d30983aa88ef37995b90a67d8870b75150f52afb
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2016 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #endif
166
167 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
209 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
210
211 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
212 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
234
235 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
236 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
245 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
246 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
248
249 #define ELIMINATE_COPY_RELOCS 0
250
251 /* Return size of a relocation entry. HTAB is the bfd's
252 elf_aarch64_link_hash_entry. */
253 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
254
255 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
256 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
257 #define PLT_ENTRY_SIZE (32)
258 #define PLT_SMALL_ENTRY_SIZE (16)
259 #define PLT_TLSDESC_ENTRY_SIZE (32)
260
261 /* Encoding of the nop instruction */
262 #define INSN_NOP 0xd503201f
263
264 #define aarch64_compute_jump_table_size(htab) \
265 (((htab)->root.srelplt == NULL) ? 0 \
266 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
267
268 /* The first entry in a procedure linkage table looks like this
269 if the distance between the PLTGOT and the PLT is < 4GB use
270 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
271 in x16 and needs to work out PLTGOT[1] by using an address of
272 [x16,#-GOT_ENTRY_SIZE]. */
273 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
274 {
275 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
276 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
277 #if ARCH_SIZE == 64
278 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
279 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
280 #else
281 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
282 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
283 #endif
284 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
285 0x1f, 0x20, 0x03, 0xd5, /* nop */
286 0x1f, 0x20, 0x03, 0xd5, /* nop */
287 0x1f, 0x20, 0x03, 0xd5, /* nop */
288 };
289
290 /* Per function entry in a procedure linkage table looks like this
291 if the distance between the PLTGOT and the PLT is < 4GB use
292 these PLT entries. */
293 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
294 {
295 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
296 #if ARCH_SIZE == 64
297 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
298 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
299 #else
300 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
301 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
302 #endif
303 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
304 };
305
306 static const bfd_byte
307 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
308 {
309 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
310 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
311 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
312 #if ARCH_SIZE == 64
313 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
314 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
315 #else
316 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
317 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
318 #endif
319 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
322 };
323
324 #define elf_info_to_howto elfNN_aarch64_info_to_howto
325 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
326
327 #define AARCH64_ELF_ABI_VERSION 0
328
329 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
330 #define ALL_ONES (~ (bfd_vma) 0)
331
332 /* Indexed by the bfd interal reloc enumerators.
333 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
334 in reloc.c. */
335
336 static reloc_howto_type elfNN_aarch64_howto_table[] =
337 {
338 EMPTY_HOWTO (0),
339
340 /* Basic data relocations. */
341
342 /* Deprecated, but retained for backwards compatibility. */
343 HOWTO64 (R_AARCH64_NULL, /* type */
344 0, /* rightshift */
345 3, /* size (0 = byte, 1 = short, 2 = long) */
346 0, /* bitsize */
347 FALSE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_dont, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_AARCH64_NULL", /* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 0, /* dst_mask */
355 FALSE), /* pcrel_offset */
356 HOWTO (R_AARCH64_NONE, /* type */
357 0, /* rightshift */
358 3, /* size (0 = byte, 1 = short, 2 = long) */
359 0, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_dont, /* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_AARCH64_NONE", /* name */
365 FALSE, /* partial_inplace */
366 0, /* src_mask */
367 0, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* .xword: (S+A) */
371 HOWTO64 (AARCH64_R (ABS64), /* type */
372 0, /* rightshift */
373 4, /* size (4 = long long) */
374 64, /* bitsize */
375 FALSE, /* pc_relative */
376 0, /* bitpos */
377 complain_overflow_unsigned, /* complain_on_overflow */
378 bfd_elf_generic_reloc, /* special_function */
379 AARCH64_R_STR (ABS64), /* name */
380 FALSE, /* partial_inplace */
381 ALL_ONES, /* src_mask */
382 ALL_ONES, /* dst_mask */
383 FALSE), /* pcrel_offset */
384
385 /* .word: (S+A) */
386 HOWTO (AARCH64_R (ABS32), /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_unsigned, /* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 AARCH64_R_STR (ABS32), /* name */
395 FALSE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 /* .half: (S+A) */
401 HOWTO (AARCH64_R (ABS16), /* type */
402 0, /* rightshift */
403 1, /* size (0 = byte, 1 = short, 2 = long) */
404 16, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_unsigned, /* complain_on_overflow */
408 bfd_elf_generic_reloc, /* special_function */
409 AARCH64_R_STR (ABS16), /* name */
410 FALSE, /* partial_inplace */
411 0xffff, /* src_mask */
412 0xffff, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 /* .xword: (S+A-P) */
416 HOWTO64 (AARCH64_R (PREL64), /* type */
417 0, /* rightshift */
418 4, /* size (4 = long long) */
419 64, /* bitsize */
420 TRUE, /* pc_relative */
421 0, /* bitpos */
422 complain_overflow_signed, /* complain_on_overflow */
423 bfd_elf_generic_reloc, /* special_function */
424 AARCH64_R_STR (PREL64), /* name */
425 FALSE, /* partial_inplace */
426 ALL_ONES, /* src_mask */
427 ALL_ONES, /* dst_mask */
428 TRUE), /* pcrel_offset */
429
430 /* .word: (S+A-P) */
431 HOWTO (AARCH64_R (PREL32), /* type */
432 0, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 32, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 bfd_elf_generic_reloc, /* special_function */
439 AARCH64_R_STR (PREL32), /* name */
440 FALSE, /* partial_inplace */
441 0xffffffff, /* src_mask */
442 0xffffffff, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 /* .half: (S+A-P) */
446 HOWTO (AARCH64_R (PREL16), /* type */
447 0, /* rightshift */
448 1, /* size (0 = byte, 1 = short, 2 = long) */
449 16, /* bitsize */
450 TRUE, /* pc_relative */
451 0, /* bitpos */
452 complain_overflow_signed, /* complain_on_overflow */
453 bfd_elf_generic_reloc, /* special_function */
454 AARCH64_R_STR (PREL16), /* name */
455 FALSE, /* partial_inplace */
456 0xffff, /* src_mask */
457 0xffff, /* dst_mask */
458 TRUE), /* pcrel_offset */
459
460 /* Group relocations to create a 16, 32, 48 or 64 bit
461 unsigned data or abs address inline. */
462
463 /* MOVZ: ((S+A) >> 0) & 0xffff */
464 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
465 0, /* rightshift */
466 2, /* size (0 = byte, 1 = short, 2 = long) */
467 16, /* bitsize */
468 FALSE, /* pc_relative */
469 0, /* bitpos */
470 complain_overflow_unsigned, /* complain_on_overflow */
471 bfd_elf_generic_reloc, /* special_function */
472 AARCH64_R_STR (MOVW_UABS_G0), /* name */
473 FALSE, /* partial_inplace */
474 0xffff, /* src_mask */
475 0xffff, /* dst_mask */
476 FALSE), /* pcrel_offset */
477
478 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
479 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
480 0, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 16, /* bitsize */
483 FALSE, /* pc_relative */
484 0, /* bitpos */
485 complain_overflow_dont, /* complain_on_overflow */
486 bfd_elf_generic_reloc, /* special_function */
487 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
488 FALSE, /* partial_inplace */
489 0xffff, /* src_mask */
490 0xffff, /* dst_mask */
491 FALSE), /* pcrel_offset */
492
493 /* MOVZ: ((S+A) >> 16) & 0xffff */
494 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
495 16, /* rightshift */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
497 16, /* bitsize */
498 FALSE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_unsigned, /* complain_on_overflow */
501 bfd_elf_generic_reloc, /* special_function */
502 AARCH64_R_STR (MOVW_UABS_G1), /* name */
503 FALSE, /* partial_inplace */
504 0xffff, /* src_mask */
505 0xffff, /* dst_mask */
506 FALSE), /* pcrel_offset */
507
508 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
509 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
510 16, /* rightshift */
511 2, /* size (0 = byte, 1 = short, 2 = long) */
512 16, /* bitsize */
513 FALSE, /* pc_relative */
514 0, /* bitpos */
515 complain_overflow_dont, /* complain_on_overflow */
516 bfd_elf_generic_reloc, /* special_function */
517 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
518 FALSE, /* partial_inplace */
519 0xffff, /* src_mask */
520 0xffff, /* dst_mask */
521 FALSE), /* pcrel_offset */
522
523 /* MOVZ: ((S+A) >> 32) & 0xffff */
524 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
525 32, /* rightshift */
526 2, /* size (0 = byte, 1 = short, 2 = long) */
527 16, /* bitsize */
528 FALSE, /* pc_relative */
529 0, /* bitpos */
530 complain_overflow_unsigned, /* complain_on_overflow */
531 bfd_elf_generic_reloc, /* special_function */
532 AARCH64_R_STR (MOVW_UABS_G2), /* name */
533 FALSE, /* partial_inplace */
534 0xffff, /* src_mask */
535 0xffff, /* dst_mask */
536 FALSE), /* pcrel_offset */
537
538 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
539 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
540 32, /* rightshift */
541 2, /* size (0 = byte, 1 = short, 2 = long) */
542 16, /* bitsize */
543 FALSE, /* pc_relative */
544 0, /* bitpos */
545 complain_overflow_dont, /* complain_on_overflow */
546 bfd_elf_generic_reloc, /* special_function */
547 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
548 FALSE, /* partial_inplace */
549 0xffff, /* src_mask */
550 0xffff, /* dst_mask */
551 FALSE), /* pcrel_offset */
552
553 /* MOVZ: ((S+A) >> 48) & 0xffff */
554 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
555 48, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 16, /* bitsize */
558 FALSE, /* pc_relative */
559 0, /* bitpos */
560 complain_overflow_unsigned, /* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 AARCH64_R_STR (MOVW_UABS_G3), /* name */
563 FALSE, /* partial_inplace */
564 0xffff, /* src_mask */
565 0xffff, /* dst_mask */
566 FALSE), /* pcrel_offset */
567
568 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
569 signed data or abs address inline. Will change instruction
570 to MOVN or MOVZ depending on sign of calculated value. */
571
572 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
573 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 17, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_signed, /* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 AARCH64_R_STR (MOVW_SABS_G0), /* name */
582 FALSE, /* partial_inplace */
583 0xffff, /* src_mask */
584 0xffff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
588 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
589 16, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 17, /* bitsize */
592 FALSE, /* pc_relative */
593 0, /* bitpos */
594 complain_overflow_signed, /* complain_on_overflow */
595 bfd_elf_generic_reloc, /* special_function */
596 AARCH64_R_STR (MOVW_SABS_G1), /* name */
597 FALSE, /* partial_inplace */
598 0xffff, /* src_mask */
599 0xffff, /* dst_mask */
600 FALSE), /* pcrel_offset */
601
602 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
603 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
604 32, /* rightshift */
605 2, /* size (0 = byte, 1 = short, 2 = long) */
606 17, /* bitsize */
607 FALSE, /* pc_relative */
608 0, /* bitpos */
609 complain_overflow_signed, /* complain_on_overflow */
610 bfd_elf_generic_reloc, /* special_function */
611 AARCH64_R_STR (MOVW_SABS_G2), /* name */
612 FALSE, /* partial_inplace */
613 0xffff, /* src_mask */
614 0xffff, /* dst_mask */
615 FALSE), /* pcrel_offset */
616
617 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
618 addresses: PG(x) is (x & ~0xfff). */
619
620 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
621 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
622 2, /* rightshift */
623 2, /* size (0 = byte, 1 = short, 2 = long) */
624 19, /* bitsize */
625 TRUE, /* pc_relative */
626 0, /* bitpos */
627 complain_overflow_signed, /* complain_on_overflow */
628 bfd_elf_generic_reloc, /* special_function */
629 AARCH64_R_STR (LD_PREL_LO19), /* name */
630 FALSE, /* partial_inplace */
631 0x7ffff, /* src_mask */
632 0x7ffff, /* dst_mask */
633 TRUE), /* pcrel_offset */
634
635 /* ADR: (S+A-P) & 0x1fffff */
636 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
637 0, /* rightshift */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
639 21, /* bitsize */
640 TRUE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_signed, /* complain_on_overflow */
643 bfd_elf_generic_reloc, /* special_function */
644 AARCH64_R_STR (ADR_PREL_LO21), /* name */
645 FALSE, /* partial_inplace */
646 0x1fffff, /* src_mask */
647 0x1fffff, /* dst_mask */
648 TRUE), /* pcrel_offset */
649
650 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
651 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
652 12, /* rightshift */
653 2, /* size (0 = byte, 1 = short, 2 = long) */
654 21, /* bitsize */
655 TRUE, /* pc_relative */
656 0, /* bitpos */
657 complain_overflow_signed, /* complain_on_overflow */
658 bfd_elf_generic_reloc, /* special_function */
659 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
660 FALSE, /* partial_inplace */
661 0x1fffff, /* src_mask */
662 0x1fffff, /* dst_mask */
663 TRUE), /* pcrel_offset */
664
665 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
666 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
667 12, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 21, /* bitsize */
670 TRUE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_dont, /* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
675 FALSE, /* partial_inplace */
676 0x1fffff, /* src_mask */
677 0x1fffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 /* ADD: (S+A) & 0xfff [no overflow check] */
681 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
682 0, /* rightshift */
683 2, /* size (0 = byte, 1 = short, 2 = long) */
684 12, /* bitsize */
685 FALSE, /* pc_relative */
686 10, /* bitpos */
687 complain_overflow_dont, /* complain_on_overflow */
688 bfd_elf_generic_reloc, /* special_function */
689 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
690 FALSE, /* partial_inplace */
691 0x3ffc00, /* src_mask */
692 0x3ffc00, /* dst_mask */
693 FALSE), /* pcrel_offset */
694
695 /* LD/ST8: (S+A) & 0xfff */
696 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
697 0, /* rightshift */
698 2, /* size (0 = byte, 1 = short, 2 = long) */
699 12, /* bitsize */
700 FALSE, /* pc_relative */
701 0, /* bitpos */
702 complain_overflow_dont, /* complain_on_overflow */
703 bfd_elf_generic_reloc, /* special_function */
704 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
705 FALSE, /* partial_inplace */
706 0xfff, /* src_mask */
707 0xfff, /* dst_mask */
708 FALSE), /* pcrel_offset */
709
710 /* Relocations for control-flow instructions. */
711
712 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
713 HOWTO (AARCH64_R (TSTBR14), /* type */
714 2, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 14, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_signed, /* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 AARCH64_R_STR (TSTBR14), /* name */
722 FALSE, /* partial_inplace */
723 0x3fff, /* src_mask */
724 0x3fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
728 HOWTO (AARCH64_R (CONDBR19), /* type */
729 2, /* rightshift */
730 2, /* size (0 = byte, 1 = short, 2 = long) */
731 19, /* bitsize */
732 TRUE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_signed, /* complain_on_overflow */
735 bfd_elf_generic_reloc, /* special_function */
736 AARCH64_R_STR (CONDBR19), /* name */
737 FALSE, /* partial_inplace */
738 0x7ffff, /* src_mask */
739 0x7ffff, /* dst_mask */
740 TRUE), /* pcrel_offset */
741
742 /* B: ((S+A-P) >> 2) & 0x3ffffff */
743 HOWTO (AARCH64_R (JUMP26), /* type */
744 2, /* rightshift */
745 2, /* size (0 = byte, 1 = short, 2 = long) */
746 26, /* bitsize */
747 TRUE, /* pc_relative */
748 0, /* bitpos */
749 complain_overflow_signed, /* complain_on_overflow */
750 bfd_elf_generic_reloc, /* special_function */
751 AARCH64_R_STR (JUMP26), /* name */
752 FALSE, /* partial_inplace */
753 0x3ffffff, /* src_mask */
754 0x3ffffff, /* dst_mask */
755 TRUE), /* pcrel_offset */
756
757 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
758 HOWTO (AARCH64_R (CALL26), /* type */
759 2, /* rightshift */
760 2, /* size (0 = byte, 1 = short, 2 = long) */
761 26, /* bitsize */
762 TRUE, /* pc_relative */
763 0, /* bitpos */
764 complain_overflow_signed, /* complain_on_overflow */
765 bfd_elf_generic_reloc, /* special_function */
766 AARCH64_R_STR (CALL26), /* name */
767 FALSE, /* partial_inplace */
768 0x3ffffff, /* src_mask */
769 0x3ffffff, /* dst_mask */
770 TRUE), /* pcrel_offset */
771
772 /* LD/ST16: (S+A) & 0xffe */
773 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
774 1, /* rightshift */
775 2, /* size (0 = byte, 1 = short, 2 = long) */
776 12, /* bitsize */
777 FALSE, /* pc_relative */
778 0, /* bitpos */
779 complain_overflow_dont, /* complain_on_overflow */
780 bfd_elf_generic_reloc, /* special_function */
781 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
782 FALSE, /* partial_inplace */
783 0xffe, /* src_mask */
784 0xffe, /* dst_mask */
785 FALSE), /* pcrel_offset */
786
787 /* LD/ST32: (S+A) & 0xffc */
788 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
789 2, /* rightshift */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
791 12, /* bitsize */
792 FALSE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_dont, /* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
797 FALSE, /* partial_inplace */
798 0xffc, /* src_mask */
799 0xffc, /* dst_mask */
800 FALSE), /* pcrel_offset */
801
802 /* LD/ST64: (S+A) & 0xff8 */
803 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
804 3, /* rightshift */
805 2, /* size (0 = byte, 1 = short, 2 = long) */
806 12, /* bitsize */
807 FALSE, /* pc_relative */
808 0, /* bitpos */
809 complain_overflow_dont, /* complain_on_overflow */
810 bfd_elf_generic_reloc, /* special_function */
811 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
812 FALSE, /* partial_inplace */
813 0xff8, /* src_mask */
814 0xff8, /* dst_mask */
815 FALSE), /* pcrel_offset */
816
817 /* LD/ST128: (S+A) & 0xff0 */
818 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
819 4, /* rightshift */
820 2, /* size (0 = byte, 1 = short, 2 = long) */
821 12, /* bitsize */
822 FALSE, /* pc_relative */
823 0, /* bitpos */
824 complain_overflow_dont, /* complain_on_overflow */
825 bfd_elf_generic_reloc, /* special_function */
826 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
827 FALSE, /* partial_inplace */
828 0xff0, /* src_mask */
829 0xff0, /* dst_mask */
830 FALSE), /* pcrel_offset */
831
832 /* Set a load-literal immediate field to bits
833 0x1FFFFC of G(S)-P */
834 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
835 2, /* rightshift */
836 2, /* size (0 = byte,1 = short,2 = long) */
837 19, /* bitsize */
838 TRUE, /* pc_relative */
839 0, /* bitpos */
840 complain_overflow_signed, /* complain_on_overflow */
841 bfd_elf_generic_reloc, /* special_function */
842 AARCH64_R_STR (GOT_LD_PREL19), /* name */
843 FALSE, /* partial_inplace */
844 0xffffe0, /* src_mask */
845 0xffffe0, /* dst_mask */
846 TRUE), /* pcrel_offset */
847
848 /* Get to the page for the GOT entry for the symbol
849 (G(S) - P) using an ADRP instruction. */
850 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
851 12, /* rightshift */
852 2, /* size (0 = byte, 1 = short, 2 = long) */
853 21, /* bitsize */
854 TRUE, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont, /* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
859 FALSE, /* partial_inplace */
860 0x1fffff, /* src_mask */
861 0x1fffff, /* dst_mask */
862 TRUE), /* pcrel_offset */
863
864 /* LD64: GOT offset G(S) & 0xff8 */
865 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
866 3, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 12, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont, /* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
874 FALSE, /* partial_inplace */
875 0xff8, /* src_mask */
876 0xff8, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 /* LD32: GOT offset G(S) & 0xffc */
880 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
881 2, /* rightshift */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
883 12, /* bitsize */
884 FALSE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
889 FALSE, /* partial_inplace */
890 0xffc, /* src_mask */
891 0xffc, /* dst_mask */
892 FALSE), /* pcrel_offset */
893
894 /* Lower 16 bits of GOT offset for the symbol. */
895 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 16, /* bitsize */
899 FALSE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
904 FALSE, /* partial_inplace */
905 0xffff, /* src_mask */
906 0xffff, /* dst_mask */
907 FALSE), /* pcrel_offset */
908
909 /* Higher 16 bits of GOT offset for the symbol. */
910 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
911 16, /* rightshift */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
913 16, /* bitsize */
914 FALSE, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_unsigned, /* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
918 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
919 FALSE, /* partial_inplace */
920 0xffff, /* src_mask */
921 0xffff, /* dst_mask */
922 FALSE), /* pcrel_offset */
923
924 /* LD64: GOT offset for the symbol. */
925 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
926 3, /* rightshift */
927 2, /* size (0 = byte, 1 = short, 2 = long) */
928 12, /* bitsize */
929 FALSE, /* pc_relative */
930 0, /* bitpos */
931 complain_overflow_unsigned, /* complain_on_overflow */
932 bfd_elf_generic_reloc, /* special_function */
933 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
934 FALSE, /* partial_inplace */
935 0x7ff8, /* src_mask */
936 0x7ff8, /* dst_mask */
937 FALSE), /* pcrel_offset */
938
939 /* LD32: GOT offset to the page address of GOT table.
940 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
941 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
942 2, /* rightshift */
943 2, /* size (0 = byte, 1 = short, 2 = long) */
944 12, /* bitsize */
945 FALSE, /* pc_relative */
946 0, /* bitpos */
947 complain_overflow_unsigned, /* complain_on_overflow */
948 bfd_elf_generic_reloc, /* special_function */
949 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
950 FALSE, /* partial_inplace */
951 0x5ffc, /* src_mask */
952 0x5ffc, /* dst_mask */
953 FALSE), /* pcrel_offset */
954
955 /* LD64: GOT offset to the page address of GOT table.
956 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
957 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
958 3, /* rightshift */
959 2, /* size (0 = byte, 1 = short, 2 = long) */
960 12, /* bitsize */
961 FALSE, /* pc_relative */
962 0, /* bitpos */
963 complain_overflow_unsigned, /* complain_on_overflow */
964 bfd_elf_generic_reloc, /* special_function */
965 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
966 FALSE, /* partial_inplace */
967 0x7ff8, /* src_mask */
968 0x7ff8, /* dst_mask */
969 FALSE), /* pcrel_offset */
970
971 /* Get to the page for the GOT entry for the symbol
972 (G(S) - P) using an ADRP instruction. */
973 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
974 12, /* rightshift */
975 2, /* size (0 = byte, 1 = short, 2 = long) */
976 21, /* bitsize */
977 TRUE, /* pc_relative */
978 0, /* bitpos */
979 complain_overflow_dont, /* complain_on_overflow */
980 bfd_elf_generic_reloc, /* special_function */
981 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
982 FALSE, /* partial_inplace */
983 0x1fffff, /* src_mask */
984 0x1fffff, /* dst_mask */
985 TRUE), /* pcrel_offset */
986
987 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
988 0, /* rightshift */
989 2, /* size (0 = byte, 1 = short, 2 = long) */
990 21, /* bitsize */
991 TRUE, /* pc_relative */
992 0, /* bitpos */
993 complain_overflow_dont, /* complain_on_overflow */
994 bfd_elf_generic_reloc, /* special_function */
995 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
996 FALSE, /* partial_inplace */
997 0x1fffff, /* src_mask */
998 0x1fffff, /* dst_mask */
999 TRUE), /* pcrel_offset */
1000
1001 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1002 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1003 0, /* rightshift */
1004 2, /* size (0 = byte, 1 = short, 2 = long) */
1005 12, /* bitsize */
1006 FALSE, /* pc_relative */
1007 0, /* bitpos */
1008 complain_overflow_dont, /* complain_on_overflow */
1009 bfd_elf_generic_reloc, /* special_function */
1010 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1011 FALSE, /* partial_inplace */
1012 0xfff, /* src_mask */
1013 0xfff, /* dst_mask */
1014 FALSE), /* pcrel_offset */
1015
1016 /* Lower 16 bits of GOT offset to tls_index. */
1017 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1018 0, /* rightshift */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1020 16, /* bitsize */
1021 FALSE, /* pc_relative */
1022 0, /* bitpos */
1023 complain_overflow_dont, /* complain_on_overflow */
1024 bfd_elf_generic_reloc, /* special_function */
1025 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1026 FALSE, /* partial_inplace */
1027 0xffff, /* src_mask */
1028 0xffff, /* dst_mask */
1029 FALSE), /* pcrel_offset */
1030
1031 /* Higher 16 bits of GOT offset to tls_index. */
1032 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1033 16, /* rightshift */
1034 2, /* size (0 = byte, 1 = short, 2 = long) */
1035 16, /* bitsize */
1036 FALSE, /* pc_relative */
1037 0, /* bitpos */
1038 complain_overflow_unsigned, /* complain_on_overflow */
1039 bfd_elf_generic_reloc, /* special_function */
1040 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1041 FALSE, /* partial_inplace */
1042 0xffff, /* src_mask */
1043 0xffff, /* dst_mask */
1044 FALSE), /* pcrel_offset */
1045
1046 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1047 12, /* rightshift */
1048 2, /* size (0 = byte, 1 = short, 2 = long) */
1049 21, /* bitsize */
1050 FALSE, /* pc_relative */
1051 0, /* bitpos */
1052 complain_overflow_dont, /* complain_on_overflow */
1053 bfd_elf_generic_reloc, /* special_function */
1054 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1055 FALSE, /* partial_inplace */
1056 0x1fffff, /* src_mask */
1057 0x1fffff, /* dst_mask */
1058 FALSE), /* pcrel_offset */
1059
1060 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1061 3, /* rightshift */
1062 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 12, /* bitsize */
1064 FALSE, /* pc_relative */
1065 0, /* bitpos */
1066 complain_overflow_dont, /* complain_on_overflow */
1067 bfd_elf_generic_reloc, /* special_function */
1068 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1069 FALSE, /* partial_inplace */
1070 0xff8, /* src_mask */
1071 0xff8, /* dst_mask */
1072 FALSE), /* pcrel_offset */
1073
1074 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1075 2, /* rightshift */
1076 2, /* size (0 = byte, 1 = short, 2 = long) */
1077 12, /* bitsize */
1078 FALSE, /* pc_relative */
1079 0, /* bitpos */
1080 complain_overflow_dont, /* complain_on_overflow */
1081 bfd_elf_generic_reloc, /* special_function */
1082 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1083 FALSE, /* partial_inplace */
1084 0xffc, /* src_mask */
1085 0xffc, /* dst_mask */
1086 FALSE), /* pcrel_offset */
1087
1088 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1089 2, /* rightshift */
1090 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 19, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_dont, /* complain_on_overflow */
1095 bfd_elf_generic_reloc, /* special_function */
1096 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1097 FALSE, /* partial_inplace */
1098 0x1ffffc, /* src_mask */
1099 0x1ffffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1103 0, /* rightshift */
1104 2, /* size (0 = byte, 1 = short, 2 = long) */
1105 16, /* bitsize */
1106 FALSE, /* pc_relative */
1107 0, /* bitpos */
1108 complain_overflow_dont, /* complain_on_overflow */
1109 bfd_elf_generic_reloc, /* special_function */
1110 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1111 FALSE, /* partial_inplace */
1112 0xffff, /* src_mask */
1113 0xffff, /* dst_mask */
1114 FALSE), /* pcrel_offset */
1115
1116 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1117 16, /* rightshift */
1118 2, /* size (0 = byte, 1 = short, 2 = long) */
1119 16, /* bitsize */
1120 FALSE, /* pc_relative */
1121 0, /* bitpos */
1122 complain_overflow_unsigned, /* complain_on_overflow */
1123 bfd_elf_generic_reloc, /* special_function */
1124 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1125 FALSE, /* partial_inplace */
1126 0xffff, /* src_mask */
1127 0xffff, /* dst_mask */
1128 FALSE), /* pcrel_offset */
1129
1130 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1131 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1132 12, /* rightshift */
1133 2, /* size (0 = byte, 1 = short, 2 = long) */
1134 12, /* bitsize */
1135 FALSE, /* pc_relative */
1136 0, /* bitpos */
1137 complain_overflow_unsigned, /* complain_on_overflow */
1138 bfd_elf_generic_reloc, /* special_function */
1139 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1140 FALSE, /* partial_inplace */
1141 0xfff, /* src_mask */
1142 0xfff, /* dst_mask */
1143 FALSE), /* pcrel_offset */
1144
1145 /* Unsigned 12 bit byte offset to module TLS base address. */
1146 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1147 0, /* rightshift */
1148 2, /* size (0 = byte, 1 = short, 2 = long) */
1149 12, /* bitsize */
1150 FALSE, /* pc_relative */
1151 0, /* bitpos */
1152 complain_overflow_unsigned, /* complain_on_overflow */
1153 bfd_elf_generic_reloc, /* special_function */
1154 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1155 FALSE, /* partial_inplace */
1156 0xfff, /* src_mask */
1157 0xfff, /* dst_mask */
1158 FALSE), /* pcrel_offset */
1159
1160 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1161 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 12, /* bitsize */
1165 FALSE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont, /* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1170 FALSE, /* partial_inplace */
1171 0xfff, /* src_mask */
1172 0xfff, /* dst_mask */
1173 FALSE), /* pcrel_offset */
1174
1175 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1176 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1177 0, /* rightshift */
1178 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 12, /* bitsize */
1180 FALSE, /* pc_relative */
1181 0, /* bitpos */
1182 complain_overflow_dont, /* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
1184 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1185 FALSE, /* partial_inplace */
1186 0xfff, /* src_mask */
1187 0xfff, /* dst_mask */
1188 FALSE), /* pcrel_offset */
1189
1190 /* Get to the page for the GOT entry for the symbol
1191 (G(S) - P) using an ADRP instruction. */
1192 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1193 12, /* rightshift */
1194 2, /* size (0 = byte, 1 = short, 2 = long) */
1195 21, /* bitsize */
1196 TRUE, /* pc_relative */
1197 0, /* bitpos */
1198 complain_overflow_signed, /* complain_on_overflow */
1199 bfd_elf_generic_reloc, /* special_function */
1200 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1201 FALSE, /* partial_inplace */
1202 0x1fffff, /* src_mask */
1203 0x1fffff, /* dst_mask */
1204 TRUE), /* pcrel_offset */
1205
1206 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1207 0, /* rightshift */
1208 2, /* size (0 = byte, 1 = short, 2 = long) */
1209 21, /* bitsize */
1210 TRUE, /* pc_relative */
1211 0, /* bitpos */
1212 complain_overflow_signed, /* complain_on_overflow */
1213 bfd_elf_generic_reloc, /* special_function */
1214 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1215 FALSE, /* partial_inplace */
1216 0x1fffff, /* src_mask */
1217 0x1fffff, /* dst_mask */
1218 TRUE), /* pcrel_offset */
1219
1220 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1221 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1222 1, /* rightshift */
1223 2, /* size (0 = byte, 1 = short, 2 = long) */
1224 11, /* bitsize */
1225 FALSE, /* pc_relative */
1226 10, /* bitpos */
1227 complain_overflow_unsigned, /* complain_on_overflow */
1228 bfd_elf_generic_reloc, /* special_function */
1229 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1230 FALSE, /* partial_inplace */
1231 0x1ffc00, /* src_mask */
1232 0x1ffc00, /* dst_mask */
1233 FALSE), /* pcrel_offset */
1234
1235 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1236 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1237 1, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 11, /* bitsize */
1240 FALSE, /* pc_relative */
1241 10, /* bitpos */
1242 complain_overflow_dont, /* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1245 FALSE, /* partial_inplace */
1246 0x1ffc00, /* src_mask */
1247 0x1ffc00, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1251 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1252 2, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 10, /* bitsize */
1255 FALSE, /* pc_relative */
1256 10, /* bitpos */
1257 complain_overflow_unsigned, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1260 FALSE, /* partial_inplace */
1261 0x3ffc00, /* src_mask */
1262 0x3ffc00, /* dst_mask */
1263 FALSE), /* pcrel_offset */
1264
1265 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1266 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1267 2, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 10, /* bitsize */
1270 FALSE, /* pc_relative */
1271 10, /* bitpos */
1272 complain_overflow_dont, /* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1275 FALSE, /* partial_inplace */
1276 0xffc00, /* src_mask */
1277 0xffc00, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1281 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1282 3, /* rightshift */
1283 2, /* size (0 = byte, 1 = short, 2 = long) */
1284 9, /* bitsize */
1285 FALSE, /* pc_relative */
1286 10, /* bitpos */
1287 complain_overflow_unsigned, /* complain_on_overflow */
1288 bfd_elf_generic_reloc, /* special_function */
1289 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1290 FALSE, /* partial_inplace */
1291 0x3ffc00, /* src_mask */
1292 0x3ffc00, /* dst_mask */
1293 FALSE), /* pcrel_offset */
1294
1295 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1296 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1297 3, /* rightshift */
1298 2, /* size (0 = byte, 1 = short, 2 = long) */
1299 9, /* bitsize */
1300 FALSE, /* pc_relative */
1301 10, /* bitpos */
1302 complain_overflow_dont, /* complain_on_overflow */
1303 bfd_elf_generic_reloc, /* special_function */
1304 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1305 FALSE, /* partial_inplace */
1306 0x7fc00, /* src_mask */
1307 0x7fc00, /* dst_mask */
1308 FALSE), /* pcrel_offset */
1309
1310 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1311 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1312 0, /* rightshift */
1313 2, /* size (0 = byte, 1 = short, 2 = long) */
1314 12, /* bitsize */
1315 FALSE, /* pc_relative */
1316 10, /* bitpos */
1317 complain_overflow_unsigned, /* complain_on_overflow */
1318 bfd_elf_generic_reloc, /* special_function */
1319 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1320 FALSE, /* partial_inplace */
1321 0x3ffc00, /* src_mask */
1322 0x3ffc00, /* dst_mask */
1323 FALSE), /* pcrel_offset */
1324
1325 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1326 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1327 0, /* rightshift */
1328 2, /* size (0 = byte, 1 = short, 2 = long) */
1329 12, /* bitsize */
1330 FALSE, /* pc_relative */
1331 10, /* bitpos */
1332 complain_overflow_dont, /* complain_on_overflow */
1333 bfd_elf_generic_reloc, /* special_function */
1334 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1335 FALSE, /* partial_inplace */
1336 0x3ffc00, /* src_mask */
1337 0x3ffc00, /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1341 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1342 0, /* rightshift */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_unsigned, /* complain_on_overflow */
1348 bfd_elf_generic_reloc, /* special_function */
1349 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1350 FALSE, /* partial_inplace */
1351 0xffff, /* src_mask */
1352 0xffff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1356 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1357 0, /* rightshift */
1358 2, /* size (0 = byte, 1 = short, 2 = long) */
1359 16, /* bitsize */
1360 FALSE, /* pc_relative */
1361 0, /* bitpos */
1362 complain_overflow_dont, /* complain_on_overflow */
1363 bfd_elf_generic_reloc, /* special_function */
1364 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1365 FALSE, /* partial_inplace */
1366 0xffff, /* src_mask */
1367 0xffff, /* dst_mask */
1368 FALSE), /* pcrel_offset */
1369
1370 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1371 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1372 16, /* rightshift */
1373 2, /* size (0 = byte, 1 = short, 2 = long) */
1374 16, /* bitsize */
1375 FALSE, /* pc_relative */
1376 0, /* bitpos */
1377 complain_overflow_unsigned, /* complain_on_overflow */
1378 bfd_elf_generic_reloc, /* special_function */
1379 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1380 FALSE, /* partial_inplace */
1381 0xffff, /* src_mask */
1382 0xffff, /* dst_mask */
1383 FALSE), /* pcrel_offset */
1384
1385 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1386 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1387 16, /* rightshift */
1388 2, /* size (0 = byte, 1 = short, 2 = long) */
1389 16, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_dont, /* complain_on_overflow */
1393 bfd_elf_generic_reloc, /* special_function */
1394 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1395 FALSE, /* partial_inplace */
1396 0xffff, /* src_mask */
1397 0xffff, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1401 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1402 32, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 16, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_unsigned, /* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1410 FALSE, /* partial_inplace */
1411 0xffff, /* src_mask */
1412 0xffff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1416 32, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 16, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_unsigned, /* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1424 FALSE, /* partial_inplace */
1425 0xffff, /* src_mask */
1426 0xffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1430 16, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 16, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont, /* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1438 FALSE, /* partial_inplace */
1439 0xffff, /* src_mask */
1440 0xffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1444 16, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 16, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1452 FALSE, /* partial_inplace */
1453 0xffff, /* src_mask */
1454 0xffff, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 16, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_dont, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1466 FALSE, /* partial_inplace */
1467 0xffff, /* src_mask */
1468 0xffff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 16, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_dont, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1480 FALSE, /* partial_inplace */
1481 0xffff, /* src_mask */
1482 0xffff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1486 12, /* rightshift */
1487 2, /* size (0 = byte, 1 = short, 2 = long) */
1488 12, /* bitsize */
1489 FALSE, /* pc_relative */
1490 0, /* bitpos */
1491 complain_overflow_unsigned, /* complain_on_overflow */
1492 bfd_elf_generic_reloc, /* special_function */
1493 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1494 FALSE, /* partial_inplace */
1495 0xfff, /* src_mask */
1496 0xfff, /* dst_mask */
1497 FALSE), /* pcrel_offset */
1498
1499 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1500 0, /* rightshift */
1501 2, /* size (0 = byte, 1 = short, 2 = long) */
1502 12, /* bitsize */
1503 FALSE, /* pc_relative */
1504 0, /* bitpos */
1505 complain_overflow_unsigned, /* complain_on_overflow */
1506 bfd_elf_generic_reloc, /* special_function */
1507 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1508 FALSE, /* partial_inplace */
1509 0xfff, /* src_mask */
1510 0xfff, /* dst_mask */
1511 FALSE), /* pcrel_offset */
1512
1513 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1514 0, /* rightshift */
1515 2, /* size (0 = byte, 1 = short, 2 = long) */
1516 12, /* bitsize */
1517 FALSE, /* pc_relative */
1518 0, /* bitpos */
1519 complain_overflow_dont, /* complain_on_overflow */
1520 bfd_elf_generic_reloc, /* special_function */
1521 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1522 FALSE, /* partial_inplace */
1523 0xfff, /* src_mask */
1524 0xfff, /* dst_mask */
1525 FALSE), /* pcrel_offset */
1526
1527 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1528 2, /* rightshift */
1529 2, /* size (0 = byte, 1 = short, 2 = long) */
1530 19, /* bitsize */
1531 TRUE, /* pc_relative */
1532 0, /* bitpos */
1533 complain_overflow_dont, /* complain_on_overflow */
1534 bfd_elf_generic_reloc, /* special_function */
1535 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1536 FALSE, /* partial_inplace */
1537 0x0ffffe0, /* src_mask */
1538 0x0ffffe0, /* dst_mask */
1539 TRUE), /* pcrel_offset */
1540
1541 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1542 0, /* rightshift */
1543 2, /* size (0 = byte, 1 = short, 2 = long) */
1544 21, /* bitsize */
1545 TRUE, /* pc_relative */
1546 0, /* bitpos */
1547 complain_overflow_dont, /* complain_on_overflow */
1548 bfd_elf_generic_reloc, /* special_function */
1549 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1550 FALSE, /* partial_inplace */
1551 0x1fffff, /* src_mask */
1552 0x1fffff, /* dst_mask */
1553 TRUE), /* pcrel_offset */
1554
1555 /* Get to the page for the GOT entry for the symbol
1556 (G(S) - P) using an ADRP instruction. */
1557 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1558 12, /* rightshift */
1559 2, /* size (0 = byte, 1 = short, 2 = long) */
1560 21, /* bitsize */
1561 TRUE, /* pc_relative */
1562 0, /* bitpos */
1563 complain_overflow_dont, /* complain_on_overflow */
1564 bfd_elf_generic_reloc, /* special_function */
1565 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1566 FALSE, /* partial_inplace */
1567 0x1fffff, /* src_mask */
1568 0x1fffff, /* dst_mask */
1569 TRUE), /* pcrel_offset */
1570
1571 /* LD64: GOT offset G(S) & 0xff8. */
1572 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
1573 3, /* rightshift */
1574 2, /* size (0 = byte, 1 = short, 2 = long) */
1575 12, /* bitsize */
1576 FALSE, /* pc_relative */
1577 0, /* bitpos */
1578 complain_overflow_dont, /* complain_on_overflow */
1579 bfd_elf_generic_reloc, /* special_function */
1580 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
1581 FALSE, /* partial_inplace */
1582 0xff8, /* src_mask */
1583 0xff8, /* dst_mask */
1584 FALSE), /* pcrel_offset */
1585
1586 /* LD32: GOT offset G(S) & 0xffc. */
1587 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1588 2, /* rightshift */
1589 2, /* size (0 = byte, 1 = short, 2 = long) */
1590 12, /* bitsize */
1591 FALSE, /* pc_relative */
1592 0, /* bitpos */
1593 complain_overflow_dont, /* complain_on_overflow */
1594 bfd_elf_generic_reloc, /* special_function */
1595 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1596 FALSE, /* partial_inplace */
1597 0xffc, /* src_mask */
1598 0xffc, /* dst_mask */
1599 FALSE), /* pcrel_offset */
1600
1601 /* ADD: GOT offset G(S) & 0xfff. */
1602 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 12, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_dont, /* complain_on_overflow */
1609 bfd_elf_generic_reloc, /* special_function */
1610 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
1611 FALSE, /* partial_inplace */
1612 0xfff, /* src_mask */
1613 0xfff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1617 16, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_unsigned, /* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1625 FALSE, /* partial_inplace */
1626 0xffff, /* src_mask */
1627 0xffff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_dont, /* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1639 FALSE, /* partial_inplace */
1640 0xffff, /* src_mask */
1641 0xffff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_dont, /* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 AARCH64_R_STR (TLSDESC_LDR), /* name */
1653 FALSE, /* partial_inplace */
1654 0x0, /* src_mask */
1655 0x0, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1659 0, /* rightshift */
1660 2, /* size (0 = byte, 1 = short, 2 = long) */
1661 12, /* bitsize */
1662 FALSE, /* pc_relative */
1663 0, /* bitpos */
1664 complain_overflow_dont, /* complain_on_overflow */
1665 bfd_elf_generic_reloc, /* special_function */
1666 AARCH64_R_STR (TLSDESC_ADD), /* name */
1667 FALSE, /* partial_inplace */
1668 0x0, /* src_mask */
1669 0x0, /* dst_mask */
1670 FALSE), /* pcrel_offset */
1671
1672 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1673 0, /* rightshift */
1674 2, /* size (0 = byte, 1 = short, 2 = long) */
1675 0, /* bitsize */
1676 FALSE, /* pc_relative */
1677 0, /* bitpos */
1678 complain_overflow_dont, /* complain_on_overflow */
1679 bfd_elf_generic_reloc, /* special_function */
1680 AARCH64_R_STR (TLSDESC_CALL), /* name */
1681 FALSE, /* partial_inplace */
1682 0x0, /* src_mask */
1683 0x0, /* dst_mask */
1684 FALSE), /* pcrel_offset */
1685
1686 HOWTO (AARCH64_R (COPY), /* type */
1687 0, /* rightshift */
1688 2, /* size (0 = byte, 1 = short, 2 = long) */
1689 64, /* bitsize */
1690 FALSE, /* pc_relative */
1691 0, /* bitpos */
1692 complain_overflow_bitfield, /* complain_on_overflow */
1693 bfd_elf_generic_reloc, /* special_function */
1694 AARCH64_R_STR (COPY), /* name */
1695 TRUE, /* partial_inplace */
1696 0xffffffff, /* src_mask */
1697 0xffffffff, /* dst_mask */
1698 FALSE), /* pcrel_offset */
1699
1700 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1701 0, /* rightshift */
1702 2, /* size (0 = byte, 1 = short, 2 = long) */
1703 64, /* bitsize */
1704 FALSE, /* pc_relative */
1705 0, /* bitpos */
1706 complain_overflow_bitfield, /* complain_on_overflow */
1707 bfd_elf_generic_reloc, /* special_function */
1708 AARCH64_R_STR (GLOB_DAT), /* name */
1709 TRUE, /* partial_inplace */
1710 0xffffffff, /* src_mask */
1711 0xffffffff, /* dst_mask */
1712 FALSE), /* pcrel_offset */
1713
1714 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1715 0, /* rightshift */
1716 2, /* size (0 = byte, 1 = short, 2 = long) */
1717 64, /* bitsize */
1718 FALSE, /* pc_relative */
1719 0, /* bitpos */
1720 complain_overflow_bitfield, /* complain_on_overflow */
1721 bfd_elf_generic_reloc, /* special_function */
1722 AARCH64_R_STR (JUMP_SLOT), /* name */
1723 TRUE, /* partial_inplace */
1724 0xffffffff, /* src_mask */
1725 0xffffffff, /* dst_mask */
1726 FALSE), /* pcrel_offset */
1727
1728 HOWTO (AARCH64_R (RELATIVE), /* type */
1729 0, /* rightshift */
1730 2, /* size (0 = byte, 1 = short, 2 = long) */
1731 64, /* bitsize */
1732 FALSE, /* pc_relative */
1733 0, /* bitpos */
1734 complain_overflow_bitfield, /* complain_on_overflow */
1735 bfd_elf_generic_reloc, /* special_function */
1736 AARCH64_R_STR (RELATIVE), /* name */
1737 TRUE, /* partial_inplace */
1738 ALL_ONES, /* src_mask */
1739 ALL_ONES, /* dst_mask */
1740 FALSE), /* pcrel_offset */
1741
1742 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1743 0, /* rightshift */
1744 2, /* size (0 = byte, 1 = short, 2 = long) */
1745 64, /* bitsize */
1746 FALSE, /* pc_relative */
1747 0, /* bitpos */
1748 complain_overflow_dont, /* complain_on_overflow */
1749 bfd_elf_generic_reloc, /* special_function */
1750 #if ARCH_SIZE == 64
1751 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1752 #else
1753 AARCH64_R_STR (TLS_DTPMOD), /* name */
1754 #endif
1755 FALSE, /* partial_inplace */
1756 0, /* src_mask */
1757 ALL_ONES, /* dst_mask */
1758 FALSE), /* pc_reloffset */
1759
1760 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1761 0, /* rightshift */
1762 2, /* size (0 = byte, 1 = short, 2 = long) */
1763 64, /* bitsize */
1764 FALSE, /* pc_relative */
1765 0, /* bitpos */
1766 complain_overflow_dont, /* complain_on_overflow */
1767 bfd_elf_generic_reloc, /* special_function */
1768 #if ARCH_SIZE == 64
1769 AARCH64_R_STR (TLS_DTPREL64), /* name */
1770 #else
1771 AARCH64_R_STR (TLS_DTPREL), /* name */
1772 #endif
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 ALL_ONES, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777
1778 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1779 0, /* rightshift */
1780 2, /* size (0 = byte, 1 = short, 2 = long) */
1781 64, /* bitsize */
1782 FALSE, /* pc_relative */
1783 0, /* bitpos */
1784 complain_overflow_dont, /* complain_on_overflow */
1785 bfd_elf_generic_reloc, /* special_function */
1786 #if ARCH_SIZE == 64
1787 AARCH64_R_STR (TLS_TPREL64), /* name */
1788 #else
1789 AARCH64_R_STR (TLS_TPREL), /* name */
1790 #endif
1791 FALSE, /* partial_inplace */
1792 0, /* src_mask */
1793 ALL_ONES, /* dst_mask */
1794 FALSE), /* pcrel_offset */
1795
1796 HOWTO (AARCH64_R (TLSDESC), /* type */
1797 0, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 64, /* bitsize */
1800 FALSE, /* pc_relative */
1801 0, /* bitpos */
1802 complain_overflow_dont, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSDESC), /* name */
1805 FALSE, /* partial_inplace */
1806 0, /* src_mask */
1807 ALL_ONES, /* dst_mask */
1808 FALSE), /* pcrel_offset */
1809
1810 HOWTO (AARCH64_R (IRELATIVE), /* type */
1811 0, /* rightshift */
1812 2, /* size (0 = byte, 1 = short, 2 = long) */
1813 64, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_bitfield, /* complain_on_overflow */
1817 bfd_elf_generic_reloc, /* special_function */
1818 AARCH64_R_STR (IRELATIVE), /* name */
1819 FALSE, /* partial_inplace */
1820 0, /* src_mask */
1821 ALL_ONES, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 EMPTY_HOWTO (0),
1825 };
1826
1827 static reloc_howto_type elfNN_aarch64_howto_none =
1828 HOWTO (R_AARCH64_NONE, /* type */
1829 0, /* rightshift */
1830 3, /* size (0 = byte, 1 = short, 2 = long) */
1831 0, /* bitsize */
1832 FALSE, /* pc_relative */
1833 0, /* bitpos */
1834 complain_overflow_dont,/* complain_on_overflow */
1835 bfd_elf_generic_reloc, /* special_function */
1836 "R_AARCH64_NONE", /* name */
1837 FALSE, /* partial_inplace */
1838 0, /* src_mask */
1839 0, /* dst_mask */
1840 FALSE); /* pcrel_offset */
1841
1842 /* Given HOWTO, return the bfd internal relocation enumerator. */
1843
1844 static bfd_reloc_code_real_type
1845 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1846 {
1847 const int size
1848 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1849 const ptrdiff_t offset
1850 = howto - elfNN_aarch64_howto_table;
1851
1852 if (offset > 0 && offset < size - 1)
1853 return BFD_RELOC_AARCH64_RELOC_START + offset;
1854
1855 if (howto == &elfNN_aarch64_howto_none)
1856 return BFD_RELOC_AARCH64_NONE;
1857
1858 return BFD_RELOC_AARCH64_RELOC_START;
1859 }
1860
1861 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1862
1863 static bfd_reloc_code_real_type
1864 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1865 {
1866 static bfd_boolean initialized_p = FALSE;
1867 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1868 static unsigned int offsets[R_AARCH64_end];
1869
1870 if (initialized_p == FALSE)
1871 {
1872 unsigned int i;
1873
1874 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1875 if (elfNN_aarch64_howto_table[i].type != 0)
1876 offsets[elfNN_aarch64_howto_table[i].type] = i;
1877
1878 initialized_p = TRUE;
1879 }
1880
1881 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1882 return BFD_RELOC_AARCH64_NONE;
1883
1884 /* PR 17512: file: b371e70a. */
1885 if (r_type >= R_AARCH64_end)
1886 {
1887 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1888 bfd_set_error (bfd_error_bad_value);
1889 return BFD_RELOC_AARCH64_NONE;
1890 }
1891
1892 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1893 }
1894
1895 struct elf_aarch64_reloc_map
1896 {
1897 bfd_reloc_code_real_type from;
1898 bfd_reloc_code_real_type to;
1899 };
1900
1901 /* Map bfd generic reloc to AArch64-specific reloc. */
1902 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1903 {
1904 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1905
1906 /* Basic data relocations. */
1907 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1908 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1909 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1910 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1911 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1912 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1913 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1914 };
1915
1916 /* Given the bfd internal relocation enumerator in CODE, return the
1917 corresponding howto entry. */
1918
1919 static reloc_howto_type *
1920 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1921 {
1922 unsigned int i;
1923
1924 /* Convert bfd generic reloc to AArch64-specific reloc. */
1925 if (code < BFD_RELOC_AARCH64_RELOC_START
1926 || code > BFD_RELOC_AARCH64_RELOC_END)
1927 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1928 if (elf_aarch64_reloc_map[i].from == code)
1929 {
1930 code = elf_aarch64_reloc_map[i].to;
1931 break;
1932 }
1933
1934 if (code > BFD_RELOC_AARCH64_RELOC_START
1935 && code < BFD_RELOC_AARCH64_RELOC_END)
1936 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1937 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1938
1939 if (code == BFD_RELOC_AARCH64_NONE)
1940 return &elfNN_aarch64_howto_none;
1941
1942 return NULL;
1943 }
1944
1945 static reloc_howto_type *
1946 elfNN_aarch64_howto_from_type (unsigned int r_type)
1947 {
1948 bfd_reloc_code_real_type val;
1949 reloc_howto_type *howto;
1950
1951 #if ARCH_SIZE == 32
1952 if (r_type > 256)
1953 {
1954 bfd_set_error (bfd_error_bad_value);
1955 return NULL;
1956 }
1957 #endif
1958
1959 if (r_type == R_AARCH64_NONE)
1960 return &elfNN_aarch64_howto_none;
1961
1962 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1963 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1964
1965 if (howto != NULL)
1966 return howto;
1967
1968 bfd_set_error (bfd_error_bad_value);
1969 return NULL;
1970 }
1971
1972 static void
1973 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1974 Elf_Internal_Rela *elf_reloc)
1975 {
1976 unsigned int r_type;
1977
1978 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1979 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1980 }
1981
1982 static reloc_howto_type *
1983 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1984 bfd_reloc_code_real_type code)
1985 {
1986 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1987
1988 if (howto != NULL)
1989 return howto;
1990
1991 bfd_set_error (bfd_error_bad_value);
1992 return NULL;
1993 }
1994
1995 static reloc_howto_type *
1996 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1997 const char *r_name)
1998 {
1999 unsigned int i;
2000
2001 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2002 if (elfNN_aarch64_howto_table[i].name != NULL
2003 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2004 return &elfNN_aarch64_howto_table[i];
2005
2006 return NULL;
2007 }
2008
2009 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2010 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2011 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2012 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2013
2014 /* The linker script knows the section names for placement.
2015 The entry_names are used to do simple name mangling on the stubs.
2016 Given a function name, and its type, the stub can be found. The
2017 name can be changed. The only requirement is the %s be present. */
2018 #define STUB_ENTRY_NAME "__%s_veneer"
2019
2020 /* The name of the dynamic interpreter. This is put in the .interp
2021 section. */
2022 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2023
2024 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2025 (((1 << 25) - 1) << 2)
2026 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2027 (-((1 << 25) << 2))
2028
2029 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2030 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2031
2032 static int
2033 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2034 {
2035 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2036 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2037 }
2038
2039 static int
2040 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2041 {
2042 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2043 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2044 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2045 }
2046
2047 static const uint32_t aarch64_adrp_branch_stub [] =
2048 {
2049 0x90000010, /* adrp ip0, X */
2050 /* R_AARCH64_ADR_HI21_PCREL(X) */
2051 0x91000210, /* add ip0, ip0, :lo12:X */
2052 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2053 0xd61f0200, /* br ip0 */
2054 };
2055
2056 static const uint32_t aarch64_long_branch_stub[] =
2057 {
2058 #if ARCH_SIZE == 64
2059 0x58000090, /* ldr ip0, 1f */
2060 #else
2061 0x18000090, /* ldr wip0, 1f */
2062 #endif
2063 0x10000011, /* adr ip1, #0 */
2064 0x8b110210, /* add ip0, ip0, ip1 */
2065 0xd61f0200, /* br ip0 */
2066 0x00000000, /* 1: .xword or .word
2067 R_AARCH64_PRELNN(X) + 12
2068 */
2069 0x00000000,
2070 };
2071
2072 static const uint32_t aarch64_erratum_835769_stub[] =
2073 {
2074 0x00000000, /* Placeholder for multiply accumulate. */
2075 0x14000000, /* b <label> */
2076 };
2077
2078 static const uint32_t aarch64_erratum_843419_stub[] =
2079 {
2080 0x00000000, /* Placeholder for LDR instruction. */
2081 0x14000000, /* b <label> */
2082 };
2083
2084 /* Section name for stubs is the associated section name plus this
2085 string. */
2086 #define STUB_SUFFIX ".stub"
2087
2088 enum elf_aarch64_stub_type
2089 {
2090 aarch64_stub_none,
2091 aarch64_stub_adrp_branch,
2092 aarch64_stub_long_branch,
2093 aarch64_stub_erratum_835769_veneer,
2094 aarch64_stub_erratum_843419_veneer,
2095 };
2096
2097 struct elf_aarch64_stub_hash_entry
2098 {
2099 /* Base hash table entry structure. */
2100 struct bfd_hash_entry root;
2101
2102 /* The stub section. */
2103 asection *stub_sec;
2104
2105 /* Offset within stub_sec of the beginning of this stub. */
2106 bfd_vma stub_offset;
2107
2108 /* Given the symbol's value and its section we can determine its final
2109 value when building the stubs (so the stub knows where to jump). */
2110 bfd_vma target_value;
2111 asection *target_section;
2112
2113 enum elf_aarch64_stub_type stub_type;
2114
2115 /* The symbol table entry, if any, that this was derived from. */
2116 struct elf_aarch64_link_hash_entry *h;
2117
2118 /* Destination symbol type */
2119 unsigned char st_type;
2120
2121 /* Where this stub is being called from, or, in the case of combined
2122 stub sections, the first input section in the group. */
2123 asection *id_sec;
2124
2125 /* The name for the local symbol at the start of this stub. The
2126 stub name in the hash table has to be unique; this does not, so
2127 it can be friendlier. */
2128 char *output_name;
2129
2130 /* The instruction which caused this stub to be generated (only valid for
2131 erratum 835769 workaround stubs at present). */
2132 uint32_t veneered_insn;
2133
2134 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2135 bfd_vma adrp_offset;
2136 };
2137
2138 /* Used to build a map of a section. This is required for mixed-endian
2139 code/data. */
2140
2141 typedef struct elf_elf_section_map
2142 {
2143 bfd_vma vma;
2144 char type;
2145 }
2146 elf_aarch64_section_map;
2147
2148
2149 typedef struct _aarch64_elf_section_data
2150 {
2151 struct bfd_elf_section_data elf;
2152 unsigned int mapcount;
2153 unsigned int mapsize;
2154 elf_aarch64_section_map *map;
2155 }
2156 _aarch64_elf_section_data;
2157
2158 #define elf_aarch64_section_data(sec) \
2159 ((_aarch64_elf_section_data *) elf_section_data (sec))
2160
2161 /* The size of the thread control block which is defined to be two pointers. */
2162 #define TCB_SIZE (ARCH_SIZE/8)*2
2163
2164 struct elf_aarch64_local_symbol
2165 {
2166 unsigned int got_type;
2167 bfd_signed_vma got_refcount;
2168 bfd_vma got_offset;
2169
2170 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2171 offset is from the end of the jump table and reserved entries
2172 within the PLTGOT.
2173
2174 The magic value (bfd_vma) -1 indicates that an offset has not be
2175 allocated. */
2176 bfd_vma tlsdesc_got_jump_table_offset;
2177 };
2178
2179 struct elf_aarch64_obj_tdata
2180 {
2181 struct elf_obj_tdata root;
2182
2183 /* local symbol descriptors */
2184 struct elf_aarch64_local_symbol *locals;
2185
2186 /* Zero to warn when linking objects with incompatible enum sizes. */
2187 int no_enum_size_warning;
2188
2189 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2190 int no_wchar_size_warning;
2191 };
2192
2193 #define elf_aarch64_tdata(bfd) \
2194 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2195
2196 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2197
2198 #define is_aarch64_elf(bfd) \
2199 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2200 && elf_tdata (bfd) != NULL \
2201 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2202
2203 static bfd_boolean
2204 elfNN_aarch64_mkobject (bfd *abfd)
2205 {
2206 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2207 AARCH64_ELF_DATA);
2208 }
2209
2210 #define elf_aarch64_hash_entry(ent) \
2211 ((struct elf_aarch64_link_hash_entry *)(ent))
2212
2213 #define GOT_UNKNOWN 0
2214 #define GOT_NORMAL 1
2215 #define GOT_TLS_GD 2
2216 #define GOT_TLS_IE 4
2217 #define GOT_TLSDESC_GD 8
2218
2219 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2220
2221 /* AArch64 ELF linker hash entry. */
2222 struct elf_aarch64_link_hash_entry
2223 {
2224 struct elf_link_hash_entry root;
2225
2226 /* Track dynamic relocs copied for this symbol. */
2227 struct elf_dyn_relocs *dyn_relocs;
2228
2229 /* Since PLT entries have variable size, we need to record the
2230 index into .got.plt instead of recomputing it from the PLT
2231 offset. */
2232 bfd_signed_vma plt_got_offset;
2233
2234 /* Bit mask representing the type of GOT entry(s) if any required by
2235 this symbol. */
2236 unsigned int got_type;
2237
2238 /* A pointer to the most recently used stub hash entry against this
2239 symbol. */
2240 struct elf_aarch64_stub_hash_entry *stub_cache;
2241
2242 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2243 is from the end of the jump table and reserved entries within the PLTGOT.
2244
2245 The magic value (bfd_vma) -1 indicates that an offset has not
2246 be allocated. */
2247 bfd_vma tlsdesc_got_jump_table_offset;
2248 };
2249
2250 static unsigned int
2251 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2252 bfd *abfd,
2253 unsigned long r_symndx)
2254 {
2255 if (h)
2256 return elf_aarch64_hash_entry (h)->got_type;
2257
2258 if (! elf_aarch64_locals (abfd))
2259 return GOT_UNKNOWN;
2260
2261 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2262 }
2263
2264 /* Get the AArch64 elf linker hash table from a link_info structure. */
2265 #define elf_aarch64_hash_table(info) \
2266 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2267
2268 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2269 ((struct elf_aarch64_stub_hash_entry *) \
2270 bfd_hash_lookup ((table), (string), (create), (copy)))
2271
2272 /* AArch64 ELF linker hash table. */
2273 struct elf_aarch64_link_hash_table
2274 {
2275 /* The main hash table. */
2276 struct elf_link_hash_table root;
2277
2278 /* Nonzero to force PIC branch veneers. */
2279 int pic_veneer;
2280
2281 /* Fix erratum 835769. */
2282 int fix_erratum_835769;
2283
2284 /* Fix erratum 843419. */
2285 int fix_erratum_843419;
2286
2287 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2288 int fix_erratum_843419_adr;
2289
2290 /* Don't apply link-time values for dynamic relocations. */
2291 int no_apply_dynamic_relocs;
2292
2293 /* The number of bytes in the initial entry in the PLT. */
2294 bfd_size_type plt_header_size;
2295
2296 /* The number of bytes in the subsequent PLT etries. */
2297 bfd_size_type plt_entry_size;
2298
2299 /* Short-cuts to get to dynamic linker sections. */
2300 asection *sdynbss;
2301 asection *srelbss;
2302
2303 /* Small local sym cache. */
2304 struct sym_cache sym_cache;
2305
2306 /* For convenience in allocate_dynrelocs. */
2307 bfd *obfd;
2308
2309 /* The amount of space used by the reserved portion of the sgotplt
2310 section, plus whatever space is used by the jump slots. */
2311 bfd_vma sgotplt_jump_table_size;
2312
2313 /* The stub hash table. */
2314 struct bfd_hash_table stub_hash_table;
2315
2316 /* Linker stub bfd. */
2317 bfd *stub_bfd;
2318
2319 /* Linker call-backs. */
2320 asection *(*add_stub_section) (const char *, asection *);
2321 void (*layout_sections_again) (void);
2322
2323 /* Array to keep track of which stub sections have been created, and
2324 information on stub grouping. */
2325 struct map_stub
2326 {
2327 /* This is the section to which stubs in the group will be
2328 attached. */
2329 asection *link_sec;
2330 /* The stub section. */
2331 asection *stub_sec;
2332 } *stub_group;
2333
2334 /* Assorted information used by elfNN_aarch64_size_stubs. */
2335 unsigned int bfd_count;
2336 unsigned int top_index;
2337 asection **input_list;
2338
2339 /* The offset into splt of the PLT entry for the TLS descriptor
2340 resolver. Special values are 0, if not necessary (or not found
2341 to be necessary yet), and -1 if needed but not determined
2342 yet. */
2343 bfd_vma tlsdesc_plt;
2344
2345 /* The GOT offset for the lazy trampoline. Communicated to the
2346 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2347 indicates an offset is not allocated. */
2348 bfd_vma dt_tlsdesc_got;
2349
2350 /* Used by local STT_GNU_IFUNC symbols. */
2351 htab_t loc_hash_table;
2352 void * loc_hash_memory;
2353 };
2354
2355 /* Create an entry in an AArch64 ELF linker hash table. */
2356
2357 static struct bfd_hash_entry *
2358 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2359 struct bfd_hash_table *table,
2360 const char *string)
2361 {
2362 struct elf_aarch64_link_hash_entry *ret =
2363 (struct elf_aarch64_link_hash_entry *) entry;
2364
2365 /* Allocate the structure if it has not already been allocated by a
2366 subclass. */
2367 if (ret == NULL)
2368 ret = bfd_hash_allocate (table,
2369 sizeof (struct elf_aarch64_link_hash_entry));
2370 if (ret == NULL)
2371 return (struct bfd_hash_entry *) ret;
2372
2373 /* Call the allocation method of the superclass. */
2374 ret = ((struct elf_aarch64_link_hash_entry *)
2375 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2376 table, string));
2377 if (ret != NULL)
2378 {
2379 ret->dyn_relocs = NULL;
2380 ret->got_type = GOT_UNKNOWN;
2381 ret->plt_got_offset = (bfd_vma) - 1;
2382 ret->stub_cache = NULL;
2383 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2384 }
2385
2386 return (struct bfd_hash_entry *) ret;
2387 }
2388
2389 /* Initialize an entry in the stub hash table. */
2390
2391 static struct bfd_hash_entry *
2392 stub_hash_newfunc (struct bfd_hash_entry *entry,
2393 struct bfd_hash_table *table, const char *string)
2394 {
2395 /* Allocate the structure if it has not already been allocated by a
2396 subclass. */
2397 if (entry == NULL)
2398 {
2399 entry = bfd_hash_allocate (table,
2400 sizeof (struct
2401 elf_aarch64_stub_hash_entry));
2402 if (entry == NULL)
2403 return entry;
2404 }
2405
2406 /* Call the allocation method of the superclass. */
2407 entry = bfd_hash_newfunc (entry, table, string);
2408 if (entry != NULL)
2409 {
2410 struct elf_aarch64_stub_hash_entry *eh;
2411
2412 /* Initialize the local fields. */
2413 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2414 eh->adrp_offset = 0;
2415 eh->stub_sec = NULL;
2416 eh->stub_offset = 0;
2417 eh->target_value = 0;
2418 eh->target_section = NULL;
2419 eh->stub_type = aarch64_stub_none;
2420 eh->h = NULL;
2421 eh->id_sec = NULL;
2422 }
2423
2424 return entry;
2425 }
2426
2427 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2428 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2429 as global symbol. We reuse indx and dynstr_index for local symbol
2430 hash since they aren't used by global symbols in this backend. */
2431
2432 static hashval_t
2433 elfNN_aarch64_local_htab_hash (const void *ptr)
2434 {
2435 struct elf_link_hash_entry *h
2436 = (struct elf_link_hash_entry *) ptr;
2437 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2438 }
2439
2440 /* Compare local hash entries. */
2441
2442 static int
2443 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2444 {
2445 struct elf_link_hash_entry *h1
2446 = (struct elf_link_hash_entry *) ptr1;
2447 struct elf_link_hash_entry *h2
2448 = (struct elf_link_hash_entry *) ptr2;
2449
2450 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2451 }
2452
2453 /* Find and/or create a hash entry for local symbol. */
2454
2455 static struct elf_link_hash_entry *
2456 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2457 bfd *abfd, const Elf_Internal_Rela *rel,
2458 bfd_boolean create)
2459 {
2460 struct elf_aarch64_link_hash_entry e, *ret;
2461 asection *sec = abfd->sections;
2462 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2463 ELFNN_R_SYM (rel->r_info));
2464 void **slot;
2465
2466 e.root.indx = sec->id;
2467 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2468 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2469 create ? INSERT : NO_INSERT);
2470
2471 if (!slot)
2472 return NULL;
2473
2474 if (*slot)
2475 {
2476 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2477 return &ret->root;
2478 }
2479
2480 ret = (struct elf_aarch64_link_hash_entry *)
2481 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2482 sizeof (struct elf_aarch64_link_hash_entry));
2483 if (ret)
2484 {
2485 memset (ret, 0, sizeof (*ret));
2486 ret->root.indx = sec->id;
2487 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2488 ret->root.dynindx = -1;
2489 *slot = ret;
2490 }
2491 return &ret->root;
2492 }
2493
2494 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2495
2496 static void
2497 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2498 struct elf_link_hash_entry *dir,
2499 struct elf_link_hash_entry *ind)
2500 {
2501 struct elf_aarch64_link_hash_entry *edir, *eind;
2502
2503 edir = (struct elf_aarch64_link_hash_entry *) dir;
2504 eind = (struct elf_aarch64_link_hash_entry *) ind;
2505
2506 if (eind->dyn_relocs != NULL)
2507 {
2508 if (edir->dyn_relocs != NULL)
2509 {
2510 struct elf_dyn_relocs **pp;
2511 struct elf_dyn_relocs *p;
2512
2513 /* Add reloc counts against the indirect sym to the direct sym
2514 list. Merge any entries against the same section. */
2515 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2516 {
2517 struct elf_dyn_relocs *q;
2518
2519 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2520 if (q->sec == p->sec)
2521 {
2522 q->pc_count += p->pc_count;
2523 q->count += p->count;
2524 *pp = p->next;
2525 break;
2526 }
2527 if (q == NULL)
2528 pp = &p->next;
2529 }
2530 *pp = edir->dyn_relocs;
2531 }
2532
2533 edir->dyn_relocs = eind->dyn_relocs;
2534 eind->dyn_relocs = NULL;
2535 }
2536
2537 if (ind->root.type == bfd_link_hash_indirect)
2538 {
2539 /* Copy over PLT info. */
2540 if (dir->got.refcount <= 0)
2541 {
2542 edir->got_type = eind->got_type;
2543 eind->got_type = GOT_UNKNOWN;
2544 }
2545 }
2546
2547 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2548 }
2549
2550 /* Destroy an AArch64 elf linker hash table. */
2551
2552 static void
2553 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2554 {
2555 struct elf_aarch64_link_hash_table *ret
2556 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2557
2558 if (ret->loc_hash_table)
2559 htab_delete (ret->loc_hash_table);
2560 if (ret->loc_hash_memory)
2561 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2562
2563 bfd_hash_table_free (&ret->stub_hash_table);
2564 _bfd_elf_link_hash_table_free (obfd);
2565 }
2566
2567 /* Create an AArch64 elf linker hash table. */
2568
2569 static struct bfd_link_hash_table *
2570 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2571 {
2572 struct elf_aarch64_link_hash_table *ret;
2573 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2574
2575 ret = bfd_zmalloc (amt);
2576 if (ret == NULL)
2577 return NULL;
2578
2579 if (!_bfd_elf_link_hash_table_init
2580 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2581 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2582 {
2583 free (ret);
2584 return NULL;
2585 }
2586
2587 ret->plt_header_size = PLT_ENTRY_SIZE;
2588 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2589 ret->obfd = abfd;
2590 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2591
2592 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2593 sizeof (struct elf_aarch64_stub_hash_entry)))
2594 {
2595 _bfd_elf_link_hash_table_free (abfd);
2596 return NULL;
2597 }
2598
2599 ret->loc_hash_table = htab_try_create (1024,
2600 elfNN_aarch64_local_htab_hash,
2601 elfNN_aarch64_local_htab_eq,
2602 NULL);
2603 ret->loc_hash_memory = objalloc_create ();
2604 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2605 {
2606 elfNN_aarch64_link_hash_table_free (abfd);
2607 return NULL;
2608 }
2609 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2610
2611 return &ret->root.root;
2612 }
2613
2614 static bfd_boolean
2615 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2616 bfd_vma offset, bfd_vma value)
2617 {
2618 reloc_howto_type *howto;
2619 bfd_vma place;
2620
2621 howto = elfNN_aarch64_howto_from_type (r_type);
2622 place = (input_section->output_section->vma + input_section->output_offset
2623 + offset);
2624
2625 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2626 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2627 return _bfd_aarch64_elf_put_addend (input_bfd,
2628 input_section->contents + offset, r_type,
2629 howto, value);
2630 }
2631
2632 static enum elf_aarch64_stub_type
2633 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2634 {
2635 if (aarch64_valid_for_adrp_p (value, place))
2636 return aarch64_stub_adrp_branch;
2637 return aarch64_stub_long_branch;
2638 }
2639
2640 /* Determine the type of stub needed, if any, for a call. */
2641
2642 static enum elf_aarch64_stub_type
2643 aarch64_type_of_stub (asection *input_sec,
2644 const Elf_Internal_Rela *rel,
2645 asection *sym_sec,
2646 unsigned char st_type,
2647 bfd_vma destination)
2648 {
2649 bfd_vma location;
2650 bfd_signed_vma branch_offset;
2651 unsigned int r_type;
2652 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2653
2654 if (st_type != STT_FUNC
2655 && (sym_sec == input_sec))
2656 return stub_type;
2657
2658 /* Determine where the call point is. */
2659 location = (input_sec->output_offset
2660 + input_sec->output_section->vma + rel->r_offset);
2661
2662 branch_offset = (bfd_signed_vma) (destination - location);
2663
2664 r_type = ELFNN_R_TYPE (rel->r_info);
2665
2666 /* We don't want to redirect any old unconditional jump in this way,
2667 only one which is being used for a sibcall, where it is
2668 acceptable for the IP0 and IP1 registers to be clobbered. */
2669 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2670 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2671 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2672 {
2673 stub_type = aarch64_stub_long_branch;
2674 }
2675
2676 return stub_type;
2677 }
2678
2679 /* Build a name for an entry in the stub hash table. */
2680
2681 static char *
2682 elfNN_aarch64_stub_name (const asection *input_section,
2683 const asection *sym_sec,
2684 const struct elf_aarch64_link_hash_entry *hash,
2685 const Elf_Internal_Rela *rel)
2686 {
2687 char *stub_name;
2688 bfd_size_type len;
2689
2690 if (hash)
2691 {
2692 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2693 stub_name = bfd_malloc (len);
2694 if (stub_name != NULL)
2695 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2696 (unsigned int) input_section->id,
2697 hash->root.root.root.string,
2698 rel->r_addend);
2699 }
2700 else
2701 {
2702 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2703 stub_name = bfd_malloc (len);
2704 if (stub_name != NULL)
2705 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2706 (unsigned int) input_section->id,
2707 (unsigned int) sym_sec->id,
2708 (unsigned int) ELFNN_R_SYM (rel->r_info),
2709 rel->r_addend);
2710 }
2711
2712 return stub_name;
2713 }
2714
2715 /* Look up an entry in the stub hash. Stub entries are cached because
2716 creating the stub name takes a bit of time. */
2717
2718 static struct elf_aarch64_stub_hash_entry *
2719 elfNN_aarch64_get_stub_entry (const asection *input_section,
2720 const asection *sym_sec,
2721 struct elf_link_hash_entry *hash,
2722 const Elf_Internal_Rela *rel,
2723 struct elf_aarch64_link_hash_table *htab)
2724 {
2725 struct elf_aarch64_stub_hash_entry *stub_entry;
2726 struct elf_aarch64_link_hash_entry *h =
2727 (struct elf_aarch64_link_hash_entry *) hash;
2728 const asection *id_sec;
2729
2730 if ((input_section->flags & SEC_CODE) == 0)
2731 return NULL;
2732
2733 /* If this input section is part of a group of sections sharing one
2734 stub section, then use the id of the first section in the group.
2735 Stub names need to include a section id, as there may well be
2736 more than one stub used to reach say, printf, and we need to
2737 distinguish between them. */
2738 id_sec = htab->stub_group[input_section->id].link_sec;
2739
2740 if (h != NULL && h->stub_cache != NULL
2741 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2742 {
2743 stub_entry = h->stub_cache;
2744 }
2745 else
2746 {
2747 char *stub_name;
2748
2749 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2750 if (stub_name == NULL)
2751 return NULL;
2752
2753 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2754 stub_name, FALSE, FALSE);
2755 if (h != NULL)
2756 h->stub_cache = stub_entry;
2757
2758 free (stub_name);
2759 }
2760
2761 return stub_entry;
2762 }
2763
2764
2765 /* Create a stub section. */
2766
2767 static asection *
2768 _bfd_aarch64_create_stub_section (asection *section,
2769 struct elf_aarch64_link_hash_table *htab)
2770 {
2771 size_t namelen;
2772 bfd_size_type len;
2773 char *s_name;
2774
2775 namelen = strlen (section->name);
2776 len = namelen + sizeof (STUB_SUFFIX);
2777 s_name = bfd_alloc (htab->stub_bfd, len);
2778 if (s_name == NULL)
2779 return NULL;
2780
2781 memcpy (s_name, section->name, namelen);
2782 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2783 return (*htab->add_stub_section) (s_name, section);
2784 }
2785
2786
2787 /* Find or create a stub section for a link section.
2788
2789 Fix or create the stub section used to collect stubs attached to
2790 the specified link section. */
2791
2792 static asection *
2793 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
2794 struct elf_aarch64_link_hash_table *htab)
2795 {
2796 if (htab->stub_group[link_section->id].stub_sec == NULL)
2797 htab->stub_group[link_section->id].stub_sec
2798 = _bfd_aarch64_create_stub_section (link_section, htab);
2799 return htab->stub_group[link_section->id].stub_sec;
2800 }
2801
2802
2803 /* Find or create a stub section in the stub group for an input
2804 section. */
2805
2806 static asection *
2807 _bfd_aarch64_create_or_find_stub_sec (asection *section,
2808 struct elf_aarch64_link_hash_table *htab)
2809 {
2810 asection *link_sec = htab->stub_group[section->id].link_sec;
2811 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
2812 }
2813
2814
2815 /* Add a new stub entry in the stub group associated with an input
2816 section to the stub hash. Not all fields of the new stub entry are
2817 initialised. */
2818
2819 static struct elf_aarch64_stub_hash_entry *
2820 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2821 asection *section,
2822 struct elf_aarch64_link_hash_table *htab)
2823 {
2824 asection *link_sec;
2825 asection *stub_sec;
2826 struct elf_aarch64_stub_hash_entry *stub_entry;
2827
2828 link_sec = htab->stub_group[section->id].link_sec;
2829 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2830
2831 /* Enter this entry into the linker stub hash table. */
2832 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2833 TRUE, FALSE);
2834 if (stub_entry == NULL)
2835 {
2836 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2837 section->owner, stub_name);
2838 return NULL;
2839 }
2840
2841 stub_entry->stub_sec = stub_sec;
2842 stub_entry->stub_offset = 0;
2843 stub_entry->id_sec = link_sec;
2844
2845 return stub_entry;
2846 }
2847
2848 /* Add a new stub entry in the final stub section to the stub hash.
2849 Not all fields of the new stub entry are initialised. */
2850
2851 static struct elf_aarch64_stub_hash_entry *
2852 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
2853 asection *link_section,
2854 struct elf_aarch64_link_hash_table *htab)
2855 {
2856 asection *stub_sec;
2857 struct elf_aarch64_stub_hash_entry *stub_entry;
2858
2859 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2860 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2861 TRUE, FALSE);
2862 if (stub_entry == NULL)
2863 {
2864 (*_bfd_error_handler) (_("cannot create stub entry %s"), stub_name);
2865 return NULL;
2866 }
2867
2868 stub_entry->stub_sec = stub_sec;
2869 stub_entry->stub_offset = 0;
2870 stub_entry->id_sec = link_section;
2871
2872 return stub_entry;
2873 }
2874
2875
2876 static bfd_boolean
2877 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2878 void *in_arg ATTRIBUTE_UNUSED)
2879 {
2880 struct elf_aarch64_stub_hash_entry *stub_entry;
2881 asection *stub_sec;
2882 bfd *stub_bfd;
2883 bfd_byte *loc;
2884 bfd_vma sym_value;
2885 bfd_vma veneered_insn_loc;
2886 bfd_vma veneer_entry_loc;
2887 bfd_signed_vma branch_offset = 0;
2888 unsigned int template_size;
2889 const uint32_t *template;
2890 unsigned int i;
2891
2892 /* Massage our args to the form they really have. */
2893 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2894
2895 stub_sec = stub_entry->stub_sec;
2896
2897 /* Make a note of the offset within the stubs for this entry. */
2898 stub_entry->stub_offset = stub_sec->size;
2899 loc = stub_sec->contents + stub_entry->stub_offset;
2900
2901 stub_bfd = stub_sec->owner;
2902
2903 /* This is the address of the stub destination. */
2904 sym_value = (stub_entry->target_value
2905 + stub_entry->target_section->output_offset
2906 + stub_entry->target_section->output_section->vma);
2907
2908 if (stub_entry->stub_type == aarch64_stub_long_branch)
2909 {
2910 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2911 + stub_sec->output_offset);
2912
2913 /* See if we can relax the stub. */
2914 if (aarch64_valid_for_adrp_p (sym_value, place))
2915 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2916 }
2917
2918 switch (stub_entry->stub_type)
2919 {
2920 case aarch64_stub_adrp_branch:
2921 template = aarch64_adrp_branch_stub;
2922 template_size = sizeof (aarch64_adrp_branch_stub);
2923 break;
2924 case aarch64_stub_long_branch:
2925 template = aarch64_long_branch_stub;
2926 template_size = sizeof (aarch64_long_branch_stub);
2927 break;
2928 case aarch64_stub_erratum_835769_veneer:
2929 template = aarch64_erratum_835769_stub;
2930 template_size = sizeof (aarch64_erratum_835769_stub);
2931 break;
2932 case aarch64_stub_erratum_843419_veneer:
2933 template = aarch64_erratum_843419_stub;
2934 template_size = sizeof (aarch64_erratum_843419_stub);
2935 break;
2936 default:
2937 abort ();
2938 }
2939
2940 for (i = 0; i < (template_size / sizeof template[0]); i++)
2941 {
2942 bfd_putl32 (template[i], loc);
2943 loc += 4;
2944 }
2945
2946 template_size = (template_size + 7) & ~7;
2947 stub_sec->size += template_size;
2948
2949 switch (stub_entry->stub_type)
2950 {
2951 case aarch64_stub_adrp_branch:
2952 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2953 stub_entry->stub_offset, sym_value))
2954 /* The stub would not have been relaxed if the offset was out
2955 of range. */
2956 BFD_FAIL ();
2957
2958 if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2959 stub_entry->stub_offset + 4, sym_value))
2960 BFD_FAIL ();
2961 break;
2962
2963 case aarch64_stub_long_branch:
2964 /* We want the value relative to the address 12 bytes back from the
2965 value itself. */
2966 if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2967 stub_entry->stub_offset + 16, sym_value + 12))
2968 BFD_FAIL ();
2969 break;
2970
2971 case aarch64_stub_erratum_835769_veneer:
2972 veneered_insn_loc = stub_entry->target_section->output_section->vma
2973 + stub_entry->target_section->output_offset
2974 + stub_entry->target_value;
2975 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2976 + stub_entry->stub_sec->output_offset
2977 + stub_entry->stub_offset;
2978 branch_offset = veneered_insn_loc - veneer_entry_loc;
2979 branch_offset >>= 2;
2980 branch_offset &= 0x3ffffff;
2981 bfd_putl32 (stub_entry->veneered_insn,
2982 stub_sec->contents + stub_entry->stub_offset);
2983 bfd_putl32 (template[1] | branch_offset,
2984 stub_sec->contents + stub_entry->stub_offset + 4);
2985 break;
2986
2987 case aarch64_stub_erratum_843419_veneer:
2988 if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
2989 stub_entry->stub_offset + 4, sym_value + 4))
2990 BFD_FAIL ();
2991 break;
2992
2993 default:
2994 abort ();
2995 }
2996
2997 return TRUE;
2998 }
2999
3000 /* As above, but don't actually build the stub. Just bump offset so
3001 we know stub section sizes. */
3002
3003 static bfd_boolean
3004 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3005 void *in_arg ATTRIBUTE_UNUSED)
3006 {
3007 struct elf_aarch64_stub_hash_entry *stub_entry;
3008 int size;
3009
3010 /* Massage our args to the form they really have. */
3011 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3012
3013 switch (stub_entry->stub_type)
3014 {
3015 case aarch64_stub_adrp_branch:
3016 size = sizeof (aarch64_adrp_branch_stub);
3017 break;
3018 case aarch64_stub_long_branch:
3019 size = sizeof (aarch64_long_branch_stub);
3020 break;
3021 case aarch64_stub_erratum_835769_veneer:
3022 size = sizeof (aarch64_erratum_835769_stub);
3023 break;
3024 case aarch64_stub_erratum_843419_veneer:
3025 size = sizeof (aarch64_erratum_843419_stub);
3026 break;
3027 default:
3028 abort ();
3029 }
3030
3031 size = (size + 7) & ~7;
3032 stub_entry->stub_sec->size += size;
3033 return TRUE;
3034 }
3035
3036 /* External entry points for sizing and building linker stubs. */
3037
3038 /* Set up various things so that we can make a list of input sections
3039 for each output section included in the link. Returns -1 on error,
3040 0 when no stubs will be needed, and 1 on success. */
3041
3042 int
3043 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3044 struct bfd_link_info *info)
3045 {
3046 bfd *input_bfd;
3047 unsigned int bfd_count;
3048 unsigned int top_id, top_index;
3049 asection *section;
3050 asection **input_list, **list;
3051 bfd_size_type amt;
3052 struct elf_aarch64_link_hash_table *htab =
3053 elf_aarch64_hash_table (info);
3054
3055 if (!is_elf_hash_table (htab))
3056 return 0;
3057
3058 /* Count the number of input BFDs and find the top input section id. */
3059 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3060 input_bfd != NULL; input_bfd = input_bfd->link.next)
3061 {
3062 bfd_count += 1;
3063 for (section = input_bfd->sections;
3064 section != NULL; section = section->next)
3065 {
3066 if (top_id < section->id)
3067 top_id = section->id;
3068 }
3069 }
3070 htab->bfd_count = bfd_count;
3071
3072 amt = sizeof (struct map_stub) * (top_id + 1);
3073 htab->stub_group = bfd_zmalloc (amt);
3074 if (htab->stub_group == NULL)
3075 return -1;
3076
3077 /* We can't use output_bfd->section_count here to find the top output
3078 section index as some sections may have been removed, and
3079 _bfd_strip_section_from_output doesn't renumber the indices. */
3080 for (section = output_bfd->sections, top_index = 0;
3081 section != NULL; section = section->next)
3082 {
3083 if (top_index < section->index)
3084 top_index = section->index;
3085 }
3086
3087 htab->top_index = top_index;
3088 amt = sizeof (asection *) * (top_index + 1);
3089 input_list = bfd_malloc (amt);
3090 htab->input_list = input_list;
3091 if (input_list == NULL)
3092 return -1;
3093
3094 /* For sections we aren't interested in, mark their entries with a
3095 value we can check later. */
3096 list = input_list + top_index;
3097 do
3098 *list = bfd_abs_section_ptr;
3099 while (list-- != input_list);
3100
3101 for (section = output_bfd->sections;
3102 section != NULL; section = section->next)
3103 {
3104 if ((section->flags & SEC_CODE) != 0)
3105 input_list[section->index] = NULL;
3106 }
3107
3108 return 1;
3109 }
3110
3111 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3112 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3113
3114 /* The linker repeatedly calls this function for each input section,
3115 in the order that input sections are linked into output sections.
3116 Build lists of input sections to determine groupings between which
3117 we may insert linker stubs. */
3118
3119 void
3120 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3121 {
3122 struct elf_aarch64_link_hash_table *htab =
3123 elf_aarch64_hash_table (info);
3124
3125 if (isec->output_section->index <= htab->top_index)
3126 {
3127 asection **list = htab->input_list + isec->output_section->index;
3128
3129 if (*list != bfd_abs_section_ptr)
3130 {
3131 /* Steal the link_sec pointer for our list. */
3132 /* This happens to make the list in reverse order,
3133 which is what we want. */
3134 PREV_SEC (isec) = *list;
3135 *list = isec;
3136 }
3137 }
3138 }
3139
3140 /* See whether we can group stub sections together. Grouping stub
3141 sections may result in fewer stubs. More importantly, we need to
3142 put all .init* and .fini* stubs at the beginning of the .init or
3143 .fini output sections respectively, because glibc splits the
3144 _init and _fini functions into multiple parts. Putting a stub in
3145 the middle of a function is not a good idea. */
3146
3147 static void
3148 group_sections (struct elf_aarch64_link_hash_table *htab,
3149 bfd_size_type stub_group_size,
3150 bfd_boolean stubs_always_before_branch)
3151 {
3152 asection **list = htab->input_list + htab->top_index;
3153
3154 do
3155 {
3156 asection *tail = *list;
3157
3158 if (tail == bfd_abs_section_ptr)
3159 continue;
3160
3161 while (tail != NULL)
3162 {
3163 asection *curr;
3164 asection *prev;
3165 bfd_size_type total;
3166
3167 curr = tail;
3168 total = tail->size;
3169 while ((prev = PREV_SEC (curr)) != NULL
3170 && ((total += curr->output_offset - prev->output_offset)
3171 < stub_group_size))
3172 curr = prev;
3173
3174 /* OK, the size from the start of CURR to the end is less
3175 than stub_group_size and thus can be handled by one stub
3176 section. (Or the tail section is itself larger than
3177 stub_group_size, in which case we may be toast.)
3178 We should really be keeping track of the total size of
3179 stubs added here, as stubs contribute to the final output
3180 section size. */
3181 do
3182 {
3183 prev = PREV_SEC (tail);
3184 /* Set up this stub group. */
3185 htab->stub_group[tail->id].link_sec = curr;
3186 }
3187 while (tail != curr && (tail = prev) != NULL);
3188
3189 /* But wait, there's more! Input sections up to stub_group_size
3190 bytes before the stub section can be handled by it too. */
3191 if (!stubs_always_before_branch)
3192 {
3193 total = 0;
3194 while (prev != NULL
3195 && ((total += tail->output_offset - prev->output_offset)
3196 < stub_group_size))
3197 {
3198 tail = prev;
3199 prev = PREV_SEC (tail);
3200 htab->stub_group[tail->id].link_sec = curr;
3201 }
3202 }
3203 tail = prev;
3204 }
3205 }
3206 while (list-- != htab->input_list);
3207
3208 free (htab->input_list);
3209 }
3210
3211 #undef PREV_SEC
3212
3213 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3214
3215 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3216 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3217 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3218 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3219 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3220 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3221
3222 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3223 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3224 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3225 #define AARCH64_ZR 0x1f
3226
3227 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3228 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3229
3230 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3231 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3232 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3233 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3234 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3235 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3236 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3237 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3238 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3239 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3240 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3241 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3242 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3243 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3244 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3245 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3246 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3247 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3248
3249 /* Classify an INSN if it is indeed a load/store.
3250
3251 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3252
3253 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3254 is set equal to RT.
3255
3256 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned.
3257
3258 */
3259
3260 static bfd_boolean
3261 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3262 bfd_boolean *pair, bfd_boolean *load)
3263 {
3264 uint32_t opcode;
3265 unsigned int r;
3266 uint32_t opc = 0;
3267 uint32_t v = 0;
3268 uint32_t opc_v = 0;
3269
3270 /* Bail out quickly if INSN doesn't fall into the the load-store
3271 encoding space. */
3272 if (!AARCH64_LDST (insn))
3273 return FALSE;
3274
3275 *pair = FALSE;
3276 *load = FALSE;
3277 if (AARCH64_LDST_EX (insn))
3278 {
3279 *rt = AARCH64_RT (insn);
3280 *rt2 = *rt;
3281 if (AARCH64_BIT (insn, 21) == 1)
3282 {
3283 *pair = TRUE;
3284 *rt2 = AARCH64_RT2 (insn);
3285 }
3286 *load = AARCH64_LD (insn);
3287 return TRUE;
3288 }
3289 else if (AARCH64_LDST_NAP (insn)
3290 || AARCH64_LDSTP_PI (insn)
3291 || AARCH64_LDSTP_O (insn)
3292 || AARCH64_LDSTP_PRE (insn))
3293 {
3294 *pair = TRUE;
3295 *rt = AARCH64_RT (insn);
3296 *rt2 = AARCH64_RT2 (insn);
3297 *load = AARCH64_LD (insn);
3298 return TRUE;
3299 }
3300 else if (AARCH64_LDST_PCREL (insn)
3301 || AARCH64_LDST_UI (insn)
3302 || AARCH64_LDST_PIIMM (insn)
3303 || AARCH64_LDST_U (insn)
3304 || AARCH64_LDST_PREIMM (insn)
3305 || AARCH64_LDST_RO (insn)
3306 || AARCH64_LDST_UIMM (insn))
3307 {
3308 *rt = AARCH64_RT (insn);
3309 *rt2 = *rt;
3310 if (AARCH64_LDST_PCREL (insn))
3311 *load = TRUE;
3312 opc = AARCH64_BITS (insn, 22, 2);
3313 v = AARCH64_BIT (insn, 26);
3314 opc_v = opc | (v << 2);
3315 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3316 || opc_v == 5 || opc_v == 7);
3317 return TRUE;
3318 }
3319 else if (AARCH64_LDST_SIMD_M (insn)
3320 || AARCH64_LDST_SIMD_M_PI (insn))
3321 {
3322 *rt = AARCH64_RT (insn);
3323 *load = AARCH64_BIT (insn, 22);
3324 opcode = (insn >> 12) & 0xf;
3325 switch (opcode)
3326 {
3327 case 0:
3328 case 2:
3329 *rt2 = *rt + 3;
3330 break;
3331
3332 case 4:
3333 case 6:
3334 *rt2 = *rt + 2;
3335 break;
3336
3337 case 7:
3338 *rt2 = *rt;
3339 break;
3340
3341 case 8:
3342 case 10:
3343 *rt2 = *rt + 1;
3344 break;
3345
3346 default:
3347 return FALSE;
3348 }
3349 return TRUE;
3350 }
3351 else if (AARCH64_LDST_SIMD_S (insn)
3352 || AARCH64_LDST_SIMD_S_PI (insn))
3353 {
3354 *rt = AARCH64_RT (insn);
3355 r = (insn >> 21) & 1;
3356 *load = AARCH64_BIT (insn, 22);
3357 opcode = (insn >> 13) & 0x7;
3358 switch (opcode)
3359 {
3360 case 0:
3361 case 2:
3362 case 4:
3363 *rt2 = *rt + r;
3364 break;
3365
3366 case 1:
3367 case 3:
3368 case 5:
3369 *rt2 = *rt + (r == 0 ? 2 : 3);
3370 break;
3371
3372 case 6:
3373 *rt2 = *rt + r;
3374 break;
3375
3376 case 7:
3377 *rt2 = *rt + (r == 0 ? 2 : 3);
3378 break;
3379
3380 default:
3381 return FALSE;
3382 }
3383 return TRUE;
3384 }
3385
3386 return FALSE;
3387 }
3388
3389 /* Return TRUE if INSN is multiply-accumulate. */
3390
3391 static bfd_boolean
3392 aarch64_mlxl_p (uint32_t insn)
3393 {
3394 uint32_t op31 = AARCH64_OP31 (insn);
3395
3396 if (AARCH64_MAC (insn)
3397 && (op31 == 0 || op31 == 1 || op31 == 5)
3398 /* Exclude MUL instructions which are encoded as a multiple accumulate
3399 with RA = XZR. */
3400 && AARCH64_RA (insn) != AARCH64_ZR)
3401 return TRUE;
3402
3403 return FALSE;
3404 }
3405
3406 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3407 it is possible for a 64-bit multiply-accumulate instruction to generate an
3408 incorrect result. The details are quite complex and hard to
3409 determine statically, since branches in the code may exist in some
3410 circumstances, but all cases end with a memory (load, store, or
3411 prefetch) instruction followed immediately by the multiply-accumulate
3412 operation. We employ a linker patching technique, by moving the potentially
3413 affected multiply-accumulate instruction into a patch region and replacing
3414 the original instruction with a branch to the patch. This function checks
3415 if INSN_1 is the memory operation followed by a multiply-accumulate
3416 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3417 if INSN_1 and INSN_2 are safe. */
3418
3419 static bfd_boolean
3420 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3421 {
3422 uint32_t rt;
3423 uint32_t rt2;
3424 uint32_t rn;
3425 uint32_t rm;
3426 uint32_t ra;
3427 bfd_boolean pair;
3428 bfd_boolean load;
3429
3430 if (aarch64_mlxl_p (insn_2)
3431 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3432 {
3433 /* Any SIMD memory op is independent of the subsequent MLA
3434 by definition of the erratum. */
3435 if (AARCH64_BIT (insn_1, 26))
3436 return TRUE;
3437
3438 /* If not SIMD, check for integer memory ops and MLA relationship. */
3439 rn = AARCH64_RN (insn_2);
3440 ra = AARCH64_RA (insn_2);
3441 rm = AARCH64_RM (insn_2);
3442
3443 /* If this is a load and there's a true(RAW) dependency, we are safe
3444 and this is not an erratum sequence. */
3445 if (load &&
3446 (rt == rn || rt == rm || rt == ra
3447 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3448 return FALSE;
3449
3450 /* We conservatively put out stubs for all other cases (including
3451 writebacks). */
3452 return TRUE;
3453 }
3454
3455 return FALSE;
3456 }
3457
3458 /* Used to order a list of mapping symbols by address. */
3459
3460 static int
3461 elf_aarch64_compare_mapping (const void *a, const void *b)
3462 {
3463 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3464 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3465
3466 if (amap->vma > bmap->vma)
3467 return 1;
3468 else if (amap->vma < bmap->vma)
3469 return -1;
3470 else if (amap->type > bmap->type)
3471 /* Ensure results do not depend on the host qsort for objects with
3472 multiple mapping symbols at the same address by sorting on type
3473 after vma. */
3474 return 1;
3475 else if (amap->type < bmap->type)
3476 return -1;
3477 else
3478 return 0;
3479 }
3480
3481
3482 static char *
3483 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3484 {
3485 char *stub_name = (char *) bfd_malloc
3486 (strlen ("__erratum_835769_veneer_") + 16);
3487 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3488 return stub_name;
3489 }
3490
3491 /* Scan for Cortex-A53 erratum 835769 sequence.
3492
3493 Return TRUE else FALSE on abnormal termination. */
3494
3495 static bfd_boolean
3496 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3497 struct bfd_link_info *info,
3498 unsigned int *num_fixes_p)
3499 {
3500 asection *section;
3501 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3502 unsigned int num_fixes = *num_fixes_p;
3503
3504 if (htab == NULL)
3505 return TRUE;
3506
3507 for (section = input_bfd->sections;
3508 section != NULL;
3509 section = section->next)
3510 {
3511 bfd_byte *contents = NULL;
3512 struct _aarch64_elf_section_data *sec_data;
3513 unsigned int span;
3514
3515 if (elf_section_type (section) != SHT_PROGBITS
3516 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3517 || (section->flags & SEC_EXCLUDE) != 0
3518 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3519 || (section->output_section == bfd_abs_section_ptr))
3520 continue;
3521
3522 if (elf_section_data (section)->this_hdr.contents != NULL)
3523 contents = elf_section_data (section)->this_hdr.contents;
3524 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3525 return FALSE;
3526
3527 sec_data = elf_aarch64_section_data (section);
3528
3529 qsort (sec_data->map, sec_data->mapcount,
3530 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3531
3532 for (span = 0; span < sec_data->mapcount; span++)
3533 {
3534 unsigned int span_start = sec_data->map[span].vma;
3535 unsigned int span_end = ((span == sec_data->mapcount - 1)
3536 ? sec_data->map[0].vma + section->size
3537 : sec_data->map[span + 1].vma);
3538 unsigned int i;
3539 char span_type = sec_data->map[span].type;
3540
3541 if (span_type == 'd')
3542 continue;
3543
3544 for (i = span_start; i + 4 < span_end; i += 4)
3545 {
3546 uint32_t insn_1 = bfd_getl32 (contents + i);
3547 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3548
3549 if (aarch64_erratum_sequence (insn_1, insn_2))
3550 {
3551 struct elf_aarch64_stub_hash_entry *stub_entry;
3552 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3553 if (! stub_name)
3554 return FALSE;
3555
3556 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3557 section,
3558 htab);
3559 if (! stub_entry)
3560 return FALSE;
3561
3562 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3563 stub_entry->target_section = section;
3564 stub_entry->target_value = i + 4;
3565 stub_entry->veneered_insn = insn_2;
3566 stub_entry->output_name = stub_name;
3567 num_fixes++;
3568 }
3569 }
3570 }
3571 if (elf_section_data (section)->this_hdr.contents == NULL)
3572 free (contents);
3573 }
3574
3575 *num_fixes_p = num_fixes;
3576
3577 return TRUE;
3578 }
3579
3580
3581 /* Test if instruction INSN is ADRP. */
3582
3583 static bfd_boolean
3584 _bfd_aarch64_adrp_p (uint32_t insn)
3585 {
3586 return ((insn & 0x9f000000) == 0x90000000);
3587 }
3588
3589
3590 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3591
3592 static bfd_boolean
3593 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3594 uint32_t insn_3)
3595 {
3596 uint32_t rt;
3597 uint32_t rt2;
3598 bfd_boolean pair;
3599 bfd_boolean load;
3600
3601 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3602 && (!pair
3603 || (pair && !load))
3604 && AARCH64_LDST_UIMM (insn_3)
3605 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3606 }
3607
3608
3609 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3610
3611 Return TRUE if section CONTENTS at offset I contains one of the
3612 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3613 seen set P_VENEER_I to the offset of the final LOAD/STORE
3614 instruction in the sequence.
3615 */
3616
3617 static bfd_boolean
3618 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3619 bfd_vma i, bfd_vma span_end,
3620 bfd_vma *p_veneer_i)
3621 {
3622 uint32_t insn_1 = bfd_getl32 (contents + i);
3623
3624 if (!_bfd_aarch64_adrp_p (insn_1))
3625 return FALSE;
3626
3627 if (span_end < i + 12)
3628 return FALSE;
3629
3630 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3631 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3632
3633 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3634 return FALSE;
3635
3636 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3637 {
3638 *p_veneer_i = i + 8;
3639 return TRUE;
3640 }
3641
3642 if (span_end < i + 16)
3643 return FALSE;
3644
3645 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3646
3647 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3648 {
3649 *p_veneer_i = i + 12;
3650 return TRUE;
3651 }
3652
3653 return FALSE;
3654 }
3655
3656
3657 /* Resize all stub sections. */
3658
3659 static void
3660 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3661 {
3662 asection *section;
3663
3664 /* OK, we've added some stubs. Find out the new size of the
3665 stub sections. */
3666 for (section = htab->stub_bfd->sections;
3667 section != NULL; section = section->next)
3668 {
3669 /* Ignore non-stub sections. */
3670 if (!strstr (section->name, STUB_SUFFIX))
3671 continue;
3672 section->size = 0;
3673 }
3674
3675 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3676
3677 for (section = htab->stub_bfd->sections;
3678 section != NULL; section = section->next)
3679 {
3680 if (!strstr (section->name, STUB_SUFFIX))
3681 continue;
3682
3683 if (section->size)
3684 section->size += 4;
3685
3686 /* Ensure all stub sections have a size which is a multiple of
3687 4096. This is important in order to ensure that the insertion
3688 of stub sections does not in itself move existing code around
3689 in such a way that new errata sequences are created. */
3690 if (htab->fix_erratum_843419)
3691 if (section->size)
3692 section->size = BFD_ALIGN (section->size, 0x1000);
3693 }
3694 }
3695
3696
3697 /* Construct an erratum 843419 workaround stub name.
3698 */
3699
3700 static char *
3701 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3702 bfd_vma offset)
3703 {
3704 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3705 char *stub_name = bfd_malloc (len);
3706
3707 if (stub_name != NULL)
3708 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3709 input_section->owner->id,
3710 input_section->id,
3711 offset);
3712 return stub_name;
3713 }
3714
3715 /* Build a stub_entry structure describing an 843419 fixup.
3716
3717 The stub_entry constructed is populated with the bit pattern INSN
3718 of the instruction located at OFFSET within input SECTION.
3719
3720 Returns TRUE on success. */
3721
3722 static bfd_boolean
3723 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3724 bfd_vma adrp_offset,
3725 bfd_vma ldst_offset,
3726 asection *section,
3727 struct bfd_link_info *info)
3728 {
3729 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3730 char *stub_name;
3731 struct elf_aarch64_stub_hash_entry *stub_entry;
3732
3733 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3734 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3735 FALSE, FALSE);
3736 if (stub_entry)
3737 {
3738 free (stub_name);
3739 return TRUE;
3740 }
3741
3742 /* We always place an 843419 workaround veneer in the stub section
3743 attached to the input section in which an erratum sequence has
3744 been found. This ensures that later in the link process (in
3745 elfNN_aarch64_write_section) when we copy the veneered
3746 instruction from the input section into the stub section the
3747 copied instruction will have had any relocations applied to it.
3748 If we placed workaround veneers in any other stub section then we
3749 could not assume that all relocations have been processed on the
3750 corresponding input section at the point we output the stub
3751 section.
3752 */
3753
3754 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3755 if (stub_entry == NULL)
3756 {
3757 free (stub_name);
3758 return FALSE;
3759 }
3760
3761 stub_entry->adrp_offset = adrp_offset;
3762 stub_entry->target_value = ldst_offset;
3763 stub_entry->target_section = section;
3764 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3765 stub_entry->veneered_insn = insn;
3766 stub_entry->output_name = stub_name;
3767
3768 return TRUE;
3769 }
3770
3771
3772 /* Scan an input section looking for the signature of erratum 843419.
3773
3774 Scans input SECTION in INPUT_BFD looking for erratum 843419
3775 signatures, for each signature found a stub_entry is created
3776 describing the location of the erratum for subsequent fixup.
3777
3778 Return TRUE on successful scan, FALSE on failure to scan.
3779 */
3780
3781 static bfd_boolean
3782 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3783 struct bfd_link_info *info)
3784 {
3785 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3786
3787 if (htab == NULL)
3788 return TRUE;
3789
3790 if (elf_section_type (section) != SHT_PROGBITS
3791 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3792 || (section->flags & SEC_EXCLUDE) != 0
3793 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3794 || (section->output_section == bfd_abs_section_ptr))
3795 return TRUE;
3796
3797 do
3798 {
3799 bfd_byte *contents = NULL;
3800 struct _aarch64_elf_section_data *sec_data;
3801 unsigned int span;
3802
3803 if (elf_section_data (section)->this_hdr.contents != NULL)
3804 contents = elf_section_data (section)->this_hdr.contents;
3805 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3806 return FALSE;
3807
3808 sec_data = elf_aarch64_section_data (section);
3809
3810 qsort (sec_data->map, sec_data->mapcount,
3811 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3812
3813 for (span = 0; span < sec_data->mapcount; span++)
3814 {
3815 unsigned int span_start = sec_data->map[span].vma;
3816 unsigned int span_end = ((span == sec_data->mapcount - 1)
3817 ? sec_data->map[0].vma + section->size
3818 : sec_data->map[span + 1].vma);
3819 unsigned int i;
3820 char span_type = sec_data->map[span].type;
3821
3822 if (span_type == 'd')
3823 continue;
3824
3825 for (i = span_start; i + 8 < span_end; i += 4)
3826 {
3827 bfd_vma vma = (section->output_section->vma
3828 + section->output_offset
3829 + i);
3830 bfd_vma veneer_i;
3831
3832 if (_bfd_aarch64_erratum_843419_p
3833 (contents, vma, i, span_end, &veneer_i))
3834 {
3835 uint32_t insn = bfd_getl32 (contents + veneer_i);
3836
3837 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3838 section, info))
3839 return FALSE;
3840 }
3841 }
3842 }
3843
3844 if (elf_section_data (section)->this_hdr.contents == NULL)
3845 free (contents);
3846 }
3847 while (0);
3848
3849 return TRUE;
3850 }
3851
3852
3853 /* Determine and set the size of the stub section for a final link.
3854
3855 The basic idea here is to examine all the relocations looking for
3856 PC-relative calls to a target that is unreachable with a "bl"
3857 instruction. */
3858
3859 bfd_boolean
3860 elfNN_aarch64_size_stubs (bfd *output_bfd,
3861 bfd *stub_bfd,
3862 struct bfd_link_info *info,
3863 bfd_signed_vma group_size,
3864 asection * (*add_stub_section) (const char *,
3865 asection *),
3866 void (*layout_sections_again) (void))
3867 {
3868 bfd_size_type stub_group_size;
3869 bfd_boolean stubs_always_before_branch;
3870 bfd_boolean stub_changed = FALSE;
3871 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3872 unsigned int num_erratum_835769_fixes = 0;
3873
3874 /* Propagate mach to stub bfd, because it may not have been
3875 finalized when we created stub_bfd. */
3876 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3877 bfd_get_mach (output_bfd));
3878
3879 /* Stash our params away. */
3880 htab->stub_bfd = stub_bfd;
3881 htab->add_stub_section = add_stub_section;
3882 htab->layout_sections_again = layout_sections_again;
3883 stubs_always_before_branch = group_size < 0;
3884 if (group_size < 0)
3885 stub_group_size = -group_size;
3886 else
3887 stub_group_size = group_size;
3888
3889 if (stub_group_size == 1)
3890 {
3891 /* Default values. */
3892 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
3893 stub_group_size = 127 * 1024 * 1024;
3894 }
3895
3896 group_sections (htab, stub_group_size, stubs_always_before_branch);
3897
3898 (*htab->layout_sections_again) ();
3899
3900 if (htab->fix_erratum_835769)
3901 {
3902 bfd *input_bfd;
3903
3904 for (input_bfd = info->input_bfds;
3905 input_bfd != NULL; input_bfd = input_bfd->link.next)
3906 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3907 &num_erratum_835769_fixes))
3908 return FALSE;
3909
3910 _bfd_aarch64_resize_stubs (htab);
3911 (*htab->layout_sections_again) ();
3912 }
3913
3914 if (htab->fix_erratum_843419)
3915 {
3916 bfd *input_bfd;
3917
3918 for (input_bfd = info->input_bfds;
3919 input_bfd != NULL;
3920 input_bfd = input_bfd->link.next)
3921 {
3922 asection *section;
3923
3924 for (section = input_bfd->sections;
3925 section != NULL;
3926 section = section->next)
3927 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3928 return FALSE;
3929 }
3930
3931 _bfd_aarch64_resize_stubs (htab);
3932 (*htab->layout_sections_again) ();
3933 }
3934
3935 while (1)
3936 {
3937 bfd *input_bfd;
3938
3939 for (input_bfd = info->input_bfds;
3940 input_bfd != NULL; input_bfd = input_bfd->link.next)
3941 {
3942 Elf_Internal_Shdr *symtab_hdr;
3943 asection *section;
3944 Elf_Internal_Sym *local_syms = NULL;
3945
3946 /* We'll need the symbol table in a second. */
3947 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3948 if (symtab_hdr->sh_info == 0)
3949 continue;
3950
3951 /* Walk over each section attached to the input bfd. */
3952 for (section = input_bfd->sections;
3953 section != NULL; section = section->next)
3954 {
3955 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3956
3957 /* If there aren't any relocs, then there's nothing more
3958 to do. */
3959 if ((section->flags & SEC_RELOC) == 0
3960 || section->reloc_count == 0
3961 || (section->flags & SEC_CODE) == 0)
3962 continue;
3963
3964 /* If this section is a link-once section that will be
3965 discarded, then don't create any stubs. */
3966 if (section->output_section == NULL
3967 || section->output_section->owner != output_bfd)
3968 continue;
3969
3970 /* Get the relocs. */
3971 internal_relocs
3972 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3973 NULL, info->keep_memory);
3974 if (internal_relocs == NULL)
3975 goto error_ret_free_local;
3976
3977 /* Now examine each relocation. */
3978 irela = internal_relocs;
3979 irelaend = irela + section->reloc_count;
3980 for (; irela < irelaend; irela++)
3981 {
3982 unsigned int r_type, r_indx;
3983 enum elf_aarch64_stub_type stub_type;
3984 struct elf_aarch64_stub_hash_entry *stub_entry;
3985 asection *sym_sec;
3986 bfd_vma sym_value;
3987 bfd_vma destination;
3988 struct elf_aarch64_link_hash_entry *hash;
3989 const char *sym_name;
3990 char *stub_name;
3991 const asection *id_sec;
3992 unsigned char st_type;
3993 bfd_size_type len;
3994
3995 r_type = ELFNN_R_TYPE (irela->r_info);
3996 r_indx = ELFNN_R_SYM (irela->r_info);
3997
3998 if (r_type >= (unsigned int) R_AARCH64_end)
3999 {
4000 bfd_set_error (bfd_error_bad_value);
4001 error_ret_free_internal:
4002 if (elf_section_data (section)->relocs == NULL)
4003 free (internal_relocs);
4004 goto error_ret_free_local;
4005 }
4006
4007 /* Only look for stubs on unconditional branch and
4008 branch and link instructions. */
4009 if (r_type != (unsigned int) AARCH64_R (CALL26)
4010 && r_type != (unsigned int) AARCH64_R (JUMP26))
4011 continue;
4012
4013 /* Now determine the call target, its name, value,
4014 section. */
4015 sym_sec = NULL;
4016 sym_value = 0;
4017 destination = 0;
4018 hash = NULL;
4019 sym_name = NULL;
4020 if (r_indx < symtab_hdr->sh_info)
4021 {
4022 /* It's a local symbol. */
4023 Elf_Internal_Sym *sym;
4024 Elf_Internal_Shdr *hdr;
4025
4026 if (local_syms == NULL)
4027 {
4028 local_syms
4029 = (Elf_Internal_Sym *) symtab_hdr->contents;
4030 if (local_syms == NULL)
4031 local_syms
4032 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4033 symtab_hdr->sh_info, 0,
4034 NULL, NULL, NULL);
4035 if (local_syms == NULL)
4036 goto error_ret_free_internal;
4037 }
4038
4039 sym = local_syms + r_indx;
4040 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4041 sym_sec = hdr->bfd_section;
4042 if (!sym_sec)
4043 /* This is an undefined symbol. It can never
4044 be resolved. */
4045 continue;
4046
4047 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4048 sym_value = sym->st_value;
4049 destination = (sym_value + irela->r_addend
4050 + sym_sec->output_offset
4051 + sym_sec->output_section->vma);
4052 st_type = ELF_ST_TYPE (sym->st_info);
4053 sym_name
4054 = bfd_elf_string_from_elf_section (input_bfd,
4055 symtab_hdr->sh_link,
4056 sym->st_name);
4057 }
4058 else
4059 {
4060 int e_indx;
4061
4062 e_indx = r_indx - symtab_hdr->sh_info;
4063 hash = ((struct elf_aarch64_link_hash_entry *)
4064 elf_sym_hashes (input_bfd)[e_indx]);
4065
4066 while (hash->root.root.type == bfd_link_hash_indirect
4067 || hash->root.root.type == bfd_link_hash_warning)
4068 hash = ((struct elf_aarch64_link_hash_entry *)
4069 hash->root.root.u.i.link);
4070
4071 if (hash->root.root.type == bfd_link_hash_defined
4072 || hash->root.root.type == bfd_link_hash_defweak)
4073 {
4074 struct elf_aarch64_link_hash_table *globals =
4075 elf_aarch64_hash_table (info);
4076 sym_sec = hash->root.root.u.def.section;
4077 sym_value = hash->root.root.u.def.value;
4078 /* For a destination in a shared library,
4079 use the PLT stub as target address to
4080 decide whether a branch stub is
4081 needed. */
4082 if (globals->root.splt != NULL && hash != NULL
4083 && hash->root.plt.offset != (bfd_vma) - 1)
4084 {
4085 sym_sec = globals->root.splt;
4086 sym_value = hash->root.plt.offset;
4087 if (sym_sec->output_section != NULL)
4088 destination = (sym_value
4089 + sym_sec->output_offset
4090 +
4091 sym_sec->output_section->vma);
4092 }
4093 else if (sym_sec->output_section != NULL)
4094 destination = (sym_value + irela->r_addend
4095 + sym_sec->output_offset
4096 + sym_sec->output_section->vma);
4097 }
4098 else if (hash->root.root.type == bfd_link_hash_undefined
4099 || (hash->root.root.type
4100 == bfd_link_hash_undefweak))
4101 {
4102 /* For a shared library, use the PLT stub as
4103 target address to decide whether a long
4104 branch stub is needed.
4105 For absolute code, they cannot be handled. */
4106 struct elf_aarch64_link_hash_table *globals =
4107 elf_aarch64_hash_table (info);
4108
4109 if (globals->root.splt != NULL && hash != NULL
4110 && hash->root.plt.offset != (bfd_vma) - 1)
4111 {
4112 sym_sec = globals->root.splt;
4113 sym_value = hash->root.plt.offset;
4114 if (sym_sec->output_section != NULL)
4115 destination = (sym_value
4116 + sym_sec->output_offset
4117 +
4118 sym_sec->output_section->vma);
4119 }
4120 else
4121 continue;
4122 }
4123 else
4124 {
4125 bfd_set_error (bfd_error_bad_value);
4126 goto error_ret_free_internal;
4127 }
4128 st_type = ELF_ST_TYPE (hash->root.type);
4129 sym_name = hash->root.root.root.string;
4130 }
4131
4132 /* Determine what (if any) linker stub is needed. */
4133 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4134 st_type, destination);
4135 if (stub_type == aarch64_stub_none)
4136 continue;
4137
4138 /* Support for grouping stub sections. */
4139 id_sec = htab->stub_group[section->id].link_sec;
4140
4141 /* Get the name of this stub. */
4142 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4143 irela);
4144 if (!stub_name)
4145 goto error_ret_free_internal;
4146
4147 stub_entry =
4148 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4149 stub_name, FALSE, FALSE);
4150 if (stub_entry != NULL)
4151 {
4152 /* The proper stub has already been created. */
4153 free (stub_name);
4154 continue;
4155 }
4156
4157 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4158 (stub_name, section, htab);
4159 if (stub_entry == NULL)
4160 {
4161 free (stub_name);
4162 goto error_ret_free_internal;
4163 }
4164
4165 stub_entry->target_value = sym_value + irela->r_addend;
4166 stub_entry->target_section = sym_sec;
4167 stub_entry->stub_type = stub_type;
4168 stub_entry->h = hash;
4169 stub_entry->st_type = st_type;
4170
4171 if (sym_name == NULL)
4172 sym_name = "unnamed";
4173 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4174 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4175 if (stub_entry->output_name == NULL)
4176 {
4177 free (stub_name);
4178 goto error_ret_free_internal;
4179 }
4180
4181 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4182 sym_name);
4183
4184 stub_changed = TRUE;
4185 }
4186
4187 /* We're done with the internal relocs, free them. */
4188 if (elf_section_data (section)->relocs == NULL)
4189 free (internal_relocs);
4190 }
4191 }
4192
4193 if (!stub_changed)
4194 break;
4195
4196 _bfd_aarch64_resize_stubs (htab);
4197
4198 /* Ask the linker to do its stuff. */
4199 (*htab->layout_sections_again) ();
4200 stub_changed = FALSE;
4201 }
4202
4203 return TRUE;
4204
4205 error_ret_free_local:
4206 return FALSE;
4207 }
4208
4209 /* Build all the stubs associated with the current output file. The
4210 stubs are kept in a hash table attached to the main linker hash
4211 table. We also set up the .plt entries for statically linked PIC
4212 functions here. This function is called via aarch64_elf_finish in the
4213 linker. */
4214
4215 bfd_boolean
4216 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4217 {
4218 asection *stub_sec;
4219 struct bfd_hash_table *table;
4220 struct elf_aarch64_link_hash_table *htab;
4221
4222 htab = elf_aarch64_hash_table (info);
4223
4224 for (stub_sec = htab->stub_bfd->sections;
4225 stub_sec != NULL; stub_sec = stub_sec->next)
4226 {
4227 bfd_size_type size;
4228
4229 /* Ignore non-stub sections. */
4230 if (!strstr (stub_sec->name, STUB_SUFFIX))
4231 continue;
4232
4233 /* Allocate memory to hold the linker stubs. */
4234 size = stub_sec->size;
4235 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4236 if (stub_sec->contents == NULL && size != 0)
4237 return FALSE;
4238 stub_sec->size = 0;
4239
4240 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4241 stub_sec->size += 4;
4242 }
4243
4244 /* Build the stubs as directed by the stub hash table. */
4245 table = &htab->stub_hash_table;
4246 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4247
4248 return TRUE;
4249 }
4250
4251
4252 /* Add an entry to the code/data map for section SEC. */
4253
4254 static void
4255 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4256 {
4257 struct _aarch64_elf_section_data *sec_data =
4258 elf_aarch64_section_data (sec);
4259 unsigned int newidx;
4260
4261 if (sec_data->map == NULL)
4262 {
4263 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4264 sec_data->mapcount = 0;
4265 sec_data->mapsize = 1;
4266 }
4267
4268 newidx = sec_data->mapcount++;
4269
4270 if (sec_data->mapcount > sec_data->mapsize)
4271 {
4272 sec_data->mapsize *= 2;
4273 sec_data->map = bfd_realloc_or_free
4274 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4275 }
4276
4277 if (sec_data->map)
4278 {
4279 sec_data->map[newidx].vma = vma;
4280 sec_data->map[newidx].type = type;
4281 }
4282 }
4283
4284
4285 /* Initialise maps of insn/data for input BFDs. */
4286 void
4287 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4288 {
4289 Elf_Internal_Sym *isymbuf;
4290 Elf_Internal_Shdr *hdr;
4291 unsigned int i, localsyms;
4292
4293 /* Make sure that we are dealing with an AArch64 elf binary. */
4294 if (!is_aarch64_elf (abfd))
4295 return;
4296
4297 if ((abfd->flags & DYNAMIC) != 0)
4298 return;
4299
4300 hdr = &elf_symtab_hdr (abfd);
4301 localsyms = hdr->sh_info;
4302
4303 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4304 should contain the number of local symbols, which should come before any
4305 global symbols. Mapping symbols are always local. */
4306 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4307
4308 /* No internal symbols read? Skip this BFD. */
4309 if (isymbuf == NULL)
4310 return;
4311
4312 for (i = 0; i < localsyms; i++)
4313 {
4314 Elf_Internal_Sym *isym = &isymbuf[i];
4315 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4316 const char *name;
4317
4318 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4319 {
4320 name = bfd_elf_string_from_elf_section (abfd,
4321 hdr->sh_link,
4322 isym->st_name);
4323
4324 if (bfd_is_aarch64_special_symbol_name
4325 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4326 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4327 }
4328 }
4329 }
4330
4331 /* Set option values needed during linking. */
4332 void
4333 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4334 struct bfd_link_info *link_info,
4335 int no_enum_warn,
4336 int no_wchar_warn, int pic_veneer,
4337 int fix_erratum_835769,
4338 int fix_erratum_843419,
4339 int no_apply_dynamic_relocs)
4340 {
4341 struct elf_aarch64_link_hash_table *globals;
4342
4343 globals = elf_aarch64_hash_table (link_info);
4344 globals->pic_veneer = pic_veneer;
4345 globals->fix_erratum_835769 = fix_erratum_835769;
4346 globals->fix_erratum_843419 = fix_erratum_843419;
4347 globals->fix_erratum_843419_adr = TRUE;
4348 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4349
4350 BFD_ASSERT (is_aarch64_elf (output_bfd));
4351 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4352 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4353 }
4354
4355 static bfd_vma
4356 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4357 struct elf_aarch64_link_hash_table
4358 *globals, struct bfd_link_info *info,
4359 bfd_vma value, bfd *output_bfd,
4360 bfd_boolean *unresolved_reloc_p)
4361 {
4362 bfd_vma off = (bfd_vma) - 1;
4363 asection *basegot = globals->root.sgot;
4364 bfd_boolean dyn = globals->root.dynamic_sections_created;
4365
4366 if (h != NULL)
4367 {
4368 BFD_ASSERT (basegot != NULL);
4369 off = h->got.offset;
4370 BFD_ASSERT (off != (bfd_vma) - 1);
4371 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4372 || (bfd_link_pic (info)
4373 && SYMBOL_REFERENCES_LOCAL (info, h))
4374 || (ELF_ST_VISIBILITY (h->other)
4375 && h->root.type == bfd_link_hash_undefweak))
4376 {
4377 /* This is actually a static link, or it is a -Bsymbolic link
4378 and the symbol is defined locally. We must initialize this
4379 entry in the global offset table. Since the offset must
4380 always be a multiple of 8 (4 in the case of ILP32), we use
4381 the least significant bit to record whether we have
4382 initialized it already.
4383 When doing a dynamic link, we create a .rel(a).got relocation
4384 entry to initialize the value. This is done in the
4385 finish_dynamic_symbol routine. */
4386 if ((off & 1) != 0)
4387 off &= ~1;
4388 else
4389 {
4390 bfd_put_NN (output_bfd, value, basegot->contents + off);
4391 h->got.offset |= 1;
4392 }
4393 }
4394 else
4395 *unresolved_reloc_p = FALSE;
4396
4397 off = off + basegot->output_section->vma + basegot->output_offset;
4398 }
4399
4400 return off;
4401 }
4402
4403 /* Change R_TYPE to a more efficient access model where possible,
4404 return the new reloc type. */
4405
4406 static bfd_reloc_code_real_type
4407 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4408 struct elf_link_hash_entry *h)
4409 {
4410 bfd_boolean is_local = h == NULL;
4411
4412 switch (r_type)
4413 {
4414 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4415 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4416 return (is_local
4417 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4418 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4419
4420 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4421 return (is_local
4422 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4423 : r_type);
4424
4425 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4426 return (is_local
4427 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4428 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4429
4430 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4431 return (is_local
4432 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4433 : BFD_RELOC_AARCH64_NONE);
4434
4435 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4436 return (is_local
4437 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4438 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4439
4440 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4441 return (is_local
4442 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4443 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4444
4445 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4446 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4447 return (is_local
4448 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4449 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4450
4451 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4452 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4453
4454 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4455 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4456
4457 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4458 return r_type;
4459
4460 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4461 return (is_local
4462 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4463 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4464
4465 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4466 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4467 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4468 /* Instructions with these relocations will become NOPs. */
4469 return BFD_RELOC_AARCH64_NONE;
4470
4471 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4472 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4473 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4474 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4475
4476 #if ARCH_SIZE == 64
4477 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4478 return is_local
4479 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4480 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4481
4482 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4483 return is_local
4484 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4485 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4486 #endif
4487
4488 default:
4489 break;
4490 }
4491
4492 return r_type;
4493 }
4494
4495 static unsigned int
4496 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4497 {
4498 switch (r_type)
4499 {
4500 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4501 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4502 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4503 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4504 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4505 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4506 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4507 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4508 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4509 return GOT_NORMAL;
4510
4511 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4512 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4513 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4514 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4515 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4516 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4517 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4518 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4519 return GOT_TLS_GD;
4520
4521 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4522 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4523 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4524 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4525 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4526 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4527 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
4528 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4529 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4530 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4531 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4532 return GOT_TLSDESC_GD;
4533
4534 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4535 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4536 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4537 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4538 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4539 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4540 return GOT_TLS_IE;
4541
4542 default:
4543 break;
4544 }
4545 return GOT_UNKNOWN;
4546 }
4547
4548 static bfd_boolean
4549 aarch64_can_relax_tls (bfd *input_bfd,
4550 struct bfd_link_info *info,
4551 bfd_reloc_code_real_type r_type,
4552 struct elf_link_hash_entry *h,
4553 unsigned long r_symndx)
4554 {
4555 unsigned int symbol_got_type;
4556 unsigned int reloc_got_type;
4557
4558 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4559 return FALSE;
4560
4561 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4562 reloc_got_type = aarch64_reloc_got_type (r_type);
4563
4564 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4565 return TRUE;
4566
4567 if (bfd_link_pic (info))
4568 return FALSE;
4569
4570 if (h && h->root.type == bfd_link_hash_undefweak)
4571 return FALSE;
4572
4573 return TRUE;
4574 }
4575
4576 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4577 enumerator. */
4578
4579 static bfd_reloc_code_real_type
4580 aarch64_tls_transition (bfd *input_bfd,
4581 struct bfd_link_info *info,
4582 unsigned int r_type,
4583 struct elf_link_hash_entry *h,
4584 unsigned long r_symndx)
4585 {
4586 bfd_reloc_code_real_type bfd_r_type
4587 = elfNN_aarch64_bfd_reloc_from_type (r_type);
4588
4589 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4590 return bfd_r_type;
4591
4592 return aarch64_tls_transition_without_check (bfd_r_type, h);
4593 }
4594
4595 /* Return the base VMA address which should be subtracted from real addresses
4596 when resolving R_AARCH64_TLS_DTPREL relocation. */
4597
4598 static bfd_vma
4599 dtpoff_base (struct bfd_link_info *info)
4600 {
4601 /* If tls_sec is NULL, we should have signalled an error already. */
4602 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4603 return elf_hash_table (info)->tls_sec->vma;
4604 }
4605
4606 /* Return the base VMA address which should be subtracted from real addresses
4607 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4608
4609 static bfd_vma
4610 tpoff_base (struct bfd_link_info *info)
4611 {
4612 struct elf_link_hash_table *htab = elf_hash_table (info);
4613
4614 /* If tls_sec is NULL, we should have signalled an error already. */
4615 BFD_ASSERT (htab->tls_sec != NULL);
4616
4617 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4618 htab->tls_sec->alignment_power);
4619 return htab->tls_sec->vma - base;
4620 }
4621
4622 static bfd_vma *
4623 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4624 unsigned long r_symndx)
4625 {
4626 /* Calculate the address of the GOT entry for symbol
4627 referred to in h. */
4628 if (h != NULL)
4629 return &h->got.offset;
4630 else
4631 {
4632 /* local symbol */
4633 struct elf_aarch64_local_symbol *l;
4634
4635 l = elf_aarch64_locals (input_bfd);
4636 return &l[r_symndx].got_offset;
4637 }
4638 }
4639
4640 static void
4641 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4642 unsigned long r_symndx)
4643 {
4644 bfd_vma *p;
4645 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4646 *p |= 1;
4647 }
4648
4649 static int
4650 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4651 unsigned long r_symndx)
4652 {
4653 bfd_vma value;
4654 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4655 return value & 1;
4656 }
4657
4658 static bfd_vma
4659 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4660 unsigned long r_symndx)
4661 {
4662 bfd_vma value;
4663 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4664 value &= ~1;
4665 return value;
4666 }
4667
4668 static bfd_vma *
4669 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4670 unsigned long r_symndx)
4671 {
4672 /* Calculate the address of the GOT entry for symbol
4673 referred to in h. */
4674 if (h != NULL)
4675 {
4676 struct elf_aarch64_link_hash_entry *eh;
4677 eh = (struct elf_aarch64_link_hash_entry *) h;
4678 return &eh->tlsdesc_got_jump_table_offset;
4679 }
4680 else
4681 {
4682 /* local symbol */
4683 struct elf_aarch64_local_symbol *l;
4684
4685 l = elf_aarch64_locals (input_bfd);
4686 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4687 }
4688 }
4689
4690 static void
4691 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4692 unsigned long r_symndx)
4693 {
4694 bfd_vma *p;
4695 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4696 *p |= 1;
4697 }
4698
4699 static int
4700 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4701 struct elf_link_hash_entry *h,
4702 unsigned long r_symndx)
4703 {
4704 bfd_vma value;
4705 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4706 return value & 1;
4707 }
4708
4709 static bfd_vma
4710 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4711 unsigned long r_symndx)
4712 {
4713 bfd_vma value;
4714 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4715 value &= ~1;
4716 return value;
4717 }
4718
4719 /* Data for make_branch_to_erratum_835769_stub(). */
4720
4721 struct erratum_835769_branch_to_stub_data
4722 {
4723 struct bfd_link_info *info;
4724 asection *output_section;
4725 bfd_byte *contents;
4726 };
4727
4728 /* Helper to insert branches to erratum 835769 stubs in the right
4729 places for a particular section. */
4730
4731 static bfd_boolean
4732 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4733 void *in_arg)
4734 {
4735 struct elf_aarch64_stub_hash_entry *stub_entry;
4736 struct erratum_835769_branch_to_stub_data *data;
4737 bfd_byte *contents;
4738 unsigned long branch_insn = 0;
4739 bfd_vma veneered_insn_loc, veneer_entry_loc;
4740 bfd_signed_vma branch_offset;
4741 unsigned int target;
4742 bfd *abfd;
4743
4744 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4745 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4746
4747 if (stub_entry->target_section != data->output_section
4748 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4749 return TRUE;
4750
4751 contents = data->contents;
4752 veneered_insn_loc = stub_entry->target_section->output_section->vma
4753 + stub_entry->target_section->output_offset
4754 + stub_entry->target_value;
4755 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4756 + stub_entry->stub_sec->output_offset
4757 + stub_entry->stub_offset;
4758 branch_offset = veneer_entry_loc - veneered_insn_loc;
4759
4760 abfd = stub_entry->target_section->owner;
4761 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4762 (*_bfd_error_handler)
4763 (_("%B: error: Erratum 835769 stub out "
4764 "of range (input file too large)"), abfd);
4765
4766 target = stub_entry->target_value;
4767 branch_insn = 0x14000000;
4768 branch_offset >>= 2;
4769 branch_offset &= 0x3ffffff;
4770 branch_insn |= branch_offset;
4771 bfd_putl32 (branch_insn, &contents[target]);
4772
4773 return TRUE;
4774 }
4775
4776
4777 static bfd_boolean
4778 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4779 void *in_arg)
4780 {
4781 struct elf_aarch64_stub_hash_entry *stub_entry
4782 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4783 struct erratum_835769_branch_to_stub_data *data
4784 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4785 struct bfd_link_info *info;
4786 struct elf_aarch64_link_hash_table *htab;
4787 bfd_byte *contents;
4788 asection *section;
4789 bfd *abfd;
4790 bfd_vma place;
4791 uint32_t insn;
4792
4793 info = data->info;
4794 contents = data->contents;
4795 section = data->output_section;
4796
4797 htab = elf_aarch64_hash_table (info);
4798
4799 if (stub_entry->target_section != section
4800 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4801 return TRUE;
4802
4803 insn = bfd_getl32 (contents + stub_entry->target_value);
4804 bfd_putl32 (insn,
4805 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4806
4807 place = (section->output_section->vma + section->output_offset
4808 + stub_entry->adrp_offset);
4809 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4810
4811 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4812 abort ();
4813
4814 bfd_signed_vma imm =
4815 (_bfd_aarch64_sign_extend
4816 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4817 - (place & 0xfff));
4818
4819 if (htab->fix_erratum_843419_adr
4820 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4821 {
4822 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4823 | AARCH64_RT (insn));
4824 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4825 }
4826 else
4827 {
4828 bfd_vma veneered_insn_loc;
4829 bfd_vma veneer_entry_loc;
4830 bfd_signed_vma branch_offset;
4831 uint32_t branch_insn;
4832
4833 veneered_insn_loc = stub_entry->target_section->output_section->vma
4834 + stub_entry->target_section->output_offset
4835 + stub_entry->target_value;
4836 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4837 + stub_entry->stub_sec->output_offset
4838 + stub_entry->stub_offset;
4839 branch_offset = veneer_entry_loc - veneered_insn_loc;
4840
4841 abfd = stub_entry->target_section->owner;
4842 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4843 (*_bfd_error_handler)
4844 (_("%B: error: Erratum 843419 stub out "
4845 "of range (input file too large)"), abfd);
4846
4847 branch_insn = 0x14000000;
4848 branch_offset >>= 2;
4849 branch_offset &= 0x3ffffff;
4850 branch_insn |= branch_offset;
4851 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4852 }
4853 return TRUE;
4854 }
4855
4856
4857 static bfd_boolean
4858 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4859 struct bfd_link_info *link_info,
4860 asection *sec,
4861 bfd_byte *contents)
4862
4863 {
4864 struct elf_aarch64_link_hash_table *globals =
4865 elf_aarch64_hash_table (link_info);
4866
4867 if (globals == NULL)
4868 return FALSE;
4869
4870 /* Fix code to point to erratum 835769 stubs. */
4871 if (globals->fix_erratum_835769)
4872 {
4873 struct erratum_835769_branch_to_stub_data data;
4874
4875 data.info = link_info;
4876 data.output_section = sec;
4877 data.contents = contents;
4878 bfd_hash_traverse (&globals->stub_hash_table,
4879 make_branch_to_erratum_835769_stub, &data);
4880 }
4881
4882 if (globals->fix_erratum_843419)
4883 {
4884 struct erratum_835769_branch_to_stub_data data;
4885
4886 data.info = link_info;
4887 data.output_section = sec;
4888 data.contents = contents;
4889 bfd_hash_traverse (&globals->stub_hash_table,
4890 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4891 }
4892
4893 return FALSE;
4894 }
4895
4896 /* Perform a relocation as part of a final link. The input relocation type
4897 should be TLS relaxed. */
4898
4899 static bfd_reloc_status_type
4900 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
4901 bfd *input_bfd,
4902 bfd *output_bfd,
4903 asection *input_section,
4904 bfd_byte *contents,
4905 Elf_Internal_Rela *rel,
4906 bfd_vma value,
4907 struct bfd_link_info *info,
4908 asection *sym_sec,
4909 struct elf_link_hash_entry *h,
4910 bfd_boolean *unresolved_reloc_p,
4911 bfd_boolean save_addend,
4912 bfd_vma *saved_addend,
4913 Elf_Internal_Sym *sym)
4914 {
4915 Elf_Internal_Shdr *symtab_hdr;
4916 unsigned int r_type = howto->type;
4917 bfd_reloc_code_real_type bfd_r_type
4918 = elfNN_aarch64_bfd_reloc_from_howto (howto);
4919 unsigned long r_symndx;
4920 bfd_byte *hit_data = contents + rel->r_offset;
4921 bfd_vma place, off;
4922 bfd_signed_vma signed_addend;
4923 struct elf_aarch64_link_hash_table *globals;
4924 bfd_boolean weak_undef_p;
4925 asection *base_got;
4926
4927 globals = elf_aarch64_hash_table (info);
4928
4929 symtab_hdr = &elf_symtab_hdr (input_bfd);
4930
4931 BFD_ASSERT (is_aarch64_elf (input_bfd));
4932
4933 r_symndx = ELFNN_R_SYM (rel->r_info);
4934
4935 place = input_section->output_section->vma
4936 + input_section->output_offset + rel->r_offset;
4937
4938 /* Get addend, accumulating the addend for consecutive relocs
4939 which refer to the same offset. */
4940 signed_addend = saved_addend ? *saved_addend : 0;
4941 signed_addend += rel->r_addend;
4942
4943 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4944 : bfd_is_und_section (sym_sec));
4945
4946 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4947 it here if it is defined in a non-shared object. */
4948 if (h != NULL
4949 && h->type == STT_GNU_IFUNC
4950 && h->def_regular)
4951 {
4952 asection *plt;
4953 const char *name;
4954 bfd_vma addend = 0;
4955
4956 if ((input_section->flags & SEC_ALLOC) == 0
4957 || h->plt.offset == (bfd_vma) -1)
4958 abort ();
4959
4960 /* STT_GNU_IFUNC symbol must go through PLT. */
4961 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
4962 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
4963
4964 switch (bfd_r_type)
4965 {
4966 default:
4967 if (h->root.root.string)
4968 name = h->root.root.string;
4969 else
4970 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4971 NULL);
4972 (*_bfd_error_handler)
4973 (_("%B: relocation %s against STT_GNU_IFUNC "
4974 "symbol `%s' isn't handled by %s"), input_bfd,
4975 howto->name, name, __FUNCTION__);
4976 bfd_set_error (bfd_error_bad_value);
4977 return FALSE;
4978
4979 case BFD_RELOC_AARCH64_NN:
4980 if (rel->r_addend != 0)
4981 {
4982 if (h->root.root.string)
4983 name = h->root.root.string;
4984 else
4985 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4986 sym, NULL);
4987 (*_bfd_error_handler)
4988 (_("%B: relocation %s against STT_GNU_IFUNC "
4989 "symbol `%s' has non-zero addend: %d"),
4990 input_bfd, howto->name, name, rel->r_addend);
4991 bfd_set_error (bfd_error_bad_value);
4992 return FALSE;
4993 }
4994
4995 /* Generate dynamic relocation only when there is a
4996 non-GOT reference in a shared object. */
4997 if (bfd_link_pic (info) && h->non_got_ref)
4998 {
4999 Elf_Internal_Rela outrel;
5000 asection *sreloc;
5001
5002 /* Need a dynamic relocation to get the real function
5003 address. */
5004 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5005 info,
5006 input_section,
5007 rel->r_offset);
5008 if (outrel.r_offset == (bfd_vma) -1
5009 || outrel.r_offset == (bfd_vma) -2)
5010 abort ();
5011
5012 outrel.r_offset += (input_section->output_section->vma
5013 + input_section->output_offset);
5014
5015 if (h->dynindx == -1
5016 || h->forced_local
5017 || bfd_link_executable (info))
5018 {
5019 /* This symbol is resolved locally. */
5020 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5021 outrel.r_addend = (h->root.u.def.value
5022 + h->root.u.def.section->output_section->vma
5023 + h->root.u.def.section->output_offset);
5024 }
5025 else
5026 {
5027 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5028 outrel.r_addend = 0;
5029 }
5030
5031 sreloc = globals->root.irelifunc;
5032 elf_append_rela (output_bfd, sreloc, &outrel);
5033
5034 /* If this reloc is against an external symbol, we
5035 do not want to fiddle with the addend. Otherwise,
5036 we need to include the symbol value so that it
5037 becomes an addend for the dynamic reloc. For an
5038 internal symbol, we have updated addend. */
5039 return bfd_reloc_ok;
5040 }
5041 /* FALLTHROUGH */
5042 case BFD_RELOC_AARCH64_CALL26:
5043 case BFD_RELOC_AARCH64_JUMP26:
5044 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5045 signed_addend,
5046 weak_undef_p);
5047 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5048 howto, value);
5049 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5050 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5051 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5052 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5053 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5054 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5055 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5056 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5057 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5058 base_got = globals->root.sgot;
5059 off = h->got.offset;
5060
5061 if (base_got == NULL)
5062 abort ();
5063
5064 if (off == (bfd_vma) -1)
5065 {
5066 bfd_vma plt_index;
5067
5068 /* We can't use h->got.offset here to save state, or
5069 even just remember the offset, as finish_dynamic_symbol
5070 would use that as offset into .got. */
5071
5072 if (globals->root.splt != NULL)
5073 {
5074 plt_index = ((h->plt.offset - globals->plt_header_size) /
5075 globals->plt_entry_size);
5076 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5077 base_got = globals->root.sgotplt;
5078 }
5079 else
5080 {
5081 plt_index = h->plt.offset / globals->plt_entry_size;
5082 off = plt_index * GOT_ENTRY_SIZE;
5083 base_got = globals->root.igotplt;
5084 }
5085
5086 if (h->dynindx == -1
5087 || h->forced_local
5088 || info->symbolic)
5089 {
5090 /* This references the local definition. We must
5091 initialize this entry in the global offset table.
5092 Since the offset must always be a multiple of 8,
5093 we use the least significant bit to record
5094 whether we have initialized it already.
5095
5096 When doing a dynamic link, we create a .rela.got
5097 relocation entry to initialize the value. This
5098 is done in the finish_dynamic_symbol routine. */
5099 if ((off & 1) != 0)
5100 off &= ~1;
5101 else
5102 {
5103 bfd_put_NN (output_bfd, value,
5104 base_got->contents + off);
5105 /* Note that this is harmless as -1 | 1 still is -1. */
5106 h->got.offset |= 1;
5107 }
5108 }
5109 value = (base_got->output_section->vma
5110 + base_got->output_offset + off);
5111 }
5112 else
5113 value = aarch64_calculate_got_entry_vma (h, globals, info,
5114 value, output_bfd,
5115 unresolved_reloc_p);
5116
5117 switch (bfd_r_type)
5118 {
5119 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5120 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5121 addend = (globals->root.sgot->output_section->vma
5122 + globals->root.sgot->output_offset);
5123 break;
5124 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5125 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5126 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5127 value = (value - globals->root.sgot->output_section->vma
5128 - globals->root.sgot->output_offset);
5129 default:
5130 break;
5131 }
5132
5133 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5134 addend, weak_undef_p);
5135 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5136 case BFD_RELOC_AARCH64_ADD_LO12:
5137 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5138 break;
5139 }
5140 }
5141
5142 switch (bfd_r_type)
5143 {
5144 case BFD_RELOC_AARCH64_NONE:
5145 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5146 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5147 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5148 *unresolved_reloc_p = FALSE;
5149 return bfd_reloc_ok;
5150
5151 case BFD_RELOC_AARCH64_NN:
5152
5153 /* When generating a shared object or relocatable executable, these
5154 relocations are copied into the output file to be resolved at
5155 run time. */
5156 if (((bfd_link_pic (info) == TRUE)
5157 || globals->root.is_relocatable_executable)
5158 && (input_section->flags & SEC_ALLOC)
5159 && (h == NULL
5160 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5161 || h->root.type != bfd_link_hash_undefweak))
5162 {
5163 Elf_Internal_Rela outrel;
5164 bfd_byte *loc;
5165 bfd_boolean skip, relocate;
5166 asection *sreloc;
5167
5168 *unresolved_reloc_p = FALSE;
5169
5170 skip = FALSE;
5171 relocate = FALSE;
5172
5173 outrel.r_addend = signed_addend;
5174 outrel.r_offset =
5175 _bfd_elf_section_offset (output_bfd, info, input_section,
5176 rel->r_offset);
5177 if (outrel.r_offset == (bfd_vma) - 1)
5178 skip = TRUE;
5179 else if (outrel.r_offset == (bfd_vma) - 2)
5180 {
5181 skip = TRUE;
5182 relocate = TRUE;
5183 }
5184
5185 outrel.r_offset += (input_section->output_section->vma
5186 + input_section->output_offset);
5187
5188 if (skip)
5189 memset (&outrel, 0, sizeof outrel);
5190 else if (h != NULL
5191 && h->dynindx != -1
5192 && (!bfd_link_pic (info)
5193 || !SYMBOLIC_BIND (info, h)
5194 || !h->def_regular))
5195 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5196 else
5197 {
5198 int symbol;
5199
5200 /* On SVR4-ish systems, the dynamic loader cannot
5201 relocate the text and data segments independently,
5202 so the symbol does not matter. */
5203 symbol = 0;
5204 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5205 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5206 outrel.r_addend += value;
5207 }
5208
5209 sreloc = elf_section_data (input_section)->sreloc;
5210 if (sreloc == NULL || sreloc->contents == NULL)
5211 return bfd_reloc_notsupported;
5212
5213 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5214 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5215
5216 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5217 {
5218 /* Sanity to check that we have previously allocated
5219 sufficient space in the relocation section for the
5220 number of relocations we actually want to emit. */
5221 abort ();
5222 }
5223
5224 /* If this reloc is against an external symbol, we do not want to
5225 fiddle with the addend. Otherwise, we need to include the symbol
5226 value so that it becomes an addend for the dynamic reloc. */
5227 if (!relocate)
5228 return bfd_reloc_ok;
5229
5230 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5231 contents, rel->r_offset, value,
5232 signed_addend);
5233 }
5234 else
5235 value += signed_addend;
5236 break;
5237
5238 case BFD_RELOC_AARCH64_CALL26:
5239 case BFD_RELOC_AARCH64_JUMP26:
5240 {
5241 asection *splt = globals->root.splt;
5242 bfd_boolean via_plt_p =
5243 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5244
5245 /* A call to an undefined weak symbol is converted to a jump to
5246 the next instruction unless a PLT entry will be created.
5247 The jump to the next instruction is optimized as a NOP.
5248 Do the same for local undefined symbols. */
5249 if (weak_undef_p && ! via_plt_p)
5250 {
5251 bfd_putl32 (INSN_NOP, hit_data);
5252 return bfd_reloc_ok;
5253 }
5254
5255 /* If the call goes through a PLT entry, make sure to
5256 check distance to the right destination address. */
5257 if (via_plt_p)
5258 value = (splt->output_section->vma
5259 + splt->output_offset + h->plt.offset);
5260
5261 /* Check if a stub has to be inserted because the destination
5262 is too far away. */
5263 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5264
5265 /* If the branch destination is directed to plt stub, "value" will be
5266 the final destination, otherwise we should plus signed_addend, it may
5267 contain non-zero value, for example call to local function symbol
5268 which are turned into "sec_sym + sec_off", and sec_off is kept in
5269 signed_addend. */
5270 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5271 place))
5272 /* The target is out of reach, so redirect the branch to
5273 the local stub for this function. */
5274 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5275 rel, globals);
5276 if (stub_entry != NULL)
5277 {
5278 value = (stub_entry->stub_offset
5279 + stub_entry->stub_sec->output_offset
5280 + stub_entry->stub_sec->output_section->vma);
5281
5282 /* We have redirected the destination to stub entry address,
5283 so ignore any addend record in the original rela entry. */
5284 signed_addend = 0;
5285 }
5286 }
5287 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5288 signed_addend, weak_undef_p);
5289 *unresolved_reloc_p = FALSE;
5290 break;
5291
5292 case BFD_RELOC_AARCH64_16_PCREL:
5293 case BFD_RELOC_AARCH64_32_PCREL:
5294 case BFD_RELOC_AARCH64_64_PCREL:
5295 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5296 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5297 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5298 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5299 if (bfd_link_pic (info)
5300 && (input_section->flags & SEC_ALLOC) != 0
5301 && (input_section->flags & SEC_READONLY) != 0
5302 && h != NULL
5303 && !h->def_regular)
5304 {
5305 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5306
5307 (*_bfd_error_handler)
5308 (_("%B: relocation %s against external symbol `%s' can not be used"
5309 " when making a shared object; recompile with -fPIC"),
5310 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5311 h->root.root.string);
5312 bfd_set_error (bfd_error_bad_value);
5313 return FALSE;
5314 }
5315
5316 case BFD_RELOC_AARCH64_16:
5317 #if ARCH_SIZE == 64
5318 case BFD_RELOC_AARCH64_32:
5319 #endif
5320 case BFD_RELOC_AARCH64_ADD_LO12:
5321 case BFD_RELOC_AARCH64_BRANCH19:
5322 case BFD_RELOC_AARCH64_LDST128_LO12:
5323 case BFD_RELOC_AARCH64_LDST16_LO12:
5324 case BFD_RELOC_AARCH64_LDST32_LO12:
5325 case BFD_RELOC_AARCH64_LDST64_LO12:
5326 case BFD_RELOC_AARCH64_LDST8_LO12:
5327 case BFD_RELOC_AARCH64_MOVW_G0:
5328 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5329 case BFD_RELOC_AARCH64_MOVW_G0_S:
5330 case BFD_RELOC_AARCH64_MOVW_G1:
5331 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5332 case BFD_RELOC_AARCH64_MOVW_G1_S:
5333 case BFD_RELOC_AARCH64_MOVW_G2:
5334 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5335 case BFD_RELOC_AARCH64_MOVW_G2_S:
5336 case BFD_RELOC_AARCH64_MOVW_G3:
5337 case BFD_RELOC_AARCH64_TSTBR14:
5338 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5339 signed_addend, weak_undef_p);
5340 break;
5341
5342 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5343 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5344 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5345 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5346 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5347 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5348 if (globals->root.sgot == NULL)
5349 BFD_ASSERT (h != NULL);
5350
5351 if (h != NULL)
5352 {
5353 bfd_vma addend = 0;
5354 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5355 output_bfd,
5356 unresolved_reloc_p);
5357 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5358 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5359 addend = (globals->root.sgot->output_section->vma
5360 + globals->root.sgot->output_offset);
5361 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5362 addend, weak_undef_p);
5363 }
5364 else
5365 {
5366 bfd_vma addend = 0;
5367 struct elf_aarch64_local_symbol *locals
5368 = elf_aarch64_locals (input_bfd);
5369
5370 if (locals == NULL)
5371 {
5372 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5373 (*_bfd_error_handler)
5374 (_("%B: Local symbol descriptor table be NULL when applying "
5375 "relocation %s against local symbol"),
5376 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5377 abort ();
5378 }
5379
5380 off = symbol_got_offset (input_bfd, h, r_symndx);
5381 base_got = globals->root.sgot;
5382 bfd_vma got_entry_addr = (base_got->output_section->vma
5383 + base_got->output_offset + off);
5384
5385 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5386 {
5387 bfd_put_64 (output_bfd, value, base_got->contents + off);
5388
5389 if (bfd_link_pic (info))
5390 {
5391 asection *s;
5392 Elf_Internal_Rela outrel;
5393
5394 /* For local symbol, we have done absolute relocation in static
5395 linking stageh. While for share library, we need to update
5396 the content of GOT entry according to the share objects
5397 loading base address. So we need to generate a
5398 R_AARCH64_RELATIVE reloc for dynamic linker. */
5399 s = globals->root.srelgot;
5400 if (s == NULL)
5401 abort ();
5402
5403 outrel.r_offset = got_entry_addr;
5404 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5405 outrel.r_addend = value;
5406 elf_append_rela (output_bfd, s, &outrel);
5407 }
5408
5409 symbol_got_offset_mark (input_bfd, h, r_symndx);
5410 }
5411
5412 /* Update the relocation value to GOT entry addr as we have transformed
5413 the direct data access into indirect data access through GOT. */
5414 value = got_entry_addr;
5415
5416 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5417 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5418 addend = base_got->output_section->vma + base_got->output_offset;
5419
5420 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5421 addend, weak_undef_p);
5422 }
5423
5424 break;
5425
5426 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5427 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5428 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5429 if (h != NULL)
5430 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5431 output_bfd,
5432 unresolved_reloc_p);
5433 else
5434 {
5435 struct elf_aarch64_local_symbol *locals
5436 = elf_aarch64_locals (input_bfd);
5437
5438 if (locals == NULL)
5439 {
5440 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5441 (*_bfd_error_handler)
5442 (_("%B: Local symbol descriptor table be NULL when applying "
5443 "relocation %s against local symbol"),
5444 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5445 abort ();
5446 }
5447
5448 off = symbol_got_offset (input_bfd, h, r_symndx);
5449 base_got = globals->root.sgot;
5450 if (base_got == NULL)
5451 abort ();
5452
5453 bfd_vma got_entry_addr = (base_got->output_section->vma
5454 + base_got->output_offset + off);
5455
5456 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5457 {
5458 bfd_put_64 (output_bfd, value, base_got->contents + off);
5459
5460 if (bfd_link_pic (info))
5461 {
5462 asection *s;
5463 Elf_Internal_Rela outrel;
5464
5465 /* For local symbol, we have done absolute relocation in static
5466 linking stage. While for share library, we need to update
5467 the content of GOT entry according to the share objects
5468 loading base address. So we need to generate a
5469 R_AARCH64_RELATIVE reloc for dynamic linker. */
5470 s = globals->root.srelgot;
5471 if (s == NULL)
5472 abort ();
5473
5474 outrel.r_offset = got_entry_addr;
5475 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5476 outrel.r_addend = value;
5477 elf_append_rela (output_bfd, s, &outrel);
5478 }
5479
5480 symbol_got_offset_mark (input_bfd, h, r_symndx);
5481 }
5482 }
5483
5484 /* Update the relocation value to GOT entry addr as we have transformed
5485 the direct data access into indirect data access through GOT. */
5486 value = symbol_got_offset (input_bfd, h, r_symndx);
5487 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5488 0, weak_undef_p);
5489 *unresolved_reloc_p = FALSE;
5490 break;
5491
5492 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5493 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5494 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5495 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5496 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5497 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5498 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5499 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5500 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5501 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5502 if (globals->root.sgot == NULL)
5503 return bfd_reloc_notsupported;
5504
5505 value = (symbol_got_offset (input_bfd, h, r_symndx)
5506 + globals->root.sgot->output_section->vma
5507 + globals->root.sgot->output_offset);
5508
5509 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5510 0, weak_undef_p);
5511 *unresolved_reloc_p = FALSE;
5512 break;
5513
5514 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5515 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5516 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5517 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5518 if (globals->root.sgot == NULL)
5519 return bfd_reloc_notsupported;
5520
5521 value = symbol_got_offset (input_bfd, h, r_symndx);
5522 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5523 0, weak_undef_p);
5524 *unresolved_reloc_p = FALSE;
5525 break;
5526
5527 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5528 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5529 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5530 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5531 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5532 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5533 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5534 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5535 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5536 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5537 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5538 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5539 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5540 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5541 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5542 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5543 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5544 signed_addend - dtpoff_base (info),
5545 weak_undef_p);
5546 break;
5547
5548 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5549 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5550 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5551 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5552 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5553 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5554 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5555 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5556 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5557 signed_addend - tpoff_base (info),
5558 weak_undef_p);
5559 *unresolved_reloc_p = FALSE;
5560 break;
5561
5562 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5563 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5564 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5565 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5566 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
5567 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5568 if (globals->root.sgot == NULL)
5569 return bfd_reloc_notsupported;
5570 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5571 + globals->root.sgotplt->output_section->vma
5572 + globals->root.sgotplt->output_offset
5573 + globals->sgotplt_jump_table_size);
5574
5575 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5576 0, weak_undef_p);
5577 *unresolved_reloc_p = FALSE;
5578 break;
5579
5580 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5581 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5582 if (globals->root.sgot == NULL)
5583 return bfd_reloc_notsupported;
5584
5585 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5586 + globals->root.sgotplt->output_section->vma
5587 + globals->root.sgotplt->output_offset
5588 + globals->sgotplt_jump_table_size);
5589
5590 value -= (globals->root.sgot->output_section->vma
5591 + globals->root.sgot->output_offset);
5592
5593 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5594 0, weak_undef_p);
5595 *unresolved_reloc_p = FALSE;
5596 break;
5597
5598 default:
5599 return bfd_reloc_notsupported;
5600 }
5601
5602 if (saved_addend)
5603 *saved_addend = value;
5604
5605 /* Only apply the final relocation in a sequence. */
5606 if (save_addend)
5607 return bfd_reloc_continue;
5608
5609 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5610 howto, value);
5611 }
5612
5613 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5614 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5615 link.
5616
5617 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5618 is to then call final_link_relocate. Return other values in the
5619 case of error. */
5620
5621 static bfd_reloc_status_type
5622 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5623 bfd *input_bfd, bfd_byte *contents,
5624 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5625 {
5626 bfd_boolean is_local = h == NULL;
5627 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5628 unsigned long insn;
5629
5630 BFD_ASSERT (globals && input_bfd && contents && rel);
5631
5632 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5633 {
5634 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5635 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5636 if (is_local)
5637 {
5638 /* GD->LE relaxation:
5639 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
5640 or
5641 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
5642 */
5643 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5644 return bfd_reloc_continue;
5645 }
5646 else
5647 {
5648 /* GD->IE relaxation:
5649 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5650 or
5651 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5652 */
5653 return bfd_reloc_continue;
5654 }
5655
5656 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5657 BFD_ASSERT (0);
5658 break;
5659
5660 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5661 if (is_local)
5662 {
5663 /* Tiny TLSDESC->LE relaxation:
5664 ldr x1, :tlsdesc:var => movz x0, #:tprel_g1:var
5665 adr x0, :tlsdesc:var => movk x0, #:tprel_g0_nc:var
5666 .tlsdesccall var
5667 blr x1 => nop
5668 */
5669 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5670 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5671
5672 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5673 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5674 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5675
5676 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5677 bfd_putl32 (0xf2800000, contents + rel->r_offset + 4);
5678 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5679 return bfd_reloc_continue;
5680 }
5681 else
5682 {
5683 /* Tiny TLSDESC->IE relaxation:
5684 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5685 adr x0, :tlsdesc:var => nop
5686 .tlsdesccall var
5687 blr x1 => nop
5688 */
5689 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5690 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5691
5692 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5693 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5694
5695 bfd_putl32 (0x58000000, contents + rel->r_offset);
5696 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5697 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5698 return bfd_reloc_continue;
5699 }
5700
5701 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5702 if (is_local)
5703 {
5704 /* Tiny GD->LE relaxation:
5705 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5706 bl __tls_get_addr => add x0, x1, #:tprel_hi12:x, lsl #12
5707 nop => add x0, x0, #:tprel_lo12_nc:x
5708 */
5709
5710 /* First kill the tls_get_addr reloc on the bl instruction. */
5711 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5712
5713 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5714 bfd_putl32 (0x91400020, contents + rel->r_offset + 4);
5715 bfd_putl32 (0x91000000, contents + rel->r_offset + 8);
5716
5717 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5718 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5719 rel[1].r_offset = rel->r_offset + 8;
5720
5721 /* Move the current relocation to the second instruction in
5722 the sequence. */
5723 rel->r_offset += 4;
5724 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5725 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5726 return bfd_reloc_continue;
5727 }
5728 else
5729 {
5730 /* Tiny GD->IE relaxation:
5731 adr x0, :tlsgd:var => ldr x0, :gottprel:var
5732 bl __tls_get_addr => mrs x1, tpidr_el0
5733 nop => add x0, x0, x1
5734 */
5735
5736 /* First kill the tls_get_addr reloc on the bl instruction. */
5737 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5738 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5739
5740 bfd_putl32 (0x58000000, contents + rel->r_offset);
5741 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5742 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5743 return bfd_reloc_continue;
5744 }
5745
5746 #if ARCH_SIZE == 64
5747 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5748 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
5749 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
5750 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
5751
5752 if (is_local)
5753 {
5754 /* Large GD->LE relaxation:
5755 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
5756 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5757 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
5758 bl __tls_get_addr => mrs x1, tpidr_el0
5759 nop => add x0, x0, x1
5760 */
5761 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5762 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5763 rel[2].r_offset = rel->r_offset + 8;
5764
5765 bfd_putl32 (0xd2c00000, contents + rel->r_offset + 0);
5766 bfd_putl32 (0xf2a00000, contents + rel->r_offset + 4);
5767 bfd_putl32 (0xf2800000, contents + rel->r_offset + 8);
5768 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5769 bfd_putl32 (0x8b000020, contents + rel->r_offset + 16);
5770 }
5771 else
5772 {
5773 /* Large GD->IE relaxation:
5774 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
5775 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
5776 add x0, gp, x0 => ldr x0, [gp, x0]
5777 bl __tls_get_addr => mrs x1, tpidr_el0
5778 nop => add x0, x0, x1
5779 */
5780 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5781 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
5782 bfd_putl32 (0x58000000, contents + rel->r_offset + 8);
5783 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5784 bfd_putl32 (0x8b000020, contents + rel->r_offset + 16);
5785 }
5786 return bfd_reloc_continue;
5787
5788 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5789 return bfd_reloc_continue;
5790 #endif
5791
5792 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5793 return bfd_reloc_continue;
5794
5795 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
5796 if (is_local)
5797 {
5798 /* GD->LE relaxation:
5799 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5800 */
5801 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5802 return bfd_reloc_continue;
5803 }
5804 else
5805 {
5806 /* GD->IE relaxation:
5807 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
5808 */
5809 insn = bfd_getl32 (contents + rel->r_offset);
5810 insn &= 0xffffffe0;
5811 bfd_putl32 (insn, contents + rel->r_offset);
5812 return bfd_reloc_continue;
5813 }
5814
5815 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5816 if (is_local)
5817 {
5818 /* GD->LE relaxation
5819 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
5820 bl __tls_get_addr => mrs x1, tpidr_el0
5821 nop => add x0, x1, x0
5822 */
5823
5824 /* First kill the tls_get_addr reloc on the bl instruction. */
5825 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5826 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5827
5828 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5829 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5830 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5831 return bfd_reloc_continue;
5832 }
5833 else
5834 {
5835 /* GD->IE relaxation
5836 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
5837 BL __tls_get_addr => mrs x1, tpidr_el0
5838 R_AARCH64_CALL26
5839 NOP => add x0, x1, x0
5840 */
5841
5842 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5843
5844 /* Remove the relocation on the BL instruction. */
5845 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5846
5847 bfd_putl32 (0xf9400000, contents + rel->r_offset);
5848
5849 /* We choose to fixup the BL and NOP instructions using the
5850 offset from the second relocation to allow flexibility in
5851 scheduling instructions between the ADD and BL. */
5852 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
5853 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
5854 return bfd_reloc_continue;
5855 }
5856
5857 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5858 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5859 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5860 /* GD->IE/LE relaxation:
5861 add x0, x0, #:tlsdesc_lo12:var => nop
5862 blr xd => nop
5863 */
5864 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5865 return bfd_reloc_ok;
5866
5867 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5868 if (is_local)
5869 {
5870 /* GD->LE relaxation:
5871 ldr xd, [gp, xn] => movk x0, #:tprel_g0_nc:var
5872 */
5873 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5874 return bfd_reloc_continue;
5875 }
5876 else
5877 {
5878 /* GD->IE relaxation:
5879 ldr xd, [gp, xn] => ldr x0, [gp, xn]
5880 */
5881 insn = bfd_getl32 (contents + rel->r_offset);
5882 insn &= 0xffffffe0;
5883 bfd_putl32 (insn, contents + rel->r_offset);
5884 return bfd_reloc_ok;
5885 }
5886
5887 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5888 /* GD->LE relaxation:
5889 movk xd, #:tlsdesc_off_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5890 GD->IE relaxation:
5891 movk xd, #:tlsdesc_off_g0_nc:var => movk xd, #:gottprel_g0_nc:var
5892 */
5893 if (is_local)
5894 bfd_putl32 (0xf2a00000, contents + rel->r_offset);
5895 return bfd_reloc_continue;
5896
5897 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5898 if (is_local)
5899 {
5900 /* GD->LE relaxation:
5901 movz xd, #:tlsdesc_off_g1:var => movz x0, #:tprel_g2:var, lsl #32
5902 */
5903 bfd_putl32 (0xd2c00000, contents + rel->r_offset);
5904 return bfd_reloc_continue;
5905 }
5906 else
5907 {
5908 /* GD->IE relaxation:
5909 movz xd, #:tlsdesc_off_g1:var => movz xd, #:gottprel_g1:var, lsl #16
5910 */
5911 insn = bfd_getl32 (contents + rel->r_offset);
5912 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5913 return bfd_reloc_continue;
5914 }
5915
5916 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5917 /* IE->LE relaxation:
5918 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
5919 */
5920 if (is_local)
5921 {
5922 insn = bfd_getl32 (contents + rel->r_offset);
5923 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5924 }
5925 return bfd_reloc_continue;
5926
5927 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
5928 /* IE->LE relaxation:
5929 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
5930 */
5931 if (is_local)
5932 {
5933 insn = bfd_getl32 (contents + rel->r_offset);
5934 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
5935 }
5936 return bfd_reloc_continue;
5937
5938 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5939 /* LD->LE relaxation (tiny):
5940 adr x0, :tlsldm:x => mrs x0, tpidr_el0
5941 bl __tls_get_addr => add x0, x0, TCB_SIZE
5942 */
5943 if (is_local)
5944 {
5945 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5946 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5947 /* No need of CALL26 relocation for tls_get_addr. */
5948 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5949 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
5950 bfd_putl32 (0x91004000, contents + rel->r_offset + 4);
5951 return bfd_reloc_ok;
5952 }
5953 return bfd_reloc_continue;
5954
5955 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5956 /* LD->LE relaxation (small):
5957 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
5958 */
5959 if (is_local)
5960 {
5961 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
5962 return bfd_reloc_ok;
5963 }
5964 return bfd_reloc_continue;
5965
5966 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5967 /* LD->LE relaxation (small):
5968 add x0, #:tlsldm_lo12:x => add x0, x0, TCB_SIZE
5969 bl __tls_get_addr => nop
5970 */
5971 if (is_local)
5972 {
5973 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5974 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5975 /* No need of CALL26 relocation for tls_get_addr. */
5976 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5977 bfd_putl32 (0x91004000, contents + rel->r_offset + 0);
5978 bfd_putl32 (0xd503201f, contents + rel->r_offset + 4);
5979 return bfd_reloc_ok;
5980 }
5981 return bfd_reloc_continue;
5982
5983 default:
5984 return bfd_reloc_continue;
5985 }
5986
5987 return bfd_reloc_ok;
5988 }
5989
5990 /* Relocate an AArch64 ELF section. */
5991
5992 static bfd_boolean
5993 elfNN_aarch64_relocate_section (bfd *output_bfd,
5994 struct bfd_link_info *info,
5995 bfd *input_bfd,
5996 asection *input_section,
5997 bfd_byte *contents,
5998 Elf_Internal_Rela *relocs,
5999 Elf_Internal_Sym *local_syms,
6000 asection **local_sections)
6001 {
6002 Elf_Internal_Shdr *symtab_hdr;
6003 struct elf_link_hash_entry **sym_hashes;
6004 Elf_Internal_Rela *rel;
6005 Elf_Internal_Rela *relend;
6006 const char *name;
6007 struct elf_aarch64_link_hash_table *globals;
6008 bfd_boolean save_addend = FALSE;
6009 bfd_vma addend = 0;
6010
6011 globals = elf_aarch64_hash_table (info);
6012
6013 symtab_hdr = &elf_symtab_hdr (input_bfd);
6014 sym_hashes = elf_sym_hashes (input_bfd);
6015
6016 rel = relocs;
6017 relend = relocs + input_section->reloc_count;
6018 for (; rel < relend; rel++)
6019 {
6020 unsigned int r_type;
6021 bfd_reloc_code_real_type bfd_r_type;
6022 bfd_reloc_code_real_type relaxed_bfd_r_type;
6023 reloc_howto_type *howto;
6024 unsigned long r_symndx;
6025 Elf_Internal_Sym *sym;
6026 asection *sec;
6027 struct elf_link_hash_entry *h;
6028 bfd_vma relocation;
6029 bfd_reloc_status_type r;
6030 arelent bfd_reloc;
6031 char sym_type;
6032 bfd_boolean unresolved_reloc = FALSE;
6033 char *error_message = NULL;
6034
6035 r_symndx = ELFNN_R_SYM (rel->r_info);
6036 r_type = ELFNN_R_TYPE (rel->r_info);
6037
6038 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
6039 howto = bfd_reloc.howto;
6040
6041 if (howto == NULL)
6042 {
6043 (*_bfd_error_handler)
6044 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
6045 input_bfd, input_section, r_type);
6046 return FALSE;
6047 }
6048 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6049
6050 h = NULL;
6051 sym = NULL;
6052 sec = NULL;
6053
6054 if (r_symndx < symtab_hdr->sh_info)
6055 {
6056 sym = local_syms + r_symndx;
6057 sym_type = ELFNN_ST_TYPE (sym->st_info);
6058 sec = local_sections[r_symndx];
6059
6060 /* An object file might have a reference to a local
6061 undefined symbol. This is a daft object file, but we
6062 should at least do something about it. */
6063 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6064 && bfd_is_und_section (sec)
6065 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6066 {
6067 if (!info->callbacks->undefined_symbol
6068 (info, bfd_elf_string_from_elf_section
6069 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6070 input_bfd, input_section, rel->r_offset, TRUE))
6071 return FALSE;
6072 }
6073
6074 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6075
6076 /* Relocate against local STT_GNU_IFUNC symbol. */
6077 if (!bfd_link_relocatable (info)
6078 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6079 {
6080 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6081 rel, FALSE);
6082 if (h == NULL)
6083 abort ();
6084
6085 /* Set STT_GNU_IFUNC symbol value. */
6086 h->root.u.def.value = sym->st_value;
6087 h->root.u.def.section = sec;
6088 }
6089 }
6090 else
6091 {
6092 bfd_boolean warned, ignored;
6093
6094 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6095 r_symndx, symtab_hdr, sym_hashes,
6096 h, sec, relocation,
6097 unresolved_reloc, warned, ignored);
6098
6099 sym_type = h->type;
6100 }
6101
6102 if (sec != NULL && discarded_section (sec))
6103 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6104 rel, 1, relend, howto, 0, contents);
6105
6106 if (bfd_link_relocatable (info))
6107 continue;
6108
6109 if (h != NULL)
6110 name = h->root.root.string;
6111 else
6112 {
6113 name = (bfd_elf_string_from_elf_section
6114 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6115 if (name == NULL || *name == '\0')
6116 name = bfd_section_name (input_bfd, sec);
6117 }
6118
6119 if (r_symndx != 0
6120 && r_type != R_AARCH64_NONE
6121 && r_type != R_AARCH64_NULL
6122 && (h == NULL
6123 || h->root.type == bfd_link_hash_defined
6124 || h->root.type == bfd_link_hash_defweak)
6125 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6126 {
6127 (*_bfd_error_handler)
6128 ((sym_type == STT_TLS
6129 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
6130 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
6131 input_bfd,
6132 input_section, (long) rel->r_offset, howto->name, name);
6133 }
6134
6135 /* We relax only if we can see that there can be a valid transition
6136 from a reloc type to another.
6137 We call elfNN_aarch64_final_link_relocate unless we're completely
6138 done, i.e., the relaxation produced the final output we want. */
6139
6140 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6141 h, r_symndx);
6142 if (relaxed_bfd_r_type != bfd_r_type)
6143 {
6144 bfd_r_type = relaxed_bfd_r_type;
6145 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6146 BFD_ASSERT (howto != NULL);
6147 r_type = howto->type;
6148 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
6149 unresolved_reloc = 0;
6150 }
6151 else
6152 r = bfd_reloc_continue;
6153
6154 /* There may be multiple consecutive relocations for the
6155 same offset. In that case we are supposed to treat the
6156 output of each relocation as the addend for the next. */
6157 if (rel + 1 < relend
6158 && rel->r_offset == rel[1].r_offset
6159 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6160 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6161 save_addend = TRUE;
6162 else
6163 save_addend = FALSE;
6164
6165 if (r == bfd_reloc_continue)
6166 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6167 input_section, contents, rel,
6168 relocation, info, sec,
6169 h, &unresolved_reloc,
6170 save_addend, &addend, sym);
6171
6172 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
6173 {
6174 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6175 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6176 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6177 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6178 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6179 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6180 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6181 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6182 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6183 {
6184 bfd_boolean need_relocs = FALSE;
6185 bfd_byte *loc;
6186 int indx;
6187 bfd_vma off;
6188
6189 off = symbol_got_offset (input_bfd, h, r_symndx);
6190 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6191
6192 need_relocs =
6193 (bfd_link_pic (info) || indx != 0) &&
6194 (h == NULL
6195 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6196 || h->root.type != bfd_link_hash_undefweak);
6197
6198 BFD_ASSERT (globals->root.srelgot != NULL);
6199
6200 if (need_relocs)
6201 {
6202 Elf_Internal_Rela rela;
6203 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6204 rela.r_addend = 0;
6205 rela.r_offset = globals->root.sgot->output_section->vma +
6206 globals->root.sgot->output_offset + off;
6207
6208
6209 loc = globals->root.srelgot->contents;
6210 loc += globals->root.srelgot->reloc_count++
6211 * RELOC_SIZE (htab);
6212 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6213
6214 bfd_reloc_code_real_type real_type =
6215 elfNN_aarch64_bfd_reloc_from_type (r_type);
6216
6217 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6218 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6219 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6220 {
6221 /* For local dynamic, don't generate DTPREL in any case.
6222 Initialize the DTPREL slot into zero, so we get module
6223 base address when invoke runtime TLS resolver. */
6224 bfd_put_NN (output_bfd, 0,
6225 globals->root.sgot->contents + off
6226 + GOT_ENTRY_SIZE);
6227 }
6228 else if (indx == 0)
6229 {
6230 bfd_put_NN (output_bfd,
6231 relocation - dtpoff_base (info),
6232 globals->root.sgot->contents + off
6233 + GOT_ENTRY_SIZE);
6234 }
6235 else
6236 {
6237 /* This TLS symbol is global. We emit a
6238 relocation to fixup the tls offset at load
6239 time. */
6240 rela.r_info =
6241 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6242 rela.r_addend = 0;
6243 rela.r_offset =
6244 (globals->root.sgot->output_section->vma
6245 + globals->root.sgot->output_offset + off
6246 + GOT_ENTRY_SIZE);
6247
6248 loc = globals->root.srelgot->contents;
6249 loc += globals->root.srelgot->reloc_count++
6250 * RELOC_SIZE (globals);
6251 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6252 bfd_put_NN (output_bfd, (bfd_vma) 0,
6253 globals->root.sgot->contents + off
6254 + GOT_ENTRY_SIZE);
6255 }
6256 }
6257 else
6258 {
6259 bfd_put_NN (output_bfd, (bfd_vma) 1,
6260 globals->root.sgot->contents + off);
6261 bfd_put_NN (output_bfd,
6262 relocation - dtpoff_base (info),
6263 globals->root.sgot->contents + off
6264 + GOT_ENTRY_SIZE);
6265 }
6266
6267 symbol_got_offset_mark (input_bfd, h, r_symndx);
6268 }
6269 break;
6270
6271 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6272 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6273 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6274 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6275 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6276 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6277 {
6278 bfd_boolean need_relocs = FALSE;
6279 bfd_byte *loc;
6280 int indx;
6281 bfd_vma off;
6282
6283 off = symbol_got_offset (input_bfd, h, r_symndx);
6284
6285 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6286
6287 need_relocs =
6288 (bfd_link_pic (info) || indx != 0) &&
6289 (h == NULL
6290 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6291 || h->root.type != bfd_link_hash_undefweak);
6292
6293 BFD_ASSERT (globals->root.srelgot != NULL);
6294
6295 if (need_relocs)
6296 {
6297 Elf_Internal_Rela rela;
6298
6299 if (indx == 0)
6300 rela.r_addend = relocation - dtpoff_base (info);
6301 else
6302 rela.r_addend = 0;
6303
6304 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6305 rela.r_offset = globals->root.sgot->output_section->vma +
6306 globals->root.sgot->output_offset + off;
6307
6308 loc = globals->root.srelgot->contents;
6309 loc += globals->root.srelgot->reloc_count++
6310 * RELOC_SIZE (htab);
6311
6312 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6313
6314 bfd_put_NN (output_bfd, rela.r_addend,
6315 globals->root.sgot->contents + off);
6316 }
6317 else
6318 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6319 globals->root.sgot->contents + off);
6320
6321 symbol_got_offset_mark (input_bfd, h, r_symndx);
6322 }
6323 break;
6324
6325 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6326 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6327 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6328 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6329 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6330 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6331 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6332 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6333 {
6334 bfd_boolean need_relocs = FALSE;
6335 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6336 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6337
6338 need_relocs = (h == NULL
6339 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6340 || h->root.type != bfd_link_hash_undefweak);
6341
6342 BFD_ASSERT (globals->root.srelgot != NULL);
6343 BFD_ASSERT (globals->root.sgot != NULL);
6344
6345 if (need_relocs)
6346 {
6347 bfd_byte *loc;
6348 Elf_Internal_Rela rela;
6349 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6350
6351 rela.r_addend = 0;
6352 rela.r_offset = (globals->root.sgotplt->output_section->vma
6353 + globals->root.sgotplt->output_offset
6354 + off + globals->sgotplt_jump_table_size);
6355
6356 if (indx == 0)
6357 rela.r_addend = relocation - dtpoff_base (info);
6358
6359 /* Allocate the next available slot in the PLT reloc
6360 section to hold our R_AARCH64_TLSDESC, the next
6361 available slot is determined from reloc_count,
6362 which we step. But note, reloc_count was
6363 artifically moved down while allocating slots for
6364 real PLT relocs such that all of the PLT relocs
6365 will fit above the initial reloc_count and the
6366 extra stuff will fit below. */
6367 loc = globals->root.srelplt->contents;
6368 loc += globals->root.srelplt->reloc_count++
6369 * RELOC_SIZE (globals);
6370
6371 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6372
6373 bfd_put_NN (output_bfd, (bfd_vma) 0,
6374 globals->root.sgotplt->contents + off +
6375 globals->sgotplt_jump_table_size);
6376 bfd_put_NN (output_bfd, (bfd_vma) 0,
6377 globals->root.sgotplt->contents + off +
6378 globals->sgotplt_jump_table_size +
6379 GOT_ENTRY_SIZE);
6380 }
6381
6382 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6383 }
6384 break;
6385 default:
6386 break;
6387 }
6388
6389 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6390 because such sections are not SEC_ALLOC and thus ld.so will
6391 not process them. */
6392 if (unresolved_reloc
6393 && !((input_section->flags & SEC_DEBUGGING) != 0
6394 && h->def_dynamic)
6395 && _bfd_elf_section_offset (output_bfd, info, input_section,
6396 +rel->r_offset) != (bfd_vma) - 1)
6397 {
6398 (*_bfd_error_handler)
6399 (_
6400 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6401 input_bfd, input_section, (long) rel->r_offset, howto->name,
6402 h->root.root.string);
6403 return FALSE;
6404 }
6405
6406 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6407 {
6408 bfd_reloc_code_real_type real_r_type
6409 = elfNN_aarch64_bfd_reloc_from_type (r_type);
6410
6411 switch (r)
6412 {
6413 case bfd_reloc_overflow:
6414 if (!(*info->callbacks->reloc_overflow)
6415 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6416 input_bfd, input_section, rel->r_offset))
6417 return FALSE;
6418 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6419 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6420 {
6421 (*info->callbacks->warning)
6422 (info,
6423 _("Too many GOT entries for -fpic, "
6424 "please recompile with -fPIC"),
6425 name, input_bfd, input_section, rel->r_offset);
6426 return FALSE;
6427 }
6428 /* Overflow can occur when a variable is referenced with a type
6429 that has a larger alignment than the type with which it was
6430 declared. eg:
6431 file1.c: extern int foo; int a (void) { return foo; }
6432 file2.c: char bar, foo, baz;
6433 If the variable is placed into a data section at an offset
6434 that is incompatible with the larger alignment requirement
6435 overflow will occur. (Strictly speaking this is not overflow
6436 but rather an alignment problem, but the bfd_reloc_ error
6437 enum does not have a value to cover that situation).
6438
6439 Try to catch this situation here and provide a more helpful
6440 error message to the user. */
6441 if (addend & ((1 << howto->rightshift) - 1)
6442 /* FIXME: Are we testing all of the appropriate reloc
6443 types here ? */
6444 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6445 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6446 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6447 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6448 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6449 {
6450 info->callbacks->warning
6451 (info, _("One possible cause of this error is that the \
6452 symbol is being referenced in the indicated code as if it had a larger \
6453 alignment than was declared where it was defined."),
6454 name, input_bfd, input_section, rel->r_offset);
6455 }
6456 break;
6457
6458 case bfd_reloc_undefined:
6459 if (!((*info->callbacks->undefined_symbol)
6460 (info, name, input_bfd, input_section,
6461 rel->r_offset, TRUE)))
6462 return FALSE;
6463 break;
6464
6465 case bfd_reloc_outofrange:
6466 error_message = _("out of range");
6467 goto common_error;
6468
6469 case bfd_reloc_notsupported:
6470 error_message = _("unsupported relocation");
6471 goto common_error;
6472
6473 case bfd_reloc_dangerous:
6474 /* error_message should already be set. */
6475 goto common_error;
6476
6477 default:
6478 error_message = _("unknown error");
6479 /* Fall through. */
6480
6481 common_error:
6482 BFD_ASSERT (error_message != NULL);
6483 if (!((*info->callbacks->reloc_dangerous)
6484 (info, error_message, input_bfd, input_section,
6485 rel->r_offset)))
6486 return FALSE;
6487 break;
6488 }
6489 }
6490
6491 if (!save_addend)
6492 addend = 0;
6493 }
6494
6495 return TRUE;
6496 }
6497
6498 /* Set the right machine number. */
6499
6500 static bfd_boolean
6501 elfNN_aarch64_object_p (bfd *abfd)
6502 {
6503 #if ARCH_SIZE == 32
6504 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6505 #else
6506 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6507 #endif
6508 return TRUE;
6509 }
6510
6511 /* Function to keep AArch64 specific flags in the ELF header. */
6512
6513 static bfd_boolean
6514 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6515 {
6516 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6517 {
6518 }
6519 else
6520 {
6521 elf_elfheader (abfd)->e_flags = flags;
6522 elf_flags_init (abfd) = TRUE;
6523 }
6524
6525 return TRUE;
6526 }
6527
6528 /* Merge backend specific data from an object file to the output
6529 object file when linking. */
6530
6531 static bfd_boolean
6532 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
6533 {
6534 flagword out_flags;
6535 flagword in_flags;
6536 bfd_boolean flags_compatible = TRUE;
6537 asection *sec;
6538
6539 /* Check if we have the same endianess. */
6540 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
6541 return FALSE;
6542
6543 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6544 return TRUE;
6545
6546 /* The input BFD must have had its flags initialised. */
6547 /* The following seems bogus to me -- The flags are initialized in
6548 the assembler but I don't think an elf_flags_init field is
6549 written into the object. */
6550 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6551
6552 in_flags = elf_elfheader (ibfd)->e_flags;
6553 out_flags = elf_elfheader (obfd)->e_flags;
6554
6555 if (!elf_flags_init (obfd))
6556 {
6557 /* If the input is the default architecture and had the default
6558 flags then do not bother setting the flags for the output
6559 architecture, instead allow future merges to do this. If no
6560 future merges ever set these flags then they will retain their
6561 uninitialised values, which surprise surprise, correspond
6562 to the default values. */
6563 if (bfd_get_arch_info (ibfd)->the_default
6564 && elf_elfheader (ibfd)->e_flags == 0)
6565 return TRUE;
6566
6567 elf_flags_init (obfd) = TRUE;
6568 elf_elfheader (obfd)->e_flags = in_flags;
6569
6570 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6571 && bfd_get_arch_info (obfd)->the_default)
6572 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6573 bfd_get_mach (ibfd));
6574
6575 return TRUE;
6576 }
6577
6578 /* Identical flags must be compatible. */
6579 if (in_flags == out_flags)
6580 return TRUE;
6581
6582 /* Check to see if the input BFD actually contains any sections. If
6583 not, its flags may not have been initialised either, but it
6584 cannot actually cause any incompatiblity. Do not short-circuit
6585 dynamic objects; their section list may be emptied by
6586 elf_link_add_object_symbols.
6587
6588 Also check to see if there are no code sections in the input.
6589 In this case there is no need to check for code specific flags.
6590 XXX - do we need to worry about floating-point format compatability
6591 in data sections ? */
6592 if (!(ibfd->flags & DYNAMIC))
6593 {
6594 bfd_boolean null_input_bfd = TRUE;
6595 bfd_boolean only_data_sections = TRUE;
6596
6597 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6598 {
6599 if ((bfd_get_section_flags (ibfd, sec)
6600 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6601 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6602 only_data_sections = FALSE;
6603
6604 null_input_bfd = FALSE;
6605 break;
6606 }
6607
6608 if (null_input_bfd || only_data_sections)
6609 return TRUE;
6610 }
6611
6612 return flags_compatible;
6613 }
6614
6615 /* Display the flags field. */
6616
6617 static bfd_boolean
6618 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
6619 {
6620 FILE *file = (FILE *) ptr;
6621 unsigned long flags;
6622
6623 BFD_ASSERT (abfd != NULL && ptr != NULL);
6624
6625 /* Print normal ELF private data. */
6626 _bfd_elf_print_private_bfd_data (abfd, ptr);
6627
6628 flags = elf_elfheader (abfd)->e_flags;
6629 /* Ignore init flag - it may not be set, despite the flags field
6630 containing valid data. */
6631
6632 /* xgettext:c-format */
6633 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6634
6635 if (flags)
6636 fprintf (file, _("<Unrecognised flag bits set>"));
6637
6638 fputc ('\n', file);
6639
6640 return TRUE;
6641 }
6642
6643 /* Update the got entry reference counts for the section being removed. */
6644
6645 static bfd_boolean
6646 elfNN_aarch64_gc_sweep_hook (bfd *abfd,
6647 struct bfd_link_info *info,
6648 asection *sec,
6649 const Elf_Internal_Rela * relocs)
6650 {
6651 struct elf_aarch64_link_hash_table *htab;
6652 Elf_Internal_Shdr *symtab_hdr;
6653 struct elf_link_hash_entry **sym_hashes;
6654 struct elf_aarch64_local_symbol *locals;
6655 const Elf_Internal_Rela *rel, *relend;
6656
6657 if (bfd_link_relocatable (info))
6658 return TRUE;
6659
6660 htab = elf_aarch64_hash_table (info);
6661
6662 if (htab == NULL)
6663 return FALSE;
6664
6665 elf_section_data (sec)->local_dynrel = NULL;
6666
6667 symtab_hdr = &elf_symtab_hdr (abfd);
6668 sym_hashes = elf_sym_hashes (abfd);
6669
6670 locals = elf_aarch64_locals (abfd);
6671
6672 relend = relocs + sec->reloc_count;
6673 for (rel = relocs; rel < relend; rel++)
6674 {
6675 unsigned long r_symndx;
6676 unsigned int r_type;
6677 struct elf_link_hash_entry *h = NULL;
6678
6679 r_symndx = ELFNN_R_SYM (rel->r_info);
6680
6681 if (r_symndx >= symtab_hdr->sh_info)
6682 {
6683
6684 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6685 while (h->root.type == bfd_link_hash_indirect
6686 || h->root.type == bfd_link_hash_warning)
6687 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6688 }
6689 else
6690 {
6691 Elf_Internal_Sym *isym;
6692
6693 /* A local symbol. */
6694 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6695 abfd, r_symndx);
6696
6697 /* Check relocation against local STT_GNU_IFUNC symbol. */
6698 if (isym != NULL
6699 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6700 {
6701 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6702 if (h == NULL)
6703 abort ();
6704 }
6705 }
6706
6707 if (h)
6708 {
6709 struct elf_aarch64_link_hash_entry *eh;
6710 struct elf_dyn_relocs **pp;
6711 struct elf_dyn_relocs *p;
6712
6713 eh = (struct elf_aarch64_link_hash_entry *) h;
6714
6715 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6716 if (p->sec == sec)
6717 {
6718 /* Everything must go for SEC. */
6719 *pp = p->next;
6720 break;
6721 }
6722 }
6723
6724 r_type = ELFNN_R_TYPE (rel->r_info);
6725 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
6726 {
6727 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6728 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6729 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6730 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6731 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6732 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6733 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6734 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
6735 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
6736 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6737 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6738 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6739 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6740 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6741 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6742 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6743 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6744 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6745 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6746 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6747 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6748 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6749 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6750 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6751 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6752 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6753 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6754 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6755 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6756 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6757 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6758 if (h != NULL)
6759 {
6760 if (h->got.refcount > 0)
6761 h->got.refcount -= 1;
6762
6763 if (h->type == STT_GNU_IFUNC)
6764 {
6765 if (h->plt.refcount > 0)
6766 h->plt.refcount -= 1;
6767 }
6768 }
6769 else if (locals != NULL)
6770 {
6771 if (locals[r_symndx].got_refcount > 0)
6772 locals[r_symndx].got_refcount -= 1;
6773 }
6774 break;
6775
6776 case BFD_RELOC_AARCH64_CALL26:
6777 case BFD_RELOC_AARCH64_JUMP26:
6778 /* If this is a local symbol then we resolve it
6779 directly without creating a PLT entry. */
6780 if (h == NULL)
6781 continue;
6782
6783 if (h->plt.refcount > 0)
6784 h->plt.refcount -= 1;
6785 break;
6786
6787 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6788 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6789 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6790 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6791 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6792 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6793 case BFD_RELOC_AARCH64_MOVW_G3:
6794 case BFD_RELOC_AARCH64_NN:
6795 if (h != NULL && bfd_link_executable (info))
6796 {
6797 if (h->plt.refcount > 0)
6798 h->plt.refcount -= 1;
6799 }
6800 break;
6801
6802 default:
6803 break;
6804 }
6805 }
6806
6807 return TRUE;
6808 }
6809
6810 /* Adjust a symbol defined by a dynamic object and referenced by a
6811 regular object. The current definition is in some section of the
6812 dynamic object, but we're not including those sections. We have to
6813 change the definition to something the rest of the link can
6814 understand. */
6815
6816 static bfd_boolean
6817 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
6818 struct elf_link_hash_entry *h)
6819 {
6820 struct elf_aarch64_link_hash_table *htab;
6821 asection *s;
6822
6823 /* If this is a function, put it in the procedure linkage table. We
6824 will fill in the contents of the procedure linkage table later,
6825 when we know the address of the .got section. */
6826 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
6827 {
6828 if (h->plt.refcount <= 0
6829 || (h->type != STT_GNU_IFUNC
6830 && (SYMBOL_CALLS_LOCAL (info, h)
6831 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6832 && h->root.type == bfd_link_hash_undefweak))))
6833 {
6834 /* This case can occur if we saw a CALL26 reloc in
6835 an input file, but the symbol wasn't referred to
6836 by a dynamic object or all references were
6837 garbage collected. In which case we can end up
6838 resolving. */
6839 h->plt.offset = (bfd_vma) - 1;
6840 h->needs_plt = 0;
6841 }
6842
6843 return TRUE;
6844 }
6845 else
6846 /* Otherwise, reset to -1. */
6847 h->plt.offset = (bfd_vma) - 1;
6848
6849
6850 /* If this is a weak symbol, and there is a real definition, the
6851 processor independent code will have arranged for us to see the
6852 real definition first, and we can just use the same value. */
6853 if (h->u.weakdef != NULL)
6854 {
6855 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6856 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6857 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6858 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6859 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6860 h->non_got_ref = h->u.weakdef->non_got_ref;
6861 return TRUE;
6862 }
6863
6864 /* If we are creating a shared library, we must presume that the
6865 only references to the symbol are via the global offset table.
6866 For such cases we need not do anything here; the relocations will
6867 be handled correctly by relocate_section. */
6868 if (bfd_link_pic (info))
6869 return TRUE;
6870
6871 /* If there are no references to this symbol that do not use the
6872 GOT, we don't need to generate a copy reloc. */
6873 if (!h->non_got_ref)
6874 return TRUE;
6875
6876 /* If -z nocopyreloc was given, we won't generate them either. */
6877 if (info->nocopyreloc)
6878 {
6879 h->non_got_ref = 0;
6880 return TRUE;
6881 }
6882
6883 /* We must allocate the symbol in our .dynbss section, which will
6884 become part of the .bss section of the executable. There will be
6885 an entry for this symbol in the .dynsym section. The dynamic
6886 object will contain position independent code, so all references
6887 from the dynamic object to this symbol will go through the global
6888 offset table. The dynamic linker will use the .dynsym entry to
6889 determine the address it must put in the global offset table, so
6890 both the dynamic object and the regular object will refer to the
6891 same memory location for the variable. */
6892
6893 htab = elf_aarch64_hash_table (info);
6894
6895 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6896 to copy the initial value out of the dynamic object and into the
6897 runtime process image. */
6898 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6899 {
6900 htab->srelbss->size += RELOC_SIZE (htab);
6901 h->needs_copy = 1;
6902 }
6903
6904 s = htab->sdynbss;
6905
6906 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6907
6908 }
6909
6910 static bfd_boolean
6911 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
6912 {
6913 struct elf_aarch64_local_symbol *locals;
6914 locals = elf_aarch64_locals (abfd);
6915 if (locals == NULL)
6916 {
6917 locals = (struct elf_aarch64_local_symbol *)
6918 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
6919 if (locals == NULL)
6920 return FALSE;
6921 elf_aarch64_locals (abfd) = locals;
6922 }
6923 return TRUE;
6924 }
6925
6926 /* Create the .got section to hold the global offset table. */
6927
6928 static bfd_boolean
6929 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
6930 {
6931 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6932 flagword flags;
6933 asection *s;
6934 struct elf_link_hash_entry *h;
6935 struct elf_link_hash_table *htab = elf_hash_table (info);
6936
6937 /* This function may be called more than once. */
6938 s = bfd_get_linker_section (abfd, ".got");
6939 if (s != NULL)
6940 return TRUE;
6941
6942 flags = bed->dynamic_sec_flags;
6943
6944 s = bfd_make_section_anyway_with_flags (abfd,
6945 (bed->rela_plts_and_copies_p
6946 ? ".rela.got" : ".rel.got"),
6947 (bed->dynamic_sec_flags
6948 | SEC_READONLY));
6949 if (s == NULL
6950 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6951 return FALSE;
6952 htab->srelgot = s;
6953
6954 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
6955 if (s == NULL
6956 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6957 return FALSE;
6958 htab->sgot = s;
6959 htab->sgot->size += GOT_ENTRY_SIZE;
6960
6961 if (bed->want_got_sym)
6962 {
6963 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
6964 (or .got.plt) section. We don't do this in the linker script
6965 because we don't want to define the symbol if we are not creating
6966 a global offset table. */
6967 h = _bfd_elf_define_linkage_sym (abfd, info, s,
6968 "_GLOBAL_OFFSET_TABLE_");
6969 elf_hash_table (info)->hgot = h;
6970 if (h == NULL)
6971 return FALSE;
6972 }
6973
6974 if (bed->want_got_plt)
6975 {
6976 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
6977 if (s == NULL
6978 || !bfd_set_section_alignment (abfd, s,
6979 bed->s->log_file_align))
6980 return FALSE;
6981 htab->sgotplt = s;
6982 }
6983
6984 /* The first bit of the global offset table is the header. */
6985 s->size += bed->got_header_size;
6986
6987 return TRUE;
6988 }
6989
6990 /* Look through the relocs for a section during the first phase. */
6991
6992 static bfd_boolean
6993 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
6994 asection *sec, const Elf_Internal_Rela *relocs)
6995 {
6996 Elf_Internal_Shdr *symtab_hdr;
6997 struct elf_link_hash_entry **sym_hashes;
6998 const Elf_Internal_Rela *rel;
6999 const Elf_Internal_Rela *rel_end;
7000 asection *sreloc;
7001
7002 struct elf_aarch64_link_hash_table *htab;
7003
7004 if (bfd_link_relocatable (info))
7005 return TRUE;
7006
7007 BFD_ASSERT (is_aarch64_elf (abfd));
7008
7009 htab = elf_aarch64_hash_table (info);
7010 sreloc = NULL;
7011
7012 symtab_hdr = &elf_symtab_hdr (abfd);
7013 sym_hashes = elf_sym_hashes (abfd);
7014
7015 rel_end = relocs + sec->reloc_count;
7016 for (rel = relocs; rel < rel_end; rel++)
7017 {
7018 struct elf_link_hash_entry *h;
7019 unsigned long r_symndx;
7020 unsigned int r_type;
7021 bfd_reloc_code_real_type bfd_r_type;
7022 Elf_Internal_Sym *isym;
7023
7024 r_symndx = ELFNN_R_SYM (rel->r_info);
7025 r_type = ELFNN_R_TYPE (rel->r_info);
7026
7027 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7028 {
7029 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
7030 r_symndx);
7031 return FALSE;
7032 }
7033
7034 if (r_symndx < symtab_hdr->sh_info)
7035 {
7036 /* A local symbol. */
7037 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7038 abfd, r_symndx);
7039 if (isym == NULL)
7040 return FALSE;
7041
7042 /* Check relocation against local STT_GNU_IFUNC symbol. */
7043 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7044 {
7045 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7046 TRUE);
7047 if (h == NULL)
7048 return FALSE;
7049
7050 /* Fake a STT_GNU_IFUNC symbol. */
7051 h->type = STT_GNU_IFUNC;
7052 h->def_regular = 1;
7053 h->ref_regular = 1;
7054 h->forced_local = 1;
7055 h->root.type = bfd_link_hash_defined;
7056 }
7057 else
7058 h = NULL;
7059 }
7060 else
7061 {
7062 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7063 while (h->root.type == bfd_link_hash_indirect
7064 || h->root.type == bfd_link_hash_warning)
7065 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7066
7067 /* PR15323, ref flags aren't set for references in the same
7068 object. */
7069 h->root.non_ir_ref = 1;
7070 }
7071
7072 /* Could be done earlier, if h were already available. */
7073 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7074
7075 if (h != NULL)
7076 {
7077 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7078 This shows up in particular in an R_AARCH64_PREL64 in large model
7079 when calculating the pc-relative address to .got section which is
7080 used to initialize the gp register. */
7081 if (h->root.root.string
7082 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7083 {
7084 if (htab->root.dynobj == NULL)
7085 htab->root.dynobj = abfd;
7086
7087 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7088 return FALSE;
7089
7090 BFD_ASSERT (h == htab->root.hgot);
7091 }
7092
7093 /* Create the ifunc sections for static executables. If we
7094 never see an indirect function symbol nor we are building
7095 a static executable, those sections will be empty and
7096 won't appear in output. */
7097 switch (bfd_r_type)
7098 {
7099 default:
7100 break;
7101
7102 case BFD_RELOC_AARCH64_ADD_LO12:
7103 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7104 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7105 case BFD_RELOC_AARCH64_CALL26:
7106 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7107 case BFD_RELOC_AARCH64_JUMP26:
7108 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7109 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7110 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7111 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7112 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7113 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7114 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7115 case BFD_RELOC_AARCH64_NN:
7116 if (htab->root.dynobj == NULL)
7117 htab->root.dynobj = abfd;
7118 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7119 return FALSE;
7120 break;
7121 }
7122
7123 /* It is referenced by a non-shared object. */
7124 h->ref_regular = 1;
7125 h->root.non_ir_ref = 1;
7126 }
7127
7128 switch (bfd_r_type)
7129 {
7130 case BFD_RELOC_AARCH64_NN:
7131
7132 /* We don't need to handle relocs into sections not going into
7133 the "real" output. */
7134 if ((sec->flags & SEC_ALLOC) == 0)
7135 break;
7136
7137 if (h != NULL)
7138 {
7139 if (!bfd_link_pic (info))
7140 h->non_got_ref = 1;
7141
7142 h->plt.refcount += 1;
7143 h->pointer_equality_needed = 1;
7144 }
7145
7146 /* No need to do anything if we're not creating a shared
7147 object. */
7148 if (! bfd_link_pic (info))
7149 break;
7150
7151 {
7152 struct elf_dyn_relocs *p;
7153 struct elf_dyn_relocs **head;
7154
7155 /* We must copy these reloc types into the output file.
7156 Create a reloc section in dynobj and make room for
7157 this reloc. */
7158 if (sreloc == NULL)
7159 {
7160 if (htab->root.dynobj == NULL)
7161 htab->root.dynobj = abfd;
7162
7163 sreloc = _bfd_elf_make_dynamic_reloc_section
7164 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7165
7166 if (sreloc == NULL)
7167 return FALSE;
7168 }
7169
7170 /* If this is a global symbol, we count the number of
7171 relocations we need for this symbol. */
7172 if (h != NULL)
7173 {
7174 struct elf_aarch64_link_hash_entry *eh;
7175 eh = (struct elf_aarch64_link_hash_entry *) h;
7176 head = &eh->dyn_relocs;
7177 }
7178 else
7179 {
7180 /* Track dynamic relocs needed for local syms too.
7181 We really need local syms available to do this
7182 easily. Oh well. */
7183
7184 asection *s;
7185 void **vpp;
7186
7187 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7188 abfd, r_symndx);
7189 if (isym == NULL)
7190 return FALSE;
7191
7192 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7193 if (s == NULL)
7194 s = sec;
7195
7196 /* Beware of type punned pointers vs strict aliasing
7197 rules. */
7198 vpp = &(elf_section_data (s)->local_dynrel);
7199 head = (struct elf_dyn_relocs **) vpp;
7200 }
7201
7202 p = *head;
7203 if (p == NULL || p->sec != sec)
7204 {
7205 bfd_size_type amt = sizeof *p;
7206 p = ((struct elf_dyn_relocs *)
7207 bfd_zalloc (htab->root.dynobj, amt));
7208 if (p == NULL)
7209 return FALSE;
7210 p->next = *head;
7211 *head = p;
7212 p->sec = sec;
7213 }
7214
7215 p->count += 1;
7216
7217 }
7218 break;
7219
7220 /* RR: We probably want to keep a consistency check that
7221 there are no dangling GOT_PAGE relocs. */
7222 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7223 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7224 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7225 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7226 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7227 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7228 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7229 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7230 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7231 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7232 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7233 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7234 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7235 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
7236 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7237 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7238 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7239 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7240 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7241 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7242 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7243 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7244 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7245 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7246 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7247 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7248 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7249 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7250 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7251 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7252 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7253 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7254 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7255 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7256 {
7257 unsigned got_type;
7258 unsigned old_got_type;
7259
7260 got_type = aarch64_reloc_got_type (bfd_r_type);
7261
7262 if (h)
7263 {
7264 h->got.refcount += 1;
7265 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7266 }
7267 else
7268 {
7269 struct elf_aarch64_local_symbol *locals;
7270
7271 if (!elfNN_aarch64_allocate_local_symbols
7272 (abfd, symtab_hdr->sh_info))
7273 return FALSE;
7274
7275 locals = elf_aarch64_locals (abfd);
7276 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7277 locals[r_symndx].got_refcount += 1;
7278 old_got_type = locals[r_symndx].got_type;
7279 }
7280
7281 /* If a variable is accessed with both general dynamic TLS
7282 methods, two slots may be created. */
7283 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7284 got_type |= old_got_type;
7285
7286 /* We will already have issued an error message if there
7287 is a TLS/non-TLS mismatch, based on the symbol type.
7288 So just combine any TLS types needed. */
7289 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7290 && got_type != GOT_NORMAL)
7291 got_type |= old_got_type;
7292
7293 /* If the symbol is accessed by both IE and GD methods, we
7294 are able to relax. Turn off the GD flag, without
7295 messing up with any other kind of TLS types that may be
7296 involved. */
7297 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7298 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7299
7300 if (old_got_type != got_type)
7301 {
7302 if (h != NULL)
7303 elf_aarch64_hash_entry (h)->got_type = got_type;
7304 else
7305 {
7306 struct elf_aarch64_local_symbol *locals;
7307 locals = elf_aarch64_locals (abfd);
7308 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7309 locals[r_symndx].got_type = got_type;
7310 }
7311 }
7312
7313 if (htab->root.dynobj == NULL)
7314 htab->root.dynobj = abfd;
7315 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7316 return FALSE;
7317 break;
7318 }
7319
7320 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7321 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7322 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7323 case BFD_RELOC_AARCH64_MOVW_G3:
7324 if (bfd_link_pic (info))
7325 {
7326 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7327 (*_bfd_error_handler)
7328 (_("%B: relocation %s against `%s' can not be used when making "
7329 "a shared object; recompile with -fPIC"),
7330 abfd, elfNN_aarch64_howto_table[howto_index].name,
7331 (h) ? h->root.root.string : "a local symbol");
7332 bfd_set_error (bfd_error_bad_value);
7333 return FALSE;
7334 }
7335
7336 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7337 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7338 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7339 if (h != NULL && bfd_link_executable (info))
7340 {
7341 /* If this reloc is in a read-only section, we might
7342 need a copy reloc. We can't check reliably at this
7343 stage whether the section is read-only, as input
7344 sections have not yet been mapped to output sections.
7345 Tentatively set the flag for now, and correct in
7346 adjust_dynamic_symbol. */
7347 h->non_got_ref = 1;
7348 h->plt.refcount += 1;
7349 h->pointer_equality_needed = 1;
7350 }
7351 /* FIXME:: RR need to handle these in shared libraries
7352 and essentially bomb out as these being non-PIC
7353 relocations in shared libraries. */
7354 break;
7355
7356 case BFD_RELOC_AARCH64_CALL26:
7357 case BFD_RELOC_AARCH64_JUMP26:
7358 /* If this is a local symbol then we resolve it
7359 directly without creating a PLT entry. */
7360 if (h == NULL)
7361 continue;
7362
7363 h->needs_plt = 1;
7364 if (h->plt.refcount <= 0)
7365 h->plt.refcount = 1;
7366 else
7367 h->plt.refcount += 1;
7368 break;
7369
7370 default:
7371 break;
7372 }
7373 }
7374
7375 return TRUE;
7376 }
7377
7378 /* Treat mapping symbols as special target symbols. */
7379
7380 static bfd_boolean
7381 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7382 asymbol *sym)
7383 {
7384 return bfd_is_aarch64_special_symbol_name (sym->name,
7385 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7386 }
7387
7388 /* This is a copy of elf_find_function () from elf.c except that
7389 AArch64 mapping symbols are ignored when looking for function names. */
7390
7391 static bfd_boolean
7392 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7393 asymbol **symbols,
7394 asection *section,
7395 bfd_vma offset,
7396 const char **filename_ptr,
7397 const char **functionname_ptr)
7398 {
7399 const char *filename = NULL;
7400 asymbol *func = NULL;
7401 bfd_vma low_func = 0;
7402 asymbol **p;
7403
7404 for (p = symbols; *p != NULL; p++)
7405 {
7406 elf_symbol_type *q;
7407
7408 q = (elf_symbol_type *) * p;
7409
7410 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7411 {
7412 default:
7413 break;
7414 case STT_FILE:
7415 filename = bfd_asymbol_name (&q->symbol);
7416 break;
7417 case STT_FUNC:
7418 case STT_NOTYPE:
7419 /* Skip mapping symbols. */
7420 if ((q->symbol.flags & BSF_LOCAL)
7421 && (bfd_is_aarch64_special_symbol_name
7422 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7423 continue;
7424 /* Fall through. */
7425 if (bfd_get_section (&q->symbol) == section
7426 && q->symbol.value >= low_func && q->symbol.value <= offset)
7427 {
7428 func = (asymbol *) q;
7429 low_func = q->symbol.value;
7430 }
7431 break;
7432 }
7433 }
7434
7435 if (func == NULL)
7436 return FALSE;
7437
7438 if (filename_ptr)
7439 *filename_ptr = filename;
7440 if (functionname_ptr)
7441 *functionname_ptr = bfd_asymbol_name (func);
7442
7443 return TRUE;
7444 }
7445
7446
7447 /* Find the nearest line to a particular section and offset, for error
7448 reporting. This code is a duplicate of the code in elf.c, except
7449 that it uses aarch64_elf_find_function. */
7450
7451 static bfd_boolean
7452 elfNN_aarch64_find_nearest_line (bfd *abfd,
7453 asymbol **symbols,
7454 asection *section,
7455 bfd_vma offset,
7456 const char **filename_ptr,
7457 const char **functionname_ptr,
7458 unsigned int *line_ptr,
7459 unsigned int *discriminator_ptr)
7460 {
7461 bfd_boolean found = FALSE;
7462
7463 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7464 filename_ptr, functionname_ptr,
7465 line_ptr, discriminator_ptr,
7466 dwarf_debug_sections, 0,
7467 &elf_tdata (abfd)->dwarf2_find_line_info))
7468 {
7469 if (!*functionname_ptr)
7470 aarch64_elf_find_function (abfd, symbols, section, offset,
7471 *filename_ptr ? NULL : filename_ptr,
7472 functionname_ptr);
7473
7474 return TRUE;
7475 }
7476
7477 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7478 toolchain uses DWARF1. */
7479
7480 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7481 &found, filename_ptr,
7482 functionname_ptr, line_ptr,
7483 &elf_tdata (abfd)->line_info))
7484 return FALSE;
7485
7486 if (found && (*functionname_ptr || *line_ptr))
7487 return TRUE;
7488
7489 if (symbols == NULL)
7490 return FALSE;
7491
7492 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7493 filename_ptr, functionname_ptr))
7494 return FALSE;
7495
7496 *line_ptr = 0;
7497 return TRUE;
7498 }
7499
7500 static bfd_boolean
7501 elfNN_aarch64_find_inliner_info (bfd *abfd,
7502 const char **filename_ptr,
7503 const char **functionname_ptr,
7504 unsigned int *line_ptr)
7505 {
7506 bfd_boolean found;
7507 found = _bfd_dwarf2_find_inliner_info
7508 (abfd, filename_ptr,
7509 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7510 return found;
7511 }
7512
7513
7514 static void
7515 elfNN_aarch64_post_process_headers (bfd *abfd,
7516 struct bfd_link_info *link_info)
7517 {
7518 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7519
7520 i_ehdrp = elf_elfheader (abfd);
7521 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7522
7523 _bfd_elf_post_process_headers (abfd, link_info);
7524 }
7525
7526 static enum elf_reloc_type_class
7527 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7528 const asection *rel_sec ATTRIBUTE_UNUSED,
7529 const Elf_Internal_Rela *rela)
7530 {
7531 switch ((int) ELFNN_R_TYPE (rela->r_info))
7532 {
7533 case AARCH64_R (RELATIVE):
7534 return reloc_class_relative;
7535 case AARCH64_R (JUMP_SLOT):
7536 return reloc_class_plt;
7537 case AARCH64_R (COPY):
7538 return reloc_class_copy;
7539 default:
7540 return reloc_class_normal;
7541 }
7542 }
7543
7544 /* Handle an AArch64 specific section when reading an object file. This is
7545 called when bfd_section_from_shdr finds a section with an unknown
7546 type. */
7547
7548 static bfd_boolean
7549 elfNN_aarch64_section_from_shdr (bfd *abfd,
7550 Elf_Internal_Shdr *hdr,
7551 const char *name, int shindex)
7552 {
7553 /* There ought to be a place to keep ELF backend specific flags, but
7554 at the moment there isn't one. We just keep track of the
7555 sections by their name, instead. Fortunately, the ABI gives
7556 names for all the AArch64 specific sections, so we will probably get
7557 away with this. */
7558 switch (hdr->sh_type)
7559 {
7560 case SHT_AARCH64_ATTRIBUTES:
7561 break;
7562
7563 default:
7564 return FALSE;
7565 }
7566
7567 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7568 return FALSE;
7569
7570 return TRUE;
7571 }
7572
7573 /* A structure used to record a list of sections, independently
7574 of the next and prev fields in the asection structure. */
7575 typedef struct section_list
7576 {
7577 asection *sec;
7578 struct section_list *next;
7579 struct section_list *prev;
7580 }
7581 section_list;
7582
7583 /* Unfortunately we need to keep a list of sections for which
7584 an _aarch64_elf_section_data structure has been allocated. This
7585 is because it is possible for functions like elfNN_aarch64_write_section
7586 to be called on a section which has had an elf_data_structure
7587 allocated for it (and so the used_by_bfd field is valid) but
7588 for which the AArch64 extended version of this structure - the
7589 _aarch64_elf_section_data structure - has not been allocated. */
7590 static section_list *sections_with_aarch64_elf_section_data = NULL;
7591
7592 static void
7593 record_section_with_aarch64_elf_section_data (asection *sec)
7594 {
7595 struct section_list *entry;
7596
7597 entry = bfd_malloc (sizeof (*entry));
7598 if (entry == NULL)
7599 return;
7600 entry->sec = sec;
7601 entry->next = sections_with_aarch64_elf_section_data;
7602 entry->prev = NULL;
7603 if (entry->next != NULL)
7604 entry->next->prev = entry;
7605 sections_with_aarch64_elf_section_data = entry;
7606 }
7607
7608 static struct section_list *
7609 find_aarch64_elf_section_entry (asection *sec)
7610 {
7611 struct section_list *entry;
7612 static struct section_list *last_entry = NULL;
7613
7614 /* This is a short cut for the typical case where the sections are added
7615 to the sections_with_aarch64_elf_section_data list in forward order and
7616 then looked up here in backwards order. This makes a real difference
7617 to the ld-srec/sec64k.exp linker test. */
7618 entry = sections_with_aarch64_elf_section_data;
7619 if (last_entry != NULL)
7620 {
7621 if (last_entry->sec == sec)
7622 entry = last_entry;
7623 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7624 entry = last_entry->next;
7625 }
7626
7627 for (; entry; entry = entry->next)
7628 if (entry->sec == sec)
7629 break;
7630
7631 if (entry)
7632 /* Record the entry prior to this one - it is the entry we are
7633 most likely to want to locate next time. Also this way if we
7634 have been called from
7635 unrecord_section_with_aarch64_elf_section_data () we will not
7636 be caching a pointer that is about to be freed. */
7637 last_entry = entry->prev;
7638
7639 return entry;
7640 }
7641
7642 static void
7643 unrecord_section_with_aarch64_elf_section_data (asection *sec)
7644 {
7645 struct section_list *entry;
7646
7647 entry = find_aarch64_elf_section_entry (sec);
7648
7649 if (entry)
7650 {
7651 if (entry->prev != NULL)
7652 entry->prev->next = entry->next;
7653 if (entry->next != NULL)
7654 entry->next->prev = entry->prev;
7655 if (entry == sections_with_aarch64_elf_section_data)
7656 sections_with_aarch64_elf_section_data = entry->next;
7657 free (entry);
7658 }
7659 }
7660
7661
7662 typedef struct
7663 {
7664 void *finfo;
7665 struct bfd_link_info *info;
7666 asection *sec;
7667 int sec_shndx;
7668 int (*func) (void *, const char *, Elf_Internal_Sym *,
7669 asection *, struct elf_link_hash_entry *);
7670 } output_arch_syminfo;
7671
7672 enum map_symbol_type
7673 {
7674 AARCH64_MAP_INSN,
7675 AARCH64_MAP_DATA
7676 };
7677
7678
7679 /* Output a single mapping symbol. */
7680
7681 static bfd_boolean
7682 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
7683 enum map_symbol_type type, bfd_vma offset)
7684 {
7685 static const char *names[2] = { "$x", "$d" };
7686 Elf_Internal_Sym sym;
7687
7688 sym.st_value = (osi->sec->output_section->vma
7689 + osi->sec->output_offset + offset);
7690 sym.st_size = 0;
7691 sym.st_other = 0;
7692 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7693 sym.st_shndx = osi->sec_shndx;
7694 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7695 }
7696
7697 /* Output a single local symbol for a generated stub. */
7698
7699 static bfd_boolean
7700 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
7701 bfd_vma offset, bfd_vma size)
7702 {
7703 Elf_Internal_Sym sym;
7704
7705 sym.st_value = (osi->sec->output_section->vma
7706 + osi->sec->output_offset + offset);
7707 sym.st_size = size;
7708 sym.st_other = 0;
7709 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7710 sym.st_shndx = osi->sec_shndx;
7711 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7712 }
7713
7714 static bfd_boolean
7715 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7716 {
7717 struct elf_aarch64_stub_hash_entry *stub_entry;
7718 asection *stub_sec;
7719 bfd_vma addr;
7720 char *stub_name;
7721 output_arch_syminfo *osi;
7722
7723 /* Massage our args to the form they really have. */
7724 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
7725 osi = (output_arch_syminfo *) in_arg;
7726
7727 stub_sec = stub_entry->stub_sec;
7728
7729 /* Ensure this stub is attached to the current section being
7730 processed. */
7731 if (stub_sec != osi->sec)
7732 return TRUE;
7733
7734 addr = (bfd_vma) stub_entry->stub_offset;
7735
7736 stub_name = stub_entry->output_name;
7737
7738 switch (stub_entry->stub_type)
7739 {
7740 case aarch64_stub_adrp_branch:
7741 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7742 sizeof (aarch64_adrp_branch_stub)))
7743 return FALSE;
7744 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7745 return FALSE;
7746 break;
7747 case aarch64_stub_long_branch:
7748 if (!elfNN_aarch64_output_stub_sym
7749 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7750 return FALSE;
7751 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7752 return FALSE;
7753 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
7754 return FALSE;
7755 break;
7756 case aarch64_stub_erratum_835769_veneer:
7757 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7758 sizeof (aarch64_erratum_835769_stub)))
7759 return FALSE;
7760 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7761 return FALSE;
7762 break;
7763 case aarch64_stub_erratum_843419_veneer:
7764 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7765 sizeof (aarch64_erratum_843419_stub)))
7766 return FALSE;
7767 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7768 return FALSE;
7769 break;
7770
7771 default:
7772 abort ();
7773 }
7774
7775 return TRUE;
7776 }
7777
7778 /* Output mapping symbols for linker generated sections. */
7779
7780 static bfd_boolean
7781 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
7782 struct bfd_link_info *info,
7783 void *finfo,
7784 int (*func) (void *, const char *,
7785 Elf_Internal_Sym *,
7786 asection *,
7787 struct elf_link_hash_entry
7788 *))
7789 {
7790 output_arch_syminfo osi;
7791 struct elf_aarch64_link_hash_table *htab;
7792
7793 htab = elf_aarch64_hash_table (info);
7794
7795 osi.finfo = finfo;
7796 osi.info = info;
7797 osi.func = func;
7798
7799 /* Long calls stubs. */
7800 if (htab->stub_bfd && htab->stub_bfd->sections)
7801 {
7802 asection *stub_sec;
7803
7804 for (stub_sec = htab->stub_bfd->sections;
7805 stub_sec != NULL; stub_sec = stub_sec->next)
7806 {
7807 /* Ignore non-stub sections. */
7808 if (!strstr (stub_sec->name, STUB_SUFFIX))
7809 continue;
7810
7811 osi.sec = stub_sec;
7812
7813 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7814 (output_bfd, osi.sec->output_section);
7815
7816 /* The first instruction in a stub is always a branch. */
7817 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7818 return FALSE;
7819
7820 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7821 &osi);
7822 }
7823 }
7824
7825 /* Finally, output mapping symbols for the PLT. */
7826 if (!htab->root.splt || htab->root.splt->size == 0)
7827 return TRUE;
7828
7829 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7830 (output_bfd, htab->root.splt->output_section);
7831 osi.sec = htab->root.splt;
7832
7833 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
7834
7835 return TRUE;
7836
7837 }
7838
7839 /* Allocate target specific section data. */
7840
7841 static bfd_boolean
7842 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
7843 {
7844 if (!sec->used_by_bfd)
7845 {
7846 _aarch64_elf_section_data *sdata;
7847 bfd_size_type amt = sizeof (*sdata);
7848
7849 sdata = bfd_zalloc (abfd, amt);
7850 if (sdata == NULL)
7851 return FALSE;
7852 sec->used_by_bfd = sdata;
7853 }
7854
7855 record_section_with_aarch64_elf_section_data (sec);
7856
7857 return _bfd_elf_new_section_hook (abfd, sec);
7858 }
7859
7860
7861 static void
7862 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
7863 asection *sec,
7864 void *ignore ATTRIBUTE_UNUSED)
7865 {
7866 unrecord_section_with_aarch64_elf_section_data (sec);
7867 }
7868
7869 static bfd_boolean
7870 elfNN_aarch64_close_and_cleanup (bfd *abfd)
7871 {
7872 if (abfd->sections)
7873 bfd_map_over_sections (abfd,
7874 unrecord_section_via_map_over_sections, NULL);
7875
7876 return _bfd_elf_close_and_cleanup (abfd);
7877 }
7878
7879 static bfd_boolean
7880 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
7881 {
7882 if (abfd->sections)
7883 bfd_map_over_sections (abfd,
7884 unrecord_section_via_map_over_sections, NULL);
7885
7886 return _bfd_free_cached_info (abfd);
7887 }
7888
7889 /* Create dynamic sections. This is different from the ARM backend in that
7890 the got, plt, gotplt and their relocation sections are all created in the
7891 standard part of the bfd elf backend. */
7892
7893 static bfd_boolean
7894 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
7895 struct bfd_link_info *info)
7896 {
7897 struct elf_aarch64_link_hash_table *htab;
7898
7899 /* We need to create .got section. */
7900 if (!aarch64_elf_create_got_section (dynobj, info))
7901 return FALSE;
7902
7903 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
7904 return FALSE;
7905
7906 htab = elf_aarch64_hash_table (info);
7907 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
7908 if (!bfd_link_pic (info))
7909 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
7910
7911 if (!htab->sdynbss || (!bfd_link_pic (info) && !htab->srelbss))
7912 abort ();
7913
7914 return TRUE;
7915 }
7916
7917
7918 /* Allocate space in .plt, .got and associated reloc sections for
7919 dynamic relocs. */
7920
7921 static bfd_boolean
7922 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7923 {
7924 struct bfd_link_info *info;
7925 struct elf_aarch64_link_hash_table *htab;
7926 struct elf_aarch64_link_hash_entry *eh;
7927 struct elf_dyn_relocs *p;
7928
7929 /* An example of a bfd_link_hash_indirect symbol is versioned
7930 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7931 -> __gxx_personality_v0(bfd_link_hash_defined)
7932
7933 There is no need to process bfd_link_hash_indirect symbols here
7934 because we will also be presented with the concrete instance of
7935 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7936 called to copy all relevant data from the generic to the concrete
7937 symbol instance.
7938 */
7939 if (h->root.type == bfd_link_hash_indirect)
7940 return TRUE;
7941
7942 if (h->root.type == bfd_link_hash_warning)
7943 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7944
7945 info = (struct bfd_link_info *) inf;
7946 htab = elf_aarch64_hash_table (info);
7947
7948 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7949 here if it is defined and referenced in a non-shared object. */
7950 if (h->type == STT_GNU_IFUNC
7951 && h->def_regular)
7952 return TRUE;
7953 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
7954 {
7955 /* Make sure this symbol is output as a dynamic symbol.
7956 Undefined weak syms won't yet be marked as dynamic. */
7957 if (h->dynindx == -1 && !h->forced_local)
7958 {
7959 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7960 return FALSE;
7961 }
7962
7963 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
7964 {
7965 asection *s = htab->root.splt;
7966
7967 /* If this is the first .plt entry, make room for the special
7968 first entry. */
7969 if (s->size == 0)
7970 s->size += htab->plt_header_size;
7971
7972 h->plt.offset = s->size;
7973
7974 /* If this symbol is not defined in a regular file, and we are
7975 not generating a shared library, then set the symbol to this
7976 location in the .plt. This is required to make function
7977 pointers compare as equal between the normal executable and
7978 the shared library. */
7979 if (!bfd_link_pic (info) && !h->def_regular)
7980 {
7981 h->root.u.def.section = s;
7982 h->root.u.def.value = h->plt.offset;
7983 }
7984
7985 /* Make room for this entry. For now we only create the
7986 small model PLT entries. We later need to find a way
7987 of relaxing into these from the large model PLT entries. */
7988 s->size += PLT_SMALL_ENTRY_SIZE;
7989
7990 /* We also need to make an entry in the .got.plt section, which
7991 will be placed in the .got section by the linker script. */
7992 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
7993
7994 /* We also need to make an entry in the .rela.plt section. */
7995 htab->root.srelplt->size += RELOC_SIZE (htab);
7996
7997 /* We need to ensure that all GOT entries that serve the PLT
7998 are consecutive with the special GOT slots [0] [1] and
7999 [2]. Any addtional relocations, such as
8000 R_AARCH64_TLSDESC, must be placed after the PLT related
8001 entries. We abuse the reloc_count such that during
8002 sizing we adjust reloc_count to indicate the number of
8003 PLT related reserved entries. In subsequent phases when
8004 filling in the contents of the reloc entries, PLT related
8005 entries are placed by computing their PLT index (0
8006 .. reloc_count). While other none PLT relocs are placed
8007 at the slot indicated by reloc_count and reloc_count is
8008 updated. */
8009
8010 htab->root.srelplt->reloc_count++;
8011 }
8012 else
8013 {
8014 h->plt.offset = (bfd_vma) - 1;
8015 h->needs_plt = 0;
8016 }
8017 }
8018 else
8019 {
8020 h->plt.offset = (bfd_vma) - 1;
8021 h->needs_plt = 0;
8022 }
8023
8024 eh = (struct elf_aarch64_link_hash_entry *) h;
8025 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8026
8027 if (h->got.refcount > 0)
8028 {
8029 bfd_boolean dyn;
8030 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8031
8032 h->got.offset = (bfd_vma) - 1;
8033
8034 dyn = htab->root.dynamic_sections_created;
8035
8036 /* Make sure this symbol is output as a dynamic symbol.
8037 Undefined weak syms won't yet be marked as dynamic. */
8038 if (dyn && h->dynindx == -1 && !h->forced_local)
8039 {
8040 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8041 return FALSE;
8042 }
8043
8044 if (got_type == GOT_UNKNOWN)
8045 {
8046 }
8047 else if (got_type == GOT_NORMAL)
8048 {
8049 h->got.offset = htab->root.sgot->size;
8050 htab->root.sgot->size += GOT_ENTRY_SIZE;
8051 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8052 || h->root.type != bfd_link_hash_undefweak)
8053 && (bfd_link_pic (info)
8054 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8055 {
8056 htab->root.srelgot->size += RELOC_SIZE (htab);
8057 }
8058 }
8059 else
8060 {
8061 int indx;
8062 if (got_type & GOT_TLSDESC_GD)
8063 {
8064 eh->tlsdesc_got_jump_table_offset =
8065 (htab->root.sgotplt->size
8066 - aarch64_compute_jump_table_size (htab));
8067 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8068 h->got.offset = (bfd_vma) - 2;
8069 }
8070
8071 if (got_type & GOT_TLS_GD)
8072 {
8073 h->got.offset = htab->root.sgot->size;
8074 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8075 }
8076
8077 if (got_type & GOT_TLS_IE)
8078 {
8079 h->got.offset = htab->root.sgot->size;
8080 htab->root.sgot->size += GOT_ENTRY_SIZE;
8081 }
8082
8083 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8084 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8085 || h->root.type != bfd_link_hash_undefweak)
8086 && (bfd_link_pic (info)
8087 || indx != 0
8088 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8089 {
8090 if (got_type & GOT_TLSDESC_GD)
8091 {
8092 htab->root.srelplt->size += RELOC_SIZE (htab);
8093 /* Note reloc_count not incremented here! We have
8094 already adjusted reloc_count for this relocation
8095 type. */
8096
8097 /* TLSDESC PLT is now needed, but not yet determined. */
8098 htab->tlsdesc_plt = (bfd_vma) - 1;
8099 }
8100
8101 if (got_type & GOT_TLS_GD)
8102 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8103
8104 if (got_type & GOT_TLS_IE)
8105 htab->root.srelgot->size += RELOC_SIZE (htab);
8106 }
8107 }
8108 }
8109 else
8110 {
8111 h->got.offset = (bfd_vma) - 1;
8112 }
8113
8114 if (eh->dyn_relocs == NULL)
8115 return TRUE;
8116
8117 /* In the shared -Bsymbolic case, discard space allocated for
8118 dynamic pc-relative relocs against symbols which turn out to be
8119 defined in regular objects. For the normal shared case, discard
8120 space for pc-relative relocs that have become local due to symbol
8121 visibility changes. */
8122
8123 if (bfd_link_pic (info))
8124 {
8125 /* Relocs that use pc_count are those that appear on a call
8126 insn, or certain REL relocs that can generated via assembly.
8127 We want calls to protected symbols to resolve directly to the
8128 function rather than going via the plt. If people want
8129 function pointer comparisons to work as expected then they
8130 should avoid writing weird assembly. */
8131 if (SYMBOL_CALLS_LOCAL (info, h))
8132 {
8133 struct elf_dyn_relocs **pp;
8134
8135 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8136 {
8137 p->count -= p->pc_count;
8138 p->pc_count = 0;
8139 if (p->count == 0)
8140 *pp = p->next;
8141 else
8142 pp = &p->next;
8143 }
8144 }
8145
8146 /* Also discard relocs on undefined weak syms with non-default
8147 visibility. */
8148 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8149 {
8150 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8151 eh->dyn_relocs = NULL;
8152
8153 /* Make sure undefined weak symbols are output as a dynamic
8154 symbol in PIEs. */
8155 else if (h->dynindx == -1
8156 && !h->forced_local
8157 && !bfd_elf_link_record_dynamic_symbol (info, h))
8158 return FALSE;
8159 }
8160
8161 }
8162 else if (ELIMINATE_COPY_RELOCS)
8163 {
8164 /* For the non-shared case, discard space for relocs against
8165 symbols which turn out to need copy relocs or are not
8166 dynamic. */
8167
8168 if (!h->non_got_ref
8169 && ((h->def_dynamic
8170 && !h->def_regular)
8171 || (htab->root.dynamic_sections_created
8172 && (h->root.type == bfd_link_hash_undefweak
8173 || h->root.type == bfd_link_hash_undefined))))
8174 {
8175 /* Make sure this symbol is output as a dynamic symbol.
8176 Undefined weak syms won't yet be marked as dynamic. */
8177 if (h->dynindx == -1
8178 && !h->forced_local
8179 && !bfd_elf_link_record_dynamic_symbol (info, h))
8180 return FALSE;
8181
8182 /* If that succeeded, we know we'll be keeping all the
8183 relocs. */
8184 if (h->dynindx != -1)
8185 goto keep;
8186 }
8187
8188 eh->dyn_relocs = NULL;
8189
8190 keep:;
8191 }
8192
8193 /* Finally, allocate space. */
8194 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8195 {
8196 asection *sreloc;
8197
8198 sreloc = elf_section_data (p->sec)->sreloc;
8199
8200 BFD_ASSERT (sreloc != NULL);
8201
8202 sreloc->size += p->count * RELOC_SIZE (htab);
8203 }
8204
8205 return TRUE;
8206 }
8207
8208 /* Allocate space in .plt, .got and associated reloc sections for
8209 ifunc dynamic relocs. */
8210
8211 static bfd_boolean
8212 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8213 void *inf)
8214 {
8215 struct bfd_link_info *info;
8216 struct elf_aarch64_link_hash_table *htab;
8217 struct elf_aarch64_link_hash_entry *eh;
8218
8219 /* An example of a bfd_link_hash_indirect symbol is versioned
8220 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8221 -> __gxx_personality_v0(bfd_link_hash_defined)
8222
8223 There is no need to process bfd_link_hash_indirect symbols here
8224 because we will also be presented with the concrete instance of
8225 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8226 called to copy all relevant data from the generic to the concrete
8227 symbol instance.
8228 */
8229 if (h->root.type == bfd_link_hash_indirect)
8230 return TRUE;
8231
8232 if (h->root.type == bfd_link_hash_warning)
8233 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8234
8235 info = (struct bfd_link_info *) inf;
8236 htab = elf_aarch64_hash_table (info);
8237
8238 eh = (struct elf_aarch64_link_hash_entry *) h;
8239
8240 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8241 here if it is defined and referenced in a non-shared object. */
8242 if (h->type == STT_GNU_IFUNC
8243 && h->def_regular)
8244 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8245 &eh->dyn_relocs,
8246 NULL,
8247 htab->plt_entry_size,
8248 htab->plt_header_size,
8249 GOT_ENTRY_SIZE);
8250 return TRUE;
8251 }
8252
8253 /* Allocate space in .plt, .got and associated reloc sections for
8254 local dynamic relocs. */
8255
8256 static bfd_boolean
8257 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8258 {
8259 struct elf_link_hash_entry *h
8260 = (struct elf_link_hash_entry *) *slot;
8261
8262 if (h->type != STT_GNU_IFUNC
8263 || !h->def_regular
8264 || !h->ref_regular
8265 || !h->forced_local
8266 || h->root.type != bfd_link_hash_defined)
8267 abort ();
8268
8269 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8270 }
8271
8272 /* Allocate space in .plt, .got and associated reloc sections for
8273 local ifunc dynamic relocs. */
8274
8275 static bfd_boolean
8276 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8277 {
8278 struct elf_link_hash_entry *h
8279 = (struct elf_link_hash_entry *) *slot;
8280
8281 if (h->type != STT_GNU_IFUNC
8282 || !h->def_regular
8283 || !h->ref_regular
8284 || !h->forced_local
8285 || h->root.type != bfd_link_hash_defined)
8286 abort ();
8287
8288 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8289 }
8290
8291 /* Find any dynamic relocs that apply to read-only sections. */
8292
8293 static bfd_boolean
8294 aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
8295 {
8296 struct elf_aarch64_link_hash_entry * eh;
8297 struct elf_dyn_relocs * p;
8298
8299 eh = (struct elf_aarch64_link_hash_entry *) h;
8300 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8301 {
8302 asection *s = p->sec;
8303
8304 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8305 {
8306 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8307
8308 info->flags |= DF_TEXTREL;
8309
8310 /* Not an error, just cut short the traversal. */
8311 return FALSE;
8312 }
8313 }
8314 return TRUE;
8315 }
8316
8317 /* This is the most important function of all . Innocuosly named
8318 though ! */
8319 static bfd_boolean
8320 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8321 struct bfd_link_info *info)
8322 {
8323 struct elf_aarch64_link_hash_table *htab;
8324 bfd *dynobj;
8325 asection *s;
8326 bfd_boolean relocs;
8327 bfd *ibfd;
8328
8329 htab = elf_aarch64_hash_table ((info));
8330 dynobj = htab->root.dynobj;
8331
8332 BFD_ASSERT (dynobj != NULL);
8333
8334 if (htab->root.dynamic_sections_created)
8335 {
8336 if (bfd_link_executable (info) && !info->nointerp)
8337 {
8338 s = bfd_get_linker_section (dynobj, ".interp");
8339 if (s == NULL)
8340 abort ();
8341 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8342 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8343 }
8344 }
8345
8346 /* Set up .got offsets for local syms, and space for local dynamic
8347 relocs. */
8348 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8349 {
8350 struct elf_aarch64_local_symbol *locals = NULL;
8351 Elf_Internal_Shdr *symtab_hdr;
8352 asection *srel;
8353 unsigned int i;
8354
8355 if (!is_aarch64_elf (ibfd))
8356 continue;
8357
8358 for (s = ibfd->sections; s != NULL; s = s->next)
8359 {
8360 struct elf_dyn_relocs *p;
8361
8362 for (p = (struct elf_dyn_relocs *)
8363 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8364 {
8365 if (!bfd_is_abs_section (p->sec)
8366 && bfd_is_abs_section (p->sec->output_section))
8367 {
8368 /* Input section has been discarded, either because
8369 it is a copy of a linkonce section or due to
8370 linker script /DISCARD/, so we'll be discarding
8371 the relocs too. */
8372 }
8373 else if (p->count != 0)
8374 {
8375 srel = elf_section_data (p->sec)->sreloc;
8376 srel->size += p->count * RELOC_SIZE (htab);
8377 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8378 info->flags |= DF_TEXTREL;
8379 }
8380 }
8381 }
8382
8383 locals = elf_aarch64_locals (ibfd);
8384 if (!locals)
8385 continue;
8386
8387 symtab_hdr = &elf_symtab_hdr (ibfd);
8388 srel = htab->root.srelgot;
8389 for (i = 0; i < symtab_hdr->sh_info; i++)
8390 {
8391 locals[i].got_offset = (bfd_vma) - 1;
8392 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8393 if (locals[i].got_refcount > 0)
8394 {
8395 unsigned got_type = locals[i].got_type;
8396 if (got_type & GOT_TLSDESC_GD)
8397 {
8398 locals[i].tlsdesc_got_jump_table_offset =
8399 (htab->root.sgotplt->size
8400 - aarch64_compute_jump_table_size (htab));
8401 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8402 locals[i].got_offset = (bfd_vma) - 2;
8403 }
8404
8405 if (got_type & GOT_TLS_GD)
8406 {
8407 locals[i].got_offset = htab->root.sgot->size;
8408 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8409 }
8410
8411 if (got_type & GOT_TLS_IE
8412 || got_type & GOT_NORMAL)
8413 {
8414 locals[i].got_offset = htab->root.sgot->size;
8415 htab->root.sgot->size += GOT_ENTRY_SIZE;
8416 }
8417
8418 if (got_type == GOT_UNKNOWN)
8419 {
8420 }
8421
8422 if (bfd_link_pic (info))
8423 {
8424 if (got_type & GOT_TLSDESC_GD)
8425 {
8426 htab->root.srelplt->size += RELOC_SIZE (htab);
8427 /* Note RELOC_COUNT not incremented here! */
8428 htab->tlsdesc_plt = (bfd_vma) - 1;
8429 }
8430
8431 if (got_type & GOT_TLS_GD)
8432 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8433
8434 if (got_type & GOT_TLS_IE
8435 || got_type & GOT_NORMAL)
8436 htab->root.srelgot->size += RELOC_SIZE (htab);
8437 }
8438 }
8439 else
8440 {
8441 locals[i].got_refcount = (bfd_vma) - 1;
8442 }
8443 }
8444 }
8445
8446
8447 /* Allocate global sym .plt and .got entries, and space for global
8448 sym dynamic relocs. */
8449 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8450 info);
8451
8452 /* Allocate global ifunc sym .plt and .got entries, and space for global
8453 ifunc sym dynamic relocs. */
8454 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8455 info);
8456
8457 /* Allocate .plt and .got entries, and space for local symbols. */
8458 htab_traverse (htab->loc_hash_table,
8459 elfNN_aarch64_allocate_local_dynrelocs,
8460 info);
8461
8462 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8463 htab_traverse (htab->loc_hash_table,
8464 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8465 info);
8466
8467 /* For every jump slot reserved in the sgotplt, reloc_count is
8468 incremented. However, when we reserve space for TLS descriptors,
8469 it's not incremented, so in order to compute the space reserved
8470 for them, it suffices to multiply the reloc count by the jump
8471 slot size. */
8472
8473 if (htab->root.srelplt)
8474 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8475
8476 if (htab->tlsdesc_plt)
8477 {
8478 if (htab->root.splt->size == 0)
8479 htab->root.splt->size += PLT_ENTRY_SIZE;
8480
8481 htab->tlsdesc_plt = htab->root.splt->size;
8482 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8483
8484 /* If we're not using lazy TLS relocations, don't generate the
8485 GOT entry required. */
8486 if (!(info->flags & DF_BIND_NOW))
8487 {
8488 htab->dt_tlsdesc_got = htab->root.sgot->size;
8489 htab->root.sgot->size += GOT_ENTRY_SIZE;
8490 }
8491 }
8492
8493 /* Init mapping symbols information to use later to distingush between
8494 code and data while scanning for errata. */
8495 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8496 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8497 {
8498 if (!is_aarch64_elf (ibfd))
8499 continue;
8500 bfd_elfNN_aarch64_init_maps (ibfd);
8501 }
8502
8503 /* We now have determined the sizes of the various dynamic sections.
8504 Allocate memory for them. */
8505 relocs = FALSE;
8506 for (s = dynobj->sections; s != NULL; s = s->next)
8507 {
8508 if ((s->flags & SEC_LINKER_CREATED) == 0)
8509 continue;
8510
8511 if (s == htab->root.splt
8512 || s == htab->root.sgot
8513 || s == htab->root.sgotplt
8514 || s == htab->root.iplt
8515 || s == htab->root.igotplt || s == htab->sdynbss)
8516 {
8517 /* Strip this section if we don't need it; see the
8518 comment below. */
8519 }
8520 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8521 {
8522 if (s->size != 0 && s != htab->root.srelplt)
8523 relocs = TRUE;
8524
8525 /* We use the reloc_count field as a counter if we need
8526 to copy relocs into the output file. */
8527 if (s != htab->root.srelplt)
8528 s->reloc_count = 0;
8529 }
8530 else
8531 {
8532 /* It's not one of our sections, so don't allocate space. */
8533 continue;
8534 }
8535
8536 if (s->size == 0)
8537 {
8538 /* If we don't need this section, strip it from the
8539 output file. This is mostly to handle .rela.bss and
8540 .rela.plt. We must create both sections in
8541 create_dynamic_sections, because they must be created
8542 before the linker maps input sections to output
8543 sections. The linker does that before
8544 adjust_dynamic_symbol is called, and it is that
8545 function which decides whether anything needs to go
8546 into these sections. */
8547
8548 s->flags |= SEC_EXCLUDE;
8549 continue;
8550 }
8551
8552 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8553 continue;
8554
8555 /* Allocate memory for the section contents. We use bfd_zalloc
8556 here in case unused entries are not reclaimed before the
8557 section's contents are written out. This should not happen,
8558 but this way if it does, we get a R_AARCH64_NONE reloc instead
8559 of garbage. */
8560 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8561 if (s->contents == NULL)
8562 return FALSE;
8563 }
8564
8565 if (htab->root.dynamic_sections_created)
8566 {
8567 /* Add some entries to the .dynamic section. We fill in the
8568 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8569 must add the entries now so that we get the correct size for
8570 the .dynamic section. The DT_DEBUG entry is filled in by the
8571 dynamic linker and used by the debugger. */
8572 #define add_dynamic_entry(TAG, VAL) \
8573 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8574
8575 if (bfd_link_executable (info))
8576 {
8577 if (!add_dynamic_entry (DT_DEBUG, 0))
8578 return FALSE;
8579 }
8580
8581 if (htab->root.splt->size != 0)
8582 {
8583 if (!add_dynamic_entry (DT_PLTGOT, 0)
8584 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8585 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8586 || !add_dynamic_entry (DT_JMPREL, 0))
8587 return FALSE;
8588
8589 if (htab->tlsdesc_plt
8590 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8591 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8592 return FALSE;
8593 }
8594
8595 if (relocs)
8596 {
8597 if (!add_dynamic_entry (DT_RELA, 0)
8598 || !add_dynamic_entry (DT_RELASZ, 0)
8599 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8600 return FALSE;
8601
8602 /* If any dynamic relocs apply to a read-only section,
8603 then we need a DT_TEXTREL entry. */
8604 if ((info->flags & DF_TEXTREL) == 0)
8605 elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
8606 info);
8607
8608 if ((info->flags & DF_TEXTREL) != 0)
8609 {
8610 if (!add_dynamic_entry (DT_TEXTREL, 0))
8611 return FALSE;
8612 }
8613 }
8614 }
8615 #undef add_dynamic_entry
8616
8617 return TRUE;
8618 }
8619
8620 static inline void
8621 elf_aarch64_update_plt_entry (bfd *output_bfd,
8622 bfd_reloc_code_real_type r_type,
8623 bfd_byte *plt_entry, bfd_vma value)
8624 {
8625 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8626
8627 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8628 }
8629
8630 static void
8631 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8632 struct elf_aarch64_link_hash_table
8633 *htab, bfd *output_bfd,
8634 struct bfd_link_info *info)
8635 {
8636 bfd_byte *plt_entry;
8637 bfd_vma plt_index;
8638 bfd_vma got_offset;
8639 bfd_vma gotplt_entry_address;
8640 bfd_vma plt_entry_address;
8641 Elf_Internal_Rela rela;
8642 bfd_byte *loc;
8643 asection *plt, *gotplt, *relplt;
8644
8645 /* When building a static executable, use .iplt, .igot.plt and
8646 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8647 if (htab->root.splt != NULL)
8648 {
8649 plt = htab->root.splt;
8650 gotplt = htab->root.sgotplt;
8651 relplt = htab->root.srelplt;
8652 }
8653 else
8654 {
8655 plt = htab->root.iplt;
8656 gotplt = htab->root.igotplt;
8657 relplt = htab->root.irelplt;
8658 }
8659
8660 /* Get the index in the procedure linkage table which
8661 corresponds to this symbol. This is the index of this symbol
8662 in all the symbols for which we are making plt entries. The
8663 first entry in the procedure linkage table is reserved.
8664
8665 Get the offset into the .got table of the entry that
8666 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8667 bytes. The first three are reserved for the dynamic linker.
8668
8669 For static executables, we don't reserve anything. */
8670
8671 if (plt == htab->root.splt)
8672 {
8673 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8674 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8675 }
8676 else
8677 {
8678 plt_index = h->plt.offset / htab->plt_entry_size;
8679 got_offset = plt_index * GOT_ENTRY_SIZE;
8680 }
8681
8682 plt_entry = plt->contents + h->plt.offset;
8683 plt_entry_address = plt->output_section->vma
8684 + plt->output_offset + h->plt.offset;
8685 gotplt_entry_address = gotplt->output_section->vma +
8686 gotplt->output_offset + got_offset;
8687
8688 /* Copy in the boiler-plate for the PLTn entry. */
8689 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8690
8691 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8692 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8693 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8694 plt_entry,
8695 PG (gotplt_entry_address) -
8696 PG (plt_entry_address));
8697
8698 /* Fill in the lo12 bits for the load from the pltgot. */
8699 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8700 plt_entry + 4,
8701 PG_OFFSET (gotplt_entry_address));
8702
8703 /* Fill in the lo12 bits for the add from the pltgot entry. */
8704 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8705 plt_entry + 8,
8706 PG_OFFSET (gotplt_entry_address));
8707
8708 /* All the GOTPLT Entries are essentially initialized to PLT0. */
8709 bfd_put_NN (output_bfd,
8710 plt->output_section->vma + plt->output_offset,
8711 gotplt->contents + got_offset);
8712
8713 rela.r_offset = gotplt_entry_address;
8714
8715 if (h->dynindx == -1
8716 || ((bfd_link_executable (info)
8717 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8718 && h->def_regular
8719 && h->type == STT_GNU_IFUNC))
8720 {
8721 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8722 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8723 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8724 rela.r_addend = (h->root.u.def.value
8725 + h->root.u.def.section->output_section->vma
8726 + h->root.u.def.section->output_offset);
8727 }
8728 else
8729 {
8730 /* Fill in the entry in the .rela.plt section. */
8731 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8732 rela.r_addend = 0;
8733 }
8734
8735 /* Compute the relocation entry to used based on PLT index and do
8736 not adjust reloc_count. The reloc_count has already been adjusted
8737 to account for this entry. */
8738 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
8739 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8740 }
8741
8742 /* Size sections even though they're not dynamic. We use it to setup
8743 _TLS_MODULE_BASE_, if needed. */
8744
8745 static bfd_boolean
8746 elfNN_aarch64_always_size_sections (bfd *output_bfd,
8747 struct bfd_link_info *info)
8748 {
8749 asection *tls_sec;
8750
8751 if (bfd_link_relocatable (info))
8752 return TRUE;
8753
8754 tls_sec = elf_hash_table (info)->tls_sec;
8755
8756 if (tls_sec)
8757 {
8758 struct elf_link_hash_entry *tlsbase;
8759
8760 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8761 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8762
8763 if (tlsbase)
8764 {
8765 struct bfd_link_hash_entry *h = NULL;
8766 const struct elf_backend_data *bed =
8767 get_elf_backend_data (output_bfd);
8768
8769 if (!(_bfd_generic_link_add_one_symbol
8770 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8771 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8772 return FALSE;
8773
8774 tlsbase->type = STT_TLS;
8775 tlsbase = (struct elf_link_hash_entry *) h;
8776 tlsbase->def_regular = 1;
8777 tlsbase->other = STV_HIDDEN;
8778 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8779 }
8780 }
8781
8782 return TRUE;
8783 }
8784
8785 /* Finish up dynamic symbol handling. We set the contents of various
8786 dynamic sections here. */
8787 static bfd_boolean
8788 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
8789 struct bfd_link_info *info,
8790 struct elf_link_hash_entry *h,
8791 Elf_Internal_Sym *sym)
8792 {
8793 struct elf_aarch64_link_hash_table *htab;
8794 htab = elf_aarch64_hash_table (info);
8795
8796 if (h->plt.offset != (bfd_vma) - 1)
8797 {
8798 asection *plt, *gotplt, *relplt;
8799
8800 /* This symbol has an entry in the procedure linkage table. Set
8801 it up. */
8802
8803 /* When building a static executable, use .iplt, .igot.plt and
8804 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8805 if (htab->root.splt != NULL)
8806 {
8807 plt = htab->root.splt;
8808 gotplt = htab->root.sgotplt;
8809 relplt = htab->root.srelplt;
8810 }
8811 else
8812 {
8813 plt = htab->root.iplt;
8814 gotplt = htab->root.igotplt;
8815 relplt = htab->root.irelplt;
8816 }
8817
8818 /* This symbol has an entry in the procedure linkage table. Set
8819 it up. */
8820 if ((h->dynindx == -1
8821 && !((h->forced_local || bfd_link_executable (info))
8822 && h->def_regular
8823 && h->type == STT_GNU_IFUNC))
8824 || plt == NULL
8825 || gotplt == NULL
8826 || relplt == NULL)
8827 abort ();
8828
8829 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
8830 if (!h->def_regular)
8831 {
8832 /* Mark the symbol as undefined, rather than as defined in
8833 the .plt section. */
8834 sym->st_shndx = SHN_UNDEF;
8835 /* If the symbol is weak we need to clear the value.
8836 Otherwise, the PLT entry would provide a definition for
8837 the symbol even if the symbol wasn't defined anywhere,
8838 and so the symbol would never be NULL. Leave the value if
8839 there were any relocations where pointer equality matters
8840 (this is a clue for the dynamic linker, to make function
8841 pointer comparisons work between an application and shared
8842 library). */
8843 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8844 sym->st_value = 0;
8845 }
8846 }
8847
8848 if (h->got.offset != (bfd_vma) - 1
8849 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
8850 {
8851 Elf_Internal_Rela rela;
8852 bfd_byte *loc;
8853
8854 /* This symbol has an entry in the global offset table. Set it
8855 up. */
8856 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8857 abort ();
8858
8859 rela.r_offset = (htab->root.sgot->output_section->vma
8860 + htab->root.sgot->output_offset
8861 + (h->got.offset & ~(bfd_vma) 1));
8862
8863 if (h->def_regular
8864 && h->type == STT_GNU_IFUNC)
8865 {
8866 if (bfd_link_pic (info))
8867 {
8868 /* Generate R_AARCH64_GLOB_DAT. */
8869 goto do_glob_dat;
8870 }
8871 else
8872 {
8873 asection *plt;
8874
8875 if (!h->pointer_equality_needed)
8876 abort ();
8877
8878 /* For non-shared object, we can't use .got.plt, which
8879 contains the real function address if we need pointer
8880 equality. We load the GOT entry with the PLT entry. */
8881 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
8882 bfd_put_NN (output_bfd, (plt->output_section->vma
8883 + plt->output_offset
8884 + h->plt.offset),
8885 htab->root.sgot->contents
8886 + (h->got.offset & ~(bfd_vma) 1));
8887 return TRUE;
8888 }
8889 }
8890 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
8891 {
8892 if (!h->def_regular)
8893 return FALSE;
8894
8895 BFD_ASSERT ((h->got.offset & 1) != 0);
8896 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
8897 rela.r_addend = (h->root.u.def.value
8898 + h->root.u.def.section->output_section->vma
8899 + h->root.u.def.section->output_offset);
8900 }
8901 else
8902 {
8903 do_glob_dat:
8904 BFD_ASSERT ((h->got.offset & 1) == 0);
8905 bfd_put_NN (output_bfd, (bfd_vma) 0,
8906 htab->root.sgot->contents + h->got.offset);
8907 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
8908 rela.r_addend = 0;
8909 }
8910
8911 loc = htab->root.srelgot->contents;
8912 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
8913 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8914 }
8915
8916 if (h->needs_copy)
8917 {
8918 Elf_Internal_Rela rela;
8919 bfd_byte *loc;
8920
8921 /* This symbol needs a copy reloc. Set it up. */
8922
8923 if (h->dynindx == -1
8924 || (h->root.type != bfd_link_hash_defined
8925 && h->root.type != bfd_link_hash_defweak)
8926 || htab->srelbss == NULL)
8927 abort ();
8928
8929 rela.r_offset = (h->root.u.def.value
8930 + h->root.u.def.section->output_section->vma
8931 + h->root.u.def.section->output_offset);
8932 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
8933 rela.r_addend = 0;
8934 loc = htab->srelbss->contents;
8935 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
8936 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8937 }
8938
8939 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
8940 be NULL for local symbols. */
8941 if (sym != NULL
8942 && (h == elf_hash_table (info)->hdynamic
8943 || h == elf_hash_table (info)->hgot))
8944 sym->st_shndx = SHN_ABS;
8945
8946 return TRUE;
8947 }
8948
8949 /* Finish up local dynamic symbol handling. We set the contents of
8950 various dynamic sections here. */
8951
8952 static bfd_boolean
8953 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
8954 {
8955 struct elf_link_hash_entry *h
8956 = (struct elf_link_hash_entry *) *slot;
8957 struct bfd_link_info *info
8958 = (struct bfd_link_info *) inf;
8959
8960 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
8961 info, h, NULL);
8962 }
8963
8964 static void
8965 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
8966 struct elf_aarch64_link_hash_table
8967 *htab)
8968 {
8969 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
8970 small and large plts and at the minute just generates
8971 the small PLT. */
8972
8973 /* PLT0 of the small PLT looks like this in ELF64 -
8974 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
8975 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
8976 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
8977 // symbol resolver
8978 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
8979 // GOTPLT entry for this.
8980 br x17
8981 PLT0 will be slightly different in ELF32 due to different got entry
8982 size.
8983 */
8984 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
8985 bfd_vma plt_base;
8986
8987
8988 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
8989 PLT_ENTRY_SIZE);
8990 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
8991 PLT_ENTRY_SIZE;
8992
8993 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
8994 + htab->root.sgotplt->output_offset
8995 + GOT_ENTRY_SIZE * 2);
8996
8997 plt_base = htab->root.splt->output_section->vma +
8998 htab->root.splt->output_offset;
8999
9000 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9001 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9002 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9003 htab->root.splt->contents + 4,
9004 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9005
9006 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9007 htab->root.splt->contents + 8,
9008 PG_OFFSET (plt_got_2nd_ent));
9009
9010 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9011 htab->root.splt->contents + 12,
9012 PG_OFFSET (plt_got_2nd_ent));
9013 }
9014
9015 static bfd_boolean
9016 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9017 struct bfd_link_info *info)
9018 {
9019 struct elf_aarch64_link_hash_table *htab;
9020 bfd *dynobj;
9021 asection *sdyn;
9022
9023 htab = elf_aarch64_hash_table (info);
9024 dynobj = htab->root.dynobj;
9025 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9026
9027 if (htab->root.dynamic_sections_created)
9028 {
9029 ElfNN_External_Dyn *dyncon, *dynconend;
9030
9031 if (sdyn == NULL || htab->root.sgot == NULL)
9032 abort ();
9033
9034 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9035 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9036 for (; dyncon < dynconend; dyncon++)
9037 {
9038 Elf_Internal_Dyn dyn;
9039 asection *s;
9040
9041 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9042
9043 switch (dyn.d_tag)
9044 {
9045 default:
9046 continue;
9047
9048 case DT_PLTGOT:
9049 s = htab->root.sgotplt;
9050 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9051 break;
9052
9053 case DT_JMPREL:
9054 s = htab->root.srelplt;
9055 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9056 break;
9057
9058 case DT_PLTRELSZ:
9059 s = htab->root.srelplt;
9060 dyn.d_un.d_val = s->size;
9061 break;
9062
9063 case DT_RELASZ:
9064 /* The procedure linkage table relocs (DT_JMPREL) should
9065 not be included in the overall relocs (DT_RELA).
9066 Therefore, we override the DT_RELASZ entry here to
9067 make it not include the JMPREL relocs. Since the
9068 linker script arranges for .rela.plt to follow all
9069 other relocation sections, we don't have to worry
9070 about changing the DT_RELA entry. */
9071 if (htab->root.srelplt != NULL)
9072 {
9073 s = htab->root.srelplt;
9074 dyn.d_un.d_val -= s->size;
9075 }
9076 break;
9077
9078 case DT_TLSDESC_PLT:
9079 s = htab->root.splt;
9080 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9081 + htab->tlsdesc_plt;
9082 break;
9083
9084 case DT_TLSDESC_GOT:
9085 s = htab->root.sgot;
9086 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9087 + htab->dt_tlsdesc_got;
9088 break;
9089 }
9090
9091 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9092 }
9093
9094 }
9095
9096 /* Fill in the special first entry in the procedure linkage table. */
9097 if (htab->root.splt && htab->root.splt->size > 0)
9098 {
9099 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9100
9101 elf_section_data (htab->root.splt->output_section)->
9102 this_hdr.sh_entsize = htab->plt_entry_size;
9103
9104
9105 if (htab->tlsdesc_plt)
9106 {
9107 bfd_put_NN (output_bfd, (bfd_vma) 0,
9108 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9109
9110 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9111 elfNN_aarch64_tlsdesc_small_plt_entry,
9112 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
9113
9114 {
9115 bfd_vma adrp1_addr =
9116 htab->root.splt->output_section->vma
9117 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9118
9119 bfd_vma adrp2_addr = adrp1_addr + 4;
9120
9121 bfd_vma got_addr =
9122 htab->root.sgot->output_section->vma
9123 + htab->root.sgot->output_offset;
9124
9125 bfd_vma pltgot_addr =
9126 htab->root.sgotplt->output_section->vma
9127 + htab->root.sgotplt->output_offset;
9128
9129 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9130
9131 bfd_byte *plt_entry =
9132 htab->root.splt->contents + htab->tlsdesc_plt;
9133
9134 /* adrp x2, DT_TLSDESC_GOT */
9135 elf_aarch64_update_plt_entry (output_bfd,
9136 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9137 plt_entry + 4,
9138 (PG (dt_tlsdesc_got)
9139 - PG (adrp1_addr)));
9140
9141 /* adrp x3, 0 */
9142 elf_aarch64_update_plt_entry (output_bfd,
9143 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9144 plt_entry + 8,
9145 (PG (pltgot_addr)
9146 - PG (adrp2_addr)));
9147
9148 /* ldr x2, [x2, #0] */
9149 elf_aarch64_update_plt_entry (output_bfd,
9150 BFD_RELOC_AARCH64_LDSTNN_LO12,
9151 plt_entry + 12,
9152 PG_OFFSET (dt_tlsdesc_got));
9153
9154 /* add x3, x3, 0 */
9155 elf_aarch64_update_plt_entry (output_bfd,
9156 BFD_RELOC_AARCH64_ADD_LO12,
9157 plt_entry + 16,
9158 PG_OFFSET (pltgot_addr));
9159 }
9160 }
9161 }
9162
9163 if (htab->root.sgotplt)
9164 {
9165 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9166 {
9167 (*_bfd_error_handler)
9168 (_("discarded output section: `%A'"), htab->root.sgotplt);
9169 return FALSE;
9170 }
9171
9172 /* Fill in the first three entries in the global offset table. */
9173 if (htab->root.sgotplt->size > 0)
9174 {
9175 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9176
9177 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9178 bfd_put_NN (output_bfd,
9179 (bfd_vma) 0,
9180 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9181 bfd_put_NN (output_bfd,
9182 (bfd_vma) 0,
9183 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9184 }
9185
9186 if (htab->root.sgot)
9187 {
9188 if (htab->root.sgot->size > 0)
9189 {
9190 bfd_vma addr =
9191 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9192 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9193 }
9194 }
9195
9196 elf_section_data (htab->root.sgotplt->output_section)->
9197 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9198 }
9199
9200 if (htab->root.sgot && htab->root.sgot->size > 0)
9201 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9202 = GOT_ENTRY_SIZE;
9203
9204 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9205 htab_traverse (htab->loc_hash_table,
9206 elfNN_aarch64_finish_local_dynamic_symbol,
9207 info);
9208
9209 return TRUE;
9210 }
9211
9212 /* Return address for Ith PLT stub in section PLT, for relocation REL
9213 or (bfd_vma) -1 if it should not be included. */
9214
9215 static bfd_vma
9216 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9217 const arelent *rel ATTRIBUTE_UNUSED)
9218 {
9219 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9220 }
9221
9222
9223 /* We use this so we can override certain functions
9224 (though currently we don't). */
9225
9226 const struct elf_size_info elfNN_aarch64_size_info =
9227 {
9228 sizeof (ElfNN_External_Ehdr),
9229 sizeof (ElfNN_External_Phdr),
9230 sizeof (ElfNN_External_Shdr),
9231 sizeof (ElfNN_External_Rel),
9232 sizeof (ElfNN_External_Rela),
9233 sizeof (ElfNN_External_Sym),
9234 sizeof (ElfNN_External_Dyn),
9235 sizeof (Elf_External_Note),
9236 4, /* Hash table entry size. */
9237 1, /* Internal relocs per external relocs. */
9238 ARCH_SIZE, /* Arch size. */
9239 LOG_FILE_ALIGN, /* Log_file_align. */
9240 ELFCLASSNN, EV_CURRENT,
9241 bfd_elfNN_write_out_phdrs,
9242 bfd_elfNN_write_shdrs_and_ehdr,
9243 bfd_elfNN_checksum_contents,
9244 bfd_elfNN_write_relocs,
9245 bfd_elfNN_swap_symbol_in,
9246 bfd_elfNN_swap_symbol_out,
9247 bfd_elfNN_slurp_reloc_table,
9248 bfd_elfNN_slurp_symbol_table,
9249 bfd_elfNN_swap_dyn_in,
9250 bfd_elfNN_swap_dyn_out,
9251 bfd_elfNN_swap_reloc_in,
9252 bfd_elfNN_swap_reloc_out,
9253 bfd_elfNN_swap_reloca_in,
9254 bfd_elfNN_swap_reloca_out
9255 };
9256
9257 #define ELF_ARCH bfd_arch_aarch64
9258 #define ELF_MACHINE_CODE EM_AARCH64
9259 #define ELF_MAXPAGESIZE 0x10000
9260 #define ELF_MINPAGESIZE 0x1000
9261 #define ELF_COMMONPAGESIZE 0x1000
9262
9263 #define bfd_elfNN_close_and_cleanup \
9264 elfNN_aarch64_close_and_cleanup
9265
9266 #define bfd_elfNN_bfd_free_cached_info \
9267 elfNN_aarch64_bfd_free_cached_info
9268
9269 #define bfd_elfNN_bfd_is_target_special_symbol \
9270 elfNN_aarch64_is_target_special_symbol
9271
9272 #define bfd_elfNN_bfd_link_hash_table_create \
9273 elfNN_aarch64_link_hash_table_create
9274
9275 #define bfd_elfNN_bfd_merge_private_bfd_data \
9276 elfNN_aarch64_merge_private_bfd_data
9277
9278 #define bfd_elfNN_bfd_print_private_bfd_data \
9279 elfNN_aarch64_print_private_bfd_data
9280
9281 #define bfd_elfNN_bfd_reloc_type_lookup \
9282 elfNN_aarch64_reloc_type_lookup
9283
9284 #define bfd_elfNN_bfd_reloc_name_lookup \
9285 elfNN_aarch64_reloc_name_lookup
9286
9287 #define bfd_elfNN_bfd_set_private_flags \
9288 elfNN_aarch64_set_private_flags
9289
9290 #define bfd_elfNN_find_inliner_info \
9291 elfNN_aarch64_find_inliner_info
9292
9293 #define bfd_elfNN_find_nearest_line \
9294 elfNN_aarch64_find_nearest_line
9295
9296 #define bfd_elfNN_mkobject \
9297 elfNN_aarch64_mkobject
9298
9299 #define bfd_elfNN_new_section_hook \
9300 elfNN_aarch64_new_section_hook
9301
9302 #define elf_backend_adjust_dynamic_symbol \
9303 elfNN_aarch64_adjust_dynamic_symbol
9304
9305 #define elf_backend_always_size_sections \
9306 elfNN_aarch64_always_size_sections
9307
9308 #define elf_backend_check_relocs \
9309 elfNN_aarch64_check_relocs
9310
9311 #define elf_backend_copy_indirect_symbol \
9312 elfNN_aarch64_copy_indirect_symbol
9313
9314 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9315 to them in our hash. */
9316 #define elf_backend_create_dynamic_sections \
9317 elfNN_aarch64_create_dynamic_sections
9318
9319 #define elf_backend_init_index_section \
9320 _bfd_elf_init_2_index_sections
9321
9322 #define elf_backend_finish_dynamic_sections \
9323 elfNN_aarch64_finish_dynamic_sections
9324
9325 #define elf_backend_finish_dynamic_symbol \
9326 elfNN_aarch64_finish_dynamic_symbol
9327
9328 #define elf_backend_gc_sweep_hook \
9329 elfNN_aarch64_gc_sweep_hook
9330
9331 #define elf_backend_object_p \
9332 elfNN_aarch64_object_p
9333
9334 #define elf_backend_output_arch_local_syms \
9335 elfNN_aarch64_output_arch_local_syms
9336
9337 #define elf_backend_plt_sym_val \
9338 elfNN_aarch64_plt_sym_val
9339
9340 #define elf_backend_post_process_headers \
9341 elfNN_aarch64_post_process_headers
9342
9343 #define elf_backend_relocate_section \
9344 elfNN_aarch64_relocate_section
9345
9346 #define elf_backend_reloc_type_class \
9347 elfNN_aarch64_reloc_type_class
9348
9349 #define elf_backend_section_from_shdr \
9350 elfNN_aarch64_section_from_shdr
9351
9352 #define elf_backend_size_dynamic_sections \
9353 elfNN_aarch64_size_dynamic_sections
9354
9355 #define elf_backend_size_info \
9356 elfNN_aarch64_size_info
9357
9358 #define elf_backend_write_section \
9359 elfNN_aarch64_write_section
9360
9361 #define elf_backend_can_refcount 1
9362 #define elf_backend_can_gc_sections 1
9363 #define elf_backend_plt_readonly 1
9364 #define elf_backend_want_got_plt 1
9365 #define elf_backend_want_plt_sym 0
9366 #define elf_backend_may_use_rel_p 0
9367 #define elf_backend_may_use_rela_p 1
9368 #define elf_backend_default_use_rela_p 1
9369 #define elf_backend_rela_normal 1
9370 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9371 #define elf_backend_default_execstack 0
9372 #define elf_backend_extern_protected_data 1
9373
9374 #undef elf_backend_obj_attrs_section
9375 #define elf_backend_obj_attrs_section ".ARM.attributes"
9376
9377 #include "elfNN-target.h"
9378
9379 /* CloudABI support. */
9380
9381 #undef TARGET_LITTLE_SYM
9382 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
9383 #undef TARGET_LITTLE_NAME
9384 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
9385 #undef TARGET_BIG_SYM
9386 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
9387 #undef TARGET_BIG_NAME
9388 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
9389
9390 #undef ELF_OSABI
9391 #define ELF_OSABI ELFOSABI_CLOUDABI
9392
9393 #undef elfNN_bed
9394 #define elfNN_bed elfNN_aarch64_cloudabi_bed
9395
9396 #include "elfNN-target.h"
This page took 0.365958 seconds and 3 git commands to generate.