b00b6c4818f9b2620849f5f91d2b7052bd1788b9
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2020 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147 #include "cpu-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
221
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
245
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
259
260 #define ELIMINATE_COPY_RELOCS 1
261
262 /* Return size of a relocation entry. HTAB is the bfd's
263 elf_aarch64_link_hash_entry. */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
265
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE (32)
269 #define PLT_SMALL_ENTRY_SIZE (16)
270 #define PLT_TLSDESC_ENTRY_SIZE (32)
271 /* PLT sizes with BTI insn. */
272 #define PLT_BTI_SMALL_ENTRY_SIZE (24)
273 /* PLT sizes with PAC insn. */
274 #define PLT_PAC_SMALL_ENTRY_SIZE (24)
275 /* PLT sizes with BTI and PAC insn. */
276 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE (24)
277
278 /* Encoding of the nop instruction. */
279 #define INSN_NOP 0xd503201f
280
281 #define aarch64_compute_jump_table_size(htab) \
282 (((htab)->root.srelplt == NULL) ? 0 \
283 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
284
285 /* The first entry in a procedure linkage table looks like this
286 if the distance between the PLTGOT and the PLT is < 4GB use
287 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
288 in x16 and needs to work out PLTGOT[1] by using an address of
289 [x16,#-GOT_ENTRY_SIZE]. */
290 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
291 {
292 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
293 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
294 #if ARCH_SIZE == 64
295 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
296 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
297 #else
298 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
299 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
300 #endif
301 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
302 0x1f, 0x20, 0x03, 0xd5, /* nop */
303 0x1f, 0x20, 0x03, 0xd5, /* nop */
304 0x1f, 0x20, 0x03, 0xd5, /* nop */
305 };
306
307 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_ENTRY_SIZE] =
308 {
309 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
310 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
311 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
312 #if ARCH_SIZE == 64
313 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
314 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
315 #else
316 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
317 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
318 #endif
319 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
322 };
323
324 /* Per function entry in a procedure linkage table looks like this
325 if the distance between the PLTGOT and the PLT is < 4GB use
326 these PLT entries. Use BTI versions of the PLTs when enabled. */
327 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
328 {
329 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
330 #if ARCH_SIZE == 64
331 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
332 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
333 #else
334 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
335 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
336 #endif
337 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
338 };
339
340 static const bfd_byte
341 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
342 {
343 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
344 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
345 #if ARCH_SIZE == 64
346 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
347 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
348 #else
349 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
350 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
351 #endif
352 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
353 0x1f, 0x20, 0x03, 0xd5, /* nop */
354 };
355
356 static const bfd_byte
357 elfNN_aarch64_small_plt_pac_entry[PLT_PAC_SMALL_ENTRY_SIZE] =
358 {
359 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
360 #if ARCH_SIZE == 64
361 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
362 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
363 #else
364 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
365 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
366 #endif
367 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
368 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
369 0x1f, 0x20, 0x03, 0xd5, /* nop */
370 };
371
372 static const bfd_byte
373 elfNN_aarch64_small_plt_bti_pac_entry[PLT_BTI_PAC_SMALL_ENTRY_SIZE] =
374 {
375 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
376 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
377 #if ARCH_SIZE == 64
378 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
379 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
380 #else
381 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
382 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
383 #endif
384 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
385 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
386 };
387
388 static const bfd_byte
389 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
390 {
391 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
392 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
393 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
394 #if ARCH_SIZE == 64
395 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
396 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
397 #else
398 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
399 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
400 #endif
401 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
402 0x1f, 0x20, 0x03, 0xd5, /* nop */
403 0x1f, 0x20, 0x03, 0xd5, /* nop */
404 };
405
406 static const bfd_byte
407 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_TLSDESC_ENTRY_SIZE] =
408 {
409 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
410 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
411 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
412 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
413 #if ARCH_SIZE == 64
414 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
415 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
416 #else
417 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
418 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
419 #endif
420 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
421 0x1f, 0x20, 0x03, 0xd5, /* nop */
422 };
423
424 #define elf_info_to_howto elfNN_aarch64_info_to_howto
425 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
426
427 #define AARCH64_ELF_ABI_VERSION 0
428
429 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
430 #define ALL_ONES (~ (bfd_vma) 0)
431
432 /* Indexed by the bfd interal reloc enumerators.
433 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
434 in reloc.c. */
435
436 static reloc_howto_type elfNN_aarch64_howto_table[] =
437 {
438 EMPTY_HOWTO (0),
439
440 /* Basic data relocations. */
441
442 /* Deprecated, but retained for backwards compatibility. */
443 HOWTO64 (R_AARCH64_NULL, /* type */
444 0, /* rightshift */
445 3, /* size (0 = byte, 1 = short, 2 = long) */
446 0, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_AARCH64_NULL", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0, /* dst_mask */
455 FALSE), /* pcrel_offset */
456 HOWTO (R_AARCH64_NONE, /* type */
457 0, /* rightshift */
458 3, /* size (0 = byte, 1 = short, 2 = long) */
459 0, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_dont, /* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_AARCH64_NONE", /* name */
465 FALSE, /* partial_inplace */
466 0, /* src_mask */
467 0, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 /* .xword: (S+A) */
471 HOWTO64 (AARCH64_R (ABS64), /* type */
472 0, /* rightshift */
473 4, /* size (4 = long long) */
474 64, /* bitsize */
475 FALSE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_unsigned, /* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 AARCH64_R_STR (ABS64), /* name */
480 FALSE, /* partial_inplace */
481 ALL_ONES, /* src_mask */
482 ALL_ONES, /* dst_mask */
483 FALSE), /* pcrel_offset */
484
485 /* .word: (S+A) */
486 HOWTO (AARCH64_R (ABS32), /* type */
487 0, /* rightshift */
488 2, /* size (0 = byte, 1 = short, 2 = long) */
489 32, /* bitsize */
490 FALSE, /* pc_relative */
491 0, /* bitpos */
492 complain_overflow_unsigned, /* complain_on_overflow */
493 bfd_elf_generic_reloc, /* special_function */
494 AARCH64_R_STR (ABS32), /* name */
495 FALSE, /* partial_inplace */
496 0xffffffff, /* src_mask */
497 0xffffffff, /* dst_mask */
498 FALSE), /* pcrel_offset */
499
500 /* .half: (S+A) */
501 HOWTO (AARCH64_R (ABS16), /* type */
502 0, /* rightshift */
503 1, /* size (0 = byte, 1 = short, 2 = long) */
504 16, /* bitsize */
505 FALSE, /* pc_relative */
506 0, /* bitpos */
507 complain_overflow_unsigned, /* complain_on_overflow */
508 bfd_elf_generic_reloc, /* special_function */
509 AARCH64_R_STR (ABS16), /* name */
510 FALSE, /* partial_inplace */
511 0xffff, /* src_mask */
512 0xffff, /* dst_mask */
513 FALSE), /* pcrel_offset */
514
515 /* .xword: (S+A-P) */
516 HOWTO64 (AARCH64_R (PREL64), /* type */
517 0, /* rightshift */
518 4, /* size (4 = long long) */
519 64, /* bitsize */
520 TRUE, /* pc_relative */
521 0, /* bitpos */
522 complain_overflow_signed, /* complain_on_overflow */
523 bfd_elf_generic_reloc, /* special_function */
524 AARCH64_R_STR (PREL64), /* name */
525 FALSE, /* partial_inplace */
526 ALL_ONES, /* src_mask */
527 ALL_ONES, /* dst_mask */
528 TRUE), /* pcrel_offset */
529
530 /* .word: (S+A-P) */
531 HOWTO (AARCH64_R (PREL32), /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 32, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_signed, /* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 AARCH64_R_STR (PREL32), /* name */
540 FALSE, /* partial_inplace */
541 0xffffffff, /* src_mask */
542 0xffffffff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 /* .half: (S+A-P) */
546 HOWTO (AARCH64_R (PREL16), /* type */
547 0, /* rightshift */
548 1, /* size (0 = byte, 1 = short, 2 = long) */
549 16, /* bitsize */
550 TRUE, /* pc_relative */
551 0, /* bitpos */
552 complain_overflow_signed, /* complain_on_overflow */
553 bfd_elf_generic_reloc, /* special_function */
554 AARCH64_R_STR (PREL16), /* name */
555 FALSE, /* partial_inplace */
556 0xffff, /* src_mask */
557 0xffff, /* dst_mask */
558 TRUE), /* pcrel_offset */
559
560 /* Group relocations to create a 16, 32, 48 or 64 bit
561 unsigned data or abs address inline. */
562
563 /* MOVZ: ((S+A) >> 0) & 0xffff */
564 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 16, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_unsigned, /* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 AARCH64_R_STR (MOVW_UABS_G0), /* name */
573 FALSE, /* partial_inplace */
574 0xffff, /* src_mask */
575 0xffff, /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
579 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
580 0, /* rightshift */
581 2, /* size (0 = byte, 1 = short, 2 = long) */
582 16, /* bitsize */
583 FALSE, /* pc_relative */
584 0, /* bitpos */
585 complain_overflow_dont, /* complain_on_overflow */
586 bfd_elf_generic_reloc, /* special_function */
587 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
588 FALSE, /* partial_inplace */
589 0xffff, /* src_mask */
590 0xffff, /* dst_mask */
591 FALSE), /* pcrel_offset */
592
593 /* MOVZ: ((S+A) >> 16) & 0xffff */
594 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
595 16, /* rightshift */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
597 16, /* bitsize */
598 FALSE, /* pc_relative */
599 0, /* bitpos */
600 complain_overflow_unsigned, /* complain_on_overflow */
601 bfd_elf_generic_reloc, /* special_function */
602 AARCH64_R_STR (MOVW_UABS_G1), /* name */
603 FALSE, /* partial_inplace */
604 0xffff, /* src_mask */
605 0xffff, /* dst_mask */
606 FALSE), /* pcrel_offset */
607
608 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
609 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
610 16, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 16, /* bitsize */
613 FALSE, /* pc_relative */
614 0, /* bitpos */
615 complain_overflow_dont, /* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
618 FALSE, /* partial_inplace */
619 0xffff, /* src_mask */
620 0xffff, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 /* MOVZ: ((S+A) >> 32) & 0xffff */
624 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
625 32, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 16, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_unsigned, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 AARCH64_R_STR (MOVW_UABS_G2), /* name */
633 FALSE, /* partial_inplace */
634 0xffff, /* src_mask */
635 0xffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
639 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
640 32, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 16, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
648 FALSE, /* partial_inplace */
649 0xffff, /* src_mask */
650 0xffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 /* MOVZ: ((S+A) >> 48) & 0xffff */
654 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
655 48, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 16, /* bitsize */
658 FALSE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_unsigned, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (MOVW_UABS_G3), /* name */
663 FALSE, /* partial_inplace */
664 0xffff, /* src_mask */
665 0xffff, /* dst_mask */
666 FALSE), /* pcrel_offset */
667
668 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
669 signed data or abs address inline. Will change instruction
670 to MOVN or MOVZ depending on sign of calculated value. */
671
672 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
673 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 17, /* bitsize */
677 FALSE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 AARCH64_R_STR (MOVW_SABS_G0), /* name */
682 FALSE, /* partial_inplace */
683 0xffff, /* src_mask */
684 0xffff, /* dst_mask */
685 FALSE), /* pcrel_offset */
686
687 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
688 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
689 16, /* rightshift */
690 2, /* size (0 = byte, 1 = short, 2 = long) */
691 17, /* bitsize */
692 FALSE, /* pc_relative */
693 0, /* bitpos */
694 complain_overflow_signed, /* complain_on_overflow */
695 bfd_elf_generic_reloc, /* special_function */
696 AARCH64_R_STR (MOVW_SABS_G1), /* name */
697 FALSE, /* partial_inplace */
698 0xffff, /* src_mask */
699 0xffff, /* dst_mask */
700 FALSE), /* pcrel_offset */
701
702 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
703 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
704 32, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 17, /* bitsize */
707 FALSE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_signed, /* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 AARCH64_R_STR (MOVW_SABS_G2), /* name */
712 FALSE, /* partial_inplace */
713 0xffff, /* src_mask */
714 0xffff, /* dst_mask */
715 FALSE), /* pcrel_offset */
716
717 /* Group relocations to create a 16, 32, 48 or 64 bit
718 PC relative address inline. */
719
720 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
721 HOWTO (AARCH64_R (MOVW_PREL_G0), /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 17, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 AARCH64_R_STR (MOVW_PREL_G0), /* name */
730 FALSE, /* partial_inplace */
731 0xffff, /* src_mask */
732 0xffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
736 HOWTO (AARCH64_R (MOVW_PREL_G0_NC), /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_dont, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
745 FALSE, /* partial_inplace */
746 0xffff, /* src_mask */
747 0xffff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
751 HOWTO (AARCH64_R (MOVW_PREL_G1), /* type */
752 16, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 17, /* bitsize */
755 TRUE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_signed, /* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 AARCH64_R_STR (MOVW_PREL_G1), /* name */
760 FALSE, /* partial_inplace */
761 0xffff, /* src_mask */
762 0xffff, /* dst_mask */
763 TRUE), /* pcrel_offset */
764
765 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
766 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
767 16, /* rightshift */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 TRUE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_dont, /* complain_on_overflow */
773 bfd_elf_generic_reloc, /* special_function */
774 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
775 FALSE, /* partial_inplace */
776 0xffff, /* src_mask */
777 0xffff, /* dst_mask */
778 TRUE), /* pcrel_offset */
779
780 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
781 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
782 32, /* rightshift */
783 2, /* size (0 = byte, 1 = short, 2 = long) */
784 17, /* bitsize */
785 TRUE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 bfd_elf_generic_reloc, /* special_function */
789 AARCH64_R_STR (MOVW_PREL_G2), /* name */
790 FALSE, /* partial_inplace */
791 0xffff, /* src_mask */
792 0xffff, /* dst_mask */
793 TRUE), /* pcrel_offset */
794
795 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
796 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
797 32, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 16, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
805 FALSE, /* partial_inplace */
806 0xffff, /* src_mask */
807 0xffff, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
811 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
812 48, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 16, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 AARCH64_R_STR (MOVW_PREL_G3), /* name */
820 FALSE, /* partial_inplace */
821 0xffff, /* src_mask */
822 0xffff, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
826 addresses: PG(x) is (x & ~0xfff). */
827
828 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
829 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
830 2, /* rightshift */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
832 19, /* bitsize */
833 TRUE, /* pc_relative */
834 0, /* bitpos */
835 complain_overflow_signed, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 AARCH64_R_STR (LD_PREL_LO19), /* name */
838 FALSE, /* partial_inplace */
839 0x7ffff, /* src_mask */
840 0x7ffff, /* dst_mask */
841 TRUE), /* pcrel_offset */
842
843 /* ADR: (S+A-P) & 0x1fffff */
844 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
845 0, /* rightshift */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
847 21, /* bitsize */
848 TRUE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_signed, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 AARCH64_R_STR (ADR_PREL_LO21), /* name */
853 FALSE, /* partial_inplace */
854 0x1fffff, /* src_mask */
855 0x1fffff, /* dst_mask */
856 TRUE), /* pcrel_offset */
857
858 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
859 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
860 12, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 21, /* bitsize */
863 TRUE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_signed, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
868 FALSE, /* partial_inplace */
869 0x1fffff, /* src_mask */
870 0x1fffff, /* dst_mask */
871 TRUE), /* pcrel_offset */
872
873 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
874 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
875 12, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 21, /* bitsize */
878 TRUE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont, /* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
883 FALSE, /* partial_inplace */
884 0x1fffff, /* src_mask */
885 0x1fffff, /* dst_mask */
886 TRUE), /* pcrel_offset */
887
888 /* ADD: (S+A) & 0xfff [no overflow check] */
889 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
890 0, /* rightshift */
891 2, /* size (0 = byte, 1 = short, 2 = long) */
892 12, /* bitsize */
893 FALSE, /* pc_relative */
894 10, /* bitpos */
895 complain_overflow_dont, /* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
898 FALSE, /* partial_inplace */
899 0x3ffc00, /* src_mask */
900 0x3ffc00, /* dst_mask */
901 FALSE), /* pcrel_offset */
902
903 /* LD/ST8: (S+A) & 0xfff */
904 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
905 0, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 12, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_dont, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
913 FALSE, /* partial_inplace */
914 0xfff, /* src_mask */
915 0xfff, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
918 /* Relocations for control-flow instructions. */
919
920 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
921 HOWTO (AARCH64_R (TSTBR14), /* type */
922 2, /* rightshift */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
924 14, /* bitsize */
925 TRUE, /* pc_relative */
926 0, /* bitpos */
927 complain_overflow_signed, /* complain_on_overflow */
928 bfd_elf_generic_reloc, /* special_function */
929 AARCH64_R_STR (TSTBR14), /* name */
930 FALSE, /* partial_inplace */
931 0x3fff, /* src_mask */
932 0x3fff, /* dst_mask */
933 TRUE), /* pcrel_offset */
934
935 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
936 HOWTO (AARCH64_R (CONDBR19), /* type */
937 2, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 19, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_signed, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 AARCH64_R_STR (CONDBR19), /* name */
945 FALSE, /* partial_inplace */
946 0x7ffff, /* src_mask */
947 0x7ffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 /* B: ((S+A-P) >> 2) & 0x3ffffff */
951 HOWTO (AARCH64_R (JUMP26), /* type */
952 2, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 26, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_signed, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 AARCH64_R_STR (JUMP26), /* name */
960 FALSE, /* partial_inplace */
961 0x3ffffff, /* src_mask */
962 0x3ffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
966 HOWTO (AARCH64_R (CALL26), /* type */
967 2, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 26, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_signed, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 AARCH64_R_STR (CALL26), /* name */
975 FALSE, /* partial_inplace */
976 0x3ffffff, /* src_mask */
977 0x3ffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 /* LD/ST16: (S+A) & 0xffe */
981 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
982 1, /* rightshift */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
984 12, /* bitsize */
985 FALSE, /* pc_relative */
986 0, /* bitpos */
987 complain_overflow_dont, /* complain_on_overflow */
988 bfd_elf_generic_reloc, /* special_function */
989 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
990 FALSE, /* partial_inplace */
991 0xffe, /* src_mask */
992 0xffe, /* dst_mask */
993 FALSE), /* pcrel_offset */
994
995 /* LD/ST32: (S+A) & 0xffc */
996 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
997 2, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 12, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 bfd_elf_generic_reloc, /* special_function */
1004 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
1005 FALSE, /* partial_inplace */
1006 0xffc, /* src_mask */
1007 0xffc, /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* LD/ST64: (S+A) & 0xff8 */
1011 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
1012 3, /* rightshift */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1014 12, /* bitsize */
1015 FALSE, /* pc_relative */
1016 0, /* bitpos */
1017 complain_overflow_dont, /* complain_on_overflow */
1018 bfd_elf_generic_reloc, /* special_function */
1019 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
1020 FALSE, /* partial_inplace */
1021 0xff8, /* src_mask */
1022 0xff8, /* dst_mask */
1023 FALSE), /* pcrel_offset */
1024
1025 /* LD/ST128: (S+A) & 0xff0 */
1026 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
1027 4, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 12, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
1035 FALSE, /* partial_inplace */
1036 0xff0, /* src_mask */
1037 0xff0, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Set a load-literal immediate field to bits
1041 0x1FFFFC of G(S)-P */
1042 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
1043 2, /* rightshift */
1044 2, /* size (0 = byte,1 = short,2 = long) */
1045 19, /* bitsize */
1046 TRUE, /* pc_relative */
1047 0, /* bitpos */
1048 complain_overflow_signed, /* complain_on_overflow */
1049 bfd_elf_generic_reloc, /* special_function */
1050 AARCH64_R_STR (GOT_LD_PREL19), /* name */
1051 FALSE, /* partial_inplace */
1052 0xffffe0, /* src_mask */
1053 0xffffe0, /* dst_mask */
1054 TRUE), /* pcrel_offset */
1055
1056 /* Get to the page for the GOT entry for the symbol
1057 (G(S) - P) using an ADRP instruction. */
1058 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
1059 12, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 21, /* bitsize */
1062 TRUE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont, /* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
1067 FALSE, /* partial_inplace */
1068 0x1fffff, /* src_mask */
1069 0x1fffff, /* dst_mask */
1070 TRUE), /* pcrel_offset */
1071
1072 /* LD64: GOT offset G(S) & 0xff8 */
1073 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
1074 3, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 12, /* bitsize */
1077 FALSE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont, /* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
1082 FALSE, /* partial_inplace */
1083 0xff8, /* src_mask */
1084 0xff8, /* dst_mask */
1085 FALSE), /* pcrel_offset */
1086
1087 /* LD32: GOT offset G(S) & 0xffc */
1088 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1089 2, /* rightshift */
1090 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 12, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_dont, /* complain_on_overflow */
1095 bfd_elf_generic_reloc, /* special_function */
1096 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1097 FALSE, /* partial_inplace */
1098 0xffc, /* src_mask */
1099 0xffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 /* Lower 16 bits of GOT offset for the symbol. */
1103 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1104 0, /* rightshift */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1106 16, /* bitsize */
1107 FALSE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont, /* complain_on_overflow */
1110 bfd_elf_generic_reloc, /* special_function */
1111 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1112 FALSE, /* partial_inplace */
1113 0xffff, /* src_mask */
1114 0xffff, /* dst_mask */
1115 FALSE), /* pcrel_offset */
1116
1117 /* Higher 16 bits of GOT offset for the symbol. */
1118 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1119 16, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 16, /* bitsize */
1122 FALSE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_unsigned, /* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1127 FALSE, /* partial_inplace */
1128 0xffff, /* src_mask */
1129 0xffff, /* dst_mask */
1130 FALSE), /* pcrel_offset */
1131
1132 /* LD64: GOT offset for the symbol. */
1133 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1134 3, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 12, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_unsigned, /* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1142 FALSE, /* partial_inplace */
1143 0x7ff8, /* src_mask */
1144 0x7ff8, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
1147 /* LD32: GOT offset to the page address of GOT table.
1148 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1149 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1150 2, /* rightshift */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 12, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_unsigned, /* complain_on_overflow */
1156 bfd_elf_generic_reloc, /* special_function */
1157 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1158 FALSE, /* partial_inplace */
1159 0x5ffc, /* src_mask */
1160 0x5ffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* LD64: GOT offset to the page address of GOT table.
1164 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1165 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1166 3, /* rightshift */
1167 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 12, /* bitsize */
1169 FALSE, /* pc_relative */
1170 0, /* bitpos */
1171 complain_overflow_unsigned, /* complain_on_overflow */
1172 bfd_elf_generic_reloc, /* special_function */
1173 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1174 FALSE, /* partial_inplace */
1175 0x7ff8, /* src_mask */
1176 0x7ff8, /* dst_mask */
1177 FALSE), /* pcrel_offset */
1178
1179 /* Get to the page for the GOT entry for the symbol
1180 (G(S) - P) using an ADRP instruction. */
1181 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1182 12, /* rightshift */
1183 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 21, /* bitsize */
1185 TRUE, /* pc_relative */
1186 0, /* bitpos */
1187 complain_overflow_dont, /* complain_on_overflow */
1188 bfd_elf_generic_reloc, /* special_function */
1189 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1190 FALSE, /* partial_inplace */
1191 0x1fffff, /* src_mask */
1192 0x1fffff, /* dst_mask */
1193 TRUE), /* pcrel_offset */
1194
1195 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1196 0, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 21, /* bitsize */
1199 TRUE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_dont, /* complain_on_overflow */
1202 bfd_elf_generic_reloc, /* special_function */
1203 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1204 FALSE, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE), /* pcrel_offset */
1208
1209 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1210 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1211 0, /* rightshift */
1212 2, /* size (0 = byte, 1 = short, 2 = long) */
1213 12, /* bitsize */
1214 FALSE, /* pc_relative */
1215 0, /* bitpos */
1216 complain_overflow_dont, /* complain_on_overflow */
1217 bfd_elf_generic_reloc, /* special_function */
1218 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1219 FALSE, /* partial_inplace */
1220 0xfff, /* src_mask */
1221 0xfff, /* dst_mask */
1222 FALSE), /* pcrel_offset */
1223
1224 /* Lower 16 bits of GOT offset to tls_index. */
1225 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 16, /* bitsize */
1229 FALSE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont, /* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1234 FALSE, /* partial_inplace */
1235 0xffff, /* src_mask */
1236 0xffff, /* dst_mask */
1237 FALSE), /* pcrel_offset */
1238
1239 /* Higher 16 bits of GOT offset to tls_index. */
1240 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1241 16, /* rightshift */
1242 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 16, /* bitsize */
1244 FALSE, /* pc_relative */
1245 0, /* bitpos */
1246 complain_overflow_unsigned, /* complain_on_overflow */
1247 bfd_elf_generic_reloc, /* special_function */
1248 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1249 FALSE, /* partial_inplace */
1250 0xffff, /* src_mask */
1251 0xffff, /* dst_mask */
1252 FALSE), /* pcrel_offset */
1253
1254 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1255 12, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 21, /* bitsize */
1258 FALSE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont, /* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1263 FALSE, /* partial_inplace */
1264 0x1fffff, /* src_mask */
1265 0x1fffff, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1269 3, /* rightshift */
1270 2, /* size (0 = byte, 1 = short, 2 = long) */
1271 12, /* bitsize */
1272 FALSE, /* pc_relative */
1273 0, /* bitpos */
1274 complain_overflow_dont, /* complain_on_overflow */
1275 bfd_elf_generic_reloc, /* special_function */
1276 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1277 FALSE, /* partial_inplace */
1278 0xff8, /* src_mask */
1279 0xff8, /* dst_mask */
1280 FALSE), /* pcrel_offset */
1281
1282 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1283 2, /* rightshift */
1284 2, /* size (0 = byte, 1 = short, 2 = long) */
1285 12, /* bitsize */
1286 FALSE, /* pc_relative */
1287 0, /* bitpos */
1288 complain_overflow_dont, /* complain_on_overflow */
1289 bfd_elf_generic_reloc, /* special_function */
1290 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1291 FALSE, /* partial_inplace */
1292 0xffc, /* src_mask */
1293 0xffc, /* dst_mask */
1294 FALSE), /* pcrel_offset */
1295
1296 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1297 2, /* rightshift */
1298 2, /* size (0 = byte, 1 = short, 2 = long) */
1299 19, /* bitsize */
1300 FALSE, /* pc_relative */
1301 0, /* bitpos */
1302 complain_overflow_dont, /* complain_on_overflow */
1303 bfd_elf_generic_reloc, /* special_function */
1304 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1305 FALSE, /* partial_inplace */
1306 0x1ffffc, /* src_mask */
1307 0x1ffffc, /* dst_mask */
1308 FALSE), /* pcrel_offset */
1309
1310 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 16, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
1318 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1319 FALSE, /* partial_inplace */
1320 0xffff, /* src_mask */
1321 0xffff, /* dst_mask */
1322 FALSE), /* pcrel_offset */
1323
1324 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1325 16, /* rightshift */
1326 2, /* size (0 = byte, 1 = short, 2 = long) */
1327 16, /* bitsize */
1328 FALSE, /* pc_relative */
1329 0, /* bitpos */
1330 complain_overflow_unsigned, /* complain_on_overflow */
1331 bfd_elf_generic_reloc, /* special_function */
1332 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1333 FALSE, /* partial_inplace */
1334 0xffff, /* src_mask */
1335 0xffff, /* dst_mask */
1336 FALSE), /* pcrel_offset */
1337
1338 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1339 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1340 12, /* rightshift */
1341 2, /* size (0 = byte, 1 = short, 2 = long) */
1342 12, /* bitsize */
1343 FALSE, /* pc_relative */
1344 0, /* bitpos */
1345 complain_overflow_unsigned, /* complain_on_overflow */
1346 bfd_elf_generic_reloc, /* special_function */
1347 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1348 FALSE, /* partial_inplace */
1349 0xfff, /* src_mask */
1350 0xfff, /* dst_mask */
1351 FALSE), /* pcrel_offset */
1352
1353 /* Unsigned 12 bit byte offset to module TLS base address. */
1354 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1355 0, /* rightshift */
1356 2, /* size (0 = byte, 1 = short, 2 = long) */
1357 12, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_unsigned, /* complain_on_overflow */
1361 bfd_elf_generic_reloc, /* special_function */
1362 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1363 FALSE, /* partial_inplace */
1364 0xfff, /* src_mask */
1365 0xfff, /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1369 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 12, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont, /* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1378 FALSE, /* partial_inplace */
1379 0xfff, /* src_mask */
1380 0xfff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1384 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1385 0, /* rightshift */
1386 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 12, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 bfd_elf_generic_reloc, /* special_function */
1392 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1393 FALSE, /* partial_inplace */
1394 0xfff, /* src_mask */
1395 0xfff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Get to the page for the GOT entry for the symbol
1399 (G(S) - P) using an ADRP instruction. */
1400 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1401 12, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 21, /* bitsize */
1404 TRUE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_signed, /* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1409 FALSE, /* partial_inplace */
1410 0x1fffff, /* src_mask */
1411 0x1fffff, /* dst_mask */
1412 TRUE), /* pcrel_offset */
1413
1414 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 21, /* bitsize */
1418 TRUE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1423 FALSE, /* partial_inplace */
1424 0x1fffff, /* src_mask */
1425 0x1fffff, /* dst_mask */
1426 TRUE), /* pcrel_offset */
1427
1428 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1429 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1430 1, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 11, /* bitsize */
1433 FALSE, /* pc_relative */
1434 10, /* bitpos */
1435 complain_overflow_unsigned, /* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1438 FALSE, /* partial_inplace */
1439 0x1ffc00, /* src_mask */
1440 0x1ffc00, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1444 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1445 1, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 11, /* bitsize */
1448 FALSE, /* pc_relative */
1449 10, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1453 FALSE, /* partial_inplace */
1454 0x1ffc00, /* src_mask */
1455 0x1ffc00, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1459 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1460 2, /* rightshift */
1461 2, /* size (0 = byte, 1 = short, 2 = long) */
1462 10, /* bitsize */
1463 FALSE, /* pc_relative */
1464 10, /* bitpos */
1465 complain_overflow_unsigned, /* complain_on_overflow */
1466 bfd_elf_generic_reloc, /* special_function */
1467 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1468 FALSE, /* partial_inplace */
1469 0x3ffc00, /* src_mask */
1470 0x3ffc00, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1474 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1475 2, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 10, /* bitsize */
1478 FALSE, /* pc_relative */
1479 10, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1483 FALSE, /* partial_inplace */
1484 0xffc00, /* src_mask */
1485 0xffc00, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1489 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1490 3, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 9, /* bitsize */
1493 FALSE, /* pc_relative */
1494 10, /* bitpos */
1495 complain_overflow_unsigned, /* complain_on_overflow */
1496 bfd_elf_generic_reloc, /* special_function */
1497 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1498 FALSE, /* partial_inplace */
1499 0x3ffc00, /* src_mask */
1500 0x3ffc00, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1504 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1505 3, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 9, /* bitsize */
1508 FALSE, /* pc_relative */
1509 10, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1513 FALSE, /* partial_inplace */
1514 0x7fc00, /* src_mask */
1515 0x7fc00, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1519 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 12, /* bitsize */
1523 FALSE, /* pc_relative */
1524 10, /* bitpos */
1525 complain_overflow_unsigned, /* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
1527 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1528 FALSE, /* partial_inplace */
1529 0x3ffc00, /* src_mask */
1530 0x3ffc00, /* dst_mask */
1531 FALSE), /* pcrel_offset */
1532
1533 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1534 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1535 0, /* rightshift */
1536 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 12, /* bitsize */
1538 FALSE, /* pc_relative */
1539 10, /* bitpos */
1540 complain_overflow_dont, /* complain_on_overflow */
1541 bfd_elf_generic_reloc, /* special_function */
1542 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1543 FALSE, /* partial_inplace */
1544 0x3ffc00, /* src_mask */
1545 0x3ffc00, /* dst_mask */
1546 FALSE), /* pcrel_offset */
1547
1548 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1549 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1550 0, /* rightshift */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1552 16, /* bitsize */
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
1555 complain_overflow_unsigned, /* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1558 FALSE, /* partial_inplace */
1559 0xffff, /* src_mask */
1560 0xffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
1562
1563 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1564 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1565 0, /* rightshift */
1566 2, /* size (0 = byte, 1 = short, 2 = long) */
1567 16, /* bitsize */
1568 FALSE, /* pc_relative */
1569 0, /* bitpos */
1570 complain_overflow_dont, /* complain_on_overflow */
1571 bfd_elf_generic_reloc, /* special_function */
1572 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1573 FALSE, /* partial_inplace */
1574 0xffff, /* src_mask */
1575 0xffff, /* dst_mask */
1576 FALSE), /* pcrel_offset */
1577
1578 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1579 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1580 16, /* rightshift */
1581 2, /* size (0 = byte, 1 = short, 2 = long) */
1582 16, /* bitsize */
1583 FALSE, /* pc_relative */
1584 0, /* bitpos */
1585 complain_overflow_unsigned, /* complain_on_overflow */
1586 bfd_elf_generic_reloc, /* special_function */
1587 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1588 FALSE, /* partial_inplace */
1589 0xffff, /* src_mask */
1590 0xffff, /* dst_mask */
1591 FALSE), /* pcrel_offset */
1592
1593 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1594 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1595 16, /* rightshift */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 16, /* bitsize */
1598 FALSE, /* pc_relative */
1599 0, /* bitpos */
1600 complain_overflow_dont, /* complain_on_overflow */
1601 bfd_elf_generic_reloc, /* special_function */
1602 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1603 FALSE, /* partial_inplace */
1604 0xffff, /* src_mask */
1605 0xffff, /* dst_mask */
1606 FALSE), /* pcrel_offset */
1607
1608 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1609 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1610 32, /* rightshift */
1611 2, /* size (0 = byte, 1 = short, 2 = long) */
1612 16, /* bitsize */
1613 FALSE, /* pc_relative */
1614 0, /* bitpos */
1615 complain_overflow_unsigned, /* complain_on_overflow */
1616 bfd_elf_generic_reloc, /* special_function */
1617 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1618 FALSE, /* partial_inplace */
1619 0xffff, /* src_mask */
1620 0xffff, /* dst_mask */
1621 FALSE), /* pcrel_offset */
1622
1623 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1624 32, /* rightshift */
1625 2, /* size (0 = byte, 1 = short, 2 = long) */
1626 16, /* bitsize */
1627 FALSE, /* pc_relative */
1628 0, /* bitpos */
1629 complain_overflow_unsigned, /* complain_on_overflow */
1630 bfd_elf_generic_reloc, /* special_function */
1631 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1632 FALSE, /* partial_inplace */
1633 0xffff, /* src_mask */
1634 0xffff, /* dst_mask */
1635 FALSE), /* pcrel_offset */
1636
1637 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1638 16, /* rightshift */
1639 2, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 bfd_elf_generic_reloc, /* special_function */
1645 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1646 FALSE, /* partial_inplace */
1647 0xffff, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1652 16, /* rightshift */
1653 2, /* size (0 = byte, 1 = short, 2 = long) */
1654 16, /* bitsize */
1655 FALSE, /* pc_relative */
1656 0, /* bitpos */
1657 complain_overflow_dont, /* complain_on_overflow */
1658 bfd_elf_generic_reloc, /* special_function */
1659 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1660 FALSE, /* partial_inplace */
1661 0xffff, /* src_mask */
1662 0xffff, /* dst_mask */
1663 FALSE), /* pcrel_offset */
1664
1665 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1666 0, /* rightshift */
1667 2, /* size (0 = byte, 1 = short, 2 = long) */
1668 16, /* bitsize */
1669 FALSE, /* pc_relative */
1670 0, /* bitpos */
1671 complain_overflow_dont, /* complain_on_overflow */
1672 bfd_elf_generic_reloc, /* special_function */
1673 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1674 FALSE, /* partial_inplace */
1675 0xffff, /* src_mask */
1676 0xffff, /* dst_mask */
1677 FALSE), /* pcrel_offset */
1678
1679 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1680 0, /* rightshift */
1681 2, /* size (0 = byte, 1 = short, 2 = long) */
1682 16, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_dont, /* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1688 FALSE, /* partial_inplace */
1689 0xffff, /* src_mask */
1690 0xffff, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692
1693 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1694 12, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 12, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_unsigned, /* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1702 FALSE, /* partial_inplace */
1703 0xfff, /* src_mask */
1704 0xfff, /* dst_mask */
1705 FALSE), /* pcrel_offset */
1706
1707 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1708 0, /* rightshift */
1709 2, /* size (0 = byte, 1 = short, 2 = long) */
1710 12, /* bitsize */
1711 FALSE, /* pc_relative */
1712 0, /* bitpos */
1713 complain_overflow_unsigned, /* complain_on_overflow */
1714 bfd_elf_generic_reloc, /* special_function */
1715 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1716 FALSE, /* partial_inplace */
1717 0xfff, /* src_mask */
1718 0xfff, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1722 0, /* rightshift */
1723 2, /* size (0 = byte, 1 = short, 2 = long) */
1724 12, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_dont, /* complain_on_overflow */
1728 bfd_elf_generic_reloc, /* special_function */
1729 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1730 FALSE, /* partial_inplace */
1731 0xfff, /* src_mask */
1732 0xfff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1736 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1737 1, /* rightshift */
1738 2, /* size (0 = byte, 1 = short, 2 = long) */
1739 11, /* bitsize */
1740 FALSE, /* pc_relative */
1741 10, /* bitpos */
1742 complain_overflow_unsigned, /* complain_on_overflow */
1743 bfd_elf_generic_reloc, /* special_function */
1744 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1745 FALSE, /* partial_inplace */
1746 0x1ffc00, /* src_mask */
1747 0x1ffc00, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1751 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1752 1, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 11, /* bitsize */
1755 FALSE, /* pc_relative */
1756 10, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1760 FALSE, /* partial_inplace */
1761 0x1ffc00, /* src_mask */
1762 0x1ffc00, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1766 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1767 2, /* rightshift */
1768 2, /* size (0 = byte, 1 = short, 2 = long) */
1769 10, /* bitsize */
1770 FALSE, /* pc_relative */
1771 10, /* bitpos */
1772 complain_overflow_unsigned, /* complain_on_overflow */
1773 bfd_elf_generic_reloc, /* special_function */
1774 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1775 FALSE, /* partial_inplace */
1776 0xffc00, /* src_mask */
1777 0xffc00, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1781 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1782 2, /* rightshift */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1784 10, /* bitsize */
1785 FALSE, /* pc_relative */
1786 10, /* bitpos */
1787 complain_overflow_dont, /* complain_on_overflow */
1788 bfd_elf_generic_reloc, /* special_function */
1789 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1790 FALSE, /* partial_inplace */
1791 0xffc00, /* src_mask */
1792 0xffc00, /* dst_mask */
1793 FALSE), /* pcrel_offset */
1794
1795 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1796 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1797 3, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 9, /* bitsize */
1800 FALSE, /* pc_relative */
1801 10, /* bitpos */
1802 complain_overflow_unsigned, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1805 FALSE, /* partial_inplace */
1806 0x7fc00, /* src_mask */
1807 0x7fc00, /* dst_mask */
1808 FALSE), /* pcrel_offset */
1809
1810 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1811 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1812 3, /* rightshift */
1813 2, /* size (0 = byte, 1 = short, 2 = long) */
1814 9, /* bitsize */
1815 FALSE, /* pc_relative */
1816 10, /* bitpos */
1817 complain_overflow_dont, /* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1820 FALSE, /* partial_inplace */
1821 0x7fc00, /* src_mask */
1822 0x7fc00, /* dst_mask */
1823 FALSE), /* pcrel_offset */
1824
1825 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1826 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1827 0, /* rightshift */
1828 2, /* size (0 = byte, 1 = short, 2 = long) */
1829 12, /* bitsize */
1830 FALSE, /* pc_relative */
1831 10, /* bitpos */
1832 complain_overflow_unsigned, /* complain_on_overflow */
1833 bfd_elf_generic_reloc, /* special_function */
1834 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1835 FALSE, /* partial_inplace */
1836 0x3ffc00, /* src_mask */
1837 0x3ffc00, /* dst_mask */
1838 FALSE), /* pcrel_offset */
1839
1840 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1841 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1842 0, /* rightshift */
1843 2, /* size (0 = byte, 1 = short, 2 = long) */
1844 12, /* bitsize */
1845 FALSE, /* pc_relative */
1846 10, /* bitpos */
1847 complain_overflow_dont, /* complain_on_overflow */
1848 bfd_elf_generic_reloc, /* special_function */
1849 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1850 FALSE, /* partial_inplace */
1851 0x3ffc00, /* src_mask */
1852 0x3ffc00, /* dst_mask */
1853 FALSE), /* pcrel_offset */
1854
1855 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1856 2, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 19, /* bitsize */
1859 TRUE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_dont, /* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1864 FALSE, /* partial_inplace */
1865 0x0ffffe0, /* src_mask */
1866 0x0ffffe0, /* dst_mask */
1867 TRUE), /* pcrel_offset */
1868
1869 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1870 0, /* rightshift */
1871 2, /* size (0 = byte, 1 = short, 2 = long) */
1872 21, /* bitsize */
1873 TRUE, /* pc_relative */
1874 0, /* bitpos */
1875 complain_overflow_dont, /* complain_on_overflow */
1876 bfd_elf_generic_reloc, /* special_function */
1877 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1878 FALSE, /* partial_inplace */
1879 0x1fffff, /* src_mask */
1880 0x1fffff, /* dst_mask */
1881 TRUE), /* pcrel_offset */
1882
1883 /* Get to the page for the GOT entry for the symbol
1884 (G(S) - P) using an ADRP instruction. */
1885 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1886 12, /* rightshift */
1887 2, /* size (0 = byte, 1 = short, 2 = long) */
1888 21, /* bitsize */
1889 TRUE, /* pc_relative */
1890 0, /* bitpos */
1891 complain_overflow_dont, /* complain_on_overflow */
1892 bfd_elf_generic_reloc, /* special_function */
1893 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1894 FALSE, /* partial_inplace */
1895 0x1fffff, /* src_mask */
1896 0x1fffff, /* dst_mask */
1897 TRUE), /* pcrel_offset */
1898
1899 /* LD64: GOT offset G(S) & 0xff8. */
1900 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1901 3, /* rightshift */
1902 2, /* size (0 = byte, 1 = short, 2 = long) */
1903 12, /* bitsize */
1904 FALSE, /* pc_relative */
1905 0, /* bitpos */
1906 complain_overflow_dont, /* complain_on_overflow */
1907 bfd_elf_generic_reloc, /* special_function */
1908 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1909 FALSE, /* partial_inplace */
1910 0xff8, /* src_mask */
1911 0xff8, /* dst_mask */
1912 FALSE), /* pcrel_offset */
1913
1914 /* LD32: GOT offset G(S) & 0xffc. */
1915 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1916 2, /* rightshift */
1917 2, /* size (0 = byte, 1 = short, 2 = long) */
1918 12, /* bitsize */
1919 FALSE, /* pc_relative */
1920 0, /* bitpos */
1921 complain_overflow_dont, /* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1924 FALSE, /* partial_inplace */
1925 0xffc, /* src_mask */
1926 0xffc, /* dst_mask */
1927 FALSE), /* pcrel_offset */
1928
1929 /* ADD: GOT offset G(S) & 0xfff. */
1930 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1931 0, /* rightshift */
1932 2, /* size (0 = byte, 1 = short, 2 = long) */
1933 12, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont,/* complain_on_overflow */
1937 bfd_elf_generic_reloc, /* special_function */
1938 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1939 FALSE, /* partial_inplace */
1940 0xfff, /* src_mask */
1941 0xfff, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1945 16, /* rightshift */
1946 2, /* size (0 = byte, 1 = short, 2 = long) */
1947 12, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_unsigned, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1953 FALSE, /* partial_inplace */
1954 0xffff, /* src_mask */
1955 0xffff, /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1959 0, /* rightshift */
1960 2, /* size (0 = byte, 1 = short, 2 = long) */
1961 12, /* bitsize */
1962 FALSE, /* pc_relative */
1963 0, /* bitpos */
1964 complain_overflow_dont, /* complain_on_overflow */
1965 bfd_elf_generic_reloc, /* special_function */
1966 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1967 FALSE, /* partial_inplace */
1968 0xffff, /* src_mask */
1969 0xffff, /* dst_mask */
1970 FALSE), /* pcrel_offset */
1971
1972 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1973 0, /* rightshift */
1974 2, /* size (0 = byte, 1 = short, 2 = long) */
1975 12, /* bitsize */
1976 FALSE, /* pc_relative */
1977 0, /* bitpos */
1978 complain_overflow_dont, /* complain_on_overflow */
1979 bfd_elf_generic_reloc, /* special_function */
1980 AARCH64_R_STR (TLSDESC_LDR), /* name */
1981 FALSE, /* partial_inplace */
1982 0x0, /* src_mask */
1983 0x0, /* dst_mask */
1984 FALSE), /* pcrel_offset */
1985
1986 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1987 0, /* rightshift */
1988 2, /* size (0 = byte, 1 = short, 2 = long) */
1989 12, /* bitsize */
1990 FALSE, /* pc_relative */
1991 0, /* bitpos */
1992 complain_overflow_dont, /* complain_on_overflow */
1993 bfd_elf_generic_reloc, /* special_function */
1994 AARCH64_R_STR (TLSDESC_ADD), /* name */
1995 FALSE, /* partial_inplace */
1996 0x0, /* src_mask */
1997 0x0, /* dst_mask */
1998 FALSE), /* pcrel_offset */
1999
2000 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
2001 0, /* rightshift */
2002 2, /* size (0 = byte, 1 = short, 2 = long) */
2003 0, /* bitsize */
2004 FALSE, /* pc_relative */
2005 0, /* bitpos */
2006 complain_overflow_dont, /* complain_on_overflow */
2007 bfd_elf_generic_reloc, /* special_function */
2008 AARCH64_R_STR (TLSDESC_CALL), /* name */
2009 FALSE, /* partial_inplace */
2010 0x0, /* src_mask */
2011 0x0, /* dst_mask */
2012 FALSE), /* pcrel_offset */
2013
2014 HOWTO (AARCH64_R (COPY), /* type */
2015 0, /* rightshift */
2016 2, /* size (0 = byte, 1 = short, 2 = long) */
2017 64, /* bitsize */
2018 FALSE, /* pc_relative */
2019 0, /* bitpos */
2020 complain_overflow_bitfield, /* complain_on_overflow */
2021 bfd_elf_generic_reloc, /* special_function */
2022 AARCH64_R_STR (COPY), /* name */
2023 TRUE, /* partial_inplace */
2024 0xffffffff, /* src_mask */
2025 0xffffffff, /* dst_mask */
2026 FALSE), /* pcrel_offset */
2027
2028 HOWTO (AARCH64_R (GLOB_DAT), /* type */
2029 0, /* rightshift */
2030 2, /* size (0 = byte, 1 = short, 2 = long) */
2031 64, /* bitsize */
2032 FALSE, /* pc_relative */
2033 0, /* bitpos */
2034 complain_overflow_bitfield, /* complain_on_overflow */
2035 bfd_elf_generic_reloc, /* special_function */
2036 AARCH64_R_STR (GLOB_DAT), /* name */
2037 TRUE, /* partial_inplace */
2038 0xffffffff, /* src_mask */
2039 0xffffffff, /* dst_mask */
2040 FALSE), /* pcrel_offset */
2041
2042 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
2043 0, /* rightshift */
2044 2, /* size (0 = byte, 1 = short, 2 = long) */
2045 64, /* bitsize */
2046 FALSE, /* pc_relative */
2047 0, /* bitpos */
2048 complain_overflow_bitfield, /* complain_on_overflow */
2049 bfd_elf_generic_reloc, /* special_function */
2050 AARCH64_R_STR (JUMP_SLOT), /* name */
2051 TRUE, /* partial_inplace */
2052 0xffffffff, /* src_mask */
2053 0xffffffff, /* dst_mask */
2054 FALSE), /* pcrel_offset */
2055
2056 HOWTO (AARCH64_R (RELATIVE), /* type */
2057 0, /* rightshift */
2058 2, /* size (0 = byte, 1 = short, 2 = long) */
2059 64, /* bitsize */
2060 FALSE, /* pc_relative */
2061 0, /* bitpos */
2062 complain_overflow_bitfield, /* complain_on_overflow */
2063 bfd_elf_generic_reloc, /* special_function */
2064 AARCH64_R_STR (RELATIVE), /* name */
2065 TRUE, /* partial_inplace */
2066 ALL_ONES, /* src_mask */
2067 ALL_ONES, /* dst_mask */
2068 FALSE), /* pcrel_offset */
2069
2070 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
2071 0, /* rightshift */
2072 2, /* size (0 = byte, 1 = short, 2 = long) */
2073 64, /* bitsize */
2074 FALSE, /* pc_relative */
2075 0, /* bitpos */
2076 complain_overflow_dont, /* complain_on_overflow */
2077 bfd_elf_generic_reloc, /* special_function */
2078 #if ARCH_SIZE == 64
2079 AARCH64_R_STR (TLS_DTPMOD64), /* name */
2080 #else
2081 AARCH64_R_STR (TLS_DTPMOD), /* name */
2082 #endif
2083 FALSE, /* partial_inplace */
2084 0, /* src_mask */
2085 ALL_ONES, /* dst_mask */
2086 FALSE), /* pc_reloffset */
2087
2088 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2089 0, /* rightshift */
2090 2, /* size (0 = byte, 1 = short, 2 = long) */
2091 64, /* bitsize */
2092 FALSE, /* pc_relative */
2093 0, /* bitpos */
2094 complain_overflow_dont, /* complain_on_overflow */
2095 bfd_elf_generic_reloc, /* special_function */
2096 #if ARCH_SIZE == 64
2097 AARCH64_R_STR (TLS_DTPREL64), /* name */
2098 #else
2099 AARCH64_R_STR (TLS_DTPREL), /* name */
2100 #endif
2101 FALSE, /* partial_inplace */
2102 0, /* src_mask */
2103 ALL_ONES, /* dst_mask */
2104 FALSE), /* pcrel_offset */
2105
2106 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2107 0, /* rightshift */
2108 2, /* size (0 = byte, 1 = short, 2 = long) */
2109 64, /* bitsize */
2110 FALSE, /* pc_relative */
2111 0, /* bitpos */
2112 complain_overflow_dont, /* complain_on_overflow */
2113 bfd_elf_generic_reloc, /* special_function */
2114 #if ARCH_SIZE == 64
2115 AARCH64_R_STR (TLS_TPREL64), /* name */
2116 #else
2117 AARCH64_R_STR (TLS_TPREL), /* name */
2118 #endif
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ALL_ONES, /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 HOWTO (AARCH64_R (TLSDESC), /* type */
2125 0, /* rightshift */
2126 2, /* size (0 = byte, 1 = short, 2 = long) */
2127 64, /* bitsize */
2128 FALSE, /* pc_relative */
2129 0, /* bitpos */
2130 complain_overflow_dont, /* complain_on_overflow */
2131 bfd_elf_generic_reloc, /* special_function */
2132 AARCH64_R_STR (TLSDESC), /* name */
2133 FALSE, /* partial_inplace */
2134 0, /* src_mask */
2135 ALL_ONES, /* dst_mask */
2136 FALSE), /* pcrel_offset */
2137
2138 HOWTO (AARCH64_R (IRELATIVE), /* type */
2139 0, /* rightshift */
2140 2, /* size (0 = byte, 1 = short, 2 = long) */
2141 64, /* bitsize */
2142 FALSE, /* pc_relative */
2143 0, /* bitpos */
2144 complain_overflow_bitfield, /* complain_on_overflow */
2145 bfd_elf_generic_reloc, /* special_function */
2146 AARCH64_R_STR (IRELATIVE), /* name */
2147 FALSE, /* partial_inplace */
2148 0, /* src_mask */
2149 ALL_ONES, /* dst_mask */
2150 FALSE), /* pcrel_offset */
2151
2152 EMPTY_HOWTO (0),
2153 };
2154
2155 static reloc_howto_type elfNN_aarch64_howto_none =
2156 HOWTO (R_AARCH64_NONE, /* type */
2157 0, /* rightshift */
2158 3, /* size (0 = byte, 1 = short, 2 = long) */
2159 0, /* bitsize */
2160 FALSE, /* pc_relative */
2161 0, /* bitpos */
2162 complain_overflow_dont,/* complain_on_overflow */
2163 bfd_elf_generic_reloc, /* special_function */
2164 "R_AARCH64_NONE", /* name */
2165 FALSE, /* partial_inplace */
2166 0, /* src_mask */
2167 0, /* dst_mask */
2168 FALSE); /* pcrel_offset */
2169
2170 /* Given HOWTO, return the bfd internal relocation enumerator. */
2171
2172 static bfd_reloc_code_real_type
2173 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2174 {
2175 const int size
2176 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2177 const ptrdiff_t offset
2178 = howto - elfNN_aarch64_howto_table;
2179
2180 if (offset > 0 && offset < size - 1)
2181 return BFD_RELOC_AARCH64_RELOC_START + offset;
2182
2183 if (howto == &elfNN_aarch64_howto_none)
2184 return BFD_RELOC_AARCH64_NONE;
2185
2186 return BFD_RELOC_AARCH64_RELOC_START;
2187 }
2188
2189 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2190
2191 static bfd_reloc_code_real_type
2192 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2193 {
2194 static bfd_boolean initialized_p = FALSE;
2195 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2196 static unsigned int offsets[R_AARCH64_end];
2197
2198 if (!initialized_p)
2199 {
2200 unsigned int i;
2201
2202 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2203 if (elfNN_aarch64_howto_table[i].type != 0)
2204 offsets[elfNN_aarch64_howto_table[i].type] = i;
2205
2206 initialized_p = TRUE;
2207 }
2208
2209 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2210 return BFD_RELOC_AARCH64_NONE;
2211
2212 /* PR 17512: file: b371e70a. */
2213 if (r_type >= R_AARCH64_end)
2214 {
2215 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2216 abfd, r_type);
2217 bfd_set_error (bfd_error_bad_value);
2218 return BFD_RELOC_AARCH64_NONE;
2219 }
2220
2221 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2222 }
2223
2224 struct elf_aarch64_reloc_map
2225 {
2226 bfd_reloc_code_real_type from;
2227 bfd_reloc_code_real_type to;
2228 };
2229
2230 /* Map bfd generic reloc to AArch64-specific reloc. */
2231 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2232 {
2233 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2234
2235 /* Basic data relocations. */
2236 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2237 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2238 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2239 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2240 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2241 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2242 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2243 };
2244
2245 /* Given the bfd internal relocation enumerator in CODE, return the
2246 corresponding howto entry. */
2247
2248 static reloc_howto_type *
2249 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2250 {
2251 unsigned int i;
2252
2253 /* Convert bfd generic reloc to AArch64-specific reloc. */
2254 if (code < BFD_RELOC_AARCH64_RELOC_START
2255 || code > BFD_RELOC_AARCH64_RELOC_END)
2256 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2257 if (elf_aarch64_reloc_map[i].from == code)
2258 {
2259 code = elf_aarch64_reloc_map[i].to;
2260 break;
2261 }
2262
2263 if (code > BFD_RELOC_AARCH64_RELOC_START
2264 && code < BFD_RELOC_AARCH64_RELOC_END)
2265 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2266 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2267
2268 if (code == BFD_RELOC_AARCH64_NONE)
2269 return &elfNN_aarch64_howto_none;
2270
2271 return NULL;
2272 }
2273
2274 static reloc_howto_type *
2275 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2276 {
2277 bfd_reloc_code_real_type val;
2278 reloc_howto_type *howto;
2279
2280 #if ARCH_SIZE == 32
2281 if (r_type > 256)
2282 {
2283 bfd_set_error (bfd_error_bad_value);
2284 return NULL;
2285 }
2286 #endif
2287
2288 if (r_type == R_AARCH64_NONE)
2289 return &elfNN_aarch64_howto_none;
2290
2291 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2292 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2293
2294 if (howto != NULL)
2295 return howto;
2296
2297 bfd_set_error (bfd_error_bad_value);
2298 return NULL;
2299 }
2300
2301 static bfd_boolean
2302 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2303 Elf_Internal_Rela *elf_reloc)
2304 {
2305 unsigned int r_type;
2306
2307 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2308 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2309
2310 if (bfd_reloc->howto == NULL)
2311 {
2312 /* xgettext:c-format */
2313 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2314 return FALSE;
2315 }
2316 return TRUE;
2317 }
2318
2319 static reloc_howto_type *
2320 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2321 bfd_reloc_code_real_type code)
2322 {
2323 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2324
2325 if (howto != NULL)
2326 return howto;
2327
2328 bfd_set_error (bfd_error_bad_value);
2329 return NULL;
2330 }
2331
2332 static reloc_howto_type *
2333 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2334 const char *r_name)
2335 {
2336 unsigned int i;
2337
2338 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2339 if (elfNN_aarch64_howto_table[i].name != NULL
2340 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2341 return &elfNN_aarch64_howto_table[i];
2342
2343 return NULL;
2344 }
2345
2346 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2347 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2348 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2349 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2350
2351 /* The linker script knows the section names for placement.
2352 The entry_names are used to do simple name mangling on the stubs.
2353 Given a function name, and its type, the stub can be found. The
2354 name can be changed. The only requirement is the %s be present. */
2355 #define STUB_ENTRY_NAME "__%s_veneer"
2356
2357 /* The name of the dynamic interpreter. This is put in the .interp
2358 section. */
2359 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2360
2361 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2362 (((1 << 25) - 1) << 2)
2363 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2364 (-((1 << 25) << 2))
2365
2366 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2367 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2368
2369 static int
2370 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2371 {
2372 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2373 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2374 }
2375
2376 static int
2377 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2378 {
2379 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2380 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2381 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2382 }
2383
2384 static const uint32_t aarch64_adrp_branch_stub [] =
2385 {
2386 0x90000010, /* adrp ip0, X */
2387 /* R_AARCH64_ADR_HI21_PCREL(X) */
2388 0x91000210, /* add ip0, ip0, :lo12:X */
2389 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2390 0xd61f0200, /* br ip0 */
2391 };
2392
2393 static const uint32_t aarch64_long_branch_stub[] =
2394 {
2395 #if ARCH_SIZE == 64
2396 0x58000090, /* ldr ip0, 1f */
2397 #else
2398 0x18000090, /* ldr wip0, 1f */
2399 #endif
2400 0x10000011, /* adr ip1, #0 */
2401 0x8b110210, /* add ip0, ip0, ip1 */
2402 0xd61f0200, /* br ip0 */
2403 0x00000000, /* 1: .xword or .word
2404 R_AARCH64_PRELNN(X) + 12
2405 */
2406 0x00000000,
2407 };
2408
2409 static const uint32_t aarch64_erratum_835769_stub[] =
2410 {
2411 0x00000000, /* Placeholder for multiply accumulate. */
2412 0x14000000, /* b <label> */
2413 };
2414
2415 static const uint32_t aarch64_erratum_843419_stub[] =
2416 {
2417 0x00000000, /* Placeholder for LDR instruction. */
2418 0x14000000, /* b <label> */
2419 };
2420
2421 /* Section name for stubs is the associated section name plus this
2422 string. */
2423 #define STUB_SUFFIX ".stub"
2424
2425 enum elf_aarch64_stub_type
2426 {
2427 aarch64_stub_none,
2428 aarch64_stub_adrp_branch,
2429 aarch64_stub_long_branch,
2430 aarch64_stub_erratum_835769_veneer,
2431 aarch64_stub_erratum_843419_veneer,
2432 };
2433
2434 struct elf_aarch64_stub_hash_entry
2435 {
2436 /* Base hash table entry structure. */
2437 struct bfd_hash_entry root;
2438
2439 /* The stub section. */
2440 asection *stub_sec;
2441
2442 /* Offset within stub_sec of the beginning of this stub. */
2443 bfd_vma stub_offset;
2444
2445 /* Given the symbol's value and its section we can determine its final
2446 value when building the stubs (so the stub knows where to jump). */
2447 bfd_vma target_value;
2448 asection *target_section;
2449
2450 enum elf_aarch64_stub_type stub_type;
2451
2452 /* The symbol table entry, if any, that this was derived from. */
2453 struct elf_aarch64_link_hash_entry *h;
2454
2455 /* Destination symbol type */
2456 unsigned char st_type;
2457
2458 /* Where this stub is being called from, or, in the case of combined
2459 stub sections, the first input section in the group. */
2460 asection *id_sec;
2461
2462 /* The name for the local symbol at the start of this stub. The
2463 stub name in the hash table has to be unique; this does not, so
2464 it can be friendlier. */
2465 char *output_name;
2466
2467 /* The instruction which caused this stub to be generated (only valid for
2468 erratum 835769 workaround stubs at present). */
2469 uint32_t veneered_insn;
2470
2471 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2472 bfd_vma adrp_offset;
2473 };
2474
2475 /* Used to build a map of a section. This is required for mixed-endian
2476 code/data. */
2477
2478 typedef struct elf_elf_section_map
2479 {
2480 bfd_vma vma;
2481 char type;
2482 }
2483 elf_aarch64_section_map;
2484
2485
2486 typedef struct _aarch64_elf_section_data
2487 {
2488 struct bfd_elf_section_data elf;
2489 unsigned int mapcount;
2490 unsigned int mapsize;
2491 elf_aarch64_section_map *map;
2492 }
2493 _aarch64_elf_section_data;
2494
2495 #define elf_aarch64_section_data(sec) \
2496 ((_aarch64_elf_section_data *) elf_section_data (sec))
2497
2498 /* The size of the thread control block which is defined to be two pointers. */
2499 #define TCB_SIZE (ARCH_SIZE/8)*2
2500
2501 struct elf_aarch64_local_symbol
2502 {
2503 unsigned int got_type;
2504 bfd_signed_vma got_refcount;
2505 bfd_vma got_offset;
2506
2507 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2508 offset is from the end of the jump table and reserved entries
2509 within the PLTGOT.
2510
2511 The magic value (bfd_vma) -1 indicates that an offset has not be
2512 allocated. */
2513 bfd_vma tlsdesc_got_jump_table_offset;
2514 };
2515
2516 struct elf_aarch64_obj_tdata
2517 {
2518 struct elf_obj_tdata root;
2519
2520 /* local symbol descriptors */
2521 struct elf_aarch64_local_symbol *locals;
2522
2523 /* Zero to warn when linking objects with incompatible enum sizes. */
2524 int no_enum_size_warning;
2525
2526 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2527 int no_wchar_size_warning;
2528
2529 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2530 uint32_t gnu_and_prop;
2531
2532 /* Zero to warn when linking objects with incompatible
2533 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2534 int no_bti_warn;
2535
2536 /* PLT type based on security. */
2537 aarch64_plt_type plt_type;
2538 };
2539
2540 #define elf_aarch64_tdata(bfd) \
2541 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2542
2543 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2544
2545 #define is_aarch64_elf(bfd) \
2546 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2547 && elf_tdata (bfd) != NULL \
2548 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2549
2550 static bfd_boolean
2551 elfNN_aarch64_mkobject (bfd *abfd)
2552 {
2553 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2554 AARCH64_ELF_DATA);
2555 }
2556
2557 #define elf_aarch64_hash_entry(ent) \
2558 ((struct elf_aarch64_link_hash_entry *)(ent))
2559
2560 #define GOT_UNKNOWN 0
2561 #define GOT_NORMAL 1
2562 #define GOT_TLS_GD 2
2563 #define GOT_TLS_IE 4
2564 #define GOT_TLSDESC_GD 8
2565
2566 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2567
2568 /* AArch64 ELF linker hash entry. */
2569 struct elf_aarch64_link_hash_entry
2570 {
2571 struct elf_link_hash_entry root;
2572
2573 /* Track dynamic relocs copied for this symbol. */
2574 struct elf_dyn_relocs *dyn_relocs;
2575
2576 /* Since PLT entries have variable size, we need to record the
2577 index into .got.plt instead of recomputing it from the PLT
2578 offset. */
2579 bfd_signed_vma plt_got_offset;
2580
2581 /* Bit mask representing the type of GOT entry(s) if any required by
2582 this symbol. */
2583 unsigned int got_type;
2584
2585 /* A pointer to the most recently used stub hash entry against this
2586 symbol. */
2587 struct elf_aarch64_stub_hash_entry *stub_cache;
2588
2589 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2590 is from the end of the jump table and reserved entries within the PLTGOT.
2591
2592 The magic value (bfd_vma) -1 indicates that an offset has not
2593 be allocated. */
2594 bfd_vma tlsdesc_got_jump_table_offset;
2595 };
2596
2597 static unsigned int
2598 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2599 bfd *abfd,
2600 unsigned long r_symndx)
2601 {
2602 if (h)
2603 return elf_aarch64_hash_entry (h)->got_type;
2604
2605 if (! elf_aarch64_locals (abfd))
2606 return GOT_UNKNOWN;
2607
2608 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2609 }
2610
2611 /* Get the AArch64 elf linker hash table from a link_info structure. */
2612 #define elf_aarch64_hash_table(info) \
2613 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2614
2615 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2616 ((struct elf_aarch64_stub_hash_entry *) \
2617 bfd_hash_lookup ((table), (string), (create), (copy)))
2618
2619 /* AArch64 ELF linker hash table. */
2620 struct elf_aarch64_link_hash_table
2621 {
2622 /* The main hash table. */
2623 struct elf_link_hash_table root;
2624
2625 /* Nonzero to force PIC branch veneers. */
2626 int pic_veneer;
2627
2628 /* Fix erratum 835769. */
2629 int fix_erratum_835769;
2630
2631 /* Fix erratum 843419. */
2632 erratum_84319_opts fix_erratum_843419;
2633
2634 /* Don't apply link-time values for dynamic relocations. */
2635 int no_apply_dynamic_relocs;
2636
2637 /* The number of bytes in the initial entry in the PLT. */
2638 bfd_size_type plt_header_size;
2639
2640 /* The bytes of the initial PLT entry. */
2641 const bfd_byte *plt0_entry;
2642
2643 /* The number of bytes in the subsequent PLT entries. */
2644 bfd_size_type plt_entry_size;
2645
2646 /* The bytes of the subsequent PLT entry. */
2647 const bfd_byte *plt_entry;
2648
2649 /* Small local sym cache. */
2650 struct sym_cache sym_cache;
2651
2652 /* For convenience in allocate_dynrelocs. */
2653 bfd *obfd;
2654
2655 /* The amount of space used by the reserved portion of the sgotplt
2656 section, plus whatever space is used by the jump slots. */
2657 bfd_vma sgotplt_jump_table_size;
2658
2659 /* The stub hash table. */
2660 struct bfd_hash_table stub_hash_table;
2661
2662 /* Linker stub bfd. */
2663 bfd *stub_bfd;
2664
2665 /* Linker call-backs. */
2666 asection *(*add_stub_section) (const char *, asection *);
2667 void (*layout_sections_again) (void);
2668
2669 /* Array to keep track of which stub sections have been created, and
2670 information on stub grouping. */
2671 struct map_stub
2672 {
2673 /* This is the section to which stubs in the group will be
2674 attached. */
2675 asection *link_sec;
2676 /* The stub section. */
2677 asection *stub_sec;
2678 } *stub_group;
2679
2680 /* Assorted information used by elfNN_aarch64_size_stubs. */
2681 unsigned int bfd_count;
2682 unsigned int top_index;
2683 asection **input_list;
2684
2685 /* JUMP_SLOT relocs for variant PCS symbols may be present. */
2686 int variant_pcs;
2687
2688 /* The offset into splt of the PLT entry for the TLS descriptor
2689 resolver. Special values are 0, if not necessary (or not found
2690 to be necessary yet), and -1 if needed but not determined
2691 yet. */
2692 bfd_vma tlsdesc_plt;
2693
2694 /* The number of bytes in the PLT enty for the TLS descriptor. */
2695 bfd_size_type tlsdesc_plt_entry_size;
2696
2697 /* The GOT offset for the lazy trampoline. Communicated to the
2698 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2699 indicates an offset is not allocated. */
2700 bfd_vma dt_tlsdesc_got;
2701
2702 /* Used by local STT_GNU_IFUNC symbols. */
2703 htab_t loc_hash_table;
2704 void * loc_hash_memory;
2705 };
2706
2707 /* Create an entry in an AArch64 ELF linker hash table. */
2708
2709 static struct bfd_hash_entry *
2710 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2711 struct bfd_hash_table *table,
2712 const char *string)
2713 {
2714 struct elf_aarch64_link_hash_entry *ret =
2715 (struct elf_aarch64_link_hash_entry *) entry;
2716
2717 /* Allocate the structure if it has not already been allocated by a
2718 subclass. */
2719 if (ret == NULL)
2720 ret = bfd_hash_allocate (table,
2721 sizeof (struct elf_aarch64_link_hash_entry));
2722 if (ret == NULL)
2723 return (struct bfd_hash_entry *) ret;
2724
2725 /* Call the allocation method of the superclass. */
2726 ret = ((struct elf_aarch64_link_hash_entry *)
2727 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2728 table, string));
2729 if (ret != NULL)
2730 {
2731 ret->dyn_relocs = NULL;
2732 ret->got_type = GOT_UNKNOWN;
2733 ret->plt_got_offset = (bfd_vma) - 1;
2734 ret->stub_cache = NULL;
2735 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2736 }
2737
2738 return (struct bfd_hash_entry *) ret;
2739 }
2740
2741 /* Initialize an entry in the stub hash table. */
2742
2743 static struct bfd_hash_entry *
2744 stub_hash_newfunc (struct bfd_hash_entry *entry,
2745 struct bfd_hash_table *table, const char *string)
2746 {
2747 /* Allocate the structure if it has not already been allocated by a
2748 subclass. */
2749 if (entry == NULL)
2750 {
2751 entry = bfd_hash_allocate (table,
2752 sizeof (struct
2753 elf_aarch64_stub_hash_entry));
2754 if (entry == NULL)
2755 return entry;
2756 }
2757
2758 /* Call the allocation method of the superclass. */
2759 entry = bfd_hash_newfunc (entry, table, string);
2760 if (entry != NULL)
2761 {
2762 struct elf_aarch64_stub_hash_entry *eh;
2763
2764 /* Initialize the local fields. */
2765 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2766 eh->adrp_offset = 0;
2767 eh->stub_sec = NULL;
2768 eh->stub_offset = 0;
2769 eh->target_value = 0;
2770 eh->target_section = NULL;
2771 eh->stub_type = aarch64_stub_none;
2772 eh->h = NULL;
2773 eh->id_sec = NULL;
2774 }
2775
2776 return entry;
2777 }
2778
2779 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2780 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2781 as global symbol. We reuse indx and dynstr_index for local symbol
2782 hash since they aren't used by global symbols in this backend. */
2783
2784 static hashval_t
2785 elfNN_aarch64_local_htab_hash (const void *ptr)
2786 {
2787 struct elf_link_hash_entry *h
2788 = (struct elf_link_hash_entry *) ptr;
2789 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2790 }
2791
2792 /* Compare local hash entries. */
2793
2794 static int
2795 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2796 {
2797 struct elf_link_hash_entry *h1
2798 = (struct elf_link_hash_entry *) ptr1;
2799 struct elf_link_hash_entry *h2
2800 = (struct elf_link_hash_entry *) ptr2;
2801
2802 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2803 }
2804
2805 /* Find and/or create a hash entry for local symbol. */
2806
2807 static struct elf_link_hash_entry *
2808 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2809 bfd *abfd, const Elf_Internal_Rela *rel,
2810 bfd_boolean create)
2811 {
2812 struct elf_aarch64_link_hash_entry e, *ret;
2813 asection *sec = abfd->sections;
2814 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2815 ELFNN_R_SYM (rel->r_info));
2816 void **slot;
2817
2818 e.root.indx = sec->id;
2819 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2820 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2821 create ? INSERT : NO_INSERT);
2822
2823 if (!slot)
2824 return NULL;
2825
2826 if (*slot)
2827 {
2828 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2829 return &ret->root;
2830 }
2831
2832 ret = (struct elf_aarch64_link_hash_entry *)
2833 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2834 sizeof (struct elf_aarch64_link_hash_entry));
2835 if (ret)
2836 {
2837 memset (ret, 0, sizeof (*ret));
2838 ret->root.indx = sec->id;
2839 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2840 ret->root.dynindx = -1;
2841 *slot = ret;
2842 }
2843 return &ret->root;
2844 }
2845
2846 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2847
2848 static void
2849 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2850 struct elf_link_hash_entry *dir,
2851 struct elf_link_hash_entry *ind)
2852 {
2853 struct elf_aarch64_link_hash_entry *edir, *eind;
2854
2855 edir = (struct elf_aarch64_link_hash_entry *) dir;
2856 eind = (struct elf_aarch64_link_hash_entry *) ind;
2857
2858 if (eind->dyn_relocs != NULL)
2859 {
2860 if (edir->dyn_relocs != NULL)
2861 {
2862 struct elf_dyn_relocs **pp;
2863 struct elf_dyn_relocs *p;
2864
2865 /* Add reloc counts against the indirect sym to the direct sym
2866 list. Merge any entries against the same section. */
2867 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2868 {
2869 struct elf_dyn_relocs *q;
2870
2871 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2872 if (q->sec == p->sec)
2873 {
2874 q->pc_count += p->pc_count;
2875 q->count += p->count;
2876 *pp = p->next;
2877 break;
2878 }
2879 if (q == NULL)
2880 pp = &p->next;
2881 }
2882 *pp = edir->dyn_relocs;
2883 }
2884
2885 edir->dyn_relocs = eind->dyn_relocs;
2886 eind->dyn_relocs = NULL;
2887 }
2888
2889 if (ind->root.type == bfd_link_hash_indirect)
2890 {
2891 /* Copy over PLT info. */
2892 if (dir->got.refcount <= 0)
2893 {
2894 edir->got_type = eind->got_type;
2895 eind->got_type = GOT_UNKNOWN;
2896 }
2897 }
2898
2899 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2900 }
2901
2902 /* Merge non-visibility st_other attributes. */
2903
2904 static void
2905 elfNN_aarch64_merge_symbol_attribute (struct elf_link_hash_entry *h,
2906 const Elf_Internal_Sym *isym,
2907 bfd_boolean definition ATTRIBUTE_UNUSED,
2908 bfd_boolean dynamic ATTRIBUTE_UNUSED)
2909 {
2910 unsigned int isym_sto = isym->st_other & ~ELF_ST_VISIBILITY (-1);
2911 unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1);
2912
2913 if (isym_sto == h_sto)
2914 return;
2915
2916 if (isym_sto & ~STO_AARCH64_VARIANT_PCS)
2917 /* Not fatal, this callback cannot fail. */
2918 _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
2919 h->root.root.string, isym_sto);
2920
2921 /* Note: Ideally we would warn about any attribute mismatch, but
2922 this api does not allow that without substantial changes. */
2923 if (isym_sto & STO_AARCH64_VARIANT_PCS)
2924 h->other |= STO_AARCH64_VARIANT_PCS;
2925 }
2926
2927 /* Destroy an AArch64 elf linker hash table. */
2928
2929 static void
2930 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2931 {
2932 struct elf_aarch64_link_hash_table *ret
2933 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2934
2935 if (ret->loc_hash_table)
2936 htab_delete (ret->loc_hash_table);
2937 if (ret->loc_hash_memory)
2938 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2939
2940 bfd_hash_table_free (&ret->stub_hash_table);
2941 _bfd_elf_link_hash_table_free (obfd);
2942 }
2943
2944 /* Create an AArch64 elf linker hash table. */
2945
2946 static struct bfd_link_hash_table *
2947 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2948 {
2949 struct elf_aarch64_link_hash_table *ret;
2950 size_t amt = sizeof (struct elf_aarch64_link_hash_table);
2951
2952 ret = bfd_zmalloc (amt);
2953 if (ret == NULL)
2954 return NULL;
2955
2956 if (!_bfd_elf_link_hash_table_init
2957 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2958 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2959 {
2960 free (ret);
2961 return NULL;
2962 }
2963
2964 ret->plt_header_size = PLT_ENTRY_SIZE;
2965 ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2966 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2967 ret->plt_entry = elfNN_aarch64_small_plt_entry;
2968 ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2969 ret->obfd = abfd;
2970 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2971
2972 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2973 sizeof (struct elf_aarch64_stub_hash_entry)))
2974 {
2975 _bfd_elf_link_hash_table_free (abfd);
2976 return NULL;
2977 }
2978
2979 ret->loc_hash_table = htab_try_create (1024,
2980 elfNN_aarch64_local_htab_hash,
2981 elfNN_aarch64_local_htab_eq,
2982 NULL);
2983 ret->loc_hash_memory = objalloc_create ();
2984 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2985 {
2986 elfNN_aarch64_link_hash_table_free (abfd);
2987 return NULL;
2988 }
2989 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2990
2991 return &ret->root.root;
2992 }
2993
2994 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2995
2996 static bfd_boolean
2997 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2998 bfd_vma offset, bfd_vma value)
2999 {
3000 reloc_howto_type *howto;
3001 bfd_vma place;
3002
3003 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
3004 place = (input_section->output_section->vma + input_section->output_offset
3005 + offset);
3006
3007 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
3008 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, r_type, place,
3009 value, 0, FALSE);
3010 return _bfd_aarch64_elf_put_addend (input_bfd,
3011 input_section->contents + offset, r_type,
3012 howto, value) == bfd_reloc_ok;
3013 }
3014
3015 static enum elf_aarch64_stub_type
3016 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
3017 {
3018 if (aarch64_valid_for_adrp_p (value, place))
3019 return aarch64_stub_adrp_branch;
3020 return aarch64_stub_long_branch;
3021 }
3022
3023 /* Determine the type of stub needed, if any, for a call. */
3024
3025 static enum elf_aarch64_stub_type
3026 aarch64_type_of_stub (asection *input_sec,
3027 const Elf_Internal_Rela *rel,
3028 asection *sym_sec,
3029 unsigned char st_type,
3030 bfd_vma destination)
3031 {
3032 bfd_vma location;
3033 bfd_signed_vma branch_offset;
3034 unsigned int r_type;
3035 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
3036
3037 if (st_type != STT_FUNC
3038 && (sym_sec == input_sec))
3039 return stub_type;
3040
3041 /* Determine where the call point is. */
3042 location = (input_sec->output_offset
3043 + input_sec->output_section->vma + rel->r_offset);
3044
3045 branch_offset = (bfd_signed_vma) (destination - location);
3046
3047 r_type = ELFNN_R_TYPE (rel->r_info);
3048
3049 /* We don't want to redirect any old unconditional jump in this way,
3050 only one which is being used for a sibcall, where it is
3051 acceptable for the IP0 and IP1 registers to be clobbered. */
3052 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
3053 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
3054 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
3055 {
3056 stub_type = aarch64_stub_long_branch;
3057 }
3058
3059 return stub_type;
3060 }
3061
3062 /* Build a name for an entry in the stub hash table. */
3063
3064 static char *
3065 elfNN_aarch64_stub_name (const asection *input_section,
3066 const asection *sym_sec,
3067 const struct elf_aarch64_link_hash_entry *hash,
3068 const Elf_Internal_Rela *rel)
3069 {
3070 char *stub_name;
3071 bfd_size_type len;
3072
3073 if (hash)
3074 {
3075 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3076 stub_name = bfd_malloc (len);
3077 if (stub_name != NULL)
3078 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3079 (unsigned int) input_section->id,
3080 hash->root.root.root.string,
3081 rel->r_addend);
3082 }
3083 else
3084 {
3085 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3086 stub_name = bfd_malloc (len);
3087 if (stub_name != NULL)
3088 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3089 (unsigned int) input_section->id,
3090 (unsigned int) sym_sec->id,
3091 (unsigned int) ELFNN_R_SYM (rel->r_info),
3092 rel->r_addend);
3093 }
3094
3095 return stub_name;
3096 }
3097
3098 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3099 executable PLT slots where the executable never takes the address of those
3100 functions, the function symbols are not added to the hash table. */
3101
3102 static bfd_boolean
3103 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3104 {
3105 if (h->plt.offset != (bfd_vma) -1
3106 && !h->def_regular
3107 && !h->pointer_equality_needed)
3108 return FALSE;
3109
3110 return _bfd_elf_hash_symbol (h);
3111 }
3112
3113
3114 /* Look up an entry in the stub hash. Stub entries are cached because
3115 creating the stub name takes a bit of time. */
3116
3117 static struct elf_aarch64_stub_hash_entry *
3118 elfNN_aarch64_get_stub_entry (const asection *input_section,
3119 const asection *sym_sec,
3120 struct elf_link_hash_entry *hash,
3121 const Elf_Internal_Rela *rel,
3122 struct elf_aarch64_link_hash_table *htab)
3123 {
3124 struct elf_aarch64_stub_hash_entry *stub_entry;
3125 struct elf_aarch64_link_hash_entry *h =
3126 (struct elf_aarch64_link_hash_entry *) hash;
3127 const asection *id_sec;
3128
3129 if ((input_section->flags & SEC_CODE) == 0)
3130 return NULL;
3131
3132 /* If this input section is part of a group of sections sharing one
3133 stub section, then use the id of the first section in the group.
3134 Stub names need to include a section id, as there may well be
3135 more than one stub used to reach say, printf, and we need to
3136 distinguish between them. */
3137 id_sec = htab->stub_group[input_section->id].link_sec;
3138
3139 if (h != NULL && h->stub_cache != NULL
3140 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3141 {
3142 stub_entry = h->stub_cache;
3143 }
3144 else
3145 {
3146 char *stub_name;
3147
3148 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3149 if (stub_name == NULL)
3150 return NULL;
3151
3152 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3153 stub_name, FALSE, FALSE);
3154 if (h != NULL)
3155 h->stub_cache = stub_entry;
3156
3157 free (stub_name);
3158 }
3159
3160 return stub_entry;
3161 }
3162
3163
3164 /* Create a stub section. */
3165
3166 static asection *
3167 _bfd_aarch64_create_stub_section (asection *section,
3168 struct elf_aarch64_link_hash_table *htab)
3169 {
3170 size_t namelen;
3171 bfd_size_type len;
3172 char *s_name;
3173
3174 namelen = strlen (section->name);
3175 len = namelen + sizeof (STUB_SUFFIX);
3176 s_name = bfd_alloc (htab->stub_bfd, len);
3177 if (s_name == NULL)
3178 return NULL;
3179
3180 memcpy (s_name, section->name, namelen);
3181 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3182 return (*htab->add_stub_section) (s_name, section);
3183 }
3184
3185
3186 /* Find or create a stub section for a link section.
3187
3188 Fix or create the stub section used to collect stubs attached to
3189 the specified link section. */
3190
3191 static asection *
3192 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3193 struct elf_aarch64_link_hash_table *htab)
3194 {
3195 if (htab->stub_group[link_section->id].stub_sec == NULL)
3196 htab->stub_group[link_section->id].stub_sec
3197 = _bfd_aarch64_create_stub_section (link_section, htab);
3198 return htab->stub_group[link_section->id].stub_sec;
3199 }
3200
3201
3202 /* Find or create a stub section in the stub group for an input
3203 section. */
3204
3205 static asection *
3206 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3207 struct elf_aarch64_link_hash_table *htab)
3208 {
3209 asection *link_sec = htab->stub_group[section->id].link_sec;
3210 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3211 }
3212
3213
3214 /* Add a new stub entry in the stub group associated with an input
3215 section to the stub hash. Not all fields of the new stub entry are
3216 initialised. */
3217
3218 static struct elf_aarch64_stub_hash_entry *
3219 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3220 asection *section,
3221 struct elf_aarch64_link_hash_table *htab)
3222 {
3223 asection *link_sec;
3224 asection *stub_sec;
3225 struct elf_aarch64_stub_hash_entry *stub_entry;
3226
3227 link_sec = htab->stub_group[section->id].link_sec;
3228 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3229
3230 /* Enter this entry into the linker stub hash table. */
3231 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3232 TRUE, FALSE);
3233 if (stub_entry == NULL)
3234 {
3235 /* xgettext:c-format */
3236 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3237 section->owner, stub_name);
3238 return NULL;
3239 }
3240
3241 stub_entry->stub_sec = stub_sec;
3242 stub_entry->stub_offset = 0;
3243 stub_entry->id_sec = link_sec;
3244
3245 return stub_entry;
3246 }
3247
3248 /* Add a new stub entry in the final stub section to the stub hash.
3249 Not all fields of the new stub entry are initialised. */
3250
3251 static struct elf_aarch64_stub_hash_entry *
3252 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3253 asection *link_section,
3254 struct elf_aarch64_link_hash_table *htab)
3255 {
3256 asection *stub_sec;
3257 struct elf_aarch64_stub_hash_entry *stub_entry;
3258
3259 stub_sec = NULL;
3260 /* Only create the actual stub if we will end up needing it. */
3261 if (htab->fix_erratum_843419 & ERRAT_ADRP)
3262 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3263 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3264 TRUE, FALSE);
3265 if (stub_entry == NULL)
3266 {
3267 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3268 return NULL;
3269 }
3270
3271 stub_entry->stub_sec = stub_sec;
3272 stub_entry->stub_offset = 0;
3273 stub_entry->id_sec = link_section;
3274
3275 return stub_entry;
3276 }
3277
3278
3279 static bfd_boolean
3280 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3281 void *in_arg)
3282 {
3283 struct elf_aarch64_stub_hash_entry *stub_entry;
3284 asection *stub_sec;
3285 bfd *stub_bfd;
3286 bfd_byte *loc;
3287 bfd_vma sym_value;
3288 bfd_vma veneered_insn_loc;
3289 bfd_vma veneer_entry_loc;
3290 bfd_signed_vma branch_offset = 0;
3291 unsigned int template_size;
3292 const uint32_t *template;
3293 unsigned int i;
3294 struct bfd_link_info *info;
3295
3296 /* Massage our args to the form they really have. */
3297 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3298
3299 info = (struct bfd_link_info *) in_arg;
3300
3301 /* Fail if the target section could not be assigned to an output
3302 section. The user should fix his linker script. */
3303 if (stub_entry->target_section->output_section == NULL
3304 && info->non_contiguous_regions)
3305 {
3306 _bfd_error_handler (_("Could not assign '%pA' to an output section. "
3307 "Retry without --enable-non-contiguous-regions.\n"),
3308 stub_entry->target_section);
3309 abort();
3310 }
3311
3312 stub_sec = stub_entry->stub_sec;
3313
3314 /* Make a note of the offset within the stubs for this entry. */
3315 stub_entry->stub_offset = stub_sec->size;
3316 loc = stub_sec->contents + stub_entry->stub_offset;
3317
3318 stub_bfd = stub_sec->owner;
3319
3320 /* This is the address of the stub destination. */
3321 sym_value = (stub_entry->target_value
3322 + stub_entry->target_section->output_offset
3323 + stub_entry->target_section->output_section->vma);
3324
3325 if (stub_entry->stub_type == aarch64_stub_long_branch)
3326 {
3327 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3328 + stub_sec->output_offset);
3329
3330 /* See if we can relax the stub. */
3331 if (aarch64_valid_for_adrp_p (sym_value, place))
3332 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3333 }
3334
3335 switch (stub_entry->stub_type)
3336 {
3337 case aarch64_stub_adrp_branch:
3338 template = aarch64_adrp_branch_stub;
3339 template_size = sizeof (aarch64_adrp_branch_stub);
3340 break;
3341 case aarch64_stub_long_branch:
3342 template = aarch64_long_branch_stub;
3343 template_size = sizeof (aarch64_long_branch_stub);
3344 break;
3345 case aarch64_stub_erratum_835769_veneer:
3346 template = aarch64_erratum_835769_stub;
3347 template_size = sizeof (aarch64_erratum_835769_stub);
3348 break;
3349 case aarch64_stub_erratum_843419_veneer:
3350 template = aarch64_erratum_843419_stub;
3351 template_size = sizeof (aarch64_erratum_843419_stub);
3352 break;
3353 default:
3354 abort ();
3355 }
3356
3357 for (i = 0; i < (template_size / sizeof template[0]); i++)
3358 {
3359 bfd_putl32 (template[i], loc);
3360 loc += 4;
3361 }
3362
3363 template_size = (template_size + 7) & ~7;
3364 stub_sec->size += template_size;
3365
3366 switch (stub_entry->stub_type)
3367 {
3368 case aarch64_stub_adrp_branch:
3369 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3370 stub_entry->stub_offset, sym_value))
3371 /* The stub would not have been relaxed if the offset was out
3372 of range. */
3373 BFD_FAIL ();
3374
3375 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3376 stub_entry->stub_offset + 4, sym_value))
3377 BFD_FAIL ();
3378 break;
3379
3380 case aarch64_stub_long_branch:
3381 /* We want the value relative to the address 12 bytes back from the
3382 value itself. */
3383 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3384 stub_entry->stub_offset + 16, sym_value + 12))
3385 BFD_FAIL ();
3386 break;
3387
3388 case aarch64_stub_erratum_835769_veneer:
3389 veneered_insn_loc = stub_entry->target_section->output_section->vma
3390 + stub_entry->target_section->output_offset
3391 + stub_entry->target_value;
3392 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3393 + stub_entry->stub_sec->output_offset
3394 + stub_entry->stub_offset;
3395 branch_offset = veneered_insn_loc - veneer_entry_loc;
3396 branch_offset >>= 2;
3397 branch_offset &= 0x3ffffff;
3398 bfd_putl32 (stub_entry->veneered_insn,
3399 stub_sec->contents + stub_entry->stub_offset);
3400 bfd_putl32 (template[1] | branch_offset,
3401 stub_sec->contents + stub_entry->stub_offset + 4);
3402 break;
3403
3404 case aarch64_stub_erratum_843419_veneer:
3405 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3406 stub_entry->stub_offset + 4, sym_value + 4))
3407 BFD_FAIL ();
3408 break;
3409
3410 default:
3411 abort ();
3412 }
3413
3414 return TRUE;
3415 }
3416
3417 /* As above, but don't actually build the stub. Just bump offset so
3418 we know stub section sizes. */
3419
3420 static bfd_boolean
3421 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
3422 {
3423 struct elf_aarch64_stub_hash_entry *stub_entry;
3424 struct elf_aarch64_link_hash_table *htab;
3425 int size;
3426
3427 /* Massage our args to the form they really have. */
3428 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3429 htab = (struct elf_aarch64_link_hash_table *) in_arg;
3430
3431 switch (stub_entry->stub_type)
3432 {
3433 case aarch64_stub_adrp_branch:
3434 size = sizeof (aarch64_adrp_branch_stub);
3435 break;
3436 case aarch64_stub_long_branch:
3437 size = sizeof (aarch64_long_branch_stub);
3438 break;
3439 case aarch64_stub_erratum_835769_veneer:
3440 size = sizeof (aarch64_erratum_835769_stub);
3441 break;
3442 case aarch64_stub_erratum_843419_veneer:
3443 {
3444 if (htab->fix_erratum_843419 == ERRAT_ADR)
3445 return TRUE;
3446 size = sizeof (aarch64_erratum_843419_stub);
3447 }
3448 break;
3449 default:
3450 abort ();
3451 }
3452
3453 size = (size + 7) & ~7;
3454 stub_entry->stub_sec->size += size;
3455 return TRUE;
3456 }
3457
3458 /* External entry points for sizing and building linker stubs. */
3459
3460 /* Set up various things so that we can make a list of input sections
3461 for each output section included in the link. Returns -1 on error,
3462 0 when no stubs will be needed, and 1 on success. */
3463
3464 int
3465 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3466 struct bfd_link_info *info)
3467 {
3468 bfd *input_bfd;
3469 unsigned int bfd_count;
3470 unsigned int top_id, top_index;
3471 asection *section;
3472 asection **input_list, **list;
3473 size_t amt;
3474 struct elf_aarch64_link_hash_table *htab =
3475 elf_aarch64_hash_table (info);
3476
3477 if (!is_elf_hash_table (htab))
3478 return 0;
3479
3480 /* Count the number of input BFDs and find the top input section id. */
3481 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3482 input_bfd != NULL; input_bfd = input_bfd->link.next)
3483 {
3484 bfd_count += 1;
3485 for (section = input_bfd->sections;
3486 section != NULL; section = section->next)
3487 {
3488 if (top_id < section->id)
3489 top_id = section->id;
3490 }
3491 }
3492 htab->bfd_count = bfd_count;
3493
3494 amt = sizeof (struct map_stub) * (top_id + 1);
3495 htab->stub_group = bfd_zmalloc (amt);
3496 if (htab->stub_group == NULL)
3497 return -1;
3498
3499 /* We can't use output_bfd->section_count here to find the top output
3500 section index as some sections may have been removed, and
3501 _bfd_strip_section_from_output doesn't renumber the indices. */
3502 for (section = output_bfd->sections, top_index = 0;
3503 section != NULL; section = section->next)
3504 {
3505 if (top_index < section->index)
3506 top_index = section->index;
3507 }
3508
3509 htab->top_index = top_index;
3510 amt = sizeof (asection *) * (top_index + 1);
3511 input_list = bfd_malloc (amt);
3512 htab->input_list = input_list;
3513 if (input_list == NULL)
3514 return -1;
3515
3516 /* For sections we aren't interested in, mark their entries with a
3517 value we can check later. */
3518 list = input_list + top_index;
3519 do
3520 *list = bfd_abs_section_ptr;
3521 while (list-- != input_list);
3522
3523 for (section = output_bfd->sections;
3524 section != NULL; section = section->next)
3525 {
3526 if ((section->flags & SEC_CODE) != 0)
3527 input_list[section->index] = NULL;
3528 }
3529
3530 return 1;
3531 }
3532
3533 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3534 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3535
3536 /* The linker repeatedly calls this function for each input section,
3537 in the order that input sections are linked into output sections.
3538 Build lists of input sections to determine groupings between which
3539 we may insert linker stubs. */
3540
3541 void
3542 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3543 {
3544 struct elf_aarch64_link_hash_table *htab =
3545 elf_aarch64_hash_table (info);
3546
3547 if (isec->output_section->index <= htab->top_index)
3548 {
3549 asection **list = htab->input_list + isec->output_section->index;
3550
3551 if (*list != bfd_abs_section_ptr)
3552 {
3553 /* Steal the link_sec pointer for our list. */
3554 /* This happens to make the list in reverse order,
3555 which is what we want. */
3556 PREV_SEC (isec) = *list;
3557 *list = isec;
3558 }
3559 }
3560 }
3561
3562 /* See whether we can group stub sections together. Grouping stub
3563 sections may result in fewer stubs. More importantly, we need to
3564 put all .init* and .fini* stubs at the beginning of the .init or
3565 .fini output sections respectively, because glibc splits the
3566 _init and _fini functions into multiple parts. Putting a stub in
3567 the middle of a function is not a good idea. */
3568
3569 static void
3570 group_sections (struct elf_aarch64_link_hash_table *htab,
3571 bfd_size_type stub_group_size,
3572 bfd_boolean stubs_always_before_branch)
3573 {
3574 asection **list = htab->input_list + htab->top_index;
3575
3576 do
3577 {
3578 asection *tail = *list;
3579
3580 if (tail == bfd_abs_section_ptr)
3581 continue;
3582
3583 while (tail != NULL)
3584 {
3585 asection *curr;
3586 asection *prev;
3587 bfd_size_type total;
3588
3589 curr = tail;
3590 total = tail->size;
3591 while ((prev = PREV_SEC (curr)) != NULL
3592 && ((total += curr->output_offset - prev->output_offset)
3593 < stub_group_size))
3594 curr = prev;
3595
3596 /* OK, the size from the start of CURR to the end is less
3597 than stub_group_size and thus can be handled by one stub
3598 section. (Or the tail section is itself larger than
3599 stub_group_size, in which case we may be toast.)
3600 We should really be keeping track of the total size of
3601 stubs added here, as stubs contribute to the final output
3602 section size. */
3603 do
3604 {
3605 prev = PREV_SEC (tail);
3606 /* Set up this stub group. */
3607 htab->stub_group[tail->id].link_sec = curr;
3608 }
3609 while (tail != curr && (tail = prev) != NULL);
3610
3611 /* But wait, there's more! Input sections up to stub_group_size
3612 bytes before the stub section can be handled by it too. */
3613 if (!stubs_always_before_branch)
3614 {
3615 total = 0;
3616 while (prev != NULL
3617 && ((total += tail->output_offset - prev->output_offset)
3618 < stub_group_size))
3619 {
3620 tail = prev;
3621 prev = PREV_SEC (tail);
3622 htab->stub_group[tail->id].link_sec = curr;
3623 }
3624 }
3625 tail = prev;
3626 }
3627 }
3628 while (list-- != htab->input_list);
3629
3630 free (htab->input_list);
3631 }
3632
3633 #undef PREV_SEC
3634
3635 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3636
3637 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3638 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3639 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3640 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3641 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3642 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3643
3644 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3645 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3646 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3647 #define AARCH64_ZR 0x1f
3648
3649 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3650 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3651
3652 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3653 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3654 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3655 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3656 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3657 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3658 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3659 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3660 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3661 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3662 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3663 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3664 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3665 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3666 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3667 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3668 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3669 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3670
3671 /* Classify an INSN if it is indeed a load/store.
3672
3673 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3674
3675 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3676 is set equal to RT.
3677
3678 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3679
3680 static bfd_boolean
3681 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3682 bfd_boolean *pair, bfd_boolean *load)
3683 {
3684 uint32_t opcode;
3685 unsigned int r;
3686 uint32_t opc = 0;
3687 uint32_t v = 0;
3688 uint32_t opc_v = 0;
3689
3690 /* Bail out quickly if INSN doesn't fall into the load-store
3691 encoding space. */
3692 if (!AARCH64_LDST (insn))
3693 return FALSE;
3694
3695 *pair = FALSE;
3696 *load = FALSE;
3697 if (AARCH64_LDST_EX (insn))
3698 {
3699 *rt = AARCH64_RT (insn);
3700 *rt2 = *rt;
3701 if (AARCH64_BIT (insn, 21) == 1)
3702 {
3703 *pair = TRUE;
3704 *rt2 = AARCH64_RT2 (insn);
3705 }
3706 *load = AARCH64_LD (insn);
3707 return TRUE;
3708 }
3709 else if (AARCH64_LDST_NAP (insn)
3710 || AARCH64_LDSTP_PI (insn)
3711 || AARCH64_LDSTP_O (insn)
3712 || AARCH64_LDSTP_PRE (insn))
3713 {
3714 *pair = TRUE;
3715 *rt = AARCH64_RT (insn);
3716 *rt2 = AARCH64_RT2 (insn);
3717 *load = AARCH64_LD (insn);
3718 return TRUE;
3719 }
3720 else if (AARCH64_LDST_PCREL (insn)
3721 || AARCH64_LDST_UI (insn)
3722 || AARCH64_LDST_PIIMM (insn)
3723 || AARCH64_LDST_U (insn)
3724 || AARCH64_LDST_PREIMM (insn)
3725 || AARCH64_LDST_RO (insn)
3726 || AARCH64_LDST_UIMM (insn))
3727 {
3728 *rt = AARCH64_RT (insn);
3729 *rt2 = *rt;
3730 if (AARCH64_LDST_PCREL (insn))
3731 *load = TRUE;
3732 opc = AARCH64_BITS (insn, 22, 2);
3733 v = AARCH64_BIT (insn, 26);
3734 opc_v = opc | (v << 2);
3735 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3736 || opc_v == 5 || opc_v == 7);
3737 return TRUE;
3738 }
3739 else if (AARCH64_LDST_SIMD_M (insn)
3740 || AARCH64_LDST_SIMD_M_PI (insn))
3741 {
3742 *rt = AARCH64_RT (insn);
3743 *load = AARCH64_BIT (insn, 22);
3744 opcode = (insn >> 12) & 0xf;
3745 switch (opcode)
3746 {
3747 case 0:
3748 case 2:
3749 *rt2 = *rt + 3;
3750 break;
3751
3752 case 4:
3753 case 6:
3754 *rt2 = *rt + 2;
3755 break;
3756
3757 case 7:
3758 *rt2 = *rt;
3759 break;
3760
3761 case 8:
3762 case 10:
3763 *rt2 = *rt + 1;
3764 break;
3765
3766 default:
3767 return FALSE;
3768 }
3769 return TRUE;
3770 }
3771 else if (AARCH64_LDST_SIMD_S (insn)
3772 || AARCH64_LDST_SIMD_S_PI (insn))
3773 {
3774 *rt = AARCH64_RT (insn);
3775 r = (insn >> 21) & 1;
3776 *load = AARCH64_BIT (insn, 22);
3777 opcode = (insn >> 13) & 0x7;
3778 switch (opcode)
3779 {
3780 case 0:
3781 case 2:
3782 case 4:
3783 *rt2 = *rt + r;
3784 break;
3785
3786 case 1:
3787 case 3:
3788 case 5:
3789 *rt2 = *rt + (r == 0 ? 2 : 3);
3790 break;
3791
3792 case 6:
3793 *rt2 = *rt + r;
3794 break;
3795
3796 case 7:
3797 *rt2 = *rt + (r == 0 ? 2 : 3);
3798 break;
3799
3800 default:
3801 return FALSE;
3802 }
3803 return TRUE;
3804 }
3805
3806 return FALSE;
3807 }
3808
3809 /* Return TRUE if INSN is multiply-accumulate. */
3810
3811 static bfd_boolean
3812 aarch64_mlxl_p (uint32_t insn)
3813 {
3814 uint32_t op31 = AARCH64_OP31 (insn);
3815
3816 if (AARCH64_MAC (insn)
3817 && (op31 == 0 || op31 == 1 || op31 == 5)
3818 /* Exclude MUL instructions which are encoded as a multiple accumulate
3819 with RA = XZR. */
3820 && AARCH64_RA (insn) != AARCH64_ZR)
3821 return TRUE;
3822
3823 return FALSE;
3824 }
3825
3826 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3827 it is possible for a 64-bit multiply-accumulate instruction to generate an
3828 incorrect result. The details are quite complex and hard to
3829 determine statically, since branches in the code may exist in some
3830 circumstances, but all cases end with a memory (load, store, or
3831 prefetch) instruction followed immediately by the multiply-accumulate
3832 operation. We employ a linker patching technique, by moving the potentially
3833 affected multiply-accumulate instruction into a patch region and replacing
3834 the original instruction with a branch to the patch. This function checks
3835 if INSN_1 is the memory operation followed by a multiply-accumulate
3836 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3837 if INSN_1 and INSN_2 are safe. */
3838
3839 static bfd_boolean
3840 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3841 {
3842 uint32_t rt;
3843 uint32_t rt2;
3844 uint32_t rn;
3845 uint32_t rm;
3846 uint32_t ra;
3847 bfd_boolean pair;
3848 bfd_boolean load;
3849
3850 if (aarch64_mlxl_p (insn_2)
3851 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3852 {
3853 /* Any SIMD memory op is independent of the subsequent MLA
3854 by definition of the erratum. */
3855 if (AARCH64_BIT (insn_1, 26))
3856 return TRUE;
3857
3858 /* If not SIMD, check for integer memory ops and MLA relationship. */
3859 rn = AARCH64_RN (insn_2);
3860 ra = AARCH64_RA (insn_2);
3861 rm = AARCH64_RM (insn_2);
3862
3863 /* If this is a load and there's a true(RAW) dependency, we are safe
3864 and this is not an erratum sequence. */
3865 if (load &&
3866 (rt == rn || rt == rm || rt == ra
3867 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3868 return FALSE;
3869
3870 /* We conservatively put out stubs for all other cases (including
3871 writebacks). */
3872 return TRUE;
3873 }
3874
3875 return FALSE;
3876 }
3877
3878 /* Used to order a list of mapping symbols by address. */
3879
3880 static int
3881 elf_aarch64_compare_mapping (const void *a, const void *b)
3882 {
3883 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3884 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3885
3886 if (amap->vma > bmap->vma)
3887 return 1;
3888 else if (amap->vma < bmap->vma)
3889 return -1;
3890 else if (amap->type > bmap->type)
3891 /* Ensure results do not depend on the host qsort for objects with
3892 multiple mapping symbols at the same address by sorting on type
3893 after vma. */
3894 return 1;
3895 else if (amap->type < bmap->type)
3896 return -1;
3897 else
3898 return 0;
3899 }
3900
3901
3902 static char *
3903 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3904 {
3905 char *stub_name = (char *) bfd_malloc
3906 (strlen ("__erratum_835769_veneer_") + 16);
3907 if (stub_name != NULL)
3908 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3909 return stub_name;
3910 }
3911
3912 /* Scan for Cortex-A53 erratum 835769 sequence.
3913
3914 Return TRUE else FALSE on abnormal termination. */
3915
3916 static bfd_boolean
3917 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3918 struct bfd_link_info *info,
3919 unsigned int *num_fixes_p)
3920 {
3921 asection *section;
3922 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3923 unsigned int num_fixes = *num_fixes_p;
3924
3925 if (htab == NULL)
3926 return TRUE;
3927
3928 for (section = input_bfd->sections;
3929 section != NULL;
3930 section = section->next)
3931 {
3932 bfd_byte *contents = NULL;
3933 struct _aarch64_elf_section_data *sec_data;
3934 unsigned int span;
3935
3936 if (elf_section_type (section) != SHT_PROGBITS
3937 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3938 || (section->flags & SEC_EXCLUDE) != 0
3939 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3940 || (section->output_section == bfd_abs_section_ptr))
3941 continue;
3942
3943 if (elf_section_data (section)->this_hdr.contents != NULL)
3944 contents = elf_section_data (section)->this_hdr.contents;
3945 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3946 return FALSE;
3947
3948 sec_data = elf_aarch64_section_data (section);
3949
3950 qsort (sec_data->map, sec_data->mapcount,
3951 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3952
3953 for (span = 0; span < sec_data->mapcount; span++)
3954 {
3955 unsigned int span_start = sec_data->map[span].vma;
3956 unsigned int span_end = ((span == sec_data->mapcount - 1)
3957 ? sec_data->map[0].vma + section->size
3958 : sec_data->map[span + 1].vma);
3959 unsigned int i;
3960 char span_type = sec_data->map[span].type;
3961
3962 if (span_type == 'd')
3963 continue;
3964
3965 for (i = span_start; i + 4 < span_end; i += 4)
3966 {
3967 uint32_t insn_1 = bfd_getl32 (contents + i);
3968 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3969
3970 if (aarch64_erratum_sequence (insn_1, insn_2))
3971 {
3972 struct elf_aarch64_stub_hash_entry *stub_entry;
3973 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3974 if (! stub_name)
3975 return FALSE;
3976
3977 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3978 section,
3979 htab);
3980 if (! stub_entry)
3981 return FALSE;
3982
3983 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3984 stub_entry->target_section = section;
3985 stub_entry->target_value = i + 4;
3986 stub_entry->veneered_insn = insn_2;
3987 stub_entry->output_name = stub_name;
3988 num_fixes++;
3989 }
3990 }
3991 }
3992 if (elf_section_data (section)->this_hdr.contents == NULL)
3993 free (contents);
3994 }
3995
3996 *num_fixes_p = num_fixes;
3997
3998 return TRUE;
3999 }
4000
4001
4002 /* Test if instruction INSN is ADRP. */
4003
4004 static bfd_boolean
4005 _bfd_aarch64_adrp_p (uint32_t insn)
4006 {
4007 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
4008 }
4009
4010
4011 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
4012
4013 static bfd_boolean
4014 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
4015 uint32_t insn_3)
4016 {
4017 uint32_t rt;
4018 uint32_t rt2;
4019 bfd_boolean pair;
4020 bfd_boolean load;
4021
4022 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
4023 && (!pair
4024 || (pair && !load))
4025 && AARCH64_LDST_UIMM (insn_3)
4026 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
4027 }
4028
4029
4030 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
4031
4032 Return TRUE if section CONTENTS at offset I contains one of the
4033 erratum 843419 sequences, otherwise return FALSE. If a sequence is
4034 seen set P_VENEER_I to the offset of the final LOAD/STORE
4035 instruction in the sequence.
4036 */
4037
4038 static bfd_boolean
4039 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
4040 bfd_vma i, bfd_vma span_end,
4041 bfd_vma *p_veneer_i)
4042 {
4043 uint32_t insn_1 = bfd_getl32 (contents + i);
4044
4045 if (!_bfd_aarch64_adrp_p (insn_1))
4046 return FALSE;
4047
4048 if (span_end < i + 12)
4049 return FALSE;
4050
4051 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
4052 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
4053
4054 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
4055 return FALSE;
4056
4057 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
4058 {
4059 *p_veneer_i = i + 8;
4060 return TRUE;
4061 }
4062
4063 if (span_end < i + 16)
4064 return FALSE;
4065
4066 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
4067
4068 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
4069 {
4070 *p_veneer_i = i + 12;
4071 return TRUE;
4072 }
4073
4074 return FALSE;
4075 }
4076
4077
4078 /* Resize all stub sections. */
4079
4080 static void
4081 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4082 {
4083 asection *section;
4084
4085 /* OK, we've added some stubs. Find out the new size of the
4086 stub sections. */
4087 for (section = htab->stub_bfd->sections;
4088 section != NULL; section = section->next)
4089 {
4090 /* Ignore non-stub sections. */
4091 if (!strstr (section->name, STUB_SUFFIX))
4092 continue;
4093 section->size = 0;
4094 }
4095
4096 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4097
4098 for (section = htab->stub_bfd->sections;
4099 section != NULL; section = section->next)
4100 {
4101 if (!strstr (section->name, STUB_SUFFIX))
4102 continue;
4103
4104 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4105 as long branch stubs contain a 64-bit address. */
4106 if (section->size)
4107 section->size += 8;
4108
4109 /* Ensure all stub sections have a size which is a multiple of
4110 4096. This is important in order to ensure that the insertion
4111 of stub sections does not in itself move existing code around
4112 in such a way that new errata sequences are created. We only do this
4113 when the ADRP workaround is enabled. If only the ADR workaround is
4114 enabled then the stubs workaround won't ever be used. */
4115 if (htab->fix_erratum_843419 & ERRAT_ADRP)
4116 if (section->size)
4117 section->size = BFD_ALIGN (section->size, 0x1000);
4118 }
4119 }
4120
4121 /* Construct an erratum 843419 workaround stub name. */
4122
4123 static char *
4124 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4125 bfd_vma offset)
4126 {
4127 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4128 char *stub_name = bfd_malloc (len);
4129
4130 if (stub_name != NULL)
4131 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4132 input_section->owner->id,
4133 input_section->id,
4134 offset);
4135 return stub_name;
4136 }
4137
4138 /* Build a stub_entry structure describing an 843419 fixup.
4139
4140 The stub_entry constructed is populated with the bit pattern INSN
4141 of the instruction located at OFFSET within input SECTION.
4142
4143 Returns TRUE on success. */
4144
4145 static bfd_boolean
4146 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4147 bfd_vma adrp_offset,
4148 bfd_vma ldst_offset,
4149 asection *section,
4150 struct bfd_link_info *info)
4151 {
4152 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4153 char *stub_name;
4154 struct elf_aarch64_stub_hash_entry *stub_entry;
4155
4156 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4157 if (stub_name == NULL)
4158 return FALSE;
4159 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4160 FALSE, FALSE);
4161 if (stub_entry)
4162 {
4163 free (stub_name);
4164 return TRUE;
4165 }
4166
4167 /* We always place an 843419 workaround veneer in the stub section
4168 attached to the input section in which an erratum sequence has
4169 been found. This ensures that later in the link process (in
4170 elfNN_aarch64_write_section) when we copy the veneered
4171 instruction from the input section into the stub section the
4172 copied instruction will have had any relocations applied to it.
4173 If we placed workaround veneers in any other stub section then we
4174 could not assume that all relocations have been processed on the
4175 corresponding input section at the point we output the stub
4176 section. */
4177
4178 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4179 if (stub_entry == NULL)
4180 {
4181 free (stub_name);
4182 return FALSE;
4183 }
4184
4185 stub_entry->adrp_offset = adrp_offset;
4186 stub_entry->target_value = ldst_offset;
4187 stub_entry->target_section = section;
4188 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4189 stub_entry->veneered_insn = insn;
4190 stub_entry->output_name = stub_name;
4191
4192 return TRUE;
4193 }
4194
4195
4196 /* Scan an input section looking for the signature of erratum 843419.
4197
4198 Scans input SECTION in INPUT_BFD looking for erratum 843419
4199 signatures, for each signature found a stub_entry is created
4200 describing the location of the erratum for subsequent fixup.
4201
4202 Return TRUE on successful scan, FALSE on failure to scan.
4203 */
4204
4205 static bfd_boolean
4206 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4207 struct bfd_link_info *info)
4208 {
4209 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4210
4211 if (htab == NULL)
4212 return TRUE;
4213
4214 if (elf_section_type (section) != SHT_PROGBITS
4215 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4216 || (section->flags & SEC_EXCLUDE) != 0
4217 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4218 || (section->output_section == bfd_abs_section_ptr))
4219 return TRUE;
4220
4221 do
4222 {
4223 bfd_byte *contents = NULL;
4224 struct _aarch64_elf_section_data *sec_data;
4225 unsigned int span;
4226
4227 if (elf_section_data (section)->this_hdr.contents != NULL)
4228 contents = elf_section_data (section)->this_hdr.contents;
4229 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4230 return FALSE;
4231
4232 sec_data = elf_aarch64_section_data (section);
4233
4234 qsort (sec_data->map, sec_data->mapcount,
4235 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4236
4237 for (span = 0; span < sec_data->mapcount; span++)
4238 {
4239 unsigned int span_start = sec_data->map[span].vma;
4240 unsigned int span_end = ((span == sec_data->mapcount - 1)
4241 ? sec_data->map[0].vma + section->size
4242 : sec_data->map[span + 1].vma);
4243 unsigned int i;
4244 char span_type = sec_data->map[span].type;
4245
4246 if (span_type == 'd')
4247 continue;
4248
4249 for (i = span_start; i + 8 < span_end; i += 4)
4250 {
4251 bfd_vma vma = (section->output_section->vma
4252 + section->output_offset
4253 + i);
4254 bfd_vma veneer_i;
4255
4256 if (_bfd_aarch64_erratum_843419_p
4257 (contents, vma, i, span_end, &veneer_i))
4258 {
4259 uint32_t insn = bfd_getl32 (contents + veneer_i);
4260
4261 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4262 section, info))
4263 return FALSE;
4264 }
4265 }
4266 }
4267
4268 if (elf_section_data (section)->this_hdr.contents == NULL)
4269 free (contents);
4270 }
4271 while (0);
4272
4273 return TRUE;
4274 }
4275
4276
4277 /* Determine and set the size of the stub section for a final link.
4278
4279 The basic idea here is to examine all the relocations looking for
4280 PC-relative calls to a target that is unreachable with a "bl"
4281 instruction. */
4282
4283 bfd_boolean
4284 elfNN_aarch64_size_stubs (bfd *output_bfd,
4285 bfd *stub_bfd,
4286 struct bfd_link_info *info,
4287 bfd_signed_vma group_size,
4288 asection * (*add_stub_section) (const char *,
4289 asection *),
4290 void (*layout_sections_again) (void))
4291 {
4292 bfd_size_type stub_group_size;
4293 bfd_boolean stubs_always_before_branch;
4294 bfd_boolean stub_changed = FALSE;
4295 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4296 unsigned int num_erratum_835769_fixes = 0;
4297
4298 /* Propagate mach to stub bfd, because it may not have been
4299 finalized when we created stub_bfd. */
4300 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4301 bfd_get_mach (output_bfd));
4302
4303 /* Stash our params away. */
4304 htab->stub_bfd = stub_bfd;
4305 htab->add_stub_section = add_stub_section;
4306 htab->layout_sections_again = layout_sections_again;
4307 stubs_always_before_branch = group_size < 0;
4308 if (group_size < 0)
4309 stub_group_size = -group_size;
4310 else
4311 stub_group_size = group_size;
4312
4313 if (stub_group_size == 1)
4314 {
4315 /* Default values. */
4316 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4317 stub_group_size = 127 * 1024 * 1024;
4318 }
4319
4320 group_sections (htab, stub_group_size, stubs_always_before_branch);
4321
4322 (*htab->layout_sections_again) ();
4323
4324 if (htab->fix_erratum_835769)
4325 {
4326 bfd *input_bfd;
4327
4328 for (input_bfd = info->input_bfds;
4329 input_bfd != NULL; input_bfd = input_bfd->link.next)
4330 {
4331 if (!is_aarch64_elf (input_bfd)
4332 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4333 continue;
4334
4335 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4336 &num_erratum_835769_fixes))
4337 return FALSE;
4338 }
4339
4340 _bfd_aarch64_resize_stubs (htab);
4341 (*htab->layout_sections_again) ();
4342 }
4343
4344 if (htab->fix_erratum_843419 != ERRAT_NONE)
4345 {
4346 bfd *input_bfd;
4347
4348 for (input_bfd = info->input_bfds;
4349 input_bfd != NULL;
4350 input_bfd = input_bfd->link.next)
4351 {
4352 asection *section;
4353
4354 if (!is_aarch64_elf (input_bfd)
4355 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4356 continue;
4357
4358 for (section = input_bfd->sections;
4359 section != NULL;
4360 section = section->next)
4361 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4362 return FALSE;
4363 }
4364
4365 _bfd_aarch64_resize_stubs (htab);
4366 (*htab->layout_sections_again) ();
4367 }
4368
4369 while (1)
4370 {
4371 bfd *input_bfd;
4372
4373 for (input_bfd = info->input_bfds;
4374 input_bfd != NULL; input_bfd = input_bfd->link.next)
4375 {
4376 Elf_Internal_Shdr *symtab_hdr;
4377 asection *section;
4378 Elf_Internal_Sym *local_syms = NULL;
4379
4380 if (!is_aarch64_elf (input_bfd)
4381 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4382 continue;
4383
4384 /* We'll need the symbol table in a second. */
4385 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4386 if (symtab_hdr->sh_info == 0)
4387 continue;
4388
4389 /* Walk over each section attached to the input bfd. */
4390 for (section = input_bfd->sections;
4391 section != NULL; section = section->next)
4392 {
4393 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4394
4395 /* If there aren't any relocs, then there's nothing more
4396 to do. */
4397 if ((section->flags & SEC_RELOC) == 0
4398 || section->reloc_count == 0
4399 || (section->flags & SEC_CODE) == 0)
4400 continue;
4401
4402 /* If this section is a link-once section that will be
4403 discarded, then don't create any stubs. */
4404 if (section->output_section == NULL
4405 || section->output_section->owner != output_bfd)
4406 continue;
4407
4408 /* Get the relocs. */
4409 internal_relocs
4410 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4411 NULL, info->keep_memory);
4412 if (internal_relocs == NULL)
4413 goto error_ret_free_local;
4414
4415 /* Now examine each relocation. */
4416 irela = internal_relocs;
4417 irelaend = irela + section->reloc_count;
4418 for (; irela < irelaend; irela++)
4419 {
4420 unsigned int r_type, r_indx;
4421 enum elf_aarch64_stub_type stub_type;
4422 struct elf_aarch64_stub_hash_entry *stub_entry;
4423 asection *sym_sec;
4424 bfd_vma sym_value;
4425 bfd_vma destination;
4426 struct elf_aarch64_link_hash_entry *hash;
4427 const char *sym_name;
4428 char *stub_name;
4429 const asection *id_sec;
4430 unsigned char st_type;
4431 bfd_size_type len;
4432
4433 r_type = ELFNN_R_TYPE (irela->r_info);
4434 r_indx = ELFNN_R_SYM (irela->r_info);
4435
4436 if (r_type >= (unsigned int) R_AARCH64_end)
4437 {
4438 bfd_set_error (bfd_error_bad_value);
4439 error_ret_free_internal:
4440 if (elf_section_data (section)->relocs == NULL)
4441 free (internal_relocs);
4442 goto error_ret_free_local;
4443 }
4444
4445 /* Only look for stubs on unconditional branch and
4446 branch and link instructions. */
4447 if (r_type != (unsigned int) AARCH64_R (CALL26)
4448 && r_type != (unsigned int) AARCH64_R (JUMP26))
4449 continue;
4450
4451 /* Now determine the call target, its name, value,
4452 section. */
4453 sym_sec = NULL;
4454 sym_value = 0;
4455 destination = 0;
4456 hash = NULL;
4457 sym_name = NULL;
4458 if (r_indx < symtab_hdr->sh_info)
4459 {
4460 /* It's a local symbol. */
4461 Elf_Internal_Sym *sym;
4462 Elf_Internal_Shdr *hdr;
4463
4464 if (local_syms == NULL)
4465 {
4466 local_syms
4467 = (Elf_Internal_Sym *) symtab_hdr->contents;
4468 if (local_syms == NULL)
4469 local_syms
4470 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4471 symtab_hdr->sh_info, 0,
4472 NULL, NULL, NULL);
4473 if (local_syms == NULL)
4474 goto error_ret_free_internal;
4475 }
4476
4477 sym = local_syms + r_indx;
4478 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4479 sym_sec = hdr->bfd_section;
4480 if (!sym_sec)
4481 /* This is an undefined symbol. It can never
4482 be resolved. */
4483 continue;
4484
4485 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4486 sym_value = sym->st_value;
4487 destination = (sym_value + irela->r_addend
4488 + sym_sec->output_offset
4489 + sym_sec->output_section->vma);
4490 st_type = ELF_ST_TYPE (sym->st_info);
4491 sym_name
4492 = bfd_elf_string_from_elf_section (input_bfd,
4493 symtab_hdr->sh_link,
4494 sym->st_name);
4495 }
4496 else
4497 {
4498 int e_indx;
4499
4500 e_indx = r_indx - symtab_hdr->sh_info;
4501 hash = ((struct elf_aarch64_link_hash_entry *)
4502 elf_sym_hashes (input_bfd)[e_indx]);
4503
4504 while (hash->root.root.type == bfd_link_hash_indirect
4505 || hash->root.root.type == bfd_link_hash_warning)
4506 hash = ((struct elf_aarch64_link_hash_entry *)
4507 hash->root.root.u.i.link);
4508
4509 if (hash->root.root.type == bfd_link_hash_defined
4510 || hash->root.root.type == bfd_link_hash_defweak)
4511 {
4512 struct elf_aarch64_link_hash_table *globals =
4513 elf_aarch64_hash_table (info);
4514 sym_sec = hash->root.root.u.def.section;
4515 sym_value = hash->root.root.u.def.value;
4516 /* For a destination in a shared library,
4517 use the PLT stub as target address to
4518 decide whether a branch stub is
4519 needed. */
4520 if (globals->root.splt != NULL && hash != NULL
4521 && hash->root.plt.offset != (bfd_vma) - 1)
4522 {
4523 sym_sec = globals->root.splt;
4524 sym_value = hash->root.plt.offset;
4525 if (sym_sec->output_section != NULL)
4526 destination = (sym_value
4527 + sym_sec->output_offset
4528 +
4529 sym_sec->output_section->vma);
4530 }
4531 else if (sym_sec->output_section != NULL)
4532 destination = (sym_value + irela->r_addend
4533 + sym_sec->output_offset
4534 + sym_sec->output_section->vma);
4535 }
4536 else if (hash->root.root.type == bfd_link_hash_undefined
4537 || (hash->root.root.type
4538 == bfd_link_hash_undefweak))
4539 {
4540 /* For a shared library, use the PLT stub as
4541 target address to decide whether a long
4542 branch stub is needed.
4543 For absolute code, they cannot be handled. */
4544 struct elf_aarch64_link_hash_table *globals =
4545 elf_aarch64_hash_table (info);
4546
4547 if (globals->root.splt != NULL && hash != NULL
4548 && hash->root.plt.offset != (bfd_vma) - 1)
4549 {
4550 sym_sec = globals->root.splt;
4551 sym_value = hash->root.plt.offset;
4552 if (sym_sec->output_section != NULL)
4553 destination = (sym_value
4554 + sym_sec->output_offset
4555 +
4556 sym_sec->output_section->vma);
4557 }
4558 else
4559 continue;
4560 }
4561 else
4562 {
4563 bfd_set_error (bfd_error_bad_value);
4564 goto error_ret_free_internal;
4565 }
4566 st_type = ELF_ST_TYPE (hash->root.type);
4567 sym_name = hash->root.root.root.string;
4568 }
4569
4570 /* Determine what (if any) linker stub is needed. */
4571 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4572 st_type, destination);
4573 if (stub_type == aarch64_stub_none)
4574 continue;
4575
4576 /* Support for grouping stub sections. */
4577 id_sec = htab->stub_group[section->id].link_sec;
4578
4579 /* Get the name of this stub. */
4580 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4581 irela);
4582 if (!stub_name)
4583 goto error_ret_free_internal;
4584
4585 stub_entry =
4586 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4587 stub_name, FALSE, FALSE);
4588 if (stub_entry != NULL)
4589 {
4590 /* The proper stub has already been created. */
4591 free (stub_name);
4592 /* Always update this stub's target since it may have
4593 changed after layout. */
4594 stub_entry->target_value = sym_value + irela->r_addend;
4595 continue;
4596 }
4597
4598 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4599 (stub_name, section, htab);
4600 if (stub_entry == NULL)
4601 {
4602 free (stub_name);
4603 goto error_ret_free_internal;
4604 }
4605
4606 stub_entry->target_value = sym_value + irela->r_addend;
4607 stub_entry->target_section = sym_sec;
4608 stub_entry->stub_type = stub_type;
4609 stub_entry->h = hash;
4610 stub_entry->st_type = st_type;
4611
4612 if (sym_name == NULL)
4613 sym_name = "unnamed";
4614 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4615 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4616 if (stub_entry->output_name == NULL)
4617 {
4618 free (stub_name);
4619 goto error_ret_free_internal;
4620 }
4621
4622 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4623 sym_name);
4624
4625 stub_changed = TRUE;
4626 }
4627
4628 /* We're done with the internal relocs, free them. */
4629 if (elf_section_data (section)->relocs == NULL)
4630 free (internal_relocs);
4631 }
4632 }
4633
4634 if (!stub_changed)
4635 break;
4636
4637 _bfd_aarch64_resize_stubs (htab);
4638
4639 /* Ask the linker to do its stuff. */
4640 (*htab->layout_sections_again) ();
4641 stub_changed = FALSE;
4642 }
4643
4644 return TRUE;
4645
4646 error_ret_free_local:
4647 return FALSE;
4648 }
4649
4650 /* Build all the stubs associated with the current output file. The
4651 stubs are kept in a hash table attached to the main linker hash
4652 table. We also set up the .plt entries for statically linked PIC
4653 functions here. This function is called via aarch64_elf_finish in the
4654 linker. */
4655
4656 bfd_boolean
4657 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4658 {
4659 asection *stub_sec;
4660 struct bfd_hash_table *table;
4661 struct elf_aarch64_link_hash_table *htab;
4662
4663 htab = elf_aarch64_hash_table (info);
4664
4665 for (stub_sec = htab->stub_bfd->sections;
4666 stub_sec != NULL; stub_sec = stub_sec->next)
4667 {
4668 bfd_size_type size;
4669
4670 /* Ignore non-stub sections. */
4671 if (!strstr (stub_sec->name, STUB_SUFFIX))
4672 continue;
4673
4674 /* Allocate memory to hold the linker stubs. */
4675 size = stub_sec->size;
4676 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4677 if (stub_sec->contents == NULL && size != 0)
4678 return FALSE;
4679 stub_sec->size = 0;
4680
4681 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4682 aligned, as long branch stubs contain a 64-bit address. */
4683 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4684 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4685 stub_sec->size += 8;
4686 }
4687
4688 /* Build the stubs as directed by the stub hash table. */
4689 table = &htab->stub_hash_table;
4690 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4691
4692 return TRUE;
4693 }
4694
4695
4696 /* Add an entry to the code/data map for section SEC. */
4697
4698 static void
4699 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4700 {
4701 struct _aarch64_elf_section_data *sec_data =
4702 elf_aarch64_section_data (sec);
4703 unsigned int newidx;
4704
4705 if (sec_data->map == NULL)
4706 {
4707 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4708 sec_data->mapcount = 0;
4709 sec_data->mapsize = 1;
4710 }
4711
4712 newidx = sec_data->mapcount++;
4713
4714 if (sec_data->mapcount > sec_data->mapsize)
4715 {
4716 sec_data->mapsize *= 2;
4717 sec_data->map = bfd_realloc_or_free
4718 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4719 }
4720
4721 if (sec_data->map)
4722 {
4723 sec_data->map[newidx].vma = vma;
4724 sec_data->map[newidx].type = type;
4725 }
4726 }
4727
4728
4729 /* Initialise maps of insn/data for input BFDs. */
4730 void
4731 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4732 {
4733 Elf_Internal_Sym *isymbuf;
4734 Elf_Internal_Shdr *hdr;
4735 unsigned int i, localsyms;
4736
4737 /* Make sure that we are dealing with an AArch64 elf binary. */
4738 if (!is_aarch64_elf (abfd))
4739 return;
4740
4741 if ((abfd->flags & DYNAMIC) != 0)
4742 return;
4743
4744 hdr = &elf_symtab_hdr (abfd);
4745 localsyms = hdr->sh_info;
4746
4747 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4748 should contain the number of local symbols, which should come before any
4749 global symbols. Mapping symbols are always local. */
4750 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4751
4752 /* No internal symbols read? Skip this BFD. */
4753 if (isymbuf == NULL)
4754 return;
4755
4756 for (i = 0; i < localsyms; i++)
4757 {
4758 Elf_Internal_Sym *isym = &isymbuf[i];
4759 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4760 const char *name;
4761
4762 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4763 {
4764 name = bfd_elf_string_from_elf_section (abfd,
4765 hdr->sh_link,
4766 isym->st_name);
4767
4768 if (bfd_is_aarch64_special_symbol_name
4769 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4770 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4771 }
4772 }
4773 }
4774
4775 static void
4776 setup_plt_values (struct bfd_link_info *link_info,
4777 aarch64_plt_type plt_type)
4778 {
4779 struct elf_aarch64_link_hash_table *globals;
4780 globals = elf_aarch64_hash_table (link_info);
4781
4782 if (plt_type == PLT_BTI_PAC)
4783 {
4784 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4785
4786 /* Only in ET_EXEC we need PLTn with BTI. */
4787 if (bfd_link_pde (link_info))
4788 {
4789 globals->plt_entry_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
4790 globals->plt_entry = elfNN_aarch64_small_plt_bti_pac_entry;
4791 }
4792 else
4793 {
4794 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4795 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4796 }
4797 }
4798 else if (plt_type == PLT_BTI)
4799 {
4800 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4801
4802 /* Only in ET_EXEC we need PLTn with BTI. */
4803 if (bfd_link_pde (link_info))
4804 {
4805 globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4806 globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4807 }
4808 }
4809 else if (plt_type == PLT_PAC)
4810 {
4811 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4812 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4813 }
4814 }
4815
4816 /* Set option values needed during linking. */
4817 void
4818 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4819 struct bfd_link_info *link_info,
4820 int no_enum_warn,
4821 int no_wchar_warn, int pic_veneer,
4822 int fix_erratum_835769,
4823 erratum_84319_opts fix_erratum_843419,
4824 int no_apply_dynamic_relocs,
4825 aarch64_bti_pac_info bp_info)
4826 {
4827 struct elf_aarch64_link_hash_table *globals;
4828
4829 globals = elf_aarch64_hash_table (link_info);
4830 globals->pic_veneer = pic_veneer;
4831 globals->fix_erratum_835769 = fix_erratum_835769;
4832 /* If the default options are used, then ERRAT_ADR will be set by default
4833 which will enable the ADRP->ADR workaround for the erratum 843419
4834 workaround. */
4835 globals->fix_erratum_843419 = fix_erratum_843419;
4836 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4837
4838 BFD_ASSERT (is_aarch64_elf (output_bfd));
4839 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4840 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4841
4842 switch (bp_info.bti_type)
4843 {
4844 case BTI_WARN:
4845 elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4846 elf_aarch64_tdata (output_bfd)->gnu_and_prop
4847 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4848 break;
4849
4850 default:
4851 break;
4852 }
4853 elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4854 setup_plt_values (link_info, bp_info.plt_type);
4855 }
4856
4857 static bfd_vma
4858 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4859 struct elf_aarch64_link_hash_table
4860 *globals, struct bfd_link_info *info,
4861 bfd_vma value, bfd *output_bfd,
4862 bfd_boolean *unresolved_reloc_p)
4863 {
4864 bfd_vma off = (bfd_vma) - 1;
4865 asection *basegot = globals->root.sgot;
4866 bfd_boolean dyn = globals->root.dynamic_sections_created;
4867
4868 if (h != NULL)
4869 {
4870 BFD_ASSERT (basegot != NULL);
4871 off = h->got.offset;
4872 BFD_ASSERT (off != (bfd_vma) - 1);
4873 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4874 || (bfd_link_pic (info)
4875 && SYMBOL_REFERENCES_LOCAL (info, h))
4876 || (ELF_ST_VISIBILITY (h->other)
4877 && h->root.type == bfd_link_hash_undefweak))
4878 {
4879 /* This is actually a static link, or it is a -Bsymbolic link
4880 and the symbol is defined locally. We must initialize this
4881 entry in the global offset table. Since the offset must
4882 always be a multiple of 8 (4 in the case of ILP32), we use
4883 the least significant bit to record whether we have
4884 initialized it already.
4885 When doing a dynamic link, we create a .rel(a).got relocation
4886 entry to initialize the value. This is done in the
4887 finish_dynamic_symbol routine. */
4888 if ((off & 1) != 0)
4889 off &= ~1;
4890 else
4891 {
4892 bfd_put_NN (output_bfd, value, basegot->contents + off);
4893 h->got.offset |= 1;
4894 }
4895 }
4896 else
4897 *unresolved_reloc_p = FALSE;
4898
4899 off = off + basegot->output_section->vma + basegot->output_offset;
4900 }
4901
4902 return off;
4903 }
4904
4905 /* Change R_TYPE to a more efficient access model where possible,
4906 return the new reloc type. */
4907
4908 static bfd_reloc_code_real_type
4909 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4910 struct elf_link_hash_entry *h)
4911 {
4912 bfd_boolean is_local = h == NULL;
4913
4914 switch (r_type)
4915 {
4916 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4917 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4918 return (is_local
4919 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4920 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4921
4922 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4923 return (is_local
4924 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4925 : r_type);
4926
4927 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4928 return (is_local
4929 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4930 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4931
4932 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4933 return (is_local
4934 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4935 : BFD_RELOC_AARCH64_NONE);
4936
4937 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4938 return (is_local
4939 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4940 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4941
4942 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4943 return (is_local
4944 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4945 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4946
4947 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4948 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4949 return (is_local
4950 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4951 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4952
4953 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4954 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4955
4956 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4957 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4958
4959 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4960 return r_type;
4961
4962 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4963 return (is_local
4964 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4965 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4966
4967 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4968 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4969 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4970 /* Instructions with these relocations will become NOPs. */
4971 return BFD_RELOC_AARCH64_NONE;
4972
4973 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4974 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4975 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4976 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4977
4978 #if ARCH_SIZE == 64
4979 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4980 return is_local
4981 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4982 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4983
4984 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4985 return is_local
4986 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4987 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4988 #endif
4989
4990 default:
4991 break;
4992 }
4993
4994 return r_type;
4995 }
4996
4997 static unsigned int
4998 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4999 {
5000 switch (r_type)
5001 {
5002 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5003 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5004 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5005 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5006 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5007 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5008 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5009 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5010 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5011 return GOT_NORMAL;
5012
5013 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5014 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5015 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5016 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5017 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5018 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5019 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5020 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5021 return GOT_TLS_GD;
5022
5023 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5024 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5025 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5026 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5027 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5028 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5029 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5030 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5031 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5032 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5033 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5034 return GOT_TLSDESC_GD;
5035
5036 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5037 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5038 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5039 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5040 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5041 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5042 return GOT_TLS_IE;
5043
5044 default:
5045 break;
5046 }
5047 return GOT_UNKNOWN;
5048 }
5049
5050 static bfd_boolean
5051 aarch64_can_relax_tls (bfd *input_bfd,
5052 struct bfd_link_info *info,
5053 bfd_reloc_code_real_type r_type,
5054 struct elf_link_hash_entry *h,
5055 unsigned long r_symndx)
5056 {
5057 unsigned int symbol_got_type;
5058 unsigned int reloc_got_type;
5059
5060 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
5061 return FALSE;
5062
5063 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
5064 reloc_got_type = aarch64_reloc_got_type (r_type);
5065
5066 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
5067 return TRUE;
5068
5069 if (!bfd_link_executable (info))
5070 return FALSE;
5071
5072 if (h && h->root.type == bfd_link_hash_undefweak)
5073 return FALSE;
5074
5075 return TRUE;
5076 }
5077
5078 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5079 enumerator. */
5080
5081 static bfd_reloc_code_real_type
5082 aarch64_tls_transition (bfd *input_bfd,
5083 struct bfd_link_info *info,
5084 unsigned int r_type,
5085 struct elf_link_hash_entry *h,
5086 unsigned long r_symndx)
5087 {
5088 bfd_reloc_code_real_type bfd_r_type
5089 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
5090
5091 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
5092 return bfd_r_type;
5093
5094 return aarch64_tls_transition_without_check (bfd_r_type, h);
5095 }
5096
5097 /* Return the base VMA address which should be subtracted from real addresses
5098 when resolving R_AARCH64_TLS_DTPREL relocation. */
5099
5100 static bfd_vma
5101 dtpoff_base (struct bfd_link_info *info)
5102 {
5103 /* If tls_sec is NULL, we should have signalled an error already. */
5104 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
5105 return elf_hash_table (info)->tls_sec->vma;
5106 }
5107
5108 /* Return the base VMA address which should be subtracted from real addresses
5109 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
5110
5111 static bfd_vma
5112 tpoff_base (struct bfd_link_info *info)
5113 {
5114 struct elf_link_hash_table *htab = elf_hash_table (info);
5115
5116 /* If tls_sec is NULL, we should have signalled an error already. */
5117 BFD_ASSERT (htab->tls_sec != NULL);
5118
5119 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5120 htab->tls_sec->alignment_power);
5121 return htab->tls_sec->vma - base;
5122 }
5123
5124 static bfd_vma *
5125 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5126 unsigned long r_symndx)
5127 {
5128 /* Calculate the address of the GOT entry for symbol
5129 referred to in h. */
5130 if (h != NULL)
5131 return &h->got.offset;
5132 else
5133 {
5134 /* local symbol */
5135 struct elf_aarch64_local_symbol *l;
5136
5137 l = elf_aarch64_locals (input_bfd);
5138 return &l[r_symndx].got_offset;
5139 }
5140 }
5141
5142 static void
5143 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5144 unsigned long r_symndx)
5145 {
5146 bfd_vma *p;
5147 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5148 *p |= 1;
5149 }
5150
5151 static int
5152 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5153 unsigned long r_symndx)
5154 {
5155 bfd_vma value;
5156 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5157 return value & 1;
5158 }
5159
5160 static bfd_vma
5161 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5162 unsigned long r_symndx)
5163 {
5164 bfd_vma value;
5165 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5166 value &= ~1;
5167 return value;
5168 }
5169
5170 static bfd_vma *
5171 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5172 unsigned long r_symndx)
5173 {
5174 /* Calculate the address of the GOT entry for symbol
5175 referred to in h. */
5176 if (h != NULL)
5177 {
5178 struct elf_aarch64_link_hash_entry *eh;
5179 eh = (struct elf_aarch64_link_hash_entry *) h;
5180 return &eh->tlsdesc_got_jump_table_offset;
5181 }
5182 else
5183 {
5184 /* local symbol */
5185 struct elf_aarch64_local_symbol *l;
5186
5187 l = elf_aarch64_locals (input_bfd);
5188 return &l[r_symndx].tlsdesc_got_jump_table_offset;
5189 }
5190 }
5191
5192 static void
5193 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5194 unsigned long r_symndx)
5195 {
5196 bfd_vma *p;
5197 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5198 *p |= 1;
5199 }
5200
5201 static int
5202 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5203 struct elf_link_hash_entry *h,
5204 unsigned long r_symndx)
5205 {
5206 bfd_vma value;
5207 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5208 return value & 1;
5209 }
5210
5211 static bfd_vma
5212 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5213 unsigned long r_symndx)
5214 {
5215 bfd_vma value;
5216 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5217 value &= ~1;
5218 return value;
5219 }
5220
5221 /* Data for make_branch_to_erratum_835769_stub(). */
5222
5223 struct erratum_835769_branch_to_stub_data
5224 {
5225 struct bfd_link_info *info;
5226 asection *output_section;
5227 bfd_byte *contents;
5228 };
5229
5230 /* Helper to insert branches to erratum 835769 stubs in the right
5231 places for a particular section. */
5232
5233 static bfd_boolean
5234 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5235 void *in_arg)
5236 {
5237 struct elf_aarch64_stub_hash_entry *stub_entry;
5238 struct erratum_835769_branch_to_stub_data *data;
5239 bfd_byte *contents;
5240 unsigned long branch_insn = 0;
5241 bfd_vma veneered_insn_loc, veneer_entry_loc;
5242 bfd_signed_vma branch_offset;
5243 unsigned int target;
5244 bfd *abfd;
5245
5246 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5247 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5248
5249 if (stub_entry->target_section != data->output_section
5250 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5251 return TRUE;
5252
5253 contents = data->contents;
5254 veneered_insn_loc = stub_entry->target_section->output_section->vma
5255 + stub_entry->target_section->output_offset
5256 + stub_entry->target_value;
5257 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5258 + stub_entry->stub_sec->output_offset
5259 + stub_entry->stub_offset;
5260 branch_offset = veneer_entry_loc - veneered_insn_loc;
5261
5262 abfd = stub_entry->target_section->owner;
5263 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5264 _bfd_error_handler
5265 (_("%pB: error: erratum 835769 stub out "
5266 "of range (input file too large)"), abfd);
5267
5268 target = stub_entry->target_value;
5269 branch_insn = 0x14000000;
5270 branch_offset >>= 2;
5271 branch_offset &= 0x3ffffff;
5272 branch_insn |= branch_offset;
5273 bfd_putl32 (branch_insn, &contents[target]);
5274
5275 return TRUE;
5276 }
5277
5278
5279 static bfd_boolean
5280 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5281 void *in_arg)
5282 {
5283 struct elf_aarch64_stub_hash_entry *stub_entry
5284 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5285 struct erratum_835769_branch_to_stub_data *data
5286 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5287 struct bfd_link_info *info;
5288 struct elf_aarch64_link_hash_table *htab;
5289 bfd_byte *contents;
5290 asection *section;
5291 bfd *abfd;
5292 bfd_vma place;
5293 uint32_t insn;
5294
5295 info = data->info;
5296 contents = data->contents;
5297 section = data->output_section;
5298
5299 htab = elf_aarch64_hash_table (info);
5300
5301 if (stub_entry->target_section != section
5302 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5303 return TRUE;
5304
5305 BFD_ASSERT (((htab->fix_erratum_843419 & ERRAT_ADRP) && stub_entry->stub_sec)
5306 || (htab->fix_erratum_843419 & ERRAT_ADR));
5307
5308 /* Only update the stub section if we have one. We should always have one if
5309 we're allowed to use the ADRP errata workaround, otherwise it is not
5310 required. */
5311 if (stub_entry->stub_sec)
5312 {
5313 insn = bfd_getl32 (contents + stub_entry->target_value);
5314 bfd_putl32 (insn,
5315 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5316 }
5317
5318 place = (section->output_section->vma + section->output_offset
5319 + stub_entry->adrp_offset);
5320 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5321
5322 if (!_bfd_aarch64_adrp_p (insn))
5323 abort ();
5324
5325 bfd_signed_vma imm =
5326 (_bfd_aarch64_sign_extend
5327 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5328 - (place & 0xfff));
5329
5330 if ((htab->fix_erratum_843419 & ERRAT_ADR)
5331 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5332 {
5333 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5334 | AARCH64_RT (insn));
5335 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5336 /* Stub is not needed, don't map it out. */
5337 stub_entry->stub_type = aarch64_stub_none;
5338 }
5339 else if (htab->fix_erratum_843419 & ERRAT_ADRP)
5340 {
5341 bfd_vma veneered_insn_loc;
5342 bfd_vma veneer_entry_loc;
5343 bfd_signed_vma branch_offset;
5344 uint32_t branch_insn;
5345
5346 veneered_insn_loc = stub_entry->target_section->output_section->vma
5347 + stub_entry->target_section->output_offset
5348 + stub_entry->target_value;
5349 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5350 + stub_entry->stub_sec->output_offset
5351 + stub_entry->stub_offset;
5352 branch_offset = veneer_entry_loc - veneered_insn_loc;
5353
5354 abfd = stub_entry->target_section->owner;
5355 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5356 _bfd_error_handler
5357 (_("%pB: error: erratum 843419 stub out "
5358 "of range (input file too large)"), abfd);
5359
5360 branch_insn = 0x14000000;
5361 branch_offset >>= 2;
5362 branch_offset &= 0x3ffffff;
5363 branch_insn |= branch_offset;
5364 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5365 }
5366 else
5367 {
5368 abfd = stub_entry->target_section->owner;
5369 _bfd_error_handler
5370 (_("%pB: error: erratum 843419 immediate 0x%" BFD_VMA_FMT "x "
5371 "out of range for ADR (input file too large) and "
5372 "--fix-cortex-a53-843419=adr used. Run the linker with "
5373 "--fix-cortex-a53-843419=full instead"), abfd, imm);
5374 bfd_set_error (bfd_error_bad_value);
5375 /* This function is called inside a hashtable traversal and the error
5376 handlers called above turn into non-fatal errors. Which means this
5377 case ld returns an exit code 0 and also produces a broken object file.
5378 To prevent this, issue a hard abort. */
5379 BFD_FAIL ();
5380 }
5381 return TRUE;
5382 }
5383
5384
5385 static bfd_boolean
5386 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5387 struct bfd_link_info *link_info,
5388 asection *sec,
5389 bfd_byte *contents)
5390
5391 {
5392 struct elf_aarch64_link_hash_table *globals =
5393 elf_aarch64_hash_table (link_info);
5394
5395 if (globals == NULL)
5396 return FALSE;
5397
5398 /* Fix code to point to erratum 835769 stubs. */
5399 if (globals->fix_erratum_835769)
5400 {
5401 struct erratum_835769_branch_to_stub_data data;
5402
5403 data.info = link_info;
5404 data.output_section = sec;
5405 data.contents = contents;
5406 bfd_hash_traverse (&globals->stub_hash_table,
5407 make_branch_to_erratum_835769_stub, &data);
5408 }
5409
5410 if (globals->fix_erratum_843419)
5411 {
5412 struct erratum_835769_branch_to_stub_data data;
5413
5414 data.info = link_info;
5415 data.output_section = sec;
5416 data.contents = contents;
5417 bfd_hash_traverse (&globals->stub_hash_table,
5418 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5419 }
5420
5421 return FALSE;
5422 }
5423
5424 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5425
5426 static bfd_boolean
5427 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5428 {
5429 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5430 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5431 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5432 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5433 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5434 }
5435
5436 /* Perform a relocation as part of a final link. The input relocation type
5437 should be TLS relaxed. */
5438
5439 static bfd_reloc_status_type
5440 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5441 bfd *input_bfd,
5442 bfd *output_bfd,
5443 asection *input_section,
5444 bfd_byte *contents,
5445 Elf_Internal_Rela *rel,
5446 bfd_vma value,
5447 struct bfd_link_info *info,
5448 asection *sym_sec,
5449 struct elf_link_hash_entry *h,
5450 bfd_boolean *unresolved_reloc_p,
5451 bfd_boolean save_addend,
5452 bfd_vma *saved_addend,
5453 Elf_Internal_Sym *sym)
5454 {
5455 Elf_Internal_Shdr *symtab_hdr;
5456 unsigned int r_type = howto->type;
5457 bfd_reloc_code_real_type bfd_r_type
5458 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5459 unsigned long r_symndx;
5460 bfd_byte *hit_data = contents + rel->r_offset;
5461 bfd_vma place, off, got_entry_addr = 0;
5462 bfd_signed_vma signed_addend;
5463 struct elf_aarch64_link_hash_table *globals;
5464 bfd_boolean weak_undef_p;
5465 bfd_boolean relative_reloc;
5466 asection *base_got;
5467 bfd_vma orig_value = value;
5468 bfd_boolean resolved_to_zero;
5469 bfd_boolean abs_symbol_p;
5470
5471 globals = elf_aarch64_hash_table (info);
5472
5473 symtab_hdr = &elf_symtab_hdr (input_bfd);
5474
5475 BFD_ASSERT (is_aarch64_elf (input_bfd));
5476
5477 r_symndx = ELFNN_R_SYM (rel->r_info);
5478
5479 place = input_section->output_section->vma
5480 + input_section->output_offset + rel->r_offset;
5481
5482 /* Get addend, accumulating the addend for consecutive relocs
5483 which refer to the same offset. */
5484 signed_addend = saved_addend ? *saved_addend : 0;
5485 signed_addend += rel->r_addend;
5486
5487 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5488 : bfd_is_und_section (sym_sec));
5489 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5490
5491
5492 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5493 it here if it is defined in a non-shared object. */
5494 if (h != NULL
5495 && h->type == STT_GNU_IFUNC
5496 && h->def_regular)
5497 {
5498 asection *plt;
5499 const char *name;
5500 bfd_vma addend = 0;
5501
5502 if ((input_section->flags & SEC_ALLOC) == 0)
5503 {
5504 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5505 STT_GNU_IFUNC symbol as STT_FUNC. */
5506 if (elf_section_type (input_section) == SHT_NOTE)
5507 goto skip_ifunc;
5508
5509 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5510 sections because such sections are not SEC_ALLOC and
5511 thus ld.so will not process them. */
5512 if ((input_section->flags & SEC_DEBUGGING) != 0)
5513 return bfd_reloc_ok;
5514
5515 if (h->root.root.string)
5516 name = h->root.root.string;
5517 else
5518 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5519 _bfd_error_handler
5520 /* xgettext:c-format */
5521 (_("%pB(%pA+%#" PRIx64 "): "
5522 "unresolvable %s relocation against symbol `%s'"),
5523 input_bfd, input_section, (uint64_t) rel->r_offset,
5524 howto->name, name);
5525 bfd_set_error (bfd_error_bad_value);
5526 return bfd_reloc_notsupported;
5527 }
5528 else if (h->plt.offset == (bfd_vma) -1)
5529 goto bad_ifunc_reloc;
5530
5531 /* STT_GNU_IFUNC symbol must go through PLT. */
5532 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5533 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5534
5535 switch (bfd_r_type)
5536 {
5537 default:
5538 bad_ifunc_reloc:
5539 if (h->root.root.string)
5540 name = h->root.root.string;
5541 else
5542 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5543 NULL);
5544 _bfd_error_handler
5545 /* xgettext:c-format */
5546 (_("%pB: relocation %s against STT_GNU_IFUNC "
5547 "symbol `%s' isn't handled by %s"), input_bfd,
5548 howto->name, name, __FUNCTION__);
5549 bfd_set_error (bfd_error_bad_value);
5550 return bfd_reloc_notsupported;
5551
5552 case BFD_RELOC_AARCH64_NN:
5553 if (rel->r_addend != 0)
5554 {
5555 if (h->root.root.string)
5556 name = h->root.root.string;
5557 else
5558 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5559 sym, NULL);
5560 _bfd_error_handler
5561 /* xgettext:c-format */
5562 (_("%pB: relocation %s against STT_GNU_IFUNC "
5563 "symbol `%s' has non-zero addend: %" PRId64),
5564 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5565 bfd_set_error (bfd_error_bad_value);
5566 return bfd_reloc_notsupported;
5567 }
5568
5569 /* Generate dynamic relocation only when there is a
5570 non-GOT reference in a shared object. */
5571 if (bfd_link_pic (info) && h->non_got_ref)
5572 {
5573 Elf_Internal_Rela outrel;
5574 asection *sreloc;
5575
5576 /* Need a dynamic relocation to get the real function
5577 address. */
5578 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5579 info,
5580 input_section,
5581 rel->r_offset);
5582 if (outrel.r_offset == (bfd_vma) -1
5583 || outrel.r_offset == (bfd_vma) -2)
5584 abort ();
5585
5586 outrel.r_offset += (input_section->output_section->vma
5587 + input_section->output_offset);
5588
5589 if (h->dynindx == -1
5590 || h->forced_local
5591 || bfd_link_executable (info))
5592 {
5593 /* This symbol is resolved locally. */
5594 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5595 outrel.r_addend = (h->root.u.def.value
5596 + h->root.u.def.section->output_section->vma
5597 + h->root.u.def.section->output_offset);
5598 }
5599 else
5600 {
5601 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5602 outrel.r_addend = 0;
5603 }
5604
5605 sreloc = globals->root.irelifunc;
5606 elf_append_rela (output_bfd, sreloc, &outrel);
5607
5608 /* If this reloc is against an external symbol, we
5609 do not want to fiddle with the addend. Otherwise,
5610 we need to include the symbol value so that it
5611 becomes an addend for the dynamic reloc. For an
5612 internal symbol, we have updated addend. */
5613 return bfd_reloc_ok;
5614 }
5615 /* FALLTHROUGH */
5616 case BFD_RELOC_AARCH64_CALL26:
5617 case BFD_RELOC_AARCH64_JUMP26:
5618 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5619 place, value,
5620 signed_addend,
5621 weak_undef_p);
5622 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5623 howto, value);
5624 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5625 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5626 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5627 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5628 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5629 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5630 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5631 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5632 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5633 base_got = globals->root.sgot;
5634 off = h->got.offset;
5635
5636 if (base_got == NULL)
5637 abort ();
5638
5639 if (off == (bfd_vma) -1)
5640 {
5641 bfd_vma plt_index;
5642
5643 /* We can't use h->got.offset here to save state, or
5644 even just remember the offset, as finish_dynamic_symbol
5645 would use that as offset into .got. */
5646
5647 if (globals->root.splt != NULL)
5648 {
5649 plt_index = ((h->plt.offset - globals->plt_header_size) /
5650 globals->plt_entry_size);
5651 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5652 base_got = globals->root.sgotplt;
5653 }
5654 else
5655 {
5656 plt_index = h->plt.offset / globals->plt_entry_size;
5657 off = plt_index * GOT_ENTRY_SIZE;
5658 base_got = globals->root.igotplt;
5659 }
5660
5661 if (h->dynindx == -1
5662 || h->forced_local
5663 || info->symbolic)
5664 {
5665 /* This references the local definition. We must
5666 initialize this entry in the global offset table.
5667 Since the offset must always be a multiple of 8,
5668 we use the least significant bit to record
5669 whether we have initialized it already.
5670
5671 When doing a dynamic link, we create a .rela.got
5672 relocation entry to initialize the value. This
5673 is done in the finish_dynamic_symbol routine. */
5674 if ((off & 1) != 0)
5675 off &= ~1;
5676 else
5677 {
5678 bfd_put_NN (output_bfd, value,
5679 base_got->contents + off);
5680 /* Note that this is harmless as -1 | 1 still is -1. */
5681 h->got.offset |= 1;
5682 }
5683 }
5684 value = (base_got->output_section->vma
5685 + base_got->output_offset + off);
5686 }
5687 else
5688 value = aarch64_calculate_got_entry_vma (h, globals, info,
5689 value, output_bfd,
5690 unresolved_reloc_p);
5691
5692 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5693 addend = (globals->root.sgot->output_section->vma
5694 + globals->root.sgot->output_offset);
5695
5696 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5697 place, value,
5698 addend, weak_undef_p);
5699 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5700 case BFD_RELOC_AARCH64_ADD_LO12:
5701 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5702 break;
5703 }
5704 }
5705
5706 skip_ifunc:
5707 resolved_to_zero = (h != NULL
5708 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5709
5710 switch (bfd_r_type)
5711 {
5712 case BFD_RELOC_AARCH64_NONE:
5713 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5714 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5715 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5716 *unresolved_reloc_p = FALSE;
5717 return bfd_reloc_ok;
5718
5719 case BFD_RELOC_AARCH64_NN:
5720
5721 /* When generating a shared object or relocatable executable, these
5722 relocations are copied into the output file to be resolved at
5723 run time. */
5724 if (((bfd_link_pic (info)
5725 || globals->root.is_relocatable_executable)
5726 && (input_section->flags & SEC_ALLOC)
5727 && (h == NULL
5728 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5729 && !resolved_to_zero)
5730 || h->root.type != bfd_link_hash_undefweak))
5731 /* Or we are creating an executable, we may need to keep relocations
5732 for symbols satisfied by a dynamic library if we manage to avoid
5733 copy relocs for the symbol. */
5734 || (ELIMINATE_COPY_RELOCS
5735 && !bfd_link_pic (info)
5736 && h != NULL
5737 && (input_section->flags & SEC_ALLOC)
5738 && h->dynindx != -1
5739 && !h->non_got_ref
5740 && ((h->def_dynamic
5741 && !h->def_regular)
5742 || h->root.type == bfd_link_hash_undefweak
5743 || h->root.type == bfd_link_hash_undefined)))
5744 {
5745 Elf_Internal_Rela outrel;
5746 bfd_byte *loc;
5747 bfd_boolean skip, relocate;
5748 asection *sreloc;
5749
5750 *unresolved_reloc_p = FALSE;
5751
5752 skip = FALSE;
5753 relocate = FALSE;
5754
5755 outrel.r_addend = signed_addend;
5756 outrel.r_offset =
5757 _bfd_elf_section_offset (output_bfd, info, input_section,
5758 rel->r_offset);
5759 if (outrel.r_offset == (bfd_vma) - 1)
5760 skip = TRUE;
5761 else if (outrel.r_offset == (bfd_vma) - 2)
5762 {
5763 skip = TRUE;
5764 relocate = TRUE;
5765 }
5766 else if (abs_symbol_p)
5767 {
5768 /* Local absolute symbol. */
5769 skip = (h->forced_local || (h->dynindx == -1));
5770 relocate = skip;
5771 }
5772
5773 outrel.r_offset += (input_section->output_section->vma
5774 + input_section->output_offset);
5775
5776 if (skip)
5777 memset (&outrel, 0, sizeof outrel);
5778 else if (h != NULL
5779 && h->dynindx != -1
5780 && (!bfd_link_pic (info)
5781 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5782 || !h->def_regular))
5783 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5784 else
5785 {
5786 int symbol;
5787
5788 /* On SVR4-ish systems, the dynamic loader cannot
5789 relocate the text and data segments independently,
5790 so the symbol does not matter. */
5791 symbol = 0;
5792 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5793 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5794 outrel.r_addend += value;
5795 }
5796
5797 sreloc = elf_section_data (input_section)->sreloc;
5798 if (sreloc == NULL || sreloc->contents == NULL)
5799 return bfd_reloc_notsupported;
5800
5801 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5802 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5803
5804 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5805 {
5806 /* Sanity to check that we have previously allocated
5807 sufficient space in the relocation section for the
5808 number of relocations we actually want to emit. */
5809 abort ();
5810 }
5811
5812 /* If this reloc is against an external symbol, we do not want to
5813 fiddle with the addend. Otherwise, we need to include the symbol
5814 value so that it becomes an addend for the dynamic reloc. */
5815 if (!relocate)
5816 return bfd_reloc_ok;
5817
5818 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5819 contents, rel->r_offset, value,
5820 signed_addend);
5821 }
5822 else
5823 value += signed_addend;
5824 break;
5825
5826 case BFD_RELOC_AARCH64_CALL26:
5827 case BFD_RELOC_AARCH64_JUMP26:
5828 {
5829 asection *splt = globals->root.splt;
5830 bfd_boolean via_plt_p =
5831 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5832
5833 /* A call to an undefined weak symbol is converted to a jump to
5834 the next instruction unless a PLT entry will be created.
5835 The jump to the next instruction is optimized as a NOP.
5836 Do the same for local undefined symbols. */
5837 if (weak_undef_p && ! via_plt_p)
5838 {
5839 bfd_putl32 (INSN_NOP, hit_data);
5840 return bfd_reloc_ok;
5841 }
5842
5843 /* If the call goes through a PLT entry, make sure to
5844 check distance to the right destination address. */
5845 if (via_plt_p)
5846 value = (splt->output_section->vma
5847 + splt->output_offset + h->plt.offset);
5848
5849 /* Check if a stub has to be inserted because the destination
5850 is too far away. */
5851 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5852
5853 /* If the branch destination is directed to plt stub, "value" will be
5854 the final destination, otherwise we should plus signed_addend, it may
5855 contain non-zero value, for example call to local function symbol
5856 which are turned into "sec_sym + sec_off", and sec_off is kept in
5857 signed_addend. */
5858 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5859 place))
5860 /* The target is out of reach, so redirect the branch to
5861 the local stub for this function. */
5862 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5863 rel, globals);
5864 if (stub_entry != NULL)
5865 {
5866 value = (stub_entry->stub_offset
5867 + stub_entry->stub_sec->output_offset
5868 + stub_entry->stub_sec->output_section->vma);
5869
5870 /* We have redirected the destination to stub entry address,
5871 so ignore any addend record in the original rela entry. */
5872 signed_addend = 0;
5873 }
5874 }
5875 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5876 place, value,
5877 signed_addend, weak_undef_p);
5878 *unresolved_reloc_p = FALSE;
5879 break;
5880
5881 case BFD_RELOC_AARCH64_16_PCREL:
5882 case BFD_RELOC_AARCH64_32_PCREL:
5883 case BFD_RELOC_AARCH64_64_PCREL:
5884 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5885 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5886 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5887 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5888 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5889 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5890 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5891 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5892 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5893 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5894 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5895 if (bfd_link_pic (info)
5896 && (input_section->flags & SEC_ALLOC) != 0
5897 && (input_section->flags & SEC_READONLY) != 0
5898 && !SYMBOL_REFERENCES_LOCAL (info, h))
5899 {
5900 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5901
5902 _bfd_error_handler
5903 /* xgettext:c-format */
5904 (_("%pB: relocation %s against symbol `%s' which may bind "
5905 "externally can not be used when making a shared object; "
5906 "recompile with -fPIC"),
5907 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5908 h->root.root.string);
5909 bfd_set_error (bfd_error_bad_value);
5910 return bfd_reloc_notsupported;
5911 }
5912 /* Fall through. */
5913
5914 case BFD_RELOC_AARCH64_16:
5915 #if ARCH_SIZE == 64
5916 case BFD_RELOC_AARCH64_32:
5917 #endif
5918 case BFD_RELOC_AARCH64_ADD_LO12:
5919 case BFD_RELOC_AARCH64_BRANCH19:
5920 case BFD_RELOC_AARCH64_LDST128_LO12:
5921 case BFD_RELOC_AARCH64_LDST16_LO12:
5922 case BFD_RELOC_AARCH64_LDST32_LO12:
5923 case BFD_RELOC_AARCH64_LDST64_LO12:
5924 case BFD_RELOC_AARCH64_LDST8_LO12:
5925 case BFD_RELOC_AARCH64_MOVW_G0:
5926 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5927 case BFD_RELOC_AARCH64_MOVW_G0_S:
5928 case BFD_RELOC_AARCH64_MOVW_G1:
5929 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5930 case BFD_RELOC_AARCH64_MOVW_G1_S:
5931 case BFD_RELOC_AARCH64_MOVW_G2:
5932 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5933 case BFD_RELOC_AARCH64_MOVW_G2_S:
5934 case BFD_RELOC_AARCH64_MOVW_G3:
5935 case BFD_RELOC_AARCH64_TSTBR14:
5936 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5937 place, value,
5938 signed_addend, weak_undef_p);
5939 break;
5940
5941 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5942 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5943 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5944 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5945 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5946 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5947 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5948 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5949 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5950 if (globals->root.sgot == NULL)
5951 BFD_ASSERT (h != NULL);
5952
5953 relative_reloc = FALSE;
5954 if (h != NULL)
5955 {
5956 bfd_vma addend = 0;
5957
5958 /* If a symbol is not dynamic and is not undefined weak, bind it
5959 locally and generate a RELATIVE relocation under PIC mode.
5960
5961 NOTE: one symbol may be referenced by several relocations, we
5962 should only generate one RELATIVE relocation for that symbol.
5963 Therefore, check GOT offset mark first. */
5964 if (h->dynindx == -1
5965 && !h->forced_local
5966 && h->root.type != bfd_link_hash_undefweak
5967 && bfd_link_pic (info)
5968 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5969 relative_reloc = TRUE;
5970
5971 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5972 output_bfd,
5973 unresolved_reloc_p);
5974 /* Record the GOT entry address which will be used when generating
5975 RELATIVE relocation. */
5976 if (relative_reloc)
5977 got_entry_addr = value;
5978
5979 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5980 addend = (globals->root.sgot->output_section->vma
5981 + globals->root.sgot->output_offset);
5982 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5983 place, value,
5984 addend, weak_undef_p);
5985 }
5986 else
5987 {
5988 bfd_vma addend = 0;
5989 struct elf_aarch64_local_symbol *locals
5990 = elf_aarch64_locals (input_bfd);
5991
5992 if (locals == NULL)
5993 {
5994 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5995 _bfd_error_handler
5996 /* xgettext:c-format */
5997 (_("%pB: local symbol descriptor table be NULL when applying "
5998 "relocation %s against local symbol"),
5999 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
6000 abort ();
6001 }
6002
6003 off = symbol_got_offset (input_bfd, h, r_symndx);
6004 base_got = globals->root.sgot;
6005 got_entry_addr = (base_got->output_section->vma
6006 + base_got->output_offset + off);
6007
6008 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6009 {
6010 bfd_put_64 (output_bfd, value, base_got->contents + off);
6011
6012 /* For local symbol, we have done absolute relocation in static
6013 linking stage. While for shared library, we need to update the
6014 content of GOT entry according to the shared object's runtime
6015 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
6016 for dynamic linker. */
6017 if (bfd_link_pic (info))
6018 relative_reloc = TRUE;
6019
6020 symbol_got_offset_mark (input_bfd, h, r_symndx);
6021 }
6022
6023 /* Update the relocation value to GOT entry addr as we have transformed
6024 the direct data access into indirect data access through GOT. */
6025 value = got_entry_addr;
6026
6027 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
6028 addend = base_got->output_section->vma + base_got->output_offset;
6029
6030 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6031 place, value,
6032 addend, weak_undef_p);
6033 }
6034
6035 if (relative_reloc)
6036 {
6037 asection *s;
6038 Elf_Internal_Rela outrel;
6039
6040 s = globals->root.srelgot;
6041 if (s == NULL)
6042 abort ();
6043
6044 outrel.r_offset = got_entry_addr;
6045 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6046 outrel.r_addend = orig_value;
6047 elf_append_rela (output_bfd, s, &outrel);
6048 }
6049 break;
6050
6051 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6052 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6053 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6054 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6055 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6056 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6057 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6058 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6059 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6060 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6061 if (globals->root.sgot == NULL)
6062 return bfd_reloc_notsupported;
6063
6064 value = (symbol_got_offset (input_bfd, h, r_symndx)
6065 + globals->root.sgot->output_section->vma
6066 + globals->root.sgot->output_offset);
6067
6068 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6069 place, value,
6070 0, weak_undef_p);
6071 *unresolved_reloc_p = FALSE;
6072 break;
6073
6074 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6075 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6076 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6077 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6078 if (globals->root.sgot == NULL)
6079 return bfd_reloc_notsupported;
6080
6081 value = symbol_got_offset (input_bfd, h, r_symndx);
6082 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6083 place, value,
6084 0, weak_undef_p);
6085 *unresolved_reloc_p = FALSE;
6086 break;
6087
6088 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
6089 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
6090 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6091 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
6092 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
6093 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
6094 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
6095 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
6096 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
6097 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
6098 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6099 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6100 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6101 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6102 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6103 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
6104 {
6105 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6106 {
6107 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6108 _bfd_error_handler
6109 /* xgettext:c-format */
6110 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6111 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6112 h->root.root.string);
6113 bfd_set_error (bfd_error_bad_value);
6114 return bfd_reloc_notsupported;
6115 }
6116
6117 bfd_vma def_value
6118 = weak_undef_p ? 0 : signed_addend - dtpoff_base (info);
6119 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6120 place, value,
6121 def_value, weak_undef_p);
6122 break;
6123 }
6124
6125 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6126 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6127 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6128 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
6129 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6130 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
6131 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6132 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
6133 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6134 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
6135 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6136 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6137 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6138 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6139 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6140 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6141 {
6142 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6143 {
6144 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6145 _bfd_error_handler
6146 /* xgettext:c-format */
6147 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6148 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6149 h->root.root.string);
6150 bfd_set_error (bfd_error_bad_value);
6151 return bfd_reloc_notsupported;
6152 }
6153
6154 bfd_vma def_value
6155 = weak_undef_p ? 0 : signed_addend - tpoff_base (info);
6156 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6157 place, value,
6158 def_value, weak_undef_p);
6159 *unresolved_reloc_p = FALSE;
6160 break;
6161 }
6162
6163 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6164 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6165 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6166 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6167 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6168 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6169 if (globals->root.sgot == NULL)
6170 return bfd_reloc_notsupported;
6171 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6172 + globals->root.sgotplt->output_section->vma
6173 + globals->root.sgotplt->output_offset
6174 + globals->sgotplt_jump_table_size);
6175
6176 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6177 place, value,
6178 0, weak_undef_p);
6179 *unresolved_reloc_p = FALSE;
6180 break;
6181
6182 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6183 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6184 if (globals->root.sgot == NULL)
6185 return bfd_reloc_notsupported;
6186
6187 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6188 + globals->root.sgotplt->output_section->vma
6189 + globals->root.sgotplt->output_offset
6190 + globals->sgotplt_jump_table_size);
6191
6192 value -= (globals->root.sgot->output_section->vma
6193 + globals->root.sgot->output_offset);
6194
6195 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6196 place, value,
6197 0, weak_undef_p);
6198 *unresolved_reloc_p = FALSE;
6199 break;
6200
6201 default:
6202 return bfd_reloc_notsupported;
6203 }
6204
6205 if (saved_addend)
6206 *saved_addend = value;
6207
6208 /* Only apply the final relocation in a sequence. */
6209 if (save_addend)
6210 return bfd_reloc_continue;
6211
6212 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6213 howto, value);
6214 }
6215
6216 /* LP64 and ILP32 operates on x- and w-registers respectively.
6217 Next definitions take into account the difference between
6218 corresponding machine codes. R means x-register if the target
6219 arch is LP64, and w-register if the target is ILP32. */
6220
6221 #if ARCH_SIZE == 64
6222 # define add_R0_R0 (0x91000000)
6223 # define add_R0_R0_R1 (0x8b000020)
6224 # define add_R0_R1 (0x91400020)
6225 # define ldr_R0 (0x58000000)
6226 # define ldr_R0_mask(i) (i & 0xffffffe0)
6227 # define ldr_R0_x0 (0xf9400000)
6228 # define ldr_hw_R0 (0xf2a00000)
6229 # define movk_R0 (0xf2800000)
6230 # define movz_R0 (0xd2a00000)
6231 # define movz_hw_R0 (0xd2c00000)
6232 #else /*ARCH_SIZE == 32 */
6233 # define add_R0_R0 (0x11000000)
6234 # define add_R0_R0_R1 (0x0b000020)
6235 # define add_R0_R1 (0x11400020)
6236 # define ldr_R0 (0x18000000)
6237 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6238 # define ldr_R0_x0 (0xb9400000)
6239 # define ldr_hw_R0 (0x72a00000)
6240 # define movk_R0 (0x72800000)
6241 # define movz_R0 (0x52a00000)
6242 # define movz_hw_R0 (0x52c00000)
6243 #endif
6244
6245 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6246 it is used to identify the stub information to reset. */
6247
6248 struct erratum_843419_branch_to_stub_clear_data
6249 {
6250 bfd_vma adrp_offset;
6251 asection *output_section;
6252 };
6253
6254 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6255 section inside IN_ARG matches. The clearing is done by setting the
6256 stub_type to none. */
6257
6258 static bfd_boolean
6259 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6260 void *in_arg)
6261 {
6262 struct elf_aarch64_stub_hash_entry *stub_entry
6263 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6264 struct erratum_843419_branch_to_stub_clear_data *data
6265 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6266
6267 if (stub_entry->target_section != data->output_section
6268 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6269 || stub_entry->adrp_offset != data->adrp_offset)
6270 return TRUE;
6271
6272 /* Change the stub type instead of removing the entry, removing from the hash
6273 table would be slower and we have already reserved the memory for the entry
6274 so there wouldn't be much gain. Changing the stub also keeps around a
6275 record of what was there before. */
6276 stub_entry->stub_type = aarch64_stub_none;
6277
6278 /* We're done and there could have been only one matching stub at that
6279 particular offset, so abort further traversal. */
6280 return FALSE;
6281 }
6282
6283 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6284 sequence. In this case the erratum no longer applies and we need to remove
6285 the entry from the pending stub generation. This clears matching adrp insn
6286 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6287
6288 static void
6289 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6290 bfd_vma adrp_offset, asection *input_section)
6291 {
6292 if (globals->fix_erratum_843419 & ERRAT_ADRP)
6293 {
6294 struct erratum_843419_branch_to_stub_clear_data data;
6295 data.adrp_offset = adrp_offset;
6296 data.output_section = input_section;
6297
6298 bfd_hash_traverse (&globals->stub_hash_table,
6299 _bfd_aarch64_erratum_843419_clear_stub, &data);
6300 }
6301 }
6302
6303 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6304 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6305 link.
6306
6307 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6308 is to then call final_link_relocate. Return other values in the
6309 case of error. */
6310
6311 static bfd_reloc_status_type
6312 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6313 bfd *input_bfd, asection *input_section,
6314 bfd_byte *contents, Elf_Internal_Rela *rel,
6315 struct elf_link_hash_entry *h)
6316 {
6317 bfd_boolean is_local = h == NULL;
6318 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6319 unsigned long insn;
6320
6321 BFD_ASSERT (globals && input_bfd && contents && rel);
6322
6323 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6324 {
6325 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6326 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6327 if (is_local)
6328 {
6329 /* GD->LE relaxation:
6330 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6331 or
6332 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6333
6334 Where R is x for LP64, and w for ILP32. */
6335 bfd_putl32 (movz_R0, contents + rel->r_offset);
6336 /* We have relaxed the adrp into a mov, we may have to clear any
6337 pending erratum fixes. */
6338 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6339 return bfd_reloc_continue;
6340 }
6341 else
6342 {
6343 /* GD->IE relaxation:
6344 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6345 or
6346 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6347 */
6348 return bfd_reloc_continue;
6349 }
6350
6351 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6352 BFD_ASSERT (0);
6353 break;
6354
6355 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6356 if (is_local)
6357 {
6358 /* Tiny TLSDESC->LE relaxation:
6359 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6360 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6361 .tlsdesccall var
6362 blr x1 => nop
6363
6364 Where R is x for LP64, and w for ILP32. */
6365 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6366 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6367
6368 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6369 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6370 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6371
6372 bfd_putl32 (movz_R0, contents + rel->r_offset);
6373 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6374 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6375 return bfd_reloc_continue;
6376 }
6377 else
6378 {
6379 /* Tiny TLSDESC->IE relaxation:
6380 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6381 adr x0, :tlsdesc:var => nop
6382 .tlsdesccall var
6383 blr x1 => nop
6384 */
6385 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6386 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6387
6388 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6389 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6390
6391 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6392 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6393 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6394 return bfd_reloc_continue;
6395 }
6396
6397 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6398 if (is_local)
6399 {
6400 /* Tiny GD->LE relaxation:
6401 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6402 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6403 nop => add R0, R0, #:tprel_lo12_nc:x
6404
6405 Where R is x for LP64, and x for Ilp32. */
6406
6407 /* First kill the tls_get_addr reloc on the bl instruction. */
6408 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6409
6410 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6411 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6412 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6413
6414 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6415 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6416 rel[1].r_offset = rel->r_offset + 8;
6417
6418 /* Move the current relocation to the second instruction in
6419 the sequence. */
6420 rel->r_offset += 4;
6421 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6422 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6423 return bfd_reloc_continue;
6424 }
6425 else
6426 {
6427 /* Tiny GD->IE relaxation:
6428 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6429 bl __tls_get_addr => mrs x1, tpidr_el0
6430 nop => add R0, R0, R1
6431
6432 Where R is x for LP64, and w for Ilp32. */
6433
6434 /* First kill the tls_get_addr reloc on the bl instruction. */
6435 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6436 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6437
6438 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6439 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6440 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6441 return bfd_reloc_continue;
6442 }
6443
6444 #if ARCH_SIZE == 64
6445 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6446 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6447 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6448 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6449
6450 if (is_local)
6451 {
6452 /* Large GD->LE relaxation:
6453 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6454 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6455 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6456 bl __tls_get_addr => mrs x1, tpidr_el0
6457 nop => add x0, x0, x1
6458 */
6459 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6460 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6461 rel[2].r_offset = rel->r_offset + 8;
6462
6463 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6464 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6465 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6466 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6467 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6468 }
6469 else
6470 {
6471 /* Large GD->IE relaxation:
6472 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6473 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6474 add x0, gp, x0 => ldr x0, [gp, x0]
6475 bl __tls_get_addr => mrs x1, tpidr_el0
6476 nop => add x0, x0, x1
6477 */
6478 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6479 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6480 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6481 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6482 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6483 }
6484 return bfd_reloc_continue;
6485
6486 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6487 return bfd_reloc_continue;
6488 #endif
6489
6490 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6491 return bfd_reloc_continue;
6492
6493 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6494 if (is_local)
6495 {
6496 /* GD->LE relaxation:
6497 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6498
6499 Where R is x for lp64 mode, and w for ILP32 mode. */
6500 bfd_putl32 (movk_R0, contents + rel->r_offset);
6501 return bfd_reloc_continue;
6502 }
6503 else
6504 {
6505 /* GD->IE relaxation:
6506 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6507
6508 Where R is x for lp64 mode, and w for ILP32 mode. */
6509 insn = bfd_getl32 (contents + rel->r_offset);
6510 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6511 return bfd_reloc_continue;
6512 }
6513
6514 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6515 if (is_local)
6516 {
6517 /* GD->LE relaxation
6518 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6519 bl __tls_get_addr => mrs x1, tpidr_el0
6520 nop => add R0, R1, R0
6521
6522 Where R is x for lp64 mode, and w for ILP32 mode. */
6523
6524 /* First kill the tls_get_addr reloc on the bl instruction. */
6525 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6526 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6527
6528 bfd_putl32 (movk_R0, contents + rel->r_offset);
6529 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6530 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6531 return bfd_reloc_continue;
6532 }
6533 else
6534 {
6535 /* GD->IE relaxation
6536 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6537 BL __tls_get_addr => mrs x1, tpidr_el0
6538 R_AARCH64_CALL26
6539 NOP => add R0, R1, R0
6540
6541 Where R is x for lp64 mode, and w for ilp32 mode. */
6542
6543 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6544
6545 /* Remove the relocation on the BL instruction. */
6546 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6547
6548 /* We choose to fixup the BL and NOP instructions using the
6549 offset from the second relocation to allow flexibility in
6550 scheduling instructions between the ADD and BL. */
6551 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6552 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6553 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6554 return bfd_reloc_continue;
6555 }
6556
6557 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6558 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6559 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6560 /* GD->IE/LE relaxation:
6561 add x0, x0, #:tlsdesc_lo12:var => nop
6562 blr xd => nop
6563 */
6564 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6565 return bfd_reloc_ok;
6566
6567 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6568 if (is_local)
6569 {
6570 /* GD->LE relaxation:
6571 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6572
6573 Where R is x for lp64 mode, and w for ILP32 mode. */
6574 bfd_putl32 (movk_R0, contents + rel->r_offset);
6575 return bfd_reloc_continue;
6576 }
6577 else
6578 {
6579 /* GD->IE relaxation:
6580 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6581
6582 Where R is x for lp64 mode, and w for ILP32 mode. */
6583 insn = bfd_getl32 (contents + rel->r_offset);
6584 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6585 return bfd_reloc_ok;
6586 }
6587
6588 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6589 /* GD->LE relaxation:
6590 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6591 GD->IE relaxation:
6592 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6593
6594 Where R is x for lp64 mode, and w for ILP32 mode. */
6595 if (is_local)
6596 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6597 return bfd_reloc_continue;
6598
6599 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6600 if (is_local)
6601 {
6602 /* GD->LE relaxation:
6603 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6604
6605 Where R is x for lp64 mode, and w for ILP32 mode. */
6606 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6607 return bfd_reloc_continue;
6608 }
6609 else
6610 {
6611 /* GD->IE relaxation:
6612 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6613
6614 Where R is x for lp64 mode, and w for ILP32 mode. */
6615 insn = bfd_getl32 (contents + rel->r_offset);
6616 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6617 return bfd_reloc_continue;
6618 }
6619
6620 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6621 /* IE->LE relaxation:
6622 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6623
6624 Where R is x for lp64 mode, and w for ILP32 mode. */
6625 if (is_local)
6626 {
6627 insn = bfd_getl32 (contents + rel->r_offset);
6628 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6629 /* We have relaxed the adrp into a mov, we may have to clear any
6630 pending erratum fixes. */
6631 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6632 }
6633 return bfd_reloc_continue;
6634
6635 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6636 /* IE->LE relaxation:
6637 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6638
6639 Where R is x for lp64 mode, and w for ILP32 mode. */
6640 if (is_local)
6641 {
6642 insn = bfd_getl32 (contents + rel->r_offset);
6643 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6644 }
6645 return bfd_reloc_continue;
6646
6647 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6648 /* LD->LE relaxation (tiny):
6649 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6650 bl __tls_get_addr => add R0, R0, TCB_SIZE
6651
6652 Where R is x for lp64 mode, and w for ilp32 mode. */
6653 if (is_local)
6654 {
6655 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6656 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6657 /* No need of CALL26 relocation for tls_get_addr. */
6658 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6659 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6660 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6661 contents + rel->r_offset + 4);
6662 return bfd_reloc_ok;
6663 }
6664 return bfd_reloc_continue;
6665
6666 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6667 /* LD->LE relaxation (small):
6668 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6669 */
6670 if (is_local)
6671 {
6672 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6673 return bfd_reloc_ok;
6674 }
6675 return bfd_reloc_continue;
6676
6677 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6678 /* LD->LE relaxation (small):
6679 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6680 bl __tls_get_addr => nop
6681
6682 Where R is x for lp64 mode, and w for ilp32 mode. */
6683 if (is_local)
6684 {
6685 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6686 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6687 /* No need of CALL26 relocation for tls_get_addr. */
6688 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6689 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6690 contents + rel->r_offset + 0);
6691 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6692 return bfd_reloc_ok;
6693 }
6694 return bfd_reloc_continue;
6695
6696 default:
6697 return bfd_reloc_continue;
6698 }
6699
6700 return bfd_reloc_ok;
6701 }
6702
6703 /* Relocate an AArch64 ELF section. */
6704
6705 static bfd_boolean
6706 elfNN_aarch64_relocate_section (bfd *output_bfd,
6707 struct bfd_link_info *info,
6708 bfd *input_bfd,
6709 asection *input_section,
6710 bfd_byte *contents,
6711 Elf_Internal_Rela *relocs,
6712 Elf_Internal_Sym *local_syms,
6713 asection **local_sections)
6714 {
6715 Elf_Internal_Shdr *symtab_hdr;
6716 struct elf_link_hash_entry **sym_hashes;
6717 Elf_Internal_Rela *rel;
6718 Elf_Internal_Rela *relend;
6719 const char *name;
6720 struct elf_aarch64_link_hash_table *globals;
6721 bfd_boolean save_addend = FALSE;
6722 bfd_vma addend = 0;
6723
6724 globals = elf_aarch64_hash_table (info);
6725
6726 symtab_hdr = &elf_symtab_hdr (input_bfd);
6727 sym_hashes = elf_sym_hashes (input_bfd);
6728
6729 rel = relocs;
6730 relend = relocs + input_section->reloc_count;
6731 for (; rel < relend; rel++)
6732 {
6733 unsigned int r_type;
6734 bfd_reloc_code_real_type bfd_r_type;
6735 bfd_reloc_code_real_type relaxed_bfd_r_type;
6736 reloc_howto_type *howto;
6737 unsigned long r_symndx;
6738 Elf_Internal_Sym *sym;
6739 asection *sec;
6740 struct elf_link_hash_entry *h;
6741 bfd_vma relocation;
6742 bfd_reloc_status_type r;
6743 arelent bfd_reloc;
6744 char sym_type;
6745 bfd_boolean unresolved_reloc = FALSE;
6746 char *error_message = NULL;
6747
6748 r_symndx = ELFNN_R_SYM (rel->r_info);
6749 r_type = ELFNN_R_TYPE (rel->r_info);
6750
6751 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6752 howto = bfd_reloc.howto;
6753
6754 if (howto == NULL)
6755 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6756
6757 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6758
6759 h = NULL;
6760 sym = NULL;
6761 sec = NULL;
6762
6763 if (r_symndx < symtab_hdr->sh_info)
6764 {
6765 sym = local_syms + r_symndx;
6766 sym_type = ELFNN_ST_TYPE (sym->st_info);
6767 sec = local_sections[r_symndx];
6768
6769 /* An object file might have a reference to a local
6770 undefined symbol. This is a daft object file, but we
6771 should at least do something about it. */
6772 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6773 && bfd_is_und_section (sec)
6774 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6775 (*info->callbacks->undefined_symbol)
6776 (info, bfd_elf_string_from_elf_section
6777 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6778 input_bfd, input_section, rel->r_offset, TRUE);
6779
6780 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6781
6782 /* Relocate against local STT_GNU_IFUNC symbol. */
6783 if (!bfd_link_relocatable (info)
6784 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6785 {
6786 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6787 rel, FALSE);
6788 if (h == NULL)
6789 abort ();
6790
6791 /* Set STT_GNU_IFUNC symbol value. */
6792 h->root.u.def.value = sym->st_value;
6793 h->root.u.def.section = sec;
6794 }
6795 }
6796 else
6797 {
6798 bfd_boolean warned, ignored;
6799
6800 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6801 r_symndx, symtab_hdr, sym_hashes,
6802 h, sec, relocation,
6803 unresolved_reloc, warned, ignored);
6804
6805 sym_type = h->type;
6806 }
6807
6808 if (sec != NULL && discarded_section (sec))
6809 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6810 rel, 1, relend, howto, 0, contents);
6811
6812 if (bfd_link_relocatable (info))
6813 continue;
6814
6815 if (h != NULL)
6816 name = h->root.root.string;
6817 else
6818 {
6819 name = (bfd_elf_string_from_elf_section
6820 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6821 if (name == NULL || *name == '\0')
6822 name = bfd_section_name (sec);
6823 }
6824
6825 if (r_symndx != 0
6826 && r_type != R_AARCH64_NONE
6827 && r_type != R_AARCH64_NULL
6828 && (h == NULL
6829 || h->root.type == bfd_link_hash_defined
6830 || h->root.type == bfd_link_hash_defweak)
6831 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6832 {
6833 _bfd_error_handler
6834 ((sym_type == STT_TLS
6835 /* xgettext:c-format */
6836 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6837 /* xgettext:c-format */
6838 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6839 input_bfd,
6840 input_section, (uint64_t) rel->r_offset, howto->name, name);
6841 }
6842
6843 /* We relax only if we can see that there can be a valid transition
6844 from a reloc type to another.
6845 We call elfNN_aarch64_final_link_relocate unless we're completely
6846 done, i.e., the relaxation produced the final output we want. */
6847
6848 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6849 h, r_symndx);
6850 if (relaxed_bfd_r_type != bfd_r_type)
6851 {
6852 bfd_r_type = relaxed_bfd_r_type;
6853 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6854 BFD_ASSERT (howto != NULL);
6855 r_type = howto->type;
6856 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6857 contents, rel, h);
6858 unresolved_reloc = 0;
6859 }
6860 else
6861 r = bfd_reloc_continue;
6862
6863 /* There may be multiple consecutive relocations for the
6864 same offset. In that case we are supposed to treat the
6865 output of each relocation as the addend for the next. */
6866 if (rel + 1 < relend
6867 && rel->r_offset == rel[1].r_offset
6868 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6869 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6870 save_addend = TRUE;
6871 else
6872 save_addend = FALSE;
6873
6874 if (r == bfd_reloc_continue)
6875 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6876 input_section, contents, rel,
6877 relocation, info, sec,
6878 h, &unresolved_reloc,
6879 save_addend, &addend, sym);
6880
6881 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6882 {
6883 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6884 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6885 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6886 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6887 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6888 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6889 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6890 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6891 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6892 {
6893 bfd_boolean need_relocs = FALSE;
6894 bfd_byte *loc;
6895 int indx;
6896 bfd_vma off;
6897
6898 off = symbol_got_offset (input_bfd, h, r_symndx);
6899 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6900
6901 need_relocs =
6902 (!bfd_link_executable (info) || indx != 0) &&
6903 (h == NULL
6904 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6905 || h->root.type != bfd_link_hash_undefweak);
6906
6907 BFD_ASSERT (globals->root.srelgot != NULL);
6908
6909 if (need_relocs)
6910 {
6911 Elf_Internal_Rela rela;
6912 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6913 rela.r_addend = 0;
6914 rela.r_offset = globals->root.sgot->output_section->vma +
6915 globals->root.sgot->output_offset + off;
6916
6917
6918 loc = globals->root.srelgot->contents;
6919 loc += globals->root.srelgot->reloc_count++
6920 * RELOC_SIZE (htab);
6921 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6922
6923 bfd_reloc_code_real_type real_type =
6924 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6925
6926 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6927 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6928 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6929 {
6930 /* For local dynamic, don't generate DTPREL in any case.
6931 Initialize the DTPREL slot into zero, so we get module
6932 base address when invoke runtime TLS resolver. */
6933 bfd_put_NN (output_bfd, 0,
6934 globals->root.sgot->contents + off
6935 + GOT_ENTRY_SIZE);
6936 }
6937 else if (indx == 0)
6938 {
6939 bfd_put_NN (output_bfd,
6940 relocation - dtpoff_base (info),
6941 globals->root.sgot->contents + off
6942 + GOT_ENTRY_SIZE);
6943 }
6944 else
6945 {
6946 /* This TLS symbol is global. We emit a
6947 relocation to fixup the tls offset at load
6948 time. */
6949 rela.r_info =
6950 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6951 rela.r_addend = 0;
6952 rela.r_offset =
6953 (globals->root.sgot->output_section->vma
6954 + globals->root.sgot->output_offset + off
6955 + GOT_ENTRY_SIZE);
6956
6957 loc = globals->root.srelgot->contents;
6958 loc += globals->root.srelgot->reloc_count++
6959 * RELOC_SIZE (globals);
6960 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6961 bfd_put_NN (output_bfd, (bfd_vma) 0,
6962 globals->root.sgot->contents + off
6963 + GOT_ENTRY_SIZE);
6964 }
6965 }
6966 else
6967 {
6968 bfd_put_NN (output_bfd, (bfd_vma) 1,
6969 globals->root.sgot->contents + off);
6970 bfd_put_NN (output_bfd,
6971 relocation - dtpoff_base (info),
6972 globals->root.sgot->contents + off
6973 + GOT_ENTRY_SIZE);
6974 }
6975
6976 symbol_got_offset_mark (input_bfd, h, r_symndx);
6977 }
6978 break;
6979
6980 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6981 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6982 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6983 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6984 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6985 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6986 {
6987 bfd_boolean need_relocs = FALSE;
6988 bfd_byte *loc;
6989 int indx;
6990 bfd_vma off;
6991
6992 off = symbol_got_offset (input_bfd, h, r_symndx);
6993
6994 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6995
6996 need_relocs =
6997 (!bfd_link_executable (info) || indx != 0) &&
6998 (h == NULL
6999 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7000 || h->root.type != bfd_link_hash_undefweak);
7001
7002 BFD_ASSERT (globals->root.srelgot != NULL);
7003
7004 if (need_relocs)
7005 {
7006 Elf_Internal_Rela rela;
7007
7008 if (indx == 0)
7009 rela.r_addend = relocation - dtpoff_base (info);
7010 else
7011 rela.r_addend = 0;
7012
7013 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
7014 rela.r_offset = globals->root.sgot->output_section->vma +
7015 globals->root.sgot->output_offset + off;
7016
7017 loc = globals->root.srelgot->contents;
7018 loc += globals->root.srelgot->reloc_count++
7019 * RELOC_SIZE (htab);
7020
7021 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7022
7023 bfd_put_NN (output_bfd, rela.r_addend,
7024 globals->root.sgot->contents + off);
7025 }
7026 else
7027 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
7028 globals->root.sgot->contents + off);
7029
7030 symbol_got_offset_mark (input_bfd, h, r_symndx);
7031 }
7032 break;
7033
7034 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7035 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7036 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7037 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
7038 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7039 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7040 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7041 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
7042 {
7043 bfd_boolean need_relocs = FALSE;
7044 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
7045 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
7046
7047 need_relocs = (h == NULL
7048 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7049 || h->root.type != bfd_link_hash_undefweak);
7050
7051 BFD_ASSERT (globals->root.srelgot != NULL);
7052 BFD_ASSERT (globals->root.sgot != NULL);
7053
7054 if (need_relocs)
7055 {
7056 bfd_byte *loc;
7057 Elf_Internal_Rela rela;
7058 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
7059
7060 rela.r_addend = 0;
7061 rela.r_offset = (globals->root.sgotplt->output_section->vma
7062 + globals->root.sgotplt->output_offset
7063 + off + globals->sgotplt_jump_table_size);
7064
7065 if (indx == 0)
7066 rela.r_addend = relocation - dtpoff_base (info);
7067
7068 /* Allocate the next available slot in the PLT reloc
7069 section to hold our R_AARCH64_TLSDESC, the next
7070 available slot is determined from reloc_count,
7071 which we step. But note, reloc_count was
7072 artifically moved down while allocating slots for
7073 real PLT relocs such that all of the PLT relocs
7074 will fit above the initial reloc_count and the
7075 extra stuff will fit below. */
7076 loc = globals->root.srelplt->contents;
7077 loc += globals->root.srelplt->reloc_count++
7078 * RELOC_SIZE (globals);
7079
7080 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7081
7082 bfd_put_NN (output_bfd, (bfd_vma) 0,
7083 globals->root.sgotplt->contents + off +
7084 globals->sgotplt_jump_table_size);
7085 bfd_put_NN (output_bfd, (bfd_vma) 0,
7086 globals->root.sgotplt->contents + off +
7087 globals->sgotplt_jump_table_size +
7088 GOT_ENTRY_SIZE);
7089 }
7090
7091 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
7092 }
7093 break;
7094 default:
7095 break;
7096 }
7097
7098 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7099 because such sections are not SEC_ALLOC and thus ld.so will
7100 not process them. */
7101 if (unresolved_reloc
7102 && !((input_section->flags & SEC_DEBUGGING) != 0
7103 && h->def_dynamic)
7104 && _bfd_elf_section_offset (output_bfd, info, input_section,
7105 +rel->r_offset) != (bfd_vma) - 1)
7106 {
7107 _bfd_error_handler
7108 /* xgettext:c-format */
7109 (_("%pB(%pA+%#" PRIx64 "): "
7110 "unresolvable %s relocation against symbol `%s'"),
7111 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
7112 h->root.root.string);
7113 return FALSE;
7114 }
7115
7116 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
7117 {
7118 bfd_reloc_code_real_type real_r_type
7119 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
7120
7121 switch (r)
7122 {
7123 case bfd_reloc_overflow:
7124 (*info->callbacks->reloc_overflow)
7125 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
7126 input_bfd, input_section, rel->r_offset);
7127 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
7128 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
7129 {
7130 (*info->callbacks->warning)
7131 (info,
7132 _("too many GOT entries for -fpic, "
7133 "please recompile with -fPIC"),
7134 name, input_bfd, input_section, rel->r_offset);
7135 return FALSE;
7136 }
7137 /* Overflow can occur when a variable is referenced with a type
7138 that has a larger alignment than the type with which it was
7139 declared. eg:
7140 file1.c: extern int foo; int a (void) { return foo; }
7141 file2.c: char bar, foo, baz;
7142 If the variable is placed into a data section at an offset
7143 that is incompatible with the larger alignment requirement
7144 overflow will occur. (Strictly speaking this is not overflow
7145 but rather an alignment problem, but the bfd_reloc_ error
7146 enum does not have a value to cover that situation).
7147
7148 Try to catch this situation here and provide a more helpful
7149 error message to the user. */
7150 if (addend & ((1 << howto->rightshift) - 1)
7151 /* FIXME: Are we testing all of the appropriate reloc
7152 types here ? */
7153 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
7154 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
7155 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
7156 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
7157 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
7158 {
7159 info->callbacks->warning
7160 (info, _("one possible cause of this error is that the \
7161 symbol is being referenced in the indicated code as if it had a larger \
7162 alignment than was declared where it was defined"),
7163 name, input_bfd, input_section, rel->r_offset);
7164 }
7165 break;
7166
7167 case bfd_reloc_undefined:
7168 (*info->callbacks->undefined_symbol)
7169 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
7170 break;
7171
7172 case bfd_reloc_outofrange:
7173 error_message = _("out of range");
7174 goto common_error;
7175
7176 case bfd_reloc_notsupported:
7177 error_message = _("unsupported relocation");
7178 goto common_error;
7179
7180 case bfd_reloc_dangerous:
7181 /* error_message should already be set. */
7182 goto common_error;
7183
7184 default:
7185 error_message = _("unknown error");
7186 /* Fall through. */
7187
7188 common_error:
7189 BFD_ASSERT (error_message != NULL);
7190 (*info->callbacks->reloc_dangerous)
7191 (info, error_message, input_bfd, input_section, rel->r_offset);
7192 break;
7193 }
7194 }
7195
7196 if (!save_addend)
7197 addend = 0;
7198 }
7199
7200 return TRUE;
7201 }
7202
7203 /* Set the right machine number. */
7204
7205 static bfd_boolean
7206 elfNN_aarch64_object_p (bfd *abfd)
7207 {
7208 #if ARCH_SIZE == 32
7209 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7210 #else
7211 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7212 #endif
7213 return TRUE;
7214 }
7215
7216 /* Function to keep AArch64 specific flags in the ELF header. */
7217
7218 static bfd_boolean
7219 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7220 {
7221 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7222 {
7223 }
7224 else
7225 {
7226 elf_elfheader (abfd)->e_flags = flags;
7227 elf_flags_init (abfd) = TRUE;
7228 }
7229
7230 return TRUE;
7231 }
7232
7233 /* Merge backend specific data from an object file to the output
7234 object file when linking. */
7235
7236 static bfd_boolean
7237 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7238 {
7239 bfd *obfd = info->output_bfd;
7240 flagword out_flags;
7241 flagword in_flags;
7242 bfd_boolean flags_compatible = TRUE;
7243 asection *sec;
7244
7245 /* Check if we have the same endianess. */
7246 if (!_bfd_generic_verify_endian_match (ibfd, info))
7247 return FALSE;
7248
7249 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7250 return TRUE;
7251
7252 /* The input BFD must have had its flags initialised. */
7253 /* The following seems bogus to me -- The flags are initialized in
7254 the assembler but I don't think an elf_flags_init field is
7255 written into the object. */
7256 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7257
7258 in_flags = elf_elfheader (ibfd)->e_flags;
7259 out_flags = elf_elfheader (obfd)->e_flags;
7260
7261 if (!elf_flags_init (obfd))
7262 {
7263 /* If the input is the default architecture and had the default
7264 flags then do not bother setting the flags for the output
7265 architecture, instead allow future merges to do this. If no
7266 future merges ever set these flags then they will retain their
7267 uninitialised values, which surprise surprise, correspond
7268 to the default values. */
7269 if (bfd_get_arch_info (ibfd)->the_default
7270 && elf_elfheader (ibfd)->e_flags == 0)
7271 return TRUE;
7272
7273 elf_flags_init (obfd) = TRUE;
7274 elf_elfheader (obfd)->e_flags = in_flags;
7275
7276 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7277 && bfd_get_arch_info (obfd)->the_default)
7278 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7279 bfd_get_mach (ibfd));
7280
7281 return TRUE;
7282 }
7283
7284 /* Identical flags must be compatible. */
7285 if (in_flags == out_flags)
7286 return TRUE;
7287
7288 /* Check to see if the input BFD actually contains any sections. If
7289 not, its flags may not have been initialised either, but it
7290 cannot actually cause any incompatiblity. Do not short-circuit
7291 dynamic objects; their section list may be emptied by
7292 elf_link_add_object_symbols.
7293
7294 Also check to see if there are no code sections in the input.
7295 In this case there is no need to check for code specific flags.
7296 XXX - do we need to worry about floating-point format compatability
7297 in data sections ? */
7298 if (!(ibfd->flags & DYNAMIC))
7299 {
7300 bfd_boolean null_input_bfd = TRUE;
7301 bfd_boolean only_data_sections = TRUE;
7302
7303 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7304 {
7305 if ((bfd_section_flags (sec)
7306 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7307 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7308 only_data_sections = FALSE;
7309
7310 null_input_bfd = FALSE;
7311 break;
7312 }
7313
7314 if (null_input_bfd || only_data_sections)
7315 return TRUE;
7316 }
7317
7318 return flags_compatible;
7319 }
7320
7321 /* Display the flags field. */
7322
7323 static bfd_boolean
7324 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7325 {
7326 FILE *file = (FILE *) ptr;
7327 unsigned long flags;
7328
7329 BFD_ASSERT (abfd != NULL && ptr != NULL);
7330
7331 /* Print normal ELF private data. */
7332 _bfd_elf_print_private_bfd_data (abfd, ptr);
7333
7334 flags = elf_elfheader (abfd)->e_flags;
7335 /* Ignore init flag - it may not be set, despite the flags field
7336 containing valid data. */
7337
7338 /* xgettext:c-format */
7339 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7340
7341 if (flags)
7342 fprintf (file, _("<Unrecognised flag bits set>"));
7343
7344 fputc ('\n', file);
7345
7346 return TRUE;
7347 }
7348
7349 /* Find dynamic relocs for H that apply to read-only sections. */
7350
7351 static asection *
7352 readonly_dynrelocs (struct elf_link_hash_entry *h)
7353 {
7354 struct elf_dyn_relocs *p;
7355
7356 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
7357 {
7358 asection *s = p->sec->output_section;
7359
7360 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7361 return p->sec;
7362 }
7363 return NULL;
7364 }
7365
7366 /* Return true if we need copy relocation against EH. */
7367
7368 static bfd_boolean
7369 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7370 {
7371 struct elf_dyn_relocs *p;
7372 asection *s;
7373
7374 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7375 {
7376 /* If there is any pc-relative reference, we need to keep copy relocation
7377 to avoid propagating the relocation into runtime that current glibc
7378 does not support. */
7379 if (p->pc_count)
7380 return TRUE;
7381
7382 s = p->sec->output_section;
7383 /* Need copy relocation if it's against read-only section. */
7384 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7385 return TRUE;
7386 }
7387
7388 return FALSE;
7389 }
7390
7391 /* Adjust a symbol defined by a dynamic object and referenced by a
7392 regular object. The current definition is in some section of the
7393 dynamic object, but we're not including those sections. We have to
7394 change the definition to something the rest of the link can
7395 understand. */
7396
7397 static bfd_boolean
7398 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7399 struct elf_link_hash_entry *h)
7400 {
7401 struct elf_aarch64_link_hash_table *htab;
7402 asection *s, *srel;
7403
7404 /* If this is a function, put it in the procedure linkage table. We
7405 will fill in the contents of the procedure linkage table later,
7406 when we know the address of the .got section. */
7407 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7408 {
7409 if (h->plt.refcount <= 0
7410 || (h->type != STT_GNU_IFUNC
7411 && (SYMBOL_CALLS_LOCAL (info, h)
7412 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7413 && h->root.type == bfd_link_hash_undefweak))))
7414 {
7415 /* This case can occur if we saw a CALL26 reloc in
7416 an input file, but the symbol wasn't referred to
7417 by a dynamic object or all references were
7418 garbage collected. In which case we can end up
7419 resolving. */
7420 h->plt.offset = (bfd_vma) - 1;
7421 h->needs_plt = 0;
7422 }
7423
7424 return TRUE;
7425 }
7426 else
7427 /* Otherwise, reset to -1. */
7428 h->plt.offset = (bfd_vma) - 1;
7429
7430
7431 /* If this is a weak symbol, and there is a real definition, the
7432 processor independent code will have arranged for us to see the
7433 real definition first, and we can just use the same value. */
7434 if (h->is_weakalias)
7435 {
7436 struct elf_link_hash_entry *def = weakdef (h);
7437 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7438 h->root.u.def.section = def->root.u.def.section;
7439 h->root.u.def.value = def->root.u.def.value;
7440 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7441 h->non_got_ref = def->non_got_ref;
7442 return TRUE;
7443 }
7444
7445 /* If we are creating a shared library, we must presume that the
7446 only references to the symbol are via the global offset table.
7447 For such cases we need not do anything here; the relocations will
7448 be handled correctly by relocate_section. */
7449 if (bfd_link_pic (info))
7450 return TRUE;
7451
7452 /* If there are no references to this symbol that do not use the
7453 GOT, we don't need to generate a copy reloc. */
7454 if (!h->non_got_ref)
7455 return TRUE;
7456
7457 /* If -z nocopyreloc was given, we won't generate them either. */
7458 if (info->nocopyreloc)
7459 {
7460 h->non_got_ref = 0;
7461 return TRUE;
7462 }
7463
7464 if (ELIMINATE_COPY_RELOCS)
7465 {
7466 struct elf_aarch64_link_hash_entry *eh;
7467 /* If we don't find any dynamic relocs in read-only sections, then
7468 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7469 eh = (struct elf_aarch64_link_hash_entry *) h;
7470 if (!need_copy_relocation_p (eh))
7471 {
7472 h->non_got_ref = 0;
7473 return TRUE;
7474 }
7475 }
7476
7477 /* We must allocate the symbol in our .dynbss section, which will
7478 become part of the .bss section of the executable. There will be
7479 an entry for this symbol in the .dynsym section. The dynamic
7480 object will contain position independent code, so all references
7481 from the dynamic object to this symbol will go through the global
7482 offset table. The dynamic linker will use the .dynsym entry to
7483 determine the address it must put in the global offset table, so
7484 both the dynamic object and the regular object will refer to the
7485 same memory location for the variable. */
7486
7487 htab = elf_aarch64_hash_table (info);
7488
7489 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7490 to copy the initial value out of the dynamic object and into the
7491 runtime process image. */
7492 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7493 {
7494 s = htab->root.sdynrelro;
7495 srel = htab->root.sreldynrelro;
7496 }
7497 else
7498 {
7499 s = htab->root.sdynbss;
7500 srel = htab->root.srelbss;
7501 }
7502 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7503 {
7504 srel->size += RELOC_SIZE (htab);
7505 h->needs_copy = 1;
7506 }
7507
7508 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7509
7510 }
7511
7512 static bfd_boolean
7513 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7514 {
7515 struct elf_aarch64_local_symbol *locals;
7516 locals = elf_aarch64_locals (abfd);
7517 if (locals == NULL)
7518 {
7519 locals = (struct elf_aarch64_local_symbol *)
7520 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7521 if (locals == NULL)
7522 return FALSE;
7523 elf_aarch64_locals (abfd) = locals;
7524 }
7525 return TRUE;
7526 }
7527
7528 /* Create the .got section to hold the global offset table. */
7529
7530 static bfd_boolean
7531 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7532 {
7533 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7534 flagword flags;
7535 asection *s;
7536 struct elf_link_hash_entry *h;
7537 struct elf_link_hash_table *htab = elf_hash_table (info);
7538
7539 /* This function may be called more than once. */
7540 if (htab->sgot != NULL)
7541 return TRUE;
7542
7543 flags = bed->dynamic_sec_flags;
7544
7545 s = bfd_make_section_anyway_with_flags (abfd,
7546 (bed->rela_plts_and_copies_p
7547 ? ".rela.got" : ".rel.got"),
7548 (bed->dynamic_sec_flags
7549 | SEC_READONLY));
7550 if (s == NULL
7551 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7552 return FALSE;
7553 htab->srelgot = s;
7554
7555 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7556 if (s == NULL
7557 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7558 return FALSE;
7559 htab->sgot = s;
7560 htab->sgot->size += GOT_ENTRY_SIZE;
7561
7562 if (bed->want_got_sym)
7563 {
7564 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7565 (or .got.plt) section. We don't do this in the linker script
7566 because we don't want to define the symbol if we are not creating
7567 a global offset table. */
7568 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7569 "_GLOBAL_OFFSET_TABLE_");
7570 elf_hash_table (info)->hgot = h;
7571 if (h == NULL)
7572 return FALSE;
7573 }
7574
7575 if (bed->want_got_plt)
7576 {
7577 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7578 if (s == NULL
7579 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7580 return FALSE;
7581 htab->sgotplt = s;
7582 }
7583
7584 /* The first bit of the global offset table is the header. */
7585 s->size += bed->got_header_size;
7586
7587 return TRUE;
7588 }
7589
7590 /* Look through the relocs for a section during the first phase. */
7591
7592 static bfd_boolean
7593 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7594 asection *sec, const Elf_Internal_Rela *relocs)
7595 {
7596 Elf_Internal_Shdr *symtab_hdr;
7597 struct elf_link_hash_entry **sym_hashes;
7598 const Elf_Internal_Rela *rel;
7599 const Elf_Internal_Rela *rel_end;
7600 asection *sreloc;
7601
7602 struct elf_aarch64_link_hash_table *htab;
7603
7604 if (bfd_link_relocatable (info))
7605 return TRUE;
7606
7607 BFD_ASSERT (is_aarch64_elf (abfd));
7608
7609 htab = elf_aarch64_hash_table (info);
7610 sreloc = NULL;
7611
7612 symtab_hdr = &elf_symtab_hdr (abfd);
7613 sym_hashes = elf_sym_hashes (abfd);
7614
7615 rel_end = relocs + sec->reloc_count;
7616 for (rel = relocs; rel < rel_end; rel++)
7617 {
7618 struct elf_link_hash_entry *h;
7619 unsigned int r_symndx;
7620 unsigned int r_type;
7621 bfd_reloc_code_real_type bfd_r_type;
7622 Elf_Internal_Sym *isym;
7623
7624 r_symndx = ELFNN_R_SYM (rel->r_info);
7625 r_type = ELFNN_R_TYPE (rel->r_info);
7626
7627 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7628 {
7629 /* xgettext:c-format */
7630 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7631 return FALSE;
7632 }
7633
7634 if (r_symndx < symtab_hdr->sh_info)
7635 {
7636 /* A local symbol. */
7637 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7638 abfd, r_symndx);
7639 if (isym == NULL)
7640 return FALSE;
7641
7642 /* Check relocation against local STT_GNU_IFUNC symbol. */
7643 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7644 {
7645 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7646 TRUE);
7647 if (h == NULL)
7648 return FALSE;
7649
7650 /* Fake a STT_GNU_IFUNC symbol. */
7651 h->type = STT_GNU_IFUNC;
7652 h->def_regular = 1;
7653 h->ref_regular = 1;
7654 h->forced_local = 1;
7655 h->root.type = bfd_link_hash_defined;
7656 }
7657 else
7658 h = NULL;
7659 }
7660 else
7661 {
7662 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7663 while (h->root.type == bfd_link_hash_indirect
7664 || h->root.type == bfd_link_hash_warning)
7665 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7666 }
7667
7668 /* Could be done earlier, if h were already available. */
7669 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7670
7671 if (h != NULL)
7672 {
7673 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7674 This shows up in particular in an R_AARCH64_PREL64 in large model
7675 when calculating the pc-relative address to .got section which is
7676 used to initialize the gp register. */
7677 if (h->root.root.string
7678 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7679 {
7680 if (htab->root.dynobj == NULL)
7681 htab->root.dynobj = abfd;
7682
7683 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7684 return FALSE;
7685
7686 BFD_ASSERT (h == htab->root.hgot);
7687 }
7688
7689 /* Create the ifunc sections for static executables. If we
7690 never see an indirect function symbol nor we are building
7691 a static executable, those sections will be empty and
7692 won't appear in output. */
7693 switch (bfd_r_type)
7694 {
7695 default:
7696 break;
7697
7698 case BFD_RELOC_AARCH64_ADD_LO12:
7699 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7700 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7701 case BFD_RELOC_AARCH64_CALL26:
7702 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7703 case BFD_RELOC_AARCH64_JUMP26:
7704 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7705 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7706 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7707 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7708 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7709 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7710 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7711 case BFD_RELOC_AARCH64_NN:
7712 if (htab->root.dynobj == NULL)
7713 htab->root.dynobj = abfd;
7714 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7715 return FALSE;
7716 break;
7717 }
7718
7719 /* It is referenced by a non-shared object. */
7720 h->ref_regular = 1;
7721 }
7722
7723 switch (bfd_r_type)
7724 {
7725 case BFD_RELOC_AARCH64_16:
7726 #if ARCH_SIZE == 64
7727 case BFD_RELOC_AARCH64_32:
7728 #endif
7729 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7730 {
7731 if (h != NULL
7732 /* This is an absolute symbol. It represents a value instead
7733 of an address. */
7734 && (bfd_is_abs_symbol (&h->root)
7735 /* This is an undefined symbol. */
7736 || h->root.type == bfd_link_hash_undefined))
7737 break;
7738
7739 /* For local symbols, defined global symbols in a non-ABS section,
7740 it is assumed that the value is an address. */
7741 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7742 _bfd_error_handler
7743 /* xgettext:c-format */
7744 (_("%pB: relocation %s against `%s' can not be used when making "
7745 "a shared object"),
7746 abfd, elfNN_aarch64_howto_table[howto_index].name,
7747 (h) ? h->root.root.string : "a local symbol");
7748 bfd_set_error (bfd_error_bad_value);
7749 return FALSE;
7750 }
7751 else
7752 break;
7753
7754 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7755 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7756 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7757 case BFD_RELOC_AARCH64_MOVW_G3:
7758 if (bfd_link_pic (info))
7759 {
7760 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7761 _bfd_error_handler
7762 /* xgettext:c-format */
7763 (_("%pB: relocation %s against `%s' can not be used when making "
7764 "a shared object; recompile with -fPIC"),
7765 abfd, elfNN_aarch64_howto_table[howto_index].name,
7766 (h) ? h->root.root.string : "a local symbol");
7767 bfd_set_error (bfd_error_bad_value);
7768 return FALSE;
7769 }
7770 /* Fall through. */
7771
7772 case BFD_RELOC_AARCH64_16_PCREL:
7773 case BFD_RELOC_AARCH64_32_PCREL:
7774 case BFD_RELOC_AARCH64_64_PCREL:
7775 case BFD_RELOC_AARCH64_ADD_LO12:
7776 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7777 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7778 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7779 case BFD_RELOC_AARCH64_LDST128_LO12:
7780 case BFD_RELOC_AARCH64_LDST16_LO12:
7781 case BFD_RELOC_AARCH64_LDST32_LO12:
7782 case BFD_RELOC_AARCH64_LDST64_LO12:
7783 case BFD_RELOC_AARCH64_LDST8_LO12:
7784 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7785 if (h == NULL || bfd_link_pic (info))
7786 break;
7787 /* Fall through. */
7788
7789 case BFD_RELOC_AARCH64_NN:
7790
7791 /* We don't need to handle relocs into sections not going into
7792 the "real" output. */
7793 if ((sec->flags & SEC_ALLOC) == 0)
7794 break;
7795
7796 if (h != NULL)
7797 {
7798 if (!bfd_link_pic (info))
7799 h->non_got_ref = 1;
7800
7801 h->plt.refcount += 1;
7802 h->pointer_equality_needed = 1;
7803 }
7804
7805 /* No need to do anything if we're not creating a shared
7806 object. */
7807 if (!(bfd_link_pic (info)
7808 /* If on the other hand, we are creating an executable, we
7809 may need to keep relocations for symbols satisfied by a
7810 dynamic library if we manage to avoid copy relocs for the
7811 symbol.
7812
7813 NOTE: Currently, there is no support of copy relocs
7814 elimination on pc-relative relocation types, because there is
7815 no dynamic relocation support for them in glibc. We still
7816 record the dynamic symbol reference for them. This is
7817 because one symbol may be referenced by both absolute
7818 relocation (for example, BFD_RELOC_AARCH64_NN) and
7819 pc-relative relocation. We need full symbol reference
7820 information to make correct decision later in
7821 elfNN_aarch64_adjust_dynamic_symbol. */
7822 || (ELIMINATE_COPY_RELOCS
7823 && !bfd_link_pic (info)
7824 && h != NULL
7825 && (h->root.type == bfd_link_hash_defweak
7826 || !h->def_regular))))
7827 break;
7828
7829 {
7830 struct elf_dyn_relocs *p;
7831 struct elf_dyn_relocs **head;
7832 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7833
7834 /* We must copy these reloc types into the output file.
7835 Create a reloc section in dynobj and make room for
7836 this reloc. */
7837 if (sreloc == NULL)
7838 {
7839 if (htab->root.dynobj == NULL)
7840 htab->root.dynobj = abfd;
7841
7842 sreloc = _bfd_elf_make_dynamic_reloc_section
7843 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7844
7845 if (sreloc == NULL)
7846 return FALSE;
7847 }
7848
7849 /* If this is a global symbol, we count the number of
7850 relocations we need for this symbol. */
7851 if (h != NULL)
7852 {
7853 struct elf_aarch64_link_hash_entry *eh;
7854 eh = (struct elf_aarch64_link_hash_entry *) h;
7855 head = &eh->dyn_relocs;
7856 }
7857 else
7858 {
7859 /* Track dynamic relocs needed for local syms too.
7860 We really need local syms available to do this
7861 easily. Oh well. */
7862
7863 asection *s;
7864 void **vpp;
7865
7866 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7867 abfd, r_symndx);
7868 if (isym == NULL)
7869 return FALSE;
7870
7871 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7872 if (s == NULL)
7873 s = sec;
7874
7875 /* Beware of type punned pointers vs strict aliasing
7876 rules. */
7877 vpp = &(elf_section_data (s)->local_dynrel);
7878 head = (struct elf_dyn_relocs **) vpp;
7879 }
7880
7881 p = *head;
7882 if (p == NULL || p->sec != sec)
7883 {
7884 size_t amt = sizeof *p;
7885 p = ((struct elf_dyn_relocs *)
7886 bfd_zalloc (htab->root.dynobj, amt));
7887 if (p == NULL)
7888 return FALSE;
7889 p->next = *head;
7890 *head = p;
7891 p->sec = sec;
7892 }
7893
7894 p->count += 1;
7895
7896 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7897 p->pc_count += 1;
7898 }
7899 break;
7900
7901 /* RR: We probably want to keep a consistency check that
7902 there are no dangling GOT_PAGE relocs. */
7903 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7904 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7905 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7906 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7907 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7908 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7909 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7910 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7911 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7912 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7913 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7914 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7915 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7916 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7917 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7918 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7919 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7920 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7921 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7922 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7923 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7924 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7925 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7926 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7927 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7928 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7929 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7930 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7931 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7932 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7933 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7934 {
7935 unsigned got_type;
7936 unsigned old_got_type;
7937
7938 got_type = aarch64_reloc_got_type (bfd_r_type);
7939
7940 if (h)
7941 {
7942 h->got.refcount += 1;
7943 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7944 }
7945 else
7946 {
7947 struct elf_aarch64_local_symbol *locals;
7948
7949 if (!elfNN_aarch64_allocate_local_symbols
7950 (abfd, symtab_hdr->sh_info))
7951 return FALSE;
7952
7953 locals = elf_aarch64_locals (abfd);
7954 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7955 locals[r_symndx].got_refcount += 1;
7956 old_got_type = locals[r_symndx].got_type;
7957 }
7958
7959 /* If a variable is accessed with both general dynamic TLS
7960 methods, two slots may be created. */
7961 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7962 got_type |= old_got_type;
7963
7964 /* We will already have issued an error message if there
7965 is a TLS/non-TLS mismatch, based on the symbol type.
7966 So just combine any TLS types needed. */
7967 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7968 && got_type != GOT_NORMAL)
7969 got_type |= old_got_type;
7970
7971 /* If the symbol is accessed by both IE and GD methods, we
7972 are able to relax. Turn off the GD flag, without
7973 messing up with any other kind of TLS types that may be
7974 involved. */
7975 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7976 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7977
7978 if (old_got_type != got_type)
7979 {
7980 if (h != NULL)
7981 elf_aarch64_hash_entry (h)->got_type = got_type;
7982 else
7983 {
7984 struct elf_aarch64_local_symbol *locals;
7985 locals = elf_aarch64_locals (abfd);
7986 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7987 locals[r_symndx].got_type = got_type;
7988 }
7989 }
7990
7991 if (htab->root.dynobj == NULL)
7992 htab->root.dynobj = abfd;
7993 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7994 return FALSE;
7995 break;
7996 }
7997
7998 case BFD_RELOC_AARCH64_CALL26:
7999 case BFD_RELOC_AARCH64_JUMP26:
8000 /* If this is a local symbol then we resolve it
8001 directly without creating a PLT entry. */
8002 if (h == NULL)
8003 continue;
8004
8005 h->needs_plt = 1;
8006 if (h->plt.refcount <= 0)
8007 h->plt.refcount = 1;
8008 else
8009 h->plt.refcount += 1;
8010 break;
8011
8012 default:
8013 break;
8014 }
8015 }
8016
8017 return TRUE;
8018 }
8019
8020 /* Treat mapping symbols as special target symbols. */
8021
8022 static bfd_boolean
8023 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8024 asymbol *sym)
8025 {
8026 return bfd_is_aarch64_special_symbol_name (sym->name,
8027 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
8028 }
8029
8030 /* If the ELF symbol SYM might be a function in SEC, return the
8031 function size and set *CODE_OFF to the function's entry point,
8032 otherwise return zero. */
8033
8034 static bfd_size_type
8035 elfNN_aarch64_maybe_function_sym (const asymbol *sym, asection *sec,
8036 bfd_vma *code_off)
8037 {
8038 bfd_size_type size;
8039
8040 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
8041 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
8042 || sym->section != sec)
8043 return 0;
8044
8045 if (!(sym->flags & BSF_SYNTHETIC))
8046 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
8047 {
8048 case STT_FUNC:
8049 case STT_NOTYPE:
8050 break;
8051 default:
8052 return 0;
8053 }
8054
8055 if ((sym->flags & BSF_LOCAL)
8056 && bfd_is_aarch64_special_symbol_name (sym->name,
8057 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY))
8058 return 0;
8059
8060 *code_off = sym->value;
8061 size = 0;
8062 if (!(sym->flags & BSF_SYNTHETIC))
8063 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
8064 if (size == 0)
8065 size = 1;
8066 return size;
8067 }
8068
8069 static bfd_boolean
8070 elfNN_aarch64_find_inliner_info (bfd *abfd,
8071 const char **filename_ptr,
8072 const char **functionname_ptr,
8073 unsigned int *line_ptr)
8074 {
8075 bfd_boolean found;
8076 found = _bfd_dwarf2_find_inliner_info
8077 (abfd, filename_ptr,
8078 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
8079 return found;
8080 }
8081
8082
8083 static bfd_boolean
8084 elfNN_aarch64_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
8085 {
8086 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
8087
8088 if (!_bfd_elf_init_file_header (abfd, link_info))
8089 return FALSE;
8090
8091 i_ehdrp = elf_elfheader (abfd);
8092 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
8093 return TRUE;
8094 }
8095
8096 static enum elf_reloc_type_class
8097 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
8098 const asection *rel_sec ATTRIBUTE_UNUSED,
8099 const Elf_Internal_Rela *rela)
8100 {
8101 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
8102
8103 if (htab->root.dynsym != NULL
8104 && htab->root.dynsym->contents != NULL)
8105 {
8106 /* Check relocation against STT_GNU_IFUNC symbol if there are
8107 dynamic symbols. */
8108 bfd *abfd = info->output_bfd;
8109 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8110 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
8111 if (r_symndx != STN_UNDEF)
8112 {
8113 Elf_Internal_Sym sym;
8114 if (!bed->s->swap_symbol_in (abfd,
8115 (htab->root.dynsym->contents
8116 + r_symndx * bed->s->sizeof_sym),
8117 0, &sym))
8118 {
8119 /* xgettext:c-format */
8120 _bfd_error_handler (_("%pB symbol number %lu references"
8121 " nonexistent SHT_SYMTAB_SHNDX section"),
8122 abfd, r_symndx);
8123 /* Ideally an error class should be returned here. */
8124 }
8125 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8126 return reloc_class_ifunc;
8127 }
8128 }
8129
8130 switch ((int) ELFNN_R_TYPE (rela->r_info))
8131 {
8132 case AARCH64_R (IRELATIVE):
8133 return reloc_class_ifunc;
8134 case AARCH64_R (RELATIVE):
8135 return reloc_class_relative;
8136 case AARCH64_R (JUMP_SLOT):
8137 return reloc_class_plt;
8138 case AARCH64_R (COPY):
8139 return reloc_class_copy;
8140 default:
8141 return reloc_class_normal;
8142 }
8143 }
8144
8145 /* Handle an AArch64 specific section when reading an object file. This is
8146 called when bfd_section_from_shdr finds a section with an unknown
8147 type. */
8148
8149 static bfd_boolean
8150 elfNN_aarch64_section_from_shdr (bfd *abfd,
8151 Elf_Internal_Shdr *hdr,
8152 const char *name, int shindex)
8153 {
8154 /* There ought to be a place to keep ELF backend specific flags, but
8155 at the moment there isn't one. We just keep track of the
8156 sections by their name, instead. Fortunately, the ABI gives
8157 names for all the AArch64 specific sections, so we will probably get
8158 away with this. */
8159 switch (hdr->sh_type)
8160 {
8161 case SHT_AARCH64_ATTRIBUTES:
8162 break;
8163
8164 default:
8165 return FALSE;
8166 }
8167
8168 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8169 return FALSE;
8170
8171 return TRUE;
8172 }
8173
8174 /* A structure used to record a list of sections, independently
8175 of the next and prev fields in the asection structure. */
8176 typedef struct section_list
8177 {
8178 asection *sec;
8179 struct section_list *next;
8180 struct section_list *prev;
8181 }
8182 section_list;
8183
8184 /* Unfortunately we need to keep a list of sections for which
8185 an _aarch64_elf_section_data structure has been allocated. This
8186 is because it is possible for functions like elfNN_aarch64_write_section
8187 to be called on a section which has had an elf_data_structure
8188 allocated for it (and so the used_by_bfd field is valid) but
8189 for which the AArch64 extended version of this structure - the
8190 _aarch64_elf_section_data structure - has not been allocated. */
8191 static section_list *sections_with_aarch64_elf_section_data = NULL;
8192
8193 static void
8194 record_section_with_aarch64_elf_section_data (asection *sec)
8195 {
8196 struct section_list *entry;
8197
8198 entry = bfd_malloc (sizeof (*entry));
8199 if (entry == NULL)
8200 return;
8201 entry->sec = sec;
8202 entry->next = sections_with_aarch64_elf_section_data;
8203 entry->prev = NULL;
8204 if (entry->next != NULL)
8205 entry->next->prev = entry;
8206 sections_with_aarch64_elf_section_data = entry;
8207 }
8208
8209 static struct section_list *
8210 find_aarch64_elf_section_entry (asection *sec)
8211 {
8212 struct section_list *entry;
8213 static struct section_list *last_entry = NULL;
8214
8215 /* This is a short cut for the typical case where the sections are added
8216 to the sections_with_aarch64_elf_section_data list in forward order and
8217 then looked up here in backwards order. This makes a real difference
8218 to the ld-srec/sec64k.exp linker test. */
8219 entry = sections_with_aarch64_elf_section_data;
8220 if (last_entry != NULL)
8221 {
8222 if (last_entry->sec == sec)
8223 entry = last_entry;
8224 else if (last_entry->next != NULL && last_entry->next->sec == sec)
8225 entry = last_entry->next;
8226 }
8227
8228 for (; entry; entry = entry->next)
8229 if (entry->sec == sec)
8230 break;
8231
8232 if (entry)
8233 /* Record the entry prior to this one - it is the entry we are
8234 most likely to want to locate next time. Also this way if we
8235 have been called from
8236 unrecord_section_with_aarch64_elf_section_data () we will not
8237 be caching a pointer that is about to be freed. */
8238 last_entry = entry->prev;
8239
8240 return entry;
8241 }
8242
8243 static void
8244 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8245 {
8246 struct section_list *entry;
8247
8248 entry = find_aarch64_elf_section_entry (sec);
8249
8250 if (entry)
8251 {
8252 if (entry->prev != NULL)
8253 entry->prev->next = entry->next;
8254 if (entry->next != NULL)
8255 entry->next->prev = entry->prev;
8256 if (entry == sections_with_aarch64_elf_section_data)
8257 sections_with_aarch64_elf_section_data = entry->next;
8258 free (entry);
8259 }
8260 }
8261
8262
8263 typedef struct
8264 {
8265 void *finfo;
8266 struct bfd_link_info *info;
8267 asection *sec;
8268 int sec_shndx;
8269 int (*func) (void *, const char *, Elf_Internal_Sym *,
8270 asection *, struct elf_link_hash_entry *);
8271 } output_arch_syminfo;
8272
8273 enum map_symbol_type
8274 {
8275 AARCH64_MAP_INSN,
8276 AARCH64_MAP_DATA
8277 };
8278
8279
8280 /* Output a single mapping symbol. */
8281
8282 static bfd_boolean
8283 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8284 enum map_symbol_type type, bfd_vma offset)
8285 {
8286 static const char *names[2] = { "$x", "$d" };
8287 Elf_Internal_Sym sym;
8288
8289 sym.st_value = (osi->sec->output_section->vma
8290 + osi->sec->output_offset + offset);
8291 sym.st_size = 0;
8292 sym.st_other = 0;
8293 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8294 sym.st_shndx = osi->sec_shndx;
8295 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8296 }
8297
8298 /* Output a single local symbol for a generated stub. */
8299
8300 static bfd_boolean
8301 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8302 bfd_vma offset, bfd_vma size)
8303 {
8304 Elf_Internal_Sym sym;
8305
8306 sym.st_value = (osi->sec->output_section->vma
8307 + osi->sec->output_offset + offset);
8308 sym.st_size = size;
8309 sym.st_other = 0;
8310 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8311 sym.st_shndx = osi->sec_shndx;
8312 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8313 }
8314
8315 static bfd_boolean
8316 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8317 {
8318 struct elf_aarch64_stub_hash_entry *stub_entry;
8319 asection *stub_sec;
8320 bfd_vma addr;
8321 char *stub_name;
8322 output_arch_syminfo *osi;
8323
8324 /* Massage our args to the form they really have. */
8325 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8326 osi = (output_arch_syminfo *) in_arg;
8327
8328 stub_sec = stub_entry->stub_sec;
8329
8330 /* Ensure this stub is attached to the current section being
8331 processed. */
8332 if (stub_sec != osi->sec)
8333 return TRUE;
8334
8335 addr = (bfd_vma) stub_entry->stub_offset;
8336
8337 stub_name = stub_entry->output_name;
8338
8339 switch (stub_entry->stub_type)
8340 {
8341 case aarch64_stub_adrp_branch:
8342 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8343 sizeof (aarch64_adrp_branch_stub)))
8344 return FALSE;
8345 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8346 return FALSE;
8347 break;
8348 case aarch64_stub_long_branch:
8349 if (!elfNN_aarch64_output_stub_sym
8350 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8351 return FALSE;
8352 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8353 return FALSE;
8354 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8355 return FALSE;
8356 break;
8357 case aarch64_stub_erratum_835769_veneer:
8358 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8359 sizeof (aarch64_erratum_835769_stub)))
8360 return FALSE;
8361 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8362 return FALSE;
8363 break;
8364 case aarch64_stub_erratum_843419_veneer:
8365 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8366 sizeof (aarch64_erratum_843419_stub)))
8367 return FALSE;
8368 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8369 return FALSE;
8370 break;
8371 case aarch64_stub_none:
8372 break;
8373
8374 default:
8375 abort ();
8376 }
8377
8378 return TRUE;
8379 }
8380
8381 /* Output mapping symbols for linker generated sections. */
8382
8383 static bfd_boolean
8384 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8385 struct bfd_link_info *info,
8386 void *finfo,
8387 int (*func) (void *, const char *,
8388 Elf_Internal_Sym *,
8389 asection *,
8390 struct elf_link_hash_entry
8391 *))
8392 {
8393 output_arch_syminfo osi;
8394 struct elf_aarch64_link_hash_table *htab;
8395
8396 htab = elf_aarch64_hash_table (info);
8397
8398 osi.finfo = finfo;
8399 osi.info = info;
8400 osi.func = func;
8401
8402 /* Long calls stubs. */
8403 if (htab->stub_bfd && htab->stub_bfd->sections)
8404 {
8405 asection *stub_sec;
8406
8407 for (stub_sec = htab->stub_bfd->sections;
8408 stub_sec != NULL; stub_sec = stub_sec->next)
8409 {
8410 /* Ignore non-stub sections. */
8411 if (!strstr (stub_sec->name, STUB_SUFFIX))
8412 continue;
8413
8414 osi.sec = stub_sec;
8415
8416 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8417 (output_bfd, osi.sec->output_section);
8418
8419 /* The first instruction in a stub is always a branch. */
8420 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8421 return FALSE;
8422
8423 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8424 &osi);
8425 }
8426 }
8427
8428 /* Finally, output mapping symbols for the PLT. */
8429 if (!htab->root.splt || htab->root.splt->size == 0)
8430 return TRUE;
8431
8432 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8433 (output_bfd, htab->root.splt->output_section);
8434 osi.sec = htab->root.splt;
8435
8436 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8437
8438 return TRUE;
8439
8440 }
8441
8442 /* Allocate target specific section data. */
8443
8444 static bfd_boolean
8445 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8446 {
8447 if (!sec->used_by_bfd)
8448 {
8449 _aarch64_elf_section_data *sdata;
8450 size_t amt = sizeof (*sdata);
8451
8452 sdata = bfd_zalloc (abfd, amt);
8453 if (sdata == NULL)
8454 return FALSE;
8455 sec->used_by_bfd = sdata;
8456 }
8457
8458 record_section_with_aarch64_elf_section_data (sec);
8459
8460 return _bfd_elf_new_section_hook (abfd, sec);
8461 }
8462
8463
8464 static void
8465 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8466 asection *sec,
8467 void *ignore ATTRIBUTE_UNUSED)
8468 {
8469 unrecord_section_with_aarch64_elf_section_data (sec);
8470 }
8471
8472 static bfd_boolean
8473 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8474 {
8475 if (abfd->sections)
8476 bfd_map_over_sections (abfd,
8477 unrecord_section_via_map_over_sections, NULL);
8478
8479 return _bfd_elf_close_and_cleanup (abfd);
8480 }
8481
8482 static bfd_boolean
8483 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8484 {
8485 if (abfd->sections)
8486 bfd_map_over_sections (abfd,
8487 unrecord_section_via_map_over_sections, NULL);
8488
8489 return _bfd_free_cached_info (abfd);
8490 }
8491
8492 /* Create dynamic sections. This is different from the ARM backend in that
8493 the got, plt, gotplt and their relocation sections are all created in the
8494 standard part of the bfd elf backend. */
8495
8496 static bfd_boolean
8497 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8498 struct bfd_link_info *info)
8499 {
8500 /* We need to create .got section. */
8501 if (!aarch64_elf_create_got_section (dynobj, info))
8502 return FALSE;
8503
8504 return _bfd_elf_create_dynamic_sections (dynobj, info);
8505 }
8506
8507
8508 /* Allocate space in .plt, .got and associated reloc sections for
8509 dynamic relocs. */
8510
8511 static bfd_boolean
8512 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8513 {
8514 struct bfd_link_info *info;
8515 struct elf_aarch64_link_hash_table *htab;
8516 struct elf_aarch64_link_hash_entry *eh;
8517 struct elf_dyn_relocs *p;
8518
8519 /* An example of a bfd_link_hash_indirect symbol is versioned
8520 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8521 -> __gxx_personality_v0(bfd_link_hash_defined)
8522
8523 There is no need to process bfd_link_hash_indirect symbols here
8524 because we will also be presented with the concrete instance of
8525 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8526 called to copy all relevant data from the generic to the concrete
8527 symbol instance. */
8528 if (h->root.type == bfd_link_hash_indirect)
8529 return TRUE;
8530
8531 if (h->root.type == bfd_link_hash_warning)
8532 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8533
8534 info = (struct bfd_link_info *) inf;
8535 htab = elf_aarch64_hash_table (info);
8536
8537 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8538 here if it is defined and referenced in a non-shared object. */
8539 if (h->type == STT_GNU_IFUNC
8540 && h->def_regular)
8541 return TRUE;
8542 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8543 {
8544 /* Make sure this symbol is output as a dynamic symbol.
8545 Undefined weak syms won't yet be marked as dynamic. */
8546 if (h->dynindx == -1 && !h->forced_local
8547 && h->root.type == bfd_link_hash_undefweak)
8548 {
8549 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8550 return FALSE;
8551 }
8552
8553 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8554 {
8555 asection *s = htab->root.splt;
8556
8557 /* If this is the first .plt entry, make room for the special
8558 first entry. */
8559 if (s->size == 0)
8560 s->size += htab->plt_header_size;
8561
8562 h->plt.offset = s->size;
8563
8564 /* If this symbol is not defined in a regular file, and we are
8565 not generating a shared library, then set the symbol to this
8566 location in the .plt. This is required to make function
8567 pointers compare as equal between the normal executable and
8568 the shared library. */
8569 if (!bfd_link_pic (info) && !h->def_regular)
8570 {
8571 h->root.u.def.section = s;
8572 h->root.u.def.value = h->plt.offset;
8573 }
8574
8575 /* Make room for this entry. For now we only create the
8576 small model PLT entries. We later need to find a way
8577 of relaxing into these from the large model PLT entries. */
8578 s->size += htab->plt_entry_size;
8579
8580 /* We also need to make an entry in the .got.plt section, which
8581 will be placed in the .got section by the linker script. */
8582 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8583
8584 /* We also need to make an entry in the .rela.plt section. */
8585 htab->root.srelplt->size += RELOC_SIZE (htab);
8586
8587 /* We need to ensure that all GOT entries that serve the PLT
8588 are consecutive with the special GOT slots [0] [1] and
8589 [2]. Any addtional relocations, such as
8590 R_AARCH64_TLSDESC, must be placed after the PLT related
8591 entries. We abuse the reloc_count such that during
8592 sizing we adjust reloc_count to indicate the number of
8593 PLT related reserved entries. In subsequent phases when
8594 filling in the contents of the reloc entries, PLT related
8595 entries are placed by computing their PLT index (0
8596 .. reloc_count). While other none PLT relocs are placed
8597 at the slot indicated by reloc_count and reloc_count is
8598 updated. */
8599
8600 htab->root.srelplt->reloc_count++;
8601
8602 /* Mark the DSO in case R_<CLS>_JUMP_SLOT relocs against
8603 variant PCS symbols are present. */
8604 if (h->other & STO_AARCH64_VARIANT_PCS)
8605 htab->variant_pcs = 1;
8606
8607 }
8608 else
8609 {
8610 h->plt.offset = (bfd_vma) - 1;
8611 h->needs_plt = 0;
8612 }
8613 }
8614 else
8615 {
8616 h->plt.offset = (bfd_vma) - 1;
8617 h->needs_plt = 0;
8618 }
8619
8620 eh = (struct elf_aarch64_link_hash_entry *) h;
8621 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8622
8623 if (h->got.refcount > 0)
8624 {
8625 bfd_boolean dyn;
8626 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8627
8628 h->got.offset = (bfd_vma) - 1;
8629
8630 dyn = htab->root.dynamic_sections_created;
8631
8632 /* Make sure this symbol is output as a dynamic symbol.
8633 Undefined weak syms won't yet be marked as dynamic. */
8634 if (dyn && h->dynindx == -1 && !h->forced_local
8635 && h->root.type == bfd_link_hash_undefweak)
8636 {
8637 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8638 return FALSE;
8639 }
8640
8641 if (got_type == GOT_UNKNOWN)
8642 {
8643 }
8644 else if (got_type == GOT_NORMAL)
8645 {
8646 h->got.offset = htab->root.sgot->size;
8647 htab->root.sgot->size += GOT_ENTRY_SIZE;
8648 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8649 || h->root.type != bfd_link_hash_undefweak)
8650 && (bfd_link_pic (info)
8651 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8652 /* Undefined weak symbol in static PIE resolves to 0 without
8653 any dynamic relocations. */
8654 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8655 {
8656 htab->root.srelgot->size += RELOC_SIZE (htab);
8657 }
8658 }
8659 else
8660 {
8661 int indx;
8662 if (got_type & GOT_TLSDESC_GD)
8663 {
8664 eh->tlsdesc_got_jump_table_offset =
8665 (htab->root.sgotplt->size
8666 - aarch64_compute_jump_table_size (htab));
8667 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8668 h->got.offset = (bfd_vma) - 2;
8669 }
8670
8671 if (got_type & GOT_TLS_GD)
8672 {
8673 h->got.offset = htab->root.sgot->size;
8674 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8675 }
8676
8677 if (got_type & GOT_TLS_IE)
8678 {
8679 h->got.offset = htab->root.sgot->size;
8680 htab->root.sgot->size += GOT_ENTRY_SIZE;
8681 }
8682
8683 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8684 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8685 || h->root.type != bfd_link_hash_undefweak)
8686 && (!bfd_link_executable (info)
8687 || indx != 0
8688 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8689 {
8690 if (got_type & GOT_TLSDESC_GD)
8691 {
8692 htab->root.srelplt->size += RELOC_SIZE (htab);
8693 /* Note reloc_count not incremented here! We have
8694 already adjusted reloc_count for this relocation
8695 type. */
8696
8697 /* TLSDESC PLT is now needed, but not yet determined. */
8698 htab->tlsdesc_plt = (bfd_vma) - 1;
8699 }
8700
8701 if (got_type & GOT_TLS_GD)
8702 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8703
8704 if (got_type & GOT_TLS_IE)
8705 htab->root.srelgot->size += RELOC_SIZE (htab);
8706 }
8707 }
8708 }
8709 else
8710 {
8711 h->got.offset = (bfd_vma) - 1;
8712 }
8713
8714 if (eh->dyn_relocs == NULL)
8715 return TRUE;
8716
8717 /* In the shared -Bsymbolic case, discard space allocated for
8718 dynamic pc-relative relocs against symbols which turn out to be
8719 defined in regular objects. For the normal shared case, discard
8720 space for pc-relative relocs that have become local due to symbol
8721 visibility changes. */
8722
8723 if (bfd_link_pic (info))
8724 {
8725 /* Relocs that use pc_count are those that appear on a call
8726 insn, or certain REL relocs that can generated via assembly.
8727 We want calls to protected symbols to resolve directly to the
8728 function rather than going via the plt. If people want
8729 function pointer comparisons to work as expected then they
8730 should avoid writing weird assembly. */
8731 if (SYMBOL_CALLS_LOCAL (info, h))
8732 {
8733 struct elf_dyn_relocs **pp;
8734
8735 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8736 {
8737 p->count -= p->pc_count;
8738 p->pc_count = 0;
8739 if (p->count == 0)
8740 *pp = p->next;
8741 else
8742 pp = &p->next;
8743 }
8744 }
8745
8746 /* Also discard relocs on undefined weak syms with non-default
8747 visibility. */
8748 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8749 {
8750 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8751 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8752 eh->dyn_relocs = NULL;
8753
8754 /* Make sure undefined weak symbols are output as a dynamic
8755 symbol in PIEs. */
8756 else if (h->dynindx == -1
8757 && !h->forced_local
8758 && h->root.type == bfd_link_hash_undefweak
8759 && !bfd_elf_link_record_dynamic_symbol (info, h))
8760 return FALSE;
8761 }
8762
8763 }
8764 else if (ELIMINATE_COPY_RELOCS)
8765 {
8766 /* For the non-shared case, discard space for relocs against
8767 symbols which turn out to need copy relocs or are not
8768 dynamic. */
8769
8770 if (!h->non_got_ref
8771 && ((h->def_dynamic
8772 && !h->def_regular)
8773 || (htab->root.dynamic_sections_created
8774 && (h->root.type == bfd_link_hash_undefweak
8775 || h->root.type == bfd_link_hash_undefined))))
8776 {
8777 /* Make sure this symbol is output as a dynamic symbol.
8778 Undefined weak syms won't yet be marked as dynamic. */
8779 if (h->dynindx == -1
8780 && !h->forced_local
8781 && h->root.type == bfd_link_hash_undefweak
8782 && !bfd_elf_link_record_dynamic_symbol (info, h))
8783 return FALSE;
8784
8785 /* If that succeeded, we know we'll be keeping all the
8786 relocs. */
8787 if (h->dynindx != -1)
8788 goto keep;
8789 }
8790
8791 eh->dyn_relocs = NULL;
8792
8793 keep:;
8794 }
8795
8796 /* Finally, allocate space. */
8797 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8798 {
8799 asection *sreloc;
8800
8801 sreloc = elf_section_data (p->sec)->sreloc;
8802
8803 BFD_ASSERT (sreloc != NULL);
8804
8805 sreloc->size += p->count * RELOC_SIZE (htab);
8806 }
8807
8808 return TRUE;
8809 }
8810
8811 /* Allocate space in .plt, .got and associated reloc sections for
8812 ifunc dynamic relocs. */
8813
8814 static bfd_boolean
8815 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8816 void *inf)
8817 {
8818 struct bfd_link_info *info;
8819 struct elf_aarch64_link_hash_table *htab;
8820 struct elf_aarch64_link_hash_entry *eh;
8821
8822 /* An example of a bfd_link_hash_indirect symbol is versioned
8823 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8824 -> __gxx_personality_v0(bfd_link_hash_defined)
8825
8826 There is no need to process bfd_link_hash_indirect symbols here
8827 because we will also be presented with the concrete instance of
8828 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8829 called to copy all relevant data from the generic to the concrete
8830 symbol instance. */
8831 if (h->root.type == bfd_link_hash_indirect)
8832 return TRUE;
8833
8834 if (h->root.type == bfd_link_hash_warning)
8835 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8836
8837 info = (struct bfd_link_info *) inf;
8838 htab = elf_aarch64_hash_table (info);
8839
8840 eh = (struct elf_aarch64_link_hash_entry *) h;
8841
8842 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8843 here if it is defined and referenced in a non-shared object. */
8844 if (h->type == STT_GNU_IFUNC
8845 && h->def_regular)
8846 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8847 &eh->dyn_relocs,
8848 NULL,
8849 htab->plt_entry_size,
8850 htab->plt_header_size,
8851 GOT_ENTRY_SIZE,
8852 FALSE);
8853 return TRUE;
8854 }
8855
8856 /* Allocate space in .plt, .got and associated reloc sections for
8857 local ifunc dynamic relocs. */
8858
8859 static bfd_boolean
8860 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8861 {
8862 struct elf_link_hash_entry *h
8863 = (struct elf_link_hash_entry *) *slot;
8864
8865 if (h->type != STT_GNU_IFUNC
8866 || !h->def_regular
8867 || !h->ref_regular
8868 || !h->forced_local
8869 || h->root.type != bfd_link_hash_defined)
8870 abort ();
8871
8872 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8873 }
8874
8875 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8876 read-only sections. */
8877
8878 static bfd_boolean
8879 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8880 {
8881 asection *sec;
8882
8883 if (h->root.type == bfd_link_hash_indirect)
8884 return TRUE;
8885
8886 sec = readonly_dynrelocs (h);
8887 if (sec != NULL)
8888 {
8889 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8890
8891 info->flags |= DF_TEXTREL;
8892 info->callbacks->minfo
8893 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8894 sec->owner, h->root.root.string, sec);
8895
8896 /* Not an error, just cut short the traversal. */
8897 return FALSE;
8898 }
8899 return TRUE;
8900 }
8901
8902 /* This is the most important function of all . Innocuosly named
8903 though ! */
8904
8905 static bfd_boolean
8906 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8907 struct bfd_link_info *info)
8908 {
8909 struct elf_aarch64_link_hash_table *htab;
8910 bfd *dynobj;
8911 asection *s;
8912 bfd_boolean relocs;
8913 bfd *ibfd;
8914
8915 htab = elf_aarch64_hash_table ((info));
8916 dynobj = htab->root.dynobj;
8917
8918 BFD_ASSERT (dynobj != NULL);
8919
8920 if (htab->root.dynamic_sections_created)
8921 {
8922 if (bfd_link_executable (info) && !info->nointerp)
8923 {
8924 s = bfd_get_linker_section (dynobj, ".interp");
8925 if (s == NULL)
8926 abort ();
8927 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8928 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8929 }
8930 }
8931
8932 /* Set up .got offsets for local syms, and space for local dynamic
8933 relocs. */
8934 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8935 {
8936 struct elf_aarch64_local_symbol *locals = NULL;
8937 Elf_Internal_Shdr *symtab_hdr;
8938 asection *srel;
8939 unsigned int i;
8940
8941 if (!is_aarch64_elf (ibfd))
8942 continue;
8943
8944 for (s = ibfd->sections; s != NULL; s = s->next)
8945 {
8946 struct elf_dyn_relocs *p;
8947
8948 for (p = (struct elf_dyn_relocs *)
8949 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8950 {
8951 if (!bfd_is_abs_section (p->sec)
8952 && bfd_is_abs_section (p->sec->output_section))
8953 {
8954 /* Input section has been discarded, either because
8955 it is a copy of a linkonce section or due to
8956 linker script /DISCARD/, so we'll be discarding
8957 the relocs too. */
8958 }
8959 else if (p->count != 0)
8960 {
8961 srel = elf_section_data (p->sec)->sreloc;
8962 srel->size += p->count * RELOC_SIZE (htab);
8963 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8964 info->flags |= DF_TEXTREL;
8965 }
8966 }
8967 }
8968
8969 locals = elf_aarch64_locals (ibfd);
8970 if (!locals)
8971 continue;
8972
8973 symtab_hdr = &elf_symtab_hdr (ibfd);
8974 srel = htab->root.srelgot;
8975 for (i = 0; i < symtab_hdr->sh_info; i++)
8976 {
8977 locals[i].got_offset = (bfd_vma) - 1;
8978 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8979 if (locals[i].got_refcount > 0)
8980 {
8981 unsigned got_type = locals[i].got_type;
8982 if (got_type & GOT_TLSDESC_GD)
8983 {
8984 locals[i].tlsdesc_got_jump_table_offset =
8985 (htab->root.sgotplt->size
8986 - aarch64_compute_jump_table_size (htab));
8987 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8988 locals[i].got_offset = (bfd_vma) - 2;
8989 }
8990
8991 if (got_type & GOT_TLS_GD)
8992 {
8993 locals[i].got_offset = htab->root.sgot->size;
8994 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8995 }
8996
8997 if (got_type & GOT_TLS_IE
8998 || got_type & GOT_NORMAL)
8999 {
9000 locals[i].got_offset = htab->root.sgot->size;
9001 htab->root.sgot->size += GOT_ENTRY_SIZE;
9002 }
9003
9004 if (got_type == GOT_UNKNOWN)
9005 {
9006 }
9007
9008 if (bfd_link_pic (info))
9009 {
9010 if (got_type & GOT_TLSDESC_GD)
9011 {
9012 htab->root.srelplt->size += RELOC_SIZE (htab);
9013 /* Note RELOC_COUNT not incremented here! */
9014 htab->tlsdesc_plt = (bfd_vma) - 1;
9015 }
9016
9017 if (got_type & GOT_TLS_GD)
9018 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
9019
9020 if (got_type & GOT_TLS_IE
9021 || got_type & GOT_NORMAL)
9022 htab->root.srelgot->size += RELOC_SIZE (htab);
9023 }
9024 }
9025 else
9026 {
9027 locals[i].got_refcount = (bfd_vma) - 1;
9028 }
9029 }
9030 }
9031
9032
9033 /* Allocate global sym .plt and .got entries, and space for global
9034 sym dynamic relocs. */
9035 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
9036 info);
9037
9038 /* Allocate global ifunc sym .plt and .got entries, and space for global
9039 ifunc sym dynamic relocs. */
9040 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
9041 info);
9042
9043 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
9044 htab_traverse (htab->loc_hash_table,
9045 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
9046 info);
9047
9048 /* For every jump slot reserved in the sgotplt, reloc_count is
9049 incremented. However, when we reserve space for TLS descriptors,
9050 it's not incremented, so in order to compute the space reserved
9051 for them, it suffices to multiply the reloc count by the jump
9052 slot size. */
9053
9054 if (htab->root.srelplt)
9055 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
9056
9057 if (htab->tlsdesc_plt)
9058 {
9059 if (htab->root.splt->size == 0)
9060 htab->root.splt->size += htab->plt_header_size;
9061
9062 /* If we're not using lazy TLS relocations, don't generate the
9063 GOT and PLT entry required. */
9064 if (!(info->flags & DF_BIND_NOW))
9065 {
9066 htab->tlsdesc_plt = htab->root.splt->size;
9067 htab->root.splt->size += htab->tlsdesc_plt_entry_size;
9068
9069 htab->dt_tlsdesc_got = htab->root.sgot->size;
9070 htab->root.sgot->size += GOT_ENTRY_SIZE;
9071 }
9072 }
9073
9074 /* Init mapping symbols information to use later to distingush between
9075 code and data while scanning for errata. */
9076 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
9077 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9078 {
9079 if (!is_aarch64_elf (ibfd))
9080 continue;
9081 bfd_elfNN_aarch64_init_maps (ibfd);
9082 }
9083
9084 /* We now have determined the sizes of the various dynamic sections.
9085 Allocate memory for them. */
9086 relocs = FALSE;
9087 for (s = dynobj->sections; s != NULL; s = s->next)
9088 {
9089 if ((s->flags & SEC_LINKER_CREATED) == 0)
9090 continue;
9091
9092 if (s == htab->root.splt
9093 || s == htab->root.sgot
9094 || s == htab->root.sgotplt
9095 || s == htab->root.iplt
9096 || s == htab->root.igotplt
9097 || s == htab->root.sdynbss
9098 || s == htab->root.sdynrelro)
9099 {
9100 /* Strip this section if we don't need it; see the
9101 comment below. */
9102 }
9103 else if (CONST_STRNEQ (bfd_section_name (s), ".rela"))
9104 {
9105 if (s->size != 0 && s != htab->root.srelplt)
9106 relocs = TRUE;
9107
9108 /* We use the reloc_count field as a counter if we need
9109 to copy relocs into the output file. */
9110 if (s != htab->root.srelplt)
9111 s->reloc_count = 0;
9112 }
9113 else
9114 {
9115 /* It's not one of our sections, so don't allocate space. */
9116 continue;
9117 }
9118
9119 if (s->size == 0)
9120 {
9121 /* If we don't need this section, strip it from the
9122 output file. This is mostly to handle .rela.bss and
9123 .rela.plt. We must create both sections in
9124 create_dynamic_sections, because they must be created
9125 before the linker maps input sections to output
9126 sections. The linker does that before
9127 adjust_dynamic_symbol is called, and it is that
9128 function which decides whether anything needs to go
9129 into these sections. */
9130 s->flags |= SEC_EXCLUDE;
9131 continue;
9132 }
9133
9134 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9135 continue;
9136
9137 /* Allocate memory for the section contents. We use bfd_zalloc
9138 here in case unused entries are not reclaimed before the
9139 section's contents are written out. This should not happen,
9140 but this way if it does, we get a R_AARCH64_NONE reloc instead
9141 of garbage. */
9142 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9143 if (s->contents == NULL)
9144 return FALSE;
9145 }
9146
9147 if (htab->root.dynamic_sections_created)
9148 {
9149 /* Add some entries to the .dynamic section. We fill in the
9150 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9151 must add the entries now so that we get the correct size for
9152 the .dynamic section. The DT_DEBUG entry is filled in by the
9153 dynamic linker and used by the debugger. */
9154 #define add_dynamic_entry(TAG, VAL) \
9155 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9156
9157 if (bfd_link_executable (info))
9158 {
9159 if (!add_dynamic_entry (DT_DEBUG, 0))
9160 return FALSE;
9161 }
9162
9163 if (htab->root.splt->size != 0)
9164 {
9165 if (!add_dynamic_entry (DT_PLTGOT, 0)
9166 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9167 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9168 || !add_dynamic_entry (DT_JMPREL, 0))
9169 return FALSE;
9170
9171 if (htab->variant_pcs
9172 && !add_dynamic_entry (DT_AARCH64_VARIANT_PCS, 0))
9173 return FALSE;
9174
9175 if (htab->tlsdesc_plt
9176 && !(info->flags & DF_BIND_NOW)
9177 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
9178 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
9179 return FALSE;
9180
9181 if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI_PAC)
9182 && (!add_dynamic_entry (DT_AARCH64_BTI_PLT, 0)
9183 || !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0)))
9184 return FALSE;
9185
9186 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9187 && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9188 return FALSE;
9189
9190 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_PAC)
9191 && !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0))
9192 return FALSE;
9193 }
9194
9195 if (relocs)
9196 {
9197 if (!add_dynamic_entry (DT_RELA, 0)
9198 || !add_dynamic_entry (DT_RELASZ, 0)
9199 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9200 return FALSE;
9201
9202 /* If any dynamic relocs apply to a read-only section,
9203 then we need a DT_TEXTREL entry. */
9204 if ((info->flags & DF_TEXTREL) == 0)
9205 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
9206
9207 if ((info->flags & DF_TEXTREL) != 0)
9208 {
9209 if (!add_dynamic_entry (DT_TEXTREL, 0))
9210 return FALSE;
9211 }
9212 }
9213 }
9214 #undef add_dynamic_entry
9215
9216 return TRUE;
9217 }
9218
9219 static inline void
9220 elf_aarch64_update_plt_entry (bfd *output_bfd,
9221 bfd_reloc_code_real_type r_type,
9222 bfd_byte *plt_entry, bfd_vma value)
9223 {
9224 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9225
9226 /* FIXME: We should check the return value from this function call. */
9227 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9228 }
9229
9230 static void
9231 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9232 struct elf_aarch64_link_hash_table
9233 *htab, bfd *output_bfd,
9234 struct bfd_link_info *info)
9235 {
9236 bfd_byte *plt_entry;
9237 bfd_vma plt_index;
9238 bfd_vma got_offset;
9239 bfd_vma gotplt_entry_address;
9240 bfd_vma plt_entry_address;
9241 Elf_Internal_Rela rela;
9242 bfd_byte *loc;
9243 asection *plt, *gotplt, *relplt;
9244
9245 /* When building a static executable, use .iplt, .igot.plt and
9246 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9247 if (htab->root.splt != NULL)
9248 {
9249 plt = htab->root.splt;
9250 gotplt = htab->root.sgotplt;
9251 relplt = htab->root.srelplt;
9252 }
9253 else
9254 {
9255 plt = htab->root.iplt;
9256 gotplt = htab->root.igotplt;
9257 relplt = htab->root.irelplt;
9258 }
9259
9260 /* Get the index in the procedure linkage table which
9261 corresponds to this symbol. This is the index of this symbol
9262 in all the symbols for which we are making plt entries. The
9263 first entry in the procedure linkage table is reserved.
9264
9265 Get the offset into the .got table of the entry that
9266 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9267 bytes. The first three are reserved for the dynamic linker.
9268
9269 For static executables, we don't reserve anything. */
9270
9271 if (plt == htab->root.splt)
9272 {
9273 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9274 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9275 }
9276 else
9277 {
9278 plt_index = h->plt.offset / htab->plt_entry_size;
9279 got_offset = plt_index * GOT_ENTRY_SIZE;
9280 }
9281
9282 plt_entry = plt->contents + h->plt.offset;
9283 plt_entry_address = plt->output_section->vma
9284 + plt->output_offset + h->plt.offset;
9285 gotplt_entry_address = gotplt->output_section->vma +
9286 gotplt->output_offset + got_offset;
9287
9288 /* Copy in the boiler-plate for the PLTn entry. */
9289 memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9290
9291 /* First instruction in BTI enabled PLT stub is a BTI
9292 instruction so skip it. */
9293 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9294 && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9295 plt_entry = plt_entry + 4;
9296
9297 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9298 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9299 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9300 plt_entry,
9301 PG (gotplt_entry_address) -
9302 PG (plt_entry_address));
9303
9304 /* Fill in the lo12 bits for the load from the pltgot. */
9305 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9306 plt_entry + 4,
9307 PG_OFFSET (gotplt_entry_address));
9308
9309 /* Fill in the lo12 bits for the add from the pltgot entry. */
9310 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9311 plt_entry + 8,
9312 PG_OFFSET (gotplt_entry_address));
9313
9314 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9315 bfd_put_NN (output_bfd,
9316 plt->output_section->vma + plt->output_offset,
9317 gotplt->contents + got_offset);
9318
9319 rela.r_offset = gotplt_entry_address;
9320
9321 if (h->dynindx == -1
9322 || ((bfd_link_executable (info)
9323 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9324 && h->def_regular
9325 && h->type == STT_GNU_IFUNC))
9326 {
9327 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9328 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9329 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9330 rela.r_addend = (h->root.u.def.value
9331 + h->root.u.def.section->output_section->vma
9332 + h->root.u.def.section->output_offset);
9333 }
9334 else
9335 {
9336 /* Fill in the entry in the .rela.plt section. */
9337 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9338 rela.r_addend = 0;
9339 }
9340
9341 /* Compute the relocation entry to used based on PLT index and do
9342 not adjust reloc_count. The reloc_count has already been adjusted
9343 to account for this entry. */
9344 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9345 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9346 }
9347
9348 /* Size sections even though they're not dynamic. We use it to setup
9349 _TLS_MODULE_BASE_, if needed. */
9350
9351 static bfd_boolean
9352 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9353 struct bfd_link_info *info)
9354 {
9355 asection *tls_sec;
9356
9357 if (bfd_link_relocatable (info))
9358 return TRUE;
9359
9360 tls_sec = elf_hash_table (info)->tls_sec;
9361
9362 if (tls_sec)
9363 {
9364 struct elf_link_hash_entry *tlsbase;
9365
9366 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9367 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9368
9369 if (tlsbase)
9370 {
9371 struct bfd_link_hash_entry *h = NULL;
9372 const struct elf_backend_data *bed =
9373 get_elf_backend_data (output_bfd);
9374
9375 if (!(_bfd_generic_link_add_one_symbol
9376 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9377 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9378 return FALSE;
9379
9380 tlsbase->type = STT_TLS;
9381 tlsbase = (struct elf_link_hash_entry *) h;
9382 tlsbase->def_regular = 1;
9383 tlsbase->other = STV_HIDDEN;
9384 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9385 }
9386 }
9387
9388 return TRUE;
9389 }
9390
9391 /* Finish up dynamic symbol handling. We set the contents of various
9392 dynamic sections here. */
9393
9394 static bfd_boolean
9395 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9396 struct bfd_link_info *info,
9397 struct elf_link_hash_entry *h,
9398 Elf_Internal_Sym *sym)
9399 {
9400 struct elf_aarch64_link_hash_table *htab;
9401 htab = elf_aarch64_hash_table (info);
9402
9403 if (h->plt.offset != (bfd_vma) - 1)
9404 {
9405 asection *plt, *gotplt, *relplt;
9406
9407 /* This symbol has an entry in the procedure linkage table. Set
9408 it up. */
9409
9410 /* When building a static executable, use .iplt, .igot.plt and
9411 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9412 if (htab->root.splt != NULL)
9413 {
9414 plt = htab->root.splt;
9415 gotplt = htab->root.sgotplt;
9416 relplt = htab->root.srelplt;
9417 }
9418 else
9419 {
9420 plt = htab->root.iplt;
9421 gotplt = htab->root.igotplt;
9422 relplt = htab->root.irelplt;
9423 }
9424
9425 /* This symbol has an entry in the procedure linkage table. Set
9426 it up. */
9427 if ((h->dynindx == -1
9428 && !((h->forced_local || bfd_link_executable (info))
9429 && h->def_regular
9430 && h->type == STT_GNU_IFUNC))
9431 || plt == NULL
9432 || gotplt == NULL
9433 || relplt == NULL)
9434 return FALSE;
9435
9436 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9437 if (!h->def_regular)
9438 {
9439 /* Mark the symbol as undefined, rather than as defined in
9440 the .plt section. */
9441 sym->st_shndx = SHN_UNDEF;
9442 /* If the symbol is weak we need to clear the value.
9443 Otherwise, the PLT entry would provide a definition for
9444 the symbol even if the symbol wasn't defined anywhere,
9445 and so the symbol would never be NULL. Leave the value if
9446 there were any relocations where pointer equality matters
9447 (this is a clue for the dynamic linker, to make function
9448 pointer comparisons work between an application and shared
9449 library). */
9450 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9451 sym->st_value = 0;
9452 }
9453 }
9454
9455 if (h->got.offset != (bfd_vma) - 1
9456 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9457 /* Undefined weak symbol in static PIE resolves to 0 without
9458 any dynamic relocations. */
9459 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9460 {
9461 Elf_Internal_Rela rela;
9462 bfd_byte *loc;
9463
9464 /* This symbol has an entry in the global offset table. Set it
9465 up. */
9466 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9467 abort ();
9468
9469 rela.r_offset = (htab->root.sgot->output_section->vma
9470 + htab->root.sgot->output_offset
9471 + (h->got.offset & ~(bfd_vma) 1));
9472
9473 if (h->def_regular
9474 && h->type == STT_GNU_IFUNC)
9475 {
9476 if (bfd_link_pic (info))
9477 {
9478 /* Generate R_AARCH64_GLOB_DAT. */
9479 goto do_glob_dat;
9480 }
9481 else
9482 {
9483 asection *plt;
9484
9485 if (!h->pointer_equality_needed)
9486 abort ();
9487
9488 /* For non-shared object, we can't use .got.plt, which
9489 contains the real function address if we need pointer
9490 equality. We load the GOT entry with the PLT entry. */
9491 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9492 bfd_put_NN (output_bfd, (plt->output_section->vma
9493 + plt->output_offset
9494 + h->plt.offset),
9495 htab->root.sgot->contents
9496 + (h->got.offset & ~(bfd_vma) 1));
9497 return TRUE;
9498 }
9499 }
9500 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9501 {
9502 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9503 return FALSE;
9504
9505 BFD_ASSERT ((h->got.offset & 1) != 0);
9506 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9507 rela.r_addend = (h->root.u.def.value
9508 + h->root.u.def.section->output_section->vma
9509 + h->root.u.def.section->output_offset);
9510 }
9511 else
9512 {
9513 do_glob_dat:
9514 BFD_ASSERT ((h->got.offset & 1) == 0);
9515 bfd_put_NN (output_bfd, (bfd_vma) 0,
9516 htab->root.sgot->contents + h->got.offset);
9517 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9518 rela.r_addend = 0;
9519 }
9520
9521 loc = htab->root.srelgot->contents;
9522 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9523 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9524 }
9525
9526 if (h->needs_copy)
9527 {
9528 Elf_Internal_Rela rela;
9529 asection *s;
9530 bfd_byte *loc;
9531
9532 /* This symbol needs a copy reloc. Set it up. */
9533 if (h->dynindx == -1
9534 || (h->root.type != bfd_link_hash_defined
9535 && h->root.type != bfd_link_hash_defweak)
9536 || htab->root.srelbss == NULL)
9537 abort ();
9538
9539 rela.r_offset = (h->root.u.def.value
9540 + h->root.u.def.section->output_section->vma
9541 + h->root.u.def.section->output_offset);
9542 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9543 rela.r_addend = 0;
9544 if (h->root.u.def.section == htab->root.sdynrelro)
9545 s = htab->root.sreldynrelro;
9546 else
9547 s = htab->root.srelbss;
9548 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9549 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9550 }
9551
9552 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9553 be NULL for local symbols. */
9554 if (sym != NULL
9555 && (h == elf_hash_table (info)->hdynamic
9556 || h == elf_hash_table (info)->hgot))
9557 sym->st_shndx = SHN_ABS;
9558
9559 return TRUE;
9560 }
9561
9562 /* Finish up local dynamic symbol handling. We set the contents of
9563 various dynamic sections here. */
9564
9565 static bfd_boolean
9566 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9567 {
9568 struct elf_link_hash_entry *h
9569 = (struct elf_link_hash_entry *) *slot;
9570 struct bfd_link_info *info
9571 = (struct bfd_link_info *) inf;
9572
9573 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9574 info, h, NULL);
9575 }
9576
9577 static void
9578 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9579 struct elf_aarch64_link_hash_table
9580 *htab)
9581 {
9582 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9583 small and large plts and at the minute just generates
9584 the small PLT. */
9585
9586 /* PLT0 of the small PLT looks like this in ELF64 -
9587 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9588 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9589 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9590 // symbol resolver
9591 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9592 // GOTPLT entry for this.
9593 br x17
9594 PLT0 will be slightly different in ELF32 due to different got entry
9595 size. */
9596 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9597 bfd_vma plt_base;
9598
9599
9600 memcpy (htab->root.splt->contents, htab->plt0_entry,
9601 htab->plt_header_size);
9602 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9603 htab->plt_header_size;
9604
9605 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9606 + htab->root.sgotplt->output_offset
9607 + GOT_ENTRY_SIZE * 2);
9608
9609 plt_base = htab->root.splt->output_section->vma +
9610 htab->root.splt->output_offset;
9611
9612 /* First instruction in BTI enabled PLT stub is a BTI
9613 instruction so skip it. */
9614 bfd_byte *plt0_entry = htab->root.splt->contents;
9615 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9616 plt0_entry = plt0_entry + 4;
9617
9618 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9619 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9620 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9621 plt0_entry + 4,
9622 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9623
9624 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9625 plt0_entry + 8,
9626 PG_OFFSET (plt_got_2nd_ent));
9627
9628 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9629 plt0_entry + 12,
9630 PG_OFFSET (plt_got_2nd_ent));
9631 }
9632
9633 static bfd_boolean
9634 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9635 struct bfd_link_info *info)
9636 {
9637 struct elf_aarch64_link_hash_table *htab;
9638 bfd *dynobj;
9639 asection *sdyn;
9640
9641 htab = elf_aarch64_hash_table (info);
9642 dynobj = htab->root.dynobj;
9643 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9644
9645 if (htab->root.dynamic_sections_created)
9646 {
9647 ElfNN_External_Dyn *dyncon, *dynconend;
9648
9649 if (sdyn == NULL || htab->root.sgot == NULL)
9650 abort ();
9651
9652 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9653 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9654 for (; dyncon < dynconend; dyncon++)
9655 {
9656 Elf_Internal_Dyn dyn;
9657 asection *s;
9658
9659 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9660
9661 switch (dyn.d_tag)
9662 {
9663 default:
9664 continue;
9665
9666 case DT_PLTGOT:
9667 s = htab->root.sgotplt;
9668 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9669 break;
9670
9671 case DT_JMPREL:
9672 s = htab->root.srelplt;
9673 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9674 break;
9675
9676 case DT_PLTRELSZ:
9677 s = htab->root.srelplt;
9678 dyn.d_un.d_val = s->size;
9679 break;
9680
9681 case DT_TLSDESC_PLT:
9682 s = htab->root.splt;
9683 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9684 + htab->tlsdesc_plt;
9685 break;
9686
9687 case DT_TLSDESC_GOT:
9688 s = htab->root.sgot;
9689 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9690 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9691 + htab->dt_tlsdesc_got;
9692 break;
9693 }
9694
9695 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9696 }
9697
9698 }
9699
9700 /* Fill in the special first entry in the procedure linkage table. */
9701 if (htab->root.splt && htab->root.splt->size > 0)
9702 {
9703 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9704
9705 elf_section_data (htab->root.splt->output_section)->
9706 this_hdr.sh_entsize = htab->plt_entry_size;
9707
9708
9709 if (htab->tlsdesc_plt && !(info->flags & DF_BIND_NOW))
9710 {
9711 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9712 bfd_put_NN (output_bfd, (bfd_vma) 0,
9713 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9714
9715 const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9716 htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9717
9718 aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9719 if (type == PLT_BTI || type == PLT_BTI_PAC)
9720 {
9721 entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9722 }
9723
9724 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9725 entry, htab->tlsdesc_plt_entry_size);
9726
9727 {
9728 bfd_vma adrp1_addr =
9729 htab->root.splt->output_section->vma
9730 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9731
9732 bfd_vma adrp2_addr = adrp1_addr + 4;
9733
9734 bfd_vma got_addr =
9735 htab->root.sgot->output_section->vma
9736 + htab->root.sgot->output_offset;
9737
9738 bfd_vma pltgot_addr =
9739 htab->root.sgotplt->output_section->vma
9740 + htab->root.sgotplt->output_offset;
9741
9742 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9743
9744 bfd_byte *plt_entry =
9745 htab->root.splt->contents + htab->tlsdesc_plt;
9746
9747 /* First instruction in BTI enabled PLT stub is a BTI
9748 instruction so skip it. */
9749 if (type & PLT_BTI)
9750 {
9751 plt_entry = plt_entry + 4;
9752 adrp1_addr = adrp1_addr + 4;
9753 adrp2_addr = adrp2_addr + 4;
9754 }
9755
9756 /* adrp x2, DT_TLSDESC_GOT */
9757 elf_aarch64_update_plt_entry (output_bfd,
9758 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9759 plt_entry + 4,
9760 (PG (dt_tlsdesc_got)
9761 - PG (adrp1_addr)));
9762
9763 /* adrp x3, 0 */
9764 elf_aarch64_update_plt_entry (output_bfd,
9765 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9766 plt_entry + 8,
9767 (PG (pltgot_addr)
9768 - PG (adrp2_addr)));
9769
9770 /* ldr x2, [x2, #0] */
9771 elf_aarch64_update_plt_entry (output_bfd,
9772 BFD_RELOC_AARCH64_LDSTNN_LO12,
9773 plt_entry + 12,
9774 PG_OFFSET (dt_tlsdesc_got));
9775
9776 /* add x3, x3, 0 */
9777 elf_aarch64_update_plt_entry (output_bfd,
9778 BFD_RELOC_AARCH64_ADD_LO12,
9779 plt_entry + 16,
9780 PG_OFFSET (pltgot_addr));
9781 }
9782 }
9783 }
9784
9785 if (htab->root.sgotplt)
9786 {
9787 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9788 {
9789 _bfd_error_handler
9790 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9791 return FALSE;
9792 }
9793
9794 /* Fill in the first three entries in the global offset table. */
9795 if (htab->root.sgotplt->size > 0)
9796 {
9797 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9798
9799 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9800 bfd_put_NN (output_bfd,
9801 (bfd_vma) 0,
9802 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9803 bfd_put_NN (output_bfd,
9804 (bfd_vma) 0,
9805 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9806 }
9807
9808 if (htab->root.sgot)
9809 {
9810 if (htab->root.sgot->size > 0)
9811 {
9812 bfd_vma addr =
9813 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9814 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9815 }
9816 }
9817
9818 elf_section_data (htab->root.sgotplt->output_section)->
9819 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9820 }
9821
9822 if (htab->root.sgot && htab->root.sgot->size > 0)
9823 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9824 = GOT_ENTRY_SIZE;
9825
9826 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9827 htab_traverse (htab->loc_hash_table,
9828 elfNN_aarch64_finish_local_dynamic_symbol,
9829 info);
9830
9831 return TRUE;
9832 }
9833
9834 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
9835 static aarch64_plt_type
9836 get_plt_type (bfd *abfd)
9837 {
9838 aarch64_plt_type ret = PLT_NORMAL;
9839 bfd_byte *contents, *extdyn, *extdynend;
9840 asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9841 if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9842 return ret;
9843 extdyn = contents;
9844 extdynend = contents + sec->size;
9845 for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9846 {
9847 Elf_Internal_Dyn dyn;
9848 bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9849
9850 /* Let's check the processor specific dynamic array tags. */
9851 bfd_vma tag = dyn.d_tag;
9852 if (tag < DT_LOPROC || tag > DT_HIPROC)
9853 continue;
9854
9855 switch (tag)
9856 {
9857 case DT_AARCH64_BTI_PLT:
9858 ret |= PLT_BTI;
9859 break;
9860
9861 case DT_AARCH64_PAC_PLT:
9862 ret |= PLT_PAC;
9863 break;
9864
9865 default: break;
9866 }
9867 }
9868 free (contents);
9869 return ret;
9870 }
9871
9872 static long
9873 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9874 long symcount,
9875 asymbol **syms,
9876 long dynsymcount,
9877 asymbol **dynsyms,
9878 asymbol **ret)
9879 {
9880 elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9881 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9882 dynsymcount, dynsyms, ret);
9883 }
9884
9885 /* Return address for Ith PLT stub in section PLT, for relocation REL
9886 or (bfd_vma) -1 if it should not be included. */
9887
9888 static bfd_vma
9889 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9890 const arelent *rel ATTRIBUTE_UNUSED)
9891 {
9892 size_t plt0_size = PLT_ENTRY_SIZE;
9893 size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9894
9895 if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI_PAC)
9896 {
9897 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9898 pltn_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
9899 else
9900 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9901 }
9902 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9903 {
9904 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9905 pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9906 }
9907 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_PAC)
9908 {
9909 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9910 }
9911
9912 return plt->vma + plt0_size + i * pltn_size;
9913 }
9914
9915 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9916 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9917 It also allows a period initiated suffix to be added to the symbol, ie:
9918 "$[adtx]\.[:sym_char]+". */
9919
9920 static bfd_boolean
9921 is_aarch64_mapping_symbol (const char * name)
9922 {
9923 return name != NULL /* Paranoia. */
9924 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9925 the mapping symbols could have acquired a prefix.
9926 We do not support this here, since such symbols no
9927 longer conform to the ARM ELF ABI. */
9928 && (name[1] == 'd' || name[1] == 'x')
9929 && (name[2] == 0 || name[2] == '.');
9930 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9931 any characters that follow the period are legal characters for the body
9932 of a symbol's name. For now we just assume that this is the case. */
9933 }
9934
9935 /* Make sure that mapping symbols in object files are not removed via the
9936 "strip --strip-unneeded" tool. These symbols might needed in order to
9937 correctly generate linked files. Once an object file has been linked,
9938 it should be safe to remove them. */
9939
9940 static void
9941 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9942 {
9943 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9944 && sym->section != bfd_abs_section_ptr
9945 && is_aarch64_mapping_symbol (sym->name))
9946 sym->flags |= BSF_KEEP;
9947 }
9948
9949 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
9950 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
9951 for the effect of GNU properties of the output_bfd. */
9952 static bfd *
9953 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
9954 {
9955 uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9956 bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
9957 elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
9958 elf_aarch64_tdata (info->output_bfd)->plt_type
9959 |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
9960 setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
9961 return pbfd;
9962 }
9963
9964 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
9965 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
9966 for the effect of GNU properties of the output_bfd. */
9967 static bfd_boolean
9968 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
9969 bfd *abfd, bfd *bbfd,
9970 elf_property *aprop,
9971 elf_property *bprop)
9972 {
9973 uint32_t prop
9974 = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9975
9976 /* If output has been marked with BTI using command line argument, give out
9977 warning if necessary. */
9978 /* Properties are merged per type, hence only check for warnings when merging
9979 GNU_PROPERTY_AARCH64_FEATURE_1_AND. */
9980 if (((aprop && aprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
9981 || (bprop && bprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND))
9982 && (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
9983 && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
9984 {
9985 if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9986 || !aprop)
9987 {
9988 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9989 "all inputs do not have BTI in NOTE section."),
9990 abfd);
9991 }
9992 if ((bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9993 || !bprop)
9994 {
9995 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9996 "all inputs do not have BTI in NOTE section."),
9997 bbfd);
9998 }
9999 }
10000
10001 return _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
10002 bprop, prop);
10003 }
10004
10005 /* We use this so we can override certain functions
10006 (though currently we don't). */
10007
10008 const struct elf_size_info elfNN_aarch64_size_info =
10009 {
10010 sizeof (ElfNN_External_Ehdr),
10011 sizeof (ElfNN_External_Phdr),
10012 sizeof (ElfNN_External_Shdr),
10013 sizeof (ElfNN_External_Rel),
10014 sizeof (ElfNN_External_Rela),
10015 sizeof (ElfNN_External_Sym),
10016 sizeof (ElfNN_External_Dyn),
10017 sizeof (Elf_External_Note),
10018 4, /* Hash table entry size. */
10019 1, /* Internal relocs per external relocs. */
10020 ARCH_SIZE, /* Arch size. */
10021 LOG_FILE_ALIGN, /* Log_file_align. */
10022 ELFCLASSNN, EV_CURRENT,
10023 bfd_elfNN_write_out_phdrs,
10024 bfd_elfNN_write_shdrs_and_ehdr,
10025 bfd_elfNN_checksum_contents,
10026 bfd_elfNN_write_relocs,
10027 bfd_elfNN_swap_symbol_in,
10028 bfd_elfNN_swap_symbol_out,
10029 bfd_elfNN_slurp_reloc_table,
10030 bfd_elfNN_slurp_symbol_table,
10031 bfd_elfNN_swap_dyn_in,
10032 bfd_elfNN_swap_dyn_out,
10033 bfd_elfNN_swap_reloc_in,
10034 bfd_elfNN_swap_reloc_out,
10035 bfd_elfNN_swap_reloca_in,
10036 bfd_elfNN_swap_reloca_out
10037 };
10038
10039 #define ELF_ARCH bfd_arch_aarch64
10040 #define ELF_MACHINE_CODE EM_AARCH64
10041 #define ELF_MAXPAGESIZE 0x10000
10042 #define ELF_MINPAGESIZE 0x1000
10043 #define ELF_COMMONPAGESIZE 0x1000
10044
10045 #define bfd_elfNN_close_and_cleanup \
10046 elfNN_aarch64_close_and_cleanup
10047
10048 #define bfd_elfNN_bfd_free_cached_info \
10049 elfNN_aarch64_bfd_free_cached_info
10050
10051 #define bfd_elfNN_bfd_is_target_special_symbol \
10052 elfNN_aarch64_is_target_special_symbol
10053
10054 #define bfd_elfNN_bfd_link_hash_table_create \
10055 elfNN_aarch64_link_hash_table_create
10056
10057 #define bfd_elfNN_bfd_merge_private_bfd_data \
10058 elfNN_aarch64_merge_private_bfd_data
10059
10060 #define bfd_elfNN_bfd_print_private_bfd_data \
10061 elfNN_aarch64_print_private_bfd_data
10062
10063 #define bfd_elfNN_bfd_reloc_type_lookup \
10064 elfNN_aarch64_reloc_type_lookup
10065
10066 #define bfd_elfNN_bfd_reloc_name_lookup \
10067 elfNN_aarch64_reloc_name_lookup
10068
10069 #define bfd_elfNN_bfd_set_private_flags \
10070 elfNN_aarch64_set_private_flags
10071
10072 #define bfd_elfNN_find_inliner_info \
10073 elfNN_aarch64_find_inliner_info
10074
10075 #define bfd_elfNN_get_synthetic_symtab \
10076 elfNN_aarch64_get_synthetic_symtab
10077
10078 #define bfd_elfNN_mkobject \
10079 elfNN_aarch64_mkobject
10080
10081 #define bfd_elfNN_new_section_hook \
10082 elfNN_aarch64_new_section_hook
10083
10084 #define elf_backend_adjust_dynamic_symbol \
10085 elfNN_aarch64_adjust_dynamic_symbol
10086
10087 #define elf_backend_always_size_sections \
10088 elfNN_aarch64_always_size_sections
10089
10090 #define elf_backend_check_relocs \
10091 elfNN_aarch64_check_relocs
10092
10093 #define elf_backend_copy_indirect_symbol \
10094 elfNN_aarch64_copy_indirect_symbol
10095
10096 #define elf_backend_merge_symbol_attribute \
10097 elfNN_aarch64_merge_symbol_attribute
10098
10099 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10100 to them in our hash. */
10101 #define elf_backend_create_dynamic_sections \
10102 elfNN_aarch64_create_dynamic_sections
10103
10104 #define elf_backend_init_index_section \
10105 _bfd_elf_init_2_index_sections
10106
10107 #define elf_backend_finish_dynamic_sections \
10108 elfNN_aarch64_finish_dynamic_sections
10109
10110 #define elf_backend_finish_dynamic_symbol \
10111 elfNN_aarch64_finish_dynamic_symbol
10112
10113 #define elf_backend_object_p \
10114 elfNN_aarch64_object_p
10115
10116 #define elf_backend_output_arch_local_syms \
10117 elfNN_aarch64_output_arch_local_syms
10118
10119 #define elf_backend_maybe_function_sym \
10120 elfNN_aarch64_maybe_function_sym
10121
10122 #define elf_backend_plt_sym_val \
10123 elfNN_aarch64_plt_sym_val
10124
10125 #define elf_backend_init_file_header \
10126 elfNN_aarch64_init_file_header
10127
10128 #define elf_backend_relocate_section \
10129 elfNN_aarch64_relocate_section
10130
10131 #define elf_backend_reloc_type_class \
10132 elfNN_aarch64_reloc_type_class
10133
10134 #define elf_backend_section_from_shdr \
10135 elfNN_aarch64_section_from_shdr
10136
10137 #define elf_backend_size_dynamic_sections \
10138 elfNN_aarch64_size_dynamic_sections
10139
10140 #define elf_backend_size_info \
10141 elfNN_aarch64_size_info
10142
10143 #define elf_backend_write_section \
10144 elfNN_aarch64_write_section
10145
10146 #define elf_backend_symbol_processing \
10147 elfNN_aarch64_backend_symbol_processing
10148
10149 #define elf_backend_setup_gnu_properties \
10150 elfNN_aarch64_link_setup_gnu_properties
10151
10152 #define elf_backend_merge_gnu_properties \
10153 elfNN_aarch64_merge_gnu_properties
10154
10155 #define elf_backend_can_refcount 1
10156 #define elf_backend_can_gc_sections 1
10157 #define elf_backend_plt_readonly 1
10158 #define elf_backend_want_got_plt 1
10159 #define elf_backend_want_plt_sym 0
10160 #define elf_backend_want_dynrelro 1
10161 #define elf_backend_may_use_rel_p 0
10162 #define elf_backend_may_use_rela_p 1
10163 #define elf_backend_default_use_rela_p 1
10164 #define elf_backend_rela_normal 1
10165 #define elf_backend_dtrel_excludes_plt 1
10166 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10167 #define elf_backend_default_execstack 0
10168 #define elf_backend_extern_protected_data 1
10169 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10170
10171 #undef elf_backend_obj_attrs_section
10172 #define elf_backend_obj_attrs_section ".ARM.attributes"
10173
10174 #include "elfNN-target.h"
10175
10176 /* CloudABI support. */
10177
10178 #undef TARGET_LITTLE_SYM
10179 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10180 #undef TARGET_LITTLE_NAME
10181 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10182 #undef TARGET_BIG_SYM
10183 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10184 #undef TARGET_BIG_NAME
10185 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10186
10187 #undef ELF_OSABI
10188 #define ELF_OSABI ELFOSABI_CLOUDABI
10189
10190 #undef elfNN_bed
10191 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10192
10193 #include "elfNN-target.h"
This page took 0.298879 seconds and 3 git commands to generate.