[binutils-gdb][ld][AArch64] Fix group_sections algorithm
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2020 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147 #include "cpu-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
221
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
245
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
259
260 #define ELIMINATE_COPY_RELOCS 1
261
262 /* Return size of a relocation entry. HTAB is the bfd's
263 elf_aarch64_link_hash_entry. */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
265
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE (32)
269 #define PLT_SMALL_ENTRY_SIZE (16)
270 #define PLT_TLSDESC_ENTRY_SIZE (32)
271 /* PLT sizes with BTI insn. */
272 #define PLT_BTI_SMALL_ENTRY_SIZE (24)
273 /* PLT sizes with PAC insn. */
274 #define PLT_PAC_SMALL_ENTRY_SIZE (24)
275 /* PLT sizes with BTI and PAC insn. */
276 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE (24)
277
278 /* Encoding of the nop instruction. */
279 #define INSN_NOP 0xd503201f
280
281 #define aarch64_compute_jump_table_size(htab) \
282 (((htab)->root.srelplt == NULL) ? 0 \
283 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
284
285 /* The first entry in a procedure linkage table looks like this
286 if the distance between the PLTGOT and the PLT is < 4GB use
287 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
288 in x16 and needs to work out PLTGOT[1] by using an address of
289 [x16,#-GOT_ENTRY_SIZE]. */
290 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
291 {
292 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
293 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
294 #if ARCH_SIZE == 64
295 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
296 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
297 #else
298 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
299 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
300 #endif
301 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
302 0x1f, 0x20, 0x03, 0xd5, /* nop */
303 0x1f, 0x20, 0x03, 0xd5, /* nop */
304 0x1f, 0x20, 0x03, 0xd5, /* nop */
305 };
306
307 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_ENTRY_SIZE] =
308 {
309 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
310 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
311 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
312 #if ARCH_SIZE == 64
313 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
314 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
315 #else
316 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
317 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
318 #endif
319 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
322 };
323
324 /* Per function entry in a procedure linkage table looks like this
325 if the distance between the PLTGOT and the PLT is < 4GB use
326 these PLT entries. Use BTI versions of the PLTs when enabled. */
327 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
328 {
329 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
330 #if ARCH_SIZE == 64
331 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
332 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
333 #else
334 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
335 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
336 #endif
337 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
338 };
339
340 static const bfd_byte
341 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
342 {
343 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
344 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
345 #if ARCH_SIZE == 64
346 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
347 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
348 #else
349 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
350 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
351 #endif
352 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
353 0x1f, 0x20, 0x03, 0xd5, /* nop */
354 };
355
356 static const bfd_byte
357 elfNN_aarch64_small_plt_pac_entry[PLT_PAC_SMALL_ENTRY_SIZE] =
358 {
359 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
360 #if ARCH_SIZE == 64
361 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
362 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
363 #else
364 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
365 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
366 #endif
367 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
368 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
369 0x1f, 0x20, 0x03, 0xd5, /* nop */
370 };
371
372 static const bfd_byte
373 elfNN_aarch64_small_plt_bti_pac_entry[PLT_BTI_PAC_SMALL_ENTRY_SIZE] =
374 {
375 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
376 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
377 #if ARCH_SIZE == 64
378 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
379 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
380 #else
381 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
382 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
383 #endif
384 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
385 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
386 };
387
388 static const bfd_byte
389 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
390 {
391 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
392 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
393 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
394 #if ARCH_SIZE == 64
395 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
396 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
397 #else
398 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
399 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
400 #endif
401 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
402 0x1f, 0x20, 0x03, 0xd5, /* nop */
403 0x1f, 0x20, 0x03, 0xd5, /* nop */
404 };
405
406 static const bfd_byte
407 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_TLSDESC_ENTRY_SIZE] =
408 {
409 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
410 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
411 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
412 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
413 #if ARCH_SIZE == 64
414 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
415 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
416 #else
417 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
418 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
419 #endif
420 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
421 0x1f, 0x20, 0x03, 0xd5, /* nop */
422 };
423
424 #define elf_info_to_howto elfNN_aarch64_info_to_howto
425 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
426
427 #define AARCH64_ELF_ABI_VERSION 0
428
429 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
430 #define ALL_ONES (~ (bfd_vma) 0)
431
432 /* Indexed by the bfd interal reloc enumerators.
433 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
434 in reloc.c. */
435
436 static reloc_howto_type elfNN_aarch64_howto_table[] =
437 {
438 EMPTY_HOWTO (0),
439
440 /* Basic data relocations. */
441
442 /* Deprecated, but retained for backwards compatibility. */
443 HOWTO64 (R_AARCH64_NULL, /* type */
444 0, /* rightshift */
445 3, /* size (0 = byte, 1 = short, 2 = long) */
446 0, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_AARCH64_NULL", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0, /* dst_mask */
455 FALSE), /* pcrel_offset */
456 HOWTO (R_AARCH64_NONE, /* type */
457 0, /* rightshift */
458 3, /* size (0 = byte, 1 = short, 2 = long) */
459 0, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_dont, /* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_AARCH64_NONE", /* name */
465 FALSE, /* partial_inplace */
466 0, /* src_mask */
467 0, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 /* .xword: (S+A) */
471 HOWTO64 (AARCH64_R (ABS64), /* type */
472 0, /* rightshift */
473 4, /* size (4 = long long) */
474 64, /* bitsize */
475 FALSE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_unsigned, /* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 AARCH64_R_STR (ABS64), /* name */
480 FALSE, /* partial_inplace */
481 ALL_ONES, /* src_mask */
482 ALL_ONES, /* dst_mask */
483 FALSE), /* pcrel_offset */
484
485 /* .word: (S+A) */
486 HOWTO (AARCH64_R (ABS32), /* type */
487 0, /* rightshift */
488 2, /* size (0 = byte, 1 = short, 2 = long) */
489 32, /* bitsize */
490 FALSE, /* pc_relative */
491 0, /* bitpos */
492 complain_overflow_unsigned, /* complain_on_overflow */
493 bfd_elf_generic_reloc, /* special_function */
494 AARCH64_R_STR (ABS32), /* name */
495 FALSE, /* partial_inplace */
496 0xffffffff, /* src_mask */
497 0xffffffff, /* dst_mask */
498 FALSE), /* pcrel_offset */
499
500 /* .half: (S+A) */
501 HOWTO (AARCH64_R (ABS16), /* type */
502 0, /* rightshift */
503 1, /* size (0 = byte, 1 = short, 2 = long) */
504 16, /* bitsize */
505 FALSE, /* pc_relative */
506 0, /* bitpos */
507 complain_overflow_unsigned, /* complain_on_overflow */
508 bfd_elf_generic_reloc, /* special_function */
509 AARCH64_R_STR (ABS16), /* name */
510 FALSE, /* partial_inplace */
511 0xffff, /* src_mask */
512 0xffff, /* dst_mask */
513 FALSE), /* pcrel_offset */
514
515 /* .xword: (S+A-P) */
516 HOWTO64 (AARCH64_R (PREL64), /* type */
517 0, /* rightshift */
518 4, /* size (4 = long long) */
519 64, /* bitsize */
520 TRUE, /* pc_relative */
521 0, /* bitpos */
522 complain_overflow_signed, /* complain_on_overflow */
523 bfd_elf_generic_reloc, /* special_function */
524 AARCH64_R_STR (PREL64), /* name */
525 FALSE, /* partial_inplace */
526 ALL_ONES, /* src_mask */
527 ALL_ONES, /* dst_mask */
528 TRUE), /* pcrel_offset */
529
530 /* .word: (S+A-P) */
531 HOWTO (AARCH64_R (PREL32), /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 32, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_signed, /* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 AARCH64_R_STR (PREL32), /* name */
540 FALSE, /* partial_inplace */
541 0xffffffff, /* src_mask */
542 0xffffffff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 /* .half: (S+A-P) */
546 HOWTO (AARCH64_R (PREL16), /* type */
547 0, /* rightshift */
548 1, /* size (0 = byte, 1 = short, 2 = long) */
549 16, /* bitsize */
550 TRUE, /* pc_relative */
551 0, /* bitpos */
552 complain_overflow_signed, /* complain_on_overflow */
553 bfd_elf_generic_reloc, /* special_function */
554 AARCH64_R_STR (PREL16), /* name */
555 FALSE, /* partial_inplace */
556 0xffff, /* src_mask */
557 0xffff, /* dst_mask */
558 TRUE), /* pcrel_offset */
559
560 /* Group relocations to create a 16, 32, 48 or 64 bit
561 unsigned data or abs address inline. */
562
563 /* MOVZ: ((S+A) >> 0) & 0xffff */
564 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 16, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_unsigned, /* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 AARCH64_R_STR (MOVW_UABS_G0), /* name */
573 FALSE, /* partial_inplace */
574 0xffff, /* src_mask */
575 0xffff, /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
579 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
580 0, /* rightshift */
581 2, /* size (0 = byte, 1 = short, 2 = long) */
582 16, /* bitsize */
583 FALSE, /* pc_relative */
584 0, /* bitpos */
585 complain_overflow_dont, /* complain_on_overflow */
586 bfd_elf_generic_reloc, /* special_function */
587 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
588 FALSE, /* partial_inplace */
589 0xffff, /* src_mask */
590 0xffff, /* dst_mask */
591 FALSE), /* pcrel_offset */
592
593 /* MOVZ: ((S+A) >> 16) & 0xffff */
594 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
595 16, /* rightshift */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
597 16, /* bitsize */
598 FALSE, /* pc_relative */
599 0, /* bitpos */
600 complain_overflow_unsigned, /* complain_on_overflow */
601 bfd_elf_generic_reloc, /* special_function */
602 AARCH64_R_STR (MOVW_UABS_G1), /* name */
603 FALSE, /* partial_inplace */
604 0xffff, /* src_mask */
605 0xffff, /* dst_mask */
606 FALSE), /* pcrel_offset */
607
608 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
609 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
610 16, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 16, /* bitsize */
613 FALSE, /* pc_relative */
614 0, /* bitpos */
615 complain_overflow_dont, /* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
618 FALSE, /* partial_inplace */
619 0xffff, /* src_mask */
620 0xffff, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 /* MOVZ: ((S+A) >> 32) & 0xffff */
624 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
625 32, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 16, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_unsigned, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 AARCH64_R_STR (MOVW_UABS_G2), /* name */
633 FALSE, /* partial_inplace */
634 0xffff, /* src_mask */
635 0xffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
639 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
640 32, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 16, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
648 FALSE, /* partial_inplace */
649 0xffff, /* src_mask */
650 0xffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 /* MOVZ: ((S+A) >> 48) & 0xffff */
654 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
655 48, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 16, /* bitsize */
658 FALSE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_unsigned, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (MOVW_UABS_G3), /* name */
663 FALSE, /* partial_inplace */
664 0xffff, /* src_mask */
665 0xffff, /* dst_mask */
666 FALSE), /* pcrel_offset */
667
668 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
669 signed data or abs address inline. Will change instruction
670 to MOVN or MOVZ depending on sign of calculated value. */
671
672 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
673 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 17, /* bitsize */
677 FALSE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 AARCH64_R_STR (MOVW_SABS_G0), /* name */
682 FALSE, /* partial_inplace */
683 0xffff, /* src_mask */
684 0xffff, /* dst_mask */
685 FALSE), /* pcrel_offset */
686
687 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
688 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
689 16, /* rightshift */
690 2, /* size (0 = byte, 1 = short, 2 = long) */
691 17, /* bitsize */
692 FALSE, /* pc_relative */
693 0, /* bitpos */
694 complain_overflow_signed, /* complain_on_overflow */
695 bfd_elf_generic_reloc, /* special_function */
696 AARCH64_R_STR (MOVW_SABS_G1), /* name */
697 FALSE, /* partial_inplace */
698 0xffff, /* src_mask */
699 0xffff, /* dst_mask */
700 FALSE), /* pcrel_offset */
701
702 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
703 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
704 32, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 17, /* bitsize */
707 FALSE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_signed, /* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 AARCH64_R_STR (MOVW_SABS_G2), /* name */
712 FALSE, /* partial_inplace */
713 0xffff, /* src_mask */
714 0xffff, /* dst_mask */
715 FALSE), /* pcrel_offset */
716
717 /* Group relocations to create a 16, 32, 48 or 64 bit
718 PC relative address inline. */
719
720 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
721 HOWTO (AARCH64_R (MOVW_PREL_G0), /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 17, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 AARCH64_R_STR (MOVW_PREL_G0), /* name */
730 FALSE, /* partial_inplace */
731 0xffff, /* src_mask */
732 0xffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
736 HOWTO (AARCH64_R (MOVW_PREL_G0_NC), /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_dont, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
745 FALSE, /* partial_inplace */
746 0xffff, /* src_mask */
747 0xffff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
751 HOWTO (AARCH64_R (MOVW_PREL_G1), /* type */
752 16, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 17, /* bitsize */
755 TRUE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_signed, /* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 AARCH64_R_STR (MOVW_PREL_G1), /* name */
760 FALSE, /* partial_inplace */
761 0xffff, /* src_mask */
762 0xffff, /* dst_mask */
763 TRUE), /* pcrel_offset */
764
765 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
766 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
767 16, /* rightshift */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 TRUE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_dont, /* complain_on_overflow */
773 bfd_elf_generic_reloc, /* special_function */
774 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
775 FALSE, /* partial_inplace */
776 0xffff, /* src_mask */
777 0xffff, /* dst_mask */
778 TRUE), /* pcrel_offset */
779
780 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
781 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
782 32, /* rightshift */
783 2, /* size (0 = byte, 1 = short, 2 = long) */
784 17, /* bitsize */
785 TRUE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 bfd_elf_generic_reloc, /* special_function */
789 AARCH64_R_STR (MOVW_PREL_G2), /* name */
790 FALSE, /* partial_inplace */
791 0xffff, /* src_mask */
792 0xffff, /* dst_mask */
793 TRUE), /* pcrel_offset */
794
795 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
796 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
797 32, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 16, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
805 FALSE, /* partial_inplace */
806 0xffff, /* src_mask */
807 0xffff, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
811 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
812 48, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 16, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 AARCH64_R_STR (MOVW_PREL_G3), /* name */
820 FALSE, /* partial_inplace */
821 0xffff, /* src_mask */
822 0xffff, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
826 addresses: PG(x) is (x & ~0xfff). */
827
828 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
829 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
830 2, /* rightshift */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
832 19, /* bitsize */
833 TRUE, /* pc_relative */
834 0, /* bitpos */
835 complain_overflow_signed, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 AARCH64_R_STR (LD_PREL_LO19), /* name */
838 FALSE, /* partial_inplace */
839 0x7ffff, /* src_mask */
840 0x7ffff, /* dst_mask */
841 TRUE), /* pcrel_offset */
842
843 /* ADR: (S+A-P) & 0x1fffff */
844 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
845 0, /* rightshift */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
847 21, /* bitsize */
848 TRUE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_signed, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 AARCH64_R_STR (ADR_PREL_LO21), /* name */
853 FALSE, /* partial_inplace */
854 0x1fffff, /* src_mask */
855 0x1fffff, /* dst_mask */
856 TRUE), /* pcrel_offset */
857
858 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
859 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
860 12, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 21, /* bitsize */
863 TRUE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_signed, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
868 FALSE, /* partial_inplace */
869 0x1fffff, /* src_mask */
870 0x1fffff, /* dst_mask */
871 TRUE), /* pcrel_offset */
872
873 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
874 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
875 12, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 21, /* bitsize */
878 TRUE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont, /* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
883 FALSE, /* partial_inplace */
884 0x1fffff, /* src_mask */
885 0x1fffff, /* dst_mask */
886 TRUE), /* pcrel_offset */
887
888 /* ADD: (S+A) & 0xfff [no overflow check] */
889 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
890 0, /* rightshift */
891 2, /* size (0 = byte, 1 = short, 2 = long) */
892 12, /* bitsize */
893 FALSE, /* pc_relative */
894 10, /* bitpos */
895 complain_overflow_dont, /* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
898 FALSE, /* partial_inplace */
899 0x3ffc00, /* src_mask */
900 0x3ffc00, /* dst_mask */
901 FALSE), /* pcrel_offset */
902
903 /* LD/ST8: (S+A) & 0xfff */
904 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
905 0, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 12, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_dont, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
913 FALSE, /* partial_inplace */
914 0xfff, /* src_mask */
915 0xfff, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
918 /* Relocations for control-flow instructions. */
919
920 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
921 HOWTO (AARCH64_R (TSTBR14), /* type */
922 2, /* rightshift */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
924 14, /* bitsize */
925 TRUE, /* pc_relative */
926 0, /* bitpos */
927 complain_overflow_signed, /* complain_on_overflow */
928 bfd_elf_generic_reloc, /* special_function */
929 AARCH64_R_STR (TSTBR14), /* name */
930 FALSE, /* partial_inplace */
931 0x3fff, /* src_mask */
932 0x3fff, /* dst_mask */
933 TRUE), /* pcrel_offset */
934
935 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
936 HOWTO (AARCH64_R (CONDBR19), /* type */
937 2, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 19, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_signed, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 AARCH64_R_STR (CONDBR19), /* name */
945 FALSE, /* partial_inplace */
946 0x7ffff, /* src_mask */
947 0x7ffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 /* B: ((S+A-P) >> 2) & 0x3ffffff */
951 HOWTO (AARCH64_R (JUMP26), /* type */
952 2, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 26, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_signed, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 AARCH64_R_STR (JUMP26), /* name */
960 FALSE, /* partial_inplace */
961 0x3ffffff, /* src_mask */
962 0x3ffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
966 HOWTO (AARCH64_R (CALL26), /* type */
967 2, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 26, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_signed, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 AARCH64_R_STR (CALL26), /* name */
975 FALSE, /* partial_inplace */
976 0x3ffffff, /* src_mask */
977 0x3ffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 /* LD/ST16: (S+A) & 0xffe */
981 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
982 1, /* rightshift */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
984 12, /* bitsize */
985 FALSE, /* pc_relative */
986 0, /* bitpos */
987 complain_overflow_dont, /* complain_on_overflow */
988 bfd_elf_generic_reloc, /* special_function */
989 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
990 FALSE, /* partial_inplace */
991 0xffe, /* src_mask */
992 0xffe, /* dst_mask */
993 FALSE), /* pcrel_offset */
994
995 /* LD/ST32: (S+A) & 0xffc */
996 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
997 2, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 12, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 bfd_elf_generic_reloc, /* special_function */
1004 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
1005 FALSE, /* partial_inplace */
1006 0xffc, /* src_mask */
1007 0xffc, /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* LD/ST64: (S+A) & 0xff8 */
1011 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
1012 3, /* rightshift */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1014 12, /* bitsize */
1015 FALSE, /* pc_relative */
1016 0, /* bitpos */
1017 complain_overflow_dont, /* complain_on_overflow */
1018 bfd_elf_generic_reloc, /* special_function */
1019 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
1020 FALSE, /* partial_inplace */
1021 0xff8, /* src_mask */
1022 0xff8, /* dst_mask */
1023 FALSE), /* pcrel_offset */
1024
1025 /* LD/ST128: (S+A) & 0xff0 */
1026 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
1027 4, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 12, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
1035 FALSE, /* partial_inplace */
1036 0xff0, /* src_mask */
1037 0xff0, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Set a load-literal immediate field to bits
1041 0x1FFFFC of G(S)-P */
1042 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
1043 2, /* rightshift */
1044 2, /* size (0 = byte,1 = short,2 = long) */
1045 19, /* bitsize */
1046 TRUE, /* pc_relative */
1047 0, /* bitpos */
1048 complain_overflow_signed, /* complain_on_overflow */
1049 bfd_elf_generic_reloc, /* special_function */
1050 AARCH64_R_STR (GOT_LD_PREL19), /* name */
1051 FALSE, /* partial_inplace */
1052 0xffffe0, /* src_mask */
1053 0xffffe0, /* dst_mask */
1054 TRUE), /* pcrel_offset */
1055
1056 /* Get to the page for the GOT entry for the symbol
1057 (G(S) - P) using an ADRP instruction. */
1058 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
1059 12, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 21, /* bitsize */
1062 TRUE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont, /* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
1067 FALSE, /* partial_inplace */
1068 0x1fffff, /* src_mask */
1069 0x1fffff, /* dst_mask */
1070 TRUE), /* pcrel_offset */
1071
1072 /* LD64: GOT offset G(S) & 0xff8 */
1073 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
1074 3, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 12, /* bitsize */
1077 FALSE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont, /* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
1082 FALSE, /* partial_inplace */
1083 0xff8, /* src_mask */
1084 0xff8, /* dst_mask */
1085 FALSE), /* pcrel_offset */
1086
1087 /* LD32: GOT offset G(S) & 0xffc */
1088 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1089 2, /* rightshift */
1090 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 12, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_dont, /* complain_on_overflow */
1095 bfd_elf_generic_reloc, /* special_function */
1096 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1097 FALSE, /* partial_inplace */
1098 0xffc, /* src_mask */
1099 0xffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 /* Lower 16 bits of GOT offset for the symbol. */
1103 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1104 0, /* rightshift */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1106 16, /* bitsize */
1107 FALSE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont, /* complain_on_overflow */
1110 bfd_elf_generic_reloc, /* special_function */
1111 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1112 FALSE, /* partial_inplace */
1113 0xffff, /* src_mask */
1114 0xffff, /* dst_mask */
1115 FALSE), /* pcrel_offset */
1116
1117 /* Higher 16 bits of GOT offset for the symbol. */
1118 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1119 16, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 16, /* bitsize */
1122 FALSE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_unsigned, /* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1127 FALSE, /* partial_inplace */
1128 0xffff, /* src_mask */
1129 0xffff, /* dst_mask */
1130 FALSE), /* pcrel_offset */
1131
1132 /* LD64: GOT offset for the symbol. */
1133 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1134 3, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 12, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_unsigned, /* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1142 FALSE, /* partial_inplace */
1143 0x7ff8, /* src_mask */
1144 0x7ff8, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
1147 /* LD32: GOT offset to the page address of GOT table.
1148 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1149 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1150 2, /* rightshift */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 12, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_unsigned, /* complain_on_overflow */
1156 bfd_elf_generic_reloc, /* special_function */
1157 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1158 FALSE, /* partial_inplace */
1159 0x5ffc, /* src_mask */
1160 0x5ffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* LD64: GOT offset to the page address of GOT table.
1164 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1165 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1166 3, /* rightshift */
1167 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 12, /* bitsize */
1169 FALSE, /* pc_relative */
1170 0, /* bitpos */
1171 complain_overflow_unsigned, /* complain_on_overflow */
1172 bfd_elf_generic_reloc, /* special_function */
1173 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1174 FALSE, /* partial_inplace */
1175 0x7ff8, /* src_mask */
1176 0x7ff8, /* dst_mask */
1177 FALSE), /* pcrel_offset */
1178
1179 /* Get to the page for the GOT entry for the symbol
1180 (G(S) - P) using an ADRP instruction. */
1181 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1182 12, /* rightshift */
1183 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 21, /* bitsize */
1185 TRUE, /* pc_relative */
1186 0, /* bitpos */
1187 complain_overflow_dont, /* complain_on_overflow */
1188 bfd_elf_generic_reloc, /* special_function */
1189 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1190 FALSE, /* partial_inplace */
1191 0x1fffff, /* src_mask */
1192 0x1fffff, /* dst_mask */
1193 TRUE), /* pcrel_offset */
1194
1195 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1196 0, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 21, /* bitsize */
1199 TRUE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_dont, /* complain_on_overflow */
1202 bfd_elf_generic_reloc, /* special_function */
1203 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1204 FALSE, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE), /* pcrel_offset */
1208
1209 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1210 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1211 0, /* rightshift */
1212 2, /* size (0 = byte, 1 = short, 2 = long) */
1213 12, /* bitsize */
1214 FALSE, /* pc_relative */
1215 0, /* bitpos */
1216 complain_overflow_dont, /* complain_on_overflow */
1217 bfd_elf_generic_reloc, /* special_function */
1218 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1219 FALSE, /* partial_inplace */
1220 0xfff, /* src_mask */
1221 0xfff, /* dst_mask */
1222 FALSE), /* pcrel_offset */
1223
1224 /* Lower 16 bits of GOT offset to tls_index. */
1225 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 16, /* bitsize */
1229 FALSE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont, /* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1234 FALSE, /* partial_inplace */
1235 0xffff, /* src_mask */
1236 0xffff, /* dst_mask */
1237 FALSE), /* pcrel_offset */
1238
1239 /* Higher 16 bits of GOT offset to tls_index. */
1240 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1241 16, /* rightshift */
1242 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 16, /* bitsize */
1244 FALSE, /* pc_relative */
1245 0, /* bitpos */
1246 complain_overflow_unsigned, /* complain_on_overflow */
1247 bfd_elf_generic_reloc, /* special_function */
1248 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1249 FALSE, /* partial_inplace */
1250 0xffff, /* src_mask */
1251 0xffff, /* dst_mask */
1252 FALSE), /* pcrel_offset */
1253
1254 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1255 12, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 21, /* bitsize */
1258 FALSE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont, /* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1263 FALSE, /* partial_inplace */
1264 0x1fffff, /* src_mask */
1265 0x1fffff, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1269 3, /* rightshift */
1270 2, /* size (0 = byte, 1 = short, 2 = long) */
1271 12, /* bitsize */
1272 FALSE, /* pc_relative */
1273 0, /* bitpos */
1274 complain_overflow_dont, /* complain_on_overflow */
1275 bfd_elf_generic_reloc, /* special_function */
1276 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1277 FALSE, /* partial_inplace */
1278 0xff8, /* src_mask */
1279 0xff8, /* dst_mask */
1280 FALSE), /* pcrel_offset */
1281
1282 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1283 2, /* rightshift */
1284 2, /* size (0 = byte, 1 = short, 2 = long) */
1285 12, /* bitsize */
1286 FALSE, /* pc_relative */
1287 0, /* bitpos */
1288 complain_overflow_dont, /* complain_on_overflow */
1289 bfd_elf_generic_reloc, /* special_function */
1290 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1291 FALSE, /* partial_inplace */
1292 0xffc, /* src_mask */
1293 0xffc, /* dst_mask */
1294 FALSE), /* pcrel_offset */
1295
1296 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1297 2, /* rightshift */
1298 2, /* size (0 = byte, 1 = short, 2 = long) */
1299 19, /* bitsize */
1300 FALSE, /* pc_relative */
1301 0, /* bitpos */
1302 complain_overflow_dont, /* complain_on_overflow */
1303 bfd_elf_generic_reloc, /* special_function */
1304 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1305 FALSE, /* partial_inplace */
1306 0x1ffffc, /* src_mask */
1307 0x1ffffc, /* dst_mask */
1308 FALSE), /* pcrel_offset */
1309
1310 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 16, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
1318 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1319 FALSE, /* partial_inplace */
1320 0xffff, /* src_mask */
1321 0xffff, /* dst_mask */
1322 FALSE), /* pcrel_offset */
1323
1324 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1325 16, /* rightshift */
1326 2, /* size (0 = byte, 1 = short, 2 = long) */
1327 16, /* bitsize */
1328 FALSE, /* pc_relative */
1329 0, /* bitpos */
1330 complain_overflow_unsigned, /* complain_on_overflow */
1331 bfd_elf_generic_reloc, /* special_function */
1332 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1333 FALSE, /* partial_inplace */
1334 0xffff, /* src_mask */
1335 0xffff, /* dst_mask */
1336 FALSE), /* pcrel_offset */
1337
1338 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1339 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1340 12, /* rightshift */
1341 2, /* size (0 = byte, 1 = short, 2 = long) */
1342 12, /* bitsize */
1343 FALSE, /* pc_relative */
1344 0, /* bitpos */
1345 complain_overflow_unsigned, /* complain_on_overflow */
1346 bfd_elf_generic_reloc, /* special_function */
1347 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1348 FALSE, /* partial_inplace */
1349 0xfff, /* src_mask */
1350 0xfff, /* dst_mask */
1351 FALSE), /* pcrel_offset */
1352
1353 /* Unsigned 12 bit byte offset to module TLS base address. */
1354 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1355 0, /* rightshift */
1356 2, /* size (0 = byte, 1 = short, 2 = long) */
1357 12, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_unsigned, /* complain_on_overflow */
1361 bfd_elf_generic_reloc, /* special_function */
1362 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1363 FALSE, /* partial_inplace */
1364 0xfff, /* src_mask */
1365 0xfff, /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1369 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 12, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont, /* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1378 FALSE, /* partial_inplace */
1379 0xfff, /* src_mask */
1380 0xfff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1384 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1385 0, /* rightshift */
1386 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 12, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 bfd_elf_generic_reloc, /* special_function */
1392 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1393 FALSE, /* partial_inplace */
1394 0xfff, /* src_mask */
1395 0xfff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Get to the page for the GOT entry for the symbol
1399 (G(S) - P) using an ADRP instruction. */
1400 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1401 12, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 21, /* bitsize */
1404 TRUE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_signed, /* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1409 FALSE, /* partial_inplace */
1410 0x1fffff, /* src_mask */
1411 0x1fffff, /* dst_mask */
1412 TRUE), /* pcrel_offset */
1413
1414 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 21, /* bitsize */
1418 TRUE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1423 FALSE, /* partial_inplace */
1424 0x1fffff, /* src_mask */
1425 0x1fffff, /* dst_mask */
1426 TRUE), /* pcrel_offset */
1427
1428 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1429 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1430 1, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 11, /* bitsize */
1433 FALSE, /* pc_relative */
1434 10, /* bitpos */
1435 complain_overflow_unsigned, /* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1438 FALSE, /* partial_inplace */
1439 0x1ffc00, /* src_mask */
1440 0x1ffc00, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1444 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1445 1, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 11, /* bitsize */
1448 FALSE, /* pc_relative */
1449 10, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1453 FALSE, /* partial_inplace */
1454 0x1ffc00, /* src_mask */
1455 0x1ffc00, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1459 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1460 2, /* rightshift */
1461 2, /* size (0 = byte, 1 = short, 2 = long) */
1462 10, /* bitsize */
1463 FALSE, /* pc_relative */
1464 10, /* bitpos */
1465 complain_overflow_unsigned, /* complain_on_overflow */
1466 bfd_elf_generic_reloc, /* special_function */
1467 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1468 FALSE, /* partial_inplace */
1469 0x3ffc00, /* src_mask */
1470 0x3ffc00, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1474 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1475 2, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 10, /* bitsize */
1478 FALSE, /* pc_relative */
1479 10, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1483 FALSE, /* partial_inplace */
1484 0xffc00, /* src_mask */
1485 0xffc00, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1489 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1490 3, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 9, /* bitsize */
1493 FALSE, /* pc_relative */
1494 10, /* bitpos */
1495 complain_overflow_unsigned, /* complain_on_overflow */
1496 bfd_elf_generic_reloc, /* special_function */
1497 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1498 FALSE, /* partial_inplace */
1499 0x3ffc00, /* src_mask */
1500 0x3ffc00, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1504 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1505 3, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 9, /* bitsize */
1508 FALSE, /* pc_relative */
1509 10, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1513 FALSE, /* partial_inplace */
1514 0x7fc00, /* src_mask */
1515 0x7fc00, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1519 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 12, /* bitsize */
1523 FALSE, /* pc_relative */
1524 10, /* bitpos */
1525 complain_overflow_unsigned, /* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
1527 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1528 FALSE, /* partial_inplace */
1529 0x3ffc00, /* src_mask */
1530 0x3ffc00, /* dst_mask */
1531 FALSE), /* pcrel_offset */
1532
1533 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1534 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1535 0, /* rightshift */
1536 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 12, /* bitsize */
1538 FALSE, /* pc_relative */
1539 10, /* bitpos */
1540 complain_overflow_dont, /* complain_on_overflow */
1541 bfd_elf_generic_reloc, /* special_function */
1542 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1543 FALSE, /* partial_inplace */
1544 0x3ffc00, /* src_mask */
1545 0x3ffc00, /* dst_mask */
1546 FALSE), /* pcrel_offset */
1547
1548 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1549 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1550 0, /* rightshift */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1552 16, /* bitsize */
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
1555 complain_overflow_unsigned, /* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1558 FALSE, /* partial_inplace */
1559 0xffff, /* src_mask */
1560 0xffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
1562
1563 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1564 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1565 0, /* rightshift */
1566 2, /* size (0 = byte, 1 = short, 2 = long) */
1567 16, /* bitsize */
1568 FALSE, /* pc_relative */
1569 0, /* bitpos */
1570 complain_overflow_dont, /* complain_on_overflow */
1571 bfd_elf_generic_reloc, /* special_function */
1572 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1573 FALSE, /* partial_inplace */
1574 0xffff, /* src_mask */
1575 0xffff, /* dst_mask */
1576 FALSE), /* pcrel_offset */
1577
1578 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1579 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1580 16, /* rightshift */
1581 2, /* size (0 = byte, 1 = short, 2 = long) */
1582 16, /* bitsize */
1583 FALSE, /* pc_relative */
1584 0, /* bitpos */
1585 complain_overflow_unsigned, /* complain_on_overflow */
1586 bfd_elf_generic_reloc, /* special_function */
1587 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1588 FALSE, /* partial_inplace */
1589 0xffff, /* src_mask */
1590 0xffff, /* dst_mask */
1591 FALSE), /* pcrel_offset */
1592
1593 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1594 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1595 16, /* rightshift */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 16, /* bitsize */
1598 FALSE, /* pc_relative */
1599 0, /* bitpos */
1600 complain_overflow_dont, /* complain_on_overflow */
1601 bfd_elf_generic_reloc, /* special_function */
1602 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1603 FALSE, /* partial_inplace */
1604 0xffff, /* src_mask */
1605 0xffff, /* dst_mask */
1606 FALSE), /* pcrel_offset */
1607
1608 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1609 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1610 32, /* rightshift */
1611 2, /* size (0 = byte, 1 = short, 2 = long) */
1612 16, /* bitsize */
1613 FALSE, /* pc_relative */
1614 0, /* bitpos */
1615 complain_overflow_unsigned, /* complain_on_overflow */
1616 bfd_elf_generic_reloc, /* special_function */
1617 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1618 FALSE, /* partial_inplace */
1619 0xffff, /* src_mask */
1620 0xffff, /* dst_mask */
1621 FALSE), /* pcrel_offset */
1622
1623 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1624 32, /* rightshift */
1625 2, /* size (0 = byte, 1 = short, 2 = long) */
1626 16, /* bitsize */
1627 FALSE, /* pc_relative */
1628 0, /* bitpos */
1629 complain_overflow_unsigned, /* complain_on_overflow */
1630 bfd_elf_generic_reloc, /* special_function */
1631 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1632 FALSE, /* partial_inplace */
1633 0xffff, /* src_mask */
1634 0xffff, /* dst_mask */
1635 FALSE), /* pcrel_offset */
1636
1637 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1638 16, /* rightshift */
1639 2, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 bfd_elf_generic_reloc, /* special_function */
1645 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1646 FALSE, /* partial_inplace */
1647 0xffff, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1652 16, /* rightshift */
1653 2, /* size (0 = byte, 1 = short, 2 = long) */
1654 16, /* bitsize */
1655 FALSE, /* pc_relative */
1656 0, /* bitpos */
1657 complain_overflow_dont, /* complain_on_overflow */
1658 bfd_elf_generic_reloc, /* special_function */
1659 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1660 FALSE, /* partial_inplace */
1661 0xffff, /* src_mask */
1662 0xffff, /* dst_mask */
1663 FALSE), /* pcrel_offset */
1664
1665 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1666 0, /* rightshift */
1667 2, /* size (0 = byte, 1 = short, 2 = long) */
1668 16, /* bitsize */
1669 FALSE, /* pc_relative */
1670 0, /* bitpos */
1671 complain_overflow_dont, /* complain_on_overflow */
1672 bfd_elf_generic_reloc, /* special_function */
1673 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1674 FALSE, /* partial_inplace */
1675 0xffff, /* src_mask */
1676 0xffff, /* dst_mask */
1677 FALSE), /* pcrel_offset */
1678
1679 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1680 0, /* rightshift */
1681 2, /* size (0 = byte, 1 = short, 2 = long) */
1682 16, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_dont, /* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1688 FALSE, /* partial_inplace */
1689 0xffff, /* src_mask */
1690 0xffff, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692
1693 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1694 12, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 12, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_unsigned, /* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1702 FALSE, /* partial_inplace */
1703 0xfff, /* src_mask */
1704 0xfff, /* dst_mask */
1705 FALSE), /* pcrel_offset */
1706
1707 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1708 0, /* rightshift */
1709 2, /* size (0 = byte, 1 = short, 2 = long) */
1710 12, /* bitsize */
1711 FALSE, /* pc_relative */
1712 0, /* bitpos */
1713 complain_overflow_unsigned, /* complain_on_overflow */
1714 bfd_elf_generic_reloc, /* special_function */
1715 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1716 FALSE, /* partial_inplace */
1717 0xfff, /* src_mask */
1718 0xfff, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1722 0, /* rightshift */
1723 2, /* size (0 = byte, 1 = short, 2 = long) */
1724 12, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_dont, /* complain_on_overflow */
1728 bfd_elf_generic_reloc, /* special_function */
1729 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1730 FALSE, /* partial_inplace */
1731 0xfff, /* src_mask */
1732 0xfff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1736 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1737 1, /* rightshift */
1738 2, /* size (0 = byte, 1 = short, 2 = long) */
1739 11, /* bitsize */
1740 FALSE, /* pc_relative */
1741 10, /* bitpos */
1742 complain_overflow_unsigned, /* complain_on_overflow */
1743 bfd_elf_generic_reloc, /* special_function */
1744 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1745 FALSE, /* partial_inplace */
1746 0x1ffc00, /* src_mask */
1747 0x1ffc00, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1751 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1752 1, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 11, /* bitsize */
1755 FALSE, /* pc_relative */
1756 10, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1760 FALSE, /* partial_inplace */
1761 0x1ffc00, /* src_mask */
1762 0x1ffc00, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1766 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1767 2, /* rightshift */
1768 2, /* size (0 = byte, 1 = short, 2 = long) */
1769 10, /* bitsize */
1770 FALSE, /* pc_relative */
1771 10, /* bitpos */
1772 complain_overflow_unsigned, /* complain_on_overflow */
1773 bfd_elf_generic_reloc, /* special_function */
1774 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1775 FALSE, /* partial_inplace */
1776 0xffc00, /* src_mask */
1777 0xffc00, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1781 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1782 2, /* rightshift */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1784 10, /* bitsize */
1785 FALSE, /* pc_relative */
1786 10, /* bitpos */
1787 complain_overflow_dont, /* complain_on_overflow */
1788 bfd_elf_generic_reloc, /* special_function */
1789 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1790 FALSE, /* partial_inplace */
1791 0xffc00, /* src_mask */
1792 0xffc00, /* dst_mask */
1793 FALSE), /* pcrel_offset */
1794
1795 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1796 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1797 3, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 9, /* bitsize */
1800 FALSE, /* pc_relative */
1801 10, /* bitpos */
1802 complain_overflow_unsigned, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1805 FALSE, /* partial_inplace */
1806 0x7fc00, /* src_mask */
1807 0x7fc00, /* dst_mask */
1808 FALSE), /* pcrel_offset */
1809
1810 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1811 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1812 3, /* rightshift */
1813 2, /* size (0 = byte, 1 = short, 2 = long) */
1814 9, /* bitsize */
1815 FALSE, /* pc_relative */
1816 10, /* bitpos */
1817 complain_overflow_dont, /* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1820 FALSE, /* partial_inplace */
1821 0x7fc00, /* src_mask */
1822 0x7fc00, /* dst_mask */
1823 FALSE), /* pcrel_offset */
1824
1825 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1826 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1827 0, /* rightshift */
1828 2, /* size (0 = byte, 1 = short, 2 = long) */
1829 12, /* bitsize */
1830 FALSE, /* pc_relative */
1831 10, /* bitpos */
1832 complain_overflow_unsigned, /* complain_on_overflow */
1833 bfd_elf_generic_reloc, /* special_function */
1834 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1835 FALSE, /* partial_inplace */
1836 0x3ffc00, /* src_mask */
1837 0x3ffc00, /* dst_mask */
1838 FALSE), /* pcrel_offset */
1839
1840 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1841 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1842 0, /* rightshift */
1843 2, /* size (0 = byte, 1 = short, 2 = long) */
1844 12, /* bitsize */
1845 FALSE, /* pc_relative */
1846 10, /* bitpos */
1847 complain_overflow_dont, /* complain_on_overflow */
1848 bfd_elf_generic_reloc, /* special_function */
1849 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1850 FALSE, /* partial_inplace */
1851 0x3ffc00, /* src_mask */
1852 0x3ffc00, /* dst_mask */
1853 FALSE), /* pcrel_offset */
1854
1855 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1856 2, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 19, /* bitsize */
1859 TRUE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_dont, /* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1864 FALSE, /* partial_inplace */
1865 0x0ffffe0, /* src_mask */
1866 0x0ffffe0, /* dst_mask */
1867 TRUE), /* pcrel_offset */
1868
1869 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1870 0, /* rightshift */
1871 2, /* size (0 = byte, 1 = short, 2 = long) */
1872 21, /* bitsize */
1873 TRUE, /* pc_relative */
1874 0, /* bitpos */
1875 complain_overflow_dont, /* complain_on_overflow */
1876 bfd_elf_generic_reloc, /* special_function */
1877 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1878 FALSE, /* partial_inplace */
1879 0x1fffff, /* src_mask */
1880 0x1fffff, /* dst_mask */
1881 TRUE), /* pcrel_offset */
1882
1883 /* Get to the page for the GOT entry for the symbol
1884 (G(S) - P) using an ADRP instruction. */
1885 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1886 12, /* rightshift */
1887 2, /* size (0 = byte, 1 = short, 2 = long) */
1888 21, /* bitsize */
1889 TRUE, /* pc_relative */
1890 0, /* bitpos */
1891 complain_overflow_dont, /* complain_on_overflow */
1892 bfd_elf_generic_reloc, /* special_function */
1893 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1894 FALSE, /* partial_inplace */
1895 0x1fffff, /* src_mask */
1896 0x1fffff, /* dst_mask */
1897 TRUE), /* pcrel_offset */
1898
1899 /* LD64: GOT offset G(S) & 0xff8. */
1900 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1901 3, /* rightshift */
1902 2, /* size (0 = byte, 1 = short, 2 = long) */
1903 12, /* bitsize */
1904 FALSE, /* pc_relative */
1905 0, /* bitpos */
1906 complain_overflow_dont, /* complain_on_overflow */
1907 bfd_elf_generic_reloc, /* special_function */
1908 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1909 FALSE, /* partial_inplace */
1910 0xff8, /* src_mask */
1911 0xff8, /* dst_mask */
1912 FALSE), /* pcrel_offset */
1913
1914 /* LD32: GOT offset G(S) & 0xffc. */
1915 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1916 2, /* rightshift */
1917 2, /* size (0 = byte, 1 = short, 2 = long) */
1918 12, /* bitsize */
1919 FALSE, /* pc_relative */
1920 0, /* bitpos */
1921 complain_overflow_dont, /* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1924 FALSE, /* partial_inplace */
1925 0xffc, /* src_mask */
1926 0xffc, /* dst_mask */
1927 FALSE), /* pcrel_offset */
1928
1929 /* ADD: GOT offset G(S) & 0xfff. */
1930 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1931 0, /* rightshift */
1932 2, /* size (0 = byte, 1 = short, 2 = long) */
1933 12, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont,/* complain_on_overflow */
1937 bfd_elf_generic_reloc, /* special_function */
1938 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1939 FALSE, /* partial_inplace */
1940 0xfff, /* src_mask */
1941 0xfff, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1945 16, /* rightshift */
1946 2, /* size (0 = byte, 1 = short, 2 = long) */
1947 12, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_unsigned, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1953 FALSE, /* partial_inplace */
1954 0xffff, /* src_mask */
1955 0xffff, /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1959 0, /* rightshift */
1960 2, /* size (0 = byte, 1 = short, 2 = long) */
1961 12, /* bitsize */
1962 FALSE, /* pc_relative */
1963 0, /* bitpos */
1964 complain_overflow_dont, /* complain_on_overflow */
1965 bfd_elf_generic_reloc, /* special_function */
1966 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1967 FALSE, /* partial_inplace */
1968 0xffff, /* src_mask */
1969 0xffff, /* dst_mask */
1970 FALSE), /* pcrel_offset */
1971
1972 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1973 0, /* rightshift */
1974 2, /* size (0 = byte, 1 = short, 2 = long) */
1975 12, /* bitsize */
1976 FALSE, /* pc_relative */
1977 0, /* bitpos */
1978 complain_overflow_dont, /* complain_on_overflow */
1979 bfd_elf_generic_reloc, /* special_function */
1980 AARCH64_R_STR (TLSDESC_LDR), /* name */
1981 FALSE, /* partial_inplace */
1982 0x0, /* src_mask */
1983 0x0, /* dst_mask */
1984 FALSE), /* pcrel_offset */
1985
1986 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1987 0, /* rightshift */
1988 2, /* size (0 = byte, 1 = short, 2 = long) */
1989 12, /* bitsize */
1990 FALSE, /* pc_relative */
1991 0, /* bitpos */
1992 complain_overflow_dont, /* complain_on_overflow */
1993 bfd_elf_generic_reloc, /* special_function */
1994 AARCH64_R_STR (TLSDESC_ADD), /* name */
1995 FALSE, /* partial_inplace */
1996 0x0, /* src_mask */
1997 0x0, /* dst_mask */
1998 FALSE), /* pcrel_offset */
1999
2000 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
2001 0, /* rightshift */
2002 2, /* size (0 = byte, 1 = short, 2 = long) */
2003 0, /* bitsize */
2004 FALSE, /* pc_relative */
2005 0, /* bitpos */
2006 complain_overflow_dont, /* complain_on_overflow */
2007 bfd_elf_generic_reloc, /* special_function */
2008 AARCH64_R_STR (TLSDESC_CALL), /* name */
2009 FALSE, /* partial_inplace */
2010 0x0, /* src_mask */
2011 0x0, /* dst_mask */
2012 FALSE), /* pcrel_offset */
2013
2014 HOWTO (AARCH64_R (COPY), /* type */
2015 0, /* rightshift */
2016 2, /* size (0 = byte, 1 = short, 2 = long) */
2017 64, /* bitsize */
2018 FALSE, /* pc_relative */
2019 0, /* bitpos */
2020 complain_overflow_bitfield, /* complain_on_overflow */
2021 bfd_elf_generic_reloc, /* special_function */
2022 AARCH64_R_STR (COPY), /* name */
2023 TRUE, /* partial_inplace */
2024 0xffffffff, /* src_mask */
2025 0xffffffff, /* dst_mask */
2026 FALSE), /* pcrel_offset */
2027
2028 HOWTO (AARCH64_R (GLOB_DAT), /* type */
2029 0, /* rightshift */
2030 2, /* size (0 = byte, 1 = short, 2 = long) */
2031 64, /* bitsize */
2032 FALSE, /* pc_relative */
2033 0, /* bitpos */
2034 complain_overflow_bitfield, /* complain_on_overflow */
2035 bfd_elf_generic_reloc, /* special_function */
2036 AARCH64_R_STR (GLOB_DAT), /* name */
2037 TRUE, /* partial_inplace */
2038 0xffffffff, /* src_mask */
2039 0xffffffff, /* dst_mask */
2040 FALSE), /* pcrel_offset */
2041
2042 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
2043 0, /* rightshift */
2044 2, /* size (0 = byte, 1 = short, 2 = long) */
2045 64, /* bitsize */
2046 FALSE, /* pc_relative */
2047 0, /* bitpos */
2048 complain_overflow_bitfield, /* complain_on_overflow */
2049 bfd_elf_generic_reloc, /* special_function */
2050 AARCH64_R_STR (JUMP_SLOT), /* name */
2051 TRUE, /* partial_inplace */
2052 0xffffffff, /* src_mask */
2053 0xffffffff, /* dst_mask */
2054 FALSE), /* pcrel_offset */
2055
2056 HOWTO (AARCH64_R (RELATIVE), /* type */
2057 0, /* rightshift */
2058 2, /* size (0 = byte, 1 = short, 2 = long) */
2059 64, /* bitsize */
2060 FALSE, /* pc_relative */
2061 0, /* bitpos */
2062 complain_overflow_bitfield, /* complain_on_overflow */
2063 bfd_elf_generic_reloc, /* special_function */
2064 AARCH64_R_STR (RELATIVE), /* name */
2065 TRUE, /* partial_inplace */
2066 ALL_ONES, /* src_mask */
2067 ALL_ONES, /* dst_mask */
2068 FALSE), /* pcrel_offset */
2069
2070 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
2071 0, /* rightshift */
2072 2, /* size (0 = byte, 1 = short, 2 = long) */
2073 64, /* bitsize */
2074 FALSE, /* pc_relative */
2075 0, /* bitpos */
2076 complain_overflow_dont, /* complain_on_overflow */
2077 bfd_elf_generic_reloc, /* special_function */
2078 #if ARCH_SIZE == 64
2079 AARCH64_R_STR (TLS_DTPMOD64), /* name */
2080 #else
2081 AARCH64_R_STR (TLS_DTPMOD), /* name */
2082 #endif
2083 FALSE, /* partial_inplace */
2084 0, /* src_mask */
2085 ALL_ONES, /* dst_mask */
2086 FALSE), /* pc_reloffset */
2087
2088 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2089 0, /* rightshift */
2090 2, /* size (0 = byte, 1 = short, 2 = long) */
2091 64, /* bitsize */
2092 FALSE, /* pc_relative */
2093 0, /* bitpos */
2094 complain_overflow_dont, /* complain_on_overflow */
2095 bfd_elf_generic_reloc, /* special_function */
2096 #if ARCH_SIZE == 64
2097 AARCH64_R_STR (TLS_DTPREL64), /* name */
2098 #else
2099 AARCH64_R_STR (TLS_DTPREL), /* name */
2100 #endif
2101 FALSE, /* partial_inplace */
2102 0, /* src_mask */
2103 ALL_ONES, /* dst_mask */
2104 FALSE), /* pcrel_offset */
2105
2106 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2107 0, /* rightshift */
2108 2, /* size (0 = byte, 1 = short, 2 = long) */
2109 64, /* bitsize */
2110 FALSE, /* pc_relative */
2111 0, /* bitpos */
2112 complain_overflow_dont, /* complain_on_overflow */
2113 bfd_elf_generic_reloc, /* special_function */
2114 #if ARCH_SIZE == 64
2115 AARCH64_R_STR (TLS_TPREL64), /* name */
2116 #else
2117 AARCH64_R_STR (TLS_TPREL), /* name */
2118 #endif
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ALL_ONES, /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 HOWTO (AARCH64_R (TLSDESC), /* type */
2125 0, /* rightshift */
2126 2, /* size (0 = byte, 1 = short, 2 = long) */
2127 64, /* bitsize */
2128 FALSE, /* pc_relative */
2129 0, /* bitpos */
2130 complain_overflow_dont, /* complain_on_overflow */
2131 bfd_elf_generic_reloc, /* special_function */
2132 AARCH64_R_STR (TLSDESC), /* name */
2133 FALSE, /* partial_inplace */
2134 0, /* src_mask */
2135 ALL_ONES, /* dst_mask */
2136 FALSE), /* pcrel_offset */
2137
2138 HOWTO (AARCH64_R (IRELATIVE), /* type */
2139 0, /* rightshift */
2140 2, /* size (0 = byte, 1 = short, 2 = long) */
2141 64, /* bitsize */
2142 FALSE, /* pc_relative */
2143 0, /* bitpos */
2144 complain_overflow_bitfield, /* complain_on_overflow */
2145 bfd_elf_generic_reloc, /* special_function */
2146 AARCH64_R_STR (IRELATIVE), /* name */
2147 FALSE, /* partial_inplace */
2148 0, /* src_mask */
2149 ALL_ONES, /* dst_mask */
2150 FALSE), /* pcrel_offset */
2151
2152 EMPTY_HOWTO (0),
2153 };
2154
2155 static reloc_howto_type elfNN_aarch64_howto_none =
2156 HOWTO (R_AARCH64_NONE, /* type */
2157 0, /* rightshift */
2158 3, /* size (0 = byte, 1 = short, 2 = long) */
2159 0, /* bitsize */
2160 FALSE, /* pc_relative */
2161 0, /* bitpos */
2162 complain_overflow_dont,/* complain_on_overflow */
2163 bfd_elf_generic_reloc, /* special_function */
2164 "R_AARCH64_NONE", /* name */
2165 FALSE, /* partial_inplace */
2166 0, /* src_mask */
2167 0, /* dst_mask */
2168 FALSE); /* pcrel_offset */
2169
2170 /* Given HOWTO, return the bfd internal relocation enumerator. */
2171
2172 static bfd_reloc_code_real_type
2173 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2174 {
2175 const int size
2176 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2177 const ptrdiff_t offset
2178 = howto - elfNN_aarch64_howto_table;
2179
2180 if (offset > 0 && offset < size - 1)
2181 return BFD_RELOC_AARCH64_RELOC_START + offset;
2182
2183 if (howto == &elfNN_aarch64_howto_none)
2184 return BFD_RELOC_AARCH64_NONE;
2185
2186 return BFD_RELOC_AARCH64_RELOC_START;
2187 }
2188
2189 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2190
2191 static bfd_reloc_code_real_type
2192 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2193 {
2194 static bfd_boolean initialized_p = FALSE;
2195 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2196 static unsigned int offsets[R_AARCH64_end];
2197
2198 if (!initialized_p)
2199 {
2200 unsigned int i;
2201
2202 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2203 if (elfNN_aarch64_howto_table[i].type != 0)
2204 offsets[elfNN_aarch64_howto_table[i].type] = i;
2205
2206 initialized_p = TRUE;
2207 }
2208
2209 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2210 return BFD_RELOC_AARCH64_NONE;
2211
2212 /* PR 17512: file: b371e70a. */
2213 if (r_type >= R_AARCH64_end)
2214 {
2215 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2216 abfd, r_type);
2217 bfd_set_error (bfd_error_bad_value);
2218 return BFD_RELOC_AARCH64_NONE;
2219 }
2220
2221 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2222 }
2223
2224 struct elf_aarch64_reloc_map
2225 {
2226 bfd_reloc_code_real_type from;
2227 bfd_reloc_code_real_type to;
2228 };
2229
2230 /* Map bfd generic reloc to AArch64-specific reloc. */
2231 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2232 {
2233 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2234
2235 /* Basic data relocations. */
2236 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2237 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2238 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2239 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2240 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2241 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2242 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2243 };
2244
2245 /* Given the bfd internal relocation enumerator in CODE, return the
2246 corresponding howto entry. */
2247
2248 static reloc_howto_type *
2249 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2250 {
2251 unsigned int i;
2252
2253 /* Convert bfd generic reloc to AArch64-specific reloc. */
2254 if (code < BFD_RELOC_AARCH64_RELOC_START
2255 || code > BFD_RELOC_AARCH64_RELOC_END)
2256 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2257 if (elf_aarch64_reloc_map[i].from == code)
2258 {
2259 code = elf_aarch64_reloc_map[i].to;
2260 break;
2261 }
2262
2263 if (code > BFD_RELOC_AARCH64_RELOC_START
2264 && code < BFD_RELOC_AARCH64_RELOC_END)
2265 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2266 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2267
2268 if (code == BFD_RELOC_AARCH64_NONE)
2269 return &elfNN_aarch64_howto_none;
2270
2271 return NULL;
2272 }
2273
2274 static reloc_howto_type *
2275 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2276 {
2277 bfd_reloc_code_real_type val;
2278 reloc_howto_type *howto;
2279
2280 #if ARCH_SIZE == 32
2281 if (r_type > 256)
2282 {
2283 bfd_set_error (bfd_error_bad_value);
2284 return NULL;
2285 }
2286 #endif
2287
2288 if (r_type == R_AARCH64_NONE)
2289 return &elfNN_aarch64_howto_none;
2290
2291 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2292 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2293
2294 if (howto != NULL)
2295 return howto;
2296
2297 bfd_set_error (bfd_error_bad_value);
2298 return NULL;
2299 }
2300
2301 static bfd_boolean
2302 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2303 Elf_Internal_Rela *elf_reloc)
2304 {
2305 unsigned int r_type;
2306
2307 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2308 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2309
2310 if (bfd_reloc->howto == NULL)
2311 {
2312 /* xgettext:c-format */
2313 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2314 return FALSE;
2315 }
2316 return TRUE;
2317 }
2318
2319 static reloc_howto_type *
2320 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2321 bfd_reloc_code_real_type code)
2322 {
2323 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2324
2325 if (howto != NULL)
2326 return howto;
2327
2328 bfd_set_error (bfd_error_bad_value);
2329 return NULL;
2330 }
2331
2332 static reloc_howto_type *
2333 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2334 const char *r_name)
2335 {
2336 unsigned int i;
2337
2338 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2339 if (elfNN_aarch64_howto_table[i].name != NULL
2340 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2341 return &elfNN_aarch64_howto_table[i];
2342
2343 return NULL;
2344 }
2345
2346 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2347 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2348 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2349 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2350
2351 /* The linker script knows the section names for placement.
2352 The entry_names are used to do simple name mangling on the stubs.
2353 Given a function name, and its type, the stub can be found. The
2354 name can be changed. The only requirement is the %s be present. */
2355 #define STUB_ENTRY_NAME "__%s_veneer"
2356
2357 /* The name of the dynamic interpreter. This is put in the .interp
2358 section. */
2359 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2360
2361 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2362 (((1 << 25) - 1) << 2)
2363 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2364 (-((1 << 25) << 2))
2365
2366 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2367 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2368
2369 static int
2370 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2371 {
2372 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2373 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2374 }
2375
2376 static int
2377 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2378 {
2379 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2380 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2381 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2382 }
2383
2384 static const uint32_t aarch64_adrp_branch_stub [] =
2385 {
2386 0x90000010, /* adrp ip0, X */
2387 /* R_AARCH64_ADR_HI21_PCREL(X) */
2388 0x91000210, /* add ip0, ip0, :lo12:X */
2389 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2390 0xd61f0200, /* br ip0 */
2391 };
2392
2393 static const uint32_t aarch64_long_branch_stub[] =
2394 {
2395 #if ARCH_SIZE == 64
2396 0x58000090, /* ldr ip0, 1f */
2397 #else
2398 0x18000090, /* ldr wip0, 1f */
2399 #endif
2400 0x10000011, /* adr ip1, #0 */
2401 0x8b110210, /* add ip0, ip0, ip1 */
2402 0xd61f0200, /* br ip0 */
2403 0x00000000, /* 1: .xword or .word
2404 R_AARCH64_PRELNN(X) + 12
2405 */
2406 0x00000000,
2407 };
2408
2409 static const uint32_t aarch64_erratum_835769_stub[] =
2410 {
2411 0x00000000, /* Placeholder for multiply accumulate. */
2412 0x14000000, /* b <label> */
2413 };
2414
2415 static const uint32_t aarch64_erratum_843419_stub[] =
2416 {
2417 0x00000000, /* Placeholder for LDR instruction. */
2418 0x14000000, /* b <label> */
2419 };
2420
2421 /* Section name for stubs is the associated section name plus this
2422 string. */
2423 #define STUB_SUFFIX ".stub"
2424
2425 enum elf_aarch64_stub_type
2426 {
2427 aarch64_stub_none,
2428 aarch64_stub_adrp_branch,
2429 aarch64_stub_long_branch,
2430 aarch64_stub_erratum_835769_veneer,
2431 aarch64_stub_erratum_843419_veneer,
2432 };
2433
2434 struct elf_aarch64_stub_hash_entry
2435 {
2436 /* Base hash table entry structure. */
2437 struct bfd_hash_entry root;
2438
2439 /* The stub section. */
2440 asection *stub_sec;
2441
2442 /* Offset within stub_sec of the beginning of this stub. */
2443 bfd_vma stub_offset;
2444
2445 /* Given the symbol's value and its section we can determine its final
2446 value when building the stubs (so the stub knows where to jump). */
2447 bfd_vma target_value;
2448 asection *target_section;
2449
2450 enum elf_aarch64_stub_type stub_type;
2451
2452 /* The symbol table entry, if any, that this was derived from. */
2453 struct elf_aarch64_link_hash_entry *h;
2454
2455 /* Destination symbol type */
2456 unsigned char st_type;
2457
2458 /* Where this stub is being called from, or, in the case of combined
2459 stub sections, the first input section in the group. */
2460 asection *id_sec;
2461
2462 /* The name for the local symbol at the start of this stub. The
2463 stub name in the hash table has to be unique; this does not, so
2464 it can be friendlier. */
2465 char *output_name;
2466
2467 /* The instruction which caused this stub to be generated (only valid for
2468 erratum 835769 workaround stubs at present). */
2469 uint32_t veneered_insn;
2470
2471 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2472 bfd_vma adrp_offset;
2473 };
2474
2475 /* Used to build a map of a section. This is required for mixed-endian
2476 code/data. */
2477
2478 typedef struct elf_elf_section_map
2479 {
2480 bfd_vma vma;
2481 char type;
2482 }
2483 elf_aarch64_section_map;
2484
2485
2486 typedef struct _aarch64_elf_section_data
2487 {
2488 struct bfd_elf_section_data elf;
2489 unsigned int mapcount;
2490 unsigned int mapsize;
2491 elf_aarch64_section_map *map;
2492 }
2493 _aarch64_elf_section_data;
2494
2495 #define elf_aarch64_section_data(sec) \
2496 ((_aarch64_elf_section_data *) elf_section_data (sec))
2497
2498 /* The size of the thread control block which is defined to be two pointers. */
2499 #define TCB_SIZE (ARCH_SIZE/8)*2
2500
2501 struct elf_aarch64_local_symbol
2502 {
2503 unsigned int got_type;
2504 bfd_signed_vma got_refcount;
2505 bfd_vma got_offset;
2506
2507 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2508 offset is from the end of the jump table and reserved entries
2509 within the PLTGOT.
2510
2511 The magic value (bfd_vma) -1 indicates that an offset has not be
2512 allocated. */
2513 bfd_vma tlsdesc_got_jump_table_offset;
2514 };
2515
2516 struct elf_aarch64_obj_tdata
2517 {
2518 struct elf_obj_tdata root;
2519
2520 /* local symbol descriptors */
2521 struct elf_aarch64_local_symbol *locals;
2522
2523 /* Zero to warn when linking objects with incompatible enum sizes. */
2524 int no_enum_size_warning;
2525
2526 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2527 int no_wchar_size_warning;
2528
2529 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2530 uint32_t gnu_and_prop;
2531
2532 /* Zero to warn when linking objects with incompatible
2533 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2534 int no_bti_warn;
2535
2536 /* PLT type based on security. */
2537 aarch64_plt_type plt_type;
2538 };
2539
2540 #define elf_aarch64_tdata(bfd) \
2541 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2542
2543 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2544
2545 #define is_aarch64_elf(bfd) \
2546 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2547 && elf_tdata (bfd) != NULL \
2548 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2549
2550 static bfd_boolean
2551 elfNN_aarch64_mkobject (bfd *abfd)
2552 {
2553 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2554 AARCH64_ELF_DATA);
2555 }
2556
2557 #define elf_aarch64_hash_entry(ent) \
2558 ((struct elf_aarch64_link_hash_entry *)(ent))
2559
2560 #define GOT_UNKNOWN 0
2561 #define GOT_NORMAL 1
2562 #define GOT_TLS_GD 2
2563 #define GOT_TLS_IE 4
2564 #define GOT_TLSDESC_GD 8
2565
2566 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2567
2568 /* AArch64 ELF linker hash entry. */
2569 struct elf_aarch64_link_hash_entry
2570 {
2571 struct elf_link_hash_entry root;
2572
2573 /* Track dynamic relocs copied for this symbol. */
2574 struct elf_dyn_relocs *dyn_relocs;
2575
2576 /* Since PLT entries have variable size, we need to record the
2577 index into .got.plt instead of recomputing it from the PLT
2578 offset. */
2579 bfd_signed_vma plt_got_offset;
2580
2581 /* Bit mask representing the type of GOT entry(s) if any required by
2582 this symbol. */
2583 unsigned int got_type;
2584
2585 /* A pointer to the most recently used stub hash entry against this
2586 symbol. */
2587 struct elf_aarch64_stub_hash_entry *stub_cache;
2588
2589 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2590 is from the end of the jump table and reserved entries within the PLTGOT.
2591
2592 The magic value (bfd_vma) -1 indicates that an offset has not
2593 be allocated. */
2594 bfd_vma tlsdesc_got_jump_table_offset;
2595 };
2596
2597 static unsigned int
2598 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2599 bfd *abfd,
2600 unsigned long r_symndx)
2601 {
2602 if (h)
2603 return elf_aarch64_hash_entry (h)->got_type;
2604
2605 if (! elf_aarch64_locals (abfd))
2606 return GOT_UNKNOWN;
2607
2608 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2609 }
2610
2611 /* Get the AArch64 elf linker hash table from a link_info structure. */
2612 #define elf_aarch64_hash_table(info) \
2613 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2614
2615 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2616 ((struct elf_aarch64_stub_hash_entry *) \
2617 bfd_hash_lookup ((table), (string), (create), (copy)))
2618
2619 /* AArch64 ELF linker hash table. */
2620 struct elf_aarch64_link_hash_table
2621 {
2622 /* The main hash table. */
2623 struct elf_link_hash_table root;
2624
2625 /* Nonzero to force PIC branch veneers. */
2626 int pic_veneer;
2627
2628 /* Fix erratum 835769. */
2629 int fix_erratum_835769;
2630
2631 /* Fix erratum 843419. */
2632 erratum_84319_opts fix_erratum_843419;
2633
2634 /* Don't apply link-time values for dynamic relocations. */
2635 int no_apply_dynamic_relocs;
2636
2637 /* The number of bytes in the initial entry in the PLT. */
2638 bfd_size_type plt_header_size;
2639
2640 /* The bytes of the initial PLT entry. */
2641 const bfd_byte *plt0_entry;
2642
2643 /* The number of bytes in the subsequent PLT entries. */
2644 bfd_size_type plt_entry_size;
2645
2646 /* The bytes of the subsequent PLT entry. */
2647 const bfd_byte *plt_entry;
2648
2649 /* Small local sym cache. */
2650 struct sym_cache sym_cache;
2651
2652 /* For convenience in allocate_dynrelocs. */
2653 bfd *obfd;
2654
2655 /* The amount of space used by the reserved portion of the sgotplt
2656 section, plus whatever space is used by the jump slots. */
2657 bfd_vma sgotplt_jump_table_size;
2658
2659 /* The stub hash table. */
2660 struct bfd_hash_table stub_hash_table;
2661
2662 /* Linker stub bfd. */
2663 bfd *stub_bfd;
2664
2665 /* Linker call-backs. */
2666 asection *(*add_stub_section) (const char *, asection *);
2667 void (*layout_sections_again) (void);
2668
2669 /* Array to keep track of which stub sections have been created, and
2670 information on stub grouping. */
2671 struct map_stub
2672 {
2673 /* This is the section to which stubs in the group will be
2674 attached. */
2675 asection *link_sec;
2676 /* The stub section. */
2677 asection *stub_sec;
2678 } *stub_group;
2679
2680 /* Assorted information used by elfNN_aarch64_size_stubs. */
2681 unsigned int bfd_count;
2682 unsigned int top_index;
2683 asection **input_list;
2684
2685 /* JUMP_SLOT relocs for variant PCS symbols may be present. */
2686 int variant_pcs;
2687
2688 /* The offset into splt of the PLT entry for the TLS descriptor
2689 resolver. Special values are 0, if not necessary (or not found
2690 to be necessary yet), and -1 if needed but not determined
2691 yet. */
2692 bfd_vma tlsdesc_plt;
2693
2694 /* The number of bytes in the PLT enty for the TLS descriptor. */
2695 bfd_size_type tlsdesc_plt_entry_size;
2696
2697 /* The GOT offset for the lazy trampoline. Communicated to the
2698 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2699 indicates an offset is not allocated. */
2700 bfd_vma dt_tlsdesc_got;
2701
2702 /* Used by local STT_GNU_IFUNC symbols. */
2703 htab_t loc_hash_table;
2704 void * loc_hash_memory;
2705 };
2706
2707 /* Create an entry in an AArch64 ELF linker hash table. */
2708
2709 static struct bfd_hash_entry *
2710 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2711 struct bfd_hash_table *table,
2712 const char *string)
2713 {
2714 struct elf_aarch64_link_hash_entry *ret =
2715 (struct elf_aarch64_link_hash_entry *) entry;
2716
2717 /* Allocate the structure if it has not already been allocated by a
2718 subclass. */
2719 if (ret == NULL)
2720 ret = bfd_hash_allocate (table,
2721 sizeof (struct elf_aarch64_link_hash_entry));
2722 if (ret == NULL)
2723 return (struct bfd_hash_entry *) ret;
2724
2725 /* Call the allocation method of the superclass. */
2726 ret = ((struct elf_aarch64_link_hash_entry *)
2727 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2728 table, string));
2729 if (ret != NULL)
2730 {
2731 ret->dyn_relocs = NULL;
2732 ret->got_type = GOT_UNKNOWN;
2733 ret->plt_got_offset = (bfd_vma) - 1;
2734 ret->stub_cache = NULL;
2735 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2736 }
2737
2738 return (struct bfd_hash_entry *) ret;
2739 }
2740
2741 /* Initialize an entry in the stub hash table. */
2742
2743 static struct bfd_hash_entry *
2744 stub_hash_newfunc (struct bfd_hash_entry *entry,
2745 struct bfd_hash_table *table, const char *string)
2746 {
2747 /* Allocate the structure if it has not already been allocated by a
2748 subclass. */
2749 if (entry == NULL)
2750 {
2751 entry = bfd_hash_allocate (table,
2752 sizeof (struct
2753 elf_aarch64_stub_hash_entry));
2754 if (entry == NULL)
2755 return entry;
2756 }
2757
2758 /* Call the allocation method of the superclass. */
2759 entry = bfd_hash_newfunc (entry, table, string);
2760 if (entry != NULL)
2761 {
2762 struct elf_aarch64_stub_hash_entry *eh;
2763
2764 /* Initialize the local fields. */
2765 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2766 eh->adrp_offset = 0;
2767 eh->stub_sec = NULL;
2768 eh->stub_offset = 0;
2769 eh->target_value = 0;
2770 eh->target_section = NULL;
2771 eh->stub_type = aarch64_stub_none;
2772 eh->h = NULL;
2773 eh->id_sec = NULL;
2774 }
2775
2776 return entry;
2777 }
2778
2779 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2780 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2781 as global symbol. We reuse indx and dynstr_index for local symbol
2782 hash since they aren't used by global symbols in this backend. */
2783
2784 static hashval_t
2785 elfNN_aarch64_local_htab_hash (const void *ptr)
2786 {
2787 struct elf_link_hash_entry *h
2788 = (struct elf_link_hash_entry *) ptr;
2789 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2790 }
2791
2792 /* Compare local hash entries. */
2793
2794 static int
2795 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2796 {
2797 struct elf_link_hash_entry *h1
2798 = (struct elf_link_hash_entry *) ptr1;
2799 struct elf_link_hash_entry *h2
2800 = (struct elf_link_hash_entry *) ptr2;
2801
2802 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2803 }
2804
2805 /* Find and/or create a hash entry for local symbol. */
2806
2807 static struct elf_link_hash_entry *
2808 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2809 bfd *abfd, const Elf_Internal_Rela *rel,
2810 bfd_boolean create)
2811 {
2812 struct elf_aarch64_link_hash_entry e, *ret;
2813 asection *sec = abfd->sections;
2814 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2815 ELFNN_R_SYM (rel->r_info));
2816 void **slot;
2817
2818 e.root.indx = sec->id;
2819 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2820 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2821 create ? INSERT : NO_INSERT);
2822
2823 if (!slot)
2824 return NULL;
2825
2826 if (*slot)
2827 {
2828 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2829 return &ret->root;
2830 }
2831
2832 ret = (struct elf_aarch64_link_hash_entry *)
2833 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2834 sizeof (struct elf_aarch64_link_hash_entry));
2835 if (ret)
2836 {
2837 memset (ret, 0, sizeof (*ret));
2838 ret->root.indx = sec->id;
2839 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2840 ret->root.dynindx = -1;
2841 *slot = ret;
2842 }
2843 return &ret->root;
2844 }
2845
2846 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2847
2848 static void
2849 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2850 struct elf_link_hash_entry *dir,
2851 struct elf_link_hash_entry *ind)
2852 {
2853 struct elf_aarch64_link_hash_entry *edir, *eind;
2854
2855 edir = (struct elf_aarch64_link_hash_entry *) dir;
2856 eind = (struct elf_aarch64_link_hash_entry *) ind;
2857
2858 if (eind->dyn_relocs != NULL)
2859 {
2860 if (edir->dyn_relocs != NULL)
2861 {
2862 struct elf_dyn_relocs **pp;
2863 struct elf_dyn_relocs *p;
2864
2865 /* Add reloc counts against the indirect sym to the direct sym
2866 list. Merge any entries against the same section. */
2867 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2868 {
2869 struct elf_dyn_relocs *q;
2870
2871 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2872 if (q->sec == p->sec)
2873 {
2874 q->pc_count += p->pc_count;
2875 q->count += p->count;
2876 *pp = p->next;
2877 break;
2878 }
2879 if (q == NULL)
2880 pp = &p->next;
2881 }
2882 *pp = edir->dyn_relocs;
2883 }
2884
2885 edir->dyn_relocs = eind->dyn_relocs;
2886 eind->dyn_relocs = NULL;
2887 }
2888
2889 if (ind->root.type == bfd_link_hash_indirect)
2890 {
2891 /* Copy over PLT info. */
2892 if (dir->got.refcount <= 0)
2893 {
2894 edir->got_type = eind->got_type;
2895 eind->got_type = GOT_UNKNOWN;
2896 }
2897 }
2898
2899 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2900 }
2901
2902 /* Merge non-visibility st_other attributes. */
2903
2904 static void
2905 elfNN_aarch64_merge_symbol_attribute (struct elf_link_hash_entry *h,
2906 const Elf_Internal_Sym *isym,
2907 bfd_boolean definition ATTRIBUTE_UNUSED,
2908 bfd_boolean dynamic ATTRIBUTE_UNUSED)
2909 {
2910 unsigned int isym_sto = isym->st_other & ~ELF_ST_VISIBILITY (-1);
2911 unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1);
2912
2913 if (isym_sto == h_sto)
2914 return;
2915
2916 if (isym_sto & ~STO_AARCH64_VARIANT_PCS)
2917 /* Not fatal, this callback cannot fail. */
2918 _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
2919 h->root.root.string, isym_sto);
2920
2921 /* Note: Ideally we would warn about any attribute mismatch, but
2922 this api does not allow that without substantial changes. */
2923 if (isym_sto & STO_AARCH64_VARIANT_PCS)
2924 h->other |= STO_AARCH64_VARIANT_PCS;
2925 }
2926
2927 /* Destroy an AArch64 elf linker hash table. */
2928
2929 static void
2930 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2931 {
2932 struct elf_aarch64_link_hash_table *ret
2933 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2934
2935 if (ret->loc_hash_table)
2936 htab_delete (ret->loc_hash_table);
2937 if (ret->loc_hash_memory)
2938 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2939
2940 bfd_hash_table_free (&ret->stub_hash_table);
2941 _bfd_elf_link_hash_table_free (obfd);
2942 }
2943
2944 /* Create an AArch64 elf linker hash table. */
2945
2946 static struct bfd_link_hash_table *
2947 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2948 {
2949 struct elf_aarch64_link_hash_table *ret;
2950 size_t amt = sizeof (struct elf_aarch64_link_hash_table);
2951
2952 ret = bfd_zmalloc (amt);
2953 if (ret == NULL)
2954 return NULL;
2955
2956 if (!_bfd_elf_link_hash_table_init
2957 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2958 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2959 {
2960 free (ret);
2961 return NULL;
2962 }
2963
2964 ret->plt_header_size = PLT_ENTRY_SIZE;
2965 ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2966 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2967 ret->plt_entry = elfNN_aarch64_small_plt_entry;
2968 ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2969 ret->obfd = abfd;
2970 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2971
2972 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2973 sizeof (struct elf_aarch64_stub_hash_entry)))
2974 {
2975 _bfd_elf_link_hash_table_free (abfd);
2976 return NULL;
2977 }
2978
2979 ret->loc_hash_table = htab_try_create (1024,
2980 elfNN_aarch64_local_htab_hash,
2981 elfNN_aarch64_local_htab_eq,
2982 NULL);
2983 ret->loc_hash_memory = objalloc_create ();
2984 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2985 {
2986 elfNN_aarch64_link_hash_table_free (abfd);
2987 return NULL;
2988 }
2989 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2990
2991 return &ret->root.root;
2992 }
2993
2994 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2995
2996 static bfd_boolean
2997 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2998 bfd_vma offset, bfd_vma value)
2999 {
3000 reloc_howto_type *howto;
3001 bfd_vma place;
3002
3003 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
3004 place = (input_section->output_section->vma + input_section->output_offset
3005 + offset);
3006
3007 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
3008 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, r_type, place,
3009 value, 0, FALSE);
3010 return _bfd_aarch64_elf_put_addend (input_bfd,
3011 input_section->contents + offset, r_type,
3012 howto, value) == bfd_reloc_ok;
3013 }
3014
3015 static enum elf_aarch64_stub_type
3016 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
3017 {
3018 if (aarch64_valid_for_adrp_p (value, place))
3019 return aarch64_stub_adrp_branch;
3020 return aarch64_stub_long_branch;
3021 }
3022
3023 /* Determine the type of stub needed, if any, for a call. */
3024
3025 static enum elf_aarch64_stub_type
3026 aarch64_type_of_stub (asection *input_sec,
3027 const Elf_Internal_Rela *rel,
3028 asection *sym_sec,
3029 unsigned char st_type,
3030 bfd_vma destination)
3031 {
3032 bfd_vma location;
3033 bfd_signed_vma branch_offset;
3034 unsigned int r_type;
3035 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
3036
3037 if (st_type != STT_FUNC
3038 && (sym_sec == input_sec))
3039 return stub_type;
3040
3041 /* Determine where the call point is. */
3042 location = (input_sec->output_offset
3043 + input_sec->output_section->vma + rel->r_offset);
3044
3045 branch_offset = (bfd_signed_vma) (destination - location);
3046
3047 r_type = ELFNN_R_TYPE (rel->r_info);
3048
3049 /* We don't want to redirect any old unconditional jump in this way,
3050 only one which is being used for a sibcall, where it is
3051 acceptable for the IP0 and IP1 registers to be clobbered. */
3052 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
3053 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
3054 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
3055 {
3056 stub_type = aarch64_stub_long_branch;
3057 }
3058
3059 return stub_type;
3060 }
3061
3062 /* Build a name for an entry in the stub hash table. */
3063
3064 static char *
3065 elfNN_aarch64_stub_name (const asection *input_section,
3066 const asection *sym_sec,
3067 const struct elf_aarch64_link_hash_entry *hash,
3068 const Elf_Internal_Rela *rel)
3069 {
3070 char *stub_name;
3071 bfd_size_type len;
3072
3073 if (hash)
3074 {
3075 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3076 stub_name = bfd_malloc (len);
3077 if (stub_name != NULL)
3078 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3079 (unsigned int) input_section->id,
3080 hash->root.root.root.string,
3081 rel->r_addend);
3082 }
3083 else
3084 {
3085 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3086 stub_name = bfd_malloc (len);
3087 if (stub_name != NULL)
3088 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3089 (unsigned int) input_section->id,
3090 (unsigned int) sym_sec->id,
3091 (unsigned int) ELFNN_R_SYM (rel->r_info),
3092 rel->r_addend);
3093 }
3094
3095 return stub_name;
3096 }
3097
3098 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3099 executable PLT slots where the executable never takes the address of those
3100 functions, the function symbols are not added to the hash table. */
3101
3102 static bfd_boolean
3103 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3104 {
3105 if (h->plt.offset != (bfd_vma) -1
3106 && !h->def_regular
3107 && !h->pointer_equality_needed)
3108 return FALSE;
3109
3110 return _bfd_elf_hash_symbol (h);
3111 }
3112
3113
3114 /* Look up an entry in the stub hash. Stub entries are cached because
3115 creating the stub name takes a bit of time. */
3116
3117 static struct elf_aarch64_stub_hash_entry *
3118 elfNN_aarch64_get_stub_entry (const asection *input_section,
3119 const asection *sym_sec,
3120 struct elf_link_hash_entry *hash,
3121 const Elf_Internal_Rela *rel,
3122 struct elf_aarch64_link_hash_table *htab)
3123 {
3124 struct elf_aarch64_stub_hash_entry *stub_entry;
3125 struct elf_aarch64_link_hash_entry *h =
3126 (struct elf_aarch64_link_hash_entry *) hash;
3127 const asection *id_sec;
3128
3129 if ((input_section->flags & SEC_CODE) == 0)
3130 return NULL;
3131
3132 /* If this input section is part of a group of sections sharing one
3133 stub section, then use the id of the first section in the group.
3134 Stub names need to include a section id, as there may well be
3135 more than one stub used to reach say, printf, and we need to
3136 distinguish between them. */
3137 id_sec = htab->stub_group[input_section->id].link_sec;
3138
3139 if (h != NULL && h->stub_cache != NULL
3140 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3141 {
3142 stub_entry = h->stub_cache;
3143 }
3144 else
3145 {
3146 char *stub_name;
3147
3148 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3149 if (stub_name == NULL)
3150 return NULL;
3151
3152 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3153 stub_name, FALSE, FALSE);
3154 if (h != NULL)
3155 h->stub_cache = stub_entry;
3156
3157 free (stub_name);
3158 }
3159
3160 return stub_entry;
3161 }
3162
3163
3164 /* Create a stub section. */
3165
3166 static asection *
3167 _bfd_aarch64_create_stub_section (asection *section,
3168 struct elf_aarch64_link_hash_table *htab)
3169 {
3170 size_t namelen;
3171 bfd_size_type len;
3172 char *s_name;
3173
3174 namelen = strlen (section->name);
3175 len = namelen + sizeof (STUB_SUFFIX);
3176 s_name = bfd_alloc (htab->stub_bfd, len);
3177 if (s_name == NULL)
3178 return NULL;
3179
3180 memcpy (s_name, section->name, namelen);
3181 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3182 return (*htab->add_stub_section) (s_name, section);
3183 }
3184
3185
3186 /* Find or create a stub section for a link section.
3187
3188 Fix or create the stub section used to collect stubs attached to
3189 the specified link section. */
3190
3191 static asection *
3192 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3193 struct elf_aarch64_link_hash_table *htab)
3194 {
3195 if (htab->stub_group[link_section->id].stub_sec == NULL)
3196 htab->stub_group[link_section->id].stub_sec
3197 = _bfd_aarch64_create_stub_section (link_section, htab);
3198 return htab->stub_group[link_section->id].stub_sec;
3199 }
3200
3201
3202 /* Find or create a stub section in the stub group for an input
3203 section. */
3204
3205 static asection *
3206 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3207 struct elf_aarch64_link_hash_table *htab)
3208 {
3209 asection *link_sec = htab->stub_group[section->id].link_sec;
3210 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3211 }
3212
3213
3214 /* Add a new stub entry in the stub group associated with an input
3215 section to the stub hash. Not all fields of the new stub entry are
3216 initialised. */
3217
3218 static struct elf_aarch64_stub_hash_entry *
3219 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3220 asection *section,
3221 struct elf_aarch64_link_hash_table *htab)
3222 {
3223 asection *link_sec;
3224 asection *stub_sec;
3225 struct elf_aarch64_stub_hash_entry *stub_entry;
3226
3227 link_sec = htab->stub_group[section->id].link_sec;
3228 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3229
3230 /* Enter this entry into the linker stub hash table. */
3231 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3232 TRUE, FALSE);
3233 if (stub_entry == NULL)
3234 {
3235 /* xgettext:c-format */
3236 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3237 section->owner, stub_name);
3238 return NULL;
3239 }
3240
3241 stub_entry->stub_sec = stub_sec;
3242 stub_entry->stub_offset = 0;
3243 stub_entry->id_sec = link_sec;
3244
3245 return stub_entry;
3246 }
3247
3248 /* Add a new stub entry in the final stub section to the stub hash.
3249 Not all fields of the new stub entry are initialised. */
3250
3251 static struct elf_aarch64_stub_hash_entry *
3252 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3253 asection *link_section,
3254 struct elf_aarch64_link_hash_table *htab)
3255 {
3256 asection *stub_sec;
3257 struct elf_aarch64_stub_hash_entry *stub_entry;
3258
3259 stub_sec = NULL;
3260 /* Only create the actual stub if we will end up needing it. */
3261 if (htab->fix_erratum_843419 & ERRAT_ADRP)
3262 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3263 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3264 TRUE, FALSE);
3265 if (stub_entry == NULL)
3266 {
3267 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3268 return NULL;
3269 }
3270
3271 stub_entry->stub_sec = stub_sec;
3272 stub_entry->stub_offset = 0;
3273 stub_entry->id_sec = link_section;
3274
3275 return stub_entry;
3276 }
3277
3278
3279 static bfd_boolean
3280 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3281 void *in_arg)
3282 {
3283 struct elf_aarch64_stub_hash_entry *stub_entry;
3284 asection *stub_sec;
3285 bfd *stub_bfd;
3286 bfd_byte *loc;
3287 bfd_vma sym_value;
3288 bfd_vma veneered_insn_loc;
3289 bfd_vma veneer_entry_loc;
3290 bfd_signed_vma branch_offset = 0;
3291 unsigned int template_size;
3292 const uint32_t *template;
3293 unsigned int i;
3294 struct bfd_link_info *info;
3295
3296 /* Massage our args to the form they really have. */
3297 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3298
3299 info = (struct bfd_link_info *) in_arg;
3300
3301 /* Fail if the target section could not be assigned to an output
3302 section. The user should fix his linker script. */
3303 if (stub_entry->target_section->output_section == NULL
3304 && info->non_contiguous_regions)
3305 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
3306 "Retry without "
3307 "--enable-non-contiguous-regions.\n"),
3308 stub_entry->target_section);
3309
3310 stub_sec = stub_entry->stub_sec;
3311
3312 /* Make a note of the offset within the stubs for this entry. */
3313 stub_entry->stub_offset = stub_sec->size;
3314 loc = stub_sec->contents + stub_entry->stub_offset;
3315
3316 stub_bfd = stub_sec->owner;
3317
3318 /* This is the address of the stub destination. */
3319 sym_value = (stub_entry->target_value
3320 + stub_entry->target_section->output_offset
3321 + stub_entry->target_section->output_section->vma);
3322
3323 if (stub_entry->stub_type == aarch64_stub_long_branch)
3324 {
3325 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3326 + stub_sec->output_offset);
3327
3328 /* See if we can relax the stub. */
3329 if (aarch64_valid_for_adrp_p (sym_value, place))
3330 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3331 }
3332
3333 switch (stub_entry->stub_type)
3334 {
3335 case aarch64_stub_adrp_branch:
3336 template = aarch64_adrp_branch_stub;
3337 template_size = sizeof (aarch64_adrp_branch_stub);
3338 break;
3339 case aarch64_stub_long_branch:
3340 template = aarch64_long_branch_stub;
3341 template_size = sizeof (aarch64_long_branch_stub);
3342 break;
3343 case aarch64_stub_erratum_835769_veneer:
3344 template = aarch64_erratum_835769_stub;
3345 template_size = sizeof (aarch64_erratum_835769_stub);
3346 break;
3347 case aarch64_stub_erratum_843419_veneer:
3348 template = aarch64_erratum_843419_stub;
3349 template_size = sizeof (aarch64_erratum_843419_stub);
3350 break;
3351 default:
3352 abort ();
3353 }
3354
3355 for (i = 0; i < (template_size / sizeof template[0]); i++)
3356 {
3357 bfd_putl32 (template[i], loc);
3358 loc += 4;
3359 }
3360
3361 template_size = (template_size + 7) & ~7;
3362 stub_sec->size += template_size;
3363
3364 switch (stub_entry->stub_type)
3365 {
3366 case aarch64_stub_adrp_branch:
3367 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3368 stub_entry->stub_offset, sym_value))
3369 /* The stub would not have been relaxed if the offset was out
3370 of range. */
3371 BFD_FAIL ();
3372
3373 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3374 stub_entry->stub_offset + 4, sym_value))
3375 BFD_FAIL ();
3376 break;
3377
3378 case aarch64_stub_long_branch:
3379 /* We want the value relative to the address 12 bytes back from the
3380 value itself. */
3381 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3382 stub_entry->stub_offset + 16, sym_value + 12))
3383 BFD_FAIL ();
3384 break;
3385
3386 case aarch64_stub_erratum_835769_veneer:
3387 veneered_insn_loc = stub_entry->target_section->output_section->vma
3388 + stub_entry->target_section->output_offset
3389 + stub_entry->target_value;
3390 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3391 + stub_entry->stub_sec->output_offset
3392 + stub_entry->stub_offset;
3393 branch_offset = veneered_insn_loc - veneer_entry_loc;
3394 branch_offset >>= 2;
3395 branch_offset &= 0x3ffffff;
3396 bfd_putl32 (stub_entry->veneered_insn,
3397 stub_sec->contents + stub_entry->stub_offset);
3398 bfd_putl32 (template[1] | branch_offset,
3399 stub_sec->contents + stub_entry->stub_offset + 4);
3400 break;
3401
3402 case aarch64_stub_erratum_843419_veneer:
3403 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3404 stub_entry->stub_offset + 4, sym_value + 4))
3405 BFD_FAIL ();
3406 break;
3407
3408 default:
3409 abort ();
3410 }
3411
3412 return TRUE;
3413 }
3414
3415 /* As above, but don't actually build the stub. Just bump offset so
3416 we know stub section sizes. */
3417
3418 static bfd_boolean
3419 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
3420 {
3421 struct elf_aarch64_stub_hash_entry *stub_entry;
3422 struct elf_aarch64_link_hash_table *htab;
3423 int size;
3424
3425 /* Massage our args to the form they really have. */
3426 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3427 htab = (struct elf_aarch64_link_hash_table *) in_arg;
3428
3429 switch (stub_entry->stub_type)
3430 {
3431 case aarch64_stub_adrp_branch:
3432 size = sizeof (aarch64_adrp_branch_stub);
3433 break;
3434 case aarch64_stub_long_branch:
3435 size = sizeof (aarch64_long_branch_stub);
3436 break;
3437 case aarch64_stub_erratum_835769_veneer:
3438 size = sizeof (aarch64_erratum_835769_stub);
3439 break;
3440 case aarch64_stub_erratum_843419_veneer:
3441 {
3442 if (htab->fix_erratum_843419 == ERRAT_ADR)
3443 return TRUE;
3444 size = sizeof (aarch64_erratum_843419_stub);
3445 }
3446 break;
3447 default:
3448 abort ();
3449 }
3450
3451 size = (size + 7) & ~7;
3452 stub_entry->stub_sec->size += size;
3453 return TRUE;
3454 }
3455
3456 /* External entry points for sizing and building linker stubs. */
3457
3458 /* Set up various things so that we can make a list of input sections
3459 for each output section included in the link. Returns -1 on error,
3460 0 when no stubs will be needed, and 1 on success. */
3461
3462 int
3463 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3464 struct bfd_link_info *info)
3465 {
3466 bfd *input_bfd;
3467 unsigned int bfd_count;
3468 unsigned int top_id, top_index;
3469 asection *section;
3470 asection **input_list, **list;
3471 size_t amt;
3472 struct elf_aarch64_link_hash_table *htab =
3473 elf_aarch64_hash_table (info);
3474
3475 if (!is_elf_hash_table (htab))
3476 return 0;
3477
3478 /* Count the number of input BFDs and find the top input section id. */
3479 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3480 input_bfd != NULL; input_bfd = input_bfd->link.next)
3481 {
3482 bfd_count += 1;
3483 for (section = input_bfd->sections;
3484 section != NULL; section = section->next)
3485 {
3486 if (top_id < section->id)
3487 top_id = section->id;
3488 }
3489 }
3490 htab->bfd_count = bfd_count;
3491
3492 amt = sizeof (struct map_stub) * (top_id + 1);
3493 htab->stub_group = bfd_zmalloc (amt);
3494 if (htab->stub_group == NULL)
3495 return -1;
3496
3497 /* We can't use output_bfd->section_count here to find the top output
3498 section index as some sections may have been removed, and
3499 _bfd_strip_section_from_output doesn't renumber the indices. */
3500 for (section = output_bfd->sections, top_index = 0;
3501 section != NULL; section = section->next)
3502 {
3503 if (top_index < section->index)
3504 top_index = section->index;
3505 }
3506
3507 htab->top_index = top_index;
3508 amt = sizeof (asection *) * (top_index + 1);
3509 input_list = bfd_malloc (amt);
3510 htab->input_list = input_list;
3511 if (input_list == NULL)
3512 return -1;
3513
3514 /* For sections we aren't interested in, mark their entries with a
3515 value we can check later. */
3516 list = input_list + top_index;
3517 do
3518 *list = bfd_abs_section_ptr;
3519 while (list-- != input_list);
3520
3521 for (section = output_bfd->sections;
3522 section != NULL; section = section->next)
3523 {
3524 if ((section->flags & SEC_CODE) != 0)
3525 input_list[section->index] = NULL;
3526 }
3527
3528 return 1;
3529 }
3530
3531 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3532 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3533
3534 /* The linker repeatedly calls this function for each input section,
3535 in the order that input sections are linked into output sections.
3536 Build lists of input sections to determine groupings between which
3537 we may insert linker stubs. */
3538
3539 void
3540 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3541 {
3542 struct elf_aarch64_link_hash_table *htab =
3543 elf_aarch64_hash_table (info);
3544
3545 if (isec->output_section->index <= htab->top_index)
3546 {
3547 asection **list = htab->input_list + isec->output_section->index;
3548
3549 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
3550 {
3551 /* Steal the link_sec pointer for our list. */
3552 /* This happens to make the list in reverse order,
3553 which is what we want. */
3554 PREV_SEC (isec) = *list;
3555 *list = isec;
3556 }
3557 }
3558 }
3559
3560 /* See whether we can group stub sections together. Grouping stub
3561 sections may result in fewer stubs. More importantly, we need to
3562 put all .init* and .fini* stubs at the beginning of the .init or
3563 .fini output sections respectively, because glibc splits the
3564 _init and _fini functions into multiple parts. Putting a stub in
3565 the middle of a function is not a good idea. */
3566
3567 static void
3568 group_sections (struct elf_aarch64_link_hash_table *htab,
3569 bfd_size_type stub_group_size,
3570 bfd_boolean stubs_always_after_branch)
3571 {
3572 asection **list = htab->input_list;
3573
3574 do
3575 {
3576 asection *tail = *list;
3577 asection *head;
3578
3579 if (tail == bfd_abs_section_ptr)
3580 continue;
3581
3582 /* Reverse the list: we must avoid placing stubs at the
3583 beginning of the section because the beginning of the text
3584 section may be required for an interrupt vector in bare metal
3585 code. */
3586 #define NEXT_SEC PREV_SEC
3587 head = NULL;
3588 while (tail != NULL)
3589 {
3590 /* Pop from tail. */
3591 asection *item = tail;
3592 tail = PREV_SEC (item);
3593
3594 /* Push on head. */
3595 NEXT_SEC (item) = head;
3596 head = item;
3597 }
3598
3599 while (head != NULL)
3600 {
3601 asection *curr;
3602 asection *next;
3603 bfd_vma stub_group_start = head->output_offset;
3604 bfd_vma end_of_next;
3605
3606 curr = head;
3607 while (NEXT_SEC (curr) != NULL)
3608 {
3609 next = NEXT_SEC (curr);
3610 end_of_next = next->output_offset + next->size;
3611 if (end_of_next - stub_group_start >= stub_group_size)
3612 /* End of NEXT is too far from start, so stop. */
3613 break;
3614 /* Add NEXT to the group. */
3615 curr = next;
3616 }
3617
3618 /* OK, the size from the start to the start of CURR is less
3619 than stub_group_size and thus can be handled by one stub
3620 section. (Or the head section is itself larger than
3621 stub_group_size, in which case we may be toast.)
3622 We should really be keeping track of the total size of
3623 stubs added here, as stubs contribute to the final output
3624 section size. */
3625 do
3626 {
3627 next = NEXT_SEC (head);
3628 /* Set up this stub group. */
3629 htab->stub_group[head->id].link_sec = curr;
3630 }
3631 while (head != curr && (head = next) != NULL);
3632
3633 /* But wait, there's more! Input sections up to stub_group_size
3634 bytes after the stub section can be handled by it too. */
3635 if (!stubs_always_after_branch)
3636 {
3637 stub_group_start = curr->output_offset + curr->size;
3638
3639 while (next != NULL)
3640 {
3641 end_of_next = next->output_offset + next->size;
3642 if (end_of_next - stub_group_start >= stub_group_size)
3643 /* End of NEXT is too far from stubs, so stop. */
3644 break;
3645 /* Add NEXT to the stub group. */
3646 head = next;
3647 next = NEXT_SEC (head);
3648 htab->stub_group[head->id].link_sec = curr;
3649 }
3650 }
3651 head = next;
3652 }
3653 }
3654 while (list++ != htab->input_list + htab->top_index);
3655
3656 free (htab->input_list);
3657 }
3658
3659 #undef PREV_SEC
3660 #undef PREV_SEC
3661
3662 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3663
3664 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3665 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3666 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3667 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3668 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3669 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3670
3671 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3672 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3673 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3674 #define AARCH64_ZR 0x1f
3675
3676 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3677 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3678
3679 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3680 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3681 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3682 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3683 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3684 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3685 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3686 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3687 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3688 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3689 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3690 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3691 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3692 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3693 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3694 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3695 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3696 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3697
3698 /* Classify an INSN if it is indeed a load/store.
3699
3700 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3701
3702 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3703 is set equal to RT.
3704
3705 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3706
3707 static bfd_boolean
3708 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3709 bfd_boolean *pair, bfd_boolean *load)
3710 {
3711 uint32_t opcode;
3712 unsigned int r;
3713 uint32_t opc = 0;
3714 uint32_t v = 0;
3715 uint32_t opc_v = 0;
3716
3717 /* Bail out quickly if INSN doesn't fall into the load-store
3718 encoding space. */
3719 if (!AARCH64_LDST (insn))
3720 return FALSE;
3721
3722 *pair = FALSE;
3723 *load = FALSE;
3724 if (AARCH64_LDST_EX (insn))
3725 {
3726 *rt = AARCH64_RT (insn);
3727 *rt2 = *rt;
3728 if (AARCH64_BIT (insn, 21) == 1)
3729 {
3730 *pair = TRUE;
3731 *rt2 = AARCH64_RT2 (insn);
3732 }
3733 *load = AARCH64_LD (insn);
3734 return TRUE;
3735 }
3736 else if (AARCH64_LDST_NAP (insn)
3737 || AARCH64_LDSTP_PI (insn)
3738 || AARCH64_LDSTP_O (insn)
3739 || AARCH64_LDSTP_PRE (insn))
3740 {
3741 *pair = TRUE;
3742 *rt = AARCH64_RT (insn);
3743 *rt2 = AARCH64_RT2 (insn);
3744 *load = AARCH64_LD (insn);
3745 return TRUE;
3746 }
3747 else if (AARCH64_LDST_PCREL (insn)
3748 || AARCH64_LDST_UI (insn)
3749 || AARCH64_LDST_PIIMM (insn)
3750 || AARCH64_LDST_U (insn)
3751 || AARCH64_LDST_PREIMM (insn)
3752 || AARCH64_LDST_RO (insn)
3753 || AARCH64_LDST_UIMM (insn))
3754 {
3755 *rt = AARCH64_RT (insn);
3756 *rt2 = *rt;
3757 if (AARCH64_LDST_PCREL (insn))
3758 *load = TRUE;
3759 opc = AARCH64_BITS (insn, 22, 2);
3760 v = AARCH64_BIT (insn, 26);
3761 opc_v = opc | (v << 2);
3762 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3763 || opc_v == 5 || opc_v == 7);
3764 return TRUE;
3765 }
3766 else if (AARCH64_LDST_SIMD_M (insn)
3767 || AARCH64_LDST_SIMD_M_PI (insn))
3768 {
3769 *rt = AARCH64_RT (insn);
3770 *load = AARCH64_BIT (insn, 22);
3771 opcode = (insn >> 12) & 0xf;
3772 switch (opcode)
3773 {
3774 case 0:
3775 case 2:
3776 *rt2 = *rt + 3;
3777 break;
3778
3779 case 4:
3780 case 6:
3781 *rt2 = *rt + 2;
3782 break;
3783
3784 case 7:
3785 *rt2 = *rt;
3786 break;
3787
3788 case 8:
3789 case 10:
3790 *rt2 = *rt + 1;
3791 break;
3792
3793 default:
3794 return FALSE;
3795 }
3796 return TRUE;
3797 }
3798 else if (AARCH64_LDST_SIMD_S (insn)
3799 || AARCH64_LDST_SIMD_S_PI (insn))
3800 {
3801 *rt = AARCH64_RT (insn);
3802 r = (insn >> 21) & 1;
3803 *load = AARCH64_BIT (insn, 22);
3804 opcode = (insn >> 13) & 0x7;
3805 switch (opcode)
3806 {
3807 case 0:
3808 case 2:
3809 case 4:
3810 *rt2 = *rt + r;
3811 break;
3812
3813 case 1:
3814 case 3:
3815 case 5:
3816 *rt2 = *rt + (r == 0 ? 2 : 3);
3817 break;
3818
3819 case 6:
3820 *rt2 = *rt + r;
3821 break;
3822
3823 case 7:
3824 *rt2 = *rt + (r == 0 ? 2 : 3);
3825 break;
3826
3827 default:
3828 return FALSE;
3829 }
3830 return TRUE;
3831 }
3832
3833 return FALSE;
3834 }
3835
3836 /* Return TRUE if INSN is multiply-accumulate. */
3837
3838 static bfd_boolean
3839 aarch64_mlxl_p (uint32_t insn)
3840 {
3841 uint32_t op31 = AARCH64_OP31 (insn);
3842
3843 if (AARCH64_MAC (insn)
3844 && (op31 == 0 || op31 == 1 || op31 == 5)
3845 /* Exclude MUL instructions which are encoded as a multiple accumulate
3846 with RA = XZR. */
3847 && AARCH64_RA (insn) != AARCH64_ZR)
3848 return TRUE;
3849
3850 return FALSE;
3851 }
3852
3853 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3854 it is possible for a 64-bit multiply-accumulate instruction to generate an
3855 incorrect result. The details are quite complex and hard to
3856 determine statically, since branches in the code may exist in some
3857 circumstances, but all cases end with a memory (load, store, or
3858 prefetch) instruction followed immediately by the multiply-accumulate
3859 operation. We employ a linker patching technique, by moving the potentially
3860 affected multiply-accumulate instruction into a patch region and replacing
3861 the original instruction with a branch to the patch. This function checks
3862 if INSN_1 is the memory operation followed by a multiply-accumulate
3863 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3864 if INSN_1 and INSN_2 are safe. */
3865
3866 static bfd_boolean
3867 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3868 {
3869 uint32_t rt;
3870 uint32_t rt2;
3871 uint32_t rn;
3872 uint32_t rm;
3873 uint32_t ra;
3874 bfd_boolean pair;
3875 bfd_boolean load;
3876
3877 if (aarch64_mlxl_p (insn_2)
3878 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3879 {
3880 /* Any SIMD memory op is independent of the subsequent MLA
3881 by definition of the erratum. */
3882 if (AARCH64_BIT (insn_1, 26))
3883 return TRUE;
3884
3885 /* If not SIMD, check for integer memory ops and MLA relationship. */
3886 rn = AARCH64_RN (insn_2);
3887 ra = AARCH64_RA (insn_2);
3888 rm = AARCH64_RM (insn_2);
3889
3890 /* If this is a load and there's a true(RAW) dependency, we are safe
3891 and this is not an erratum sequence. */
3892 if (load &&
3893 (rt == rn || rt == rm || rt == ra
3894 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3895 return FALSE;
3896
3897 /* We conservatively put out stubs for all other cases (including
3898 writebacks). */
3899 return TRUE;
3900 }
3901
3902 return FALSE;
3903 }
3904
3905 /* Used to order a list of mapping symbols by address. */
3906
3907 static int
3908 elf_aarch64_compare_mapping (const void *a, const void *b)
3909 {
3910 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3911 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3912
3913 if (amap->vma > bmap->vma)
3914 return 1;
3915 else if (amap->vma < bmap->vma)
3916 return -1;
3917 else if (amap->type > bmap->type)
3918 /* Ensure results do not depend on the host qsort for objects with
3919 multiple mapping symbols at the same address by sorting on type
3920 after vma. */
3921 return 1;
3922 else if (amap->type < bmap->type)
3923 return -1;
3924 else
3925 return 0;
3926 }
3927
3928
3929 static char *
3930 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3931 {
3932 char *stub_name = (char *) bfd_malloc
3933 (strlen ("__erratum_835769_veneer_") + 16);
3934 if (stub_name != NULL)
3935 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3936 return stub_name;
3937 }
3938
3939 /* Scan for Cortex-A53 erratum 835769 sequence.
3940
3941 Return TRUE else FALSE on abnormal termination. */
3942
3943 static bfd_boolean
3944 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3945 struct bfd_link_info *info,
3946 unsigned int *num_fixes_p)
3947 {
3948 asection *section;
3949 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3950 unsigned int num_fixes = *num_fixes_p;
3951
3952 if (htab == NULL)
3953 return TRUE;
3954
3955 for (section = input_bfd->sections;
3956 section != NULL;
3957 section = section->next)
3958 {
3959 bfd_byte *contents = NULL;
3960 struct _aarch64_elf_section_data *sec_data;
3961 unsigned int span;
3962
3963 if (elf_section_type (section) != SHT_PROGBITS
3964 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3965 || (section->flags & SEC_EXCLUDE) != 0
3966 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3967 || (section->output_section == bfd_abs_section_ptr))
3968 continue;
3969
3970 if (elf_section_data (section)->this_hdr.contents != NULL)
3971 contents = elf_section_data (section)->this_hdr.contents;
3972 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3973 return FALSE;
3974
3975 sec_data = elf_aarch64_section_data (section);
3976
3977 qsort (sec_data->map, sec_data->mapcount,
3978 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3979
3980 for (span = 0; span < sec_data->mapcount; span++)
3981 {
3982 unsigned int span_start = sec_data->map[span].vma;
3983 unsigned int span_end = ((span == sec_data->mapcount - 1)
3984 ? sec_data->map[0].vma + section->size
3985 : sec_data->map[span + 1].vma);
3986 unsigned int i;
3987 char span_type = sec_data->map[span].type;
3988
3989 if (span_type == 'd')
3990 continue;
3991
3992 for (i = span_start; i + 4 < span_end; i += 4)
3993 {
3994 uint32_t insn_1 = bfd_getl32 (contents + i);
3995 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3996
3997 if (aarch64_erratum_sequence (insn_1, insn_2))
3998 {
3999 struct elf_aarch64_stub_hash_entry *stub_entry;
4000 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
4001 if (! stub_name)
4002 return FALSE;
4003
4004 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
4005 section,
4006 htab);
4007 if (! stub_entry)
4008 return FALSE;
4009
4010 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
4011 stub_entry->target_section = section;
4012 stub_entry->target_value = i + 4;
4013 stub_entry->veneered_insn = insn_2;
4014 stub_entry->output_name = stub_name;
4015 num_fixes++;
4016 }
4017 }
4018 }
4019 if (elf_section_data (section)->this_hdr.contents == NULL)
4020 free (contents);
4021 }
4022
4023 *num_fixes_p = num_fixes;
4024
4025 return TRUE;
4026 }
4027
4028
4029 /* Test if instruction INSN is ADRP. */
4030
4031 static bfd_boolean
4032 _bfd_aarch64_adrp_p (uint32_t insn)
4033 {
4034 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
4035 }
4036
4037
4038 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
4039
4040 static bfd_boolean
4041 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
4042 uint32_t insn_3)
4043 {
4044 uint32_t rt;
4045 uint32_t rt2;
4046 bfd_boolean pair;
4047 bfd_boolean load;
4048
4049 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
4050 && (!pair
4051 || (pair && !load))
4052 && AARCH64_LDST_UIMM (insn_3)
4053 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
4054 }
4055
4056
4057 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
4058
4059 Return TRUE if section CONTENTS at offset I contains one of the
4060 erratum 843419 sequences, otherwise return FALSE. If a sequence is
4061 seen set P_VENEER_I to the offset of the final LOAD/STORE
4062 instruction in the sequence.
4063 */
4064
4065 static bfd_boolean
4066 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
4067 bfd_vma i, bfd_vma span_end,
4068 bfd_vma *p_veneer_i)
4069 {
4070 uint32_t insn_1 = bfd_getl32 (contents + i);
4071
4072 if (!_bfd_aarch64_adrp_p (insn_1))
4073 return FALSE;
4074
4075 if (span_end < i + 12)
4076 return FALSE;
4077
4078 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
4079 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
4080
4081 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
4082 return FALSE;
4083
4084 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
4085 {
4086 *p_veneer_i = i + 8;
4087 return TRUE;
4088 }
4089
4090 if (span_end < i + 16)
4091 return FALSE;
4092
4093 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
4094
4095 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
4096 {
4097 *p_veneer_i = i + 12;
4098 return TRUE;
4099 }
4100
4101 return FALSE;
4102 }
4103
4104
4105 /* Resize all stub sections. */
4106
4107 static void
4108 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4109 {
4110 asection *section;
4111
4112 /* OK, we've added some stubs. Find out the new size of the
4113 stub sections. */
4114 for (section = htab->stub_bfd->sections;
4115 section != NULL; section = section->next)
4116 {
4117 /* Ignore non-stub sections. */
4118 if (!strstr (section->name, STUB_SUFFIX))
4119 continue;
4120 section->size = 0;
4121 }
4122
4123 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4124
4125 for (section = htab->stub_bfd->sections;
4126 section != NULL; section = section->next)
4127 {
4128 if (!strstr (section->name, STUB_SUFFIX))
4129 continue;
4130
4131 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4132 as long branch stubs contain a 64-bit address. */
4133 if (section->size)
4134 section->size += 8;
4135
4136 /* Ensure all stub sections have a size which is a multiple of
4137 4096. This is important in order to ensure that the insertion
4138 of stub sections does not in itself move existing code around
4139 in such a way that new errata sequences are created. We only do this
4140 when the ADRP workaround is enabled. If only the ADR workaround is
4141 enabled then the stubs workaround won't ever be used. */
4142 if (htab->fix_erratum_843419 & ERRAT_ADRP)
4143 if (section->size)
4144 section->size = BFD_ALIGN (section->size, 0x1000);
4145 }
4146 }
4147
4148 /* Construct an erratum 843419 workaround stub name. */
4149
4150 static char *
4151 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4152 bfd_vma offset)
4153 {
4154 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4155 char *stub_name = bfd_malloc (len);
4156
4157 if (stub_name != NULL)
4158 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4159 input_section->owner->id,
4160 input_section->id,
4161 offset);
4162 return stub_name;
4163 }
4164
4165 /* Build a stub_entry structure describing an 843419 fixup.
4166
4167 The stub_entry constructed is populated with the bit pattern INSN
4168 of the instruction located at OFFSET within input SECTION.
4169
4170 Returns TRUE on success. */
4171
4172 static bfd_boolean
4173 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4174 bfd_vma adrp_offset,
4175 bfd_vma ldst_offset,
4176 asection *section,
4177 struct bfd_link_info *info)
4178 {
4179 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4180 char *stub_name;
4181 struct elf_aarch64_stub_hash_entry *stub_entry;
4182
4183 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4184 if (stub_name == NULL)
4185 return FALSE;
4186 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4187 FALSE, FALSE);
4188 if (stub_entry)
4189 {
4190 free (stub_name);
4191 return TRUE;
4192 }
4193
4194 /* We always place an 843419 workaround veneer in the stub section
4195 attached to the input section in which an erratum sequence has
4196 been found. This ensures that later in the link process (in
4197 elfNN_aarch64_write_section) when we copy the veneered
4198 instruction from the input section into the stub section the
4199 copied instruction will have had any relocations applied to it.
4200 If we placed workaround veneers in any other stub section then we
4201 could not assume that all relocations have been processed on the
4202 corresponding input section at the point we output the stub
4203 section. */
4204
4205 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4206 if (stub_entry == NULL)
4207 {
4208 free (stub_name);
4209 return FALSE;
4210 }
4211
4212 stub_entry->adrp_offset = adrp_offset;
4213 stub_entry->target_value = ldst_offset;
4214 stub_entry->target_section = section;
4215 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4216 stub_entry->veneered_insn = insn;
4217 stub_entry->output_name = stub_name;
4218
4219 return TRUE;
4220 }
4221
4222
4223 /* Scan an input section looking for the signature of erratum 843419.
4224
4225 Scans input SECTION in INPUT_BFD looking for erratum 843419
4226 signatures, for each signature found a stub_entry is created
4227 describing the location of the erratum for subsequent fixup.
4228
4229 Return TRUE on successful scan, FALSE on failure to scan.
4230 */
4231
4232 static bfd_boolean
4233 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4234 struct bfd_link_info *info)
4235 {
4236 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4237
4238 if (htab == NULL)
4239 return TRUE;
4240
4241 if (elf_section_type (section) != SHT_PROGBITS
4242 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4243 || (section->flags & SEC_EXCLUDE) != 0
4244 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4245 || (section->output_section == bfd_abs_section_ptr))
4246 return TRUE;
4247
4248 do
4249 {
4250 bfd_byte *contents = NULL;
4251 struct _aarch64_elf_section_data *sec_data;
4252 unsigned int span;
4253
4254 if (elf_section_data (section)->this_hdr.contents != NULL)
4255 contents = elf_section_data (section)->this_hdr.contents;
4256 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4257 return FALSE;
4258
4259 sec_data = elf_aarch64_section_data (section);
4260
4261 qsort (sec_data->map, sec_data->mapcount,
4262 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4263
4264 for (span = 0; span < sec_data->mapcount; span++)
4265 {
4266 unsigned int span_start = sec_data->map[span].vma;
4267 unsigned int span_end = ((span == sec_data->mapcount - 1)
4268 ? sec_data->map[0].vma + section->size
4269 : sec_data->map[span + 1].vma);
4270 unsigned int i;
4271 char span_type = sec_data->map[span].type;
4272
4273 if (span_type == 'd')
4274 continue;
4275
4276 for (i = span_start; i + 8 < span_end; i += 4)
4277 {
4278 bfd_vma vma = (section->output_section->vma
4279 + section->output_offset
4280 + i);
4281 bfd_vma veneer_i;
4282
4283 if (_bfd_aarch64_erratum_843419_p
4284 (contents, vma, i, span_end, &veneer_i))
4285 {
4286 uint32_t insn = bfd_getl32 (contents + veneer_i);
4287
4288 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4289 section, info))
4290 return FALSE;
4291 }
4292 }
4293 }
4294
4295 if (elf_section_data (section)->this_hdr.contents == NULL)
4296 free (contents);
4297 }
4298 while (0);
4299
4300 return TRUE;
4301 }
4302
4303
4304 /* Determine and set the size of the stub section for a final link.
4305
4306 The basic idea here is to examine all the relocations looking for
4307 PC-relative calls to a target that is unreachable with a "bl"
4308 instruction. */
4309
4310 bfd_boolean
4311 elfNN_aarch64_size_stubs (bfd *output_bfd,
4312 bfd *stub_bfd,
4313 struct bfd_link_info *info,
4314 bfd_signed_vma group_size,
4315 asection * (*add_stub_section) (const char *,
4316 asection *),
4317 void (*layout_sections_again) (void))
4318 {
4319 bfd_size_type stub_group_size;
4320 bfd_boolean stubs_always_before_branch;
4321 bfd_boolean stub_changed = FALSE;
4322 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4323 unsigned int num_erratum_835769_fixes = 0;
4324
4325 /* Propagate mach to stub bfd, because it may not have been
4326 finalized when we created stub_bfd. */
4327 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4328 bfd_get_mach (output_bfd));
4329
4330 /* Stash our params away. */
4331 htab->stub_bfd = stub_bfd;
4332 htab->add_stub_section = add_stub_section;
4333 htab->layout_sections_again = layout_sections_again;
4334 stubs_always_before_branch = group_size < 0;
4335 if (group_size < 0)
4336 stub_group_size = -group_size;
4337 else
4338 stub_group_size = group_size;
4339
4340 if (stub_group_size == 1)
4341 {
4342 /* Default values. */
4343 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4344 stub_group_size = 127 * 1024 * 1024;
4345 }
4346
4347 group_sections (htab, stub_group_size, stubs_always_before_branch);
4348
4349 (*htab->layout_sections_again) ();
4350
4351 if (htab->fix_erratum_835769)
4352 {
4353 bfd *input_bfd;
4354
4355 for (input_bfd = info->input_bfds;
4356 input_bfd != NULL; input_bfd = input_bfd->link.next)
4357 {
4358 if (!is_aarch64_elf (input_bfd)
4359 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4360 continue;
4361
4362 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4363 &num_erratum_835769_fixes))
4364 return FALSE;
4365 }
4366
4367 _bfd_aarch64_resize_stubs (htab);
4368 (*htab->layout_sections_again) ();
4369 }
4370
4371 if (htab->fix_erratum_843419 != ERRAT_NONE)
4372 {
4373 bfd *input_bfd;
4374
4375 for (input_bfd = info->input_bfds;
4376 input_bfd != NULL;
4377 input_bfd = input_bfd->link.next)
4378 {
4379 asection *section;
4380
4381 if (!is_aarch64_elf (input_bfd)
4382 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4383 continue;
4384
4385 for (section = input_bfd->sections;
4386 section != NULL;
4387 section = section->next)
4388 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4389 return FALSE;
4390 }
4391
4392 _bfd_aarch64_resize_stubs (htab);
4393 (*htab->layout_sections_again) ();
4394 }
4395
4396 while (1)
4397 {
4398 bfd *input_bfd;
4399
4400 for (input_bfd = info->input_bfds;
4401 input_bfd != NULL; input_bfd = input_bfd->link.next)
4402 {
4403 Elf_Internal_Shdr *symtab_hdr;
4404 asection *section;
4405 Elf_Internal_Sym *local_syms = NULL;
4406
4407 if (!is_aarch64_elf (input_bfd)
4408 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4409 continue;
4410
4411 /* We'll need the symbol table in a second. */
4412 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4413 if (symtab_hdr->sh_info == 0)
4414 continue;
4415
4416 /* Walk over each section attached to the input bfd. */
4417 for (section = input_bfd->sections;
4418 section != NULL; section = section->next)
4419 {
4420 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4421
4422 /* If there aren't any relocs, then there's nothing more
4423 to do. */
4424 if ((section->flags & SEC_RELOC) == 0
4425 || section->reloc_count == 0
4426 || (section->flags & SEC_CODE) == 0)
4427 continue;
4428
4429 /* If this section is a link-once section that will be
4430 discarded, then don't create any stubs. */
4431 if (section->output_section == NULL
4432 || section->output_section->owner != output_bfd)
4433 continue;
4434
4435 /* Get the relocs. */
4436 internal_relocs
4437 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4438 NULL, info->keep_memory);
4439 if (internal_relocs == NULL)
4440 goto error_ret_free_local;
4441
4442 /* Now examine each relocation. */
4443 irela = internal_relocs;
4444 irelaend = irela + section->reloc_count;
4445 for (; irela < irelaend; irela++)
4446 {
4447 unsigned int r_type, r_indx;
4448 enum elf_aarch64_stub_type stub_type;
4449 struct elf_aarch64_stub_hash_entry *stub_entry;
4450 asection *sym_sec;
4451 bfd_vma sym_value;
4452 bfd_vma destination;
4453 struct elf_aarch64_link_hash_entry *hash;
4454 const char *sym_name;
4455 char *stub_name;
4456 const asection *id_sec;
4457 unsigned char st_type;
4458 bfd_size_type len;
4459
4460 r_type = ELFNN_R_TYPE (irela->r_info);
4461 r_indx = ELFNN_R_SYM (irela->r_info);
4462
4463 if (r_type >= (unsigned int) R_AARCH64_end)
4464 {
4465 bfd_set_error (bfd_error_bad_value);
4466 error_ret_free_internal:
4467 if (elf_section_data (section)->relocs == NULL)
4468 free (internal_relocs);
4469 goto error_ret_free_local;
4470 }
4471
4472 /* Only look for stubs on unconditional branch and
4473 branch and link instructions. */
4474 if (r_type != (unsigned int) AARCH64_R (CALL26)
4475 && r_type != (unsigned int) AARCH64_R (JUMP26))
4476 continue;
4477
4478 /* Now determine the call target, its name, value,
4479 section. */
4480 sym_sec = NULL;
4481 sym_value = 0;
4482 destination = 0;
4483 hash = NULL;
4484 sym_name = NULL;
4485 if (r_indx < symtab_hdr->sh_info)
4486 {
4487 /* It's a local symbol. */
4488 Elf_Internal_Sym *sym;
4489 Elf_Internal_Shdr *hdr;
4490
4491 if (local_syms == NULL)
4492 {
4493 local_syms
4494 = (Elf_Internal_Sym *) symtab_hdr->contents;
4495 if (local_syms == NULL)
4496 local_syms
4497 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4498 symtab_hdr->sh_info, 0,
4499 NULL, NULL, NULL);
4500 if (local_syms == NULL)
4501 goto error_ret_free_internal;
4502 }
4503
4504 sym = local_syms + r_indx;
4505 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4506 sym_sec = hdr->bfd_section;
4507 if (!sym_sec)
4508 /* This is an undefined symbol. It can never
4509 be resolved. */
4510 continue;
4511
4512 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4513 sym_value = sym->st_value;
4514 destination = (sym_value + irela->r_addend
4515 + sym_sec->output_offset
4516 + sym_sec->output_section->vma);
4517 st_type = ELF_ST_TYPE (sym->st_info);
4518 sym_name
4519 = bfd_elf_string_from_elf_section (input_bfd,
4520 symtab_hdr->sh_link,
4521 sym->st_name);
4522 }
4523 else
4524 {
4525 int e_indx;
4526
4527 e_indx = r_indx - symtab_hdr->sh_info;
4528 hash = ((struct elf_aarch64_link_hash_entry *)
4529 elf_sym_hashes (input_bfd)[e_indx]);
4530
4531 while (hash->root.root.type == bfd_link_hash_indirect
4532 || hash->root.root.type == bfd_link_hash_warning)
4533 hash = ((struct elf_aarch64_link_hash_entry *)
4534 hash->root.root.u.i.link);
4535
4536 if (hash->root.root.type == bfd_link_hash_defined
4537 || hash->root.root.type == bfd_link_hash_defweak)
4538 {
4539 struct elf_aarch64_link_hash_table *globals =
4540 elf_aarch64_hash_table (info);
4541 sym_sec = hash->root.root.u.def.section;
4542 sym_value = hash->root.root.u.def.value;
4543 /* For a destination in a shared library,
4544 use the PLT stub as target address to
4545 decide whether a branch stub is
4546 needed. */
4547 if (globals->root.splt != NULL && hash != NULL
4548 && hash->root.plt.offset != (bfd_vma) - 1)
4549 {
4550 sym_sec = globals->root.splt;
4551 sym_value = hash->root.plt.offset;
4552 if (sym_sec->output_section != NULL)
4553 destination = (sym_value
4554 + sym_sec->output_offset
4555 +
4556 sym_sec->output_section->vma);
4557 }
4558 else if (sym_sec->output_section != NULL)
4559 destination = (sym_value + irela->r_addend
4560 + sym_sec->output_offset
4561 + sym_sec->output_section->vma);
4562 }
4563 else if (hash->root.root.type == bfd_link_hash_undefined
4564 || (hash->root.root.type
4565 == bfd_link_hash_undefweak))
4566 {
4567 /* For a shared library, use the PLT stub as
4568 target address to decide whether a long
4569 branch stub is needed.
4570 For absolute code, they cannot be handled. */
4571 struct elf_aarch64_link_hash_table *globals =
4572 elf_aarch64_hash_table (info);
4573
4574 if (globals->root.splt != NULL && hash != NULL
4575 && hash->root.plt.offset != (bfd_vma) - 1)
4576 {
4577 sym_sec = globals->root.splt;
4578 sym_value = hash->root.plt.offset;
4579 if (sym_sec->output_section != NULL)
4580 destination = (sym_value
4581 + sym_sec->output_offset
4582 +
4583 sym_sec->output_section->vma);
4584 }
4585 else
4586 continue;
4587 }
4588 else
4589 {
4590 bfd_set_error (bfd_error_bad_value);
4591 goto error_ret_free_internal;
4592 }
4593 st_type = ELF_ST_TYPE (hash->root.type);
4594 sym_name = hash->root.root.root.string;
4595 }
4596
4597 /* Determine what (if any) linker stub is needed. */
4598 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4599 st_type, destination);
4600 if (stub_type == aarch64_stub_none)
4601 continue;
4602
4603 /* Support for grouping stub sections. */
4604 id_sec = htab->stub_group[section->id].link_sec;
4605
4606 /* Get the name of this stub. */
4607 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4608 irela);
4609 if (!stub_name)
4610 goto error_ret_free_internal;
4611
4612 stub_entry =
4613 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4614 stub_name, FALSE, FALSE);
4615 if (stub_entry != NULL)
4616 {
4617 /* The proper stub has already been created. */
4618 free (stub_name);
4619 /* Always update this stub's target since it may have
4620 changed after layout. */
4621 stub_entry->target_value = sym_value + irela->r_addend;
4622 continue;
4623 }
4624
4625 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4626 (stub_name, section, htab);
4627 if (stub_entry == NULL)
4628 {
4629 free (stub_name);
4630 goto error_ret_free_internal;
4631 }
4632
4633 stub_entry->target_value = sym_value + irela->r_addend;
4634 stub_entry->target_section = sym_sec;
4635 stub_entry->stub_type = stub_type;
4636 stub_entry->h = hash;
4637 stub_entry->st_type = st_type;
4638
4639 if (sym_name == NULL)
4640 sym_name = "unnamed";
4641 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4642 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4643 if (stub_entry->output_name == NULL)
4644 {
4645 free (stub_name);
4646 goto error_ret_free_internal;
4647 }
4648
4649 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4650 sym_name);
4651
4652 stub_changed = TRUE;
4653 }
4654
4655 /* We're done with the internal relocs, free them. */
4656 if (elf_section_data (section)->relocs == NULL)
4657 free (internal_relocs);
4658 }
4659 }
4660
4661 if (!stub_changed)
4662 break;
4663
4664 _bfd_aarch64_resize_stubs (htab);
4665
4666 /* Ask the linker to do its stuff. */
4667 (*htab->layout_sections_again) ();
4668 stub_changed = FALSE;
4669 }
4670
4671 return TRUE;
4672
4673 error_ret_free_local:
4674 return FALSE;
4675 }
4676
4677 /* Build all the stubs associated with the current output file. The
4678 stubs are kept in a hash table attached to the main linker hash
4679 table. We also set up the .plt entries for statically linked PIC
4680 functions here. This function is called via aarch64_elf_finish in the
4681 linker. */
4682
4683 bfd_boolean
4684 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4685 {
4686 asection *stub_sec;
4687 struct bfd_hash_table *table;
4688 struct elf_aarch64_link_hash_table *htab;
4689
4690 htab = elf_aarch64_hash_table (info);
4691
4692 for (stub_sec = htab->stub_bfd->sections;
4693 stub_sec != NULL; stub_sec = stub_sec->next)
4694 {
4695 bfd_size_type size;
4696
4697 /* Ignore non-stub sections. */
4698 if (!strstr (stub_sec->name, STUB_SUFFIX))
4699 continue;
4700
4701 /* Allocate memory to hold the linker stubs. */
4702 size = stub_sec->size;
4703 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4704 if (stub_sec->contents == NULL && size != 0)
4705 return FALSE;
4706 stub_sec->size = 0;
4707
4708 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4709 aligned, as long branch stubs contain a 64-bit address. */
4710 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4711 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4712 stub_sec->size += 8;
4713 }
4714
4715 /* Build the stubs as directed by the stub hash table. */
4716 table = &htab->stub_hash_table;
4717 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4718
4719 return TRUE;
4720 }
4721
4722
4723 /* Add an entry to the code/data map for section SEC. */
4724
4725 static void
4726 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4727 {
4728 struct _aarch64_elf_section_data *sec_data =
4729 elf_aarch64_section_data (sec);
4730 unsigned int newidx;
4731
4732 if (sec_data->map == NULL)
4733 {
4734 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4735 sec_data->mapcount = 0;
4736 sec_data->mapsize = 1;
4737 }
4738
4739 newidx = sec_data->mapcount++;
4740
4741 if (sec_data->mapcount > sec_data->mapsize)
4742 {
4743 sec_data->mapsize *= 2;
4744 sec_data->map = bfd_realloc_or_free
4745 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4746 }
4747
4748 if (sec_data->map)
4749 {
4750 sec_data->map[newidx].vma = vma;
4751 sec_data->map[newidx].type = type;
4752 }
4753 }
4754
4755
4756 /* Initialise maps of insn/data for input BFDs. */
4757 void
4758 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4759 {
4760 Elf_Internal_Sym *isymbuf;
4761 Elf_Internal_Shdr *hdr;
4762 unsigned int i, localsyms;
4763
4764 /* Make sure that we are dealing with an AArch64 elf binary. */
4765 if (!is_aarch64_elf (abfd))
4766 return;
4767
4768 if ((abfd->flags & DYNAMIC) != 0)
4769 return;
4770
4771 hdr = &elf_symtab_hdr (abfd);
4772 localsyms = hdr->sh_info;
4773
4774 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4775 should contain the number of local symbols, which should come before any
4776 global symbols. Mapping symbols are always local. */
4777 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4778
4779 /* No internal symbols read? Skip this BFD. */
4780 if (isymbuf == NULL)
4781 return;
4782
4783 for (i = 0; i < localsyms; i++)
4784 {
4785 Elf_Internal_Sym *isym = &isymbuf[i];
4786 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4787 const char *name;
4788
4789 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4790 {
4791 name = bfd_elf_string_from_elf_section (abfd,
4792 hdr->sh_link,
4793 isym->st_name);
4794
4795 if (bfd_is_aarch64_special_symbol_name
4796 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4797 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4798 }
4799 }
4800 }
4801
4802 static void
4803 setup_plt_values (struct bfd_link_info *link_info,
4804 aarch64_plt_type plt_type)
4805 {
4806 struct elf_aarch64_link_hash_table *globals;
4807 globals = elf_aarch64_hash_table (link_info);
4808
4809 if (plt_type == PLT_BTI_PAC)
4810 {
4811 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4812
4813 /* Only in ET_EXEC we need PLTn with BTI. */
4814 if (bfd_link_pde (link_info))
4815 {
4816 globals->plt_entry_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
4817 globals->plt_entry = elfNN_aarch64_small_plt_bti_pac_entry;
4818 }
4819 else
4820 {
4821 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4822 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4823 }
4824 }
4825 else if (plt_type == PLT_BTI)
4826 {
4827 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4828
4829 /* Only in ET_EXEC we need PLTn with BTI. */
4830 if (bfd_link_pde (link_info))
4831 {
4832 globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4833 globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4834 }
4835 }
4836 else if (plt_type == PLT_PAC)
4837 {
4838 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4839 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4840 }
4841 }
4842
4843 /* Set option values needed during linking. */
4844 void
4845 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4846 struct bfd_link_info *link_info,
4847 int no_enum_warn,
4848 int no_wchar_warn, int pic_veneer,
4849 int fix_erratum_835769,
4850 erratum_84319_opts fix_erratum_843419,
4851 int no_apply_dynamic_relocs,
4852 aarch64_bti_pac_info bp_info)
4853 {
4854 struct elf_aarch64_link_hash_table *globals;
4855
4856 globals = elf_aarch64_hash_table (link_info);
4857 globals->pic_veneer = pic_veneer;
4858 globals->fix_erratum_835769 = fix_erratum_835769;
4859 /* If the default options are used, then ERRAT_ADR will be set by default
4860 which will enable the ADRP->ADR workaround for the erratum 843419
4861 workaround. */
4862 globals->fix_erratum_843419 = fix_erratum_843419;
4863 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4864
4865 BFD_ASSERT (is_aarch64_elf (output_bfd));
4866 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4867 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4868
4869 switch (bp_info.bti_type)
4870 {
4871 case BTI_WARN:
4872 elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4873 elf_aarch64_tdata (output_bfd)->gnu_and_prop
4874 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4875 break;
4876
4877 default:
4878 break;
4879 }
4880 elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4881 setup_plt_values (link_info, bp_info.plt_type);
4882 }
4883
4884 static bfd_vma
4885 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4886 struct elf_aarch64_link_hash_table
4887 *globals, struct bfd_link_info *info,
4888 bfd_vma value, bfd *output_bfd,
4889 bfd_boolean *unresolved_reloc_p)
4890 {
4891 bfd_vma off = (bfd_vma) - 1;
4892 asection *basegot = globals->root.sgot;
4893 bfd_boolean dyn = globals->root.dynamic_sections_created;
4894
4895 if (h != NULL)
4896 {
4897 BFD_ASSERT (basegot != NULL);
4898 off = h->got.offset;
4899 BFD_ASSERT (off != (bfd_vma) - 1);
4900 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4901 || (bfd_link_pic (info)
4902 && SYMBOL_REFERENCES_LOCAL (info, h))
4903 || (ELF_ST_VISIBILITY (h->other)
4904 && h->root.type == bfd_link_hash_undefweak))
4905 {
4906 /* This is actually a static link, or it is a -Bsymbolic link
4907 and the symbol is defined locally. We must initialize this
4908 entry in the global offset table. Since the offset must
4909 always be a multiple of 8 (4 in the case of ILP32), we use
4910 the least significant bit to record whether we have
4911 initialized it already.
4912 When doing a dynamic link, we create a .rel(a).got relocation
4913 entry to initialize the value. This is done in the
4914 finish_dynamic_symbol routine. */
4915 if ((off & 1) != 0)
4916 off &= ~1;
4917 else
4918 {
4919 bfd_put_NN (output_bfd, value, basegot->contents + off);
4920 h->got.offset |= 1;
4921 }
4922 }
4923 else
4924 *unresolved_reloc_p = FALSE;
4925
4926 off = off + basegot->output_section->vma + basegot->output_offset;
4927 }
4928
4929 return off;
4930 }
4931
4932 /* Change R_TYPE to a more efficient access model where possible,
4933 return the new reloc type. */
4934
4935 static bfd_reloc_code_real_type
4936 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4937 struct elf_link_hash_entry *h)
4938 {
4939 bfd_boolean is_local = h == NULL;
4940
4941 switch (r_type)
4942 {
4943 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4944 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4945 return (is_local
4946 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4947 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4948
4949 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4950 return (is_local
4951 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4952 : r_type);
4953
4954 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4955 return (is_local
4956 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4957 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4958
4959 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4960 return (is_local
4961 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4962 : BFD_RELOC_AARCH64_NONE);
4963
4964 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4965 return (is_local
4966 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4967 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4968
4969 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4970 return (is_local
4971 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4972 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4973
4974 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4975 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4976 return (is_local
4977 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4978 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4979
4980 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4981 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4982
4983 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4984 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4985
4986 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4987 return r_type;
4988
4989 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4990 return (is_local
4991 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4992 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4993
4994 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4995 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4996 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4997 /* Instructions with these relocations will become NOPs. */
4998 return BFD_RELOC_AARCH64_NONE;
4999
5000 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5001 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5002 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5003 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
5004
5005 #if ARCH_SIZE == 64
5006 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5007 return is_local
5008 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
5009 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
5010
5011 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5012 return is_local
5013 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
5014 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
5015 #endif
5016
5017 default:
5018 break;
5019 }
5020
5021 return r_type;
5022 }
5023
5024 static unsigned int
5025 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
5026 {
5027 switch (r_type)
5028 {
5029 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5030 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5031 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5032 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5033 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5034 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5035 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5036 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5037 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5038 return GOT_NORMAL;
5039
5040 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5041 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5042 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5043 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5044 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5045 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5046 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5047 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5048 return GOT_TLS_GD;
5049
5050 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5051 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5052 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5053 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5054 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5055 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5056 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5057 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5058 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5059 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5060 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5061 return GOT_TLSDESC_GD;
5062
5063 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5064 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5065 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5066 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5067 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5068 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5069 return GOT_TLS_IE;
5070
5071 default:
5072 break;
5073 }
5074 return GOT_UNKNOWN;
5075 }
5076
5077 static bfd_boolean
5078 aarch64_can_relax_tls (bfd *input_bfd,
5079 struct bfd_link_info *info,
5080 bfd_reloc_code_real_type r_type,
5081 struct elf_link_hash_entry *h,
5082 unsigned long r_symndx)
5083 {
5084 unsigned int symbol_got_type;
5085 unsigned int reloc_got_type;
5086
5087 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
5088 return FALSE;
5089
5090 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
5091 reloc_got_type = aarch64_reloc_got_type (r_type);
5092
5093 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
5094 return TRUE;
5095
5096 if (!bfd_link_executable (info))
5097 return FALSE;
5098
5099 if (h && h->root.type == bfd_link_hash_undefweak)
5100 return FALSE;
5101
5102 return TRUE;
5103 }
5104
5105 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5106 enumerator. */
5107
5108 static bfd_reloc_code_real_type
5109 aarch64_tls_transition (bfd *input_bfd,
5110 struct bfd_link_info *info,
5111 unsigned int r_type,
5112 struct elf_link_hash_entry *h,
5113 unsigned long r_symndx)
5114 {
5115 bfd_reloc_code_real_type bfd_r_type
5116 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
5117
5118 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
5119 return bfd_r_type;
5120
5121 return aarch64_tls_transition_without_check (bfd_r_type, h);
5122 }
5123
5124 /* Return the base VMA address which should be subtracted from real addresses
5125 when resolving R_AARCH64_TLS_DTPREL relocation. */
5126
5127 static bfd_vma
5128 dtpoff_base (struct bfd_link_info *info)
5129 {
5130 /* If tls_sec is NULL, we should have signalled an error already. */
5131 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
5132 return elf_hash_table (info)->tls_sec->vma;
5133 }
5134
5135 /* Return the base VMA address which should be subtracted from real addresses
5136 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
5137
5138 static bfd_vma
5139 tpoff_base (struct bfd_link_info *info)
5140 {
5141 struct elf_link_hash_table *htab = elf_hash_table (info);
5142
5143 /* If tls_sec is NULL, we should have signalled an error already. */
5144 BFD_ASSERT (htab->tls_sec != NULL);
5145
5146 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5147 htab->tls_sec->alignment_power);
5148 return htab->tls_sec->vma - base;
5149 }
5150
5151 static bfd_vma *
5152 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5153 unsigned long r_symndx)
5154 {
5155 /* Calculate the address of the GOT entry for symbol
5156 referred to in h. */
5157 if (h != NULL)
5158 return &h->got.offset;
5159 else
5160 {
5161 /* local symbol */
5162 struct elf_aarch64_local_symbol *l;
5163
5164 l = elf_aarch64_locals (input_bfd);
5165 return &l[r_symndx].got_offset;
5166 }
5167 }
5168
5169 static void
5170 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5171 unsigned long r_symndx)
5172 {
5173 bfd_vma *p;
5174 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5175 *p |= 1;
5176 }
5177
5178 static int
5179 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5180 unsigned long r_symndx)
5181 {
5182 bfd_vma value;
5183 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5184 return value & 1;
5185 }
5186
5187 static bfd_vma
5188 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5189 unsigned long r_symndx)
5190 {
5191 bfd_vma value;
5192 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5193 value &= ~1;
5194 return value;
5195 }
5196
5197 static bfd_vma *
5198 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5199 unsigned long r_symndx)
5200 {
5201 /* Calculate the address of the GOT entry for symbol
5202 referred to in h. */
5203 if (h != NULL)
5204 {
5205 struct elf_aarch64_link_hash_entry *eh;
5206 eh = (struct elf_aarch64_link_hash_entry *) h;
5207 return &eh->tlsdesc_got_jump_table_offset;
5208 }
5209 else
5210 {
5211 /* local symbol */
5212 struct elf_aarch64_local_symbol *l;
5213
5214 l = elf_aarch64_locals (input_bfd);
5215 return &l[r_symndx].tlsdesc_got_jump_table_offset;
5216 }
5217 }
5218
5219 static void
5220 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5221 unsigned long r_symndx)
5222 {
5223 bfd_vma *p;
5224 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5225 *p |= 1;
5226 }
5227
5228 static int
5229 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5230 struct elf_link_hash_entry *h,
5231 unsigned long r_symndx)
5232 {
5233 bfd_vma value;
5234 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5235 return value & 1;
5236 }
5237
5238 static bfd_vma
5239 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5240 unsigned long r_symndx)
5241 {
5242 bfd_vma value;
5243 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5244 value &= ~1;
5245 return value;
5246 }
5247
5248 /* Data for make_branch_to_erratum_835769_stub(). */
5249
5250 struct erratum_835769_branch_to_stub_data
5251 {
5252 struct bfd_link_info *info;
5253 asection *output_section;
5254 bfd_byte *contents;
5255 };
5256
5257 /* Helper to insert branches to erratum 835769 stubs in the right
5258 places for a particular section. */
5259
5260 static bfd_boolean
5261 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5262 void *in_arg)
5263 {
5264 struct elf_aarch64_stub_hash_entry *stub_entry;
5265 struct erratum_835769_branch_to_stub_data *data;
5266 bfd_byte *contents;
5267 unsigned long branch_insn = 0;
5268 bfd_vma veneered_insn_loc, veneer_entry_loc;
5269 bfd_signed_vma branch_offset;
5270 unsigned int target;
5271 bfd *abfd;
5272
5273 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5274 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5275
5276 if (stub_entry->target_section != data->output_section
5277 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5278 return TRUE;
5279
5280 contents = data->contents;
5281 veneered_insn_loc = stub_entry->target_section->output_section->vma
5282 + stub_entry->target_section->output_offset
5283 + stub_entry->target_value;
5284 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5285 + stub_entry->stub_sec->output_offset
5286 + stub_entry->stub_offset;
5287 branch_offset = veneer_entry_loc - veneered_insn_loc;
5288
5289 abfd = stub_entry->target_section->owner;
5290 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5291 _bfd_error_handler
5292 (_("%pB: error: erratum 835769 stub out "
5293 "of range (input file too large)"), abfd);
5294
5295 target = stub_entry->target_value;
5296 branch_insn = 0x14000000;
5297 branch_offset >>= 2;
5298 branch_offset &= 0x3ffffff;
5299 branch_insn |= branch_offset;
5300 bfd_putl32 (branch_insn, &contents[target]);
5301
5302 return TRUE;
5303 }
5304
5305
5306 static bfd_boolean
5307 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5308 void *in_arg)
5309 {
5310 struct elf_aarch64_stub_hash_entry *stub_entry
5311 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5312 struct erratum_835769_branch_to_stub_data *data
5313 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5314 struct bfd_link_info *info;
5315 struct elf_aarch64_link_hash_table *htab;
5316 bfd_byte *contents;
5317 asection *section;
5318 bfd *abfd;
5319 bfd_vma place;
5320 uint32_t insn;
5321
5322 info = data->info;
5323 contents = data->contents;
5324 section = data->output_section;
5325
5326 htab = elf_aarch64_hash_table (info);
5327
5328 if (stub_entry->target_section != section
5329 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5330 return TRUE;
5331
5332 BFD_ASSERT (((htab->fix_erratum_843419 & ERRAT_ADRP) && stub_entry->stub_sec)
5333 || (htab->fix_erratum_843419 & ERRAT_ADR));
5334
5335 /* Only update the stub section if we have one. We should always have one if
5336 we're allowed to use the ADRP errata workaround, otherwise it is not
5337 required. */
5338 if (stub_entry->stub_sec)
5339 {
5340 insn = bfd_getl32 (contents + stub_entry->target_value);
5341 bfd_putl32 (insn,
5342 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5343 }
5344
5345 place = (section->output_section->vma + section->output_offset
5346 + stub_entry->adrp_offset);
5347 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5348
5349 if (!_bfd_aarch64_adrp_p (insn))
5350 abort ();
5351
5352 bfd_signed_vma imm =
5353 (_bfd_aarch64_sign_extend
5354 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5355 - (place & 0xfff));
5356
5357 if ((htab->fix_erratum_843419 & ERRAT_ADR)
5358 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5359 {
5360 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5361 | AARCH64_RT (insn));
5362 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5363 /* Stub is not needed, don't map it out. */
5364 stub_entry->stub_type = aarch64_stub_none;
5365 }
5366 else if (htab->fix_erratum_843419 & ERRAT_ADRP)
5367 {
5368 bfd_vma veneered_insn_loc;
5369 bfd_vma veneer_entry_loc;
5370 bfd_signed_vma branch_offset;
5371 uint32_t branch_insn;
5372
5373 veneered_insn_loc = stub_entry->target_section->output_section->vma
5374 + stub_entry->target_section->output_offset
5375 + stub_entry->target_value;
5376 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5377 + stub_entry->stub_sec->output_offset
5378 + stub_entry->stub_offset;
5379 branch_offset = veneer_entry_loc - veneered_insn_loc;
5380
5381 abfd = stub_entry->target_section->owner;
5382 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5383 _bfd_error_handler
5384 (_("%pB: error: erratum 843419 stub out "
5385 "of range (input file too large)"), abfd);
5386
5387 branch_insn = 0x14000000;
5388 branch_offset >>= 2;
5389 branch_offset &= 0x3ffffff;
5390 branch_insn |= branch_offset;
5391 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5392 }
5393 else
5394 {
5395 abfd = stub_entry->target_section->owner;
5396 _bfd_error_handler
5397 (_("%pB: error: erratum 843419 immediate 0x%" BFD_VMA_FMT "x "
5398 "out of range for ADR (input file too large) and "
5399 "--fix-cortex-a53-843419=adr used. Run the linker with "
5400 "--fix-cortex-a53-843419=full instead"), abfd, imm);
5401 bfd_set_error (bfd_error_bad_value);
5402 /* This function is called inside a hashtable traversal and the error
5403 handlers called above turn into non-fatal errors. Which means this
5404 case ld returns an exit code 0 and also produces a broken object file.
5405 To prevent this, issue a hard abort. */
5406 BFD_FAIL ();
5407 }
5408 return TRUE;
5409 }
5410
5411
5412 static bfd_boolean
5413 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5414 struct bfd_link_info *link_info,
5415 asection *sec,
5416 bfd_byte *contents)
5417
5418 {
5419 struct elf_aarch64_link_hash_table *globals =
5420 elf_aarch64_hash_table (link_info);
5421
5422 if (globals == NULL)
5423 return FALSE;
5424
5425 /* Fix code to point to erratum 835769 stubs. */
5426 if (globals->fix_erratum_835769)
5427 {
5428 struct erratum_835769_branch_to_stub_data data;
5429
5430 data.info = link_info;
5431 data.output_section = sec;
5432 data.contents = contents;
5433 bfd_hash_traverse (&globals->stub_hash_table,
5434 make_branch_to_erratum_835769_stub, &data);
5435 }
5436
5437 if (globals->fix_erratum_843419)
5438 {
5439 struct erratum_835769_branch_to_stub_data data;
5440
5441 data.info = link_info;
5442 data.output_section = sec;
5443 data.contents = contents;
5444 bfd_hash_traverse (&globals->stub_hash_table,
5445 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5446 }
5447
5448 return FALSE;
5449 }
5450
5451 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5452
5453 static bfd_boolean
5454 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5455 {
5456 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5457 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5458 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5459 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5460 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5461 }
5462
5463 /* Perform a relocation as part of a final link. The input relocation type
5464 should be TLS relaxed. */
5465
5466 static bfd_reloc_status_type
5467 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5468 bfd *input_bfd,
5469 bfd *output_bfd,
5470 asection *input_section,
5471 bfd_byte *contents,
5472 Elf_Internal_Rela *rel,
5473 bfd_vma value,
5474 struct bfd_link_info *info,
5475 asection *sym_sec,
5476 struct elf_link_hash_entry *h,
5477 bfd_boolean *unresolved_reloc_p,
5478 bfd_boolean save_addend,
5479 bfd_vma *saved_addend,
5480 Elf_Internal_Sym *sym)
5481 {
5482 Elf_Internal_Shdr *symtab_hdr;
5483 unsigned int r_type = howto->type;
5484 bfd_reloc_code_real_type bfd_r_type
5485 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5486 unsigned long r_symndx;
5487 bfd_byte *hit_data = contents + rel->r_offset;
5488 bfd_vma place, off, got_entry_addr = 0;
5489 bfd_signed_vma signed_addend;
5490 struct elf_aarch64_link_hash_table *globals;
5491 bfd_boolean weak_undef_p;
5492 bfd_boolean relative_reloc;
5493 asection *base_got;
5494 bfd_vma orig_value = value;
5495 bfd_boolean resolved_to_zero;
5496 bfd_boolean abs_symbol_p;
5497
5498 globals = elf_aarch64_hash_table (info);
5499
5500 symtab_hdr = &elf_symtab_hdr (input_bfd);
5501
5502 BFD_ASSERT (is_aarch64_elf (input_bfd));
5503
5504 r_symndx = ELFNN_R_SYM (rel->r_info);
5505
5506 place = input_section->output_section->vma
5507 + input_section->output_offset + rel->r_offset;
5508
5509 /* Get addend, accumulating the addend for consecutive relocs
5510 which refer to the same offset. */
5511 signed_addend = saved_addend ? *saved_addend : 0;
5512 signed_addend += rel->r_addend;
5513
5514 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5515 : bfd_is_und_section (sym_sec));
5516 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5517
5518
5519 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5520 it here if it is defined in a non-shared object. */
5521 if (h != NULL
5522 && h->type == STT_GNU_IFUNC
5523 && h->def_regular)
5524 {
5525 asection *plt;
5526 const char *name;
5527 bfd_vma addend = 0;
5528
5529 if ((input_section->flags & SEC_ALLOC) == 0)
5530 {
5531 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5532 STT_GNU_IFUNC symbol as STT_FUNC. */
5533 if (elf_section_type (input_section) == SHT_NOTE)
5534 goto skip_ifunc;
5535
5536 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5537 sections because such sections are not SEC_ALLOC and
5538 thus ld.so will not process them. */
5539 if ((input_section->flags & SEC_DEBUGGING) != 0)
5540 return bfd_reloc_ok;
5541
5542 if (h->root.root.string)
5543 name = h->root.root.string;
5544 else
5545 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5546 _bfd_error_handler
5547 /* xgettext:c-format */
5548 (_("%pB(%pA+%#" PRIx64 "): "
5549 "unresolvable %s relocation against symbol `%s'"),
5550 input_bfd, input_section, (uint64_t) rel->r_offset,
5551 howto->name, name);
5552 bfd_set_error (bfd_error_bad_value);
5553 return bfd_reloc_notsupported;
5554 }
5555 else if (h->plt.offset == (bfd_vma) -1)
5556 goto bad_ifunc_reloc;
5557
5558 /* STT_GNU_IFUNC symbol must go through PLT. */
5559 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5560 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5561
5562 switch (bfd_r_type)
5563 {
5564 default:
5565 bad_ifunc_reloc:
5566 if (h->root.root.string)
5567 name = h->root.root.string;
5568 else
5569 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5570 NULL);
5571 _bfd_error_handler
5572 /* xgettext:c-format */
5573 (_("%pB: relocation %s against STT_GNU_IFUNC "
5574 "symbol `%s' isn't handled by %s"), input_bfd,
5575 howto->name, name, __FUNCTION__);
5576 bfd_set_error (bfd_error_bad_value);
5577 return bfd_reloc_notsupported;
5578
5579 case BFD_RELOC_AARCH64_NN:
5580 if (rel->r_addend != 0)
5581 {
5582 if (h->root.root.string)
5583 name = h->root.root.string;
5584 else
5585 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5586 sym, NULL);
5587 _bfd_error_handler
5588 /* xgettext:c-format */
5589 (_("%pB: relocation %s against STT_GNU_IFUNC "
5590 "symbol `%s' has non-zero addend: %" PRId64),
5591 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5592 bfd_set_error (bfd_error_bad_value);
5593 return bfd_reloc_notsupported;
5594 }
5595
5596 /* Generate dynamic relocation only when there is a
5597 non-GOT reference in a shared object. */
5598 if (bfd_link_pic (info) && h->non_got_ref)
5599 {
5600 Elf_Internal_Rela outrel;
5601 asection *sreloc;
5602
5603 /* Need a dynamic relocation to get the real function
5604 address. */
5605 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5606 info,
5607 input_section,
5608 rel->r_offset);
5609 if (outrel.r_offset == (bfd_vma) -1
5610 || outrel.r_offset == (bfd_vma) -2)
5611 abort ();
5612
5613 outrel.r_offset += (input_section->output_section->vma
5614 + input_section->output_offset);
5615
5616 if (h->dynindx == -1
5617 || h->forced_local
5618 || bfd_link_executable (info))
5619 {
5620 /* This symbol is resolved locally. */
5621 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5622 outrel.r_addend = (h->root.u.def.value
5623 + h->root.u.def.section->output_section->vma
5624 + h->root.u.def.section->output_offset);
5625 }
5626 else
5627 {
5628 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5629 outrel.r_addend = 0;
5630 }
5631
5632 sreloc = globals->root.irelifunc;
5633 elf_append_rela (output_bfd, sreloc, &outrel);
5634
5635 /* If this reloc is against an external symbol, we
5636 do not want to fiddle with the addend. Otherwise,
5637 we need to include the symbol value so that it
5638 becomes an addend for the dynamic reloc. For an
5639 internal symbol, we have updated addend. */
5640 return bfd_reloc_ok;
5641 }
5642 /* FALLTHROUGH */
5643 case BFD_RELOC_AARCH64_CALL26:
5644 case BFD_RELOC_AARCH64_JUMP26:
5645 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5646 place, value,
5647 signed_addend,
5648 weak_undef_p);
5649 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5650 howto, value);
5651 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5652 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5653 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5654 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5655 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5656 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5657 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5658 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5659 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5660 base_got = globals->root.sgot;
5661 off = h->got.offset;
5662
5663 if (base_got == NULL)
5664 abort ();
5665
5666 if (off == (bfd_vma) -1)
5667 {
5668 bfd_vma plt_index;
5669
5670 /* We can't use h->got.offset here to save state, or
5671 even just remember the offset, as finish_dynamic_symbol
5672 would use that as offset into .got. */
5673
5674 if (globals->root.splt != NULL)
5675 {
5676 plt_index = ((h->plt.offset - globals->plt_header_size) /
5677 globals->plt_entry_size);
5678 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5679 base_got = globals->root.sgotplt;
5680 }
5681 else
5682 {
5683 plt_index = h->plt.offset / globals->plt_entry_size;
5684 off = plt_index * GOT_ENTRY_SIZE;
5685 base_got = globals->root.igotplt;
5686 }
5687
5688 if (h->dynindx == -1
5689 || h->forced_local
5690 || info->symbolic)
5691 {
5692 /* This references the local definition. We must
5693 initialize this entry in the global offset table.
5694 Since the offset must always be a multiple of 8,
5695 we use the least significant bit to record
5696 whether we have initialized it already.
5697
5698 When doing a dynamic link, we create a .rela.got
5699 relocation entry to initialize the value. This
5700 is done in the finish_dynamic_symbol routine. */
5701 if ((off & 1) != 0)
5702 off &= ~1;
5703 else
5704 {
5705 bfd_put_NN (output_bfd, value,
5706 base_got->contents + off);
5707 /* Note that this is harmless as -1 | 1 still is -1. */
5708 h->got.offset |= 1;
5709 }
5710 }
5711 value = (base_got->output_section->vma
5712 + base_got->output_offset + off);
5713 }
5714 else
5715 value = aarch64_calculate_got_entry_vma (h, globals, info,
5716 value, output_bfd,
5717 unresolved_reloc_p);
5718
5719 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5720 addend = (globals->root.sgot->output_section->vma
5721 + globals->root.sgot->output_offset);
5722
5723 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5724 place, value,
5725 addend, weak_undef_p);
5726 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5727 case BFD_RELOC_AARCH64_ADD_LO12:
5728 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5729 break;
5730 }
5731 }
5732
5733 skip_ifunc:
5734 resolved_to_zero = (h != NULL
5735 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5736
5737 switch (bfd_r_type)
5738 {
5739 case BFD_RELOC_AARCH64_NONE:
5740 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5741 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5742 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5743 *unresolved_reloc_p = FALSE;
5744 return bfd_reloc_ok;
5745
5746 case BFD_RELOC_AARCH64_NN:
5747
5748 /* When generating a shared object or relocatable executable, these
5749 relocations are copied into the output file to be resolved at
5750 run time. */
5751 if (((bfd_link_pic (info)
5752 || globals->root.is_relocatable_executable)
5753 && (input_section->flags & SEC_ALLOC)
5754 && (h == NULL
5755 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5756 && !resolved_to_zero)
5757 || h->root.type != bfd_link_hash_undefweak))
5758 /* Or we are creating an executable, we may need to keep relocations
5759 for symbols satisfied by a dynamic library if we manage to avoid
5760 copy relocs for the symbol. */
5761 || (ELIMINATE_COPY_RELOCS
5762 && !bfd_link_pic (info)
5763 && h != NULL
5764 && (input_section->flags & SEC_ALLOC)
5765 && h->dynindx != -1
5766 && !h->non_got_ref
5767 && ((h->def_dynamic
5768 && !h->def_regular)
5769 || h->root.type == bfd_link_hash_undefweak
5770 || h->root.type == bfd_link_hash_undefined)))
5771 {
5772 Elf_Internal_Rela outrel;
5773 bfd_byte *loc;
5774 bfd_boolean skip, relocate;
5775 asection *sreloc;
5776
5777 *unresolved_reloc_p = FALSE;
5778
5779 skip = FALSE;
5780 relocate = FALSE;
5781
5782 outrel.r_addend = signed_addend;
5783 outrel.r_offset =
5784 _bfd_elf_section_offset (output_bfd, info, input_section,
5785 rel->r_offset);
5786 if (outrel.r_offset == (bfd_vma) - 1)
5787 skip = TRUE;
5788 else if (outrel.r_offset == (bfd_vma) - 2)
5789 {
5790 skip = TRUE;
5791 relocate = TRUE;
5792 }
5793 else if (abs_symbol_p)
5794 {
5795 /* Local absolute symbol. */
5796 skip = (h->forced_local || (h->dynindx == -1));
5797 relocate = skip;
5798 }
5799
5800 outrel.r_offset += (input_section->output_section->vma
5801 + input_section->output_offset);
5802
5803 if (skip)
5804 memset (&outrel, 0, sizeof outrel);
5805 else if (h != NULL
5806 && h->dynindx != -1
5807 && (!bfd_link_pic (info)
5808 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5809 || !h->def_regular))
5810 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5811 else
5812 {
5813 int symbol;
5814
5815 /* On SVR4-ish systems, the dynamic loader cannot
5816 relocate the text and data segments independently,
5817 so the symbol does not matter. */
5818 symbol = 0;
5819 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5820 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5821 outrel.r_addend += value;
5822 }
5823
5824 sreloc = elf_section_data (input_section)->sreloc;
5825 if (sreloc == NULL || sreloc->contents == NULL)
5826 return bfd_reloc_notsupported;
5827
5828 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5829 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5830
5831 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5832 {
5833 /* Sanity to check that we have previously allocated
5834 sufficient space in the relocation section for the
5835 number of relocations we actually want to emit. */
5836 abort ();
5837 }
5838
5839 /* If this reloc is against an external symbol, we do not want to
5840 fiddle with the addend. Otherwise, we need to include the symbol
5841 value so that it becomes an addend for the dynamic reloc. */
5842 if (!relocate)
5843 return bfd_reloc_ok;
5844
5845 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5846 contents, rel->r_offset, value,
5847 signed_addend);
5848 }
5849 else
5850 value += signed_addend;
5851 break;
5852
5853 case BFD_RELOC_AARCH64_CALL26:
5854 case BFD_RELOC_AARCH64_JUMP26:
5855 {
5856 asection *splt = globals->root.splt;
5857 bfd_boolean via_plt_p =
5858 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5859
5860 /* A call to an undefined weak symbol is converted to a jump to
5861 the next instruction unless a PLT entry will be created.
5862 The jump to the next instruction is optimized as a NOP.
5863 Do the same for local undefined symbols. */
5864 if (weak_undef_p && ! via_plt_p)
5865 {
5866 bfd_putl32 (INSN_NOP, hit_data);
5867 return bfd_reloc_ok;
5868 }
5869
5870 /* If the call goes through a PLT entry, make sure to
5871 check distance to the right destination address. */
5872 if (via_plt_p)
5873 value = (splt->output_section->vma
5874 + splt->output_offset + h->plt.offset);
5875
5876 /* Check if a stub has to be inserted because the destination
5877 is too far away. */
5878 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5879
5880 /* If the branch destination is directed to plt stub, "value" will be
5881 the final destination, otherwise we should plus signed_addend, it may
5882 contain non-zero value, for example call to local function symbol
5883 which are turned into "sec_sym + sec_off", and sec_off is kept in
5884 signed_addend. */
5885 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5886 place))
5887 /* The target is out of reach, so redirect the branch to
5888 the local stub for this function. */
5889 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5890 rel, globals);
5891 if (stub_entry != NULL)
5892 {
5893 value = (stub_entry->stub_offset
5894 + stub_entry->stub_sec->output_offset
5895 + stub_entry->stub_sec->output_section->vma);
5896
5897 /* We have redirected the destination to stub entry address,
5898 so ignore any addend record in the original rela entry. */
5899 signed_addend = 0;
5900 }
5901 }
5902 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5903 place, value,
5904 signed_addend, weak_undef_p);
5905 *unresolved_reloc_p = FALSE;
5906 break;
5907
5908 case BFD_RELOC_AARCH64_16_PCREL:
5909 case BFD_RELOC_AARCH64_32_PCREL:
5910 case BFD_RELOC_AARCH64_64_PCREL:
5911 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5912 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5913 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5914 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5915 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5916 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5917 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5918 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5919 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5920 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5921 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5922 if (bfd_link_pic (info)
5923 && (input_section->flags & SEC_ALLOC) != 0
5924 && (input_section->flags & SEC_READONLY) != 0
5925 && !SYMBOL_REFERENCES_LOCAL (info, h))
5926 {
5927 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5928
5929 _bfd_error_handler
5930 /* xgettext:c-format */
5931 (_("%pB: relocation %s against symbol `%s' which may bind "
5932 "externally can not be used when making a shared object; "
5933 "recompile with -fPIC"),
5934 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5935 h->root.root.string);
5936 bfd_set_error (bfd_error_bad_value);
5937 return bfd_reloc_notsupported;
5938 }
5939 /* Fall through. */
5940
5941 case BFD_RELOC_AARCH64_16:
5942 #if ARCH_SIZE == 64
5943 case BFD_RELOC_AARCH64_32:
5944 #endif
5945 case BFD_RELOC_AARCH64_ADD_LO12:
5946 case BFD_RELOC_AARCH64_BRANCH19:
5947 case BFD_RELOC_AARCH64_LDST128_LO12:
5948 case BFD_RELOC_AARCH64_LDST16_LO12:
5949 case BFD_RELOC_AARCH64_LDST32_LO12:
5950 case BFD_RELOC_AARCH64_LDST64_LO12:
5951 case BFD_RELOC_AARCH64_LDST8_LO12:
5952 case BFD_RELOC_AARCH64_MOVW_G0:
5953 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5954 case BFD_RELOC_AARCH64_MOVW_G0_S:
5955 case BFD_RELOC_AARCH64_MOVW_G1:
5956 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5957 case BFD_RELOC_AARCH64_MOVW_G1_S:
5958 case BFD_RELOC_AARCH64_MOVW_G2:
5959 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5960 case BFD_RELOC_AARCH64_MOVW_G2_S:
5961 case BFD_RELOC_AARCH64_MOVW_G3:
5962 case BFD_RELOC_AARCH64_TSTBR14:
5963 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5964 place, value,
5965 signed_addend, weak_undef_p);
5966 break;
5967
5968 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5969 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5970 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5971 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5972 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5973 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5974 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5975 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5976 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5977 if (globals->root.sgot == NULL)
5978 BFD_ASSERT (h != NULL);
5979
5980 relative_reloc = FALSE;
5981 if (h != NULL)
5982 {
5983 bfd_vma addend = 0;
5984
5985 /* If a symbol is not dynamic and is not undefined weak, bind it
5986 locally and generate a RELATIVE relocation under PIC mode.
5987
5988 NOTE: one symbol may be referenced by several relocations, we
5989 should only generate one RELATIVE relocation for that symbol.
5990 Therefore, check GOT offset mark first. */
5991 if (h->dynindx == -1
5992 && !h->forced_local
5993 && h->root.type != bfd_link_hash_undefweak
5994 && bfd_link_pic (info)
5995 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5996 relative_reloc = TRUE;
5997
5998 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5999 output_bfd,
6000 unresolved_reloc_p);
6001 /* Record the GOT entry address which will be used when generating
6002 RELATIVE relocation. */
6003 if (relative_reloc)
6004 got_entry_addr = value;
6005
6006 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
6007 addend = (globals->root.sgot->output_section->vma
6008 + globals->root.sgot->output_offset);
6009 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6010 place, value,
6011 addend, weak_undef_p);
6012 }
6013 else
6014 {
6015 bfd_vma addend = 0;
6016 struct elf_aarch64_local_symbol *locals
6017 = elf_aarch64_locals (input_bfd);
6018
6019 if (locals == NULL)
6020 {
6021 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6022 _bfd_error_handler
6023 /* xgettext:c-format */
6024 (_("%pB: local symbol descriptor table be NULL when applying "
6025 "relocation %s against local symbol"),
6026 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
6027 abort ();
6028 }
6029
6030 off = symbol_got_offset (input_bfd, h, r_symndx);
6031 base_got = globals->root.sgot;
6032 got_entry_addr = (base_got->output_section->vma
6033 + base_got->output_offset + off);
6034
6035 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6036 {
6037 bfd_put_64 (output_bfd, value, base_got->contents + off);
6038
6039 /* For local symbol, we have done absolute relocation in static
6040 linking stage. While for shared library, we need to update the
6041 content of GOT entry according to the shared object's runtime
6042 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
6043 for dynamic linker. */
6044 if (bfd_link_pic (info))
6045 relative_reloc = TRUE;
6046
6047 symbol_got_offset_mark (input_bfd, h, r_symndx);
6048 }
6049
6050 /* Update the relocation value to GOT entry addr as we have transformed
6051 the direct data access into indirect data access through GOT. */
6052 value = got_entry_addr;
6053
6054 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
6055 addend = base_got->output_section->vma + base_got->output_offset;
6056
6057 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6058 place, value,
6059 addend, weak_undef_p);
6060 }
6061
6062 if (relative_reloc)
6063 {
6064 asection *s;
6065 Elf_Internal_Rela outrel;
6066
6067 s = globals->root.srelgot;
6068 if (s == NULL)
6069 abort ();
6070
6071 outrel.r_offset = got_entry_addr;
6072 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6073 outrel.r_addend = orig_value;
6074 elf_append_rela (output_bfd, s, &outrel);
6075 }
6076 break;
6077
6078 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6079 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6080 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6081 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6082 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6083 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6084 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6085 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6086 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6087 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6088 if (globals->root.sgot == NULL)
6089 return bfd_reloc_notsupported;
6090
6091 value = (symbol_got_offset (input_bfd, h, r_symndx)
6092 + globals->root.sgot->output_section->vma
6093 + globals->root.sgot->output_offset);
6094
6095 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6096 place, value,
6097 0, weak_undef_p);
6098 *unresolved_reloc_p = FALSE;
6099 break;
6100
6101 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6102 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6103 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6104 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6105 if (globals->root.sgot == NULL)
6106 return bfd_reloc_notsupported;
6107
6108 value = symbol_got_offset (input_bfd, h, r_symndx);
6109 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6110 place, value,
6111 0, weak_undef_p);
6112 *unresolved_reloc_p = FALSE;
6113 break;
6114
6115 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
6116 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
6117 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6118 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
6119 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
6120 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
6121 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
6122 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
6123 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
6124 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
6125 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6126 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6127 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6128 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6129 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6130 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
6131 {
6132 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6133 {
6134 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6135 _bfd_error_handler
6136 /* xgettext:c-format */
6137 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6138 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6139 h->root.root.string);
6140 bfd_set_error (bfd_error_bad_value);
6141 return bfd_reloc_notsupported;
6142 }
6143
6144 bfd_vma def_value
6145 = weak_undef_p ? 0 : signed_addend - dtpoff_base (info);
6146 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6147 place, value,
6148 def_value, weak_undef_p);
6149 break;
6150 }
6151
6152 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6153 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6154 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6155 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
6156 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6157 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
6158 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6159 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
6160 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6161 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
6162 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6163 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6164 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6165 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6166 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6167 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6168 {
6169 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6170 {
6171 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6172 _bfd_error_handler
6173 /* xgettext:c-format */
6174 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6175 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6176 h->root.root.string);
6177 bfd_set_error (bfd_error_bad_value);
6178 return bfd_reloc_notsupported;
6179 }
6180
6181 bfd_vma def_value
6182 = weak_undef_p ? 0 : signed_addend - tpoff_base (info);
6183 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6184 place, value,
6185 def_value, weak_undef_p);
6186 *unresolved_reloc_p = FALSE;
6187 break;
6188 }
6189
6190 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6191 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6192 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6193 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6194 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6195 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6196 if (globals->root.sgot == NULL)
6197 return bfd_reloc_notsupported;
6198 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6199 + globals->root.sgotplt->output_section->vma
6200 + globals->root.sgotplt->output_offset
6201 + globals->sgotplt_jump_table_size);
6202
6203 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6204 place, value,
6205 0, weak_undef_p);
6206 *unresolved_reloc_p = FALSE;
6207 break;
6208
6209 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6210 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6211 if (globals->root.sgot == NULL)
6212 return bfd_reloc_notsupported;
6213
6214 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6215 + globals->root.sgotplt->output_section->vma
6216 + globals->root.sgotplt->output_offset
6217 + globals->sgotplt_jump_table_size);
6218
6219 value -= (globals->root.sgot->output_section->vma
6220 + globals->root.sgot->output_offset);
6221
6222 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6223 place, value,
6224 0, weak_undef_p);
6225 *unresolved_reloc_p = FALSE;
6226 break;
6227
6228 default:
6229 return bfd_reloc_notsupported;
6230 }
6231
6232 if (saved_addend)
6233 *saved_addend = value;
6234
6235 /* Only apply the final relocation in a sequence. */
6236 if (save_addend)
6237 return bfd_reloc_continue;
6238
6239 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6240 howto, value);
6241 }
6242
6243 /* LP64 and ILP32 operates on x- and w-registers respectively.
6244 Next definitions take into account the difference between
6245 corresponding machine codes. R means x-register if the target
6246 arch is LP64, and w-register if the target is ILP32. */
6247
6248 #if ARCH_SIZE == 64
6249 # define add_R0_R0 (0x91000000)
6250 # define add_R0_R0_R1 (0x8b000020)
6251 # define add_R0_R1 (0x91400020)
6252 # define ldr_R0 (0x58000000)
6253 # define ldr_R0_mask(i) (i & 0xffffffe0)
6254 # define ldr_R0_x0 (0xf9400000)
6255 # define ldr_hw_R0 (0xf2a00000)
6256 # define movk_R0 (0xf2800000)
6257 # define movz_R0 (0xd2a00000)
6258 # define movz_hw_R0 (0xd2c00000)
6259 #else /*ARCH_SIZE == 32 */
6260 # define add_R0_R0 (0x11000000)
6261 # define add_R0_R0_R1 (0x0b000020)
6262 # define add_R0_R1 (0x11400020)
6263 # define ldr_R0 (0x18000000)
6264 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6265 # define ldr_R0_x0 (0xb9400000)
6266 # define ldr_hw_R0 (0x72a00000)
6267 # define movk_R0 (0x72800000)
6268 # define movz_R0 (0x52a00000)
6269 # define movz_hw_R0 (0x52c00000)
6270 #endif
6271
6272 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6273 it is used to identify the stub information to reset. */
6274
6275 struct erratum_843419_branch_to_stub_clear_data
6276 {
6277 bfd_vma adrp_offset;
6278 asection *output_section;
6279 };
6280
6281 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6282 section inside IN_ARG matches. The clearing is done by setting the
6283 stub_type to none. */
6284
6285 static bfd_boolean
6286 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6287 void *in_arg)
6288 {
6289 struct elf_aarch64_stub_hash_entry *stub_entry
6290 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6291 struct erratum_843419_branch_to_stub_clear_data *data
6292 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6293
6294 if (stub_entry->target_section != data->output_section
6295 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6296 || stub_entry->adrp_offset != data->adrp_offset)
6297 return TRUE;
6298
6299 /* Change the stub type instead of removing the entry, removing from the hash
6300 table would be slower and we have already reserved the memory for the entry
6301 so there wouldn't be much gain. Changing the stub also keeps around a
6302 record of what was there before. */
6303 stub_entry->stub_type = aarch64_stub_none;
6304
6305 /* We're done and there could have been only one matching stub at that
6306 particular offset, so abort further traversal. */
6307 return FALSE;
6308 }
6309
6310 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6311 sequence. In this case the erratum no longer applies and we need to remove
6312 the entry from the pending stub generation. This clears matching adrp insn
6313 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6314
6315 static void
6316 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6317 bfd_vma adrp_offset, asection *input_section)
6318 {
6319 if (globals->fix_erratum_843419 & ERRAT_ADRP)
6320 {
6321 struct erratum_843419_branch_to_stub_clear_data data;
6322 data.adrp_offset = adrp_offset;
6323 data.output_section = input_section;
6324
6325 bfd_hash_traverse (&globals->stub_hash_table,
6326 _bfd_aarch64_erratum_843419_clear_stub, &data);
6327 }
6328 }
6329
6330 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6331 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6332 link.
6333
6334 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6335 is to then call final_link_relocate. Return other values in the
6336 case of error. */
6337
6338 static bfd_reloc_status_type
6339 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6340 bfd *input_bfd, asection *input_section,
6341 bfd_byte *contents, Elf_Internal_Rela *rel,
6342 struct elf_link_hash_entry *h)
6343 {
6344 bfd_boolean is_local = h == NULL;
6345 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6346 unsigned long insn;
6347
6348 BFD_ASSERT (globals && input_bfd && contents && rel);
6349
6350 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6351 {
6352 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6353 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6354 if (is_local)
6355 {
6356 /* GD->LE relaxation:
6357 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6358 or
6359 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6360
6361 Where R is x for LP64, and w for ILP32. */
6362 bfd_putl32 (movz_R0, contents + rel->r_offset);
6363 /* We have relaxed the adrp into a mov, we may have to clear any
6364 pending erratum fixes. */
6365 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6366 return bfd_reloc_continue;
6367 }
6368 else
6369 {
6370 /* GD->IE relaxation:
6371 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6372 or
6373 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6374 */
6375 return bfd_reloc_continue;
6376 }
6377
6378 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6379 BFD_ASSERT (0);
6380 break;
6381
6382 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6383 if (is_local)
6384 {
6385 /* Tiny TLSDESC->LE relaxation:
6386 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6387 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6388 .tlsdesccall var
6389 blr x1 => nop
6390
6391 Where R is x for LP64, and w for ILP32. */
6392 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6393 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6394
6395 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6396 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6397 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6398
6399 bfd_putl32 (movz_R0, contents + rel->r_offset);
6400 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6401 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6402 return bfd_reloc_continue;
6403 }
6404 else
6405 {
6406 /* Tiny TLSDESC->IE relaxation:
6407 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6408 adr x0, :tlsdesc:var => nop
6409 .tlsdesccall var
6410 blr x1 => nop
6411 */
6412 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6413 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6414
6415 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6416 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6417
6418 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6419 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6420 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6421 return bfd_reloc_continue;
6422 }
6423
6424 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6425 if (is_local)
6426 {
6427 /* Tiny GD->LE relaxation:
6428 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6429 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6430 nop => add R0, R0, #:tprel_lo12_nc:x
6431
6432 Where R is x for LP64, and x for Ilp32. */
6433
6434 /* First kill the tls_get_addr reloc on the bl instruction. */
6435 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6436
6437 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6438 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6439 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6440
6441 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6442 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6443 rel[1].r_offset = rel->r_offset + 8;
6444
6445 /* Move the current relocation to the second instruction in
6446 the sequence. */
6447 rel->r_offset += 4;
6448 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6449 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6450 return bfd_reloc_continue;
6451 }
6452 else
6453 {
6454 /* Tiny GD->IE relaxation:
6455 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6456 bl __tls_get_addr => mrs x1, tpidr_el0
6457 nop => add R0, R0, R1
6458
6459 Where R is x for LP64, and w for Ilp32. */
6460
6461 /* First kill the tls_get_addr reloc on the bl instruction. */
6462 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6463 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6464
6465 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6466 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6467 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6468 return bfd_reloc_continue;
6469 }
6470
6471 #if ARCH_SIZE == 64
6472 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6473 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6474 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6475 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6476
6477 if (is_local)
6478 {
6479 /* Large GD->LE relaxation:
6480 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6481 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6482 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6483 bl __tls_get_addr => mrs x1, tpidr_el0
6484 nop => add x0, x0, x1
6485 */
6486 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6487 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6488 rel[2].r_offset = rel->r_offset + 8;
6489
6490 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6491 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6492 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6493 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6494 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6495 }
6496 else
6497 {
6498 /* Large GD->IE relaxation:
6499 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6500 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6501 add x0, gp, x0 => ldr x0, [gp, x0]
6502 bl __tls_get_addr => mrs x1, tpidr_el0
6503 nop => add x0, x0, x1
6504 */
6505 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6506 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6507 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6508 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6509 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6510 }
6511 return bfd_reloc_continue;
6512
6513 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6514 return bfd_reloc_continue;
6515 #endif
6516
6517 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6518 return bfd_reloc_continue;
6519
6520 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6521 if (is_local)
6522 {
6523 /* GD->LE relaxation:
6524 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6525
6526 Where R is x for lp64 mode, and w for ILP32 mode. */
6527 bfd_putl32 (movk_R0, contents + rel->r_offset);
6528 return bfd_reloc_continue;
6529 }
6530 else
6531 {
6532 /* GD->IE relaxation:
6533 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6534
6535 Where R is x for lp64 mode, and w for ILP32 mode. */
6536 insn = bfd_getl32 (contents + rel->r_offset);
6537 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6538 return bfd_reloc_continue;
6539 }
6540
6541 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6542 if (is_local)
6543 {
6544 /* GD->LE relaxation
6545 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6546 bl __tls_get_addr => mrs x1, tpidr_el0
6547 nop => add R0, R1, R0
6548
6549 Where R is x for lp64 mode, and w for ILP32 mode. */
6550
6551 /* First kill the tls_get_addr reloc on the bl instruction. */
6552 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6553 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6554
6555 bfd_putl32 (movk_R0, contents + rel->r_offset);
6556 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6557 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6558 return bfd_reloc_continue;
6559 }
6560 else
6561 {
6562 /* GD->IE relaxation
6563 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6564 BL __tls_get_addr => mrs x1, tpidr_el0
6565 R_AARCH64_CALL26
6566 NOP => add R0, R1, R0
6567
6568 Where R is x for lp64 mode, and w for ilp32 mode. */
6569
6570 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6571
6572 /* Remove the relocation on the BL instruction. */
6573 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6574
6575 /* We choose to fixup the BL and NOP instructions using the
6576 offset from the second relocation to allow flexibility in
6577 scheduling instructions between the ADD and BL. */
6578 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6579 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6580 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6581 return bfd_reloc_continue;
6582 }
6583
6584 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6585 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6586 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6587 /* GD->IE/LE relaxation:
6588 add x0, x0, #:tlsdesc_lo12:var => nop
6589 blr xd => nop
6590 */
6591 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6592 return bfd_reloc_ok;
6593
6594 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6595 if (is_local)
6596 {
6597 /* GD->LE relaxation:
6598 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6599
6600 Where R is x for lp64 mode, and w for ILP32 mode. */
6601 bfd_putl32 (movk_R0, contents + rel->r_offset);
6602 return bfd_reloc_continue;
6603 }
6604 else
6605 {
6606 /* GD->IE relaxation:
6607 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6608
6609 Where R is x for lp64 mode, and w for ILP32 mode. */
6610 insn = bfd_getl32 (contents + rel->r_offset);
6611 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6612 return bfd_reloc_ok;
6613 }
6614
6615 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6616 /* GD->LE relaxation:
6617 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6618 GD->IE relaxation:
6619 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6620
6621 Where R is x for lp64 mode, and w for ILP32 mode. */
6622 if (is_local)
6623 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6624 return bfd_reloc_continue;
6625
6626 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6627 if (is_local)
6628 {
6629 /* GD->LE relaxation:
6630 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6631
6632 Where R is x for lp64 mode, and w for ILP32 mode. */
6633 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6634 return bfd_reloc_continue;
6635 }
6636 else
6637 {
6638 /* GD->IE relaxation:
6639 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6640
6641 Where R is x for lp64 mode, and w for ILP32 mode. */
6642 insn = bfd_getl32 (contents + rel->r_offset);
6643 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6644 return bfd_reloc_continue;
6645 }
6646
6647 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6648 /* IE->LE relaxation:
6649 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6650
6651 Where R is x for lp64 mode, and w for ILP32 mode. */
6652 if (is_local)
6653 {
6654 insn = bfd_getl32 (contents + rel->r_offset);
6655 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6656 /* We have relaxed the adrp into a mov, we may have to clear any
6657 pending erratum fixes. */
6658 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6659 }
6660 return bfd_reloc_continue;
6661
6662 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6663 /* IE->LE relaxation:
6664 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6665
6666 Where R is x for lp64 mode, and w for ILP32 mode. */
6667 if (is_local)
6668 {
6669 insn = bfd_getl32 (contents + rel->r_offset);
6670 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6671 }
6672 return bfd_reloc_continue;
6673
6674 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6675 /* LD->LE relaxation (tiny):
6676 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6677 bl __tls_get_addr => add R0, R0, TCB_SIZE
6678
6679 Where R is x for lp64 mode, and w for ilp32 mode. */
6680 if (is_local)
6681 {
6682 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6683 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6684 /* No need of CALL26 relocation for tls_get_addr. */
6685 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6686 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6687 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6688 contents + rel->r_offset + 4);
6689 return bfd_reloc_ok;
6690 }
6691 return bfd_reloc_continue;
6692
6693 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6694 /* LD->LE relaxation (small):
6695 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6696 */
6697 if (is_local)
6698 {
6699 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6700 return bfd_reloc_ok;
6701 }
6702 return bfd_reloc_continue;
6703
6704 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6705 /* LD->LE relaxation (small):
6706 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6707 bl __tls_get_addr => nop
6708
6709 Where R is x for lp64 mode, and w for ilp32 mode. */
6710 if (is_local)
6711 {
6712 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6713 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6714 /* No need of CALL26 relocation for tls_get_addr. */
6715 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6716 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6717 contents + rel->r_offset + 0);
6718 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6719 return bfd_reloc_ok;
6720 }
6721 return bfd_reloc_continue;
6722
6723 default:
6724 return bfd_reloc_continue;
6725 }
6726
6727 return bfd_reloc_ok;
6728 }
6729
6730 /* Relocate an AArch64 ELF section. */
6731
6732 static bfd_boolean
6733 elfNN_aarch64_relocate_section (bfd *output_bfd,
6734 struct bfd_link_info *info,
6735 bfd *input_bfd,
6736 asection *input_section,
6737 bfd_byte *contents,
6738 Elf_Internal_Rela *relocs,
6739 Elf_Internal_Sym *local_syms,
6740 asection **local_sections)
6741 {
6742 Elf_Internal_Shdr *symtab_hdr;
6743 struct elf_link_hash_entry **sym_hashes;
6744 Elf_Internal_Rela *rel;
6745 Elf_Internal_Rela *relend;
6746 const char *name;
6747 struct elf_aarch64_link_hash_table *globals;
6748 bfd_boolean save_addend = FALSE;
6749 bfd_vma addend = 0;
6750
6751 globals = elf_aarch64_hash_table (info);
6752
6753 symtab_hdr = &elf_symtab_hdr (input_bfd);
6754 sym_hashes = elf_sym_hashes (input_bfd);
6755
6756 rel = relocs;
6757 relend = relocs + input_section->reloc_count;
6758 for (; rel < relend; rel++)
6759 {
6760 unsigned int r_type;
6761 bfd_reloc_code_real_type bfd_r_type;
6762 bfd_reloc_code_real_type relaxed_bfd_r_type;
6763 reloc_howto_type *howto;
6764 unsigned long r_symndx;
6765 Elf_Internal_Sym *sym;
6766 asection *sec;
6767 struct elf_link_hash_entry *h;
6768 bfd_vma relocation;
6769 bfd_reloc_status_type r;
6770 arelent bfd_reloc;
6771 char sym_type;
6772 bfd_boolean unresolved_reloc = FALSE;
6773 char *error_message = NULL;
6774
6775 r_symndx = ELFNN_R_SYM (rel->r_info);
6776 r_type = ELFNN_R_TYPE (rel->r_info);
6777
6778 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6779 howto = bfd_reloc.howto;
6780
6781 if (howto == NULL)
6782 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6783
6784 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6785
6786 h = NULL;
6787 sym = NULL;
6788 sec = NULL;
6789
6790 if (r_symndx < symtab_hdr->sh_info)
6791 {
6792 sym = local_syms + r_symndx;
6793 sym_type = ELFNN_ST_TYPE (sym->st_info);
6794 sec = local_sections[r_symndx];
6795
6796 /* An object file might have a reference to a local
6797 undefined symbol. This is a daft object file, but we
6798 should at least do something about it. */
6799 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6800 && bfd_is_und_section (sec)
6801 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6802 (*info->callbacks->undefined_symbol)
6803 (info, bfd_elf_string_from_elf_section
6804 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6805 input_bfd, input_section, rel->r_offset, TRUE);
6806
6807 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6808
6809 /* Relocate against local STT_GNU_IFUNC symbol. */
6810 if (!bfd_link_relocatable (info)
6811 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6812 {
6813 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6814 rel, FALSE);
6815 if (h == NULL)
6816 abort ();
6817
6818 /* Set STT_GNU_IFUNC symbol value. */
6819 h->root.u.def.value = sym->st_value;
6820 h->root.u.def.section = sec;
6821 }
6822 }
6823 else
6824 {
6825 bfd_boolean warned, ignored;
6826
6827 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6828 r_symndx, symtab_hdr, sym_hashes,
6829 h, sec, relocation,
6830 unresolved_reloc, warned, ignored);
6831
6832 sym_type = h->type;
6833 }
6834
6835 if (sec != NULL && discarded_section (sec))
6836 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6837 rel, 1, relend, howto, 0, contents);
6838
6839 if (bfd_link_relocatable (info))
6840 continue;
6841
6842 if (h != NULL)
6843 name = h->root.root.string;
6844 else
6845 {
6846 name = (bfd_elf_string_from_elf_section
6847 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6848 if (name == NULL || *name == '\0')
6849 name = bfd_section_name (sec);
6850 }
6851
6852 if (r_symndx != 0
6853 && r_type != R_AARCH64_NONE
6854 && r_type != R_AARCH64_NULL
6855 && (h == NULL
6856 || h->root.type == bfd_link_hash_defined
6857 || h->root.type == bfd_link_hash_defweak)
6858 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6859 {
6860 _bfd_error_handler
6861 ((sym_type == STT_TLS
6862 /* xgettext:c-format */
6863 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6864 /* xgettext:c-format */
6865 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6866 input_bfd,
6867 input_section, (uint64_t) rel->r_offset, howto->name, name);
6868 }
6869
6870 /* We relax only if we can see that there can be a valid transition
6871 from a reloc type to another.
6872 We call elfNN_aarch64_final_link_relocate unless we're completely
6873 done, i.e., the relaxation produced the final output we want. */
6874
6875 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6876 h, r_symndx);
6877 if (relaxed_bfd_r_type != bfd_r_type)
6878 {
6879 bfd_r_type = relaxed_bfd_r_type;
6880 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6881 BFD_ASSERT (howto != NULL);
6882 r_type = howto->type;
6883 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6884 contents, rel, h);
6885 unresolved_reloc = 0;
6886 }
6887 else
6888 r = bfd_reloc_continue;
6889
6890 /* There may be multiple consecutive relocations for the
6891 same offset. In that case we are supposed to treat the
6892 output of each relocation as the addend for the next. */
6893 if (rel + 1 < relend
6894 && rel->r_offset == rel[1].r_offset
6895 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6896 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6897 save_addend = TRUE;
6898 else
6899 save_addend = FALSE;
6900
6901 if (r == bfd_reloc_continue)
6902 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6903 input_section, contents, rel,
6904 relocation, info, sec,
6905 h, &unresolved_reloc,
6906 save_addend, &addend, sym);
6907
6908 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6909 {
6910 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6911 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6912 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6913 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6914 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6915 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6916 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6917 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6918 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6919 {
6920 bfd_boolean need_relocs = FALSE;
6921 bfd_byte *loc;
6922 int indx;
6923 bfd_vma off;
6924
6925 off = symbol_got_offset (input_bfd, h, r_symndx);
6926 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6927
6928 need_relocs =
6929 (!bfd_link_executable (info) || indx != 0) &&
6930 (h == NULL
6931 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6932 || h->root.type != bfd_link_hash_undefweak);
6933
6934 BFD_ASSERT (globals->root.srelgot != NULL);
6935
6936 if (need_relocs)
6937 {
6938 Elf_Internal_Rela rela;
6939 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6940 rela.r_addend = 0;
6941 rela.r_offset = globals->root.sgot->output_section->vma +
6942 globals->root.sgot->output_offset + off;
6943
6944
6945 loc = globals->root.srelgot->contents;
6946 loc += globals->root.srelgot->reloc_count++
6947 * RELOC_SIZE (htab);
6948 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6949
6950 bfd_reloc_code_real_type real_type =
6951 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6952
6953 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6954 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6955 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6956 {
6957 /* For local dynamic, don't generate DTPREL in any case.
6958 Initialize the DTPREL slot into zero, so we get module
6959 base address when invoke runtime TLS resolver. */
6960 bfd_put_NN (output_bfd, 0,
6961 globals->root.sgot->contents + off
6962 + GOT_ENTRY_SIZE);
6963 }
6964 else if (indx == 0)
6965 {
6966 bfd_put_NN (output_bfd,
6967 relocation - dtpoff_base (info),
6968 globals->root.sgot->contents + off
6969 + GOT_ENTRY_SIZE);
6970 }
6971 else
6972 {
6973 /* This TLS symbol is global. We emit a
6974 relocation to fixup the tls offset at load
6975 time. */
6976 rela.r_info =
6977 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6978 rela.r_addend = 0;
6979 rela.r_offset =
6980 (globals->root.sgot->output_section->vma
6981 + globals->root.sgot->output_offset + off
6982 + GOT_ENTRY_SIZE);
6983
6984 loc = globals->root.srelgot->contents;
6985 loc += globals->root.srelgot->reloc_count++
6986 * RELOC_SIZE (globals);
6987 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6988 bfd_put_NN (output_bfd, (bfd_vma) 0,
6989 globals->root.sgot->contents + off
6990 + GOT_ENTRY_SIZE);
6991 }
6992 }
6993 else
6994 {
6995 bfd_put_NN (output_bfd, (bfd_vma) 1,
6996 globals->root.sgot->contents + off);
6997 bfd_put_NN (output_bfd,
6998 relocation - dtpoff_base (info),
6999 globals->root.sgot->contents + off
7000 + GOT_ENTRY_SIZE);
7001 }
7002
7003 symbol_got_offset_mark (input_bfd, h, r_symndx);
7004 }
7005 break;
7006
7007 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7008 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
7009 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7010 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7011 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7012 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
7013 {
7014 bfd_boolean need_relocs = FALSE;
7015 bfd_byte *loc;
7016 int indx;
7017 bfd_vma off;
7018
7019 off = symbol_got_offset (input_bfd, h, r_symndx);
7020
7021 indx = h && h->dynindx != -1 ? h->dynindx : 0;
7022
7023 need_relocs =
7024 (!bfd_link_executable (info) || indx != 0) &&
7025 (h == NULL
7026 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7027 || h->root.type != bfd_link_hash_undefweak);
7028
7029 BFD_ASSERT (globals->root.srelgot != NULL);
7030
7031 if (need_relocs)
7032 {
7033 Elf_Internal_Rela rela;
7034
7035 if (indx == 0)
7036 rela.r_addend = relocation - dtpoff_base (info);
7037 else
7038 rela.r_addend = 0;
7039
7040 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
7041 rela.r_offset = globals->root.sgot->output_section->vma +
7042 globals->root.sgot->output_offset + off;
7043
7044 loc = globals->root.srelgot->contents;
7045 loc += globals->root.srelgot->reloc_count++
7046 * RELOC_SIZE (htab);
7047
7048 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7049
7050 bfd_put_NN (output_bfd, rela.r_addend,
7051 globals->root.sgot->contents + off);
7052 }
7053 else
7054 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
7055 globals->root.sgot->contents + off);
7056
7057 symbol_got_offset_mark (input_bfd, h, r_symndx);
7058 }
7059 break;
7060
7061 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7062 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7063 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7064 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
7065 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7066 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7067 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7068 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
7069 {
7070 bfd_boolean need_relocs = FALSE;
7071 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
7072 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
7073
7074 need_relocs = (h == NULL
7075 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7076 || h->root.type != bfd_link_hash_undefweak);
7077
7078 BFD_ASSERT (globals->root.srelgot != NULL);
7079 BFD_ASSERT (globals->root.sgot != NULL);
7080
7081 if (need_relocs)
7082 {
7083 bfd_byte *loc;
7084 Elf_Internal_Rela rela;
7085 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
7086
7087 rela.r_addend = 0;
7088 rela.r_offset = (globals->root.sgotplt->output_section->vma
7089 + globals->root.sgotplt->output_offset
7090 + off + globals->sgotplt_jump_table_size);
7091
7092 if (indx == 0)
7093 rela.r_addend = relocation - dtpoff_base (info);
7094
7095 /* Allocate the next available slot in the PLT reloc
7096 section to hold our R_AARCH64_TLSDESC, the next
7097 available slot is determined from reloc_count,
7098 which we step. But note, reloc_count was
7099 artifically moved down while allocating slots for
7100 real PLT relocs such that all of the PLT relocs
7101 will fit above the initial reloc_count and the
7102 extra stuff will fit below. */
7103 loc = globals->root.srelplt->contents;
7104 loc += globals->root.srelplt->reloc_count++
7105 * RELOC_SIZE (globals);
7106
7107 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7108
7109 bfd_put_NN (output_bfd, (bfd_vma) 0,
7110 globals->root.sgotplt->contents + off +
7111 globals->sgotplt_jump_table_size);
7112 bfd_put_NN (output_bfd, (bfd_vma) 0,
7113 globals->root.sgotplt->contents + off +
7114 globals->sgotplt_jump_table_size +
7115 GOT_ENTRY_SIZE);
7116 }
7117
7118 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
7119 }
7120 break;
7121 default:
7122 break;
7123 }
7124
7125 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7126 because such sections are not SEC_ALLOC and thus ld.so will
7127 not process them. */
7128 if (unresolved_reloc
7129 && !((input_section->flags & SEC_DEBUGGING) != 0
7130 && h->def_dynamic)
7131 && _bfd_elf_section_offset (output_bfd, info, input_section,
7132 +rel->r_offset) != (bfd_vma) - 1)
7133 {
7134 _bfd_error_handler
7135 /* xgettext:c-format */
7136 (_("%pB(%pA+%#" PRIx64 "): "
7137 "unresolvable %s relocation against symbol `%s'"),
7138 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
7139 h->root.root.string);
7140 return FALSE;
7141 }
7142
7143 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
7144 {
7145 bfd_reloc_code_real_type real_r_type
7146 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
7147
7148 switch (r)
7149 {
7150 case bfd_reloc_overflow:
7151 (*info->callbacks->reloc_overflow)
7152 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
7153 input_bfd, input_section, rel->r_offset);
7154 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
7155 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
7156 {
7157 (*info->callbacks->warning)
7158 (info,
7159 _("too many GOT entries for -fpic, "
7160 "please recompile with -fPIC"),
7161 name, input_bfd, input_section, rel->r_offset);
7162 return FALSE;
7163 }
7164 /* Overflow can occur when a variable is referenced with a type
7165 that has a larger alignment than the type with which it was
7166 declared. eg:
7167 file1.c: extern int foo; int a (void) { return foo; }
7168 file2.c: char bar, foo, baz;
7169 If the variable is placed into a data section at an offset
7170 that is incompatible with the larger alignment requirement
7171 overflow will occur. (Strictly speaking this is not overflow
7172 but rather an alignment problem, but the bfd_reloc_ error
7173 enum does not have a value to cover that situation).
7174
7175 Try to catch this situation here and provide a more helpful
7176 error message to the user. */
7177 if (addend & ((1 << howto->rightshift) - 1)
7178 /* FIXME: Are we testing all of the appropriate reloc
7179 types here ? */
7180 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
7181 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
7182 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
7183 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
7184 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
7185 {
7186 info->callbacks->warning
7187 (info, _("one possible cause of this error is that the \
7188 symbol is being referenced in the indicated code as if it had a larger \
7189 alignment than was declared where it was defined"),
7190 name, input_bfd, input_section, rel->r_offset);
7191 }
7192 break;
7193
7194 case bfd_reloc_undefined:
7195 (*info->callbacks->undefined_symbol)
7196 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
7197 break;
7198
7199 case bfd_reloc_outofrange:
7200 error_message = _("out of range");
7201 goto common_error;
7202
7203 case bfd_reloc_notsupported:
7204 error_message = _("unsupported relocation");
7205 goto common_error;
7206
7207 case bfd_reloc_dangerous:
7208 /* error_message should already be set. */
7209 goto common_error;
7210
7211 default:
7212 error_message = _("unknown error");
7213 /* Fall through. */
7214
7215 common_error:
7216 BFD_ASSERT (error_message != NULL);
7217 (*info->callbacks->reloc_dangerous)
7218 (info, error_message, input_bfd, input_section, rel->r_offset);
7219 break;
7220 }
7221 }
7222
7223 if (!save_addend)
7224 addend = 0;
7225 }
7226
7227 return TRUE;
7228 }
7229
7230 /* Set the right machine number. */
7231
7232 static bfd_boolean
7233 elfNN_aarch64_object_p (bfd *abfd)
7234 {
7235 #if ARCH_SIZE == 32
7236 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7237 #else
7238 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7239 #endif
7240 return TRUE;
7241 }
7242
7243 /* Function to keep AArch64 specific flags in the ELF header. */
7244
7245 static bfd_boolean
7246 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7247 {
7248 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7249 {
7250 }
7251 else
7252 {
7253 elf_elfheader (abfd)->e_flags = flags;
7254 elf_flags_init (abfd) = TRUE;
7255 }
7256
7257 return TRUE;
7258 }
7259
7260 /* Merge backend specific data from an object file to the output
7261 object file when linking. */
7262
7263 static bfd_boolean
7264 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7265 {
7266 bfd *obfd = info->output_bfd;
7267 flagword out_flags;
7268 flagword in_flags;
7269 bfd_boolean flags_compatible = TRUE;
7270 asection *sec;
7271
7272 /* Check if we have the same endianess. */
7273 if (!_bfd_generic_verify_endian_match (ibfd, info))
7274 return FALSE;
7275
7276 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7277 return TRUE;
7278
7279 /* The input BFD must have had its flags initialised. */
7280 /* The following seems bogus to me -- The flags are initialized in
7281 the assembler but I don't think an elf_flags_init field is
7282 written into the object. */
7283 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7284
7285 in_flags = elf_elfheader (ibfd)->e_flags;
7286 out_flags = elf_elfheader (obfd)->e_flags;
7287
7288 if (!elf_flags_init (obfd))
7289 {
7290 /* If the input is the default architecture and had the default
7291 flags then do not bother setting the flags for the output
7292 architecture, instead allow future merges to do this. If no
7293 future merges ever set these flags then they will retain their
7294 uninitialised values, which surprise surprise, correspond
7295 to the default values. */
7296 if (bfd_get_arch_info (ibfd)->the_default
7297 && elf_elfheader (ibfd)->e_flags == 0)
7298 return TRUE;
7299
7300 elf_flags_init (obfd) = TRUE;
7301 elf_elfheader (obfd)->e_flags = in_flags;
7302
7303 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7304 && bfd_get_arch_info (obfd)->the_default)
7305 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7306 bfd_get_mach (ibfd));
7307
7308 return TRUE;
7309 }
7310
7311 /* Identical flags must be compatible. */
7312 if (in_flags == out_flags)
7313 return TRUE;
7314
7315 /* Check to see if the input BFD actually contains any sections. If
7316 not, its flags may not have been initialised either, but it
7317 cannot actually cause any incompatiblity. Do not short-circuit
7318 dynamic objects; their section list may be emptied by
7319 elf_link_add_object_symbols.
7320
7321 Also check to see if there are no code sections in the input.
7322 In this case there is no need to check for code specific flags.
7323 XXX - do we need to worry about floating-point format compatability
7324 in data sections ? */
7325 if (!(ibfd->flags & DYNAMIC))
7326 {
7327 bfd_boolean null_input_bfd = TRUE;
7328 bfd_boolean only_data_sections = TRUE;
7329
7330 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7331 {
7332 if ((bfd_section_flags (sec)
7333 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7334 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7335 only_data_sections = FALSE;
7336
7337 null_input_bfd = FALSE;
7338 break;
7339 }
7340
7341 if (null_input_bfd || only_data_sections)
7342 return TRUE;
7343 }
7344
7345 return flags_compatible;
7346 }
7347
7348 /* Display the flags field. */
7349
7350 static bfd_boolean
7351 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7352 {
7353 FILE *file = (FILE *) ptr;
7354 unsigned long flags;
7355
7356 BFD_ASSERT (abfd != NULL && ptr != NULL);
7357
7358 /* Print normal ELF private data. */
7359 _bfd_elf_print_private_bfd_data (abfd, ptr);
7360
7361 flags = elf_elfheader (abfd)->e_flags;
7362 /* Ignore init flag - it may not be set, despite the flags field
7363 containing valid data. */
7364
7365 /* xgettext:c-format */
7366 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7367
7368 if (flags)
7369 fprintf (file, _("<Unrecognised flag bits set>"));
7370
7371 fputc ('\n', file);
7372
7373 return TRUE;
7374 }
7375
7376 /* Find dynamic relocs for H that apply to read-only sections. */
7377
7378 static asection *
7379 readonly_dynrelocs (struct elf_link_hash_entry *h)
7380 {
7381 struct elf_dyn_relocs *p;
7382
7383 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
7384 {
7385 asection *s = p->sec->output_section;
7386
7387 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7388 return p->sec;
7389 }
7390 return NULL;
7391 }
7392
7393 /* Return true if we need copy relocation against EH. */
7394
7395 static bfd_boolean
7396 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7397 {
7398 struct elf_dyn_relocs *p;
7399 asection *s;
7400
7401 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7402 {
7403 /* If there is any pc-relative reference, we need to keep copy relocation
7404 to avoid propagating the relocation into runtime that current glibc
7405 does not support. */
7406 if (p->pc_count)
7407 return TRUE;
7408
7409 s = p->sec->output_section;
7410 /* Need copy relocation if it's against read-only section. */
7411 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7412 return TRUE;
7413 }
7414
7415 return FALSE;
7416 }
7417
7418 /* Adjust a symbol defined by a dynamic object and referenced by a
7419 regular object. The current definition is in some section of the
7420 dynamic object, but we're not including those sections. We have to
7421 change the definition to something the rest of the link can
7422 understand. */
7423
7424 static bfd_boolean
7425 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7426 struct elf_link_hash_entry *h)
7427 {
7428 struct elf_aarch64_link_hash_table *htab;
7429 asection *s, *srel;
7430
7431 /* If this is a function, put it in the procedure linkage table. We
7432 will fill in the contents of the procedure linkage table later,
7433 when we know the address of the .got section. */
7434 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7435 {
7436 if (h->plt.refcount <= 0
7437 || (h->type != STT_GNU_IFUNC
7438 && (SYMBOL_CALLS_LOCAL (info, h)
7439 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7440 && h->root.type == bfd_link_hash_undefweak))))
7441 {
7442 /* This case can occur if we saw a CALL26 reloc in
7443 an input file, but the symbol wasn't referred to
7444 by a dynamic object or all references were
7445 garbage collected. In which case we can end up
7446 resolving. */
7447 h->plt.offset = (bfd_vma) - 1;
7448 h->needs_plt = 0;
7449 }
7450
7451 return TRUE;
7452 }
7453 else
7454 /* Otherwise, reset to -1. */
7455 h->plt.offset = (bfd_vma) - 1;
7456
7457
7458 /* If this is a weak symbol, and there is a real definition, the
7459 processor independent code will have arranged for us to see the
7460 real definition first, and we can just use the same value. */
7461 if (h->is_weakalias)
7462 {
7463 struct elf_link_hash_entry *def = weakdef (h);
7464 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7465 h->root.u.def.section = def->root.u.def.section;
7466 h->root.u.def.value = def->root.u.def.value;
7467 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7468 h->non_got_ref = def->non_got_ref;
7469 return TRUE;
7470 }
7471
7472 /* If we are creating a shared library, we must presume that the
7473 only references to the symbol are via the global offset table.
7474 For such cases we need not do anything here; the relocations will
7475 be handled correctly by relocate_section. */
7476 if (bfd_link_pic (info))
7477 return TRUE;
7478
7479 /* If there are no references to this symbol that do not use the
7480 GOT, we don't need to generate a copy reloc. */
7481 if (!h->non_got_ref)
7482 return TRUE;
7483
7484 /* If -z nocopyreloc was given, we won't generate them either. */
7485 if (info->nocopyreloc)
7486 {
7487 h->non_got_ref = 0;
7488 return TRUE;
7489 }
7490
7491 if (ELIMINATE_COPY_RELOCS)
7492 {
7493 struct elf_aarch64_link_hash_entry *eh;
7494 /* If we don't find any dynamic relocs in read-only sections, then
7495 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7496 eh = (struct elf_aarch64_link_hash_entry *) h;
7497 if (!need_copy_relocation_p (eh))
7498 {
7499 h->non_got_ref = 0;
7500 return TRUE;
7501 }
7502 }
7503
7504 /* We must allocate the symbol in our .dynbss section, which will
7505 become part of the .bss section of the executable. There will be
7506 an entry for this symbol in the .dynsym section. The dynamic
7507 object will contain position independent code, so all references
7508 from the dynamic object to this symbol will go through the global
7509 offset table. The dynamic linker will use the .dynsym entry to
7510 determine the address it must put in the global offset table, so
7511 both the dynamic object and the regular object will refer to the
7512 same memory location for the variable. */
7513
7514 htab = elf_aarch64_hash_table (info);
7515
7516 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7517 to copy the initial value out of the dynamic object and into the
7518 runtime process image. */
7519 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7520 {
7521 s = htab->root.sdynrelro;
7522 srel = htab->root.sreldynrelro;
7523 }
7524 else
7525 {
7526 s = htab->root.sdynbss;
7527 srel = htab->root.srelbss;
7528 }
7529 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7530 {
7531 srel->size += RELOC_SIZE (htab);
7532 h->needs_copy = 1;
7533 }
7534
7535 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7536
7537 }
7538
7539 static bfd_boolean
7540 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7541 {
7542 struct elf_aarch64_local_symbol *locals;
7543 locals = elf_aarch64_locals (abfd);
7544 if (locals == NULL)
7545 {
7546 locals = (struct elf_aarch64_local_symbol *)
7547 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7548 if (locals == NULL)
7549 return FALSE;
7550 elf_aarch64_locals (abfd) = locals;
7551 }
7552 return TRUE;
7553 }
7554
7555 /* Create the .got section to hold the global offset table. */
7556
7557 static bfd_boolean
7558 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7559 {
7560 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7561 flagword flags;
7562 asection *s;
7563 struct elf_link_hash_entry *h;
7564 struct elf_link_hash_table *htab = elf_hash_table (info);
7565
7566 /* This function may be called more than once. */
7567 if (htab->sgot != NULL)
7568 return TRUE;
7569
7570 flags = bed->dynamic_sec_flags;
7571
7572 s = bfd_make_section_anyway_with_flags (abfd,
7573 (bed->rela_plts_and_copies_p
7574 ? ".rela.got" : ".rel.got"),
7575 (bed->dynamic_sec_flags
7576 | SEC_READONLY));
7577 if (s == NULL
7578 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7579 return FALSE;
7580 htab->srelgot = s;
7581
7582 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7583 if (s == NULL
7584 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7585 return FALSE;
7586 htab->sgot = s;
7587 htab->sgot->size += GOT_ENTRY_SIZE;
7588
7589 if (bed->want_got_sym)
7590 {
7591 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7592 (or .got.plt) section. We don't do this in the linker script
7593 because we don't want to define the symbol if we are not creating
7594 a global offset table. */
7595 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7596 "_GLOBAL_OFFSET_TABLE_");
7597 elf_hash_table (info)->hgot = h;
7598 if (h == NULL)
7599 return FALSE;
7600 }
7601
7602 if (bed->want_got_plt)
7603 {
7604 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7605 if (s == NULL
7606 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7607 return FALSE;
7608 htab->sgotplt = s;
7609 }
7610
7611 /* The first bit of the global offset table is the header. */
7612 s->size += bed->got_header_size;
7613
7614 return TRUE;
7615 }
7616
7617 /* Look through the relocs for a section during the first phase. */
7618
7619 static bfd_boolean
7620 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7621 asection *sec, const Elf_Internal_Rela *relocs)
7622 {
7623 Elf_Internal_Shdr *symtab_hdr;
7624 struct elf_link_hash_entry **sym_hashes;
7625 const Elf_Internal_Rela *rel;
7626 const Elf_Internal_Rela *rel_end;
7627 asection *sreloc;
7628
7629 struct elf_aarch64_link_hash_table *htab;
7630
7631 if (bfd_link_relocatable (info))
7632 return TRUE;
7633
7634 BFD_ASSERT (is_aarch64_elf (abfd));
7635
7636 htab = elf_aarch64_hash_table (info);
7637 sreloc = NULL;
7638
7639 symtab_hdr = &elf_symtab_hdr (abfd);
7640 sym_hashes = elf_sym_hashes (abfd);
7641
7642 rel_end = relocs + sec->reloc_count;
7643 for (rel = relocs; rel < rel_end; rel++)
7644 {
7645 struct elf_link_hash_entry *h;
7646 unsigned int r_symndx;
7647 unsigned int r_type;
7648 bfd_reloc_code_real_type bfd_r_type;
7649 Elf_Internal_Sym *isym;
7650
7651 r_symndx = ELFNN_R_SYM (rel->r_info);
7652 r_type = ELFNN_R_TYPE (rel->r_info);
7653
7654 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7655 {
7656 /* xgettext:c-format */
7657 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7658 return FALSE;
7659 }
7660
7661 if (r_symndx < symtab_hdr->sh_info)
7662 {
7663 /* A local symbol. */
7664 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7665 abfd, r_symndx);
7666 if (isym == NULL)
7667 return FALSE;
7668
7669 /* Check relocation against local STT_GNU_IFUNC symbol. */
7670 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7671 {
7672 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7673 TRUE);
7674 if (h == NULL)
7675 return FALSE;
7676
7677 /* Fake a STT_GNU_IFUNC symbol. */
7678 h->type = STT_GNU_IFUNC;
7679 h->def_regular = 1;
7680 h->ref_regular = 1;
7681 h->forced_local = 1;
7682 h->root.type = bfd_link_hash_defined;
7683 }
7684 else
7685 h = NULL;
7686 }
7687 else
7688 {
7689 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7690 while (h->root.type == bfd_link_hash_indirect
7691 || h->root.type == bfd_link_hash_warning)
7692 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7693 }
7694
7695 /* Could be done earlier, if h were already available. */
7696 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7697
7698 if (h != NULL)
7699 {
7700 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7701 This shows up in particular in an R_AARCH64_PREL64 in large model
7702 when calculating the pc-relative address to .got section which is
7703 used to initialize the gp register. */
7704 if (h->root.root.string
7705 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7706 {
7707 if (htab->root.dynobj == NULL)
7708 htab->root.dynobj = abfd;
7709
7710 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7711 return FALSE;
7712
7713 BFD_ASSERT (h == htab->root.hgot);
7714 }
7715
7716 /* Create the ifunc sections for static executables. If we
7717 never see an indirect function symbol nor we are building
7718 a static executable, those sections will be empty and
7719 won't appear in output. */
7720 switch (bfd_r_type)
7721 {
7722 default:
7723 break;
7724
7725 case BFD_RELOC_AARCH64_ADD_LO12:
7726 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7727 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7728 case BFD_RELOC_AARCH64_CALL26:
7729 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7730 case BFD_RELOC_AARCH64_JUMP26:
7731 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7732 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7733 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7734 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7735 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7736 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7737 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7738 case BFD_RELOC_AARCH64_NN:
7739 if (htab->root.dynobj == NULL)
7740 htab->root.dynobj = abfd;
7741 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7742 return FALSE;
7743 break;
7744 }
7745
7746 /* It is referenced by a non-shared object. */
7747 h->ref_regular = 1;
7748 }
7749
7750 switch (bfd_r_type)
7751 {
7752 case BFD_RELOC_AARCH64_16:
7753 #if ARCH_SIZE == 64
7754 case BFD_RELOC_AARCH64_32:
7755 #endif
7756 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7757 {
7758 if (h != NULL
7759 /* This is an absolute symbol. It represents a value instead
7760 of an address. */
7761 && (bfd_is_abs_symbol (&h->root)
7762 /* This is an undefined symbol. */
7763 || h->root.type == bfd_link_hash_undefined))
7764 break;
7765
7766 /* For local symbols, defined global symbols in a non-ABS section,
7767 it is assumed that the value is an address. */
7768 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7769 _bfd_error_handler
7770 /* xgettext:c-format */
7771 (_("%pB: relocation %s against `%s' can not be used when making "
7772 "a shared object"),
7773 abfd, elfNN_aarch64_howto_table[howto_index].name,
7774 (h) ? h->root.root.string : "a local symbol");
7775 bfd_set_error (bfd_error_bad_value);
7776 return FALSE;
7777 }
7778 else
7779 break;
7780
7781 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7782 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7783 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7784 case BFD_RELOC_AARCH64_MOVW_G3:
7785 if (bfd_link_pic (info))
7786 {
7787 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7788 _bfd_error_handler
7789 /* xgettext:c-format */
7790 (_("%pB: relocation %s against `%s' can not be used when making "
7791 "a shared object; recompile with -fPIC"),
7792 abfd, elfNN_aarch64_howto_table[howto_index].name,
7793 (h) ? h->root.root.string : "a local symbol");
7794 bfd_set_error (bfd_error_bad_value);
7795 return FALSE;
7796 }
7797 /* Fall through. */
7798
7799 case BFD_RELOC_AARCH64_16_PCREL:
7800 case BFD_RELOC_AARCH64_32_PCREL:
7801 case BFD_RELOC_AARCH64_64_PCREL:
7802 case BFD_RELOC_AARCH64_ADD_LO12:
7803 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7804 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7805 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7806 case BFD_RELOC_AARCH64_LDST128_LO12:
7807 case BFD_RELOC_AARCH64_LDST16_LO12:
7808 case BFD_RELOC_AARCH64_LDST32_LO12:
7809 case BFD_RELOC_AARCH64_LDST64_LO12:
7810 case BFD_RELOC_AARCH64_LDST8_LO12:
7811 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7812 if (h == NULL || bfd_link_pic (info))
7813 break;
7814 /* Fall through. */
7815
7816 case BFD_RELOC_AARCH64_NN:
7817
7818 /* We don't need to handle relocs into sections not going into
7819 the "real" output. */
7820 if ((sec->flags & SEC_ALLOC) == 0)
7821 break;
7822
7823 if (h != NULL)
7824 {
7825 if (!bfd_link_pic (info))
7826 h->non_got_ref = 1;
7827
7828 h->plt.refcount += 1;
7829 h->pointer_equality_needed = 1;
7830 }
7831
7832 /* No need to do anything if we're not creating a shared
7833 object. */
7834 if (!(bfd_link_pic (info)
7835 /* If on the other hand, we are creating an executable, we
7836 may need to keep relocations for symbols satisfied by a
7837 dynamic library if we manage to avoid copy relocs for the
7838 symbol.
7839
7840 NOTE: Currently, there is no support of copy relocs
7841 elimination on pc-relative relocation types, because there is
7842 no dynamic relocation support for them in glibc. We still
7843 record the dynamic symbol reference for them. This is
7844 because one symbol may be referenced by both absolute
7845 relocation (for example, BFD_RELOC_AARCH64_NN) and
7846 pc-relative relocation. We need full symbol reference
7847 information to make correct decision later in
7848 elfNN_aarch64_adjust_dynamic_symbol. */
7849 || (ELIMINATE_COPY_RELOCS
7850 && !bfd_link_pic (info)
7851 && h != NULL
7852 && (h->root.type == bfd_link_hash_defweak
7853 || !h->def_regular))))
7854 break;
7855
7856 {
7857 struct elf_dyn_relocs *p;
7858 struct elf_dyn_relocs **head;
7859 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7860
7861 /* We must copy these reloc types into the output file.
7862 Create a reloc section in dynobj and make room for
7863 this reloc. */
7864 if (sreloc == NULL)
7865 {
7866 if (htab->root.dynobj == NULL)
7867 htab->root.dynobj = abfd;
7868
7869 sreloc = _bfd_elf_make_dynamic_reloc_section
7870 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7871
7872 if (sreloc == NULL)
7873 return FALSE;
7874 }
7875
7876 /* If this is a global symbol, we count the number of
7877 relocations we need for this symbol. */
7878 if (h != NULL)
7879 {
7880 struct elf_aarch64_link_hash_entry *eh;
7881 eh = (struct elf_aarch64_link_hash_entry *) h;
7882 head = &eh->dyn_relocs;
7883 }
7884 else
7885 {
7886 /* Track dynamic relocs needed for local syms too.
7887 We really need local syms available to do this
7888 easily. Oh well. */
7889
7890 asection *s;
7891 void **vpp;
7892
7893 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7894 abfd, r_symndx);
7895 if (isym == NULL)
7896 return FALSE;
7897
7898 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7899 if (s == NULL)
7900 s = sec;
7901
7902 /* Beware of type punned pointers vs strict aliasing
7903 rules. */
7904 vpp = &(elf_section_data (s)->local_dynrel);
7905 head = (struct elf_dyn_relocs **) vpp;
7906 }
7907
7908 p = *head;
7909 if (p == NULL || p->sec != sec)
7910 {
7911 size_t amt = sizeof *p;
7912 p = ((struct elf_dyn_relocs *)
7913 bfd_zalloc (htab->root.dynobj, amt));
7914 if (p == NULL)
7915 return FALSE;
7916 p->next = *head;
7917 *head = p;
7918 p->sec = sec;
7919 }
7920
7921 p->count += 1;
7922
7923 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7924 p->pc_count += 1;
7925 }
7926 break;
7927
7928 /* RR: We probably want to keep a consistency check that
7929 there are no dangling GOT_PAGE relocs. */
7930 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7931 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7932 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7933 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7934 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7935 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7936 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7937 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7938 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7939 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7940 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7941 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7942 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7943 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7944 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7945 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7946 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7947 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7948 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7949 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7950 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7951 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7952 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7953 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7954 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7955 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7956 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7957 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7958 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7959 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7960 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7961 {
7962 unsigned got_type;
7963 unsigned old_got_type;
7964
7965 got_type = aarch64_reloc_got_type (bfd_r_type);
7966
7967 if (h)
7968 {
7969 h->got.refcount += 1;
7970 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7971 }
7972 else
7973 {
7974 struct elf_aarch64_local_symbol *locals;
7975
7976 if (!elfNN_aarch64_allocate_local_symbols
7977 (abfd, symtab_hdr->sh_info))
7978 return FALSE;
7979
7980 locals = elf_aarch64_locals (abfd);
7981 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7982 locals[r_symndx].got_refcount += 1;
7983 old_got_type = locals[r_symndx].got_type;
7984 }
7985
7986 /* If a variable is accessed with both general dynamic TLS
7987 methods, two slots may be created. */
7988 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7989 got_type |= old_got_type;
7990
7991 /* We will already have issued an error message if there
7992 is a TLS/non-TLS mismatch, based on the symbol type.
7993 So just combine any TLS types needed. */
7994 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7995 && got_type != GOT_NORMAL)
7996 got_type |= old_got_type;
7997
7998 /* If the symbol is accessed by both IE and GD methods, we
7999 are able to relax. Turn off the GD flag, without
8000 messing up with any other kind of TLS types that may be
8001 involved. */
8002 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
8003 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
8004
8005 if (old_got_type != got_type)
8006 {
8007 if (h != NULL)
8008 elf_aarch64_hash_entry (h)->got_type = got_type;
8009 else
8010 {
8011 struct elf_aarch64_local_symbol *locals;
8012 locals = elf_aarch64_locals (abfd);
8013 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
8014 locals[r_symndx].got_type = got_type;
8015 }
8016 }
8017
8018 if (htab->root.dynobj == NULL)
8019 htab->root.dynobj = abfd;
8020 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
8021 return FALSE;
8022 break;
8023 }
8024
8025 case BFD_RELOC_AARCH64_CALL26:
8026 case BFD_RELOC_AARCH64_JUMP26:
8027 /* If this is a local symbol then we resolve it
8028 directly without creating a PLT entry. */
8029 if (h == NULL)
8030 continue;
8031
8032 h->needs_plt = 1;
8033 if (h->plt.refcount <= 0)
8034 h->plt.refcount = 1;
8035 else
8036 h->plt.refcount += 1;
8037 break;
8038
8039 default:
8040 break;
8041 }
8042 }
8043
8044 return TRUE;
8045 }
8046
8047 /* Treat mapping symbols as special target symbols. */
8048
8049 static bfd_boolean
8050 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8051 asymbol *sym)
8052 {
8053 return bfd_is_aarch64_special_symbol_name (sym->name,
8054 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
8055 }
8056
8057 /* If the ELF symbol SYM might be a function in SEC, return the
8058 function size and set *CODE_OFF to the function's entry point,
8059 otherwise return zero. */
8060
8061 static bfd_size_type
8062 elfNN_aarch64_maybe_function_sym (const asymbol *sym, asection *sec,
8063 bfd_vma *code_off)
8064 {
8065 bfd_size_type size;
8066
8067 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
8068 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
8069 || sym->section != sec)
8070 return 0;
8071
8072 if (!(sym->flags & BSF_SYNTHETIC))
8073 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
8074 {
8075 case STT_FUNC:
8076 case STT_NOTYPE:
8077 break;
8078 default:
8079 return 0;
8080 }
8081
8082 if ((sym->flags & BSF_LOCAL)
8083 && bfd_is_aarch64_special_symbol_name (sym->name,
8084 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY))
8085 return 0;
8086
8087 *code_off = sym->value;
8088 size = 0;
8089 if (!(sym->flags & BSF_SYNTHETIC))
8090 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
8091 if (size == 0)
8092 size = 1;
8093 return size;
8094 }
8095
8096 static bfd_boolean
8097 elfNN_aarch64_find_inliner_info (bfd *abfd,
8098 const char **filename_ptr,
8099 const char **functionname_ptr,
8100 unsigned int *line_ptr)
8101 {
8102 bfd_boolean found;
8103 found = _bfd_dwarf2_find_inliner_info
8104 (abfd, filename_ptr,
8105 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
8106 return found;
8107 }
8108
8109
8110 static bfd_boolean
8111 elfNN_aarch64_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
8112 {
8113 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
8114
8115 if (!_bfd_elf_init_file_header (abfd, link_info))
8116 return FALSE;
8117
8118 i_ehdrp = elf_elfheader (abfd);
8119 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
8120 return TRUE;
8121 }
8122
8123 static enum elf_reloc_type_class
8124 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
8125 const asection *rel_sec ATTRIBUTE_UNUSED,
8126 const Elf_Internal_Rela *rela)
8127 {
8128 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
8129
8130 if (htab->root.dynsym != NULL
8131 && htab->root.dynsym->contents != NULL)
8132 {
8133 /* Check relocation against STT_GNU_IFUNC symbol if there are
8134 dynamic symbols. */
8135 bfd *abfd = info->output_bfd;
8136 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8137 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
8138 if (r_symndx != STN_UNDEF)
8139 {
8140 Elf_Internal_Sym sym;
8141 if (!bed->s->swap_symbol_in (abfd,
8142 (htab->root.dynsym->contents
8143 + r_symndx * bed->s->sizeof_sym),
8144 0, &sym))
8145 {
8146 /* xgettext:c-format */
8147 _bfd_error_handler (_("%pB symbol number %lu references"
8148 " nonexistent SHT_SYMTAB_SHNDX section"),
8149 abfd, r_symndx);
8150 /* Ideally an error class should be returned here. */
8151 }
8152 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8153 return reloc_class_ifunc;
8154 }
8155 }
8156
8157 switch ((int) ELFNN_R_TYPE (rela->r_info))
8158 {
8159 case AARCH64_R (IRELATIVE):
8160 return reloc_class_ifunc;
8161 case AARCH64_R (RELATIVE):
8162 return reloc_class_relative;
8163 case AARCH64_R (JUMP_SLOT):
8164 return reloc_class_plt;
8165 case AARCH64_R (COPY):
8166 return reloc_class_copy;
8167 default:
8168 return reloc_class_normal;
8169 }
8170 }
8171
8172 /* Handle an AArch64 specific section when reading an object file. This is
8173 called when bfd_section_from_shdr finds a section with an unknown
8174 type. */
8175
8176 static bfd_boolean
8177 elfNN_aarch64_section_from_shdr (bfd *abfd,
8178 Elf_Internal_Shdr *hdr,
8179 const char *name, int shindex)
8180 {
8181 /* There ought to be a place to keep ELF backend specific flags, but
8182 at the moment there isn't one. We just keep track of the
8183 sections by their name, instead. Fortunately, the ABI gives
8184 names for all the AArch64 specific sections, so we will probably get
8185 away with this. */
8186 switch (hdr->sh_type)
8187 {
8188 case SHT_AARCH64_ATTRIBUTES:
8189 break;
8190
8191 default:
8192 return FALSE;
8193 }
8194
8195 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8196 return FALSE;
8197
8198 return TRUE;
8199 }
8200
8201 /* A structure used to record a list of sections, independently
8202 of the next and prev fields in the asection structure. */
8203 typedef struct section_list
8204 {
8205 asection *sec;
8206 struct section_list *next;
8207 struct section_list *prev;
8208 }
8209 section_list;
8210
8211 /* Unfortunately we need to keep a list of sections for which
8212 an _aarch64_elf_section_data structure has been allocated. This
8213 is because it is possible for functions like elfNN_aarch64_write_section
8214 to be called on a section which has had an elf_data_structure
8215 allocated for it (and so the used_by_bfd field is valid) but
8216 for which the AArch64 extended version of this structure - the
8217 _aarch64_elf_section_data structure - has not been allocated. */
8218 static section_list *sections_with_aarch64_elf_section_data = NULL;
8219
8220 static void
8221 record_section_with_aarch64_elf_section_data (asection *sec)
8222 {
8223 struct section_list *entry;
8224
8225 entry = bfd_malloc (sizeof (*entry));
8226 if (entry == NULL)
8227 return;
8228 entry->sec = sec;
8229 entry->next = sections_with_aarch64_elf_section_data;
8230 entry->prev = NULL;
8231 if (entry->next != NULL)
8232 entry->next->prev = entry;
8233 sections_with_aarch64_elf_section_data = entry;
8234 }
8235
8236 static struct section_list *
8237 find_aarch64_elf_section_entry (asection *sec)
8238 {
8239 struct section_list *entry;
8240 static struct section_list *last_entry = NULL;
8241
8242 /* This is a short cut for the typical case where the sections are added
8243 to the sections_with_aarch64_elf_section_data list in forward order and
8244 then looked up here in backwards order. This makes a real difference
8245 to the ld-srec/sec64k.exp linker test. */
8246 entry = sections_with_aarch64_elf_section_data;
8247 if (last_entry != NULL)
8248 {
8249 if (last_entry->sec == sec)
8250 entry = last_entry;
8251 else if (last_entry->next != NULL && last_entry->next->sec == sec)
8252 entry = last_entry->next;
8253 }
8254
8255 for (; entry; entry = entry->next)
8256 if (entry->sec == sec)
8257 break;
8258
8259 if (entry)
8260 /* Record the entry prior to this one - it is the entry we are
8261 most likely to want to locate next time. Also this way if we
8262 have been called from
8263 unrecord_section_with_aarch64_elf_section_data () we will not
8264 be caching a pointer that is about to be freed. */
8265 last_entry = entry->prev;
8266
8267 return entry;
8268 }
8269
8270 static void
8271 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8272 {
8273 struct section_list *entry;
8274
8275 entry = find_aarch64_elf_section_entry (sec);
8276
8277 if (entry)
8278 {
8279 if (entry->prev != NULL)
8280 entry->prev->next = entry->next;
8281 if (entry->next != NULL)
8282 entry->next->prev = entry->prev;
8283 if (entry == sections_with_aarch64_elf_section_data)
8284 sections_with_aarch64_elf_section_data = entry->next;
8285 free (entry);
8286 }
8287 }
8288
8289
8290 typedef struct
8291 {
8292 void *finfo;
8293 struct bfd_link_info *info;
8294 asection *sec;
8295 int sec_shndx;
8296 int (*func) (void *, const char *, Elf_Internal_Sym *,
8297 asection *, struct elf_link_hash_entry *);
8298 } output_arch_syminfo;
8299
8300 enum map_symbol_type
8301 {
8302 AARCH64_MAP_INSN,
8303 AARCH64_MAP_DATA
8304 };
8305
8306
8307 /* Output a single mapping symbol. */
8308
8309 static bfd_boolean
8310 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8311 enum map_symbol_type type, bfd_vma offset)
8312 {
8313 static const char *names[2] = { "$x", "$d" };
8314 Elf_Internal_Sym sym;
8315
8316 sym.st_value = (osi->sec->output_section->vma
8317 + osi->sec->output_offset + offset);
8318 sym.st_size = 0;
8319 sym.st_other = 0;
8320 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8321 sym.st_shndx = osi->sec_shndx;
8322 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8323 }
8324
8325 /* Output a single local symbol for a generated stub. */
8326
8327 static bfd_boolean
8328 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8329 bfd_vma offset, bfd_vma size)
8330 {
8331 Elf_Internal_Sym sym;
8332
8333 sym.st_value = (osi->sec->output_section->vma
8334 + osi->sec->output_offset + offset);
8335 sym.st_size = size;
8336 sym.st_other = 0;
8337 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8338 sym.st_shndx = osi->sec_shndx;
8339 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8340 }
8341
8342 static bfd_boolean
8343 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8344 {
8345 struct elf_aarch64_stub_hash_entry *stub_entry;
8346 asection *stub_sec;
8347 bfd_vma addr;
8348 char *stub_name;
8349 output_arch_syminfo *osi;
8350
8351 /* Massage our args to the form they really have. */
8352 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8353 osi = (output_arch_syminfo *) in_arg;
8354
8355 stub_sec = stub_entry->stub_sec;
8356
8357 /* Ensure this stub is attached to the current section being
8358 processed. */
8359 if (stub_sec != osi->sec)
8360 return TRUE;
8361
8362 addr = (bfd_vma) stub_entry->stub_offset;
8363
8364 stub_name = stub_entry->output_name;
8365
8366 switch (stub_entry->stub_type)
8367 {
8368 case aarch64_stub_adrp_branch:
8369 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8370 sizeof (aarch64_adrp_branch_stub)))
8371 return FALSE;
8372 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8373 return FALSE;
8374 break;
8375 case aarch64_stub_long_branch:
8376 if (!elfNN_aarch64_output_stub_sym
8377 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8378 return FALSE;
8379 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8380 return FALSE;
8381 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8382 return FALSE;
8383 break;
8384 case aarch64_stub_erratum_835769_veneer:
8385 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8386 sizeof (aarch64_erratum_835769_stub)))
8387 return FALSE;
8388 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8389 return FALSE;
8390 break;
8391 case aarch64_stub_erratum_843419_veneer:
8392 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8393 sizeof (aarch64_erratum_843419_stub)))
8394 return FALSE;
8395 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8396 return FALSE;
8397 break;
8398 case aarch64_stub_none:
8399 break;
8400
8401 default:
8402 abort ();
8403 }
8404
8405 return TRUE;
8406 }
8407
8408 /* Output mapping symbols for linker generated sections. */
8409
8410 static bfd_boolean
8411 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8412 struct bfd_link_info *info,
8413 void *finfo,
8414 int (*func) (void *, const char *,
8415 Elf_Internal_Sym *,
8416 asection *,
8417 struct elf_link_hash_entry
8418 *))
8419 {
8420 output_arch_syminfo osi;
8421 struct elf_aarch64_link_hash_table *htab;
8422
8423 htab = elf_aarch64_hash_table (info);
8424
8425 osi.finfo = finfo;
8426 osi.info = info;
8427 osi.func = func;
8428
8429 /* Long calls stubs. */
8430 if (htab->stub_bfd && htab->stub_bfd->sections)
8431 {
8432 asection *stub_sec;
8433
8434 for (stub_sec = htab->stub_bfd->sections;
8435 stub_sec != NULL; stub_sec = stub_sec->next)
8436 {
8437 /* Ignore non-stub sections. */
8438 if (!strstr (stub_sec->name, STUB_SUFFIX))
8439 continue;
8440
8441 osi.sec = stub_sec;
8442
8443 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8444 (output_bfd, osi.sec->output_section);
8445
8446 /* The first instruction in a stub is always a branch. */
8447 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8448 return FALSE;
8449
8450 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8451 &osi);
8452 }
8453 }
8454
8455 /* Finally, output mapping symbols for the PLT. */
8456 if (!htab->root.splt || htab->root.splt->size == 0)
8457 return TRUE;
8458
8459 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8460 (output_bfd, htab->root.splt->output_section);
8461 osi.sec = htab->root.splt;
8462
8463 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8464
8465 return TRUE;
8466
8467 }
8468
8469 /* Allocate target specific section data. */
8470
8471 static bfd_boolean
8472 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8473 {
8474 if (!sec->used_by_bfd)
8475 {
8476 _aarch64_elf_section_data *sdata;
8477 size_t amt = sizeof (*sdata);
8478
8479 sdata = bfd_zalloc (abfd, amt);
8480 if (sdata == NULL)
8481 return FALSE;
8482 sec->used_by_bfd = sdata;
8483 }
8484
8485 record_section_with_aarch64_elf_section_data (sec);
8486
8487 return _bfd_elf_new_section_hook (abfd, sec);
8488 }
8489
8490
8491 static void
8492 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8493 asection *sec,
8494 void *ignore ATTRIBUTE_UNUSED)
8495 {
8496 unrecord_section_with_aarch64_elf_section_data (sec);
8497 }
8498
8499 static bfd_boolean
8500 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8501 {
8502 if (abfd->sections)
8503 bfd_map_over_sections (abfd,
8504 unrecord_section_via_map_over_sections, NULL);
8505
8506 return _bfd_elf_close_and_cleanup (abfd);
8507 }
8508
8509 static bfd_boolean
8510 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8511 {
8512 if (abfd->sections)
8513 bfd_map_over_sections (abfd,
8514 unrecord_section_via_map_over_sections, NULL);
8515
8516 return _bfd_free_cached_info (abfd);
8517 }
8518
8519 /* Create dynamic sections. This is different from the ARM backend in that
8520 the got, plt, gotplt and their relocation sections are all created in the
8521 standard part of the bfd elf backend. */
8522
8523 static bfd_boolean
8524 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8525 struct bfd_link_info *info)
8526 {
8527 /* We need to create .got section. */
8528 if (!aarch64_elf_create_got_section (dynobj, info))
8529 return FALSE;
8530
8531 return _bfd_elf_create_dynamic_sections (dynobj, info);
8532 }
8533
8534
8535 /* Allocate space in .plt, .got and associated reloc sections for
8536 dynamic relocs. */
8537
8538 static bfd_boolean
8539 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8540 {
8541 struct bfd_link_info *info;
8542 struct elf_aarch64_link_hash_table *htab;
8543 struct elf_aarch64_link_hash_entry *eh;
8544 struct elf_dyn_relocs *p;
8545
8546 /* An example of a bfd_link_hash_indirect symbol is versioned
8547 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8548 -> __gxx_personality_v0(bfd_link_hash_defined)
8549
8550 There is no need to process bfd_link_hash_indirect symbols here
8551 because we will also be presented with the concrete instance of
8552 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8553 called to copy all relevant data from the generic to the concrete
8554 symbol instance. */
8555 if (h->root.type == bfd_link_hash_indirect)
8556 return TRUE;
8557
8558 if (h->root.type == bfd_link_hash_warning)
8559 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8560
8561 info = (struct bfd_link_info *) inf;
8562 htab = elf_aarch64_hash_table (info);
8563
8564 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8565 here if it is defined and referenced in a non-shared object. */
8566 if (h->type == STT_GNU_IFUNC
8567 && h->def_regular)
8568 return TRUE;
8569 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8570 {
8571 /* Make sure this symbol is output as a dynamic symbol.
8572 Undefined weak syms won't yet be marked as dynamic. */
8573 if (h->dynindx == -1 && !h->forced_local
8574 && h->root.type == bfd_link_hash_undefweak)
8575 {
8576 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8577 return FALSE;
8578 }
8579
8580 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8581 {
8582 asection *s = htab->root.splt;
8583
8584 /* If this is the first .plt entry, make room for the special
8585 first entry. */
8586 if (s->size == 0)
8587 s->size += htab->plt_header_size;
8588
8589 h->plt.offset = s->size;
8590
8591 /* If this symbol is not defined in a regular file, and we are
8592 not generating a shared library, then set the symbol to this
8593 location in the .plt. This is required to make function
8594 pointers compare as equal between the normal executable and
8595 the shared library. */
8596 if (!bfd_link_pic (info) && !h->def_regular)
8597 {
8598 h->root.u.def.section = s;
8599 h->root.u.def.value = h->plt.offset;
8600 }
8601
8602 /* Make room for this entry. For now we only create the
8603 small model PLT entries. We later need to find a way
8604 of relaxing into these from the large model PLT entries. */
8605 s->size += htab->plt_entry_size;
8606
8607 /* We also need to make an entry in the .got.plt section, which
8608 will be placed in the .got section by the linker script. */
8609 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8610
8611 /* We also need to make an entry in the .rela.plt section. */
8612 htab->root.srelplt->size += RELOC_SIZE (htab);
8613
8614 /* We need to ensure that all GOT entries that serve the PLT
8615 are consecutive with the special GOT slots [0] [1] and
8616 [2]. Any addtional relocations, such as
8617 R_AARCH64_TLSDESC, must be placed after the PLT related
8618 entries. We abuse the reloc_count such that during
8619 sizing we adjust reloc_count to indicate the number of
8620 PLT related reserved entries. In subsequent phases when
8621 filling in the contents of the reloc entries, PLT related
8622 entries are placed by computing their PLT index (0
8623 .. reloc_count). While other none PLT relocs are placed
8624 at the slot indicated by reloc_count and reloc_count is
8625 updated. */
8626
8627 htab->root.srelplt->reloc_count++;
8628
8629 /* Mark the DSO in case R_<CLS>_JUMP_SLOT relocs against
8630 variant PCS symbols are present. */
8631 if (h->other & STO_AARCH64_VARIANT_PCS)
8632 htab->variant_pcs = 1;
8633
8634 }
8635 else
8636 {
8637 h->plt.offset = (bfd_vma) - 1;
8638 h->needs_plt = 0;
8639 }
8640 }
8641 else
8642 {
8643 h->plt.offset = (bfd_vma) - 1;
8644 h->needs_plt = 0;
8645 }
8646
8647 eh = (struct elf_aarch64_link_hash_entry *) h;
8648 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8649
8650 if (h->got.refcount > 0)
8651 {
8652 bfd_boolean dyn;
8653 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8654
8655 h->got.offset = (bfd_vma) - 1;
8656
8657 dyn = htab->root.dynamic_sections_created;
8658
8659 /* Make sure this symbol is output as a dynamic symbol.
8660 Undefined weak syms won't yet be marked as dynamic. */
8661 if (dyn && h->dynindx == -1 && !h->forced_local
8662 && h->root.type == bfd_link_hash_undefweak)
8663 {
8664 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8665 return FALSE;
8666 }
8667
8668 if (got_type == GOT_UNKNOWN)
8669 {
8670 }
8671 else if (got_type == GOT_NORMAL)
8672 {
8673 h->got.offset = htab->root.sgot->size;
8674 htab->root.sgot->size += GOT_ENTRY_SIZE;
8675 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8676 || h->root.type != bfd_link_hash_undefweak)
8677 && (bfd_link_pic (info)
8678 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8679 /* Undefined weak symbol in static PIE resolves to 0 without
8680 any dynamic relocations. */
8681 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8682 {
8683 htab->root.srelgot->size += RELOC_SIZE (htab);
8684 }
8685 }
8686 else
8687 {
8688 int indx;
8689 if (got_type & GOT_TLSDESC_GD)
8690 {
8691 eh->tlsdesc_got_jump_table_offset =
8692 (htab->root.sgotplt->size
8693 - aarch64_compute_jump_table_size (htab));
8694 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8695 h->got.offset = (bfd_vma) - 2;
8696 }
8697
8698 if (got_type & GOT_TLS_GD)
8699 {
8700 h->got.offset = htab->root.sgot->size;
8701 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8702 }
8703
8704 if (got_type & GOT_TLS_IE)
8705 {
8706 h->got.offset = htab->root.sgot->size;
8707 htab->root.sgot->size += GOT_ENTRY_SIZE;
8708 }
8709
8710 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8711 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8712 || h->root.type != bfd_link_hash_undefweak)
8713 && (!bfd_link_executable (info)
8714 || indx != 0
8715 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8716 {
8717 if (got_type & GOT_TLSDESC_GD)
8718 {
8719 htab->root.srelplt->size += RELOC_SIZE (htab);
8720 /* Note reloc_count not incremented here! We have
8721 already adjusted reloc_count for this relocation
8722 type. */
8723
8724 /* TLSDESC PLT is now needed, but not yet determined. */
8725 htab->tlsdesc_plt = (bfd_vma) - 1;
8726 }
8727
8728 if (got_type & GOT_TLS_GD)
8729 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8730
8731 if (got_type & GOT_TLS_IE)
8732 htab->root.srelgot->size += RELOC_SIZE (htab);
8733 }
8734 }
8735 }
8736 else
8737 {
8738 h->got.offset = (bfd_vma) - 1;
8739 }
8740
8741 if (eh->dyn_relocs == NULL)
8742 return TRUE;
8743
8744 /* In the shared -Bsymbolic case, discard space allocated for
8745 dynamic pc-relative relocs against symbols which turn out to be
8746 defined in regular objects. For the normal shared case, discard
8747 space for pc-relative relocs that have become local due to symbol
8748 visibility changes. */
8749
8750 if (bfd_link_pic (info))
8751 {
8752 /* Relocs that use pc_count are those that appear on a call
8753 insn, or certain REL relocs that can generated via assembly.
8754 We want calls to protected symbols to resolve directly to the
8755 function rather than going via the plt. If people want
8756 function pointer comparisons to work as expected then they
8757 should avoid writing weird assembly. */
8758 if (SYMBOL_CALLS_LOCAL (info, h))
8759 {
8760 struct elf_dyn_relocs **pp;
8761
8762 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8763 {
8764 p->count -= p->pc_count;
8765 p->pc_count = 0;
8766 if (p->count == 0)
8767 *pp = p->next;
8768 else
8769 pp = &p->next;
8770 }
8771 }
8772
8773 /* Also discard relocs on undefined weak syms with non-default
8774 visibility. */
8775 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8776 {
8777 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8778 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8779 eh->dyn_relocs = NULL;
8780
8781 /* Make sure undefined weak symbols are output as a dynamic
8782 symbol in PIEs. */
8783 else if (h->dynindx == -1
8784 && !h->forced_local
8785 && h->root.type == bfd_link_hash_undefweak
8786 && !bfd_elf_link_record_dynamic_symbol (info, h))
8787 return FALSE;
8788 }
8789
8790 }
8791 else if (ELIMINATE_COPY_RELOCS)
8792 {
8793 /* For the non-shared case, discard space for relocs against
8794 symbols which turn out to need copy relocs or are not
8795 dynamic. */
8796
8797 if (!h->non_got_ref
8798 && ((h->def_dynamic
8799 && !h->def_regular)
8800 || (htab->root.dynamic_sections_created
8801 && (h->root.type == bfd_link_hash_undefweak
8802 || h->root.type == bfd_link_hash_undefined))))
8803 {
8804 /* Make sure this symbol is output as a dynamic symbol.
8805 Undefined weak syms won't yet be marked as dynamic. */
8806 if (h->dynindx == -1
8807 && !h->forced_local
8808 && h->root.type == bfd_link_hash_undefweak
8809 && !bfd_elf_link_record_dynamic_symbol (info, h))
8810 return FALSE;
8811
8812 /* If that succeeded, we know we'll be keeping all the
8813 relocs. */
8814 if (h->dynindx != -1)
8815 goto keep;
8816 }
8817
8818 eh->dyn_relocs = NULL;
8819
8820 keep:;
8821 }
8822
8823 /* Finally, allocate space. */
8824 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8825 {
8826 asection *sreloc;
8827
8828 sreloc = elf_section_data (p->sec)->sreloc;
8829
8830 BFD_ASSERT (sreloc != NULL);
8831
8832 sreloc->size += p->count * RELOC_SIZE (htab);
8833 }
8834
8835 return TRUE;
8836 }
8837
8838 /* Allocate space in .plt, .got and associated reloc sections for
8839 ifunc dynamic relocs. */
8840
8841 static bfd_boolean
8842 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8843 void *inf)
8844 {
8845 struct bfd_link_info *info;
8846 struct elf_aarch64_link_hash_table *htab;
8847 struct elf_aarch64_link_hash_entry *eh;
8848
8849 /* An example of a bfd_link_hash_indirect symbol is versioned
8850 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8851 -> __gxx_personality_v0(bfd_link_hash_defined)
8852
8853 There is no need to process bfd_link_hash_indirect symbols here
8854 because we will also be presented with the concrete instance of
8855 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8856 called to copy all relevant data from the generic to the concrete
8857 symbol instance. */
8858 if (h->root.type == bfd_link_hash_indirect)
8859 return TRUE;
8860
8861 if (h->root.type == bfd_link_hash_warning)
8862 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8863
8864 info = (struct bfd_link_info *) inf;
8865 htab = elf_aarch64_hash_table (info);
8866
8867 eh = (struct elf_aarch64_link_hash_entry *) h;
8868
8869 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8870 here if it is defined and referenced in a non-shared object. */
8871 if (h->type == STT_GNU_IFUNC
8872 && h->def_regular)
8873 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8874 &eh->dyn_relocs,
8875 NULL,
8876 htab->plt_entry_size,
8877 htab->plt_header_size,
8878 GOT_ENTRY_SIZE,
8879 FALSE);
8880 return TRUE;
8881 }
8882
8883 /* Allocate space in .plt, .got and associated reloc sections for
8884 local ifunc dynamic relocs. */
8885
8886 static bfd_boolean
8887 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8888 {
8889 struct elf_link_hash_entry *h
8890 = (struct elf_link_hash_entry *) *slot;
8891
8892 if (h->type != STT_GNU_IFUNC
8893 || !h->def_regular
8894 || !h->ref_regular
8895 || !h->forced_local
8896 || h->root.type != bfd_link_hash_defined)
8897 abort ();
8898
8899 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8900 }
8901
8902 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8903 read-only sections. */
8904
8905 static bfd_boolean
8906 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8907 {
8908 asection *sec;
8909
8910 if (h->root.type == bfd_link_hash_indirect)
8911 return TRUE;
8912
8913 sec = readonly_dynrelocs (h);
8914 if (sec != NULL)
8915 {
8916 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8917
8918 info->flags |= DF_TEXTREL;
8919 info->callbacks->minfo
8920 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8921 sec->owner, h->root.root.string, sec);
8922
8923 /* Not an error, just cut short the traversal. */
8924 return FALSE;
8925 }
8926 return TRUE;
8927 }
8928
8929 /* This is the most important function of all . Innocuosly named
8930 though ! */
8931
8932 static bfd_boolean
8933 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8934 struct bfd_link_info *info)
8935 {
8936 struct elf_aarch64_link_hash_table *htab;
8937 bfd *dynobj;
8938 asection *s;
8939 bfd_boolean relocs;
8940 bfd *ibfd;
8941
8942 htab = elf_aarch64_hash_table ((info));
8943 dynobj = htab->root.dynobj;
8944
8945 BFD_ASSERT (dynobj != NULL);
8946
8947 if (htab->root.dynamic_sections_created)
8948 {
8949 if (bfd_link_executable (info) && !info->nointerp)
8950 {
8951 s = bfd_get_linker_section (dynobj, ".interp");
8952 if (s == NULL)
8953 abort ();
8954 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8955 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8956 }
8957 }
8958
8959 /* Set up .got offsets for local syms, and space for local dynamic
8960 relocs. */
8961 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8962 {
8963 struct elf_aarch64_local_symbol *locals = NULL;
8964 Elf_Internal_Shdr *symtab_hdr;
8965 asection *srel;
8966 unsigned int i;
8967
8968 if (!is_aarch64_elf (ibfd))
8969 continue;
8970
8971 for (s = ibfd->sections; s != NULL; s = s->next)
8972 {
8973 struct elf_dyn_relocs *p;
8974
8975 for (p = (struct elf_dyn_relocs *)
8976 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8977 {
8978 if (!bfd_is_abs_section (p->sec)
8979 && bfd_is_abs_section (p->sec->output_section))
8980 {
8981 /* Input section has been discarded, either because
8982 it is a copy of a linkonce section or due to
8983 linker script /DISCARD/, so we'll be discarding
8984 the relocs too. */
8985 }
8986 else if (p->count != 0)
8987 {
8988 srel = elf_section_data (p->sec)->sreloc;
8989 srel->size += p->count * RELOC_SIZE (htab);
8990 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8991 info->flags |= DF_TEXTREL;
8992 }
8993 }
8994 }
8995
8996 locals = elf_aarch64_locals (ibfd);
8997 if (!locals)
8998 continue;
8999
9000 symtab_hdr = &elf_symtab_hdr (ibfd);
9001 srel = htab->root.srelgot;
9002 for (i = 0; i < symtab_hdr->sh_info; i++)
9003 {
9004 locals[i].got_offset = (bfd_vma) - 1;
9005 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
9006 if (locals[i].got_refcount > 0)
9007 {
9008 unsigned got_type = locals[i].got_type;
9009 if (got_type & GOT_TLSDESC_GD)
9010 {
9011 locals[i].tlsdesc_got_jump_table_offset =
9012 (htab->root.sgotplt->size
9013 - aarch64_compute_jump_table_size (htab));
9014 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
9015 locals[i].got_offset = (bfd_vma) - 2;
9016 }
9017
9018 if (got_type & GOT_TLS_GD)
9019 {
9020 locals[i].got_offset = htab->root.sgot->size;
9021 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
9022 }
9023
9024 if (got_type & GOT_TLS_IE
9025 || got_type & GOT_NORMAL)
9026 {
9027 locals[i].got_offset = htab->root.sgot->size;
9028 htab->root.sgot->size += GOT_ENTRY_SIZE;
9029 }
9030
9031 if (got_type == GOT_UNKNOWN)
9032 {
9033 }
9034
9035 if (bfd_link_pic (info))
9036 {
9037 if (got_type & GOT_TLSDESC_GD)
9038 {
9039 htab->root.srelplt->size += RELOC_SIZE (htab);
9040 /* Note RELOC_COUNT not incremented here! */
9041 htab->tlsdesc_plt = (bfd_vma) - 1;
9042 }
9043
9044 if (got_type & GOT_TLS_GD)
9045 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
9046
9047 if (got_type & GOT_TLS_IE
9048 || got_type & GOT_NORMAL)
9049 htab->root.srelgot->size += RELOC_SIZE (htab);
9050 }
9051 }
9052 else
9053 {
9054 locals[i].got_refcount = (bfd_vma) - 1;
9055 }
9056 }
9057 }
9058
9059
9060 /* Allocate global sym .plt and .got entries, and space for global
9061 sym dynamic relocs. */
9062 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
9063 info);
9064
9065 /* Allocate global ifunc sym .plt and .got entries, and space for global
9066 ifunc sym dynamic relocs. */
9067 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
9068 info);
9069
9070 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
9071 htab_traverse (htab->loc_hash_table,
9072 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
9073 info);
9074
9075 /* For every jump slot reserved in the sgotplt, reloc_count is
9076 incremented. However, when we reserve space for TLS descriptors,
9077 it's not incremented, so in order to compute the space reserved
9078 for them, it suffices to multiply the reloc count by the jump
9079 slot size. */
9080
9081 if (htab->root.srelplt)
9082 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
9083
9084 if (htab->tlsdesc_plt)
9085 {
9086 if (htab->root.splt->size == 0)
9087 htab->root.splt->size += htab->plt_header_size;
9088
9089 /* If we're not using lazy TLS relocations, don't generate the
9090 GOT and PLT entry required. */
9091 if (!(info->flags & DF_BIND_NOW))
9092 {
9093 htab->tlsdesc_plt = htab->root.splt->size;
9094 htab->root.splt->size += htab->tlsdesc_plt_entry_size;
9095
9096 htab->dt_tlsdesc_got = htab->root.sgot->size;
9097 htab->root.sgot->size += GOT_ENTRY_SIZE;
9098 }
9099 }
9100
9101 /* Init mapping symbols information to use later to distingush between
9102 code and data while scanning for errata. */
9103 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
9104 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9105 {
9106 if (!is_aarch64_elf (ibfd))
9107 continue;
9108 bfd_elfNN_aarch64_init_maps (ibfd);
9109 }
9110
9111 /* We now have determined the sizes of the various dynamic sections.
9112 Allocate memory for them. */
9113 relocs = FALSE;
9114 for (s = dynobj->sections; s != NULL; s = s->next)
9115 {
9116 if ((s->flags & SEC_LINKER_CREATED) == 0)
9117 continue;
9118
9119 if (s == htab->root.splt
9120 || s == htab->root.sgot
9121 || s == htab->root.sgotplt
9122 || s == htab->root.iplt
9123 || s == htab->root.igotplt
9124 || s == htab->root.sdynbss
9125 || s == htab->root.sdynrelro)
9126 {
9127 /* Strip this section if we don't need it; see the
9128 comment below. */
9129 }
9130 else if (CONST_STRNEQ (bfd_section_name (s), ".rela"))
9131 {
9132 if (s->size != 0 && s != htab->root.srelplt)
9133 relocs = TRUE;
9134
9135 /* We use the reloc_count field as a counter if we need
9136 to copy relocs into the output file. */
9137 if (s != htab->root.srelplt)
9138 s->reloc_count = 0;
9139 }
9140 else
9141 {
9142 /* It's not one of our sections, so don't allocate space. */
9143 continue;
9144 }
9145
9146 if (s->size == 0)
9147 {
9148 /* If we don't need this section, strip it from the
9149 output file. This is mostly to handle .rela.bss and
9150 .rela.plt. We must create both sections in
9151 create_dynamic_sections, because they must be created
9152 before the linker maps input sections to output
9153 sections. The linker does that before
9154 adjust_dynamic_symbol is called, and it is that
9155 function which decides whether anything needs to go
9156 into these sections. */
9157 s->flags |= SEC_EXCLUDE;
9158 continue;
9159 }
9160
9161 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9162 continue;
9163
9164 /* Allocate memory for the section contents. We use bfd_zalloc
9165 here in case unused entries are not reclaimed before the
9166 section's contents are written out. This should not happen,
9167 but this way if it does, we get a R_AARCH64_NONE reloc instead
9168 of garbage. */
9169 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9170 if (s->contents == NULL)
9171 return FALSE;
9172 }
9173
9174 if (htab->root.dynamic_sections_created)
9175 {
9176 /* Add some entries to the .dynamic section. We fill in the
9177 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9178 must add the entries now so that we get the correct size for
9179 the .dynamic section. The DT_DEBUG entry is filled in by the
9180 dynamic linker and used by the debugger. */
9181 #define add_dynamic_entry(TAG, VAL) \
9182 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9183
9184 if (bfd_link_executable (info))
9185 {
9186 if (!add_dynamic_entry (DT_DEBUG, 0))
9187 return FALSE;
9188 }
9189
9190 if (htab->root.splt->size != 0)
9191 {
9192 if (!add_dynamic_entry (DT_PLTGOT, 0)
9193 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9194 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9195 || !add_dynamic_entry (DT_JMPREL, 0))
9196 return FALSE;
9197
9198 if (htab->variant_pcs
9199 && !add_dynamic_entry (DT_AARCH64_VARIANT_PCS, 0))
9200 return FALSE;
9201
9202 if (htab->tlsdesc_plt
9203 && !(info->flags & DF_BIND_NOW)
9204 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
9205 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
9206 return FALSE;
9207
9208 if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI_PAC)
9209 && (!add_dynamic_entry (DT_AARCH64_BTI_PLT, 0)
9210 || !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0)))
9211 return FALSE;
9212
9213 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9214 && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9215 return FALSE;
9216
9217 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_PAC)
9218 && !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0))
9219 return FALSE;
9220 }
9221
9222 if (relocs)
9223 {
9224 if (!add_dynamic_entry (DT_RELA, 0)
9225 || !add_dynamic_entry (DT_RELASZ, 0)
9226 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9227 return FALSE;
9228
9229 /* If any dynamic relocs apply to a read-only section,
9230 then we need a DT_TEXTREL entry. */
9231 if ((info->flags & DF_TEXTREL) == 0)
9232 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
9233
9234 if ((info->flags & DF_TEXTREL) != 0)
9235 {
9236 if (!add_dynamic_entry (DT_TEXTREL, 0))
9237 return FALSE;
9238 }
9239 }
9240 }
9241 #undef add_dynamic_entry
9242
9243 return TRUE;
9244 }
9245
9246 static inline void
9247 elf_aarch64_update_plt_entry (bfd *output_bfd,
9248 bfd_reloc_code_real_type r_type,
9249 bfd_byte *plt_entry, bfd_vma value)
9250 {
9251 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9252
9253 /* FIXME: We should check the return value from this function call. */
9254 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9255 }
9256
9257 static void
9258 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9259 struct elf_aarch64_link_hash_table
9260 *htab, bfd *output_bfd,
9261 struct bfd_link_info *info)
9262 {
9263 bfd_byte *plt_entry;
9264 bfd_vma plt_index;
9265 bfd_vma got_offset;
9266 bfd_vma gotplt_entry_address;
9267 bfd_vma plt_entry_address;
9268 Elf_Internal_Rela rela;
9269 bfd_byte *loc;
9270 asection *plt, *gotplt, *relplt;
9271
9272 /* When building a static executable, use .iplt, .igot.plt and
9273 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9274 if (htab->root.splt != NULL)
9275 {
9276 plt = htab->root.splt;
9277 gotplt = htab->root.sgotplt;
9278 relplt = htab->root.srelplt;
9279 }
9280 else
9281 {
9282 plt = htab->root.iplt;
9283 gotplt = htab->root.igotplt;
9284 relplt = htab->root.irelplt;
9285 }
9286
9287 /* Get the index in the procedure linkage table which
9288 corresponds to this symbol. This is the index of this symbol
9289 in all the symbols for which we are making plt entries. The
9290 first entry in the procedure linkage table is reserved.
9291
9292 Get the offset into the .got table of the entry that
9293 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9294 bytes. The first three are reserved for the dynamic linker.
9295
9296 For static executables, we don't reserve anything. */
9297
9298 if (plt == htab->root.splt)
9299 {
9300 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9301 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9302 }
9303 else
9304 {
9305 plt_index = h->plt.offset / htab->plt_entry_size;
9306 got_offset = plt_index * GOT_ENTRY_SIZE;
9307 }
9308
9309 plt_entry = plt->contents + h->plt.offset;
9310 plt_entry_address = plt->output_section->vma
9311 + plt->output_offset + h->plt.offset;
9312 gotplt_entry_address = gotplt->output_section->vma +
9313 gotplt->output_offset + got_offset;
9314
9315 /* Copy in the boiler-plate for the PLTn entry. */
9316 memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9317
9318 /* First instruction in BTI enabled PLT stub is a BTI
9319 instruction so skip it. */
9320 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9321 && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9322 plt_entry = plt_entry + 4;
9323
9324 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9325 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9326 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9327 plt_entry,
9328 PG (gotplt_entry_address) -
9329 PG (plt_entry_address));
9330
9331 /* Fill in the lo12 bits for the load from the pltgot. */
9332 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9333 plt_entry + 4,
9334 PG_OFFSET (gotplt_entry_address));
9335
9336 /* Fill in the lo12 bits for the add from the pltgot entry. */
9337 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9338 plt_entry + 8,
9339 PG_OFFSET (gotplt_entry_address));
9340
9341 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9342 bfd_put_NN (output_bfd,
9343 plt->output_section->vma + plt->output_offset,
9344 gotplt->contents + got_offset);
9345
9346 rela.r_offset = gotplt_entry_address;
9347
9348 if (h->dynindx == -1
9349 || ((bfd_link_executable (info)
9350 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9351 && h->def_regular
9352 && h->type == STT_GNU_IFUNC))
9353 {
9354 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9355 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9356 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9357 rela.r_addend = (h->root.u.def.value
9358 + h->root.u.def.section->output_section->vma
9359 + h->root.u.def.section->output_offset);
9360 }
9361 else
9362 {
9363 /* Fill in the entry in the .rela.plt section. */
9364 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9365 rela.r_addend = 0;
9366 }
9367
9368 /* Compute the relocation entry to used based on PLT index and do
9369 not adjust reloc_count. The reloc_count has already been adjusted
9370 to account for this entry. */
9371 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9372 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9373 }
9374
9375 /* Size sections even though they're not dynamic. We use it to setup
9376 _TLS_MODULE_BASE_, if needed. */
9377
9378 static bfd_boolean
9379 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9380 struct bfd_link_info *info)
9381 {
9382 asection *tls_sec;
9383
9384 if (bfd_link_relocatable (info))
9385 return TRUE;
9386
9387 tls_sec = elf_hash_table (info)->tls_sec;
9388
9389 if (tls_sec)
9390 {
9391 struct elf_link_hash_entry *tlsbase;
9392
9393 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9394 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9395
9396 if (tlsbase)
9397 {
9398 struct bfd_link_hash_entry *h = NULL;
9399 const struct elf_backend_data *bed =
9400 get_elf_backend_data (output_bfd);
9401
9402 if (!(_bfd_generic_link_add_one_symbol
9403 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9404 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9405 return FALSE;
9406
9407 tlsbase->type = STT_TLS;
9408 tlsbase = (struct elf_link_hash_entry *) h;
9409 tlsbase->def_regular = 1;
9410 tlsbase->other = STV_HIDDEN;
9411 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9412 }
9413 }
9414
9415 return TRUE;
9416 }
9417
9418 /* Finish up dynamic symbol handling. We set the contents of various
9419 dynamic sections here. */
9420
9421 static bfd_boolean
9422 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9423 struct bfd_link_info *info,
9424 struct elf_link_hash_entry *h,
9425 Elf_Internal_Sym *sym)
9426 {
9427 struct elf_aarch64_link_hash_table *htab;
9428 htab = elf_aarch64_hash_table (info);
9429
9430 if (h->plt.offset != (bfd_vma) - 1)
9431 {
9432 asection *plt, *gotplt, *relplt;
9433
9434 /* This symbol has an entry in the procedure linkage table. Set
9435 it up. */
9436
9437 /* When building a static executable, use .iplt, .igot.plt and
9438 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9439 if (htab->root.splt != NULL)
9440 {
9441 plt = htab->root.splt;
9442 gotplt = htab->root.sgotplt;
9443 relplt = htab->root.srelplt;
9444 }
9445 else
9446 {
9447 plt = htab->root.iplt;
9448 gotplt = htab->root.igotplt;
9449 relplt = htab->root.irelplt;
9450 }
9451
9452 /* This symbol has an entry in the procedure linkage table. Set
9453 it up. */
9454 if ((h->dynindx == -1
9455 && !((h->forced_local || bfd_link_executable (info))
9456 && h->def_regular
9457 && h->type == STT_GNU_IFUNC))
9458 || plt == NULL
9459 || gotplt == NULL
9460 || relplt == NULL)
9461 return FALSE;
9462
9463 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9464 if (!h->def_regular)
9465 {
9466 /* Mark the symbol as undefined, rather than as defined in
9467 the .plt section. */
9468 sym->st_shndx = SHN_UNDEF;
9469 /* If the symbol is weak we need to clear the value.
9470 Otherwise, the PLT entry would provide a definition for
9471 the symbol even if the symbol wasn't defined anywhere,
9472 and so the symbol would never be NULL. Leave the value if
9473 there were any relocations where pointer equality matters
9474 (this is a clue for the dynamic linker, to make function
9475 pointer comparisons work between an application and shared
9476 library). */
9477 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9478 sym->st_value = 0;
9479 }
9480 }
9481
9482 if (h->got.offset != (bfd_vma) - 1
9483 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9484 /* Undefined weak symbol in static PIE resolves to 0 without
9485 any dynamic relocations. */
9486 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9487 {
9488 Elf_Internal_Rela rela;
9489 bfd_byte *loc;
9490
9491 /* This symbol has an entry in the global offset table. Set it
9492 up. */
9493 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9494 abort ();
9495
9496 rela.r_offset = (htab->root.sgot->output_section->vma
9497 + htab->root.sgot->output_offset
9498 + (h->got.offset & ~(bfd_vma) 1));
9499
9500 if (h->def_regular
9501 && h->type == STT_GNU_IFUNC)
9502 {
9503 if (bfd_link_pic (info))
9504 {
9505 /* Generate R_AARCH64_GLOB_DAT. */
9506 goto do_glob_dat;
9507 }
9508 else
9509 {
9510 asection *plt;
9511
9512 if (!h->pointer_equality_needed)
9513 abort ();
9514
9515 /* For non-shared object, we can't use .got.plt, which
9516 contains the real function address if we need pointer
9517 equality. We load the GOT entry with the PLT entry. */
9518 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9519 bfd_put_NN (output_bfd, (plt->output_section->vma
9520 + plt->output_offset
9521 + h->plt.offset),
9522 htab->root.sgot->contents
9523 + (h->got.offset & ~(bfd_vma) 1));
9524 return TRUE;
9525 }
9526 }
9527 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9528 {
9529 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9530 return FALSE;
9531
9532 BFD_ASSERT ((h->got.offset & 1) != 0);
9533 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9534 rela.r_addend = (h->root.u.def.value
9535 + h->root.u.def.section->output_section->vma
9536 + h->root.u.def.section->output_offset);
9537 }
9538 else
9539 {
9540 do_glob_dat:
9541 BFD_ASSERT ((h->got.offset & 1) == 0);
9542 bfd_put_NN (output_bfd, (bfd_vma) 0,
9543 htab->root.sgot->contents + h->got.offset);
9544 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9545 rela.r_addend = 0;
9546 }
9547
9548 loc = htab->root.srelgot->contents;
9549 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9550 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9551 }
9552
9553 if (h->needs_copy)
9554 {
9555 Elf_Internal_Rela rela;
9556 asection *s;
9557 bfd_byte *loc;
9558
9559 /* This symbol needs a copy reloc. Set it up. */
9560 if (h->dynindx == -1
9561 || (h->root.type != bfd_link_hash_defined
9562 && h->root.type != bfd_link_hash_defweak)
9563 || htab->root.srelbss == NULL)
9564 abort ();
9565
9566 rela.r_offset = (h->root.u.def.value
9567 + h->root.u.def.section->output_section->vma
9568 + h->root.u.def.section->output_offset);
9569 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9570 rela.r_addend = 0;
9571 if (h->root.u.def.section == htab->root.sdynrelro)
9572 s = htab->root.sreldynrelro;
9573 else
9574 s = htab->root.srelbss;
9575 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9576 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9577 }
9578
9579 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9580 be NULL for local symbols. */
9581 if (sym != NULL
9582 && (h == elf_hash_table (info)->hdynamic
9583 || h == elf_hash_table (info)->hgot))
9584 sym->st_shndx = SHN_ABS;
9585
9586 return TRUE;
9587 }
9588
9589 /* Finish up local dynamic symbol handling. We set the contents of
9590 various dynamic sections here. */
9591
9592 static bfd_boolean
9593 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9594 {
9595 struct elf_link_hash_entry *h
9596 = (struct elf_link_hash_entry *) *slot;
9597 struct bfd_link_info *info
9598 = (struct bfd_link_info *) inf;
9599
9600 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9601 info, h, NULL);
9602 }
9603
9604 static void
9605 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9606 struct elf_aarch64_link_hash_table
9607 *htab)
9608 {
9609 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9610 small and large plts and at the minute just generates
9611 the small PLT. */
9612
9613 /* PLT0 of the small PLT looks like this in ELF64 -
9614 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9615 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9616 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9617 // symbol resolver
9618 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9619 // GOTPLT entry for this.
9620 br x17
9621 PLT0 will be slightly different in ELF32 due to different got entry
9622 size. */
9623 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9624 bfd_vma plt_base;
9625
9626
9627 memcpy (htab->root.splt->contents, htab->plt0_entry,
9628 htab->plt_header_size);
9629 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9630 htab->plt_header_size;
9631
9632 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9633 + htab->root.sgotplt->output_offset
9634 + GOT_ENTRY_SIZE * 2);
9635
9636 plt_base = htab->root.splt->output_section->vma +
9637 htab->root.splt->output_offset;
9638
9639 /* First instruction in BTI enabled PLT stub is a BTI
9640 instruction so skip it. */
9641 bfd_byte *plt0_entry = htab->root.splt->contents;
9642 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9643 plt0_entry = plt0_entry + 4;
9644
9645 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9646 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9647 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9648 plt0_entry + 4,
9649 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9650
9651 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9652 plt0_entry + 8,
9653 PG_OFFSET (plt_got_2nd_ent));
9654
9655 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9656 plt0_entry + 12,
9657 PG_OFFSET (plt_got_2nd_ent));
9658 }
9659
9660 static bfd_boolean
9661 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9662 struct bfd_link_info *info)
9663 {
9664 struct elf_aarch64_link_hash_table *htab;
9665 bfd *dynobj;
9666 asection *sdyn;
9667
9668 htab = elf_aarch64_hash_table (info);
9669 dynobj = htab->root.dynobj;
9670 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9671
9672 if (htab->root.dynamic_sections_created)
9673 {
9674 ElfNN_External_Dyn *dyncon, *dynconend;
9675
9676 if (sdyn == NULL || htab->root.sgot == NULL)
9677 abort ();
9678
9679 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9680 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9681 for (; dyncon < dynconend; dyncon++)
9682 {
9683 Elf_Internal_Dyn dyn;
9684 asection *s;
9685
9686 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9687
9688 switch (dyn.d_tag)
9689 {
9690 default:
9691 continue;
9692
9693 case DT_PLTGOT:
9694 s = htab->root.sgotplt;
9695 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9696 break;
9697
9698 case DT_JMPREL:
9699 s = htab->root.srelplt;
9700 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9701 break;
9702
9703 case DT_PLTRELSZ:
9704 s = htab->root.srelplt;
9705 dyn.d_un.d_val = s->size;
9706 break;
9707
9708 case DT_TLSDESC_PLT:
9709 s = htab->root.splt;
9710 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9711 + htab->tlsdesc_plt;
9712 break;
9713
9714 case DT_TLSDESC_GOT:
9715 s = htab->root.sgot;
9716 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9717 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9718 + htab->dt_tlsdesc_got;
9719 break;
9720 }
9721
9722 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9723 }
9724
9725 }
9726
9727 /* Fill in the special first entry in the procedure linkage table. */
9728 if (htab->root.splt && htab->root.splt->size > 0)
9729 {
9730 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9731
9732 elf_section_data (htab->root.splt->output_section)->
9733 this_hdr.sh_entsize = htab->plt_entry_size;
9734
9735
9736 if (htab->tlsdesc_plt && !(info->flags & DF_BIND_NOW))
9737 {
9738 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9739 bfd_put_NN (output_bfd, (bfd_vma) 0,
9740 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9741
9742 const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9743 htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9744
9745 aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9746 if (type == PLT_BTI || type == PLT_BTI_PAC)
9747 {
9748 entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9749 }
9750
9751 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9752 entry, htab->tlsdesc_plt_entry_size);
9753
9754 {
9755 bfd_vma adrp1_addr =
9756 htab->root.splt->output_section->vma
9757 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9758
9759 bfd_vma adrp2_addr = adrp1_addr + 4;
9760
9761 bfd_vma got_addr =
9762 htab->root.sgot->output_section->vma
9763 + htab->root.sgot->output_offset;
9764
9765 bfd_vma pltgot_addr =
9766 htab->root.sgotplt->output_section->vma
9767 + htab->root.sgotplt->output_offset;
9768
9769 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9770
9771 bfd_byte *plt_entry =
9772 htab->root.splt->contents + htab->tlsdesc_plt;
9773
9774 /* First instruction in BTI enabled PLT stub is a BTI
9775 instruction so skip it. */
9776 if (type & PLT_BTI)
9777 {
9778 plt_entry = plt_entry + 4;
9779 adrp1_addr = adrp1_addr + 4;
9780 adrp2_addr = adrp2_addr + 4;
9781 }
9782
9783 /* adrp x2, DT_TLSDESC_GOT */
9784 elf_aarch64_update_plt_entry (output_bfd,
9785 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9786 plt_entry + 4,
9787 (PG (dt_tlsdesc_got)
9788 - PG (adrp1_addr)));
9789
9790 /* adrp x3, 0 */
9791 elf_aarch64_update_plt_entry (output_bfd,
9792 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9793 plt_entry + 8,
9794 (PG (pltgot_addr)
9795 - PG (adrp2_addr)));
9796
9797 /* ldr x2, [x2, #0] */
9798 elf_aarch64_update_plt_entry (output_bfd,
9799 BFD_RELOC_AARCH64_LDSTNN_LO12,
9800 plt_entry + 12,
9801 PG_OFFSET (dt_tlsdesc_got));
9802
9803 /* add x3, x3, 0 */
9804 elf_aarch64_update_plt_entry (output_bfd,
9805 BFD_RELOC_AARCH64_ADD_LO12,
9806 plt_entry + 16,
9807 PG_OFFSET (pltgot_addr));
9808 }
9809 }
9810 }
9811
9812 if (htab->root.sgotplt)
9813 {
9814 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9815 {
9816 _bfd_error_handler
9817 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9818 return FALSE;
9819 }
9820
9821 /* Fill in the first three entries in the global offset table. */
9822 if (htab->root.sgotplt->size > 0)
9823 {
9824 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9825
9826 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9827 bfd_put_NN (output_bfd,
9828 (bfd_vma) 0,
9829 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9830 bfd_put_NN (output_bfd,
9831 (bfd_vma) 0,
9832 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9833 }
9834
9835 if (htab->root.sgot)
9836 {
9837 if (htab->root.sgot->size > 0)
9838 {
9839 bfd_vma addr =
9840 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9841 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9842 }
9843 }
9844
9845 elf_section_data (htab->root.sgotplt->output_section)->
9846 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9847 }
9848
9849 if (htab->root.sgot && htab->root.sgot->size > 0)
9850 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9851 = GOT_ENTRY_SIZE;
9852
9853 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9854 htab_traverse (htab->loc_hash_table,
9855 elfNN_aarch64_finish_local_dynamic_symbol,
9856 info);
9857
9858 return TRUE;
9859 }
9860
9861 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
9862 static aarch64_plt_type
9863 get_plt_type (bfd *abfd)
9864 {
9865 aarch64_plt_type ret = PLT_NORMAL;
9866 bfd_byte *contents, *extdyn, *extdynend;
9867 asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9868 if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9869 return ret;
9870 extdyn = contents;
9871 extdynend = contents + sec->size;
9872 for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9873 {
9874 Elf_Internal_Dyn dyn;
9875 bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9876
9877 /* Let's check the processor specific dynamic array tags. */
9878 bfd_vma tag = dyn.d_tag;
9879 if (tag < DT_LOPROC || tag > DT_HIPROC)
9880 continue;
9881
9882 switch (tag)
9883 {
9884 case DT_AARCH64_BTI_PLT:
9885 ret |= PLT_BTI;
9886 break;
9887
9888 case DT_AARCH64_PAC_PLT:
9889 ret |= PLT_PAC;
9890 break;
9891
9892 default: break;
9893 }
9894 }
9895 free (contents);
9896 return ret;
9897 }
9898
9899 static long
9900 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9901 long symcount,
9902 asymbol **syms,
9903 long dynsymcount,
9904 asymbol **dynsyms,
9905 asymbol **ret)
9906 {
9907 elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9908 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9909 dynsymcount, dynsyms, ret);
9910 }
9911
9912 /* Return address for Ith PLT stub in section PLT, for relocation REL
9913 or (bfd_vma) -1 if it should not be included. */
9914
9915 static bfd_vma
9916 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9917 const arelent *rel ATTRIBUTE_UNUSED)
9918 {
9919 size_t plt0_size = PLT_ENTRY_SIZE;
9920 size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9921
9922 if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI_PAC)
9923 {
9924 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9925 pltn_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
9926 else
9927 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9928 }
9929 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9930 {
9931 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9932 pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9933 }
9934 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_PAC)
9935 {
9936 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9937 }
9938
9939 return plt->vma + plt0_size + i * pltn_size;
9940 }
9941
9942 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9943 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9944 It also allows a period initiated suffix to be added to the symbol, ie:
9945 "$[adtx]\.[:sym_char]+". */
9946
9947 static bfd_boolean
9948 is_aarch64_mapping_symbol (const char * name)
9949 {
9950 return name != NULL /* Paranoia. */
9951 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9952 the mapping symbols could have acquired a prefix.
9953 We do not support this here, since such symbols no
9954 longer conform to the ARM ELF ABI. */
9955 && (name[1] == 'd' || name[1] == 'x')
9956 && (name[2] == 0 || name[2] == '.');
9957 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9958 any characters that follow the period are legal characters for the body
9959 of a symbol's name. For now we just assume that this is the case. */
9960 }
9961
9962 /* Make sure that mapping symbols in object files are not removed via the
9963 "strip --strip-unneeded" tool. These symbols might needed in order to
9964 correctly generate linked files. Once an object file has been linked,
9965 it should be safe to remove them. */
9966
9967 static void
9968 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9969 {
9970 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9971 && sym->section != bfd_abs_section_ptr
9972 && is_aarch64_mapping_symbol (sym->name))
9973 sym->flags |= BSF_KEEP;
9974 }
9975
9976 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
9977 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
9978 for the effect of GNU properties of the output_bfd. */
9979 static bfd *
9980 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
9981 {
9982 uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9983 bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
9984 elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
9985 elf_aarch64_tdata (info->output_bfd)->plt_type
9986 |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
9987 setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
9988 return pbfd;
9989 }
9990
9991 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
9992 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
9993 for the effect of GNU properties of the output_bfd. */
9994 static bfd_boolean
9995 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
9996 bfd *abfd, bfd *bbfd,
9997 elf_property *aprop,
9998 elf_property *bprop)
9999 {
10000 uint32_t prop
10001 = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
10002
10003 /* If output has been marked with BTI using command line argument, give out
10004 warning if necessary. */
10005 /* Properties are merged per type, hence only check for warnings when merging
10006 GNU_PROPERTY_AARCH64_FEATURE_1_AND. */
10007 if (((aprop && aprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
10008 || (bprop && bprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND))
10009 && (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
10010 && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
10011 {
10012 if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
10013 || !aprop)
10014 {
10015 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
10016 "all inputs do not have BTI in NOTE section."),
10017 abfd);
10018 }
10019 if ((bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
10020 || !bprop)
10021 {
10022 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
10023 "all inputs do not have BTI in NOTE section."),
10024 bbfd);
10025 }
10026 }
10027
10028 return _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
10029 bprop, prop);
10030 }
10031
10032 /* We use this so we can override certain functions
10033 (though currently we don't). */
10034
10035 const struct elf_size_info elfNN_aarch64_size_info =
10036 {
10037 sizeof (ElfNN_External_Ehdr),
10038 sizeof (ElfNN_External_Phdr),
10039 sizeof (ElfNN_External_Shdr),
10040 sizeof (ElfNN_External_Rel),
10041 sizeof (ElfNN_External_Rela),
10042 sizeof (ElfNN_External_Sym),
10043 sizeof (ElfNN_External_Dyn),
10044 sizeof (Elf_External_Note),
10045 4, /* Hash table entry size. */
10046 1, /* Internal relocs per external relocs. */
10047 ARCH_SIZE, /* Arch size. */
10048 LOG_FILE_ALIGN, /* Log_file_align. */
10049 ELFCLASSNN, EV_CURRENT,
10050 bfd_elfNN_write_out_phdrs,
10051 bfd_elfNN_write_shdrs_and_ehdr,
10052 bfd_elfNN_checksum_contents,
10053 bfd_elfNN_write_relocs,
10054 bfd_elfNN_swap_symbol_in,
10055 bfd_elfNN_swap_symbol_out,
10056 bfd_elfNN_slurp_reloc_table,
10057 bfd_elfNN_slurp_symbol_table,
10058 bfd_elfNN_swap_dyn_in,
10059 bfd_elfNN_swap_dyn_out,
10060 bfd_elfNN_swap_reloc_in,
10061 bfd_elfNN_swap_reloc_out,
10062 bfd_elfNN_swap_reloca_in,
10063 bfd_elfNN_swap_reloca_out
10064 };
10065
10066 #define ELF_ARCH bfd_arch_aarch64
10067 #define ELF_MACHINE_CODE EM_AARCH64
10068 #define ELF_MAXPAGESIZE 0x10000
10069 #define ELF_MINPAGESIZE 0x1000
10070 #define ELF_COMMONPAGESIZE 0x1000
10071
10072 #define bfd_elfNN_close_and_cleanup \
10073 elfNN_aarch64_close_and_cleanup
10074
10075 #define bfd_elfNN_bfd_free_cached_info \
10076 elfNN_aarch64_bfd_free_cached_info
10077
10078 #define bfd_elfNN_bfd_is_target_special_symbol \
10079 elfNN_aarch64_is_target_special_symbol
10080
10081 #define bfd_elfNN_bfd_link_hash_table_create \
10082 elfNN_aarch64_link_hash_table_create
10083
10084 #define bfd_elfNN_bfd_merge_private_bfd_data \
10085 elfNN_aarch64_merge_private_bfd_data
10086
10087 #define bfd_elfNN_bfd_print_private_bfd_data \
10088 elfNN_aarch64_print_private_bfd_data
10089
10090 #define bfd_elfNN_bfd_reloc_type_lookup \
10091 elfNN_aarch64_reloc_type_lookup
10092
10093 #define bfd_elfNN_bfd_reloc_name_lookup \
10094 elfNN_aarch64_reloc_name_lookup
10095
10096 #define bfd_elfNN_bfd_set_private_flags \
10097 elfNN_aarch64_set_private_flags
10098
10099 #define bfd_elfNN_find_inliner_info \
10100 elfNN_aarch64_find_inliner_info
10101
10102 #define bfd_elfNN_get_synthetic_symtab \
10103 elfNN_aarch64_get_synthetic_symtab
10104
10105 #define bfd_elfNN_mkobject \
10106 elfNN_aarch64_mkobject
10107
10108 #define bfd_elfNN_new_section_hook \
10109 elfNN_aarch64_new_section_hook
10110
10111 #define elf_backend_adjust_dynamic_symbol \
10112 elfNN_aarch64_adjust_dynamic_symbol
10113
10114 #define elf_backend_always_size_sections \
10115 elfNN_aarch64_always_size_sections
10116
10117 #define elf_backend_check_relocs \
10118 elfNN_aarch64_check_relocs
10119
10120 #define elf_backend_copy_indirect_symbol \
10121 elfNN_aarch64_copy_indirect_symbol
10122
10123 #define elf_backend_merge_symbol_attribute \
10124 elfNN_aarch64_merge_symbol_attribute
10125
10126 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10127 to them in our hash. */
10128 #define elf_backend_create_dynamic_sections \
10129 elfNN_aarch64_create_dynamic_sections
10130
10131 #define elf_backend_init_index_section \
10132 _bfd_elf_init_2_index_sections
10133
10134 #define elf_backend_finish_dynamic_sections \
10135 elfNN_aarch64_finish_dynamic_sections
10136
10137 #define elf_backend_finish_dynamic_symbol \
10138 elfNN_aarch64_finish_dynamic_symbol
10139
10140 #define elf_backend_object_p \
10141 elfNN_aarch64_object_p
10142
10143 #define elf_backend_output_arch_local_syms \
10144 elfNN_aarch64_output_arch_local_syms
10145
10146 #define elf_backend_maybe_function_sym \
10147 elfNN_aarch64_maybe_function_sym
10148
10149 #define elf_backend_plt_sym_val \
10150 elfNN_aarch64_plt_sym_val
10151
10152 #define elf_backend_init_file_header \
10153 elfNN_aarch64_init_file_header
10154
10155 #define elf_backend_relocate_section \
10156 elfNN_aarch64_relocate_section
10157
10158 #define elf_backend_reloc_type_class \
10159 elfNN_aarch64_reloc_type_class
10160
10161 #define elf_backend_section_from_shdr \
10162 elfNN_aarch64_section_from_shdr
10163
10164 #define elf_backend_size_dynamic_sections \
10165 elfNN_aarch64_size_dynamic_sections
10166
10167 #define elf_backend_size_info \
10168 elfNN_aarch64_size_info
10169
10170 #define elf_backend_write_section \
10171 elfNN_aarch64_write_section
10172
10173 #define elf_backend_symbol_processing \
10174 elfNN_aarch64_backend_symbol_processing
10175
10176 #define elf_backend_setup_gnu_properties \
10177 elfNN_aarch64_link_setup_gnu_properties
10178
10179 #define elf_backend_merge_gnu_properties \
10180 elfNN_aarch64_merge_gnu_properties
10181
10182 #define elf_backend_can_refcount 1
10183 #define elf_backend_can_gc_sections 1
10184 #define elf_backend_plt_readonly 1
10185 #define elf_backend_want_got_plt 1
10186 #define elf_backend_want_plt_sym 0
10187 #define elf_backend_want_dynrelro 1
10188 #define elf_backend_may_use_rel_p 0
10189 #define elf_backend_may_use_rela_p 1
10190 #define elf_backend_default_use_rela_p 1
10191 #define elf_backend_rela_normal 1
10192 #define elf_backend_dtrel_excludes_plt 1
10193 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10194 #define elf_backend_default_execstack 0
10195 #define elf_backend_extern_protected_data 1
10196 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10197
10198 #undef elf_backend_obj_attrs_section
10199 #define elf_backend_obj_attrs_section ".ARM.attributes"
10200
10201 #include "elfNN-target.h"
10202
10203 /* CloudABI support. */
10204
10205 #undef TARGET_LITTLE_SYM
10206 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10207 #undef TARGET_LITTLE_NAME
10208 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10209 #undef TARGET_BIG_SYM
10210 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10211 #undef TARGET_BIG_NAME
10212 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10213
10214 #undef ELF_OSABI
10215 #define ELF_OSABI ELFOSABI_CLOUDABI
10216
10217 #undef elfNN_bed
10218 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10219
10220 #include "elfNN-target.h"
This page took 0.326392 seconds and 4 git commands to generate.