PR26132, ar creates invalid libraries for some targets with plugins enabled
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2020 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147 #include "cpu-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
221
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
245
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
259
260 #define ELIMINATE_COPY_RELOCS 1
261
262 /* Return size of a relocation entry. HTAB is the bfd's
263 elf_aarch64_link_hash_entry. */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
265
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE (32)
269 #define PLT_SMALL_ENTRY_SIZE (16)
270 #define PLT_TLSDESC_ENTRY_SIZE (32)
271 /* PLT sizes with BTI insn. */
272 #define PLT_BTI_SMALL_ENTRY_SIZE (24)
273 /* PLT sizes with PAC insn. */
274 #define PLT_PAC_SMALL_ENTRY_SIZE (24)
275 /* PLT sizes with BTI and PAC insn. */
276 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE (24)
277
278 /* Encoding of the nop instruction. */
279 #define INSN_NOP 0xd503201f
280
281 #define aarch64_compute_jump_table_size(htab) \
282 (((htab)->root.srelplt == NULL) ? 0 \
283 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
284
285 /* The first entry in a procedure linkage table looks like this
286 if the distance between the PLTGOT and the PLT is < 4GB use
287 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
288 in x16 and needs to work out PLTGOT[1] by using an address of
289 [x16,#-GOT_ENTRY_SIZE]. */
290 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
291 {
292 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
293 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
294 #if ARCH_SIZE == 64
295 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
296 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
297 #else
298 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
299 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
300 #endif
301 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
302 0x1f, 0x20, 0x03, 0xd5, /* nop */
303 0x1f, 0x20, 0x03, 0xd5, /* nop */
304 0x1f, 0x20, 0x03, 0xd5, /* nop */
305 };
306
307 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_ENTRY_SIZE] =
308 {
309 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
310 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
311 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
312 #if ARCH_SIZE == 64
313 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
314 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
315 #else
316 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
317 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
318 #endif
319 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
322 };
323
324 /* Per function entry in a procedure linkage table looks like this
325 if the distance between the PLTGOT and the PLT is < 4GB use
326 these PLT entries. Use BTI versions of the PLTs when enabled. */
327 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
328 {
329 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
330 #if ARCH_SIZE == 64
331 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
332 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
333 #else
334 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
335 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
336 #endif
337 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
338 };
339
340 static const bfd_byte
341 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
342 {
343 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
344 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
345 #if ARCH_SIZE == 64
346 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
347 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
348 #else
349 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
350 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
351 #endif
352 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
353 0x1f, 0x20, 0x03, 0xd5, /* nop */
354 };
355
356 static const bfd_byte
357 elfNN_aarch64_small_plt_pac_entry[PLT_PAC_SMALL_ENTRY_SIZE] =
358 {
359 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
360 #if ARCH_SIZE == 64
361 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
362 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
363 #else
364 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
365 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
366 #endif
367 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
368 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
369 0x1f, 0x20, 0x03, 0xd5, /* nop */
370 };
371
372 static const bfd_byte
373 elfNN_aarch64_small_plt_bti_pac_entry[PLT_BTI_PAC_SMALL_ENTRY_SIZE] =
374 {
375 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
376 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
377 #if ARCH_SIZE == 64
378 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
379 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
380 #else
381 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
382 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
383 #endif
384 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
385 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
386 };
387
388 static const bfd_byte
389 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
390 {
391 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
392 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
393 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
394 #if ARCH_SIZE == 64
395 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
396 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
397 #else
398 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
399 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
400 #endif
401 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
402 0x1f, 0x20, 0x03, 0xd5, /* nop */
403 0x1f, 0x20, 0x03, 0xd5, /* nop */
404 };
405
406 static const bfd_byte
407 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_TLSDESC_ENTRY_SIZE] =
408 {
409 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
410 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
411 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
412 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
413 #if ARCH_SIZE == 64
414 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
415 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
416 #else
417 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
418 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
419 #endif
420 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
421 0x1f, 0x20, 0x03, 0xd5, /* nop */
422 };
423
424 #define elf_info_to_howto elfNN_aarch64_info_to_howto
425 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
426
427 #define AARCH64_ELF_ABI_VERSION 0
428
429 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
430 #define ALL_ONES (~ (bfd_vma) 0)
431
432 /* Indexed by the bfd interal reloc enumerators.
433 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
434 in reloc.c. */
435
436 static reloc_howto_type elfNN_aarch64_howto_table[] =
437 {
438 EMPTY_HOWTO (0),
439
440 /* Basic data relocations. */
441
442 /* Deprecated, but retained for backwards compatibility. */
443 HOWTO64 (R_AARCH64_NULL, /* type */
444 0, /* rightshift */
445 3, /* size (0 = byte, 1 = short, 2 = long) */
446 0, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_AARCH64_NULL", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0, /* dst_mask */
455 FALSE), /* pcrel_offset */
456 HOWTO (R_AARCH64_NONE, /* type */
457 0, /* rightshift */
458 3, /* size (0 = byte, 1 = short, 2 = long) */
459 0, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_dont, /* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_AARCH64_NONE", /* name */
465 FALSE, /* partial_inplace */
466 0, /* src_mask */
467 0, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 /* .xword: (S+A) */
471 HOWTO64 (AARCH64_R (ABS64), /* type */
472 0, /* rightshift */
473 4, /* size (4 = long long) */
474 64, /* bitsize */
475 FALSE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_unsigned, /* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 AARCH64_R_STR (ABS64), /* name */
480 FALSE, /* partial_inplace */
481 ALL_ONES, /* src_mask */
482 ALL_ONES, /* dst_mask */
483 FALSE), /* pcrel_offset */
484
485 /* .word: (S+A) */
486 HOWTO (AARCH64_R (ABS32), /* type */
487 0, /* rightshift */
488 2, /* size (0 = byte, 1 = short, 2 = long) */
489 32, /* bitsize */
490 FALSE, /* pc_relative */
491 0, /* bitpos */
492 complain_overflow_unsigned, /* complain_on_overflow */
493 bfd_elf_generic_reloc, /* special_function */
494 AARCH64_R_STR (ABS32), /* name */
495 FALSE, /* partial_inplace */
496 0xffffffff, /* src_mask */
497 0xffffffff, /* dst_mask */
498 FALSE), /* pcrel_offset */
499
500 /* .half: (S+A) */
501 HOWTO (AARCH64_R (ABS16), /* type */
502 0, /* rightshift */
503 1, /* size (0 = byte, 1 = short, 2 = long) */
504 16, /* bitsize */
505 FALSE, /* pc_relative */
506 0, /* bitpos */
507 complain_overflow_unsigned, /* complain_on_overflow */
508 bfd_elf_generic_reloc, /* special_function */
509 AARCH64_R_STR (ABS16), /* name */
510 FALSE, /* partial_inplace */
511 0xffff, /* src_mask */
512 0xffff, /* dst_mask */
513 FALSE), /* pcrel_offset */
514
515 /* .xword: (S+A-P) */
516 HOWTO64 (AARCH64_R (PREL64), /* type */
517 0, /* rightshift */
518 4, /* size (4 = long long) */
519 64, /* bitsize */
520 TRUE, /* pc_relative */
521 0, /* bitpos */
522 complain_overflow_signed, /* complain_on_overflow */
523 bfd_elf_generic_reloc, /* special_function */
524 AARCH64_R_STR (PREL64), /* name */
525 FALSE, /* partial_inplace */
526 ALL_ONES, /* src_mask */
527 ALL_ONES, /* dst_mask */
528 TRUE), /* pcrel_offset */
529
530 /* .word: (S+A-P) */
531 HOWTO (AARCH64_R (PREL32), /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 32, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_signed, /* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 AARCH64_R_STR (PREL32), /* name */
540 FALSE, /* partial_inplace */
541 0xffffffff, /* src_mask */
542 0xffffffff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 /* .half: (S+A-P) */
546 HOWTO (AARCH64_R (PREL16), /* type */
547 0, /* rightshift */
548 1, /* size (0 = byte, 1 = short, 2 = long) */
549 16, /* bitsize */
550 TRUE, /* pc_relative */
551 0, /* bitpos */
552 complain_overflow_signed, /* complain_on_overflow */
553 bfd_elf_generic_reloc, /* special_function */
554 AARCH64_R_STR (PREL16), /* name */
555 FALSE, /* partial_inplace */
556 0xffff, /* src_mask */
557 0xffff, /* dst_mask */
558 TRUE), /* pcrel_offset */
559
560 /* Group relocations to create a 16, 32, 48 or 64 bit
561 unsigned data or abs address inline. */
562
563 /* MOVZ: ((S+A) >> 0) & 0xffff */
564 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 16, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_unsigned, /* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 AARCH64_R_STR (MOVW_UABS_G0), /* name */
573 FALSE, /* partial_inplace */
574 0xffff, /* src_mask */
575 0xffff, /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
579 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
580 0, /* rightshift */
581 2, /* size (0 = byte, 1 = short, 2 = long) */
582 16, /* bitsize */
583 FALSE, /* pc_relative */
584 0, /* bitpos */
585 complain_overflow_dont, /* complain_on_overflow */
586 bfd_elf_generic_reloc, /* special_function */
587 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
588 FALSE, /* partial_inplace */
589 0xffff, /* src_mask */
590 0xffff, /* dst_mask */
591 FALSE), /* pcrel_offset */
592
593 /* MOVZ: ((S+A) >> 16) & 0xffff */
594 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
595 16, /* rightshift */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
597 16, /* bitsize */
598 FALSE, /* pc_relative */
599 0, /* bitpos */
600 complain_overflow_unsigned, /* complain_on_overflow */
601 bfd_elf_generic_reloc, /* special_function */
602 AARCH64_R_STR (MOVW_UABS_G1), /* name */
603 FALSE, /* partial_inplace */
604 0xffff, /* src_mask */
605 0xffff, /* dst_mask */
606 FALSE), /* pcrel_offset */
607
608 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
609 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
610 16, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 16, /* bitsize */
613 FALSE, /* pc_relative */
614 0, /* bitpos */
615 complain_overflow_dont, /* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
618 FALSE, /* partial_inplace */
619 0xffff, /* src_mask */
620 0xffff, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 /* MOVZ: ((S+A) >> 32) & 0xffff */
624 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
625 32, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 16, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_unsigned, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 AARCH64_R_STR (MOVW_UABS_G2), /* name */
633 FALSE, /* partial_inplace */
634 0xffff, /* src_mask */
635 0xffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
639 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
640 32, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 16, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
648 FALSE, /* partial_inplace */
649 0xffff, /* src_mask */
650 0xffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 /* MOVZ: ((S+A) >> 48) & 0xffff */
654 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
655 48, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 16, /* bitsize */
658 FALSE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_unsigned, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (MOVW_UABS_G3), /* name */
663 FALSE, /* partial_inplace */
664 0xffff, /* src_mask */
665 0xffff, /* dst_mask */
666 FALSE), /* pcrel_offset */
667
668 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
669 signed data or abs address inline. Will change instruction
670 to MOVN or MOVZ depending on sign of calculated value. */
671
672 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
673 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 17, /* bitsize */
677 FALSE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 AARCH64_R_STR (MOVW_SABS_G0), /* name */
682 FALSE, /* partial_inplace */
683 0xffff, /* src_mask */
684 0xffff, /* dst_mask */
685 FALSE), /* pcrel_offset */
686
687 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
688 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
689 16, /* rightshift */
690 2, /* size (0 = byte, 1 = short, 2 = long) */
691 17, /* bitsize */
692 FALSE, /* pc_relative */
693 0, /* bitpos */
694 complain_overflow_signed, /* complain_on_overflow */
695 bfd_elf_generic_reloc, /* special_function */
696 AARCH64_R_STR (MOVW_SABS_G1), /* name */
697 FALSE, /* partial_inplace */
698 0xffff, /* src_mask */
699 0xffff, /* dst_mask */
700 FALSE), /* pcrel_offset */
701
702 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
703 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
704 32, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 17, /* bitsize */
707 FALSE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_signed, /* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 AARCH64_R_STR (MOVW_SABS_G2), /* name */
712 FALSE, /* partial_inplace */
713 0xffff, /* src_mask */
714 0xffff, /* dst_mask */
715 FALSE), /* pcrel_offset */
716
717 /* Group relocations to create a 16, 32, 48 or 64 bit
718 PC relative address inline. */
719
720 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
721 HOWTO (AARCH64_R (MOVW_PREL_G0), /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 17, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 AARCH64_R_STR (MOVW_PREL_G0), /* name */
730 FALSE, /* partial_inplace */
731 0xffff, /* src_mask */
732 0xffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
736 HOWTO (AARCH64_R (MOVW_PREL_G0_NC), /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_dont, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
745 FALSE, /* partial_inplace */
746 0xffff, /* src_mask */
747 0xffff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
751 HOWTO (AARCH64_R (MOVW_PREL_G1), /* type */
752 16, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 17, /* bitsize */
755 TRUE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_signed, /* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 AARCH64_R_STR (MOVW_PREL_G1), /* name */
760 FALSE, /* partial_inplace */
761 0xffff, /* src_mask */
762 0xffff, /* dst_mask */
763 TRUE), /* pcrel_offset */
764
765 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
766 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
767 16, /* rightshift */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 TRUE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_dont, /* complain_on_overflow */
773 bfd_elf_generic_reloc, /* special_function */
774 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
775 FALSE, /* partial_inplace */
776 0xffff, /* src_mask */
777 0xffff, /* dst_mask */
778 TRUE), /* pcrel_offset */
779
780 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
781 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
782 32, /* rightshift */
783 2, /* size (0 = byte, 1 = short, 2 = long) */
784 17, /* bitsize */
785 TRUE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 bfd_elf_generic_reloc, /* special_function */
789 AARCH64_R_STR (MOVW_PREL_G2), /* name */
790 FALSE, /* partial_inplace */
791 0xffff, /* src_mask */
792 0xffff, /* dst_mask */
793 TRUE), /* pcrel_offset */
794
795 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
796 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
797 32, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 16, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
805 FALSE, /* partial_inplace */
806 0xffff, /* src_mask */
807 0xffff, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
811 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
812 48, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 16, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 AARCH64_R_STR (MOVW_PREL_G3), /* name */
820 FALSE, /* partial_inplace */
821 0xffff, /* src_mask */
822 0xffff, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
826 addresses: PG(x) is (x & ~0xfff). */
827
828 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
829 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
830 2, /* rightshift */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
832 19, /* bitsize */
833 TRUE, /* pc_relative */
834 0, /* bitpos */
835 complain_overflow_signed, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 AARCH64_R_STR (LD_PREL_LO19), /* name */
838 FALSE, /* partial_inplace */
839 0x7ffff, /* src_mask */
840 0x7ffff, /* dst_mask */
841 TRUE), /* pcrel_offset */
842
843 /* ADR: (S+A-P) & 0x1fffff */
844 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
845 0, /* rightshift */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
847 21, /* bitsize */
848 TRUE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_signed, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 AARCH64_R_STR (ADR_PREL_LO21), /* name */
853 FALSE, /* partial_inplace */
854 0x1fffff, /* src_mask */
855 0x1fffff, /* dst_mask */
856 TRUE), /* pcrel_offset */
857
858 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
859 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
860 12, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 21, /* bitsize */
863 TRUE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_signed, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
868 FALSE, /* partial_inplace */
869 0x1fffff, /* src_mask */
870 0x1fffff, /* dst_mask */
871 TRUE), /* pcrel_offset */
872
873 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
874 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
875 12, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 21, /* bitsize */
878 TRUE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont, /* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
883 FALSE, /* partial_inplace */
884 0x1fffff, /* src_mask */
885 0x1fffff, /* dst_mask */
886 TRUE), /* pcrel_offset */
887
888 /* ADD: (S+A) & 0xfff [no overflow check] */
889 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
890 0, /* rightshift */
891 2, /* size (0 = byte, 1 = short, 2 = long) */
892 12, /* bitsize */
893 FALSE, /* pc_relative */
894 10, /* bitpos */
895 complain_overflow_dont, /* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
898 FALSE, /* partial_inplace */
899 0x3ffc00, /* src_mask */
900 0x3ffc00, /* dst_mask */
901 FALSE), /* pcrel_offset */
902
903 /* LD/ST8: (S+A) & 0xfff */
904 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
905 0, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 12, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_dont, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
913 FALSE, /* partial_inplace */
914 0xfff, /* src_mask */
915 0xfff, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
918 /* Relocations for control-flow instructions. */
919
920 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
921 HOWTO (AARCH64_R (TSTBR14), /* type */
922 2, /* rightshift */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
924 14, /* bitsize */
925 TRUE, /* pc_relative */
926 0, /* bitpos */
927 complain_overflow_signed, /* complain_on_overflow */
928 bfd_elf_generic_reloc, /* special_function */
929 AARCH64_R_STR (TSTBR14), /* name */
930 FALSE, /* partial_inplace */
931 0x3fff, /* src_mask */
932 0x3fff, /* dst_mask */
933 TRUE), /* pcrel_offset */
934
935 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
936 HOWTO (AARCH64_R (CONDBR19), /* type */
937 2, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 19, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_signed, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 AARCH64_R_STR (CONDBR19), /* name */
945 FALSE, /* partial_inplace */
946 0x7ffff, /* src_mask */
947 0x7ffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 /* B: ((S+A-P) >> 2) & 0x3ffffff */
951 HOWTO (AARCH64_R (JUMP26), /* type */
952 2, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 26, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_signed, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 AARCH64_R_STR (JUMP26), /* name */
960 FALSE, /* partial_inplace */
961 0x3ffffff, /* src_mask */
962 0x3ffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
966 HOWTO (AARCH64_R (CALL26), /* type */
967 2, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 26, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_signed, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 AARCH64_R_STR (CALL26), /* name */
975 FALSE, /* partial_inplace */
976 0x3ffffff, /* src_mask */
977 0x3ffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 /* LD/ST16: (S+A) & 0xffe */
981 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
982 1, /* rightshift */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
984 12, /* bitsize */
985 FALSE, /* pc_relative */
986 0, /* bitpos */
987 complain_overflow_dont, /* complain_on_overflow */
988 bfd_elf_generic_reloc, /* special_function */
989 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
990 FALSE, /* partial_inplace */
991 0xffe, /* src_mask */
992 0xffe, /* dst_mask */
993 FALSE), /* pcrel_offset */
994
995 /* LD/ST32: (S+A) & 0xffc */
996 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
997 2, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 12, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 bfd_elf_generic_reloc, /* special_function */
1004 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
1005 FALSE, /* partial_inplace */
1006 0xffc, /* src_mask */
1007 0xffc, /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* LD/ST64: (S+A) & 0xff8 */
1011 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
1012 3, /* rightshift */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1014 12, /* bitsize */
1015 FALSE, /* pc_relative */
1016 0, /* bitpos */
1017 complain_overflow_dont, /* complain_on_overflow */
1018 bfd_elf_generic_reloc, /* special_function */
1019 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
1020 FALSE, /* partial_inplace */
1021 0xff8, /* src_mask */
1022 0xff8, /* dst_mask */
1023 FALSE), /* pcrel_offset */
1024
1025 /* LD/ST128: (S+A) & 0xff0 */
1026 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
1027 4, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 12, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
1035 FALSE, /* partial_inplace */
1036 0xff0, /* src_mask */
1037 0xff0, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Set a load-literal immediate field to bits
1041 0x1FFFFC of G(S)-P */
1042 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
1043 2, /* rightshift */
1044 2, /* size (0 = byte,1 = short,2 = long) */
1045 19, /* bitsize */
1046 TRUE, /* pc_relative */
1047 0, /* bitpos */
1048 complain_overflow_signed, /* complain_on_overflow */
1049 bfd_elf_generic_reloc, /* special_function */
1050 AARCH64_R_STR (GOT_LD_PREL19), /* name */
1051 FALSE, /* partial_inplace */
1052 0xffffe0, /* src_mask */
1053 0xffffe0, /* dst_mask */
1054 TRUE), /* pcrel_offset */
1055
1056 /* Get to the page for the GOT entry for the symbol
1057 (G(S) - P) using an ADRP instruction. */
1058 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
1059 12, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 21, /* bitsize */
1062 TRUE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont, /* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
1067 FALSE, /* partial_inplace */
1068 0x1fffff, /* src_mask */
1069 0x1fffff, /* dst_mask */
1070 TRUE), /* pcrel_offset */
1071
1072 /* LD64: GOT offset G(S) & 0xff8 */
1073 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
1074 3, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 12, /* bitsize */
1077 FALSE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont, /* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
1082 FALSE, /* partial_inplace */
1083 0xff8, /* src_mask */
1084 0xff8, /* dst_mask */
1085 FALSE), /* pcrel_offset */
1086
1087 /* LD32: GOT offset G(S) & 0xffc */
1088 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1089 2, /* rightshift */
1090 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 12, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_dont, /* complain_on_overflow */
1095 bfd_elf_generic_reloc, /* special_function */
1096 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1097 FALSE, /* partial_inplace */
1098 0xffc, /* src_mask */
1099 0xffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 /* Lower 16 bits of GOT offset for the symbol. */
1103 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1104 0, /* rightshift */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1106 16, /* bitsize */
1107 FALSE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont, /* complain_on_overflow */
1110 bfd_elf_generic_reloc, /* special_function */
1111 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1112 FALSE, /* partial_inplace */
1113 0xffff, /* src_mask */
1114 0xffff, /* dst_mask */
1115 FALSE), /* pcrel_offset */
1116
1117 /* Higher 16 bits of GOT offset for the symbol. */
1118 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1119 16, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 16, /* bitsize */
1122 FALSE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_unsigned, /* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1127 FALSE, /* partial_inplace */
1128 0xffff, /* src_mask */
1129 0xffff, /* dst_mask */
1130 FALSE), /* pcrel_offset */
1131
1132 /* LD64: GOT offset for the symbol. */
1133 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1134 3, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 12, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_unsigned, /* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1142 FALSE, /* partial_inplace */
1143 0x7ff8, /* src_mask */
1144 0x7ff8, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
1147 /* LD32: GOT offset to the page address of GOT table.
1148 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1149 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1150 2, /* rightshift */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 12, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_unsigned, /* complain_on_overflow */
1156 bfd_elf_generic_reloc, /* special_function */
1157 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1158 FALSE, /* partial_inplace */
1159 0x5ffc, /* src_mask */
1160 0x5ffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* LD64: GOT offset to the page address of GOT table.
1164 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1165 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1166 3, /* rightshift */
1167 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 12, /* bitsize */
1169 FALSE, /* pc_relative */
1170 0, /* bitpos */
1171 complain_overflow_unsigned, /* complain_on_overflow */
1172 bfd_elf_generic_reloc, /* special_function */
1173 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1174 FALSE, /* partial_inplace */
1175 0x7ff8, /* src_mask */
1176 0x7ff8, /* dst_mask */
1177 FALSE), /* pcrel_offset */
1178
1179 /* Get to the page for the GOT entry for the symbol
1180 (G(S) - P) using an ADRP instruction. */
1181 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1182 12, /* rightshift */
1183 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 21, /* bitsize */
1185 TRUE, /* pc_relative */
1186 0, /* bitpos */
1187 complain_overflow_dont, /* complain_on_overflow */
1188 bfd_elf_generic_reloc, /* special_function */
1189 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1190 FALSE, /* partial_inplace */
1191 0x1fffff, /* src_mask */
1192 0x1fffff, /* dst_mask */
1193 TRUE), /* pcrel_offset */
1194
1195 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1196 0, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 21, /* bitsize */
1199 TRUE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_dont, /* complain_on_overflow */
1202 bfd_elf_generic_reloc, /* special_function */
1203 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1204 FALSE, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE), /* pcrel_offset */
1208
1209 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1210 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1211 0, /* rightshift */
1212 2, /* size (0 = byte, 1 = short, 2 = long) */
1213 12, /* bitsize */
1214 FALSE, /* pc_relative */
1215 0, /* bitpos */
1216 complain_overflow_dont, /* complain_on_overflow */
1217 bfd_elf_generic_reloc, /* special_function */
1218 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1219 FALSE, /* partial_inplace */
1220 0xfff, /* src_mask */
1221 0xfff, /* dst_mask */
1222 FALSE), /* pcrel_offset */
1223
1224 /* Lower 16 bits of GOT offset to tls_index. */
1225 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 16, /* bitsize */
1229 FALSE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont, /* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1234 FALSE, /* partial_inplace */
1235 0xffff, /* src_mask */
1236 0xffff, /* dst_mask */
1237 FALSE), /* pcrel_offset */
1238
1239 /* Higher 16 bits of GOT offset to tls_index. */
1240 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1241 16, /* rightshift */
1242 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 16, /* bitsize */
1244 FALSE, /* pc_relative */
1245 0, /* bitpos */
1246 complain_overflow_unsigned, /* complain_on_overflow */
1247 bfd_elf_generic_reloc, /* special_function */
1248 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1249 FALSE, /* partial_inplace */
1250 0xffff, /* src_mask */
1251 0xffff, /* dst_mask */
1252 FALSE), /* pcrel_offset */
1253
1254 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1255 12, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 21, /* bitsize */
1258 FALSE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont, /* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1263 FALSE, /* partial_inplace */
1264 0x1fffff, /* src_mask */
1265 0x1fffff, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1269 3, /* rightshift */
1270 2, /* size (0 = byte, 1 = short, 2 = long) */
1271 12, /* bitsize */
1272 FALSE, /* pc_relative */
1273 0, /* bitpos */
1274 complain_overflow_dont, /* complain_on_overflow */
1275 bfd_elf_generic_reloc, /* special_function */
1276 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1277 FALSE, /* partial_inplace */
1278 0xff8, /* src_mask */
1279 0xff8, /* dst_mask */
1280 FALSE), /* pcrel_offset */
1281
1282 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1283 2, /* rightshift */
1284 2, /* size (0 = byte, 1 = short, 2 = long) */
1285 12, /* bitsize */
1286 FALSE, /* pc_relative */
1287 0, /* bitpos */
1288 complain_overflow_dont, /* complain_on_overflow */
1289 bfd_elf_generic_reloc, /* special_function */
1290 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1291 FALSE, /* partial_inplace */
1292 0xffc, /* src_mask */
1293 0xffc, /* dst_mask */
1294 FALSE), /* pcrel_offset */
1295
1296 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1297 2, /* rightshift */
1298 2, /* size (0 = byte, 1 = short, 2 = long) */
1299 19, /* bitsize */
1300 FALSE, /* pc_relative */
1301 0, /* bitpos */
1302 complain_overflow_dont, /* complain_on_overflow */
1303 bfd_elf_generic_reloc, /* special_function */
1304 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1305 FALSE, /* partial_inplace */
1306 0x1ffffc, /* src_mask */
1307 0x1ffffc, /* dst_mask */
1308 FALSE), /* pcrel_offset */
1309
1310 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 16, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
1318 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1319 FALSE, /* partial_inplace */
1320 0xffff, /* src_mask */
1321 0xffff, /* dst_mask */
1322 FALSE), /* pcrel_offset */
1323
1324 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1325 16, /* rightshift */
1326 2, /* size (0 = byte, 1 = short, 2 = long) */
1327 16, /* bitsize */
1328 FALSE, /* pc_relative */
1329 0, /* bitpos */
1330 complain_overflow_unsigned, /* complain_on_overflow */
1331 bfd_elf_generic_reloc, /* special_function */
1332 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1333 FALSE, /* partial_inplace */
1334 0xffff, /* src_mask */
1335 0xffff, /* dst_mask */
1336 FALSE), /* pcrel_offset */
1337
1338 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1339 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1340 12, /* rightshift */
1341 2, /* size (0 = byte, 1 = short, 2 = long) */
1342 12, /* bitsize */
1343 FALSE, /* pc_relative */
1344 0, /* bitpos */
1345 complain_overflow_unsigned, /* complain_on_overflow */
1346 bfd_elf_generic_reloc, /* special_function */
1347 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1348 FALSE, /* partial_inplace */
1349 0xfff, /* src_mask */
1350 0xfff, /* dst_mask */
1351 FALSE), /* pcrel_offset */
1352
1353 /* Unsigned 12 bit byte offset to module TLS base address. */
1354 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1355 0, /* rightshift */
1356 2, /* size (0 = byte, 1 = short, 2 = long) */
1357 12, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_unsigned, /* complain_on_overflow */
1361 bfd_elf_generic_reloc, /* special_function */
1362 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1363 FALSE, /* partial_inplace */
1364 0xfff, /* src_mask */
1365 0xfff, /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1369 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 12, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont, /* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1378 FALSE, /* partial_inplace */
1379 0xfff, /* src_mask */
1380 0xfff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1384 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1385 0, /* rightshift */
1386 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 12, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 bfd_elf_generic_reloc, /* special_function */
1392 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1393 FALSE, /* partial_inplace */
1394 0xfff, /* src_mask */
1395 0xfff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Get to the page for the GOT entry for the symbol
1399 (G(S) - P) using an ADRP instruction. */
1400 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1401 12, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 21, /* bitsize */
1404 TRUE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_signed, /* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1409 FALSE, /* partial_inplace */
1410 0x1fffff, /* src_mask */
1411 0x1fffff, /* dst_mask */
1412 TRUE), /* pcrel_offset */
1413
1414 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 21, /* bitsize */
1418 TRUE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1423 FALSE, /* partial_inplace */
1424 0x1fffff, /* src_mask */
1425 0x1fffff, /* dst_mask */
1426 TRUE), /* pcrel_offset */
1427
1428 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1429 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1430 1, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 11, /* bitsize */
1433 FALSE, /* pc_relative */
1434 10, /* bitpos */
1435 complain_overflow_unsigned, /* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1438 FALSE, /* partial_inplace */
1439 0x1ffc00, /* src_mask */
1440 0x1ffc00, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1444 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1445 1, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 11, /* bitsize */
1448 FALSE, /* pc_relative */
1449 10, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1453 FALSE, /* partial_inplace */
1454 0x1ffc00, /* src_mask */
1455 0x1ffc00, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1459 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1460 2, /* rightshift */
1461 2, /* size (0 = byte, 1 = short, 2 = long) */
1462 10, /* bitsize */
1463 FALSE, /* pc_relative */
1464 10, /* bitpos */
1465 complain_overflow_unsigned, /* complain_on_overflow */
1466 bfd_elf_generic_reloc, /* special_function */
1467 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1468 FALSE, /* partial_inplace */
1469 0x3ffc00, /* src_mask */
1470 0x3ffc00, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1474 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1475 2, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 10, /* bitsize */
1478 FALSE, /* pc_relative */
1479 10, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1483 FALSE, /* partial_inplace */
1484 0xffc00, /* src_mask */
1485 0xffc00, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1489 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1490 3, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 9, /* bitsize */
1493 FALSE, /* pc_relative */
1494 10, /* bitpos */
1495 complain_overflow_unsigned, /* complain_on_overflow */
1496 bfd_elf_generic_reloc, /* special_function */
1497 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1498 FALSE, /* partial_inplace */
1499 0x3ffc00, /* src_mask */
1500 0x3ffc00, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1504 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1505 3, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 9, /* bitsize */
1508 FALSE, /* pc_relative */
1509 10, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1513 FALSE, /* partial_inplace */
1514 0x7fc00, /* src_mask */
1515 0x7fc00, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1519 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 12, /* bitsize */
1523 FALSE, /* pc_relative */
1524 10, /* bitpos */
1525 complain_overflow_unsigned, /* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
1527 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1528 FALSE, /* partial_inplace */
1529 0x3ffc00, /* src_mask */
1530 0x3ffc00, /* dst_mask */
1531 FALSE), /* pcrel_offset */
1532
1533 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1534 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1535 0, /* rightshift */
1536 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 12, /* bitsize */
1538 FALSE, /* pc_relative */
1539 10, /* bitpos */
1540 complain_overflow_dont, /* complain_on_overflow */
1541 bfd_elf_generic_reloc, /* special_function */
1542 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1543 FALSE, /* partial_inplace */
1544 0x3ffc00, /* src_mask */
1545 0x3ffc00, /* dst_mask */
1546 FALSE), /* pcrel_offset */
1547
1548 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1549 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1550 0, /* rightshift */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1552 16, /* bitsize */
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
1555 complain_overflow_unsigned, /* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1558 FALSE, /* partial_inplace */
1559 0xffff, /* src_mask */
1560 0xffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
1562
1563 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1564 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1565 0, /* rightshift */
1566 2, /* size (0 = byte, 1 = short, 2 = long) */
1567 16, /* bitsize */
1568 FALSE, /* pc_relative */
1569 0, /* bitpos */
1570 complain_overflow_dont, /* complain_on_overflow */
1571 bfd_elf_generic_reloc, /* special_function */
1572 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1573 FALSE, /* partial_inplace */
1574 0xffff, /* src_mask */
1575 0xffff, /* dst_mask */
1576 FALSE), /* pcrel_offset */
1577
1578 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1579 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1580 16, /* rightshift */
1581 2, /* size (0 = byte, 1 = short, 2 = long) */
1582 16, /* bitsize */
1583 FALSE, /* pc_relative */
1584 0, /* bitpos */
1585 complain_overflow_unsigned, /* complain_on_overflow */
1586 bfd_elf_generic_reloc, /* special_function */
1587 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1588 FALSE, /* partial_inplace */
1589 0xffff, /* src_mask */
1590 0xffff, /* dst_mask */
1591 FALSE), /* pcrel_offset */
1592
1593 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1594 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1595 16, /* rightshift */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 16, /* bitsize */
1598 FALSE, /* pc_relative */
1599 0, /* bitpos */
1600 complain_overflow_dont, /* complain_on_overflow */
1601 bfd_elf_generic_reloc, /* special_function */
1602 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1603 FALSE, /* partial_inplace */
1604 0xffff, /* src_mask */
1605 0xffff, /* dst_mask */
1606 FALSE), /* pcrel_offset */
1607
1608 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1609 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1610 32, /* rightshift */
1611 2, /* size (0 = byte, 1 = short, 2 = long) */
1612 16, /* bitsize */
1613 FALSE, /* pc_relative */
1614 0, /* bitpos */
1615 complain_overflow_unsigned, /* complain_on_overflow */
1616 bfd_elf_generic_reloc, /* special_function */
1617 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1618 FALSE, /* partial_inplace */
1619 0xffff, /* src_mask */
1620 0xffff, /* dst_mask */
1621 FALSE), /* pcrel_offset */
1622
1623 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1624 32, /* rightshift */
1625 2, /* size (0 = byte, 1 = short, 2 = long) */
1626 16, /* bitsize */
1627 FALSE, /* pc_relative */
1628 0, /* bitpos */
1629 complain_overflow_unsigned, /* complain_on_overflow */
1630 bfd_elf_generic_reloc, /* special_function */
1631 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1632 FALSE, /* partial_inplace */
1633 0xffff, /* src_mask */
1634 0xffff, /* dst_mask */
1635 FALSE), /* pcrel_offset */
1636
1637 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1638 16, /* rightshift */
1639 2, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 bfd_elf_generic_reloc, /* special_function */
1645 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1646 FALSE, /* partial_inplace */
1647 0xffff, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1652 16, /* rightshift */
1653 2, /* size (0 = byte, 1 = short, 2 = long) */
1654 16, /* bitsize */
1655 FALSE, /* pc_relative */
1656 0, /* bitpos */
1657 complain_overflow_dont, /* complain_on_overflow */
1658 bfd_elf_generic_reloc, /* special_function */
1659 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1660 FALSE, /* partial_inplace */
1661 0xffff, /* src_mask */
1662 0xffff, /* dst_mask */
1663 FALSE), /* pcrel_offset */
1664
1665 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1666 0, /* rightshift */
1667 2, /* size (0 = byte, 1 = short, 2 = long) */
1668 16, /* bitsize */
1669 FALSE, /* pc_relative */
1670 0, /* bitpos */
1671 complain_overflow_dont, /* complain_on_overflow */
1672 bfd_elf_generic_reloc, /* special_function */
1673 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1674 FALSE, /* partial_inplace */
1675 0xffff, /* src_mask */
1676 0xffff, /* dst_mask */
1677 FALSE), /* pcrel_offset */
1678
1679 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1680 0, /* rightshift */
1681 2, /* size (0 = byte, 1 = short, 2 = long) */
1682 16, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_dont, /* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1688 FALSE, /* partial_inplace */
1689 0xffff, /* src_mask */
1690 0xffff, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692
1693 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1694 12, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 12, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_unsigned, /* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1702 FALSE, /* partial_inplace */
1703 0xfff, /* src_mask */
1704 0xfff, /* dst_mask */
1705 FALSE), /* pcrel_offset */
1706
1707 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1708 0, /* rightshift */
1709 2, /* size (0 = byte, 1 = short, 2 = long) */
1710 12, /* bitsize */
1711 FALSE, /* pc_relative */
1712 0, /* bitpos */
1713 complain_overflow_unsigned, /* complain_on_overflow */
1714 bfd_elf_generic_reloc, /* special_function */
1715 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1716 FALSE, /* partial_inplace */
1717 0xfff, /* src_mask */
1718 0xfff, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1722 0, /* rightshift */
1723 2, /* size (0 = byte, 1 = short, 2 = long) */
1724 12, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_dont, /* complain_on_overflow */
1728 bfd_elf_generic_reloc, /* special_function */
1729 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1730 FALSE, /* partial_inplace */
1731 0xfff, /* src_mask */
1732 0xfff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1736 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1737 1, /* rightshift */
1738 2, /* size (0 = byte, 1 = short, 2 = long) */
1739 11, /* bitsize */
1740 FALSE, /* pc_relative */
1741 10, /* bitpos */
1742 complain_overflow_unsigned, /* complain_on_overflow */
1743 bfd_elf_generic_reloc, /* special_function */
1744 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1745 FALSE, /* partial_inplace */
1746 0x1ffc00, /* src_mask */
1747 0x1ffc00, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1751 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1752 1, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 11, /* bitsize */
1755 FALSE, /* pc_relative */
1756 10, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1760 FALSE, /* partial_inplace */
1761 0x1ffc00, /* src_mask */
1762 0x1ffc00, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1766 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1767 2, /* rightshift */
1768 2, /* size (0 = byte, 1 = short, 2 = long) */
1769 10, /* bitsize */
1770 FALSE, /* pc_relative */
1771 10, /* bitpos */
1772 complain_overflow_unsigned, /* complain_on_overflow */
1773 bfd_elf_generic_reloc, /* special_function */
1774 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1775 FALSE, /* partial_inplace */
1776 0xffc00, /* src_mask */
1777 0xffc00, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1781 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1782 2, /* rightshift */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1784 10, /* bitsize */
1785 FALSE, /* pc_relative */
1786 10, /* bitpos */
1787 complain_overflow_dont, /* complain_on_overflow */
1788 bfd_elf_generic_reloc, /* special_function */
1789 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1790 FALSE, /* partial_inplace */
1791 0xffc00, /* src_mask */
1792 0xffc00, /* dst_mask */
1793 FALSE), /* pcrel_offset */
1794
1795 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1796 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1797 3, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 9, /* bitsize */
1800 FALSE, /* pc_relative */
1801 10, /* bitpos */
1802 complain_overflow_unsigned, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1805 FALSE, /* partial_inplace */
1806 0x7fc00, /* src_mask */
1807 0x7fc00, /* dst_mask */
1808 FALSE), /* pcrel_offset */
1809
1810 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1811 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1812 3, /* rightshift */
1813 2, /* size (0 = byte, 1 = short, 2 = long) */
1814 9, /* bitsize */
1815 FALSE, /* pc_relative */
1816 10, /* bitpos */
1817 complain_overflow_dont, /* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1820 FALSE, /* partial_inplace */
1821 0x7fc00, /* src_mask */
1822 0x7fc00, /* dst_mask */
1823 FALSE), /* pcrel_offset */
1824
1825 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1826 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1827 0, /* rightshift */
1828 2, /* size (0 = byte, 1 = short, 2 = long) */
1829 12, /* bitsize */
1830 FALSE, /* pc_relative */
1831 10, /* bitpos */
1832 complain_overflow_unsigned, /* complain_on_overflow */
1833 bfd_elf_generic_reloc, /* special_function */
1834 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1835 FALSE, /* partial_inplace */
1836 0x3ffc00, /* src_mask */
1837 0x3ffc00, /* dst_mask */
1838 FALSE), /* pcrel_offset */
1839
1840 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1841 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1842 0, /* rightshift */
1843 2, /* size (0 = byte, 1 = short, 2 = long) */
1844 12, /* bitsize */
1845 FALSE, /* pc_relative */
1846 10, /* bitpos */
1847 complain_overflow_dont, /* complain_on_overflow */
1848 bfd_elf_generic_reloc, /* special_function */
1849 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1850 FALSE, /* partial_inplace */
1851 0x3ffc00, /* src_mask */
1852 0x3ffc00, /* dst_mask */
1853 FALSE), /* pcrel_offset */
1854
1855 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1856 2, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 19, /* bitsize */
1859 TRUE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_dont, /* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1864 FALSE, /* partial_inplace */
1865 0x0ffffe0, /* src_mask */
1866 0x0ffffe0, /* dst_mask */
1867 TRUE), /* pcrel_offset */
1868
1869 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1870 0, /* rightshift */
1871 2, /* size (0 = byte, 1 = short, 2 = long) */
1872 21, /* bitsize */
1873 TRUE, /* pc_relative */
1874 0, /* bitpos */
1875 complain_overflow_dont, /* complain_on_overflow */
1876 bfd_elf_generic_reloc, /* special_function */
1877 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1878 FALSE, /* partial_inplace */
1879 0x1fffff, /* src_mask */
1880 0x1fffff, /* dst_mask */
1881 TRUE), /* pcrel_offset */
1882
1883 /* Get to the page for the GOT entry for the symbol
1884 (G(S) - P) using an ADRP instruction. */
1885 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1886 12, /* rightshift */
1887 2, /* size (0 = byte, 1 = short, 2 = long) */
1888 21, /* bitsize */
1889 TRUE, /* pc_relative */
1890 0, /* bitpos */
1891 complain_overflow_dont, /* complain_on_overflow */
1892 bfd_elf_generic_reloc, /* special_function */
1893 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1894 FALSE, /* partial_inplace */
1895 0x1fffff, /* src_mask */
1896 0x1fffff, /* dst_mask */
1897 TRUE), /* pcrel_offset */
1898
1899 /* LD64: GOT offset G(S) & 0xff8. */
1900 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1901 3, /* rightshift */
1902 2, /* size (0 = byte, 1 = short, 2 = long) */
1903 12, /* bitsize */
1904 FALSE, /* pc_relative */
1905 0, /* bitpos */
1906 complain_overflow_dont, /* complain_on_overflow */
1907 bfd_elf_generic_reloc, /* special_function */
1908 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1909 FALSE, /* partial_inplace */
1910 0xff8, /* src_mask */
1911 0xff8, /* dst_mask */
1912 FALSE), /* pcrel_offset */
1913
1914 /* LD32: GOT offset G(S) & 0xffc. */
1915 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1916 2, /* rightshift */
1917 2, /* size (0 = byte, 1 = short, 2 = long) */
1918 12, /* bitsize */
1919 FALSE, /* pc_relative */
1920 0, /* bitpos */
1921 complain_overflow_dont, /* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1924 FALSE, /* partial_inplace */
1925 0xffc, /* src_mask */
1926 0xffc, /* dst_mask */
1927 FALSE), /* pcrel_offset */
1928
1929 /* ADD: GOT offset G(S) & 0xfff. */
1930 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1931 0, /* rightshift */
1932 2, /* size (0 = byte, 1 = short, 2 = long) */
1933 12, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont,/* complain_on_overflow */
1937 bfd_elf_generic_reloc, /* special_function */
1938 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1939 FALSE, /* partial_inplace */
1940 0xfff, /* src_mask */
1941 0xfff, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1945 16, /* rightshift */
1946 2, /* size (0 = byte, 1 = short, 2 = long) */
1947 12, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_unsigned, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1953 FALSE, /* partial_inplace */
1954 0xffff, /* src_mask */
1955 0xffff, /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1959 0, /* rightshift */
1960 2, /* size (0 = byte, 1 = short, 2 = long) */
1961 12, /* bitsize */
1962 FALSE, /* pc_relative */
1963 0, /* bitpos */
1964 complain_overflow_dont, /* complain_on_overflow */
1965 bfd_elf_generic_reloc, /* special_function */
1966 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1967 FALSE, /* partial_inplace */
1968 0xffff, /* src_mask */
1969 0xffff, /* dst_mask */
1970 FALSE), /* pcrel_offset */
1971
1972 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1973 0, /* rightshift */
1974 2, /* size (0 = byte, 1 = short, 2 = long) */
1975 12, /* bitsize */
1976 FALSE, /* pc_relative */
1977 0, /* bitpos */
1978 complain_overflow_dont, /* complain_on_overflow */
1979 bfd_elf_generic_reloc, /* special_function */
1980 AARCH64_R_STR (TLSDESC_LDR), /* name */
1981 FALSE, /* partial_inplace */
1982 0x0, /* src_mask */
1983 0x0, /* dst_mask */
1984 FALSE), /* pcrel_offset */
1985
1986 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1987 0, /* rightshift */
1988 2, /* size (0 = byte, 1 = short, 2 = long) */
1989 12, /* bitsize */
1990 FALSE, /* pc_relative */
1991 0, /* bitpos */
1992 complain_overflow_dont, /* complain_on_overflow */
1993 bfd_elf_generic_reloc, /* special_function */
1994 AARCH64_R_STR (TLSDESC_ADD), /* name */
1995 FALSE, /* partial_inplace */
1996 0x0, /* src_mask */
1997 0x0, /* dst_mask */
1998 FALSE), /* pcrel_offset */
1999
2000 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
2001 0, /* rightshift */
2002 2, /* size (0 = byte, 1 = short, 2 = long) */
2003 0, /* bitsize */
2004 FALSE, /* pc_relative */
2005 0, /* bitpos */
2006 complain_overflow_dont, /* complain_on_overflow */
2007 bfd_elf_generic_reloc, /* special_function */
2008 AARCH64_R_STR (TLSDESC_CALL), /* name */
2009 FALSE, /* partial_inplace */
2010 0x0, /* src_mask */
2011 0x0, /* dst_mask */
2012 FALSE), /* pcrel_offset */
2013
2014 HOWTO (AARCH64_R (COPY), /* type */
2015 0, /* rightshift */
2016 2, /* size (0 = byte, 1 = short, 2 = long) */
2017 64, /* bitsize */
2018 FALSE, /* pc_relative */
2019 0, /* bitpos */
2020 complain_overflow_bitfield, /* complain_on_overflow */
2021 bfd_elf_generic_reloc, /* special_function */
2022 AARCH64_R_STR (COPY), /* name */
2023 TRUE, /* partial_inplace */
2024 0xffffffff, /* src_mask */
2025 0xffffffff, /* dst_mask */
2026 FALSE), /* pcrel_offset */
2027
2028 HOWTO (AARCH64_R (GLOB_DAT), /* type */
2029 0, /* rightshift */
2030 2, /* size (0 = byte, 1 = short, 2 = long) */
2031 64, /* bitsize */
2032 FALSE, /* pc_relative */
2033 0, /* bitpos */
2034 complain_overflow_bitfield, /* complain_on_overflow */
2035 bfd_elf_generic_reloc, /* special_function */
2036 AARCH64_R_STR (GLOB_DAT), /* name */
2037 TRUE, /* partial_inplace */
2038 0xffffffff, /* src_mask */
2039 0xffffffff, /* dst_mask */
2040 FALSE), /* pcrel_offset */
2041
2042 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
2043 0, /* rightshift */
2044 2, /* size (0 = byte, 1 = short, 2 = long) */
2045 64, /* bitsize */
2046 FALSE, /* pc_relative */
2047 0, /* bitpos */
2048 complain_overflow_bitfield, /* complain_on_overflow */
2049 bfd_elf_generic_reloc, /* special_function */
2050 AARCH64_R_STR (JUMP_SLOT), /* name */
2051 TRUE, /* partial_inplace */
2052 0xffffffff, /* src_mask */
2053 0xffffffff, /* dst_mask */
2054 FALSE), /* pcrel_offset */
2055
2056 HOWTO (AARCH64_R (RELATIVE), /* type */
2057 0, /* rightshift */
2058 2, /* size (0 = byte, 1 = short, 2 = long) */
2059 64, /* bitsize */
2060 FALSE, /* pc_relative */
2061 0, /* bitpos */
2062 complain_overflow_bitfield, /* complain_on_overflow */
2063 bfd_elf_generic_reloc, /* special_function */
2064 AARCH64_R_STR (RELATIVE), /* name */
2065 TRUE, /* partial_inplace */
2066 ALL_ONES, /* src_mask */
2067 ALL_ONES, /* dst_mask */
2068 FALSE), /* pcrel_offset */
2069
2070 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
2071 0, /* rightshift */
2072 2, /* size (0 = byte, 1 = short, 2 = long) */
2073 64, /* bitsize */
2074 FALSE, /* pc_relative */
2075 0, /* bitpos */
2076 complain_overflow_dont, /* complain_on_overflow */
2077 bfd_elf_generic_reloc, /* special_function */
2078 #if ARCH_SIZE == 64
2079 AARCH64_R_STR (TLS_DTPMOD64), /* name */
2080 #else
2081 AARCH64_R_STR (TLS_DTPMOD), /* name */
2082 #endif
2083 FALSE, /* partial_inplace */
2084 0, /* src_mask */
2085 ALL_ONES, /* dst_mask */
2086 FALSE), /* pc_reloffset */
2087
2088 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2089 0, /* rightshift */
2090 2, /* size (0 = byte, 1 = short, 2 = long) */
2091 64, /* bitsize */
2092 FALSE, /* pc_relative */
2093 0, /* bitpos */
2094 complain_overflow_dont, /* complain_on_overflow */
2095 bfd_elf_generic_reloc, /* special_function */
2096 #if ARCH_SIZE == 64
2097 AARCH64_R_STR (TLS_DTPREL64), /* name */
2098 #else
2099 AARCH64_R_STR (TLS_DTPREL), /* name */
2100 #endif
2101 FALSE, /* partial_inplace */
2102 0, /* src_mask */
2103 ALL_ONES, /* dst_mask */
2104 FALSE), /* pcrel_offset */
2105
2106 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2107 0, /* rightshift */
2108 2, /* size (0 = byte, 1 = short, 2 = long) */
2109 64, /* bitsize */
2110 FALSE, /* pc_relative */
2111 0, /* bitpos */
2112 complain_overflow_dont, /* complain_on_overflow */
2113 bfd_elf_generic_reloc, /* special_function */
2114 #if ARCH_SIZE == 64
2115 AARCH64_R_STR (TLS_TPREL64), /* name */
2116 #else
2117 AARCH64_R_STR (TLS_TPREL), /* name */
2118 #endif
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ALL_ONES, /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 HOWTO (AARCH64_R (TLSDESC), /* type */
2125 0, /* rightshift */
2126 2, /* size (0 = byte, 1 = short, 2 = long) */
2127 64, /* bitsize */
2128 FALSE, /* pc_relative */
2129 0, /* bitpos */
2130 complain_overflow_dont, /* complain_on_overflow */
2131 bfd_elf_generic_reloc, /* special_function */
2132 AARCH64_R_STR (TLSDESC), /* name */
2133 FALSE, /* partial_inplace */
2134 0, /* src_mask */
2135 ALL_ONES, /* dst_mask */
2136 FALSE), /* pcrel_offset */
2137
2138 HOWTO (AARCH64_R (IRELATIVE), /* type */
2139 0, /* rightshift */
2140 2, /* size (0 = byte, 1 = short, 2 = long) */
2141 64, /* bitsize */
2142 FALSE, /* pc_relative */
2143 0, /* bitpos */
2144 complain_overflow_bitfield, /* complain_on_overflow */
2145 bfd_elf_generic_reloc, /* special_function */
2146 AARCH64_R_STR (IRELATIVE), /* name */
2147 FALSE, /* partial_inplace */
2148 0, /* src_mask */
2149 ALL_ONES, /* dst_mask */
2150 FALSE), /* pcrel_offset */
2151
2152 EMPTY_HOWTO (0),
2153 };
2154
2155 static reloc_howto_type elfNN_aarch64_howto_none =
2156 HOWTO (R_AARCH64_NONE, /* type */
2157 0, /* rightshift */
2158 3, /* size (0 = byte, 1 = short, 2 = long) */
2159 0, /* bitsize */
2160 FALSE, /* pc_relative */
2161 0, /* bitpos */
2162 complain_overflow_dont,/* complain_on_overflow */
2163 bfd_elf_generic_reloc, /* special_function */
2164 "R_AARCH64_NONE", /* name */
2165 FALSE, /* partial_inplace */
2166 0, /* src_mask */
2167 0, /* dst_mask */
2168 FALSE); /* pcrel_offset */
2169
2170 /* Given HOWTO, return the bfd internal relocation enumerator. */
2171
2172 static bfd_reloc_code_real_type
2173 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2174 {
2175 const int size
2176 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2177 const ptrdiff_t offset
2178 = howto - elfNN_aarch64_howto_table;
2179
2180 if (offset > 0 && offset < size - 1)
2181 return BFD_RELOC_AARCH64_RELOC_START + offset;
2182
2183 if (howto == &elfNN_aarch64_howto_none)
2184 return BFD_RELOC_AARCH64_NONE;
2185
2186 return BFD_RELOC_AARCH64_RELOC_START;
2187 }
2188
2189 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2190
2191 static bfd_reloc_code_real_type
2192 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2193 {
2194 static bfd_boolean initialized_p = FALSE;
2195 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2196 static unsigned int offsets[R_AARCH64_end];
2197
2198 if (!initialized_p)
2199 {
2200 unsigned int i;
2201
2202 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2203 if (elfNN_aarch64_howto_table[i].type != 0)
2204 offsets[elfNN_aarch64_howto_table[i].type] = i;
2205
2206 initialized_p = TRUE;
2207 }
2208
2209 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2210 return BFD_RELOC_AARCH64_NONE;
2211
2212 /* PR 17512: file: b371e70a. */
2213 if (r_type >= R_AARCH64_end)
2214 {
2215 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2216 abfd, r_type);
2217 bfd_set_error (bfd_error_bad_value);
2218 return BFD_RELOC_AARCH64_NONE;
2219 }
2220
2221 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2222 }
2223
2224 struct elf_aarch64_reloc_map
2225 {
2226 bfd_reloc_code_real_type from;
2227 bfd_reloc_code_real_type to;
2228 };
2229
2230 /* Map bfd generic reloc to AArch64-specific reloc. */
2231 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2232 {
2233 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2234
2235 /* Basic data relocations. */
2236 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2237 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2238 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2239 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2240 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2241 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2242 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2243 };
2244
2245 /* Given the bfd internal relocation enumerator in CODE, return the
2246 corresponding howto entry. */
2247
2248 static reloc_howto_type *
2249 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2250 {
2251 unsigned int i;
2252
2253 /* Convert bfd generic reloc to AArch64-specific reloc. */
2254 if (code < BFD_RELOC_AARCH64_RELOC_START
2255 || code > BFD_RELOC_AARCH64_RELOC_END)
2256 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2257 if (elf_aarch64_reloc_map[i].from == code)
2258 {
2259 code = elf_aarch64_reloc_map[i].to;
2260 break;
2261 }
2262
2263 if (code > BFD_RELOC_AARCH64_RELOC_START
2264 && code < BFD_RELOC_AARCH64_RELOC_END)
2265 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2266 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2267
2268 if (code == BFD_RELOC_AARCH64_NONE)
2269 return &elfNN_aarch64_howto_none;
2270
2271 return NULL;
2272 }
2273
2274 static reloc_howto_type *
2275 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2276 {
2277 bfd_reloc_code_real_type val;
2278 reloc_howto_type *howto;
2279
2280 #if ARCH_SIZE == 32
2281 if (r_type > 256)
2282 {
2283 bfd_set_error (bfd_error_bad_value);
2284 return NULL;
2285 }
2286 #endif
2287
2288 if (r_type == R_AARCH64_NONE)
2289 return &elfNN_aarch64_howto_none;
2290
2291 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2292 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2293
2294 if (howto != NULL)
2295 return howto;
2296
2297 bfd_set_error (bfd_error_bad_value);
2298 return NULL;
2299 }
2300
2301 static bfd_boolean
2302 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2303 Elf_Internal_Rela *elf_reloc)
2304 {
2305 unsigned int r_type;
2306
2307 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2308 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2309
2310 if (bfd_reloc->howto == NULL)
2311 {
2312 /* xgettext:c-format */
2313 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2314 return FALSE;
2315 }
2316 return TRUE;
2317 }
2318
2319 static reloc_howto_type *
2320 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2321 bfd_reloc_code_real_type code)
2322 {
2323 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2324
2325 if (howto != NULL)
2326 return howto;
2327
2328 bfd_set_error (bfd_error_bad_value);
2329 return NULL;
2330 }
2331
2332 static reloc_howto_type *
2333 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2334 const char *r_name)
2335 {
2336 unsigned int i;
2337
2338 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2339 if (elfNN_aarch64_howto_table[i].name != NULL
2340 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2341 return &elfNN_aarch64_howto_table[i];
2342
2343 return NULL;
2344 }
2345
2346 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2347 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2348 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2349 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2350
2351 /* The linker script knows the section names for placement.
2352 The entry_names are used to do simple name mangling on the stubs.
2353 Given a function name, and its type, the stub can be found. The
2354 name can be changed. The only requirement is the %s be present. */
2355 #define STUB_ENTRY_NAME "__%s_veneer"
2356
2357 /* The name of the dynamic interpreter. This is put in the .interp
2358 section. */
2359 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2360
2361 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2362 (((1 << 25) - 1) << 2)
2363 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2364 (-((1 << 25) << 2))
2365
2366 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2367 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2368
2369 static int
2370 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2371 {
2372 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2373 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2374 }
2375
2376 static int
2377 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2378 {
2379 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2380 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2381 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2382 }
2383
2384 static const uint32_t aarch64_adrp_branch_stub [] =
2385 {
2386 0x90000010, /* adrp ip0, X */
2387 /* R_AARCH64_ADR_HI21_PCREL(X) */
2388 0x91000210, /* add ip0, ip0, :lo12:X */
2389 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2390 0xd61f0200, /* br ip0 */
2391 };
2392
2393 static const uint32_t aarch64_long_branch_stub[] =
2394 {
2395 #if ARCH_SIZE == 64
2396 0x58000090, /* ldr ip0, 1f */
2397 #else
2398 0x18000090, /* ldr wip0, 1f */
2399 #endif
2400 0x10000011, /* adr ip1, #0 */
2401 0x8b110210, /* add ip0, ip0, ip1 */
2402 0xd61f0200, /* br ip0 */
2403 0x00000000, /* 1: .xword or .word
2404 R_AARCH64_PRELNN(X) + 12
2405 */
2406 0x00000000,
2407 };
2408
2409 static const uint32_t aarch64_erratum_835769_stub[] =
2410 {
2411 0x00000000, /* Placeholder for multiply accumulate. */
2412 0x14000000, /* b <label> */
2413 };
2414
2415 static const uint32_t aarch64_erratum_843419_stub[] =
2416 {
2417 0x00000000, /* Placeholder for LDR instruction. */
2418 0x14000000, /* b <label> */
2419 };
2420
2421 /* Section name for stubs is the associated section name plus this
2422 string. */
2423 #define STUB_SUFFIX ".stub"
2424
2425 enum elf_aarch64_stub_type
2426 {
2427 aarch64_stub_none,
2428 aarch64_stub_adrp_branch,
2429 aarch64_stub_long_branch,
2430 aarch64_stub_erratum_835769_veneer,
2431 aarch64_stub_erratum_843419_veneer,
2432 };
2433
2434 struct elf_aarch64_stub_hash_entry
2435 {
2436 /* Base hash table entry structure. */
2437 struct bfd_hash_entry root;
2438
2439 /* The stub section. */
2440 asection *stub_sec;
2441
2442 /* Offset within stub_sec of the beginning of this stub. */
2443 bfd_vma stub_offset;
2444
2445 /* Given the symbol's value and its section we can determine its final
2446 value when building the stubs (so the stub knows where to jump). */
2447 bfd_vma target_value;
2448 asection *target_section;
2449
2450 enum elf_aarch64_stub_type stub_type;
2451
2452 /* The symbol table entry, if any, that this was derived from. */
2453 struct elf_aarch64_link_hash_entry *h;
2454
2455 /* Destination symbol type */
2456 unsigned char st_type;
2457
2458 /* Where this stub is being called from, or, in the case of combined
2459 stub sections, the first input section in the group. */
2460 asection *id_sec;
2461
2462 /* The name for the local symbol at the start of this stub. The
2463 stub name in the hash table has to be unique; this does not, so
2464 it can be friendlier. */
2465 char *output_name;
2466
2467 /* The instruction which caused this stub to be generated (only valid for
2468 erratum 835769 workaround stubs at present). */
2469 uint32_t veneered_insn;
2470
2471 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2472 bfd_vma adrp_offset;
2473 };
2474
2475 /* Used to build a map of a section. This is required for mixed-endian
2476 code/data. */
2477
2478 typedef struct elf_elf_section_map
2479 {
2480 bfd_vma vma;
2481 char type;
2482 }
2483 elf_aarch64_section_map;
2484
2485
2486 typedef struct _aarch64_elf_section_data
2487 {
2488 struct bfd_elf_section_data elf;
2489 unsigned int mapcount;
2490 unsigned int mapsize;
2491 elf_aarch64_section_map *map;
2492 }
2493 _aarch64_elf_section_data;
2494
2495 #define elf_aarch64_section_data(sec) \
2496 ((_aarch64_elf_section_data *) elf_section_data (sec))
2497
2498 /* The size of the thread control block which is defined to be two pointers. */
2499 #define TCB_SIZE (ARCH_SIZE/8)*2
2500
2501 struct elf_aarch64_local_symbol
2502 {
2503 unsigned int got_type;
2504 bfd_signed_vma got_refcount;
2505 bfd_vma got_offset;
2506
2507 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2508 offset is from the end of the jump table and reserved entries
2509 within the PLTGOT.
2510
2511 The magic value (bfd_vma) -1 indicates that an offset has not be
2512 allocated. */
2513 bfd_vma tlsdesc_got_jump_table_offset;
2514 };
2515
2516 struct elf_aarch64_obj_tdata
2517 {
2518 struct elf_obj_tdata root;
2519
2520 /* local symbol descriptors */
2521 struct elf_aarch64_local_symbol *locals;
2522
2523 /* Zero to warn when linking objects with incompatible enum sizes. */
2524 int no_enum_size_warning;
2525
2526 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2527 int no_wchar_size_warning;
2528
2529 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2530 uint32_t gnu_and_prop;
2531
2532 /* Zero to warn when linking objects with incompatible
2533 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2534 int no_bti_warn;
2535
2536 /* PLT type based on security. */
2537 aarch64_plt_type plt_type;
2538 };
2539
2540 #define elf_aarch64_tdata(bfd) \
2541 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2542
2543 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2544
2545 #define is_aarch64_elf(bfd) \
2546 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2547 && elf_tdata (bfd) != NULL \
2548 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2549
2550 static bfd_boolean
2551 elfNN_aarch64_mkobject (bfd *abfd)
2552 {
2553 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2554 AARCH64_ELF_DATA);
2555 }
2556
2557 #define elf_aarch64_hash_entry(ent) \
2558 ((struct elf_aarch64_link_hash_entry *)(ent))
2559
2560 #define GOT_UNKNOWN 0
2561 #define GOT_NORMAL 1
2562 #define GOT_TLS_GD 2
2563 #define GOT_TLS_IE 4
2564 #define GOT_TLSDESC_GD 8
2565
2566 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2567
2568 /* AArch64 ELF linker hash entry. */
2569 struct elf_aarch64_link_hash_entry
2570 {
2571 struct elf_link_hash_entry root;
2572
2573 /* Since PLT entries have variable size, we need to record the
2574 index into .got.plt instead of recomputing it from the PLT
2575 offset. */
2576 bfd_signed_vma plt_got_offset;
2577
2578 /* Bit mask representing the type of GOT entry(s) if any required by
2579 this symbol. */
2580 unsigned int got_type;
2581
2582 /* A pointer to the most recently used stub hash entry against this
2583 symbol. */
2584 struct elf_aarch64_stub_hash_entry *stub_cache;
2585
2586 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2587 is from the end of the jump table and reserved entries within the PLTGOT.
2588
2589 The magic value (bfd_vma) -1 indicates that an offset has not
2590 be allocated. */
2591 bfd_vma tlsdesc_got_jump_table_offset;
2592 };
2593
2594 static unsigned int
2595 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2596 bfd *abfd,
2597 unsigned long r_symndx)
2598 {
2599 if (h)
2600 return elf_aarch64_hash_entry (h)->got_type;
2601
2602 if (! elf_aarch64_locals (abfd))
2603 return GOT_UNKNOWN;
2604
2605 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2606 }
2607
2608 /* Get the AArch64 elf linker hash table from a link_info structure. */
2609 #define elf_aarch64_hash_table(info) \
2610 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2611
2612 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2613 ((struct elf_aarch64_stub_hash_entry *) \
2614 bfd_hash_lookup ((table), (string), (create), (copy)))
2615
2616 /* AArch64 ELF linker hash table. */
2617 struct elf_aarch64_link_hash_table
2618 {
2619 /* The main hash table. */
2620 struct elf_link_hash_table root;
2621
2622 /* Nonzero to force PIC branch veneers. */
2623 int pic_veneer;
2624
2625 /* Fix erratum 835769. */
2626 int fix_erratum_835769;
2627
2628 /* Fix erratum 843419. */
2629 erratum_84319_opts fix_erratum_843419;
2630
2631 /* Don't apply link-time values for dynamic relocations. */
2632 int no_apply_dynamic_relocs;
2633
2634 /* The number of bytes in the initial entry in the PLT. */
2635 bfd_size_type plt_header_size;
2636
2637 /* The bytes of the initial PLT entry. */
2638 const bfd_byte *plt0_entry;
2639
2640 /* The number of bytes in the subsequent PLT entries. */
2641 bfd_size_type plt_entry_size;
2642
2643 /* The bytes of the subsequent PLT entry. */
2644 const bfd_byte *plt_entry;
2645
2646 /* Small local sym cache. */
2647 struct sym_cache sym_cache;
2648
2649 /* For convenience in allocate_dynrelocs. */
2650 bfd *obfd;
2651
2652 /* The amount of space used by the reserved portion of the sgotplt
2653 section, plus whatever space is used by the jump slots. */
2654 bfd_vma sgotplt_jump_table_size;
2655
2656 /* The stub hash table. */
2657 struct bfd_hash_table stub_hash_table;
2658
2659 /* Linker stub bfd. */
2660 bfd *stub_bfd;
2661
2662 /* Linker call-backs. */
2663 asection *(*add_stub_section) (const char *, asection *);
2664 void (*layout_sections_again) (void);
2665
2666 /* Array to keep track of which stub sections have been created, and
2667 information on stub grouping. */
2668 struct map_stub
2669 {
2670 /* This is the section to which stubs in the group will be
2671 attached. */
2672 asection *link_sec;
2673 /* The stub section. */
2674 asection *stub_sec;
2675 } *stub_group;
2676
2677 /* Assorted information used by elfNN_aarch64_size_stubs. */
2678 unsigned int bfd_count;
2679 unsigned int top_index;
2680 asection **input_list;
2681
2682 /* JUMP_SLOT relocs for variant PCS symbols may be present. */
2683 int variant_pcs;
2684
2685 /* The number of bytes in the PLT enty for the TLS descriptor. */
2686 bfd_size_type tlsdesc_plt_entry_size;
2687
2688 /* Used by local STT_GNU_IFUNC symbols. */
2689 htab_t loc_hash_table;
2690 void * loc_hash_memory;
2691 };
2692
2693 /* Create an entry in an AArch64 ELF linker hash table. */
2694
2695 static struct bfd_hash_entry *
2696 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2697 struct bfd_hash_table *table,
2698 const char *string)
2699 {
2700 struct elf_aarch64_link_hash_entry *ret =
2701 (struct elf_aarch64_link_hash_entry *) entry;
2702
2703 /* Allocate the structure if it has not already been allocated by a
2704 subclass. */
2705 if (ret == NULL)
2706 ret = bfd_hash_allocate (table,
2707 sizeof (struct elf_aarch64_link_hash_entry));
2708 if (ret == NULL)
2709 return (struct bfd_hash_entry *) ret;
2710
2711 /* Call the allocation method of the superclass. */
2712 ret = ((struct elf_aarch64_link_hash_entry *)
2713 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2714 table, string));
2715 if (ret != NULL)
2716 {
2717 ret->got_type = GOT_UNKNOWN;
2718 ret->plt_got_offset = (bfd_vma) - 1;
2719 ret->stub_cache = NULL;
2720 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2721 }
2722
2723 return (struct bfd_hash_entry *) ret;
2724 }
2725
2726 /* Initialize an entry in the stub hash table. */
2727
2728 static struct bfd_hash_entry *
2729 stub_hash_newfunc (struct bfd_hash_entry *entry,
2730 struct bfd_hash_table *table, const char *string)
2731 {
2732 /* Allocate the structure if it has not already been allocated by a
2733 subclass. */
2734 if (entry == NULL)
2735 {
2736 entry = bfd_hash_allocate (table,
2737 sizeof (struct
2738 elf_aarch64_stub_hash_entry));
2739 if (entry == NULL)
2740 return entry;
2741 }
2742
2743 /* Call the allocation method of the superclass. */
2744 entry = bfd_hash_newfunc (entry, table, string);
2745 if (entry != NULL)
2746 {
2747 struct elf_aarch64_stub_hash_entry *eh;
2748
2749 /* Initialize the local fields. */
2750 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2751 eh->adrp_offset = 0;
2752 eh->stub_sec = NULL;
2753 eh->stub_offset = 0;
2754 eh->target_value = 0;
2755 eh->target_section = NULL;
2756 eh->stub_type = aarch64_stub_none;
2757 eh->h = NULL;
2758 eh->id_sec = NULL;
2759 }
2760
2761 return entry;
2762 }
2763
2764 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2765 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2766 as global symbol. We reuse indx and dynstr_index for local symbol
2767 hash since they aren't used by global symbols in this backend. */
2768
2769 static hashval_t
2770 elfNN_aarch64_local_htab_hash (const void *ptr)
2771 {
2772 struct elf_link_hash_entry *h
2773 = (struct elf_link_hash_entry *) ptr;
2774 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2775 }
2776
2777 /* Compare local hash entries. */
2778
2779 static int
2780 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2781 {
2782 struct elf_link_hash_entry *h1
2783 = (struct elf_link_hash_entry *) ptr1;
2784 struct elf_link_hash_entry *h2
2785 = (struct elf_link_hash_entry *) ptr2;
2786
2787 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2788 }
2789
2790 /* Find and/or create a hash entry for local symbol. */
2791
2792 static struct elf_link_hash_entry *
2793 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2794 bfd *abfd, const Elf_Internal_Rela *rel,
2795 bfd_boolean create)
2796 {
2797 struct elf_aarch64_link_hash_entry e, *ret;
2798 asection *sec = abfd->sections;
2799 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2800 ELFNN_R_SYM (rel->r_info));
2801 void **slot;
2802
2803 e.root.indx = sec->id;
2804 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2805 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2806 create ? INSERT : NO_INSERT);
2807
2808 if (!slot)
2809 return NULL;
2810
2811 if (*slot)
2812 {
2813 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2814 return &ret->root;
2815 }
2816
2817 ret = (struct elf_aarch64_link_hash_entry *)
2818 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2819 sizeof (struct elf_aarch64_link_hash_entry));
2820 if (ret)
2821 {
2822 memset (ret, 0, sizeof (*ret));
2823 ret->root.indx = sec->id;
2824 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2825 ret->root.dynindx = -1;
2826 *slot = ret;
2827 }
2828 return &ret->root;
2829 }
2830
2831 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2832
2833 static void
2834 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2835 struct elf_link_hash_entry *dir,
2836 struct elf_link_hash_entry *ind)
2837 {
2838 struct elf_aarch64_link_hash_entry *edir, *eind;
2839
2840 edir = (struct elf_aarch64_link_hash_entry *) dir;
2841 eind = (struct elf_aarch64_link_hash_entry *) ind;
2842
2843 if (ind->root.type == bfd_link_hash_indirect)
2844 {
2845 /* Copy over PLT info. */
2846 if (dir->got.refcount <= 0)
2847 {
2848 edir->got_type = eind->got_type;
2849 eind->got_type = GOT_UNKNOWN;
2850 }
2851 }
2852
2853 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2854 }
2855
2856 /* Merge non-visibility st_other attributes. */
2857
2858 static void
2859 elfNN_aarch64_merge_symbol_attribute (struct elf_link_hash_entry *h,
2860 const Elf_Internal_Sym *isym,
2861 bfd_boolean definition ATTRIBUTE_UNUSED,
2862 bfd_boolean dynamic ATTRIBUTE_UNUSED)
2863 {
2864 unsigned int isym_sto = isym->st_other & ~ELF_ST_VISIBILITY (-1);
2865 unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1);
2866
2867 if (isym_sto == h_sto)
2868 return;
2869
2870 if (isym_sto & ~STO_AARCH64_VARIANT_PCS)
2871 /* Not fatal, this callback cannot fail. */
2872 _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
2873 h->root.root.string, isym_sto);
2874
2875 /* Note: Ideally we would warn about any attribute mismatch, but
2876 this api does not allow that without substantial changes. */
2877 if (isym_sto & STO_AARCH64_VARIANT_PCS)
2878 h->other |= STO_AARCH64_VARIANT_PCS;
2879 }
2880
2881 /* Destroy an AArch64 elf linker hash table. */
2882
2883 static void
2884 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2885 {
2886 struct elf_aarch64_link_hash_table *ret
2887 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2888
2889 if (ret->loc_hash_table)
2890 htab_delete (ret->loc_hash_table);
2891 if (ret->loc_hash_memory)
2892 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2893
2894 bfd_hash_table_free (&ret->stub_hash_table);
2895 _bfd_elf_link_hash_table_free (obfd);
2896 }
2897
2898 /* Create an AArch64 elf linker hash table. */
2899
2900 static struct bfd_link_hash_table *
2901 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2902 {
2903 struct elf_aarch64_link_hash_table *ret;
2904 size_t amt = sizeof (struct elf_aarch64_link_hash_table);
2905
2906 ret = bfd_zmalloc (amt);
2907 if (ret == NULL)
2908 return NULL;
2909
2910 if (!_bfd_elf_link_hash_table_init
2911 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2912 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2913 {
2914 free (ret);
2915 return NULL;
2916 }
2917
2918 ret->plt_header_size = PLT_ENTRY_SIZE;
2919 ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2920 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2921 ret->plt_entry = elfNN_aarch64_small_plt_entry;
2922 ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2923 ret->obfd = abfd;
2924 ret->root.tlsdesc_got = (bfd_vma) - 1;
2925
2926 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2927 sizeof (struct elf_aarch64_stub_hash_entry)))
2928 {
2929 _bfd_elf_link_hash_table_free (abfd);
2930 return NULL;
2931 }
2932
2933 ret->loc_hash_table = htab_try_create (1024,
2934 elfNN_aarch64_local_htab_hash,
2935 elfNN_aarch64_local_htab_eq,
2936 NULL);
2937 ret->loc_hash_memory = objalloc_create ();
2938 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2939 {
2940 elfNN_aarch64_link_hash_table_free (abfd);
2941 return NULL;
2942 }
2943 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2944
2945 return &ret->root.root;
2946 }
2947
2948 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2949
2950 static bfd_boolean
2951 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2952 bfd_vma offset, bfd_vma value)
2953 {
2954 reloc_howto_type *howto;
2955 bfd_vma place;
2956
2957 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
2958 place = (input_section->output_section->vma + input_section->output_offset
2959 + offset);
2960
2961 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
2962 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, r_type, place,
2963 value, 0, FALSE);
2964 return _bfd_aarch64_elf_put_addend (input_bfd,
2965 input_section->contents + offset, r_type,
2966 howto, value) == bfd_reloc_ok;
2967 }
2968
2969 static enum elf_aarch64_stub_type
2970 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2971 {
2972 if (aarch64_valid_for_adrp_p (value, place))
2973 return aarch64_stub_adrp_branch;
2974 return aarch64_stub_long_branch;
2975 }
2976
2977 /* Determine the type of stub needed, if any, for a call. */
2978
2979 static enum elf_aarch64_stub_type
2980 aarch64_type_of_stub (asection *input_sec,
2981 const Elf_Internal_Rela *rel,
2982 asection *sym_sec,
2983 unsigned char st_type,
2984 bfd_vma destination)
2985 {
2986 bfd_vma location;
2987 bfd_signed_vma branch_offset;
2988 unsigned int r_type;
2989 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2990
2991 if (st_type != STT_FUNC
2992 && (sym_sec == input_sec))
2993 return stub_type;
2994
2995 /* Determine where the call point is. */
2996 location = (input_sec->output_offset
2997 + input_sec->output_section->vma + rel->r_offset);
2998
2999 branch_offset = (bfd_signed_vma) (destination - location);
3000
3001 r_type = ELFNN_R_TYPE (rel->r_info);
3002
3003 /* We don't want to redirect any old unconditional jump in this way,
3004 only one which is being used for a sibcall, where it is
3005 acceptable for the IP0 and IP1 registers to be clobbered. */
3006 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
3007 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
3008 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
3009 {
3010 stub_type = aarch64_stub_long_branch;
3011 }
3012
3013 return stub_type;
3014 }
3015
3016 /* Build a name for an entry in the stub hash table. */
3017
3018 static char *
3019 elfNN_aarch64_stub_name (const asection *input_section,
3020 const asection *sym_sec,
3021 const struct elf_aarch64_link_hash_entry *hash,
3022 const Elf_Internal_Rela *rel)
3023 {
3024 char *stub_name;
3025 bfd_size_type len;
3026
3027 if (hash)
3028 {
3029 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3030 stub_name = bfd_malloc (len);
3031 if (stub_name != NULL)
3032 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3033 (unsigned int) input_section->id,
3034 hash->root.root.root.string,
3035 rel->r_addend);
3036 }
3037 else
3038 {
3039 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3040 stub_name = bfd_malloc (len);
3041 if (stub_name != NULL)
3042 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3043 (unsigned int) input_section->id,
3044 (unsigned int) sym_sec->id,
3045 (unsigned int) ELFNN_R_SYM (rel->r_info),
3046 rel->r_addend);
3047 }
3048
3049 return stub_name;
3050 }
3051
3052 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3053 executable PLT slots where the executable never takes the address of those
3054 functions, the function symbols are not added to the hash table. */
3055
3056 static bfd_boolean
3057 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3058 {
3059 if (h->plt.offset != (bfd_vma) -1
3060 && !h->def_regular
3061 && !h->pointer_equality_needed)
3062 return FALSE;
3063
3064 return _bfd_elf_hash_symbol (h);
3065 }
3066
3067
3068 /* Look up an entry in the stub hash. Stub entries are cached because
3069 creating the stub name takes a bit of time. */
3070
3071 static struct elf_aarch64_stub_hash_entry *
3072 elfNN_aarch64_get_stub_entry (const asection *input_section,
3073 const asection *sym_sec,
3074 struct elf_link_hash_entry *hash,
3075 const Elf_Internal_Rela *rel,
3076 struct elf_aarch64_link_hash_table *htab)
3077 {
3078 struct elf_aarch64_stub_hash_entry *stub_entry;
3079 struct elf_aarch64_link_hash_entry *h =
3080 (struct elf_aarch64_link_hash_entry *) hash;
3081 const asection *id_sec;
3082
3083 if ((input_section->flags & SEC_CODE) == 0)
3084 return NULL;
3085
3086 /* If this input section is part of a group of sections sharing one
3087 stub section, then use the id of the first section in the group.
3088 Stub names need to include a section id, as there may well be
3089 more than one stub used to reach say, printf, and we need to
3090 distinguish between them. */
3091 id_sec = htab->stub_group[input_section->id].link_sec;
3092
3093 if (h != NULL && h->stub_cache != NULL
3094 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3095 {
3096 stub_entry = h->stub_cache;
3097 }
3098 else
3099 {
3100 char *stub_name;
3101
3102 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3103 if (stub_name == NULL)
3104 return NULL;
3105
3106 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3107 stub_name, FALSE, FALSE);
3108 if (h != NULL)
3109 h->stub_cache = stub_entry;
3110
3111 free (stub_name);
3112 }
3113
3114 return stub_entry;
3115 }
3116
3117
3118 /* Create a stub section. */
3119
3120 static asection *
3121 _bfd_aarch64_create_stub_section (asection *section,
3122 struct elf_aarch64_link_hash_table *htab)
3123 {
3124 size_t namelen;
3125 bfd_size_type len;
3126 char *s_name;
3127
3128 namelen = strlen (section->name);
3129 len = namelen + sizeof (STUB_SUFFIX);
3130 s_name = bfd_alloc (htab->stub_bfd, len);
3131 if (s_name == NULL)
3132 return NULL;
3133
3134 memcpy (s_name, section->name, namelen);
3135 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3136 return (*htab->add_stub_section) (s_name, section);
3137 }
3138
3139
3140 /* Find or create a stub section for a link section.
3141
3142 Fix or create the stub section used to collect stubs attached to
3143 the specified link section. */
3144
3145 static asection *
3146 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3147 struct elf_aarch64_link_hash_table *htab)
3148 {
3149 if (htab->stub_group[link_section->id].stub_sec == NULL)
3150 htab->stub_group[link_section->id].stub_sec
3151 = _bfd_aarch64_create_stub_section (link_section, htab);
3152 return htab->stub_group[link_section->id].stub_sec;
3153 }
3154
3155
3156 /* Find or create a stub section in the stub group for an input
3157 section. */
3158
3159 static asection *
3160 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3161 struct elf_aarch64_link_hash_table *htab)
3162 {
3163 asection *link_sec = htab->stub_group[section->id].link_sec;
3164 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3165 }
3166
3167
3168 /* Add a new stub entry in the stub group associated with an input
3169 section to the stub hash. Not all fields of the new stub entry are
3170 initialised. */
3171
3172 static struct elf_aarch64_stub_hash_entry *
3173 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3174 asection *section,
3175 struct elf_aarch64_link_hash_table *htab)
3176 {
3177 asection *link_sec;
3178 asection *stub_sec;
3179 struct elf_aarch64_stub_hash_entry *stub_entry;
3180
3181 link_sec = htab->stub_group[section->id].link_sec;
3182 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3183
3184 /* Enter this entry into the linker stub hash table. */
3185 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3186 TRUE, FALSE);
3187 if (stub_entry == NULL)
3188 {
3189 /* xgettext:c-format */
3190 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3191 section->owner, stub_name);
3192 return NULL;
3193 }
3194
3195 stub_entry->stub_sec = stub_sec;
3196 stub_entry->stub_offset = 0;
3197 stub_entry->id_sec = link_sec;
3198
3199 return stub_entry;
3200 }
3201
3202 /* Add a new stub entry in the final stub section to the stub hash.
3203 Not all fields of the new stub entry are initialised. */
3204
3205 static struct elf_aarch64_stub_hash_entry *
3206 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3207 asection *link_section,
3208 struct elf_aarch64_link_hash_table *htab)
3209 {
3210 asection *stub_sec;
3211 struct elf_aarch64_stub_hash_entry *stub_entry;
3212
3213 stub_sec = NULL;
3214 /* Only create the actual stub if we will end up needing it. */
3215 if (htab->fix_erratum_843419 & ERRAT_ADRP)
3216 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3217 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3218 TRUE, FALSE);
3219 if (stub_entry == NULL)
3220 {
3221 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3222 return NULL;
3223 }
3224
3225 stub_entry->stub_sec = stub_sec;
3226 stub_entry->stub_offset = 0;
3227 stub_entry->id_sec = link_section;
3228
3229 return stub_entry;
3230 }
3231
3232
3233 static bfd_boolean
3234 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3235 void *in_arg)
3236 {
3237 struct elf_aarch64_stub_hash_entry *stub_entry;
3238 asection *stub_sec;
3239 bfd *stub_bfd;
3240 bfd_byte *loc;
3241 bfd_vma sym_value;
3242 bfd_vma veneered_insn_loc;
3243 bfd_vma veneer_entry_loc;
3244 bfd_signed_vma branch_offset = 0;
3245 unsigned int template_size;
3246 const uint32_t *template;
3247 unsigned int i;
3248 struct bfd_link_info *info;
3249
3250 /* Massage our args to the form they really have. */
3251 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3252
3253 info = (struct bfd_link_info *) in_arg;
3254
3255 /* Fail if the target section could not be assigned to an output
3256 section. The user should fix his linker script. */
3257 if (stub_entry->target_section->output_section == NULL
3258 && info->non_contiguous_regions)
3259 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
3260 "Retry without "
3261 "--enable-non-contiguous-regions.\n"),
3262 stub_entry->target_section);
3263
3264 stub_sec = stub_entry->stub_sec;
3265
3266 /* Make a note of the offset within the stubs for this entry. */
3267 stub_entry->stub_offset = stub_sec->size;
3268 loc = stub_sec->contents + stub_entry->stub_offset;
3269
3270 stub_bfd = stub_sec->owner;
3271
3272 /* This is the address of the stub destination. */
3273 sym_value = (stub_entry->target_value
3274 + stub_entry->target_section->output_offset
3275 + stub_entry->target_section->output_section->vma);
3276
3277 if (stub_entry->stub_type == aarch64_stub_long_branch)
3278 {
3279 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3280 + stub_sec->output_offset);
3281
3282 /* See if we can relax the stub. */
3283 if (aarch64_valid_for_adrp_p (sym_value, place))
3284 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3285 }
3286
3287 switch (stub_entry->stub_type)
3288 {
3289 case aarch64_stub_adrp_branch:
3290 template = aarch64_adrp_branch_stub;
3291 template_size = sizeof (aarch64_adrp_branch_stub);
3292 break;
3293 case aarch64_stub_long_branch:
3294 template = aarch64_long_branch_stub;
3295 template_size = sizeof (aarch64_long_branch_stub);
3296 break;
3297 case aarch64_stub_erratum_835769_veneer:
3298 template = aarch64_erratum_835769_stub;
3299 template_size = sizeof (aarch64_erratum_835769_stub);
3300 break;
3301 case aarch64_stub_erratum_843419_veneer:
3302 template = aarch64_erratum_843419_stub;
3303 template_size = sizeof (aarch64_erratum_843419_stub);
3304 break;
3305 default:
3306 abort ();
3307 }
3308
3309 for (i = 0; i < (template_size / sizeof template[0]); i++)
3310 {
3311 bfd_putl32 (template[i], loc);
3312 loc += 4;
3313 }
3314
3315 template_size = (template_size + 7) & ~7;
3316 stub_sec->size += template_size;
3317
3318 switch (stub_entry->stub_type)
3319 {
3320 case aarch64_stub_adrp_branch:
3321 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3322 stub_entry->stub_offset, sym_value))
3323 /* The stub would not have been relaxed if the offset was out
3324 of range. */
3325 BFD_FAIL ();
3326
3327 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3328 stub_entry->stub_offset + 4, sym_value))
3329 BFD_FAIL ();
3330 break;
3331
3332 case aarch64_stub_long_branch:
3333 /* We want the value relative to the address 12 bytes back from the
3334 value itself. */
3335 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3336 stub_entry->stub_offset + 16, sym_value + 12))
3337 BFD_FAIL ();
3338 break;
3339
3340 case aarch64_stub_erratum_835769_veneer:
3341 veneered_insn_loc = stub_entry->target_section->output_section->vma
3342 + stub_entry->target_section->output_offset
3343 + stub_entry->target_value;
3344 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3345 + stub_entry->stub_sec->output_offset
3346 + stub_entry->stub_offset;
3347 branch_offset = veneered_insn_loc - veneer_entry_loc;
3348 branch_offset >>= 2;
3349 branch_offset &= 0x3ffffff;
3350 bfd_putl32 (stub_entry->veneered_insn,
3351 stub_sec->contents + stub_entry->stub_offset);
3352 bfd_putl32 (template[1] | branch_offset,
3353 stub_sec->contents + stub_entry->stub_offset + 4);
3354 break;
3355
3356 case aarch64_stub_erratum_843419_veneer:
3357 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3358 stub_entry->stub_offset + 4, sym_value + 4))
3359 BFD_FAIL ();
3360 break;
3361
3362 default:
3363 abort ();
3364 }
3365
3366 return TRUE;
3367 }
3368
3369 /* As above, but don't actually build the stub. Just bump offset so
3370 we know stub section sizes. */
3371
3372 static bfd_boolean
3373 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
3374 {
3375 struct elf_aarch64_stub_hash_entry *stub_entry;
3376 struct elf_aarch64_link_hash_table *htab;
3377 int size;
3378
3379 /* Massage our args to the form they really have. */
3380 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3381 htab = (struct elf_aarch64_link_hash_table *) in_arg;
3382
3383 switch (stub_entry->stub_type)
3384 {
3385 case aarch64_stub_adrp_branch:
3386 size = sizeof (aarch64_adrp_branch_stub);
3387 break;
3388 case aarch64_stub_long_branch:
3389 size = sizeof (aarch64_long_branch_stub);
3390 break;
3391 case aarch64_stub_erratum_835769_veneer:
3392 size = sizeof (aarch64_erratum_835769_stub);
3393 break;
3394 case aarch64_stub_erratum_843419_veneer:
3395 {
3396 if (htab->fix_erratum_843419 == ERRAT_ADR)
3397 return TRUE;
3398 size = sizeof (aarch64_erratum_843419_stub);
3399 }
3400 break;
3401 default:
3402 abort ();
3403 }
3404
3405 size = (size + 7) & ~7;
3406 stub_entry->stub_sec->size += size;
3407 return TRUE;
3408 }
3409
3410 /* External entry points for sizing and building linker stubs. */
3411
3412 /* Set up various things so that we can make a list of input sections
3413 for each output section included in the link. Returns -1 on error,
3414 0 when no stubs will be needed, and 1 on success. */
3415
3416 int
3417 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3418 struct bfd_link_info *info)
3419 {
3420 bfd *input_bfd;
3421 unsigned int bfd_count;
3422 unsigned int top_id, top_index;
3423 asection *section;
3424 asection **input_list, **list;
3425 size_t amt;
3426 struct elf_aarch64_link_hash_table *htab =
3427 elf_aarch64_hash_table (info);
3428
3429 if (!is_elf_hash_table (htab))
3430 return 0;
3431
3432 /* Count the number of input BFDs and find the top input section id. */
3433 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3434 input_bfd != NULL; input_bfd = input_bfd->link.next)
3435 {
3436 bfd_count += 1;
3437 for (section = input_bfd->sections;
3438 section != NULL; section = section->next)
3439 {
3440 if (top_id < section->id)
3441 top_id = section->id;
3442 }
3443 }
3444 htab->bfd_count = bfd_count;
3445
3446 amt = sizeof (struct map_stub) * (top_id + 1);
3447 htab->stub_group = bfd_zmalloc (amt);
3448 if (htab->stub_group == NULL)
3449 return -1;
3450
3451 /* We can't use output_bfd->section_count here to find the top output
3452 section index as some sections may have been removed, and
3453 _bfd_strip_section_from_output doesn't renumber the indices. */
3454 for (section = output_bfd->sections, top_index = 0;
3455 section != NULL; section = section->next)
3456 {
3457 if (top_index < section->index)
3458 top_index = section->index;
3459 }
3460
3461 htab->top_index = top_index;
3462 amt = sizeof (asection *) * (top_index + 1);
3463 input_list = bfd_malloc (amt);
3464 htab->input_list = input_list;
3465 if (input_list == NULL)
3466 return -1;
3467
3468 /* For sections we aren't interested in, mark their entries with a
3469 value we can check later. */
3470 list = input_list + top_index;
3471 do
3472 *list = bfd_abs_section_ptr;
3473 while (list-- != input_list);
3474
3475 for (section = output_bfd->sections;
3476 section != NULL; section = section->next)
3477 {
3478 if ((section->flags & SEC_CODE) != 0)
3479 input_list[section->index] = NULL;
3480 }
3481
3482 return 1;
3483 }
3484
3485 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3486 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3487
3488 /* The linker repeatedly calls this function for each input section,
3489 in the order that input sections are linked into output sections.
3490 Build lists of input sections to determine groupings between which
3491 we may insert linker stubs. */
3492
3493 void
3494 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3495 {
3496 struct elf_aarch64_link_hash_table *htab =
3497 elf_aarch64_hash_table (info);
3498
3499 if (isec->output_section->index <= htab->top_index)
3500 {
3501 asection **list = htab->input_list + isec->output_section->index;
3502
3503 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
3504 {
3505 /* Steal the link_sec pointer for our list. */
3506 /* This happens to make the list in reverse order,
3507 which is what we want. */
3508 PREV_SEC (isec) = *list;
3509 *list = isec;
3510 }
3511 }
3512 }
3513
3514 /* See whether we can group stub sections together. Grouping stub
3515 sections may result in fewer stubs. More importantly, we need to
3516 put all .init* and .fini* stubs at the beginning of the .init or
3517 .fini output sections respectively, because glibc splits the
3518 _init and _fini functions into multiple parts. Putting a stub in
3519 the middle of a function is not a good idea. */
3520
3521 static void
3522 group_sections (struct elf_aarch64_link_hash_table *htab,
3523 bfd_size_type stub_group_size,
3524 bfd_boolean stubs_always_after_branch)
3525 {
3526 asection **list = htab->input_list;
3527
3528 do
3529 {
3530 asection *tail = *list;
3531 asection *head;
3532
3533 if (tail == bfd_abs_section_ptr)
3534 continue;
3535
3536 /* Reverse the list: we must avoid placing stubs at the
3537 beginning of the section because the beginning of the text
3538 section may be required for an interrupt vector in bare metal
3539 code. */
3540 #define NEXT_SEC PREV_SEC
3541 head = NULL;
3542 while (tail != NULL)
3543 {
3544 /* Pop from tail. */
3545 asection *item = tail;
3546 tail = PREV_SEC (item);
3547
3548 /* Push on head. */
3549 NEXT_SEC (item) = head;
3550 head = item;
3551 }
3552
3553 while (head != NULL)
3554 {
3555 asection *curr;
3556 asection *next;
3557 bfd_vma stub_group_start = head->output_offset;
3558 bfd_vma end_of_next;
3559
3560 curr = head;
3561 while (NEXT_SEC (curr) != NULL)
3562 {
3563 next = NEXT_SEC (curr);
3564 end_of_next = next->output_offset + next->size;
3565 if (end_of_next - stub_group_start >= stub_group_size)
3566 /* End of NEXT is too far from start, so stop. */
3567 break;
3568 /* Add NEXT to the group. */
3569 curr = next;
3570 }
3571
3572 /* OK, the size from the start to the start of CURR is less
3573 than stub_group_size and thus can be handled by one stub
3574 section. (Or the head section is itself larger than
3575 stub_group_size, in which case we may be toast.)
3576 We should really be keeping track of the total size of
3577 stubs added here, as stubs contribute to the final output
3578 section size. */
3579 do
3580 {
3581 next = NEXT_SEC (head);
3582 /* Set up this stub group. */
3583 htab->stub_group[head->id].link_sec = curr;
3584 }
3585 while (head != curr && (head = next) != NULL);
3586
3587 /* But wait, there's more! Input sections up to stub_group_size
3588 bytes after the stub section can be handled by it too. */
3589 if (!stubs_always_after_branch)
3590 {
3591 stub_group_start = curr->output_offset + curr->size;
3592
3593 while (next != NULL)
3594 {
3595 end_of_next = next->output_offset + next->size;
3596 if (end_of_next - stub_group_start >= stub_group_size)
3597 /* End of NEXT is too far from stubs, so stop. */
3598 break;
3599 /* Add NEXT to the stub group. */
3600 head = next;
3601 next = NEXT_SEC (head);
3602 htab->stub_group[head->id].link_sec = curr;
3603 }
3604 }
3605 head = next;
3606 }
3607 }
3608 while (list++ != htab->input_list + htab->top_index);
3609
3610 free (htab->input_list);
3611 }
3612
3613 #undef PREV_SEC
3614 #undef PREV_SEC
3615
3616 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3617
3618 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3619 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3620 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3621 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3622 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3623 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3624
3625 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3626 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3627 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3628 #define AARCH64_ZR 0x1f
3629
3630 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3631 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3632
3633 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3634 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3635 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3636 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3637 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3638 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3639 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3640 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3641 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3642 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3643 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3644 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3645 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3646 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3647 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3648 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3649 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3650 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3651
3652 /* Classify an INSN if it is indeed a load/store.
3653
3654 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3655
3656 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3657 is set equal to RT.
3658
3659 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3660
3661 static bfd_boolean
3662 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3663 bfd_boolean *pair, bfd_boolean *load)
3664 {
3665 uint32_t opcode;
3666 unsigned int r;
3667 uint32_t opc = 0;
3668 uint32_t v = 0;
3669 uint32_t opc_v = 0;
3670
3671 /* Bail out quickly if INSN doesn't fall into the load-store
3672 encoding space. */
3673 if (!AARCH64_LDST (insn))
3674 return FALSE;
3675
3676 *pair = FALSE;
3677 *load = FALSE;
3678 if (AARCH64_LDST_EX (insn))
3679 {
3680 *rt = AARCH64_RT (insn);
3681 *rt2 = *rt;
3682 if (AARCH64_BIT (insn, 21) == 1)
3683 {
3684 *pair = TRUE;
3685 *rt2 = AARCH64_RT2 (insn);
3686 }
3687 *load = AARCH64_LD (insn);
3688 return TRUE;
3689 }
3690 else if (AARCH64_LDST_NAP (insn)
3691 || AARCH64_LDSTP_PI (insn)
3692 || AARCH64_LDSTP_O (insn)
3693 || AARCH64_LDSTP_PRE (insn))
3694 {
3695 *pair = TRUE;
3696 *rt = AARCH64_RT (insn);
3697 *rt2 = AARCH64_RT2 (insn);
3698 *load = AARCH64_LD (insn);
3699 return TRUE;
3700 }
3701 else if (AARCH64_LDST_PCREL (insn)
3702 || AARCH64_LDST_UI (insn)
3703 || AARCH64_LDST_PIIMM (insn)
3704 || AARCH64_LDST_U (insn)
3705 || AARCH64_LDST_PREIMM (insn)
3706 || AARCH64_LDST_RO (insn)
3707 || AARCH64_LDST_UIMM (insn))
3708 {
3709 *rt = AARCH64_RT (insn);
3710 *rt2 = *rt;
3711 if (AARCH64_LDST_PCREL (insn))
3712 *load = TRUE;
3713 opc = AARCH64_BITS (insn, 22, 2);
3714 v = AARCH64_BIT (insn, 26);
3715 opc_v = opc | (v << 2);
3716 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3717 || opc_v == 5 || opc_v == 7);
3718 return TRUE;
3719 }
3720 else if (AARCH64_LDST_SIMD_M (insn)
3721 || AARCH64_LDST_SIMD_M_PI (insn))
3722 {
3723 *rt = AARCH64_RT (insn);
3724 *load = AARCH64_BIT (insn, 22);
3725 opcode = (insn >> 12) & 0xf;
3726 switch (opcode)
3727 {
3728 case 0:
3729 case 2:
3730 *rt2 = *rt + 3;
3731 break;
3732
3733 case 4:
3734 case 6:
3735 *rt2 = *rt + 2;
3736 break;
3737
3738 case 7:
3739 *rt2 = *rt;
3740 break;
3741
3742 case 8:
3743 case 10:
3744 *rt2 = *rt + 1;
3745 break;
3746
3747 default:
3748 return FALSE;
3749 }
3750 return TRUE;
3751 }
3752 else if (AARCH64_LDST_SIMD_S (insn)
3753 || AARCH64_LDST_SIMD_S_PI (insn))
3754 {
3755 *rt = AARCH64_RT (insn);
3756 r = (insn >> 21) & 1;
3757 *load = AARCH64_BIT (insn, 22);
3758 opcode = (insn >> 13) & 0x7;
3759 switch (opcode)
3760 {
3761 case 0:
3762 case 2:
3763 case 4:
3764 *rt2 = *rt + r;
3765 break;
3766
3767 case 1:
3768 case 3:
3769 case 5:
3770 *rt2 = *rt + (r == 0 ? 2 : 3);
3771 break;
3772
3773 case 6:
3774 *rt2 = *rt + r;
3775 break;
3776
3777 case 7:
3778 *rt2 = *rt + (r == 0 ? 2 : 3);
3779 break;
3780
3781 default:
3782 return FALSE;
3783 }
3784 return TRUE;
3785 }
3786
3787 return FALSE;
3788 }
3789
3790 /* Return TRUE if INSN is multiply-accumulate. */
3791
3792 static bfd_boolean
3793 aarch64_mlxl_p (uint32_t insn)
3794 {
3795 uint32_t op31 = AARCH64_OP31 (insn);
3796
3797 if (AARCH64_MAC (insn)
3798 && (op31 == 0 || op31 == 1 || op31 == 5)
3799 /* Exclude MUL instructions which are encoded as a multiple accumulate
3800 with RA = XZR. */
3801 && AARCH64_RA (insn) != AARCH64_ZR)
3802 return TRUE;
3803
3804 return FALSE;
3805 }
3806
3807 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3808 it is possible for a 64-bit multiply-accumulate instruction to generate an
3809 incorrect result. The details are quite complex and hard to
3810 determine statically, since branches in the code may exist in some
3811 circumstances, but all cases end with a memory (load, store, or
3812 prefetch) instruction followed immediately by the multiply-accumulate
3813 operation. We employ a linker patching technique, by moving the potentially
3814 affected multiply-accumulate instruction into a patch region and replacing
3815 the original instruction with a branch to the patch. This function checks
3816 if INSN_1 is the memory operation followed by a multiply-accumulate
3817 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3818 if INSN_1 and INSN_2 are safe. */
3819
3820 static bfd_boolean
3821 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3822 {
3823 uint32_t rt;
3824 uint32_t rt2;
3825 uint32_t rn;
3826 uint32_t rm;
3827 uint32_t ra;
3828 bfd_boolean pair;
3829 bfd_boolean load;
3830
3831 if (aarch64_mlxl_p (insn_2)
3832 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3833 {
3834 /* Any SIMD memory op is independent of the subsequent MLA
3835 by definition of the erratum. */
3836 if (AARCH64_BIT (insn_1, 26))
3837 return TRUE;
3838
3839 /* If not SIMD, check for integer memory ops and MLA relationship. */
3840 rn = AARCH64_RN (insn_2);
3841 ra = AARCH64_RA (insn_2);
3842 rm = AARCH64_RM (insn_2);
3843
3844 /* If this is a load and there's a true(RAW) dependency, we are safe
3845 and this is not an erratum sequence. */
3846 if (load &&
3847 (rt == rn || rt == rm || rt == ra
3848 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3849 return FALSE;
3850
3851 /* We conservatively put out stubs for all other cases (including
3852 writebacks). */
3853 return TRUE;
3854 }
3855
3856 return FALSE;
3857 }
3858
3859 /* Used to order a list of mapping symbols by address. */
3860
3861 static int
3862 elf_aarch64_compare_mapping (const void *a, const void *b)
3863 {
3864 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3865 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3866
3867 if (amap->vma > bmap->vma)
3868 return 1;
3869 else if (amap->vma < bmap->vma)
3870 return -1;
3871 else if (amap->type > bmap->type)
3872 /* Ensure results do not depend on the host qsort for objects with
3873 multiple mapping symbols at the same address by sorting on type
3874 after vma. */
3875 return 1;
3876 else if (amap->type < bmap->type)
3877 return -1;
3878 else
3879 return 0;
3880 }
3881
3882
3883 static char *
3884 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3885 {
3886 char *stub_name = (char *) bfd_malloc
3887 (strlen ("__erratum_835769_veneer_") + 16);
3888 if (stub_name != NULL)
3889 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3890 return stub_name;
3891 }
3892
3893 /* Scan for Cortex-A53 erratum 835769 sequence.
3894
3895 Return TRUE else FALSE on abnormal termination. */
3896
3897 static bfd_boolean
3898 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3899 struct bfd_link_info *info,
3900 unsigned int *num_fixes_p)
3901 {
3902 asection *section;
3903 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3904 unsigned int num_fixes = *num_fixes_p;
3905
3906 if (htab == NULL)
3907 return TRUE;
3908
3909 for (section = input_bfd->sections;
3910 section != NULL;
3911 section = section->next)
3912 {
3913 bfd_byte *contents = NULL;
3914 struct _aarch64_elf_section_data *sec_data;
3915 unsigned int span;
3916
3917 if (elf_section_type (section) != SHT_PROGBITS
3918 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3919 || (section->flags & SEC_EXCLUDE) != 0
3920 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3921 || (section->output_section == bfd_abs_section_ptr))
3922 continue;
3923
3924 if (elf_section_data (section)->this_hdr.contents != NULL)
3925 contents = elf_section_data (section)->this_hdr.contents;
3926 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3927 return FALSE;
3928
3929 sec_data = elf_aarch64_section_data (section);
3930
3931 qsort (sec_data->map, sec_data->mapcount,
3932 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3933
3934 for (span = 0; span < sec_data->mapcount; span++)
3935 {
3936 unsigned int span_start = sec_data->map[span].vma;
3937 unsigned int span_end = ((span == sec_data->mapcount - 1)
3938 ? sec_data->map[0].vma + section->size
3939 : sec_data->map[span + 1].vma);
3940 unsigned int i;
3941 char span_type = sec_data->map[span].type;
3942
3943 if (span_type == 'd')
3944 continue;
3945
3946 for (i = span_start; i + 4 < span_end; i += 4)
3947 {
3948 uint32_t insn_1 = bfd_getl32 (contents + i);
3949 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3950
3951 if (aarch64_erratum_sequence (insn_1, insn_2))
3952 {
3953 struct elf_aarch64_stub_hash_entry *stub_entry;
3954 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3955 if (! stub_name)
3956 return FALSE;
3957
3958 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3959 section,
3960 htab);
3961 if (! stub_entry)
3962 return FALSE;
3963
3964 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3965 stub_entry->target_section = section;
3966 stub_entry->target_value = i + 4;
3967 stub_entry->veneered_insn = insn_2;
3968 stub_entry->output_name = stub_name;
3969 num_fixes++;
3970 }
3971 }
3972 }
3973 if (elf_section_data (section)->this_hdr.contents == NULL)
3974 free (contents);
3975 }
3976
3977 *num_fixes_p = num_fixes;
3978
3979 return TRUE;
3980 }
3981
3982
3983 /* Test if instruction INSN is ADRP. */
3984
3985 static bfd_boolean
3986 _bfd_aarch64_adrp_p (uint32_t insn)
3987 {
3988 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
3989 }
3990
3991
3992 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3993
3994 static bfd_boolean
3995 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3996 uint32_t insn_3)
3997 {
3998 uint32_t rt;
3999 uint32_t rt2;
4000 bfd_boolean pair;
4001 bfd_boolean load;
4002
4003 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
4004 && (!pair
4005 || (pair && !load))
4006 && AARCH64_LDST_UIMM (insn_3)
4007 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
4008 }
4009
4010
4011 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
4012
4013 Return TRUE if section CONTENTS at offset I contains one of the
4014 erratum 843419 sequences, otherwise return FALSE. If a sequence is
4015 seen set P_VENEER_I to the offset of the final LOAD/STORE
4016 instruction in the sequence.
4017 */
4018
4019 static bfd_boolean
4020 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
4021 bfd_vma i, bfd_vma span_end,
4022 bfd_vma *p_veneer_i)
4023 {
4024 uint32_t insn_1 = bfd_getl32 (contents + i);
4025
4026 if (!_bfd_aarch64_adrp_p (insn_1))
4027 return FALSE;
4028
4029 if (span_end < i + 12)
4030 return FALSE;
4031
4032 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
4033 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
4034
4035 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
4036 return FALSE;
4037
4038 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
4039 {
4040 *p_veneer_i = i + 8;
4041 return TRUE;
4042 }
4043
4044 if (span_end < i + 16)
4045 return FALSE;
4046
4047 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
4048
4049 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
4050 {
4051 *p_veneer_i = i + 12;
4052 return TRUE;
4053 }
4054
4055 return FALSE;
4056 }
4057
4058
4059 /* Resize all stub sections. */
4060
4061 static void
4062 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4063 {
4064 asection *section;
4065
4066 /* OK, we've added some stubs. Find out the new size of the
4067 stub sections. */
4068 for (section = htab->stub_bfd->sections;
4069 section != NULL; section = section->next)
4070 {
4071 /* Ignore non-stub sections. */
4072 if (!strstr (section->name, STUB_SUFFIX))
4073 continue;
4074 section->size = 0;
4075 }
4076
4077 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4078
4079 for (section = htab->stub_bfd->sections;
4080 section != NULL; section = section->next)
4081 {
4082 if (!strstr (section->name, STUB_SUFFIX))
4083 continue;
4084
4085 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4086 as long branch stubs contain a 64-bit address. */
4087 if (section->size)
4088 section->size += 8;
4089
4090 /* Ensure all stub sections have a size which is a multiple of
4091 4096. This is important in order to ensure that the insertion
4092 of stub sections does not in itself move existing code around
4093 in such a way that new errata sequences are created. We only do this
4094 when the ADRP workaround is enabled. If only the ADR workaround is
4095 enabled then the stubs workaround won't ever be used. */
4096 if (htab->fix_erratum_843419 & ERRAT_ADRP)
4097 if (section->size)
4098 section->size = BFD_ALIGN (section->size, 0x1000);
4099 }
4100 }
4101
4102 /* Construct an erratum 843419 workaround stub name. */
4103
4104 static char *
4105 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4106 bfd_vma offset)
4107 {
4108 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4109 char *stub_name = bfd_malloc (len);
4110
4111 if (stub_name != NULL)
4112 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4113 input_section->owner->id,
4114 input_section->id,
4115 offset);
4116 return stub_name;
4117 }
4118
4119 /* Build a stub_entry structure describing an 843419 fixup.
4120
4121 The stub_entry constructed is populated with the bit pattern INSN
4122 of the instruction located at OFFSET within input SECTION.
4123
4124 Returns TRUE on success. */
4125
4126 static bfd_boolean
4127 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4128 bfd_vma adrp_offset,
4129 bfd_vma ldst_offset,
4130 asection *section,
4131 struct bfd_link_info *info)
4132 {
4133 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4134 char *stub_name;
4135 struct elf_aarch64_stub_hash_entry *stub_entry;
4136
4137 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4138 if (stub_name == NULL)
4139 return FALSE;
4140 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4141 FALSE, FALSE);
4142 if (stub_entry)
4143 {
4144 free (stub_name);
4145 return TRUE;
4146 }
4147
4148 /* We always place an 843419 workaround veneer in the stub section
4149 attached to the input section in which an erratum sequence has
4150 been found. This ensures that later in the link process (in
4151 elfNN_aarch64_write_section) when we copy the veneered
4152 instruction from the input section into the stub section the
4153 copied instruction will have had any relocations applied to it.
4154 If we placed workaround veneers in any other stub section then we
4155 could not assume that all relocations have been processed on the
4156 corresponding input section at the point we output the stub
4157 section. */
4158
4159 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4160 if (stub_entry == NULL)
4161 {
4162 free (stub_name);
4163 return FALSE;
4164 }
4165
4166 stub_entry->adrp_offset = adrp_offset;
4167 stub_entry->target_value = ldst_offset;
4168 stub_entry->target_section = section;
4169 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4170 stub_entry->veneered_insn = insn;
4171 stub_entry->output_name = stub_name;
4172
4173 return TRUE;
4174 }
4175
4176
4177 /* Scan an input section looking for the signature of erratum 843419.
4178
4179 Scans input SECTION in INPUT_BFD looking for erratum 843419
4180 signatures, for each signature found a stub_entry is created
4181 describing the location of the erratum for subsequent fixup.
4182
4183 Return TRUE on successful scan, FALSE on failure to scan.
4184 */
4185
4186 static bfd_boolean
4187 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4188 struct bfd_link_info *info)
4189 {
4190 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4191
4192 if (htab == NULL)
4193 return TRUE;
4194
4195 if (elf_section_type (section) != SHT_PROGBITS
4196 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4197 || (section->flags & SEC_EXCLUDE) != 0
4198 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4199 || (section->output_section == bfd_abs_section_ptr))
4200 return TRUE;
4201
4202 do
4203 {
4204 bfd_byte *contents = NULL;
4205 struct _aarch64_elf_section_data *sec_data;
4206 unsigned int span;
4207
4208 if (elf_section_data (section)->this_hdr.contents != NULL)
4209 contents = elf_section_data (section)->this_hdr.contents;
4210 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4211 return FALSE;
4212
4213 sec_data = elf_aarch64_section_data (section);
4214
4215 qsort (sec_data->map, sec_data->mapcount,
4216 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4217
4218 for (span = 0; span < sec_data->mapcount; span++)
4219 {
4220 unsigned int span_start = sec_data->map[span].vma;
4221 unsigned int span_end = ((span == sec_data->mapcount - 1)
4222 ? sec_data->map[0].vma + section->size
4223 : sec_data->map[span + 1].vma);
4224 unsigned int i;
4225 char span_type = sec_data->map[span].type;
4226
4227 if (span_type == 'd')
4228 continue;
4229
4230 for (i = span_start; i + 8 < span_end; i += 4)
4231 {
4232 bfd_vma vma = (section->output_section->vma
4233 + section->output_offset
4234 + i);
4235 bfd_vma veneer_i;
4236
4237 if (_bfd_aarch64_erratum_843419_p
4238 (contents, vma, i, span_end, &veneer_i))
4239 {
4240 uint32_t insn = bfd_getl32 (contents + veneer_i);
4241
4242 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4243 section, info))
4244 return FALSE;
4245 }
4246 }
4247 }
4248
4249 if (elf_section_data (section)->this_hdr.contents == NULL)
4250 free (contents);
4251 }
4252 while (0);
4253
4254 return TRUE;
4255 }
4256
4257
4258 /* Determine and set the size of the stub section for a final link.
4259
4260 The basic idea here is to examine all the relocations looking for
4261 PC-relative calls to a target that is unreachable with a "bl"
4262 instruction. */
4263
4264 bfd_boolean
4265 elfNN_aarch64_size_stubs (bfd *output_bfd,
4266 bfd *stub_bfd,
4267 struct bfd_link_info *info,
4268 bfd_signed_vma group_size,
4269 asection * (*add_stub_section) (const char *,
4270 asection *),
4271 void (*layout_sections_again) (void))
4272 {
4273 bfd_size_type stub_group_size;
4274 bfd_boolean stubs_always_before_branch;
4275 bfd_boolean stub_changed = FALSE;
4276 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4277 unsigned int num_erratum_835769_fixes = 0;
4278
4279 /* Propagate mach to stub bfd, because it may not have been
4280 finalized when we created stub_bfd. */
4281 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4282 bfd_get_mach (output_bfd));
4283
4284 /* Stash our params away. */
4285 htab->stub_bfd = stub_bfd;
4286 htab->add_stub_section = add_stub_section;
4287 htab->layout_sections_again = layout_sections_again;
4288 stubs_always_before_branch = group_size < 0;
4289 if (group_size < 0)
4290 stub_group_size = -group_size;
4291 else
4292 stub_group_size = group_size;
4293
4294 if (stub_group_size == 1)
4295 {
4296 /* Default values. */
4297 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4298 stub_group_size = 127 * 1024 * 1024;
4299 }
4300
4301 group_sections (htab, stub_group_size, stubs_always_before_branch);
4302
4303 (*htab->layout_sections_again) ();
4304
4305 if (htab->fix_erratum_835769)
4306 {
4307 bfd *input_bfd;
4308
4309 for (input_bfd = info->input_bfds;
4310 input_bfd != NULL; input_bfd = input_bfd->link.next)
4311 {
4312 if (!is_aarch64_elf (input_bfd)
4313 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4314 continue;
4315
4316 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4317 &num_erratum_835769_fixes))
4318 return FALSE;
4319 }
4320
4321 _bfd_aarch64_resize_stubs (htab);
4322 (*htab->layout_sections_again) ();
4323 }
4324
4325 if (htab->fix_erratum_843419 != ERRAT_NONE)
4326 {
4327 bfd *input_bfd;
4328
4329 for (input_bfd = info->input_bfds;
4330 input_bfd != NULL;
4331 input_bfd = input_bfd->link.next)
4332 {
4333 asection *section;
4334
4335 if (!is_aarch64_elf (input_bfd)
4336 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4337 continue;
4338
4339 for (section = input_bfd->sections;
4340 section != NULL;
4341 section = section->next)
4342 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4343 return FALSE;
4344 }
4345
4346 _bfd_aarch64_resize_stubs (htab);
4347 (*htab->layout_sections_again) ();
4348 }
4349
4350 while (1)
4351 {
4352 bfd *input_bfd;
4353
4354 for (input_bfd = info->input_bfds;
4355 input_bfd != NULL; input_bfd = input_bfd->link.next)
4356 {
4357 Elf_Internal_Shdr *symtab_hdr;
4358 asection *section;
4359 Elf_Internal_Sym *local_syms = NULL;
4360
4361 if (!is_aarch64_elf (input_bfd)
4362 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4363 continue;
4364
4365 /* We'll need the symbol table in a second. */
4366 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4367 if (symtab_hdr->sh_info == 0)
4368 continue;
4369
4370 /* Walk over each section attached to the input bfd. */
4371 for (section = input_bfd->sections;
4372 section != NULL; section = section->next)
4373 {
4374 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4375
4376 /* If there aren't any relocs, then there's nothing more
4377 to do. */
4378 if ((section->flags & SEC_RELOC) == 0
4379 || section->reloc_count == 0
4380 || (section->flags & SEC_CODE) == 0)
4381 continue;
4382
4383 /* If this section is a link-once section that will be
4384 discarded, then don't create any stubs. */
4385 if (section->output_section == NULL
4386 || section->output_section->owner != output_bfd)
4387 continue;
4388
4389 /* Get the relocs. */
4390 internal_relocs
4391 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4392 NULL, info->keep_memory);
4393 if (internal_relocs == NULL)
4394 goto error_ret_free_local;
4395
4396 /* Now examine each relocation. */
4397 irela = internal_relocs;
4398 irelaend = irela + section->reloc_count;
4399 for (; irela < irelaend; irela++)
4400 {
4401 unsigned int r_type, r_indx;
4402 enum elf_aarch64_stub_type stub_type;
4403 struct elf_aarch64_stub_hash_entry *stub_entry;
4404 asection *sym_sec;
4405 bfd_vma sym_value;
4406 bfd_vma destination;
4407 struct elf_aarch64_link_hash_entry *hash;
4408 const char *sym_name;
4409 char *stub_name;
4410 const asection *id_sec;
4411 unsigned char st_type;
4412 bfd_size_type len;
4413
4414 r_type = ELFNN_R_TYPE (irela->r_info);
4415 r_indx = ELFNN_R_SYM (irela->r_info);
4416
4417 if (r_type >= (unsigned int) R_AARCH64_end)
4418 {
4419 bfd_set_error (bfd_error_bad_value);
4420 error_ret_free_internal:
4421 if (elf_section_data (section)->relocs == NULL)
4422 free (internal_relocs);
4423 goto error_ret_free_local;
4424 }
4425
4426 /* Only look for stubs on unconditional branch and
4427 branch and link instructions. */
4428 if (r_type != (unsigned int) AARCH64_R (CALL26)
4429 && r_type != (unsigned int) AARCH64_R (JUMP26))
4430 continue;
4431
4432 /* Now determine the call target, its name, value,
4433 section. */
4434 sym_sec = NULL;
4435 sym_value = 0;
4436 destination = 0;
4437 hash = NULL;
4438 sym_name = NULL;
4439 if (r_indx < symtab_hdr->sh_info)
4440 {
4441 /* It's a local symbol. */
4442 Elf_Internal_Sym *sym;
4443 Elf_Internal_Shdr *hdr;
4444
4445 if (local_syms == NULL)
4446 {
4447 local_syms
4448 = (Elf_Internal_Sym *) symtab_hdr->contents;
4449 if (local_syms == NULL)
4450 local_syms
4451 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4452 symtab_hdr->sh_info, 0,
4453 NULL, NULL, NULL);
4454 if (local_syms == NULL)
4455 goto error_ret_free_internal;
4456 }
4457
4458 sym = local_syms + r_indx;
4459 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4460 sym_sec = hdr->bfd_section;
4461 if (!sym_sec)
4462 /* This is an undefined symbol. It can never
4463 be resolved. */
4464 continue;
4465
4466 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4467 sym_value = sym->st_value;
4468 destination = (sym_value + irela->r_addend
4469 + sym_sec->output_offset
4470 + sym_sec->output_section->vma);
4471 st_type = ELF_ST_TYPE (sym->st_info);
4472 sym_name
4473 = bfd_elf_string_from_elf_section (input_bfd,
4474 symtab_hdr->sh_link,
4475 sym->st_name);
4476 }
4477 else
4478 {
4479 int e_indx;
4480
4481 e_indx = r_indx - symtab_hdr->sh_info;
4482 hash = ((struct elf_aarch64_link_hash_entry *)
4483 elf_sym_hashes (input_bfd)[e_indx]);
4484
4485 while (hash->root.root.type == bfd_link_hash_indirect
4486 || hash->root.root.type == bfd_link_hash_warning)
4487 hash = ((struct elf_aarch64_link_hash_entry *)
4488 hash->root.root.u.i.link);
4489
4490 if (hash->root.root.type == bfd_link_hash_defined
4491 || hash->root.root.type == bfd_link_hash_defweak)
4492 {
4493 struct elf_aarch64_link_hash_table *globals =
4494 elf_aarch64_hash_table (info);
4495 sym_sec = hash->root.root.u.def.section;
4496 sym_value = hash->root.root.u.def.value;
4497 /* For a destination in a shared library,
4498 use the PLT stub as target address to
4499 decide whether a branch stub is
4500 needed. */
4501 if (globals->root.splt != NULL && hash != NULL
4502 && hash->root.plt.offset != (bfd_vma) - 1)
4503 {
4504 sym_sec = globals->root.splt;
4505 sym_value = hash->root.plt.offset;
4506 if (sym_sec->output_section != NULL)
4507 destination = (sym_value
4508 + sym_sec->output_offset
4509 +
4510 sym_sec->output_section->vma);
4511 }
4512 else if (sym_sec->output_section != NULL)
4513 destination = (sym_value + irela->r_addend
4514 + sym_sec->output_offset
4515 + sym_sec->output_section->vma);
4516 }
4517 else if (hash->root.root.type == bfd_link_hash_undefined
4518 || (hash->root.root.type
4519 == bfd_link_hash_undefweak))
4520 {
4521 /* For a shared library, use the PLT stub as
4522 target address to decide whether a long
4523 branch stub is needed.
4524 For absolute code, they cannot be handled. */
4525 struct elf_aarch64_link_hash_table *globals =
4526 elf_aarch64_hash_table (info);
4527
4528 if (globals->root.splt != NULL && hash != NULL
4529 && hash->root.plt.offset != (bfd_vma) - 1)
4530 {
4531 sym_sec = globals->root.splt;
4532 sym_value = hash->root.plt.offset;
4533 if (sym_sec->output_section != NULL)
4534 destination = (sym_value
4535 + sym_sec->output_offset
4536 +
4537 sym_sec->output_section->vma);
4538 }
4539 else
4540 continue;
4541 }
4542 else
4543 {
4544 bfd_set_error (bfd_error_bad_value);
4545 goto error_ret_free_internal;
4546 }
4547 st_type = ELF_ST_TYPE (hash->root.type);
4548 sym_name = hash->root.root.root.string;
4549 }
4550
4551 /* Determine what (if any) linker stub is needed. */
4552 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4553 st_type, destination);
4554 if (stub_type == aarch64_stub_none)
4555 continue;
4556
4557 /* Support for grouping stub sections. */
4558 id_sec = htab->stub_group[section->id].link_sec;
4559
4560 /* Get the name of this stub. */
4561 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4562 irela);
4563 if (!stub_name)
4564 goto error_ret_free_internal;
4565
4566 stub_entry =
4567 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4568 stub_name, FALSE, FALSE);
4569 if (stub_entry != NULL)
4570 {
4571 /* The proper stub has already been created. */
4572 free (stub_name);
4573 /* Always update this stub's target since it may have
4574 changed after layout. */
4575 stub_entry->target_value = sym_value + irela->r_addend;
4576 continue;
4577 }
4578
4579 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4580 (stub_name, section, htab);
4581 if (stub_entry == NULL)
4582 {
4583 free (stub_name);
4584 goto error_ret_free_internal;
4585 }
4586
4587 stub_entry->target_value = sym_value + irela->r_addend;
4588 stub_entry->target_section = sym_sec;
4589 stub_entry->stub_type = stub_type;
4590 stub_entry->h = hash;
4591 stub_entry->st_type = st_type;
4592
4593 if (sym_name == NULL)
4594 sym_name = "unnamed";
4595 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4596 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4597 if (stub_entry->output_name == NULL)
4598 {
4599 free (stub_name);
4600 goto error_ret_free_internal;
4601 }
4602
4603 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4604 sym_name);
4605
4606 stub_changed = TRUE;
4607 }
4608
4609 /* We're done with the internal relocs, free them. */
4610 if (elf_section_data (section)->relocs == NULL)
4611 free (internal_relocs);
4612 }
4613 }
4614
4615 if (!stub_changed)
4616 break;
4617
4618 _bfd_aarch64_resize_stubs (htab);
4619
4620 /* Ask the linker to do its stuff. */
4621 (*htab->layout_sections_again) ();
4622 stub_changed = FALSE;
4623 }
4624
4625 return TRUE;
4626
4627 error_ret_free_local:
4628 return FALSE;
4629 }
4630
4631 /* Build all the stubs associated with the current output file. The
4632 stubs are kept in a hash table attached to the main linker hash
4633 table. We also set up the .plt entries for statically linked PIC
4634 functions here. This function is called via aarch64_elf_finish in the
4635 linker. */
4636
4637 bfd_boolean
4638 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4639 {
4640 asection *stub_sec;
4641 struct bfd_hash_table *table;
4642 struct elf_aarch64_link_hash_table *htab;
4643
4644 htab = elf_aarch64_hash_table (info);
4645
4646 for (stub_sec = htab->stub_bfd->sections;
4647 stub_sec != NULL; stub_sec = stub_sec->next)
4648 {
4649 bfd_size_type size;
4650
4651 /* Ignore non-stub sections. */
4652 if (!strstr (stub_sec->name, STUB_SUFFIX))
4653 continue;
4654
4655 /* Allocate memory to hold the linker stubs. */
4656 size = stub_sec->size;
4657 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4658 if (stub_sec->contents == NULL && size != 0)
4659 return FALSE;
4660 stub_sec->size = 0;
4661
4662 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4663 aligned, as long branch stubs contain a 64-bit address. */
4664 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4665 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4666 stub_sec->size += 8;
4667 }
4668
4669 /* Build the stubs as directed by the stub hash table. */
4670 table = &htab->stub_hash_table;
4671 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4672
4673 return TRUE;
4674 }
4675
4676
4677 /* Add an entry to the code/data map for section SEC. */
4678
4679 static void
4680 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4681 {
4682 struct _aarch64_elf_section_data *sec_data =
4683 elf_aarch64_section_data (sec);
4684 unsigned int newidx;
4685
4686 if (sec_data->map == NULL)
4687 {
4688 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4689 sec_data->mapcount = 0;
4690 sec_data->mapsize = 1;
4691 }
4692
4693 newidx = sec_data->mapcount++;
4694
4695 if (sec_data->mapcount > sec_data->mapsize)
4696 {
4697 sec_data->mapsize *= 2;
4698 sec_data->map = bfd_realloc_or_free
4699 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4700 }
4701
4702 if (sec_data->map)
4703 {
4704 sec_data->map[newidx].vma = vma;
4705 sec_data->map[newidx].type = type;
4706 }
4707 }
4708
4709
4710 /* Initialise maps of insn/data for input BFDs. */
4711 void
4712 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4713 {
4714 Elf_Internal_Sym *isymbuf;
4715 Elf_Internal_Shdr *hdr;
4716 unsigned int i, localsyms;
4717
4718 /* Make sure that we are dealing with an AArch64 elf binary. */
4719 if (!is_aarch64_elf (abfd))
4720 return;
4721
4722 if ((abfd->flags & DYNAMIC) != 0)
4723 return;
4724
4725 hdr = &elf_symtab_hdr (abfd);
4726 localsyms = hdr->sh_info;
4727
4728 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4729 should contain the number of local symbols, which should come before any
4730 global symbols. Mapping symbols are always local. */
4731 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4732
4733 /* No internal symbols read? Skip this BFD. */
4734 if (isymbuf == NULL)
4735 return;
4736
4737 for (i = 0; i < localsyms; i++)
4738 {
4739 Elf_Internal_Sym *isym = &isymbuf[i];
4740 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4741 const char *name;
4742
4743 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4744 {
4745 name = bfd_elf_string_from_elf_section (abfd,
4746 hdr->sh_link,
4747 isym->st_name);
4748
4749 if (bfd_is_aarch64_special_symbol_name
4750 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4751 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4752 }
4753 }
4754 }
4755
4756 static void
4757 setup_plt_values (struct bfd_link_info *link_info,
4758 aarch64_plt_type plt_type)
4759 {
4760 struct elf_aarch64_link_hash_table *globals;
4761 globals = elf_aarch64_hash_table (link_info);
4762
4763 if (plt_type == PLT_BTI_PAC)
4764 {
4765 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4766
4767 /* Only in ET_EXEC we need PLTn with BTI. */
4768 if (bfd_link_pde (link_info))
4769 {
4770 globals->plt_entry_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
4771 globals->plt_entry = elfNN_aarch64_small_plt_bti_pac_entry;
4772 }
4773 else
4774 {
4775 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4776 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4777 }
4778 }
4779 else if (plt_type == PLT_BTI)
4780 {
4781 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4782
4783 /* Only in ET_EXEC we need PLTn with BTI. */
4784 if (bfd_link_pde (link_info))
4785 {
4786 globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4787 globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4788 }
4789 }
4790 else if (plt_type == PLT_PAC)
4791 {
4792 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4793 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4794 }
4795 }
4796
4797 /* Set option values needed during linking. */
4798 void
4799 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4800 struct bfd_link_info *link_info,
4801 int no_enum_warn,
4802 int no_wchar_warn, int pic_veneer,
4803 int fix_erratum_835769,
4804 erratum_84319_opts fix_erratum_843419,
4805 int no_apply_dynamic_relocs,
4806 aarch64_bti_pac_info bp_info)
4807 {
4808 struct elf_aarch64_link_hash_table *globals;
4809
4810 globals = elf_aarch64_hash_table (link_info);
4811 globals->pic_veneer = pic_veneer;
4812 globals->fix_erratum_835769 = fix_erratum_835769;
4813 /* If the default options are used, then ERRAT_ADR will be set by default
4814 which will enable the ADRP->ADR workaround for the erratum 843419
4815 workaround. */
4816 globals->fix_erratum_843419 = fix_erratum_843419;
4817 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4818
4819 BFD_ASSERT (is_aarch64_elf (output_bfd));
4820 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4821 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4822
4823 switch (bp_info.bti_type)
4824 {
4825 case BTI_WARN:
4826 elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4827 elf_aarch64_tdata (output_bfd)->gnu_and_prop
4828 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4829 break;
4830
4831 default:
4832 break;
4833 }
4834 elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4835 setup_plt_values (link_info, bp_info.plt_type);
4836 }
4837
4838 static bfd_vma
4839 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4840 struct elf_aarch64_link_hash_table
4841 *globals, struct bfd_link_info *info,
4842 bfd_vma value, bfd *output_bfd,
4843 bfd_boolean *unresolved_reloc_p)
4844 {
4845 bfd_vma off = (bfd_vma) - 1;
4846 asection *basegot = globals->root.sgot;
4847 bfd_boolean dyn = globals->root.dynamic_sections_created;
4848
4849 if (h != NULL)
4850 {
4851 BFD_ASSERT (basegot != NULL);
4852 off = h->got.offset;
4853 BFD_ASSERT (off != (bfd_vma) - 1);
4854 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4855 || (bfd_link_pic (info)
4856 && SYMBOL_REFERENCES_LOCAL (info, h))
4857 || (ELF_ST_VISIBILITY (h->other)
4858 && h->root.type == bfd_link_hash_undefweak))
4859 {
4860 /* This is actually a static link, or it is a -Bsymbolic link
4861 and the symbol is defined locally. We must initialize this
4862 entry in the global offset table. Since the offset must
4863 always be a multiple of 8 (4 in the case of ILP32), we use
4864 the least significant bit to record whether we have
4865 initialized it already.
4866 When doing a dynamic link, we create a .rel(a).got relocation
4867 entry to initialize the value. This is done in the
4868 finish_dynamic_symbol routine. */
4869 if ((off & 1) != 0)
4870 off &= ~1;
4871 else
4872 {
4873 bfd_put_NN (output_bfd, value, basegot->contents + off);
4874 h->got.offset |= 1;
4875 }
4876 }
4877 else
4878 *unresolved_reloc_p = FALSE;
4879
4880 off = off + basegot->output_section->vma + basegot->output_offset;
4881 }
4882
4883 return off;
4884 }
4885
4886 /* Change R_TYPE to a more efficient access model where possible,
4887 return the new reloc type. */
4888
4889 static bfd_reloc_code_real_type
4890 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4891 struct elf_link_hash_entry *h)
4892 {
4893 bfd_boolean is_local = h == NULL;
4894
4895 switch (r_type)
4896 {
4897 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4898 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4899 return (is_local
4900 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4901 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4902
4903 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4904 return (is_local
4905 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4906 : r_type);
4907
4908 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4909 return (is_local
4910 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4911 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4912
4913 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4914 return (is_local
4915 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4916 : BFD_RELOC_AARCH64_NONE);
4917
4918 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4919 return (is_local
4920 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4921 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4922
4923 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4924 return (is_local
4925 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4926 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4927
4928 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4929 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4930 return (is_local
4931 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4932 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4933
4934 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4935 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4936
4937 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4938 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4939
4940 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4941 return r_type;
4942
4943 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4944 return (is_local
4945 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4946 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4947
4948 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4949 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4950 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4951 /* Instructions with these relocations will become NOPs. */
4952 return BFD_RELOC_AARCH64_NONE;
4953
4954 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4955 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4956 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4957 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4958
4959 #if ARCH_SIZE == 64
4960 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4961 return is_local
4962 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4963 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4964
4965 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4966 return is_local
4967 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4968 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4969 #endif
4970
4971 default:
4972 break;
4973 }
4974
4975 return r_type;
4976 }
4977
4978 static unsigned int
4979 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4980 {
4981 switch (r_type)
4982 {
4983 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4984 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4985 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4986 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4987 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4988 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4989 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4990 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4991 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4992 return GOT_NORMAL;
4993
4994 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4995 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4996 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4997 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4998 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4999 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5000 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5001 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5002 return GOT_TLS_GD;
5003
5004 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5005 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5006 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5007 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5008 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5009 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5010 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5011 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5012 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5013 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5014 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5015 return GOT_TLSDESC_GD;
5016
5017 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5018 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5019 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5020 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5021 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5022 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5023 return GOT_TLS_IE;
5024
5025 default:
5026 break;
5027 }
5028 return GOT_UNKNOWN;
5029 }
5030
5031 static bfd_boolean
5032 aarch64_can_relax_tls (bfd *input_bfd,
5033 struct bfd_link_info *info,
5034 bfd_reloc_code_real_type r_type,
5035 struct elf_link_hash_entry *h,
5036 unsigned long r_symndx)
5037 {
5038 unsigned int symbol_got_type;
5039 unsigned int reloc_got_type;
5040
5041 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
5042 return FALSE;
5043
5044 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
5045 reloc_got_type = aarch64_reloc_got_type (r_type);
5046
5047 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
5048 return TRUE;
5049
5050 if (!bfd_link_executable (info))
5051 return FALSE;
5052
5053 if (h && h->root.type == bfd_link_hash_undefweak)
5054 return FALSE;
5055
5056 return TRUE;
5057 }
5058
5059 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5060 enumerator. */
5061
5062 static bfd_reloc_code_real_type
5063 aarch64_tls_transition (bfd *input_bfd,
5064 struct bfd_link_info *info,
5065 unsigned int r_type,
5066 struct elf_link_hash_entry *h,
5067 unsigned long r_symndx)
5068 {
5069 bfd_reloc_code_real_type bfd_r_type
5070 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
5071
5072 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
5073 return bfd_r_type;
5074
5075 return aarch64_tls_transition_without_check (bfd_r_type, h);
5076 }
5077
5078 /* Return the base VMA address which should be subtracted from real addresses
5079 when resolving R_AARCH64_TLS_DTPREL relocation. */
5080
5081 static bfd_vma
5082 dtpoff_base (struct bfd_link_info *info)
5083 {
5084 /* If tls_sec is NULL, we should have signalled an error already. */
5085 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
5086 return elf_hash_table (info)->tls_sec->vma;
5087 }
5088
5089 /* Return the base VMA address which should be subtracted from real addresses
5090 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
5091
5092 static bfd_vma
5093 tpoff_base (struct bfd_link_info *info)
5094 {
5095 struct elf_link_hash_table *htab = elf_hash_table (info);
5096
5097 /* If tls_sec is NULL, we should have signalled an error already. */
5098 BFD_ASSERT (htab->tls_sec != NULL);
5099
5100 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5101 htab->tls_sec->alignment_power);
5102 return htab->tls_sec->vma - base;
5103 }
5104
5105 static bfd_vma *
5106 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5107 unsigned long r_symndx)
5108 {
5109 /* Calculate the address of the GOT entry for symbol
5110 referred to in h. */
5111 if (h != NULL)
5112 return &h->got.offset;
5113 else
5114 {
5115 /* local symbol */
5116 struct elf_aarch64_local_symbol *l;
5117
5118 l = elf_aarch64_locals (input_bfd);
5119 return &l[r_symndx].got_offset;
5120 }
5121 }
5122
5123 static void
5124 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5125 unsigned long r_symndx)
5126 {
5127 bfd_vma *p;
5128 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5129 *p |= 1;
5130 }
5131
5132 static int
5133 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5134 unsigned long r_symndx)
5135 {
5136 bfd_vma value;
5137 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5138 return value & 1;
5139 }
5140
5141 static bfd_vma
5142 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5143 unsigned long r_symndx)
5144 {
5145 bfd_vma value;
5146 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5147 value &= ~1;
5148 return value;
5149 }
5150
5151 static bfd_vma *
5152 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5153 unsigned long r_symndx)
5154 {
5155 /* Calculate the address of the GOT entry for symbol
5156 referred to in h. */
5157 if (h != NULL)
5158 {
5159 struct elf_aarch64_link_hash_entry *eh;
5160 eh = (struct elf_aarch64_link_hash_entry *) h;
5161 return &eh->tlsdesc_got_jump_table_offset;
5162 }
5163 else
5164 {
5165 /* local symbol */
5166 struct elf_aarch64_local_symbol *l;
5167
5168 l = elf_aarch64_locals (input_bfd);
5169 return &l[r_symndx].tlsdesc_got_jump_table_offset;
5170 }
5171 }
5172
5173 static void
5174 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5175 unsigned long r_symndx)
5176 {
5177 bfd_vma *p;
5178 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5179 *p |= 1;
5180 }
5181
5182 static int
5183 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5184 struct elf_link_hash_entry *h,
5185 unsigned long r_symndx)
5186 {
5187 bfd_vma value;
5188 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5189 return value & 1;
5190 }
5191
5192 static bfd_vma
5193 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5194 unsigned long r_symndx)
5195 {
5196 bfd_vma value;
5197 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5198 value &= ~1;
5199 return value;
5200 }
5201
5202 /* Data for make_branch_to_erratum_835769_stub(). */
5203
5204 struct erratum_835769_branch_to_stub_data
5205 {
5206 struct bfd_link_info *info;
5207 asection *output_section;
5208 bfd_byte *contents;
5209 };
5210
5211 /* Helper to insert branches to erratum 835769 stubs in the right
5212 places for a particular section. */
5213
5214 static bfd_boolean
5215 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5216 void *in_arg)
5217 {
5218 struct elf_aarch64_stub_hash_entry *stub_entry;
5219 struct erratum_835769_branch_to_stub_data *data;
5220 bfd_byte *contents;
5221 unsigned long branch_insn = 0;
5222 bfd_vma veneered_insn_loc, veneer_entry_loc;
5223 bfd_signed_vma branch_offset;
5224 unsigned int target;
5225 bfd *abfd;
5226
5227 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5228 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5229
5230 if (stub_entry->target_section != data->output_section
5231 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5232 return TRUE;
5233
5234 contents = data->contents;
5235 veneered_insn_loc = stub_entry->target_section->output_section->vma
5236 + stub_entry->target_section->output_offset
5237 + stub_entry->target_value;
5238 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5239 + stub_entry->stub_sec->output_offset
5240 + stub_entry->stub_offset;
5241 branch_offset = veneer_entry_loc - veneered_insn_loc;
5242
5243 abfd = stub_entry->target_section->owner;
5244 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5245 _bfd_error_handler
5246 (_("%pB: error: erratum 835769 stub out "
5247 "of range (input file too large)"), abfd);
5248
5249 target = stub_entry->target_value;
5250 branch_insn = 0x14000000;
5251 branch_offset >>= 2;
5252 branch_offset &= 0x3ffffff;
5253 branch_insn |= branch_offset;
5254 bfd_putl32 (branch_insn, &contents[target]);
5255
5256 return TRUE;
5257 }
5258
5259
5260 static bfd_boolean
5261 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5262 void *in_arg)
5263 {
5264 struct elf_aarch64_stub_hash_entry *stub_entry
5265 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5266 struct erratum_835769_branch_to_stub_data *data
5267 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5268 struct bfd_link_info *info;
5269 struct elf_aarch64_link_hash_table *htab;
5270 bfd_byte *contents;
5271 asection *section;
5272 bfd *abfd;
5273 bfd_vma place;
5274 uint32_t insn;
5275
5276 info = data->info;
5277 contents = data->contents;
5278 section = data->output_section;
5279
5280 htab = elf_aarch64_hash_table (info);
5281
5282 if (stub_entry->target_section != section
5283 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5284 return TRUE;
5285
5286 BFD_ASSERT (((htab->fix_erratum_843419 & ERRAT_ADRP) && stub_entry->stub_sec)
5287 || (htab->fix_erratum_843419 & ERRAT_ADR));
5288
5289 /* Only update the stub section if we have one. We should always have one if
5290 we're allowed to use the ADRP errata workaround, otherwise it is not
5291 required. */
5292 if (stub_entry->stub_sec)
5293 {
5294 insn = bfd_getl32 (contents + stub_entry->target_value);
5295 bfd_putl32 (insn,
5296 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5297 }
5298
5299 place = (section->output_section->vma + section->output_offset
5300 + stub_entry->adrp_offset);
5301 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5302
5303 if (!_bfd_aarch64_adrp_p (insn))
5304 abort ();
5305
5306 bfd_signed_vma imm =
5307 (_bfd_aarch64_sign_extend
5308 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5309 - (place & 0xfff));
5310
5311 if ((htab->fix_erratum_843419 & ERRAT_ADR)
5312 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5313 {
5314 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5315 | AARCH64_RT (insn));
5316 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5317 /* Stub is not needed, don't map it out. */
5318 stub_entry->stub_type = aarch64_stub_none;
5319 }
5320 else if (htab->fix_erratum_843419 & ERRAT_ADRP)
5321 {
5322 bfd_vma veneered_insn_loc;
5323 bfd_vma veneer_entry_loc;
5324 bfd_signed_vma branch_offset;
5325 uint32_t branch_insn;
5326
5327 veneered_insn_loc = stub_entry->target_section->output_section->vma
5328 + stub_entry->target_section->output_offset
5329 + stub_entry->target_value;
5330 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5331 + stub_entry->stub_sec->output_offset
5332 + stub_entry->stub_offset;
5333 branch_offset = veneer_entry_loc - veneered_insn_loc;
5334
5335 abfd = stub_entry->target_section->owner;
5336 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5337 _bfd_error_handler
5338 (_("%pB: error: erratum 843419 stub out "
5339 "of range (input file too large)"), abfd);
5340
5341 branch_insn = 0x14000000;
5342 branch_offset >>= 2;
5343 branch_offset &= 0x3ffffff;
5344 branch_insn |= branch_offset;
5345 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5346 }
5347 else
5348 {
5349 abfd = stub_entry->target_section->owner;
5350 _bfd_error_handler
5351 (_("%pB: error: erratum 843419 immediate 0x%" BFD_VMA_FMT "x "
5352 "out of range for ADR (input file too large) and "
5353 "--fix-cortex-a53-843419=adr used. Run the linker with "
5354 "--fix-cortex-a53-843419=full instead"), abfd, imm);
5355 bfd_set_error (bfd_error_bad_value);
5356 /* This function is called inside a hashtable traversal and the error
5357 handlers called above turn into non-fatal errors. Which means this
5358 case ld returns an exit code 0 and also produces a broken object file.
5359 To prevent this, issue a hard abort. */
5360 BFD_FAIL ();
5361 }
5362 return TRUE;
5363 }
5364
5365
5366 static bfd_boolean
5367 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5368 struct bfd_link_info *link_info,
5369 asection *sec,
5370 bfd_byte *contents)
5371
5372 {
5373 struct elf_aarch64_link_hash_table *globals =
5374 elf_aarch64_hash_table (link_info);
5375
5376 if (globals == NULL)
5377 return FALSE;
5378
5379 /* Fix code to point to erratum 835769 stubs. */
5380 if (globals->fix_erratum_835769)
5381 {
5382 struct erratum_835769_branch_to_stub_data data;
5383
5384 data.info = link_info;
5385 data.output_section = sec;
5386 data.contents = contents;
5387 bfd_hash_traverse (&globals->stub_hash_table,
5388 make_branch_to_erratum_835769_stub, &data);
5389 }
5390
5391 if (globals->fix_erratum_843419)
5392 {
5393 struct erratum_835769_branch_to_stub_data data;
5394
5395 data.info = link_info;
5396 data.output_section = sec;
5397 data.contents = contents;
5398 bfd_hash_traverse (&globals->stub_hash_table,
5399 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5400 }
5401
5402 return FALSE;
5403 }
5404
5405 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5406
5407 static bfd_boolean
5408 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5409 {
5410 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5411 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5412 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5413 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5414 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5415 }
5416
5417 /* Perform a relocation as part of a final link. The input relocation type
5418 should be TLS relaxed. */
5419
5420 static bfd_reloc_status_type
5421 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5422 bfd *input_bfd,
5423 bfd *output_bfd,
5424 asection *input_section,
5425 bfd_byte *contents,
5426 Elf_Internal_Rela *rel,
5427 bfd_vma value,
5428 struct bfd_link_info *info,
5429 asection *sym_sec,
5430 struct elf_link_hash_entry *h,
5431 bfd_boolean *unresolved_reloc_p,
5432 bfd_boolean save_addend,
5433 bfd_vma *saved_addend,
5434 Elf_Internal_Sym *sym)
5435 {
5436 Elf_Internal_Shdr *symtab_hdr;
5437 unsigned int r_type = howto->type;
5438 bfd_reloc_code_real_type bfd_r_type
5439 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5440 unsigned long r_symndx;
5441 bfd_byte *hit_data = contents + rel->r_offset;
5442 bfd_vma place, off, got_entry_addr = 0;
5443 bfd_signed_vma signed_addend;
5444 struct elf_aarch64_link_hash_table *globals;
5445 bfd_boolean weak_undef_p;
5446 bfd_boolean relative_reloc;
5447 asection *base_got;
5448 bfd_vma orig_value = value;
5449 bfd_boolean resolved_to_zero;
5450 bfd_boolean abs_symbol_p;
5451 bfd_boolean via_plt_p;
5452
5453 globals = elf_aarch64_hash_table (info);
5454
5455 symtab_hdr = &elf_symtab_hdr (input_bfd);
5456
5457 BFD_ASSERT (is_aarch64_elf (input_bfd));
5458
5459 r_symndx = ELFNN_R_SYM (rel->r_info);
5460
5461 place = input_section->output_section->vma
5462 + input_section->output_offset + rel->r_offset;
5463
5464 /* Get addend, accumulating the addend for consecutive relocs
5465 which refer to the same offset. */
5466 signed_addend = saved_addend ? *saved_addend : 0;
5467 signed_addend += rel->r_addend;
5468
5469 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5470 : bfd_is_und_section (sym_sec));
5471 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5472
5473 via_plt_p = (globals->root.splt != NULL && h != NULL
5474 && h->plt.offset != (bfd_vma) - 1);
5475
5476 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5477 it here if it is defined in a non-shared object. */
5478 if (h != NULL
5479 && h->type == STT_GNU_IFUNC
5480 && h->def_regular)
5481 {
5482 asection *plt;
5483 const char *name;
5484 bfd_vma addend = 0;
5485
5486 if ((input_section->flags & SEC_ALLOC) == 0)
5487 {
5488 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5489 STT_GNU_IFUNC symbol as STT_FUNC. */
5490 if (elf_section_type (input_section) == SHT_NOTE)
5491 goto skip_ifunc;
5492
5493 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5494 sections because such sections are not SEC_ALLOC and
5495 thus ld.so will not process them. */
5496 if ((input_section->flags & SEC_DEBUGGING) != 0)
5497 return bfd_reloc_ok;
5498
5499 if (h->root.root.string)
5500 name = h->root.root.string;
5501 else
5502 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5503 _bfd_error_handler
5504 /* xgettext:c-format */
5505 (_("%pB(%pA+%#" PRIx64 "): "
5506 "unresolvable %s relocation against symbol `%s'"),
5507 input_bfd, input_section, (uint64_t) rel->r_offset,
5508 howto->name, name);
5509 bfd_set_error (bfd_error_bad_value);
5510 return bfd_reloc_notsupported;
5511 }
5512 else if (h->plt.offset == (bfd_vma) -1)
5513 goto bad_ifunc_reloc;
5514
5515 /* STT_GNU_IFUNC symbol must go through PLT. */
5516 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5517 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5518
5519 switch (bfd_r_type)
5520 {
5521 default:
5522 bad_ifunc_reloc:
5523 if (h->root.root.string)
5524 name = h->root.root.string;
5525 else
5526 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5527 NULL);
5528 _bfd_error_handler
5529 /* xgettext:c-format */
5530 (_("%pB: relocation %s against STT_GNU_IFUNC "
5531 "symbol `%s' isn't handled by %s"), input_bfd,
5532 howto->name, name, __FUNCTION__);
5533 bfd_set_error (bfd_error_bad_value);
5534 return bfd_reloc_notsupported;
5535
5536 case BFD_RELOC_AARCH64_NN:
5537 if (rel->r_addend != 0)
5538 {
5539 if (h->root.root.string)
5540 name = h->root.root.string;
5541 else
5542 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5543 sym, NULL);
5544 _bfd_error_handler
5545 /* xgettext:c-format */
5546 (_("%pB: relocation %s against STT_GNU_IFUNC "
5547 "symbol `%s' has non-zero addend: %" PRId64),
5548 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5549 bfd_set_error (bfd_error_bad_value);
5550 return bfd_reloc_notsupported;
5551 }
5552
5553 /* Generate dynamic relocation only when there is a
5554 non-GOT reference in a shared object. */
5555 if (bfd_link_pic (info) && h->non_got_ref)
5556 {
5557 Elf_Internal_Rela outrel;
5558 asection *sreloc;
5559
5560 /* Need a dynamic relocation to get the real function
5561 address. */
5562 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5563 info,
5564 input_section,
5565 rel->r_offset);
5566 if (outrel.r_offset == (bfd_vma) -1
5567 || outrel.r_offset == (bfd_vma) -2)
5568 abort ();
5569
5570 outrel.r_offset += (input_section->output_section->vma
5571 + input_section->output_offset);
5572
5573 if (h->dynindx == -1
5574 || h->forced_local
5575 || bfd_link_executable (info))
5576 {
5577 /* This symbol is resolved locally. */
5578 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5579 outrel.r_addend = (h->root.u.def.value
5580 + h->root.u.def.section->output_section->vma
5581 + h->root.u.def.section->output_offset);
5582 }
5583 else
5584 {
5585 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5586 outrel.r_addend = 0;
5587 }
5588
5589 sreloc = globals->root.irelifunc;
5590 elf_append_rela (output_bfd, sreloc, &outrel);
5591
5592 /* If this reloc is against an external symbol, we
5593 do not want to fiddle with the addend. Otherwise,
5594 we need to include the symbol value so that it
5595 becomes an addend for the dynamic reloc. For an
5596 internal symbol, we have updated addend. */
5597 return bfd_reloc_ok;
5598 }
5599 /* FALLTHROUGH */
5600 case BFD_RELOC_AARCH64_CALL26:
5601 case BFD_RELOC_AARCH64_JUMP26:
5602 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5603 place, value,
5604 signed_addend,
5605 weak_undef_p);
5606 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5607 howto, value);
5608 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5609 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5610 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5611 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5612 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5613 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5614 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5615 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5616 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5617 base_got = globals->root.sgot;
5618 off = h->got.offset;
5619
5620 if (base_got == NULL)
5621 abort ();
5622
5623 if (off == (bfd_vma) -1)
5624 {
5625 bfd_vma plt_index;
5626
5627 /* We can't use h->got.offset here to save state, or
5628 even just remember the offset, as finish_dynamic_symbol
5629 would use that as offset into .got. */
5630
5631 if (globals->root.splt != NULL)
5632 {
5633 plt_index = ((h->plt.offset - globals->plt_header_size) /
5634 globals->plt_entry_size);
5635 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5636 base_got = globals->root.sgotplt;
5637 }
5638 else
5639 {
5640 plt_index = h->plt.offset / globals->plt_entry_size;
5641 off = plt_index * GOT_ENTRY_SIZE;
5642 base_got = globals->root.igotplt;
5643 }
5644
5645 if (h->dynindx == -1
5646 || h->forced_local
5647 || info->symbolic)
5648 {
5649 /* This references the local definition. We must
5650 initialize this entry in the global offset table.
5651 Since the offset must always be a multiple of 8,
5652 we use the least significant bit to record
5653 whether we have initialized it already.
5654
5655 When doing a dynamic link, we create a .rela.got
5656 relocation entry to initialize the value. This
5657 is done in the finish_dynamic_symbol routine. */
5658 if ((off & 1) != 0)
5659 off &= ~1;
5660 else
5661 {
5662 bfd_put_NN (output_bfd, value,
5663 base_got->contents + off);
5664 /* Note that this is harmless as -1 | 1 still is -1. */
5665 h->got.offset |= 1;
5666 }
5667 }
5668 value = (base_got->output_section->vma
5669 + base_got->output_offset + off);
5670 }
5671 else
5672 value = aarch64_calculate_got_entry_vma (h, globals, info,
5673 value, output_bfd,
5674 unresolved_reloc_p);
5675
5676 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5677 addend = (globals->root.sgot->output_section->vma
5678 + globals->root.sgot->output_offset);
5679
5680 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5681 place, value,
5682 addend, weak_undef_p);
5683 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5684 case BFD_RELOC_AARCH64_ADD_LO12:
5685 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5686 break;
5687 }
5688 }
5689
5690 skip_ifunc:
5691 resolved_to_zero = (h != NULL
5692 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5693
5694 switch (bfd_r_type)
5695 {
5696 case BFD_RELOC_AARCH64_NONE:
5697 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5698 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5699 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5700 *unresolved_reloc_p = FALSE;
5701 return bfd_reloc_ok;
5702
5703 case BFD_RELOC_AARCH64_NN:
5704
5705 /* When generating a shared object or relocatable executable, these
5706 relocations are copied into the output file to be resolved at
5707 run time. */
5708 if (((bfd_link_pic (info)
5709 || globals->root.is_relocatable_executable)
5710 && (input_section->flags & SEC_ALLOC)
5711 && (h == NULL
5712 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5713 && !resolved_to_zero)
5714 || h->root.type != bfd_link_hash_undefweak))
5715 /* Or we are creating an executable, we may need to keep relocations
5716 for symbols satisfied by a dynamic library if we manage to avoid
5717 copy relocs for the symbol. */
5718 || (ELIMINATE_COPY_RELOCS
5719 && !bfd_link_pic (info)
5720 && h != NULL
5721 && (input_section->flags & SEC_ALLOC)
5722 && h->dynindx != -1
5723 && !h->non_got_ref
5724 && ((h->def_dynamic
5725 && !h->def_regular)
5726 || h->root.type == bfd_link_hash_undefweak
5727 || h->root.type == bfd_link_hash_undefined)))
5728 {
5729 Elf_Internal_Rela outrel;
5730 bfd_byte *loc;
5731 bfd_boolean skip, relocate;
5732 asection *sreloc;
5733
5734 *unresolved_reloc_p = FALSE;
5735
5736 skip = FALSE;
5737 relocate = FALSE;
5738
5739 outrel.r_addend = signed_addend;
5740 outrel.r_offset =
5741 _bfd_elf_section_offset (output_bfd, info, input_section,
5742 rel->r_offset);
5743 if (outrel.r_offset == (bfd_vma) - 1)
5744 skip = TRUE;
5745 else if (outrel.r_offset == (bfd_vma) - 2)
5746 {
5747 skip = TRUE;
5748 relocate = TRUE;
5749 }
5750 else if (abs_symbol_p)
5751 {
5752 /* Local absolute symbol. */
5753 skip = (h->forced_local || (h->dynindx == -1));
5754 relocate = skip;
5755 }
5756
5757 outrel.r_offset += (input_section->output_section->vma
5758 + input_section->output_offset);
5759
5760 if (skip)
5761 memset (&outrel, 0, sizeof outrel);
5762 else if (h != NULL
5763 && h->dynindx != -1
5764 && (!bfd_link_pic (info)
5765 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5766 || !h->def_regular))
5767 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5768 else
5769 {
5770 int symbol;
5771
5772 /* On SVR4-ish systems, the dynamic loader cannot
5773 relocate the text and data segments independently,
5774 so the symbol does not matter. */
5775 symbol = 0;
5776 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5777 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5778 outrel.r_addend += value;
5779 }
5780
5781 sreloc = elf_section_data (input_section)->sreloc;
5782 if (sreloc == NULL || sreloc->contents == NULL)
5783 return bfd_reloc_notsupported;
5784
5785 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5786 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5787
5788 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5789 {
5790 /* Sanity to check that we have previously allocated
5791 sufficient space in the relocation section for the
5792 number of relocations we actually want to emit. */
5793 abort ();
5794 }
5795
5796 /* If this reloc is against an external symbol, we do not want to
5797 fiddle with the addend. Otherwise, we need to include the symbol
5798 value so that it becomes an addend for the dynamic reloc. */
5799 if (!relocate)
5800 return bfd_reloc_ok;
5801
5802 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5803 contents, rel->r_offset, value,
5804 signed_addend);
5805 }
5806 else
5807 value += signed_addend;
5808 break;
5809
5810 case BFD_RELOC_AARCH64_BRANCH19:
5811 case BFD_RELOC_AARCH64_TSTBR14:
5812 /* A conditional branch to an undefined weak symbol is converted to a
5813 branch to itself. */
5814 if (weak_undef_p && !via_plt_p)
5815 {
5816 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5817 place, value,
5818 signed_addend,
5819 weak_undef_p);
5820 break;
5821 }
5822 /* Fall through. */
5823 case BFD_RELOC_AARCH64_CALL26:
5824 case BFD_RELOC_AARCH64_JUMP26:
5825 {
5826 asection *splt = globals->root.splt;
5827
5828 /* A call to an undefined weak symbol is converted to a jump to
5829 the next instruction unless a PLT entry will be created.
5830 The jump to the next instruction is optimized as a NOP.
5831 Do the same for local undefined symbols. */
5832 if (weak_undef_p && ! via_plt_p)
5833 {
5834 bfd_putl32 (INSN_NOP, hit_data);
5835 return bfd_reloc_ok;
5836 }
5837
5838 /* If the call goes through a PLT entry, make sure to
5839 check distance to the right destination address. */
5840 if (via_plt_p)
5841 value = (splt->output_section->vma
5842 + splt->output_offset + h->plt.offset);
5843
5844 /* Check if a stub has to be inserted because the destination
5845 is too far away. */
5846 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5847
5848 /* If the branch destination is directed to plt stub, "value" will be
5849 the final destination, otherwise we should plus signed_addend, it may
5850 contain non-zero value, for example call to local function symbol
5851 which are turned into "sec_sym + sec_off", and sec_off is kept in
5852 signed_addend. */
5853 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5854 place))
5855 /* The target is out of reach, so redirect the branch to
5856 the local stub for this function. */
5857 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5858 rel, globals);
5859 if (stub_entry != NULL)
5860 {
5861 value = (stub_entry->stub_offset
5862 + stub_entry->stub_sec->output_offset
5863 + stub_entry->stub_sec->output_section->vma);
5864
5865 /* We have redirected the destination to stub entry address,
5866 so ignore any addend record in the original rela entry. */
5867 signed_addend = 0;
5868 }
5869 }
5870 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5871 place, value,
5872 signed_addend, weak_undef_p);
5873 *unresolved_reloc_p = FALSE;
5874 break;
5875
5876 case BFD_RELOC_AARCH64_16_PCREL:
5877 case BFD_RELOC_AARCH64_32_PCREL:
5878 case BFD_RELOC_AARCH64_64_PCREL:
5879 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5880 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5881 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5882 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5883 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5884 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5885 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5886 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5887 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5888 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5889 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5890 if (bfd_link_pic (info)
5891 && (input_section->flags & SEC_ALLOC) != 0
5892 && (input_section->flags & SEC_READONLY) != 0
5893 && !SYMBOL_REFERENCES_LOCAL (info, h))
5894 {
5895 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5896
5897 _bfd_error_handler
5898 /* xgettext:c-format */
5899 (_("%pB: relocation %s against symbol `%s' which may bind "
5900 "externally can not be used when making a shared object; "
5901 "recompile with -fPIC"),
5902 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5903 h->root.root.string);
5904 bfd_set_error (bfd_error_bad_value);
5905 return bfd_reloc_notsupported;
5906 }
5907 /* Fall through. */
5908
5909 case BFD_RELOC_AARCH64_16:
5910 #if ARCH_SIZE == 64
5911 case BFD_RELOC_AARCH64_32:
5912 #endif
5913 case BFD_RELOC_AARCH64_ADD_LO12:
5914 case BFD_RELOC_AARCH64_LDST128_LO12:
5915 case BFD_RELOC_AARCH64_LDST16_LO12:
5916 case BFD_RELOC_AARCH64_LDST32_LO12:
5917 case BFD_RELOC_AARCH64_LDST64_LO12:
5918 case BFD_RELOC_AARCH64_LDST8_LO12:
5919 case BFD_RELOC_AARCH64_MOVW_G0:
5920 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5921 case BFD_RELOC_AARCH64_MOVW_G0_S:
5922 case BFD_RELOC_AARCH64_MOVW_G1:
5923 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5924 case BFD_RELOC_AARCH64_MOVW_G1_S:
5925 case BFD_RELOC_AARCH64_MOVW_G2:
5926 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5927 case BFD_RELOC_AARCH64_MOVW_G2_S:
5928 case BFD_RELOC_AARCH64_MOVW_G3:
5929 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5930 place, value,
5931 signed_addend, weak_undef_p);
5932 break;
5933
5934 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5935 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5936 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5937 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5938 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5939 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5940 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5941 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5942 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5943 if (globals->root.sgot == NULL)
5944 BFD_ASSERT (h != NULL);
5945
5946 relative_reloc = FALSE;
5947 if (h != NULL)
5948 {
5949 bfd_vma addend = 0;
5950
5951 /* If a symbol is not dynamic and is not undefined weak, bind it
5952 locally and generate a RELATIVE relocation under PIC mode.
5953
5954 NOTE: one symbol may be referenced by several relocations, we
5955 should only generate one RELATIVE relocation for that symbol.
5956 Therefore, check GOT offset mark first. */
5957 if (h->dynindx == -1
5958 && !h->forced_local
5959 && h->root.type != bfd_link_hash_undefweak
5960 && bfd_link_pic (info)
5961 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5962 relative_reloc = TRUE;
5963
5964 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5965 output_bfd,
5966 unresolved_reloc_p);
5967 /* Record the GOT entry address which will be used when generating
5968 RELATIVE relocation. */
5969 if (relative_reloc)
5970 got_entry_addr = value;
5971
5972 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5973 addend = (globals->root.sgot->output_section->vma
5974 + globals->root.sgot->output_offset);
5975 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5976 place, value,
5977 addend, weak_undef_p);
5978 }
5979 else
5980 {
5981 bfd_vma addend = 0;
5982 struct elf_aarch64_local_symbol *locals
5983 = elf_aarch64_locals (input_bfd);
5984
5985 if (locals == NULL)
5986 {
5987 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5988 _bfd_error_handler
5989 /* xgettext:c-format */
5990 (_("%pB: local symbol descriptor table be NULL when applying "
5991 "relocation %s against local symbol"),
5992 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5993 abort ();
5994 }
5995
5996 off = symbol_got_offset (input_bfd, h, r_symndx);
5997 base_got = globals->root.sgot;
5998 got_entry_addr = (base_got->output_section->vma
5999 + base_got->output_offset + off);
6000
6001 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6002 {
6003 bfd_put_64 (output_bfd, value, base_got->contents + off);
6004
6005 /* For local symbol, we have done absolute relocation in static
6006 linking stage. While for shared library, we need to update the
6007 content of GOT entry according to the shared object's runtime
6008 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
6009 for dynamic linker. */
6010 if (bfd_link_pic (info))
6011 relative_reloc = TRUE;
6012
6013 symbol_got_offset_mark (input_bfd, h, r_symndx);
6014 }
6015
6016 /* Update the relocation value to GOT entry addr as we have transformed
6017 the direct data access into indirect data access through GOT. */
6018 value = got_entry_addr;
6019
6020 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
6021 addend = base_got->output_section->vma + base_got->output_offset;
6022
6023 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6024 place, value,
6025 addend, weak_undef_p);
6026 }
6027
6028 if (relative_reloc)
6029 {
6030 asection *s;
6031 Elf_Internal_Rela outrel;
6032
6033 s = globals->root.srelgot;
6034 if (s == NULL)
6035 abort ();
6036
6037 outrel.r_offset = got_entry_addr;
6038 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6039 outrel.r_addend = orig_value;
6040 elf_append_rela (output_bfd, s, &outrel);
6041 }
6042 break;
6043
6044 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6045 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6046 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6047 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6048 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6049 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6050 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6051 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6052 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6053 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6054 if (globals->root.sgot == NULL)
6055 return bfd_reloc_notsupported;
6056
6057 value = (symbol_got_offset (input_bfd, h, r_symndx)
6058 + globals->root.sgot->output_section->vma
6059 + globals->root.sgot->output_offset);
6060
6061 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6062 place, value,
6063 0, weak_undef_p);
6064 *unresolved_reloc_p = FALSE;
6065 break;
6066
6067 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6068 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6069 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6070 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6071 if (globals->root.sgot == NULL)
6072 return bfd_reloc_notsupported;
6073
6074 value = symbol_got_offset (input_bfd, h, r_symndx);
6075 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6076 place, value,
6077 0, weak_undef_p);
6078 *unresolved_reloc_p = FALSE;
6079 break;
6080
6081 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
6082 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
6083 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6084 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
6085 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
6086 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
6087 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
6088 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
6089 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
6090 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
6091 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6092 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6093 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6094 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6095 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6096 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
6097 {
6098 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6099 {
6100 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6101 _bfd_error_handler
6102 /* xgettext:c-format */
6103 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6104 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6105 h->root.root.string);
6106 bfd_set_error (bfd_error_bad_value);
6107 return bfd_reloc_notsupported;
6108 }
6109
6110 bfd_vma def_value
6111 = weak_undef_p ? 0 : signed_addend - dtpoff_base (info);
6112 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6113 place, value,
6114 def_value, weak_undef_p);
6115 break;
6116 }
6117
6118 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6119 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6120 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6121 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
6122 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6123 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
6124 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6125 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
6126 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6127 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
6128 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6129 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6130 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6131 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6132 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6133 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6134 {
6135 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6136 {
6137 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6138 _bfd_error_handler
6139 /* xgettext:c-format */
6140 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6141 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6142 h->root.root.string);
6143 bfd_set_error (bfd_error_bad_value);
6144 return bfd_reloc_notsupported;
6145 }
6146
6147 bfd_vma def_value
6148 = weak_undef_p ? 0 : signed_addend - tpoff_base (info);
6149 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6150 place, value,
6151 def_value, weak_undef_p);
6152 *unresolved_reloc_p = FALSE;
6153 break;
6154 }
6155
6156 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6157 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6158 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6159 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6160 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6161 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6162 if (globals->root.sgot == NULL)
6163 return bfd_reloc_notsupported;
6164 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6165 + globals->root.sgotplt->output_section->vma
6166 + globals->root.sgotplt->output_offset
6167 + globals->sgotplt_jump_table_size);
6168
6169 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6170 place, value,
6171 0, weak_undef_p);
6172 *unresolved_reloc_p = FALSE;
6173 break;
6174
6175 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6176 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6177 if (globals->root.sgot == NULL)
6178 return bfd_reloc_notsupported;
6179
6180 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6181 + globals->root.sgotplt->output_section->vma
6182 + globals->root.sgotplt->output_offset
6183 + globals->sgotplt_jump_table_size);
6184
6185 value -= (globals->root.sgot->output_section->vma
6186 + globals->root.sgot->output_offset);
6187
6188 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6189 place, value,
6190 0, weak_undef_p);
6191 *unresolved_reloc_p = FALSE;
6192 break;
6193
6194 default:
6195 return bfd_reloc_notsupported;
6196 }
6197
6198 if (saved_addend)
6199 *saved_addend = value;
6200
6201 /* Only apply the final relocation in a sequence. */
6202 if (save_addend)
6203 return bfd_reloc_continue;
6204
6205 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6206 howto, value);
6207 }
6208
6209 /* LP64 and ILP32 operates on x- and w-registers respectively.
6210 Next definitions take into account the difference between
6211 corresponding machine codes. R means x-register if the target
6212 arch is LP64, and w-register if the target is ILP32. */
6213
6214 #if ARCH_SIZE == 64
6215 # define add_R0_R0 (0x91000000)
6216 # define add_R0_R0_R1 (0x8b000020)
6217 # define add_R0_R1 (0x91400020)
6218 # define ldr_R0 (0x58000000)
6219 # define ldr_R0_mask(i) (i & 0xffffffe0)
6220 # define ldr_R0_x0 (0xf9400000)
6221 # define ldr_hw_R0 (0xf2a00000)
6222 # define movk_R0 (0xf2800000)
6223 # define movz_R0 (0xd2a00000)
6224 # define movz_hw_R0 (0xd2c00000)
6225 #else /*ARCH_SIZE == 32 */
6226 # define add_R0_R0 (0x11000000)
6227 # define add_R0_R0_R1 (0x0b000020)
6228 # define add_R0_R1 (0x11400020)
6229 # define ldr_R0 (0x18000000)
6230 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6231 # define ldr_R0_x0 (0xb9400000)
6232 # define ldr_hw_R0 (0x72a00000)
6233 # define movk_R0 (0x72800000)
6234 # define movz_R0 (0x52a00000)
6235 # define movz_hw_R0 (0x52c00000)
6236 #endif
6237
6238 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6239 it is used to identify the stub information to reset. */
6240
6241 struct erratum_843419_branch_to_stub_clear_data
6242 {
6243 bfd_vma adrp_offset;
6244 asection *output_section;
6245 };
6246
6247 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6248 section inside IN_ARG matches. The clearing is done by setting the
6249 stub_type to none. */
6250
6251 static bfd_boolean
6252 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6253 void *in_arg)
6254 {
6255 struct elf_aarch64_stub_hash_entry *stub_entry
6256 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6257 struct erratum_843419_branch_to_stub_clear_data *data
6258 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6259
6260 if (stub_entry->target_section != data->output_section
6261 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6262 || stub_entry->adrp_offset != data->adrp_offset)
6263 return TRUE;
6264
6265 /* Change the stub type instead of removing the entry, removing from the hash
6266 table would be slower and we have already reserved the memory for the entry
6267 so there wouldn't be much gain. Changing the stub also keeps around a
6268 record of what was there before. */
6269 stub_entry->stub_type = aarch64_stub_none;
6270
6271 /* We're done and there could have been only one matching stub at that
6272 particular offset, so abort further traversal. */
6273 return FALSE;
6274 }
6275
6276 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6277 sequence. In this case the erratum no longer applies and we need to remove
6278 the entry from the pending stub generation. This clears matching adrp insn
6279 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6280
6281 static void
6282 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6283 bfd_vma adrp_offset, asection *input_section)
6284 {
6285 if (globals->fix_erratum_843419 & ERRAT_ADRP)
6286 {
6287 struct erratum_843419_branch_to_stub_clear_data data;
6288 data.adrp_offset = adrp_offset;
6289 data.output_section = input_section;
6290
6291 bfd_hash_traverse (&globals->stub_hash_table,
6292 _bfd_aarch64_erratum_843419_clear_stub, &data);
6293 }
6294 }
6295
6296 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6297 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6298 link.
6299
6300 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6301 is to then call final_link_relocate. Return other values in the
6302 case of error. */
6303
6304 static bfd_reloc_status_type
6305 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6306 bfd *input_bfd, asection *input_section,
6307 bfd_byte *contents, Elf_Internal_Rela *rel,
6308 struct elf_link_hash_entry *h)
6309 {
6310 bfd_boolean is_local = h == NULL;
6311 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6312 unsigned long insn;
6313
6314 BFD_ASSERT (globals && input_bfd && contents && rel);
6315
6316 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6317 {
6318 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6319 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6320 if (is_local)
6321 {
6322 /* GD->LE relaxation:
6323 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6324 or
6325 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6326
6327 Where R is x for LP64, and w for ILP32. */
6328 bfd_putl32 (movz_R0, contents + rel->r_offset);
6329 /* We have relaxed the adrp into a mov, we may have to clear any
6330 pending erratum fixes. */
6331 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6332 return bfd_reloc_continue;
6333 }
6334 else
6335 {
6336 /* GD->IE relaxation:
6337 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6338 or
6339 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6340 */
6341 return bfd_reloc_continue;
6342 }
6343
6344 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6345 BFD_ASSERT (0);
6346 break;
6347
6348 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6349 if (is_local)
6350 {
6351 /* Tiny TLSDESC->LE relaxation:
6352 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6353 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6354 .tlsdesccall var
6355 blr x1 => nop
6356
6357 Where R is x for LP64, and w for ILP32. */
6358 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6359 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6360
6361 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6362 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6363 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6364
6365 bfd_putl32 (movz_R0, contents + rel->r_offset);
6366 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6367 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6368 return bfd_reloc_continue;
6369 }
6370 else
6371 {
6372 /* Tiny TLSDESC->IE relaxation:
6373 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6374 adr x0, :tlsdesc:var => nop
6375 .tlsdesccall var
6376 blr x1 => nop
6377 */
6378 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6379 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6380
6381 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6382 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6383
6384 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6385 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6386 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6387 return bfd_reloc_continue;
6388 }
6389
6390 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6391 if (is_local)
6392 {
6393 /* Tiny GD->LE relaxation:
6394 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6395 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6396 nop => add R0, R0, #:tprel_lo12_nc:x
6397
6398 Where R is x for LP64, and x for Ilp32. */
6399
6400 /* First kill the tls_get_addr reloc on the bl instruction. */
6401 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6402
6403 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6404 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6405 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6406
6407 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6408 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6409 rel[1].r_offset = rel->r_offset + 8;
6410
6411 /* Move the current relocation to the second instruction in
6412 the sequence. */
6413 rel->r_offset += 4;
6414 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6415 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6416 return bfd_reloc_continue;
6417 }
6418 else
6419 {
6420 /* Tiny GD->IE relaxation:
6421 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6422 bl __tls_get_addr => mrs x1, tpidr_el0
6423 nop => add R0, R0, R1
6424
6425 Where R is x for LP64, and w for Ilp32. */
6426
6427 /* First kill the tls_get_addr reloc on the bl instruction. */
6428 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6429 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6430
6431 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6432 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6433 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6434 return bfd_reloc_continue;
6435 }
6436
6437 #if ARCH_SIZE == 64
6438 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6439 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6440 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6441 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6442
6443 if (is_local)
6444 {
6445 /* Large GD->LE relaxation:
6446 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6447 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6448 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6449 bl __tls_get_addr => mrs x1, tpidr_el0
6450 nop => add x0, x0, x1
6451 */
6452 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6453 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6454 rel[2].r_offset = rel->r_offset + 8;
6455
6456 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6457 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6458 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6459 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6460 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6461 }
6462 else
6463 {
6464 /* Large GD->IE relaxation:
6465 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6466 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6467 add x0, gp, x0 => ldr x0, [gp, x0]
6468 bl __tls_get_addr => mrs x1, tpidr_el0
6469 nop => add x0, x0, x1
6470 */
6471 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6472 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6473 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6474 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6475 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6476 }
6477 return bfd_reloc_continue;
6478
6479 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6480 return bfd_reloc_continue;
6481 #endif
6482
6483 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6484 return bfd_reloc_continue;
6485
6486 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6487 if (is_local)
6488 {
6489 /* GD->LE relaxation:
6490 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6491
6492 Where R is x for lp64 mode, and w for ILP32 mode. */
6493 bfd_putl32 (movk_R0, contents + rel->r_offset);
6494 return bfd_reloc_continue;
6495 }
6496 else
6497 {
6498 /* GD->IE relaxation:
6499 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6500
6501 Where R is x for lp64 mode, and w for ILP32 mode. */
6502 insn = bfd_getl32 (contents + rel->r_offset);
6503 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6504 return bfd_reloc_continue;
6505 }
6506
6507 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6508 if (is_local)
6509 {
6510 /* GD->LE relaxation
6511 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6512 bl __tls_get_addr => mrs x1, tpidr_el0
6513 nop => add R0, R1, R0
6514
6515 Where R is x for lp64 mode, and w for ILP32 mode. */
6516
6517 /* First kill the tls_get_addr reloc on the bl instruction. */
6518 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6519 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6520
6521 bfd_putl32 (movk_R0, contents + rel->r_offset);
6522 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6523 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6524 return bfd_reloc_continue;
6525 }
6526 else
6527 {
6528 /* GD->IE relaxation
6529 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6530 BL __tls_get_addr => mrs x1, tpidr_el0
6531 R_AARCH64_CALL26
6532 NOP => add R0, R1, R0
6533
6534 Where R is x for lp64 mode, and w for ilp32 mode. */
6535
6536 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6537
6538 /* Remove the relocation on the BL instruction. */
6539 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6540
6541 /* We choose to fixup the BL and NOP instructions using the
6542 offset from the second relocation to allow flexibility in
6543 scheduling instructions between the ADD and BL. */
6544 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6545 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6546 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6547 return bfd_reloc_continue;
6548 }
6549
6550 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6551 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6552 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6553 /* GD->IE/LE relaxation:
6554 add x0, x0, #:tlsdesc_lo12:var => nop
6555 blr xd => nop
6556 */
6557 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6558 return bfd_reloc_ok;
6559
6560 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6561 if (is_local)
6562 {
6563 /* GD->LE relaxation:
6564 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6565
6566 Where R is x for lp64 mode, and w for ILP32 mode. */
6567 bfd_putl32 (movk_R0, contents + rel->r_offset);
6568 return bfd_reloc_continue;
6569 }
6570 else
6571 {
6572 /* GD->IE relaxation:
6573 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6574
6575 Where R is x for lp64 mode, and w for ILP32 mode. */
6576 insn = bfd_getl32 (contents + rel->r_offset);
6577 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6578 return bfd_reloc_ok;
6579 }
6580
6581 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6582 /* GD->LE relaxation:
6583 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6584 GD->IE relaxation:
6585 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6586
6587 Where R is x for lp64 mode, and w for ILP32 mode. */
6588 if (is_local)
6589 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6590 return bfd_reloc_continue;
6591
6592 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6593 if (is_local)
6594 {
6595 /* GD->LE relaxation:
6596 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6597
6598 Where R is x for lp64 mode, and w for ILP32 mode. */
6599 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6600 return bfd_reloc_continue;
6601 }
6602 else
6603 {
6604 /* GD->IE relaxation:
6605 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6606
6607 Where R is x for lp64 mode, and w for ILP32 mode. */
6608 insn = bfd_getl32 (contents + rel->r_offset);
6609 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6610 return bfd_reloc_continue;
6611 }
6612
6613 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6614 /* IE->LE relaxation:
6615 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6616
6617 Where R is x for lp64 mode, and w for ILP32 mode. */
6618 if (is_local)
6619 {
6620 insn = bfd_getl32 (contents + rel->r_offset);
6621 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6622 /* We have relaxed the adrp into a mov, we may have to clear any
6623 pending erratum fixes. */
6624 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6625 }
6626 return bfd_reloc_continue;
6627
6628 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6629 /* IE->LE relaxation:
6630 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6631
6632 Where R is x for lp64 mode, and w for ILP32 mode. */
6633 if (is_local)
6634 {
6635 insn = bfd_getl32 (contents + rel->r_offset);
6636 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6637 }
6638 return bfd_reloc_continue;
6639
6640 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6641 /* LD->LE relaxation (tiny):
6642 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6643 bl __tls_get_addr => add R0, R0, TCB_SIZE
6644
6645 Where R is x for lp64 mode, and w for ilp32 mode. */
6646 if (is_local)
6647 {
6648 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6649 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6650 /* No need of CALL26 relocation for tls_get_addr. */
6651 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6652 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6653 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6654 contents + rel->r_offset + 4);
6655 return bfd_reloc_ok;
6656 }
6657 return bfd_reloc_continue;
6658
6659 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6660 /* LD->LE relaxation (small):
6661 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6662 */
6663 if (is_local)
6664 {
6665 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6666 return bfd_reloc_ok;
6667 }
6668 return bfd_reloc_continue;
6669
6670 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6671 /* LD->LE relaxation (small):
6672 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6673 bl __tls_get_addr => nop
6674
6675 Where R is x for lp64 mode, and w for ilp32 mode. */
6676 if (is_local)
6677 {
6678 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6679 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6680 /* No need of CALL26 relocation for tls_get_addr. */
6681 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6682 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6683 contents + rel->r_offset + 0);
6684 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6685 return bfd_reloc_ok;
6686 }
6687 return bfd_reloc_continue;
6688
6689 default:
6690 return bfd_reloc_continue;
6691 }
6692
6693 return bfd_reloc_ok;
6694 }
6695
6696 /* Relocate an AArch64 ELF section. */
6697
6698 static bfd_boolean
6699 elfNN_aarch64_relocate_section (bfd *output_bfd,
6700 struct bfd_link_info *info,
6701 bfd *input_bfd,
6702 asection *input_section,
6703 bfd_byte *contents,
6704 Elf_Internal_Rela *relocs,
6705 Elf_Internal_Sym *local_syms,
6706 asection **local_sections)
6707 {
6708 Elf_Internal_Shdr *symtab_hdr;
6709 struct elf_link_hash_entry **sym_hashes;
6710 Elf_Internal_Rela *rel;
6711 Elf_Internal_Rela *relend;
6712 const char *name;
6713 struct elf_aarch64_link_hash_table *globals;
6714 bfd_boolean save_addend = FALSE;
6715 bfd_vma addend = 0;
6716
6717 globals = elf_aarch64_hash_table (info);
6718
6719 symtab_hdr = &elf_symtab_hdr (input_bfd);
6720 sym_hashes = elf_sym_hashes (input_bfd);
6721
6722 rel = relocs;
6723 relend = relocs + input_section->reloc_count;
6724 for (; rel < relend; rel++)
6725 {
6726 unsigned int r_type;
6727 bfd_reloc_code_real_type bfd_r_type;
6728 bfd_reloc_code_real_type relaxed_bfd_r_type;
6729 reloc_howto_type *howto;
6730 unsigned long r_symndx;
6731 Elf_Internal_Sym *sym;
6732 asection *sec;
6733 struct elf_link_hash_entry *h;
6734 bfd_vma relocation;
6735 bfd_reloc_status_type r;
6736 arelent bfd_reloc;
6737 char sym_type;
6738 bfd_boolean unresolved_reloc = FALSE;
6739 char *error_message = NULL;
6740
6741 r_symndx = ELFNN_R_SYM (rel->r_info);
6742 r_type = ELFNN_R_TYPE (rel->r_info);
6743
6744 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6745 howto = bfd_reloc.howto;
6746
6747 if (howto == NULL)
6748 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6749
6750 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6751
6752 h = NULL;
6753 sym = NULL;
6754 sec = NULL;
6755
6756 if (r_symndx < symtab_hdr->sh_info)
6757 {
6758 sym = local_syms + r_symndx;
6759 sym_type = ELFNN_ST_TYPE (sym->st_info);
6760 sec = local_sections[r_symndx];
6761
6762 /* An object file might have a reference to a local
6763 undefined symbol. This is a daft object file, but we
6764 should at least do something about it. */
6765 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6766 && bfd_is_und_section (sec)
6767 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6768 (*info->callbacks->undefined_symbol)
6769 (info, bfd_elf_string_from_elf_section
6770 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6771 input_bfd, input_section, rel->r_offset, TRUE);
6772
6773 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6774
6775 /* Relocate against local STT_GNU_IFUNC symbol. */
6776 if (!bfd_link_relocatable (info)
6777 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6778 {
6779 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6780 rel, FALSE);
6781 if (h == NULL)
6782 abort ();
6783
6784 /* Set STT_GNU_IFUNC symbol value. */
6785 h->root.u.def.value = sym->st_value;
6786 h->root.u.def.section = sec;
6787 }
6788 }
6789 else
6790 {
6791 bfd_boolean warned, ignored;
6792
6793 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6794 r_symndx, symtab_hdr, sym_hashes,
6795 h, sec, relocation,
6796 unresolved_reloc, warned, ignored);
6797
6798 sym_type = h->type;
6799 }
6800
6801 if (sec != NULL && discarded_section (sec))
6802 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6803 rel, 1, relend, howto, 0, contents);
6804
6805 if (bfd_link_relocatable (info))
6806 continue;
6807
6808 if (h != NULL)
6809 name = h->root.root.string;
6810 else
6811 {
6812 name = (bfd_elf_string_from_elf_section
6813 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6814 if (name == NULL || *name == '\0')
6815 name = bfd_section_name (sec);
6816 }
6817
6818 if (r_symndx != 0
6819 && r_type != R_AARCH64_NONE
6820 && r_type != R_AARCH64_NULL
6821 && (h == NULL
6822 || h->root.type == bfd_link_hash_defined
6823 || h->root.type == bfd_link_hash_defweak)
6824 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6825 {
6826 _bfd_error_handler
6827 ((sym_type == STT_TLS
6828 /* xgettext:c-format */
6829 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6830 /* xgettext:c-format */
6831 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6832 input_bfd,
6833 input_section, (uint64_t) rel->r_offset, howto->name, name);
6834 }
6835
6836 /* We relax only if we can see that there can be a valid transition
6837 from a reloc type to another.
6838 We call elfNN_aarch64_final_link_relocate unless we're completely
6839 done, i.e., the relaxation produced the final output we want. */
6840
6841 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6842 h, r_symndx);
6843 if (relaxed_bfd_r_type != bfd_r_type)
6844 {
6845 bfd_r_type = relaxed_bfd_r_type;
6846 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6847 BFD_ASSERT (howto != NULL);
6848 r_type = howto->type;
6849 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6850 contents, rel, h);
6851 unresolved_reloc = 0;
6852 }
6853 else
6854 r = bfd_reloc_continue;
6855
6856 /* There may be multiple consecutive relocations for the
6857 same offset. In that case we are supposed to treat the
6858 output of each relocation as the addend for the next. */
6859 if (rel + 1 < relend
6860 && rel->r_offset == rel[1].r_offset
6861 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6862 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6863 save_addend = TRUE;
6864 else
6865 save_addend = FALSE;
6866
6867 if (r == bfd_reloc_continue)
6868 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6869 input_section, contents, rel,
6870 relocation, info, sec,
6871 h, &unresolved_reloc,
6872 save_addend, &addend, sym);
6873
6874 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6875 {
6876 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6877 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6878 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6879 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6880 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6881 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6882 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6883 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6884 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6885 {
6886 bfd_boolean need_relocs = FALSE;
6887 bfd_byte *loc;
6888 int indx;
6889 bfd_vma off;
6890
6891 off = symbol_got_offset (input_bfd, h, r_symndx);
6892 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6893
6894 need_relocs =
6895 (!bfd_link_executable (info) || indx != 0) &&
6896 (h == NULL
6897 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6898 || h->root.type != bfd_link_hash_undefweak);
6899
6900 BFD_ASSERT (globals->root.srelgot != NULL);
6901
6902 if (need_relocs)
6903 {
6904 Elf_Internal_Rela rela;
6905 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6906 rela.r_addend = 0;
6907 rela.r_offset = globals->root.sgot->output_section->vma +
6908 globals->root.sgot->output_offset + off;
6909
6910
6911 loc = globals->root.srelgot->contents;
6912 loc += globals->root.srelgot->reloc_count++
6913 * RELOC_SIZE (htab);
6914 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6915
6916 bfd_reloc_code_real_type real_type =
6917 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6918
6919 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6920 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6921 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6922 {
6923 /* For local dynamic, don't generate DTPREL in any case.
6924 Initialize the DTPREL slot into zero, so we get module
6925 base address when invoke runtime TLS resolver. */
6926 bfd_put_NN (output_bfd, 0,
6927 globals->root.sgot->contents + off
6928 + GOT_ENTRY_SIZE);
6929 }
6930 else if (indx == 0)
6931 {
6932 bfd_put_NN (output_bfd,
6933 relocation - dtpoff_base (info),
6934 globals->root.sgot->contents + off
6935 + GOT_ENTRY_SIZE);
6936 }
6937 else
6938 {
6939 /* This TLS symbol is global. We emit a
6940 relocation to fixup the tls offset at load
6941 time. */
6942 rela.r_info =
6943 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6944 rela.r_addend = 0;
6945 rela.r_offset =
6946 (globals->root.sgot->output_section->vma
6947 + globals->root.sgot->output_offset + off
6948 + GOT_ENTRY_SIZE);
6949
6950 loc = globals->root.srelgot->contents;
6951 loc += globals->root.srelgot->reloc_count++
6952 * RELOC_SIZE (globals);
6953 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6954 bfd_put_NN (output_bfd, (bfd_vma) 0,
6955 globals->root.sgot->contents + off
6956 + GOT_ENTRY_SIZE);
6957 }
6958 }
6959 else
6960 {
6961 bfd_put_NN (output_bfd, (bfd_vma) 1,
6962 globals->root.sgot->contents + off);
6963 bfd_put_NN (output_bfd,
6964 relocation - dtpoff_base (info),
6965 globals->root.sgot->contents + off
6966 + GOT_ENTRY_SIZE);
6967 }
6968
6969 symbol_got_offset_mark (input_bfd, h, r_symndx);
6970 }
6971 break;
6972
6973 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6974 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6975 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6976 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6977 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6978 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6979 {
6980 bfd_boolean need_relocs = FALSE;
6981 bfd_byte *loc;
6982 int indx;
6983 bfd_vma off;
6984
6985 off = symbol_got_offset (input_bfd, h, r_symndx);
6986
6987 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6988
6989 need_relocs =
6990 (!bfd_link_executable (info) || indx != 0) &&
6991 (h == NULL
6992 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6993 || h->root.type != bfd_link_hash_undefweak);
6994
6995 BFD_ASSERT (globals->root.srelgot != NULL);
6996
6997 if (need_relocs)
6998 {
6999 Elf_Internal_Rela rela;
7000
7001 if (indx == 0)
7002 rela.r_addend = relocation - dtpoff_base (info);
7003 else
7004 rela.r_addend = 0;
7005
7006 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
7007 rela.r_offset = globals->root.sgot->output_section->vma +
7008 globals->root.sgot->output_offset + off;
7009
7010 loc = globals->root.srelgot->contents;
7011 loc += globals->root.srelgot->reloc_count++
7012 * RELOC_SIZE (htab);
7013
7014 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7015
7016 bfd_put_NN (output_bfd, rela.r_addend,
7017 globals->root.sgot->contents + off);
7018 }
7019 else
7020 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
7021 globals->root.sgot->contents + off);
7022
7023 symbol_got_offset_mark (input_bfd, h, r_symndx);
7024 }
7025 break;
7026
7027 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7028 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7029 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7030 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
7031 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7032 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7033 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7034 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
7035 {
7036 bfd_boolean need_relocs = FALSE;
7037 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
7038 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
7039
7040 need_relocs = (h == NULL
7041 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7042 || h->root.type != bfd_link_hash_undefweak);
7043
7044 BFD_ASSERT (globals->root.srelgot != NULL);
7045 BFD_ASSERT (globals->root.sgot != NULL);
7046
7047 if (need_relocs)
7048 {
7049 bfd_byte *loc;
7050 Elf_Internal_Rela rela;
7051 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
7052
7053 rela.r_addend = 0;
7054 rela.r_offset = (globals->root.sgotplt->output_section->vma
7055 + globals->root.sgotplt->output_offset
7056 + off + globals->sgotplt_jump_table_size);
7057
7058 if (indx == 0)
7059 rela.r_addend = relocation - dtpoff_base (info);
7060
7061 /* Allocate the next available slot in the PLT reloc
7062 section to hold our R_AARCH64_TLSDESC, the next
7063 available slot is determined from reloc_count,
7064 which we step. But note, reloc_count was
7065 artifically moved down while allocating slots for
7066 real PLT relocs such that all of the PLT relocs
7067 will fit above the initial reloc_count and the
7068 extra stuff will fit below. */
7069 loc = globals->root.srelplt->contents;
7070 loc += globals->root.srelplt->reloc_count++
7071 * RELOC_SIZE (globals);
7072
7073 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7074
7075 bfd_put_NN (output_bfd, (bfd_vma) 0,
7076 globals->root.sgotplt->contents + off +
7077 globals->sgotplt_jump_table_size);
7078 bfd_put_NN (output_bfd, (bfd_vma) 0,
7079 globals->root.sgotplt->contents + off +
7080 globals->sgotplt_jump_table_size +
7081 GOT_ENTRY_SIZE);
7082 }
7083
7084 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
7085 }
7086 break;
7087 default:
7088 break;
7089 }
7090
7091 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7092 because such sections are not SEC_ALLOC and thus ld.so will
7093 not process them. */
7094 if (unresolved_reloc
7095 && !((input_section->flags & SEC_DEBUGGING) != 0
7096 && h->def_dynamic)
7097 && _bfd_elf_section_offset (output_bfd, info, input_section,
7098 +rel->r_offset) != (bfd_vma) - 1)
7099 {
7100 _bfd_error_handler
7101 /* xgettext:c-format */
7102 (_("%pB(%pA+%#" PRIx64 "): "
7103 "unresolvable %s relocation against symbol `%s'"),
7104 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
7105 h->root.root.string);
7106 return FALSE;
7107 }
7108
7109 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
7110 {
7111 bfd_reloc_code_real_type real_r_type
7112 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
7113
7114 switch (r)
7115 {
7116 case bfd_reloc_overflow:
7117 (*info->callbacks->reloc_overflow)
7118 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
7119 input_bfd, input_section, rel->r_offset);
7120 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
7121 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
7122 {
7123 (*info->callbacks->warning)
7124 (info,
7125 _("too many GOT entries for -fpic, "
7126 "please recompile with -fPIC"),
7127 name, input_bfd, input_section, rel->r_offset);
7128 return FALSE;
7129 }
7130 /* Overflow can occur when a variable is referenced with a type
7131 that has a larger alignment than the type with which it was
7132 declared. eg:
7133 file1.c: extern int foo; int a (void) { return foo; }
7134 file2.c: char bar, foo, baz;
7135 If the variable is placed into a data section at an offset
7136 that is incompatible with the larger alignment requirement
7137 overflow will occur. (Strictly speaking this is not overflow
7138 but rather an alignment problem, but the bfd_reloc_ error
7139 enum does not have a value to cover that situation).
7140
7141 Try to catch this situation here and provide a more helpful
7142 error message to the user. */
7143 if (addend & ((1 << howto->rightshift) - 1)
7144 /* FIXME: Are we testing all of the appropriate reloc
7145 types here ? */
7146 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
7147 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
7148 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
7149 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
7150 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
7151 {
7152 info->callbacks->warning
7153 (info, _("one possible cause of this error is that the \
7154 symbol is being referenced in the indicated code as if it had a larger \
7155 alignment than was declared where it was defined"),
7156 name, input_bfd, input_section, rel->r_offset);
7157 }
7158 break;
7159
7160 case bfd_reloc_undefined:
7161 (*info->callbacks->undefined_symbol)
7162 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
7163 break;
7164
7165 case bfd_reloc_outofrange:
7166 error_message = _("out of range");
7167 goto common_error;
7168
7169 case bfd_reloc_notsupported:
7170 error_message = _("unsupported relocation");
7171 goto common_error;
7172
7173 case bfd_reloc_dangerous:
7174 /* error_message should already be set. */
7175 goto common_error;
7176
7177 default:
7178 error_message = _("unknown error");
7179 /* Fall through. */
7180
7181 common_error:
7182 BFD_ASSERT (error_message != NULL);
7183 (*info->callbacks->reloc_dangerous)
7184 (info, error_message, input_bfd, input_section, rel->r_offset);
7185 break;
7186 }
7187 }
7188
7189 if (!save_addend)
7190 addend = 0;
7191 }
7192
7193 return TRUE;
7194 }
7195
7196 /* Set the right machine number. */
7197
7198 static bfd_boolean
7199 elfNN_aarch64_object_p (bfd *abfd)
7200 {
7201 #if ARCH_SIZE == 32
7202 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7203 #else
7204 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7205 #endif
7206 return TRUE;
7207 }
7208
7209 /* Function to keep AArch64 specific flags in the ELF header. */
7210
7211 static bfd_boolean
7212 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7213 {
7214 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7215 {
7216 }
7217 else
7218 {
7219 elf_elfheader (abfd)->e_flags = flags;
7220 elf_flags_init (abfd) = TRUE;
7221 }
7222
7223 return TRUE;
7224 }
7225
7226 /* Merge backend specific data from an object file to the output
7227 object file when linking. */
7228
7229 static bfd_boolean
7230 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7231 {
7232 bfd *obfd = info->output_bfd;
7233 flagword out_flags;
7234 flagword in_flags;
7235 bfd_boolean flags_compatible = TRUE;
7236 asection *sec;
7237
7238 /* Check if we have the same endianess. */
7239 if (!_bfd_generic_verify_endian_match (ibfd, info))
7240 return FALSE;
7241
7242 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7243 return TRUE;
7244
7245 /* The input BFD must have had its flags initialised. */
7246 /* The following seems bogus to me -- The flags are initialized in
7247 the assembler but I don't think an elf_flags_init field is
7248 written into the object. */
7249 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7250
7251 in_flags = elf_elfheader (ibfd)->e_flags;
7252 out_flags = elf_elfheader (obfd)->e_flags;
7253
7254 if (!elf_flags_init (obfd))
7255 {
7256 /* If the input is the default architecture and had the default
7257 flags then do not bother setting the flags for the output
7258 architecture, instead allow future merges to do this. If no
7259 future merges ever set these flags then they will retain their
7260 uninitialised values, which surprise surprise, correspond
7261 to the default values. */
7262 if (bfd_get_arch_info (ibfd)->the_default
7263 && elf_elfheader (ibfd)->e_flags == 0)
7264 return TRUE;
7265
7266 elf_flags_init (obfd) = TRUE;
7267 elf_elfheader (obfd)->e_flags = in_flags;
7268
7269 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7270 && bfd_get_arch_info (obfd)->the_default)
7271 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7272 bfd_get_mach (ibfd));
7273
7274 return TRUE;
7275 }
7276
7277 /* Identical flags must be compatible. */
7278 if (in_flags == out_flags)
7279 return TRUE;
7280
7281 /* Check to see if the input BFD actually contains any sections. If
7282 not, its flags may not have been initialised either, but it
7283 cannot actually cause any incompatiblity. Do not short-circuit
7284 dynamic objects; their section list may be emptied by
7285 elf_link_add_object_symbols.
7286
7287 Also check to see if there are no code sections in the input.
7288 In this case there is no need to check for code specific flags.
7289 XXX - do we need to worry about floating-point format compatability
7290 in data sections ? */
7291 if (!(ibfd->flags & DYNAMIC))
7292 {
7293 bfd_boolean null_input_bfd = TRUE;
7294 bfd_boolean only_data_sections = TRUE;
7295
7296 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7297 {
7298 if ((bfd_section_flags (sec)
7299 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7300 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7301 only_data_sections = FALSE;
7302
7303 null_input_bfd = FALSE;
7304 break;
7305 }
7306
7307 if (null_input_bfd || only_data_sections)
7308 return TRUE;
7309 }
7310
7311 return flags_compatible;
7312 }
7313
7314 /* Display the flags field. */
7315
7316 static bfd_boolean
7317 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7318 {
7319 FILE *file = (FILE *) ptr;
7320 unsigned long flags;
7321
7322 BFD_ASSERT (abfd != NULL && ptr != NULL);
7323
7324 /* Print normal ELF private data. */
7325 _bfd_elf_print_private_bfd_data (abfd, ptr);
7326
7327 flags = elf_elfheader (abfd)->e_flags;
7328 /* Ignore init flag - it may not be set, despite the flags field
7329 containing valid data. */
7330
7331 /* xgettext:c-format */
7332 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7333
7334 if (flags)
7335 fprintf (file, _("<Unrecognised flag bits set>"));
7336
7337 fputc ('\n', file);
7338
7339 return TRUE;
7340 }
7341
7342 /* Return true if we need copy relocation against EH. */
7343
7344 static bfd_boolean
7345 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7346 {
7347 struct elf_dyn_relocs *p;
7348 asection *s;
7349
7350 for (p = eh->root.dyn_relocs; p != NULL; p = p->next)
7351 {
7352 /* If there is any pc-relative reference, we need to keep copy relocation
7353 to avoid propagating the relocation into runtime that current glibc
7354 does not support. */
7355 if (p->pc_count)
7356 return TRUE;
7357
7358 s = p->sec->output_section;
7359 /* Need copy relocation if it's against read-only section. */
7360 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7361 return TRUE;
7362 }
7363
7364 return FALSE;
7365 }
7366
7367 /* Adjust a symbol defined by a dynamic object and referenced by a
7368 regular object. The current definition is in some section of the
7369 dynamic object, but we're not including those sections. We have to
7370 change the definition to something the rest of the link can
7371 understand. */
7372
7373 static bfd_boolean
7374 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7375 struct elf_link_hash_entry *h)
7376 {
7377 struct elf_aarch64_link_hash_table *htab;
7378 asection *s, *srel;
7379
7380 /* If this is a function, put it in the procedure linkage table. We
7381 will fill in the contents of the procedure linkage table later,
7382 when we know the address of the .got section. */
7383 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7384 {
7385 if (h->plt.refcount <= 0
7386 || (h->type != STT_GNU_IFUNC
7387 && (SYMBOL_CALLS_LOCAL (info, h)
7388 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7389 && h->root.type == bfd_link_hash_undefweak))))
7390 {
7391 /* This case can occur if we saw a CALL26 reloc in
7392 an input file, but the symbol wasn't referred to
7393 by a dynamic object or all references were
7394 garbage collected. In which case we can end up
7395 resolving. */
7396 h->plt.offset = (bfd_vma) - 1;
7397 h->needs_plt = 0;
7398 }
7399
7400 return TRUE;
7401 }
7402 else
7403 /* Otherwise, reset to -1. */
7404 h->plt.offset = (bfd_vma) - 1;
7405
7406
7407 /* If this is a weak symbol, and there is a real definition, the
7408 processor independent code will have arranged for us to see the
7409 real definition first, and we can just use the same value. */
7410 if (h->is_weakalias)
7411 {
7412 struct elf_link_hash_entry *def = weakdef (h);
7413 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7414 h->root.u.def.section = def->root.u.def.section;
7415 h->root.u.def.value = def->root.u.def.value;
7416 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7417 h->non_got_ref = def->non_got_ref;
7418 return TRUE;
7419 }
7420
7421 /* If we are creating a shared library, we must presume that the
7422 only references to the symbol are via the global offset table.
7423 For such cases we need not do anything here; the relocations will
7424 be handled correctly by relocate_section. */
7425 if (bfd_link_pic (info))
7426 return TRUE;
7427
7428 /* If there are no references to this symbol that do not use the
7429 GOT, we don't need to generate a copy reloc. */
7430 if (!h->non_got_ref)
7431 return TRUE;
7432
7433 /* If -z nocopyreloc was given, we won't generate them either. */
7434 if (info->nocopyreloc)
7435 {
7436 h->non_got_ref = 0;
7437 return TRUE;
7438 }
7439
7440 if (ELIMINATE_COPY_RELOCS)
7441 {
7442 struct elf_aarch64_link_hash_entry *eh;
7443 /* If we don't find any dynamic relocs in read-only sections, then
7444 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7445 eh = (struct elf_aarch64_link_hash_entry *) h;
7446 if (!need_copy_relocation_p (eh))
7447 {
7448 h->non_got_ref = 0;
7449 return TRUE;
7450 }
7451 }
7452
7453 /* We must allocate the symbol in our .dynbss section, which will
7454 become part of the .bss section of the executable. There will be
7455 an entry for this symbol in the .dynsym section. The dynamic
7456 object will contain position independent code, so all references
7457 from the dynamic object to this symbol will go through the global
7458 offset table. The dynamic linker will use the .dynsym entry to
7459 determine the address it must put in the global offset table, so
7460 both the dynamic object and the regular object will refer to the
7461 same memory location for the variable. */
7462
7463 htab = elf_aarch64_hash_table (info);
7464
7465 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7466 to copy the initial value out of the dynamic object and into the
7467 runtime process image. */
7468 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7469 {
7470 s = htab->root.sdynrelro;
7471 srel = htab->root.sreldynrelro;
7472 }
7473 else
7474 {
7475 s = htab->root.sdynbss;
7476 srel = htab->root.srelbss;
7477 }
7478 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7479 {
7480 srel->size += RELOC_SIZE (htab);
7481 h->needs_copy = 1;
7482 }
7483
7484 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7485
7486 }
7487
7488 static bfd_boolean
7489 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7490 {
7491 struct elf_aarch64_local_symbol *locals;
7492 locals = elf_aarch64_locals (abfd);
7493 if (locals == NULL)
7494 {
7495 locals = (struct elf_aarch64_local_symbol *)
7496 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7497 if (locals == NULL)
7498 return FALSE;
7499 elf_aarch64_locals (abfd) = locals;
7500 }
7501 return TRUE;
7502 }
7503
7504 /* Create the .got section to hold the global offset table. */
7505
7506 static bfd_boolean
7507 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7508 {
7509 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7510 flagword flags;
7511 asection *s;
7512 struct elf_link_hash_entry *h;
7513 struct elf_link_hash_table *htab = elf_hash_table (info);
7514
7515 /* This function may be called more than once. */
7516 if (htab->sgot != NULL)
7517 return TRUE;
7518
7519 flags = bed->dynamic_sec_flags;
7520
7521 s = bfd_make_section_anyway_with_flags (abfd,
7522 (bed->rela_plts_and_copies_p
7523 ? ".rela.got" : ".rel.got"),
7524 (bed->dynamic_sec_flags
7525 | SEC_READONLY));
7526 if (s == NULL
7527 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7528 return FALSE;
7529 htab->srelgot = s;
7530
7531 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7532 if (s == NULL
7533 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7534 return FALSE;
7535 htab->sgot = s;
7536 htab->sgot->size += GOT_ENTRY_SIZE;
7537
7538 if (bed->want_got_sym)
7539 {
7540 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7541 (or .got.plt) section. We don't do this in the linker script
7542 because we don't want to define the symbol if we are not creating
7543 a global offset table. */
7544 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7545 "_GLOBAL_OFFSET_TABLE_");
7546 elf_hash_table (info)->hgot = h;
7547 if (h == NULL)
7548 return FALSE;
7549 }
7550
7551 if (bed->want_got_plt)
7552 {
7553 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7554 if (s == NULL
7555 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7556 return FALSE;
7557 htab->sgotplt = s;
7558 }
7559
7560 /* The first bit of the global offset table is the header. */
7561 s->size += bed->got_header_size;
7562
7563 return TRUE;
7564 }
7565
7566 /* Look through the relocs for a section during the first phase. */
7567
7568 static bfd_boolean
7569 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7570 asection *sec, const Elf_Internal_Rela *relocs)
7571 {
7572 Elf_Internal_Shdr *symtab_hdr;
7573 struct elf_link_hash_entry **sym_hashes;
7574 const Elf_Internal_Rela *rel;
7575 const Elf_Internal_Rela *rel_end;
7576 asection *sreloc;
7577
7578 struct elf_aarch64_link_hash_table *htab;
7579
7580 if (bfd_link_relocatable (info))
7581 return TRUE;
7582
7583 BFD_ASSERT (is_aarch64_elf (abfd));
7584
7585 htab = elf_aarch64_hash_table (info);
7586 sreloc = NULL;
7587
7588 symtab_hdr = &elf_symtab_hdr (abfd);
7589 sym_hashes = elf_sym_hashes (abfd);
7590
7591 rel_end = relocs + sec->reloc_count;
7592 for (rel = relocs; rel < rel_end; rel++)
7593 {
7594 struct elf_link_hash_entry *h;
7595 unsigned int r_symndx;
7596 unsigned int r_type;
7597 bfd_reloc_code_real_type bfd_r_type;
7598 Elf_Internal_Sym *isym;
7599
7600 r_symndx = ELFNN_R_SYM (rel->r_info);
7601 r_type = ELFNN_R_TYPE (rel->r_info);
7602
7603 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7604 {
7605 /* xgettext:c-format */
7606 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7607 return FALSE;
7608 }
7609
7610 if (r_symndx < symtab_hdr->sh_info)
7611 {
7612 /* A local symbol. */
7613 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7614 abfd, r_symndx);
7615 if (isym == NULL)
7616 return FALSE;
7617
7618 /* Check relocation against local STT_GNU_IFUNC symbol. */
7619 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7620 {
7621 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7622 TRUE);
7623 if (h == NULL)
7624 return FALSE;
7625
7626 /* Fake a STT_GNU_IFUNC symbol. */
7627 h->type = STT_GNU_IFUNC;
7628 h->def_regular = 1;
7629 h->ref_regular = 1;
7630 h->forced_local = 1;
7631 h->root.type = bfd_link_hash_defined;
7632 }
7633 else
7634 h = NULL;
7635 }
7636 else
7637 {
7638 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7639 while (h->root.type == bfd_link_hash_indirect
7640 || h->root.type == bfd_link_hash_warning)
7641 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7642 }
7643
7644 /* Could be done earlier, if h were already available. */
7645 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7646
7647 if (h != NULL)
7648 {
7649 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7650 This shows up in particular in an R_AARCH64_PREL64 in large model
7651 when calculating the pc-relative address to .got section which is
7652 used to initialize the gp register. */
7653 if (h->root.root.string
7654 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7655 {
7656 if (htab->root.dynobj == NULL)
7657 htab->root.dynobj = abfd;
7658
7659 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7660 return FALSE;
7661
7662 BFD_ASSERT (h == htab->root.hgot);
7663 }
7664
7665 /* Create the ifunc sections for static executables. If we
7666 never see an indirect function symbol nor we are building
7667 a static executable, those sections will be empty and
7668 won't appear in output. */
7669 switch (bfd_r_type)
7670 {
7671 default:
7672 break;
7673
7674 case BFD_RELOC_AARCH64_ADD_LO12:
7675 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7676 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7677 case BFD_RELOC_AARCH64_CALL26:
7678 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7679 case BFD_RELOC_AARCH64_JUMP26:
7680 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7681 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7682 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7683 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7684 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7685 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7686 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7687 case BFD_RELOC_AARCH64_NN:
7688 if (htab->root.dynobj == NULL)
7689 htab->root.dynobj = abfd;
7690 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7691 return FALSE;
7692 break;
7693 }
7694
7695 /* It is referenced by a non-shared object. */
7696 h->ref_regular = 1;
7697 }
7698
7699 switch (bfd_r_type)
7700 {
7701 case BFD_RELOC_AARCH64_16:
7702 #if ARCH_SIZE == 64
7703 case BFD_RELOC_AARCH64_32:
7704 #endif
7705 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7706 {
7707 if (h != NULL
7708 /* This is an absolute symbol. It represents a value instead
7709 of an address. */
7710 && (bfd_is_abs_symbol (&h->root)
7711 /* This is an undefined symbol. */
7712 || h->root.type == bfd_link_hash_undefined))
7713 break;
7714
7715 /* For local symbols, defined global symbols in a non-ABS section,
7716 it is assumed that the value is an address. */
7717 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7718 _bfd_error_handler
7719 /* xgettext:c-format */
7720 (_("%pB: relocation %s against `%s' can not be used when making "
7721 "a shared object"),
7722 abfd, elfNN_aarch64_howto_table[howto_index].name,
7723 (h) ? h->root.root.string : "a local symbol");
7724 bfd_set_error (bfd_error_bad_value);
7725 return FALSE;
7726 }
7727 else
7728 break;
7729
7730 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7731 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7732 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7733 case BFD_RELOC_AARCH64_MOVW_G3:
7734 if (bfd_link_pic (info))
7735 {
7736 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7737 _bfd_error_handler
7738 /* xgettext:c-format */
7739 (_("%pB: relocation %s against `%s' can not be used when making "
7740 "a shared object; recompile with -fPIC"),
7741 abfd, elfNN_aarch64_howto_table[howto_index].name,
7742 (h) ? h->root.root.string : "a local symbol");
7743 bfd_set_error (bfd_error_bad_value);
7744 return FALSE;
7745 }
7746 /* Fall through. */
7747
7748 case BFD_RELOC_AARCH64_16_PCREL:
7749 case BFD_RELOC_AARCH64_32_PCREL:
7750 case BFD_RELOC_AARCH64_64_PCREL:
7751 case BFD_RELOC_AARCH64_ADD_LO12:
7752 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7753 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7754 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7755 case BFD_RELOC_AARCH64_LDST128_LO12:
7756 case BFD_RELOC_AARCH64_LDST16_LO12:
7757 case BFD_RELOC_AARCH64_LDST32_LO12:
7758 case BFD_RELOC_AARCH64_LDST64_LO12:
7759 case BFD_RELOC_AARCH64_LDST8_LO12:
7760 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7761 if (h == NULL || bfd_link_pic (info))
7762 break;
7763 /* Fall through. */
7764
7765 case BFD_RELOC_AARCH64_NN:
7766
7767 /* We don't need to handle relocs into sections not going into
7768 the "real" output. */
7769 if ((sec->flags & SEC_ALLOC) == 0)
7770 break;
7771
7772 if (h != NULL)
7773 {
7774 if (!bfd_link_pic (info))
7775 h->non_got_ref = 1;
7776
7777 h->plt.refcount += 1;
7778 h->pointer_equality_needed = 1;
7779 }
7780
7781 /* No need to do anything if we're not creating a shared
7782 object. */
7783 if (!(bfd_link_pic (info)
7784 /* If on the other hand, we are creating an executable, we
7785 may need to keep relocations for symbols satisfied by a
7786 dynamic library if we manage to avoid copy relocs for the
7787 symbol.
7788
7789 NOTE: Currently, there is no support of copy relocs
7790 elimination on pc-relative relocation types, because there is
7791 no dynamic relocation support for them in glibc. We still
7792 record the dynamic symbol reference for them. This is
7793 because one symbol may be referenced by both absolute
7794 relocation (for example, BFD_RELOC_AARCH64_NN) and
7795 pc-relative relocation. We need full symbol reference
7796 information to make correct decision later in
7797 elfNN_aarch64_adjust_dynamic_symbol. */
7798 || (ELIMINATE_COPY_RELOCS
7799 && !bfd_link_pic (info)
7800 && h != NULL
7801 && (h->root.type == bfd_link_hash_defweak
7802 || !h->def_regular))))
7803 break;
7804
7805 {
7806 struct elf_dyn_relocs *p;
7807 struct elf_dyn_relocs **head;
7808 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7809
7810 /* We must copy these reloc types into the output file.
7811 Create a reloc section in dynobj and make room for
7812 this reloc. */
7813 if (sreloc == NULL)
7814 {
7815 if (htab->root.dynobj == NULL)
7816 htab->root.dynobj = abfd;
7817
7818 sreloc = _bfd_elf_make_dynamic_reloc_section
7819 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7820
7821 if (sreloc == NULL)
7822 return FALSE;
7823 }
7824
7825 /* If this is a global symbol, we count the number of
7826 relocations we need for this symbol. */
7827 if (h != NULL)
7828 {
7829 head = &h->dyn_relocs;
7830 }
7831 else
7832 {
7833 /* Track dynamic relocs needed for local syms too.
7834 We really need local syms available to do this
7835 easily. Oh well. */
7836
7837 asection *s;
7838 void **vpp;
7839
7840 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7841 abfd, r_symndx);
7842 if (isym == NULL)
7843 return FALSE;
7844
7845 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7846 if (s == NULL)
7847 s = sec;
7848
7849 /* Beware of type punned pointers vs strict aliasing
7850 rules. */
7851 vpp = &(elf_section_data (s)->local_dynrel);
7852 head = (struct elf_dyn_relocs **) vpp;
7853 }
7854
7855 p = *head;
7856 if (p == NULL || p->sec != sec)
7857 {
7858 size_t amt = sizeof *p;
7859 p = ((struct elf_dyn_relocs *)
7860 bfd_zalloc (htab->root.dynobj, amt));
7861 if (p == NULL)
7862 return FALSE;
7863 p->next = *head;
7864 *head = p;
7865 p->sec = sec;
7866 }
7867
7868 p->count += 1;
7869
7870 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7871 p->pc_count += 1;
7872 }
7873 break;
7874
7875 /* RR: We probably want to keep a consistency check that
7876 there are no dangling GOT_PAGE relocs. */
7877 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7878 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7879 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7880 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7881 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7882 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7883 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7884 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7885 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7886 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7887 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7888 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7889 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7890 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7891 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7892 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7893 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7894 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7895 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7896 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7897 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7898 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7899 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7900 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7901 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7902 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7903 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7904 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7905 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7906 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7907 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7908 {
7909 unsigned got_type;
7910 unsigned old_got_type;
7911
7912 got_type = aarch64_reloc_got_type (bfd_r_type);
7913
7914 if (h)
7915 {
7916 h->got.refcount += 1;
7917 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7918 }
7919 else
7920 {
7921 struct elf_aarch64_local_symbol *locals;
7922
7923 if (!elfNN_aarch64_allocate_local_symbols
7924 (abfd, symtab_hdr->sh_info))
7925 return FALSE;
7926
7927 locals = elf_aarch64_locals (abfd);
7928 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7929 locals[r_symndx].got_refcount += 1;
7930 old_got_type = locals[r_symndx].got_type;
7931 }
7932
7933 /* If a variable is accessed with both general dynamic TLS
7934 methods, two slots may be created. */
7935 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7936 got_type |= old_got_type;
7937
7938 /* We will already have issued an error message if there
7939 is a TLS/non-TLS mismatch, based on the symbol type.
7940 So just combine any TLS types needed. */
7941 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7942 && got_type != GOT_NORMAL)
7943 got_type |= old_got_type;
7944
7945 /* If the symbol is accessed by both IE and GD methods, we
7946 are able to relax. Turn off the GD flag, without
7947 messing up with any other kind of TLS types that may be
7948 involved. */
7949 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7950 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7951
7952 if (old_got_type != got_type)
7953 {
7954 if (h != NULL)
7955 elf_aarch64_hash_entry (h)->got_type = got_type;
7956 else
7957 {
7958 struct elf_aarch64_local_symbol *locals;
7959 locals = elf_aarch64_locals (abfd);
7960 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7961 locals[r_symndx].got_type = got_type;
7962 }
7963 }
7964
7965 if (htab->root.dynobj == NULL)
7966 htab->root.dynobj = abfd;
7967 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7968 return FALSE;
7969 break;
7970 }
7971
7972 case BFD_RELOC_AARCH64_BRANCH19:
7973 case BFD_RELOC_AARCH64_TSTBR14:
7974 case BFD_RELOC_AARCH64_CALL26:
7975 case BFD_RELOC_AARCH64_JUMP26:
7976 /* If this is a local symbol then we resolve it
7977 directly without creating a PLT entry. */
7978 if (h == NULL)
7979 continue;
7980
7981 h->needs_plt = 1;
7982 if (h->plt.refcount <= 0)
7983 h->plt.refcount = 1;
7984 else
7985 h->plt.refcount += 1;
7986 break;
7987
7988 default:
7989 break;
7990 }
7991 }
7992
7993 return TRUE;
7994 }
7995
7996 /* Treat mapping symbols as special target symbols. */
7997
7998 static bfd_boolean
7999 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8000 asymbol *sym)
8001 {
8002 return bfd_is_aarch64_special_symbol_name (sym->name,
8003 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
8004 }
8005
8006 /* If the ELF symbol SYM might be a function in SEC, return the
8007 function size and set *CODE_OFF to the function's entry point,
8008 otherwise return zero. */
8009
8010 static bfd_size_type
8011 elfNN_aarch64_maybe_function_sym (const asymbol *sym, asection *sec,
8012 bfd_vma *code_off)
8013 {
8014 bfd_size_type size;
8015
8016 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
8017 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
8018 || sym->section != sec)
8019 return 0;
8020
8021 if (!(sym->flags & BSF_SYNTHETIC))
8022 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
8023 {
8024 case STT_FUNC:
8025 case STT_NOTYPE:
8026 break;
8027 default:
8028 return 0;
8029 }
8030
8031 if ((sym->flags & BSF_LOCAL)
8032 && bfd_is_aarch64_special_symbol_name (sym->name,
8033 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY))
8034 return 0;
8035
8036 *code_off = sym->value;
8037 size = 0;
8038 if (!(sym->flags & BSF_SYNTHETIC))
8039 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
8040 if (size == 0)
8041 size = 1;
8042 return size;
8043 }
8044
8045 static bfd_boolean
8046 elfNN_aarch64_find_inliner_info (bfd *abfd,
8047 const char **filename_ptr,
8048 const char **functionname_ptr,
8049 unsigned int *line_ptr)
8050 {
8051 bfd_boolean found;
8052 found = _bfd_dwarf2_find_inliner_info
8053 (abfd, filename_ptr,
8054 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
8055 return found;
8056 }
8057
8058
8059 static bfd_boolean
8060 elfNN_aarch64_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
8061 {
8062 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
8063
8064 if (!_bfd_elf_init_file_header (abfd, link_info))
8065 return FALSE;
8066
8067 i_ehdrp = elf_elfheader (abfd);
8068 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
8069 return TRUE;
8070 }
8071
8072 static enum elf_reloc_type_class
8073 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
8074 const asection *rel_sec ATTRIBUTE_UNUSED,
8075 const Elf_Internal_Rela *rela)
8076 {
8077 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
8078
8079 if (htab->root.dynsym != NULL
8080 && htab->root.dynsym->contents != NULL)
8081 {
8082 /* Check relocation against STT_GNU_IFUNC symbol if there are
8083 dynamic symbols. */
8084 bfd *abfd = info->output_bfd;
8085 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8086 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
8087 if (r_symndx != STN_UNDEF)
8088 {
8089 Elf_Internal_Sym sym;
8090 if (!bed->s->swap_symbol_in (abfd,
8091 (htab->root.dynsym->contents
8092 + r_symndx * bed->s->sizeof_sym),
8093 0, &sym))
8094 {
8095 /* xgettext:c-format */
8096 _bfd_error_handler (_("%pB symbol number %lu references"
8097 " nonexistent SHT_SYMTAB_SHNDX section"),
8098 abfd, r_symndx);
8099 /* Ideally an error class should be returned here. */
8100 }
8101 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8102 return reloc_class_ifunc;
8103 }
8104 }
8105
8106 switch ((int) ELFNN_R_TYPE (rela->r_info))
8107 {
8108 case AARCH64_R (IRELATIVE):
8109 return reloc_class_ifunc;
8110 case AARCH64_R (RELATIVE):
8111 return reloc_class_relative;
8112 case AARCH64_R (JUMP_SLOT):
8113 return reloc_class_plt;
8114 case AARCH64_R (COPY):
8115 return reloc_class_copy;
8116 default:
8117 return reloc_class_normal;
8118 }
8119 }
8120
8121 /* Handle an AArch64 specific section when reading an object file. This is
8122 called when bfd_section_from_shdr finds a section with an unknown
8123 type. */
8124
8125 static bfd_boolean
8126 elfNN_aarch64_section_from_shdr (bfd *abfd,
8127 Elf_Internal_Shdr *hdr,
8128 const char *name, int shindex)
8129 {
8130 /* There ought to be a place to keep ELF backend specific flags, but
8131 at the moment there isn't one. We just keep track of the
8132 sections by their name, instead. Fortunately, the ABI gives
8133 names for all the AArch64 specific sections, so we will probably get
8134 away with this. */
8135 switch (hdr->sh_type)
8136 {
8137 case SHT_AARCH64_ATTRIBUTES:
8138 break;
8139
8140 default:
8141 return FALSE;
8142 }
8143
8144 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8145 return FALSE;
8146
8147 return TRUE;
8148 }
8149
8150 /* A structure used to record a list of sections, independently
8151 of the next and prev fields in the asection structure. */
8152 typedef struct section_list
8153 {
8154 asection *sec;
8155 struct section_list *next;
8156 struct section_list *prev;
8157 }
8158 section_list;
8159
8160 /* Unfortunately we need to keep a list of sections for which
8161 an _aarch64_elf_section_data structure has been allocated. This
8162 is because it is possible for functions like elfNN_aarch64_write_section
8163 to be called on a section which has had an elf_data_structure
8164 allocated for it (and so the used_by_bfd field is valid) but
8165 for which the AArch64 extended version of this structure - the
8166 _aarch64_elf_section_data structure - has not been allocated. */
8167 static section_list *sections_with_aarch64_elf_section_data = NULL;
8168
8169 static void
8170 record_section_with_aarch64_elf_section_data (asection *sec)
8171 {
8172 struct section_list *entry;
8173
8174 entry = bfd_malloc (sizeof (*entry));
8175 if (entry == NULL)
8176 return;
8177 entry->sec = sec;
8178 entry->next = sections_with_aarch64_elf_section_data;
8179 entry->prev = NULL;
8180 if (entry->next != NULL)
8181 entry->next->prev = entry;
8182 sections_with_aarch64_elf_section_data = entry;
8183 }
8184
8185 static struct section_list *
8186 find_aarch64_elf_section_entry (asection *sec)
8187 {
8188 struct section_list *entry;
8189 static struct section_list *last_entry = NULL;
8190
8191 /* This is a short cut for the typical case where the sections are added
8192 to the sections_with_aarch64_elf_section_data list in forward order and
8193 then looked up here in backwards order. This makes a real difference
8194 to the ld-srec/sec64k.exp linker test. */
8195 entry = sections_with_aarch64_elf_section_data;
8196 if (last_entry != NULL)
8197 {
8198 if (last_entry->sec == sec)
8199 entry = last_entry;
8200 else if (last_entry->next != NULL && last_entry->next->sec == sec)
8201 entry = last_entry->next;
8202 }
8203
8204 for (; entry; entry = entry->next)
8205 if (entry->sec == sec)
8206 break;
8207
8208 if (entry)
8209 /* Record the entry prior to this one - it is the entry we are
8210 most likely to want to locate next time. Also this way if we
8211 have been called from
8212 unrecord_section_with_aarch64_elf_section_data () we will not
8213 be caching a pointer that is about to be freed. */
8214 last_entry = entry->prev;
8215
8216 return entry;
8217 }
8218
8219 static void
8220 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8221 {
8222 struct section_list *entry;
8223
8224 entry = find_aarch64_elf_section_entry (sec);
8225
8226 if (entry)
8227 {
8228 if (entry->prev != NULL)
8229 entry->prev->next = entry->next;
8230 if (entry->next != NULL)
8231 entry->next->prev = entry->prev;
8232 if (entry == sections_with_aarch64_elf_section_data)
8233 sections_with_aarch64_elf_section_data = entry->next;
8234 free (entry);
8235 }
8236 }
8237
8238
8239 typedef struct
8240 {
8241 void *finfo;
8242 struct bfd_link_info *info;
8243 asection *sec;
8244 int sec_shndx;
8245 int (*func) (void *, const char *, Elf_Internal_Sym *,
8246 asection *, struct elf_link_hash_entry *);
8247 } output_arch_syminfo;
8248
8249 enum map_symbol_type
8250 {
8251 AARCH64_MAP_INSN,
8252 AARCH64_MAP_DATA
8253 };
8254
8255
8256 /* Output a single mapping symbol. */
8257
8258 static bfd_boolean
8259 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8260 enum map_symbol_type type, bfd_vma offset)
8261 {
8262 static const char *names[2] = { "$x", "$d" };
8263 Elf_Internal_Sym sym;
8264
8265 sym.st_value = (osi->sec->output_section->vma
8266 + osi->sec->output_offset + offset);
8267 sym.st_size = 0;
8268 sym.st_other = 0;
8269 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8270 sym.st_shndx = osi->sec_shndx;
8271 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8272 }
8273
8274 /* Output a single local symbol for a generated stub. */
8275
8276 static bfd_boolean
8277 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8278 bfd_vma offset, bfd_vma size)
8279 {
8280 Elf_Internal_Sym sym;
8281
8282 sym.st_value = (osi->sec->output_section->vma
8283 + osi->sec->output_offset + offset);
8284 sym.st_size = size;
8285 sym.st_other = 0;
8286 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8287 sym.st_shndx = osi->sec_shndx;
8288 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8289 }
8290
8291 static bfd_boolean
8292 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8293 {
8294 struct elf_aarch64_stub_hash_entry *stub_entry;
8295 asection *stub_sec;
8296 bfd_vma addr;
8297 char *stub_name;
8298 output_arch_syminfo *osi;
8299
8300 /* Massage our args to the form they really have. */
8301 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8302 osi = (output_arch_syminfo *) in_arg;
8303
8304 stub_sec = stub_entry->stub_sec;
8305
8306 /* Ensure this stub is attached to the current section being
8307 processed. */
8308 if (stub_sec != osi->sec)
8309 return TRUE;
8310
8311 addr = (bfd_vma) stub_entry->stub_offset;
8312
8313 stub_name = stub_entry->output_name;
8314
8315 switch (stub_entry->stub_type)
8316 {
8317 case aarch64_stub_adrp_branch:
8318 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8319 sizeof (aarch64_adrp_branch_stub)))
8320 return FALSE;
8321 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8322 return FALSE;
8323 break;
8324 case aarch64_stub_long_branch:
8325 if (!elfNN_aarch64_output_stub_sym
8326 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8327 return FALSE;
8328 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8329 return FALSE;
8330 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8331 return FALSE;
8332 break;
8333 case aarch64_stub_erratum_835769_veneer:
8334 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8335 sizeof (aarch64_erratum_835769_stub)))
8336 return FALSE;
8337 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8338 return FALSE;
8339 break;
8340 case aarch64_stub_erratum_843419_veneer:
8341 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8342 sizeof (aarch64_erratum_843419_stub)))
8343 return FALSE;
8344 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8345 return FALSE;
8346 break;
8347 case aarch64_stub_none:
8348 break;
8349
8350 default:
8351 abort ();
8352 }
8353
8354 return TRUE;
8355 }
8356
8357 /* Output mapping symbols for linker generated sections. */
8358
8359 static bfd_boolean
8360 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8361 struct bfd_link_info *info,
8362 void *finfo,
8363 int (*func) (void *, const char *,
8364 Elf_Internal_Sym *,
8365 asection *,
8366 struct elf_link_hash_entry
8367 *))
8368 {
8369 output_arch_syminfo osi;
8370 struct elf_aarch64_link_hash_table *htab;
8371
8372 htab = elf_aarch64_hash_table (info);
8373
8374 osi.finfo = finfo;
8375 osi.info = info;
8376 osi.func = func;
8377
8378 /* Long calls stubs. */
8379 if (htab->stub_bfd && htab->stub_bfd->sections)
8380 {
8381 asection *stub_sec;
8382
8383 for (stub_sec = htab->stub_bfd->sections;
8384 stub_sec != NULL; stub_sec = stub_sec->next)
8385 {
8386 /* Ignore non-stub sections. */
8387 if (!strstr (stub_sec->name, STUB_SUFFIX))
8388 continue;
8389
8390 osi.sec = stub_sec;
8391
8392 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8393 (output_bfd, osi.sec->output_section);
8394
8395 /* The first instruction in a stub is always a branch. */
8396 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8397 return FALSE;
8398
8399 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8400 &osi);
8401 }
8402 }
8403
8404 /* Finally, output mapping symbols for the PLT. */
8405 if (!htab->root.splt || htab->root.splt->size == 0)
8406 return TRUE;
8407
8408 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8409 (output_bfd, htab->root.splt->output_section);
8410 osi.sec = htab->root.splt;
8411
8412 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8413
8414 return TRUE;
8415
8416 }
8417
8418 /* Allocate target specific section data. */
8419
8420 static bfd_boolean
8421 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8422 {
8423 if (!sec->used_by_bfd)
8424 {
8425 _aarch64_elf_section_data *sdata;
8426 size_t amt = sizeof (*sdata);
8427
8428 sdata = bfd_zalloc (abfd, amt);
8429 if (sdata == NULL)
8430 return FALSE;
8431 sec->used_by_bfd = sdata;
8432 }
8433
8434 record_section_with_aarch64_elf_section_data (sec);
8435
8436 return _bfd_elf_new_section_hook (abfd, sec);
8437 }
8438
8439
8440 static void
8441 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8442 asection *sec,
8443 void *ignore ATTRIBUTE_UNUSED)
8444 {
8445 unrecord_section_with_aarch64_elf_section_data (sec);
8446 }
8447
8448 static bfd_boolean
8449 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8450 {
8451 if (abfd->sections)
8452 bfd_map_over_sections (abfd,
8453 unrecord_section_via_map_over_sections, NULL);
8454
8455 return _bfd_elf_close_and_cleanup (abfd);
8456 }
8457
8458 static bfd_boolean
8459 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8460 {
8461 if (abfd->sections)
8462 bfd_map_over_sections (abfd,
8463 unrecord_section_via_map_over_sections, NULL);
8464
8465 return _bfd_free_cached_info (abfd);
8466 }
8467
8468 /* Create dynamic sections. This is different from the ARM backend in that
8469 the got, plt, gotplt and their relocation sections are all created in the
8470 standard part of the bfd elf backend. */
8471
8472 static bfd_boolean
8473 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8474 struct bfd_link_info *info)
8475 {
8476 /* We need to create .got section. */
8477 if (!aarch64_elf_create_got_section (dynobj, info))
8478 return FALSE;
8479
8480 return _bfd_elf_create_dynamic_sections (dynobj, info);
8481 }
8482
8483
8484 /* Allocate space in .plt, .got and associated reloc sections for
8485 dynamic relocs. */
8486
8487 static bfd_boolean
8488 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8489 {
8490 struct bfd_link_info *info;
8491 struct elf_aarch64_link_hash_table *htab;
8492 struct elf_aarch64_link_hash_entry *eh;
8493 struct elf_dyn_relocs *p;
8494
8495 /* An example of a bfd_link_hash_indirect symbol is versioned
8496 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8497 -> __gxx_personality_v0(bfd_link_hash_defined)
8498
8499 There is no need to process bfd_link_hash_indirect symbols here
8500 because we will also be presented with the concrete instance of
8501 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8502 called to copy all relevant data from the generic to the concrete
8503 symbol instance. */
8504 if (h->root.type == bfd_link_hash_indirect)
8505 return TRUE;
8506
8507 if (h->root.type == bfd_link_hash_warning)
8508 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8509
8510 info = (struct bfd_link_info *) inf;
8511 htab = elf_aarch64_hash_table (info);
8512
8513 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8514 here if it is defined and referenced in a non-shared object. */
8515 if (h->type == STT_GNU_IFUNC
8516 && h->def_regular)
8517 return TRUE;
8518 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8519 {
8520 /* Make sure this symbol is output as a dynamic symbol.
8521 Undefined weak syms won't yet be marked as dynamic. */
8522 if (h->dynindx == -1 && !h->forced_local
8523 && h->root.type == bfd_link_hash_undefweak)
8524 {
8525 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8526 return FALSE;
8527 }
8528
8529 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8530 {
8531 asection *s = htab->root.splt;
8532
8533 /* If this is the first .plt entry, make room for the special
8534 first entry. */
8535 if (s->size == 0)
8536 s->size += htab->plt_header_size;
8537
8538 h->plt.offset = s->size;
8539
8540 /* If this symbol is not defined in a regular file, and we are
8541 not generating a shared library, then set the symbol to this
8542 location in the .plt. This is required to make function
8543 pointers compare as equal between the normal executable and
8544 the shared library. */
8545 if (!bfd_link_pic (info) && !h->def_regular)
8546 {
8547 h->root.u.def.section = s;
8548 h->root.u.def.value = h->plt.offset;
8549 }
8550
8551 /* Make room for this entry. For now we only create the
8552 small model PLT entries. We later need to find a way
8553 of relaxing into these from the large model PLT entries. */
8554 s->size += htab->plt_entry_size;
8555
8556 /* We also need to make an entry in the .got.plt section, which
8557 will be placed in the .got section by the linker script. */
8558 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8559
8560 /* We also need to make an entry in the .rela.plt section. */
8561 htab->root.srelplt->size += RELOC_SIZE (htab);
8562
8563 /* We need to ensure that all GOT entries that serve the PLT
8564 are consecutive with the special GOT slots [0] [1] and
8565 [2]. Any addtional relocations, such as
8566 R_AARCH64_TLSDESC, must be placed after the PLT related
8567 entries. We abuse the reloc_count such that during
8568 sizing we adjust reloc_count to indicate the number of
8569 PLT related reserved entries. In subsequent phases when
8570 filling in the contents of the reloc entries, PLT related
8571 entries are placed by computing their PLT index (0
8572 .. reloc_count). While other none PLT relocs are placed
8573 at the slot indicated by reloc_count and reloc_count is
8574 updated. */
8575
8576 htab->root.srelplt->reloc_count++;
8577
8578 /* Mark the DSO in case R_<CLS>_JUMP_SLOT relocs against
8579 variant PCS symbols are present. */
8580 if (h->other & STO_AARCH64_VARIANT_PCS)
8581 htab->variant_pcs = 1;
8582
8583 }
8584 else
8585 {
8586 h->plt.offset = (bfd_vma) - 1;
8587 h->needs_plt = 0;
8588 }
8589 }
8590 else
8591 {
8592 h->plt.offset = (bfd_vma) - 1;
8593 h->needs_plt = 0;
8594 }
8595
8596 eh = (struct elf_aarch64_link_hash_entry *) h;
8597 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8598
8599 if (h->got.refcount > 0)
8600 {
8601 bfd_boolean dyn;
8602 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8603
8604 h->got.offset = (bfd_vma) - 1;
8605
8606 dyn = htab->root.dynamic_sections_created;
8607
8608 /* Make sure this symbol is output as a dynamic symbol.
8609 Undefined weak syms won't yet be marked as dynamic. */
8610 if (dyn && h->dynindx == -1 && !h->forced_local
8611 && h->root.type == bfd_link_hash_undefweak)
8612 {
8613 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8614 return FALSE;
8615 }
8616
8617 if (got_type == GOT_UNKNOWN)
8618 {
8619 }
8620 else if (got_type == GOT_NORMAL)
8621 {
8622 h->got.offset = htab->root.sgot->size;
8623 htab->root.sgot->size += GOT_ENTRY_SIZE;
8624 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8625 || h->root.type != bfd_link_hash_undefweak)
8626 && (bfd_link_pic (info)
8627 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8628 /* Undefined weak symbol in static PIE resolves to 0 without
8629 any dynamic relocations. */
8630 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8631 {
8632 htab->root.srelgot->size += RELOC_SIZE (htab);
8633 }
8634 }
8635 else
8636 {
8637 int indx;
8638 if (got_type & GOT_TLSDESC_GD)
8639 {
8640 eh->tlsdesc_got_jump_table_offset =
8641 (htab->root.sgotplt->size
8642 - aarch64_compute_jump_table_size (htab));
8643 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8644 h->got.offset = (bfd_vma) - 2;
8645 }
8646
8647 if (got_type & GOT_TLS_GD)
8648 {
8649 h->got.offset = htab->root.sgot->size;
8650 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8651 }
8652
8653 if (got_type & GOT_TLS_IE)
8654 {
8655 h->got.offset = htab->root.sgot->size;
8656 htab->root.sgot->size += GOT_ENTRY_SIZE;
8657 }
8658
8659 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8660 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8661 || h->root.type != bfd_link_hash_undefweak)
8662 && (!bfd_link_executable (info)
8663 || indx != 0
8664 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8665 {
8666 if (got_type & GOT_TLSDESC_GD)
8667 {
8668 htab->root.srelplt->size += RELOC_SIZE (htab);
8669 /* Note reloc_count not incremented here! We have
8670 already adjusted reloc_count for this relocation
8671 type. */
8672
8673 /* TLSDESC PLT is now needed, but not yet determined. */
8674 htab->root.tlsdesc_plt = (bfd_vma) - 1;
8675 }
8676
8677 if (got_type & GOT_TLS_GD)
8678 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8679
8680 if (got_type & GOT_TLS_IE)
8681 htab->root.srelgot->size += RELOC_SIZE (htab);
8682 }
8683 }
8684 }
8685 else
8686 {
8687 h->got.offset = (bfd_vma) - 1;
8688 }
8689
8690 if (h->dyn_relocs == NULL)
8691 return TRUE;
8692
8693 /* In the shared -Bsymbolic case, discard space allocated for
8694 dynamic pc-relative relocs against symbols which turn out to be
8695 defined in regular objects. For the normal shared case, discard
8696 space for pc-relative relocs that have become local due to symbol
8697 visibility changes. */
8698
8699 if (bfd_link_pic (info))
8700 {
8701 /* Relocs that use pc_count are those that appear on a call
8702 insn, or certain REL relocs that can generated via assembly.
8703 We want calls to protected symbols to resolve directly to the
8704 function rather than going via the plt. If people want
8705 function pointer comparisons to work as expected then they
8706 should avoid writing weird assembly. */
8707 if (SYMBOL_CALLS_LOCAL (info, h))
8708 {
8709 struct elf_dyn_relocs **pp;
8710
8711 for (pp = &h->dyn_relocs; (p = *pp) != NULL;)
8712 {
8713 p->count -= p->pc_count;
8714 p->pc_count = 0;
8715 if (p->count == 0)
8716 *pp = p->next;
8717 else
8718 pp = &p->next;
8719 }
8720 }
8721
8722 /* Also discard relocs on undefined weak syms with non-default
8723 visibility. */
8724 if (h->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8725 {
8726 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8727 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8728 h->dyn_relocs = NULL;
8729
8730 /* Make sure undefined weak symbols are output as a dynamic
8731 symbol in PIEs. */
8732 else if (h->dynindx == -1
8733 && !h->forced_local
8734 && h->root.type == bfd_link_hash_undefweak
8735 && !bfd_elf_link_record_dynamic_symbol (info, h))
8736 return FALSE;
8737 }
8738
8739 }
8740 else if (ELIMINATE_COPY_RELOCS)
8741 {
8742 /* For the non-shared case, discard space for relocs against
8743 symbols which turn out to need copy relocs or are not
8744 dynamic. */
8745
8746 if (!h->non_got_ref
8747 && ((h->def_dynamic
8748 && !h->def_regular)
8749 || (htab->root.dynamic_sections_created
8750 && (h->root.type == bfd_link_hash_undefweak
8751 || h->root.type == bfd_link_hash_undefined))))
8752 {
8753 /* Make sure this symbol is output as a dynamic symbol.
8754 Undefined weak syms won't yet be marked as dynamic. */
8755 if (h->dynindx == -1
8756 && !h->forced_local
8757 && h->root.type == bfd_link_hash_undefweak
8758 && !bfd_elf_link_record_dynamic_symbol (info, h))
8759 return FALSE;
8760
8761 /* If that succeeded, we know we'll be keeping all the
8762 relocs. */
8763 if (h->dynindx != -1)
8764 goto keep;
8765 }
8766
8767 h->dyn_relocs = NULL;
8768
8769 keep:;
8770 }
8771
8772 /* Finally, allocate space. */
8773 for (p = h->dyn_relocs; p != NULL; p = p->next)
8774 {
8775 asection *sreloc;
8776
8777 sreloc = elf_section_data (p->sec)->sreloc;
8778
8779 BFD_ASSERT (sreloc != NULL);
8780
8781 sreloc->size += p->count * RELOC_SIZE (htab);
8782 }
8783
8784 return TRUE;
8785 }
8786
8787 /* Allocate space in .plt, .got and associated reloc sections for
8788 ifunc dynamic relocs. */
8789
8790 static bfd_boolean
8791 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8792 void *inf)
8793 {
8794 struct bfd_link_info *info;
8795 struct elf_aarch64_link_hash_table *htab;
8796
8797 /* An example of a bfd_link_hash_indirect symbol is versioned
8798 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8799 -> __gxx_personality_v0(bfd_link_hash_defined)
8800
8801 There is no need to process bfd_link_hash_indirect symbols here
8802 because we will also be presented with the concrete instance of
8803 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8804 called to copy all relevant data from the generic to the concrete
8805 symbol instance. */
8806 if (h->root.type == bfd_link_hash_indirect)
8807 return TRUE;
8808
8809 if (h->root.type == bfd_link_hash_warning)
8810 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8811
8812 info = (struct bfd_link_info *) inf;
8813 htab = elf_aarch64_hash_table (info);
8814
8815 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8816 here if it is defined and referenced in a non-shared object. */
8817 if (h->type == STT_GNU_IFUNC
8818 && h->def_regular)
8819 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8820 &h->dyn_relocs,
8821 htab->plt_entry_size,
8822 htab->plt_header_size,
8823 GOT_ENTRY_SIZE,
8824 FALSE);
8825 return TRUE;
8826 }
8827
8828 /* Allocate space in .plt, .got and associated reloc sections for
8829 local ifunc dynamic relocs. */
8830
8831 static bfd_boolean
8832 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8833 {
8834 struct elf_link_hash_entry *h
8835 = (struct elf_link_hash_entry *) *slot;
8836
8837 if (h->type != STT_GNU_IFUNC
8838 || !h->def_regular
8839 || !h->ref_regular
8840 || !h->forced_local
8841 || h->root.type != bfd_link_hash_defined)
8842 abort ();
8843
8844 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8845 }
8846
8847 /* This is the most important function of all . Innocuosly named
8848 though ! */
8849
8850 static bfd_boolean
8851 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8852 struct bfd_link_info *info)
8853 {
8854 struct elf_aarch64_link_hash_table *htab;
8855 bfd *dynobj;
8856 asection *s;
8857 bfd_boolean relocs;
8858 bfd *ibfd;
8859
8860 htab = elf_aarch64_hash_table ((info));
8861 dynobj = htab->root.dynobj;
8862
8863 BFD_ASSERT (dynobj != NULL);
8864
8865 if (htab->root.dynamic_sections_created)
8866 {
8867 if (bfd_link_executable (info) && !info->nointerp)
8868 {
8869 s = bfd_get_linker_section (dynobj, ".interp");
8870 if (s == NULL)
8871 abort ();
8872 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8873 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8874 }
8875 }
8876
8877 /* Set up .got offsets for local syms, and space for local dynamic
8878 relocs. */
8879 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8880 {
8881 struct elf_aarch64_local_symbol *locals = NULL;
8882 Elf_Internal_Shdr *symtab_hdr;
8883 asection *srel;
8884 unsigned int i;
8885
8886 if (!is_aarch64_elf (ibfd))
8887 continue;
8888
8889 for (s = ibfd->sections; s != NULL; s = s->next)
8890 {
8891 struct elf_dyn_relocs *p;
8892
8893 for (p = (struct elf_dyn_relocs *)
8894 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8895 {
8896 if (!bfd_is_abs_section (p->sec)
8897 && bfd_is_abs_section (p->sec->output_section))
8898 {
8899 /* Input section has been discarded, either because
8900 it is a copy of a linkonce section or due to
8901 linker script /DISCARD/, so we'll be discarding
8902 the relocs too. */
8903 }
8904 else if (p->count != 0)
8905 {
8906 srel = elf_section_data (p->sec)->sreloc;
8907 srel->size += p->count * RELOC_SIZE (htab);
8908 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8909 info->flags |= DF_TEXTREL;
8910 }
8911 }
8912 }
8913
8914 locals = elf_aarch64_locals (ibfd);
8915 if (!locals)
8916 continue;
8917
8918 symtab_hdr = &elf_symtab_hdr (ibfd);
8919 srel = htab->root.srelgot;
8920 for (i = 0; i < symtab_hdr->sh_info; i++)
8921 {
8922 locals[i].got_offset = (bfd_vma) - 1;
8923 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8924 if (locals[i].got_refcount > 0)
8925 {
8926 unsigned got_type = locals[i].got_type;
8927 if (got_type & GOT_TLSDESC_GD)
8928 {
8929 locals[i].tlsdesc_got_jump_table_offset =
8930 (htab->root.sgotplt->size
8931 - aarch64_compute_jump_table_size (htab));
8932 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8933 locals[i].got_offset = (bfd_vma) - 2;
8934 }
8935
8936 if (got_type & GOT_TLS_GD)
8937 {
8938 locals[i].got_offset = htab->root.sgot->size;
8939 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8940 }
8941
8942 if (got_type & GOT_TLS_IE
8943 || got_type & GOT_NORMAL)
8944 {
8945 locals[i].got_offset = htab->root.sgot->size;
8946 htab->root.sgot->size += GOT_ENTRY_SIZE;
8947 }
8948
8949 if (got_type == GOT_UNKNOWN)
8950 {
8951 }
8952
8953 if (bfd_link_pic (info))
8954 {
8955 if (got_type & GOT_TLSDESC_GD)
8956 {
8957 htab->root.srelplt->size += RELOC_SIZE (htab);
8958 /* Note RELOC_COUNT not incremented here! */
8959 htab->root.tlsdesc_plt = (bfd_vma) - 1;
8960 }
8961
8962 if (got_type & GOT_TLS_GD)
8963 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8964
8965 if (got_type & GOT_TLS_IE
8966 || got_type & GOT_NORMAL)
8967 htab->root.srelgot->size += RELOC_SIZE (htab);
8968 }
8969 }
8970 else
8971 {
8972 locals[i].got_refcount = (bfd_vma) - 1;
8973 }
8974 }
8975 }
8976
8977
8978 /* Allocate global sym .plt and .got entries, and space for global
8979 sym dynamic relocs. */
8980 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8981 info);
8982
8983 /* Allocate global ifunc sym .plt and .got entries, and space for global
8984 ifunc sym dynamic relocs. */
8985 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8986 info);
8987
8988 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8989 htab_traverse (htab->loc_hash_table,
8990 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8991 info);
8992
8993 /* For every jump slot reserved in the sgotplt, reloc_count is
8994 incremented. However, when we reserve space for TLS descriptors,
8995 it's not incremented, so in order to compute the space reserved
8996 for them, it suffices to multiply the reloc count by the jump
8997 slot size. */
8998
8999 if (htab->root.srelplt)
9000 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
9001
9002 if (htab->root.tlsdesc_plt)
9003 {
9004 if (htab->root.splt->size == 0)
9005 htab->root.splt->size += htab->plt_header_size;
9006
9007 /* If we're not using lazy TLS relocations, don't generate the
9008 GOT and PLT entry required. */
9009 if ((info->flags & DF_BIND_NOW))
9010 htab->root.tlsdesc_plt = 0;
9011 else
9012 {
9013 htab->root.tlsdesc_plt = htab->root.splt->size;
9014 htab->root.splt->size += htab->tlsdesc_plt_entry_size;
9015
9016 htab->root.tlsdesc_got = htab->root.sgot->size;
9017 htab->root.sgot->size += GOT_ENTRY_SIZE;
9018 }
9019 }
9020
9021 /* Init mapping symbols information to use later to distingush between
9022 code and data while scanning for errata. */
9023 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
9024 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9025 {
9026 if (!is_aarch64_elf (ibfd))
9027 continue;
9028 bfd_elfNN_aarch64_init_maps (ibfd);
9029 }
9030
9031 /* We now have determined the sizes of the various dynamic sections.
9032 Allocate memory for them. */
9033 relocs = FALSE;
9034 for (s = dynobj->sections; s != NULL; s = s->next)
9035 {
9036 if ((s->flags & SEC_LINKER_CREATED) == 0)
9037 continue;
9038
9039 if (s == htab->root.splt
9040 || s == htab->root.sgot
9041 || s == htab->root.sgotplt
9042 || s == htab->root.iplt
9043 || s == htab->root.igotplt
9044 || s == htab->root.sdynbss
9045 || s == htab->root.sdynrelro)
9046 {
9047 /* Strip this section if we don't need it; see the
9048 comment below. */
9049 }
9050 else if (CONST_STRNEQ (bfd_section_name (s), ".rela"))
9051 {
9052 if (s->size != 0 && s != htab->root.srelplt)
9053 relocs = TRUE;
9054
9055 /* We use the reloc_count field as a counter if we need
9056 to copy relocs into the output file. */
9057 if (s != htab->root.srelplt)
9058 s->reloc_count = 0;
9059 }
9060 else
9061 {
9062 /* It's not one of our sections, so don't allocate space. */
9063 continue;
9064 }
9065
9066 if (s->size == 0)
9067 {
9068 /* If we don't need this section, strip it from the
9069 output file. This is mostly to handle .rela.bss and
9070 .rela.plt. We must create both sections in
9071 create_dynamic_sections, because they must be created
9072 before the linker maps input sections to output
9073 sections. The linker does that before
9074 adjust_dynamic_symbol is called, and it is that
9075 function which decides whether anything needs to go
9076 into these sections. */
9077 s->flags |= SEC_EXCLUDE;
9078 continue;
9079 }
9080
9081 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9082 continue;
9083
9084 /* Allocate memory for the section contents. We use bfd_zalloc
9085 here in case unused entries are not reclaimed before the
9086 section's contents are written out. This should not happen,
9087 but this way if it does, we get a R_AARCH64_NONE reloc instead
9088 of garbage. */
9089 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9090 if (s->contents == NULL)
9091 return FALSE;
9092 }
9093
9094 if (htab->root.dynamic_sections_created)
9095 {
9096 /* Add some entries to the .dynamic section. We fill in the
9097 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9098 must add the entries now so that we get the correct size for
9099 the .dynamic section. The DT_DEBUG entry is filled in by the
9100 dynamic linker and used by the debugger. */
9101 #define add_dynamic_entry(TAG, VAL) \
9102 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9103
9104 if (bfd_link_executable (info))
9105 {
9106 if (!add_dynamic_entry (DT_DEBUG, 0))
9107 return FALSE;
9108 }
9109
9110 if (htab->root.splt->size != 0)
9111 {
9112 if (!add_dynamic_entry (DT_PLTGOT, 0)
9113 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9114 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9115 || !add_dynamic_entry (DT_JMPREL, 0))
9116 return FALSE;
9117
9118 if (htab->variant_pcs
9119 && !add_dynamic_entry (DT_AARCH64_VARIANT_PCS, 0))
9120 return FALSE;
9121
9122 if (htab->root.tlsdesc_plt
9123 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
9124 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
9125 return FALSE;
9126
9127 if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI_PAC)
9128 && (!add_dynamic_entry (DT_AARCH64_BTI_PLT, 0)
9129 || !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0)))
9130 return FALSE;
9131
9132 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9133 && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9134 return FALSE;
9135
9136 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_PAC)
9137 && !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0))
9138 return FALSE;
9139 }
9140
9141 if (relocs)
9142 {
9143 if (!add_dynamic_entry (DT_RELA, 0)
9144 || !add_dynamic_entry (DT_RELASZ, 0)
9145 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9146 return FALSE;
9147
9148 /* If any dynamic relocs apply to a read-only section,
9149 then we need a DT_TEXTREL entry. */
9150 if ((info->flags & DF_TEXTREL) == 0)
9151 elf_link_hash_traverse (&htab->root,
9152 _bfd_elf_maybe_set_textrel, info);
9153
9154 if ((info->flags & DF_TEXTREL) != 0)
9155 {
9156 if (!add_dynamic_entry (DT_TEXTREL, 0))
9157 return FALSE;
9158 }
9159 }
9160 }
9161 #undef add_dynamic_entry
9162
9163 return TRUE;
9164 }
9165
9166 static inline void
9167 elf_aarch64_update_plt_entry (bfd *output_bfd,
9168 bfd_reloc_code_real_type r_type,
9169 bfd_byte *plt_entry, bfd_vma value)
9170 {
9171 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9172
9173 /* FIXME: We should check the return value from this function call. */
9174 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9175 }
9176
9177 static void
9178 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9179 struct elf_aarch64_link_hash_table
9180 *htab, bfd *output_bfd,
9181 struct bfd_link_info *info)
9182 {
9183 bfd_byte *plt_entry;
9184 bfd_vma plt_index;
9185 bfd_vma got_offset;
9186 bfd_vma gotplt_entry_address;
9187 bfd_vma plt_entry_address;
9188 Elf_Internal_Rela rela;
9189 bfd_byte *loc;
9190 asection *plt, *gotplt, *relplt;
9191
9192 /* When building a static executable, use .iplt, .igot.plt and
9193 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9194 if (htab->root.splt != NULL)
9195 {
9196 plt = htab->root.splt;
9197 gotplt = htab->root.sgotplt;
9198 relplt = htab->root.srelplt;
9199 }
9200 else
9201 {
9202 plt = htab->root.iplt;
9203 gotplt = htab->root.igotplt;
9204 relplt = htab->root.irelplt;
9205 }
9206
9207 /* Get the index in the procedure linkage table which
9208 corresponds to this symbol. This is the index of this symbol
9209 in all the symbols for which we are making plt entries. The
9210 first entry in the procedure linkage table is reserved.
9211
9212 Get the offset into the .got table of the entry that
9213 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9214 bytes. The first three are reserved for the dynamic linker.
9215
9216 For static executables, we don't reserve anything. */
9217
9218 if (plt == htab->root.splt)
9219 {
9220 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9221 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9222 }
9223 else
9224 {
9225 plt_index = h->plt.offset / htab->plt_entry_size;
9226 got_offset = plt_index * GOT_ENTRY_SIZE;
9227 }
9228
9229 plt_entry = plt->contents + h->plt.offset;
9230 plt_entry_address = plt->output_section->vma
9231 + plt->output_offset + h->plt.offset;
9232 gotplt_entry_address = gotplt->output_section->vma +
9233 gotplt->output_offset + got_offset;
9234
9235 /* Copy in the boiler-plate for the PLTn entry. */
9236 memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9237
9238 /* First instruction in BTI enabled PLT stub is a BTI
9239 instruction so skip it. */
9240 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9241 && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9242 plt_entry = plt_entry + 4;
9243
9244 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9245 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9246 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9247 plt_entry,
9248 PG (gotplt_entry_address) -
9249 PG (plt_entry_address));
9250
9251 /* Fill in the lo12 bits for the load from the pltgot. */
9252 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9253 plt_entry + 4,
9254 PG_OFFSET (gotplt_entry_address));
9255
9256 /* Fill in the lo12 bits for the add from the pltgot entry. */
9257 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9258 plt_entry + 8,
9259 PG_OFFSET (gotplt_entry_address));
9260
9261 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9262 bfd_put_NN (output_bfd,
9263 plt->output_section->vma + plt->output_offset,
9264 gotplt->contents + got_offset);
9265
9266 rela.r_offset = gotplt_entry_address;
9267
9268 if (h->dynindx == -1
9269 || ((bfd_link_executable (info)
9270 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9271 && h->def_regular
9272 && h->type == STT_GNU_IFUNC))
9273 {
9274 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9275 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9276 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9277 rela.r_addend = (h->root.u.def.value
9278 + h->root.u.def.section->output_section->vma
9279 + h->root.u.def.section->output_offset);
9280 }
9281 else
9282 {
9283 /* Fill in the entry in the .rela.plt section. */
9284 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9285 rela.r_addend = 0;
9286 }
9287
9288 /* Compute the relocation entry to used based on PLT index and do
9289 not adjust reloc_count. The reloc_count has already been adjusted
9290 to account for this entry. */
9291 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9292 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9293 }
9294
9295 /* Size sections even though they're not dynamic. We use it to setup
9296 _TLS_MODULE_BASE_, if needed. */
9297
9298 static bfd_boolean
9299 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9300 struct bfd_link_info *info)
9301 {
9302 asection *tls_sec;
9303
9304 if (bfd_link_relocatable (info))
9305 return TRUE;
9306
9307 tls_sec = elf_hash_table (info)->tls_sec;
9308
9309 if (tls_sec)
9310 {
9311 struct elf_link_hash_entry *tlsbase;
9312
9313 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9314 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9315
9316 if (tlsbase)
9317 {
9318 struct bfd_link_hash_entry *h = NULL;
9319 const struct elf_backend_data *bed =
9320 get_elf_backend_data (output_bfd);
9321
9322 if (!(_bfd_generic_link_add_one_symbol
9323 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9324 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9325 return FALSE;
9326
9327 tlsbase->type = STT_TLS;
9328 tlsbase = (struct elf_link_hash_entry *) h;
9329 tlsbase->def_regular = 1;
9330 tlsbase->other = STV_HIDDEN;
9331 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9332 }
9333 }
9334
9335 return TRUE;
9336 }
9337
9338 /* Finish up dynamic symbol handling. We set the contents of various
9339 dynamic sections here. */
9340
9341 static bfd_boolean
9342 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9343 struct bfd_link_info *info,
9344 struct elf_link_hash_entry *h,
9345 Elf_Internal_Sym *sym)
9346 {
9347 struct elf_aarch64_link_hash_table *htab;
9348 htab = elf_aarch64_hash_table (info);
9349
9350 if (h->plt.offset != (bfd_vma) - 1)
9351 {
9352 asection *plt, *gotplt, *relplt;
9353
9354 /* This symbol has an entry in the procedure linkage table. Set
9355 it up. */
9356
9357 /* When building a static executable, use .iplt, .igot.plt and
9358 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9359 if (htab->root.splt != NULL)
9360 {
9361 plt = htab->root.splt;
9362 gotplt = htab->root.sgotplt;
9363 relplt = htab->root.srelplt;
9364 }
9365 else
9366 {
9367 plt = htab->root.iplt;
9368 gotplt = htab->root.igotplt;
9369 relplt = htab->root.irelplt;
9370 }
9371
9372 /* This symbol has an entry in the procedure linkage table. Set
9373 it up. */
9374 if ((h->dynindx == -1
9375 && !((h->forced_local || bfd_link_executable (info))
9376 && h->def_regular
9377 && h->type == STT_GNU_IFUNC))
9378 || plt == NULL
9379 || gotplt == NULL
9380 || relplt == NULL)
9381 return FALSE;
9382
9383 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9384 if (!h->def_regular)
9385 {
9386 /* Mark the symbol as undefined, rather than as defined in
9387 the .plt section. */
9388 sym->st_shndx = SHN_UNDEF;
9389 /* If the symbol is weak we need to clear the value.
9390 Otherwise, the PLT entry would provide a definition for
9391 the symbol even if the symbol wasn't defined anywhere,
9392 and so the symbol would never be NULL. Leave the value if
9393 there were any relocations where pointer equality matters
9394 (this is a clue for the dynamic linker, to make function
9395 pointer comparisons work between an application and shared
9396 library). */
9397 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9398 sym->st_value = 0;
9399 }
9400 }
9401
9402 if (h->got.offset != (bfd_vma) - 1
9403 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9404 /* Undefined weak symbol in static PIE resolves to 0 without
9405 any dynamic relocations. */
9406 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9407 {
9408 Elf_Internal_Rela rela;
9409 bfd_byte *loc;
9410
9411 /* This symbol has an entry in the global offset table. Set it
9412 up. */
9413 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9414 abort ();
9415
9416 rela.r_offset = (htab->root.sgot->output_section->vma
9417 + htab->root.sgot->output_offset
9418 + (h->got.offset & ~(bfd_vma) 1));
9419
9420 if (h->def_regular
9421 && h->type == STT_GNU_IFUNC)
9422 {
9423 if (bfd_link_pic (info))
9424 {
9425 /* Generate R_AARCH64_GLOB_DAT. */
9426 goto do_glob_dat;
9427 }
9428 else
9429 {
9430 asection *plt;
9431
9432 if (!h->pointer_equality_needed)
9433 abort ();
9434
9435 /* For non-shared object, we can't use .got.plt, which
9436 contains the real function address if we need pointer
9437 equality. We load the GOT entry with the PLT entry. */
9438 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9439 bfd_put_NN (output_bfd, (plt->output_section->vma
9440 + plt->output_offset
9441 + h->plt.offset),
9442 htab->root.sgot->contents
9443 + (h->got.offset & ~(bfd_vma) 1));
9444 return TRUE;
9445 }
9446 }
9447 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9448 {
9449 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9450 return FALSE;
9451
9452 BFD_ASSERT ((h->got.offset & 1) != 0);
9453 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9454 rela.r_addend = (h->root.u.def.value
9455 + h->root.u.def.section->output_section->vma
9456 + h->root.u.def.section->output_offset);
9457 }
9458 else
9459 {
9460 do_glob_dat:
9461 BFD_ASSERT ((h->got.offset & 1) == 0);
9462 bfd_put_NN (output_bfd, (bfd_vma) 0,
9463 htab->root.sgot->contents + h->got.offset);
9464 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9465 rela.r_addend = 0;
9466 }
9467
9468 loc = htab->root.srelgot->contents;
9469 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9470 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9471 }
9472
9473 if (h->needs_copy)
9474 {
9475 Elf_Internal_Rela rela;
9476 asection *s;
9477 bfd_byte *loc;
9478
9479 /* This symbol needs a copy reloc. Set it up. */
9480 if (h->dynindx == -1
9481 || (h->root.type != bfd_link_hash_defined
9482 && h->root.type != bfd_link_hash_defweak)
9483 || htab->root.srelbss == NULL)
9484 abort ();
9485
9486 rela.r_offset = (h->root.u.def.value
9487 + h->root.u.def.section->output_section->vma
9488 + h->root.u.def.section->output_offset);
9489 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9490 rela.r_addend = 0;
9491 if (h->root.u.def.section == htab->root.sdynrelro)
9492 s = htab->root.sreldynrelro;
9493 else
9494 s = htab->root.srelbss;
9495 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9496 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9497 }
9498
9499 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9500 be NULL for local symbols. */
9501 if (sym != NULL
9502 && (h == elf_hash_table (info)->hdynamic
9503 || h == elf_hash_table (info)->hgot))
9504 sym->st_shndx = SHN_ABS;
9505
9506 return TRUE;
9507 }
9508
9509 /* Finish up local dynamic symbol handling. We set the contents of
9510 various dynamic sections here. */
9511
9512 static bfd_boolean
9513 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9514 {
9515 struct elf_link_hash_entry *h
9516 = (struct elf_link_hash_entry *) *slot;
9517 struct bfd_link_info *info
9518 = (struct bfd_link_info *) inf;
9519
9520 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9521 info, h, NULL);
9522 }
9523
9524 static void
9525 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9526 struct elf_aarch64_link_hash_table
9527 *htab)
9528 {
9529 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9530 small and large plts and at the minute just generates
9531 the small PLT. */
9532
9533 /* PLT0 of the small PLT looks like this in ELF64 -
9534 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9535 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9536 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9537 // symbol resolver
9538 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9539 // GOTPLT entry for this.
9540 br x17
9541 PLT0 will be slightly different in ELF32 due to different got entry
9542 size. */
9543 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9544 bfd_vma plt_base;
9545
9546
9547 memcpy (htab->root.splt->contents, htab->plt0_entry,
9548 htab->plt_header_size);
9549 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9550 htab->plt_header_size;
9551
9552 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9553 + htab->root.sgotplt->output_offset
9554 + GOT_ENTRY_SIZE * 2);
9555
9556 plt_base = htab->root.splt->output_section->vma +
9557 htab->root.splt->output_offset;
9558
9559 /* First instruction in BTI enabled PLT stub is a BTI
9560 instruction so skip it. */
9561 bfd_byte *plt0_entry = htab->root.splt->contents;
9562 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9563 plt0_entry = plt0_entry + 4;
9564
9565 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9566 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9567 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9568 plt0_entry + 4,
9569 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9570
9571 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9572 plt0_entry + 8,
9573 PG_OFFSET (plt_got_2nd_ent));
9574
9575 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9576 plt0_entry + 12,
9577 PG_OFFSET (plt_got_2nd_ent));
9578 }
9579
9580 static bfd_boolean
9581 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9582 struct bfd_link_info *info)
9583 {
9584 struct elf_aarch64_link_hash_table *htab;
9585 bfd *dynobj;
9586 asection *sdyn;
9587
9588 htab = elf_aarch64_hash_table (info);
9589 dynobj = htab->root.dynobj;
9590 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9591
9592 if (htab->root.dynamic_sections_created)
9593 {
9594 ElfNN_External_Dyn *dyncon, *dynconend;
9595
9596 if (sdyn == NULL || htab->root.sgot == NULL)
9597 abort ();
9598
9599 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9600 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9601 for (; dyncon < dynconend; dyncon++)
9602 {
9603 Elf_Internal_Dyn dyn;
9604 asection *s;
9605
9606 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9607
9608 switch (dyn.d_tag)
9609 {
9610 default:
9611 continue;
9612
9613 case DT_PLTGOT:
9614 s = htab->root.sgotplt;
9615 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9616 break;
9617
9618 case DT_JMPREL:
9619 s = htab->root.srelplt;
9620 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9621 break;
9622
9623 case DT_PLTRELSZ:
9624 s = htab->root.srelplt;
9625 dyn.d_un.d_val = s->size;
9626 break;
9627
9628 case DT_TLSDESC_PLT:
9629 s = htab->root.splt;
9630 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9631 + htab->root.tlsdesc_plt;
9632 break;
9633
9634 case DT_TLSDESC_GOT:
9635 s = htab->root.sgot;
9636 BFD_ASSERT (htab->root.tlsdesc_got != (bfd_vma)-1);
9637 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9638 + htab->root.tlsdesc_got;
9639 break;
9640 }
9641
9642 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9643 }
9644
9645 }
9646
9647 /* Fill in the special first entry in the procedure linkage table. */
9648 if (htab->root.splt && htab->root.splt->size > 0)
9649 {
9650 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9651
9652 elf_section_data (htab->root.splt->output_section)->
9653 this_hdr.sh_entsize = htab->plt_entry_size;
9654
9655
9656 if (htab->root.tlsdesc_plt && !(info->flags & DF_BIND_NOW))
9657 {
9658 BFD_ASSERT (htab->root.tlsdesc_got != (bfd_vma)-1);
9659 bfd_put_NN (output_bfd, (bfd_vma) 0,
9660 htab->root.sgot->contents + htab->root.tlsdesc_got);
9661
9662 const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9663 htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9664
9665 aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9666 if (type == PLT_BTI || type == PLT_BTI_PAC)
9667 {
9668 entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9669 }
9670
9671 memcpy (htab->root.splt->contents + htab->root.tlsdesc_plt,
9672 entry, htab->tlsdesc_plt_entry_size);
9673
9674 {
9675 bfd_vma adrp1_addr =
9676 htab->root.splt->output_section->vma
9677 + htab->root.splt->output_offset
9678 + htab->root.tlsdesc_plt + 4;
9679
9680 bfd_vma adrp2_addr = adrp1_addr + 4;
9681
9682 bfd_vma got_addr =
9683 htab->root.sgot->output_section->vma
9684 + htab->root.sgot->output_offset;
9685
9686 bfd_vma pltgot_addr =
9687 htab->root.sgotplt->output_section->vma
9688 + htab->root.sgotplt->output_offset;
9689
9690 bfd_vma dt_tlsdesc_got = got_addr + htab->root.tlsdesc_got;
9691
9692 bfd_byte *plt_entry =
9693 htab->root.splt->contents + htab->root.tlsdesc_plt;
9694
9695 /* First instruction in BTI enabled PLT stub is a BTI
9696 instruction so skip it. */
9697 if (type & PLT_BTI)
9698 {
9699 plt_entry = plt_entry + 4;
9700 adrp1_addr = adrp1_addr + 4;
9701 adrp2_addr = adrp2_addr + 4;
9702 }
9703
9704 /* adrp x2, DT_TLSDESC_GOT */
9705 elf_aarch64_update_plt_entry (output_bfd,
9706 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9707 plt_entry + 4,
9708 (PG (dt_tlsdesc_got)
9709 - PG (adrp1_addr)));
9710
9711 /* adrp x3, 0 */
9712 elf_aarch64_update_plt_entry (output_bfd,
9713 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9714 plt_entry + 8,
9715 (PG (pltgot_addr)
9716 - PG (adrp2_addr)));
9717
9718 /* ldr x2, [x2, #0] */
9719 elf_aarch64_update_plt_entry (output_bfd,
9720 BFD_RELOC_AARCH64_LDSTNN_LO12,
9721 plt_entry + 12,
9722 PG_OFFSET (dt_tlsdesc_got));
9723
9724 /* add x3, x3, 0 */
9725 elf_aarch64_update_plt_entry (output_bfd,
9726 BFD_RELOC_AARCH64_ADD_LO12,
9727 plt_entry + 16,
9728 PG_OFFSET (pltgot_addr));
9729 }
9730 }
9731 }
9732
9733 if (htab->root.sgotplt)
9734 {
9735 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9736 {
9737 _bfd_error_handler
9738 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9739 return FALSE;
9740 }
9741
9742 /* Fill in the first three entries in the global offset table. */
9743 if (htab->root.sgotplt->size > 0)
9744 {
9745 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9746
9747 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9748 bfd_put_NN (output_bfd,
9749 (bfd_vma) 0,
9750 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9751 bfd_put_NN (output_bfd,
9752 (bfd_vma) 0,
9753 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9754 }
9755
9756 if (htab->root.sgot)
9757 {
9758 if (htab->root.sgot->size > 0)
9759 {
9760 bfd_vma addr =
9761 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9762 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9763 }
9764 }
9765
9766 elf_section_data (htab->root.sgotplt->output_section)->
9767 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9768 }
9769
9770 if (htab->root.sgot && htab->root.sgot->size > 0)
9771 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9772 = GOT_ENTRY_SIZE;
9773
9774 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9775 htab_traverse (htab->loc_hash_table,
9776 elfNN_aarch64_finish_local_dynamic_symbol,
9777 info);
9778
9779 return TRUE;
9780 }
9781
9782 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
9783 static aarch64_plt_type
9784 get_plt_type (bfd *abfd)
9785 {
9786 aarch64_plt_type ret = PLT_NORMAL;
9787 bfd_byte *contents, *extdyn, *extdynend;
9788 asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9789 if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9790 return ret;
9791 extdyn = contents;
9792 extdynend = contents + sec->size;
9793 for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9794 {
9795 Elf_Internal_Dyn dyn;
9796 bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9797
9798 /* Let's check the processor specific dynamic array tags. */
9799 bfd_vma tag = dyn.d_tag;
9800 if (tag < DT_LOPROC || tag > DT_HIPROC)
9801 continue;
9802
9803 switch (tag)
9804 {
9805 case DT_AARCH64_BTI_PLT:
9806 ret |= PLT_BTI;
9807 break;
9808
9809 case DT_AARCH64_PAC_PLT:
9810 ret |= PLT_PAC;
9811 break;
9812
9813 default: break;
9814 }
9815 }
9816 free (contents);
9817 return ret;
9818 }
9819
9820 static long
9821 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9822 long symcount,
9823 asymbol **syms,
9824 long dynsymcount,
9825 asymbol **dynsyms,
9826 asymbol **ret)
9827 {
9828 elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9829 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9830 dynsymcount, dynsyms, ret);
9831 }
9832
9833 /* Return address for Ith PLT stub in section PLT, for relocation REL
9834 or (bfd_vma) -1 if it should not be included. */
9835
9836 static bfd_vma
9837 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9838 const arelent *rel ATTRIBUTE_UNUSED)
9839 {
9840 size_t plt0_size = PLT_ENTRY_SIZE;
9841 size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9842
9843 if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI_PAC)
9844 {
9845 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9846 pltn_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
9847 else
9848 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9849 }
9850 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9851 {
9852 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9853 pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9854 }
9855 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_PAC)
9856 {
9857 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9858 }
9859
9860 return plt->vma + plt0_size + i * pltn_size;
9861 }
9862
9863 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9864 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9865 It also allows a period initiated suffix to be added to the symbol, ie:
9866 "$[adtx]\.[:sym_char]+". */
9867
9868 static bfd_boolean
9869 is_aarch64_mapping_symbol (const char * name)
9870 {
9871 return name != NULL /* Paranoia. */
9872 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9873 the mapping symbols could have acquired a prefix.
9874 We do not support this here, since such symbols no
9875 longer conform to the ARM ELF ABI. */
9876 && (name[1] == 'd' || name[1] == 'x')
9877 && (name[2] == 0 || name[2] == '.');
9878 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9879 any characters that follow the period are legal characters for the body
9880 of a symbol's name. For now we just assume that this is the case. */
9881 }
9882
9883 /* Make sure that mapping symbols in object files are not removed via the
9884 "strip --strip-unneeded" tool. These symbols might needed in order to
9885 correctly generate linked files. Once an object file has been linked,
9886 it should be safe to remove them. */
9887
9888 static void
9889 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9890 {
9891 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9892 && sym->section != bfd_abs_section_ptr
9893 && is_aarch64_mapping_symbol (sym->name))
9894 sym->flags |= BSF_KEEP;
9895 }
9896
9897 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
9898 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
9899 for the effect of GNU properties of the output_bfd. */
9900 static bfd *
9901 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
9902 {
9903 uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9904 bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
9905 elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
9906 elf_aarch64_tdata (info->output_bfd)->plt_type
9907 |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
9908 setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
9909 return pbfd;
9910 }
9911
9912 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
9913 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
9914 for the effect of GNU properties of the output_bfd. */
9915 static bfd_boolean
9916 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
9917 bfd *abfd, bfd *bbfd,
9918 elf_property *aprop,
9919 elf_property *bprop)
9920 {
9921 uint32_t prop
9922 = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9923
9924 /* If output has been marked with BTI using command line argument, give out
9925 warning if necessary. */
9926 /* Properties are merged per type, hence only check for warnings when merging
9927 GNU_PROPERTY_AARCH64_FEATURE_1_AND. */
9928 if (((aprop && aprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
9929 || (bprop && bprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND))
9930 && (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
9931 && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
9932 {
9933 if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9934 || !aprop)
9935 {
9936 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9937 "all inputs do not have BTI in NOTE section."),
9938 abfd);
9939 }
9940 if ((bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9941 || !bprop)
9942 {
9943 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9944 "all inputs do not have BTI in NOTE section."),
9945 bbfd);
9946 }
9947 }
9948
9949 return _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
9950 bprop, prop);
9951 }
9952
9953 /* We use this so we can override certain functions
9954 (though currently we don't). */
9955
9956 const struct elf_size_info elfNN_aarch64_size_info =
9957 {
9958 sizeof (ElfNN_External_Ehdr),
9959 sizeof (ElfNN_External_Phdr),
9960 sizeof (ElfNN_External_Shdr),
9961 sizeof (ElfNN_External_Rel),
9962 sizeof (ElfNN_External_Rela),
9963 sizeof (ElfNN_External_Sym),
9964 sizeof (ElfNN_External_Dyn),
9965 sizeof (Elf_External_Note),
9966 4, /* Hash table entry size. */
9967 1, /* Internal relocs per external relocs. */
9968 ARCH_SIZE, /* Arch size. */
9969 LOG_FILE_ALIGN, /* Log_file_align. */
9970 ELFCLASSNN, EV_CURRENT,
9971 bfd_elfNN_write_out_phdrs,
9972 bfd_elfNN_write_shdrs_and_ehdr,
9973 bfd_elfNN_checksum_contents,
9974 bfd_elfNN_write_relocs,
9975 bfd_elfNN_swap_symbol_in,
9976 bfd_elfNN_swap_symbol_out,
9977 bfd_elfNN_slurp_reloc_table,
9978 bfd_elfNN_slurp_symbol_table,
9979 bfd_elfNN_swap_dyn_in,
9980 bfd_elfNN_swap_dyn_out,
9981 bfd_elfNN_swap_reloc_in,
9982 bfd_elfNN_swap_reloc_out,
9983 bfd_elfNN_swap_reloca_in,
9984 bfd_elfNN_swap_reloca_out
9985 };
9986
9987 #define ELF_ARCH bfd_arch_aarch64
9988 #define ELF_MACHINE_CODE EM_AARCH64
9989 #define ELF_MAXPAGESIZE 0x10000
9990 #define ELF_MINPAGESIZE 0x1000
9991 #define ELF_COMMONPAGESIZE 0x1000
9992
9993 #define bfd_elfNN_close_and_cleanup \
9994 elfNN_aarch64_close_and_cleanup
9995
9996 #define bfd_elfNN_bfd_free_cached_info \
9997 elfNN_aarch64_bfd_free_cached_info
9998
9999 #define bfd_elfNN_bfd_is_target_special_symbol \
10000 elfNN_aarch64_is_target_special_symbol
10001
10002 #define bfd_elfNN_bfd_link_hash_table_create \
10003 elfNN_aarch64_link_hash_table_create
10004
10005 #define bfd_elfNN_bfd_merge_private_bfd_data \
10006 elfNN_aarch64_merge_private_bfd_data
10007
10008 #define bfd_elfNN_bfd_print_private_bfd_data \
10009 elfNN_aarch64_print_private_bfd_data
10010
10011 #define bfd_elfNN_bfd_reloc_type_lookup \
10012 elfNN_aarch64_reloc_type_lookup
10013
10014 #define bfd_elfNN_bfd_reloc_name_lookup \
10015 elfNN_aarch64_reloc_name_lookup
10016
10017 #define bfd_elfNN_bfd_set_private_flags \
10018 elfNN_aarch64_set_private_flags
10019
10020 #define bfd_elfNN_find_inliner_info \
10021 elfNN_aarch64_find_inliner_info
10022
10023 #define bfd_elfNN_get_synthetic_symtab \
10024 elfNN_aarch64_get_synthetic_symtab
10025
10026 #define bfd_elfNN_mkobject \
10027 elfNN_aarch64_mkobject
10028
10029 #define bfd_elfNN_new_section_hook \
10030 elfNN_aarch64_new_section_hook
10031
10032 #define elf_backend_adjust_dynamic_symbol \
10033 elfNN_aarch64_adjust_dynamic_symbol
10034
10035 #define elf_backend_always_size_sections \
10036 elfNN_aarch64_always_size_sections
10037
10038 #define elf_backend_check_relocs \
10039 elfNN_aarch64_check_relocs
10040
10041 #define elf_backend_copy_indirect_symbol \
10042 elfNN_aarch64_copy_indirect_symbol
10043
10044 #define elf_backend_merge_symbol_attribute \
10045 elfNN_aarch64_merge_symbol_attribute
10046
10047 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10048 to them in our hash. */
10049 #define elf_backend_create_dynamic_sections \
10050 elfNN_aarch64_create_dynamic_sections
10051
10052 #define elf_backend_init_index_section \
10053 _bfd_elf_init_2_index_sections
10054
10055 #define elf_backend_finish_dynamic_sections \
10056 elfNN_aarch64_finish_dynamic_sections
10057
10058 #define elf_backend_finish_dynamic_symbol \
10059 elfNN_aarch64_finish_dynamic_symbol
10060
10061 #define elf_backend_object_p \
10062 elfNN_aarch64_object_p
10063
10064 #define elf_backend_output_arch_local_syms \
10065 elfNN_aarch64_output_arch_local_syms
10066
10067 #define elf_backend_maybe_function_sym \
10068 elfNN_aarch64_maybe_function_sym
10069
10070 #define elf_backend_plt_sym_val \
10071 elfNN_aarch64_plt_sym_val
10072
10073 #define elf_backend_init_file_header \
10074 elfNN_aarch64_init_file_header
10075
10076 #define elf_backend_relocate_section \
10077 elfNN_aarch64_relocate_section
10078
10079 #define elf_backend_reloc_type_class \
10080 elfNN_aarch64_reloc_type_class
10081
10082 #define elf_backend_section_from_shdr \
10083 elfNN_aarch64_section_from_shdr
10084
10085 #define elf_backend_size_dynamic_sections \
10086 elfNN_aarch64_size_dynamic_sections
10087
10088 #define elf_backend_size_info \
10089 elfNN_aarch64_size_info
10090
10091 #define elf_backend_write_section \
10092 elfNN_aarch64_write_section
10093
10094 #define elf_backend_symbol_processing \
10095 elfNN_aarch64_backend_symbol_processing
10096
10097 #define elf_backend_setup_gnu_properties \
10098 elfNN_aarch64_link_setup_gnu_properties
10099
10100 #define elf_backend_merge_gnu_properties \
10101 elfNN_aarch64_merge_gnu_properties
10102
10103 #define elf_backend_can_refcount 1
10104 #define elf_backend_can_gc_sections 1
10105 #define elf_backend_plt_readonly 1
10106 #define elf_backend_want_got_plt 1
10107 #define elf_backend_want_plt_sym 0
10108 #define elf_backend_want_dynrelro 1
10109 #define elf_backend_may_use_rel_p 0
10110 #define elf_backend_may_use_rela_p 1
10111 #define elf_backend_default_use_rela_p 1
10112 #define elf_backend_rela_normal 1
10113 #define elf_backend_dtrel_excludes_plt 1
10114 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10115 #define elf_backend_default_execstack 0
10116 #define elf_backend_extern_protected_data 1
10117 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10118
10119 #undef elf_backend_obj_attrs_section
10120 #define elf_backend_obj_attrs_section ".ARM.attributes"
10121
10122 #include "elfNN-target.h"
10123
10124 /* CloudABI support. */
10125
10126 #undef TARGET_LITTLE_SYM
10127 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10128 #undef TARGET_LITTLE_NAME
10129 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10130 #undef TARGET_BIG_SYM
10131 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10132 #undef TARGET_BIG_NAME
10133 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10134
10135 #undef ELF_OSABI
10136 #define ELF_OSABI ELFOSABI_CLOUDABI
10137
10138 #undef elfNN_bed
10139 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10140
10141 #include "elfNN-target.h"
This page took 0.249623 seconds and 4 git commands to generate.