ref
5770 && ((h->def_dynamic
5771 && !h->def_regular)
5772 || h->root.type == bfd_link_hash_undefweak
5773 || h->root.type == bfd_link_hash_undefined)))
5774 {
5775 Elf_Internal_Rela outrel;
5776 bfd_byte *loc;
5777 bfd_boolean skip, relocate;
5778 asection *sreloc;
5779
5780 *unresolved_reloc_p = FALSE;
5781
5782 skip = FALSE;
5783 relocate = FALSE;
5784
5785 outrel.r_addend = signed_addend;
5786 outrel.r_offset =
5787 _bfd_elf_section_offset (output_bfd, info, input_section,
5788 rel->r_offset);
5789 if (outrel.r_offset == (bfd_vma) - 1)
5790 skip = TRUE;
5791 else if (outrel.r_offset == (bfd_vma) - 2)
5792 {
5793 skip = TRUE;
5794 relocate = TRUE;
5795 }
5796 else if (abs_symbol_p)
5797 {
5798 /* Local absolute symbol. */
5799 skip = (h->forced_local || (h->dynindx == -1));
5800 relocate = skip;
5801 }
5802
5803 outrel.r_offset += (input_section->output_section->vma
5804 + input_section->output_offset);
5805
5806 if (skip)
5807 memset (&outrel, 0, sizeof outrel);
5808 else if (h != NULL
5809 && h->dynindx != -1
5810 && (!bfd_link_pic (info)
5811 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5812 || !h->def_regular))
5813 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5814 else
5815 {
5816 int symbol;
5817
5818 /* On SVR4-ish systems, the dynamic loader cannot
5819 relocate the text and data segments independently,
5820 so the symbol does not matter. */
5821 symbol = 0;
5822 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5823 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5824 outrel.r_addend += value;
5825 }
5826
5827 sreloc = elf_section_data (input_section)->sreloc;
5828 if (sreloc == NULL || sreloc->contents == NULL)
5829 return bfd_reloc_notsupported;
5830
5831 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5832 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5833
5834 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5835 {
5836 /* Sanity to check that we have previously allocated
5837 sufficient space in the relocation section for the
5838 number of relocations we actually want to emit. */
5839 abort ();
5840 }
5841
5842 /* If this reloc is against an external symbol, we do not want to
5843 fiddle with the addend. Otherwise, we need to include the symbol
5844 value so that it becomes an addend for the dynamic reloc. */
5845 if (!relocate)
5846 return bfd_reloc_ok;
5847
5848 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5849 contents, rel->r_offset, value,
5850 signed_addend);
5851 }
5852 else
5853 value += signed_addend;
5854 break;
5855
5856 case BFD_RELOC_AARCH64_BRANCH19:
5857 case BFD_RELOC_AARCH64_TSTBR14:
5858 /* A conditional branch to an undefined weak symbol is converted to a
5859 branch to itself. */
5860 if (weak_undef_p && !via_plt_p)
5861 {
5862 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5863 place, value,
5864 signed_addend,
5865 weak_undef_p);
5866 break;
5867 }
5868 /* Fall through. */
5869 case BFD_RELOC_AARCH64_CALL26:
5870 case BFD_RELOC_AARCH64_JUMP26:
5871 {
5872 asection *splt = globals->root.splt;
5873
5874 /* A call to an undefined weak symbol is converted to a jump to
5875 the next instruction unless a PLT entry will be created.
5876 The jump to the next instruction is optimized as a NOP.
5877 Do the same for local undefined symbols. */
5878 if (weak_undef_p && ! via_plt_p)
5879 {
5880 bfd_putl32 (INSN_NOP, hit_data);
5881 return bfd_reloc_ok;
5882 }
5883
5884 /* If the call goes through a PLT entry, make sure to
5885 check distance to the right destination address. */
5886 if (via_plt_p)
5887 value = (splt->output_section->vma
5888 + splt->output_offset + h->plt.offset);
5889
5890 /* Check if a stub has to be inserted because the destination
5891 is too far away. */
5892 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5893
5894 /* If the branch destination is directed to plt stub, "value" will be
5895 the final destination, otherwise we should plus signed_addend, it may
5896 contain non-zero value, for example call to local function symbol
5897 which are turned into "sec_sym + sec_off", and sec_off is kept in
5898 signed_addend. */
5899 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5900 place))
5901 /* The target is out of reach, so redirect the branch to
5902 the local stub for this function. */
5903 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5904 rel, globals);
5905 if (stub_entry != NULL)
5906 {
5907 value = (stub_entry->stub_offset
5908 + stub_entry->stub_sec->output_offset
5909 + stub_entry->stub_sec->output_section->vma);
5910
5911 /* We have redirected the destination to stub entry address,
5912 so ignore any addend record in the original rela entry. */
5913 signed_addend = 0;
5914 }
5915 }
5916 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5917 place, value,
5918 signed_addend, weak_undef_p);
5919 *unresolved_reloc_p = FALSE;
5920 break;
5921
5922 case BFD_RELOC_AARCH64_16_PCREL:
5923 case BFD_RELOC_AARCH64_32_PCREL:
5924 case BFD_RELOC_AARCH64_64_PCREL:
5925 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5926 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5927 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5928 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5929 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5930 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5931 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5932 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5933 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5934 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5935 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5936 if (bfd_link_pic (info)
5937 && (input_section->flags & SEC_ALLOC) != 0
5938 && (input_section->flags & SEC_READONLY) != 0
5939 && !SYMBOL_REFERENCES_LOCAL (info, h))
5940 {
5941 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5942
5943 _bfd_error_handler
5944 /* xgettext:c-format */
5945 (_("%pB: relocation %s against symbol `%s' which may bind "
5946 "externally can not be used when making a shared object; "
5947 "recompile with -fPIC"),
5948 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5949 h->root.root.string);
5950 bfd_set_error (bfd_error_bad_value);
5951 return bfd_reloc_notsupported;
5952 }
5953 /* Fall through. */
5954
5955 case BFD_RELOC_AARCH64_16:
5956 #if ARCH_SIZE == 64
5957 case BFD_RELOC_AARCH64_32:
5958 #endif
5959 case BFD_RELOC_AARCH64_ADD_LO12:
5960 case BFD_RELOC_AARCH64_LDST128_LO12:
5961 case BFD_RELOC_AARCH64_LDST16_LO12:
5962 case BFD_RELOC_AARCH64_LDST32_LO12:
5963 case BFD_RELOC_AARCH64_LDST64_LO12:
5964 case BFD_RELOC_AARCH64_LDST8_LO12:
5965 case BFD_RELOC_AARCH64_MOVW_G0:
5966 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5967 case BFD_RELOC_AARCH64_MOVW_G0_S:
5968 case BFD_RELOC_AARCH64_MOVW_G1:
5969 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5970 case BFD_RELOC_AARCH64_MOVW_G1_S:
5971 case BFD_RELOC_AARCH64_MOVW_G2:
5972 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5973 case BFD_RELOC_AARCH64_MOVW_G2_S:
5974 case BFD_RELOC_AARCH64_MOVW_G3:
5975 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5976 place, value,
5977 signed_addend, weak_undef_p);
5978 break;
5979
5980 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5981 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5982 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5983 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5984 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5985 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5986 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5987 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5988 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5989 if (globals->root.sgot == NULL)
5990 BFD_ASSERT (h != NULL);
5991
5992 relative_reloc = FALSE;
5993 if (h != NULL)
5994 {
5995 bfd_vma addend = 0;
5996
5997 /* If a symbol is not dynamic and is not undefined weak, bind it
5998 locally and generate a RELATIVE relocation under PIC mode.
5999
6000 NOTE: one symbol may be referenced by several relocations, we
6001 should only generate one RELATIVE relocation for that symbol.
6002 Therefore, check GOT offset mark first. */
6003 if (h->dynindx == -1
6004 && !h->forced_local
6005 && h->root.type != bfd_link_hash_undefweak
6006 && bfd_link_pic (info)
6007 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6008 relative_reloc = TRUE;
6009
6010 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
6011 output_bfd,
6012 unresolved_reloc_p);
6013 /* Record the GOT entry address which will be used when generating
6014 RELATIVE relocation. */
6015 if (relative_reloc)
6016 got_entry_addr = value;
6017
6018 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
6019 addend = (globals->root.sgot->output_section->vma
6020 + globals->root.sgot->output_offset);
6021 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6022 place, value,
6023 addend, weak_undef_p);
6024 }
6025 else
6026 {
6027 bfd_vma addend = 0;
6028 struct elf_aarch64_local_symbol *locals
6029 = elf_aarch64_locals (input_bfd);
6030
6031 if (locals == NULL)
6032 {
6033 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6034 _bfd_error_handler
6035 /* xgettext:c-format */
6036 (_("%pB: local symbol descriptor table be NULL when applying "
6037 "relocation %s against local symbol"),
6038 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
6039 abort ();
6040 }
6041
6042 off = symbol_got_offset (input_bfd, h, r_symndx);
6043 base_got = globals->root.sgot;
6044 got_entry_addr = (base_got->output_section->vma
6045 + base_got->output_offset + off);
6046
6047 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6048 {
6049 bfd_put_64 (output_bfd, value, base_got->contents + off);
6050
6051 /* For local symbol, we have done absolute relocation in static
6052 linking stage. While for shared library, we need to update the
6053 content of GOT entry according to the shared object's runtime
6054 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
6055 for dynamic linker. */
6056 if (bfd_link_pic (info))
6057 relative_reloc = TRUE;
6058
6059 symbol_got_offset_mark (input_bfd, h, r_symndx);
6060 }
6061
6062 /* Update the relocation value to GOT entry addr as we have transformed
6063 the direct data access into indirect data access through GOT. */
6064 value = got_entry_addr;
6065
6066 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
6067 addend = base_got->output_section->vma + base_got->output_offset;
6068
6069 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6070 place, value,
6071 addend, weak_undef_p);
6072 }
6073
6074 if (relative_reloc)
6075 {
6076 asection *s;
6077 Elf_Internal_Rela outrel;
6078
6079 s = globals->root.srelgot;
6080 if (s == NULL)
6081 abort ();
6082
6083 outrel.r_offset = got_entry_addr;
6084 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6085 outrel.r_addend = orig_value;
6086 elf_append_rela (output_bfd, s, &outrel);
6087 }
6088 break;
6089
6090 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6091 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6092 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6093 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6094 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6095 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6096 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6097 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6098 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6099 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6100 if (globals->root.sgot == NULL)
6101 return bfd_reloc_notsupported;
6102
6103 value = (symbol_got_offset (input_bfd, h, r_symndx)
6104 + globals->root.sgot->output_section->vma
6105 + globals->root.sgot->output_offset);
6106
6107 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6108 place, value,
6109 0, weak_undef_p);
6110 *unresolved_reloc_p = FALSE;
6111 break;
6112
6113 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6114 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6115 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6116 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6117 if (globals->root.sgot == NULL)
6118 return bfd_reloc_notsupported;
6119
6120 value = symbol_got_offset (input_bfd, h, r_symndx);
6121 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6122 place, value,
6123 0, weak_undef_p);
6124 *unresolved_reloc_p = FALSE;
6125 break;
6126
6127 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
6128 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
6129 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6130 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
6131 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
6132 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
6133 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
6134 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
6135 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
6136 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
6137 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6138 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6139 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6140 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6141 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6142 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
6143 {
6144 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6145 {
6146 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6147 _bfd_error_handler
6148 /* xgettext:c-format */
6149 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6150 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6151 h->root.root.string);
6152 bfd_set_error (bfd_error_bad_value);
6153 return bfd_reloc_notsupported;
6154 }
6155
6156 bfd_vma def_value
6157 = weak_undef_p ? 0 : signed_addend - dtpoff_base (info);
6158 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6159 place, value,
6160 def_value, weak_undef_p);
6161 break;
6162 }
6163
6164 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6165 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6166 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6167 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
6168 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6169 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
6170 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6171 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
6172 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6173 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
6174 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6175 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6176 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6177 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6178 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6179 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6180 {
6181 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6182 {
6183 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6184 _bfd_error_handler
6185 /* xgettext:c-format */
6186 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6187 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6188 h->root.root.string);
6189 bfd_set_error (bfd_error_bad_value);
6190 return bfd_reloc_notsupported;
6191 }
6192
6193 bfd_vma def_value
6194 = weak_undef_p ? 0 : signed_addend - tpoff_base (info);
6195 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6196 place, value,
6197 def_value, weak_undef_p);
6198 *unresolved_reloc_p = FALSE;
6199 break;
6200 }
6201
6202 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6203 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6204 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6205 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6206 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6207 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6208 if (globals->root.sgot == NULL)
6209 return bfd_reloc_notsupported;
6210 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6211 + globals->root.sgotplt->output_section->vma
6212 + globals->root.sgotplt->output_offset
6213 + globals->sgotplt_jump_table_size);
6214
6215 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6216 place, value,
6217 0, weak_undef_p);
6218 *unresolved_reloc_p = FALSE;
6219 break;
6220
6221 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6222 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6223 if (globals->root.sgot == NULL)
6224 return bfd_reloc_notsupported;
6225
6226 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6227 + globals->root.sgotplt->output_section->vma
6228 + globals->root.sgotplt->output_offset
6229 + globals->sgotplt_jump_table_size);
6230
6231 value -= (globals->root.sgot->output_section->vma
6232 + globals->root.sgot->output_offset);
6233
6234 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6235 place, value,
6236 0, weak_undef_p);
6237 *unresolved_reloc_p = FALSE;
6238 break;
6239
6240 default:
6241 return bfd_reloc_notsupported;
6242 }
6243
6244 if (saved_addend)
6245 *saved_addend = value;
6246
6247 /* Only apply the final relocation in a sequence. */
6248 if (save_addend)
6249 return bfd_reloc_continue;
6250
6251 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6252 howto, value);
6253 }
6254
6255 /* LP64 and ILP32 operates on x- and w-registers respectively.
6256 Next definitions take into account the difference between
6257 corresponding machine codes. R means x-register if the target
6258 arch is LP64, and w-register if the target is ILP32. */
6259
6260 #if ARCH_SIZE == 64
6261 # define add_R0_R0 (0x91000000)
6262 # define add_R0_R0_R1 (0x8b000020)
6263 # define add_R0_R1 (0x91400020)
6264 # define ldr_R0 (0x58000000)
6265 # define ldr_R0_mask(i) (i & 0xffffffe0)
6266 # define ldr_R0_x0 (0xf9400000)
6267 # define ldr_hw_R0 (0xf2a00000)
6268 # define movk_R0 (0xf2800000)
6269 # define movz_R0 (0xd2a00000)
6270 # define movz_hw_R0 (0xd2c00000)
6271 #else /*ARCH_SIZE == 32 */
6272 # define add_R0_R0 (0x11000000)
6273 # define add_R0_R0_R1 (0x0b000020)
6274 # define add_R0_R1 (0x11400020)
6275 # define ldr_R0 (0x18000000)
6276 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6277 # define ldr_R0_x0 (0xb9400000)
6278 # define ldr_hw_R0 (0x72a00000)
6279 # define movk_R0 (0x72800000)
6280 # define movz_R0 (0x52a00000)
6281 # define movz_hw_R0 (0x52c00000)
6282 #endif
6283
6284 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6285 it is used to identify the stub information to reset. */
6286
6287 struct erratum_843419_branch_to_stub_clear_data
6288 {
6289 bfd_vma adrp_offset;
6290 asection *output_section;
6291 };
6292
6293 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6294 section inside IN_ARG matches. The clearing is done by setting the
6295 stub_type to none. */
6296
6297 static bfd_boolean
6298 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6299 void *in_arg)
6300 {
6301 struct elf_aarch64_stub_hash_entry *stub_entry
6302 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6303 struct erratum_843419_branch_to_stub_clear_data *data
6304 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6305
6306 if (stub_entry->target_section != data->output_section
6307 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6308 || stub_entry->adrp_offset != data->adrp_offset)
6309 return TRUE;
6310
6311 /* Change the stub type instead of removing the entry, removing from the hash
6312 table would be slower and we have already reserved the memory for the entry
6313 so there wouldn't be much gain. Changing the stub also keeps around a
6314 record of what was there before. */
6315 stub_entry->stub_type = aarch64_stub_none;
6316
6317 /* We're done and there could have been only one matching stub at that
6318 particular offset, so abort further traversal. */
6319 return FALSE;
6320 }
6321
6322 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6323 sequence. In this case the erratum no longer applies and we need to remove
6324 the entry from the pending stub generation. This clears matching adrp insn
6325 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6326
6327 static void
6328 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6329 bfd_vma adrp_offset, asection *input_section)
6330 {
6331 if (globals->fix_erratum_843419 & ERRAT_ADRP)
6332 {
6333 struct erratum_843419_branch_to_stub_clear_data data;
6334 data.adrp_offset = adrp_offset;
6335 data.output_section = input_section;
6336
6337 bfd_hash_traverse (&globals->stub_hash_table,
6338 _bfd_aarch64_erratum_843419_clear_stub, &data);
6339 }
6340 }
6341
6342 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6343 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6344 link.
6345
6346 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6347 is to then call final_link_relocate. Return other values in the
6348 case of error. */
6349
6350 static bfd_reloc_status_type
6351 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6352 bfd *input_bfd, asection *input_section,
6353 bfd_byte *contents, Elf_Internal_Rela *rel,
6354 struct elf_link_hash_entry *h)
6355 {
6356 bfd_boolean is_local = h == NULL;
6357 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6358 unsigned long insn;
6359
6360 BFD_ASSERT (globals && input_bfd && contents && rel);
6361
6362 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6363 {
6364 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6365 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6366 if (is_local)
6367 {
6368 /* GD->LE relaxation:
6369 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6370 or
6371 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6372
6373 Where R is x for LP64, and w for ILP32. */
6374 bfd_putl32 (movz_R0, contents + rel->r_offset);
6375 /* We have relaxed the adrp into a mov, we may have to clear any
6376 pending erratum fixes. */
6377 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6378 return bfd_reloc_continue;
6379 }
6380 else
6381 {
6382 /* GD->IE relaxation:
6383 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6384 or
6385 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6386 */
6387 return bfd_reloc_continue;
6388 }
6389
6390 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6391 BFD_ASSERT (0);
6392 break;
6393
6394 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6395 if (is_local)
6396 {
6397 /* Tiny TLSDESC->LE relaxation:
6398 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6399 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6400 .tlsdesccall var
6401 blr x1 => nop
6402
6403 Where R is x for LP64, and w for ILP32. */
6404 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6405 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6406
6407 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6408 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6409 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6410
6411 bfd_putl32 (movz_R0, contents + rel->r_offset);
6412 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6413 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6414 return bfd_reloc_continue;
6415 }
6416 else
6417 {
6418 /* Tiny TLSDESC->IE relaxation:
6419 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6420 adr x0, :tlsdesc:var => nop
6421 .tlsdesccall var
6422 blr x1 => nop
6423 */
6424 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6425 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6426
6427 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6428 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6429
6430 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6431 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6432 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6433 return bfd_reloc_continue;
6434 }
6435
6436 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6437 if (is_local)
6438 {
6439 /* Tiny GD->LE relaxation:
6440 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6441 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6442 nop => add R0, R0, #:tprel_lo12_nc:x
6443
6444 Where R is x for LP64, and x for Ilp32. */
6445
6446 /* First kill the tls_get_addr reloc on the bl instruction. */
6447 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6448
6449 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6450 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6451 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6452
6453 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6454 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6455 rel[1].r_offset = rel->r_offset + 8;
6456
6457 /* Move the current relocation to the second instruction in
6458 the sequence. */
6459 rel->r_offset += 4;
6460 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6461 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6462 return bfd_reloc_continue;
6463 }
6464 else
6465 {
6466 /* Tiny GD->IE relaxation:
6467 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6468 bl __tls_get_addr => mrs x1, tpidr_el0
6469 nop => add R0, R0, R1
6470
6471 Where R is x for LP64, and w for Ilp32. */
6472
6473 /* First kill the tls_get_addr reloc on the bl instruction. */
6474 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6475 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6476
6477 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6478 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6479 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6480 return bfd_reloc_continue;
6481 }
6482
6483 #if ARCH_SIZE == 64
6484 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6485 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6486 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6487 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6488
6489 if (is_local)
6490 {
6491 /* Large GD->LE relaxation:
6492 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6493 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6494 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6495 bl __tls_get_addr => mrs x1, tpidr_el0
6496 nop => add x0, x0, x1
6497 */
6498 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6499 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6500 rel[2].r_offset = rel->r_offset + 8;
6501
6502 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6503 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6504 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6505 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6506 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6507 }
6508 else
6509 {
6510 /* Large GD->IE relaxation:
6511 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6512 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6513 add x0, gp, x0 => ldr x0, [gp, x0]
6514 bl __tls_get_addr => mrs x1, tpidr_el0
6515 nop => add x0, x0, x1
6516 */
6517 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6518 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6519 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6520 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6521 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6522 }
6523 return bfd_reloc_continue;
6524
6525 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6526 return bfd_reloc_continue;
6527 #endif
6528
6529 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6530 return bfd_reloc_continue;
6531
6532 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6533 if (is_local)
6534 {
6535 /* GD->LE relaxation:
6536 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6537
6538 Where R is x for lp64 mode, and w for ILP32 mode. */
6539 bfd_putl32 (movk_R0, contents + rel->r_offset);
6540 return bfd_reloc_continue;
6541 }
6542 else
6543 {
6544 /* GD->IE relaxation:
6545 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6546
6547 Where R is x for lp64 mode, and w for ILP32 mode. */
6548 insn = bfd_getl32 (contents + rel->r_offset);
6549 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6550 return bfd_reloc_continue;
6551 }
6552
6553 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6554 if (is_local)
6555 {
6556 /* GD->LE relaxation
6557 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6558 bl __tls_get_addr => mrs x1, tpidr_el0
6559 nop => add R0, R1, R0
6560
6561 Where R is x for lp64 mode, and w for ILP32 mode. */
6562
6563 /* First kill the tls_get_addr reloc on the bl instruction. */
6564 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6565 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6566
6567 bfd_putl32 (movk_R0, contents + rel->r_offset);
6568 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6569 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6570 return bfd_reloc_continue;
6571 }
6572 else
6573 {
6574 /* GD->IE relaxation
6575 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6576 BL __tls_get_addr => mrs x1, tpidr_el0
6577 R_AARCH64_CALL26
6578 NOP => add R0, R1, R0
6579
6580 Where R is x for lp64 mode, and w for ilp32 mode. */
6581
6582 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6583
6584 /* Remove the relocation on the BL instruction. */
6585 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6586
6587 /* We choose to fixup the BL and NOP instructions using the
6588 offset from the second relocation to allow flexibility in
6589 scheduling instructions between the ADD and BL. */
6590 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6591 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6592 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6593 return bfd_reloc_continue;
6594 }
6595
6596 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6597 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6598 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6599 /* GD->IE/LE relaxation:
6600 add x0, x0, #:tlsdesc_lo12:var => nop
6601 blr xd => nop
6602 */
6603 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6604 return bfd_reloc_ok;
6605
6606 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6607 if (is_local)
6608 {
6609 /* GD->LE relaxation:
6610 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6611
6612 Where R is x for lp64 mode, and w for ILP32 mode. */
6613 bfd_putl32 (movk_R0, contents + rel->r_offset);
6614 return bfd_reloc_continue;
6615 }
6616 else
6617 {
6618 /* GD->IE relaxation:
6619 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6620
6621 Where R is x for lp64 mode, and w for ILP32 mode. */
6622 insn = bfd_getl32 (contents + rel->r_offset);
6623 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6624 return bfd_reloc_ok;
6625 }
6626
6627 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6628 /* GD->LE relaxation:
6629 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6630 GD->IE relaxation:
6631 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6632
6633 Where R is x for lp64 mode, and w for ILP32 mode. */
6634 if (is_local)
6635 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6636 return bfd_reloc_continue;
6637
6638 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6639 if (is_local)
6640 {
6641 /* GD->LE relaxation:
6642 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6643
6644 Where R is x for lp64 mode, and w for ILP32 mode. */
6645 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6646 return bfd_reloc_continue;
6647 }
6648 else
6649 {
6650 /* GD->IE relaxation:
6651 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6652
6653 Where R is x for lp64 mode, and w for ILP32 mode. */
6654 insn = bfd_getl32 (contents + rel->r_offset);
6655 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6656 return bfd_reloc_continue;
6657 }
6658
6659 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6660 /* IE->LE relaxation:
6661 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6662
6663 Where R is x for lp64 mode, and w for ILP32 mode. */
6664 if (is_local)
6665 {
6666 insn = bfd_getl32 (contents + rel->r_offset);
6667 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6668 /* We have relaxed the adrp into a mov, we may have to clear any
6669 pending erratum fixes. */
6670 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6671 }
6672 return bfd_reloc_continue;
6673
6674 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6675 /* IE->LE relaxation:
6676 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6677
6678 Where R is x for lp64 mode, and w for ILP32 mode. */
6679 if (is_local)
6680 {
6681 insn = bfd_getl32 (contents + rel->r_offset);
6682 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6683 }
6684 return bfd_reloc_continue;
6685
6686 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6687 /* LD->LE relaxation (tiny):
6688 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6689 bl __tls_get_addr => add R0, R0, TCB_SIZE
6690
6691 Where R is x for lp64 mode, and w for ilp32 mode. */
6692 if (is_local)
6693 {
6694 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6695 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6696 /* No need of CALL26 relocation for tls_get_addr. */
6697 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6698 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6699 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6700 contents + rel->r_offset + 4);
6701 return bfd_reloc_ok;
6702 }
6703 return bfd_reloc_continue;
6704
6705 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6706 /* LD->LE relaxation (small):
6707 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6708 */
6709 if (is_local)
6710 {
6711 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6712 return bfd_reloc_ok;
6713 }
6714 return bfd_reloc_continue;
6715
6716 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6717 /* LD->LE relaxation (small):
6718 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6719 bl __tls_get_addr => nop
6720
6721 Where R is x for lp64 mode, and w for ilp32 mode. */
6722 if (is_local)
6723 {
6724 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6725 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6726 /* No need of CALL26 relocation for tls_get_addr. */
6727 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6728 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6729 contents + rel->r_offset + 0);
6730 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6731 return bfd_reloc_ok;
6732 }
6733 return bfd_reloc_continue;
6734
6735 default:
6736 return bfd_reloc_continue;
6737 }
6738
6739 return bfd_reloc_ok;
6740 }
6741
6742 /* Relocate an AArch64 ELF section. */
6743
6744 static bfd_boolean
6745 elfNN_aarch64_relocate_section (bfd *output_bfd,
6746 struct bfd_link_info *info,
6747 bfd *input_bfd,
6748 asection *input_section,
6749 bfd_byte *contents,
6750 Elf_Internal_Rela *relocs,
6751 Elf_Internal_Sym *local_syms,
6752 asection **local_sections)
6753 {
6754 Elf_Internal_Shdr *symtab_hdr;
6755 struct elf_link_hash_entry **sym_hashes;
6756 Elf_Internal_Rela *rel;
6757 Elf_Internal_Rela *relend;
6758 const char *name;
6759 struct elf_aarch64_link_hash_table *globals;
6760 bfd_boolean save_addend = FALSE;
6761 bfd_vma addend = 0;
6762
6763 globals = elf_aarch64_hash_table (info);
6764
6765 symtab_hdr = &elf_symtab_hdr (input_bfd);
6766 sym_hashes = elf_sym_hashes (input_bfd);
6767
6768 rel = relocs;
6769 relend = relocs + input_section->reloc_count;
6770 for (; rel < relend; rel++)
6771 {
6772 unsigned int r_type;
6773 bfd_reloc_code_real_type bfd_r_type;
6774 bfd_reloc_code_real_type relaxed_bfd_r_type;
6775 reloc_howto_type *howto;
6776 unsigned long r_symndx;
6777 Elf_Internal_Sym *sym;
6778 asection *sec;
6779 struct elf_link_hash_entry *h;
6780 bfd_vma relocation;
6781 bfd_reloc_status_type r;
6782 arelent bfd_reloc;
6783 char sym_type;
6784 bfd_boolean unresolved_reloc = FALSE;
6785 char *error_message = NULL;
6786
6787 r_symndx = ELFNN_R_SYM (rel->r_info);
6788 r_type = ELFNN_R_TYPE (rel->r_info);
6789
6790 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6791 howto = bfd_reloc.howto;
6792
6793 if (howto == NULL)
6794 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6795
6796 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6797
6798 h = NULL;
6799 sym = NULL;
6800 sec = NULL;
6801
6802 if (r_symndx < symtab_hdr->sh_info)
6803 {
6804 sym = local_syms + r_symndx;
6805 sym_type = ELFNN_ST_TYPE (sym->st_info);
6806 sec = local_sections[r_symndx];
6807
6808 /* An object file might have a reference to a local
6809 undefined symbol. This is a daft object file, but we
6810 should at least do something about it. */
6811 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6812 && bfd_is_und_section (sec)
6813 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6814 (*info->callbacks->undefined_symbol)
6815 (info, bfd_elf_string_from_elf_section
6816 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6817 input_bfd, input_section, rel->r_offset, TRUE);
6818
6819 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6820
6821 /* Relocate against local STT_GNU_IFUNC symbol. */
6822 if (!bfd_link_relocatable (info)
6823 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6824 {
6825 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6826 rel, FALSE);
6827 if (h == NULL)
6828 abort ();
6829
6830 /* Set STT_GNU_IFUNC symbol value. */
6831 h->root.u.def.value = sym->st_value;
6832 h->root.u.def.section = sec;
6833 }
6834 }
6835 else
6836 {
6837 bfd_boolean warned, ignored;
6838
6839 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6840 r_symndx, symtab_hdr, sym_hashes,
6841 h, sec, relocation,
6842 unresolved_reloc, warned, ignored);
6843
6844 sym_type = h->type;
6845 }
6846
6847 if (sec != NULL && discarded_section (sec))
6848 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6849 rel, 1, relend, howto, 0, contents);
6850
6851 if (bfd_link_relocatable (info))
6852 continue;
6853
6854 if (h != NULL)
6855 name = h->root.root.string;
6856 else
6857 {
6858 name = (bfd_elf_string_from_elf_section
6859 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6860 if (name == NULL || *name == '\0')
6861 name = bfd_section_name (sec);
6862 }
6863
6864 if (r_symndx != 0
6865 && r_type != R_AARCH64_NONE
6866 && r_type != R_AARCH64_NULL
6867 && (h == NULL
6868 || h->root.type == bfd_link_hash_defined
6869 || h->root.type == bfd_link_hash_defweak)
6870 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6871 {
6872 _bfd_error_handler
6873 ((sym_type == STT_TLS
6874 /* xgettext:c-format */
6875 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6876 /* xgettext:c-format */
6877 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6878 input_bfd,
6879 input_section, (uint64_t) rel->r_offset, howto->name, name);
6880 }
6881
6882 /* We relax only if we can see that there can be a valid transition
6883 from a reloc type to another.
6884 We call elfNN_aarch64_final_link_relocate unless we're completely
6885 done, i.e., the relaxation produced the final output we want. */
6886
6887 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6888 h, r_symndx);
6889 if (relaxed_bfd_r_type != bfd_r_type)
6890 {
6891 bfd_r_type = relaxed_bfd_r_type;
6892 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6893 BFD_ASSERT (howto != NULL);
6894 r_type = howto->type;
6895 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6896 contents, rel, h);
6897 unresolved_reloc = 0;
6898 }
6899 else
6900 r = bfd_reloc_continue;
6901
6902 /* There may be multiple consecutive relocations for the
6903 same offset. In that case we are supposed to treat the
6904 output of each relocation as the addend for the next. */
6905 if (rel + 1 < relend
6906 && rel->r_offset == rel[1].r_offset
6907 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6908 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6909 save_addend = TRUE;
6910 else
6911 save_addend = FALSE;
6912
6913 if (r == bfd_reloc_continue)
6914 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6915 input_section, contents, rel,
6916 relocation, info, sec,
6917 h, &unresolved_reloc,
6918 save_addend, &addend, sym);
6919
6920 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6921 {
6922 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6923 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6924 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6925 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6926 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6927 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6928 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6929 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6930 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6931 {
6932 bfd_boolean need_relocs = FALSE;
6933 bfd_byte *loc;
6934 int indx;
6935 bfd_vma off;
6936
6937 off = symbol_got_offset (input_bfd, h, r_symndx);
6938 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6939
6940 need_relocs =
6941 (!bfd_link_executable (info) || indx != 0) &&
6942 (h == NULL
6943 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6944 || h->root.type != bfd_link_hash_undefweak);
6945
6946 BFD_ASSERT (globals->root.srelgot != NULL);
6947
6948 if (need_relocs)
6949 {
6950 Elf_Internal_Rela rela;
6951 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6952 rela.r_addend = 0;
6953 rela.r_offset = globals->root.sgot->output_section->vma +
6954 globals->root.sgot->output_offset + off;
6955
6956
6957 loc = globals->root.srelgot->contents;
6958 loc += globals->root.srelgot->reloc_count++
6959 * RELOC_SIZE (htab);
6960 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6961
6962 bfd_reloc_code_real_type real_type =
6963 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6964
6965 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6966 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6967 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6968 {
6969 /* For local dynamic, don't generate DTPREL in any case.
6970 Initialize the DTPREL slot into zero, so we get module
6971 base address when invoke runtime TLS resolver. */
6972 bfd_put_NN (output_bfd, 0,
6973 globals->root.sgot->contents + off
6974 + GOT_ENTRY_SIZE);
6975 }
6976 else if (indx == 0)
6977 {
6978 bfd_put_NN (output_bfd,
6979 relocation - dtpoff_base (info),
6980 globals->root.sgot->contents + off
6981 + GOT_ENTRY_SIZE);
6982 }
6983 else
6984 {
6985 /* This TLS symbol is global. We emit a
6986 relocation to fixup the tls offset at load
6987 time. */
6988 rela.r_info =
6989 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6990 rela.r_addend = 0;
6991 rela.r_offset =
6992 (globals->root.sgot->output_section->vma
6993 + globals->root.sgot->output_offset + off
6994 + GOT_ENTRY_SIZE);
6995
6996 loc = globals->root.srelgot->contents;
6997 loc += globals->root.srelgot->reloc_count++
6998 * RELOC_SIZE (globals);
6999 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7000 bfd_put_NN (output_bfd, (bfd_vma) 0,
7001 globals->root.sgot->contents + off
7002 + GOT_ENTRY_SIZE);
7003 }
7004 }
7005 else
7006 {
7007 bfd_put_NN (output_bfd, (bfd_vma) 1,
7008 globals->root.sgot->contents + off);
7009 bfd_put_NN (output_bfd,
7010 relocation - dtpoff_base (info),
7011 globals->root.sgot->contents + off
7012 + GOT_ENTRY_SIZE);
7013 }
7014
7015 symbol_got_offset_mark (input_bfd, h, r_symndx);
7016 }
7017 break;
7018
7019 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7020 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
7021 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7022 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7023 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7024 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
7025 {
7026 bfd_boolean need_relocs = FALSE;
7027 bfd_byte *loc;
7028 int indx;
7029 bfd_vma off;
7030
7031 off = symbol_got_offset (input_bfd, h, r_symndx);
7032
7033 indx = h && h->dynindx != -1 ? h->dynindx : 0;
7034
7035 need_relocs =
7036 (!bfd_link_executable (info) || indx != 0) &&
7037 (h == NULL
7038 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7039 || h->root.type != bfd_link_hash_undefweak);
7040
7041 BFD_ASSERT (globals->root.srelgot != NULL);
7042
7043 if (need_relocs)
7044 {
7045 Elf_Internal_Rela rela;
7046
7047 if (indx == 0)
7048 rela.r_addend = relocation - dtpoff_base (info);
7049 else
7050 rela.r_addend = 0;
7051
7052 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
7053 rela.r_offset = globals->root.sgot->output_section->vma +
7054 globals->root.sgot->output_offset + off;
7055
7056 loc = globals->root.srelgot->contents;
7057 loc += globals->root.srelgot->reloc_count++
7058 * RELOC_SIZE (htab);
7059
7060 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7061
7062 bfd_put_NN (output_bfd, rela.r_addend,
7063 globals->root.sgot->contents + off);
7064 }
7065 else
7066 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
7067 globals->root.sgot->contents + off);
7068
7069 symbol_got_offset_mark (input_bfd, h, r_symndx);
7070 }
7071 break;
7072
7073 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7074 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7075 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7076 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
7077 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7078 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7079 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7080 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
7081 {
7082 bfd_boolean need_relocs = FALSE;
7083 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
7084 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
7085
7086 need_relocs = (h == NULL
7087 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7088 || h->root.type != bfd_link_hash_undefweak);
7089
7090 BFD_ASSERT (globals->root.srelgot != NULL);
7091 BFD_ASSERT (globals->root.sgot != NULL);
7092
7093 if (need_relocs)
7094 {
7095 bfd_byte *loc;
7096 Elf_Internal_Rela rela;
7097 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
7098
7099 rela.r_addend = 0;
7100 rela.r_offset = (globals->root.sgotplt->output_section->vma
7101 + globals->root.sgotplt->output_offset
7102 + off + globals->sgotplt_jump_table_size);
7103
7104 if (indx == 0)
7105 rela.r_addend = relocation - dtpoff_base (info);
7106
7107 /* Allocate the next available slot in the PLT reloc
7108 section to hold our R_AARCH64_TLSDESC, the next
7109 available slot is determined from reloc_count,
7110 which we step. But note, reloc_count was
7111 artifically moved down while allocating slots for
7112 real PLT relocs such that all of the PLT relocs
7113 will fit above the initial reloc_count and the
7114 extra stuff will fit below. */
7115 loc = globals->root.srelplt->contents;
7116 loc += globals->root.srelplt->reloc_count++
7117 * RELOC_SIZE (globals);
7118
7119 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7120
7121 bfd_put_NN (output_bfd, (bfd_vma) 0,
7122 globals->root.sgotplt->contents + off +
7123 globals->sgotplt_jump_table_size);
7124 bfd_put_NN (output_bfd, (bfd_vma) 0,
7125 globals->root.sgotplt->contents + off +
7126 globals->sgotplt_jump_table_size +
7127 GOT_ENTRY_SIZE);
7128 }
7129
7130 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
7131 }
7132 break;
7133 default:
7134 break;
7135 }
7136
7137 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7138 because such sections are not SEC_ALLOC and thus ld.so will
7139 not process them. */
7140 if (unresolved_reloc
7141 && !((input_section->flags & SEC_DEBUGGING) != 0
7142 && h->def_dynamic)
7143 && _bfd_elf_section_offset (output_bfd, info, input_section,
7144 +rel->r_offset) != (bfd_vma) - 1)
7145 {
7146 _bfd_error_handler
7147 /* xgettext:c-format */
7148 (_("%pB(%pA+%#" PRIx64 "): "
7149 "unresolvable %s relocation against symbol `%s'"),
7150 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
7151 h->root.root.string);
7152 return FALSE;
7153 }
7154
7155 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
7156 {
7157 bfd_reloc_code_real_type real_r_type
7158 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
7159
7160 switch (r)
7161 {
7162 case bfd_reloc_overflow:
7163 (*info->callbacks->reloc_overflow)
7164 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
7165 input_bfd, input_section, rel->r_offset);
7166 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
7167 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
7168 {
7169 (*info->callbacks->warning)
7170 (info,
7171 _("too many GOT entries for -fpic, "
7172 "please recompile with -fPIC"),
7173 name, input_bfd, input_section, rel->r_offset);
7174 return FALSE;
7175 }
7176 /* Overflow can occur when a variable is referenced with a type
7177 that has a larger alignment than the type with which it was
7178 declared. eg:
7179 file1.c: extern int foo; int a (void) { return foo; }
7180 file2.c: char bar, foo, baz;
7181 If the variable is placed into a data section at an offset
7182 that is incompatible with the larger alignment requirement
7183 overflow will occur. (Strictly speaking this is not overflow
7184 but rather an alignment problem, but the bfd_reloc_ error
7185 enum does not have a value to cover that situation).
7186
7187 Try to catch this situation here and provide a more helpful
7188 error message to the user. */
7189 if (addend & ((1 << howto->rightshift) - 1)
7190 /* FIXME: Are we testing all of the appropriate reloc
7191 types here ? */
7192 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
7193 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
7194 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
7195 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
7196 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
7197 {
7198 info->callbacks->warning
7199 (info, _("one possible cause of this error is that the \
7200 symbol is being referenced in the indicated code as if it had a larger \
7201 alignment than was declared where it was defined"),
7202 name, input_bfd, input_section, rel->r_offset);
7203 }
7204 break;
7205
7206 case bfd_reloc_undefined:
7207 (*info->callbacks->undefined_symbol)
7208 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
7209 break;
7210
7211 case bfd_reloc_outofrange:
7212 error_message = _("out of range");
7213 goto common_error;
7214
7215 case bfd_reloc_notsupported:
7216 error_message = _("unsupported relocation");
7217 goto common_error;
7218
7219 case bfd_reloc_dangerous:
7220 /* error_message should already be set. */
7221 goto common_error;
7222
7223 default:
7224 error_message = _("unknown error");
7225 /* Fall through. */
7226
7227 common_error:
7228 BFD_ASSERT (error_message != NULL);
7229 (*info->callbacks->reloc_dangerous)
7230 (info, error_message, input_bfd, input_section, rel->r_offset);
7231 break;
7232 }
7233 }
7234
7235 if (!save_addend)
7236 addend = 0;
7237 }
7238
7239 return TRUE;
7240 }
7241
7242 /* Set the right machine number. */
7243
7244 static bfd_boolean
7245 elfNN_aarch64_object_p (bfd *abfd)
7246 {
7247 #if ARCH_SIZE == 32
7248 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7249 #else
7250 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7251 #endif
7252 return TRUE;
7253 }
7254
7255 /* Function to keep AArch64 specific flags in the ELF header. */
7256
7257 static bfd_boolean
7258 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7259 {
7260 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7261 {
7262 }
7263 else
7264 {
7265 elf_elfheader (abfd)->e_flags = flags;
7266 elf_flags_init (abfd) = TRUE;
7267 }
7268
7269 return TRUE;
7270 }
7271
7272 /* Merge backend specific data from an object file to the output
7273 object file when linking. */
7274
7275 static bfd_boolean
7276 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7277 {
7278 bfd *obfd = info->output_bfd;
7279 flagword out_flags;
7280 flagword in_flags;
7281 bfd_boolean flags_compatible = TRUE;
7282 asection *sec;
7283
7284 /* Check if we have the same endianess. */
7285 if (!_bfd_generic_verify_endian_match (ibfd, info))
7286 return FALSE;
7287
7288 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7289 return TRUE;
7290
7291 /* The input BFD must have had its flags initialised. */
7292 /* The following seems bogus to me -- The flags are initialized in
7293 the assembler but I don't think an elf_flags_init field is
7294 written into the object. */
7295 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7296
7297 in_flags = elf_elfheader (ibfd)->e_flags;
7298 out_flags = elf_elfheader (obfd)->e_flags;
7299
7300 if (!elf_flags_init (obfd))
7301 {
7302 /* If the input is the default architecture and had the default
7303 flags then do not bother setting the flags for the output
7304 architecture, instead allow future merges to do this. If no
7305 future merges ever set these flags then they will retain their
7306 uninitialised values, which surprise surprise, correspond
7307 to the default values. */
7308 if (bfd_get_arch_info (ibfd)->the_default
7309 && elf_elfheader (ibfd)->e_flags == 0)
7310 return TRUE;
7311
7312 elf_flags_init (obfd) = TRUE;
7313 elf_elfheader (obfd)->e_flags = in_flags;
7314
7315 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7316 && bfd_get_arch_info (obfd)->the_default)
7317 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7318 bfd_get_mach (ibfd));
7319
7320 return TRUE;
7321 }
7322
7323 /* Identical flags must be compatible. */
7324 if (in_flags == out_flags)
7325 return TRUE;
7326
7327 /* Check to see if the input BFD actually contains any sections. If
7328 not, its flags may not have been initialised either, but it
7329 cannot actually cause any incompatiblity. Do not short-circuit
7330 dynamic objects; their section list may be emptied by
7331 elf_link_add_object_symbols.
7332
7333 Also check to see if there are no code sections in the input.
7334 In this case there is no need to check for code specific flags.
7335 XXX - do we need to worry about floating-point format compatability
7336 in data sections ? */
7337 if (!(ibfd->flags & DYNAMIC))
7338 {
7339 bfd_boolean null_input_bfd = TRUE;
7340 bfd_boolean only_data_sections = TRUE;
7341
7342 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7343 {
7344 if ((bfd_section_flags (sec)
7345 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7346 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7347 only_data_sections = FALSE;
7348
7349 null_input_bfd = FALSE;
7350 break;
7351 }
7352
7353 if (null_input_bfd || only_data_sections)
7354 return TRUE;
7355 }
7356
7357 return flags_compatible;
7358 }
7359
7360 /* Display the flags field. */
7361
7362 static bfd_boolean
7363 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7364 {
7365 FILE *file = (FILE *) ptr;
7366 unsigned long flags;
7367
7368 BFD_ASSERT (abfd != NULL && ptr != NULL);
7369
7370 /* Print normal ELF private data. */
7371 _bfd_elf_print_private_bfd_data (abfd, ptr);
7372
7373 flags = elf_elfheader (abfd)->e_flags;
7374 /* Ignore init flag - it may not be set, despite the flags field
7375 containing valid data. */
7376
7377 /* xgettext:c-format */
7378 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7379
7380 if (flags)
7381 fprintf (file, _("<Unrecognised flag bits set>"));
7382
7383 fputc ('\n', file);
7384
7385 return TRUE;
7386 }
7387
7388 /* Find dynamic relocs for H that apply to read-only sections. */
7389
7390 static asection *
7391 readonly_dynrelocs (struct elf_link_hash_entry *h)
7392 {
7393 struct elf_dyn_relocs *p;
7394
7395 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
7396 {
7397 asection *s = p->sec->output_section;
7398
7399 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7400 return p->sec;
7401 }
7402 return NULL;
7403 }
7404
7405 /* Return true if we need copy relocation against EH. */
7406
7407 static bfd_boolean
7408 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7409 {
7410 struct elf_dyn_relocs *p;
7411 asection *s;
7412
7413 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7414 {
7415 /* If there is any pc-relative reference, we need to keep copy relocation
7416 to avoid propagating the relocation into runtime that current glibc
7417 does not support. */
7418 if (p->pc_count)
7419 return TRUE;
7420
7421 s = p->sec->output_section;
7422 /* Need copy relocation if it's against read-only section. */
7423 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7424 return TRUE;
7425 }
7426
7427 return FALSE;
7428 }
7429
7430 /* Adjust a symbol defined by a dynamic object and referenced by a
7431 regular object. The current definition is in some section of the
7432 dynamic object, but we're not including those sections. We have to
7433 change the definition to something the rest of the link can
7434 understand. */
7435
7436 static bfd_boolean
7437 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7438 struct elf_link_hash_entry *h)
7439 {
7440 struct elf_aarch64_link_hash_table *htab;
7441 asection *s, *srel;
7442
7443 /* If this is a function, put it in the procedure linkage table. We
7444 will fill in the contents of the procedure linkage table later,
7445 when we know the address of the .got section. */
7446 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7447 {
7448 if (h->plt.refcount <= 0
7449 || (h->type != STT_GNU_IFUNC
7450 && (SYMBOL_CALLS_LOCAL (info, h)
7451 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7452 && h->root.type == bfd_link_hash_undefweak))))
7453 {
7454 /* This case can occur if we saw a CALL26 reloc in
7455 an input file, but the symbol wasn't referred to
7456 by a dynamic object or all references were
7457 garbage collected. In which case we can end up
7458 resolving. */
7459 h->plt.offset = (bfd_vma) - 1;
7460 h->needs_plt = 0;
7461 }
7462
7463 return TRUE;
7464 }
7465 else
7466 /* Otherwise, reset to -1. */
7467 h->plt.offset = (bfd_vma) - 1;
7468
7469
7470 /* If this is a weak symbol, and there is a real definition, the
7471 processor independent code will have arranged for us to see the
7472 real definition first, and we can just use the same value. */
7473 if (h->is_weakalias)
7474 {
7475 struct elf_link_hash_entry *def = weakdef (h);
7476 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7477 h->root.u.def.section = def->root.u.def.section;
7478 h->root.u.def.value = def->root.u.def.value;
7479 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7480 h->non_got_ref = def->non_got_ref;
7481 return TRUE;
7482 }
7483
7484 /* If we are creating a shared library, we must presume that the
7485 only references to the symbol are via the global offset table.
7486 For such cases we need not do anything here; the relocations will
7487 be handled correctly by relocate_section. */
7488 if (bfd_link_pic (info))
7489 return TRUE;
7490
7491 /* If there are no references to this symbol that do not use the
7492 GOT, we don't need to generate a copy reloc. */
7493 if (!h->non_got_ref)
7494 return TRUE;
7495
7496 /* If -z nocopyreloc was given, we won't generate them either. */
7497 if (info->nocopyreloc)
7498 {
7499 h->non_got_ref = 0;
7500 return TRUE;
7501 }
7502
7503 if (ELIMINATE_COPY_RELOCS)
7504 {
7505 struct elf_aarch64_link_hash_entry *eh;
7506 /* If we don't find any dynamic relocs in read-only sections, then
7507 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7508 eh = (struct elf_aarch64_link_hash_entry *) h;
7509 if (!need_copy_relocation_p (eh))
7510 {
7511 h->non_got_ref = 0;
7512 return TRUE;
7513 }
7514 }
7515
7516 /* We must allocate the symbol in our .dynbss section, which will
7517 become part of the .bss section of the executable. There will be
7518 an entry for this symbol in the .dynsym section. The dynamic
7519 object will contain position independent code, so all references
7520 from the dynamic object to this symbol will go through the global
7521 offset table. The dynamic linker will use the .dynsym entry to
7522 determine the address it must put in the global offset table, so
7523 both the dynamic object and the regular object will refer to the
7524 same memory location for the variable. */
7525
7526 htab = elf_aarch64_hash_table (info);
7527
7528 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7529 to copy the initial value out of the dynamic object and into the
7530 runtime process image. */
7531 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7532 {
7533 s = htab->root.sdynrelro;
7534 srel = htab->root.sreldynrelro;
7535 }
7536 else
7537 {
7538 s = htab->root.sdynbss;
7539 srel = htab->root.srelbss;
7540 }
7541 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7542 {
7543 srel->size += RELOC_SIZE (htab);
7544 h->needs_copy = 1;
7545 }
7546
7547 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7548
7549 }
7550
7551 static bfd_boolean
7552 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7553 {
7554 struct elf_aarch64_local_symbol *locals;
7555 locals = elf_aarch64_locals (abfd);
7556 if (locals == NULL)
7557 {
7558 locals = (struct elf_aarch64_local_symbol *)
7559 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7560 if (locals == NULL)
7561 return FALSE;
7562 elf_aarch64_locals (abfd) = locals;
7563 }
7564 return TRUE;
7565 }
7566
7567 /* Create the .got section to hold the global offset table. */
7568
7569 static bfd_boolean
7570 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7571 {
7572 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7573 flagword flags;
7574 asection *s;
7575 struct elf_link_hash_entry *h;
7576 struct elf_link_hash_table *htab = elf_hash_table (info);
7577
7578 /* This function may be called more than once. */
7579 if (htab->sgot != NULL)
7580 return TRUE;
7581
7582 flags = bed->dynamic_sec_flags;
7583
7584 s = bfd_make_section_anyway_with_flags (abfd,
7585 (bed->rela_plts_and_copies_p
7586 ? ".rela.got" : ".rel.got"),
7587 (bed->dynamic_sec_flags
7588 | SEC_READONLY));
7589 if (s == NULL
7590 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7591 return FALSE;
7592 htab->srelgot = s;
7593
7594 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7595 if (s == NULL
7596 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7597 return FALSE;
7598 htab->sgot = s;
7599 htab->sgot->size += GOT_ENTRY_SIZE;
7600
7601 if (bed->want_got_sym)
7602 {
7603 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7604 (or .got.plt) section. We don't do this in the linker script
7605 because we don't want to define the symbol if we are not creating
7606 a global offset table. */
7607 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7608 "_GLOBAL_OFFSET_TABLE_");
7609 elf_hash_table (info)->hgot = h;
7610 if (h == NULL)
7611 return FALSE;
7612 }
7613
7614 if (bed->want_got_plt)
7615 {
7616 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7617 if (s == NULL
7618 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7619 return FALSE;
7620 htab->sgotplt = s;
7621 }
7622
7623 /* The first bit of the global offset table is the header. */
7624 s->size += bed->got_header_size;
7625
7626 return TRUE;
7627 }
7628
7629 /* Look through the relocs for a section during the first phase. */
7630
7631 static bfd_boolean
7632 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7633 asection *sec, const Elf_Internal_Rela *relocs)
7634 {
7635 Elf_Internal_Shdr *symtab_hdr;
7636 struct elf_link_hash_entry **sym_hashes;
7637 const Elf_Internal_Rela *rel;
7638 const Elf_Internal_Rela *rel_end;
7639 asection *sreloc;
7640
7641 struct elf_aarch64_link_hash_table *htab;
7642
7643 if (bfd_link_relocatable (info))
7644 return TRUE;
7645
7646 BFD_ASSERT (is_aarch64_elf (abfd));
7647
7648 htab = elf_aarch64_hash_table (info);
7649 sreloc = NULL;
7650
7651 symtab_hdr = &elf_symtab_hdr (abfd);
7652 sym_hashes = elf_sym_hashes (abfd);
7653
7654 rel_end = relocs + sec->reloc_count;
7655 for (rel = relocs; rel < rel_end; rel++)
7656 {
7657 struct elf_link_hash_entry *h;
7658 unsigned int r_symndx;
7659 unsigned int r_type;
7660 bfd_reloc_code_real_type bfd_r_type;
7661 Elf_Internal_Sym *isym;
7662
7663 r_symndx = ELFNN_R_SYM (rel->r_info);
7664 r_type = ELFNN_R_TYPE (rel->r_info);
7665
7666 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7667 {
7668 /* xgettext:c-format */
7669 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7670 return FALSE;
7671 }
7672
7673 if (r_symndx < symtab_hdr->sh_info)
7674 {
7675 /* A local symbol. */
7676 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7677 abfd, r_symndx);
7678 if (isym == NULL)
7679 return FALSE;
7680
7681 /* Check relocation against local STT_GNU_IFUNC symbol. */
7682 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7683 {
7684 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7685 TRUE);
7686 if (h == NULL)
7687 return FALSE;
7688
7689 /* Fake a STT_GNU_IFUNC symbol. */
7690 h->type = STT_GNU_IFUNC;
7691 h->def_regular = 1;
7692 h->ref_regular = 1;
7693 h->forced_local = 1;
7694 h->root.type = bfd_link_hash_defined;
7695 }
7696 else
7697 h = NULL;
7698 }
7699 else
7700 {
7701 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7702 while (h->root.type == bfd_link_hash_indirect
7703 || h->root.type == bfd_link_hash_warning)
7704 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7705 }
7706
7707 /* Could be done earlier, if h were already available. */
7708 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7709
7710 if (h != NULL)
7711 {
7712 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7713 This shows up in particular in an R_AARCH64_PREL64 in large model
7714 when calculating the pc-relative address to .got section which is
7715 used to initialize the gp register. */
7716 if (h->root.root.string
7717 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7718 {
7719 if (htab->root.dynobj == NULL)
7720 htab->root.dynobj = abfd;
7721
7722 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7723 return FALSE;
7724
7725 BFD_ASSERT (h == htab->root.hgot);
7726 }
7727
7728 /* Create the ifunc sections for static executables. If we
7729 never see an indirect function symbol nor we are building
7730 a static executable, those sections will be empty and
7731 won't appear in output. */
7732 switch (bfd_r_type)
7733 {
7734 default:
7735 break;
7736
7737 case BFD_RELOC_AARCH64_ADD_LO12:
7738 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7739 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7740 case BFD_RELOC_AARCH64_CALL26:
7741 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7742 case BFD_RELOC_AARCH64_JUMP26:
7743 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7744 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7745 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7746 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7747 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7748 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7749 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7750 case BFD_RELOC_AARCH64_NN:
7751 if (htab->root.dynobj == NULL)
7752 htab->root.dynobj = abfd;
7753 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7754 return FALSE;
7755 break;
7756 }
7757
7758 /* It is referenced by a non-shared object. */
7759 h->ref_regular = 1;
7760 }
7761
7762 switch (bfd_r_type)
7763 {
7764 case BFD_RELOC_AARCH64_16:
7765 #if ARCH_SIZE == 64
7766 case BFD_RELOC_AARCH64_32:
7767 #endif
7768 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7769 {
7770 if (h != NULL
7771 /* This is an absolute symbol. It represents a value instead
7772 of an address. */
7773 && (bfd_is_abs_symbol (&h->root)
7774 /* This is an undefined symbol. */
7775 || h->root.type == bfd_link_hash_undefined))
7776 break;
7777
7778 /* For local symbols, defined global symbols in a non-ABS section,
7779 it is assumed that the value is an address. */
7780 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7781 _bfd_error_handler
7782 /* xgettext:c-format */
7783 (_("%pB: relocation %s against `%s' can not be used when making "
7784 "a shared object"),
7785 abfd, elfNN_aarch64_howto_table[howto_index].name,
7786 (h) ? h->root.root.string : "a local symbol");
7787 bfd_set_error (bfd_error_bad_value);
7788 return FALSE;
7789 }
7790 else
7791 break;
7792
7793 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7794 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7795 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7796 case BFD_RELOC_AARCH64_MOVW_G3:
7797 if (bfd_link_pic (info))
7798 {
7799 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7800 _bfd_error_handler
7801 /* xgettext:c-format */
7802 (_("%pB: relocation %s against `%s' can not be used when making "
7803 "a shared object; recompile with -fPIC"),
7804 abfd, elfNN_aarch64_howto_table[howto_index].name,
7805 (h) ? h->root.root.string : "a local symbol");
7806 bfd_set_error (bfd_error_bad_value);
7807 return FALSE;
7808 }
7809 /* Fall through. */
7810
7811 case BFD_RELOC_AARCH64_16_PCREL:
7812 case BFD_RELOC_AARCH64_32_PCREL:
7813 case BFD_RELOC_AARCH64_64_PCREL:
7814 case BFD_RELOC_AARCH64_ADD_LO12:
7815 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7816 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7817 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7818 case BFD_RELOC_AARCH64_LDST128_LO12:
7819 case BFD_RELOC_AARCH64_LDST16_LO12:
7820 case BFD_RELOC_AARCH64_LDST32_LO12:
7821 case BFD_RELOC_AARCH64_LDST64_LO12:
7822 case BFD_RELOC_AARCH64_LDST8_LO12:
7823 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7824 if (h == NULL || bfd_link_pic (info))
7825 break;
7826 /* Fall through. */
7827
7828 case BFD_RELOC_AARCH64_NN:
7829
7830 /* We don't need to handle relocs into sections not going into
7831 the "real" output. */
7832 if ((sec->flags & SEC_ALLOC) == 0)
7833 break;
7834
7835 if (h != NULL)
7836 {
7837 if (!bfd_link_pic (info))
7838 h->non_got_ref = 1;
7839
7840 h->plt.refcount += 1;
7841 h->pointer_equality_needed = 1;
7842 }
7843
7844 /* No need to do anything if we're not creating a shared
7845 object. */
7846 if (!(bfd_link_pic (info)
7847 /* If on the other hand, we are creating an executable, we
7848 may need to keep relocations for symbols satisfied by a
7849 dynamic library if we manage to avoid copy relocs for the
7850 symbol.
7851
7852 NOTE: Currently, there is no support of copy relocs
7853 elimination on pc-relative relocation types, because there is
7854 no dynamic relocation support for them in glibc. We still
7855 record the dynamic symbol reference for them. This is
7856 because one symbol may be referenced by both absolute
7857 relocation (for example, BFD_RELOC_AARCH64_NN) and
7858 pc-relative relocation. We need full symbol reference
7859 information to make correct decision later in
7860 elfNN_aarch64_adjust_dynamic_symbol. */
7861 || (ELIMINATE_COPY_RELOCS
7862 && !bfd_link_pic (info)
7863 && h != NULL
7864 && (h->root.type == bfd_link_hash_defweak
7865 || !h->def_regular))))
7866 break;
7867
7868 {
7869 struct elf_dyn_relocs *p;
7870 struct elf_dyn_relocs **head;
7871 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7872
7873 /* We must copy these reloc types into the output file.
7874 Create a reloc section in dynobj and make room for
7875 this reloc. */
7876 if (sreloc == NULL)
7877 {
7878 if (htab->root.dynobj == NULL)
7879 htab->root.dynobj = abfd;
7880
7881 sreloc = _bfd_elf_make_dynamic_reloc_section
7882 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7883
7884 if (sreloc == NULL)
7885 return FALSE;
7886 }
7887
7888 /* If this is a global symbol, we count the number of
7889 relocations we need for this symbol. */
7890 if (h != NULL)
7891 {
7892 struct elf_aarch64_link_hash_entry *eh;
7893 eh = (struct elf_aarch64_link_hash_entry *) h;
7894 head = &eh->dyn_relocs;
7895 }
7896 else
7897 {
7898 /* Track dynamic relocs needed for local syms too.
7899 We really need local syms available to do this
7900 easily. Oh well. */
7901
7902 asection *s;
7903 void **vpp;
7904
7905 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7906 abfd, r_symndx);
7907 if (isym == NULL)
7908 return FALSE;
7909
7910 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7911 if (s == NULL)
7912 s = sec;
7913
7914 /* Beware of type punned pointers vs strict aliasing
7915 rules. */
7916 vpp = &(elf_section_data (s)->local_dynrel);
7917 head = (struct elf_dyn_relocs **) vpp;
7918 }
7919
7920 p = *head;
7921 if (p == NULL || p->sec != sec)
7922 {
7923 size_t amt = sizeof *p;
7924 p = ((struct elf_dyn_relocs *)
7925 bfd_zalloc (htab->root.dynobj, amt));
7926 if (p == NULL)
7927 return FALSE;
7928 p->next = *head;
7929 *head = p;
7930 p->sec = sec;
7931 }
7932
7933 p->count += 1;
7934
7935 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7936 p->pc_count += 1;
7937 }
7938 break;
7939
7940 /* RR: We probably want to keep a consistency check that
7941 there are no dangling GOT_PAGE relocs. */
7942 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7943 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7944 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7945 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7946 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7947 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7948 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7949 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7950 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7951 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7952 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7953 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7954 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7955 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7956 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7957 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7958 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7959 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7960 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7961 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7962 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7963 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7964 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7965 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7966 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7967 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7968 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7969 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7970 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7971 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7972 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7973 {
7974 unsigned got_type;
7975 unsigned old_got_type;
7976
7977 got_type = aarch64_reloc_got_type (bfd_r_type);
7978
7979 if (h)
7980 {
7981 h->got.refcount += 1;
7982 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7983 }
7984 else
7985 {
7986 struct elf_aarch64_local_symbol *locals;
7987
7988 if (!elfNN_aarch64_allocate_local_symbols
7989 (abfd, symtab_hdr->sh_info))
7990 return FALSE;
7991
7992 locals = elf_aarch64_locals (abfd);
7993 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7994 locals[r_symndx].got_refcount += 1;
7995 old_got_type = locals[r_symndx].got_type;
7996 }
7997
7998 /* If a variable is accessed with both general dynamic TLS
7999 methods, two slots may be created. */
8000 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
8001 got_type |= old_got_type;
8002
8003 /* We will already have issued an error message if there
8004 is a TLS/non-TLS mismatch, based on the symbol type.
8005 So just combine any TLS types needed. */
8006 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
8007 && got_type != GOT_NORMAL)
8008 got_type |= old_got_type;
8009
8010 /* If the symbol is accessed by both IE and GD methods, we
8011 are able to relax. Turn off the GD flag, without
8012 messing up with any other kind of TLS types that may be
8013 involved. */
8014 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
8015 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
8016
8017 if (old_got_type != got_type)
8018 {
8019 if (h != NULL)
8020 elf_aarch64_hash_entry (h)->got_type = got_type;
8021 else
8022 {
8023 struct elf_aarch64_local_symbol *locals;
8024 locals = elf_aarch64_locals (abfd);
8025 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
8026 locals[r_symndx].got_type = got_type;
8027 }
8028 }
8029
8030 if (htab->root.dynobj == NULL)
8031 htab->root.dynobj = abfd;
8032 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
8033 return FALSE;
8034 break;
8035 }
8036
8037 case BFD_RELOC_AARCH64_BRANCH19:
8038 case BFD_RELOC_AARCH64_TSTBR14:
8039 case BFD_RELOC_AARCH64_CALL26:
8040 case BFD_RELOC_AARCH64_JUMP26:
8041 /* If this is a local symbol then we resolve it
8042 directly without creating a PLT entry. */
8043 if (h == NULL)
8044 continue;
8045
8046 h->needs_plt = 1;
8047 if (h->plt.refcount <= 0)
8048 h->plt.refcount = 1;
8049 else
8050 h->plt.refcount += 1;
8051 break;
8052
8053 default:
8054 break;
8055 }
8056 }
8057
8058 return TRUE;
8059 }
8060
8061 /* Treat mapping symbols as special target symbols. */
8062
8063 static bfd_boolean
8064 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8065 asymbol *sym)
8066 {
8067 return bfd_is_aarch64_special_symbol_name (sym->name,
8068 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
8069 }
8070
8071 /* If the ELF symbol SYM might be a function in SEC, return the
8072 function size and set *CODE_OFF to the function's entry point,
8073 otherwise return zero. */
8074
8075 static bfd_size_type
8076 elfNN_aarch64_maybe_function_sym (const asymbol *sym, asection *sec,
8077 bfd_vma *code_off)
8078 {
8079 bfd_size_type size;
8080
8081 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
8082 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
8083 || sym->section != sec)
8084 return 0;
8085
8086 if (!(sym->flags & BSF_SYNTHETIC))
8087 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
8088 {
8089 case STT_FUNC:
8090 case STT_NOTYPE:
8091 break;
8092 default:
8093 return 0;
8094 }
8095
8096 if ((sym->flags & BSF_LOCAL)
8097 && bfd_is_aarch64_special_symbol_name (sym->name,
8098 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY))
8099 return 0;
8100
8101 *code_off = sym->value;
8102 size = 0;
8103 if (!(sym->flags & BSF_SYNTHETIC))
8104 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
8105 if (size == 0)
8106 size = 1;
8107 return size;
8108 }
8109
8110 static bfd_boolean
8111 elfNN_aarch64_find_inliner_info (bfd *abfd,
8112 const char **filename_ptr,
8113 const char **functionname_ptr,
8114 unsigned int *line_ptr)
8115 {
8116 bfd_boolean found;
8117 found = _bfd_dwarf2_find_inliner_info
8118 (abfd, filename_ptr,
8119 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
8120 return found;
8121 }
8122
8123
8124 static bfd_boolean
8125 elfNN_aarch64_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
8126 {
8127 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
8128
8129 if (!_bfd_elf_init_file_header (abfd, link_info))
8130 return FALSE;
8131
8132 i_ehdrp = elf_elfheader (abfd);
8133 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
8134 return TRUE;
8135 }
8136
8137 static enum elf_reloc_type_class
8138 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
8139 const asection *rel_sec ATTRIBUTE_UNUSED,
8140 const Elf_Internal_Rela *rela)
8141 {
8142 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
8143
8144 if (htab->root.dynsym != NULL
8145 && htab->root.dynsym->contents != NULL)
8146 {
8147 /* Check relocation against STT_GNU_IFUNC symbol if there are
8148 dynamic symbols. */
8149 bfd *abfd = info->output_bfd;
8150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8151 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
8152 if (r_symndx != STN_UNDEF)
8153 {
8154 Elf_Internal_Sym sym;
8155 if (!bed->s->swap_symbol_in (abfd,
8156 (htab->root.dynsym->contents
8157 + r_symndx * bed->s->sizeof_sym),
8158 0, &sym))
8159 {
8160 /* xgettext:c-format */
8161 _bfd_error_handler (_("%pB symbol number %lu references"
8162 " nonexistent SHT_SYMTAB_SHNDX section"),
8163 abfd, r_symndx);
8164 /* Ideally an error class should be returned here. */
8165 }
8166 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8167 return reloc_class_ifunc;
8168 }
8169 }
8170
8171 switch ((int) ELFNN_R_TYPE (rela->r_info))
8172 {
8173 case AARCH64_R (IRELATIVE):
8174 return reloc_class_ifunc;
8175 case AARCH64_R (RELATIVE):
8176 return reloc_class_relative;
8177 case AARCH64_R (JUMP_SLOT):
8178 return reloc_class_plt;
8179 case AARCH64_R (COPY):
8180 return reloc_class_copy;
8181 default:
8182 return reloc_class_normal;
8183 }
8184 }
8185
8186 /* Handle an AArch64 specific section when reading an object file. This is
8187 called when bfd_section_from_shdr finds a section with an unknown
8188 type. */
8189
8190 static bfd_boolean
8191 elfNN_aarch64_section_from_shdr (bfd *abfd,
8192 Elf_Internal_Shdr *hdr,
8193 const char *name, int shindex)
8194 {
8195 /* There ought to be a place to keep ELF backend specific flags, but
8196 at the moment there isn't one. We just keep track of the
8197 sections by their name, instead. Fortunately, the ABI gives
8198 names for all the AArch64 specific sections, so we will probably get
8199 away with this. */
8200 switch (hdr->sh_type)
8201 {
8202 case SHT_AARCH64_ATTRIBUTES:
8203 break;
8204
8205 default:
8206 return FALSE;
8207 }
8208
8209 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8210 return FALSE;
8211
8212 return TRUE;
8213 }
8214
8215 /* A structure used to record a list of sections, independently
8216 of the next and prev fields in the asection structure. */
8217 typedef struct section_list
8218 {
8219 asection *sec;
8220 struct section_list *next;
8221 struct section_list *prev;
8222 }
8223 section_list;
8224
8225 /* Unfortunately we need to keep a list of sections for which
8226 an _aarch64_elf_section_data structure has been allocated. This
8227 is because it is possible for functions like elfNN_aarch64_write_section
8228 to be called on a section which has had an elf_data_structure
8229 allocated for it (and so the used_by_bfd field is valid) but
8230 for which the AArch64 extended version of this structure - the
8231 _aarch64_elf_section_data structure - has not been allocated. */
8232 static section_list *sections_with_aarch64_elf_section_data = NULL;
8233
8234 static void
8235 record_section_with_aarch64_elf_section_data (asection *sec)
8236 {
8237 struct section_list *entry;
8238
8239 entry = bfd_malloc (sizeof (*entry));
8240 if (entry == NULL)
8241 return;
8242 entry->sec = sec;
8243 entry->next = sections_with_aarch64_elf_section_data;
8244 entry->prev = NULL;
8245 if (entry->next != NULL)
8246 entry->next->prev = entry;
8247 sections_with_aarch64_elf_section_data = entry;
8248 }
8249
8250 static struct section_list *
8251 find_aarch64_elf_section_entry (asection *sec)
8252 {
8253 struct section_list *entry;
8254 static struct section_list *last_entry = NULL;
8255
8256 /* This is a short cut for the typical case where the sections are added
8257 to the sections_with_aarch64_elf_section_data list in forward order and
8258 then looked up here in backwards order. This makes a real difference
8259 to the ld-srec/sec64k.exp linker test. */
8260 entry = sections_with_aarch64_elf_section_data;
8261 if (last_entry != NULL)
8262 {
8263 if (last_entry->sec == sec)
8264 entry = last_entry;
8265 else if (last_entry->next != NULL && last_entry->next->sec == sec)
8266 entry = last_entry->next;
8267 }
8268
8269 for (; entry; entry = entry->next)
8270 if (entry->sec == sec)
8271 break;
8272
8273 if (entry)
8274 /* Record the entry prior to this one - it is the entry we are
8275 most likely to want to locate next time. Also this way if we
8276 have been called from
8277 unrecord_section_with_aarch64_elf_section_data () we will not
8278 be caching a pointer that is about to be freed. */
8279 last_entry = entry->prev;
8280
8281 return entry;
8282 }
8283
8284 static void
8285 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8286 {
8287 struct section_list *entry;
8288
8289 entry = find_aarch64_elf_section_entry (sec);
8290
8291 if (entry)
8292 {
8293 if (entry->prev != NULL)
8294 entry->prev->next = entry->next;
8295 if (entry->next != NULL)
8296 entry->next->prev = entry->prev;
8297 if (entry == sections_with_aarch64_elf_section_data)
8298 sections_with_aarch64_elf_section_data = entry->next;
8299 free (entry);
8300 }
8301 }
8302
8303
8304 typedef struct
8305 {
8306 void *finfo;
8307 struct bfd_link_info *info;
8308 asection *sec;
8309 int sec_shndx;
8310 int (*func) (void *, const char *, Elf_Internal_Sym *,
8311 asection *, struct elf_link_hash_entry *);
8312 } output_arch_syminfo;
8313
8314 enum map_symbol_type
8315 {
8316 AARCH64_MAP_INSN,
8317 AARCH64_MAP_DATA
8318 };
8319
8320
8321 /* Output a single mapping symbol. */
8322
8323 static bfd_boolean
8324 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8325 enum map_symbol_type type, bfd_vma offset)
8326 {
8327 static const char *names[2] = { "$x", "$d" };
8328 Elf_Internal_Sym sym;
8329
8330 sym.st_value = (osi->sec->output_section->vma
8331 + osi->sec->output_offset + offset);
8332 sym.st_size = 0;
8333 sym.st_other = 0;
8334 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8335 sym.st_shndx = osi->sec_shndx;
8336 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8337 }
8338
8339 /* Output a single local symbol for a generated stub. */
8340
8341 static bfd_boolean
8342 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8343 bfd_vma offset, bfd_vma size)
8344 {
8345 Elf_Internal_Sym sym;
8346
8347 sym.st_value = (osi->sec->output_section->vma
8348 + osi->sec->output_offset + offset);
8349 sym.st_size = size;
8350 sym.st_other = 0;
8351 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8352 sym.st_shndx = osi->sec_shndx;
8353 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8354 }
8355
8356 static bfd_boolean
8357 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8358 {
8359 struct elf_aarch64_stub_hash_entry *stub_entry;
8360 asection *stub_sec;
8361 bfd_vma addr;
8362 char *stub_name;
8363 output_arch_syminfo *osi;
8364
8365 /* Massage our args to the form they really have. */
8366 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8367 osi = (output_arch_syminfo *) in_arg;
8368
8369 stub_sec = stub_entry->stub_sec;
8370
8371 /* Ensure this stub is attached to the current section being
8372 processed. */
8373 if (stub_sec != osi->sec)
8374 return TRUE;
8375
8376 addr = (bfd_vma) stub_entry->stub_offset;
8377
8378 stub_name = stub_entry->output_name;
8379
8380 switch (stub_entry->stub_type)
8381 {
8382 case aarch64_stub_adrp_branch:
8383 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8384 sizeof (aarch64_adrp_branch_stub)))
8385 return FALSE;
8386 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8387 return FALSE;
8388 break;
8389 case aarch64_stub_long_branch:
8390 if (!elfNN_aarch64_output_stub_sym
8391 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8392 return FALSE;
8393 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8394 return FALSE;
8395 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8396 return FALSE;
8397 break;
8398 case aarch64_stub_erratum_835769_veneer:
8399 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8400 sizeof (aarch64_erratum_835769_stub)))
8401 return FALSE;
8402 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8403 return FALSE;
8404 break;
8405 case aarch64_stub_erratum_843419_veneer:
8406 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8407 sizeof (aarch64_erratum_843419_stub)))
8408 return FALSE;
8409 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8410 return FALSE;
8411 break;
8412 case aarch64_stub_none:
8413 break;
8414
8415 default:
8416 abort ();
8417 }
8418
8419 return TRUE;
8420 }
8421
8422 /* Output mapping symbols for linker generated sections. */
8423
8424 static bfd_boolean
8425 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8426 struct bfd_link_info *info,
8427 void *finfo,
8428 int (*func) (void *, const char *,
8429 Elf_Internal_Sym *,
8430 asection *,
8431 struct elf_link_hash_entry
8432 *))
8433 {
8434 output_arch_syminfo osi;
8435 struct elf_aarch64_link_hash_table *htab;
8436
8437 htab = elf_aarch64_hash_table (info);
8438
8439 osi.finfo = finfo;
8440 osi.info = info;
8441 osi.func = func;
8442
8443 /* Long calls stubs. */
8444 if (htab->stub_bfd && htab->stub_bfd->sections)
8445 {
8446 asection *stub_sec;
8447
8448 for (stub_sec = htab->stub_bfd->sections;
8449 stub_sec != NULL; stub_sec = stub_sec->next)
8450 {
8451 /* Ignore non-stub sections. */
8452 if (!strstr (stub_sec->name, STUB_SUFFIX))
8453 continue;
8454
8455 osi.sec = stub_sec;
8456
8457 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8458 (output_bfd, osi.sec->output_section);
8459
8460 /* The first instruction in a stub is always a branch. */
8461 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8462 return FALSE;
8463
8464 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8465 &osi);
8466 }
8467 }
8468
8469 /* Finally, output mapping symbols for the PLT. */
8470 if (!htab->root.splt || htab->root.splt->size == 0)
8471 return TRUE;
8472
8473 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8474 (output_bfd, htab->root.splt->output_section);
8475 osi.sec = htab->root.splt;
8476
8477 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8478
8479 return TRUE;
8480
8481 }
8482
8483 /* Allocate target specific section data. */
8484
8485 static bfd_boolean
8486 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8487 {
8488 if (!sec->used_by_bfd)
8489 {
8490 _aarch64_elf_section_data *sdata;
8491 size_t amt = sizeof (*sdata);
8492
8493 sdata = bfd_zalloc (abfd, amt);
8494 if (sdata == NULL)
8495 return FALSE;
8496 sec->used_by_bfd = sdata;
8497 }
8498
8499 record_section_with_aarch64_elf_section_data (sec);
8500
8501 return _bfd_elf_new_section_hook (abfd, sec);
8502 }
8503
8504
8505 static void
8506 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8507 asection *sec,
8508 void *ignore ATTRIBUTE_UNUSED)
8509 {
8510 unrecord_section_with_aarch64_elf_section_data (sec);
8511 }
8512
8513 static bfd_boolean
8514 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8515 {
8516 if (abfd->sections)
8517 bfd_map_over_sections (abfd,
8518 unrecord_section_via_map_over_sections, NULL);
8519
8520 return _bfd_elf_close_and_cleanup (abfd);
8521 }
8522
8523 static bfd_boolean
8524 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8525 {
8526 if (abfd->sections)
8527 bfd_map_over_sections (abfd,
8528 unrecord_section_via_map_over_sections, NULL);
8529
8530 return _bfd_free_cached_info (abfd);
8531 }
8532
8533 /* Create dynamic sections. This is different from the ARM backend in that
8534 the got, plt, gotplt and their relocation sections are all created in the
8535 standard part of the bfd elf backend. */
8536
8537 static bfd_boolean
8538 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8539 struct bfd_link_info *info)
8540 {
8541 /* We need to create .got section. */
8542 if (!aarch64_elf_create_got_section (dynobj, info))
8543 return FALSE;
8544
8545 return _bfd_elf_create_dynamic_sections (dynobj, info);
8546 }
8547
8548
8549 /* Allocate space in .plt, .got and associated reloc sections for
8550 dynamic relocs. */
8551
8552 static bfd_boolean
8553 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8554 {
8555 struct bfd_link_info *info;
8556 struct elf_aarch64_link_hash_table *htab;
8557 struct elf_aarch64_link_hash_entry *eh;
8558 struct elf_dyn_relocs *p;
8559
8560 /* An example of a bfd_link_hash_indirect symbol is versioned
8561 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8562 -> __gxx_personality_v0(bfd_link_hash_defined)
8563
8564 There is no need to process bfd_link_hash_indirect symbols here
8565 because we will also be presented with the concrete instance of
8566 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8567 called to copy all relevant data from the generic to the concrete
8568 symbol instance. */
8569 if (h->root.type == bfd_link_hash_indirect)
8570 return TRUE;
8571
8572 if (h->root.type == bfd_link_hash_warning)
8573 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8574
8575 info = (struct bfd_link_info *) inf;
8576 htab = elf_aarch64_hash_table (info);
8577
8578 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8579 here if it is defined and referenced in a non-shared object. */
8580 if (h->type == STT_GNU_IFUNC
8581 && h->def_regular)
8582 return TRUE;
8583 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8584 {
8585 /* Make sure this symbol is output as a dynamic symbol.
8586 Undefined weak syms won't yet be marked as dynamic. */
8587 if (h->dynindx == -1 && !h->forced_local
8588 && h->root.type == bfd_link_hash_undefweak)
8589 {
8590 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8591 return FALSE;
8592 }
8593
8594 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8595 {
8596 asection *s = htab->root.splt;
8597
8598 /* If this is the first .plt entry, make room for the special
8599 first entry. */
8600 if (s->size == 0)
8601 s->size += htab->plt_header_size;
8602
8603 h->plt.offset = s->size;
8604
8605 /* If this symbol is not defined in a regular file, and we are
8606 not generating a shared library, then set the symbol to this
8607 location in the .plt. This is required to make function
8608 pointers compare as equal between the normal executable and
8609 the shared library. */
8610 if (!bfd_link_pic (info) && !h->def_regular)
8611 {
8612 h->root.u.def.section = s;
8613 h->root.u.def.value = h->plt.offset;
8614 }
8615
8616 /* Make room for this entry. For now we only create the
8617 small model PLT entries. We later need to find a way
8618 of relaxing into these from the large model PLT entries. */
8619 s->size += htab->plt_entry_size;
8620
8621 /* We also need to make an entry in the .got.plt section, which
8622 will be placed in the .got section by the linker script. */
8623 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8624
8625 /* We also need to make an entry in the .rela.plt section. */
8626 htab->root.srelplt->size += RELOC_SIZE (htab);
8627
8628 /* We need to ensure that all GOT entries that serve the PLT
8629 are consecutive with the special GOT slots [0] [1] and
8630 [2]. Any addtional relocations, such as
8631 R_AARCH64_TLSDESC, must be placed after the PLT related
8632 entries. We abuse the reloc_count such that during
8633 sizing we adjust reloc_count to indicate the number of
8634 PLT related reserved entries. In subsequent phases when
8635 filling in the contents of the reloc entries, PLT related
8636 entries are placed by computing their PLT index (0
8637 .. reloc_count). While other none PLT relocs are placed
8638 at the slot indicated by reloc_count and reloc_count is
8639 updated. */
8640
8641 htab->root.srelplt->reloc_count++;
8642
8643 /* Mark the DSO in case R_<CLS>_JUMP_SLOT relocs against
8644 variant PCS symbols are present. */
8645 if (h->other & STO_AARCH64_VARIANT_PCS)
8646 htab->variant_pcs = 1;
8647
8648 }
8649 else
8650 {
8651 h->plt.offset = (bfd_vma) - 1;
8652 h->needs_plt = 0;
8653 }
8654 }
8655 else
8656 {
8657 h->plt.offset = (bfd_vma) - 1;
8658 h->needs_plt = 0;
8659 }
8660
8661 eh = (struct elf_aarch64_link_hash_entry *) h;
8662 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8663
8664 if (h->got.refcount > 0)
8665 {
8666 bfd_boolean dyn;
8667 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8668
8669 h->got.offset = (bfd_vma) - 1;
8670
8671 dyn = htab->root.dynamic_sections_created;
8672
8673 /* Make sure this symbol is output as a dynamic symbol.
8674 Undefined weak syms won't yet be marked as dynamic. */
8675 if (dyn && h->dynindx == -1 && !h->forced_local
8676 && h->root.type == bfd_link_hash_undefweak)
8677 {
8678 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8679 return FALSE;
8680 }
8681
8682 if (got_type == GOT_UNKNOWN)
8683 {
8684 }
8685 else if (got_type == GOT_NORMAL)
8686 {
8687 h->got.offset = htab->root.sgot->size;
8688 htab->root.sgot->size += GOT_ENTRY_SIZE;
8689 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8690 || h->root.type != bfd_link_hash_undefweak)
8691 && (bfd_link_pic (info)
8692 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8693 /* Undefined weak symbol in static PIE resolves to 0 without
8694 any dynamic relocations. */
8695 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8696 {
8697 htab->root.srelgot->size += RELOC_SIZE (htab);
8698 }
8699 }
8700 else
8701 {
8702 int indx;
8703 if (got_type & GOT_TLSDESC_GD)
8704 {
8705 eh->tlsdesc_got_jump_table_offset =
8706 (htab->root.sgotplt->size
8707 - aarch64_compute_jump_table_size (htab));
8708 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8709 h->got.offset = (bfd_vma) - 2;
8710 }
8711
8712 if (got_type & GOT_TLS_GD)
8713 {
8714 h->got.offset = htab->root.sgot->size;
8715 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8716 }
8717
8718 if (got_type & GOT_TLS_IE)
8719 {
8720 h->got.offset = htab->root.sgot->size;
8721 htab->root.sgot->size += GOT_ENTRY_SIZE;
8722 }
8723
8724 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8725 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8726 || h->root.type != bfd_link_hash_undefweak)
8727 && (!bfd_link_executable (info)
8728 || indx != 0
8729 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8730 {
8731 if (got_type & GOT_TLSDESC_GD)
8732 {
8733 htab->root.srelplt->size += RELOC_SIZE (htab);
8734 /* Note reloc_count not incremented here! We have
8735 already adjusted reloc_count for this relocation
8736 type. */
8737
8738 /* TLSDESC PLT is now needed, but not yet determined. */
8739 htab->tlsdesc_plt = (bfd_vma) - 1;
8740 }
8741
8742 if (got_type & GOT_TLS_GD)
8743 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8744
8745 if (got_type & GOT_TLS_IE)
8746 htab->root.srelgot->size += RELOC_SIZE (htab);
8747 }
8748 }
8749 }
8750 else
8751 {
8752 h->got.offset = (bfd_vma) - 1;
8753 }
8754
8755 if (eh->dyn_relocs == NULL)
8756 return TRUE;
8757
8758 /* In the shared -Bsymbolic case, discard space allocated for
8759 dynamic pc-relative relocs against symbols which turn out to be
8760 defined in regular objects. For the normal shared case, discard
8761 space for pc-relative relocs that have become local due to symbol
8762 visibility changes. */
8763
8764 if (bfd_link_pic (info))
8765 {
8766 /* Relocs that use pc_count are those that appear on a call
8767 insn, or certain REL relocs that can generated via assembly.
8768 We want calls to protected symbols to resolve directly to the
8769 function rather than going via the plt. If people want
8770 function pointer comparisons to work as expected then they
8771 should avoid writing weird assembly. */
8772 if (SYMBOL_CALLS_LOCAL (info, h))
8773 {
8774 struct elf_dyn_relocs **pp;
8775
8776 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8777 {
8778 p->count -= p->pc_count;
8779 p->pc_count = 0;
8780 if (p->count == 0)
8781 *pp = p->next;
8782 else
8783 pp = &p->next;
8784 }
8785 }
8786
8787 /* Also discard relocs on undefined weak syms with non-default
8788 visibility. */
8789 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8790 {
8791 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8792 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8793 eh->dyn_relocs = NULL;
8794
8795 /* Make sure undefined weak symbols are output as a dynamic
8796 symbol in PIEs. */
8797 else if (h->dynindx == -1
8798 && !h->forced_local
8799 && h->root.type == bfd_link_hash_undefweak
8800 && !bfd_elf_link_record_dynamic_symbol (info, h))
8801 return FALSE;
8802 }
8803
8804 }
8805 else if (ELIMINATE_COPY_RELOCS)
8806 {
8807 /* For the non-shared case, discard space for relocs against
8808 symbols which turn out to need copy relocs or are not
8809 dynamic. */
8810
8811 if (!h->non_got_ref
8812 && ((h->def_dynamic
8813 && !h->def_regular)
8814 || (htab->root.dynamic_sections_created
8815 && (h->root.type == bfd_link_hash_undefweak
8816 || h->root.type == bfd_link_hash_undefined))))
8817 {
8818 /* Make sure this symbol is output as a dynamic symbol.
8819 Undefined weak syms won't yet be marked as dynamic. */
8820 if (h->dynindx == -1
8821 && !h->forced_local
8822 && h->root.type == bfd_link_hash_undefweak
8823 && !bfd_elf_link_record_dynamic_symbol (info, h))
8824 return FALSE;
8825
8826 /* If that succeeded, we know we'll be keeping all the
8827 relocs. */
8828 if (h->dynindx != -1)
8829 goto keep;
8830 }
8831
8832 eh->dyn_relocs = NULL;
8833
8834 keep:;
8835 }
8836
8837 /* Finally, allocate space. */
8838 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8839 {
8840 asection *sreloc;
8841
8842 sreloc = elf_section_data (p->sec)->sreloc;
8843
8844 BFD_ASSERT (sreloc != NULL);
8845
8846 sreloc->size += p->count * RELOC_SIZE (htab);
8847 }
8848
8849 return TRUE;
8850 }
8851
8852 /* Allocate space in .plt, .got and associated reloc sections for
8853 ifunc dynamic relocs. */
8854
8855 static bfd_boolean
8856 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8857 void *inf)
8858 {
8859 struct bfd_link_info *info;
8860 struct elf_aarch64_link_hash_table *htab;
8861 struct elf_aarch64_link_hash_entry *eh;
8862
8863 /* An example of a bfd_link_hash_indirect symbol is versioned
8864 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8865 -> __gxx_personality_v0(bfd_link_hash_defined)
8866
8867 There is no need to process bfd_link_hash_indirect symbols here
8868 because we will also be presented with the concrete instance of
8869 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8870 called to copy all relevant data from the generic to the concrete
8871 symbol instance. */
8872 if (h->root.type == bfd_link_hash_indirect)
8873 return TRUE;
8874
8875 if (h->root.type == bfd_link_hash_warning)
8876 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8877
8878 info = (struct bfd_link_info *) inf;
8879 htab = elf_aarch64_hash_table (info);
8880
8881 eh = (struct elf_aarch64_link_hash_entry *) h;
8882
8883 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8884 here if it is defined and referenced in a non-shared object. */
8885 if (h->type == STT_GNU_IFUNC
8886 && h->def_regular)
8887 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8888 &eh->dyn_relocs,
8889 NULL,
8890 htab->plt_entry_size,
8891 htab->plt_header_size,
8892 GOT_ENTRY_SIZE,
8893 FALSE);
8894 return TRUE;
8895 }
8896
8897 /* Allocate space in .plt, .got and associated reloc sections for
8898 local ifunc dynamic relocs. */
8899
8900 static bfd_boolean
8901 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8902 {
8903 struct elf_link_hash_entry *h
8904 = (struct elf_link_hash_entry *) *slot;
8905
8906 if (h->type != STT_GNU_IFUNC
8907 || !h->def_regular
8908 || !h->ref_regular
8909 || !h->forced_local
8910 || h->root.type != bfd_link_hash_defined)
8911 abort ();
8912
8913 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8914 }
8915
8916 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8917 read-only sections. */
8918
8919 static bfd_boolean
8920 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8921 {
8922 asection *sec;
8923
8924 if (h->root.type == bfd_link_hash_indirect)
8925 return TRUE;
8926
8927 sec = readonly_dynrelocs (h);
8928 if (sec != NULL)
8929 {
8930 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8931
8932 info->flags |= DF_TEXTREL;
8933 info->callbacks->minfo
8934 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8935 sec->owner, h->root.root.string, sec);
8936
8937 /* Not an error, just cut short the traversal. */
8938 return FALSE;
8939 }
8940 return TRUE;
8941 }
8942
8943 /* This is the most important function of all . Innocuosly named
8944 though ! */
8945
8946 static bfd_boolean
8947 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8948 struct bfd_link_info *info)
8949 {
8950 struct elf_aarch64_link_hash_table *htab;
8951 bfd *dynobj;
8952 asection *s;
8953 bfd_boolean relocs;
8954 bfd *ibfd;
8955
8956 htab = elf_aarch64_hash_table ((info));
8957 dynobj = htab->root.dynobj;
8958
8959 BFD_ASSERT (dynobj != NULL);
8960
8961 if (htab->root.dynamic_sections_created)
8962 {
8963 if (bfd_link_executable (info) && !info->nointerp)
8964 {
8965 s = bfd_get_linker_section (dynobj, ".interp");
8966 if (s == NULL)
8967 abort ();
8968 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8969 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8970 }
8971 }
8972
8973 /* Set up .got offsets for local syms, and space for local dynamic
8974 relocs. */
8975 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8976 {
8977 struct elf_aarch64_local_symbol *locals = NULL;
8978 Elf_Internal_Shdr *symtab_hdr;
8979 asection *srel;
8980 unsigned int i;
8981
8982 if (!is_aarch64_elf (ibfd))
8983 continue;
8984
8985 for (s = ibfd->sections; s != NULL; s = s->next)
8986 {
8987 struct elf_dyn_relocs *p;
8988
8989 for (p = (struct elf_dyn_relocs *)
8990 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8991 {
8992 if (!bfd_is_abs_section (p->sec)
8993 && bfd_is_abs_section (p->sec->output_section))
8994 {
8995 /* Input section has been discarded, either because
8996 it is a copy of a linkonce section or due to
8997 linker script /DISCARD/, so we'll be discarding
8998 the relocs too. */
8999 }
9000 else if (p->count != 0)
9001 {
9002 srel = elf_section_data (p->sec)->sreloc;
9003 srel->size += p->count * RELOC_SIZE (htab);
9004 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9005 info->flags |= DF_TEXTREL;
9006 }
9007 }
9008 }
9009
9010 locals = elf_aarch64_locals (ibfd);
9011 if (!locals)
9012 continue;
9013
9014 symtab_hdr = &elf_symtab_hdr (ibfd);
9015 srel = htab->root.srelgot;
9016 for (i = 0; i < symtab_hdr->sh_info; i++)
9017 {
9018 locals[i].got_offset = (bfd_vma) - 1;
9019 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
9020 if (locals[i].got_refcount > 0)
9021 {
9022 unsigned got_type = locals[i].got_type;
9023 if (got_type & GOT_TLSDESC_GD)
9024 {
9025 locals[i].tlsdesc_got_jump_table_offset =
9026 (htab->root.sgotplt->size
9027 - aarch64_compute_jump_table_size (htab));
9028 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
9029 locals[i].got_offset = (bfd_vma) - 2;
9030 }
9031
9032 if (got_type & GOT_TLS_GD)
9033 {
9034 locals[i].got_offset = htab->root.sgot->size;
9035 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
9036 }
9037
9038 if (got_type & GOT_TLS_IE
9039 || got_type & GOT_NORMAL)
9040 {
9041 locals[i].got_offset = htab->root.sgot->size;
9042 htab->root.sgot->size += GOT_ENTRY_SIZE;
9043 }
9044
9045 if (got_type == GOT_UNKNOWN)
9046 {
9047 }
9048
9049 if (bfd_link_pic (info))
9050 {
9051 if (got_type & GOT_TLSDESC_GD)
9052 {
9053 htab->root.srelplt->size += RELOC_SIZE (htab);
9054 /* Note RELOC_COUNT not incremented here! */
9055 htab->tlsdesc_plt = (bfd_vma) - 1;
9056 }
9057
9058 if (got_type & GOT_TLS_GD)
9059 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
9060
9061 if (got_type & GOT_TLS_IE
9062 || got_type & GOT_NORMAL)
9063 htab->root.srelgot->size += RELOC_SIZE (htab);
9064 }
9065 }
9066 else
9067 {
9068 locals[i].got_refcount = (bfd_vma) - 1;
9069 }
9070 }
9071 }
9072
9073
9074 /* Allocate global sym .plt and .got entries, and space for global
9075 sym dynamic relocs. */
9076 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
9077 info);
9078
9079 /* Allocate global ifunc sym .plt and .got entries, and space for global
9080 ifunc sym dynamic relocs. */
9081 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
9082 info);
9083
9084 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
9085 htab_traverse (htab->loc_hash_table,
9086 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
9087 info);
9088
9089 /* For every jump slot reserved in the sgotplt, reloc_count is
9090 incremented. However, when we reserve space for TLS descriptors,
9091 it's not incremented, so in order to compute the space reserved
9092 for them, it suffices to multiply the reloc count by the jump
9093 slot size. */
9094
9095 if (htab->root.srelplt)
9096 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
9097
9098 if (htab->tlsdesc_plt)
9099 {
9100 if (htab->root.splt->size == 0)
9101 htab->root.splt->size += htab->plt_header_size;
9102
9103 /* If we're not using lazy TLS relocations, don't generate the
9104 GOT and PLT entry required. */
9105 if (!(info->flags & DF_BIND_NOW))
9106 {
9107 htab->tlsdesc_plt = htab->root.splt->size;
9108 htab->root.splt->size += htab->tlsdesc_plt_entry_size;
9109
9110 htab->dt_tlsdesc_got = htab->root.sgot->size;
9111 htab->root.sgot->size += GOT_ENTRY_SIZE;
9112 }
9113 }
9114
9115 /* Init mapping symbols information to use later to distingush between
9116 code and data while scanning for errata. */
9117 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
9118 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9119 {
9120 if (!is_aarch64_elf (ibfd))
9121 continue;
9122 bfd_elfNN_aarch64_init_maps (ibfd);
9123 }
9124
9125 /* We now have determined the sizes of the various dynamic sections.
9126 Allocate memory for them. */
9127 relocs = FALSE;
9128 for (s = dynobj->sections; s != NULL; s = s->next)
9129 {
9130 if ((s->flags & SEC_LINKER_CREATED) == 0)
9131 continue;
9132
9133 if (s == htab->root.splt
9134 || s == htab->root.sgot
9135 || s == htab->root.sgotplt
9136 || s == htab->root.iplt
9137 || s == htab->root.igotplt
9138 || s == htab->root.sdynbss
9139 || s == htab->root.sdynrelro)
9140 {
9141 /* Strip this section if we don't need it; see the
9142 comment below. */
9143 }
9144 else if (CONST_STRNEQ (bfd_section_name (s), ".rela"))
9145 {
9146 if (s->size != 0 && s != htab->root.srelplt)
9147 relocs = TRUE;
9148
9149 /* We use the reloc_count field as a counter if we need
9150 to copy relocs into the output file. */
9151 if (s != htab->root.srelplt)
9152 s->reloc_count = 0;
9153 }
9154 else
9155 {
9156 /* It's not one of our sections, so don't allocate space. */
9157 continue;
9158 }
9159
9160 if (s->size == 0)
9161 {
9162 /* If we don't need this section, strip it from the
9163 output file. This is mostly to handle .rela.bss and
9164 .rela.plt. We must create both sections in
9165 create_dynamic_sections, because they must be created
9166 before the linker maps input sections to output
9167 sections. The linker does that before
9168 adjust_dynamic_symbol is called, and it is that
9169 function which decides whether anything needs to go
9170 into these sections. */
9171 s->flags |= SEC_EXCLUDE;
9172 continue;
9173 }
9174
9175 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9176 continue;
9177
9178 /* Allocate memory for the section contents. We use bfd_zalloc
9179 here in case unused entries are not reclaimed before the
9180 section's contents are written out. This should not happen,
9181 but this way if it does, we get a R_AARCH64_NONE reloc instead
9182 of garbage. */
9183 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9184 if (s->contents == NULL)
9185 return FALSE;
9186 }
9187
9188 if (htab->root.dynamic_sections_created)
9189 {
9190 /* Add some entries to the .dynamic section. We fill in the
9191 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9192 must add the entries now so that we get the correct size for
9193 the .dynamic section. The DT_DEBUG entry is filled in by the
9194 dynamic linker and used by the debugger. */
9195 #define add_dynamic_entry(TAG, VAL) \
9196 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9197
9198 if (bfd_link_executable (info))
9199 {
9200 if (!add_dynamic_entry (DT_DEBUG, 0))
9201 return FALSE;
9202 }
9203
9204 if (htab->root.splt->size != 0)
9205 {
9206 if (!add_dynamic_entry (DT_PLTGOT, 0)
9207 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9208 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9209 || !add_dynamic_entry (DT_JMPREL, 0))
9210 return FALSE;
9211
9212 if (htab->variant_pcs
9213 && !add_dynamic_entry (DT_AARCH64_VARIANT_PCS, 0))
9214 return FALSE;
9215
9216 if (htab->tlsdesc_plt
9217 && !(info->flags & DF_BIND_NOW)
9218 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
9219 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
9220 return FALSE;
9221
9222 if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI_PAC)
9223 && (!add_dynamic_entry (DT_AARCH64_BTI_PLT, 0)
9224 || !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0)))
9225 return FALSE;
9226
9227 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9228 && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9229 return FALSE;
9230
9231 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_PAC)
9232 && !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0))
9233 return FALSE;
9234 }
9235
9236 if (relocs)
9237 {
9238 if (!add_dynamic_entry (DT_RELA, 0)
9239 || !add_dynamic_entry (DT_RELASZ, 0)
9240 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9241 return FALSE;
9242
9243 /* If any dynamic relocs apply to a read-only section,
9244 then we need a DT_TEXTREL entry. */
9245 if ((info->flags & DF_TEXTREL) == 0)
9246 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
9247
9248 if ((info->flags & DF_TEXTREL) != 0)
9249 {
9250 if (!add_dynamic_entry (DT_TEXTREL, 0))
9251 return FALSE;
9252 }
9253 }
9254 }
9255 #undef add_dynamic_entry
9256
9257 return TRUE;
9258 }
9259
9260 static inline void
9261 elf_aarch64_update_plt_entry (bfd *output_bfd,
9262 bfd_reloc_code_real_type r_type,
9263 bfd_byte *plt_entry, bfd_vma value)
9264 {
9265 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9266
9267 /* FIXME: We should check the return value from this function call. */
9268 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9269 }
9270
9271 static void
9272 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9273 struct elf_aarch64_link_hash_table
9274 *htab, bfd *output_bfd,
9275 struct bfd_link_info *info)
9276 {
9277 bfd_byte *plt_entry;
9278 bfd_vma plt_index;
9279 bfd_vma got_offset;
9280 bfd_vma gotplt_entry_address;
9281 bfd_vma plt_entry_address;
9282 Elf_Internal_Rela rela;
9283 bfd_byte *loc;
9284 asection *plt, *gotplt, *relplt;
9285
9286 /* When building a static executable, use .iplt, .igot.plt and
9287 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9288 if (htab->root.splt != NULL)
9289 {
9290 plt = htab->root.splt;
9291 gotplt = htab->root.sgotplt;
9292 relplt = htab->root.srelplt;
9293 }
9294 else
9295 {
9296 plt = htab->root.iplt;
9297 gotplt = htab->root.igotplt;
9298 relplt = htab->root.irelplt;
9299 }
9300
9301 /* Get the index in the procedure linkage table which
9302 corresponds to this symbol. This is the index of this symbol
9303 in all the symbols for which we are making plt entries. The
9304 first entry in the procedure linkage table is reserved.
9305
9306 Get the offset into the .got table of the entry that
9307 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9308 bytes. The first three are reserved for the dynamic linker.
9309
9310 For static executables, we don't reserve anything. */
9311
9312 if (plt == htab->root.splt)
9313 {
9314 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9315 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9316 }
9317 else
9318 {
9319 plt_index = h->plt.offset / htab->plt_entry_size;
9320 got_offset = plt_index * GOT_ENTRY_SIZE;
9321 }
9322
9323 plt_entry = plt->contents + h->plt.offset;
9324 plt_entry_address = plt->output_section->vma
9325 + plt->output_offset + h->plt.offset;
9326 gotplt_entry_address = gotplt->output_section->vma +
9327 gotplt->output_offset + got_offset;
9328
9329 /* Copy in the boiler-plate for the PLTn entry. */
9330 memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9331
9332 /* First instruction in BTI enabled PLT stub is a BTI
9333 instruction so skip it. */
9334 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9335 && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9336 plt_entry = plt_entry + 4;
9337
9338 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9339 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9340 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9341 plt_entry,
9342 PG (gotplt_entry_address) -
9343 PG (plt_entry_address));
9344
9345 /* Fill in the lo12 bits for the load from the pltgot. */
9346 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9347 plt_entry + 4,
9348 PG_OFFSET (gotplt_entry_address));
9349
9350 /* Fill in the lo12 bits for the add from the pltgot entry. */
9351 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9352 plt_entry + 8,
9353 PG_OFFSET (gotplt_entry_address));
9354
9355 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9356 bfd_put_NN (output_bfd,
9357 plt->output_section->vma + plt->output_offset,
9358 gotplt->contents + got_offset);
9359
9360 rela.r_offset = gotplt_entry_address;
9361
9362 if (h->dynindx == -1
9363 || ((bfd_link_executable (info)
9364 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9365 && h->def_regular
9366 && h->type == STT_GNU_IFUNC))
9367 {
9368 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9369 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9370 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9371 rela.r_addend = (h->root.u.def.value
9372 + h->root.u.def.section->output_section->vma
9373 + h->root.u.def.section->output_offset);
9374 }
9375 else
9376 {
9377 /* Fill in the entry in the .rela.plt section. */
9378 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9379 rela.r_addend = 0;
9380 }
9381
9382 /* Compute the relocation entry to used based on PLT index and do
9383 not adjust reloc_count. The reloc_count has already been adjusted
9384 to account for this entry. */
9385 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9386 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9387 }
9388
9389 /* Size sections even though they're not dynamic. We use it to setup
9390 _TLS_MODULE_BASE_, if needed. */
9391
9392 static bfd_boolean
9393 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9394 struct bfd_link_info *info)
9395 {
9396 asection *tls_sec;
9397
9398 if (bfd_link_relocatable (info))
9399 return TRUE;
9400
9401 tls_sec = elf_hash_table (info)->tls_sec;
9402
9403 if (tls_sec)
9404 {
9405 struct elf_link_hash_entry *tlsbase;
9406
9407 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9408 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9409
9410 if (tlsbase)
9411 {
9412 struct bfd_link_hash_entry *h = NULL;
9413 const struct elf_backend_data *bed =
9414 get_elf_backend_data (output_bfd);
9415
9416 if (!(_bfd_generic_link_add_one_symbol
9417 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9418 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9419 return FALSE;
9420
9421 tlsbase->type = STT_TLS;
9422 tlsbase = (struct elf_link_hash_entry *) h;
9423 tlsbase->def_regular = 1;
9424 tlsbase->other = STV_HIDDEN;
9425 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9426 }
9427 }
9428
9429 return TRUE;
9430 }
9431
9432 /* Finish up dynamic symbol handling. We set the contents of various
9433 dynamic sections here. */
9434
9435 static bfd_boolean
9436 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9437 struct bfd_link_info *info,
9438 struct elf_link_hash_entry *h,
9439 Elf_Internal_Sym *sym)
9440 {
9441 struct elf_aarch64_link_hash_table *htab;
9442 htab = elf_aarch64_hash_table (info);
9443
9444 if (h->plt.offset != (bfd_vma) - 1)
9445 {
9446 asection *plt, *gotplt, *relplt;
9447
9448 /* This symbol has an entry in the procedure linkage table. Set
9449 it up. */
9450
9451 /* When building a static executable, use .iplt, .igot.plt and
9452 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9453 if (htab->root.splt != NULL)
9454 {
9455 plt = htab->root.splt;
9456 gotplt = htab->root.sgotplt;
9457 relplt = htab->root.srelplt;
9458 }
9459 else
9460 {
9461 plt = htab->root.iplt;
9462 gotplt = htab->root.igotplt;
9463 relplt = htab->root.irelplt;
9464 }
9465
9466 /* This symbol has an entry in the procedure linkage table. Set
9467 it up. */
9468 if ((h->dynindx == -1
9469 && !((h->forced_local || bfd_link_executable (info))
9470 && h->def_regular
9471 && h->type == STT_GNU_IFUNC))
9472 || plt == NULL
9473 || gotplt == NULL
9474 || relplt == NULL)
9475 return FALSE;
9476
9477 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9478 if (!h->def_regular)
9479 {
9480 /* Mark the symbol as undefined, rather than as defined in
9481 the .plt section. */
9482 sym->st_shndx = SHN_UNDEF;
9483 /* If the symbol is weak we need to clear the value.
9484 Otherwise, the PLT entry would provide a definition for
9485 the symbol even if the symbol wasn't defined anywhere,
9486 and so the symbol would never be NULL. Leave the value if
9487 there were any relocations where pointer equality matters
9488 (this is a clue for the dynamic linker, to make function
9489 pointer comparisons work between an application and shared
9490 library). */
9491 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9492 sym->st_value = 0;
9493 }
9494 }
9495
9496 if (h->got.offset != (bfd_vma) - 1
9497 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9498 /* Undefined weak symbol in static PIE resolves to 0 without
9499 any dynamic relocations. */
9500 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9501 {
9502 Elf_Internal_Rela rela;
9503 bfd_byte *loc;
9504
9505 /* This symbol has an entry in the global offset table. Set it
9506 up. */
9507 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9508 abort ();
9509
9510 rela.r_offset = (htab->root.sgot->output_section->vma
9511 + htab->root.sgot->output_offset
9512 + (h->got.offset & ~(bfd_vma) 1));
9513
9514 if (h->def_regular
9515 && h->type == STT_GNU_IFUNC)
9516 {
9517 if (bfd_link_pic (info))
9518 {
9519 /* Generate R_AARCH64_GLOB_DAT. */
9520 goto do_glob_dat;
9521 }
9522 else
9523 {
9524 asection *plt;
9525
9526 if (!h->pointer_equality_needed)
9527 abort ();
9528
9529 /* For non-shared object, we can't use .got.plt, which
9530 contains the real function address if we need pointer
9531 equality. We load the GOT entry with the PLT entry. */
9532 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9533 bfd_put_NN (output_bfd, (plt->output_section->vma
9534 + plt->output_offset
9535 + h->plt.offset),
9536 htab->root.sgot->contents
9537 + (h->got.offset & ~(bfd_vma) 1));
9538 return TRUE;
9539 }
9540 }
9541 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9542 {
9543 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9544 return FALSE;
9545
9546 BFD_ASSERT ((h->got.offset & 1) != 0);
9547 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9548 rela.r_addend = (h->root.u.def.value
9549 + h->root.u.def.section->output_section->vma
9550 + h->root.u.def.section->output_offset);
9551 }
9552 else
9553 {
9554 do_glob_dat:
9555 BFD_ASSERT ((h->got.offset & 1) == 0);
9556 bfd_put_NN (output_bfd, (bfd_vma) 0,
9557 htab->root.sgot->contents + h->got.offset);
9558 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9559 rela.r_addend = 0;
9560 }
9561
9562 loc = htab->root.srelgot->contents;
9563 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9564 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9565 }
9566
9567 if (h->needs_copy)
9568 {
9569 Elf_Internal_Rela rela;
9570 asection *s;
9571 bfd_byte *loc;
9572
9573 /* This symbol needs a copy reloc. Set it up. */
9574 if (h->dynindx == -1
9575 || (h->root.type != bfd_link_hash_defined
9576 && h->root.type != bfd_link_hash_defweak)
9577 || htab->root.srelbss == NULL)
9578 abort ();
9579
9580 rela.r_offset = (h->root.u.def.value
9581 + h->root.u.def.section->output_section->vma
9582 + h->root.u.def.section->output_offset);
9583 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9584 rela.r_addend = 0;
9585 if (h->root.u.def.section == htab->root.sdynrelro)
9586 s = htab->root.sreldynrelro;
9587 else
9588 s = htab->root.srelbss;
9589 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9590 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9591 }
9592
9593 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9594 be NULL for local symbols. */
9595 if (sym != NULL
9596 && (h == elf_hash_table (info)->hdynamic
9597 || h == elf_hash_table (info)->hgot))
9598 sym->st_shndx = SHN_ABS;
9599
9600 return TRUE;
9601 }
9602
9603 /* Finish up local dynamic symbol handling. We set the contents of
9604 various dynamic sections here. */
9605
9606 static bfd_boolean
9607 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9608 {
9609 struct elf_link_hash_entry *h
9610 = (struct elf_link_hash_entry *) *slot;
9611 struct bfd_link_info *info
9612 = (struct bfd_link_info *) inf;
9613
9614 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9615 info, h, NULL);
9616 }
9617
9618 static void
9619 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9620 struct elf_aarch64_link_hash_table
9621 *htab)
9622 {
9623 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9624 small and large plts and at the minute just generates
9625 the small PLT. */
9626
9627 /* PLT0 of the small PLT looks like this in ELF64 -
9628 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9629 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9630 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9631 // symbol resolver
9632 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9633 // GOTPLT entry for this.
9634 br x17
9635 PLT0 will be slightly different in ELF32 due to different got entry
9636 size. */
9637 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9638 bfd_vma plt_base;
9639
9640
9641 memcpy (htab->root.splt->contents, htab->plt0_entry,
9642 htab->plt_header_size);
9643 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9644 htab->plt_header_size;
9645
9646 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9647 + htab->root.sgotplt->output_offset
9648 + GOT_ENTRY_SIZE * 2);
9649
9650 plt_base = htab->root.splt->output_section->vma +
9651 htab->root.splt->output_offset;
9652
9653 /* First instruction in BTI enabled PLT stub is a BTI
9654 instruction so skip it. */
9655 bfd_byte *plt0_entry = htab->root.splt->contents;
9656 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9657 plt0_entry = plt0_entry + 4;
9658
9659 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9660 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9661 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9662 plt0_entry + 4,
9663 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9664
9665 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9666 plt0_entry + 8,
9667 PG_OFFSET (plt_got_2nd_ent));
9668
9669 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9670 plt0_entry + 12,
9671 PG_OFFSET (plt_got_2nd_ent));
9672 }
9673
9674 static bfd_boolean
9675 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9676 struct bfd_link_info *info)
9677 {
9678 struct elf_aarch64_link_hash_table *htab;
9679 bfd *dynobj;
9680 asection *sdyn;
9681
9682 htab = elf_aarch64_hash_table (info);
9683 dynobj = htab->root.dynobj;
9684 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9685
9686 if (htab->root.dynamic_sections_created)
9687 {
9688 ElfNN_External_Dyn *dyncon, *dynconend;
9689
9690 if (sdyn == NULL || htab->root.sgot == NULL)
9691 abort ();
9692
9693 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9694 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9695 for (; dyncon < dynconend; dyncon++)
9696 {
9697 Elf_Internal_Dyn dyn;
9698 asection *s;
9699
9700 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9701
9702 switch (dyn.d_tag)
9703 {
9704 default:
9705 continue;
9706
9707 case DT_PLTGOT:
9708 s = htab->root.sgotplt;
9709 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9710 break;
9711
9712 case DT_JMPREL:
9713 s = htab->root.srelplt;
9714 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9715 break;
9716
9717 case DT_PLTRELSZ:
9718 s = htab->root.srelplt;
9719 dyn.d_un.d_val = s->size;
9720 break;
9721
9722 case DT_TLSDESC_PLT:
9723 s = htab->root.splt;
9724 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9725 + htab->tlsdesc_plt;
9726 break;
9727
9728 case DT_TLSDESC_GOT:
9729 s = htab->root.sgot;
9730 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9731 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9732 + htab->dt_tlsdesc_got;
9733 break;
9734 }
9735
9736 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9737 }
9738
9739 }
9740
9741 /* Fill in the special first entry in the procedure linkage table. */
9742 if (htab->root.splt && htab->root.splt->size > 0)
9743 {
9744 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9745
9746 elf_section_data (htab->root.splt->output_section)->
9747 this_hdr.sh_entsize = htab->plt_entry_size;
9748
9749
9750 if (htab->tlsdesc_plt && !(info->flags & DF_BIND_NOW))
9751 {
9752 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9753 bfd_put_NN (output_bfd, (bfd_vma) 0,
9754 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9755
9756 const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9757 htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9758
9759 aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9760 if (type == PLT_BTI || type == PLT_BTI_PAC)
9761 {
9762 entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9763 }
9764
9765 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9766 entry, htab->tlsdesc_plt_entry_size);
9767
9768 {
9769 bfd_vma adrp1_addr =
9770 htab->root.splt->output_section->vma
9771 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9772
9773 bfd_vma adrp2_addr = adrp1_addr + 4;
9774
9775 bfd_vma got_addr =
9776 htab->root.sgot->output_section->vma
9777 + htab->root.sgot->output_offset;
9778
9779 bfd_vma pltgot_addr =
9780 htab->root.sgotplt->output_section->vma
9781 + htab->root.sgotplt->output_offset;
9782
9783 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9784
9785 bfd_byte *plt_entry =
9786 htab->root.splt->contents + htab->tlsdesc_plt;
9787
9788 /* First instruction in BTI enabled PLT stub is a BTI
9789 instruction so skip it. */
9790 if (type & PLT_BTI)
9791 {
9792 plt_entry = plt_entry + 4;
9793 adrp1_addr = adrp1_addr + 4;
9794 adrp2_addr = adrp2_addr + 4;
9795 }
9796
9797 /* adrp x2, DT_TLSDESC_GOT */
9798 elf_aarch64_update_plt_entry (output_bfd,
9799 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9800 plt_entry + 4,
9801 (PG (dt_tlsdesc_got)
9802 - PG (adrp1_addr)));
9803
9804 /* adrp x3, 0 */
9805 elf_aarch64_update_plt_entry (output_bfd,
9806 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9807 plt_entry + 8,
9808 (PG (pltgot_addr)
9809 - PG (adrp2_addr)));
9810
9811 /* ldr x2, [x2, #0] */
9812 elf_aarch64_update_plt_entry (output_bfd,
9813 BFD_RELOC_AARCH64_LDSTNN_LO12,
9814 plt_entry + 12,
9815 PG_OFFSET (dt_tlsdesc_got));
9816
9817 /* add x3, x3, 0 */
9818 elf_aarch64_update_plt_entry (output_bfd,
9819 BFD_RELOC_AARCH64_ADD_LO12,
9820 plt_entry + 16,
9821 PG_OFFSET (pltgot_addr));
9822 }
9823 }
9824 }
9825
9826 if (htab->root.sgotplt)
9827 {
9828 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9829 {
9830 _bfd_error_handler
9831 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9832 return FALSE;
9833 }
9834
9835 /* Fill in the first three entries in the global offset table. */
9836 if (htab->root.sgotplt->size > 0)
9837 {
9838 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9839
9840 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9841 bfd_put_NN (output_bfd,
9842 (bfd_vma) 0,
9843 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9844 bfd_put_NN (output_bfd,
9845 (bfd_vma) 0,
9846 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9847 }
9848
9849 if (htab->root.sgot)
9850 {
9851 if (htab->root.sgot->size > 0)
9852 {
9853 bfd_vma addr =
9854 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9855 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9856 }
9857 }
9858
9859 elf_section_data (htab->root.sgotplt->output_section)->
9860 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9861 }
9862
9863 if (htab->root.sgot && htab->root.sgot->size > 0)
9864 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9865 = GOT_ENTRY_SIZE;
9866
9867 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9868 htab_traverse (htab->loc_hash_table,
9869 elfNN_aarch64_finish_local_dynamic_symbol,
9870 info);
9871
9872 return TRUE;
9873 }
9874
9875 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
9876 static aarch64_plt_type
9877 get_plt_type (bfd *abfd)
9878 {
9879 aarch64_plt_type ret = PLT_NORMAL;
9880 bfd_byte *contents, *extdyn, *extdynend;
9881 asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9882 if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9883 return ret;
9884 extdyn = contents;
9885 extdynend = contents + sec->size;
9886 for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9887 {
9888 Elf_Internal_Dyn dyn;
9889 bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9890
9891 /* Let's check the processor specific dynamic array tags. */
9892 bfd_vma tag = dyn.d_tag;
9893 if (tag < DT_LOPROC || tag > DT_HIPROC)
9894 continue;
9895
9896 switch (tag)
9897 {
9898 case DT_AARCH64_BTI_PLT:
9899 ret |= PLT_BTI;
9900 break;
9901
9902 case DT_AARCH64_PAC_PLT:
9903 ret |= PLT_PAC;
9904 break;
9905
9906 default: break;
9907 }
9908 }
9909 free (contents);
9910 return ret;
9911 }
9912
9913 static long
9914 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9915 long symcount,
9916 asymbol **syms,
9917 long dynsymcount,
9918 asymbol **dynsyms,
9919 asymbol **ret)
9920 {
9921 elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9922 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9923 dynsymcount, dynsyms, ret);
9924 }
9925
9926 /* Return address for Ith PLT stub in section PLT, for relocation REL
9927 or (bfd_vma) -1 if it should not be included. */
9928
9929 static bfd_vma
9930 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9931 const arelent *rel ATTRIBUTE_UNUSED)
9932 {
9933 size_t plt0_size = PLT_ENTRY_SIZE;
9934 size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9935
9936 if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI_PAC)
9937 {
9938 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9939 pltn_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
9940 else
9941 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9942 }
9943 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9944 {
9945 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9946 pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9947 }
9948 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_PAC)
9949 {
9950 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9951 }
9952
9953 return plt->vma + plt0_size + i * pltn_size;
9954 }
9955
9956 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9957 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9958 It also allows a period initiated suffix to be added to the symbol, ie:
9959 "$[adtx]\.[:sym_char]+". */
9960
9961 static bfd_boolean
9962 is_aarch64_mapping_symbol (const char * name)
9963 {
9964 return name != NULL /* Paranoia. */
9965 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9966 the mapping symbols could have acquired a prefix.
9967 We do not support this here, since such symbols no
9968 longer conform to the ARM ELF ABI. */
9969 && (name[1] == 'd' || name[1] == 'x')
9970 && (name[2] == 0 || name[2] == '.');
9971 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9972 any characters that follow the period are legal characters for the body
9973 of a symbol's name. For now we just assume that this is the case. */
9974 }
9975
9976 /* Make sure that mapping symbols in object files are not removed via the
9977 "strip --strip-unneeded" tool. These symbols might needed in order to
9978 correctly generate linked files. Once an object file has been linked,
9979 it should be safe to remove them. */
9980
9981 static void
9982 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9983 {
9984 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9985 && sym->section != bfd_abs_section_ptr
9986 && is_aarch64_mapping_symbol (sym->name))
9987 sym->flags |= BSF_KEEP;
9988 }
9989
9990 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
9991 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
9992 for the effect of GNU properties of the output_bfd. */
9993 static bfd *
9994 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
9995 {
9996 uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9997 bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
9998 elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
9999 elf_aarch64_tdata (info->output_bfd)->plt_type
10000 |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
10001 setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
10002 return pbfd;
10003 }
10004
10005 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
10006 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
10007 for the effect of GNU properties of the output_bfd. */
10008 static bfd_boolean
10009 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
10010 bfd *abfd, bfd *bbfd,
10011 elf_property *aprop,
10012 elf_property *bprop)
10013 {
10014 uint32_t prop
10015 = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
10016
10017 /* If output has been marked with BTI using command line argument, give out
10018 warning if necessary. */
10019 /* Properties are merged per type, hence only check for warnings when merging
10020 GNU_PROPERTY_AARCH64_FEATURE_1_AND. */
10021 if (((aprop && aprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
10022 || (bprop && bprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND))
10023 && (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
10024 && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
10025 {
10026 if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
10027 || !aprop)
10028 {
10029 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
10030 "all inputs do not have BTI in NOTE section."),
10031 abfd);
10032 }
10033 if ((bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
10034 || !bprop)
10035 {
10036 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
10037 "all inputs do not have BTI in NOTE section."),
10038 bbfd);
10039 }
10040 }
10041
10042 return _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
10043 bprop, prop);
10044 }
10045
10046 /* We use this so we can override certain functions
10047 (though currently we don't). */
10048
10049 const struct elf_size_info elfNN_aarch64_size_info =
10050 {
10051 sizeof (ElfNN_External_Ehdr),
10052 sizeof (ElfNN_External_Phdr),
10053 sizeof (ElfNN_External_Shdr),
10054 sizeof (ElfNN_External_Rel),
10055 sizeof (ElfNN_External_Rela),
10056 sizeof (ElfNN_External_Sym),
10057 sizeof (ElfNN_External_Dyn),
10058 sizeof (Elf_External_Note),
10059 4, /* Hash table entry size. */
10060 1, /* Internal relocs per external relocs. */
10061 ARCH_SIZE, /* Arch size. */
10062 LOG_FILE_ALIGN, /* Log_file_align. */
10063 ELFCLASSNN, EV_CURRENT,
10064 bfd_elfNN_write_out_phdrs,
10065 bfd_elfNN_write_shdrs_and_ehdr,
10066 bfd_elfNN_checksum_contents,
10067 bfd_elfNN_write_relocs,
10068 bfd_elfNN_swap_symbol_in,
10069 bfd_elfNN_swap_symbol_out,
10070 bfd_elfNN_slurp_reloc_table,
10071 bfd_elfNN_slurp_symbol_table,
10072 bfd_elfNN_swap_dyn_in,
10073 bfd_elfNN_swap_dyn_out,
10074 bfd_elfNN_swap_reloc_in,
10075 bfd_elfNN_swap_reloc_out,
10076 bfd_elfNN_swap_reloca_in,
10077 bfd_elfNN_swap_reloca_out
10078 };
10079
10080 #define ELF_ARCH bfd_arch_aarch64
10081 #define ELF_MACHINE_CODE EM_AARCH64
10082 #define ELF_MAXPAGESIZE 0x10000
10083 #define ELF_MINPAGESIZE 0x1000
10084 #define ELF_COMMONPAGESIZE 0x1000
10085
10086 #define bfd_elfNN_close_and_cleanup \
10087 elfNN_aarch64_close_and_cleanup
10088
10089 #define bfd_elfNN_bfd_free_cached_info \
10090 elfNN_aarch64_bfd_free_cached_info
10091
10092 #define bfd_elfNN_bfd_is_target_special_symbol \
10093 elfNN_aarch64_is_target_special_symbol
10094
10095 #define bfd_elfNN_bfd_link_hash_table_create \
10096 elfNN_aarch64_link_hash_table_create
10097
10098 #define bfd_elfNN_bfd_merge_private_bfd_data \
10099 elfNN_aarch64_merge_private_bfd_data
10100
10101 #define bfd_elfNN_bfd_print_private_bfd_data \
10102 elfNN_aarch64_print_private_bfd_data
10103
10104 #define bfd_elfNN_bfd_reloc_type_lookup \
10105 elfNN_aarch64_reloc_type_lookup
10106
10107 #define bfd_elfNN_bfd_reloc_name_lookup \
10108 elfNN_aarch64_reloc_name_lookup
10109
10110 #define bfd_elfNN_bfd_set_private_flags \
10111 elfNN_aarch64_set_private_flags
10112
10113 #define bfd_elfNN_find_inliner_info \
10114 elfNN_aarch64_find_inliner_info
10115
10116 #define bfd_elfNN_get_synthetic_symtab \
10117 elfNN_aarch64_get_synthetic_symtab
10118
10119 #define bfd_elfNN_mkobject \
10120 elfNN_aarch64_mkobject
10121
10122 #define bfd_elfNN_new_section_hook \
10123 elfNN_aarch64_new_section_hook
10124
10125 #define elf_backend_adjust_dynamic_symbol \
10126 elfNN_aarch64_adjust_dynamic_symbol
10127
10128 #define elf_backend_always_size_sections \
10129 elfNN_aarch64_always_size_sections
10130
10131 #define elf_backend_check_relocs \
10132 elfNN_aarch64_check_relocs
10133
10134 #define elf_backend_copy_indirect_symbol \
10135 elfNN_aarch64_copy_indirect_symbol
10136
10137 #define elf_backend_merge_symbol_attribute \
10138 elfNN_aarch64_merge_symbol_attribute
10139
10140 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10141 to them in our hash. */
10142 #define elf_backend_create_dynamic_sections \
10143 elfNN_aarch64_create_dynamic_sections
10144
10145 #define elf_backend_init_index_section \
10146 _bfd_elf_init_2_index_sections
10147
10148 #define elf_backend_finish_dynamic_sections \
10149 elfNN_aarch64_finish_dynamic_sections
10150
10151 #define elf_backend_finish_dynamic_symbol \
10152 elfNN_aarch64_finish_dynamic_symbol
10153
10154 #define elf_backend_object_p \
10155 elfNN_aarch64_object_p
10156
10157 #define elf_backend_output_arch_local_syms \
10158 elfNN_aarch64_output_arch_local_syms
10159
10160 #define elf_backend_maybe_function_sym \
10161 elfNN_aarch64_maybe_function_sym
10162
10163 #define elf_backend_plt_sym_val \
10164 elfNN_aarch64_plt_sym_val
10165
10166 #define elf_backend_init_file_header \
10167 elfNN_aarch64_init_file_header
10168
10169 #define elf_backend_relocate_section \
10170 elfNN_aarch64_relocate_section
10171
10172 #define elf_backend_reloc_type_class \
10173 elfNN_aarch64_reloc_type_class
10174
10175 #define elf_backend_section_from_shdr \
10176 elfNN_aarch64_section_from_shdr
10177
10178 #define elf_backend_size_dynamic_sections \
10179 elfNN_aarch64_size_dynamic_sections
10180
10181 #define elf_backend_size_info \
10182 elfNN_aarch64_size_info
10183
10184 #define elf_backend_write_section \
10185 elfNN_aarch64_write_section
10186
10187 #define elf_backend_symbol_processing \
10188 elfNN_aarch64_backend_symbol_processing
10189
10190 #define elf_backend_setup_gnu_properties \
10191 elfNN_aarch64_link_setup_gnu_properties
10192
10193 #define elf_backend_merge_gnu_properties \
10194 elfNN_aarch64_merge_gnu_properties
10195
10196 #define elf_backend_can_refcount 1
10197 #define elf_backend_can_gc_sections 1
10198 #define elf_backend_plt_readonly 1
10199 #define elf_backend_want_got_plt 1
10200 #define elf_backend_want_plt_sym 0
10201 #define elf_backend_want_dynrelro 1
10202 #define elf_backend_may_use_rel_p 0
10203 #define elf_backend_may_use_rela_p 1
10204 #define elf_backend_default_use_rela_p 1
10205 #define elf_backend_rela_normal 1
10206 #define elf_backend_dtrel_excludes_plt 1
10207 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10208 #define elf_backend_default_execstack 0
10209 #define elf_backend_extern_protected_data 1
10210 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10211
10212 #undef elf_backend_obj_attrs_section
10213 #define elf_backend_obj_attrs_section ".ARM.attributes"
10214
10215 #include "elfNN-target.h"
10216
10217 /* CloudABI support. */
10218
10219 #undef TARGET_LITTLE_SYM
10220 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10221 #undef TARGET_LITTLE_NAME
10222 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10223 #undef TARGET_BIG_SYM
10224 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10225 #undef TARGET_BIG_NAME
10226 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10227
10228 #undef ELF_OSABI
10229 #define ELF_OSABI ELFOSABI_CLOUDABI
10230
10231 #undef elfNN_bed
10232 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10233
10234 #include "elfNN-target.h"
This page took 0.244415 seconds and 4 git commands to generate.