ELF: Consolidate readonly_dynrelocs
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2020 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147 #include "cpu-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
221
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
245
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
259
260 #define ELIMINATE_COPY_RELOCS 1
261
262 /* Return size of a relocation entry. HTAB is the bfd's
263 elf_aarch64_link_hash_entry. */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
265
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE (32)
269 #define PLT_SMALL_ENTRY_SIZE (16)
270 #define PLT_TLSDESC_ENTRY_SIZE (32)
271 /* PLT sizes with BTI insn. */
272 #define PLT_BTI_SMALL_ENTRY_SIZE (24)
273 /* PLT sizes with PAC insn. */
274 #define PLT_PAC_SMALL_ENTRY_SIZE (24)
275 /* PLT sizes with BTI and PAC insn. */
276 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE (24)
277
278 /* Encoding of the nop instruction. */
279 #define INSN_NOP 0xd503201f
280
281 #define aarch64_compute_jump_table_size(htab) \
282 (((htab)->root.srelplt == NULL) ? 0 \
283 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
284
285 /* The first entry in a procedure linkage table looks like this
286 if the distance between the PLTGOT and the PLT is < 4GB use
287 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
288 in x16 and needs to work out PLTGOT[1] by using an address of
289 [x16,#-GOT_ENTRY_SIZE]. */
290 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
291 {
292 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
293 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
294 #if ARCH_SIZE == 64
295 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
296 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
297 #else
298 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
299 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
300 #endif
301 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
302 0x1f, 0x20, 0x03, 0xd5, /* nop */
303 0x1f, 0x20, 0x03, 0xd5, /* nop */
304 0x1f, 0x20, 0x03, 0xd5, /* nop */
305 };
306
307 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_ENTRY_SIZE] =
308 {
309 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
310 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
311 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
312 #if ARCH_SIZE == 64
313 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
314 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
315 #else
316 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
317 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
318 #endif
319 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
322 };
323
324 /* Per function entry in a procedure linkage table looks like this
325 if the distance between the PLTGOT and the PLT is < 4GB use
326 these PLT entries. Use BTI versions of the PLTs when enabled. */
327 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
328 {
329 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
330 #if ARCH_SIZE == 64
331 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
332 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
333 #else
334 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
335 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
336 #endif
337 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
338 };
339
340 static const bfd_byte
341 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
342 {
343 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
344 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
345 #if ARCH_SIZE == 64
346 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
347 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
348 #else
349 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
350 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
351 #endif
352 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
353 0x1f, 0x20, 0x03, 0xd5, /* nop */
354 };
355
356 static const bfd_byte
357 elfNN_aarch64_small_plt_pac_entry[PLT_PAC_SMALL_ENTRY_SIZE] =
358 {
359 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
360 #if ARCH_SIZE == 64
361 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
362 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
363 #else
364 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
365 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
366 #endif
367 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
368 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
369 0x1f, 0x20, 0x03, 0xd5, /* nop */
370 };
371
372 static const bfd_byte
373 elfNN_aarch64_small_plt_bti_pac_entry[PLT_BTI_PAC_SMALL_ENTRY_SIZE] =
374 {
375 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
376 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
377 #if ARCH_SIZE == 64
378 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
379 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
380 #else
381 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
382 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
383 #endif
384 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
385 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
386 };
387
388 static const bfd_byte
389 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
390 {
391 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
392 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
393 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
394 #if ARCH_SIZE == 64
395 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
396 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
397 #else
398 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
399 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
400 #endif
401 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
402 0x1f, 0x20, 0x03, 0xd5, /* nop */
403 0x1f, 0x20, 0x03, 0xd5, /* nop */
404 };
405
406 static const bfd_byte
407 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_TLSDESC_ENTRY_SIZE] =
408 {
409 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
410 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
411 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
412 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
413 #if ARCH_SIZE == 64
414 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
415 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
416 #else
417 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
418 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
419 #endif
420 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
421 0x1f, 0x20, 0x03, 0xd5, /* nop */
422 };
423
424 #define elf_info_to_howto elfNN_aarch64_info_to_howto
425 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
426
427 #define AARCH64_ELF_ABI_VERSION 0
428
429 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
430 #define ALL_ONES (~ (bfd_vma) 0)
431
432 /* Indexed by the bfd interal reloc enumerators.
433 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
434 in reloc.c. */
435
436 static reloc_howto_type elfNN_aarch64_howto_table[] =
437 {
438 EMPTY_HOWTO (0),
439
440 /* Basic data relocations. */
441
442 /* Deprecated, but retained for backwards compatibility. */
443 HOWTO64 (R_AARCH64_NULL, /* type */
444 0, /* rightshift */
445 3, /* size (0 = byte, 1 = short, 2 = long) */
446 0, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_AARCH64_NULL", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0, /* dst_mask */
455 FALSE), /* pcrel_offset */
456 HOWTO (R_AARCH64_NONE, /* type */
457 0, /* rightshift */
458 3, /* size (0 = byte, 1 = short, 2 = long) */
459 0, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_dont, /* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_AARCH64_NONE", /* name */
465 FALSE, /* partial_inplace */
466 0, /* src_mask */
467 0, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 /* .xword: (S+A) */
471 HOWTO64 (AARCH64_R (ABS64), /* type */
472 0, /* rightshift */
473 4, /* size (4 = long long) */
474 64, /* bitsize */
475 FALSE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_unsigned, /* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 AARCH64_R_STR (ABS64), /* name */
480 FALSE, /* partial_inplace */
481 ALL_ONES, /* src_mask */
482 ALL_ONES, /* dst_mask */
483 FALSE), /* pcrel_offset */
484
485 /* .word: (S+A) */
486 HOWTO (AARCH64_R (ABS32), /* type */
487 0, /* rightshift */
488 2, /* size (0 = byte, 1 = short, 2 = long) */
489 32, /* bitsize */
490 FALSE, /* pc_relative */
491 0, /* bitpos */
492 complain_overflow_unsigned, /* complain_on_overflow */
493 bfd_elf_generic_reloc, /* special_function */
494 AARCH64_R_STR (ABS32), /* name */
495 FALSE, /* partial_inplace */
496 0xffffffff, /* src_mask */
497 0xffffffff, /* dst_mask */
498 FALSE), /* pcrel_offset */
499
500 /* .half: (S+A) */
501 HOWTO (AARCH64_R (ABS16), /* type */
502 0, /* rightshift */
503 1, /* size (0 = byte, 1 = short, 2 = long) */
504 16, /* bitsize */
505 FALSE, /* pc_relative */
506 0, /* bitpos */
507 complain_overflow_unsigned, /* complain_on_overflow */
508 bfd_elf_generic_reloc, /* special_function */
509 AARCH64_R_STR (ABS16), /* name */
510 FALSE, /* partial_inplace */
511 0xffff, /* src_mask */
512 0xffff, /* dst_mask */
513 FALSE), /* pcrel_offset */
514
515 /* .xword: (S+A-P) */
516 HOWTO64 (AARCH64_R (PREL64), /* type */
517 0, /* rightshift */
518 4, /* size (4 = long long) */
519 64, /* bitsize */
520 TRUE, /* pc_relative */
521 0, /* bitpos */
522 complain_overflow_signed, /* complain_on_overflow */
523 bfd_elf_generic_reloc, /* special_function */
524 AARCH64_R_STR (PREL64), /* name */
525 FALSE, /* partial_inplace */
526 ALL_ONES, /* src_mask */
527 ALL_ONES, /* dst_mask */
528 TRUE), /* pcrel_offset */
529
530 /* .word: (S+A-P) */
531 HOWTO (AARCH64_R (PREL32), /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 32, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_signed, /* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 AARCH64_R_STR (PREL32), /* name */
540 FALSE, /* partial_inplace */
541 0xffffffff, /* src_mask */
542 0xffffffff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 /* .half: (S+A-P) */
546 HOWTO (AARCH64_R (PREL16), /* type */
547 0, /* rightshift */
548 1, /* size (0 = byte, 1 = short, 2 = long) */
549 16, /* bitsize */
550 TRUE, /* pc_relative */
551 0, /* bitpos */
552 complain_overflow_signed, /* complain_on_overflow */
553 bfd_elf_generic_reloc, /* special_function */
554 AARCH64_R_STR (PREL16), /* name */
555 FALSE, /* partial_inplace */
556 0xffff, /* src_mask */
557 0xffff, /* dst_mask */
558 TRUE), /* pcrel_offset */
559
560 /* Group relocations to create a 16, 32, 48 or 64 bit
561 unsigned data or abs address inline. */
562
563 /* MOVZ: ((S+A) >> 0) & 0xffff */
564 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 16, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_unsigned, /* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 AARCH64_R_STR (MOVW_UABS_G0), /* name */
573 FALSE, /* partial_inplace */
574 0xffff, /* src_mask */
575 0xffff, /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
579 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
580 0, /* rightshift */
581 2, /* size (0 = byte, 1 = short, 2 = long) */
582 16, /* bitsize */
583 FALSE, /* pc_relative */
584 0, /* bitpos */
585 complain_overflow_dont, /* complain_on_overflow */
586 bfd_elf_generic_reloc, /* special_function */
587 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
588 FALSE, /* partial_inplace */
589 0xffff, /* src_mask */
590 0xffff, /* dst_mask */
591 FALSE), /* pcrel_offset */
592
593 /* MOVZ: ((S+A) >> 16) & 0xffff */
594 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
595 16, /* rightshift */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
597 16, /* bitsize */
598 FALSE, /* pc_relative */
599 0, /* bitpos */
600 complain_overflow_unsigned, /* complain_on_overflow */
601 bfd_elf_generic_reloc, /* special_function */
602 AARCH64_R_STR (MOVW_UABS_G1), /* name */
603 FALSE, /* partial_inplace */
604 0xffff, /* src_mask */
605 0xffff, /* dst_mask */
606 FALSE), /* pcrel_offset */
607
608 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
609 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
610 16, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 16, /* bitsize */
613 FALSE, /* pc_relative */
614 0, /* bitpos */
615 complain_overflow_dont, /* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
618 FALSE, /* partial_inplace */
619 0xffff, /* src_mask */
620 0xffff, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 /* MOVZ: ((S+A) >> 32) & 0xffff */
624 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
625 32, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 16, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_unsigned, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 AARCH64_R_STR (MOVW_UABS_G2), /* name */
633 FALSE, /* partial_inplace */
634 0xffff, /* src_mask */
635 0xffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
639 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
640 32, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 16, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
648 FALSE, /* partial_inplace */
649 0xffff, /* src_mask */
650 0xffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 /* MOVZ: ((S+A) >> 48) & 0xffff */
654 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
655 48, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 16, /* bitsize */
658 FALSE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_unsigned, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (MOVW_UABS_G3), /* name */
663 FALSE, /* partial_inplace */
664 0xffff, /* src_mask */
665 0xffff, /* dst_mask */
666 FALSE), /* pcrel_offset */
667
668 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
669 signed data or abs address inline. Will change instruction
670 to MOVN or MOVZ depending on sign of calculated value. */
671
672 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
673 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 17, /* bitsize */
677 FALSE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 AARCH64_R_STR (MOVW_SABS_G0), /* name */
682 FALSE, /* partial_inplace */
683 0xffff, /* src_mask */
684 0xffff, /* dst_mask */
685 FALSE), /* pcrel_offset */
686
687 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
688 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
689 16, /* rightshift */
690 2, /* size (0 = byte, 1 = short, 2 = long) */
691 17, /* bitsize */
692 FALSE, /* pc_relative */
693 0, /* bitpos */
694 complain_overflow_signed, /* complain_on_overflow */
695 bfd_elf_generic_reloc, /* special_function */
696 AARCH64_R_STR (MOVW_SABS_G1), /* name */
697 FALSE, /* partial_inplace */
698 0xffff, /* src_mask */
699 0xffff, /* dst_mask */
700 FALSE), /* pcrel_offset */
701
702 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
703 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
704 32, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 17, /* bitsize */
707 FALSE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_signed, /* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 AARCH64_R_STR (MOVW_SABS_G2), /* name */
712 FALSE, /* partial_inplace */
713 0xffff, /* src_mask */
714 0xffff, /* dst_mask */
715 FALSE), /* pcrel_offset */
716
717 /* Group relocations to create a 16, 32, 48 or 64 bit
718 PC relative address inline. */
719
720 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
721 HOWTO (AARCH64_R (MOVW_PREL_G0), /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 17, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 AARCH64_R_STR (MOVW_PREL_G0), /* name */
730 FALSE, /* partial_inplace */
731 0xffff, /* src_mask */
732 0xffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
736 HOWTO (AARCH64_R (MOVW_PREL_G0_NC), /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_dont, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
745 FALSE, /* partial_inplace */
746 0xffff, /* src_mask */
747 0xffff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
751 HOWTO (AARCH64_R (MOVW_PREL_G1), /* type */
752 16, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 17, /* bitsize */
755 TRUE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_signed, /* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 AARCH64_R_STR (MOVW_PREL_G1), /* name */
760 FALSE, /* partial_inplace */
761 0xffff, /* src_mask */
762 0xffff, /* dst_mask */
763 TRUE), /* pcrel_offset */
764
765 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
766 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
767 16, /* rightshift */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 TRUE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_dont, /* complain_on_overflow */
773 bfd_elf_generic_reloc, /* special_function */
774 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
775 FALSE, /* partial_inplace */
776 0xffff, /* src_mask */
777 0xffff, /* dst_mask */
778 TRUE), /* pcrel_offset */
779
780 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
781 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
782 32, /* rightshift */
783 2, /* size (0 = byte, 1 = short, 2 = long) */
784 17, /* bitsize */
785 TRUE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 bfd_elf_generic_reloc, /* special_function */
789 AARCH64_R_STR (MOVW_PREL_G2), /* name */
790 FALSE, /* partial_inplace */
791 0xffff, /* src_mask */
792 0xffff, /* dst_mask */
793 TRUE), /* pcrel_offset */
794
795 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
796 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
797 32, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 16, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
805 FALSE, /* partial_inplace */
806 0xffff, /* src_mask */
807 0xffff, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
811 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
812 48, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 16, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 AARCH64_R_STR (MOVW_PREL_G3), /* name */
820 FALSE, /* partial_inplace */
821 0xffff, /* src_mask */
822 0xffff, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
826 addresses: PG(x) is (x & ~0xfff). */
827
828 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
829 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
830 2, /* rightshift */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
832 19, /* bitsize */
833 TRUE, /* pc_relative */
834 0, /* bitpos */
835 complain_overflow_signed, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 AARCH64_R_STR (LD_PREL_LO19), /* name */
838 FALSE, /* partial_inplace */
839 0x7ffff, /* src_mask */
840 0x7ffff, /* dst_mask */
841 TRUE), /* pcrel_offset */
842
843 /* ADR: (S+A-P) & 0x1fffff */
844 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
845 0, /* rightshift */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
847 21, /* bitsize */
848 TRUE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_signed, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 AARCH64_R_STR (ADR_PREL_LO21), /* name */
853 FALSE, /* partial_inplace */
854 0x1fffff, /* src_mask */
855 0x1fffff, /* dst_mask */
856 TRUE), /* pcrel_offset */
857
858 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
859 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
860 12, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 21, /* bitsize */
863 TRUE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_signed, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
868 FALSE, /* partial_inplace */
869 0x1fffff, /* src_mask */
870 0x1fffff, /* dst_mask */
871 TRUE), /* pcrel_offset */
872
873 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
874 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
875 12, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 21, /* bitsize */
878 TRUE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont, /* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
883 FALSE, /* partial_inplace */
884 0x1fffff, /* src_mask */
885 0x1fffff, /* dst_mask */
886 TRUE), /* pcrel_offset */
887
888 /* ADD: (S+A) & 0xfff [no overflow check] */
889 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
890 0, /* rightshift */
891 2, /* size (0 = byte, 1 = short, 2 = long) */
892 12, /* bitsize */
893 FALSE, /* pc_relative */
894 10, /* bitpos */
895 complain_overflow_dont, /* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
898 FALSE, /* partial_inplace */
899 0x3ffc00, /* src_mask */
900 0x3ffc00, /* dst_mask */
901 FALSE), /* pcrel_offset */
902
903 /* LD/ST8: (S+A) & 0xfff */
904 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
905 0, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 12, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_dont, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
913 FALSE, /* partial_inplace */
914 0xfff, /* src_mask */
915 0xfff, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
918 /* Relocations for control-flow instructions. */
919
920 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
921 HOWTO (AARCH64_R (TSTBR14), /* type */
922 2, /* rightshift */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
924 14, /* bitsize */
925 TRUE, /* pc_relative */
926 0, /* bitpos */
927 complain_overflow_signed, /* complain_on_overflow */
928 bfd_elf_generic_reloc, /* special_function */
929 AARCH64_R_STR (TSTBR14), /* name */
930 FALSE, /* partial_inplace */
931 0x3fff, /* src_mask */
932 0x3fff, /* dst_mask */
933 TRUE), /* pcrel_offset */
934
935 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
936 HOWTO (AARCH64_R (CONDBR19), /* type */
937 2, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 19, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_signed, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 AARCH64_R_STR (CONDBR19), /* name */
945 FALSE, /* partial_inplace */
946 0x7ffff, /* src_mask */
947 0x7ffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 /* B: ((S+A-P) >> 2) & 0x3ffffff */
951 HOWTO (AARCH64_R (JUMP26), /* type */
952 2, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 26, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_signed, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 AARCH64_R_STR (JUMP26), /* name */
960 FALSE, /* partial_inplace */
961 0x3ffffff, /* src_mask */
962 0x3ffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
966 HOWTO (AARCH64_R (CALL26), /* type */
967 2, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 26, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_signed, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 AARCH64_R_STR (CALL26), /* name */
975 FALSE, /* partial_inplace */
976 0x3ffffff, /* src_mask */
977 0x3ffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 /* LD/ST16: (S+A) & 0xffe */
981 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
982 1, /* rightshift */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
984 12, /* bitsize */
985 FALSE, /* pc_relative */
986 0, /* bitpos */
987 complain_overflow_dont, /* complain_on_overflow */
988 bfd_elf_generic_reloc, /* special_function */
989 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
990 FALSE, /* partial_inplace */
991 0xffe, /* src_mask */
992 0xffe, /* dst_mask */
993 FALSE), /* pcrel_offset */
994
995 /* LD/ST32: (S+A) & 0xffc */
996 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
997 2, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 12, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 bfd_elf_generic_reloc, /* special_function */
1004 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
1005 FALSE, /* partial_inplace */
1006 0xffc, /* src_mask */
1007 0xffc, /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* LD/ST64: (S+A) & 0xff8 */
1011 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
1012 3, /* rightshift */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1014 12, /* bitsize */
1015 FALSE, /* pc_relative */
1016 0, /* bitpos */
1017 complain_overflow_dont, /* complain_on_overflow */
1018 bfd_elf_generic_reloc, /* special_function */
1019 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
1020 FALSE, /* partial_inplace */
1021 0xff8, /* src_mask */
1022 0xff8, /* dst_mask */
1023 FALSE), /* pcrel_offset */
1024
1025 /* LD/ST128: (S+A) & 0xff0 */
1026 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
1027 4, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 12, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
1035 FALSE, /* partial_inplace */
1036 0xff0, /* src_mask */
1037 0xff0, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Set a load-literal immediate field to bits
1041 0x1FFFFC of G(S)-P */
1042 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
1043 2, /* rightshift */
1044 2, /* size (0 = byte,1 = short,2 = long) */
1045 19, /* bitsize */
1046 TRUE, /* pc_relative */
1047 0, /* bitpos */
1048 complain_overflow_signed, /* complain_on_overflow */
1049 bfd_elf_generic_reloc, /* special_function */
1050 AARCH64_R_STR (GOT_LD_PREL19), /* name */
1051 FALSE, /* partial_inplace */
1052 0xffffe0, /* src_mask */
1053 0xffffe0, /* dst_mask */
1054 TRUE), /* pcrel_offset */
1055
1056 /* Get to the page for the GOT entry for the symbol
1057 (G(S) - P) using an ADRP instruction. */
1058 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
1059 12, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 21, /* bitsize */
1062 TRUE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont, /* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
1067 FALSE, /* partial_inplace */
1068 0x1fffff, /* src_mask */
1069 0x1fffff, /* dst_mask */
1070 TRUE), /* pcrel_offset */
1071
1072 /* LD64: GOT offset G(S) & 0xff8 */
1073 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
1074 3, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 12, /* bitsize */
1077 FALSE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont, /* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
1082 FALSE, /* partial_inplace */
1083 0xff8, /* src_mask */
1084 0xff8, /* dst_mask */
1085 FALSE), /* pcrel_offset */
1086
1087 /* LD32: GOT offset G(S) & 0xffc */
1088 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1089 2, /* rightshift */
1090 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 12, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_dont, /* complain_on_overflow */
1095 bfd_elf_generic_reloc, /* special_function */
1096 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1097 FALSE, /* partial_inplace */
1098 0xffc, /* src_mask */
1099 0xffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 /* Lower 16 bits of GOT offset for the symbol. */
1103 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1104 0, /* rightshift */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1106 16, /* bitsize */
1107 FALSE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont, /* complain_on_overflow */
1110 bfd_elf_generic_reloc, /* special_function */
1111 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1112 FALSE, /* partial_inplace */
1113 0xffff, /* src_mask */
1114 0xffff, /* dst_mask */
1115 FALSE), /* pcrel_offset */
1116
1117 /* Higher 16 bits of GOT offset for the symbol. */
1118 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1119 16, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 16, /* bitsize */
1122 FALSE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_unsigned, /* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1127 FALSE, /* partial_inplace */
1128 0xffff, /* src_mask */
1129 0xffff, /* dst_mask */
1130 FALSE), /* pcrel_offset */
1131
1132 /* LD64: GOT offset for the symbol. */
1133 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1134 3, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 12, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_unsigned, /* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1142 FALSE, /* partial_inplace */
1143 0x7ff8, /* src_mask */
1144 0x7ff8, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
1147 /* LD32: GOT offset to the page address of GOT table.
1148 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1149 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1150 2, /* rightshift */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 12, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_unsigned, /* complain_on_overflow */
1156 bfd_elf_generic_reloc, /* special_function */
1157 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1158 FALSE, /* partial_inplace */
1159 0x5ffc, /* src_mask */
1160 0x5ffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* LD64: GOT offset to the page address of GOT table.
1164 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1165 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1166 3, /* rightshift */
1167 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 12, /* bitsize */
1169 FALSE, /* pc_relative */
1170 0, /* bitpos */
1171 complain_overflow_unsigned, /* complain_on_overflow */
1172 bfd_elf_generic_reloc, /* special_function */
1173 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1174 FALSE, /* partial_inplace */
1175 0x7ff8, /* src_mask */
1176 0x7ff8, /* dst_mask */
1177 FALSE), /* pcrel_offset */
1178
1179 /* Get to the page for the GOT entry for the symbol
1180 (G(S) - P) using an ADRP instruction. */
1181 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1182 12, /* rightshift */
1183 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 21, /* bitsize */
1185 TRUE, /* pc_relative */
1186 0, /* bitpos */
1187 complain_overflow_dont, /* complain_on_overflow */
1188 bfd_elf_generic_reloc, /* special_function */
1189 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1190 FALSE, /* partial_inplace */
1191 0x1fffff, /* src_mask */
1192 0x1fffff, /* dst_mask */
1193 TRUE), /* pcrel_offset */
1194
1195 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1196 0, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 21, /* bitsize */
1199 TRUE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_dont, /* complain_on_overflow */
1202 bfd_elf_generic_reloc, /* special_function */
1203 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1204 FALSE, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE), /* pcrel_offset */
1208
1209 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1210 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1211 0, /* rightshift */
1212 2, /* size (0 = byte, 1 = short, 2 = long) */
1213 12, /* bitsize */
1214 FALSE, /* pc_relative */
1215 0, /* bitpos */
1216 complain_overflow_dont, /* complain_on_overflow */
1217 bfd_elf_generic_reloc, /* special_function */
1218 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1219 FALSE, /* partial_inplace */
1220 0xfff, /* src_mask */
1221 0xfff, /* dst_mask */
1222 FALSE), /* pcrel_offset */
1223
1224 /* Lower 16 bits of GOT offset to tls_index. */
1225 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 16, /* bitsize */
1229 FALSE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont, /* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1234 FALSE, /* partial_inplace */
1235 0xffff, /* src_mask */
1236 0xffff, /* dst_mask */
1237 FALSE), /* pcrel_offset */
1238
1239 /* Higher 16 bits of GOT offset to tls_index. */
1240 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1241 16, /* rightshift */
1242 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 16, /* bitsize */
1244 FALSE, /* pc_relative */
1245 0, /* bitpos */
1246 complain_overflow_unsigned, /* complain_on_overflow */
1247 bfd_elf_generic_reloc, /* special_function */
1248 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1249 FALSE, /* partial_inplace */
1250 0xffff, /* src_mask */
1251 0xffff, /* dst_mask */
1252 FALSE), /* pcrel_offset */
1253
1254 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1255 12, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 21, /* bitsize */
1258 FALSE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont, /* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1263 FALSE, /* partial_inplace */
1264 0x1fffff, /* src_mask */
1265 0x1fffff, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1269 3, /* rightshift */
1270 2, /* size (0 = byte, 1 = short, 2 = long) */
1271 12, /* bitsize */
1272 FALSE, /* pc_relative */
1273 0, /* bitpos */
1274 complain_overflow_dont, /* complain_on_overflow */
1275 bfd_elf_generic_reloc, /* special_function */
1276 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1277 FALSE, /* partial_inplace */
1278 0xff8, /* src_mask */
1279 0xff8, /* dst_mask */
1280 FALSE), /* pcrel_offset */
1281
1282 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1283 2, /* rightshift */
1284 2, /* size (0 = byte, 1 = short, 2 = long) */
1285 12, /* bitsize */
1286 FALSE, /* pc_relative */
1287 0, /* bitpos */
1288 complain_overflow_dont, /* complain_on_overflow */
1289 bfd_elf_generic_reloc, /* special_function */
1290 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1291 FALSE, /* partial_inplace */
1292 0xffc, /* src_mask */
1293 0xffc, /* dst_mask */
1294 FALSE), /* pcrel_offset */
1295
1296 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1297 2, /* rightshift */
1298 2, /* size (0 = byte, 1 = short, 2 = long) */
1299 19, /* bitsize */
1300 FALSE, /* pc_relative */
1301 0, /* bitpos */
1302 complain_overflow_dont, /* complain_on_overflow */
1303 bfd_elf_generic_reloc, /* special_function */
1304 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1305 FALSE, /* partial_inplace */
1306 0x1ffffc, /* src_mask */
1307 0x1ffffc, /* dst_mask */
1308 FALSE), /* pcrel_offset */
1309
1310 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 16, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
1318 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1319 FALSE, /* partial_inplace */
1320 0xffff, /* src_mask */
1321 0xffff, /* dst_mask */
1322 FALSE), /* pcrel_offset */
1323
1324 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1325 16, /* rightshift */
1326 2, /* size (0 = byte, 1 = short, 2 = long) */
1327 16, /* bitsize */
1328 FALSE, /* pc_relative */
1329 0, /* bitpos */
1330 complain_overflow_unsigned, /* complain_on_overflow */
1331 bfd_elf_generic_reloc, /* special_function */
1332 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1333 FALSE, /* partial_inplace */
1334 0xffff, /* src_mask */
1335 0xffff, /* dst_mask */
1336 FALSE), /* pcrel_offset */
1337
1338 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1339 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1340 12, /* rightshift */
1341 2, /* size (0 = byte, 1 = short, 2 = long) */
1342 12, /* bitsize */
1343 FALSE, /* pc_relative */
1344 0, /* bitpos */
1345 complain_overflow_unsigned, /* complain_on_overflow */
1346 bfd_elf_generic_reloc, /* special_function */
1347 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1348 FALSE, /* partial_inplace */
1349 0xfff, /* src_mask */
1350 0xfff, /* dst_mask */
1351 FALSE), /* pcrel_offset */
1352
1353 /* Unsigned 12 bit byte offset to module TLS base address. */
1354 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1355 0, /* rightshift */
1356 2, /* size (0 = byte, 1 = short, 2 = long) */
1357 12, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_unsigned, /* complain_on_overflow */
1361 bfd_elf_generic_reloc, /* special_function */
1362 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1363 FALSE, /* partial_inplace */
1364 0xfff, /* src_mask */
1365 0xfff, /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1369 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 12, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont, /* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1378 FALSE, /* partial_inplace */
1379 0xfff, /* src_mask */
1380 0xfff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1384 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1385 0, /* rightshift */
1386 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 12, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 bfd_elf_generic_reloc, /* special_function */
1392 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1393 FALSE, /* partial_inplace */
1394 0xfff, /* src_mask */
1395 0xfff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Get to the page for the GOT entry for the symbol
1399 (G(S) - P) using an ADRP instruction. */
1400 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1401 12, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 21, /* bitsize */
1404 TRUE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_signed, /* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1409 FALSE, /* partial_inplace */
1410 0x1fffff, /* src_mask */
1411 0x1fffff, /* dst_mask */
1412 TRUE), /* pcrel_offset */
1413
1414 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 21, /* bitsize */
1418 TRUE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1423 FALSE, /* partial_inplace */
1424 0x1fffff, /* src_mask */
1425 0x1fffff, /* dst_mask */
1426 TRUE), /* pcrel_offset */
1427
1428 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1429 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1430 1, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 11, /* bitsize */
1433 FALSE, /* pc_relative */
1434 10, /* bitpos */
1435 complain_overflow_unsigned, /* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1438 FALSE, /* partial_inplace */
1439 0x1ffc00, /* src_mask */
1440 0x1ffc00, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1444 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1445 1, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 11, /* bitsize */
1448 FALSE, /* pc_relative */
1449 10, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1453 FALSE, /* partial_inplace */
1454 0x1ffc00, /* src_mask */
1455 0x1ffc00, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1459 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1460 2, /* rightshift */
1461 2, /* size (0 = byte, 1 = short, 2 = long) */
1462 10, /* bitsize */
1463 FALSE, /* pc_relative */
1464 10, /* bitpos */
1465 complain_overflow_unsigned, /* complain_on_overflow */
1466 bfd_elf_generic_reloc, /* special_function */
1467 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1468 FALSE, /* partial_inplace */
1469 0x3ffc00, /* src_mask */
1470 0x3ffc00, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1474 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1475 2, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 10, /* bitsize */
1478 FALSE, /* pc_relative */
1479 10, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1483 FALSE, /* partial_inplace */
1484 0xffc00, /* src_mask */
1485 0xffc00, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1489 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1490 3, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 9, /* bitsize */
1493 FALSE, /* pc_relative */
1494 10, /* bitpos */
1495 complain_overflow_unsigned, /* complain_on_overflow */
1496 bfd_elf_generic_reloc, /* special_function */
1497 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1498 FALSE, /* partial_inplace */
1499 0x3ffc00, /* src_mask */
1500 0x3ffc00, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1504 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1505 3, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 9, /* bitsize */
1508 FALSE, /* pc_relative */
1509 10, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1513 FALSE, /* partial_inplace */
1514 0x7fc00, /* src_mask */
1515 0x7fc00, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1519 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 12, /* bitsize */
1523 FALSE, /* pc_relative */
1524 10, /* bitpos */
1525 complain_overflow_unsigned, /* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
1527 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1528 FALSE, /* partial_inplace */
1529 0x3ffc00, /* src_mask */
1530 0x3ffc00, /* dst_mask */
1531 FALSE), /* pcrel_offset */
1532
1533 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1534 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1535 0, /* rightshift */
1536 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 12, /* bitsize */
1538 FALSE, /* pc_relative */
1539 10, /* bitpos */
1540 complain_overflow_dont, /* complain_on_overflow */
1541 bfd_elf_generic_reloc, /* special_function */
1542 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1543 FALSE, /* partial_inplace */
1544 0x3ffc00, /* src_mask */
1545 0x3ffc00, /* dst_mask */
1546 FALSE), /* pcrel_offset */
1547
1548 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1549 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1550 0, /* rightshift */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1552 16, /* bitsize */
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
1555 complain_overflow_unsigned, /* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1558 FALSE, /* partial_inplace */
1559 0xffff, /* src_mask */
1560 0xffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
1562
1563 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1564 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1565 0, /* rightshift */
1566 2, /* size (0 = byte, 1 = short, 2 = long) */
1567 16, /* bitsize */
1568 FALSE, /* pc_relative */
1569 0, /* bitpos */
1570 complain_overflow_dont, /* complain_on_overflow */
1571 bfd_elf_generic_reloc, /* special_function */
1572 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1573 FALSE, /* partial_inplace */
1574 0xffff, /* src_mask */
1575 0xffff, /* dst_mask */
1576 FALSE), /* pcrel_offset */
1577
1578 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1579 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1580 16, /* rightshift */
1581 2, /* size (0 = byte, 1 = short, 2 = long) */
1582 16, /* bitsize */
1583 FALSE, /* pc_relative */
1584 0, /* bitpos */
1585 complain_overflow_unsigned, /* complain_on_overflow */
1586 bfd_elf_generic_reloc, /* special_function */
1587 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1588 FALSE, /* partial_inplace */
1589 0xffff, /* src_mask */
1590 0xffff, /* dst_mask */
1591 FALSE), /* pcrel_offset */
1592
1593 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1594 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1595 16, /* rightshift */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 16, /* bitsize */
1598 FALSE, /* pc_relative */
1599 0, /* bitpos */
1600 complain_overflow_dont, /* complain_on_overflow */
1601 bfd_elf_generic_reloc, /* special_function */
1602 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1603 FALSE, /* partial_inplace */
1604 0xffff, /* src_mask */
1605 0xffff, /* dst_mask */
1606 FALSE), /* pcrel_offset */
1607
1608 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1609 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1610 32, /* rightshift */
1611 2, /* size (0 = byte, 1 = short, 2 = long) */
1612 16, /* bitsize */
1613 FALSE, /* pc_relative */
1614 0, /* bitpos */
1615 complain_overflow_unsigned, /* complain_on_overflow */
1616 bfd_elf_generic_reloc, /* special_function */
1617 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1618 FALSE, /* partial_inplace */
1619 0xffff, /* src_mask */
1620 0xffff, /* dst_mask */
1621 FALSE), /* pcrel_offset */
1622
1623 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1624 32, /* rightshift */
1625 2, /* size (0 = byte, 1 = short, 2 = long) */
1626 16, /* bitsize */
1627 FALSE, /* pc_relative */
1628 0, /* bitpos */
1629 complain_overflow_unsigned, /* complain_on_overflow */
1630 bfd_elf_generic_reloc, /* special_function */
1631 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1632 FALSE, /* partial_inplace */
1633 0xffff, /* src_mask */
1634 0xffff, /* dst_mask */
1635 FALSE), /* pcrel_offset */
1636
1637 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1638 16, /* rightshift */
1639 2, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 bfd_elf_generic_reloc, /* special_function */
1645 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1646 FALSE, /* partial_inplace */
1647 0xffff, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1652 16, /* rightshift */
1653 2, /* size (0 = byte, 1 = short, 2 = long) */
1654 16, /* bitsize */
1655 FALSE, /* pc_relative */
1656 0, /* bitpos */
1657 complain_overflow_dont, /* complain_on_overflow */
1658 bfd_elf_generic_reloc, /* special_function */
1659 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1660 FALSE, /* partial_inplace */
1661 0xffff, /* src_mask */
1662 0xffff, /* dst_mask */
1663 FALSE), /* pcrel_offset */
1664
1665 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1666 0, /* rightshift */
1667 2, /* size (0 = byte, 1 = short, 2 = long) */
1668 16, /* bitsize */
1669 FALSE, /* pc_relative */
1670 0, /* bitpos */
1671 complain_overflow_dont, /* complain_on_overflow */
1672 bfd_elf_generic_reloc, /* special_function */
1673 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1674 FALSE, /* partial_inplace */
1675 0xffff, /* src_mask */
1676 0xffff, /* dst_mask */
1677 FALSE), /* pcrel_offset */
1678
1679 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1680 0, /* rightshift */
1681 2, /* size (0 = byte, 1 = short, 2 = long) */
1682 16, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_dont, /* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1688 FALSE, /* partial_inplace */
1689 0xffff, /* src_mask */
1690 0xffff, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692
1693 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1694 12, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 12, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_unsigned, /* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1702 FALSE, /* partial_inplace */
1703 0xfff, /* src_mask */
1704 0xfff, /* dst_mask */
1705 FALSE), /* pcrel_offset */
1706
1707 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1708 0, /* rightshift */
1709 2, /* size (0 = byte, 1 = short, 2 = long) */
1710 12, /* bitsize */
1711 FALSE, /* pc_relative */
1712 0, /* bitpos */
1713 complain_overflow_unsigned, /* complain_on_overflow */
1714 bfd_elf_generic_reloc, /* special_function */
1715 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1716 FALSE, /* partial_inplace */
1717 0xfff, /* src_mask */
1718 0xfff, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1722 0, /* rightshift */
1723 2, /* size (0 = byte, 1 = short, 2 = long) */
1724 12, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_dont, /* complain_on_overflow */
1728 bfd_elf_generic_reloc, /* special_function */
1729 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1730 FALSE, /* partial_inplace */
1731 0xfff, /* src_mask */
1732 0xfff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1736 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1737 1, /* rightshift */
1738 2, /* size (0 = byte, 1 = short, 2 = long) */
1739 11, /* bitsize */
1740 FALSE, /* pc_relative */
1741 10, /* bitpos */
1742 complain_overflow_unsigned, /* complain_on_overflow */
1743 bfd_elf_generic_reloc, /* special_function */
1744 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1745 FALSE, /* partial_inplace */
1746 0x1ffc00, /* src_mask */
1747 0x1ffc00, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1751 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1752 1, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 11, /* bitsize */
1755 FALSE, /* pc_relative */
1756 10, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1760 FALSE, /* partial_inplace */
1761 0x1ffc00, /* src_mask */
1762 0x1ffc00, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1766 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1767 2, /* rightshift */
1768 2, /* size (0 = byte, 1 = short, 2 = long) */
1769 10, /* bitsize */
1770 FALSE, /* pc_relative */
1771 10, /* bitpos */
1772 complain_overflow_unsigned, /* complain_on_overflow */
1773 bfd_elf_generic_reloc, /* special_function */
1774 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1775 FALSE, /* partial_inplace */
1776 0xffc00, /* src_mask */
1777 0xffc00, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1781 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1782 2, /* rightshift */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1784 10, /* bitsize */
1785 FALSE, /* pc_relative */
1786 10, /* bitpos */
1787 complain_overflow_dont, /* complain_on_overflow */
1788 bfd_elf_generic_reloc, /* special_function */
1789 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1790 FALSE, /* partial_inplace */
1791 0xffc00, /* src_mask */
1792 0xffc00, /* dst_mask */
1793 FALSE), /* pcrel_offset */
1794
1795 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1796 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1797 3, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 9, /* bitsize */
1800 FALSE, /* pc_relative */
1801 10, /* bitpos */
1802 complain_overflow_unsigned, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1805 FALSE, /* partial_inplace */
1806 0x7fc00, /* src_mask */
1807 0x7fc00, /* dst_mask */
1808 FALSE), /* pcrel_offset */
1809
1810 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1811 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1812 3, /* rightshift */
1813 2, /* size (0 = byte, 1 = short, 2 = long) */
1814 9, /* bitsize */
1815 FALSE, /* pc_relative */
1816 10, /* bitpos */
1817 complain_overflow_dont, /* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1820 FALSE, /* partial_inplace */
1821 0x7fc00, /* src_mask */
1822 0x7fc00, /* dst_mask */
1823 FALSE), /* pcrel_offset */
1824
1825 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1826 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1827 0, /* rightshift */
1828 2, /* size (0 = byte, 1 = short, 2 = long) */
1829 12, /* bitsize */
1830 FALSE, /* pc_relative */
1831 10, /* bitpos */
1832 complain_overflow_unsigned, /* complain_on_overflow */
1833 bfd_elf_generic_reloc, /* special_function */
1834 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1835 FALSE, /* partial_inplace */
1836 0x3ffc00, /* src_mask */
1837 0x3ffc00, /* dst_mask */
1838 FALSE), /* pcrel_offset */
1839
1840 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1841 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1842 0, /* rightshift */
1843 2, /* size (0 = byte, 1 = short, 2 = long) */
1844 12, /* bitsize */
1845 FALSE, /* pc_relative */
1846 10, /* bitpos */
1847 complain_overflow_dont, /* complain_on_overflow */
1848 bfd_elf_generic_reloc, /* special_function */
1849 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1850 FALSE, /* partial_inplace */
1851 0x3ffc00, /* src_mask */
1852 0x3ffc00, /* dst_mask */
1853 FALSE), /* pcrel_offset */
1854
1855 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1856 2, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 19, /* bitsize */
1859 TRUE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_dont, /* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1864 FALSE, /* partial_inplace */
1865 0x0ffffe0, /* src_mask */
1866 0x0ffffe0, /* dst_mask */
1867 TRUE), /* pcrel_offset */
1868
1869 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1870 0, /* rightshift */
1871 2, /* size (0 = byte, 1 = short, 2 = long) */
1872 21, /* bitsize */
1873 TRUE, /* pc_relative */
1874 0, /* bitpos */
1875 complain_overflow_dont, /* complain_on_overflow */
1876 bfd_elf_generic_reloc, /* special_function */
1877 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1878 FALSE, /* partial_inplace */
1879 0x1fffff, /* src_mask */
1880 0x1fffff, /* dst_mask */
1881 TRUE), /* pcrel_offset */
1882
1883 /* Get to the page for the GOT entry for the symbol
1884 (G(S) - P) using an ADRP instruction. */
1885 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1886 12, /* rightshift */
1887 2, /* size (0 = byte, 1 = short, 2 = long) */
1888 21, /* bitsize */
1889 TRUE, /* pc_relative */
1890 0, /* bitpos */
1891 complain_overflow_dont, /* complain_on_overflow */
1892 bfd_elf_generic_reloc, /* special_function */
1893 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1894 FALSE, /* partial_inplace */
1895 0x1fffff, /* src_mask */
1896 0x1fffff, /* dst_mask */
1897 TRUE), /* pcrel_offset */
1898
1899 /* LD64: GOT offset G(S) & 0xff8. */
1900 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1901 3, /* rightshift */
1902 2, /* size (0 = byte, 1 = short, 2 = long) */
1903 12, /* bitsize */
1904 FALSE, /* pc_relative */
1905 0, /* bitpos */
1906 complain_overflow_dont, /* complain_on_overflow */
1907 bfd_elf_generic_reloc, /* special_function */
1908 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1909 FALSE, /* partial_inplace */
1910 0xff8, /* src_mask */
1911 0xff8, /* dst_mask */
1912 FALSE), /* pcrel_offset */
1913
1914 /* LD32: GOT offset G(S) & 0xffc. */
1915 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1916 2, /* rightshift */
1917 2, /* size (0 = byte, 1 = short, 2 = long) */
1918 12, /* bitsize */
1919 FALSE, /* pc_relative */
1920 0, /* bitpos */
1921 complain_overflow_dont, /* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1924 FALSE, /* partial_inplace */
1925 0xffc, /* src_mask */
1926 0xffc, /* dst_mask */
1927 FALSE), /* pcrel_offset */
1928
1929 /* ADD: GOT offset G(S) & 0xfff. */
1930 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1931 0, /* rightshift */
1932 2, /* size (0 = byte, 1 = short, 2 = long) */
1933 12, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont,/* complain_on_overflow */
1937 bfd_elf_generic_reloc, /* special_function */
1938 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1939 FALSE, /* partial_inplace */
1940 0xfff, /* src_mask */
1941 0xfff, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1945 16, /* rightshift */
1946 2, /* size (0 = byte, 1 = short, 2 = long) */
1947 12, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_unsigned, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1953 FALSE, /* partial_inplace */
1954 0xffff, /* src_mask */
1955 0xffff, /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1959 0, /* rightshift */
1960 2, /* size (0 = byte, 1 = short, 2 = long) */
1961 12, /* bitsize */
1962 FALSE, /* pc_relative */
1963 0, /* bitpos */
1964 complain_overflow_dont, /* complain_on_overflow */
1965 bfd_elf_generic_reloc, /* special_function */
1966 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1967 FALSE, /* partial_inplace */
1968 0xffff, /* src_mask */
1969 0xffff, /* dst_mask */
1970 FALSE), /* pcrel_offset */
1971
1972 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1973 0, /* rightshift */
1974 2, /* size (0 = byte, 1 = short, 2 = long) */
1975 12, /* bitsize */
1976 FALSE, /* pc_relative */
1977 0, /* bitpos */
1978 complain_overflow_dont, /* complain_on_overflow */
1979 bfd_elf_generic_reloc, /* special_function */
1980 AARCH64_R_STR (TLSDESC_LDR), /* name */
1981 FALSE, /* partial_inplace */
1982 0x0, /* src_mask */
1983 0x0, /* dst_mask */
1984 FALSE), /* pcrel_offset */
1985
1986 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1987 0, /* rightshift */
1988 2, /* size (0 = byte, 1 = short, 2 = long) */
1989 12, /* bitsize */
1990 FALSE, /* pc_relative */
1991 0, /* bitpos */
1992 complain_overflow_dont, /* complain_on_overflow */
1993 bfd_elf_generic_reloc, /* special_function */
1994 AARCH64_R_STR (TLSDESC_ADD), /* name */
1995 FALSE, /* partial_inplace */
1996 0x0, /* src_mask */
1997 0x0, /* dst_mask */
1998 FALSE), /* pcrel_offset */
1999
2000 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
2001 0, /* rightshift */
2002 2, /* size (0 = byte, 1 = short, 2 = long) */
2003 0, /* bitsize */
2004 FALSE, /* pc_relative */
2005 0, /* bitpos */
2006 complain_overflow_dont, /* complain_on_overflow */
2007 bfd_elf_generic_reloc, /* special_function */
2008 AARCH64_R_STR (TLSDESC_CALL), /* name */
2009 FALSE, /* partial_inplace */
2010 0x0, /* src_mask */
2011 0x0, /* dst_mask */
2012 FALSE), /* pcrel_offset */
2013
2014 HOWTO (AARCH64_R (COPY), /* type */
2015 0, /* rightshift */
2016 2, /* size (0 = byte, 1 = short, 2 = long) */
2017 64, /* bitsize */
2018 FALSE, /* pc_relative */
2019 0, /* bitpos */
2020 complain_overflow_bitfield, /* complain_on_overflow */
2021 bfd_elf_generic_reloc, /* special_function */
2022 AARCH64_R_STR (COPY), /* name */
2023 TRUE, /* partial_inplace */
2024 0xffffffff, /* src_mask */
2025 0xffffffff, /* dst_mask */
2026 FALSE), /* pcrel_offset */
2027
2028 HOWTO (AARCH64_R (GLOB_DAT), /* type */
2029 0, /* rightshift */
2030 2, /* size (0 = byte, 1 = short, 2 = long) */
2031 64, /* bitsize */
2032 FALSE, /* pc_relative */
2033 0, /* bitpos */
2034 complain_overflow_bitfield, /* complain_on_overflow */
2035 bfd_elf_generic_reloc, /* special_function */
2036 AARCH64_R_STR (GLOB_DAT), /* name */
2037 TRUE, /* partial_inplace */
2038 0xffffffff, /* src_mask */
2039 0xffffffff, /* dst_mask */
2040 FALSE), /* pcrel_offset */
2041
2042 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
2043 0, /* rightshift */
2044 2, /* size (0 = byte, 1 = short, 2 = long) */
2045 64, /* bitsize */
2046 FALSE, /* pc_relative */
2047 0, /* bitpos */
2048 complain_overflow_bitfield, /* complain_on_overflow */
2049 bfd_elf_generic_reloc, /* special_function */
2050 AARCH64_R_STR (JUMP_SLOT), /* name */
2051 TRUE, /* partial_inplace */
2052 0xffffffff, /* src_mask */
2053 0xffffffff, /* dst_mask */
2054 FALSE), /* pcrel_offset */
2055
2056 HOWTO (AARCH64_R (RELATIVE), /* type */
2057 0, /* rightshift */
2058 2, /* size (0 = byte, 1 = short, 2 = long) */
2059 64, /* bitsize */
2060 FALSE, /* pc_relative */
2061 0, /* bitpos */
2062 complain_overflow_bitfield, /* complain_on_overflow */
2063 bfd_elf_generic_reloc, /* special_function */
2064 AARCH64_R_STR (RELATIVE), /* name */
2065 TRUE, /* partial_inplace */
2066 ALL_ONES, /* src_mask */
2067 ALL_ONES, /* dst_mask */
2068 FALSE), /* pcrel_offset */
2069
2070 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
2071 0, /* rightshift */
2072 2, /* size (0 = byte, 1 = short, 2 = long) */
2073 64, /* bitsize */
2074 FALSE, /* pc_relative */
2075 0, /* bitpos */
2076 complain_overflow_dont, /* complain_on_overflow */
2077 bfd_elf_generic_reloc, /* special_function */
2078 #if ARCH_SIZE == 64
2079 AARCH64_R_STR (TLS_DTPMOD64), /* name */
2080 #else
2081 AARCH64_R_STR (TLS_DTPMOD), /* name */
2082 #endif
2083 FALSE, /* partial_inplace */
2084 0, /* src_mask */
2085 ALL_ONES, /* dst_mask */
2086 FALSE), /* pc_reloffset */
2087
2088 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2089 0, /* rightshift */
2090 2, /* size (0 = byte, 1 = short, 2 = long) */
2091 64, /* bitsize */
2092 FALSE, /* pc_relative */
2093 0, /* bitpos */
2094 complain_overflow_dont, /* complain_on_overflow */
2095 bfd_elf_generic_reloc, /* special_function */
2096 #if ARCH_SIZE == 64
2097 AARCH64_R_STR (TLS_DTPREL64), /* name */
2098 #else
2099 AARCH64_R_STR (TLS_DTPREL), /* name */
2100 #endif
2101 FALSE, /* partial_inplace */
2102 0, /* src_mask */
2103 ALL_ONES, /* dst_mask */
2104 FALSE), /* pcrel_offset */
2105
2106 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2107 0, /* rightshift */
2108 2, /* size (0 = byte, 1 = short, 2 = long) */
2109 64, /* bitsize */
2110 FALSE, /* pc_relative */
2111 0, /* bitpos */
2112 complain_overflow_dont, /* complain_on_overflow */
2113 bfd_elf_generic_reloc, /* special_function */
2114 #if ARCH_SIZE == 64
2115 AARCH64_R_STR (TLS_TPREL64), /* name */
2116 #else
2117 AARCH64_R_STR (TLS_TPREL), /* name */
2118 #endif
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ALL_ONES, /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 HOWTO (AARCH64_R (TLSDESC), /* type */
2125 0, /* rightshift */
2126 2, /* size (0 = byte, 1 = short, 2 = long) */
2127 64, /* bitsize */
2128 FALSE, /* pc_relative */
2129 0, /* bitpos */
2130 complain_overflow_dont, /* complain_on_overflow */
2131 bfd_elf_generic_reloc, /* special_function */
2132 AARCH64_R_STR (TLSDESC), /* name */
2133 FALSE, /* partial_inplace */
2134 0, /* src_mask */
2135 ALL_ONES, /* dst_mask */
2136 FALSE), /* pcrel_offset */
2137
2138 HOWTO (AARCH64_R (IRELATIVE), /* type */
2139 0, /* rightshift */
2140 2, /* size (0 = byte, 1 = short, 2 = long) */
2141 64, /* bitsize */
2142 FALSE, /* pc_relative */
2143 0, /* bitpos */
2144 complain_overflow_bitfield, /* complain_on_overflow */
2145 bfd_elf_generic_reloc, /* special_function */
2146 AARCH64_R_STR (IRELATIVE), /* name */
2147 FALSE, /* partial_inplace */
2148 0, /* src_mask */
2149 ALL_ONES, /* dst_mask */
2150 FALSE), /* pcrel_offset */
2151
2152 EMPTY_HOWTO (0),
2153 };
2154
2155 static reloc_howto_type elfNN_aarch64_howto_none =
2156 HOWTO (R_AARCH64_NONE, /* type */
2157 0, /* rightshift */
2158 3, /* size (0 = byte, 1 = short, 2 = long) */
2159 0, /* bitsize */
2160 FALSE, /* pc_relative */
2161 0, /* bitpos */
2162 complain_overflow_dont,/* complain_on_overflow */
2163 bfd_elf_generic_reloc, /* special_function */
2164 "R_AARCH64_NONE", /* name */
2165 FALSE, /* partial_inplace */
2166 0, /* src_mask */
2167 0, /* dst_mask */
2168 FALSE); /* pcrel_offset */
2169
2170 /* Given HOWTO, return the bfd internal relocation enumerator. */
2171
2172 static bfd_reloc_code_real_type
2173 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2174 {
2175 const int size
2176 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2177 const ptrdiff_t offset
2178 = howto - elfNN_aarch64_howto_table;
2179
2180 if (offset > 0 && offset < size - 1)
2181 return BFD_RELOC_AARCH64_RELOC_START + offset;
2182
2183 if (howto == &elfNN_aarch64_howto_none)
2184 return BFD_RELOC_AARCH64_NONE;
2185
2186 return BFD_RELOC_AARCH64_RELOC_START;
2187 }
2188
2189 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2190
2191 static bfd_reloc_code_real_type
2192 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2193 {
2194 static bfd_boolean initialized_p = FALSE;
2195 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2196 static unsigned int offsets[R_AARCH64_end];
2197
2198 if (!initialized_p)
2199 {
2200 unsigned int i;
2201
2202 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2203 if (elfNN_aarch64_howto_table[i].type != 0)
2204 offsets[elfNN_aarch64_howto_table[i].type] = i;
2205
2206 initialized_p = TRUE;
2207 }
2208
2209 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2210 return BFD_RELOC_AARCH64_NONE;
2211
2212 /* PR 17512: file: b371e70a. */
2213 if (r_type >= R_AARCH64_end)
2214 {
2215 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2216 abfd, r_type);
2217 bfd_set_error (bfd_error_bad_value);
2218 return BFD_RELOC_AARCH64_NONE;
2219 }
2220
2221 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2222 }
2223
2224 struct elf_aarch64_reloc_map
2225 {
2226 bfd_reloc_code_real_type from;
2227 bfd_reloc_code_real_type to;
2228 };
2229
2230 /* Map bfd generic reloc to AArch64-specific reloc. */
2231 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2232 {
2233 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2234
2235 /* Basic data relocations. */
2236 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2237 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2238 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2239 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2240 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2241 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2242 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2243 };
2244
2245 /* Given the bfd internal relocation enumerator in CODE, return the
2246 corresponding howto entry. */
2247
2248 static reloc_howto_type *
2249 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2250 {
2251 unsigned int i;
2252
2253 /* Convert bfd generic reloc to AArch64-specific reloc. */
2254 if (code < BFD_RELOC_AARCH64_RELOC_START
2255 || code > BFD_RELOC_AARCH64_RELOC_END)
2256 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2257 if (elf_aarch64_reloc_map[i].from == code)
2258 {
2259 code = elf_aarch64_reloc_map[i].to;
2260 break;
2261 }
2262
2263 if (code > BFD_RELOC_AARCH64_RELOC_START
2264 && code < BFD_RELOC_AARCH64_RELOC_END)
2265 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2266 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2267
2268 if (code == BFD_RELOC_AARCH64_NONE)
2269 return &elfNN_aarch64_howto_none;
2270
2271 return NULL;
2272 }
2273
2274 static reloc_howto_type *
2275 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2276 {
2277 bfd_reloc_code_real_type val;
2278 reloc_howto_type *howto;
2279
2280 #if ARCH_SIZE == 32
2281 if (r_type > 256)
2282 {
2283 bfd_set_error (bfd_error_bad_value);
2284 return NULL;
2285 }
2286 #endif
2287
2288 if (r_type == R_AARCH64_NONE)
2289 return &elfNN_aarch64_howto_none;
2290
2291 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2292 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2293
2294 if (howto != NULL)
2295 return howto;
2296
2297 bfd_set_error (bfd_error_bad_value);
2298 return NULL;
2299 }
2300
2301 static bfd_boolean
2302 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2303 Elf_Internal_Rela *elf_reloc)
2304 {
2305 unsigned int r_type;
2306
2307 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2308 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2309
2310 if (bfd_reloc->howto == NULL)
2311 {
2312 /* xgettext:c-format */
2313 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2314 return FALSE;
2315 }
2316 return TRUE;
2317 }
2318
2319 static reloc_howto_type *
2320 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2321 bfd_reloc_code_real_type code)
2322 {
2323 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2324
2325 if (howto != NULL)
2326 return howto;
2327
2328 bfd_set_error (bfd_error_bad_value);
2329 return NULL;
2330 }
2331
2332 static reloc_howto_type *
2333 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2334 const char *r_name)
2335 {
2336 unsigned int i;
2337
2338 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2339 if (elfNN_aarch64_howto_table[i].name != NULL
2340 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2341 return &elfNN_aarch64_howto_table[i];
2342
2343 return NULL;
2344 }
2345
2346 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2347 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2348 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2349 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2350
2351 /* The linker script knows the section names for placement.
2352 The entry_names are used to do simple name mangling on the stubs.
2353 Given a function name, and its type, the stub can be found. The
2354 name can be changed. The only requirement is the %s be present. */
2355 #define STUB_ENTRY_NAME "__%s_veneer"
2356
2357 /* The name of the dynamic interpreter. This is put in the .interp
2358 section. */
2359 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2360
2361 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2362 (((1 << 25) - 1) << 2)
2363 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2364 (-((1 << 25) << 2))
2365
2366 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2367 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2368
2369 static int
2370 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2371 {
2372 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2373 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2374 }
2375
2376 static int
2377 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2378 {
2379 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2380 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2381 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2382 }
2383
2384 static const uint32_t aarch64_adrp_branch_stub [] =
2385 {
2386 0x90000010, /* adrp ip0, X */
2387 /* R_AARCH64_ADR_HI21_PCREL(X) */
2388 0x91000210, /* add ip0, ip0, :lo12:X */
2389 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2390 0xd61f0200, /* br ip0 */
2391 };
2392
2393 static const uint32_t aarch64_long_branch_stub[] =
2394 {
2395 #if ARCH_SIZE == 64
2396 0x58000090, /* ldr ip0, 1f */
2397 #else
2398 0x18000090, /* ldr wip0, 1f */
2399 #endif
2400 0x10000011, /* adr ip1, #0 */
2401 0x8b110210, /* add ip0, ip0, ip1 */
2402 0xd61f0200, /* br ip0 */
2403 0x00000000, /* 1: .xword or .word
2404 R_AARCH64_PRELNN(X) + 12
2405 */
2406 0x00000000,
2407 };
2408
2409 static const uint32_t aarch64_erratum_835769_stub[] =
2410 {
2411 0x00000000, /* Placeholder for multiply accumulate. */
2412 0x14000000, /* b <label> */
2413 };
2414
2415 static const uint32_t aarch64_erratum_843419_stub[] =
2416 {
2417 0x00000000, /* Placeholder for LDR instruction. */
2418 0x14000000, /* b <label> */
2419 };
2420
2421 /* Section name for stubs is the associated section name plus this
2422 string. */
2423 #define STUB_SUFFIX ".stub"
2424
2425 enum elf_aarch64_stub_type
2426 {
2427 aarch64_stub_none,
2428 aarch64_stub_adrp_branch,
2429 aarch64_stub_long_branch,
2430 aarch64_stub_erratum_835769_veneer,
2431 aarch64_stub_erratum_843419_veneer,
2432 };
2433
2434 struct elf_aarch64_stub_hash_entry
2435 {
2436 /* Base hash table entry structure. */
2437 struct bfd_hash_entry root;
2438
2439 /* The stub section. */
2440 asection *stub_sec;
2441
2442 /* Offset within stub_sec of the beginning of this stub. */
2443 bfd_vma stub_offset;
2444
2445 /* Given the symbol's value and its section we can determine its final
2446 value when building the stubs (so the stub knows where to jump). */
2447 bfd_vma target_value;
2448 asection *target_section;
2449
2450 enum elf_aarch64_stub_type stub_type;
2451
2452 /* The symbol table entry, if any, that this was derived from. */
2453 struct elf_aarch64_link_hash_entry *h;
2454
2455 /* Destination symbol type */
2456 unsigned char st_type;
2457
2458 /* Where this stub is being called from, or, in the case of combined
2459 stub sections, the first input section in the group. */
2460 asection *id_sec;
2461
2462 /* The name for the local symbol at the start of this stub. The
2463 stub name in the hash table has to be unique; this does not, so
2464 it can be friendlier. */
2465 char *output_name;
2466
2467 /* The instruction which caused this stub to be generated (only valid for
2468 erratum 835769 workaround stubs at present). */
2469 uint32_t veneered_insn;
2470
2471 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2472 bfd_vma adrp_offset;
2473 };
2474
2475 /* Used to build a map of a section. This is required for mixed-endian
2476 code/data. */
2477
2478 typedef struct elf_elf_section_map
2479 {
2480 bfd_vma vma;
2481 char type;
2482 }
2483 elf_aarch64_section_map;
2484
2485
2486 typedef struct _aarch64_elf_section_data
2487 {
2488 struct bfd_elf_section_data elf;
2489 unsigned int mapcount;
2490 unsigned int mapsize;
2491 elf_aarch64_section_map *map;
2492 }
2493 _aarch64_elf_section_data;
2494
2495 #define elf_aarch64_section_data(sec) \
2496 ((_aarch64_elf_section_data *) elf_section_data (sec))
2497
2498 /* The size of the thread control block which is defined to be two pointers. */
2499 #define TCB_SIZE (ARCH_SIZE/8)*2
2500
2501 struct elf_aarch64_local_symbol
2502 {
2503 unsigned int got_type;
2504 bfd_signed_vma got_refcount;
2505 bfd_vma got_offset;
2506
2507 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2508 offset is from the end of the jump table and reserved entries
2509 within the PLTGOT.
2510
2511 The magic value (bfd_vma) -1 indicates that an offset has not be
2512 allocated. */
2513 bfd_vma tlsdesc_got_jump_table_offset;
2514 };
2515
2516 struct elf_aarch64_obj_tdata
2517 {
2518 struct elf_obj_tdata root;
2519
2520 /* local symbol descriptors */
2521 struct elf_aarch64_local_symbol *locals;
2522
2523 /* Zero to warn when linking objects with incompatible enum sizes. */
2524 int no_enum_size_warning;
2525
2526 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2527 int no_wchar_size_warning;
2528
2529 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2530 uint32_t gnu_and_prop;
2531
2532 /* Zero to warn when linking objects with incompatible
2533 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2534 int no_bti_warn;
2535
2536 /* PLT type based on security. */
2537 aarch64_plt_type plt_type;
2538 };
2539
2540 #define elf_aarch64_tdata(bfd) \
2541 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2542
2543 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2544
2545 #define is_aarch64_elf(bfd) \
2546 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2547 && elf_tdata (bfd) != NULL \
2548 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2549
2550 static bfd_boolean
2551 elfNN_aarch64_mkobject (bfd *abfd)
2552 {
2553 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2554 AARCH64_ELF_DATA);
2555 }
2556
2557 #define elf_aarch64_hash_entry(ent) \
2558 ((struct elf_aarch64_link_hash_entry *)(ent))
2559
2560 #define GOT_UNKNOWN 0
2561 #define GOT_NORMAL 1
2562 #define GOT_TLS_GD 2
2563 #define GOT_TLS_IE 4
2564 #define GOT_TLSDESC_GD 8
2565
2566 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2567
2568 /* AArch64 ELF linker hash entry. */
2569 struct elf_aarch64_link_hash_entry
2570 {
2571 struct elf_link_hash_entry root;
2572
2573 /* Since PLT entries have variable size, we need to record the
2574 index into .got.plt instead of recomputing it from the PLT
2575 offset. */
2576 bfd_signed_vma plt_got_offset;
2577
2578 /* Bit mask representing the type of GOT entry(s) if any required by
2579 this symbol. */
2580 unsigned int got_type;
2581
2582 /* A pointer to the most recently used stub hash entry against this
2583 symbol. */
2584 struct elf_aarch64_stub_hash_entry *stub_cache;
2585
2586 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2587 is from the end of the jump table and reserved entries within the PLTGOT.
2588
2589 The magic value (bfd_vma) -1 indicates that an offset has not
2590 be allocated. */
2591 bfd_vma tlsdesc_got_jump_table_offset;
2592 };
2593
2594 static unsigned int
2595 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2596 bfd *abfd,
2597 unsigned long r_symndx)
2598 {
2599 if (h)
2600 return elf_aarch64_hash_entry (h)->got_type;
2601
2602 if (! elf_aarch64_locals (abfd))
2603 return GOT_UNKNOWN;
2604
2605 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2606 }
2607
2608 /* Get the AArch64 elf linker hash table from a link_info structure. */
2609 #define elf_aarch64_hash_table(info) \
2610 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2611
2612 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2613 ((struct elf_aarch64_stub_hash_entry *) \
2614 bfd_hash_lookup ((table), (string), (create), (copy)))
2615
2616 /* AArch64 ELF linker hash table. */
2617 struct elf_aarch64_link_hash_table
2618 {
2619 /* The main hash table. */
2620 struct elf_link_hash_table root;
2621
2622 /* Nonzero to force PIC branch veneers. */
2623 int pic_veneer;
2624
2625 /* Fix erratum 835769. */
2626 int fix_erratum_835769;
2627
2628 /* Fix erratum 843419. */
2629 erratum_84319_opts fix_erratum_843419;
2630
2631 /* Don't apply link-time values for dynamic relocations. */
2632 int no_apply_dynamic_relocs;
2633
2634 /* The number of bytes in the initial entry in the PLT. */
2635 bfd_size_type plt_header_size;
2636
2637 /* The bytes of the initial PLT entry. */
2638 const bfd_byte *plt0_entry;
2639
2640 /* The number of bytes in the subsequent PLT entries. */
2641 bfd_size_type plt_entry_size;
2642
2643 /* The bytes of the subsequent PLT entry. */
2644 const bfd_byte *plt_entry;
2645
2646 /* Small local sym cache. */
2647 struct sym_cache sym_cache;
2648
2649 /* For convenience in allocate_dynrelocs. */
2650 bfd *obfd;
2651
2652 /* The amount of space used by the reserved portion of the sgotplt
2653 section, plus whatever space is used by the jump slots. */
2654 bfd_vma sgotplt_jump_table_size;
2655
2656 /* The stub hash table. */
2657 struct bfd_hash_table stub_hash_table;
2658
2659 /* Linker stub bfd. */
2660 bfd *stub_bfd;
2661
2662 /* Linker call-backs. */
2663 asection *(*add_stub_section) (const char *, asection *);
2664 void (*layout_sections_again) (void);
2665
2666 /* Array to keep track of which stub sections have been created, and
2667 information on stub grouping. */
2668 struct map_stub
2669 {
2670 /* This is the section to which stubs in the group will be
2671 attached. */
2672 asection *link_sec;
2673 /* The stub section. */
2674 asection *stub_sec;
2675 } *stub_group;
2676
2677 /* Assorted information used by elfNN_aarch64_size_stubs. */
2678 unsigned int bfd_count;
2679 unsigned int top_index;
2680 asection **input_list;
2681
2682 /* JUMP_SLOT relocs for variant PCS symbols may be present. */
2683 int variant_pcs;
2684
2685 /* The offset into splt of the PLT entry for the TLS descriptor
2686 resolver. Special values are 0, if not necessary (or not found
2687 to be necessary yet), and -1 if needed but not determined
2688 yet. */
2689 bfd_vma tlsdesc_plt;
2690
2691 /* The number of bytes in the PLT enty for the TLS descriptor. */
2692 bfd_size_type tlsdesc_plt_entry_size;
2693
2694 /* The GOT offset for the lazy trampoline. Communicated to the
2695 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2696 indicates an offset is not allocated. */
2697 bfd_vma dt_tlsdesc_got;
2698
2699 /* Used by local STT_GNU_IFUNC symbols. */
2700 htab_t loc_hash_table;
2701 void * loc_hash_memory;
2702 };
2703
2704 /* Create an entry in an AArch64 ELF linker hash table. */
2705
2706 static struct bfd_hash_entry *
2707 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2708 struct bfd_hash_table *table,
2709 const char *string)
2710 {
2711 struct elf_aarch64_link_hash_entry *ret =
2712 (struct elf_aarch64_link_hash_entry *) entry;
2713
2714 /* Allocate the structure if it has not already been allocated by a
2715 subclass. */
2716 if (ret == NULL)
2717 ret = bfd_hash_allocate (table,
2718 sizeof (struct elf_aarch64_link_hash_entry));
2719 if (ret == NULL)
2720 return (struct bfd_hash_entry *) ret;
2721
2722 /* Call the allocation method of the superclass. */
2723 ret = ((struct elf_aarch64_link_hash_entry *)
2724 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2725 table, string));
2726 if (ret != NULL)
2727 {
2728 ret->got_type = GOT_UNKNOWN;
2729 ret->plt_got_offset = (bfd_vma) - 1;
2730 ret->stub_cache = NULL;
2731 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2732 }
2733
2734 return (struct bfd_hash_entry *) ret;
2735 }
2736
2737 /* Initialize an entry in the stub hash table. */
2738
2739 static struct bfd_hash_entry *
2740 stub_hash_newfunc (struct bfd_hash_entry *entry,
2741 struct bfd_hash_table *table, const char *string)
2742 {
2743 /* Allocate the structure if it has not already been allocated by a
2744 subclass. */
2745 if (entry == NULL)
2746 {
2747 entry = bfd_hash_allocate (table,
2748 sizeof (struct
2749 elf_aarch64_stub_hash_entry));
2750 if (entry == NULL)
2751 return entry;
2752 }
2753
2754 /* Call the allocation method of the superclass. */
2755 entry = bfd_hash_newfunc (entry, table, string);
2756 if (entry != NULL)
2757 {
2758 struct elf_aarch64_stub_hash_entry *eh;
2759
2760 /* Initialize the local fields. */
2761 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2762 eh->adrp_offset = 0;
2763 eh->stub_sec = NULL;
2764 eh->stub_offset = 0;
2765 eh->target_value = 0;
2766 eh->target_section = NULL;
2767 eh->stub_type = aarch64_stub_none;
2768 eh->h = NULL;
2769 eh->id_sec = NULL;
2770 }
2771
2772 return entry;
2773 }
2774
2775 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2776 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2777 as global symbol. We reuse indx and dynstr_index for local symbol
2778 hash since they aren't used by global symbols in this backend. */
2779
2780 static hashval_t
2781 elfNN_aarch64_local_htab_hash (const void *ptr)
2782 {
2783 struct elf_link_hash_entry *h
2784 = (struct elf_link_hash_entry *) ptr;
2785 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2786 }
2787
2788 /* Compare local hash entries. */
2789
2790 static int
2791 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2792 {
2793 struct elf_link_hash_entry *h1
2794 = (struct elf_link_hash_entry *) ptr1;
2795 struct elf_link_hash_entry *h2
2796 = (struct elf_link_hash_entry *) ptr2;
2797
2798 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2799 }
2800
2801 /* Find and/or create a hash entry for local symbol. */
2802
2803 static struct elf_link_hash_entry *
2804 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2805 bfd *abfd, const Elf_Internal_Rela *rel,
2806 bfd_boolean create)
2807 {
2808 struct elf_aarch64_link_hash_entry e, *ret;
2809 asection *sec = abfd->sections;
2810 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2811 ELFNN_R_SYM (rel->r_info));
2812 void **slot;
2813
2814 e.root.indx = sec->id;
2815 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2816 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2817 create ? INSERT : NO_INSERT);
2818
2819 if (!slot)
2820 return NULL;
2821
2822 if (*slot)
2823 {
2824 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2825 return &ret->root;
2826 }
2827
2828 ret = (struct elf_aarch64_link_hash_entry *)
2829 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2830 sizeof (struct elf_aarch64_link_hash_entry));
2831 if (ret)
2832 {
2833 memset (ret, 0, sizeof (*ret));
2834 ret->root.indx = sec->id;
2835 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2836 ret->root.dynindx = -1;
2837 *slot = ret;
2838 }
2839 return &ret->root;
2840 }
2841
2842 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2843
2844 static void
2845 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2846 struct elf_link_hash_entry *dir,
2847 struct elf_link_hash_entry *ind)
2848 {
2849 struct elf_aarch64_link_hash_entry *edir, *eind;
2850
2851 edir = (struct elf_aarch64_link_hash_entry *) dir;
2852 eind = (struct elf_aarch64_link_hash_entry *) ind;
2853
2854 if (ind->dyn_relocs != NULL)
2855 {
2856 if (dir->dyn_relocs != NULL)
2857 {
2858 struct elf_dyn_relocs **pp;
2859 struct elf_dyn_relocs *p;
2860
2861 /* Add reloc counts against the indirect sym to the direct sym
2862 list. Merge any entries against the same section. */
2863 for (pp = &ind->dyn_relocs; (p = *pp) != NULL;)
2864 {
2865 struct elf_dyn_relocs *q;
2866
2867 for (q = dir->dyn_relocs; q != NULL; q = q->next)
2868 if (q->sec == p->sec)
2869 {
2870 q->pc_count += p->pc_count;
2871 q->count += p->count;
2872 *pp = p->next;
2873 break;
2874 }
2875 if (q == NULL)
2876 pp = &p->next;
2877 }
2878 *pp = dir->dyn_relocs;
2879 }
2880
2881 dir->dyn_relocs = ind->dyn_relocs;
2882 ind->dyn_relocs = NULL;
2883 }
2884
2885 if (ind->root.type == bfd_link_hash_indirect)
2886 {
2887 /* Copy over PLT info. */
2888 if (dir->got.refcount <= 0)
2889 {
2890 edir->got_type = eind->got_type;
2891 eind->got_type = GOT_UNKNOWN;
2892 }
2893 }
2894
2895 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2896 }
2897
2898 /* Merge non-visibility st_other attributes. */
2899
2900 static void
2901 elfNN_aarch64_merge_symbol_attribute (struct elf_link_hash_entry *h,
2902 const Elf_Internal_Sym *isym,
2903 bfd_boolean definition ATTRIBUTE_UNUSED,
2904 bfd_boolean dynamic ATTRIBUTE_UNUSED)
2905 {
2906 unsigned int isym_sto = isym->st_other & ~ELF_ST_VISIBILITY (-1);
2907 unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1);
2908
2909 if (isym_sto == h_sto)
2910 return;
2911
2912 if (isym_sto & ~STO_AARCH64_VARIANT_PCS)
2913 /* Not fatal, this callback cannot fail. */
2914 _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
2915 h->root.root.string, isym_sto);
2916
2917 /* Note: Ideally we would warn about any attribute mismatch, but
2918 this api does not allow that without substantial changes. */
2919 if (isym_sto & STO_AARCH64_VARIANT_PCS)
2920 h->other |= STO_AARCH64_VARIANT_PCS;
2921 }
2922
2923 /* Destroy an AArch64 elf linker hash table. */
2924
2925 static void
2926 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2927 {
2928 struct elf_aarch64_link_hash_table *ret
2929 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2930
2931 if (ret->loc_hash_table)
2932 htab_delete (ret->loc_hash_table);
2933 if (ret->loc_hash_memory)
2934 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2935
2936 bfd_hash_table_free (&ret->stub_hash_table);
2937 _bfd_elf_link_hash_table_free (obfd);
2938 }
2939
2940 /* Create an AArch64 elf linker hash table. */
2941
2942 static struct bfd_link_hash_table *
2943 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2944 {
2945 struct elf_aarch64_link_hash_table *ret;
2946 size_t amt = sizeof (struct elf_aarch64_link_hash_table);
2947
2948 ret = bfd_zmalloc (amt);
2949 if (ret == NULL)
2950 return NULL;
2951
2952 if (!_bfd_elf_link_hash_table_init
2953 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2954 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2955 {
2956 free (ret);
2957 return NULL;
2958 }
2959
2960 ret->plt_header_size = PLT_ENTRY_SIZE;
2961 ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2962 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2963 ret->plt_entry = elfNN_aarch64_small_plt_entry;
2964 ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2965 ret->obfd = abfd;
2966 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2967
2968 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2969 sizeof (struct elf_aarch64_stub_hash_entry)))
2970 {
2971 _bfd_elf_link_hash_table_free (abfd);
2972 return NULL;
2973 }
2974
2975 ret->loc_hash_table = htab_try_create (1024,
2976 elfNN_aarch64_local_htab_hash,
2977 elfNN_aarch64_local_htab_eq,
2978 NULL);
2979 ret->loc_hash_memory = objalloc_create ();
2980 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2981 {
2982 elfNN_aarch64_link_hash_table_free (abfd);
2983 return NULL;
2984 }
2985 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2986
2987 return &ret->root.root;
2988 }
2989
2990 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2991
2992 static bfd_boolean
2993 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2994 bfd_vma offset, bfd_vma value)
2995 {
2996 reloc_howto_type *howto;
2997 bfd_vma place;
2998
2999 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
3000 place = (input_section->output_section->vma + input_section->output_offset
3001 + offset);
3002
3003 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
3004 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, r_type, place,
3005 value, 0, FALSE);
3006 return _bfd_aarch64_elf_put_addend (input_bfd,
3007 input_section->contents + offset, r_type,
3008 howto, value) == bfd_reloc_ok;
3009 }
3010
3011 static enum elf_aarch64_stub_type
3012 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
3013 {
3014 if (aarch64_valid_for_adrp_p (value, place))
3015 return aarch64_stub_adrp_branch;
3016 return aarch64_stub_long_branch;
3017 }
3018
3019 /* Determine the type of stub needed, if any, for a call. */
3020
3021 static enum elf_aarch64_stub_type
3022 aarch64_type_of_stub (asection *input_sec,
3023 const Elf_Internal_Rela *rel,
3024 asection *sym_sec,
3025 unsigned char st_type,
3026 bfd_vma destination)
3027 {
3028 bfd_vma location;
3029 bfd_signed_vma branch_offset;
3030 unsigned int r_type;
3031 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
3032
3033 if (st_type != STT_FUNC
3034 && (sym_sec == input_sec))
3035 return stub_type;
3036
3037 /* Determine where the call point is. */
3038 location = (input_sec->output_offset
3039 + input_sec->output_section->vma + rel->r_offset);
3040
3041 branch_offset = (bfd_signed_vma) (destination - location);
3042
3043 r_type = ELFNN_R_TYPE (rel->r_info);
3044
3045 /* We don't want to redirect any old unconditional jump in this way,
3046 only one which is being used for a sibcall, where it is
3047 acceptable for the IP0 and IP1 registers to be clobbered. */
3048 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
3049 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
3050 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
3051 {
3052 stub_type = aarch64_stub_long_branch;
3053 }
3054
3055 return stub_type;
3056 }
3057
3058 /* Build a name for an entry in the stub hash table. */
3059
3060 static char *
3061 elfNN_aarch64_stub_name (const asection *input_section,
3062 const asection *sym_sec,
3063 const struct elf_aarch64_link_hash_entry *hash,
3064 const Elf_Internal_Rela *rel)
3065 {
3066 char *stub_name;
3067 bfd_size_type len;
3068
3069 if (hash)
3070 {
3071 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3072 stub_name = bfd_malloc (len);
3073 if (stub_name != NULL)
3074 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3075 (unsigned int) input_section->id,
3076 hash->root.root.root.string,
3077 rel->r_addend);
3078 }
3079 else
3080 {
3081 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3082 stub_name = bfd_malloc (len);
3083 if (stub_name != NULL)
3084 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3085 (unsigned int) input_section->id,
3086 (unsigned int) sym_sec->id,
3087 (unsigned int) ELFNN_R_SYM (rel->r_info),
3088 rel->r_addend);
3089 }
3090
3091 return stub_name;
3092 }
3093
3094 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3095 executable PLT slots where the executable never takes the address of those
3096 functions, the function symbols are not added to the hash table. */
3097
3098 static bfd_boolean
3099 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3100 {
3101 if (h->plt.offset != (bfd_vma) -1
3102 && !h->def_regular
3103 && !h->pointer_equality_needed)
3104 return FALSE;
3105
3106 return _bfd_elf_hash_symbol (h);
3107 }
3108
3109
3110 /* Look up an entry in the stub hash. Stub entries are cached because
3111 creating the stub name takes a bit of time. */
3112
3113 static struct elf_aarch64_stub_hash_entry *
3114 elfNN_aarch64_get_stub_entry (const asection *input_section,
3115 const asection *sym_sec,
3116 struct elf_link_hash_entry *hash,
3117 const Elf_Internal_Rela *rel,
3118 struct elf_aarch64_link_hash_table *htab)
3119 {
3120 struct elf_aarch64_stub_hash_entry *stub_entry;
3121 struct elf_aarch64_link_hash_entry *h =
3122 (struct elf_aarch64_link_hash_entry *) hash;
3123 const asection *id_sec;
3124
3125 if ((input_section->flags & SEC_CODE) == 0)
3126 return NULL;
3127
3128 /* If this input section is part of a group of sections sharing one
3129 stub section, then use the id of the first section in the group.
3130 Stub names need to include a section id, as there may well be
3131 more than one stub used to reach say, printf, and we need to
3132 distinguish between them. */
3133 id_sec = htab->stub_group[input_section->id].link_sec;
3134
3135 if (h != NULL && h->stub_cache != NULL
3136 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3137 {
3138 stub_entry = h->stub_cache;
3139 }
3140 else
3141 {
3142 char *stub_name;
3143
3144 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3145 if (stub_name == NULL)
3146 return NULL;
3147
3148 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3149 stub_name, FALSE, FALSE);
3150 if (h != NULL)
3151 h->stub_cache = stub_entry;
3152
3153 free (stub_name);
3154 }
3155
3156 return stub_entry;
3157 }
3158
3159
3160 /* Create a stub section. */
3161
3162 static asection *
3163 _bfd_aarch64_create_stub_section (asection *section,
3164 struct elf_aarch64_link_hash_table *htab)
3165 {
3166 size_t namelen;
3167 bfd_size_type len;
3168 char *s_name;
3169
3170 namelen = strlen (section->name);
3171 len = namelen + sizeof (STUB_SUFFIX);
3172 s_name = bfd_alloc (htab->stub_bfd, len);
3173 if (s_name == NULL)
3174 return NULL;
3175
3176 memcpy (s_name, section->name, namelen);
3177 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3178 return (*htab->add_stub_section) (s_name, section);
3179 }
3180
3181
3182 /* Find or create a stub section for a link section.
3183
3184 Fix or create the stub section used to collect stubs attached to
3185 the specified link section. */
3186
3187 static asection *
3188 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3189 struct elf_aarch64_link_hash_table *htab)
3190 {
3191 if (htab->stub_group[link_section->id].stub_sec == NULL)
3192 htab->stub_group[link_section->id].stub_sec
3193 = _bfd_aarch64_create_stub_section (link_section, htab);
3194 return htab->stub_group[link_section->id].stub_sec;
3195 }
3196
3197
3198 /* Find or create a stub section in the stub group for an input
3199 section. */
3200
3201 static asection *
3202 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3203 struct elf_aarch64_link_hash_table *htab)
3204 {
3205 asection *link_sec = htab->stub_group[section->id].link_sec;
3206 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3207 }
3208
3209
3210 /* Add a new stub entry in the stub group associated with an input
3211 section to the stub hash. Not all fields of the new stub entry are
3212 initialised. */
3213
3214 static struct elf_aarch64_stub_hash_entry *
3215 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3216 asection *section,
3217 struct elf_aarch64_link_hash_table *htab)
3218 {
3219 asection *link_sec;
3220 asection *stub_sec;
3221 struct elf_aarch64_stub_hash_entry *stub_entry;
3222
3223 link_sec = htab->stub_group[section->id].link_sec;
3224 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3225
3226 /* Enter this entry into the linker stub hash table. */
3227 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3228 TRUE, FALSE);
3229 if (stub_entry == NULL)
3230 {
3231 /* xgettext:c-format */
3232 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3233 section->owner, stub_name);
3234 return NULL;
3235 }
3236
3237 stub_entry->stub_sec = stub_sec;
3238 stub_entry->stub_offset = 0;
3239 stub_entry->id_sec = link_sec;
3240
3241 return stub_entry;
3242 }
3243
3244 /* Add a new stub entry in the final stub section to the stub hash.
3245 Not all fields of the new stub entry are initialised. */
3246
3247 static struct elf_aarch64_stub_hash_entry *
3248 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3249 asection *link_section,
3250 struct elf_aarch64_link_hash_table *htab)
3251 {
3252 asection *stub_sec;
3253 struct elf_aarch64_stub_hash_entry *stub_entry;
3254
3255 stub_sec = NULL;
3256 /* Only create the actual stub if we will end up needing it. */
3257 if (htab->fix_erratum_843419 & ERRAT_ADRP)
3258 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3259 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3260 TRUE, FALSE);
3261 if (stub_entry == NULL)
3262 {
3263 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3264 return NULL;
3265 }
3266
3267 stub_entry->stub_sec = stub_sec;
3268 stub_entry->stub_offset = 0;
3269 stub_entry->id_sec = link_section;
3270
3271 return stub_entry;
3272 }
3273
3274
3275 static bfd_boolean
3276 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3277 void *in_arg)
3278 {
3279 struct elf_aarch64_stub_hash_entry *stub_entry;
3280 asection *stub_sec;
3281 bfd *stub_bfd;
3282 bfd_byte *loc;
3283 bfd_vma sym_value;
3284 bfd_vma veneered_insn_loc;
3285 bfd_vma veneer_entry_loc;
3286 bfd_signed_vma branch_offset = 0;
3287 unsigned int template_size;
3288 const uint32_t *template;
3289 unsigned int i;
3290 struct bfd_link_info *info;
3291
3292 /* Massage our args to the form they really have. */
3293 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3294
3295 info = (struct bfd_link_info *) in_arg;
3296
3297 /* Fail if the target section could not be assigned to an output
3298 section. The user should fix his linker script. */
3299 if (stub_entry->target_section->output_section == NULL
3300 && info->non_contiguous_regions)
3301 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
3302 "Retry without "
3303 "--enable-non-contiguous-regions.\n"),
3304 stub_entry->target_section);
3305
3306 stub_sec = stub_entry->stub_sec;
3307
3308 /* Make a note of the offset within the stubs for this entry. */
3309 stub_entry->stub_offset = stub_sec->size;
3310 loc = stub_sec->contents + stub_entry->stub_offset;
3311
3312 stub_bfd = stub_sec->owner;
3313
3314 /* This is the address of the stub destination. */
3315 sym_value = (stub_entry->target_value
3316 + stub_entry->target_section->output_offset
3317 + stub_entry->target_section->output_section->vma);
3318
3319 if (stub_entry->stub_type == aarch64_stub_long_branch)
3320 {
3321 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3322 + stub_sec->output_offset);
3323
3324 /* See if we can relax the stub. */
3325 if (aarch64_valid_for_adrp_p (sym_value, place))
3326 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3327 }
3328
3329 switch (stub_entry->stub_type)
3330 {
3331 case aarch64_stub_adrp_branch:
3332 template = aarch64_adrp_branch_stub;
3333 template_size = sizeof (aarch64_adrp_branch_stub);
3334 break;
3335 case aarch64_stub_long_branch:
3336 template = aarch64_long_branch_stub;
3337 template_size = sizeof (aarch64_long_branch_stub);
3338 break;
3339 case aarch64_stub_erratum_835769_veneer:
3340 template = aarch64_erratum_835769_stub;
3341 template_size = sizeof (aarch64_erratum_835769_stub);
3342 break;
3343 case aarch64_stub_erratum_843419_veneer:
3344 template = aarch64_erratum_843419_stub;
3345 template_size = sizeof (aarch64_erratum_843419_stub);
3346 break;
3347 default:
3348 abort ();
3349 }
3350
3351 for (i = 0; i < (template_size / sizeof template[0]); i++)
3352 {
3353 bfd_putl32 (template[i], loc);
3354 loc += 4;
3355 }
3356
3357 template_size = (template_size + 7) & ~7;
3358 stub_sec->size += template_size;
3359
3360 switch (stub_entry->stub_type)
3361 {
3362 case aarch64_stub_adrp_branch:
3363 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3364 stub_entry->stub_offset, sym_value))
3365 /* The stub would not have been relaxed if the offset was out
3366 of range. */
3367 BFD_FAIL ();
3368
3369 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3370 stub_entry->stub_offset + 4, sym_value))
3371 BFD_FAIL ();
3372 break;
3373
3374 case aarch64_stub_long_branch:
3375 /* We want the value relative to the address 12 bytes back from the
3376 value itself. */
3377 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3378 stub_entry->stub_offset + 16, sym_value + 12))
3379 BFD_FAIL ();
3380 break;
3381
3382 case aarch64_stub_erratum_835769_veneer:
3383 veneered_insn_loc = stub_entry->target_section->output_section->vma
3384 + stub_entry->target_section->output_offset
3385 + stub_entry->target_value;
3386 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3387 + stub_entry->stub_sec->output_offset
3388 + stub_entry->stub_offset;
3389 branch_offset = veneered_insn_loc - veneer_entry_loc;
3390 branch_offset >>= 2;
3391 branch_offset &= 0x3ffffff;
3392 bfd_putl32 (stub_entry->veneered_insn,
3393 stub_sec->contents + stub_entry->stub_offset);
3394 bfd_putl32 (template[1] | branch_offset,
3395 stub_sec->contents + stub_entry->stub_offset + 4);
3396 break;
3397
3398 case aarch64_stub_erratum_843419_veneer:
3399 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3400 stub_entry->stub_offset + 4, sym_value + 4))
3401 BFD_FAIL ();
3402 break;
3403
3404 default:
3405 abort ();
3406 }
3407
3408 return TRUE;
3409 }
3410
3411 /* As above, but don't actually build the stub. Just bump offset so
3412 we know stub section sizes. */
3413
3414 static bfd_boolean
3415 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
3416 {
3417 struct elf_aarch64_stub_hash_entry *stub_entry;
3418 struct elf_aarch64_link_hash_table *htab;
3419 int size;
3420
3421 /* Massage our args to the form they really have. */
3422 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3423 htab = (struct elf_aarch64_link_hash_table *) in_arg;
3424
3425 switch (stub_entry->stub_type)
3426 {
3427 case aarch64_stub_adrp_branch:
3428 size = sizeof (aarch64_adrp_branch_stub);
3429 break;
3430 case aarch64_stub_long_branch:
3431 size = sizeof (aarch64_long_branch_stub);
3432 break;
3433 case aarch64_stub_erratum_835769_veneer:
3434 size = sizeof (aarch64_erratum_835769_stub);
3435 break;
3436 case aarch64_stub_erratum_843419_veneer:
3437 {
3438 if (htab->fix_erratum_843419 == ERRAT_ADR)
3439 return TRUE;
3440 size = sizeof (aarch64_erratum_843419_stub);
3441 }
3442 break;
3443 default:
3444 abort ();
3445 }
3446
3447 size = (size + 7) & ~7;
3448 stub_entry->stub_sec->size += size;
3449 return TRUE;
3450 }
3451
3452 /* External entry points for sizing and building linker stubs. */
3453
3454 /* Set up various things so that we can make a list of input sections
3455 for each output section included in the link. Returns -1 on error,
3456 0 when no stubs will be needed, and 1 on success. */
3457
3458 int
3459 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3460 struct bfd_link_info *info)
3461 {
3462 bfd *input_bfd;
3463 unsigned int bfd_count;
3464 unsigned int top_id, top_index;
3465 asection *section;
3466 asection **input_list, **list;
3467 size_t amt;
3468 struct elf_aarch64_link_hash_table *htab =
3469 elf_aarch64_hash_table (info);
3470
3471 if (!is_elf_hash_table (htab))
3472 return 0;
3473
3474 /* Count the number of input BFDs and find the top input section id. */
3475 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3476 input_bfd != NULL; input_bfd = input_bfd->link.next)
3477 {
3478 bfd_count += 1;
3479 for (section = input_bfd->sections;
3480 section != NULL; section = section->next)
3481 {
3482 if (top_id < section->id)
3483 top_id = section->id;
3484 }
3485 }
3486 htab->bfd_count = bfd_count;
3487
3488 amt = sizeof (struct map_stub) * (top_id + 1);
3489 htab->stub_group = bfd_zmalloc (amt);
3490 if (htab->stub_group == NULL)
3491 return -1;
3492
3493 /* We can't use output_bfd->section_count here to find the top output
3494 section index as some sections may have been removed, and
3495 _bfd_strip_section_from_output doesn't renumber the indices. */
3496 for (section = output_bfd->sections, top_index = 0;
3497 section != NULL; section = section->next)
3498 {
3499 if (top_index < section->index)
3500 top_index = section->index;
3501 }
3502
3503 htab->top_index = top_index;
3504 amt = sizeof (asection *) * (top_index + 1);
3505 input_list = bfd_malloc (amt);
3506 htab->input_list = input_list;
3507 if (input_list == NULL)
3508 return -1;
3509
3510 /* For sections we aren't interested in, mark their entries with a
3511 value we can check later. */
3512 list = input_list + top_index;
3513 do
3514 *list = bfd_abs_section_ptr;
3515 while (list-- != input_list);
3516
3517 for (section = output_bfd->sections;
3518 section != NULL; section = section->next)
3519 {
3520 if ((section->flags & SEC_CODE) != 0)
3521 input_list[section->index] = NULL;
3522 }
3523
3524 return 1;
3525 }
3526
3527 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3528 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3529
3530 /* The linker repeatedly calls this function for each input section,
3531 in the order that input sections are linked into output sections.
3532 Build lists of input sections to determine groupings between which
3533 we may insert linker stubs. */
3534
3535 void
3536 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3537 {
3538 struct elf_aarch64_link_hash_table *htab =
3539 elf_aarch64_hash_table (info);
3540
3541 if (isec->output_section->index <= htab->top_index)
3542 {
3543 asection **list = htab->input_list + isec->output_section->index;
3544
3545 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
3546 {
3547 /* Steal the link_sec pointer for our list. */
3548 /* This happens to make the list in reverse order,
3549 which is what we want. */
3550 PREV_SEC (isec) = *list;
3551 *list = isec;
3552 }
3553 }
3554 }
3555
3556 /* See whether we can group stub sections together. Grouping stub
3557 sections may result in fewer stubs. More importantly, we need to
3558 put all .init* and .fini* stubs at the beginning of the .init or
3559 .fini output sections respectively, because glibc splits the
3560 _init and _fini functions into multiple parts. Putting a stub in
3561 the middle of a function is not a good idea. */
3562
3563 static void
3564 group_sections (struct elf_aarch64_link_hash_table *htab,
3565 bfd_size_type stub_group_size,
3566 bfd_boolean stubs_always_after_branch)
3567 {
3568 asection **list = htab->input_list;
3569
3570 do
3571 {
3572 asection *tail = *list;
3573 asection *head;
3574
3575 if (tail == bfd_abs_section_ptr)
3576 continue;
3577
3578 /* Reverse the list: we must avoid placing stubs at the
3579 beginning of the section because the beginning of the text
3580 section may be required for an interrupt vector in bare metal
3581 code. */
3582 #define NEXT_SEC PREV_SEC
3583 head = NULL;
3584 while (tail != NULL)
3585 {
3586 /* Pop from tail. */
3587 asection *item = tail;
3588 tail = PREV_SEC (item);
3589
3590 /* Push on head. */
3591 NEXT_SEC (item) = head;
3592 head = item;
3593 }
3594
3595 while (head != NULL)
3596 {
3597 asection *curr;
3598 asection *next;
3599 bfd_vma stub_group_start = head->output_offset;
3600 bfd_vma end_of_next;
3601
3602 curr = head;
3603 while (NEXT_SEC (curr) != NULL)
3604 {
3605 next = NEXT_SEC (curr);
3606 end_of_next = next->output_offset + next->size;
3607 if (end_of_next - stub_group_start >= stub_group_size)
3608 /* End of NEXT is too far from start, so stop. */
3609 break;
3610 /* Add NEXT to the group. */
3611 curr = next;
3612 }
3613
3614 /* OK, the size from the start to the start of CURR is less
3615 than stub_group_size and thus can be handled by one stub
3616 section. (Or the head section is itself larger than
3617 stub_group_size, in which case we may be toast.)
3618 We should really be keeping track of the total size of
3619 stubs added here, as stubs contribute to the final output
3620 section size. */
3621 do
3622 {
3623 next = NEXT_SEC (head);
3624 /* Set up this stub group. */
3625 htab->stub_group[head->id].link_sec = curr;
3626 }
3627 while (head != curr && (head = next) != NULL);
3628
3629 /* But wait, there's more! Input sections up to stub_group_size
3630 bytes after the stub section can be handled by it too. */
3631 if (!stubs_always_after_branch)
3632 {
3633 stub_group_start = curr->output_offset + curr->size;
3634
3635 while (next != NULL)
3636 {
3637 end_of_next = next->output_offset + next->size;
3638 if (end_of_next - stub_group_start >= stub_group_size)
3639 /* End of NEXT is too far from stubs, so stop. */
3640 break;
3641 /* Add NEXT to the stub group. */
3642 head = next;
3643 next = NEXT_SEC (head);
3644 htab->stub_group[head->id].link_sec = curr;
3645 }
3646 }
3647 head = next;
3648 }
3649 }
3650 while (list++ != htab->input_list + htab->top_index);
3651
3652 free (htab->input_list);
3653 }
3654
3655 #undef PREV_SEC
3656 #undef PREV_SEC
3657
3658 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3659
3660 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3661 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3662 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3663 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3664 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3665 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3666
3667 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3668 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3669 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3670 #define AARCH64_ZR 0x1f
3671
3672 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3673 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3674
3675 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3676 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3677 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3678 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3679 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3680 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3681 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3682 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3683 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3684 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3685 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3686 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3687 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3688 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3689 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3690 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3691 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3692 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3693
3694 /* Classify an INSN if it is indeed a load/store.
3695
3696 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3697
3698 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3699 is set equal to RT.
3700
3701 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3702
3703 static bfd_boolean
3704 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3705 bfd_boolean *pair, bfd_boolean *load)
3706 {
3707 uint32_t opcode;
3708 unsigned int r;
3709 uint32_t opc = 0;
3710 uint32_t v = 0;
3711 uint32_t opc_v = 0;
3712
3713 /* Bail out quickly if INSN doesn't fall into the load-store
3714 encoding space. */
3715 if (!AARCH64_LDST (insn))
3716 return FALSE;
3717
3718 *pair = FALSE;
3719 *load = FALSE;
3720 if (AARCH64_LDST_EX (insn))
3721 {
3722 *rt = AARCH64_RT (insn);
3723 *rt2 = *rt;
3724 if (AARCH64_BIT (insn, 21) == 1)
3725 {
3726 *pair = TRUE;
3727 *rt2 = AARCH64_RT2 (insn);
3728 }
3729 *load = AARCH64_LD (insn);
3730 return TRUE;
3731 }
3732 else if (AARCH64_LDST_NAP (insn)
3733 || AARCH64_LDSTP_PI (insn)
3734 || AARCH64_LDSTP_O (insn)
3735 || AARCH64_LDSTP_PRE (insn))
3736 {
3737 *pair = TRUE;
3738 *rt = AARCH64_RT (insn);
3739 *rt2 = AARCH64_RT2 (insn);
3740 *load = AARCH64_LD (insn);
3741 return TRUE;
3742 }
3743 else if (AARCH64_LDST_PCREL (insn)
3744 || AARCH64_LDST_UI (insn)
3745 || AARCH64_LDST_PIIMM (insn)
3746 || AARCH64_LDST_U (insn)
3747 || AARCH64_LDST_PREIMM (insn)
3748 || AARCH64_LDST_RO (insn)
3749 || AARCH64_LDST_UIMM (insn))
3750 {
3751 *rt = AARCH64_RT (insn);
3752 *rt2 = *rt;
3753 if (AARCH64_LDST_PCREL (insn))
3754 *load = TRUE;
3755 opc = AARCH64_BITS (insn, 22, 2);
3756 v = AARCH64_BIT (insn, 26);
3757 opc_v = opc | (v << 2);
3758 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3759 || opc_v == 5 || opc_v == 7);
3760 return TRUE;
3761 }
3762 else if (AARCH64_LDST_SIMD_M (insn)
3763 || AARCH64_LDST_SIMD_M_PI (insn))
3764 {
3765 *rt = AARCH64_RT (insn);
3766 *load = AARCH64_BIT (insn, 22);
3767 opcode = (insn >> 12) & 0xf;
3768 switch (opcode)
3769 {
3770 case 0:
3771 case 2:
3772 *rt2 = *rt + 3;
3773 break;
3774
3775 case 4:
3776 case 6:
3777 *rt2 = *rt + 2;
3778 break;
3779
3780 case 7:
3781 *rt2 = *rt;
3782 break;
3783
3784 case 8:
3785 case 10:
3786 *rt2 = *rt + 1;
3787 break;
3788
3789 default:
3790 return FALSE;
3791 }
3792 return TRUE;
3793 }
3794 else if (AARCH64_LDST_SIMD_S (insn)
3795 || AARCH64_LDST_SIMD_S_PI (insn))
3796 {
3797 *rt = AARCH64_RT (insn);
3798 r = (insn >> 21) & 1;
3799 *load = AARCH64_BIT (insn, 22);
3800 opcode = (insn >> 13) & 0x7;
3801 switch (opcode)
3802 {
3803 case 0:
3804 case 2:
3805 case 4:
3806 *rt2 = *rt + r;
3807 break;
3808
3809 case 1:
3810 case 3:
3811 case 5:
3812 *rt2 = *rt + (r == 0 ? 2 : 3);
3813 break;
3814
3815 case 6:
3816 *rt2 = *rt + r;
3817 break;
3818
3819 case 7:
3820 *rt2 = *rt + (r == 0 ? 2 : 3);
3821 break;
3822
3823 default:
3824 return FALSE;
3825 }
3826 return TRUE;
3827 }
3828
3829 return FALSE;
3830 }
3831
3832 /* Return TRUE if INSN is multiply-accumulate. */
3833
3834 static bfd_boolean
3835 aarch64_mlxl_p (uint32_t insn)
3836 {
3837 uint32_t op31 = AARCH64_OP31 (insn);
3838
3839 if (AARCH64_MAC (insn)
3840 && (op31 == 0 || op31 == 1 || op31 == 5)
3841 /* Exclude MUL instructions which are encoded as a multiple accumulate
3842 with RA = XZR. */
3843 && AARCH64_RA (insn) != AARCH64_ZR)
3844 return TRUE;
3845
3846 return FALSE;
3847 }
3848
3849 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3850 it is possible for a 64-bit multiply-accumulate instruction to generate an
3851 incorrect result. The details are quite complex and hard to
3852 determine statically, since branches in the code may exist in some
3853 circumstances, but all cases end with a memory (load, store, or
3854 prefetch) instruction followed immediately by the multiply-accumulate
3855 operation. We employ a linker patching technique, by moving the potentially
3856 affected multiply-accumulate instruction into a patch region and replacing
3857 the original instruction with a branch to the patch. This function checks
3858 if INSN_1 is the memory operation followed by a multiply-accumulate
3859 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3860 if INSN_1 and INSN_2 are safe. */
3861
3862 static bfd_boolean
3863 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3864 {
3865 uint32_t rt;
3866 uint32_t rt2;
3867 uint32_t rn;
3868 uint32_t rm;
3869 uint32_t ra;
3870 bfd_boolean pair;
3871 bfd_boolean load;
3872
3873 if (aarch64_mlxl_p (insn_2)
3874 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3875 {
3876 /* Any SIMD memory op is independent of the subsequent MLA
3877 by definition of the erratum. */
3878 if (AARCH64_BIT (insn_1, 26))
3879 return TRUE;
3880
3881 /* If not SIMD, check for integer memory ops and MLA relationship. */
3882 rn = AARCH64_RN (insn_2);
3883 ra = AARCH64_RA (insn_2);
3884 rm = AARCH64_RM (insn_2);
3885
3886 /* If this is a load and there's a true(RAW) dependency, we are safe
3887 and this is not an erratum sequence. */
3888 if (load &&
3889 (rt == rn || rt == rm || rt == ra
3890 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3891 return FALSE;
3892
3893 /* We conservatively put out stubs for all other cases (including
3894 writebacks). */
3895 return TRUE;
3896 }
3897
3898 return FALSE;
3899 }
3900
3901 /* Used to order a list of mapping symbols by address. */
3902
3903 static int
3904 elf_aarch64_compare_mapping (const void *a, const void *b)
3905 {
3906 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3907 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3908
3909 if (amap->vma > bmap->vma)
3910 return 1;
3911 else if (amap->vma < bmap->vma)
3912 return -1;
3913 else if (amap->type > bmap->type)
3914 /* Ensure results do not depend on the host qsort for objects with
3915 multiple mapping symbols at the same address by sorting on type
3916 after vma. */
3917 return 1;
3918 else if (amap->type < bmap->type)
3919 return -1;
3920 else
3921 return 0;
3922 }
3923
3924
3925 static char *
3926 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3927 {
3928 char *stub_name = (char *) bfd_malloc
3929 (strlen ("__erratum_835769_veneer_") + 16);
3930 if (stub_name != NULL)
3931 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3932 return stub_name;
3933 }
3934
3935 /* Scan for Cortex-A53 erratum 835769 sequence.
3936
3937 Return TRUE else FALSE on abnormal termination. */
3938
3939 static bfd_boolean
3940 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3941 struct bfd_link_info *info,
3942 unsigned int *num_fixes_p)
3943 {
3944 asection *section;
3945 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3946 unsigned int num_fixes = *num_fixes_p;
3947
3948 if (htab == NULL)
3949 return TRUE;
3950
3951 for (section = input_bfd->sections;
3952 section != NULL;
3953 section = section->next)
3954 {
3955 bfd_byte *contents = NULL;
3956 struct _aarch64_elf_section_data *sec_data;
3957 unsigned int span;
3958
3959 if (elf_section_type (section) != SHT_PROGBITS
3960 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3961 || (section->flags & SEC_EXCLUDE) != 0
3962 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3963 || (section->output_section == bfd_abs_section_ptr))
3964 continue;
3965
3966 if (elf_section_data (section)->this_hdr.contents != NULL)
3967 contents = elf_section_data (section)->this_hdr.contents;
3968 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3969 return FALSE;
3970
3971 sec_data = elf_aarch64_section_data (section);
3972
3973 qsort (sec_data->map, sec_data->mapcount,
3974 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3975
3976 for (span = 0; span < sec_data->mapcount; span++)
3977 {
3978 unsigned int span_start = sec_data->map[span].vma;
3979 unsigned int span_end = ((span == sec_data->mapcount - 1)
3980 ? sec_data->map[0].vma + section->size
3981 : sec_data->map[span + 1].vma);
3982 unsigned int i;
3983 char span_type = sec_data->map[span].type;
3984
3985 if (span_type == 'd')
3986 continue;
3987
3988 for (i = span_start; i + 4 < span_end; i += 4)
3989 {
3990 uint32_t insn_1 = bfd_getl32 (contents + i);
3991 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3992
3993 if (aarch64_erratum_sequence (insn_1, insn_2))
3994 {
3995 struct elf_aarch64_stub_hash_entry *stub_entry;
3996 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3997 if (! stub_name)
3998 return FALSE;
3999
4000 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
4001 section,
4002 htab);
4003 if (! stub_entry)
4004 return FALSE;
4005
4006 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
4007 stub_entry->target_section = section;
4008 stub_entry->target_value = i + 4;
4009 stub_entry->veneered_insn = insn_2;
4010 stub_entry->output_name = stub_name;
4011 num_fixes++;
4012 }
4013 }
4014 }
4015 if (elf_section_data (section)->this_hdr.contents == NULL)
4016 free (contents);
4017 }
4018
4019 *num_fixes_p = num_fixes;
4020
4021 return TRUE;
4022 }
4023
4024
4025 /* Test if instruction INSN is ADRP. */
4026
4027 static bfd_boolean
4028 _bfd_aarch64_adrp_p (uint32_t insn)
4029 {
4030 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
4031 }
4032
4033
4034 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
4035
4036 static bfd_boolean
4037 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
4038 uint32_t insn_3)
4039 {
4040 uint32_t rt;
4041 uint32_t rt2;
4042 bfd_boolean pair;
4043 bfd_boolean load;
4044
4045 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
4046 && (!pair
4047 || (pair && !load))
4048 && AARCH64_LDST_UIMM (insn_3)
4049 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
4050 }
4051
4052
4053 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
4054
4055 Return TRUE if section CONTENTS at offset I contains one of the
4056 erratum 843419 sequences, otherwise return FALSE. If a sequence is
4057 seen set P_VENEER_I to the offset of the final LOAD/STORE
4058 instruction in the sequence.
4059 */
4060
4061 static bfd_boolean
4062 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
4063 bfd_vma i, bfd_vma span_end,
4064 bfd_vma *p_veneer_i)
4065 {
4066 uint32_t insn_1 = bfd_getl32 (contents + i);
4067
4068 if (!_bfd_aarch64_adrp_p (insn_1))
4069 return FALSE;
4070
4071 if (span_end < i + 12)
4072 return FALSE;
4073
4074 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
4075 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
4076
4077 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
4078 return FALSE;
4079
4080 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
4081 {
4082 *p_veneer_i = i + 8;
4083 return TRUE;
4084 }
4085
4086 if (span_end < i + 16)
4087 return FALSE;
4088
4089 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
4090
4091 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
4092 {
4093 *p_veneer_i = i + 12;
4094 return TRUE;
4095 }
4096
4097 return FALSE;
4098 }
4099
4100
4101 /* Resize all stub sections. */
4102
4103 static void
4104 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4105 {
4106 asection *section;
4107
4108 /* OK, we've added some stubs. Find out the new size of the
4109 stub sections. */
4110 for (section = htab->stub_bfd->sections;
4111 section != NULL; section = section->next)
4112 {
4113 /* Ignore non-stub sections. */
4114 if (!strstr (section->name, STUB_SUFFIX))
4115 continue;
4116 section->size = 0;
4117 }
4118
4119 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4120
4121 for (section = htab->stub_bfd->sections;
4122 section != NULL; section = section->next)
4123 {
4124 if (!strstr (section->name, STUB_SUFFIX))
4125 continue;
4126
4127 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4128 as long branch stubs contain a 64-bit address. */
4129 if (section->size)
4130 section->size += 8;
4131
4132 /* Ensure all stub sections have a size which is a multiple of
4133 4096. This is important in order to ensure that the insertion
4134 of stub sections does not in itself move existing code around
4135 in such a way that new errata sequences are created. We only do this
4136 when the ADRP workaround is enabled. If only the ADR workaround is
4137 enabled then the stubs workaround won't ever be used. */
4138 if (htab->fix_erratum_843419 & ERRAT_ADRP)
4139 if (section->size)
4140 section->size = BFD_ALIGN (section->size, 0x1000);
4141 }
4142 }
4143
4144 /* Construct an erratum 843419 workaround stub name. */
4145
4146 static char *
4147 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4148 bfd_vma offset)
4149 {
4150 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4151 char *stub_name = bfd_malloc (len);
4152
4153 if (stub_name != NULL)
4154 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4155 input_section->owner->id,
4156 input_section->id,
4157 offset);
4158 return stub_name;
4159 }
4160
4161 /* Build a stub_entry structure describing an 843419 fixup.
4162
4163 The stub_entry constructed is populated with the bit pattern INSN
4164 of the instruction located at OFFSET within input SECTION.
4165
4166 Returns TRUE on success. */
4167
4168 static bfd_boolean
4169 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4170 bfd_vma adrp_offset,
4171 bfd_vma ldst_offset,
4172 asection *section,
4173 struct bfd_link_info *info)
4174 {
4175 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4176 char *stub_name;
4177 struct elf_aarch64_stub_hash_entry *stub_entry;
4178
4179 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4180 if (stub_name == NULL)
4181 return FALSE;
4182 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4183 FALSE, FALSE);
4184 if (stub_entry)
4185 {
4186 free (stub_name);
4187 return TRUE;
4188 }
4189
4190 /* We always place an 843419 workaround veneer in the stub section
4191 attached to the input section in which an erratum sequence has
4192 been found. This ensures that later in the link process (in
4193 elfNN_aarch64_write_section) when we copy the veneered
4194 instruction from the input section into the stub section the
4195 copied instruction will have had any relocations applied to it.
4196 If we placed workaround veneers in any other stub section then we
4197 could not assume that all relocations have been processed on the
4198 corresponding input section at the point we output the stub
4199 section. */
4200
4201 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4202 if (stub_entry == NULL)
4203 {
4204 free (stub_name);
4205 return FALSE;
4206 }
4207
4208 stub_entry->adrp_offset = adrp_offset;
4209 stub_entry->target_value = ldst_offset;
4210 stub_entry->target_section = section;
4211 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4212 stub_entry->veneered_insn = insn;
4213 stub_entry->output_name = stub_name;
4214
4215 return TRUE;
4216 }
4217
4218
4219 /* Scan an input section looking for the signature of erratum 843419.
4220
4221 Scans input SECTION in INPUT_BFD looking for erratum 843419
4222 signatures, for each signature found a stub_entry is created
4223 describing the location of the erratum for subsequent fixup.
4224
4225 Return TRUE on successful scan, FALSE on failure to scan.
4226 */
4227
4228 static bfd_boolean
4229 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4230 struct bfd_link_info *info)
4231 {
4232 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4233
4234 if (htab == NULL)
4235 return TRUE;
4236
4237 if (elf_section_type (section) != SHT_PROGBITS
4238 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4239 || (section->flags & SEC_EXCLUDE) != 0
4240 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4241 || (section->output_section == bfd_abs_section_ptr))
4242 return TRUE;
4243
4244 do
4245 {
4246 bfd_byte *contents = NULL;
4247 struct _aarch64_elf_section_data *sec_data;
4248 unsigned int span;
4249
4250 if (elf_section_data (section)->this_hdr.contents != NULL)
4251 contents = elf_section_data (section)->this_hdr.contents;
4252 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4253 return FALSE;
4254
4255 sec_data = elf_aarch64_section_data (section);
4256
4257 qsort (sec_data->map, sec_data->mapcount,
4258 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4259
4260 for (span = 0; span < sec_data->mapcount; span++)
4261 {
4262 unsigned int span_start = sec_data->map[span].vma;
4263 unsigned int span_end = ((span == sec_data->mapcount - 1)
4264 ? sec_data->map[0].vma + section->size
4265 : sec_data->map[span + 1].vma);
4266 unsigned int i;
4267 char span_type = sec_data->map[span].type;
4268
4269 if (span_type == 'd')
4270 continue;
4271
4272 for (i = span_start; i + 8 < span_end; i += 4)
4273 {
4274 bfd_vma vma = (section->output_section->vma
4275 + section->output_offset
4276 + i);
4277 bfd_vma veneer_i;
4278
4279 if (_bfd_aarch64_erratum_843419_p
4280 (contents, vma, i, span_end, &veneer_i))
4281 {
4282 uint32_t insn = bfd_getl32 (contents + veneer_i);
4283
4284 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4285 section, info))
4286 return FALSE;
4287 }
4288 }
4289 }
4290
4291 if (elf_section_data (section)->this_hdr.contents == NULL)
4292 free (contents);
4293 }
4294 while (0);
4295
4296 return TRUE;
4297 }
4298
4299
4300 /* Determine and set the size of the stub section for a final link.
4301
4302 The basic idea here is to examine all the relocations looking for
4303 PC-relative calls to a target that is unreachable with a "bl"
4304 instruction. */
4305
4306 bfd_boolean
4307 elfNN_aarch64_size_stubs (bfd *output_bfd,
4308 bfd *stub_bfd,
4309 struct bfd_link_info *info,
4310 bfd_signed_vma group_size,
4311 asection * (*add_stub_section) (const char *,
4312 asection *),
4313 void (*layout_sections_again) (void))
4314 {
4315 bfd_size_type stub_group_size;
4316 bfd_boolean stubs_always_before_branch;
4317 bfd_boolean stub_changed = FALSE;
4318 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4319 unsigned int num_erratum_835769_fixes = 0;
4320
4321 /* Propagate mach to stub bfd, because it may not have been
4322 finalized when we created stub_bfd. */
4323 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4324 bfd_get_mach (output_bfd));
4325
4326 /* Stash our params away. */
4327 htab->stub_bfd = stub_bfd;
4328 htab->add_stub_section = add_stub_section;
4329 htab->layout_sections_again = layout_sections_again;
4330 stubs_always_before_branch = group_size < 0;
4331 if (group_size < 0)
4332 stub_group_size = -group_size;
4333 else
4334 stub_group_size = group_size;
4335
4336 if (stub_group_size == 1)
4337 {
4338 /* Default values. */
4339 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4340 stub_group_size = 127 * 1024 * 1024;
4341 }
4342
4343 group_sections (htab, stub_group_size, stubs_always_before_branch);
4344
4345 (*htab->layout_sections_again) ();
4346
4347 if (htab->fix_erratum_835769)
4348 {
4349 bfd *input_bfd;
4350
4351 for (input_bfd = info->input_bfds;
4352 input_bfd != NULL; input_bfd = input_bfd->link.next)
4353 {
4354 if (!is_aarch64_elf (input_bfd)
4355 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4356 continue;
4357
4358 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4359 &num_erratum_835769_fixes))
4360 return FALSE;
4361 }
4362
4363 _bfd_aarch64_resize_stubs (htab);
4364 (*htab->layout_sections_again) ();
4365 }
4366
4367 if (htab->fix_erratum_843419 != ERRAT_NONE)
4368 {
4369 bfd *input_bfd;
4370
4371 for (input_bfd = info->input_bfds;
4372 input_bfd != NULL;
4373 input_bfd = input_bfd->link.next)
4374 {
4375 asection *section;
4376
4377 if (!is_aarch64_elf (input_bfd)
4378 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4379 continue;
4380
4381 for (section = input_bfd->sections;
4382 section != NULL;
4383 section = section->next)
4384 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4385 return FALSE;
4386 }
4387
4388 _bfd_aarch64_resize_stubs (htab);
4389 (*htab->layout_sections_again) ();
4390 }
4391
4392 while (1)
4393 {
4394 bfd *input_bfd;
4395
4396 for (input_bfd = info->input_bfds;
4397 input_bfd != NULL; input_bfd = input_bfd->link.next)
4398 {
4399 Elf_Internal_Shdr *symtab_hdr;
4400 asection *section;
4401 Elf_Internal_Sym *local_syms = NULL;
4402
4403 if (!is_aarch64_elf (input_bfd)
4404 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4405 continue;
4406
4407 /* We'll need the symbol table in a second. */
4408 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4409 if (symtab_hdr->sh_info == 0)
4410 continue;
4411
4412 /* Walk over each section attached to the input bfd. */
4413 for (section = input_bfd->sections;
4414 section != NULL; section = section->next)
4415 {
4416 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4417
4418 /* If there aren't any relocs, then there's nothing more
4419 to do. */
4420 if ((section->flags & SEC_RELOC) == 0
4421 || section->reloc_count == 0
4422 || (section->flags & SEC_CODE) == 0)
4423 continue;
4424
4425 /* If this section is a link-once section that will be
4426 discarded, then don't create any stubs. */
4427 if (section->output_section == NULL
4428 || section->output_section->owner != output_bfd)
4429 continue;
4430
4431 /* Get the relocs. */
4432 internal_relocs
4433 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4434 NULL, info->keep_memory);
4435 if (internal_relocs == NULL)
4436 goto error_ret_free_local;
4437
4438 /* Now examine each relocation. */
4439 irela = internal_relocs;
4440 irelaend = irela + section->reloc_count;
4441 for (; irela < irelaend; irela++)
4442 {
4443 unsigned int r_type, r_indx;
4444 enum elf_aarch64_stub_type stub_type;
4445 struct elf_aarch64_stub_hash_entry *stub_entry;
4446 asection *sym_sec;
4447 bfd_vma sym_value;
4448 bfd_vma destination;
4449 struct elf_aarch64_link_hash_entry *hash;
4450 const char *sym_name;
4451 char *stub_name;
4452 const asection *id_sec;
4453 unsigned char st_type;
4454 bfd_size_type len;
4455
4456 r_type = ELFNN_R_TYPE (irela->r_info);
4457 r_indx = ELFNN_R_SYM (irela->r_info);
4458
4459 if (r_type >= (unsigned int) R_AARCH64_end)
4460 {
4461 bfd_set_error (bfd_error_bad_value);
4462 error_ret_free_internal:
4463 if (elf_section_data (section)->relocs == NULL)
4464 free (internal_relocs);
4465 goto error_ret_free_local;
4466 }
4467
4468 /* Only look for stubs on unconditional branch and
4469 branch and link instructions. */
4470 if (r_type != (unsigned int) AARCH64_R (CALL26)
4471 && r_type != (unsigned int) AARCH64_R (JUMP26))
4472 continue;
4473
4474 /* Now determine the call target, its name, value,
4475 section. */
4476 sym_sec = NULL;
4477 sym_value = 0;
4478 destination = 0;
4479 hash = NULL;
4480 sym_name = NULL;
4481 if (r_indx < symtab_hdr->sh_info)
4482 {
4483 /* It's a local symbol. */
4484 Elf_Internal_Sym *sym;
4485 Elf_Internal_Shdr *hdr;
4486
4487 if (local_syms == NULL)
4488 {
4489 local_syms
4490 = (Elf_Internal_Sym *) symtab_hdr->contents;
4491 if (local_syms == NULL)
4492 local_syms
4493 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4494 symtab_hdr->sh_info, 0,
4495 NULL, NULL, NULL);
4496 if (local_syms == NULL)
4497 goto error_ret_free_internal;
4498 }
4499
4500 sym = local_syms + r_indx;
4501 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4502 sym_sec = hdr->bfd_section;
4503 if (!sym_sec)
4504 /* This is an undefined symbol. It can never
4505 be resolved. */
4506 continue;
4507
4508 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4509 sym_value = sym->st_value;
4510 destination = (sym_value + irela->r_addend
4511 + sym_sec->output_offset
4512 + sym_sec->output_section->vma);
4513 st_type = ELF_ST_TYPE (sym->st_info);
4514 sym_name
4515 = bfd_elf_string_from_elf_section (input_bfd,
4516 symtab_hdr->sh_link,
4517 sym->st_name);
4518 }
4519 else
4520 {
4521 int e_indx;
4522
4523 e_indx = r_indx - symtab_hdr->sh_info;
4524 hash = ((struct elf_aarch64_link_hash_entry *)
4525 elf_sym_hashes (input_bfd)[e_indx]);
4526
4527 while (hash->root.root.type == bfd_link_hash_indirect
4528 || hash->root.root.type == bfd_link_hash_warning)
4529 hash = ((struct elf_aarch64_link_hash_entry *)
4530 hash->root.root.u.i.link);
4531
4532 if (hash->root.root.type == bfd_link_hash_defined
4533 || hash->root.root.type == bfd_link_hash_defweak)
4534 {
4535 struct elf_aarch64_link_hash_table *globals =
4536 elf_aarch64_hash_table (info);
4537 sym_sec = hash->root.root.u.def.section;
4538 sym_value = hash->root.root.u.def.value;
4539 /* For a destination in a shared library,
4540 use the PLT stub as target address to
4541 decide whether a branch stub is
4542 needed. */
4543 if (globals->root.splt != NULL && hash != NULL
4544 && hash->root.plt.offset != (bfd_vma) - 1)
4545 {
4546 sym_sec = globals->root.splt;
4547 sym_value = hash->root.plt.offset;
4548 if (sym_sec->output_section != NULL)
4549 destination = (sym_value
4550 + sym_sec->output_offset
4551 +
4552 sym_sec->output_section->vma);
4553 }
4554 else if (sym_sec->output_section != NULL)
4555 destination = (sym_value + irela->r_addend
4556 + sym_sec->output_offset
4557 + sym_sec->output_section->vma);
4558 }
4559 else if (hash->root.root.type == bfd_link_hash_undefined
4560 || (hash->root.root.type
4561 == bfd_link_hash_undefweak))
4562 {
4563 /* For a shared library, use the PLT stub as
4564 target address to decide whether a long
4565 branch stub is needed.
4566 For absolute code, they cannot be handled. */
4567 struct elf_aarch64_link_hash_table *globals =
4568 elf_aarch64_hash_table (info);
4569
4570 if (globals->root.splt != NULL && hash != NULL
4571 && hash->root.plt.offset != (bfd_vma) - 1)
4572 {
4573 sym_sec = globals->root.splt;
4574 sym_value = hash->root.plt.offset;
4575 if (sym_sec->output_section != NULL)
4576 destination = (sym_value
4577 + sym_sec->output_offset
4578 +
4579 sym_sec->output_section->vma);
4580 }
4581 else
4582 continue;
4583 }
4584 else
4585 {
4586 bfd_set_error (bfd_error_bad_value);
4587 goto error_ret_free_internal;
4588 }
4589 st_type = ELF_ST_TYPE (hash->root.type);
4590 sym_name = hash->root.root.root.string;
4591 }
4592
4593 /* Determine what (if any) linker stub is needed. */
4594 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4595 st_type, destination);
4596 if (stub_type == aarch64_stub_none)
4597 continue;
4598
4599 /* Support for grouping stub sections. */
4600 id_sec = htab->stub_group[section->id].link_sec;
4601
4602 /* Get the name of this stub. */
4603 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4604 irela);
4605 if (!stub_name)
4606 goto error_ret_free_internal;
4607
4608 stub_entry =
4609 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4610 stub_name, FALSE, FALSE);
4611 if (stub_entry != NULL)
4612 {
4613 /* The proper stub has already been created. */
4614 free (stub_name);
4615 /* Always update this stub's target since it may have
4616 changed after layout. */
4617 stub_entry->target_value = sym_value + irela->r_addend;
4618 continue;
4619 }
4620
4621 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4622 (stub_name, section, htab);
4623 if (stub_entry == NULL)
4624 {
4625 free (stub_name);
4626 goto error_ret_free_internal;
4627 }
4628
4629 stub_entry->target_value = sym_value + irela->r_addend;
4630 stub_entry->target_section = sym_sec;
4631 stub_entry->stub_type = stub_type;
4632 stub_entry->h = hash;
4633 stub_entry->st_type = st_type;
4634
4635 if (sym_name == NULL)
4636 sym_name = "unnamed";
4637 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4638 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4639 if (stub_entry->output_name == NULL)
4640 {
4641 free (stub_name);
4642 goto error_ret_free_internal;
4643 }
4644
4645 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4646 sym_name);
4647
4648 stub_changed = TRUE;
4649 }
4650
4651 /* We're done with the internal relocs, free them. */
4652 if (elf_section_data (section)->relocs == NULL)
4653 free (internal_relocs);
4654 }
4655 }
4656
4657 if (!stub_changed)
4658 break;
4659
4660 _bfd_aarch64_resize_stubs (htab);
4661
4662 /* Ask the linker to do its stuff. */
4663 (*htab->layout_sections_again) ();
4664 stub_changed = FALSE;
4665 }
4666
4667 return TRUE;
4668
4669 error_ret_free_local:
4670 return FALSE;
4671 }
4672
4673 /* Build all the stubs associated with the current output file. The
4674 stubs are kept in a hash table attached to the main linker hash
4675 table. We also set up the .plt entries for statically linked PIC
4676 functions here. This function is called via aarch64_elf_finish in the
4677 linker. */
4678
4679 bfd_boolean
4680 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4681 {
4682 asection *stub_sec;
4683 struct bfd_hash_table *table;
4684 struct elf_aarch64_link_hash_table *htab;
4685
4686 htab = elf_aarch64_hash_table (info);
4687
4688 for (stub_sec = htab->stub_bfd->sections;
4689 stub_sec != NULL; stub_sec = stub_sec->next)
4690 {
4691 bfd_size_type size;
4692
4693 /* Ignore non-stub sections. */
4694 if (!strstr (stub_sec->name, STUB_SUFFIX))
4695 continue;
4696
4697 /* Allocate memory to hold the linker stubs. */
4698 size = stub_sec->size;
4699 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4700 if (stub_sec->contents == NULL && size != 0)
4701 return FALSE;
4702 stub_sec->size = 0;
4703
4704 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4705 aligned, as long branch stubs contain a 64-bit address. */
4706 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4707 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4708 stub_sec->size += 8;
4709 }
4710
4711 /* Build the stubs as directed by the stub hash table. */
4712 table = &htab->stub_hash_table;
4713 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4714
4715 return TRUE;
4716 }
4717
4718
4719 /* Add an entry to the code/data map for section SEC. */
4720
4721 static void
4722 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4723 {
4724 struct _aarch64_elf_section_data *sec_data =
4725 elf_aarch64_section_data (sec);
4726 unsigned int newidx;
4727
4728 if (sec_data->map == NULL)
4729 {
4730 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4731 sec_data->mapcount = 0;
4732 sec_data->mapsize = 1;
4733 }
4734
4735 newidx = sec_data->mapcount++;
4736
4737 if (sec_data->mapcount > sec_data->mapsize)
4738 {
4739 sec_data->mapsize *= 2;
4740 sec_data->map = bfd_realloc_or_free
4741 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4742 }
4743
4744 if (sec_data->map)
4745 {
4746 sec_data->map[newidx].vma = vma;
4747 sec_data->map[newidx].type = type;
4748 }
4749 }
4750
4751
4752 /* Initialise maps of insn/data for input BFDs. */
4753 void
4754 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4755 {
4756 Elf_Internal_Sym *isymbuf;
4757 Elf_Internal_Shdr *hdr;
4758 unsigned int i, localsyms;
4759
4760 /* Make sure that we are dealing with an AArch64 elf binary. */
4761 if (!is_aarch64_elf (abfd))
4762 return;
4763
4764 if ((abfd->flags & DYNAMIC) != 0)
4765 return;
4766
4767 hdr = &elf_symtab_hdr (abfd);
4768 localsyms = hdr->sh_info;
4769
4770 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4771 should contain the number of local symbols, which should come before any
4772 global symbols. Mapping symbols are always local. */
4773 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4774
4775 /* No internal symbols read? Skip this BFD. */
4776 if (isymbuf == NULL)
4777 return;
4778
4779 for (i = 0; i < localsyms; i++)
4780 {
4781 Elf_Internal_Sym *isym = &isymbuf[i];
4782 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4783 const char *name;
4784
4785 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4786 {
4787 name = bfd_elf_string_from_elf_section (abfd,
4788 hdr->sh_link,
4789 isym->st_name);
4790
4791 if (bfd_is_aarch64_special_symbol_name
4792 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4793 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4794 }
4795 }
4796 }
4797
4798 static void
4799 setup_plt_values (struct bfd_link_info *link_info,
4800 aarch64_plt_type plt_type)
4801 {
4802 struct elf_aarch64_link_hash_table *globals;
4803 globals = elf_aarch64_hash_table (link_info);
4804
4805 if (plt_type == PLT_BTI_PAC)
4806 {
4807 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4808
4809 /* Only in ET_EXEC we need PLTn with BTI. */
4810 if (bfd_link_pde (link_info))
4811 {
4812 globals->plt_entry_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
4813 globals->plt_entry = elfNN_aarch64_small_plt_bti_pac_entry;
4814 }
4815 else
4816 {
4817 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4818 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4819 }
4820 }
4821 else if (plt_type == PLT_BTI)
4822 {
4823 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4824
4825 /* Only in ET_EXEC we need PLTn with BTI. */
4826 if (bfd_link_pde (link_info))
4827 {
4828 globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4829 globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4830 }
4831 }
4832 else if (plt_type == PLT_PAC)
4833 {
4834 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4835 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4836 }
4837 }
4838
4839 /* Set option values needed during linking. */
4840 void
4841 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4842 struct bfd_link_info *link_info,
4843 int no_enum_warn,
4844 int no_wchar_warn, int pic_veneer,
4845 int fix_erratum_835769,
4846 erratum_84319_opts fix_erratum_843419,
4847 int no_apply_dynamic_relocs,
4848 aarch64_bti_pac_info bp_info)
4849 {
4850 struct elf_aarch64_link_hash_table *globals;
4851
4852 globals = elf_aarch64_hash_table (link_info);
4853 globals->pic_veneer = pic_veneer;
4854 globals->fix_erratum_835769 = fix_erratum_835769;
4855 /* If the default options are used, then ERRAT_ADR will be set by default
4856 which will enable the ADRP->ADR workaround for the erratum 843419
4857 workaround. */
4858 globals->fix_erratum_843419 = fix_erratum_843419;
4859 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4860
4861 BFD_ASSERT (is_aarch64_elf (output_bfd));
4862 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4863 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4864
4865 switch (bp_info.bti_type)
4866 {
4867 case BTI_WARN:
4868 elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4869 elf_aarch64_tdata (output_bfd)->gnu_and_prop
4870 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4871 break;
4872
4873 default:
4874 break;
4875 }
4876 elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4877 setup_plt_values (link_info, bp_info.plt_type);
4878 }
4879
4880 static bfd_vma
4881 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4882 struct elf_aarch64_link_hash_table
4883 *globals, struct bfd_link_info *info,
4884 bfd_vma value, bfd *output_bfd,
4885 bfd_boolean *unresolved_reloc_p)
4886 {
4887 bfd_vma off = (bfd_vma) - 1;
4888 asection *basegot = globals->root.sgot;
4889 bfd_boolean dyn = globals->root.dynamic_sections_created;
4890
4891 if (h != NULL)
4892 {
4893 BFD_ASSERT (basegot != NULL);
4894 off = h->got.offset;
4895 BFD_ASSERT (off != (bfd_vma) - 1);
4896 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4897 || (bfd_link_pic (info)
4898 && SYMBOL_REFERENCES_LOCAL (info, h))
4899 || (ELF_ST_VISIBILITY (h->other)
4900 && h->root.type == bfd_link_hash_undefweak))
4901 {
4902 /* This is actually a static link, or it is a -Bsymbolic link
4903 and the symbol is defined locally. We must initialize this
4904 entry in the global offset table. Since the offset must
4905 always be a multiple of 8 (4 in the case of ILP32), we use
4906 the least significant bit to record whether we have
4907 initialized it already.
4908 When doing a dynamic link, we create a .rel(a).got relocation
4909 entry to initialize the value. This is done in the
4910 finish_dynamic_symbol routine. */
4911 if ((off & 1) != 0)
4912 off &= ~1;
4913 else
4914 {
4915 bfd_put_NN (output_bfd, value, basegot->contents + off);
4916 h->got.offset |= 1;
4917 }
4918 }
4919 else
4920 *unresolved_reloc_p = FALSE;
4921
4922 off = off + basegot->output_section->vma + basegot->output_offset;
4923 }
4924
4925 return off;
4926 }
4927
4928 /* Change R_TYPE to a more efficient access model where possible,
4929 return the new reloc type. */
4930
4931 static bfd_reloc_code_real_type
4932 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4933 struct elf_link_hash_entry *h)
4934 {
4935 bfd_boolean is_local = h == NULL;
4936
4937 switch (r_type)
4938 {
4939 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4940 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4941 return (is_local
4942 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4943 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4944
4945 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4946 return (is_local
4947 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4948 : r_type);
4949
4950 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4951 return (is_local
4952 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4953 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4954
4955 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4956 return (is_local
4957 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4958 : BFD_RELOC_AARCH64_NONE);
4959
4960 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4961 return (is_local
4962 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4963 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4964
4965 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4966 return (is_local
4967 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4968 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4969
4970 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4971 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4972 return (is_local
4973 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4974 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4975
4976 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4977 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4978
4979 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4980 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4981
4982 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4983 return r_type;
4984
4985 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4986 return (is_local
4987 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4988 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4989
4990 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4991 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4992 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4993 /* Instructions with these relocations will become NOPs. */
4994 return BFD_RELOC_AARCH64_NONE;
4995
4996 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4997 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4998 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4999 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
5000
5001 #if ARCH_SIZE == 64
5002 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5003 return is_local
5004 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
5005 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
5006
5007 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5008 return is_local
5009 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
5010 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
5011 #endif
5012
5013 default:
5014 break;
5015 }
5016
5017 return r_type;
5018 }
5019
5020 static unsigned int
5021 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
5022 {
5023 switch (r_type)
5024 {
5025 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5026 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5027 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5028 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5029 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5030 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5031 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5032 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5033 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5034 return GOT_NORMAL;
5035
5036 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5037 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5038 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5039 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5040 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5041 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5042 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5043 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5044 return GOT_TLS_GD;
5045
5046 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5047 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5048 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5049 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5050 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5051 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5052 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5053 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5054 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5055 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5056 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5057 return GOT_TLSDESC_GD;
5058
5059 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5060 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5061 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5062 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5063 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5064 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5065 return GOT_TLS_IE;
5066
5067 default:
5068 break;
5069 }
5070 return GOT_UNKNOWN;
5071 }
5072
5073 static bfd_boolean
5074 aarch64_can_relax_tls (bfd *input_bfd,
5075 struct bfd_link_info *info,
5076 bfd_reloc_code_real_type r_type,
5077 struct elf_link_hash_entry *h,
5078 unsigned long r_symndx)
5079 {
5080 unsigned int symbol_got_type;
5081 unsigned int reloc_got_type;
5082
5083 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
5084 return FALSE;
5085
5086 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
5087 reloc_got_type = aarch64_reloc_got_type (r_type);
5088
5089 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
5090 return TRUE;
5091
5092 if (!bfd_link_executable (info))
5093 return FALSE;
5094
5095 if (h && h->root.type == bfd_link_hash_undefweak)
5096 return FALSE;
5097
5098 return TRUE;
5099 }
5100
5101 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5102 enumerator. */
5103
5104 static bfd_reloc_code_real_type
5105 aarch64_tls_transition (bfd *input_bfd,
5106 struct bfd_link_info *info,
5107 unsigned int r_type,
5108 struct elf_link_hash_entry *h,
5109 unsigned long r_symndx)
5110 {
5111 bfd_reloc_code_real_type bfd_r_type
5112 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
5113
5114 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
5115 return bfd_r_type;
5116
5117 return aarch64_tls_transition_without_check (bfd_r_type, h);
5118 }
5119
5120 /* Return the base VMA address which should be subtracted from real addresses
5121 when resolving R_AARCH64_TLS_DTPREL relocation. */
5122
5123 static bfd_vma
5124 dtpoff_base (struct bfd_link_info *info)
5125 {
5126 /* If tls_sec is NULL, we should have signalled an error already. */
5127 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
5128 return elf_hash_table (info)->tls_sec->vma;
5129 }
5130
5131 /* Return the base VMA address which should be subtracted from real addresses
5132 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
5133
5134 static bfd_vma
5135 tpoff_base (struct bfd_link_info *info)
5136 {
5137 struct elf_link_hash_table *htab = elf_hash_table (info);
5138
5139 /* If tls_sec is NULL, we should have signalled an error already. */
5140 BFD_ASSERT (htab->tls_sec != NULL);
5141
5142 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5143 htab->tls_sec->alignment_power);
5144 return htab->tls_sec->vma - base;
5145 }
5146
5147 static bfd_vma *
5148 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5149 unsigned long r_symndx)
5150 {
5151 /* Calculate the address of the GOT entry for symbol
5152 referred to in h. */
5153 if (h != NULL)
5154 return &h->got.offset;
5155 else
5156 {
5157 /* local symbol */
5158 struct elf_aarch64_local_symbol *l;
5159
5160 l = elf_aarch64_locals (input_bfd);
5161 return &l[r_symndx].got_offset;
5162 }
5163 }
5164
5165 static void
5166 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5167 unsigned long r_symndx)
5168 {
5169 bfd_vma *p;
5170 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5171 *p |= 1;
5172 }
5173
5174 static int
5175 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5176 unsigned long r_symndx)
5177 {
5178 bfd_vma value;
5179 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5180 return value & 1;
5181 }
5182
5183 static bfd_vma
5184 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5185 unsigned long r_symndx)
5186 {
5187 bfd_vma value;
5188 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5189 value &= ~1;
5190 return value;
5191 }
5192
5193 static bfd_vma *
5194 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5195 unsigned long r_symndx)
5196 {
5197 /* Calculate the address of the GOT entry for symbol
5198 referred to in h. */
5199 if (h != NULL)
5200 {
5201 struct elf_aarch64_link_hash_entry *eh;
5202 eh = (struct elf_aarch64_link_hash_entry *) h;
5203 return &eh->tlsdesc_got_jump_table_offset;
5204 }
5205 else
5206 {
5207 /* local symbol */
5208 struct elf_aarch64_local_symbol *l;
5209
5210 l = elf_aarch64_locals (input_bfd);
5211 return &l[r_symndx].tlsdesc_got_jump_table_offset;
5212 }
5213 }
5214
5215 static void
5216 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5217 unsigned long r_symndx)
5218 {
5219 bfd_vma *p;
5220 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5221 *p |= 1;
5222 }
5223
5224 static int
5225 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5226 struct elf_link_hash_entry *h,
5227 unsigned long r_symndx)
5228 {
5229 bfd_vma value;
5230 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5231 return value & 1;
5232 }
5233
5234 static bfd_vma
5235 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5236 unsigned long r_symndx)
5237 {
5238 bfd_vma value;
5239 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5240 value &= ~1;
5241 return value;
5242 }
5243
5244 /* Data for make_branch_to_erratum_835769_stub(). */
5245
5246 struct erratum_835769_branch_to_stub_data
5247 {
5248 struct bfd_link_info *info;
5249 asection *output_section;
5250 bfd_byte *contents;
5251 };
5252
5253 /* Helper to insert branches to erratum 835769 stubs in the right
5254 places for a particular section. */
5255
5256 static bfd_boolean
5257 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5258 void *in_arg)
5259 {
5260 struct elf_aarch64_stub_hash_entry *stub_entry;
5261 struct erratum_835769_branch_to_stub_data *data;
5262 bfd_byte *contents;
5263 unsigned long branch_insn = 0;
5264 bfd_vma veneered_insn_loc, veneer_entry_loc;
5265 bfd_signed_vma branch_offset;
5266 unsigned int target;
5267 bfd *abfd;
5268
5269 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5270 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5271
5272 if (stub_entry->target_section != data->output_section
5273 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5274 return TRUE;
5275
5276 contents = data->contents;
5277 veneered_insn_loc = stub_entry->target_section->output_section->vma
5278 + stub_entry->target_section->output_offset
5279 + stub_entry->target_value;
5280 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5281 + stub_entry->stub_sec->output_offset
5282 + stub_entry->stub_offset;
5283 branch_offset = veneer_entry_loc - veneered_insn_loc;
5284
5285 abfd = stub_entry->target_section->owner;
5286 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5287 _bfd_error_handler
5288 (_("%pB: error: erratum 835769 stub out "
5289 "of range (input file too large)"), abfd);
5290
5291 target = stub_entry->target_value;
5292 branch_insn = 0x14000000;
5293 branch_offset >>= 2;
5294 branch_offset &= 0x3ffffff;
5295 branch_insn |= branch_offset;
5296 bfd_putl32 (branch_insn, &contents[target]);
5297
5298 return TRUE;
5299 }
5300
5301
5302 static bfd_boolean
5303 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5304 void *in_arg)
5305 {
5306 struct elf_aarch64_stub_hash_entry *stub_entry
5307 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5308 struct erratum_835769_branch_to_stub_data *data
5309 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5310 struct bfd_link_info *info;
5311 struct elf_aarch64_link_hash_table *htab;
5312 bfd_byte *contents;
5313 asection *section;
5314 bfd *abfd;
5315 bfd_vma place;
5316 uint32_t insn;
5317
5318 info = data->info;
5319 contents = data->contents;
5320 section = data->output_section;
5321
5322 htab = elf_aarch64_hash_table (info);
5323
5324 if (stub_entry->target_section != section
5325 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5326 return TRUE;
5327
5328 BFD_ASSERT (((htab->fix_erratum_843419 & ERRAT_ADRP) && stub_entry->stub_sec)
5329 || (htab->fix_erratum_843419 & ERRAT_ADR));
5330
5331 /* Only update the stub section if we have one. We should always have one if
5332 we're allowed to use the ADRP errata workaround, otherwise it is not
5333 required. */
5334 if (stub_entry->stub_sec)
5335 {
5336 insn = bfd_getl32 (contents + stub_entry->target_value);
5337 bfd_putl32 (insn,
5338 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5339 }
5340
5341 place = (section->output_section->vma + section->output_offset
5342 + stub_entry->adrp_offset);
5343 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5344
5345 if (!_bfd_aarch64_adrp_p (insn))
5346 abort ();
5347
5348 bfd_signed_vma imm =
5349 (_bfd_aarch64_sign_extend
5350 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5351 - (place & 0xfff));
5352
5353 if ((htab->fix_erratum_843419 & ERRAT_ADR)
5354 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5355 {
5356 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5357 | AARCH64_RT (insn));
5358 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5359 /* Stub is not needed, don't map it out. */
5360 stub_entry->stub_type = aarch64_stub_none;
5361 }
5362 else if (htab->fix_erratum_843419 & ERRAT_ADRP)
5363 {
5364 bfd_vma veneered_insn_loc;
5365 bfd_vma veneer_entry_loc;
5366 bfd_signed_vma branch_offset;
5367 uint32_t branch_insn;
5368
5369 veneered_insn_loc = stub_entry->target_section->output_section->vma
5370 + stub_entry->target_section->output_offset
5371 + stub_entry->target_value;
5372 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5373 + stub_entry->stub_sec->output_offset
5374 + stub_entry->stub_offset;
5375 branch_offset = veneer_entry_loc - veneered_insn_loc;
5376
5377 abfd = stub_entry->target_section->owner;
5378 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5379 _bfd_error_handler
5380 (_("%pB: error: erratum 843419 stub out "
5381 "of range (input file too large)"), abfd);
5382
5383 branch_insn = 0x14000000;
5384 branch_offset >>= 2;
5385 branch_offset &= 0x3ffffff;
5386 branch_insn |= branch_offset;
5387 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5388 }
5389 else
5390 {
5391 abfd = stub_entry->target_section->owner;
5392 _bfd_error_handler
5393 (_("%pB: error: erratum 843419 immediate 0x%" BFD_VMA_FMT "x "
5394 "out of range for ADR (input file too large) and "
5395 "--fix-cortex-a53-843419=adr used. Run the linker with "
5396 "--fix-cortex-a53-843419=full instead"), abfd, imm);
5397 bfd_set_error (bfd_error_bad_value);
5398 /* This function is called inside a hashtable traversal and the error
5399 handlers called above turn into non-fatal errors. Which means this
5400 case ld returns an exit code 0 and also produces a broken object file.
5401 To prevent this, issue a hard abort. */
5402 BFD_FAIL ();
5403 }
5404 return TRUE;
5405 }
5406
5407
5408 static bfd_boolean
5409 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5410 struct bfd_link_info *link_info,
5411 asection *sec,
5412 bfd_byte *contents)
5413
5414 {
5415 struct elf_aarch64_link_hash_table *globals =
5416 elf_aarch64_hash_table (link_info);
5417
5418 if (globals == NULL)
5419 return FALSE;
5420
5421 /* Fix code to point to erratum 835769 stubs. */
5422 if (globals->fix_erratum_835769)
5423 {
5424 struct erratum_835769_branch_to_stub_data data;
5425
5426 data.info = link_info;
5427 data.output_section = sec;
5428 data.contents = contents;
5429 bfd_hash_traverse (&globals->stub_hash_table,
5430 make_branch_to_erratum_835769_stub, &data);
5431 }
5432
5433 if (globals->fix_erratum_843419)
5434 {
5435 struct erratum_835769_branch_to_stub_data data;
5436
5437 data.info = link_info;
5438 data.output_section = sec;
5439 data.contents = contents;
5440 bfd_hash_traverse (&globals->stub_hash_table,
5441 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5442 }
5443
5444 return FALSE;
5445 }
5446
5447 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5448
5449 static bfd_boolean
5450 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5451 {
5452 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5453 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5454 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5455 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5456 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5457 }
5458
5459 /* Perform a relocation as part of a final link. The input relocation type
5460 should be TLS relaxed. */
5461
5462 static bfd_reloc_status_type
5463 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5464 bfd *input_bfd,
5465 bfd *output_bfd,
5466 asection *input_section,
5467 bfd_byte *contents,
5468 Elf_Internal_Rela *rel,
5469 bfd_vma value,
5470 struct bfd_link_info *info,
5471 asection *sym_sec,
5472 struct elf_link_hash_entry *h,
5473 bfd_boolean *unresolved_reloc_p,
5474 bfd_boolean save_addend,
5475 bfd_vma *saved_addend,
5476 Elf_Internal_Sym *sym)
5477 {
5478 Elf_Internal_Shdr *symtab_hdr;
5479 unsigned int r_type = howto->type;
5480 bfd_reloc_code_real_type bfd_r_type
5481 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5482 unsigned long r_symndx;
5483 bfd_byte *hit_data = contents + rel->r_offset;
5484 bfd_vma place, off, got_entry_addr = 0;
5485 bfd_signed_vma signed_addend;
5486 struct elf_aarch64_link_hash_table *globals;
5487 bfd_boolean weak_undef_p;
5488 bfd_boolean relative_reloc;
5489 asection *base_got;
5490 bfd_vma orig_value = value;
5491 bfd_boolean resolved_to_zero;
5492 bfd_boolean abs_symbol_p;
5493 bfd_boolean via_plt_p;
5494
5495 globals = elf_aarch64_hash_table (info);
5496
5497 symtab_hdr = &elf_symtab_hdr (input_bfd);
5498
5499 BFD_ASSERT (is_aarch64_elf (input_bfd));
5500
5501 r_symndx = ELFNN_R_SYM (rel->r_info);
5502
5503 place = input_section->output_section->vma
5504 + input_section->output_offset + rel->r_offset;
5505
5506 /* Get addend, accumulating the addend for consecutive relocs
5507 which refer to the same offset. */
5508 signed_addend = saved_addend ? *saved_addend : 0;
5509 signed_addend += rel->r_addend;
5510
5511 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5512 : bfd_is_und_section (sym_sec));
5513 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5514
5515 via_plt_p = (globals->root.splt != NULL && h != NULL
5516 && h->plt.offset != (bfd_vma) - 1);
5517
5518 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5519 it here if it is defined in a non-shared object. */
5520 if (h != NULL
5521 && h->type == STT_GNU_IFUNC
5522 && h->def_regular)
5523 {
5524 asection *plt;
5525 const char *name;
5526 bfd_vma addend = 0;
5527
5528 if ((input_section->flags & SEC_ALLOC) == 0)
5529 {
5530 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5531 STT_GNU_IFUNC symbol as STT_FUNC. */
5532 if (elf_section_type (input_section) == SHT_NOTE)
5533 goto skip_ifunc;
5534
5535 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5536 sections because such sections are not SEC_ALLOC and
5537 thus ld.so will not process them. */
5538 if ((input_section->flags & SEC_DEBUGGING) != 0)
5539 return bfd_reloc_ok;
5540
5541 if (h->root.root.string)
5542 name = h->root.root.string;
5543 else
5544 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5545 _bfd_error_handler
5546 /* xgettext:c-format */
5547 (_("%pB(%pA+%#" PRIx64 "): "
5548 "unresolvable %s relocation against symbol `%s'"),
5549 input_bfd, input_section, (uint64_t) rel->r_offset,
5550 howto->name, name);
5551 bfd_set_error (bfd_error_bad_value);
5552 return bfd_reloc_notsupported;
5553 }
5554 else if (h->plt.offset == (bfd_vma) -1)
5555 goto bad_ifunc_reloc;
5556
5557 /* STT_GNU_IFUNC symbol must go through PLT. */
5558 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5559 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5560
5561 switch (bfd_r_type)
5562 {
5563 default:
5564 bad_ifunc_reloc:
5565 if (h->root.root.string)
5566 name = h->root.root.string;
5567 else
5568 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5569 NULL);
5570 _bfd_error_handler
5571 /* xgettext:c-format */
5572 (_("%pB: relocation %s against STT_GNU_IFUNC "
5573 "symbol `%s' isn't handled by %s"), input_bfd,
5574 howto->name, name, __FUNCTION__);
5575 bfd_set_error (bfd_error_bad_value);
5576 return bfd_reloc_notsupported;
5577
5578 case BFD_RELOC_AARCH64_NN:
5579 if (rel->r_addend != 0)
5580 {
5581 if (h->root.root.string)
5582 name = h->root.root.string;
5583 else
5584 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5585 sym, NULL);
5586 _bfd_error_handler
5587 /* xgettext:c-format */
5588 (_("%pB: relocation %s against STT_GNU_IFUNC "
5589 "symbol `%s' has non-zero addend: %" PRId64),
5590 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5591 bfd_set_error (bfd_error_bad_value);
5592 return bfd_reloc_notsupported;
5593 }
5594
5595 /* Generate dynamic relocation only when there is a
5596 non-GOT reference in a shared object. */
5597 if (bfd_link_pic (info) && h->non_got_ref)
5598 {
5599 Elf_Internal_Rela outrel;
5600 asection *sreloc;
5601
5602 /* Need a dynamic relocation to get the real function
5603 address. */
5604 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5605 info,
5606 input_section,
5607 rel->r_offset);
5608 if (outrel.r_offset == (bfd_vma) -1
5609 || outrel.r_offset == (bfd_vma) -2)
5610 abort ();
5611
5612 outrel.r_offset += (input_section->output_section->vma
5613 + input_section->output_offset);
5614
5615 if (h->dynindx == -1
5616 || h->forced_local
5617 || bfd_link_executable (info))
5618 {
5619 /* This symbol is resolved locally. */
5620 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5621 outrel.r_addend = (h->root.u.def.value
5622 + h->root.u.def.section->output_section->vma
5623 + h->root.u.def.section->output_offset);
5624 }
5625 else
5626 {
5627 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5628 outrel.r_addend = 0;
5629 }
5630
5631 sreloc = globals->root.irelifunc;
5632 elf_append_rela (output_bfd, sreloc, &outrel);
5633
5634 /* If this reloc is against an external symbol, we
5635 do not want to fiddle with the addend. Otherwise,
5636 we need to include the symbol value so that it
5637 becomes an addend for the dynamic reloc. For an
5638 internal symbol, we have updated addend. */
5639 return bfd_reloc_ok;
5640 }
5641 /* FALLTHROUGH */
5642 case BFD_RELOC_AARCH64_CALL26:
5643 case BFD_RELOC_AARCH64_JUMP26:
5644 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5645 place, value,
5646 signed_addend,
5647 weak_undef_p);
5648 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5649 howto, value);
5650 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5651 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5652 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5653 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5654 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5655 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5656 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5657 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5658 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5659 base_got = globals->root.sgot;
5660 off = h->got.offset;
5661
5662 if (base_got == NULL)
5663 abort ();
5664
5665 if (off == (bfd_vma) -1)
5666 {
5667 bfd_vma plt_index;
5668
5669 /* We can't use h->got.offset here to save state, or
5670 even just remember the offset, as finish_dynamic_symbol
5671 would use that as offset into .got. */
5672
5673 if (globals->root.splt != NULL)
5674 {
5675 plt_index = ((h->plt.offset - globals->plt_header_size) /
5676 globals->plt_entry_size);
5677 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5678 base_got = globals->root.sgotplt;
5679 }
5680 else
5681 {
5682 plt_index = h->plt.offset / globals->plt_entry_size;
5683 off = plt_index * GOT_ENTRY_SIZE;
5684 base_got = globals->root.igotplt;
5685 }
5686
5687 if (h->dynindx == -1
5688 || h->forced_local
5689 || info->symbolic)
5690 {
5691 /* This references the local definition. We must
5692 initialize this entry in the global offset table.
5693 Since the offset must always be a multiple of 8,
5694 we use the least significant bit to record
5695 whether we have initialized it already.
5696
5697 When doing a dynamic link, we create a .rela.got
5698 relocation entry to initialize the value. This
5699 is done in the finish_dynamic_symbol routine. */
5700 if ((off & 1) != 0)
5701 off &= ~1;
5702 else
5703 {
5704 bfd_put_NN (output_bfd, value,
5705 base_got->contents + off);
5706 /* Note that this is harmless as -1 | 1 still is -1. */
5707 h->got.offset |= 1;
5708 }
5709 }
5710 value = (base_got->output_section->vma
5711 + base_got->output_offset + off);
5712 }
5713 else
5714 value = aarch64_calculate_got_entry_vma (h, globals, info,
5715 value, output_bfd,
5716 unresolved_reloc_p);
5717
5718 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5719 addend = (globals->root.sgot->output_section->vma
5720 + globals->root.sgot->output_offset);
5721
5722 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5723 place, value,
5724 addend, weak_undef_p);
5725 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5726 case BFD_RELOC_AARCH64_ADD_LO12:
5727 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5728 break;
5729 }
5730 }
5731
5732 skip_ifunc:
5733 resolved_to_zero = (h != NULL
5734 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5735
5736 switch (bfd_r_type)
5737 {
5738 case BFD_RELOC_AARCH64_NONE:
5739 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5740 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5741 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5742 *unresolved_reloc_p = FALSE;
5743 return bfd_reloc_ok;
5744
5745 case BFD_RELOC_AARCH64_NN:
5746
5747 /* When generating a shared object or relocatable executable, these
5748 relocations are copied into the output file to be resolved at
5749 run time. */
5750 if (((bfd_link_pic (info)
5751 || globals->root.is_relocatable_executable)
5752 && (input_section->flags & SEC_ALLOC)
5753 && (h == NULL
5754 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5755 && !resolved_to_zero)
5756 || h->root.type != bfd_link_hash_undefweak))
5757 /* Or we are creating an executable, we may need to keep relocations
5758 for symbols satisfied by a dynamic library if we manage to avoid
5759 copy relocs for the symbol. */
5760 || (ELIMINATE_COPY_RELOCS
5761 && !bfd_link_pic (info)
5762 && h != NULL
5763 && (input_section->flags & SEC_ALLOC)
5764 && h->dynindx != -1
5765 && !h->non_got_ref
5766 && ((h->def_dynamic
5767 && !h->def_regular)
5768 || h->root.type == bfd_link_hash_undefweak
5769 || h->root.type == bfd_link_hash_undefined)))
5770 {
5771 Elf_Internal_Rela outrel;
5772 bfd_byte *loc;
5773 bfd_boolean skip, relocate;
5774 asection *sreloc;
5775
5776 *unresolved_reloc_p = FALSE;
5777
5778 skip = FALSE;
5779 relocate = FALSE;
5780
5781 outrel.r_addend = signed_addend;
5782 outrel.r_offset =
5783 _bfd_elf_section_offset (output_bfd, info, input_section,
5784 rel->r_offset);
5785 if (outrel.r_offset == (bfd_vma) - 1)
5786 skip = TRUE;
5787 else if (outrel.r_offset == (bfd_vma) - 2)
5788 {
5789 skip = TRUE;
5790 relocate = TRUE;
5791 }
5792 else if (abs_symbol_p)
5793 {
5794 /* Local absolute symbol. */
5795 skip = (h->forced_local || (h->dynindx == -1));
5796 relocate = skip;
5797 }
5798
5799 outrel.r_offset += (input_section->output_section->vma
5800 + input_section->output_offset);
5801
5802 if (skip)
5803 memset (&outrel, 0, sizeof outrel);
5804 else if (h != NULL
5805 && h->dynindx != -1
5806 && (!bfd_link_pic (info)
5807 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5808 || !h->def_regular))
5809 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5810 else
5811 {
5812 int symbol;
5813
5814 /* On SVR4-ish systems, the dynamic loader cannot
5815 relocate the text and data segments independently,
5816 so the symbol does not matter. */
5817 symbol = 0;
5818 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5819 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5820 outrel.r_addend += value;
5821 }
5822
5823 sreloc = elf_section_data (input_section)->sreloc;
5824 if (sreloc == NULL || sreloc->contents == NULL)
5825 return bfd_reloc_notsupported;
5826
5827 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5828 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5829
5830 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5831 {
5832 /* Sanity to check that we have previously allocated
5833 sufficient space in the relocation section for the
5834 number of relocations we actually want to emit. */
5835 abort ();
5836 }
5837
5838 /* If this reloc is against an external symbol, we do not want to
5839 fiddle with the addend. Otherwise, we need to include the symbol
5840 value so that it becomes an addend for the dynamic reloc. */
5841 if (!relocate)
5842 return bfd_reloc_ok;
5843
5844 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5845 contents, rel->r_offset, value,
5846 signed_addend);
5847 }
5848 else
5849 value += signed_addend;
5850 break;
5851
5852 case BFD_RELOC_AARCH64_BRANCH19:
5853 case BFD_RELOC_AARCH64_TSTBR14:
5854 /* A conditional branch to an undefined weak symbol is converted to a
5855 branch to itself. */
5856 if (weak_undef_p && !via_plt_p)
5857 {
5858 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5859 place, value,
5860 signed_addend,
5861 weak_undef_p);
5862 break;
5863 }
5864 /* Fall through. */
5865 case BFD_RELOC_AARCH64_CALL26:
5866 case BFD_RELOC_AARCH64_JUMP26:
5867 {
5868 asection *splt = globals->root.splt;
5869
5870 /* A call to an undefined weak symbol is converted to a jump to
5871 the next instruction unless a PLT entry will be created.
5872 The jump to the next instruction is optimized as a NOP.
5873 Do the same for local undefined symbols. */
5874 if (weak_undef_p && ! via_plt_p)
5875 {
5876 bfd_putl32 (INSN_NOP, hit_data);
5877 return bfd_reloc_ok;
5878 }
5879
5880 /* If the call goes through a PLT entry, make sure to
5881 check distance to the right destination address. */
5882 if (via_plt_p)
5883 value = (splt->output_section->vma
5884 + splt->output_offset + h->plt.offset);
5885
5886 /* Check if a stub has to be inserted because the destination
5887 is too far away. */
5888 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5889
5890 /* If the branch destination is directed to plt stub, "value" will be
5891 the final destination, otherwise we should plus signed_addend, it may
5892 contain non-zero value, for example call to local function symbol
5893 which are turned into "sec_sym + sec_off", and sec_off is kept in
5894 signed_addend. */
5895 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5896 place))
5897 /* The target is out of reach, so redirect the branch to
5898 the local stub for this function. */
5899 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5900 rel, globals);
5901 if (stub_entry != NULL)
5902 {
5903 value = (stub_entry->stub_offset
5904 + stub_entry->stub_sec->output_offset
5905 + stub_entry->stub_sec->output_section->vma);
5906
5907 /* We have redirected the destination to stub entry address,
5908 so ignore any addend record in the original rela entry. */
5909 signed_addend = 0;
5910 }
5911 }
5912 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5913 place, value,
5914 signed_addend, weak_undef_p);
5915 *unresolved_reloc_p = FALSE;
5916 break;
5917
5918 case BFD_RELOC_AARCH64_16_PCREL:
5919 case BFD_RELOC_AARCH64_32_PCREL:
5920 case BFD_RELOC_AARCH64_64_PCREL:
5921 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5922 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5923 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5924 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5925 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5926 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5927 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5928 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5929 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5930 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5931 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5932 if (bfd_link_pic (info)
5933 && (input_section->flags & SEC_ALLOC) != 0
5934 && (input_section->flags & SEC_READONLY) != 0
5935 && !SYMBOL_REFERENCES_LOCAL (info, h))
5936 {
5937 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5938
5939 _bfd_error_handler
5940 /* xgettext:c-format */
5941 (_("%pB: relocation %s against symbol `%s' which may bind "
5942 "externally can not be used when making a shared object; "
5943 "recompile with -fPIC"),
5944 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5945 h->root.root.string);
5946 bfd_set_error (bfd_error_bad_value);
5947 return bfd_reloc_notsupported;
5948 }
5949 /* Fall through. */
5950
5951 case BFD_RELOC_AARCH64_16:
5952 #if ARCH_SIZE == 64
5953 case BFD_RELOC_AARCH64_32:
5954 #endif
5955 case BFD_RELOC_AARCH64_ADD_LO12:
5956 case BFD_RELOC_AARCH64_LDST128_LO12:
5957 case BFD_RELOC_AARCH64_LDST16_LO12:
5958 case BFD_RELOC_AARCH64_LDST32_LO12:
5959 case BFD_RELOC_AARCH64_LDST64_LO12:
5960 case BFD_RELOC_AARCH64_LDST8_LO12:
5961 case BFD_RELOC_AARCH64_MOVW_G0:
5962 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5963 case BFD_RELOC_AARCH64_MOVW_G0_S:
5964 case BFD_RELOC_AARCH64_MOVW_G1:
5965 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5966 case BFD_RELOC_AARCH64_MOVW_G1_S:
5967 case BFD_RELOC_AARCH64_MOVW_G2:
5968 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5969 case BFD_RELOC_AARCH64_MOVW_G2_S:
5970 case BFD_RELOC_AARCH64_MOVW_G3:
5971 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5972 place, value,
5973 signed_addend, weak_undef_p);
5974 break;
5975
5976 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5977 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5978 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5979 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5980 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5981 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5982 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5983 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5984 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5985 if (globals->root.sgot == NULL)
5986 BFD_ASSERT (h != NULL);
5987
5988 relative_reloc = FALSE;
5989 if (h != NULL)
5990 {
5991 bfd_vma addend = 0;
5992
5993 /* If a symbol is not dynamic and is not undefined weak, bind it
5994 locally and generate a RELATIVE relocation under PIC mode.
5995
5996 NOTE: one symbol may be referenced by several relocations, we
5997 should only generate one RELATIVE relocation for that symbol.
5998 Therefore, check GOT offset mark first. */
5999 if (h->dynindx == -1
6000 && !h->forced_local
6001 && h->root.type != bfd_link_hash_undefweak
6002 && bfd_link_pic (info)
6003 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6004 relative_reloc = TRUE;
6005
6006 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
6007 output_bfd,
6008 unresolved_reloc_p);
6009 /* Record the GOT entry address which will be used when generating
6010 RELATIVE relocation. */
6011 if (relative_reloc)
6012 got_entry_addr = value;
6013
6014 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
6015 addend = (globals->root.sgot->output_section->vma
6016 + globals->root.sgot->output_offset);
6017 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6018 place, value,
6019 addend, weak_undef_p);
6020 }
6021 else
6022 {
6023 bfd_vma addend = 0;
6024 struct elf_aarch64_local_symbol *locals
6025 = elf_aarch64_locals (input_bfd);
6026
6027 if (locals == NULL)
6028 {
6029 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6030 _bfd_error_handler
6031 /* xgettext:c-format */
6032 (_("%pB: local symbol descriptor table be NULL when applying "
6033 "relocation %s against local symbol"),
6034 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
6035 abort ();
6036 }
6037
6038 off = symbol_got_offset (input_bfd, h, r_symndx);
6039 base_got = globals->root.sgot;
6040 got_entry_addr = (base_got->output_section->vma
6041 + base_got->output_offset + off);
6042
6043 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6044 {
6045 bfd_put_64 (output_bfd, value, base_got->contents + off);
6046
6047 /* For local symbol, we have done absolute relocation in static
6048 linking stage. While for shared library, we need to update the
6049 content of GOT entry according to the shared object's runtime
6050 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
6051 for dynamic linker. */
6052 if (bfd_link_pic (info))
6053 relative_reloc = TRUE;
6054
6055 symbol_got_offset_mark (input_bfd, h, r_symndx);
6056 }
6057
6058 /* Update the relocation value to GOT entry addr as we have transformed
6059 the direct data access into indirect data access through GOT. */
6060 value = got_entry_addr;
6061
6062 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
6063 addend = base_got->output_section->vma + base_got->output_offset;
6064
6065 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6066 place, value,
6067 addend, weak_undef_p);
6068 }
6069
6070 if (relative_reloc)
6071 {
6072 asection *s;
6073 Elf_Internal_Rela outrel;
6074
6075 s = globals->root.srelgot;
6076 if (s == NULL)
6077 abort ();
6078
6079 outrel.r_offset = got_entry_addr;
6080 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6081 outrel.r_addend = orig_value;
6082 elf_append_rela (output_bfd, s, &outrel);
6083 }
6084 break;
6085
6086 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6087 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6088 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6089 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6090 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6091 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6092 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6093 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6094 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6095 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6096 if (globals->root.sgot == NULL)
6097 return bfd_reloc_notsupported;
6098
6099 value = (symbol_got_offset (input_bfd, h, r_symndx)
6100 + globals->root.sgot->output_section->vma
6101 + globals->root.sgot->output_offset);
6102
6103 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6104 place, value,
6105 0, weak_undef_p);
6106 *unresolved_reloc_p = FALSE;
6107 break;
6108
6109 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6110 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6111 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6112 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6113 if (globals->root.sgot == NULL)
6114 return bfd_reloc_notsupported;
6115
6116 value = symbol_got_offset (input_bfd, h, r_symndx);
6117 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6118 place, value,
6119 0, weak_undef_p);
6120 *unresolved_reloc_p = FALSE;
6121 break;
6122
6123 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
6124 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
6125 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6126 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
6127 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
6128 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
6129 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
6130 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
6131 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
6132 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
6133 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6134 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6135 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6136 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6137 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6138 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
6139 {
6140 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6141 {
6142 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6143 _bfd_error_handler
6144 /* xgettext:c-format */
6145 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6146 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6147 h->root.root.string);
6148 bfd_set_error (bfd_error_bad_value);
6149 return bfd_reloc_notsupported;
6150 }
6151
6152 bfd_vma def_value
6153 = weak_undef_p ? 0 : signed_addend - dtpoff_base (info);
6154 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6155 place, value,
6156 def_value, weak_undef_p);
6157 break;
6158 }
6159
6160 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6161 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6162 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6163 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
6164 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6165 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
6166 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6167 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
6168 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6169 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
6170 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6171 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6172 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6173 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6174 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6175 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6176 {
6177 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6178 {
6179 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6180 _bfd_error_handler
6181 /* xgettext:c-format */
6182 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6183 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6184 h->root.root.string);
6185 bfd_set_error (bfd_error_bad_value);
6186 return bfd_reloc_notsupported;
6187 }
6188
6189 bfd_vma def_value
6190 = weak_undef_p ? 0 : signed_addend - tpoff_base (info);
6191 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6192 place, value,
6193 def_value, weak_undef_p);
6194 *unresolved_reloc_p = FALSE;
6195 break;
6196 }
6197
6198 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6199 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6200 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6201 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6202 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6203 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6204 if (globals->root.sgot == NULL)
6205 return bfd_reloc_notsupported;
6206 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6207 + globals->root.sgotplt->output_section->vma
6208 + globals->root.sgotplt->output_offset
6209 + globals->sgotplt_jump_table_size);
6210
6211 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6212 place, value,
6213 0, weak_undef_p);
6214 *unresolved_reloc_p = FALSE;
6215 break;
6216
6217 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6218 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6219 if (globals->root.sgot == NULL)
6220 return bfd_reloc_notsupported;
6221
6222 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6223 + globals->root.sgotplt->output_section->vma
6224 + globals->root.sgotplt->output_offset
6225 + globals->sgotplt_jump_table_size);
6226
6227 value -= (globals->root.sgot->output_section->vma
6228 + globals->root.sgot->output_offset);
6229
6230 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6231 place, value,
6232 0, weak_undef_p);
6233 *unresolved_reloc_p = FALSE;
6234 break;
6235
6236 default:
6237 return bfd_reloc_notsupported;
6238 }
6239
6240 if (saved_addend)
6241 *saved_addend = value;
6242
6243 /* Only apply the final relocation in a sequence. */
6244 if (save_addend)
6245 return bfd_reloc_continue;
6246
6247 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6248 howto, value);
6249 }
6250
6251 /* LP64 and ILP32 operates on x- and w-registers respectively.
6252 Next definitions take into account the difference between
6253 corresponding machine codes. R means x-register if the target
6254 arch is LP64, and w-register if the target is ILP32. */
6255
6256 #if ARCH_SIZE == 64
6257 # define add_R0_R0 (0x91000000)
6258 # define add_R0_R0_R1 (0x8b000020)
6259 # define add_R0_R1 (0x91400020)
6260 # define ldr_R0 (0x58000000)
6261 # define ldr_R0_mask(i) (i & 0xffffffe0)
6262 # define ldr_R0_x0 (0xf9400000)
6263 # define ldr_hw_R0 (0xf2a00000)
6264 # define movk_R0 (0xf2800000)
6265 # define movz_R0 (0xd2a00000)
6266 # define movz_hw_R0 (0xd2c00000)
6267 #else /*ARCH_SIZE == 32 */
6268 # define add_R0_R0 (0x11000000)
6269 # define add_R0_R0_R1 (0x0b000020)
6270 # define add_R0_R1 (0x11400020)
6271 # define ldr_R0 (0x18000000)
6272 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6273 # define ldr_R0_x0 (0xb9400000)
6274 # define ldr_hw_R0 (0x72a00000)
6275 # define movk_R0 (0x72800000)
6276 # define movz_R0 (0x52a00000)
6277 # define movz_hw_R0 (0x52c00000)
6278 #endif
6279
6280 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6281 it is used to identify the stub information to reset. */
6282
6283 struct erratum_843419_branch_to_stub_clear_data
6284 {
6285 bfd_vma adrp_offset;
6286 asection *output_section;
6287 };
6288
6289 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6290 section inside IN_ARG matches. The clearing is done by setting the
6291 stub_type to none. */
6292
6293 static bfd_boolean
6294 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6295 void *in_arg)
6296 {
6297 struct elf_aarch64_stub_hash_entry *stub_entry
6298 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6299 struct erratum_843419_branch_to_stub_clear_data *data
6300 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6301
6302 if (stub_entry->target_section != data->output_section
6303 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6304 || stub_entry->adrp_offset != data->adrp_offset)
6305 return TRUE;
6306
6307 /* Change the stub type instead of removing the entry, removing from the hash
6308 table would be slower and we have already reserved the memory for the entry
6309 so there wouldn't be much gain. Changing the stub also keeps around a
6310 record of what was there before. */
6311 stub_entry->stub_type = aarch64_stub_none;
6312
6313 /* We're done and there could have been only one matching stub at that
6314 particular offset, so abort further traversal. */
6315 return FALSE;
6316 }
6317
6318 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6319 sequence. In this case the erratum no longer applies and we need to remove
6320 the entry from the pending stub generation. This clears matching adrp insn
6321 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6322
6323 static void
6324 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6325 bfd_vma adrp_offset, asection *input_section)
6326 {
6327 if (globals->fix_erratum_843419 & ERRAT_ADRP)
6328 {
6329 struct erratum_843419_branch_to_stub_clear_data data;
6330 data.adrp_offset = adrp_offset;
6331 data.output_section = input_section;
6332
6333 bfd_hash_traverse (&globals->stub_hash_table,
6334 _bfd_aarch64_erratum_843419_clear_stub, &data);
6335 }
6336 }
6337
6338 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6339 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6340 link.
6341
6342 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6343 is to then call final_link_relocate. Return other values in the
6344 case of error. */
6345
6346 static bfd_reloc_status_type
6347 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6348 bfd *input_bfd, asection *input_section,
6349 bfd_byte *contents, Elf_Internal_Rela *rel,
6350 struct elf_link_hash_entry *h)
6351 {
6352 bfd_boolean is_local = h == NULL;
6353 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6354 unsigned long insn;
6355
6356 BFD_ASSERT (globals && input_bfd && contents && rel);
6357
6358 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6359 {
6360 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6361 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6362 if (is_local)
6363 {
6364 /* GD->LE relaxation:
6365 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6366 or
6367 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6368
6369 Where R is x for LP64, and w for ILP32. */
6370 bfd_putl32 (movz_R0, contents + rel->r_offset);
6371 /* We have relaxed the adrp into a mov, we may have to clear any
6372 pending erratum fixes. */
6373 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6374 return bfd_reloc_continue;
6375 }
6376 else
6377 {
6378 /* GD->IE relaxation:
6379 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6380 or
6381 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6382 */
6383 return bfd_reloc_continue;
6384 }
6385
6386 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6387 BFD_ASSERT (0);
6388 break;
6389
6390 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6391 if (is_local)
6392 {
6393 /* Tiny TLSDESC->LE relaxation:
6394 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6395 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6396 .tlsdesccall var
6397 blr x1 => nop
6398
6399 Where R is x for LP64, and w for ILP32. */
6400 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6401 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6402
6403 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6404 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6405 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6406
6407 bfd_putl32 (movz_R0, contents + rel->r_offset);
6408 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6409 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6410 return bfd_reloc_continue;
6411 }
6412 else
6413 {
6414 /* Tiny TLSDESC->IE relaxation:
6415 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6416 adr x0, :tlsdesc:var => nop
6417 .tlsdesccall var
6418 blr x1 => nop
6419 */
6420 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6421 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6422
6423 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6424 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6425
6426 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6427 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6428 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6429 return bfd_reloc_continue;
6430 }
6431
6432 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6433 if (is_local)
6434 {
6435 /* Tiny GD->LE relaxation:
6436 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6437 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6438 nop => add R0, R0, #:tprel_lo12_nc:x
6439
6440 Where R is x for LP64, and x for Ilp32. */
6441
6442 /* First kill the tls_get_addr reloc on the bl instruction. */
6443 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6444
6445 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6446 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6447 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6448
6449 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6450 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6451 rel[1].r_offset = rel->r_offset + 8;
6452
6453 /* Move the current relocation to the second instruction in
6454 the sequence. */
6455 rel->r_offset += 4;
6456 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6457 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6458 return bfd_reloc_continue;
6459 }
6460 else
6461 {
6462 /* Tiny GD->IE relaxation:
6463 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6464 bl __tls_get_addr => mrs x1, tpidr_el0
6465 nop => add R0, R0, R1
6466
6467 Where R is x for LP64, and w for Ilp32. */
6468
6469 /* First kill the tls_get_addr reloc on the bl instruction. */
6470 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6471 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6472
6473 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6474 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6475 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6476 return bfd_reloc_continue;
6477 }
6478
6479 #if ARCH_SIZE == 64
6480 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6481 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6482 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6483 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6484
6485 if (is_local)
6486 {
6487 /* Large GD->LE relaxation:
6488 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6489 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6490 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6491 bl __tls_get_addr => mrs x1, tpidr_el0
6492 nop => add x0, x0, x1
6493 */
6494 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6495 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6496 rel[2].r_offset = rel->r_offset + 8;
6497
6498 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6499 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6500 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6501 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6502 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6503 }
6504 else
6505 {
6506 /* Large GD->IE relaxation:
6507 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6508 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6509 add x0, gp, x0 => ldr x0, [gp, x0]
6510 bl __tls_get_addr => mrs x1, tpidr_el0
6511 nop => add x0, x0, x1
6512 */
6513 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6514 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6515 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6516 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6517 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6518 }
6519 return bfd_reloc_continue;
6520
6521 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6522 return bfd_reloc_continue;
6523 #endif
6524
6525 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6526 return bfd_reloc_continue;
6527
6528 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6529 if (is_local)
6530 {
6531 /* GD->LE relaxation:
6532 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6533
6534 Where R is x for lp64 mode, and w for ILP32 mode. */
6535 bfd_putl32 (movk_R0, contents + rel->r_offset);
6536 return bfd_reloc_continue;
6537 }
6538 else
6539 {
6540 /* GD->IE relaxation:
6541 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6542
6543 Where R is x for lp64 mode, and w for ILP32 mode. */
6544 insn = bfd_getl32 (contents + rel->r_offset);
6545 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6546 return bfd_reloc_continue;
6547 }
6548
6549 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6550 if (is_local)
6551 {
6552 /* GD->LE relaxation
6553 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6554 bl __tls_get_addr => mrs x1, tpidr_el0
6555 nop => add R0, R1, R0
6556
6557 Where R is x for lp64 mode, and w for ILP32 mode. */
6558
6559 /* First kill the tls_get_addr reloc on the bl instruction. */
6560 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6561 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6562
6563 bfd_putl32 (movk_R0, contents + rel->r_offset);
6564 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6565 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6566 return bfd_reloc_continue;
6567 }
6568 else
6569 {
6570 /* GD->IE relaxation
6571 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6572 BL __tls_get_addr => mrs x1, tpidr_el0
6573 R_AARCH64_CALL26
6574 NOP => add R0, R1, R0
6575
6576 Where R is x for lp64 mode, and w for ilp32 mode. */
6577
6578 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6579
6580 /* Remove the relocation on the BL instruction. */
6581 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6582
6583 /* We choose to fixup the BL and NOP instructions using the
6584 offset from the second relocation to allow flexibility in
6585 scheduling instructions between the ADD and BL. */
6586 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6587 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6588 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6589 return bfd_reloc_continue;
6590 }
6591
6592 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6593 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6594 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6595 /* GD->IE/LE relaxation:
6596 add x0, x0, #:tlsdesc_lo12:var => nop
6597 blr xd => nop
6598 */
6599 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6600 return bfd_reloc_ok;
6601
6602 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6603 if (is_local)
6604 {
6605 /* GD->LE relaxation:
6606 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6607
6608 Where R is x for lp64 mode, and w for ILP32 mode. */
6609 bfd_putl32 (movk_R0, contents + rel->r_offset);
6610 return bfd_reloc_continue;
6611 }
6612 else
6613 {
6614 /* GD->IE relaxation:
6615 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6616
6617 Where R is x for lp64 mode, and w for ILP32 mode. */
6618 insn = bfd_getl32 (contents + rel->r_offset);
6619 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6620 return bfd_reloc_ok;
6621 }
6622
6623 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6624 /* GD->LE relaxation:
6625 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6626 GD->IE relaxation:
6627 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6628
6629 Where R is x for lp64 mode, and w for ILP32 mode. */
6630 if (is_local)
6631 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6632 return bfd_reloc_continue;
6633
6634 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6635 if (is_local)
6636 {
6637 /* GD->LE relaxation:
6638 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6639
6640 Where R is x for lp64 mode, and w for ILP32 mode. */
6641 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6642 return bfd_reloc_continue;
6643 }
6644 else
6645 {
6646 /* GD->IE relaxation:
6647 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6648
6649 Where R is x for lp64 mode, and w for ILP32 mode. */
6650 insn = bfd_getl32 (contents + rel->r_offset);
6651 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6652 return bfd_reloc_continue;
6653 }
6654
6655 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6656 /* IE->LE relaxation:
6657 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6658
6659 Where R is x for lp64 mode, and w for ILP32 mode. */
6660 if (is_local)
6661 {
6662 insn = bfd_getl32 (contents + rel->r_offset);
6663 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6664 /* We have relaxed the adrp into a mov, we may have to clear any
6665 pending erratum fixes. */
6666 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6667 }
6668 return bfd_reloc_continue;
6669
6670 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6671 /* IE->LE relaxation:
6672 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6673
6674 Where R is x for lp64 mode, and w for ILP32 mode. */
6675 if (is_local)
6676 {
6677 insn = bfd_getl32 (contents + rel->r_offset);
6678 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6679 }
6680 return bfd_reloc_continue;
6681
6682 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6683 /* LD->LE relaxation (tiny):
6684 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6685 bl __tls_get_addr => add R0, R0, TCB_SIZE
6686
6687 Where R is x for lp64 mode, and w for ilp32 mode. */
6688 if (is_local)
6689 {
6690 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6691 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6692 /* No need of CALL26 relocation for tls_get_addr. */
6693 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6694 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6695 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6696 contents + rel->r_offset + 4);
6697 return bfd_reloc_ok;
6698 }
6699 return bfd_reloc_continue;
6700
6701 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6702 /* LD->LE relaxation (small):
6703 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6704 */
6705 if (is_local)
6706 {
6707 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6708 return bfd_reloc_ok;
6709 }
6710 return bfd_reloc_continue;
6711
6712 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6713 /* LD->LE relaxation (small):
6714 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6715 bl __tls_get_addr => nop
6716
6717 Where R is x for lp64 mode, and w for ilp32 mode. */
6718 if (is_local)
6719 {
6720 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6721 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6722 /* No need of CALL26 relocation for tls_get_addr. */
6723 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6724 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6725 contents + rel->r_offset + 0);
6726 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6727 return bfd_reloc_ok;
6728 }
6729 return bfd_reloc_continue;
6730
6731 default:
6732 return bfd_reloc_continue;
6733 }
6734
6735 return bfd_reloc_ok;
6736 }
6737
6738 /* Relocate an AArch64 ELF section. */
6739
6740 static bfd_boolean
6741 elfNN_aarch64_relocate_section (bfd *output_bfd,
6742 struct bfd_link_info *info,
6743 bfd *input_bfd,
6744 asection *input_section,
6745 bfd_byte *contents,
6746 Elf_Internal_Rela *relocs,
6747 Elf_Internal_Sym *local_syms,
6748 asection **local_sections)
6749 {
6750 Elf_Internal_Shdr *symtab_hdr;
6751 struct elf_link_hash_entry **sym_hashes;
6752 Elf_Internal_Rela *rel;
6753 Elf_Internal_Rela *relend;
6754 const char *name;
6755 struct elf_aarch64_link_hash_table *globals;
6756 bfd_boolean save_addend = FALSE;
6757 bfd_vma addend = 0;
6758
6759 globals = elf_aarch64_hash_table (info);
6760
6761 symtab_hdr = &elf_symtab_hdr (input_bfd);
6762 sym_hashes = elf_sym_hashes (input_bfd);
6763
6764 rel = relocs;
6765 relend = relocs + input_section->reloc_count;
6766 for (; rel < relend; rel++)
6767 {
6768 unsigned int r_type;
6769 bfd_reloc_code_real_type bfd_r_type;
6770 bfd_reloc_code_real_type relaxed_bfd_r_type;
6771 reloc_howto_type *howto;
6772 unsigned long r_symndx;
6773 Elf_Internal_Sym *sym;
6774 asection *sec;
6775 struct elf_link_hash_entry *h;
6776 bfd_vma relocation;
6777 bfd_reloc_status_type r;
6778 arelent bfd_reloc;
6779 char sym_type;
6780 bfd_boolean unresolved_reloc = FALSE;
6781 char *error_message = NULL;
6782
6783 r_symndx = ELFNN_R_SYM (rel->r_info);
6784 r_type = ELFNN_R_TYPE (rel->r_info);
6785
6786 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6787 howto = bfd_reloc.howto;
6788
6789 if (howto == NULL)
6790 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6791
6792 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6793
6794 h = NULL;
6795 sym = NULL;
6796 sec = NULL;
6797
6798 if (r_symndx < symtab_hdr->sh_info)
6799 {
6800 sym = local_syms + r_symndx;
6801 sym_type = ELFNN_ST_TYPE (sym->st_info);
6802 sec = local_sections[r_symndx];
6803
6804 /* An object file might have a reference to a local
6805 undefined symbol. This is a daft object file, but we
6806 should at least do something about it. */
6807 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6808 && bfd_is_und_section (sec)
6809 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6810 (*info->callbacks->undefined_symbol)
6811 (info, bfd_elf_string_from_elf_section
6812 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6813 input_bfd, input_section, rel->r_offset, TRUE);
6814
6815 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6816
6817 /* Relocate against local STT_GNU_IFUNC symbol. */
6818 if (!bfd_link_relocatable (info)
6819 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6820 {
6821 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6822 rel, FALSE);
6823 if (h == NULL)
6824 abort ();
6825
6826 /* Set STT_GNU_IFUNC symbol value. */
6827 h->root.u.def.value = sym->st_value;
6828 h->root.u.def.section = sec;
6829 }
6830 }
6831 else
6832 {
6833 bfd_boolean warned, ignored;
6834
6835 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6836 r_symndx, symtab_hdr, sym_hashes,
6837 h, sec, relocation,
6838 unresolved_reloc, warned, ignored);
6839
6840 sym_type = h->type;
6841 }
6842
6843 if (sec != NULL && discarded_section (sec))
6844 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6845 rel, 1, relend, howto, 0, contents);
6846
6847 if (bfd_link_relocatable (info))
6848 continue;
6849
6850 if (h != NULL)
6851 name = h->root.root.string;
6852 else
6853 {
6854 name = (bfd_elf_string_from_elf_section
6855 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6856 if (name == NULL || *name == '\0')
6857 name = bfd_section_name (sec);
6858 }
6859
6860 if (r_symndx != 0
6861 && r_type != R_AARCH64_NONE
6862 && r_type != R_AARCH64_NULL
6863 && (h == NULL
6864 || h->root.type == bfd_link_hash_defined
6865 || h->root.type == bfd_link_hash_defweak)
6866 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6867 {
6868 _bfd_error_handler
6869 ((sym_type == STT_TLS
6870 /* xgettext:c-format */
6871 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6872 /* xgettext:c-format */
6873 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6874 input_bfd,
6875 input_section, (uint64_t) rel->r_offset, howto->name, name);
6876 }
6877
6878 /* We relax only if we can see that there can be a valid transition
6879 from a reloc type to another.
6880 We call elfNN_aarch64_final_link_relocate unless we're completely
6881 done, i.e., the relaxation produced the final output we want. */
6882
6883 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6884 h, r_symndx);
6885 if (relaxed_bfd_r_type != bfd_r_type)
6886 {
6887 bfd_r_type = relaxed_bfd_r_type;
6888 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6889 BFD_ASSERT (howto != NULL);
6890 r_type = howto->type;
6891 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6892 contents, rel, h);
6893 unresolved_reloc = 0;
6894 }
6895 else
6896 r = bfd_reloc_continue;
6897
6898 /* There may be multiple consecutive relocations for the
6899 same offset. In that case we are supposed to treat the
6900 output of each relocation as the addend for the next. */
6901 if (rel + 1 < relend
6902 && rel->r_offset == rel[1].r_offset
6903 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6904 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6905 save_addend = TRUE;
6906 else
6907 save_addend = FALSE;
6908
6909 if (r == bfd_reloc_continue)
6910 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6911 input_section, contents, rel,
6912 relocation, info, sec,
6913 h, &unresolved_reloc,
6914 save_addend, &addend, sym);
6915
6916 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6917 {
6918 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6919 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6920 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6921 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6922 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6923 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6924 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6925 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6926 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6927 {
6928 bfd_boolean need_relocs = FALSE;
6929 bfd_byte *loc;
6930 int indx;
6931 bfd_vma off;
6932
6933 off = symbol_got_offset (input_bfd, h, r_symndx);
6934 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6935
6936 need_relocs =
6937 (!bfd_link_executable (info) || indx != 0) &&
6938 (h == NULL
6939 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6940 || h->root.type != bfd_link_hash_undefweak);
6941
6942 BFD_ASSERT (globals->root.srelgot != NULL);
6943
6944 if (need_relocs)
6945 {
6946 Elf_Internal_Rela rela;
6947 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6948 rela.r_addend = 0;
6949 rela.r_offset = globals->root.sgot->output_section->vma +
6950 globals->root.sgot->output_offset + off;
6951
6952
6953 loc = globals->root.srelgot->contents;
6954 loc += globals->root.srelgot->reloc_count++
6955 * RELOC_SIZE (htab);
6956 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6957
6958 bfd_reloc_code_real_type real_type =
6959 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6960
6961 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6962 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6963 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6964 {
6965 /* For local dynamic, don't generate DTPREL in any case.
6966 Initialize the DTPREL slot into zero, so we get module
6967 base address when invoke runtime TLS resolver. */
6968 bfd_put_NN (output_bfd, 0,
6969 globals->root.sgot->contents + off
6970 + GOT_ENTRY_SIZE);
6971 }
6972 else if (indx == 0)
6973 {
6974 bfd_put_NN (output_bfd,
6975 relocation - dtpoff_base (info),
6976 globals->root.sgot->contents + off
6977 + GOT_ENTRY_SIZE);
6978 }
6979 else
6980 {
6981 /* This TLS symbol is global. We emit a
6982 relocation to fixup the tls offset at load
6983 time. */
6984 rela.r_info =
6985 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6986 rela.r_addend = 0;
6987 rela.r_offset =
6988 (globals->root.sgot->output_section->vma
6989 + globals->root.sgot->output_offset + off
6990 + GOT_ENTRY_SIZE);
6991
6992 loc = globals->root.srelgot->contents;
6993 loc += globals->root.srelgot->reloc_count++
6994 * RELOC_SIZE (globals);
6995 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6996 bfd_put_NN (output_bfd, (bfd_vma) 0,
6997 globals->root.sgot->contents + off
6998 + GOT_ENTRY_SIZE);
6999 }
7000 }
7001 else
7002 {
7003 bfd_put_NN (output_bfd, (bfd_vma) 1,
7004 globals->root.sgot->contents + off);
7005 bfd_put_NN (output_bfd,
7006 relocation - dtpoff_base (info),
7007 globals->root.sgot->contents + off
7008 + GOT_ENTRY_SIZE);
7009 }
7010
7011 symbol_got_offset_mark (input_bfd, h, r_symndx);
7012 }
7013 break;
7014
7015 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7016 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
7017 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7018 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7019 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7020 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
7021 {
7022 bfd_boolean need_relocs = FALSE;
7023 bfd_byte *loc;
7024 int indx;
7025 bfd_vma off;
7026
7027 off = symbol_got_offset (input_bfd, h, r_symndx);
7028
7029 indx = h && h->dynindx != -1 ? h->dynindx : 0;
7030
7031 need_relocs =
7032 (!bfd_link_executable (info) || indx != 0) &&
7033 (h == NULL
7034 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7035 || h->root.type != bfd_link_hash_undefweak);
7036
7037 BFD_ASSERT (globals->root.srelgot != NULL);
7038
7039 if (need_relocs)
7040 {
7041 Elf_Internal_Rela rela;
7042
7043 if (indx == 0)
7044 rela.r_addend = relocation - dtpoff_base (info);
7045 else
7046 rela.r_addend = 0;
7047
7048 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
7049 rela.r_offset = globals->root.sgot->output_section->vma +
7050 globals->root.sgot->output_offset + off;
7051
7052 loc = globals->root.srelgot->contents;
7053 loc += globals->root.srelgot->reloc_count++
7054 * RELOC_SIZE (htab);
7055
7056 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7057
7058 bfd_put_NN (output_bfd, rela.r_addend,
7059 globals->root.sgot->contents + off);
7060 }
7061 else
7062 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
7063 globals->root.sgot->contents + off);
7064
7065 symbol_got_offset_mark (input_bfd, h, r_symndx);
7066 }
7067 break;
7068
7069 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7070 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7071 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7072 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
7073 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7074 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7075 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7076 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
7077 {
7078 bfd_boolean need_relocs = FALSE;
7079 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
7080 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
7081
7082 need_relocs = (h == NULL
7083 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7084 || h->root.type != bfd_link_hash_undefweak);
7085
7086 BFD_ASSERT (globals->root.srelgot != NULL);
7087 BFD_ASSERT (globals->root.sgot != NULL);
7088
7089 if (need_relocs)
7090 {
7091 bfd_byte *loc;
7092 Elf_Internal_Rela rela;
7093 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
7094
7095 rela.r_addend = 0;
7096 rela.r_offset = (globals->root.sgotplt->output_section->vma
7097 + globals->root.sgotplt->output_offset
7098 + off + globals->sgotplt_jump_table_size);
7099
7100 if (indx == 0)
7101 rela.r_addend = relocation - dtpoff_base (info);
7102
7103 /* Allocate the next available slot in the PLT reloc
7104 section to hold our R_AARCH64_TLSDESC, the next
7105 available slot is determined from reloc_count,
7106 which we step. But note, reloc_count was
7107 artifically moved down while allocating slots for
7108 real PLT relocs such that all of the PLT relocs
7109 will fit above the initial reloc_count and the
7110 extra stuff will fit below. */
7111 loc = globals->root.srelplt->contents;
7112 loc += globals->root.srelplt->reloc_count++
7113 * RELOC_SIZE (globals);
7114
7115 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7116
7117 bfd_put_NN (output_bfd, (bfd_vma) 0,
7118 globals->root.sgotplt->contents + off +
7119 globals->sgotplt_jump_table_size);
7120 bfd_put_NN (output_bfd, (bfd_vma) 0,
7121 globals->root.sgotplt->contents + off +
7122 globals->sgotplt_jump_table_size +
7123 GOT_ENTRY_SIZE);
7124 }
7125
7126 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
7127 }
7128 break;
7129 default:
7130 break;
7131 }
7132
7133 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7134 because such sections are not SEC_ALLOC and thus ld.so will
7135 not process them. */
7136 if (unresolved_reloc
7137 && !((input_section->flags & SEC_DEBUGGING) != 0
7138 && h->def_dynamic)
7139 && _bfd_elf_section_offset (output_bfd, info, input_section,
7140 +rel->r_offset) != (bfd_vma) - 1)
7141 {
7142 _bfd_error_handler
7143 /* xgettext:c-format */
7144 (_("%pB(%pA+%#" PRIx64 "): "
7145 "unresolvable %s relocation against symbol `%s'"),
7146 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
7147 h->root.root.string);
7148 return FALSE;
7149 }
7150
7151 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
7152 {
7153 bfd_reloc_code_real_type real_r_type
7154 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
7155
7156 switch (r)
7157 {
7158 case bfd_reloc_overflow:
7159 (*info->callbacks->reloc_overflow)
7160 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
7161 input_bfd, input_section, rel->r_offset);
7162 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
7163 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
7164 {
7165 (*info->callbacks->warning)
7166 (info,
7167 _("too many GOT entries for -fpic, "
7168 "please recompile with -fPIC"),
7169 name, input_bfd, input_section, rel->r_offset);
7170 return FALSE;
7171 }
7172 /* Overflow can occur when a variable is referenced with a type
7173 that has a larger alignment than the type with which it was
7174 declared. eg:
7175 file1.c: extern int foo; int a (void) { return foo; }
7176 file2.c: char bar, foo, baz;
7177 If the variable is placed into a data section at an offset
7178 that is incompatible with the larger alignment requirement
7179 overflow will occur. (Strictly speaking this is not overflow
7180 but rather an alignment problem, but the bfd_reloc_ error
7181 enum does not have a value to cover that situation).
7182
7183 Try to catch this situation here and provide a more helpful
7184 error message to the user. */
7185 if (addend & ((1 << howto->rightshift) - 1)
7186 /* FIXME: Are we testing all of the appropriate reloc
7187 types here ? */
7188 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
7189 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
7190 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
7191 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
7192 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
7193 {
7194 info->callbacks->warning
7195 (info, _("one possible cause of this error is that the \
7196 symbol is being referenced in the indicated code as if it had a larger \
7197 alignment than was declared where it was defined"),
7198 name, input_bfd, input_section, rel->r_offset);
7199 }
7200 break;
7201
7202 case bfd_reloc_undefined:
7203 (*info->callbacks->undefined_symbol)
7204 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
7205 break;
7206
7207 case bfd_reloc_outofrange:
7208 error_message = _("out of range");
7209 goto common_error;
7210
7211 case bfd_reloc_notsupported:
7212 error_message = _("unsupported relocation");
7213 goto common_error;
7214
7215 case bfd_reloc_dangerous:
7216 /* error_message should already be set. */
7217 goto common_error;
7218
7219 default:
7220 error_message = _("unknown error");
7221 /* Fall through. */
7222
7223 common_error:
7224 BFD_ASSERT (error_message != NULL);
7225 (*info->callbacks->reloc_dangerous)
7226 (info, error_message, input_bfd, input_section, rel->r_offset);
7227 break;
7228 }
7229 }
7230
7231 if (!save_addend)
7232 addend = 0;
7233 }
7234
7235 return TRUE;
7236 }
7237
7238 /* Set the right machine number. */
7239
7240 static bfd_boolean
7241 elfNN_aarch64_object_p (bfd *abfd)
7242 {
7243 #if ARCH_SIZE == 32
7244 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7245 #else
7246 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7247 #endif
7248 return TRUE;
7249 }
7250
7251 /* Function to keep AArch64 specific flags in the ELF header. */
7252
7253 static bfd_boolean
7254 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7255 {
7256 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7257 {
7258 }
7259 else
7260 {
7261 elf_elfheader (abfd)->e_flags = flags;
7262 elf_flags_init (abfd) = TRUE;
7263 }
7264
7265 return TRUE;
7266 }
7267
7268 /* Merge backend specific data from an object file to the output
7269 object file when linking. */
7270
7271 static bfd_boolean
7272 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7273 {
7274 bfd *obfd = info->output_bfd;
7275 flagword out_flags;
7276 flagword in_flags;
7277 bfd_boolean flags_compatible = TRUE;
7278 asection *sec;
7279
7280 /* Check if we have the same endianess. */
7281 if (!_bfd_generic_verify_endian_match (ibfd, info))
7282 return FALSE;
7283
7284 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7285 return TRUE;
7286
7287 /* The input BFD must have had its flags initialised. */
7288 /* The following seems bogus to me -- The flags are initialized in
7289 the assembler but I don't think an elf_flags_init field is
7290 written into the object. */
7291 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7292
7293 in_flags = elf_elfheader (ibfd)->e_flags;
7294 out_flags = elf_elfheader (obfd)->e_flags;
7295
7296 if (!elf_flags_init (obfd))
7297 {
7298 /* If the input is the default architecture and had the default
7299 flags then do not bother setting the flags for the output
7300 architecture, instead allow future merges to do this. If no
7301 future merges ever set these flags then they will retain their
7302 uninitialised values, which surprise surprise, correspond
7303 to the default values. */
7304 if (bfd_get_arch_info (ibfd)->the_default
7305 && elf_elfheader (ibfd)->e_flags == 0)
7306 return TRUE;
7307
7308 elf_flags_init (obfd) = TRUE;
7309 elf_elfheader (obfd)->e_flags = in_flags;
7310
7311 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7312 && bfd_get_arch_info (obfd)->the_default)
7313 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7314 bfd_get_mach (ibfd));
7315
7316 return TRUE;
7317 }
7318
7319 /* Identical flags must be compatible. */
7320 if (in_flags == out_flags)
7321 return TRUE;
7322
7323 /* Check to see if the input BFD actually contains any sections. If
7324 not, its flags may not have been initialised either, but it
7325 cannot actually cause any incompatiblity. Do not short-circuit
7326 dynamic objects; their section list may be emptied by
7327 elf_link_add_object_symbols.
7328
7329 Also check to see if there are no code sections in the input.
7330 In this case there is no need to check for code specific flags.
7331 XXX - do we need to worry about floating-point format compatability
7332 in data sections ? */
7333 if (!(ibfd->flags & DYNAMIC))
7334 {
7335 bfd_boolean null_input_bfd = TRUE;
7336 bfd_boolean only_data_sections = TRUE;
7337
7338 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7339 {
7340 if ((bfd_section_flags (sec)
7341 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7342 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7343 only_data_sections = FALSE;
7344
7345 null_input_bfd = FALSE;
7346 break;
7347 }
7348
7349 if (null_input_bfd || only_data_sections)
7350 return TRUE;
7351 }
7352
7353 return flags_compatible;
7354 }
7355
7356 /* Display the flags field. */
7357
7358 static bfd_boolean
7359 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7360 {
7361 FILE *file = (FILE *) ptr;
7362 unsigned long flags;
7363
7364 BFD_ASSERT (abfd != NULL && ptr != NULL);
7365
7366 /* Print normal ELF private data. */
7367 _bfd_elf_print_private_bfd_data (abfd, ptr);
7368
7369 flags = elf_elfheader (abfd)->e_flags;
7370 /* Ignore init flag - it may not be set, despite the flags field
7371 containing valid data. */
7372
7373 /* xgettext:c-format */
7374 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7375
7376 if (flags)
7377 fprintf (file, _("<Unrecognised flag bits set>"));
7378
7379 fputc ('\n', file);
7380
7381 return TRUE;
7382 }
7383
7384 /* Return true if we need copy relocation against EH. */
7385
7386 static bfd_boolean
7387 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7388 {
7389 struct elf_dyn_relocs *p;
7390 asection *s;
7391
7392 for (p = eh->root.dyn_relocs; p != NULL; p = p->next)
7393 {
7394 /* If there is any pc-relative reference, we need to keep copy relocation
7395 to avoid propagating the relocation into runtime that current glibc
7396 does not support. */
7397 if (p->pc_count)
7398 return TRUE;
7399
7400 s = p->sec->output_section;
7401 /* Need copy relocation if it's against read-only section. */
7402 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7403 return TRUE;
7404 }
7405
7406 return FALSE;
7407 }
7408
7409 /* Adjust a symbol defined by a dynamic object and referenced by a
7410 regular object. The current definition is in some section of the
7411 dynamic object, but we're not including those sections. We have to
7412 change the definition to something the rest of the link can
7413 understand. */
7414
7415 static bfd_boolean
7416 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7417 struct elf_link_hash_entry *h)
7418 {
7419 struct elf_aarch64_link_hash_table *htab;
7420 asection *s, *srel;
7421
7422 /* If this is a function, put it in the procedure linkage table. We
7423 will fill in the contents of the procedure linkage table later,
7424 when we know the address of the .got section. */
7425 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7426 {
7427 if (h->plt.refcount <= 0
7428 || (h->type != STT_GNU_IFUNC
7429 && (SYMBOL_CALLS_LOCAL (info, h)
7430 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7431 && h->root.type == bfd_link_hash_undefweak))))
7432 {
7433 /* This case can occur if we saw a CALL26 reloc in
7434 an input file, but the symbol wasn't referred to
7435 by a dynamic object or all references were
7436 garbage collected. In which case we can end up
7437 resolving. */
7438 h->plt.offset = (bfd_vma) - 1;
7439 h->needs_plt = 0;
7440 }
7441
7442 return TRUE;
7443 }
7444 else
7445 /* Otherwise, reset to -1. */
7446 h->plt.offset = (bfd_vma) - 1;
7447
7448
7449 /* If this is a weak symbol, and there is a real definition, the
7450 processor independent code will have arranged for us to see the
7451 real definition first, and we can just use the same value. */
7452 if (h->is_weakalias)
7453 {
7454 struct elf_link_hash_entry *def = weakdef (h);
7455 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7456 h->root.u.def.section = def->root.u.def.section;
7457 h->root.u.def.value = def->root.u.def.value;
7458 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7459 h->non_got_ref = def->non_got_ref;
7460 return TRUE;
7461 }
7462
7463 /* If we are creating a shared library, we must presume that the
7464 only references to the symbol are via the global offset table.
7465 For such cases we need not do anything here; the relocations will
7466 be handled correctly by relocate_section. */
7467 if (bfd_link_pic (info))
7468 return TRUE;
7469
7470 /* If there are no references to this symbol that do not use the
7471 GOT, we don't need to generate a copy reloc. */
7472 if (!h->non_got_ref)
7473 return TRUE;
7474
7475 /* If -z nocopyreloc was given, we won't generate them either. */
7476 if (info->nocopyreloc)
7477 {
7478 h->non_got_ref = 0;
7479 return TRUE;
7480 }
7481
7482 if (ELIMINATE_COPY_RELOCS)
7483 {
7484 struct elf_aarch64_link_hash_entry *eh;
7485 /* If we don't find any dynamic relocs in read-only sections, then
7486 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7487 eh = (struct elf_aarch64_link_hash_entry *) h;
7488 if (!need_copy_relocation_p (eh))
7489 {
7490 h->non_got_ref = 0;
7491 return TRUE;
7492 }
7493 }
7494
7495 /* We must allocate the symbol in our .dynbss section, which will
7496 become part of the .bss section of the executable. There will be
7497 an entry for this symbol in the .dynsym section. The dynamic
7498 object will contain position independent code, so all references
7499 from the dynamic object to this symbol will go through the global
7500 offset table. The dynamic linker will use the .dynsym entry to
7501 determine the address it must put in the global offset table, so
7502 both the dynamic object and the regular object will refer to the
7503 same memory location for the variable. */
7504
7505 htab = elf_aarch64_hash_table (info);
7506
7507 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7508 to copy the initial value out of the dynamic object and into the
7509 runtime process image. */
7510 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7511 {
7512 s = htab->root.sdynrelro;
7513 srel = htab->root.sreldynrelro;
7514 }
7515 else
7516 {
7517 s = htab->root.sdynbss;
7518 srel = htab->root.srelbss;
7519 }
7520 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7521 {
7522 srel->size += RELOC_SIZE (htab);
7523 h->needs_copy = 1;
7524 }
7525
7526 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7527
7528 }
7529
7530 static bfd_boolean
7531 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7532 {
7533 struct elf_aarch64_local_symbol *locals;
7534 locals = elf_aarch64_locals (abfd);
7535 if (locals == NULL)
7536 {
7537 locals = (struct elf_aarch64_local_symbol *)
7538 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7539 if (locals == NULL)
7540 return FALSE;
7541 elf_aarch64_locals (abfd) = locals;
7542 }
7543 return TRUE;
7544 }
7545
7546 /* Create the .got section to hold the global offset table. */
7547
7548 static bfd_boolean
7549 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7550 {
7551 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7552 flagword flags;
7553 asection *s;
7554 struct elf_link_hash_entry *h;
7555 struct elf_link_hash_table *htab = elf_hash_table (info);
7556
7557 /* This function may be called more than once. */
7558 if (htab->sgot != NULL)
7559 return TRUE;
7560
7561 flags = bed->dynamic_sec_flags;
7562
7563 s = bfd_make_section_anyway_with_flags (abfd,
7564 (bed->rela_plts_and_copies_p
7565 ? ".rela.got" : ".rel.got"),
7566 (bed->dynamic_sec_flags
7567 | SEC_READONLY));
7568 if (s == NULL
7569 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7570 return FALSE;
7571 htab->srelgot = s;
7572
7573 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7574 if (s == NULL
7575 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7576 return FALSE;
7577 htab->sgot = s;
7578 htab->sgot->size += GOT_ENTRY_SIZE;
7579
7580 if (bed->want_got_sym)
7581 {
7582 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7583 (or .got.plt) section. We don't do this in the linker script
7584 because we don't want to define the symbol if we are not creating
7585 a global offset table. */
7586 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7587 "_GLOBAL_OFFSET_TABLE_");
7588 elf_hash_table (info)->hgot = h;
7589 if (h == NULL)
7590 return FALSE;
7591 }
7592
7593 if (bed->want_got_plt)
7594 {
7595 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7596 if (s == NULL
7597 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7598 return FALSE;
7599 htab->sgotplt = s;
7600 }
7601
7602 /* The first bit of the global offset table is the header. */
7603 s->size += bed->got_header_size;
7604
7605 return TRUE;
7606 }
7607
7608 /* Look through the relocs for a section during the first phase. */
7609
7610 static bfd_boolean
7611 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7612 asection *sec, const Elf_Internal_Rela *relocs)
7613 {
7614 Elf_Internal_Shdr *symtab_hdr;
7615 struct elf_link_hash_entry **sym_hashes;
7616 const Elf_Internal_Rela *rel;
7617 const Elf_Internal_Rela *rel_end;
7618 asection *sreloc;
7619
7620 struct elf_aarch64_link_hash_table *htab;
7621
7622 if (bfd_link_relocatable (info))
7623 return TRUE;
7624
7625 BFD_ASSERT (is_aarch64_elf (abfd));
7626
7627 htab = elf_aarch64_hash_table (info);
7628 sreloc = NULL;
7629
7630 symtab_hdr = &elf_symtab_hdr (abfd);
7631 sym_hashes = elf_sym_hashes (abfd);
7632
7633 rel_end = relocs + sec->reloc_count;
7634 for (rel = relocs; rel < rel_end; rel++)
7635 {
7636 struct elf_link_hash_entry *h;
7637 unsigned int r_symndx;
7638 unsigned int r_type;
7639 bfd_reloc_code_real_type bfd_r_type;
7640 Elf_Internal_Sym *isym;
7641
7642 r_symndx = ELFNN_R_SYM (rel->r_info);
7643 r_type = ELFNN_R_TYPE (rel->r_info);
7644
7645 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7646 {
7647 /* xgettext:c-format */
7648 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7649 return FALSE;
7650 }
7651
7652 if (r_symndx < symtab_hdr->sh_info)
7653 {
7654 /* A local symbol. */
7655 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7656 abfd, r_symndx);
7657 if (isym == NULL)
7658 return FALSE;
7659
7660 /* Check relocation against local STT_GNU_IFUNC symbol. */
7661 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7662 {
7663 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7664 TRUE);
7665 if (h == NULL)
7666 return FALSE;
7667
7668 /* Fake a STT_GNU_IFUNC symbol. */
7669 h->type = STT_GNU_IFUNC;
7670 h->def_regular = 1;
7671 h->ref_regular = 1;
7672 h->forced_local = 1;
7673 h->root.type = bfd_link_hash_defined;
7674 }
7675 else
7676 h = NULL;
7677 }
7678 else
7679 {
7680 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7681 while (h->root.type == bfd_link_hash_indirect
7682 || h->root.type == bfd_link_hash_warning)
7683 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7684 }
7685
7686 /* Could be done earlier, if h were already available. */
7687 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7688
7689 if (h != NULL)
7690 {
7691 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7692 This shows up in particular in an R_AARCH64_PREL64 in large model
7693 when calculating the pc-relative address to .got section which is
7694 used to initialize the gp register. */
7695 if (h->root.root.string
7696 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7697 {
7698 if (htab->root.dynobj == NULL)
7699 htab->root.dynobj = abfd;
7700
7701 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7702 return FALSE;
7703
7704 BFD_ASSERT (h == htab->root.hgot);
7705 }
7706
7707 /* Create the ifunc sections for static executables. If we
7708 never see an indirect function symbol nor we are building
7709 a static executable, those sections will be empty and
7710 won't appear in output. */
7711 switch (bfd_r_type)
7712 {
7713 default:
7714 break;
7715
7716 case BFD_RELOC_AARCH64_ADD_LO12:
7717 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7718 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7719 case BFD_RELOC_AARCH64_CALL26:
7720 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7721 case BFD_RELOC_AARCH64_JUMP26:
7722 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7723 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7724 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7725 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7726 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7727 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7728 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7729 case BFD_RELOC_AARCH64_NN:
7730 if (htab->root.dynobj == NULL)
7731 htab->root.dynobj = abfd;
7732 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7733 return FALSE;
7734 break;
7735 }
7736
7737 /* It is referenced by a non-shared object. */
7738 h->ref_regular = 1;
7739 }
7740
7741 switch (bfd_r_type)
7742 {
7743 case BFD_RELOC_AARCH64_16:
7744 #if ARCH_SIZE == 64
7745 case BFD_RELOC_AARCH64_32:
7746 #endif
7747 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7748 {
7749 if (h != NULL
7750 /* This is an absolute symbol. It represents a value instead
7751 of an address. */
7752 && (bfd_is_abs_symbol (&h->root)
7753 /* This is an undefined symbol. */
7754 || h->root.type == bfd_link_hash_undefined))
7755 break;
7756
7757 /* For local symbols, defined global symbols in a non-ABS section,
7758 it is assumed that the value is an address. */
7759 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7760 _bfd_error_handler
7761 /* xgettext:c-format */
7762 (_("%pB: relocation %s against `%s' can not be used when making "
7763 "a shared object"),
7764 abfd, elfNN_aarch64_howto_table[howto_index].name,
7765 (h) ? h->root.root.string : "a local symbol");
7766 bfd_set_error (bfd_error_bad_value);
7767 return FALSE;
7768 }
7769 else
7770 break;
7771
7772 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7773 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7774 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7775 case BFD_RELOC_AARCH64_MOVW_G3:
7776 if (bfd_link_pic (info))
7777 {
7778 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7779 _bfd_error_handler
7780 /* xgettext:c-format */
7781 (_("%pB: relocation %s against `%s' can not be used when making "
7782 "a shared object; recompile with -fPIC"),
7783 abfd, elfNN_aarch64_howto_table[howto_index].name,
7784 (h) ? h->root.root.string : "a local symbol");
7785 bfd_set_error (bfd_error_bad_value);
7786 return FALSE;
7787 }
7788 /* Fall through. */
7789
7790 case BFD_RELOC_AARCH64_16_PCREL:
7791 case BFD_RELOC_AARCH64_32_PCREL:
7792 case BFD_RELOC_AARCH64_64_PCREL:
7793 case BFD_RELOC_AARCH64_ADD_LO12:
7794 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7795 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7796 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7797 case BFD_RELOC_AARCH64_LDST128_LO12:
7798 case BFD_RELOC_AARCH64_LDST16_LO12:
7799 case BFD_RELOC_AARCH64_LDST32_LO12:
7800 case BFD_RELOC_AARCH64_LDST64_LO12:
7801 case BFD_RELOC_AARCH64_LDST8_LO12:
7802 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7803 if (h == NULL || bfd_link_pic (info))
7804 break;
7805 /* Fall through. */
7806
7807 case BFD_RELOC_AARCH64_NN:
7808
7809 /* We don't need to handle relocs into sections not going into
7810 the "real" output. */
7811 if ((sec->flags & SEC_ALLOC) == 0)
7812 break;
7813
7814 if (h != NULL)
7815 {
7816 if (!bfd_link_pic (info))
7817 h->non_got_ref = 1;
7818
7819 h->plt.refcount += 1;
7820 h->pointer_equality_needed = 1;
7821 }
7822
7823 /* No need to do anything if we're not creating a shared
7824 object. */
7825 if (!(bfd_link_pic (info)
7826 /* If on the other hand, we are creating an executable, we
7827 may need to keep relocations for symbols satisfied by a
7828 dynamic library if we manage to avoid copy relocs for the
7829 symbol.
7830
7831 NOTE: Currently, there is no support of copy relocs
7832 elimination on pc-relative relocation types, because there is
7833 no dynamic relocation support for them in glibc. We still
7834 record the dynamic symbol reference for them. This is
7835 because one symbol may be referenced by both absolute
7836 relocation (for example, BFD_RELOC_AARCH64_NN) and
7837 pc-relative relocation. We need full symbol reference
7838 information to make correct decision later in
7839 elfNN_aarch64_adjust_dynamic_symbol. */
7840 || (ELIMINATE_COPY_RELOCS
7841 && !bfd_link_pic (info)
7842 && h != NULL
7843 && (h->root.type == bfd_link_hash_defweak
7844 || !h->def_regular))))
7845 break;
7846
7847 {
7848 struct elf_dyn_relocs *p;
7849 struct elf_dyn_relocs **head;
7850 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7851
7852 /* We must copy these reloc types into the output file.
7853 Create a reloc section in dynobj and make room for
7854 this reloc. */
7855 if (sreloc == NULL)
7856 {
7857 if (htab->root.dynobj == NULL)
7858 htab->root.dynobj = abfd;
7859
7860 sreloc = _bfd_elf_make_dynamic_reloc_section
7861 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7862
7863 if (sreloc == NULL)
7864 return FALSE;
7865 }
7866
7867 /* If this is a global symbol, we count the number of
7868 relocations we need for this symbol. */
7869 if (h != NULL)
7870 {
7871 head = &h->dyn_relocs;
7872 }
7873 else
7874 {
7875 /* Track dynamic relocs needed for local syms too.
7876 We really need local syms available to do this
7877 easily. Oh well. */
7878
7879 asection *s;
7880 void **vpp;
7881
7882 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7883 abfd, r_symndx);
7884 if (isym == NULL)
7885 return FALSE;
7886
7887 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7888 if (s == NULL)
7889 s = sec;
7890
7891 /* Beware of type punned pointers vs strict aliasing
7892 rules. */
7893 vpp = &(elf_section_data (s)->local_dynrel);
7894 head = (struct elf_dyn_relocs **) vpp;
7895 }
7896
7897 p = *head;
7898 if (p == NULL || p->sec != sec)
7899 {
7900 size_t amt = sizeof *p;
7901 p = ((struct elf_dyn_relocs *)
7902 bfd_zalloc (htab->root.dynobj, amt));
7903 if (p == NULL)
7904 return FALSE;
7905 p->next = *head;
7906 *head = p;
7907 p->sec = sec;
7908 }
7909
7910 p->count += 1;
7911
7912 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7913 p->pc_count += 1;
7914 }
7915 break;
7916
7917 /* RR: We probably want to keep a consistency check that
7918 there are no dangling GOT_PAGE relocs. */
7919 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7920 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7921 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7922 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7923 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7924 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7925 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7926 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7927 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7928 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7929 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7930 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7931 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7932 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7933 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7934 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7935 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7936 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7937 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7938 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7939 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7940 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7941 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7942 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7943 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7944 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7945 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7946 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7947 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7948 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7949 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7950 {
7951 unsigned got_type;
7952 unsigned old_got_type;
7953
7954 got_type = aarch64_reloc_got_type (bfd_r_type);
7955
7956 if (h)
7957 {
7958 h->got.refcount += 1;
7959 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7960 }
7961 else
7962 {
7963 struct elf_aarch64_local_symbol *locals;
7964
7965 if (!elfNN_aarch64_allocate_local_symbols
7966 (abfd, symtab_hdr->sh_info))
7967 return FALSE;
7968
7969 locals = elf_aarch64_locals (abfd);
7970 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7971 locals[r_symndx].got_refcount += 1;
7972 old_got_type = locals[r_symndx].got_type;
7973 }
7974
7975 /* If a variable is accessed with both general dynamic TLS
7976 methods, two slots may be created. */
7977 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7978 got_type |= old_got_type;
7979
7980 /* We will already have issued an error message if there
7981 is a TLS/non-TLS mismatch, based on the symbol type.
7982 So just combine any TLS types needed. */
7983 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7984 && got_type != GOT_NORMAL)
7985 got_type |= old_got_type;
7986
7987 /* If the symbol is accessed by both IE and GD methods, we
7988 are able to relax. Turn off the GD flag, without
7989 messing up with any other kind of TLS types that may be
7990 involved. */
7991 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7992 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7993
7994 if (old_got_type != got_type)
7995 {
7996 if (h != NULL)
7997 elf_aarch64_hash_entry (h)->got_type = got_type;
7998 else
7999 {
8000 struct elf_aarch64_local_symbol *locals;
8001 locals = elf_aarch64_locals (abfd);
8002 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
8003 locals[r_symndx].got_type = got_type;
8004 }
8005 }
8006
8007 if (htab->root.dynobj == NULL)
8008 htab->root.dynobj = abfd;
8009 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
8010 return FALSE;
8011 break;
8012 }
8013
8014 case BFD_RELOC_AARCH64_BRANCH19:
8015 case BFD_RELOC_AARCH64_TSTBR14:
8016 case BFD_RELOC_AARCH64_CALL26:
8017 case BFD_RELOC_AARCH64_JUMP26:
8018 /* If this is a local symbol then we resolve it
8019 directly without creating a PLT entry. */
8020 if (h == NULL)
8021 continue;
8022
8023 h->needs_plt = 1;
8024 if (h->plt.refcount <= 0)
8025 h->plt.refcount = 1;
8026 else
8027 h->plt.refcount += 1;
8028 break;
8029
8030 default:
8031 break;
8032 }
8033 }
8034
8035 return TRUE;
8036 }
8037
8038 /* Treat mapping symbols as special target symbols. */
8039
8040 static bfd_boolean
8041 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8042 asymbol *sym)
8043 {
8044 return bfd_is_aarch64_special_symbol_name (sym->name,
8045 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
8046 }
8047
8048 /* If the ELF symbol SYM might be a function in SEC, return the
8049 function size and set *CODE_OFF to the function's entry point,
8050 otherwise return zero. */
8051
8052 static bfd_size_type
8053 elfNN_aarch64_maybe_function_sym (const asymbol *sym, asection *sec,
8054 bfd_vma *code_off)
8055 {
8056 bfd_size_type size;
8057
8058 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
8059 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
8060 || sym->section != sec)
8061 return 0;
8062
8063 if (!(sym->flags & BSF_SYNTHETIC))
8064 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
8065 {
8066 case STT_FUNC:
8067 case STT_NOTYPE:
8068 break;
8069 default:
8070 return 0;
8071 }
8072
8073 if ((sym->flags & BSF_LOCAL)
8074 && bfd_is_aarch64_special_symbol_name (sym->name,
8075 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY))
8076 return 0;
8077
8078 *code_off = sym->value;
8079 size = 0;
8080 if (!(sym->flags & BSF_SYNTHETIC))
8081 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
8082 if (size == 0)
8083 size = 1;
8084 return size;
8085 }
8086
8087 static bfd_boolean
8088 elfNN_aarch64_find_inliner_info (bfd *abfd,
8089 const char **filename_ptr,
8090 const char **functionname_ptr,
8091 unsigned int *line_ptr)
8092 {
8093 bfd_boolean found;
8094 found = _bfd_dwarf2_find_inliner_info
8095 (abfd, filename_ptr,
8096 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
8097 return found;
8098 }
8099
8100
8101 static bfd_boolean
8102 elfNN_aarch64_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
8103 {
8104 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
8105
8106 if (!_bfd_elf_init_file_header (abfd, link_info))
8107 return FALSE;
8108
8109 i_ehdrp = elf_elfheader (abfd);
8110 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
8111 return TRUE;
8112 }
8113
8114 static enum elf_reloc_type_class
8115 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
8116 const asection *rel_sec ATTRIBUTE_UNUSED,
8117 const Elf_Internal_Rela *rela)
8118 {
8119 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
8120
8121 if (htab->root.dynsym != NULL
8122 && htab->root.dynsym->contents != NULL)
8123 {
8124 /* Check relocation against STT_GNU_IFUNC symbol if there are
8125 dynamic symbols. */
8126 bfd *abfd = info->output_bfd;
8127 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8128 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
8129 if (r_symndx != STN_UNDEF)
8130 {
8131 Elf_Internal_Sym sym;
8132 if (!bed->s->swap_symbol_in (abfd,
8133 (htab->root.dynsym->contents
8134 + r_symndx * bed->s->sizeof_sym),
8135 0, &sym))
8136 {
8137 /* xgettext:c-format */
8138 _bfd_error_handler (_("%pB symbol number %lu references"
8139 " nonexistent SHT_SYMTAB_SHNDX section"),
8140 abfd, r_symndx);
8141 /* Ideally an error class should be returned here. */
8142 }
8143 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8144 return reloc_class_ifunc;
8145 }
8146 }
8147
8148 switch ((int) ELFNN_R_TYPE (rela->r_info))
8149 {
8150 case AARCH64_R (IRELATIVE):
8151 return reloc_class_ifunc;
8152 case AARCH64_R (RELATIVE):
8153 return reloc_class_relative;
8154 case AARCH64_R (JUMP_SLOT):
8155 return reloc_class_plt;
8156 case AARCH64_R (COPY):
8157 return reloc_class_copy;
8158 default:
8159 return reloc_class_normal;
8160 }
8161 }
8162
8163 /* Handle an AArch64 specific section when reading an object file. This is
8164 called when bfd_section_from_shdr finds a section with an unknown
8165 type. */
8166
8167 static bfd_boolean
8168 elfNN_aarch64_section_from_shdr (bfd *abfd,
8169 Elf_Internal_Shdr *hdr,
8170 const char *name, int shindex)
8171 {
8172 /* There ought to be a place to keep ELF backend specific flags, but
8173 at the moment there isn't one. We just keep track of the
8174 sections by their name, instead. Fortunately, the ABI gives
8175 names for all the AArch64 specific sections, so we will probably get
8176 away with this. */
8177 switch (hdr->sh_type)
8178 {
8179 case SHT_AARCH64_ATTRIBUTES:
8180 break;
8181
8182 default:
8183 return FALSE;
8184 }
8185
8186 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8187 return FALSE;
8188
8189 return TRUE;
8190 }
8191
8192 /* A structure used to record a list of sections, independently
8193 of the next and prev fields in the asection structure. */
8194 typedef struct section_list
8195 {
8196 asection *sec;
8197 struct section_list *next;
8198 struct section_list *prev;
8199 }
8200 section_list;
8201
8202 /* Unfortunately we need to keep a list of sections for which
8203 an _aarch64_elf_section_data structure has been allocated. This
8204 is because it is possible for functions like elfNN_aarch64_write_section
8205 to be called on a section which has had an elf_data_structure
8206 allocated for it (and so the used_by_bfd field is valid) but
8207 for which the AArch64 extended version of this structure - the
8208 _aarch64_elf_section_data structure - has not been allocated. */
8209 static section_list *sections_with_aarch64_elf_section_data = NULL;
8210
8211 static void
8212 record_section_with_aarch64_elf_section_data (asection *sec)
8213 {
8214 struct section_list *entry;
8215
8216 entry = bfd_malloc (sizeof (*entry));
8217 if (entry == NULL)
8218 return;
8219 entry->sec = sec;
8220 entry->next = sections_with_aarch64_elf_section_data;
8221 entry->prev = NULL;
8222 if (entry->next != NULL)
8223 entry->next->prev = entry;
8224 sections_with_aarch64_elf_section_data = entry;
8225 }
8226
8227 static struct section_list *
8228 find_aarch64_elf_section_entry (asection *sec)
8229 {
8230 struct section_list *entry;
8231 static struct section_list *last_entry = NULL;
8232
8233 /* This is a short cut for the typical case where the sections are added
8234 to the sections_with_aarch64_elf_section_data list in forward order and
8235 then looked up here in backwards order. This makes a real difference
8236 to the ld-srec/sec64k.exp linker test. */
8237 entry = sections_with_aarch64_elf_section_data;
8238 if (last_entry != NULL)
8239 {
8240 if (last_entry->sec == sec)
8241 entry = last_entry;
8242 else if (last_entry->next != NULL && last_entry->next->sec == sec)
8243 entry = last_entry->next;
8244 }
8245
8246 for (; entry; entry = entry->next)
8247 if (entry->sec == sec)
8248 break;
8249
8250 if (entry)
8251 /* Record the entry prior to this one - it is the entry we are
8252 most likely to want to locate next time. Also this way if we
8253 have been called from
8254 unrecord_section_with_aarch64_elf_section_data () we will not
8255 be caching a pointer that is about to be freed. */
8256 last_entry = entry->prev;
8257
8258 return entry;
8259 }
8260
8261 static void
8262 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8263 {
8264 struct section_list *entry;
8265
8266 entry = find_aarch64_elf_section_entry (sec);
8267
8268 if (entry)
8269 {
8270 if (entry->prev != NULL)
8271 entry->prev->next = entry->next;
8272 if (entry->next != NULL)
8273 entry->next->prev = entry->prev;
8274 if (entry == sections_with_aarch64_elf_section_data)
8275 sections_with_aarch64_elf_section_data = entry->next;
8276 free (entry);
8277 }
8278 }
8279
8280
8281 typedef struct
8282 {
8283 void *finfo;
8284 struct bfd_link_info *info;
8285 asection *sec;
8286 int sec_shndx;
8287 int (*func) (void *, const char *, Elf_Internal_Sym *,
8288 asection *, struct elf_link_hash_entry *);
8289 } output_arch_syminfo;
8290
8291 enum map_symbol_type
8292 {
8293 AARCH64_MAP_INSN,
8294 AARCH64_MAP_DATA
8295 };
8296
8297
8298 /* Output a single mapping symbol. */
8299
8300 static bfd_boolean
8301 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8302 enum map_symbol_type type, bfd_vma offset)
8303 {
8304 static const char *names[2] = { "$x", "$d" };
8305 Elf_Internal_Sym sym;
8306
8307 sym.st_value = (osi->sec->output_section->vma
8308 + osi->sec->output_offset + offset);
8309 sym.st_size = 0;
8310 sym.st_other = 0;
8311 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8312 sym.st_shndx = osi->sec_shndx;
8313 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8314 }
8315
8316 /* Output a single local symbol for a generated stub. */
8317
8318 static bfd_boolean
8319 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8320 bfd_vma offset, bfd_vma size)
8321 {
8322 Elf_Internal_Sym sym;
8323
8324 sym.st_value = (osi->sec->output_section->vma
8325 + osi->sec->output_offset + offset);
8326 sym.st_size = size;
8327 sym.st_other = 0;
8328 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8329 sym.st_shndx = osi->sec_shndx;
8330 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8331 }
8332
8333 static bfd_boolean
8334 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8335 {
8336 struct elf_aarch64_stub_hash_entry *stub_entry;
8337 asection *stub_sec;
8338 bfd_vma addr;
8339 char *stub_name;
8340 output_arch_syminfo *osi;
8341
8342 /* Massage our args to the form they really have. */
8343 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8344 osi = (output_arch_syminfo *) in_arg;
8345
8346 stub_sec = stub_entry->stub_sec;
8347
8348 /* Ensure this stub is attached to the current section being
8349 processed. */
8350 if (stub_sec != osi->sec)
8351 return TRUE;
8352
8353 addr = (bfd_vma) stub_entry->stub_offset;
8354
8355 stub_name = stub_entry->output_name;
8356
8357 switch (stub_entry->stub_type)
8358 {
8359 case aarch64_stub_adrp_branch:
8360 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8361 sizeof (aarch64_adrp_branch_stub)))
8362 return FALSE;
8363 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8364 return FALSE;
8365 break;
8366 case aarch64_stub_long_branch:
8367 if (!elfNN_aarch64_output_stub_sym
8368 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8369 return FALSE;
8370 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8371 return FALSE;
8372 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8373 return FALSE;
8374 break;
8375 case aarch64_stub_erratum_835769_veneer:
8376 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8377 sizeof (aarch64_erratum_835769_stub)))
8378 return FALSE;
8379 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8380 return FALSE;
8381 break;
8382 case aarch64_stub_erratum_843419_veneer:
8383 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8384 sizeof (aarch64_erratum_843419_stub)))
8385 return FALSE;
8386 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8387 return FALSE;
8388 break;
8389 case aarch64_stub_none:
8390 break;
8391
8392 default:
8393 abort ();
8394 }
8395
8396 return TRUE;
8397 }
8398
8399 /* Output mapping symbols for linker generated sections. */
8400
8401 static bfd_boolean
8402 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8403 struct bfd_link_info *info,
8404 void *finfo,
8405 int (*func) (void *, const char *,
8406 Elf_Internal_Sym *,
8407 asection *,
8408 struct elf_link_hash_entry
8409 *))
8410 {
8411 output_arch_syminfo osi;
8412 struct elf_aarch64_link_hash_table *htab;
8413
8414 htab = elf_aarch64_hash_table (info);
8415
8416 osi.finfo = finfo;
8417 osi.info = info;
8418 osi.func = func;
8419
8420 /* Long calls stubs. */
8421 if (htab->stub_bfd && htab->stub_bfd->sections)
8422 {
8423 asection *stub_sec;
8424
8425 for (stub_sec = htab->stub_bfd->sections;
8426 stub_sec != NULL; stub_sec = stub_sec->next)
8427 {
8428 /* Ignore non-stub sections. */
8429 if (!strstr (stub_sec->name, STUB_SUFFIX))
8430 continue;
8431
8432 osi.sec = stub_sec;
8433
8434 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8435 (output_bfd, osi.sec->output_section);
8436
8437 /* The first instruction in a stub is always a branch. */
8438 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8439 return FALSE;
8440
8441 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8442 &osi);
8443 }
8444 }
8445
8446 /* Finally, output mapping symbols for the PLT. */
8447 if (!htab->root.splt || htab->root.splt->size == 0)
8448 return TRUE;
8449
8450 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8451 (output_bfd, htab->root.splt->output_section);
8452 osi.sec = htab->root.splt;
8453
8454 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8455
8456 return TRUE;
8457
8458 }
8459
8460 /* Allocate target specific section data. */
8461
8462 static bfd_boolean
8463 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8464 {
8465 if (!sec->used_by_bfd)
8466 {
8467 _aarch64_elf_section_data *sdata;
8468 size_t amt = sizeof (*sdata);
8469
8470 sdata = bfd_zalloc (abfd, amt);
8471 if (sdata == NULL)
8472 return FALSE;
8473 sec->used_by_bfd = sdata;
8474 }
8475
8476 record_section_with_aarch64_elf_section_data (sec);
8477
8478 return _bfd_elf_new_section_hook (abfd, sec);
8479 }
8480
8481
8482 static void
8483 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8484 asection *sec,
8485 void *ignore ATTRIBUTE_UNUSED)
8486 {
8487 unrecord_section_with_aarch64_elf_section_data (sec);
8488 }
8489
8490 static bfd_boolean
8491 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8492 {
8493 if (abfd->sections)
8494 bfd_map_over_sections (abfd,
8495 unrecord_section_via_map_over_sections, NULL);
8496
8497 return _bfd_elf_close_and_cleanup (abfd);
8498 }
8499
8500 static bfd_boolean
8501 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8502 {
8503 if (abfd->sections)
8504 bfd_map_over_sections (abfd,
8505 unrecord_section_via_map_over_sections, NULL);
8506
8507 return _bfd_free_cached_info (abfd);
8508 }
8509
8510 /* Create dynamic sections. This is different from the ARM backend in that
8511 the got, plt, gotplt and their relocation sections are all created in the
8512 standard part of the bfd elf backend. */
8513
8514 static bfd_boolean
8515 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8516 struct bfd_link_info *info)
8517 {
8518 /* We need to create .got section. */
8519 if (!aarch64_elf_create_got_section (dynobj, info))
8520 return FALSE;
8521
8522 return _bfd_elf_create_dynamic_sections (dynobj, info);
8523 }
8524
8525
8526 /* Allocate space in .plt, .got and associated reloc sections for
8527 dynamic relocs. */
8528
8529 static bfd_boolean
8530 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8531 {
8532 struct bfd_link_info *info;
8533 struct elf_aarch64_link_hash_table *htab;
8534 struct elf_aarch64_link_hash_entry *eh;
8535 struct elf_dyn_relocs *p;
8536
8537 /* An example of a bfd_link_hash_indirect symbol is versioned
8538 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8539 -> __gxx_personality_v0(bfd_link_hash_defined)
8540
8541 There is no need to process bfd_link_hash_indirect symbols here
8542 because we will also be presented with the concrete instance of
8543 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8544 called to copy all relevant data from the generic to the concrete
8545 symbol instance. */
8546 if (h->root.type == bfd_link_hash_indirect)
8547 return TRUE;
8548
8549 if (h->root.type == bfd_link_hash_warning)
8550 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8551
8552 info = (struct bfd_link_info *) inf;
8553 htab = elf_aarch64_hash_table (info);
8554
8555 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8556 here if it is defined and referenced in a non-shared object. */
8557 if (h->type == STT_GNU_IFUNC
8558 && h->def_regular)
8559 return TRUE;
8560 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8561 {
8562 /* Make sure this symbol is output as a dynamic symbol.
8563 Undefined weak syms won't yet be marked as dynamic. */
8564 if (h->dynindx == -1 && !h->forced_local
8565 && h->root.type == bfd_link_hash_undefweak)
8566 {
8567 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8568 return FALSE;
8569 }
8570
8571 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8572 {
8573 asection *s = htab->root.splt;
8574
8575 /* If this is the first .plt entry, make room for the special
8576 first entry. */
8577 if (s->size == 0)
8578 s->size += htab->plt_header_size;
8579
8580 h->plt.offset = s->size;
8581
8582 /* If this symbol is not defined in a regular file, and we are
8583 not generating a shared library, then set the symbol to this
8584 location in the .plt. This is required to make function
8585 pointers compare as equal between the normal executable and
8586 the shared library. */
8587 if (!bfd_link_pic (info) && !h->def_regular)
8588 {
8589 h->root.u.def.section = s;
8590 h->root.u.def.value = h->plt.offset;
8591 }
8592
8593 /* Make room for this entry. For now we only create the
8594 small model PLT entries. We later need to find a way
8595 of relaxing into these from the large model PLT entries. */
8596 s->size += htab->plt_entry_size;
8597
8598 /* We also need to make an entry in the .got.plt section, which
8599 will be placed in the .got section by the linker script. */
8600 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8601
8602 /* We also need to make an entry in the .rela.plt section. */
8603 htab->root.srelplt->size += RELOC_SIZE (htab);
8604
8605 /* We need to ensure that all GOT entries that serve the PLT
8606 are consecutive with the special GOT slots [0] [1] and
8607 [2]. Any addtional relocations, such as
8608 R_AARCH64_TLSDESC, must be placed after the PLT related
8609 entries. We abuse the reloc_count such that during
8610 sizing we adjust reloc_count to indicate the number of
8611 PLT related reserved entries. In subsequent phases when
8612 filling in the contents of the reloc entries, PLT related
8613 entries are placed by computing their PLT index (0
8614 .. reloc_count). While other none PLT relocs are placed
8615 at the slot indicated by reloc_count and reloc_count is
8616 updated. */
8617
8618 htab->root.srelplt->reloc_count++;
8619
8620 /* Mark the DSO in case R_<CLS>_JUMP_SLOT relocs against
8621 variant PCS symbols are present. */
8622 if (h->other & STO_AARCH64_VARIANT_PCS)
8623 htab->variant_pcs = 1;
8624
8625 }
8626 else
8627 {
8628 h->plt.offset = (bfd_vma) - 1;
8629 h->needs_plt = 0;
8630 }
8631 }
8632 else
8633 {
8634 h->plt.offset = (bfd_vma) - 1;
8635 h->needs_plt = 0;
8636 }
8637
8638 eh = (struct elf_aarch64_link_hash_entry *) h;
8639 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8640
8641 if (h->got.refcount > 0)
8642 {
8643 bfd_boolean dyn;
8644 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8645
8646 h->got.offset = (bfd_vma) - 1;
8647
8648 dyn = htab->root.dynamic_sections_created;
8649
8650 /* Make sure this symbol is output as a dynamic symbol.
8651 Undefined weak syms won't yet be marked as dynamic. */
8652 if (dyn && h->dynindx == -1 && !h->forced_local
8653 && h->root.type == bfd_link_hash_undefweak)
8654 {
8655 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8656 return FALSE;
8657 }
8658
8659 if (got_type == GOT_UNKNOWN)
8660 {
8661 }
8662 else if (got_type == GOT_NORMAL)
8663 {
8664 h->got.offset = htab->root.sgot->size;
8665 htab->root.sgot->size += GOT_ENTRY_SIZE;
8666 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8667 || h->root.type != bfd_link_hash_undefweak)
8668 && (bfd_link_pic (info)
8669 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8670 /* Undefined weak symbol in static PIE resolves to 0 without
8671 any dynamic relocations. */
8672 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8673 {
8674 htab->root.srelgot->size += RELOC_SIZE (htab);
8675 }
8676 }
8677 else
8678 {
8679 int indx;
8680 if (got_type & GOT_TLSDESC_GD)
8681 {
8682 eh->tlsdesc_got_jump_table_offset =
8683 (htab->root.sgotplt->size
8684 - aarch64_compute_jump_table_size (htab));
8685 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8686 h->got.offset = (bfd_vma) - 2;
8687 }
8688
8689 if (got_type & GOT_TLS_GD)
8690 {
8691 h->got.offset = htab->root.sgot->size;
8692 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8693 }
8694
8695 if (got_type & GOT_TLS_IE)
8696 {
8697 h->got.offset = htab->root.sgot->size;
8698 htab->root.sgot->size += GOT_ENTRY_SIZE;
8699 }
8700
8701 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8702 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8703 || h->root.type != bfd_link_hash_undefweak)
8704 && (!bfd_link_executable (info)
8705 || indx != 0
8706 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8707 {
8708 if (got_type & GOT_TLSDESC_GD)
8709 {
8710 htab->root.srelplt->size += RELOC_SIZE (htab);
8711 /* Note reloc_count not incremented here! We have
8712 already adjusted reloc_count for this relocation
8713 type. */
8714
8715 /* TLSDESC PLT is now needed, but not yet determined. */
8716 htab->tlsdesc_plt = (bfd_vma) - 1;
8717 }
8718
8719 if (got_type & GOT_TLS_GD)
8720 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8721
8722 if (got_type & GOT_TLS_IE)
8723 htab->root.srelgot->size += RELOC_SIZE (htab);
8724 }
8725 }
8726 }
8727 else
8728 {
8729 h->got.offset = (bfd_vma) - 1;
8730 }
8731
8732 if (h->dyn_relocs == NULL)
8733 return TRUE;
8734
8735 /* In the shared -Bsymbolic case, discard space allocated for
8736 dynamic pc-relative relocs against symbols which turn out to be
8737 defined in regular objects. For the normal shared case, discard
8738 space for pc-relative relocs that have become local due to symbol
8739 visibility changes. */
8740
8741 if (bfd_link_pic (info))
8742 {
8743 /* Relocs that use pc_count are those that appear on a call
8744 insn, or certain REL relocs that can generated via assembly.
8745 We want calls to protected symbols to resolve directly to the
8746 function rather than going via the plt. If people want
8747 function pointer comparisons to work as expected then they
8748 should avoid writing weird assembly. */
8749 if (SYMBOL_CALLS_LOCAL (info, h))
8750 {
8751 struct elf_dyn_relocs **pp;
8752
8753 for (pp = &h->dyn_relocs; (p = *pp) != NULL;)
8754 {
8755 p->count -= p->pc_count;
8756 p->pc_count = 0;
8757 if (p->count == 0)
8758 *pp = p->next;
8759 else
8760 pp = &p->next;
8761 }
8762 }
8763
8764 /* Also discard relocs on undefined weak syms with non-default
8765 visibility. */
8766 if (h->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8767 {
8768 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8769 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8770 h->dyn_relocs = NULL;
8771
8772 /* Make sure undefined weak symbols are output as a dynamic
8773 symbol in PIEs. */
8774 else if (h->dynindx == -1
8775 && !h->forced_local
8776 && h->root.type == bfd_link_hash_undefweak
8777 && !bfd_elf_link_record_dynamic_symbol (info, h))
8778 return FALSE;
8779 }
8780
8781 }
8782 else if (ELIMINATE_COPY_RELOCS)
8783 {
8784 /* For the non-shared case, discard space for relocs against
8785 symbols which turn out to need copy relocs or are not
8786 dynamic. */
8787
8788 if (!h->non_got_ref
8789 && ((h->def_dynamic
8790 && !h->def_regular)
8791 || (htab->root.dynamic_sections_created
8792 && (h->root.type == bfd_link_hash_undefweak
8793 || h->root.type == bfd_link_hash_undefined))))
8794 {
8795 /* Make sure this symbol is output as a dynamic symbol.
8796 Undefined weak syms won't yet be marked as dynamic. */
8797 if (h->dynindx == -1
8798 && !h->forced_local
8799 && h->root.type == bfd_link_hash_undefweak
8800 && !bfd_elf_link_record_dynamic_symbol (info, h))
8801 return FALSE;
8802
8803 /* If that succeeded, we know we'll be keeping all the
8804 relocs. */
8805 if (h->dynindx != -1)
8806 goto keep;
8807 }
8808
8809 h->dyn_relocs = NULL;
8810
8811 keep:;
8812 }
8813
8814 /* Finally, allocate space. */
8815 for (p = h->dyn_relocs; p != NULL; p = p->next)
8816 {
8817 asection *sreloc;
8818
8819 sreloc = elf_section_data (p->sec)->sreloc;
8820
8821 BFD_ASSERT (sreloc != NULL);
8822
8823 sreloc->size += p->count * RELOC_SIZE (htab);
8824 }
8825
8826 return TRUE;
8827 }
8828
8829 /* Allocate space in .plt, .got and associated reloc sections for
8830 ifunc dynamic relocs. */
8831
8832 static bfd_boolean
8833 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8834 void *inf)
8835 {
8836 struct bfd_link_info *info;
8837 struct elf_aarch64_link_hash_table *htab;
8838
8839 /* An example of a bfd_link_hash_indirect symbol is versioned
8840 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8841 -> __gxx_personality_v0(bfd_link_hash_defined)
8842
8843 There is no need to process bfd_link_hash_indirect symbols here
8844 because we will also be presented with the concrete instance of
8845 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8846 called to copy all relevant data from the generic to the concrete
8847 symbol instance. */
8848 if (h->root.type == bfd_link_hash_indirect)
8849 return TRUE;
8850
8851 if (h->root.type == bfd_link_hash_warning)
8852 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8853
8854 info = (struct bfd_link_info *) inf;
8855 htab = elf_aarch64_hash_table (info);
8856
8857 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8858 here if it is defined and referenced in a non-shared object. */
8859 if (h->type == STT_GNU_IFUNC
8860 && h->def_regular)
8861 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8862 &h->dyn_relocs,
8863 NULL,
8864 htab->plt_entry_size,
8865 htab->plt_header_size,
8866 GOT_ENTRY_SIZE,
8867 FALSE);
8868 return TRUE;
8869 }
8870
8871 /* Allocate space in .plt, .got and associated reloc sections for
8872 local ifunc dynamic relocs. */
8873
8874 static bfd_boolean
8875 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8876 {
8877 struct elf_link_hash_entry *h
8878 = (struct elf_link_hash_entry *) *slot;
8879
8880 if (h->type != STT_GNU_IFUNC
8881 || !h->def_regular
8882 || !h->ref_regular
8883 || !h->forced_local
8884 || h->root.type != bfd_link_hash_defined)
8885 abort ();
8886
8887 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8888 }
8889
8890 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8891 read-only sections. */
8892
8893 static bfd_boolean
8894 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8895 {
8896 asection *sec;
8897
8898 if (h->root.type == bfd_link_hash_indirect)
8899 return TRUE;
8900
8901 sec = _bfd_elf_readonly_dynrelocs (h);
8902 if (sec != NULL)
8903 {
8904 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8905
8906 info->flags |= DF_TEXTREL;
8907 info->callbacks->minfo
8908 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8909 sec->owner, h->root.root.string, sec);
8910
8911 /* Not an error, just cut short the traversal. */
8912 return FALSE;
8913 }
8914 return TRUE;
8915 }
8916
8917 /* This is the most important function of all . Innocuosly named
8918 though ! */
8919
8920 static bfd_boolean
8921 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8922 struct bfd_link_info *info)
8923 {
8924 struct elf_aarch64_link_hash_table *htab;
8925 bfd *dynobj;
8926 asection *s;
8927 bfd_boolean relocs;
8928 bfd *ibfd;
8929
8930 htab = elf_aarch64_hash_table ((info));
8931 dynobj = htab->root.dynobj;
8932
8933 BFD_ASSERT (dynobj != NULL);
8934
8935 if (htab->root.dynamic_sections_created)
8936 {
8937 if (bfd_link_executable (info) && !info->nointerp)
8938 {
8939 s = bfd_get_linker_section (dynobj, ".interp");
8940 if (s == NULL)
8941 abort ();
8942 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8943 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8944 }
8945 }
8946
8947 /* Set up .got offsets for local syms, and space for local dynamic
8948 relocs. */
8949 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8950 {
8951 struct elf_aarch64_local_symbol *locals = NULL;
8952 Elf_Internal_Shdr *symtab_hdr;
8953 asection *srel;
8954 unsigned int i;
8955
8956 if (!is_aarch64_elf (ibfd))
8957 continue;
8958
8959 for (s = ibfd->sections; s != NULL; s = s->next)
8960 {
8961 struct elf_dyn_relocs *p;
8962
8963 for (p = (struct elf_dyn_relocs *)
8964 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8965 {
8966 if (!bfd_is_abs_section (p->sec)
8967 && bfd_is_abs_section (p->sec->output_section))
8968 {
8969 /* Input section has been discarded, either because
8970 it is a copy of a linkonce section or due to
8971 linker script /DISCARD/, so we'll be discarding
8972 the relocs too. */
8973 }
8974 else if (p->count != 0)
8975 {
8976 srel = elf_section_data (p->sec)->sreloc;
8977 srel->size += p->count * RELOC_SIZE (htab);
8978 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8979 info->flags |= DF_TEXTREL;
8980 }
8981 }
8982 }
8983
8984 locals = elf_aarch64_locals (ibfd);
8985 if (!locals)
8986 continue;
8987
8988 symtab_hdr = &elf_symtab_hdr (ibfd);
8989 srel = htab->root.srelgot;
8990 for (i = 0; i < symtab_hdr->sh_info; i++)
8991 {
8992 locals[i].got_offset = (bfd_vma) - 1;
8993 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8994 if (locals[i].got_refcount > 0)
8995 {
8996 unsigned got_type = locals[i].got_type;
8997 if (got_type & GOT_TLSDESC_GD)
8998 {
8999 locals[i].tlsdesc_got_jump_table_offset =
9000 (htab->root.sgotplt->size
9001 - aarch64_compute_jump_table_size (htab));
9002 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
9003 locals[i].got_offset = (bfd_vma) - 2;
9004 }
9005
9006 if (got_type & GOT_TLS_GD)
9007 {
9008 locals[i].got_offset = htab->root.sgot->size;
9009 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
9010 }
9011
9012 if (got_type & GOT_TLS_IE
9013 || got_type & GOT_NORMAL)
9014 {
9015 locals[i].got_offset = htab->root.sgot->size;
9016 htab->root.sgot->size += GOT_ENTRY_SIZE;
9017 }
9018
9019 if (got_type == GOT_UNKNOWN)
9020 {
9021 }
9022
9023 if (bfd_link_pic (info))
9024 {
9025 if (got_type & GOT_TLSDESC_GD)
9026 {
9027 htab->root.srelplt->size += RELOC_SIZE (htab);
9028 /* Note RELOC_COUNT not incremented here! */
9029 htab->tlsdesc_plt = (bfd_vma) - 1;
9030 }
9031
9032 if (got_type & GOT_TLS_GD)
9033 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
9034
9035 if (got_type & GOT_TLS_IE
9036 || got_type & GOT_NORMAL)
9037 htab->root.srelgot->size += RELOC_SIZE (htab);
9038 }
9039 }
9040 else
9041 {
9042 locals[i].got_refcount = (bfd_vma) - 1;
9043 }
9044 }
9045 }
9046
9047
9048 /* Allocate global sym .plt and .got entries, and space for global
9049 sym dynamic relocs. */
9050 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
9051 info);
9052
9053 /* Allocate global ifunc sym .plt and .got entries, and space for global
9054 ifunc sym dynamic relocs. */
9055 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
9056 info);
9057
9058 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
9059 htab_traverse (htab->loc_hash_table,
9060 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
9061 info);
9062
9063 /* For every jump slot reserved in the sgotplt, reloc_count is
9064 incremented. However, when we reserve space for TLS descriptors,
9065 it's not incremented, so in order to compute the space reserved
9066 for them, it suffices to multiply the reloc count by the jump
9067 slot size. */
9068
9069 if (htab->root.srelplt)
9070 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
9071
9072 if (htab->tlsdesc_plt)
9073 {
9074 if (htab->root.splt->size == 0)
9075 htab->root.splt->size += htab->plt_header_size;
9076
9077 /* If we're not using lazy TLS relocations, don't generate the
9078 GOT and PLT entry required. */
9079 if (!(info->flags & DF_BIND_NOW))
9080 {
9081 htab->tlsdesc_plt = htab->root.splt->size;
9082 htab->root.splt->size += htab->tlsdesc_plt_entry_size;
9083
9084 htab->dt_tlsdesc_got = htab->root.sgot->size;
9085 htab->root.sgot->size += GOT_ENTRY_SIZE;
9086 }
9087 }
9088
9089 /* Init mapping symbols information to use later to distingush between
9090 code and data while scanning for errata. */
9091 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
9092 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9093 {
9094 if (!is_aarch64_elf (ibfd))
9095 continue;
9096 bfd_elfNN_aarch64_init_maps (ibfd);
9097 }
9098
9099 /* We now have determined the sizes of the various dynamic sections.
9100 Allocate memory for them. */
9101 relocs = FALSE;
9102 for (s = dynobj->sections; s != NULL; s = s->next)
9103 {
9104 if ((s->flags & SEC_LINKER_CREATED) == 0)
9105 continue;
9106
9107 if (s == htab->root.splt
9108 || s == htab->root.sgot
9109 || s == htab->root.sgotplt
9110 || s == htab->root.iplt
9111 || s == htab->root.igotplt
9112 || s == htab->root.sdynbss
9113 || s == htab->root.sdynrelro)
9114 {
9115 /* Strip this section if we don't need it; see the
9116 comment below. */
9117 }
9118 else if (CONST_STRNEQ (bfd_section_name (s), ".rela"))
9119 {
9120 if (s->size != 0 && s != htab->root.srelplt)
9121 relocs = TRUE;
9122
9123 /* We use the reloc_count field as a counter if we need
9124 to copy relocs into the output file. */
9125 if (s != htab->root.srelplt)
9126 s->reloc_count = 0;
9127 }
9128 else
9129 {
9130 /* It's not one of our sections, so don't allocate space. */
9131 continue;
9132 }
9133
9134 if (s->size == 0)
9135 {
9136 /* If we don't need this section, strip it from the
9137 output file. This is mostly to handle .rela.bss and
9138 .rela.plt. We must create both sections in
9139 create_dynamic_sections, because they must be created
9140 before the linker maps input sections to output
9141 sections. The linker does that before
9142 adjust_dynamic_symbol is called, and it is that
9143 function which decides whether anything needs to go
9144 into these sections. */
9145 s->flags |= SEC_EXCLUDE;
9146 continue;
9147 }
9148
9149 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9150 continue;
9151
9152 /* Allocate memory for the section contents. We use bfd_zalloc
9153 here in case unused entries are not reclaimed before the
9154 section's contents are written out. This should not happen,
9155 but this way if it does, we get a R_AARCH64_NONE reloc instead
9156 of garbage. */
9157 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9158 if (s->contents == NULL)
9159 return FALSE;
9160 }
9161
9162 if (htab->root.dynamic_sections_created)
9163 {
9164 /* Add some entries to the .dynamic section. We fill in the
9165 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9166 must add the entries now so that we get the correct size for
9167 the .dynamic section. The DT_DEBUG entry is filled in by the
9168 dynamic linker and used by the debugger. */
9169 #define add_dynamic_entry(TAG, VAL) \
9170 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9171
9172 if (bfd_link_executable (info))
9173 {
9174 if (!add_dynamic_entry (DT_DEBUG, 0))
9175 return FALSE;
9176 }
9177
9178 if (htab->root.splt->size != 0)
9179 {
9180 if (!add_dynamic_entry (DT_PLTGOT, 0)
9181 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9182 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9183 || !add_dynamic_entry (DT_JMPREL, 0))
9184 return FALSE;
9185
9186 if (htab->variant_pcs
9187 && !add_dynamic_entry (DT_AARCH64_VARIANT_PCS, 0))
9188 return FALSE;
9189
9190 if (htab->tlsdesc_plt
9191 && !(info->flags & DF_BIND_NOW)
9192 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
9193 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
9194 return FALSE;
9195
9196 if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI_PAC)
9197 && (!add_dynamic_entry (DT_AARCH64_BTI_PLT, 0)
9198 || !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0)))
9199 return FALSE;
9200
9201 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9202 && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9203 return FALSE;
9204
9205 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_PAC)
9206 && !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0))
9207 return FALSE;
9208 }
9209
9210 if (relocs)
9211 {
9212 if (!add_dynamic_entry (DT_RELA, 0)
9213 || !add_dynamic_entry (DT_RELASZ, 0)
9214 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9215 return FALSE;
9216
9217 /* If any dynamic relocs apply to a read-only section,
9218 then we need a DT_TEXTREL entry. */
9219 if ((info->flags & DF_TEXTREL) == 0)
9220 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
9221
9222 if ((info->flags & DF_TEXTREL) != 0)
9223 {
9224 if (!add_dynamic_entry (DT_TEXTREL, 0))
9225 return FALSE;
9226 }
9227 }
9228 }
9229 #undef add_dynamic_entry
9230
9231 return TRUE;
9232 }
9233
9234 static inline void
9235 elf_aarch64_update_plt_entry (bfd *output_bfd,
9236 bfd_reloc_code_real_type r_type,
9237 bfd_byte *plt_entry, bfd_vma value)
9238 {
9239 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9240
9241 /* FIXME: We should check the return value from this function call. */
9242 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9243 }
9244
9245 static void
9246 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9247 struct elf_aarch64_link_hash_table
9248 *htab, bfd *output_bfd,
9249 struct bfd_link_info *info)
9250 {
9251 bfd_byte *plt_entry;
9252 bfd_vma plt_index;
9253 bfd_vma got_offset;
9254 bfd_vma gotplt_entry_address;
9255 bfd_vma plt_entry_address;
9256 Elf_Internal_Rela rela;
9257 bfd_byte *loc;
9258 asection *plt, *gotplt, *relplt;
9259
9260 /* When building a static executable, use .iplt, .igot.plt and
9261 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9262 if (htab->root.splt != NULL)
9263 {
9264 plt = htab->root.splt;
9265 gotplt = htab->root.sgotplt;
9266 relplt = htab->root.srelplt;
9267 }
9268 else
9269 {
9270 plt = htab->root.iplt;
9271 gotplt = htab->root.igotplt;
9272 relplt = htab->root.irelplt;
9273 }
9274
9275 /* Get the index in the procedure linkage table which
9276 corresponds to this symbol. This is the index of this symbol
9277 in all the symbols for which we are making plt entries. The
9278 first entry in the procedure linkage table is reserved.
9279
9280 Get the offset into the .got table of the entry that
9281 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9282 bytes. The first three are reserved for the dynamic linker.
9283
9284 For static executables, we don't reserve anything. */
9285
9286 if (plt == htab->root.splt)
9287 {
9288 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9289 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9290 }
9291 else
9292 {
9293 plt_index = h->plt.offset / htab->plt_entry_size;
9294 got_offset = plt_index * GOT_ENTRY_SIZE;
9295 }
9296
9297 plt_entry = plt->contents + h->plt.offset;
9298 plt_entry_address = plt->output_section->vma
9299 + plt->output_offset + h->plt.offset;
9300 gotplt_entry_address = gotplt->output_section->vma +
9301 gotplt->output_offset + got_offset;
9302
9303 /* Copy in the boiler-plate for the PLTn entry. */
9304 memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9305
9306 /* First instruction in BTI enabled PLT stub is a BTI
9307 instruction so skip it. */
9308 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9309 && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9310 plt_entry = plt_entry + 4;
9311
9312 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9313 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9314 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9315 plt_entry,
9316 PG (gotplt_entry_address) -
9317 PG (plt_entry_address));
9318
9319 /* Fill in the lo12 bits for the load from the pltgot. */
9320 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9321 plt_entry + 4,
9322 PG_OFFSET (gotplt_entry_address));
9323
9324 /* Fill in the lo12 bits for the add from the pltgot entry. */
9325 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9326 plt_entry + 8,
9327 PG_OFFSET (gotplt_entry_address));
9328
9329 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9330 bfd_put_NN (output_bfd,
9331 plt->output_section->vma + plt->output_offset,
9332 gotplt->contents + got_offset);
9333
9334 rela.r_offset = gotplt_entry_address;
9335
9336 if (h->dynindx == -1
9337 || ((bfd_link_executable (info)
9338 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9339 && h->def_regular
9340 && h->type == STT_GNU_IFUNC))
9341 {
9342 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9343 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9344 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9345 rela.r_addend = (h->root.u.def.value
9346 + h->root.u.def.section->output_section->vma
9347 + h->root.u.def.section->output_offset);
9348 }
9349 else
9350 {
9351 /* Fill in the entry in the .rela.plt section. */
9352 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9353 rela.r_addend = 0;
9354 }
9355
9356 /* Compute the relocation entry to used based on PLT index and do
9357 not adjust reloc_count. The reloc_count has already been adjusted
9358 to account for this entry. */
9359 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9360 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9361 }
9362
9363 /* Size sections even though they're not dynamic. We use it to setup
9364 _TLS_MODULE_BASE_, if needed. */
9365
9366 static bfd_boolean
9367 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9368 struct bfd_link_info *info)
9369 {
9370 asection *tls_sec;
9371
9372 if (bfd_link_relocatable (info))
9373 return TRUE;
9374
9375 tls_sec = elf_hash_table (info)->tls_sec;
9376
9377 if (tls_sec)
9378 {
9379 struct elf_link_hash_entry *tlsbase;
9380
9381 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9382 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9383
9384 if (tlsbase)
9385 {
9386 struct bfd_link_hash_entry *h = NULL;
9387 const struct elf_backend_data *bed =
9388 get_elf_backend_data (output_bfd);
9389
9390 if (!(_bfd_generic_link_add_one_symbol
9391 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9392 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9393 return FALSE;
9394
9395 tlsbase->type = STT_TLS;
9396 tlsbase = (struct elf_link_hash_entry *) h;
9397 tlsbase->def_regular = 1;
9398 tlsbase->other = STV_HIDDEN;
9399 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9400 }
9401 }
9402
9403 return TRUE;
9404 }
9405
9406 /* Finish up dynamic symbol handling. We set the contents of various
9407 dynamic sections here. */
9408
9409 static bfd_boolean
9410 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9411 struct bfd_link_info *info,
9412 struct elf_link_hash_entry *h,
9413 Elf_Internal_Sym *sym)
9414 {
9415 struct elf_aarch64_link_hash_table *htab;
9416 htab = elf_aarch64_hash_table (info);
9417
9418 if (h->plt.offset != (bfd_vma) - 1)
9419 {
9420 asection *plt, *gotplt, *relplt;
9421
9422 /* This symbol has an entry in the procedure linkage table. Set
9423 it up. */
9424
9425 /* When building a static executable, use .iplt, .igot.plt and
9426 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9427 if (htab->root.splt != NULL)
9428 {
9429 plt = htab->root.splt;
9430 gotplt = htab->root.sgotplt;
9431 relplt = htab->root.srelplt;
9432 }
9433 else
9434 {
9435 plt = htab->root.iplt;
9436 gotplt = htab->root.igotplt;
9437 relplt = htab->root.irelplt;
9438 }
9439
9440 /* This symbol has an entry in the procedure linkage table. Set
9441 it up. */
9442 if ((h->dynindx == -1
9443 && !((h->forced_local || bfd_link_executable (info))
9444 && h->def_regular
9445 && h->type == STT_GNU_IFUNC))
9446 || plt == NULL
9447 || gotplt == NULL
9448 || relplt == NULL)
9449 return FALSE;
9450
9451 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9452 if (!h->def_regular)
9453 {
9454 /* Mark the symbol as undefined, rather than as defined in
9455 the .plt section. */
9456 sym->st_shndx = SHN_UNDEF;
9457 /* If the symbol is weak we need to clear the value.
9458 Otherwise, the PLT entry would provide a definition for
9459 the symbol even if the symbol wasn't defined anywhere,
9460 and so the symbol would never be NULL. Leave the value if
9461 there were any relocations where pointer equality matters
9462 (this is a clue for the dynamic linker, to make function
9463 pointer comparisons work between an application and shared
9464 library). */
9465 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9466 sym->st_value = 0;
9467 }
9468 }
9469
9470 if (h->got.offset != (bfd_vma) - 1
9471 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9472 /* Undefined weak symbol in static PIE resolves to 0 without
9473 any dynamic relocations. */
9474 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9475 {
9476 Elf_Internal_Rela rela;
9477 bfd_byte *loc;
9478
9479 /* This symbol has an entry in the global offset table. Set it
9480 up. */
9481 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9482 abort ();
9483
9484 rela.r_offset = (htab->root.sgot->output_section->vma
9485 + htab->root.sgot->output_offset
9486 + (h->got.offset & ~(bfd_vma) 1));
9487
9488 if (h->def_regular
9489 && h->type == STT_GNU_IFUNC)
9490 {
9491 if (bfd_link_pic (info))
9492 {
9493 /* Generate R_AARCH64_GLOB_DAT. */
9494 goto do_glob_dat;
9495 }
9496 else
9497 {
9498 asection *plt;
9499
9500 if (!h->pointer_equality_needed)
9501 abort ();
9502
9503 /* For non-shared object, we can't use .got.plt, which
9504 contains the real function address if we need pointer
9505 equality. We load the GOT entry with the PLT entry. */
9506 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9507 bfd_put_NN (output_bfd, (plt->output_section->vma
9508 + plt->output_offset
9509 + h->plt.offset),
9510 htab->root.sgot->contents
9511 + (h->got.offset & ~(bfd_vma) 1));
9512 return TRUE;
9513 }
9514 }
9515 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9516 {
9517 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9518 return FALSE;
9519
9520 BFD_ASSERT ((h->got.offset & 1) != 0);
9521 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9522 rela.r_addend = (h->root.u.def.value
9523 + h->root.u.def.section->output_section->vma
9524 + h->root.u.def.section->output_offset);
9525 }
9526 else
9527 {
9528 do_glob_dat:
9529 BFD_ASSERT ((h->got.offset & 1) == 0);
9530 bfd_put_NN (output_bfd, (bfd_vma) 0,
9531 htab->root.sgot->contents + h->got.offset);
9532 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9533 rela.r_addend = 0;
9534 }
9535
9536 loc = htab->root.srelgot->contents;
9537 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9538 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9539 }
9540
9541 if (h->needs_copy)
9542 {
9543 Elf_Internal_Rela rela;
9544 asection *s;
9545 bfd_byte *loc;
9546
9547 /* This symbol needs a copy reloc. Set it up. */
9548 if (h->dynindx == -1
9549 || (h->root.type != bfd_link_hash_defined
9550 && h->root.type != bfd_link_hash_defweak)
9551 || htab->root.srelbss == NULL)
9552 abort ();
9553
9554 rela.r_offset = (h->root.u.def.value
9555 + h->root.u.def.section->output_section->vma
9556 + h->root.u.def.section->output_offset);
9557 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9558 rela.r_addend = 0;
9559 if (h->root.u.def.section == htab->root.sdynrelro)
9560 s = htab->root.sreldynrelro;
9561 else
9562 s = htab->root.srelbss;
9563 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9564 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9565 }
9566
9567 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9568 be NULL for local symbols. */
9569 if (sym != NULL
9570 && (h == elf_hash_table (info)->hdynamic
9571 || h == elf_hash_table (info)->hgot))
9572 sym->st_shndx = SHN_ABS;
9573
9574 return TRUE;
9575 }
9576
9577 /* Finish up local dynamic symbol handling. We set the contents of
9578 various dynamic sections here. */
9579
9580 static bfd_boolean
9581 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9582 {
9583 struct elf_link_hash_entry *h
9584 = (struct elf_link_hash_entry *) *slot;
9585 struct bfd_link_info *info
9586 = (struct bfd_link_info *) inf;
9587
9588 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9589 info, h, NULL);
9590 }
9591
9592 static void
9593 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9594 struct elf_aarch64_link_hash_table
9595 *htab)
9596 {
9597 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9598 small and large plts and at the minute just generates
9599 the small PLT. */
9600
9601 /* PLT0 of the small PLT looks like this in ELF64 -
9602 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9603 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9604 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9605 // symbol resolver
9606 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9607 // GOTPLT entry for this.
9608 br x17
9609 PLT0 will be slightly different in ELF32 due to different got entry
9610 size. */
9611 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9612 bfd_vma plt_base;
9613
9614
9615 memcpy (htab->root.splt->contents, htab->plt0_entry,
9616 htab->plt_header_size);
9617 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9618 htab->plt_header_size;
9619
9620 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9621 + htab->root.sgotplt->output_offset
9622 + GOT_ENTRY_SIZE * 2);
9623
9624 plt_base = htab->root.splt->output_section->vma +
9625 htab->root.splt->output_offset;
9626
9627 /* First instruction in BTI enabled PLT stub is a BTI
9628 instruction so skip it. */
9629 bfd_byte *plt0_entry = htab->root.splt->contents;
9630 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9631 plt0_entry = plt0_entry + 4;
9632
9633 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9634 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9635 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9636 plt0_entry + 4,
9637 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9638
9639 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9640 plt0_entry + 8,
9641 PG_OFFSET (plt_got_2nd_ent));
9642
9643 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9644 plt0_entry + 12,
9645 PG_OFFSET (plt_got_2nd_ent));
9646 }
9647
9648 static bfd_boolean
9649 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9650 struct bfd_link_info *info)
9651 {
9652 struct elf_aarch64_link_hash_table *htab;
9653 bfd *dynobj;
9654 asection *sdyn;
9655
9656 htab = elf_aarch64_hash_table (info);
9657 dynobj = htab->root.dynobj;
9658 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9659
9660 if (htab->root.dynamic_sections_created)
9661 {
9662 ElfNN_External_Dyn *dyncon, *dynconend;
9663
9664 if (sdyn == NULL || htab->root.sgot == NULL)
9665 abort ();
9666
9667 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9668 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9669 for (; dyncon < dynconend; dyncon++)
9670 {
9671 Elf_Internal_Dyn dyn;
9672 asection *s;
9673
9674 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9675
9676 switch (dyn.d_tag)
9677 {
9678 default:
9679 continue;
9680
9681 case DT_PLTGOT:
9682 s = htab->root.sgotplt;
9683 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9684 break;
9685
9686 case DT_JMPREL:
9687 s = htab->root.srelplt;
9688 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9689 break;
9690
9691 case DT_PLTRELSZ:
9692 s = htab->root.srelplt;
9693 dyn.d_un.d_val = s->size;
9694 break;
9695
9696 case DT_TLSDESC_PLT:
9697 s = htab->root.splt;
9698 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9699 + htab->tlsdesc_plt;
9700 break;
9701
9702 case DT_TLSDESC_GOT:
9703 s = htab->root.sgot;
9704 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9705 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9706 + htab->dt_tlsdesc_got;
9707 break;
9708 }
9709
9710 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9711 }
9712
9713 }
9714
9715 /* Fill in the special first entry in the procedure linkage table. */
9716 if (htab->root.splt && htab->root.splt->size > 0)
9717 {
9718 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9719
9720 elf_section_data (htab->root.splt->output_section)->
9721 this_hdr.sh_entsize = htab->plt_entry_size;
9722
9723
9724 if (htab->tlsdesc_plt && !(info->flags & DF_BIND_NOW))
9725 {
9726 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9727 bfd_put_NN (output_bfd, (bfd_vma) 0,
9728 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9729
9730 const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9731 htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9732
9733 aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9734 if (type == PLT_BTI || type == PLT_BTI_PAC)
9735 {
9736 entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9737 }
9738
9739 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9740 entry, htab->tlsdesc_plt_entry_size);
9741
9742 {
9743 bfd_vma adrp1_addr =
9744 htab->root.splt->output_section->vma
9745 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9746
9747 bfd_vma adrp2_addr = adrp1_addr + 4;
9748
9749 bfd_vma got_addr =
9750 htab->root.sgot->output_section->vma
9751 + htab->root.sgot->output_offset;
9752
9753 bfd_vma pltgot_addr =
9754 htab->root.sgotplt->output_section->vma
9755 + htab->root.sgotplt->output_offset;
9756
9757 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9758
9759 bfd_byte *plt_entry =
9760 htab->root.splt->contents + htab->tlsdesc_plt;
9761
9762 /* First instruction in BTI enabled PLT stub is a BTI
9763 instruction so skip it. */
9764 if (type & PLT_BTI)
9765 {
9766 plt_entry = plt_entry + 4;
9767 adrp1_addr = adrp1_addr + 4;
9768 adrp2_addr = adrp2_addr + 4;
9769 }
9770
9771 /* adrp x2, DT_TLSDESC_GOT */
9772 elf_aarch64_update_plt_entry (output_bfd,
9773 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9774 plt_entry + 4,
9775 (PG (dt_tlsdesc_got)
9776 - PG (adrp1_addr)));
9777
9778 /* adrp x3, 0 */
9779 elf_aarch64_update_plt_entry (output_bfd,
9780 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9781 plt_entry + 8,
9782 (PG (pltgot_addr)
9783 - PG (adrp2_addr)));
9784
9785 /* ldr x2, [x2, #0] */
9786 elf_aarch64_update_plt_entry (output_bfd,
9787 BFD_RELOC_AARCH64_LDSTNN_LO12,
9788 plt_entry + 12,
9789 PG_OFFSET (dt_tlsdesc_got));
9790
9791 /* add x3, x3, 0 */
9792 elf_aarch64_update_plt_entry (output_bfd,
9793 BFD_RELOC_AARCH64_ADD_LO12,
9794 plt_entry + 16,
9795 PG_OFFSET (pltgot_addr));
9796 }
9797 }
9798 }
9799
9800 if (htab->root.sgotplt)
9801 {
9802 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9803 {
9804 _bfd_error_handler
9805 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9806 return FALSE;
9807 }
9808
9809 /* Fill in the first three entries in the global offset table. */
9810 if (htab->root.sgotplt->size > 0)
9811 {
9812 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9813
9814 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9815 bfd_put_NN (output_bfd,
9816 (bfd_vma) 0,
9817 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9818 bfd_put_NN (output_bfd,
9819 (bfd_vma) 0,
9820 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9821 }
9822
9823 if (htab->root.sgot)
9824 {
9825 if (htab->root.sgot->size > 0)
9826 {
9827 bfd_vma addr =
9828 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9829 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9830 }
9831 }
9832
9833 elf_section_data (htab->root.sgotplt->output_section)->
9834 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9835 }
9836
9837 if (htab->root.sgot && htab->root.sgot->size > 0)
9838 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9839 = GOT_ENTRY_SIZE;
9840
9841 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9842 htab_traverse (htab->loc_hash_table,
9843 elfNN_aarch64_finish_local_dynamic_symbol,
9844 info);
9845
9846 return TRUE;
9847 }
9848
9849 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
9850 static aarch64_plt_type
9851 get_plt_type (bfd *abfd)
9852 {
9853 aarch64_plt_type ret = PLT_NORMAL;
9854 bfd_byte *contents, *extdyn, *extdynend;
9855 asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9856 if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9857 return ret;
9858 extdyn = contents;
9859 extdynend = contents + sec->size;
9860 for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9861 {
9862 Elf_Internal_Dyn dyn;
9863 bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9864
9865 /* Let's check the processor specific dynamic array tags. */
9866 bfd_vma tag = dyn.d_tag;
9867 if (tag < DT_LOPROC || tag > DT_HIPROC)
9868 continue;
9869
9870 switch (tag)
9871 {
9872 case DT_AARCH64_BTI_PLT:
9873 ret |= PLT_BTI;
9874 break;
9875
9876 case DT_AARCH64_PAC_PLT:
9877 ret |= PLT_PAC;
9878 break;
9879
9880 default: break;
9881 }
9882 }
9883 free (contents);
9884 return ret;
9885 }
9886
9887 static long
9888 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9889 long symcount,
9890 asymbol **syms,
9891 long dynsymcount,
9892 asymbol **dynsyms,
9893 asymbol **ret)
9894 {
9895 elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9896 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9897 dynsymcount, dynsyms, ret);
9898 }
9899
9900 /* Return address for Ith PLT stub in section PLT, for relocation REL
9901 or (bfd_vma) -1 if it should not be included. */
9902
9903 static bfd_vma
9904 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9905 const arelent *rel ATTRIBUTE_UNUSED)
9906 {
9907 size_t plt0_size = PLT_ENTRY_SIZE;
9908 size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9909
9910 if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI_PAC)
9911 {
9912 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9913 pltn_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
9914 else
9915 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9916 }
9917 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9918 {
9919 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9920 pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9921 }
9922 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_PAC)
9923 {
9924 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9925 }
9926
9927 return plt->vma + plt0_size + i * pltn_size;
9928 }
9929
9930 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9931 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9932 It also allows a period initiated suffix to be added to the symbol, ie:
9933 "$[adtx]\.[:sym_char]+". */
9934
9935 static bfd_boolean
9936 is_aarch64_mapping_symbol (const char * name)
9937 {
9938 return name != NULL /* Paranoia. */
9939 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9940 the mapping symbols could have acquired a prefix.
9941 We do not support this here, since such symbols no
9942 longer conform to the ARM ELF ABI. */
9943 && (name[1] == 'd' || name[1] == 'x')
9944 && (name[2] == 0 || name[2] == '.');
9945 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9946 any characters that follow the period are legal characters for the body
9947 of a symbol's name. For now we just assume that this is the case. */
9948 }
9949
9950 /* Make sure that mapping symbols in object files are not removed via the
9951 "strip --strip-unneeded" tool. These symbols might needed in order to
9952 correctly generate linked files. Once an object file has been linked,
9953 it should be safe to remove them. */
9954
9955 static void
9956 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9957 {
9958 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9959 && sym->section != bfd_abs_section_ptr
9960 && is_aarch64_mapping_symbol (sym->name))
9961 sym->flags |= BSF_KEEP;
9962 }
9963
9964 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
9965 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
9966 for the effect of GNU properties of the output_bfd. */
9967 static bfd *
9968 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
9969 {
9970 uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9971 bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
9972 elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
9973 elf_aarch64_tdata (info->output_bfd)->plt_type
9974 |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
9975 setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
9976 return pbfd;
9977 }
9978
9979 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
9980 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
9981 for the effect of GNU properties of the output_bfd. */
9982 static bfd_boolean
9983 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
9984 bfd *abfd, bfd *bbfd,
9985 elf_property *aprop,
9986 elf_property *bprop)
9987 {
9988 uint32_t prop
9989 = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9990
9991 /* If output has been marked with BTI using command line argument, give out
9992 warning if necessary. */
9993 /* Properties are merged per type, hence only check for warnings when merging
9994 GNU_PROPERTY_AARCH64_FEATURE_1_AND. */
9995 if (((aprop && aprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
9996 || (bprop && bprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND))
9997 && (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
9998 && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
9999 {
10000 if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
10001 || !aprop)
10002 {
10003 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
10004 "all inputs do not have BTI in NOTE section."),
10005 abfd);
10006 }
10007 if ((bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
10008 || !bprop)
10009 {
10010 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
10011 "all inputs do not have BTI in NOTE section."),
10012 bbfd);
10013 }
10014 }
10015
10016 return _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
10017 bprop, prop);
10018 }
10019
10020 /* We use this so we can override certain functions
10021 (though currently we don't). */
10022
10023 const struct elf_size_info elfNN_aarch64_size_info =
10024 {
10025 sizeof (ElfNN_External_Ehdr),
10026 sizeof (ElfNN_External_Phdr),
10027 sizeof (ElfNN_External_Shdr),
10028 sizeof (ElfNN_External_Rel),
10029 sizeof (ElfNN_External_Rela),
10030 sizeof (ElfNN_External_Sym),
10031 sizeof (ElfNN_External_Dyn),
10032 sizeof (Elf_External_Note),
10033 4, /* Hash table entry size. */
10034 1, /* Internal relocs per external relocs. */
10035 ARCH_SIZE, /* Arch size. */
10036 LOG_FILE_ALIGN, /* Log_file_align. */
10037 ELFCLASSNN, EV_CURRENT,
10038 bfd_elfNN_write_out_phdrs,
10039 bfd_elfNN_write_shdrs_and_ehdr,
10040 bfd_elfNN_checksum_contents,
10041 bfd_elfNN_write_relocs,
10042 bfd_elfNN_swap_symbol_in,
10043 bfd_elfNN_swap_symbol_out,
10044 bfd_elfNN_slurp_reloc_table,
10045 bfd_elfNN_slurp_symbol_table,
10046 bfd_elfNN_swap_dyn_in,
10047 bfd_elfNN_swap_dyn_out,
10048 bfd_elfNN_swap_reloc_in,
10049 bfd_elfNN_swap_reloc_out,
10050 bfd_elfNN_swap_reloca_in,
10051 bfd_elfNN_swap_reloca_out
10052 };
10053
10054 #define ELF_ARCH bfd_arch_aarch64
10055 #define ELF_MACHINE_CODE EM_AARCH64
10056 #define ELF_MAXPAGESIZE 0x10000
10057 #define ELF_MINPAGESIZE 0x1000
10058 #define ELF_COMMONPAGESIZE 0x1000
10059
10060 #define bfd_elfNN_close_and_cleanup \
10061 elfNN_aarch64_close_and_cleanup
10062
10063 #define bfd_elfNN_bfd_free_cached_info \
10064 elfNN_aarch64_bfd_free_cached_info
10065
10066 #define bfd_elfNN_bfd_is_target_special_symbol \
10067 elfNN_aarch64_is_target_special_symbol
10068
10069 #define bfd_elfNN_bfd_link_hash_table_create \
10070 elfNN_aarch64_link_hash_table_create
10071
10072 #define bfd_elfNN_bfd_merge_private_bfd_data \
10073 elfNN_aarch64_merge_private_bfd_data
10074
10075 #define bfd_elfNN_bfd_print_private_bfd_data \
10076 elfNN_aarch64_print_private_bfd_data
10077
10078 #define bfd_elfNN_bfd_reloc_type_lookup \
10079 elfNN_aarch64_reloc_type_lookup
10080
10081 #define bfd_elfNN_bfd_reloc_name_lookup \
10082 elfNN_aarch64_reloc_name_lookup
10083
10084 #define bfd_elfNN_bfd_set_private_flags \
10085 elfNN_aarch64_set_private_flags
10086
10087 #define bfd_elfNN_find_inliner_info \
10088 elfNN_aarch64_find_inliner_info
10089
10090 #define bfd_elfNN_get_synthetic_symtab \
10091 elfNN_aarch64_get_synthetic_symtab
10092
10093 #define bfd_elfNN_mkobject \
10094 elfNN_aarch64_mkobject
10095
10096 #define bfd_elfNN_new_section_hook \
10097 elfNN_aarch64_new_section_hook
10098
10099 #define elf_backend_adjust_dynamic_symbol \
10100 elfNN_aarch64_adjust_dynamic_symbol
10101
10102 #define elf_backend_always_size_sections \
10103 elfNN_aarch64_always_size_sections
10104
10105 #define elf_backend_check_relocs \
10106 elfNN_aarch64_check_relocs
10107
10108 #define elf_backend_copy_indirect_symbol \
10109 elfNN_aarch64_copy_indirect_symbol
10110
10111 #define elf_backend_merge_symbol_attribute \
10112 elfNN_aarch64_merge_symbol_attribute
10113
10114 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10115 to them in our hash. */
10116 #define elf_backend_create_dynamic_sections \
10117 elfNN_aarch64_create_dynamic_sections
10118
10119 #define elf_backend_init_index_section \
10120 _bfd_elf_init_2_index_sections
10121
10122 #define elf_backend_finish_dynamic_sections \
10123 elfNN_aarch64_finish_dynamic_sections
10124
10125 #define elf_backend_finish_dynamic_symbol \
10126 elfNN_aarch64_finish_dynamic_symbol
10127
10128 #define elf_backend_object_p \
10129 elfNN_aarch64_object_p
10130
10131 #define elf_backend_output_arch_local_syms \
10132 elfNN_aarch64_output_arch_local_syms
10133
10134 #define elf_backend_maybe_function_sym \
10135 elfNN_aarch64_maybe_function_sym
10136
10137 #define elf_backend_plt_sym_val \
10138 elfNN_aarch64_plt_sym_val
10139
10140 #define elf_backend_init_file_header \
10141 elfNN_aarch64_init_file_header
10142
10143 #define elf_backend_relocate_section \
10144 elfNN_aarch64_relocate_section
10145
10146 #define elf_backend_reloc_type_class \
10147 elfNN_aarch64_reloc_type_class
10148
10149 #define elf_backend_section_from_shdr \
10150 elfNN_aarch64_section_from_shdr
10151
10152 #define elf_backend_size_dynamic_sections \
10153 elfNN_aarch64_size_dynamic_sections
10154
10155 #define elf_backend_size_info \
10156 elfNN_aarch64_size_info
10157
10158 #define elf_backend_write_section \
10159 elfNN_aarch64_write_section
10160
10161 #define elf_backend_symbol_processing \
10162 elfNN_aarch64_backend_symbol_processing
10163
10164 #define elf_backend_setup_gnu_properties \
10165 elfNN_aarch64_link_setup_gnu_properties
10166
10167 #define elf_backend_merge_gnu_properties \
10168 elfNN_aarch64_merge_gnu_properties
10169
10170 #define elf_backend_can_refcount 1
10171 #define elf_backend_can_gc_sections 1
10172 #define elf_backend_plt_readonly 1
10173 #define elf_backend_want_got_plt 1
10174 #define elf_backend_want_plt_sym 0
10175 #define elf_backend_want_dynrelro 1
10176 #define elf_backend_may_use_rel_p 0
10177 #define elf_backend_may_use_rela_p 1
10178 #define elf_backend_default_use_rela_p 1
10179 #define elf_backend_rela_normal 1
10180 #define elf_backend_dtrel_excludes_plt 1
10181 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10182 #define elf_backend_default_execstack 0
10183 #define elf_backend_extern_protected_data 1
10184 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10185
10186 #undef elf_backend_obj_attrs_section
10187 #define elf_backend_obj_attrs_section ".ARM.attributes"
10188
10189 #include "elfNN-target.h"
10190
10191 /* CloudABI support. */
10192
10193 #undef TARGET_LITTLE_SYM
10194 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10195 #undef TARGET_LITTLE_NAME
10196 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10197 #undef TARGET_BIG_SYM
10198 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10199 #undef TARGET_BIG_NAME
10200 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10201
10202 #undef ELF_OSABI
10203 #define ELF_OSABI ELFOSABI_CLOUDABI
10204
10205 #undef elfNN_bed
10206 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10207
10208 #include "elfNN-target.h"
This page took 0.243237 seconds and 4 git commands to generate.