Return void from linker callbacks
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2016 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #endif
166
167 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
209 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
210
211 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
212 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
234
235 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
236 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
245 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
246 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
248
249 #define ELIMINATE_COPY_RELOCS 0
250
251 /* Return size of a relocation entry. HTAB is the bfd's
252 elf_aarch64_link_hash_entry. */
253 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
254
255 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
256 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
257 #define PLT_ENTRY_SIZE (32)
258 #define PLT_SMALL_ENTRY_SIZE (16)
259 #define PLT_TLSDESC_ENTRY_SIZE (32)
260
261 /* Encoding of the nop instruction */
262 #define INSN_NOP 0xd503201f
263
264 #define aarch64_compute_jump_table_size(htab) \
265 (((htab)->root.srelplt == NULL) ? 0 \
266 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
267
268 /* The first entry in a procedure linkage table looks like this
269 if the distance between the PLTGOT and the PLT is < 4GB use
270 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
271 in x16 and needs to work out PLTGOT[1] by using an address of
272 [x16,#-GOT_ENTRY_SIZE]. */
273 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
274 {
275 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
276 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
277 #if ARCH_SIZE == 64
278 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
279 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
280 #else
281 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
282 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
283 #endif
284 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
285 0x1f, 0x20, 0x03, 0xd5, /* nop */
286 0x1f, 0x20, 0x03, 0xd5, /* nop */
287 0x1f, 0x20, 0x03, 0xd5, /* nop */
288 };
289
290 /* Per function entry in a procedure linkage table looks like this
291 if the distance between the PLTGOT and the PLT is < 4GB use
292 these PLT entries. */
293 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
294 {
295 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
296 #if ARCH_SIZE == 64
297 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
298 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
299 #else
300 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
301 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
302 #endif
303 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
304 };
305
306 static const bfd_byte
307 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
308 {
309 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
310 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
311 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
312 #if ARCH_SIZE == 64
313 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
314 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
315 #else
316 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
317 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
318 #endif
319 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
322 };
323
324 #define elf_info_to_howto elfNN_aarch64_info_to_howto
325 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
326
327 #define AARCH64_ELF_ABI_VERSION 0
328
329 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
330 #define ALL_ONES (~ (bfd_vma) 0)
331
332 /* Indexed by the bfd interal reloc enumerators.
333 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
334 in reloc.c. */
335
336 static reloc_howto_type elfNN_aarch64_howto_table[] =
337 {
338 EMPTY_HOWTO (0),
339
340 /* Basic data relocations. */
341
342 /* Deprecated, but retained for backwards compatibility. */
343 HOWTO64 (R_AARCH64_NULL, /* type */
344 0, /* rightshift */
345 3, /* size (0 = byte, 1 = short, 2 = long) */
346 0, /* bitsize */
347 FALSE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_dont, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_AARCH64_NULL", /* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 0, /* dst_mask */
355 FALSE), /* pcrel_offset */
356 HOWTO (R_AARCH64_NONE, /* type */
357 0, /* rightshift */
358 3, /* size (0 = byte, 1 = short, 2 = long) */
359 0, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_dont, /* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_AARCH64_NONE", /* name */
365 FALSE, /* partial_inplace */
366 0, /* src_mask */
367 0, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* .xword: (S+A) */
371 HOWTO64 (AARCH64_R (ABS64), /* type */
372 0, /* rightshift */
373 4, /* size (4 = long long) */
374 64, /* bitsize */
375 FALSE, /* pc_relative */
376 0, /* bitpos */
377 complain_overflow_unsigned, /* complain_on_overflow */
378 bfd_elf_generic_reloc, /* special_function */
379 AARCH64_R_STR (ABS64), /* name */
380 FALSE, /* partial_inplace */
381 ALL_ONES, /* src_mask */
382 ALL_ONES, /* dst_mask */
383 FALSE), /* pcrel_offset */
384
385 /* .word: (S+A) */
386 HOWTO (AARCH64_R (ABS32), /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_unsigned, /* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 AARCH64_R_STR (ABS32), /* name */
395 FALSE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 /* .half: (S+A) */
401 HOWTO (AARCH64_R (ABS16), /* type */
402 0, /* rightshift */
403 1, /* size (0 = byte, 1 = short, 2 = long) */
404 16, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_unsigned, /* complain_on_overflow */
408 bfd_elf_generic_reloc, /* special_function */
409 AARCH64_R_STR (ABS16), /* name */
410 FALSE, /* partial_inplace */
411 0xffff, /* src_mask */
412 0xffff, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 /* .xword: (S+A-P) */
416 HOWTO64 (AARCH64_R (PREL64), /* type */
417 0, /* rightshift */
418 4, /* size (4 = long long) */
419 64, /* bitsize */
420 TRUE, /* pc_relative */
421 0, /* bitpos */
422 complain_overflow_signed, /* complain_on_overflow */
423 bfd_elf_generic_reloc, /* special_function */
424 AARCH64_R_STR (PREL64), /* name */
425 FALSE, /* partial_inplace */
426 ALL_ONES, /* src_mask */
427 ALL_ONES, /* dst_mask */
428 TRUE), /* pcrel_offset */
429
430 /* .word: (S+A-P) */
431 HOWTO (AARCH64_R (PREL32), /* type */
432 0, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 32, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 bfd_elf_generic_reloc, /* special_function */
439 AARCH64_R_STR (PREL32), /* name */
440 FALSE, /* partial_inplace */
441 0xffffffff, /* src_mask */
442 0xffffffff, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 /* .half: (S+A-P) */
446 HOWTO (AARCH64_R (PREL16), /* type */
447 0, /* rightshift */
448 1, /* size (0 = byte, 1 = short, 2 = long) */
449 16, /* bitsize */
450 TRUE, /* pc_relative */
451 0, /* bitpos */
452 complain_overflow_signed, /* complain_on_overflow */
453 bfd_elf_generic_reloc, /* special_function */
454 AARCH64_R_STR (PREL16), /* name */
455 FALSE, /* partial_inplace */
456 0xffff, /* src_mask */
457 0xffff, /* dst_mask */
458 TRUE), /* pcrel_offset */
459
460 /* Group relocations to create a 16, 32, 48 or 64 bit
461 unsigned data or abs address inline. */
462
463 /* MOVZ: ((S+A) >> 0) & 0xffff */
464 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
465 0, /* rightshift */
466 2, /* size (0 = byte, 1 = short, 2 = long) */
467 16, /* bitsize */
468 FALSE, /* pc_relative */
469 0, /* bitpos */
470 complain_overflow_unsigned, /* complain_on_overflow */
471 bfd_elf_generic_reloc, /* special_function */
472 AARCH64_R_STR (MOVW_UABS_G0), /* name */
473 FALSE, /* partial_inplace */
474 0xffff, /* src_mask */
475 0xffff, /* dst_mask */
476 FALSE), /* pcrel_offset */
477
478 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
479 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
480 0, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 16, /* bitsize */
483 FALSE, /* pc_relative */
484 0, /* bitpos */
485 complain_overflow_dont, /* complain_on_overflow */
486 bfd_elf_generic_reloc, /* special_function */
487 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
488 FALSE, /* partial_inplace */
489 0xffff, /* src_mask */
490 0xffff, /* dst_mask */
491 FALSE), /* pcrel_offset */
492
493 /* MOVZ: ((S+A) >> 16) & 0xffff */
494 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
495 16, /* rightshift */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
497 16, /* bitsize */
498 FALSE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_unsigned, /* complain_on_overflow */
501 bfd_elf_generic_reloc, /* special_function */
502 AARCH64_R_STR (MOVW_UABS_G1), /* name */
503 FALSE, /* partial_inplace */
504 0xffff, /* src_mask */
505 0xffff, /* dst_mask */
506 FALSE), /* pcrel_offset */
507
508 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
509 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
510 16, /* rightshift */
511 2, /* size (0 = byte, 1 = short, 2 = long) */
512 16, /* bitsize */
513 FALSE, /* pc_relative */
514 0, /* bitpos */
515 complain_overflow_dont, /* complain_on_overflow */
516 bfd_elf_generic_reloc, /* special_function */
517 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
518 FALSE, /* partial_inplace */
519 0xffff, /* src_mask */
520 0xffff, /* dst_mask */
521 FALSE), /* pcrel_offset */
522
523 /* MOVZ: ((S+A) >> 32) & 0xffff */
524 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
525 32, /* rightshift */
526 2, /* size (0 = byte, 1 = short, 2 = long) */
527 16, /* bitsize */
528 FALSE, /* pc_relative */
529 0, /* bitpos */
530 complain_overflow_unsigned, /* complain_on_overflow */
531 bfd_elf_generic_reloc, /* special_function */
532 AARCH64_R_STR (MOVW_UABS_G2), /* name */
533 FALSE, /* partial_inplace */
534 0xffff, /* src_mask */
535 0xffff, /* dst_mask */
536 FALSE), /* pcrel_offset */
537
538 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
539 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
540 32, /* rightshift */
541 2, /* size (0 = byte, 1 = short, 2 = long) */
542 16, /* bitsize */
543 FALSE, /* pc_relative */
544 0, /* bitpos */
545 complain_overflow_dont, /* complain_on_overflow */
546 bfd_elf_generic_reloc, /* special_function */
547 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
548 FALSE, /* partial_inplace */
549 0xffff, /* src_mask */
550 0xffff, /* dst_mask */
551 FALSE), /* pcrel_offset */
552
553 /* MOVZ: ((S+A) >> 48) & 0xffff */
554 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
555 48, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 16, /* bitsize */
558 FALSE, /* pc_relative */
559 0, /* bitpos */
560 complain_overflow_unsigned, /* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 AARCH64_R_STR (MOVW_UABS_G3), /* name */
563 FALSE, /* partial_inplace */
564 0xffff, /* src_mask */
565 0xffff, /* dst_mask */
566 FALSE), /* pcrel_offset */
567
568 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
569 signed data or abs address inline. Will change instruction
570 to MOVN or MOVZ depending on sign of calculated value. */
571
572 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
573 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 17, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_signed, /* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 AARCH64_R_STR (MOVW_SABS_G0), /* name */
582 FALSE, /* partial_inplace */
583 0xffff, /* src_mask */
584 0xffff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
588 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
589 16, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 17, /* bitsize */
592 FALSE, /* pc_relative */
593 0, /* bitpos */
594 complain_overflow_signed, /* complain_on_overflow */
595 bfd_elf_generic_reloc, /* special_function */
596 AARCH64_R_STR (MOVW_SABS_G1), /* name */
597 FALSE, /* partial_inplace */
598 0xffff, /* src_mask */
599 0xffff, /* dst_mask */
600 FALSE), /* pcrel_offset */
601
602 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
603 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
604 32, /* rightshift */
605 2, /* size (0 = byte, 1 = short, 2 = long) */
606 17, /* bitsize */
607 FALSE, /* pc_relative */
608 0, /* bitpos */
609 complain_overflow_signed, /* complain_on_overflow */
610 bfd_elf_generic_reloc, /* special_function */
611 AARCH64_R_STR (MOVW_SABS_G2), /* name */
612 FALSE, /* partial_inplace */
613 0xffff, /* src_mask */
614 0xffff, /* dst_mask */
615 FALSE), /* pcrel_offset */
616
617 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
618 addresses: PG(x) is (x & ~0xfff). */
619
620 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
621 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
622 2, /* rightshift */
623 2, /* size (0 = byte, 1 = short, 2 = long) */
624 19, /* bitsize */
625 TRUE, /* pc_relative */
626 0, /* bitpos */
627 complain_overflow_signed, /* complain_on_overflow */
628 bfd_elf_generic_reloc, /* special_function */
629 AARCH64_R_STR (LD_PREL_LO19), /* name */
630 FALSE, /* partial_inplace */
631 0x7ffff, /* src_mask */
632 0x7ffff, /* dst_mask */
633 TRUE), /* pcrel_offset */
634
635 /* ADR: (S+A-P) & 0x1fffff */
636 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
637 0, /* rightshift */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
639 21, /* bitsize */
640 TRUE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_signed, /* complain_on_overflow */
643 bfd_elf_generic_reloc, /* special_function */
644 AARCH64_R_STR (ADR_PREL_LO21), /* name */
645 FALSE, /* partial_inplace */
646 0x1fffff, /* src_mask */
647 0x1fffff, /* dst_mask */
648 TRUE), /* pcrel_offset */
649
650 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
651 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
652 12, /* rightshift */
653 2, /* size (0 = byte, 1 = short, 2 = long) */
654 21, /* bitsize */
655 TRUE, /* pc_relative */
656 0, /* bitpos */
657 complain_overflow_signed, /* complain_on_overflow */
658 bfd_elf_generic_reloc, /* special_function */
659 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
660 FALSE, /* partial_inplace */
661 0x1fffff, /* src_mask */
662 0x1fffff, /* dst_mask */
663 TRUE), /* pcrel_offset */
664
665 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
666 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
667 12, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 21, /* bitsize */
670 TRUE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_dont, /* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
675 FALSE, /* partial_inplace */
676 0x1fffff, /* src_mask */
677 0x1fffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 /* ADD: (S+A) & 0xfff [no overflow check] */
681 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
682 0, /* rightshift */
683 2, /* size (0 = byte, 1 = short, 2 = long) */
684 12, /* bitsize */
685 FALSE, /* pc_relative */
686 10, /* bitpos */
687 complain_overflow_dont, /* complain_on_overflow */
688 bfd_elf_generic_reloc, /* special_function */
689 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
690 FALSE, /* partial_inplace */
691 0x3ffc00, /* src_mask */
692 0x3ffc00, /* dst_mask */
693 FALSE), /* pcrel_offset */
694
695 /* LD/ST8: (S+A) & 0xfff */
696 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
697 0, /* rightshift */
698 2, /* size (0 = byte, 1 = short, 2 = long) */
699 12, /* bitsize */
700 FALSE, /* pc_relative */
701 0, /* bitpos */
702 complain_overflow_dont, /* complain_on_overflow */
703 bfd_elf_generic_reloc, /* special_function */
704 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
705 FALSE, /* partial_inplace */
706 0xfff, /* src_mask */
707 0xfff, /* dst_mask */
708 FALSE), /* pcrel_offset */
709
710 /* Relocations for control-flow instructions. */
711
712 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
713 HOWTO (AARCH64_R (TSTBR14), /* type */
714 2, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 14, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_signed, /* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 AARCH64_R_STR (TSTBR14), /* name */
722 FALSE, /* partial_inplace */
723 0x3fff, /* src_mask */
724 0x3fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
728 HOWTO (AARCH64_R (CONDBR19), /* type */
729 2, /* rightshift */
730 2, /* size (0 = byte, 1 = short, 2 = long) */
731 19, /* bitsize */
732 TRUE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_signed, /* complain_on_overflow */
735 bfd_elf_generic_reloc, /* special_function */
736 AARCH64_R_STR (CONDBR19), /* name */
737 FALSE, /* partial_inplace */
738 0x7ffff, /* src_mask */
739 0x7ffff, /* dst_mask */
740 TRUE), /* pcrel_offset */
741
742 /* B: ((S+A-P) >> 2) & 0x3ffffff */
743 HOWTO (AARCH64_R (JUMP26), /* type */
744 2, /* rightshift */
745 2, /* size (0 = byte, 1 = short, 2 = long) */
746 26, /* bitsize */
747 TRUE, /* pc_relative */
748 0, /* bitpos */
749 complain_overflow_signed, /* complain_on_overflow */
750 bfd_elf_generic_reloc, /* special_function */
751 AARCH64_R_STR (JUMP26), /* name */
752 FALSE, /* partial_inplace */
753 0x3ffffff, /* src_mask */
754 0x3ffffff, /* dst_mask */
755 TRUE), /* pcrel_offset */
756
757 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
758 HOWTO (AARCH64_R (CALL26), /* type */
759 2, /* rightshift */
760 2, /* size (0 = byte, 1 = short, 2 = long) */
761 26, /* bitsize */
762 TRUE, /* pc_relative */
763 0, /* bitpos */
764 complain_overflow_signed, /* complain_on_overflow */
765 bfd_elf_generic_reloc, /* special_function */
766 AARCH64_R_STR (CALL26), /* name */
767 FALSE, /* partial_inplace */
768 0x3ffffff, /* src_mask */
769 0x3ffffff, /* dst_mask */
770 TRUE), /* pcrel_offset */
771
772 /* LD/ST16: (S+A) & 0xffe */
773 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
774 1, /* rightshift */
775 2, /* size (0 = byte, 1 = short, 2 = long) */
776 12, /* bitsize */
777 FALSE, /* pc_relative */
778 0, /* bitpos */
779 complain_overflow_dont, /* complain_on_overflow */
780 bfd_elf_generic_reloc, /* special_function */
781 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
782 FALSE, /* partial_inplace */
783 0xffe, /* src_mask */
784 0xffe, /* dst_mask */
785 FALSE), /* pcrel_offset */
786
787 /* LD/ST32: (S+A) & 0xffc */
788 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
789 2, /* rightshift */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
791 12, /* bitsize */
792 FALSE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_dont, /* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
797 FALSE, /* partial_inplace */
798 0xffc, /* src_mask */
799 0xffc, /* dst_mask */
800 FALSE), /* pcrel_offset */
801
802 /* LD/ST64: (S+A) & 0xff8 */
803 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
804 3, /* rightshift */
805 2, /* size (0 = byte, 1 = short, 2 = long) */
806 12, /* bitsize */
807 FALSE, /* pc_relative */
808 0, /* bitpos */
809 complain_overflow_dont, /* complain_on_overflow */
810 bfd_elf_generic_reloc, /* special_function */
811 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
812 FALSE, /* partial_inplace */
813 0xff8, /* src_mask */
814 0xff8, /* dst_mask */
815 FALSE), /* pcrel_offset */
816
817 /* LD/ST128: (S+A) & 0xff0 */
818 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
819 4, /* rightshift */
820 2, /* size (0 = byte, 1 = short, 2 = long) */
821 12, /* bitsize */
822 FALSE, /* pc_relative */
823 0, /* bitpos */
824 complain_overflow_dont, /* complain_on_overflow */
825 bfd_elf_generic_reloc, /* special_function */
826 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
827 FALSE, /* partial_inplace */
828 0xff0, /* src_mask */
829 0xff0, /* dst_mask */
830 FALSE), /* pcrel_offset */
831
832 /* Set a load-literal immediate field to bits
833 0x1FFFFC of G(S)-P */
834 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
835 2, /* rightshift */
836 2, /* size (0 = byte,1 = short,2 = long) */
837 19, /* bitsize */
838 TRUE, /* pc_relative */
839 0, /* bitpos */
840 complain_overflow_signed, /* complain_on_overflow */
841 bfd_elf_generic_reloc, /* special_function */
842 AARCH64_R_STR (GOT_LD_PREL19), /* name */
843 FALSE, /* partial_inplace */
844 0xffffe0, /* src_mask */
845 0xffffe0, /* dst_mask */
846 TRUE), /* pcrel_offset */
847
848 /* Get to the page for the GOT entry for the symbol
849 (G(S) - P) using an ADRP instruction. */
850 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
851 12, /* rightshift */
852 2, /* size (0 = byte, 1 = short, 2 = long) */
853 21, /* bitsize */
854 TRUE, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont, /* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
859 FALSE, /* partial_inplace */
860 0x1fffff, /* src_mask */
861 0x1fffff, /* dst_mask */
862 TRUE), /* pcrel_offset */
863
864 /* LD64: GOT offset G(S) & 0xff8 */
865 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
866 3, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 12, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont, /* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
874 FALSE, /* partial_inplace */
875 0xff8, /* src_mask */
876 0xff8, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 /* LD32: GOT offset G(S) & 0xffc */
880 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
881 2, /* rightshift */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
883 12, /* bitsize */
884 FALSE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
889 FALSE, /* partial_inplace */
890 0xffc, /* src_mask */
891 0xffc, /* dst_mask */
892 FALSE), /* pcrel_offset */
893
894 /* Lower 16 bits of GOT offset for the symbol. */
895 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 16, /* bitsize */
899 FALSE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
904 FALSE, /* partial_inplace */
905 0xffff, /* src_mask */
906 0xffff, /* dst_mask */
907 FALSE), /* pcrel_offset */
908
909 /* Higher 16 bits of GOT offset for the symbol. */
910 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
911 16, /* rightshift */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
913 16, /* bitsize */
914 FALSE, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_unsigned, /* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
918 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
919 FALSE, /* partial_inplace */
920 0xffff, /* src_mask */
921 0xffff, /* dst_mask */
922 FALSE), /* pcrel_offset */
923
924 /* LD64: GOT offset for the symbol. */
925 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
926 3, /* rightshift */
927 2, /* size (0 = byte, 1 = short, 2 = long) */
928 12, /* bitsize */
929 FALSE, /* pc_relative */
930 0, /* bitpos */
931 complain_overflow_unsigned, /* complain_on_overflow */
932 bfd_elf_generic_reloc, /* special_function */
933 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
934 FALSE, /* partial_inplace */
935 0x7ff8, /* src_mask */
936 0x7ff8, /* dst_mask */
937 FALSE), /* pcrel_offset */
938
939 /* LD32: GOT offset to the page address of GOT table.
940 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
941 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
942 2, /* rightshift */
943 2, /* size (0 = byte, 1 = short, 2 = long) */
944 12, /* bitsize */
945 FALSE, /* pc_relative */
946 0, /* bitpos */
947 complain_overflow_unsigned, /* complain_on_overflow */
948 bfd_elf_generic_reloc, /* special_function */
949 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
950 FALSE, /* partial_inplace */
951 0x5ffc, /* src_mask */
952 0x5ffc, /* dst_mask */
953 FALSE), /* pcrel_offset */
954
955 /* LD64: GOT offset to the page address of GOT table.
956 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
957 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
958 3, /* rightshift */
959 2, /* size (0 = byte, 1 = short, 2 = long) */
960 12, /* bitsize */
961 FALSE, /* pc_relative */
962 0, /* bitpos */
963 complain_overflow_unsigned, /* complain_on_overflow */
964 bfd_elf_generic_reloc, /* special_function */
965 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
966 FALSE, /* partial_inplace */
967 0x7ff8, /* src_mask */
968 0x7ff8, /* dst_mask */
969 FALSE), /* pcrel_offset */
970
971 /* Get to the page for the GOT entry for the symbol
972 (G(S) - P) using an ADRP instruction. */
973 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
974 12, /* rightshift */
975 2, /* size (0 = byte, 1 = short, 2 = long) */
976 21, /* bitsize */
977 TRUE, /* pc_relative */
978 0, /* bitpos */
979 complain_overflow_dont, /* complain_on_overflow */
980 bfd_elf_generic_reloc, /* special_function */
981 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
982 FALSE, /* partial_inplace */
983 0x1fffff, /* src_mask */
984 0x1fffff, /* dst_mask */
985 TRUE), /* pcrel_offset */
986
987 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
988 0, /* rightshift */
989 2, /* size (0 = byte, 1 = short, 2 = long) */
990 21, /* bitsize */
991 TRUE, /* pc_relative */
992 0, /* bitpos */
993 complain_overflow_dont, /* complain_on_overflow */
994 bfd_elf_generic_reloc, /* special_function */
995 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
996 FALSE, /* partial_inplace */
997 0x1fffff, /* src_mask */
998 0x1fffff, /* dst_mask */
999 TRUE), /* pcrel_offset */
1000
1001 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1002 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1003 0, /* rightshift */
1004 2, /* size (0 = byte, 1 = short, 2 = long) */
1005 12, /* bitsize */
1006 FALSE, /* pc_relative */
1007 0, /* bitpos */
1008 complain_overflow_dont, /* complain_on_overflow */
1009 bfd_elf_generic_reloc, /* special_function */
1010 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1011 FALSE, /* partial_inplace */
1012 0xfff, /* src_mask */
1013 0xfff, /* dst_mask */
1014 FALSE), /* pcrel_offset */
1015
1016 /* Lower 16 bits of GOT offset to tls_index. */
1017 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1018 0, /* rightshift */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1020 16, /* bitsize */
1021 FALSE, /* pc_relative */
1022 0, /* bitpos */
1023 complain_overflow_dont, /* complain_on_overflow */
1024 bfd_elf_generic_reloc, /* special_function */
1025 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1026 FALSE, /* partial_inplace */
1027 0xffff, /* src_mask */
1028 0xffff, /* dst_mask */
1029 FALSE), /* pcrel_offset */
1030
1031 /* Higher 16 bits of GOT offset to tls_index. */
1032 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1033 16, /* rightshift */
1034 2, /* size (0 = byte, 1 = short, 2 = long) */
1035 16, /* bitsize */
1036 FALSE, /* pc_relative */
1037 0, /* bitpos */
1038 complain_overflow_unsigned, /* complain_on_overflow */
1039 bfd_elf_generic_reloc, /* special_function */
1040 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1041 FALSE, /* partial_inplace */
1042 0xffff, /* src_mask */
1043 0xffff, /* dst_mask */
1044 FALSE), /* pcrel_offset */
1045
1046 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1047 12, /* rightshift */
1048 2, /* size (0 = byte, 1 = short, 2 = long) */
1049 21, /* bitsize */
1050 FALSE, /* pc_relative */
1051 0, /* bitpos */
1052 complain_overflow_dont, /* complain_on_overflow */
1053 bfd_elf_generic_reloc, /* special_function */
1054 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1055 FALSE, /* partial_inplace */
1056 0x1fffff, /* src_mask */
1057 0x1fffff, /* dst_mask */
1058 FALSE), /* pcrel_offset */
1059
1060 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1061 3, /* rightshift */
1062 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 12, /* bitsize */
1064 FALSE, /* pc_relative */
1065 0, /* bitpos */
1066 complain_overflow_dont, /* complain_on_overflow */
1067 bfd_elf_generic_reloc, /* special_function */
1068 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1069 FALSE, /* partial_inplace */
1070 0xff8, /* src_mask */
1071 0xff8, /* dst_mask */
1072 FALSE), /* pcrel_offset */
1073
1074 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1075 2, /* rightshift */
1076 2, /* size (0 = byte, 1 = short, 2 = long) */
1077 12, /* bitsize */
1078 FALSE, /* pc_relative */
1079 0, /* bitpos */
1080 complain_overflow_dont, /* complain_on_overflow */
1081 bfd_elf_generic_reloc, /* special_function */
1082 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1083 FALSE, /* partial_inplace */
1084 0xffc, /* src_mask */
1085 0xffc, /* dst_mask */
1086 FALSE), /* pcrel_offset */
1087
1088 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1089 2, /* rightshift */
1090 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 19, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_dont, /* complain_on_overflow */
1095 bfd_elf_generic_reloc, /* special_function */
1096 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1097 FALSE, /* partial_inplace */
1098 0x1ffffc, /* src_mask */
1099 0x1ffffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1103 0, /* rightshift */
1104 2, /* size (0 = byte, 1 = short, 2 = long) */
1105 16, /* bitsize */
1106 FALSE, /* pc_relative */
1107 0, /* bitpos */
1108 complain_overflow_dont, /* complain_on_overflow */
1109 bfd_elf_generic_reloc, /* special_function */
1110 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1111 FALSE, /* partial_inplace */
1112 0xffff, /* src_mask */
1113 0xffff, /* dst_mask */
1114 FALSE), /* pcrel_offset */
1115
1116 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1117 16, /* rightshift */
1118 2, /* size (0 = byte, 1 = short, 2 = long) */
1119 16, /* bitsize */
1120 FALSE, /* pc_relative */
1121 0, /* bitpos */
1122 complain_overflow_unsigned, /* complain_on_overflow */
1123 bfd_elf_generic_reloc, /* special_function */
1124 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1125 FALSE, /* partial_inplace */
1126 0xffff, /* src_mask */
1127 0xffff, /* dst_mask */
1128 FALSE), /* pcrel_offset */
1129
1130 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1131 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1132 12, /* rightshift */
1133 2, /* size (0 = byte, 1 = short, 2 = long) */
1134 12, /* bitsize */
1135 FALSE, /* pc_relative */
1136 0, /* bitpos */
1137 complain_overflow_unsigned, /* complain_on_overflow */
1138 bfd_elf_generic_reloc, /* special_function */
1139 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1140 FALSE, /* partial_inplace */
1141 0xfff, /* src_mask */
1142 0xfff, /* dst_mask */
1143 FALSE), /* pcrel_offset */
1144
1145 /* Unsigned 12 bit byte offset to module TLS base address. */
1146 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1147 0, /* rightshift */
1148 2, /* size (0 = byte, 1 = short, 2 = long) */
1149 12, /* bitsize */
1150 FALSE, /* pc_relative */
1151 0, /* bitpos */
1152 complain_overflow_unsigned, /* complain_on_overflow */
1153 bfd_elf_generic_reloc, /* special_function */
1154 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1155 FALSE, /* partial_inplace */
1156 0xfff, /* src_mask */
1157 0xfff, /* dst_mask */
1158 FALSE), /* pcrel_offset */
1159
1160 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1161 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 12, /* bitsize */
1165 FALSE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont, /* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1170 FALSE, /* partial_inplace */
1171 0xfff, /* src_mask */
1172 0xfff, /* dst_mask */
1173 FALSE), /* pcrel_offset */
1174
1175 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1176 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1177 0, /* rightshift */
1178 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 12, /* bitsize */
1180 FALSE, /* pc_relative */
1181 0, /* bitpos */
1182 complain_overflow_dont, /* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
1184 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1185 FALSE, /* partial_inplace */
1186 0xfff, /* src_mask */
1187 0xfff, /* dst_mask */
1188 FALSE), /* pcrel_offset */
1189
1190 /* Get to the page for the GOT entry for the symbol
1191 (G(S) - P) using an ADRP instruction. */
1192 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1193 12, /* rightshift */
1194 2, /* size (0 = byte, 1 = short, 2 = long) */
1195 21, /* bitsize */
1196 TRUE, /* pc_relative */
1197 0, /* bitpos */
1198 complain_overflow_signed, /* complain_on_overflow */
1199 bfd_elf_generic_reloc, /* special_function */
1200 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1201 FALSE, /* partial_inplace */
1202 0x1fffff, /* src_mask */
1203 0x1fffff, /* dst_mask */
1204 TRUE), /* pcrel_offset */
1205
1206 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1207 0, /* rightshift */
1208 2, /* size (0 = byte, 1 = short, 2 = long) */
1209 21, /* bitsize */
1210 TRUE, /* pc_relative */
1211 0, /* bitpos */
1212 complain_overflow_signed, /* complain_on_overflow */
1213 bfd_elf_generic_reloc, /* special_function */
1214 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1215 FALSE, /* partial_inplace */
1216 0x1fffff, /* src_mask */
1217 0x1fffff, /* dst_mask */
1218 TRUE), /* pcrel_offset */
1219
1220 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1221 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1222 1, /* rightshift */
1223 2, /* size (0 = byte, 1 = short, 2 = long) */
1224 11, /* bitsize */
1225 FALSE, /* pc_relative */
1226 10, /* bitpos */
1227 complain_overflow_unsigned, /* complain_on_overflow */
1228 bfd_elf_generic_reloc, /* special_function */
1229 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1230 FALSE, /* partial_inplace */
1231 0x1ffc00, /* src_mask */
1232 0x1ffc00, /* dst_mask */
1233 FALSE), /* pcrel_offset */
1234
1235 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1236 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1237 1, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 11, /* bitsize */
1240 FALSE, /* pc_relative */
1241 10, /* bitpos */
1242 complain_overflow_dont, /* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1245 FALSE, /* partial_inplace */
1246 0x1ffc00, /* src_mask */
1247 0x1ffc00, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1251 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1252 2, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 10, /* bitsize */
1255 FALSE, /* pc_relative */
1256 10, /* bitpos */
1257 complain_overflow_unsigned, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1260 FALSE, /* partial_inplace */
1261 0x3ffc00, /* src_mask */
1262 0x3ffc00, /* dst_mask */
1263 FALSE), /* pcrel_offset */
1264
1265 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1266 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1267 2, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 10, /* bitsize */
1270 FALSE, /* pc_relative */
1271 10, /* bitpos */
1272 complain_overflow_dont, /* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1275 FALSE, /* partial_inplace */
1276 0xffc00, /* src_mask */
1277 0xffc00, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1281 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1282 3, /* rightshift */
1283 2, /* size (0 = byte, 1 = short, 2 = long) */
1284 9, /* bitsize */
1285 FALSE, /* pc_relative */
1286 10, /* bitpos */
1287 complain_overflow_unsigned, /* complain_on_overflow */
1288 bfd_elf_generic_reloc, /* special_function */
1289 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1290 FALSE, /* partial_inplace */
1291 0x3ffc00, /* src_mask */
1292 0x3ffc00, /* dst_mask */
1293 FALSE), /* pcrel_offset */
1294
1295 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1296 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1297 3, /* rightshift */
1298 2, /* size (0 = byte, 1 = short, 2 = long) */
1299 9, /* bitsize */
1300 FALSE, /* pc_relative */
1301 10, /* bitpos */
1302 complain_overflow_dont, /* complain_on_overflow */
1303 bfd_elf_generic_reloc, /* special_function */
1304 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1305 FALSE, /* partial_inplace */
1306 0x7fc00, /* src_mask */
1307 0x7fc00, /* dst_mask */
1308 FALSE), /* pcrel_offset */
1309
1310 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1311 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1312 0, /* rightshift */
1313 2, /* size (0 = byte, 1 = short, 2 = long) */
1314 12, /* bitsize */
1315 FALSE, /* pc_relative */
1316 10, /* bitpos */
1317 complain_overflow_unsigned, /* complain_on_overflow */
1318 bfd_elf_generic_reloc, /* special_function */
1319 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1320 FALSE, /* partial_inplace */
1321 0x3ffc00, /* src_mask */
1322 0x3ffc00, /* dst_mask */
1323 FALSE), /* pcrel_offset */
1324
1325 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1326 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1327 0, /* rightshift */
1328 2, /* size (0 = byte, 1 = short, 2 = long) */
1329 12, /* bitsize */
1330 FALSE, /* pc_relative */
1331 10, /* bitpos */
1332 complain_overflow_dont, /* complain_on_overflow */
1333 bfd_elf_generic_reloc, /* special_function */
1334 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1335 FALSE, /* partial_inplace */
1336 0x3ffc00, /* src_mask */
1337 0x3ffc00, /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1341 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1342 0, /* rightshift */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_unsigned, /* complain_on_overflow */
1348 bfd_elf_generic_reloc, /* special_function */
1349 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1350 FALSE, /* partial_inplace */
1351 0xffff, /* src_mask */
1352 0xffff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1356 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1357 0, /* rightshift */
1358 2, /* size (0 = byte, 1 = short, 2 = long) */
1359 16, /* bitsize */
1360 FALSE, /* pc_relative */
1361 0, /* bitpos */
1362 complain_overflow_dont, /* complain_on_overflow */
1363 bfd_elf_generic_reloc, /* special_function */
1364 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1365 FALSE, /* partial_inplace */
1366 0xffff, /* src_mask */
1367 0xffff, /* dst_mask */
1368 FALSE), /* pcrel_offset */
1369
1370 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1371 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1372 16, /* rightshift */
1373 2, /* size (0 = byte, 1 = short, 2 = long) */
1374 16, /* bitsize */
1375 FALSE, /* pc_relative */
1376 0, /* bitpos */
1377 complain_overflow_unsigned, /* complain_on_overflow */
1378 bfd_elf_generic_reloc, /* special_function */
1379 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1380 FALSE, /* partial_inplace */
1381 0xffff, /* src_mask */
1382 0xffff, /* dst_mask */
1383 FALSE), /* pcrel_offset */
1384
1385 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1386 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1387 16, /* rightshift */
1388 2, /* size (0 = byte, 1 = short, 2 = long) */
1389 16, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_dont, /* complain_on_overflow */
1393 bfd_elf_generic_reloc, /* special_function */
1394 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1395 FALSE, /* partial_inplace */
1396 0xffff, /* src_mask */
1397 0xffff, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1401 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1402 32, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 16, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_unsigned, /* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1410 FALSE, /* partial_inplace */
1411 0xffff, /* src_mask */
1412 0xffff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1416 32, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 16, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_unsigned, /* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1424 FALSE, /* partial_inplace */
1425 0xffff, /* src_mask */
1426 0xffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1430 16, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 16, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont, /* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1438 FALSE, /* partial_inplace */
1439 0xffff, /* src_mask */
1440 0xffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1444 16, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 16, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1452 FALSE, /* partial_inplace */
1453 0xffff, /* src_mask */
1454 0xffff, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 16, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_dont, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1466 FALSE, /* partial_inplace */
1467 0xffff, /* src_mask */
1468 0xffff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 16, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_dont, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1480 FALSE, /* partial_inplace */
1481 0xffff, /* src_mask */
1482 0xffff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1486 12, /* rightshift */
1487 2, /* size (0 = byte, 1 = short, 2 = long) */
1488 12, /* bitsize */
1489 FALSE, /* pc_relative */
1490 0, /* bitpos */
1491 complain_overflow_unsigned, /* complain_on_overflow */
1492 bfd_elf_generic_reloc, /* special_function */
1493 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1494 FALSE, /* partial_inplace */
1495 0xfff, /* src_mask */
1496 0xfff, /* dst_mask */
1497 FALSE), /* pcrel_offset */
1498
1499 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1500 0, /* rightshift */
1501 2, /* size (0 = byte, 1 = short, 2 = long) */
1502 12, /* bitsize */
1503 FALSE, /* pc_relative */
1504 0, /* bitpos */
1505 complain_overflow_unsigned, /* complain_on_overflow */
1506 bfd_elf_generic_reloc, /* special_function */
1507 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1508 FALSE, /* partial_inplace */
1509 0xfff, /* src_mask */
1510 0xfff, /* dst_mask */
1511 FALSE), /* pcrel_offset */
1512
1513 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1514 0, /* rightshift */
1515 2, /* size (0 = byte, 1 = short, 2 = long) */
1516 12, /* bitsize */
1517 FALSE, /* pc_relative */
1518 0, /* bitpos */
1519 complain_overflow_dont, /* complain_on_overflow */
1520 bfd_elf_generic_reloc, /* special_function */
1521 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1522 FALSE, /* partial_inplace */
1523 0xfff, /* src_mask */
1524 0xfff, /* dst_mask */
1525 FALSE), /* pcrel_offset */
1526
1527 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1528 2, /* rightshift */
1529 2, /* size (0 = byte, 1 = short, 2 = long) */
1530 19, /* bitsize */
1531 TRUE, /* pc_relative */
1532 0, /* bitpos */
1533 complain_overflow_dont, /* complain_on_overflow */
1534 bfd_elf_generic_reloc, /* special_function */
1535 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1536 FALSE, /* partial_inplace */
1537 0x0ffffe0, /* src_mask */
1538 0x0ffffe0, /* dst_mask */
1539 TRUE), /* pcrel_offset */
1540
1541 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1542 0, /* rightshift */
1543 2, /* size (0 = byte, 1 = short, 2 = long) */
1544 21, /* bitsize */
1545 TRUE, /* pc_relative */
1546 0, /* bitpos */
1547 complain_overflow_dont, /* complain_on_overflow */
1548 bfd_elf_generic_reloc, /* special_function */
1549 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1550 FALSE, /* partial_inplace */
1551 0x1fffff, /* src_mask */
1552 0x1fffff, /* dst_mask */
1553 TRUE), /* pcrel_offset */
1554
1555 /* Get to the page for the GOT entry for the symbol
1556 (G(S) - P) using an ADRP instruction. */
1557 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1558 12, /* rightshift */
1559 2, /* size (0 = byte, 1 = short, 2 = long) */
1560 21, /* bitsize */
1561 TRUE, /* pc_relative */
1562 0, /* bitpos */
1563 complain_overflow_dont, /* complain_on_overflow */
1564 bfd_elf_generic_reloc, /* special_function */
1565 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1566 FALSE, /* partial_inplace */
1567 0x1fffff, /* src_mask */
1568 0x1fffff, /* dst_mask */
1569 TRUE), /* pcrel_offset */
1570
1571 /* LD64: GOT offset G(S) & 0xff8. */
1572 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
1573 3, /* rightshift */
1574 2, /* size (0 = byte, 1 = short, 2 = long) */
1575 12, /* bitsize */
1576 FALSE, /* pc_relative */
1577 0, /* bitpos */
1578 complain_overflow_dont, /* complain_on_overflow */
1579 bfd_elf_generic_reloc, /* special_function */
1580 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
1581 FALSE, /* partial_inplace */
1582 0xff8, /* src_mask */
1583 0xff8, /* dst_mask */
1584 FALSE), /* pcrel_offset */
1585
1586 /* LD32: GOT offset G(S) & 0xffc. */
1587 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1588 2, /* rightshift */
1589 2, /* size (0 = byte, 1 = short, 2 = long) */
1590 12, /* bitsize */
1591 FALSE, /* pc_relative */
1592 0, /* bitpos */
1593 complain_overflow_dont, /* complain_on_overflow */
1594 bfd_elf_generic_reloc, /* special_function */
1595 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1596 FALSE, /* partial_inplace */
1597 0xffc, /* src_mask */
1598 0xffc, /* dst_mask */
1599 FALSE), /* pcrel_offset */
1600
1601 /* ADD: GOT offset G(S) & 0xfff. */
1602 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 12, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_dont, /* complain_on_overflow */
1609 bfd_elf_generic_reloc, /* special_function */
1610 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
1611 FALSE, /* partial_inplace */
1612 0xfff, /* src_mask */
1613 0xfff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1617 16, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_unsigned, /* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1625 FALSE, /* partial_inplace */
1626 0xffff, /* src_mask */
1627 0xffff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_dont, /* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1639 FALSE, /* partial_inplace */
1640 0xffff, /* src_mask */
1641 0xffff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_dont, /* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 AARCH64_R_STR (TLSDESC_LDR), /* name */
1653 FALSE, /* partial_inplace */
1654 0x0, /* src_mask */
1655 0x0, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1659 0, /* rightshift */
1660 2, /* size (0 = byte, 1 = short, 2 = long) */
1661 12, /* bitsize */
1662 FALSE, /* pc_relative */
1663 0, /* bitpos */
1664 complain_overflow_dont, /* complain_on_overflow */
1665 bfd_elf_generic_reloc, /* special_function */
1666 AARCH64_R_STR (TLSDESC_ADD), /* name */
1667 FALSE, /* partial_inplace */
1668 0x0, /* src_mask */
1669 0x0, /* dst_mask */
1670 FALSE), /* pcrel_offset */
1671
1672 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1673 0, /* rightshift */
1674 2, /* size (0 = byte, 1 = short, 2 = long) */
1675 0, /* bitsize */
1676 FALSE, /* pc_relative */
1677 0, /* bitpos */
1678 complain_overflow_dont, /* complain_on_overflow */
1679 bfd_elf_generic_reloc, /* special_function */
1680 AARCH64_R_STR (TLSDESC_CALL), /* name */
1681 FALSE, /* partial_inplace */
1682 0x0, /* src_mask */
1683 0x0, /* dst_mask */
1684 FALSE), /* pcrel_offset */
1685
1686 HOWTO (AARCH64_R (COPY), /* type */
1687 0, /* rightshift */
1688 2, /* size (0 = byte, 1 = short, 2 = long) */
1689 64, /* bitsize */
1690 FALSE, /* pc_relative */
1691 0, /* bitpos */
1692 complain_overflow_bitfield, /* complain_on_overflow */
1693 bfd_elf_generic_reloc, /* special_function */
1694 AARCH64_R_STR (COPY), /* name */
1695 TRUE, /* partial_inplace */
1696 0xffffffff, /* src_mask */
1697 0xffffffff, /* dst_mask */
1698 FALSE), /* pcrel_offset */
1699
1700 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1701 0, /* rightshift */
1702 2, /* size (0 = byte, 1 = short, 2 = long) */
1703 64, /* bitsize */
1704 FALSE, /* pc_relative */
1705 0, /* bitpos */
1706 complain_overflow_bitfield, /* complain_on_overflow */
1707 bfd_elf_generic_reloc, /* special_function */
1708 AARCH64_R_STR (GLOB_DAT), /* name */
1709 TRUE, /* partial_inplace */
1710 0xffffffff, /* src_mask */
1711 0xffffffff, /* dst_mask */
1712 FALSE), /* pcrel_offset */
1713
1714 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1715 0, /* rightshift */
1716 2, /* size (0 = byte, 1 = short, 2 = long) */
1717 64, /* bitsize */
1718 FALSE, /* pc_relative */
1719 0, /* bitpos */
1720 complain_overflow_bitfield, /* complain_on_overflow */
1721 bfd_elf_generic_reloc, /* special_function */
1722 AARCH64_R_STR (JUMP_SLOT), /* name */
1723 TRUE, /* partial_inplace */
1724 0xffffffff, /* src_mask */
1725 0xffffffff, /* dst_mask */
1726 FALSE), /* pcrel_offset */
1727
1728 HOWTO (AARCH64_R (RELATIVE), /* type */
1729 0, /* rightshift */
1730 2, /* size (0 = byte, 1 = short, 2 = long) */
1731 64, /* bitsize */
1732 FALSE, /* pc_relative */
1733 0, /* bitpos */
1734 complain_overflow_bitfield, /* complain_on_overflow */
1735 bfd_elf_generic_reloc, /* special_function */
1736 AARCH64_R_STR (RELATIVE), /* name */
1737 TRUE, /* partial_inplace */
1738 ALL_ONES, /* src_mask */
1739 ALL_ONES, /* dst_mask */
1740 FALSE), /* pcrel_offset */
1741
1742 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1743 0, /* rightshift */
1744 2, /* size (0 = byte, 1 = short, 2 = long) */
1745 64, /* bitsize */
1746 FALSE, /* pc_relative */
1747 0, /* bitpos */
1748 complain_overflow_dont, /* complain_on_overflow */
1749 bfd_elf_generic_reloc, /* special_function */
1750 #if ARCH_SIZE == 64
1751 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1752 #else
1753 AARCH64_R_STR (TLS_DTPMOD), /* name */
1754 #endif
1755 FALSE, /* partial_inplace */
1756 0, /* src_mask */
1757 ALL_ONES, /* dst_mask */
1758 FALSE), /* pc_reloffset */
1759
1760 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1761 0, /* rightshift */
1762 2, /* size (0 = byte, 1 = short, 2 = long) */
1763 64, /* bitsize */
1764 FALSE, /* pc_relative */
1765 0, /* bitpos */
1766 complain_overflow_dont, /* complain_on_overflow */
1767 bfd_elf_generic_reloc, /* special_function */
1768 #if ARCH_SIZE == 64
1769 AARCH64_R_STR (TLS_DTPREL64), /* name */
1770 #else
1771 AARCH64_R_STR (TLS_DTPREL), /* name */
1772 #endif
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 ALL_ONES, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777
1778 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1779 0, /* rightshift */
1780 2, /* size (0 = byte, 1 = short, 2 = long) */
1781 64, /* bitsize */
1782 FALSE, /* pc_relative */
1783 0, /* bitpos */
1784 complain_overflow_dont, /* complain_on_overflow */
1785 bfd_elf_generic_reloc, /* special_function */
1786 #if ARCH_SIZE == 64
1787 AARCH64_R_STR (TLS_TPREL64), /* name */
1788 #else
1789 AARCH64_R_STR (TLS_TPREL), /* name */
1790 #endif
1791 FALSE, /* partial_inplace */
1792 0, /* src_mask */
1793 ALL_ONES, /* dst_mask */
1794 FALSE), /* pcrel_offset */
1795
1796 HOWTO (AARCH64_R (TLSDESC), /* type */
1797 0, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 64, /* bitsize */
1800 FALSE, /* pc_relative */
1801 0, /* bitpos */
1802 complain_overflow_dont, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSDESC), /* name */
1805 FALSE, /* partial_inplace */
1806 0, /* src_mask */
1807 ALL_ONES, /* dst_mask */
1808 FALSE), /* pcrel_offset */
1809
1810 HOWTO (AARCH64_R (IRELATIVE), /* type */
1811 0, /* rightshift */
1812 2, /* size (0 = byte, 1 = short, 2 = long) */
1813 64, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_bitfield, /* complain_on_overflow */
1817 bfd_elf_generic_reloc, /* special_function */
1818 AARCH64_R_STR (IRELATIVE), /* name */
1819 FALSE, /* partial_inplace */
1820 0, /* src_mask */
1821 ALL_ONES, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 EMPTY_HOWTO (0),
1825 };
1826
1827 static reloc_howto_type elfNN_aarch64_howto_none =
1828 HOWTO (R_AARCH64_NONE, /* type */
1829 0, /* rightshift */
1830 3, /* size (0 = byte, 1 = short, 2 = long) */
1831 0, /* bitsize */
1832 FALSE, /* pc_relative */
1833 0, /* bitpos */
1834 complain_overflow_dont,/* complain_on_overflow */
1835 bfd_elf_generic_reloc, /* special_function */
1836 "R_AARCH64_NONE", /* name */
1837 FALSE, /* partial_inplace */
1838 0, /* src_mask */
1839 0, /* dst_mask */
1840 FALSE); /* pcrel_offset */
1841
1842 /* Given HOWTO, return the bfd internal relocation enumerator. */
1843
1844 static bfd_reloc_code_real_type
1845 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1846 {
1847 const int size
1848 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1849 const ptrdiff_t offset
1850 = howto - elfNN_aarch64_howto_table;
1851
1852 if (offset > 0 && offset < size - 1)
1853 return BFD_RELOC_AARCH64_RELOC_START + offset;
1854
1855 if (howto == &elfNN_aarch64_howto_none)
1856 return BFD_RELOC_AARCH64_NONE;
1857
1858 return BFD_RELOC_AARCH64_RELOC_START;
1859 }
1860
1861 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1862
1863 static bfd_reloc_code_real_type
1864 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1865 {
1866 static bfd_boolean initialized_p = FALSE;
1867 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1868 static unsigned int offsets[R_AARCH64_end];
1869
1870 if (initialized_p == FALSE)
1871 {
1872 unsigned int i;
1873
1874 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1875 if (elfNN_aarch64_howto_table[i].type != 0)
1876 offsets[elfNN_aarch64_howto_table[i].type] = i;
1877
1878 initialized_p = TRUE;
1879 }
1880
1881 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1882 return BFD_RELOC_AARCH64_NONE;
1883
1884 /* PR 17512: file: b371e70a. */
1885 if (r_type >= R_AARCH64_end)
1886 {
1887 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1888 bfd_set_error (bfd_error_bad_value);
1889 return BFD_RELOC_AARCH64_NONE;
1890 }
1891
1892 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1893 }
1894
1895 struct elf_aarch64_reloc_map
1896 {
1897 bfd_reloc_code_real_type from;
1898 bfd_reloc_code_real_type to;
1899 };
1900
1901 /* Map bfd generic reloc to AArch64-specific reloc. */
1902 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1903 {
1904 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1905
1906 /* Basic data relocations. */
1907 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1908 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1909 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1910 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1911 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1912 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1913 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1914 };
1915
1916 /* Given the bfd internal relocation enumerator in CODE, return the
1917 corresponding howto entry. */
1918
1919 static reloc_howto_type *
1920 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1921 {
1922 unsigned int i;
1923
1924 /* Convert bfd generic reloc to AArch64-specific reloc. */
1925 if (code < BFD_RELOC_AARCH64_RELOC_START
1926 || code > BFD_RELOC_AARCH64_RELOC_END)
1927 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1928 if (elf_aarch64_reloc_map[i].from == code)
1929 {
1930 code = elf_aarch64_reloc_map[i].to;
1931 break;
1932 }
1933
1934 if (code > BFD_RELOC_AARCH64_RELOC_START
1935 && code < BFD_RELOC_AARCH64_RELOC_END)
1936 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1937 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1938
1939 if (code == BFD_RELOC_AARCH64_NONE)
1940 return &elfNN_aarch64_howto_none;
1941
1942 return NULL;
1943 }
1944
1945 static reloc_howto_type *
1946 elfNN_aarch64_howto_from_type (unsigned int r_type)
1947 {
1948 bfd_reloc_code_real_type val;
1949 reloc_howto_type *howto;
1950
1951 #if ARCH_SIZE == 32
1952 if (r_type > 256)
1953 {
1954 bfd_set_error (bfd_error_bad_value);
1955 return NULL;
1956 }
1957 #endif
1958
1959 if (r_type == R_AARCH64_NONE)
1960 return &elfNN_aarch64_howto_none;
1961
1962 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1963 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1964
1965 if (howto != NULL)
1966 return howto;
1967
1968 bfd_set_error (bfd_error_bad_value);
1969 return NULL;
1970 }
1971
1972 static void
1973 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1974 Elf_Internal_Rela *elf_reloc)
1975 {
1976 unsigned int r_type;
1977
1978 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1979 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1980 }
1981
1982 static reloc_howto_type *
1983 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1984 bfd_reloc_code_real_type code)
1985 {
1986 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1987
1988 if (howto != NULL)
1989 return howto;
1990
1991 bfd_set_error (bfd_error_bad_value);
1992 return NULL;
1993 }
1994
1995 static reloc_howto_type *
1996 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1997 const char *r_name)
1998 {
1999 unsigned int i;
2000
2001 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2002 if (elfNN_aarch64_howto_table[i].name != NULL
2003 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2004 return &elfNN_aarch64_howto_table[i];
2005
2006 return NULL;
2007 }
2008
2009 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2010 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2011 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2012 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2013
2014 /* The linker script knows the section names for placement.
2015 The entry_names are used to do simple name mangling on the stubs.
2016 Given a function name, and its type, the stub can be found. The
2017 name can be changed. The only requirement is the %s be present. */
2018 #define STUB_ENTRY_NAME "__%s_veneer"
2019
2020 /* The name of the dynamic interpreter. This is put in the .interp
2021 section. */
2022 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2023
2024 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2025 (((1 << 25) - 1) << 2)
2026 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2027 (-((1 << 25) << 2))
2028
2029 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2030 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2031
2032 static int
2033 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2034 {
2035 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2036 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2037 }
2038
2039 static int
2040 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2041 {
2042 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2043 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2044 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2045 }
2046
2047 static const uint32_t aarch64_adrp_branch_stub [] =
2048 {
2049 0x90000010, /* adrp ip0, X */
2050 /* R_AARCH64_ADR_HI21_PCREL(X) */
2051 0x91000210, /* add ip0, ip0, :lo12:X */
2052 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2053 0xd61f0200, /* br ip0 */
2054 };
2055
2056 static const uint32_t aarch64_long_branch_stub[] =
2057 {
2058 #if ARCH_SIZE == 64
2059 0x58000090, /* ldr ip0, 1f */
2060 #else
2061 0x18000090, /* ldr wip0, 1f */
2062 #endif
2063 0x10000011, /* adr ip1, #0 */
2064 0x8b110210, /* add ip0, ip0, ip1 */
2065 0xd61f0200, /* br ip0 */
2066 0x00000000, /* 1: .xword or .word
2067 R_AARCH64_PRELNN(X) + 12
2068 */
2069 0x00000000,
2070 };
2071
2072 static const uint32_t aarch64_erratum_835769_stub[] =
2073 {
2074 0x00000000, /* Placeholder for multiply accumulate. */
2075 0x14000000, /* b <label> */
2076 };
2077
2078 static const uint32_t aarch64_erratum_843419_stub[] =
2079 {
2080 0x00000000, /* Placeholder for LDR instruction. */
2081 0x14000000, /* b <label> */
2082 };
2083
2084 /* Section name for stubs is the associated section name plus this
2085 string. */
2086 #define STUB_SUFFIX ".stub"
2087
2088 enum elf_aarch64_stub_type
2089 {
2090 aarch64_stub_none,
2091 aarch64_stub_adrp_branch,
2092 aarch64_stub_long_branch,
2093 aarch64_stub_erratum_835769_veneer,
2094 aarch64_stub_erratum_843419_veneer,
2095 };
2096
2097 struct elf_aarch64_stub_hash_entry
2098 {
2099 /* Base hash table entry structure. */
2100 struct bfd_hash_entry root;
2101
2102 /* The stub section. */
2103 asection *stub_sec;
2104
2105 /* Offset within stub_sec of the beginning of this stub. */
2106 bfd_vma stub_offset;
2107
2108 /* Given the symbol's value and its section we can determine its final
2109 value when building the stubs (so the stub knows where to jump). */
2110 bfd_vma target_value;
2111 asection *target_section;
2112
2113 enum elf_aarch64_stub_type stub_type;
2114
2115 /* The symbol table entry, if any, that this was derived from. */
2116 struct elf_aarch64_link_hash_entry *h;
2117
2118 /* Destination symbol type */
2119 unsigned char st_type;
2120
2121 /* Where this stub is being called from, or, in the case of combined
2122 stub sections, the first input section in the group. */
2123 asection *id_sec;
2124
2125 /* The name for the local symbol at the start of this stub. The
2126 stub name in the hash table has to be unique; this does not, so
2127 it can be friendlier. */
2128 char *output_name;
2129
2130 /* The instruction which caused this stub to be generated (only valid for
2131 erratum 835769 workaround stubs at present). */
2132 uint32_t veneered_insn;
2133
2134 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2135 bfd_vma adrp_offset;
2136 };
2137
2138 /* Used to build a map of a section. This is required for mixed-endian
2139 code/data. */
2140
2141 typedef struct elf_elf_section_map
2142 {
2143 bfd_vma vma;
2144 char type;
2145 }
2146 elf_aarch64_section_map;
2147
2148
2149 typedef struct _aarch64_elf_section_data
2150 {
2151 struct bfd_elf_section_data elf;
2152 unsigned int mapcount;
2153 unsigned int mapsize;
2154 elf_aarch64_section_map *map;
2155 }
2156 _aarch64_elf_section_data;
2157
2158 #define elf_aarch64_section_data(sec) \
2159 ((_aarch64_elf_section_data *) elf_section_data (sec))
2160
2161 /* The size of the thread control block which is defined to be two pointers. */
2162 #define TCB_SIZE (ARCH_SIZE/8)*2
2163
2164 struct elf_aarch64_local_symbol
2165 {
2166 unsigned int got_type;
2167 bfd_signed_vma got_refcount;
2168 bfd_vma got_offset;
2169
2170 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2171 offset is from the end of the jump table and reserved entries
2172 within the PLTGOT.
2173
2174 The magic value (bfd_vma) -1 indicates that an offset has not be
2175 allocated. */
2176 bfd_vma tlsdesc_got_jump_table_offset;
2177 };
2178
2179 struct elf_aarch64_obj_tdata
2180 {
2181 struct elf_obj_tdata root;
2182
2183 /* local symbol descriptors */
2184 struct elf_aarch64_local_symbol *locals;
2185
2186 /* Zero to warn when linking objects with incompatible enum sizes. */
2187 int no_enum_size_warning;
2188
2189 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2190 int no_wchar_size_warning;
2191 };
2192
2193 #define elf_aarch64_tdata(bfd) \
2194 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2195
2196 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2197
2198 #define is_aarch64_elf(bfd) \
2199 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2200 && elf_tdata (bfd) != NULL \
2201 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2202
2203 static bfd_boolean
2204 elfNN_aarch64_mkobject (bfd *abfd)
2205 {
2206 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2207 AARCH64_ELF_DATA);
2208 }
2209
2210 #define elf_aarch64_hash_entry(ent) \
2211 ((struct elf_aarch64_link_hash_entry *)(ent))
2212
2213 #define GOT_UNKNOWN 0
2214 #define GOT_NORMAL 1
2215 #define GOT_TLS_GD 2
2216 #define GOT_TLS_IE 4
2217 #define GOT_TLSDESC_GD 8
2218
2219 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2220
2221 /* AArch64 ELF linker hash entry. */
2222 struct elf_aarch64_link_hash_entry
2223 {
2224 struct elf_link_hash_entry root;
2225
2226 /* Track dynamic relocs copied for this symbol. */
2227 struct elf_dyn_relocs *dyn_relocs;
2228
2229 /* Since PLT entries have variable size, we need to record the
2230 index into .got.plt instead of recomputing it from the PLT
2231 offset. */
2232 bfd_signed_vma plt_got_offset;
2233
2234 /* Bit mask representing the type of GOT entry(s) if any required by
2235 this symbol. */
2236 unsigned int got_type;
2237
2238 /* A pointer to the most recently used stub hash entry against this
2239 symbol. */
2240 struct elf_aarch64_stub_hash_entry *stub_cache;
2241
2242 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2243 is from the end of the jump table and reserved entries within the PLTGOT.
2244
2245 The magic value (bfd_vma) -1 indicates that an offset has not
2246 be allocated. */
2247 bfd_vma tlsdesc_got_jump_table_offset;
2248 };
2249
2250 static unsigned int
2251 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2252 bfd *abfd,
2253 unsigned long r_symndx)
2254 {
2255 if (h)
2256 return elf_aarch64_hash_entry (h)->got_type;
2257
2258 if (! elf_aarch64_locals (abfd))
2259 return GOT_UNKNOWN;
2260
2261 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2262 }
2263
2264 /* Get the AArch64 elf linker hash table from a link_info structure. */
2265 #define elf_aarch64_hash_table(info) \
2266 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2267
2268 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2269 ((struct elf_aarch64_stub_hash_entry *) \
2270 bfd_hash_lookup ((table), (string), (create), (copy)))
2271
2272 /* AArch64 ELF linker hash table. */
2273 struct elf_aarch64_link_hash_table
2274 {
2275 /* The main hash table. */
2276 struct elf_link_hash_table root;
2277
2278 /* Nonzero to force PIC branch veneers. */
2279 int pic_veneer;
2280
2281 /* Fix erratum 835769. */
2282 int fix_erratum_835769;
2283
2284 /* Fix erratum 843419. */
2285 int fix_erratum_843419;
2286
2287 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2288 int fix_erratum_843419_adr;
2289
2290 /* Don't apply link-time values for dynamic relocations. */
2291 int no_apply_dynamic_relocs;
2292
2293 /* The number of bytes in the initial entry in the PLT. */
2294 bfd_size_type plt_header_size;
2295
2296 /* The number of bytes in the subsequent PLT etries. */
2297 bfd_size_type plt_entry_size;
2298
2299 /* Short-cuts to get to dynamic linker sections. */
2300 asection *sdynbss;
2301 asection *srelbss;
2302
2303 /* Small local sym cache. */
2304 struct sym_cache sym_cache;
2305
2306 /* For convenience in allocate_dynrelocs. */
2307 bfd *obfd;
2308
2309 /* The amount of space used by the reserved portion of the sgotplt
2310 section, plus whatever space is used by the jump slots. */
2311 bfd_vma sgotplt_jump_table_size;
2312
2313 /* The stub hash table. */
2314 struct bfd_hash_table stub_hash_table;
2315
2316 /* Linker stub bfd. */
2317 bfd *stub_bfd;
2318
2319 /* Linker call-backs. */
2320 asection *(*add_stub_section) (const char *, asection *);
2321 void (*layout_sections_again) (void);
2322
2323 /* Array to keep track of which stub sections have been created, and
2324 information on stub grouping. */
2325 struct map_stub
2326 {
2327 /* This is the section to which stubs in the group will be
2328 attached. */
2329 asection *link_sec;
2330 /* The stub section. */
2331 asection *stub_sec;
2332 } *stub_group;
2333
2334 /* Assorted information used by elfNN_aarch64_size_stubs. */
2335 unsigned int bfd_count;
2336 unsigned int top_index;
2337 asection **input_list;
2338
2339 /* The offset into splt of the PLT entry for the TLS descriptor
2340 resolver. Special values are 0, if not necessary (or not found
2341 to be necessary yet), and -1 if needed but not determined
2342 yet. */
2343 bfd_vma tlsdesc_plt;
2344
2345 /* The GOT offset for the lazy trampoline. Communicated to the
2346 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2347 indicates an offset is not allocated. */
2348 bfd_vma dt_tlsdesc_got;
2349
2350 /* Used by local STT_GNU_IFUNC symbols. */
2351 htab_t loc_hash_table;
2352 void * loc_hash_memory;
2353 };
2354
2355 /* Create an entry in an AArch64 ELF linker hash table. */
2356
2357 static struct bfd_hash_entry *
2358 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2359 struct bfd_hash_table *table,
2360 const char *string)
2361 {
2362 struct elf_aarch64_link_hash_entry *ret =
2363 (struct elf_aarch64_link_hash_entry *) entry;
2364
2365 /* Allocate the structure if it has not already been allocated by a
2366 subclass. */
2367 if (ret == NULL)
2368 ret = bfd_hash_allocate (table,
2369 sizeof (struct elf_aarch64_link_hash_entry));
2370 if (ret == NULL)
2371 return (struct bfd_hash_entry *) ret;
2372
2373 /* Call the allocation method of the superclass. */
2374 ret = ((struct elf_aarch64_link_hash_entry *)
2375 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2376 table, string));
2377 if (ret != NULL)
2378 {
2379 ret->dyn_relocs = NULL;
2380 ret->got_type = GOT_UNKNOWN;
2381 ret->plt_got_offset = (bfd_vma) - 1;
2382 ret->stub_cache = NULL;
2383 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2384 }
2385
2386 return (struct bfd_hash_entry *) ret;
2387 }
2388
2389 /* Initialize an entry in the stub hash table. */
2390
2391 static struct bfd_hash_entry *
2392 stub_hash_newfunc (struct bfd_hash_entry *entry,
2393 struct bfd_hash_table *table, const char *string)
2394 {
2395 /* Allocate the structure if it has not already been allocated by a
2396 subclass. */
2397 if (entry == NULL)
2398 {
2399 entry = bfd_hash_allocate (table,
2400 sizeof (struct
2401 elf_aarch64_stub_hash_entry));
2402 if (entry == NULL)
2403 return entry;
2404 }
2405
2406 /* Call the allocation method of the superclass. */
2407 entry = bfd_hash_newfunc (entry, table, string);
2408 if (entry != NULL)
2409 {
2410 struct elf_aarch64_stub_hash_entry *eh;
2411
2412 /* Initialize the local fields. */
2413 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2414 eh->adrp_offset = 0;
2415 eh->stub_sec = NULL;
2416 eh->stub_offset = 0;
2417 eh->target_value = 0;
2418 eh->target_section = NULL;
2419 eh->stub_type = aarch64_stub_none;
2420 eh->h = NULL;
2421 eh->id_sec = NULL;
2422 }
2423
2424 return entry;
2425 }
2426
2427 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2428 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2429 as global symbol. We reuse indx and dynstr_index for local symbol
2430 hash since they aren't used by global symbols in this backend. */
2431
2432 static hashval_t
2433 elfNN_aarch64_local_htab_hash (const void *ptr)
2434 {
2435 struct elf_link_hash_entry *h
2436 = (struct elf_link_hash_entry *) ptr;
2437 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2438 }
2439
2440 /* Compare local hash entries. */
2441
2442 static int
2443 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2444 {
2445 struct elf_link_hash_entry *h1
2446 = (struct elf_link_hash_entry *) ptr1;
2447 struct elf_link_hash_entry *h2
2448 = (struct elf_link_hash_entry *) ptr2;
2449
2450 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2451 }
2452
2453 /* Find and/or create a hash entry for local symbol. */
2454
2455 static struct elf_link_hash_entry *
2456 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2457 bfd *abfd, const Elf_Internal_Rela *rel,
2458 bfd_boolean create)
2459 {
2460 struct elf_aarch64_link_hash_entry e, *ret;
2461 asection *sec = abfd->sections;
2462 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2463 ELFNN_R_SYM (rel->r_info));
2464 void **slot;
2465
2466 e.root.indx = sec->id;
2467 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2468 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2469 create ? INSERT : NO_INSERT);
2470
2471 if (!slot)
2472 return NULL;
2473
2474 if (*slot)
2475 {
2476 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2477 return &ret->root;
2478 }
2479
2480 ret = (struct elf_aarch64_link_hash_entry *)
2481 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2482 sizeof (struct elf_aarch64_link_hash_entry));
2483 if (ret)
2484 {
2485 memset (ret, 0, sizeof (*ret));
2486 ret->root.indx = sec->id;
2487 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2488 ret->root.dynindx = -1;
2489 *slot = ret;
2490 }
2491 return &ret->root;
2492 }
2493
2494 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2495
2496 static void
2497 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2498 struct elf_link_hash_entry *dir,
2499 struct elf_link_hash_entry *ind)
2500 {
2501 struct elf_aarch64_link_hash_entry *edir, *eind;
2502
2503 edir = (struct elf_aarch64_link_hash_entry *) dir;
2504 eind = (struct elf_aarch64_link_hash_entry *) ind;
2505
2506 if (eind->dyn_relocs != NULL)
2507 {
2508 if (edir->dyn_relocs != NULL)
2509 {
2510 struct elf_dyn_relocs **pp;
2511 struct elf_dyn_relocs *p;
2512
2513 /* Add reloc counts against the indirect sym to the direct sym
2514 list. Merge any entries against the same section. */
2515 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2516 {
2517 struct elf_dyn_relocs *q;
2518
2519 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2520 if (q->sec == p->sec)
2521 {
2522 q->pc_count += p->pc_count;
2523 q->count += p->count;
2524 *pp = p->next;
2525 break;
2526 }
2527 if (q == NULL)
2528 pp = &p->next;
2529 }
2530 *pp = edir->dyn_relocs;
2531 }
2532
2533 edir->dyn_relocs = eind->dyn_relocs;
2534 eind->dyn_relocs = NULL;
2535 }
2536
2537 if (ind->root.type == bfd_link_hash_indirect)
2538 {
2539 /* Copy over PLT info. */
2540 if (dir->got.refcount <= 0)
2541 {
2542 edir->got_type = eind->got_type;
2543 eind->got_type = GOT_UNKNOWN;
2544 }
2545 }
2546
2547 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2548 }
2549
2550 /* Destroy an AArch64 elf linker hash table. */
2551
2552 static void
2553 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2554 {
2555 struct elf_aarch64_link_hash_table *ret
2556 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2557
2558 if (ret->loc_hash_table)
2559 htab_delete (ret->loc_hash_table);
2560 if (ret->loc_hash_memory)
2561 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2562
2563 bfd_hash_table_free (&ret->stub_hash_table);
2564 _bfd_elf_link_hash_table_free (obfd);
2565 }
2566
2567 /* Create an AArch64 elf linker hash table. */
2568
2569 static struct bfd_link_hash_table *
2570 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2571 {
2572 struct elf_aarch64_link_hash_table *ret;
2573 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2574
2575 ret = bfd_zmalloc (amt);
2576 if (ret == NULL)
2577 return NULL;
2578
2579 if (!_bfd_elf_link_hash_table_init
2580 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2581 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2582 {
2583 free (ret);
2584 return NULL;
2585 }
2586
2587 ret->plt_header_size = PLT_ENTRY_SIZE;
2588 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2589 ret->obfd = abfd;
2590 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2591
2592 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2593 sizeof (struct elf_aarch64_stub_hash_entry)))
2594 {
2595 _bfd_elf_link_hash_table_free (abfd);
2596 return NULL;
2597 }
2598
2599 ret->loc_hash_table = htab_try_create (1024,
2600 elfNN_aarch64_local_htab_hash,
2601 elfNN_aarch64_local_htab_eq,
2602 NULL);
2603 ret->loc_hash_memory = objalloc_create ();
2604 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2605 {
2606 elfNN_aarch64_link_hash_table_free (abfd);
2607 return NULL;
2608 }
2609 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2610
2611 return &ret->root.root;
2612 }
2613
2614 static bfd_boolean
2615 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2616 bfd_vma offset, bfd_vma value)
2617 {
2618 reloc_howto_type *howto;
2619 bfd_vma place;
2620
2621 howto = elfNN_aarch64_howto_from_type (r_type);
2622 place = (input_section->output_section->vma + input_section->output_offset
2623 + offset);
2624
2625 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2626 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2627 return _bfd_aarch64_elf_put_addend (input_bfd,
2628 input_section->contents + offset, r_type,
2629 howto, value);
2630 }
2631
2632 static enum elf_aarch64_stub_type
2633 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2634 {
2635 if (aarch64_valid_for_adrp_p (value, place))
2636 return aarch64_stub_adrp_branch;
2637 return aarch64_stub_long_branch;
2638 }
2639
2640 /* Determine the type of stub needed, if any, for a call. */
2641
2642 static enum elf_aarch64_stub_type
2643 aarch64_type_of_stub (asection *input_sec,
2644 const Elf_Internal_Rela *rel,
2645 asection *sym_sec,
2646 unsigned char st_type,
2647 bfd_vma destination)
2648 {
2649 bfd_vma location;
2650 bfd_signed_vma branch_offset;
2651 unsigned int r_type;
2652 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2653
2654 if (st_type != STT_FUNC
2655 && (sym_sec == input_sec))
2656 return stub_type;
2657
2658 /* Determine where the call point is. */
2659 location = (input_sec->output_offset
2660 + input_sec->output_section->vma + rel->r_offset);
2661
2662 branch_offset = (bfd_signed_vma) (destination - location);
2663
2664 r_type = ELFNN_R_TYPE (rel->r_info);
2665
2666 /* We don't want to redirect any old unconditional jump in this way,
2667 only one which is being used for a sibcall, where it is
2668 acceptable for the IP0 and IP1 registers to be clobbered. */
2669 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2670 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2671 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2672 {
2673 stub_type = aarch64_stub_long_branch;
2674 }
2675
2676 return stub_type;
2677 }
2678
2679 /* Build a name for an entry in the stub hash table. */
2680
2681 static char *
2682 elfNN_aarch64_stub_name (const asection *input_section,
2683 const asection *sym_sec,
2684 const struct elf_aarch64_link_hash_entry *hash,
2685 const Elf_Internal_Rela *rel)
2686 {
2687 char *stub_name;
2688 bfd_size_type len;
2689
2690 if (hash)
2691 {
2692 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2693 stub_name = bfd_malloc (len);
2694 if (stub_name != NULL)
2695 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2696 (unsigned int) input_section->id,
2697 hash->root.root.root.string,
2698 rel->r_addend);
2699 }
2700 else
2701 {
2702 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2703 stub_name = bfd_malloc (len);
2704 if (stub_name != NULL)
2705 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2706 (unsigned int) input_section->id,
2707 (unsigned int) sym_sec->id,
2708 (unsigned int) ELFNN_R_SYM (rel->r_info),
2709 rel->r_addend);
2710 }
2711
2712 return stub_name;
2713 }
2714
2715 /* Look up an entry in the stub hash. Stub entries are cached because
2716 creating the stub name takes a bit of time. */
2717
2718 static struct elf_aarch64_stub_hash_entry *
2719 elfNN_aarch64_get_stub_entry (const asection *input_section,
2720 const asection *sym_sec,
2721 struct elf_link_hash_entry *hash,
2722 const Elf_Internal_Rela *rel,
2723 struct elf_aarch64_link_hash_table *htab)
2724 {
2725 struct elf_aarch64_stub_hash_entry *stub_entry;
2726 struct elf_aarch64_link_hash_entry *h =
2727 (struct elf_aarch64_link_hash_entry *) hash;
2728 const asection *id_sec;
2729
2730 if ((input_section->flags & SEC_CODE) == 0)
2731 return NULL;
2732
2733 /* If this input section is part of a group of sections sharing one
2734 stub section, then use the id of the first section in the group.
2735 Stub names need to include a section id, as there may well be
2736 more than one stub used to reach say, printf, and we need to
2737 distinguish between them. */
2738 id_sec = htab->stub_group[input_section->id].link_sec;
2739
2740 if (h != NULL && h->stub_cache != NULL
2741 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2742 {
2743 stub_entry = h->stub_cache;
2744 }
2745 else
2746 {
2747 char *stub_name;
2748
2749 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2750 if (stub_name == NULL)
2751 return NULL;
2752
2753 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2754 stub_name, FALSE, FALSE);
2755 if (h != NULL)
2756 h->stub_cache = stub_entry;
2757
2758 free (stub_name);
2759 }
2760
2761 return stub_entry;
2762 }
2763
2764
2765 /* Create a stub section. */
2766
2767 static asection *
2768 _bfd_aarch64_create_stub_section (asection *section,
2769 struct elf_aarch64_link_hash_table *htab)
2770 {
2771 size_t namelen;
2772 bfd_size_type len;
2773 char *s_name;
2774
2775 namelen = strlen (section->name);
2776 len = namelen + sizeof (STUB_SUFFIX);
2777 s_name = bfd_alloc (htab->stub_bfd, len);
2778 if (s_name == NULL)
2779 return NULL;
2780
2781 memcpy (s_name, section->name, namelen);
2782 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2783 return (*htab->add_stub_section) (s_name, section);
2784 }
2785
2786
2787 /* Find or create a stub section for a link section.
2788
2789 Fix or create the stub section used to collect stubs attached to
2790 the specified link section. */
2791
2792 static asection *
2793 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
2794 struct elf_aarch64_link_hash_table *htab)
2795 {
2796 if (htab->stub_group[link_section->id].stub_sec == NULL)
2797 htab->stub_group[link_section->id].stub_sec
2798 = _bfd_aarch64_create_stub_section (link_section, htab);
2799 return htab->stub_group[link_section->id].stub_sec;
2800 }
2801
2802
2803 /* Find or create a stub section in the stub group for an input
2804 section. */
2805
2806 static asection *
2807 _bfd_aarch64_create_or_find_stub_sec (asection *section,
2808 struct elf_aarch64_link_hash_table *htab)
2809 {
2810 asection *link_sec = htab->stub_group[section->id].link_sec;
2811 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
2812 }
2813
2814
2815 /* Add a new stub entry in the stub group associated with an input
2816 section to the stub hash. Not all fields of the new stub entry are
2817 initialised. */
2818
2819 static struct elf_aarch64_stub_hash_entry *
2820 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2821 asection *section,
2822 struct elf_aarch64_link_hash_table *htab)
2823 {
2824 asection *link_sec;
2825 asection *stub_sec;
2826 struct elf_aarch64_stub_hash_entry *stub_entry;
2827
2828 link_sec = htab->stub_group[section->id].link_sec;
2829 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2830
2831 /* Enter this entry into the linker stub hash table. */
2832 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2833 TRUE, FALSE);
2834 if (stub_entry == NULL)
2835 {
2836 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2837 section->owner, stub_name);
2838 return NULL;
2839 }
2840
2841 stub_entry->stub_sec = stub_sec;
2842 stub_entry->stub_offset = 0;
2843 stub_entry->id_sec = link_sec;
2844
2845 return stub_entry;
2846 }
2847
2848 /* Add a new stub entry in the final stub section to the stub hash.
2849 Not all fields of the new stub entry are initialised. */
2850
2851 static struct elf_aarch64_stub_hash_entry *
2852 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
2853 asection *link_section,
2854 struct elf_aarch64_link_hash_table *htab)
2855 {
2856 asection *stub_sec;
2857 struct elf_aarch64_stub_hash_entry *stub_entry;
2858
2859 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2860 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2861 TRUE, FALSE);
2862 if (stub_entry == NULL)
2863 {
2864 (*_bfd_error_handler) (_("cannot create stub entry %s"), stub_name);
2865 return NULL;
2866 }
2867
2868 stub_entry->stub_sec = stub_sec;
2869 stub_entry->stub_offset = 0;
2870 stub_entry->id_sec = link_section;
2871
2872 return stub_entry;
2873 }
2874
2875
2876 static bfd_boolean
2877 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2878 void *in_arg ATTRIBUTE_UNUSED)
2879 {
2880 struct elf_aarch64_stub_hash_entry *stub_entry;
2881 asection *stub_sec;
2882 bfd *stub_bfd;
2883 bfd_byte *loc;
2884 bfd_vma sym_value;
2885 bfd_vma veneered_insn_loc;
2886 bfd_vma veneer_entry_loc;
2887 bfd_signed_vma branch_offset = 0;
2888 unsigned int template_size;
2889 const uint32_t *template;
2890 unsigned int i;
2891
2892 /* Massage our args to the form they really have. */
2893 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2894
2895 stub_sec = stub_entry->stub_sec;
2896
2897 /* Make a note of the offset within the stubs for this entry. */
2898 stub_entry->stub_offset = stub_sec->size;
2899 loc = stub_sec->contents + stub_entry->stub_offset;
2900
2901 stub_bfd = stub_sec->owner;
2902
2903 /* This is the address of the stub destination. */
2904 sym_value = (stub_entry->target_value
2905 + stub_entry->target_section->output_offset
2906 + stub_entry->target_section->output_section->vma);
2907
2908 if (stub_entry->stub_type == aarch64_stub_long_branch)
2909 {
2910 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2911 + stub_sec->output_offset);
2912
2913 /* See if we can relax the stub. */
2914 if (aarch64_valid_for_adrp_p (sym_value, place))
2915 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2916 }
2917
2918 switch (stub_entry->stub_type)
2919 {
2920 case aarch64_stub_adrp_branch:
2921 template = aarch64_adrp_branch_stub;
2922 template_size = sizeof (aarch64_adrp_branch_stub);
2923 break;
2924 case aarch64_stub_long_branch:
2925 template = aarch64_long_branch_stub;
2926 template_size = sizeof (aarch64_long_branch_stub);
2927 break;
2928 case aarch64_stub_erratum_835769_veneer:
2929 template = aarch64_erratum_835769_stub;
2930 template_size = sizeof (aarch64_erratum_835769_stub);
2931 break;
2932 case aarch64_stub_erratum_843419_veneer:
2933 template = aarch64_erratum_843419_stub;
2934 template_size = sizeof (aarch64_erratum_843419_stub);
2935 break;
2936 default:
2937 abort ();
2938 }
2939
2940 for (i = 0; i < (template_size / sizeof template[0]); i++)
2941 {
2942 bfd_putl32 (template[i], loc);
2943 loc += 4;
2944 }
2945
2946 template_size = (template_size + 7) & ~7;
2947 stub_sec->size += template_size;
2948
2949 switch (stub_entry->stub_type)
2950 {
2951 case aarch64_stub_adrp_branch:
2952 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2953 stub_entry->stub_offset, sym_value))
2954 /* The stub would not have been relaxed if the offset was out
2955 of range. */
2956 BFD_FAIL ();
2957
2958 if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2959 stub_entry->stub_offset + 4, sym_value))
2960 BFD_FAIL ();
2961 break;
2962
2963 case aarch64_stub_long_branch:
2964 /* We want the value relative to the address 12 bytes back from the
2965 value itself. */
2966 if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2967 stub_entry->stub_offset + 16, sym_value + 12))
2968 BFD_FAIL ();
2969 break;
2970
2971 case aarch64_stub_erratum_835769_veneer:
2972 veneered_insn_loc = stub_entry->target_section->output_section->vma
2973 + stub_entry->target_section->output_offset
2974 + stub_entry->target_value;
2975 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2976 + stub_entry->stub_sec->output_offset
2977 + stub_entry->stub_offset;
2978 branch_offset = veneered_insn_loc - veneer_entry_loc;
2979 branch_offset >>= 2;
2980 branch_offset &= 0x3ffffff;
2981 bfd_putl32 (stub_entry->veneered_insn,
2982 stub_sec->contents + stub_entry->stub_offset);
2983 bfd_putl32 (template[1] | branch_offset,
2984 stub_sec->contents + stub_entry->stub_offset + 4);
2985 break;
2986
2987 case aarch64_stub_erratum_843419_veneer:
2988 if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
2989 stub_entry->stub_offset + 4, sym_value + 4))
2990 BFD_FAIL ();
2991 break;
2992
2993 default:
2994 abort ();
2995 }
2996
2997 return TRUE;
2998 }
2999
3000 /* As above, but don't actually build the stub. Just bump offset so
3001 we know stub section sizes. */
3002
3003 static bfd_boolean
3004 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3005 void *in_arg ATTRIBUTE_UNUSED)
3006 {
3007 struct elf_aarch64_stub_hash_entry *stub_entry;
3008 int size;
3009
3010 /* Massage our args to the form they really have. */
3011 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3012
3013 switch (stub_entry->stub_type)
3014 {
3015 case aarch64_stub_adrp_branch:
3016 size = sizeof (aarch64_adrp_branch_stub);
3017 break;
3018 case aarch64_stub_long_branch:
3019 size = sizeof (aarch64_long_branch_stub);
3020 break;
3021 case aarch64_stub_erratum_835769_veneer:
3022 size = sizeof (aarch64_erratum_835769_stub);
3023 break;
3024 case aarch64_stub_erratum_843419_veneer:
3025 size = sizeof (aarch64_erratum_843419_stub);
3026 break;
3027 default:
3028 abort ();
3029 }
3030
3031 size = (size + 7) & ~7;
3032 stub_entry->stub_sec->size += size;
3033 return TRUE;
3034 }
3035
3036 /* External entry points for sizing and building linker stubs. */
3037
3038 /* Set up various things so that we can make a list of input sections
3039 for each output section included in the link. Returns -1 on error,
3040 0 when no stubs will be needed, and 1 on success. */
3041
3042 int
3043 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3044 struct bfd_link_info *info)
3045 {
3046 bfd *input_bfd;
3047 unsigned int bfd_count;
3048 unsigned int top_id, top_index;
3049 asection *section;
3050 asection **input_list, **list;
3051 bfd_size_type amt;
3052 struct elf_aarch64_link_hash_table *htab =
3053 elf_aarch64_hash_table (info);
3054
3055 if (!is_elf_hash_table (htab))
3056 return 0;
3057
3058 /* Count the number of input BFDs and find the top input section id. */
3059 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3060 input_bfd != NULL; input_bfd = input_bfd->link.next)
3061 {
3062 bfd_count += 1;
3063 for (section = input_bfd->sections;
3064 section != NULL; section = section->next)
3065 {
3066 if (top_id < section->id)
3067 top_id = section->id;
3068 }
3069 }
3070 htab->bfd_count = bfd_count;
3071
3072 amt = sizeof (struct map_stub) * (top_id + 1);
3073 htab->stub_group = bfd_zmalloc (amt);
3074 if (htab->stub_group == NULL)
3075 return -1;
3076
3077 /* We can't use output_bfd->section_count here to find the top output
3078 section index as some sections may have been removed, and
3079 _bfd_strip_section_from_output doesn't renumber the indices. */
3080 for (section = output_bfd->sections, top_index = 0;
3081 section != NULL; section = section->next)
3082 {
3083 if (top_index < section->index)
3084 top_index = section->index;
3085 }
3086
3087 htab->top_index = top_index;
3088 amt = sizeof (asection *) * (top_index + 1);
3089 input_list = bfd_malloc (amt);
3090 htab->input_list = input_list;
3091 if (input_list == NULL)
3092 return -1;
3093
3094 /* For sections we aren't interested in, mark their entries with a
3095 value we can check later. */
3096 list = input_list + top_index;
3097 do
3098 *list = bfd_abs_section_ptr;
3099 while (list-- != input_list);
3100
3101 for (section = output_bfd->sections;
3102 section != NULL; section = section->next)
3103 {
3104 if ((section->flags & SEC_CODE) != 0)
3105 input_list[section->index] = NULL;
3106 }
3107
3108 return 1;
3109 }
3110
3111 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3112 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3113
3114 /* The linker repeatedly calls this function for each input section,
3115 in the order that input sections are linked into output sections.
3116 Build lists of input sections to determine groupings between which
3117 we may insert linker stubs. */
3118
3119 void
3120 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3121 {
3122 struct elf_aarch64_link_hash_table *htab =
3123 elf_aarch64_hash_table (info);
3124
3125 if (isec->output_section->index <= htab->top_index)
3126 {
3127 asection **list = htab->input_list + isec->output_section->index;
3128
3129 if (*list != bfd_abs_section_ptr)
3130 {
3131 /* Steal the link_sec pointer for our list. */
3132 /* This happens to make the list in reverse order,
3133 which is what we want. */
3134 PREV_SEC (isec) = *list;
3135 *list = isec;
3136 }
3137 }
3138 }
3139
3140 /* See whether we can group stub sections together. Grouping stub
3141 sections may result in fewer stubs. More importantly, we need to
3142 put all .init* and .fini* stubs at the beginning of the .init or
3143 .fini output sections respectively, because glibc splits the
3144 _init and _fini functions into multiple parts. Putting a stub in
3145 the middle of a function is not a good idea. */
3146
3147 static void
3148 group_sections (struct elf_aarch64_link_hash_table *htab,
3149 bfd_size_type stub_group_size,
3150 bfd_boolean stubs_always_before_branch)
3151 {
3152 asection **list = htab->input_list + htab->top_index;
3153
3154 do
3155 {
3156 asection *tail = *list;
3157
3158 if (tail == bfd_abs_section_ptr)
3159 continue;
3160
3161 while (tail != NULL)
3162 {
3163 asection *curr;
3164 asection *prev;
3165 bfd_size_type total;
3166
3167 curr = tail;
3168 total = tail->size;
3169 while ((prev = PREV_SEC (curr)) != NULL
3170 && ((total += curr->output_offset - prev->output_offset)
3171 < stub_group_size))
3172 curr = prev;
3173
3174 /* OK, the size from the start of CURR to the end is less
3175 than stub_group_size and thus can be handled by one stub
3176 section. (Or the tail section is itself larger than
3177 stub_group_size, in which case we may be toast.)
3178 We should really be keeping track of the total size of
3179 stubs added here, as stubs contribute to the final output
3180 section size. */
3181 do
3182 {
3183 prev = PREV_SEC (tail);
3184 /* Set up this stub group. */
3185 htab->stub_group[tail->id].link_sec = curr;
3186 }
3187 while (tail != curr && (tail = prev) != NULL);
3188
3189 /* But wait, there's more! Input sections up to stub_group_size
3190 bytes before the stub section can be handled by it too. */
3191 if (!stubs_always_before_branch)
3192 {
3193 total = 0;
3194 while (prev != NULL
3195 && ((total += tail->output_offset - prev->output_offset)
3196 < stub_group_size))
3197 {
3198 tail = prev;
3199 prev = PREV_SEC (tail);
3200 htab->stub_group[tail->id].link_sec = curr;
3201 }
3202 }
3203 tail = prev;
3204 }
3205 }
3206 while (list-- != htab->input_list);
3207
3208 free (htab->input_list);
3209 }
3210
3211 #undef PREV_SEC
3212
3213 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3214
3215 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3216 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3217 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3218 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3219 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3220 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3221
3222 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3223 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3224 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3225 #define AARCH64_ZR 0x1f
3226
3227 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3228 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3229
3230 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3231 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3232 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3233 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3234 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3235 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3236 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3237 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3238 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3239 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3240 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3241 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3242 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3243 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3244 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3245 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3246 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3247 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3248
3249 /* Classify an INSN if it is indeed a load/store.
3250
3251 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3252
3253 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3254 is set equal to RT.
3255
3256 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned.
3257
3258 */
3259
3260 static bfd_boolean
3261 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3262 bfd_boolean *pair, bfd_boolean *load)
3263 {
3264 uint32_t opcode;
3265 unsigned int r;
3266 uint32_t opc = 0;
3267 uint32_t v = 0;
3268 uint32_t opc_v = 0;
3269
3270 /* Bail out quickly if INSN doesn't fall into the the load-store
3271 encoding space. */
3272 if (!AARCH64_LDST (insn))
3273 return FALSE;
3274
3275 *pair = FALSE;
3276 *load = FALSE;
3277 if (AARCH64_LDST_EX (insn))
3278 {
3279 *rt = AARCH64_RT (insn);
3280 *rt2 = *rt;
3281 if (AARCH64_BIT (insn, 21) == 1)
3282 {
3283 *pair = TRUE;
3284 *rt2 = AARCH64_RT2 (insn);
3285 }
3286 *load = AARCH64_LD (insn);
3287 return TRUE;
3288 }
3289 else if (AARCH64_LDST_NAP (insn)
3290 || AARCH64_LDSTP_PI (insn)
3291 || AARCH64_LDSTP_O (insn)
3292 || AARCH64_LDSTP_PRE (insn))
3293 {
3294 *pair = TRUE;
3295 *rt = AARCH64_RT (insn);
3296 *rt2 = AARCH64_RT2 (insn);
3297 *load = AARCH64_LD (insn);
3298 return TRUE;
3299 }
3300 else if (AARCH64_LDST_PCREL (insn)
3301 || AARCH64_LDST_UI (insn)
3302 || AARCH64_LDST_PIIMM (insn)
3303 || AARCH64_LDST_U (insn)
3304 || AARCH64_LDST_PREIMM (insn)
3305 || AARCH64_LDST_RO (insn)
3306 || AARCH64_LDST_UIMM (insn))
3307 {
3308 *rt = AARCH64_RT (insn);
3309 *rt2 = *rt;
3310 if (AARCH64_LDST_PCREL (insn))
3311 *load = TRUE;
3312 opc = AARCH64_BITS (insn, 22, 2);
3313 v = AARCH64_BIT (insn, 26);
3314 opc_v = opc | (v << 2);
3315 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3316 || opc_v == 5 || opc_v == 7);
3317 return TRUE;
3318 }
3319 else if (AARCH64_LDST_SIMD_M (insn)
3320 || AARCH64_LDST_SIMD_M_PI (insn))
3321 {
3322 *rt = AARCH64_RT (insn);
3323 *load = AARCH64_BIT (insn, 22);
3324 opcode = (insn >> 12) & 0xf;
3325 switch (opcode)
3326 {
3327 case 0:
3328 case 2:
3329 *rt2 = *rt + 3;
3330 break;
3331
3332 case 4:
3333 case 6:
3334 *rt2 = *rt + 2;
3335 break;
3336
3337 case 7:
3338 *rt2 = *rt;
3339 break;
3340
3341 case 8:
3342 case 10:
3343 *rt2 = *rt + 1;
3344 break;
3345
3346 default:
3347 return FALSE;
3348 }
3349 return TRUE;
3350 }
3351 else if (AARCH64_LDST_SIMD_S (insn)
3352 || AARCH64_LDST_SIMD_S_PI (insn))
3353 {
3354 *rt = AARCH64_RT (insn);
3355 r = (insn >> 21) & 1;
3356 *load = AARCH64_BIT (insn, 22);
3357 opcode = (insn >> 13) & 0x7;
3358 switch (opcode)
3359 {
3360 case 0:
3361 case 2:
3362 case 4:
3363 *rt2 = *rt + r;
3364 break;
3365
3366 case 1:
3367 case 3:
3368 case 5:
3369 *rt2 = *rt + (r == 0 ? 2 : 3);
3370 break;
3371
3372 case 6:
3373 *rt2 = *rt + r;
3374 break;
3375
3376 case 7:
3377 *rt2 = *rt + (r == 0 ? 2 : 3);
3378 break;
3379
3380 default:
3381 return FALSE;
3382 }
3383 return TRUE;
3384 }
3385
3386 return FALSE;
3387 }
3388
3389 /* Return TRUE if INSN is multiply-accumulate. */
3390
3391 static bfd_boolean
3392 aarch64_mlxl_p (uint32_t insn)
3393 {
3394 uint32_t op31 = AARCH64_OP31 (insn);
3395
3396 if (AARCH64_MAC (insn)
3397 && (op31 == 0 || op31 == 1 || op31 == 5)
3398 /* Exclude MUL instructions which are encoded as a multiple accumulate
3399 with RA = XZR. */
3400 && AARCH64_RA (insn) != AARCH64_ZR)
3401 return TRUE;
3402
3403 return FALSE;
3404 }
3405
3406 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3407 it is possible for a 64-bit multiply-accumulate instruction to generate an
3408 incorrect result. The details are quite complex and hard to
3409 determine statically, since branches in the code may exist in some
3410 circumstances, but all cases end with a memory (load, store, or
3411 prefetch) instruction followed immediately by the multiply-accumulate
3412 operation. We employ a linker patching technique, by moving the potentially
3413 affected multiply-accumulate instruction into a patch region and replacing
3414 the original instruction with a branch to the patch. This function checks
3415 if INSN_1 is the memory operation followed by a multiply-accumulate
3416 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3417 if INSN_1 and INSN_2 are safe. */
3418
3419 static bfd_boolean
3420 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3421 {
3422 uint32_t rt;
3423 uint32_t rt2;
3424 uint32_t rn;
3425 uint32_t rm;
3426 uint32_t ra;
3427 bfd_boolean pair;
3428 bfd_boolean load;
3429
3430 if (aarch64_mlxl_p (insn_2)
3431 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3432 {
3433 /* Any SIMD memory op is independent of the subsequent MLA
3434 by definition of the erratum. */
3435 if (AARCH64_BIT (insn_1, 26))
3436 return TRUE;
3437
3438 /* If not SIMD, check for integer memory ops and MLA relationship. */
3439 rn = AARCH64_RN (insn_2);
3440 ra = AARCH64_RA (insn_2);
3441 rm = AARCH64_RM (insn_2);
3442
3443 /* If this is a load and there's a true(RAW) dependency, we are safe
3444 and this is not an erratum sequence. */
3445 if (load &&
3446 (rt == rn || rt == rm || rt == ra
3447 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3448 return FALSE;
3449
3450 /* We conservatively put out stubs for all other cases (including
3451 writebacks). */
3452 return TRUE;
3453 }
3454
3455 return FALSE;
3456 }
3457
3458 /* Used to order a list of mapping symbols by address. */
3459
3460 static int
3461 elf_aarch64_compare_mapping (const void *a, const void *b)
3462 {
3463 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3464 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3465
3466 if (amap->vma > bmap->vma)
3467 return 1;
3468 else if (amap->vma < bmap->vma)
3469 return -1;
3470 else if (amap->type > bmap->type)
3471 /* Ensure results do not depend on the host qsort for objects with
3472 multiple mapping symbols at the same address by sorting on type
3473 after vma. */
3474 return 1;
3475 else if (amap->type < bmap->type)
3476 return -1;
3477 else
3478 return 0;
3479 }
3480
3481
3482 static char *
3483 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3484 {
3485 char *stub_name = (char *) bfd_malloc
3486 (strlen ("__erratum_835769_veneer_") + 16);
3487 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3488 return stub_name;
3489 }
3490
3491 /* Scan for Cortex-A53 erratum 835769 sequence.
3492
3493 Return TRUE else FALSE on abnormal termination. */
3494
3495 static bfd_boolean
3496 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3497 struct bfd_link_info *info,
3498 unsigned int *num_fixes_p)
3499 {
3500 asection *section;
3501 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3502 unsigned int num_fixes = *num_fixes_p;
3503
3504 if (htab == NULL)
3505 return TRUE;
3506
3507 for (section = input_bfd->sections;
3508 section != NULL;
3509 section = section->next)
3510 {
3511 bfd_byte *contents = NULL;
3512 struct _aarch64_elf_section_data *sec_data;
3513 unsigned int span;
3514
3515 if (elf_section_type (section) != SHT_PROGBITS
3516 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3517 || (section->flags & SEC_EXCLUDE) != 0
3518 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3519 || (section->output_section == bfd_abs_section_ptr))
3520 continue;
3521
3522 if (elf_section_data (section)->this_hdr.contents != NULL)
3523 contents = elf_section_data (section)->this_hdr.contents;
3524 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3525 return FALSE;
3526
3527 sec_data = elf_aarch64_section_data (section);
3528
3529 qsort (sec_data->map, sec_data->mapcount,
3530 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3531
3532 for (span = 0; span < sec_data->mapcount; span++)
3533 {
3534 unsigned int span_start = sec_data->map[span].vma;
3535 unsigned int span_end = ((span == sec_data->mapcount - 1)
3536 ? sec_data->map[0].vma + section->size
3537 : sec_data->map[span + 1].vma);
3538 unsigned int i;
3539 char span_type = sec_data->map[span].type;
3540
3541 if (span_type == 'd')
3542 continue;
3543
3544 for (i = span_start; i + 4 < span_end; i += 4)
3545 {
3546 uint32_t insn_1 = bfd_getl32 (contents + i);
3547 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3548
3549 if (aarch64_erratum_sequence (insn_1, insn_2))
3550 {
3551 struct elf_aarch64_stub_hash_entry *stub_entry;
3552 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3553 if (! stub_name)
3554 return FALSE;
3555
3556 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3557 section,
3558 htab);
3559 if (! stub_entry)
3560 return FALSE;
3561
3562 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3563 stub_entry->target_section = section;
3564 stub_entry->target_value = i + 4;
3565 stub_entry->veneered_insn = insn_2;
3566 stub_entry->output_name = stub_name;
3567 num_fixes++;
3568 }
3569 }
3570 }
3571 if (elf_section_data (section)->this_hdr.contents == NULL)
3572 free (contents);
3573 }
3574
3575 *num_fixes_p = num_fixes;
3576
3577 return TRUE;
3578 }
3579
3580
3581 /* Test if instruction INSN is ADRP. */
3582
3583 static bfd_boolean
3584 _bfd_aarch64_adrp_p (uint32_t insn)
3585 {
3586 return ((insn & 0x9f000000) == 0x90000000);
3587 }
3588
3589
3590 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3591
3592 static bfd_boolean
3593 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3594 uint32_t insn_3)
3595 {
3596 uint32_t rt;
3597 uint32_t rt2;
3598 bfd_boolean pair;
3599 bfd_boolean load;
3600
3601 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3602 && (!pair
3603 || (pair && !load))
3604 && AARCH64_LDST_UIMM (insn_3)
3605 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3606 }
3607
3608
3609 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3610
3611 Return TRUE if section CONTENTS at offset I contains one of the
3612 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3613 seen set P_VENEER_I to the offset of the final LOAD/STORE
3614 instruction in the sequence.
3615 */
3616
3617 static bfd_boolean
3618 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3619 bfd_vma i, bfd_vma span_end,
3620 bfd_vma *p_veneer_i)
3621 {
3622 uint32_t insn_1 = bfd_getl32 (contents + i);
3623
3624 if (!_bfd_aarch64_adrp_p (insn_1))
3625 return FALSE;
3626
3627 if (span_end < i + 12)
3628 return FALSE;
3629
3630 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3631 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3632
3633 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3634 return FALSE;
3635
3636 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3637 {
3638 *p_veneer_i = i + 8;
3639 return TRUE;
3640 }
3641
3642 if (span_end < i + 16)
3643 return FALSE;
3644
3645 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3646
3647 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3648 {
3649 *p_veneer_i = i + 12;
3650 return TRUE;
3651 }
3652
3653 return FALSE;
3654 }
3655
3656
3657 /* Resize all stub sections. */
3658
3659 static void
3660 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3661 {
3662 asection *section;
3663
3664 /* OK, we've added some stubs. Find out the new size of the
3665 stub sections. */
3666 for (section = htab->stub_bfd->sections;
3667 section != NULL; section = section->next)
3668 {
3669 /* Ignore non-stub sections. */
3670 if (!strstr (section->name, STUB_SUFFIX))
3671 continue;
3672 section->size = 0;
3673 }
3674
3675 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3676
3677 for (section = htab->stub_bfd->sections;
3678 section != NULL; section = section->next)
3679 {
3680 if (!strstr (section->name, STUB_SUFFIX))
3681 continue;
3682
3683 if (section->size)
3684 section->size += 4;
3685
3686 /* Ensure all stub sections have a size which is a multiple of
3687 4096. This is important in order to ensure that the insertion
3688 of stub sections does not in itself move existing code around
3689 in such a way that new errata sequences are created. */
3690 if (htab->fix_erratum_843419)
3691 if (section->size)
3692 section->size = BFD_ALIGN (section->size, 0x1000);
3693 }
3694 }
3695
3696
3697 /* Construct an erratum 843419 workaround stub name.
3698 */
3699
3700 static char *
3701 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3702 bfd_vma offset)
3703 {
3704 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3705 char *stub_name = bfd_malloc (len);
3706
3707 if (stub_name != NULL)
3708 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3709 input_section->owner->id,
3710 input_section->id,
3711 offset);
3712 return stub_name;
3713 }
3714
3715 /* Build a stub_entry structure describing an 843419 fixup.
3716
3717 The stub_entry constructed is populated with the bit pattern INSN
3718 of the instruction located at OFFSET within input SECTION.
3719
3720 Returns TRUE on success. */
3721
3722 static bfd_boolean
3723 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3724 bfd_vma adrp_offset,
3725 bfd_vma ldst_offset,
3726 asection *section,
3727 struct bfd_link_info *info)
3728 {
3729 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3730 char *stub_name;
3731 struct elf_aarch64_stub_hash_entry *stub_entry;
3732
3733 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3734 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3735 FALSE, FALSE);
3736 if (stub_entry)
3737 {
3738 free (stub_name);
3739 return TRUE;
3740 }
3741
3742 /* We always place an 843419 workaround veneer in the stub section
3743 attached to the input section in which an erratum sequence has
3744 been found. This ensures that later in the link process (in
3745 elfNN_aarch64_write_section) when we copy the veneered
3746 instruction from the input section into the stub section the
3747 copied instruction will have had any relocations applied to it.
3748 If we placed workaround veneers in any other stub section then we
3749 could not assume that all relocations have been processed on the
3750 corresponding input section at the point we output the stub
3751 section.
3752 */
3753
3754 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3755 if (stub_entry == NULL)
3756 {
3757 free (stub_name);
3758 return FALSE;
3759 }
3760
3761 stub_entry->adrp_offset = adrp_offset;
3762 stub_entry->target_value = ldst_offset;
3763 stub_entry->target_section = section;
3764 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3765 stub_entry->veneered_insn = insn;
3766 stub_entry->output_name = stub_name;
3767
3768 return TRUE;
3769 }
3770
3771
3772 /* Scan an input section looking for the signature of erratum 843419.
3773
3774 Scans input SECTION in INPUT_BFD looking for erratum 843419
3775 signatures, for each signature found a stub_entry is created
3776 describing the location of the erratum for subsequent fixup.
3777
3778 Return TRUE on successful scan, FALSE on failure to scan.
3779 */
3780
3781 static bfd_boolean
3782 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3783 struct bfd_link_info *info)
3784 {
3785 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3786
3787 if (htab == NULL)
3788 return TRUE;
3789
3790 if (elf_section_type (section) != SHT_PROGBITS
3791 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3792 || (section->flags & SEC_EXCLUDE) != 0
3793 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3794 || (section->output_section == bfd_abs_section_ptr))
3795 return TRUE;
3796
3797 do
3798 {
3799 bfd_byte *contents = NULL;
3800 struct _aarch64_elf_section_data *sec_data;
3801 unsigned int span;
3802
3803 if (elf_section_data (section)->this_hdr.contents != NULL)
3804 contents = elf_section_data (section)->this_hdr.contents;
3805 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3806 return FALSE;
3807
3808 sec_data = elf_aarch64_section_data (section);
3809
3810 qsort (sec_data->map, sec_data->mapcount,
3811 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3812
3813 for (span = 0; span < sec_data->mapcount; span++)
3814 {
3815 unsigned int span_start = sec_data->map[span].vma;
3816 unsigned int span_end = ((span == sec_data->mapcount - 1)
3817 ? sec_data->map[0].vma + section->size
3818 : sec_data->map[span + 1].vma);
3819 unsigned int i;
3820 char span_type = sec_data->map[span].type;
3821
3822 if (span_type == 'd')
3823 continue;
3824
3825 for (i = span_start; i + 8 < span_end; i += 4)
3826 {
3827 bfd_vma vma = (section->output_section->vma
3828 + section->output_offset
3829 + i);
3830 bfd_vma veneer_i;
3831
3832 if (_bfd_aarch64_erratum_843419_p
3833 (contents, vma, i, span_end, &veneer_i))
3834 {
3835 uint32_t insn = bfd_getl32 (contents + veneer_i);
3836
3837 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3838 section, info))
3839 return FALSE;
3840 }
3841 }
3842 }
3843
3844 if (elf_section_data (section)->this_hdr.contents == NULL)
3845 free (contents);
3846 }
3847 while (0);
3848
3849 return TRUE;
3850 }
3851
3852
3853 /* Determine and set the size of the stub section for a final link.
3854
3855 The basic idea here is to examine all the relocations looking for
3856 PC-relative calls to a target that is unreachable with a "bl"
3857 instruction. */
3858
3859 bfd_boolean
3860 elfNN_aarch64_size_stubs (bfd *output_bfd,
3861 bfd *stub_bfd,
3862 struct bfd_link_info *info,
3863 bfd_signed_vma group_size,
3864 asection * (*add_stub_section) (const char *,
3865 asection *),
3866 void (*layout_sections_again) (void))
3867 {
3868 bfd_size_type stub_group_size;
3869 bfd_boolean stubs_always_before_branch;
3870 bfd_boolean stub_changed = FALSE;
3871 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3872 unsigned int num_erratum_835769_fixes = 0;
3873
3874 /* Propagate mach to stub bfd, because it may not have been
3875 finalized when we created stub_bfd. */
3876 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3877 bfd_get_mach (output_bfd));
3878
3879 /* Stash our params away. */
3880 htab->stub_bfd = stub_bfd;
3881 htab->add_stub_section = add_stub_section;
3882 htab->layout_sections_again = layout_sections_again;
3883 stubs_always_before_branch = group_size < 0;
3884 if (group_size < 0)
3885 stub_group_size = -group_size;
3886 else
3887 stub_group_size = group_size;
3888
3889 if (stub_group_size == 1)
3890 {
3891 /* Default values. */
3892 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
3893 stub_group_size = 127 * 1024 * 1024;
3894 }
3895
3896 group_sections (htab, stub_group_size, stubs_always_before_branch);
3897
3898 (*htab->layout_sections_again) ();
3899
3900 if (htab->fix_erratum_835769)
3901 {
3902 bfd *input_bfd;
3903
3904 for (input_bfd = info->input_bfds;
3905 input_bfd != NULL; input_bfd = input_bfd->link.next)
3906 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3907 &num_erratum_835769_fixes))
3908 return FALSE;
3909
3910 _bfd_aarch64_resize_stubs (htab);
3911 (*htab->layout_sections_again) ();
3912 }
3913
3914 if (htab->fix_erratum_843419)
3915 {
3916 bfd *input_bfd;
3917
3918 for (input_bfd = info->input_bfds;
3919 input_bfd != NULL;
3920 input_bfd = input_bfd->link.next)
3921 {
3922 asection *section;
3923
3924 for (section = input_bfd->sections;
3925 section != NULL;
3926 section = section->next)
3927 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3928 return FALSE;
3929 }
3930
3931 _bfd_aarch64_resize_stubs (htab);
3932 (*htab->layout_sections_again) ();
3933 }
3934
3935 while (1)
3936 {
3937 bfd *input_bfd;
3938
3939 for (input_bfd = info->input_bfds;
3940 input_bfd != NULL; input_bfd = input_bfd->link.next)
3941 {
3942 Elf_Internal_Shdr *symtab_hdr;
3943 asection *section;
3944 Elf_Internal_Sym *local_syms = NULL;
3945
3946 /* We'll need the symbol table in a second. */
3947 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3948 if (symtab_hdr->sh_info == 0)
3949 continue;
3950
3951 /* Walk over each section attached to the input bfd. */
3952 for (section = input_bfd->sections;
3953 section != NULL; section = section->next)
3954 {
3955 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3956
3957 /* If there aren't any relocs, then there's nothing more
3958 to do. */
3959 if ((section->flags & SEC_RELOC) == 0
3960 || section->reloc_count == 0
3961 || (section->flags & SEC_CODE) == 0)
3962 continue;
3963
3964 /* If this section is a link-once section that will be
3965 discarded, then don't create any stubs. */
3966 if (section->output_section == NULL
3967 || section->output_section->owner != output_bfd)
3968 continue;
3969
3970 /* Get the relocs. */
3971 internal_relocs
3972 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3973 NULL, info->keep_memory);
3974 if (internal_relocs == NULL)
3975 goto error_ret_free_local;
3976
3977 /* Now examine each relocation. */
3978 irela = internal_relocs;
3979 irelaend = irela + section->reloc_count;
3980 for (; irela < irelaend; irela++)
3981 {
3982 unsigned int r_type, r_indx;
3983 enum elf_aarch64_stub_type stub_type;
3984 struct elf_aarch64_stub_hash_entry *stub_entry;
3985 asection *sym_sec;
3986 bfd_vma sym_value;
3987 bfd_vma destination;
3988 struct elf_aarch64_link_hash_entry *hash;
3989 const char *sym_name;
3990 char *stub_name;
3991 const asection *id_sec;
3992 unsigned char st_type;
3993 bfd_size_type len;
3994
3995 r_type = ELFNN_R_TYPE (irela->r_info);
3996 r_indx = ELFNN_R_SYM (irela->r_info);
3997
3998 if (r_type >= (unsigned int) R_AARCH64_end)
3999 {
4000 bfd_set_error (bfd_error_bad_value);
4001 error_ret_free_internal:
4002 if (elf_section_data (section)->relocs == NULL)
4003 free (internal_relocs);
4004 goto error_ret_free_local;
4005 }
4006
4007 /* Only look for stubs on unconditional branch and
4008 branch and link instructions. */
4009 if (r_type != (unsigned int) AARCH64_R (CALL26)
4010 && r_type != (unsigned int) AARCH64_R (JUMP26))
4011 continue;
4012
4013 /* Now determine the call target, its name, value,
4014 section. */
4015 sym_sec = NULL;
4016 sym_value = 0;
4017 destination = 0;
4018 hash = NULL;
4019 sym_name = NULL;
4020 if (r_indx < symtab_hdr->sh_info)
4021 {
4022 /* It's a local symbol. */
4023 Elf_Internal_Sym *sym;
4024 Elf_Internal_Shdr *hdr;
4025
4026 if (local_syms == NULL)
4027 {
4028 local_syms
4029 = (Elf_Internal_Sym *) symtab_hdr->contents;
4030 if (local_syms == NULL)
4031 local_syms
4032 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4033 symtab_hdr->sh_info, 0,
4034 NULL, NULL, NULL);
4035 if (local_syms == NULL)
4036 goto error_ret_free_internal;
4037 }
4038
4039 sym = local_syms + r_indx;
4040 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4041 sym_sec = hdr->bfd_section;
4042 if (!sym_sec)
4043 /* This is an undefined symbol. It can never
4044 be resolved. */
4045 continue;
4046
4047 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4048 sym_value = sym->st_value;
4049 destination = (sym_value + irela->r_addend
4050 + sym_sec->output_offset
4051 + sym_sec->output_section->vma);
4052 st_type = ELF_ST_TYPE (sym->st_info);
4053 sym_name
4054 = bfd_elf_string_from_elf_section (input_bfd,
4055 symtab_hdr->sh_link,
4056 sym->st_name);
4057 }
4058 else
4059 {
4060 int e_indx;
4061
4062 e_indx = r_indx - symtab_hdr->sh_info;
4063 hash = ((struct elf_aarch64_link_hash_entry *)
4064 elf_sym_hashes (input_bfd)[e_indx]);
4065
4066 while (hash->root.root.type == bfd_link_hash_indirect
4067 || hash->root.root.type == bfd_link_hash_warning)
4068 hash = ((struct elf_aarch64_link_hash_entry *)
4069 hash->root.root.u.i.link);
4070
4071 if (hash->root.root.type == bfd_link_hash_defined
4072 || hash->root.root.type == bfd_link_hash_defweak)
4073 {
4074 struct elf_aarch64_link_hash_table *globals =
4075 elf_aarch64_hash_table (info);
4076 sym_sec = hash->root.root.u.def.section;
4077 sym_value = hash->root.root.u.def.value;
4078 /* For a destination in a shared library,
4079 use the PLT stub as target address to
4080 decide whether a branch stub is
4081 needed. */
4082 if (globals->root.splt != NULL && hash != NULL
4083 && hash->root.plt.offset != (bfd_vma) - 1)
4084 {
4085 sym_sec = globals->root.splt;
4086 sym_value = hash->root.plt.offset;
4087 if (sym_sec->output_section != NULL)
4088 destination = (sym_value
4089 + sym_sec->output_offset
4090 +
4091 sym_sec->output_section->vma);
4092 }
4093 else if (sym_sec->output_section != NULL)
4094 destination = (sym_value + irela->r_addend
4095 + sym_sec->output_offset
4096 + sym_sec->output_section->vma);
4097 }
4098 else if (hash->root.root.type == bfd_link_hash_undefined
4099 || (hash->root.root.type
4100 == bfd_link_hash_undefweak))
4101 {
4102 /* For a shared library, use the PLT stub as
4103 target address to decide whether a long
4104 branch stub is needed.
4105 For absolute code, they cannot be handled. */
4106 struct elf_aarch64_link_hash_table *globals =
4107 elf_aarch64_hash_table (info);
4108
4109 if (globals->root.splt != NULL && hash != NULL
4110 && hash->root.plt.offset != (bfd_vma) - 1)
4111 {
4112 sym_sec = globals->root.splt;
4113 sym_value = hash->root.plt.offset;
4114 if (sym_sec->output_section != NULL)
4115 destination = (sym_value
4116 + sym_sec->output_offset
4117 +
4118 sym_sec->output_section->vma);
4119 }
4120 else
4121 continue;
4122 }
4123 else
4124 {
4125 bfd_set_error (bfd_error_bad_value);
4126 goto error_ret_free_internal;
4127 }
4128 st_type = ELF_ST_TYPE (hash->root.type);
4129 sym_name = hash->root.root.root.string;
4130 }
4131
4132 /* Determine what (if any) linker stub is needed. */
4133 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4134 st_type, destination);
4135 if (stub_type == aarch64_stub_none)
4136 continue;
4137
4138 /* Support for grouping stub sections. */
4139 id_sec = htab->stub_group[section->id].link_sec;
4140
4141 /* Get the name of this stub. */
4142 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4143 irela);
4144 if (!stub_name)
4145 goto error_ret_free_internal;
4146
4147 stub_entry =
4148 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4149 stub_name, FALSE, FALSE);
4150 if (stub_entry != NULL)
4151 {
4152 /* The proper stub has already been created. */
4153 free (stub_name);
4154 continue;
4155 }
4156
4157 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4158 (stub_name, section, htab);
4159 if (stub_entry == NULL)
4160 {
4161 free (stub_name);
4162 goto error_ret_free_internal;
4163 }
4164
4165 stub_entry->target_value = sym_value + irela->r_addend;
4166 stub_entry->target_section = sym_sec;
4167 stub_entry->stub_type = stub_type;
4168 stub_entry->h = hash;
4169 stub_entry->st_type = st_type;
4170
4171 if (sym_name == NULL)
4172 sym_name = "unnamed";
4173 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4174 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4175 if (stub_entry->output_name == NULL)
4176 {
4177 free (stub_name);
4178 goto error_ret_free_internal;
4179 }
4180
4181 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4182 sym_name);
4183
4184 stub_changed = TRUE;
4185 }
4186
4187 /* We're done with the internal relocs, free them. */
4188 if (elf_section_data (section)->relocs == NULL)
4189 free (internal_relocs);
4190 }
4191 }
4192
4193 if (!stub_changed)
4194 break;
4195
4196 _bfd_aarch64_resize_stubs (htab);
4197
4198 /* Ask the linker to do its stuff. */
4199 (*htab->layout_sections_again) ();
4200 stub_changed = FALSE;
4201 }
4202
4203 return TRUE;
4204
4205 error_ret_free_local:
4206 return FALSE;
4207 }
4208
4209 /* Build all the stubs associated with the current output file. The
4210 stubs are kept in a hash table attached to the main linker hash
4211 table. We also set up the .plt entries for statically linked PIC
4212 functions here. This function is called via aarch64_elf_finish in the
4213 linker. */
4214
4215 bfd_boolean
4216 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4217 {
4218 asection *stub_sec;
4219 struct bfd_hash_table *table;
4220 struct elf_aarch64_link_hash_table *htab;
4221
4222 htab = elf_aarch64_hash_table (info);
4223
4224 for (stub_sec = htab->stub_bfd->sections;
4225 stub_sec != NULL; stub_sec = stub_sec->next)
4226 {
4227 bfd_size_type size;
4228
4229 /* Ignore non-stub sections. */
4230 if (!strstr (stub_sec->name, STUB_SUFFIX))
4231 continue;
4232
4233 /* Allocate memory to hold the linker stubs. */
4234 size = stub_sec->size;
4235 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4236 if (stub_sec->contents == NULL && size != 0)
4237 return FALSE;
4238 stub_sec->size = 0;
4239
4240 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4241 stub_sec->size += 4;
4242 }
4243
4244 /* Build the stubs as directed by the stub hash table. */
4245 table = &htab->stub_hash_table;
4246 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4247
4248 return TRUE;
4249 }
4250
4251
4252 /* Add an entry to the code/data map for section SEC. */
4253
4254 static void
4255 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4256 {
4257 struct _aarch64_elf_section_data *sec_data =
4258 elf_aarch64_section_data (sec);
4259 unsigned int newidx;
4260
4261 if (sec_data->map == NULL)
4262 {
4263 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4264 sec_data->mapcount = 0;
4265 sec_data->mapsize = 1;
4266 }
4267
4268 newidx = sec_data->mapcount++;
4269
4270 if (sec_data->mapcount > sec_data->mapsize)
4271 {
4272 sec_data->mapsize *= 2;
4273 sec_data->map = bfd_realloc_or_free
4274 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4275 }
4276
4277 if (sec_data->map)
4278 {
4279 sec_data->map[newidx].vma = vma;
4280 sec_data->map[newidx].type = type;
4281 }
4282 }
4283
4284
4285 /* Initialise maps of insn/data for input BFDs. */
4286 void
4287 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4288 {
4289 Elf_Internal_Sym *isymbuf;
4290 Elf_Internal_Shdr *hdr;
4291 unsigned int i, localsyms;
4292
4293 /* Make sure that we are dealing with an AArch64 elf binary. */
4294 if (!is_aarch64_elf (abfd))
4295 return;
4296
4297 if ((abfd->flags & DYNAMIC) != 0)
4298 return;
4299
4300 hdr = &elf_symtab_hdr (abfd);
4301 localsyms = hdr->sh_info;
4302
4303 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4304 should contain the number of local symbols, which should come before any
4305 global symbols. Mapping symbols are always local. */
4306 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4307
4308 /* No internal symbols read? Skip this BFD. */
4309 if (isymbuf == NULL)
4310 return;
4311
4312 for (i = 0; i < localsyms; i++)
4313 {
4314 Elf_Internal_Sym *isym = &isymbuf[i];
4315 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4316 const char *name;
4317
4318 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4319 {
4320 name = bfd_elf_string_from_elf_section (abfd,
4321 hdr->sh_link,
4322 isym->st_name);
4323
4324 if (bfd_is_aarch64_special_symbol_name
4325 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4326 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4327 }
4328 }
4329 }
4330
4331 /* Set option values needed during linking. */
4332 void
4333 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4334 struct bfd_link_info *link_info,
4335 int no_enum_warn,
4336 int no_wchar_warn, int pic_veneer,
4337 int fix_erratum_835769,
4338 int fix_erratum_843419,
4339 int no_apply_dynamic_relocs)
4340 {
4341 struct elf_aarch64_link_hash_table *globals;
4342
4343 globals = elf_aarch64_hash_table (link_info);
4344 globals->pic_veneer = pic_veneer;
4345 globals->fix_erratum_835769 = fix_erratum_835769;
4346 globals->fix_erratum_843419 = fix_erratum_843419;
4347 globals->fix_erratum_843419_adr = TRUE;
4348 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4349
4350 BFD_ASSERT (is_aarch64_elf (output_bfd));
4351 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4352 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4353 }
4354
4355 static bfd_vma
4356 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4357 struct elf_aarch64_link_hash_table
4358 *globals, struct bfd_link_info *info,
4359 bfd_vma value, bfd *output_bfd,
4360 bfd_boolean *unresolved_reloc_p)
4361 {
4362 bfd_vma off = (bfd_vma) - 1;
4363 asection *basegot = globals->root.sgot;
4364 bfd_boolean dyn = globals->root.dynamic_sections_created;
4365
4366 if (h != NULL)
4367 {
4368 BFD_ASSERT (basegot != NULL);
4369 off = h->got.offset;
4370 BFD_ASSERT (off != (bfd_vma) - 1);
4371 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4372 || (bfd_link_pic (info)
4373 && SYMBOL_REFERENCES_LOCAL (info, h))
4374 || (ELF_ST_VISIBILITY (h->other)
4375 && h->root.type == bfd_link_hash_undefweak))
4376 {
4377 /* This is actually a static link, or it is a -Bsymbolic link
4378 and the symbol is defined locally. We must initialize this
4379 entry in the global offset table. Since the offset must
4380 always be a multiple of 8 (4 in the case of ILP32), we use
4381 the least significant bit to record whether we have
4382 initialized it already.
4383 When doing a dynamic link, we create a .rel(a).got relocation
4384 entry to initialize the value. This is done in the
4385 finish_dynamic_symbol routine. */
4386 if ((off & 1) != 0)
4387 off &= ~1;
4388 else
4389 {
4390 bfd_put_NN (output_bfd, value, basegot->contents + off);
4391 h->got.offset |= 1;
4392 }
4393 }
4394 else
4395 *unresolved_reloc_p = FALSE;
4396
4397 off = off + basegot->output_section->vma + basegot->output_offset;
4398 }
4399
4400 return off;
4401 }
4402
4403 /* Change R_TYPE to a more efficient access model where possible,
4404 return the new reloc type. */
4405
4406 static bfd_reloc_code_real_type
4407 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4408 struct elf_link_hash_entry *h)
4409 {
4410 bfd_boolean is_local = h == NULL;
4411
4412 switch (r_type)
4413 {
4414 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4415 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4416 return (is_local
4417 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4418 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4419
4420 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4421 return (is_local
4422 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4423 : r_type);
4424
4425 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4426 return (is_local
4427 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4428 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4429
4430 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4431 return (is_local
4432 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4433 : BFD_RELOC_AARCH64_NONE);
4434
4435 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4436 return (is_local
4437 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4438 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4439
4440 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4441 return (is_local
4442 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4443 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4444
4445 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4446 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4447 return (is_local
4448 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4449 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4450
4451 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4452 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4453
4454 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4455 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4456
4457 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4458 return r_type;
4459
4460 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4461 return (is_local
4462 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4463 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4464
4465 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4466 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4467 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4468 /* Instructions with these relocations will become NOPs. */
4469 return BFD_RELOC_AARCH64_NONE;
4470
4471 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4472 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4473 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4474 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4475
4476 #if ARCH_SIZE == 64
4477 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4478 return is_local
4479 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4480 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4481
4482 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4483 return is_local
4484 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4485 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4486 #endif
4487
4488 default:
4489 break;
4490 }
4491
4492 return r_type;
4493 }
4494
4495 static unsigned int
4496 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4497 {
4498 switch (r_type)
4499 {
4500 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4501 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4502 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4503 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4504 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4505 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4506 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4507 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4508 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4509 return GOT_NORMAL;
4510
4511 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4512 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4513 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4514 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4515 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4516 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4517 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4518 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4519 return GOT_TLS_GD;
4520
4521 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4522 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4523 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4524 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4525 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4526 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4527 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
4528 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4529 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4530 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4531 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4532 return GOT_TLSDESC_GD;
4533
4534 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4535 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4536 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4537 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4538 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4539 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4540 return GOT_TLS_IE;
4541
4542 default:
4543 break;
4544 }
4545 return GOT_UNKNOWN;
4546 }
4547
4548 static bfd_boolean
4549 aarch64_can_relax_tls (bfd *input_bfd,
4550 struct bfd_link_info *info,
4551 bfd_reloc_code_real_type r_type,
4552 struct elf_link_hash_entry *h,
4553 unsigned long r_symndx)
4554 {
4555 unsigned int symbol_got_type;
4556 unsigned int reloc_got_type;
4557
4558 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4559 return FALSE;
4560
4561 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4562 reloc_got_type = aarch64_reloc_got_type (r_type);
4563
4564 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4565 return TRUE;
4566
4567 if (bfd_link_pic (info))
4568 return FALSE;
4569
4570 if (h && h->root.type == bfd_link_hash_undefweak)
4571 return FALSE;
4572
4573 return TRUE;
4574 }
4575
4576 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4577 enumerator. */
4578
4579 static bfd_reloc_code_real_type
4580 aarch64_tls_transition (bfd *input_bfd,
4581 struct bfd_link_info *info,
4582 unsigned int r_type,
4583 struct elf_link_hash_entry *h,
4584 unsigned long r_symndx)
4585 {
4586 bfd_reloc_code_real_type bfd_r_type
4587 = elfNN_aarch64_bfd_reloc_from_type (r_type);
4588
4589 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4590 return bfd_r_type;
4591
4592 return aarch64_tls_transition_without_check (bfd_r_type, h);
4593 }
4594
4595 /* Return the base VMA address which should be subtracted from real addresses
4596 when resolving R_AARCH64_TLS_DTPREL relocation. */
4597
4598 static bfd_vma
4599 dtpoff_base (struct bfd_link_info *info)
4600 {
4601 /* If tls_sec is NULL, we should have signalled an error already. */
4602 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4603 return elf_hash_table (info)->tls_sec->vma;
4604 }
4605
4606 /* Return the base VMA address which should be subtracted from real addresses
4607 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4608
4609 static bfd_vma
4610 tpoff_base (struct bfd_link_info *info)
4611 {
4612 struct elf_link_hash_table *htab = elf_hash_table (info);
4613
4614 /* If tls_sec is NULL, we should have signalled an error already. */
4615 BFD_ASSERT (htab->tls_sec != NULL);
4616
4617 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4618 htab->tls_sec->alignment_power);
4619 return htab->tls_sec->vma - base;
4620 }
4621
4622 static bfd_vma *
4623 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4624 unsigned long r_symndx)
4625 {
4626 /* Calculate the address of the GOT entry for symbol
4627 referred to in h. */
4628 if (h != NULL)
4629 return &h->got.offset;
4630 else
4631 {
4632 /* local symbol */
4633 struct elf_aarch64_local_symbol *l;
4634
4635 l = elf_aarch64_locals (input_bfd);
4636 return &l[r_symndx].got_offset;
4637 }
4638 }
4639
4640 static void
4641 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4642 unsigned long r_symndx)
4643 {
4644 bfd_vma *p;
4645 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4646 *p |= 1;
4647 }
4648
4649 static int
4650 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4651 unsigned long r_symndx)
4652 {
4653 bfd_vma value;
4654 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4655 return value & 1;
4656 }
4657
4658 static bfd_vma
4659 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4660 unsigned long r_symndx)
4661 {
4662 bfd_vma value;
4663 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4664 value &= ~1;
4665 return value;
4666 }
4667
4668 static bfd_vma *
4669 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4670 unsigned long r_symndx)
4671 {
4672 /* Calculate the address of the GOT entry for symbol
4673 referred to in h. */
4674 if (h != NULL)
4675 {
4676 struct elf_aarch64_link_hash_entry *eh;
4677 eh = (struct elf_aarch64_link_hash_entry *) h;
4678 return &eh->tlsdesc_got_jump_table_offset;
4679 }
4680 else
4681 {
4682 /* local symbol */
4683 struct elf_aarch64_local_symbol *l;
4684
4685 l = elf_aarch64_locals (input_bfd);
4686 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4687 }
4688 }
4689
4690 static void
4691 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4692 unsigned long r_symndx)
4693 {
4694 bfd_vma *p;
4695 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4696 *p |= 1;
4697 }
4698
4699 static int
4700 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4701 struct elf_link_hash_entry *h,
4702 unsigned long r_symndx)
4703 {
4704 bfd_vma value;
4705 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4706 return value & 1;
4707 }
4708
4709 static bfd_vma
4710 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4711 unsigned long r_symndx)
4712 {
4713 bfd_vma value;
4714 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4715 value &= ~1;
4716 return value;
4717 }
4718
4719 /* Data for make_branch_to_erratum_835769_stub(). */
4720
4721 struct erratum_835769_branch_to_stub_data
4722 {
4723 struct bfd_link_info *info;
4724 asection *output_section;
4725 bfd_byte *contents;
4726 };
4727
4728 /* Helper to insert branches to erratum 835769 stubs in the right
4729 places for a particular section. */
4730
4731 static bfd_boolean
4732 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4733 void *in_arg)
4734 {
4735 struct elf_aarch64_stub_hash_entry *stub_entry;
4736 struct erratum_835769_branch_to_stub_data *data;
4737 bfd_byte *contents;
4738 unsigned long branch_insn = 0;
4739 bfd_vma veneered_insn_loc, veneer_entry_loc;
4740 bfd_signed_vma branch_offset;
4741 unsigned int target;
4742 bfd *abfd;
4743
4744 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4745 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4746
4747 if (stub_entry->target_section != data->output_section
4748 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4749 return TRUE;
4750
4751 contents = data->contents;
4752 veneered_insn_loc = stub_entry->target_section->output_section->vma
4753 + stub_entry->target_section->output_offset
4754 + stub_entry->target_value;
4755 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4756 + stub_entry->stub_sec->output_offset
4757 + stub_entry->stub_offset;
4758 branch_offset = veneer_entry_loc - veneered_insn_loc;
4759
4760 abfd = stub_entry->target_section->owner;
4761 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4762 (*_bfd_error_handler)
4763 (_("%B: error: Erratum 835769 stub out "
4764 "of range (input file too large)"), abfd);
4765
4766 target = stub_entry->target_value;
4767 branch_insn = 0x14000000;
4768 branch_offset >>= 2;
4769 branch_offset &= 0x3ffffff;
4770 branch_insn |= branch_offset;
4771 bfd_putl32 (branch_insn, &contents[target]);
4772
4773 return TRUE;
4774 }
4775
4776
4777 static bfd_boolean
4778 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4779 void *in_arg)
4780 {
4781 struct elf_aarch64_stub_hash_entry *stub_entry
4782 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4783 struct erratum_835769_branch_to_stub_data *data
4784 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4785 struct bfd_link_info *info;
4786 struct elf_aarch64_link_hash_table *htab;
4787 bfd_byte *contents;
4788 asection *section;
4789 bfd *abfd;
4790 bfd_vma place;
4791 uint32_t insn;
4792
4793 info = data->info;
4794 contents = data->contents;
4795 section = data->output_section;
4796
4797 htab = elf_aarch64_hash_table (info);
4798
4799 if (stub_entry->target_section != section
4800 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4801 return TRUE;
4802
4803 insn = bfd_getl32 (contents + stub_entry->target_value);
4804 bfd_putl32 (insn,
4805 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4806
4807 place = (section->output_section->vma + section->output_offset
4808 + stub_entry->adrp_offset);
4809 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4810
4811 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4812 abort ();
4813
4814 bfd_signed_vma imm =
4815 (_bfd_aarch64_sign_extend
4816 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4817 - (place & 0xfff));
4818
4819 if (htab->fix_erratum_843419_adr
4820 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4821 {
4822 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4823 | AARCH64_RT (insn));
4824 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4825 }
4826 else
4827 {
4828 bfd_vma veneered_insn_loc;
4829 bfd_vma veneer_entry_loc;
4830 bfd_signed_vma branch_offset;
4831 uint32_t branch_insn;
4832
4833 veneered_insn_loc = stub_entry->target_section->output_section->vma
4834 + stub_entry->target_section->output_offset
4835 + stub_entry->target_value;
4836 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4837 + stub_entry->stub_sec->output_offset
4838 + stub_entry->stub_offset;
4839 branch_offset = veneer_entry_loc - veneered_insn_loc;
4840
4841 abfd = stub_entry->target_section->owner;
4842 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4843 (*_bfd_error_handler)
4844 (_("%B: error: Erratum 843419 stub out "
4845 "of range (input file too large)"), abfd);
4846
4847 branch_insn = 0x14000000;
4848 branch_offset >>= 2;
4849 branch_offset &= 0x3ffffff;
4850 branch_insn |= branch_offset;
4851 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4852 }
4853 return TRUE;
4854 }
4855
4856
4857 static bfd_boolean
4858 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4859 struct bfd_link_info *link_info,
4860 asection *sec,
4861 bfd_byte *contents)
4862
4863 {
4864 struct elf_aarch64_link_hash_table *globals =
4865 elf_aarch64_hash_table (link_info);
4866
4867 if (globals == NULL)
4868 return FALSE;
4869
4870 /* Fix code to point to erratum 835769 stubs. */
4871 if (globals->fix_erratum_835769)
4872 {
4873 struct erratum_835769_branch_to_stub_data data;
4874
4875 data.info = link_info;
4876 data.output_section = sec;
4877 data.contents = contents;
4878 bfd_hash_traverse (&globals->stub_hash_table,
4879 make_branch_to_erratum_835769_stub, &data);
4880 }
4881
4882 if (globals->fix_erratum_843419)
4883 {
4884 struct erratum_835769_branch_to_stub_data data;
4885
4886 data.info = link_info;
4887 data.output_section = sec;
4888 data.contents = contents;
4889 bfd_hash_traverse (&globals->stub_hash_table,
4890 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4891 }
4892
4893 return FALSE;
4894 }
4895
4896 /* Perform a relocation as part of a final link. The input relocation type
4897 should be TLS relaxed. */
4898
4899 static bfd_reloc_status_type
4900 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
4901 bfd *input_bfd,
4902 bfd *output_bfd,
4903 asection *input_section,
4904 bfd_byte *contents,
4905 Elf_Internal_Rela *rel,
4906 bfd_vma value,
4907 struct bfd_link_info *info,
4908 asection *sym_sec,
4909 struct elf_link_hash_entry *h,
4910 bfd_boolean *unresolved_reloc_p,
4911 bfd_boolean save_addend,
4912 bfd_vma *saved_addend,
4913 Elf_Internal_Sym *sym)
4914 {
4915 Elf_Internal_Shdr *symtab_hdr;
4916 unsigned int r_type = howto->type;
4917 bfd_reloc_code_real_type bfd_r_type
4918 = elfNN_aarch64_bfd_reloc_from_howto (howto);
4919 unsigned long r_symndx;
4920 bfd_byte *hit_data = contents + rel->r_offset;
4921 bfd_vma place, off;
4922 bfd_signed_vma signed_addend;
4923 struct elf_aarch64_link_hash_table *globals;
4924 bfd_boolean weak_undef_p;
4925 asection *base_got;
4926
4927 globals = elf_aarch64_hash_table (info);
4928
4929 symtab_hdr = &elf_symtab_hdr (input_bfd);
4930
4931 BFD_ASSERT (is_aarch64_elf (input_bfd));
4932
4933 r_symndx = ELFNN_R_SYM (rel->r_info);
4934
4935 place = input_section->output_section->vma
4936 + input_section->output_offset + rel->r_offset;
4937
4938 /* Get addend, accumulating the addend for consecutive relocs
4939 which refer to the same offset. */
4940 signed_addend = saved_addend ? *saved_addend : 0;
4941 signed_addend += rel->r_addend;
4942
4943 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4944 : bfd_is_und_section (sym_sec));
4945
4946 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4947 it here if it is defined in a non-shared object. */
4948 if (h != NULL
4949 && h->type == STT_GNU_IFUNC
4950 && h->def_regular)
4951 {
4952 asection *plt;
4953 const char *name;
4954 bfd_vma addend = 0;
4955
4956 if ((input_section->flags & SEC_ALLOC) == 0
4957 || h->plt.offset == (bfd_vma) -1)
4958 abort ();
4959
4960 /* STT_GNU_IFUNC symbol must go through PLT. */
4961 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
4962 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
4963
4964 switch (bfd_r_type)
4965 {
4966 default:
4967 if (h->root.root.string)
4968 name = h->root.root.string;
4969 else
4970 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4971 NULL);
4972 (*_bfd_error_handler)
4973 (_("%B: relocation %s against STT_GNU_IFUNC "
4974 "symbol `%s' isn't handled by %s"), input_bfd,
4975 howto->name, name, __FUNCTION__);
4976 bfd_set_error (bfd_error_bad_value);
4977 return FALSE;
4978
4979 case BFD_RELOC_AARCH64_NN:
4980 if (rel->r_addend != 0)
4981 {
4982 if (h->root.root.string)
4983 name = h->root.root.string;
4984 else
4985 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4986 sym, NULL);
4987 (*_bfd_error_handler)
4988 (_("%B: relocation %s against STT_GNU_IFUNC "
4989 "symbol `%s' has non-zero addend: %d"),
4990 input_bfd, howto->name, name, rel->r_addend);
4991 bfd_set_error (bfd_error_bad_value);
4992 return FALSE;
4993 }
4994
4995 /* Generate dynamic relocation only when there is a
4996 non-GOT reference in a shared object. */
4997 if (bfd_link_pic (info) && h->non_got_ref)
4998 {
4999 Elf_Internal_Rela outrel;
5000 asection *sreloc;
5001
5002 /* Need a dynamic relocation to get the real function
5003 address. */
5004 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5005 info,
5006 input_section,
5007 rel->r_offset);
5008 if (outrel.r_offset == (bfd_vma) -1
5009 || outrel.r_offset == (bfd_vma) -2)
5010 abort ();
5011
5012 outrel.r_offset += (input_section->output_section->vma
5013 + input_section->output_offset);
5014
5015 if (h->dynindx == -1
5016 || h->forced_local
5017 || bfd_link_executable (info))
5018 {
5019 /* This symbol is resolved locally. */
5020 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5021 outrel.r_addend = (h->root.u.def.value
5022 + h->root.u.def.section->output_section->vma
5023 + h->root.u.def.section->output_offset);
5024 }
5025 else
5026 {
5027 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5028 outrel.r_addend = 0;
5029 }
5030
5031 sreloc = globals->root.irelifunc;
5032 elf_append_rela (output_bfd, sreloc, &outrel);
5033
5034 /* If this reloc is against an external symbol, we
5035 do not want to fiddle with the addend. Otherwise,
5036 we need to include the symbol value so that it
5037 becomes an addend for the dynamic reloc. For an
5038 internal symbol, we have updated addend. */
5039 return bfd_reloc_ok;
5040 }
5041 /* FALLTHROUGH */
5042 case BFD_RELOC_AARCH64_CALL26:
5043 case BFD_RELOC_AARCH64_JUMP26:
5044 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5045 signed_addend,
5046 weak_undef_p);
5047 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5048 howto, value);
5049 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5050 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5051 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5052 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5053 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5054 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5055 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5056 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5057 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5058 base_got = globals->root.sgot;
5059 off = h->got.offset;
5060
5061 if (base_got == NULL)
5062 abort ();
5063
5064 if (off == (bfd_vma) -1)
5065 {
5066 bfd_vma plt_index;
5067
5068 /* We can't use h->got.offset here to save state, or
5069 even just remember the offset, as finish_dynamic_symbol
5070 would use that as offset into .got. */
5071
5072 if (globals->root.splt != NULL)
5073 {
5074 plt_index = ((h->plt.offset - globals->plt_header_size) /
5075 globals->plt_entry_size);
5076 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5077 base_got = globals->root.sgotplt;
5078 }
5079 else
5080 {
5081 plt_index = h->plt.offset / globals->plt_entry_size;
5082 off = plt_index * GOT_ENTRY_SIZE;
5083 base_got = globals->root.igotplt;
5084 }
5085
5086 if (h->dynindx == -1
5087 || h->forced_local
5088 || info->symbolic)
5089 {
5090 /* This references the local definition. We must
5091 initialize this entry in the global offset table.
5092 Since the offset must always be a multiple of 8,
5093 we use the least significant bit to record
5094 whether we have initialized it already.
5095
5096 When doing a dynamic link, we create a .rela.got
5097 relocation entry to initialize the value. This
5098 is done in the finish_dynamic_symbol routine. */
5099 if ((off & 1) != 0)
5100 off &= ~1;
5101 else
5102 {
5103 bfd_put_NN (output_bfd, value,
5104 base_got->contents + off);
5105 /* Note that this is harmless as -1 | 1 still is -1. */
5106 h->got.offset |= 1;
5107 }
5108 }
5109 value = (base_got->output_section->vma
5110 + base_got->output_offset + off);
5111 }
5112 else
5113 value = aarch64_calculate_got_entry_vma (h, globals, info,
5114 value, output_bfd,
5115 unresolved_reloc_p);
5116
5117 switch (bfd_r_type)
5118 {
5119 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5120 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5121 addend = (globals->root.sgot->output_section->vma
5122 + globals->root.sgot->output_offset);
5123 break;
5124 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5125 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5126 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5127 value = (value - globals->root.sgot->output_section->vma
5128 - globals->root.sgot->output_offset);
5129 default:
5130 break;
5131 }
5132
5133 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5134 addend, weak_undef_p);
5135 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5136 case BFD_RELOC_AARCH64_ADD_LO12:
5137 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5138 break;
5139 }
5140 }
5141
5142 switch (bfd_r_type)
5143 {
5144 case BFD_RELOC_AARCH64_NONE:
5145 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5146 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5147 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5148 *unresolved_reloc_p = FALSE;
5149 return bfd_reloc_ok;
5150
5151 case BFD_RELOC_AARCH64_NN:
5152
5153 /* When generating a shared object or relocatable executable, these
5154 relocations are copied into the output file to be resolved at
5155 run time. */
5156 if (((bfd_link_pic (info) == TRUE)
5157 || globals->root.is_relocatable_executable)
5158 && (input_section->flags & SEC_ALLOC)
5159 && (h == NULL
5160 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5161 || h->root.type != bfd_link_hash_undefweak))
5162 {
5163 Elf_Internal_Rela outrel;
5164 bfd_byte *loc;
5165 bfd_boolean skip, relocate;
5166 asection *sreloc;
5167
5168 *unresolved_reloc_p = FALSE;
5169
5170 skip = FALSE;
5171 relocate = FALSE;
5172
5173 outrel.r_addend = signed_addend;
5174 outrel.r_offset =
5175 _bfd_elf_section_offset (output_bfd, info, input_section,
5176 rel->r_offset);
5177 if (outrel.r_offset == (bfd_vma) - 1)
5178 skip = TRUE;
5179 else if (outrel.r_offset == (bfd_vma) - 2)
5180 {
5181 skip = TRUE;
5182 relocate = TRUE;
5183 }
5184
5185 outrel.r_offset += (input_section->output_section->vma
5186 + input_section->output_offset);
5187
5188 if (skip)
5189 memset (&outrel, 0, sizeof outrel);
5190 else if (h != NULL
5191 && h->dynindx != -1
5192 && (!bfd_link_pic (info)
5193 || !SYMBOLIC_BIND (info, h)
5194 || !h->def_regular))
5195 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5196 else
5197 {
5198 int symbol;
5199
5200 /* On SVR4-ish systems, the dynamic loader cannot
5201 relocate the text and data segments independently,
5202 so the symbol does not matter. */
5203 symbol = 0;
5204 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5205 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5206 outrel.r_addend += value;
5207 }
5208
5209 sreloc = elf_section_data (input_section)->sreloc;
5210 if (sreloc == NULL || sreloc->contents == NULL)
5211 return bfd_reloc_notsupported;
5212
5213 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5214 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5215
5216 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5217 {
5218 /* Sanity to check that we have previously allocated
5219 sufficient space in the relocation section for the
5220 number of relocations we actually want to emit. */
5221 abort ();
5222 }
5223
5224 /* If this reloc is against an external symbol, we do not want to
5225 fiddle with the addend. Otherwise, we need to include the symbol
5226 value so that it becomes an addend for the dynamic reloc. */
5227 if (!relocate)
5228 return bfd_reloc_ok;
5229
5230 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5231 contents, rel->r_offset, value,
5232 signed_addend);
5233 }
5234 else
5235 value += signed_addend;
5236 break;
5237
5238 case BFD_RELOC_AARCH64_CALL26:
5239 case BFD_RELOC_AARCH64_JUMP26:
5240 {
5241 asection *splt = globals->root.splt;
5242 bfd_boolean via_plt_p =
5243 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5244
5245 /* A call to an undefined weak symbol is converted to a jump to
5246 the next instruction unless a PLT entry will be created.
5247 The jump to the next instruction is optimized as a NOP.
5248 Do the same for local undefined symbols. */
5249 if (weak_undef_p && ! via_plt_p)
5250 {
5251 bfd_putl32 (INSN_NOP, hit_data);
5252 return bfd_reloc_ok;
5253 }
5254
5255 /* If the call goes through a PLT entry, make sure to
5256 check distance to the right destination address. */
5257 if (via_plt_p)
5258 value = (splt->output_section->vma
5259 + splt->output_offset + h->plt.offset);
5260
5261 /* Check if a stub has to be inserted because the destination
5262 is too far away. */
5263 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5264
5265 /* If the branch destination is directed to plt stub, "value" will be
5266 the final destination, otherwise we should plus signed_addend, it may
5267 contain non-zero value, for example call to local function symbol
5268 which are turned into "sec_sym + sec_off", and sec_off is kept in
5269 signed_addend. */
5270 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5271 place))
5272 /* The target is out of reach, so redirect the branch to
5273 the local stub for this function. */
5274 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5275 rel, globals);
5276 if (stub_entry != NULL)
5277 {
5278 value = (stub_entry->stub_offset
5279 + stub_entry->stub_sec->output_offset
5280 + stub_entry->stub_sec->output_section->vma);
5281
5282 /* We have redirected the destination to stub entry address,
5283 so ignore any addend record in the original rela entry. */
5284 signed_addend = 0;
5285 }
5286 }
5287 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5288 signed_addend, weak_undef_p);
5289 *unresolved_reloc_p = FALSE;
5290 break;
5291
5292 case BFD_RELOC_AARCH64_16_PCREL:
5293 case BFD_RELOC_AARCH64_32_PCREL:
5294 case BFD_RELOC_AARCH64_64_PCREL:
5295 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5296 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5297 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5298 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5299 if (bfd_link_pic (info)
5300 && (input_section->flags & SEC_ALLOC) != 0
5301 && (input_section->flags & SEC_READONLY) != 0
5302 && h != NULL
5303 && !h->def_regular)
5304 {
5305 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5306
5307 (*_bfd_error_handler)
5308 (_("%B: relocation %s against external symbol `%s' can not be used"
5309 " when making a shared object; recompile with -fPIC"),
5310 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5311 h->root.root.string);
5312 bfd_set_error (bfd_error_bad_value);
5313 return FALSE;
5314 }
5315
5316 case BFD_RELOC_AARCH64_16:
5317 #if ARCH_SIZE == 64
5318 case BFD_RELOC_AARCH64_32:
5319 #endif
5320 case BFD_RELOC_AARCH64_ADD_LO12:
5321 case BFD_RELOC_AARCH64_BRANCH19:
5322 case BFD_RELOC_AARCH64_LDST128_LO12:
5323 case BFD_RELOC_AARCH64_LDST16_LO12:
5324 case BFD_RELOC_AARCH64_LDST32_LO12:
5325 case BFD_RELOC_AARCH64_LDST64_LO12:
5326 case BFD_RELOC_AARCH64_LDST8_LO12:
5327 case BFD_RELOC_AARCH64_MOVW_G0:
5328 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5329 case BFD_RELOC_AARCH64_MOVW_G0_S:
5330 case BFD_RELOC_AARCH64_MOVW_G1:
5331 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5332 case BFD_RELOC_AARCH64_MOVW_G1_S:
5333 case BFD_RELOC_AARCH64_MOVW_G2:
5334 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5335 case BFD_RELOC_AARCH64_MOVW_G2_S:
5336 case BFD_RELOC_AARCH64_MOVW_G3:
5337 case BFD_RELOC_AARCH64_TSTBR14:
5338 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5339 signed_addend, weak_undef_p);
5340 break;
5341
5342 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5343 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5344 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5345 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5346 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5347 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5348 if (globals->root.sgot == NULL)
5349 BFD_ASSERT (h != NULL);
5350
5351 if (h != NULL)
5352 {
5353 bfd_vma addend = 0;
5354 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5355 output_bfd,
5356 unresolved_reloc_p);
5357 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5358 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5359 addend = (globals->root.sgot->output_section->vma
5360 + globals->root.sgot->output_offset);
5361 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5362 addend, weak_undef_p);
5363 }
5364 else
5365 {
5366 bfd_vma addend = 0;
5367 struct elf_aarch64_local_symbol *locals
5368 = elf_aarch64_locals (input_bfd);
5369
5370 if (locals == NULL)
5371 {
5372 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5373 (*_bfd_error_handler)
5374 (_("%B: Local symbol descriptor table be NULL when applying "
5375 "relocation %s against local symbol"),
5376 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5377 abort ();
5378 }
5379
5380 off = symbol_got_offset (input_bfd, h, r_symndx);
5381 base_got = globals->root.sgot;
5382 bfd_vma got_entry_addr = (base_got->output_section->vma
5383 + base_got->output_offset + off);
5384
5385 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5386 {
5387 bfd_put_64 (output_bfd, value, base_got->contents + off);
5388
5389 if (bfd_link_pic (info))
5390 {
5391 asection *s;
5392 Elf_Internal_Rela outrel;
5393
5394 /* For local symbol, we have done absolute relocation in static
5395 linking stageh. While for share library, we need to update
5396 the content of GOT entry according to the share objects
5397 loading base address. So we need to generate a
5398 R_AARCH64_RELATIVE reloc for dynamic linker. */
5399 s = globals->root.srelgot;
5400 if (s == NULL)
5401 abort ();
5402
5403 outrel.r_offset = got_entry_addr;
5404 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5405 outrel.r_addend = value;
5406 elf_append_rela (output_bfd, s, &outrel);
5407 }
5408
5409 symbol_got_offset_mark (input_bfd, h, r_symndx);
5410 }
5411
5412 /* Update the relocation value to GOT entry addr as we have transformed
5413 the direct data access into indirect data access through GOT. */
5414 value = got_entry_addr;
5415
5416 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5417 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5418 addend = base_got->output_section->vma + base_got->output_offset;
5419
5420 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5421 addend, weak_undef_p);
5422 }
5423
5424 break;
5425
5426 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5427 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5428 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5429 if (h != NULL)
5430 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5431 output_bfd,
5432 unresolved_reloc_p);
5433 else
5434 {
5435 struct elf_aarch64_local_symbol *locals
5436 = elf_aarch64_locals (input_bfd);
5437
5438 if (locals == NULL)
5439 {
5440 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5441 (*_bfd_error_handler)
5442 (_("%B: Local symbol descriptor table be NULL when applying "
5443 "relocation %s against local symbol"),
5444 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5445 abort ();
5446 }
5447
5448 off = symbol_got_offset (input_bfd, h, r_symndx);
5449 base_got = globals->root.sgot;
5450 if (base_got == NULL)
5451 abort ();
5452
5453 bfd_vma got_entry_addr = (base_got->output_section->vma
5454 + base_got->output_offset + off);
5455
5456 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5457 {
5458 bfd_put_64 (output_bfd, value, base_got->contents + off);
5459
5460 if (bfd_link_pic (info))
5461 {
5462 asection *s;
5463 Elf_Internal_Rela outrel;
5464
5465 /* For local symbol, we have done absolute relocation in static
5466 linking stage. While for share library, we need to update
5467 the content of GOT entry according to the share objects
5468 loading base address. So we need to generate a
5469 R_AARCH64_RELATIVE reloc for dynamic linker. */
5470 s = globals->root.srelgot;
5471 if (s == NULL)
5472 abort ();
5473
5474 outrel.r_offset = got_entry_addr;
5475 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5476 outrel.r_addend = value;
5477 elf_append_rela (output_bfd, s, &outrel);
5478 }
5479
5480 symbol_got_offset_mark (input_bfd, h, r_symndx);
5481 }
5482 }
5483
5484 /* Update the relocation value to GOT entry addr as we have transformed
5485 the direct data access into indirect data access through GOT. */
5486 value = symbol_got_offset (input_bfd, h, r_symndx);
5487 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5488 0, weak_undef_p);
5489 *unresolved_reloc_p = FALSE;
5490 break;
5491
5492 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5493 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5494 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5495 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5496 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5497 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5498 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5499 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5500 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5501 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5502 if (globals->root.sgot == NULL)
5503 return bfd_reloc_notsupported;
5504
5505 value = (symbol_got_offset (input_bfd, h, r_symndx)
5506 + globals->root.sgot->output_section->vma
5507 + globals->root.sgot->output_offset);
5508
5509 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5510 0, weak_undef_p);
5511 *unresolved_reloc_p = FALSE;
5512 break;
5513
5514 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5515 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5516 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5517 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5518 if (globals->root.sgot == NULL)
5519 return bfd_reloc_notsupported;
5520
5521 value = symbol_got_offset (input_bfd, h, r_symndx);
5522 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5523 0, weak_undef_p);
5524 *unresolved_reloc_p = FALSE;
5525 break;
5526
5527 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5528 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5529 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5530 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5531 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5532 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5533 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5534 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5535 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5536 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5537 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5538 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5539 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5540 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5541 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5542 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5543 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5544 signed_addend - dtpoff_base (info),
5545 weak_undef_p);
5546 break;
5547
5548 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5549 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5550 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5551 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5552 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5553 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5554 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5555 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5556 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5557 signed_addend - tpoff_base (info),
5558 weak_undef_p);
5559 *unresolved_reloc_p = FALSE;
5560 break;
5561
5562 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5563 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5564 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5565 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5566 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
5567 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5568 if (globals->root.sgot == NULL)
5569 return bfd_reloc_notsupported;
5570 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5571 + globals->root.sgotplt->output_section->vma
5572 + globals->root.sgotplt->output_offset
5573 + globals->sgotplt_jump_table_size);
5574
5575 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5576 0, weak_undef_p);
5577 *unresolved_reloc_p = FALSE;
5578 break;
5579
5580 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5581 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5582 if (globals->root.sgot == NULL)
5583 return bfd_reloc_notsupported;
5584
5585 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5586 + globals->root.sgotplt->output_section->vma
5587 + globals->root.sgotplt->output_offset
5588 + globals->sgotplt_jump_table_size);
5589
5590 value -= (globals->root.sgot->output_section->vma
5591 + globals->root.sgot->output_offset);
5592
5593 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5594 0, weak_undef_p);
5595 *unresolved_reloc_p = FALSE;
5596 break;
5597
5598 default:
5599 return bfd_reloc_notsupported;
5600 }
5601
5602 if (saved_addend)
5603 *saved_addend = value;
5604
5605 /* Only apply the final relocation in a sequence. */
5606 if (save_addend)
5607 return bfd_reloc_continue;
5608
5609 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5610 howto, value);
5611 }
5612
5613 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5614 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5615 link.
5616
5617 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5618 is to then call final_link_relocate. Return other values in the
5619 case of error. */
5620
5621 static bfd_reloc_status_type
5622 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5623 bfd *input_bfd, bfd_byte *contents,
5624 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5625 {
5626 bfd_boolean is_local = h == NULL;
5627 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5628 unsigned long insn;
5629
5630 BFD_ASSERT (globals && input_bfd && contents && rel);
5631
5632 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5633 {
5634 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5635 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5636 if (is_local)
5637 {
5638 /* GD->LE relaxation:
5639 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
5640 or
5641 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
5642 */
5643 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5644 return bfd_reloc_continue;
5645 }
5646 else
5647 {
5648 /* GD->IE relaxation:
5649 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5650 or
5651 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5652 */
5653 return bfd_reloc_continue;
5654 }
5655
5656 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5657 BFD_ASSERT (0);
5658 break;
5659
5660 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5661 if (is_local)
5662 {
5663 /* Tiny TLSDESC->LE relaxation:
5664 ldr x1, :tlsdesc:var => movz x0, #:tprel_g1:var
5665 adr x0, :tlsdesc:var => movk x0, #:tprel_g0_nc:var
5666 .tlsdesccall var
5667 blr x1 => nop
5668 */
5669 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5670 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5671
5672 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5673 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5674 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5675
5676 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5677 bfd_putl32 (0xf2800000, contents + rel->r_offset + 4);
5678 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5679 return bfd_reloc_continue;
5680 }
5681 else
5682 {
5683 /* Tiny TLSDESC->IE relaxation:
5684 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5685 adr x0, :tlsdesc:var => nop
5686 .tlsdesccall var
5687 blr x1 => nop
5688 */
5689 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5690 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5691
5692 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5693 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5694
5695 bfd_putl32 (0x58000000, contents + rel->r_offset);
5696 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5697 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5698 return bfd_reloc_continue;
5699 }
5700
5701 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5702 if (is_local)
5703 {
5704 /* Tiny GD->LE relaxation:
5705 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5706 bl __tls_get_addr => add x0, x1, #:tprel_hi12:x, lsl #12
5707 nop => add x0, x0, #:tprel_lo12_nc:x
5708 */
5709
5710 /* First kill the tls_get_addr reloc on the bl instruction. */
5711 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5712
5713 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5714 bfd_putl32 (0x91400020, contents + rel->r_offset + 4);
5715 bfd_putl32 (0x91000000, contents + rel->r_offset + 8);
5716
5717 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5718 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5719 rel[1].r_offset = rel->r_offset + 8;
5720
5721 /* Move the current relocation to the second instruction in
5722 the sequence. */
5723 rel->r_offset += 4;
5724 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5725 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5726 return bfd_reloc_continue;
5727 }
5728 else
5729 {
5730 /* Tiny GD->IE relaxation:
5731 adr x0, :tlsgd:var => ldr x0, :gottprel:var
5732 bl __tls_get_addr => mrs x1, tpidr_el0
5733 nop => add x0, x0, x1
5734 */
5735
5736 /* First kill the tls_get_addr reloc on the bl instruction. */
5737 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5738 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5739
5740 bfd_putl32 (0x58000000, contents + rel->r_offset);
5741 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5742 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5743 return bfd_reloc_continue;
5744 }
5745
5746 #if ARCH_SIZE == 64
5747 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5748 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
5749 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
5750 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
5751
5752 if (is_local)
5753 {
5754 /* Large GD->LE relaxation:
5755 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
5756 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5757 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
5758 bl __tls_get_addr => mrs x1, tpidr_el0
5759 nop => add x0, x0, x1
5760 */
5761 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5762 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5763 rel[2].r_offset = rel->r_offset + 8;
5764
5765 bfd_putl32 (0xd2c00000, contents + rel->r_offset + 0);
5766 bfd_putl32 (0xf2a00000, contents + rel->r_offset + 4);
5767 bfd_putl32 (0xf2800000, contents + rel->r_offset + 8);
5768 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5769 bfd_putl32 (0x8b000020, contents + rel->r_offset + 16);
5770 }
5771 else
5772 {
5773 /* Large GD->IE relaxation:
5774 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
5775 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
5776 add x0, gp, x0 => ldr x0, [gp, x0]
5777 bl __tls_get_addr => mrs x1, tpidr_el0
5778 nop => add x0, x0, x1
5779 */
5780 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5781 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
5782 bfd_putl32 (0x58000000, contents + rel->r_offset + 8);
5783 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5784 bfd_putl32 (0x8b000020, contents + rel->r_offset + 16);
5785 }
5786 return bfd_reloc_continue;
5787
5788 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5789 return bfd_reloc_continue;
5790 #endif
5791
5792 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5793 return bfd_reloc_continue;
5794
5795 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
5796 if (is_local)
5797 {
5798 /* GD->LE relaxation:
5799 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5800 */
5801 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5802 return bfd_reloc_continue;
5803 }
5804 else
5805 {
5806 /* GD->IE relaxation:
5807 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
5808 */
5809 insn = bfd_getl32 (contents + rel->r_offset);
5810 insn &= 0xffffffe0;
5811 bfd_putl32 (insn, contents + rel->r_offset);
5812 return bfd_reloc_continue;
5813 }
5814
5815 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5816 if (is_local)
5817 {
5818 /* GD->LE relaxation
5819 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
5820 bl __tls_get_addr => mrs x1, tpidr_el0
5821 nop => add x0, x1, x0
5822 */
5823
5824 /* First kill the tls_get_addr reloc on the bl instruction. */
5825 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5826 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5827
5828 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5829 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5830 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5831 return bfd_reloc_continue;
5832 }
5833 else
5834 {
5835 /* GD->IE relaxation
5836 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
5837 BL __tls_get_addr => mrs x1, tpidr_el0
5838 R_AARCH64_CALL26
5839 NOP => add x0, x1, x0
5840 */
5841
5842 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5843
5844 /* Remove the relocation on the BL instruction. */
5845 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5846
5847 bfd_putl32 (0xf9400000, contents + rel->r_offset);
5848
5849 /* We choose to fixup the BL and NOP instructions using the
5850 offset from the second relocation to allow flexibility in
5851 scheduling instructions between the ADD and BL. */
5852 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
5853 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
5854 return bfd_reloc_continue;
5855 }
5856
5857 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5858 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5859 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5860 /* GD->IE/LE relaxation:
5861 add x0, x0, #:tlsdesc_lo12:var => nop
5862 blr xd => nop
5863 */
5864 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5865 return bfd_reloc_ok;
5866
5867 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5868 if (is_local)
5869 {
5870 /* GD->LE relaxation:
5871 ldr xd, [gp, xn] => movk x0, #:tprel_g0_nc:var
5872 */
5873 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5874 return bfd_reloc_continue;
5875 }
5876 else
5877 {
5878 /* GD->IE relaxation:
5879 ldr xd, [gp, xn] => ldr x0, [gp, xn]
5880 */
5881 insn = bfd_getl32 (contents + rel->r_offset);
5882 insn &= 0xffffffe0;
5883 bfd_putl32 (insn, contents + rel->r_offset);
5884 return bfd_reloc_ok;
5885 }
5886
5887 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5888 /* GD->LE relaxation:
5889 movk xd, #:tlsdesc_off_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5890 GD->IE relaxation:
5891 movk xd, #:tlsdesc_off_g0_nc:var => movk xd, #:gottprel_g0_nc:var
5892 */
5893 if (is_local)
5894 bfd_putl32 (0xf2a00000, contents + rel->r_offset);
5895 return bfd_reloc_continue;
5896
5897 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5898 if (is_local)
5899 {
5900 /* GD->LE relaxation:
5901 movz xd, #:tlsdesc_off_g1:var => movz x0, #:tprel_g2:var, lsl #32
5902 */
5903 bfd_putl32 (0xd2c00000, contents + rel->r_offset);
5904 return bfd_reloc_continue;
5905 }
5906 else
5907 {
5908 /* GD->IE relaxation:
5909 movz xd, #:tlsdesc_off_g1:var => movz xd, #:gottprel_g1:var, lsl #16
5910 */
5911 insn = bfd_getl32 (contents + rel->r_offset);
5912 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5913 return bfd_reloc_continue;
5914 }
5915
5916 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5917 /* IE->LE relaxation:
5918 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
5919 */
5920 if (is_local)
5921 {
5922 insn = bfd_getl32 (contents + rel->r_offset);
5923 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5924 }
5925 return bfd_reloc_continue;
5926
5927 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
5928 /* IE->LE relaxation:
5929 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
5930 */
5931 if (is_local)
5932 {
5933 insn = bfd_getl32 (contents + rel->r_offset);
5934 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
5935 }
5936 return bfd_reloc_continue;
5937
5938 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5939 /* LD->LE relaxation (tiny):
5940 adr x0, :tlsldm:x => mrs x0, tpidr_el0
5941 bl __tls_get_addr => add x0, x0, TCB_SIZE
5942 */
5943 if (is_local)
5944 {
5945 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5946 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5947 /* No need of CALL26 relocation for tls_get_addr. */
5948 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5949 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
5950 bfd_putl32 (0x91004000, contents + rel->r_offset + 4);
5951 return bfd_reloc_ok;
5952 }
5953 return bfd_reloc_continue;
5954
5955 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5956 /* LD->LE relaxation (small):
5957 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
5958 */
5959 if (is_local)
5960 {
5961 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
5962 return bfd_reloc_ok;
5963 }
5964 return bfd_reloc_continue;
5965
5966 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5967 /* LD->LE relaxation (small):
5968 add x0, #:tlsldm_lo12:x => add x0, x0, TCB_SIZE
5969 bl __tls_get_addr => nop
5970 */
5971 if (is_local)
5972 {
5973 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5974 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5975 /* No need of CALL26 relocation for tls_get_addr. */
5976 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5977 bfd_putl32 (0x91004000, contents + rel->r_offset + 0);
5978 bfd_putl32 (0xd503201f, contents + rel->r_offset + 4);
5979 return bfd_reloc_ok;
5980 }
5981 return bfd_reloc_continue;
5982
5983 default:
5984 return bfd_reloc_continue;
5985 }
5986
5987 return bfd_reloc_ok;
5988 }
5989
5990 /* Relocate an AArch64 ELF section. */
5991
5992 static bfd_boolean
5993 elfNN_aarch64_relocate_section (bfd *output_bfd,
5994 struct bfd_link_info *info,
5995 bfd *input_bfd,
5996 asection *input_section,
5997 bfd_byte *contents,
5998 Elf_Internal_Rela *relocs,
5999 Elf_Internal_Sym *local_syms,
6000 asection **local_sections)
6001 {
6002 Elf_Internal_Shdr *symtab_hdr;
6003 struct elf_link_hash_entry **sym_hashes;
6004 Elf_Internal_Rela *rel;
6005 Elf_Internal_Rela *relend;
6006 const char *name;
6007 struct elf_aarch64_link_hash_table *globals;
6008 bfd_boolean save_addend = FALSE;
6009 bfd_vma addend = 0;
6010
6011 globals = elf_aarch64_hash_table (info);
6012
6013 symtab_hdr = &elf_symtab_hdr (input_bfd);
6014 sym_hashes = elf_sym_hashes (input_bfd);
6015
6016 rel = relocs;
6017 relend = relocs + input_section->reloc_count;
6018 for (; rel < relend; rel++)
6019 {
6020 unsigned int r_type;
6021 bfd_reloc_code_real_type bfd_r_type;
6022 bfd_reloc_code_real_type relaxed_bfd_r_type;
6023 reloc_howto_type *howto;
6024 unsigned long r_symndx;
6025 Elf_Internal_Sym *sym;
6026 asection *sec;
6027 struct elf_link_hash_entry *h;
6028 bfd_vma relocation;
6029 bfd_reloc_status_type r;
6030 arelent bfd_reloc;
6031 char sym_type;
6032 bfd_boolean unresolved_reloc = FALSE;
6033 char *error_message = NULL;
6034
6035 r_symndx = ELFNN_R_SYM (rel->r_info);
6036 r_type = ELFNN_R_TYPE (rel->r_info);
6037
6038 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
6039 howto = bfd_reloc.howto;
6040
6041 if (howto == NULL)
6042 {
6043 (*_bfd_error_handler)
6044 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
6045 input_bfd, input_section, r_type);
6046 return FALSE;
6047 }
6048 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6049
6050 h = NULL;
6051 sym = NULL;
6052 sec = NULL;
6053
6054 if (r_symndx < symtab_hdr->sh_info)
6055 {
6056 sym = local_syms + r_symndx;
6057 sym_type = ELFNN_ST_TYPE (sym->st_info);
6058 sec = local_sections[r_symndx];
6059
6060 /* An object file might have a reference to a local
6061 undefined symbol. This is a daft object file, but we
6062 should at least do something about it. */
6063 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6064 && bfd_is_und_section (sec)
6065 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6066 (*info->callbacks->undefined_symbol)
6067 (info, bfd_elf_string_from_elf_section
6068 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6069 input_bfd, input_section, rel->r_offset, TRUE);
6070
6071 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6072
6073 /* Relocate against local STT_GNU_IFUNC symbol. */
6074 if (!bfd_link_relocatable (info)
6075 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6076 {
6077 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6078 rel, FALSE);
6079 if (h == NULL)
6080 abort ();
6081
6082 /* Set STT_GNU_IFUNC symbol value. */
6083 h->root.u.def.value = sym->st_value;
6084 h->root.u.def.section = sec;
6085 }
6086 }
6087 else
6088 {
6089 bfd_boolean warned, ignored;
6090
6091 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6092 r_symndx, symtab_hdr, sym_hashes,
6093 h, sec, relocation,
6094 unresolved_reloc, warned, ignored);
6095
6096 sym_type = h->type;
6097 }
6098
6099 if (sec != NULL && discarded_section (sec))
6100 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6101 rel, 1, relend, howto, 0, contents);
6102
6103 if (bfd_link_relocatable (info))
6104 continue;
6105
6106 if (h != NULL)
6107 name = h->root.root.string;
6108 else
6109 {
6110 name = (bfd_elf_string_from_elf_section
6111 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6112 if (name == NULL || *name == '\0')
6113 name = bfd_section_name (input_bfd, sec);
6114 }
6115
6116 if (r_symndx != 0
6117 && r_type != R_AARCH64_NONE
6118 && r_type != R_AARCH64_NULL
6119 && (h == NULL
6120 || h->root.type == bfd_link_hash_defined
6121 || h->root.type == bfd_link_hash_defweak)
6122 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6123 {
6124 (*_bfd_error_handler)
6125 ((sym_type == STT_TLS
6126 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
6127 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
6128 input_bfd,
6129 input_section, (long) rel->r_offset, howto->name, name);
6130 }
6131
6132 /* We relax only if we can see that there can be a valid transition
6133 from a reloc type to another.
6134 We call elfNN_aarch64_final_link_relocate unless we're completely
6135 done, i.e., the relaxation produced the final output we want. */
6136
6137 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6138 h, r_symndx);
6139 if (relaxed_bfd_r_type != bfd_r_type)
6140 {
6141 bfd_r_type = relaxed_bfd_r_type;
6142 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6143 BFD_ASSERT (howto != NULL);
6144 r_type = howto->type;
6145 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
6146 unresolved_reloc = 0;
6147 }
6148 else
6149 r = bfd_reloc_continue;
6150
6151 /* There may be multiple consecutive relocations for the
6152 same offset. In that case we are supposed to treat the
6153 output of each relocation as the addend for the next. */
6154 if (rel + 1 < relend
6155 && rel->r_offset == rel[1].r_offset
6156 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6157 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6158 save_addend = TRUE;
6159 else
6160 save_addend = FALSE;
6161
6162 if (r == bfd_reloc_continue)
6163 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6164 input_section, contents, rel,
6165 relocation, info, sec,
6166 h, &unresolved_reloc,
6167 save_addend, &addend, sym);
6168
6169 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
6170 {
6171 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6172 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6173 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6174 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6175 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6176 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6177 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6178 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6179 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6180 {
6181 bfd_boolean need_relocs = FALSE;
6182 bfd_byte *loc;
6183 int indx;
6184 bfd_vma off;
6185
6186 off = symbol_got_offset (input_bfd, h, r_symndx);
6187 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6188
6189 need_relocs =
6190 (bfd_link_pic (info) || indx != 0) &&
6191 (h == NULL
6192 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6193 || h->root.type != bfd_link_hash_undefweak);
6194
6195 BFD_ASSERT (globals->root.srelgot != NULL);
6196
6197 if (need_relocs)
6198 {
6199 Elf_Internal_Rela rela;
6200 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6201 rela.r_addend = 0;
6202 rela.r_offset = globals->root.sgot->output_section->vma +
6203 globals->root.sgot->output_offset + off;
6204
6205
6206 loc = globals->root.srelgot->contents;
6207 loc += globals->root.srelgot->reloc_count++
6208 * RELOC_SIZE (htab);
6209 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6210
6211 bfd_reloc_code_real_type real_type =
6212 elfNN_aarch64_bfd_reloc_from_type (r_type);
6213
6214 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6215 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6216 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6217 {
6218 /* For local dynamic, don't generate DTPREL in any case.
6219 Initialize the DTPREL slot into zero, so we get module
6220 base address when invoke runtime TLS resolver. */
6221 bfd_put_NN (output_bfd, 0,
6222 globals->root.sgot->contents + off
6223 + GOT_ENTRY_SIZE);
6224 }
6225 else if (indx == 0)
6226 {
6227 bfd_put_NN (output_bfd,
6228 relocation - dtpoff_base (info),
6229 globals->root.sgot->contents + off
6230 + GOT_ENTRY_SIZE);
6231 }
6232 else
6233 {
6234 /* This TLS symbol is global. We emit a
6235 relocation to fixup the tls offset at load
6236 time. */
6237 rela.r_info =
6238 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6239 rela.r_addend = 0;
6240 rela.r_offset =
6241 (globals->root.sgot->output_section->vma
6242 + globals->root.sgot->output_offset + off
6243 + GOT_ENTRY_SIZE);
6244
6245 loc = globals->root.srelgot->contents;
6246 loc += globals->root.srelgot->reloc_count++
6247 * RELOC_SIZE (globals);
6248 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6249 bfd_put_NN (output_bfd, (bfd_vma) 0,
6250 globals->root.sgot->contents + off
6251 + GOT_ENTRY_SIZE);
6252 }
6253 }
6254 else
6255 {
6256 bfd_put_NN (output_bfd, (bfd_vma) 1,
6257 globals->root.sgot->contents + off);
6258 bfd_put_NN (output_bfd,
6259 relocation - dtpoff_base (info),
6260 globals->root.sgot->contents + off
6261 + GOT_ENTRY_SIZE);
6262 }
6263
6264 symbol_got_offset_mark (input_bfd, h, r_symndx);
6265 }
6266 break;
6267
6268 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6269 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6270 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6271 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6272 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6273 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6274 {
6275 bfd_boolean need_relocs = FALSE;
6276 bfd_byte *loc;
6277 int indx;
6278 bfd_vma off;
6279
6280 off = symbol_got_offset (input_bfd, h, r_symndx);
6281
6282 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6283
6284 need_relocs =
6285 (bfd_link_pic (info) || indx != 0) &&
6286 (h == NULL
6287 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6288 || h->root.type != bfd_link_hash_undefweak);
6289
6290 BFD_ASSERT (globals->root.srelgot != NULL);
6291
6292 if (need_relocs)
6293 {
6294 Elf_Internal_Rela rela;
6295
6296 if (indx == 0)
6297 rela.r_addend = relocation - dtpoff_base (info);
6298 else
6299 rela.r_addend = 0;
6300
6301 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6302 rela.r_offset = globals->root.sgot->output_section->vma +
6303 globals->root.sgot->output_offset + off;
6304
6305 loc = globals->root.srelgot->contents;
6306 loc += globals->root.srelgot->reloc_count++
6307 * RELOC_SIZE (htab);
6308
6309 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6310
6311 bfd_put_NN (output_bfd, rela.r_addend,
6312 globals->root.sgot->contents + off);
6313 }
6314 else
6315 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6316 globals->root.sgot->contents + off);
6317
6318 symbol_got_offset_mark (input_bfd, h, r_symndx);
6319 }
6320 break;
6321
6322 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6323 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6324 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6325 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6326 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6327 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6328 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6329 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6330 {
6331 bfd_boolean need_relocs = FALSE;
6332 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6333 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6334
6335 need_relocs = (h == NULL
6336 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6337 || h->root.type != bfd_link_hash_undefweak);
6338
6339 BFD_ASSERT (globals->root.srelgot != NULL);
6340 BFD_ASSERT (globals->root.sgot != NULL);
6341
6342 if (need_relocs)
6343 {
6344 bfd_byte *loc;
6345 Elf_Internal_Rela rela;
6346 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6347
6348 rela.r_addend = 0;
6349 rela.r_offset = (globals->root.sgotplt->output_section->vma
6350 + globals->root.sgotplt->output_offset
6351 + off + globals->sgotplt_jump_table_size);
6352
6353 if (indx == 0)
6354 rela.r_addend = relocation - dtpoff_base (info);
6355
6356 /* Allocate the next available slot in the PLT reloc
6357 section to hold our R_AARCH64_TLSDESC, the next
6358 available slot is determined from reloc_count,
6359 which we step. But note, reloc_count was
6360 artifically moved down while allocating slots for
6361 real PLT relocs such that all of the PLT relocs
6362 will fit above the initial reloc_count and the
6363 extra stuff will fit below. */
6364 loc = globals->root.srelplt->contents;
6365 loc += globals->root.srelplt->reloc_count++
6366 * RELOC_SIZE (globals);
6367
6368 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6369
6370 bfd_put_NN (output_bfd, (bfd_vma) 0,
6371 globals->root.sgotplt->contents + off +
6372 globals->sgotplt_jump_table_size);
6373 bfd_put_NN (output_bfd, (bfd_vma) 0,
6374 globals->root.sgotplt->contents + off +
6375 globals->sgotplt_jump_table_size +
6376 GOT_ENTRY_SIZE);
6377 }
6378
6379 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6380 }
6381 break;
6382 default:
6383 break;
6384 }
6385
6386 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6387 because such sections are not SEC_ALLOC and thus ld.so will
6388 not process them. */
6389 if (unresolved_reloc
6390 && !((input_section->flags & SEC_DEBUGGING) != 0
6391 && h->def_dynamic)
6392 && _bfd_elf_section_offset (output_bfd, info, input_section,
6393 +rel->r_offset) != (bfd_vma) - 1)
6394 {
6395 (*_bfd_error_handler)
6396 (_
6397 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6398 input_bfd, input_section, (long) rel->r_offset, howto->name,
6399 h->root.root.string);
6400 return FALSE;
6401 }
6402
6403 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6404 {
6405 bfd_reloc_code_real_type real_r_type
6406 = elfNN_aarch64_bfd_reloc_from_type (r_type);
6407
6408 switch (r)
6409 {
6410 case bfd_reloc_overflow:
6411 (*info->callbacks->reloc_overflow)
6412 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6413 input_bfd, input_section, rel->r_offset);
6414 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6415 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6416 {
6417 (*info->callbacks->warning)
6418 (info,
6419 _("Too many GOT entries for -fpic, "
6420 "please recompile with -fPIC"),
6421 name, input_bfd, input_section, rel->r_offset);
6422 return FALSE;
6423 }
6424 /* Overflow can occur when a variable is referenced with a type
6425 that has a larger alignment than the type with which it was
6426 declared. eg:
6427 file1.c: extern int foo; int a (void) { return foo; }
6428 file2.c: char bar, foo, baz;
6429 If the variable is placed into a data section at an offset
6430 that is incompatible with the larger alignment requirement
6431 overflow will occur. (Strictly speaking this is not overflow
6432 but rather an alignment problem, but the bfd_reloc_ error
6433 enum does not have a value to cover that situation).
6434
6435 Try to catch this situation here and provide a more helpful
6436 error message to the user. */
6437 if (addend & ((1 << howto->rightshift) - 1)
6438 /* FIXME: Are we testing all of the appropriate reloc
6439 types here ? */
6440 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6441 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6442 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6443 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6444 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6445 {
6446 info->callbacks->warning
6447 (info, _("One possible cause of this error is that the \
6448 symbol is being referenced in the indicated code as if it had a larger \
6449 alignment than was declared where it was defined."),
6450 name, input_bfd, input_section, rel->r_offset);
6451 }
6452 break;
6453
6454 case bfd_reloc_undefined:
6455 (*info->callbacks->undefined_symbol)
6456 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
6457 break;
6458
6459 case bfd_reloc_outofrange:
6460 error_message = _("out of range");
6461 goto common_error;
6462
6463 case bfd_reloc_notsupported:
6464 error_message = _("unsupported relocation");
6465 goto common_error;
6466
6467 case bfd_reloc_dangerous:
6468 /* error_message should already be set. */
6469 goto common_error;
6470
6471 default:
6472 error_message = _("unknown error");
6473 /* Fall through. */
6474
6475 common_error:
6476 BFD_ASSERT (error_message != NULL);
6477 (*info->callbacks->reloc_dangerous)
6478 (info, error_message, input_bfd, input_section, rel->r_offset);
6479 break;
6480 }
6481 }
6482
6483 if (!save_addend)
6484 addend = 0;
6485 }
6486
6487 return TRUE;
6488 }
6489
6490 /* Set the right machine number. */
6491
6492 static bfd_boolean
6493 elfNN_aarch64_object_p (bfd *abfd)
6494 {
6495 #if ARCH_SIZE == 32
6496 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6497 #else
6498 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6499 #endif
6500 return TRUE;
6501 }
6502
6503 /* Function to keep AArch64 specific flags in the ELF header. */
6504
6505 static bfd_boolean
6506 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6507 {
6508 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6509 {
6510 }
6511 else
6512 {
6513 elf_elfheader (abfd)->e_flags = flags;
6514 elf_flags_init (abfd) = TRUE;
6515 }
6516
6517 return TRUE;
6518 }
6519
6520 /* Merge backend specific data from an object file to the output
6521 object file when linking. */
6522
6523 static bfd_boolean
6524 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
6525 {
6526 flagword out_flags;
6527 flagword in_flags;
6528 bfd_boolean flags_compatible = TRUE;
6529 asection *sec;
6530
6531 /* Check if we have the same endianess. */
6532 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
6533 return FALSE;
6534
6535 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6536 return TRUE;
6537
6538 /* The input BFD must have had its flags initialised. */
6539 /* The following seems bogus to me -- The flags are initialized in
6540 the assembler but I don't think an elf_flags_init field is
6541 written into the object. */
6542 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6543
6544 in_flags = elf_elfheader (ibfd)->e_flags;
6545 out_flags = elf_elfheader (obfd)->e_flags;
6546
6547 if (!elf_flags_init (obfd))
6548 {
6549 /* If the input is the default architecture and had the default
6550 flags then do not bother setting the flags for the output
6551 architecture, instead allow future merges to do this. If no
6552 future merges ever set these flags then they will retain their
6553 uninitialised values, which surprise surprise, correspond
6554 to the default values. */
6555 if (bfd_get_arch_info (ibfd)->the_default
6556 && elf_elfheader (ibfd)->e_flags == 0)
6557 return TRUE;
6558
6559 elf_flags_init (obfd) = TRUE;
6560 elf_elfheader (obfd)->e_flags = in_flags;
6561
6562 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6563 && bfd_get_arch_info (obfd)->the_default)
6564 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6565 bfd_get_mach (ibfd));
6566
6567 return TRUE;
6568 }
6569
6570 /* Identical flags must be compatible. */
6571 if (in_flags == out_flags)
6572 return TRUE;
6573
6574 /* Check to see if the input BFD actually contains any sections. If
6575 not, its flags may not have been initialised either, but it
6576 cannot actually cause any incompatiblity. Do not short-circuit
6577 dynamic objects; their section list may be emptied by
6578 elf_link_add_object_symbols.
6579
6580 Also check to see if there are no code sections in the input.
6581 In this case there is no need to check for code specific flags.
6582 XXX - do we need to worry about floating-point format compatability
6583 in data sections ? */
6584 if (!(ibfd->flags & DYNAMIC))
6585 {
6586 bfd_boolean null_input_bfd = TRUE;
6587 bfd_boolean only_data_sections = TRUE;
6588
6589 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6590 {
6591 if ((bfd_get_section_flags (ibfd, sec)
6592 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6593 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6594 only_data_sections = FALSE;
6595
6596 null_input_bfd = FALSE;
6597 break;
6598 }
6599
6600 if (null_input_bfd || only_data_sections)
6601 return TRUE;
6602 }
6603
6604 return flags_compatible;
6605 }
6606
6607 /* Display the flags field. */
6608
6609 static bfd_boolean
6610 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
6611 {
6612 FILE *file = (FILE *) ptr;
6613 unsigned long flags;
6614
6615 BFD_ASSERT (abfd != NULL && ptr != NULL);
6616
6617 /* Print normal ELF private data. */
6618 _bfd_elf_print_private_bfd_data (abfd, ptr);
6619
6620 flags = elf_elfheader (abfd)->e_flags;
6621 /* Ignore init flag - it may not be set, despite the flags field
6622 containing valid data. */
6623
6624 /* xgettext:c-format */
6625 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6626
6627 if (flags)
6628 fprintf (file, _("<Unrecognised flag bits set>"));
6629
6630 fputc ('\n', file);
6631
6632 return TRUE;
6633 }
6634
6635 /* Update the got entry reference counts for the section being removed. */
6636
6637 static bfd_boolean
6638 elfNN_aarch64_gc_sweep_hook (bfd *abfd,
6639 struct bfd_link_info *info,
6640 asection *sec,
6641 const Elf_Internal_Rela * relocs)
6642 {
6643 struct elf_aarch64_link_hash_table *htab;
6644 Elf_Internal_Shdr *symtab_hdr;
6645 struct elf_link_hash_entry **sym_hashes;
6646 struct elf_aarch64_local_symbol *locals;
6647 const Elf_Internal_Rela *rel, *relend;
6648
6649 if (bfd_link_relocatable (info))
6650 return TRUE;
6651
6652 htab = elf_aarch64_hash_table (info);
6653
6654 if (htab == NULL)
6655 return FALSE;
6656
6657 elf_section_data (sec)->local_dynrel = NULL;
6658
6659 symtab_hdr = &elf_symtab_hdr (abfd);
6660 sym_hashes = elf_sym_hashes (abfd);
6661
6662 locals = elf_aarch64_locals (abfd);
6663
6664 relend = relocs + sec->reloc_count;
6665 for (rel = relocs; rel < relend; rel++)
6666 {
6667 unsigned long r_symndx;
6668 unsigned int r_type;
6669 struct elf_link_hash_entry *h = NULL;
6670
6671 r_symndx = ELFNN_R_SYM (rel->r_info);
6672
6673 if (r_symndx >= symtab_hdr->sh_info)
6674 {
6675
6676 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6677 while (h->root.type == bfd_link_hash_indirect
6678 || h->root.type == bfd_link_hash_warning)
6679 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6680 }
6681 else
6682 {
6683 Elf_Internal_Sym *isym;
6684
6685 /* A local symbol. */
6686 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6687 abfd, r_symndx);
6688
6689 /* Check relocation against local STT_GNU_IFUNC symbol. */
6690 if (isym != NULL
6691 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6692 {
6693 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6694 if (h == NULL)
6695 abort ();
6696 }
6697 }
6698
6699 if (h)
6700 {
6701 struct elf_aarch64_link_hash_entry *eh;
6702 struct elf_dyn_relocs **pp;
6703 struct elf_dyn_relocs *p;
6704
6705 eh = (struct elf_aarch64_link_hash_entry *) h;
6706
6707 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6708 if (p->sec == sec)
6709 {
6710 /* Everything must go for SEC. */
6711 *pp = p->next;
6712 break;
6713 }
6714 }
6715
6716 r_type = ELFNN_R_TYPE (rel->r_info);
6717 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
6718 {
6719 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6720 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6721 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6722 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6723 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6724 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6725 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6726 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
6727 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
6728 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6729 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6730 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6731 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6732 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6733 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6734 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6735 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6736 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6737 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6738 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6739 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6740 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6741 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6742 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6743 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6744 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6745 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6746 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6747 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6748 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6749 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6750 if (h != NULL)
6751 {
6752 if (h->got.refcount > 0)
6753 h->got.refcount -= 1;
6754
6755 if (h->type == STT_GNU_IFUNC)
6756 {
6757 if (h->plt.refcount > 0)
6758 h->plt.refcount -= 1;
6759 }
6760 }
6761 else if (locals != NULL)
6762 {
6763 if (locals[r_symndx].got_refcount > 0)
6764 locals[r_symndx].got_refcount -= 1;
6765 }
6766 break;
6767
6768 case BFD_RELOC_AARCH64_CALL26:
6769 case BFD_RELOC_AARCH64_JUMP26:
6770 /* If this is a local symbol then we resolve it
6771 directly without creating a PLT entry. */
6772 if (h == NULL)
6773 continue;
6774
6775 if (h->plt.refcount > 0)
6776 h->plt.refcount -= 1;
6777 break;
6778
6779 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6780 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6781 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6782 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6783 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6784 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6785 case BFD_RELOC_AARCH64_MOVW_G3:
6786 case BFD_RELOC_AARCH64_NN:
6787 if (h != NULL && bfd_link_executable (info))
6788 {
6789 if (h->plt.refcount > 0)
6790 h->plt.refcount -= 1;
6791 }
6792 break;
6793
6794 default:
6795 break;
6796 }
6797 }
6798
6799 return TRUE;
6800 }
6801
6802 /* Adjust a symbol defined by a dynamic object and referenced by a
6803 regular object. The current definition is in some section of the
6804 dynamic object, but we're not including those sections. We have to
6805 change the definition to something the rest of the link can
6806 understand. */
6807
6808 static bfd_boolean
6809 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
6810 struct elf_link_hash_entry *h)
6811 {
6812 struct elf_aarch64_link_hash_table *htab;
6813 asection *s;
6814
6815 /* If this is a function, put it in the procedure linkage table. We
6816 will fill in the contents of the procedure linkage table later,
6817 when we know the address of the .got section. */
6818 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
6819 {
6820 if (h->plt.refcount <= 0
6821 || (h->type != STT_GNU_IFUNC
6822 && (SYMBOL_CALLS_LOCAL (info, h)
6823 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6824 && h->root.type == bfd_link_hash_undefweak))))
6825 {
6826 /* This case can occur if we saw a CALL26 reloc in
6827 an input file, but the symbol wasn't referred to
6828 by a dynamic object or all references were
6829 garbage collected. In which case we can end up
6830 resolving. */
6831 h->plt.offset = (bfd_vma) - 1;
6832 h->needs_plt = 0;
6833 }
6834
6835 return TRUE;
6836 }
6837 else
6838 /* Otherwise, reset to -1. */
6839 h->plt.offset = (bfd_vma) - 1;
6840
6841
6842 /* If this is a weak symbol, and there is a real definition, the
6843 processor independent code will have arranged for us to see the
6844 real definition first, and we can just use the same value. */
6845 if (h->u.weakdef != NULL)
6846 {
6847 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6848 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6849 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6850 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6851 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6852 h->non_got_ref = h->u.weakdef->non_got_ref;
6853 return TRUE;
6854 }
6855
6856 /* If we are creating a shared library, we must presume that the
6857 only references to the symbol are via the global offset table.
6858 For such cases we need not do anything here; the relocations will
6859 be handled correctly by relocate_section. */
6860 if (bfd_link_pic (info))
6861 return TRUE;
6862
6863 /* If there are no references to this symbol that do not use the
6864 GOT, we don't need to generate a copy reloc. */
6865 if (!h->non_got_ref)
6866 return TRUE;
6867
6868 /* If -z nocopyreloc was given, we won't generate them either. */
6869 if (info->nocopyreloc)
6870 {
6871 h->non_got_ref = 0;
6872 return TRUE;
6873 }
6874
6875 /* We must allocate the symbol in our .dynbss section, which will
6876 become part of the .bss section of the executable. There will be
6877 an entry for this symbol in the .dynsym section. The dynamic
6878 object will contain position independent code, so all references
6879 from the dynamic object to this symbol will go through the global
6880 offset table. The dynamic linker will use the .dynsym entry to
6881 determine the address it must put in the global offset table, so
6882 both the dynamic object and the regular object will refer to the
6883 same memory location for the variable. */
6884
6885 htab = elf_aarch64_hash_table (info);
6886
6887 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6888 to copy the initial value out of the dynamic object and into the
6889 runtime process image. */
6890 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6891 {
6892 htab->srelbss->size += RELOC_SIZE (htab);
6893 h->needs_copy = 1;
6894 }
6895
6896 s = htab->sdynbss;
6897
6898 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6899
6900 }
6901
6902 static bfd_boolean
6903 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
6904 {
6905 struct elf_aarch64_local_symbol *locals;
6906 locals = elf_aarch64_locals (abfd);
6907 if (locals == NULL)
6908 {
6909 locals = (struct elf_aarch64_local_symbol *)
6910 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
6911 if (locals == NULL)
6912 return FALSE;
6913 elf_aarch64_locals (abfd) = locals;
6914 }
6915 return TRUE;
6916 }
6917
6918 /* Create the .got section to hold the global offset table. */
6919
6920 static bfd_boolean
6921 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
6922 {
6923 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6924 flagword flags;
6925 asection *s;
6926 struct elf_link_hash_entry *h;
6927 struct elf_link_hash_table *htab = elf_hash_table (info);
6928
6929 /* This function may be called more than once. */
6930 s = bfd_get_linker_section (abfd, ".got");
6931 if (s != NULL)
6932 return TRUE;
6933
6934 flags = bed->dynamic_sec_flags;
6935
6936 s = bfd_make_section_anyway_with_flags (abfd,
6937 (bed->rela_plts_and_copies_p
6938 ? ".rela.got" : ".rel.got"),
6939 (bed->dynamic_sec_flags
6940 | SEC_READONLY));
6941 if (s == NULL
6942 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6943 return FALSE;
6944 htab->srelgot = s;
6945
6946 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
6947 if (s == NULL
6948 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6949 return FALSE;
6950 htab->sgot = s;
6951 htab->sgot->size += GOT_ENTRY_SIZE;
6952
6953 if (bed->want_got_sym)
6954 {
6955 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
6956 (or .got.plt) section. We don't do this in the linker script
6957 because we don't want to define the symbol if we are not creating
6958 a global offset table. */
6959 h = _bfd_elf_define_linkage_sym (abfd, info, s,
6960 "_GLOBAL_OFFSET_TABLE_");
6961 elf_hash_table (info)->hgot = h;
6962 if (h == NULL)
6963 return FALSE;
6964 }
6965
6966 if (bed->want_got_plt)
6967 {
6968 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
6969 if (s == NULL
6970 || !bfd_set_section_alignment (abfd, s,
6971 bed->s->log_file_align))
6972 return FALSE;
6973 htab->sgotplt = s;
6974 }
6975
6976 /* The first bit of the global offset table is the header. */
6977 s->size += bed->got_header_size;
6978
6979 return TRUE;
6980 }
6981
6982 /* Look through the relocs for a section during the first phase. */
6983
6984 static bfd_boolean
6985 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
6986 asection *sec, const Elf_Internal_Rela *relocs)
6987 {
6988 Elf_Internal_Shdr *symtab_hdr;
6989 struct elf_link_hash_entry **sym_hashes;
6990 const Elf_Internal_Rela *rel;
6991 const Elf_Internal_Rela *rel_end;
6992 asection *sreloc;
6993
6994 struct elf_aarch64_link_hash_table *htab;
6995
6996 if (bfd_link_relocatable (info))
6997 return TRUE;
6998
6999 BFD_ASSERT (is_aarch64_elf (abfd));
7000
7001 htab = elf_aarch64_hash_table (info);
7002 sreloc = NULL;
7003
7004 symtab_hdr = &elf_symtab_hdr (abfd);
7005 sym_hashes = elf_sym_hashes (abfd);
7006
7007 rel_end = relocs + sec->reloc_count;
7008 for (rel = relocs; rel < rel_end; rel++)
7009 {
7010 struct elf_link_hash_entry *h;
7011 unsigned long r_symndx;
7012 unsigned int r_type;
7013 bfd_reloc_code_real_type bfd_r_type;
7014 Elf_Internal_Sym *isym;
7015
7016 r_symndx = ELFNN_R_SYM (rel->r_info);
7017 r_type = ELFNN_R_TYPE (rel->r_info);
7018
7019 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7020 {
7021 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
7022 r_symndx);
7023 return FALSE;
7024 }
7025
7026 if (r_symndx < symtab_hdr->sh_info)
7027 {
7028 /* A local symbol. */
7029 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7030 abfd, r_symndx);
7031 if (isym == NULL)
7032 return FALSE;
7033
7034 /* Check relocation against local STT_GNU_IFUNC symbol. */
7035 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7036 {
7037 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7038 TRUE);
7039 if (h == NULL)
7040 return FALSE;
7041
7042 /* Fake a STT_GNU_IFUNC symbol. */
7043 h->type = STT_GNU_IFUNC;
7044 h->def_regular = 1;
7045 h->ref_regular = 1;
7046 h->forced_local = 1;
7047 h->root.type = bfd_link_hash_defined;
7048 }
7049 else
7050 h = NULL;
7051 }
7052 else
7053 {
7054 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7055 while (h->root.type == bfd_link_hash_indirect
7056 || h->root.type == bfd_link_hash_warning)
7057 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7058
7059 /* PR15323, ref flags aren't set for references in the same
7060 object. */
7061 h->root.non_ir_ref = 1;
7062 }
7063
7064 /* Could be done earlier, if h were already available. */
7065 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7066
7067 if (h != NULL)
7068 {
7069 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7070 This shows up in particular in an R_AARCH64_PREL64 in large model
7071 when calculating the pc-relative address to .got section which is
7072 used to initialize the gp register. */
7073 if (h->root.root.string
7074 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7075 {
7076 if (htab->root.dynobj == NULL)
7077 htab->root.dynobj = abfd;
7078
7079 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7080 return FALSE;
7081
7082 BFD_ASSERT (h == htab->root.hgot);
7083 }
7084
7085 /* Create the ifunc sections for static executables. If we
7086 never see an indirect function symbol nor we are building
7087 a static executable, those sections will be empty and
7088 won't appear in output. */
7089 switch (bfd_r_type)
7090 {
7091 default:
7092 break;
7093
7094 case BFD_RELOC_AARCH64_ADD_LO12:
7095 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7096 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7097 case BFD_RELOC_AARCH64_CALL26:
7098 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7099 case BFD_RELOC_AARCH64_JUMP26:
7100 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7101 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7102 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7103 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7104 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7105 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7106 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7107 case BFD_RELOC_AARCH64_NN:
7108 if (htab->root.dynobj == NULL)
7109 htab->root.dynobj = abfd;
7110 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7111 return FALSE;
7112 break;
7113 }
7114
7115 /* It is referenced by a non-shared object. */
7116 h->ref_regular = 1;
7117 h->root.non_ir_ref = 1;
7118 }
7119
7120 switch (bfd_r_type)
7121 {
7122 case BFD_RELOC_AARCH64_NN:
7123
7124 /* We don't need to handle relocs into sections not going into
7125 the "real" output. */
7126 if ((sec->flags & SEC_ALLOC) == 0)
7127 break;
7128
7129 if (h != NULL)
7130 {
7131 if (!bfd_link_pic (info))
7132 h->non_got_ref = 1;
7133
7134 h->plt.refcount += 1;
7135 h->pointer_equality_needed = 1;
7136 }
7137
7138 /* No need to do anything if we're not creating a shared
7139 object. */
7140 if (! bfd_link_pic (info))
7141 break;
7142
7143 {
7144 struct elf_dyn_relocs *p;
7145 struct elf_dyn_relocs **head;
7146
7147 /* We must copy these reloc types into the output file.
7148 Create a reloc section in dynobj and make room for
7149 this reloc. */
7150 if (sreloc == NULL)
7151 {
7152 if (htab->root.dynobj == NULL)
7153 htab->root.dynobj = abfd;
7154
7155 sreloc = _bfd_elf_make_dynamic_reloc_section
7156 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7157
7158 if (sreloc == NULL)
7159 return FALSE;
7160 }
7161
7162 /* If this is a global symbol, we count the number of
7163 relocations we need for this symbol. */
7164 if (h != NULL)
7165 {
7166 struct elf_aarch64_link_hash_entry *eh;
7167 eh = (struct elf_aarch64_link_hash_entry *) h;
7168 head = &eh->dyn_relocs;
7169 }
7170 else
7171 {
7172 /* Track dynamic relocs needed for local syms too.
7173 We really need local syms available to do this
7174 easily. Oh well. */
7175
7176 asection *s;
7177 void **vpp;
7178
7179 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7180 abfd, r_symndx);
7181 if (isym == NULL)
7182 return FALSE;
7183
7184 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7185 if (s == NULL)
7186 s = sec;
7187
7188 /* Beware of type punned pointers vs strict aliasing
7189 rules. */
7190 vpp = &(elf_section_data (s)->local_dynrel);
7191 head = (struct elf_dyn_relocs **) vpp;
7192 }
7193
7194 p = *head;
7195 if (p == NULL || p->sec != sec)
7196 {
7197 bfd_size_type amt = sizeof *p;
7198 p = ((struct elf_dyn_relocs *)
7199 bfd_zalloc (htab->root.dynobj, amt));
7200 if (p == NULL)
7201 return FALSE;
7202 p->next = *head;
7203 *head = p;
7204 p->sec = sec;
7205 }
7206
7207 p->count += 1;
7208
7209 }
7210 break;
7211
7212 /* RR: We probably want to keep a consistency check that
7213 there are no dangling GOT_PAGE relocs. */
7214 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7215 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7216 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7217 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7218 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7219 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7220 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7221 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7222 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7223 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7224 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7225 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7226 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7227 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
7228 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7229 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7230 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7231 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7232 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7233 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7234 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7235 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7236 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7237 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7238 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7239 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7240 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7241 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7242 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7243 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7244 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7245 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7246 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7247 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7248 {
7249 unsigned got_type;
7250 unsigned old_got_type;
7251
7252 got_type = aarch64_reloc_got_type (bfd_r_type);
7253
7254 if (h)
7255 {
7256 h->got.refcount += 1;
7257 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7258 }
7259 else
7260 {
7261 struct elf_aarch64_local_symbol *locals;
7262
7263 if (!elfNN_aarch64_allocate_local_symbols
7264 (abfd, symtab_hdr->sh_info))
7265 return FALSE;
7266
7267 locals = elf_aarch64_locals (abfd);
7268 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7269 locals[r_symndx].got_refcount += 1;
7270 old_got_type = locals[r_symndx].got_type;
7271 }
7272
7273 /* If a variable is accessed with both general dynamic TLS
7274 methods, two slots may be created. */
7275 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7276 got_type |= old_got_type;
7277
7278 /* We will already have issued an error message if there
7279 is a TLS/non-TLS mismatch, based on the symbol type.
7280 So just combine any TLS types needed. */
7281 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7282 && got_type != GOT_NORMAL)
7283 got_type |= old_got_type;
7284
7285 /* If the symbol is accessed by both IE and GD methods, we
7286 are able to relax. Turn off the GD flag, without
7287 messing up with any other kind of TLS types that may be
7288 involved. */
7289 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7290 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7291
7292 if (old_got_type != got_type)
7293 {
7294 if (h != NULL)
7295 elf_aarch64_hash_entry (h)->got_type = got_type;
7296 else
7297 {
7298 struct elf_aarch64_local_symbol *locals;
7299 locals = elf_aarch64_locals (abfd);
7300 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7301 locals[r_symndx].got_type = got_type;
7302 }
7303 }
7304
7305 if (htab->root.dynobj == NULL)
7306 htab->root.dynobj = abfd;
7307 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7308 return FALSE;
7309 break;
7310 }
7311
7312 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7313 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7314 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7315 case BFD_RELOC_AARCH64_MOVW_G3:
7316 if (bfd_link_pic (info))
7317 {
7318 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7319 (*_bfd_error_handler)
7320 (_("%B: relocation %s against `%s' can not be used when making "
7321 "a shared object; recompile with -fPIC"),
7322 abfd, elfNN_aarch64_howto_table[howto_index].name,
7323 (h) ? h->root.root.string : "a local symbol");
7324 bfd_set_error (bfd_error_bad_value);
7325 return FALSE;
7326 }
7327
7328 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7329 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7330 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7331 if (h != NULL && bfd_link_executable (info))
7332 {
7333 /* If this reloc is in a read-only section, we might
7334 need a copy reloc. We can't check reliably at this
7335 stage whether the section is read-only, as input
7336 sections have not yet been mapped to output sections.
7337 Tentatively set the flag for now, and correct in
7338 adjust_dynamic_symbol. */
7339 h->non_got_ref = 1;
7340 h->plt.refcount += 1;
7341 h->pointer_equality_needed = 1;
7342 }
7343 /* FIXME:: RR need to handle these in shared libraries
7344 and essentially bomb out as these being non-PIC
7345 relocations in shared libraries. */
7346 break;
7347
7348 case BFD_RELOC_AARCH64_CALL26:
7349 case BFD_RELOC_AARCH64_JUMP26:
7350 /* If this is a local symbol then we resolve it
7351 directly without creating a PLT entry. */
7352 if (h == NULL)
7353 continue;
7354
7355 h->needs_plt = 1;
7356 if (h->plt.refcount <= 0)
7357 h->plt.refcount = 1;
7358 else
7359 h->plt.refcount += 1;
7360 break;
7361
7362 default:
7363 break;
7364 }
7365 }
7366
7367 return TRUE;
7368 }
7369
7370 /* Treat mapping symbols as special target symbols. */
7371
7372 static bfd_boolean
7373 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7374 asymbol *sym)
7375 {
7376 return bfd_is_aarch64_special_symbol_name (sym->name,
7377 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7378 }
7379
7380 /* This is a copy of elf_find_function () from elf.c except that
7381 AArch64 mapping symbols are ignored when looking for function names. */
7382
7383 static bfd_boolean
7384 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7385 asymbol **symbols,
7386 asection *section,
7387 bfd_vma offset,
7388 const char **filename_ptr,
7389 const char **functionname_ptr)
7390 {
7391 const char *filename = NULL;
7392 asymbol *func = NULL;
7393 bfd_vma low_func = 0;
7394 asymbol **p;
7395
7396 for (p = symbols; *p != NULL; p++)
7397 {
7398 elf_symbol_type *q;
7399
7400 q = (elf_symbol_type *) * p;
7401
7402 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7403 {
7404 default:
7405 break;
7406 case STT_FILE:
7407 filename = bfd_asymbol_name (&q->symbol);
7408 break;
7409 case STT_FUNC:
7410 case STT_NOTYPE:
7411 /* Skip mapping symbols. */
7412 if ((q->symbol.flags & BSF_LOCAL)
7413 && (bfd_is_aarch64_special_symbol_name
7414 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7415 continue;
7416 /* Fall through. */
7417 if (bfd_get_section (&q->symbol) == section
7418 && q->symbol.value >= low_func && q->symbol.value <= offset)
7419 {
7420 func = (asymbol *) q;
7421 low_func = q->symbol.value;
7422 }
7423 break;
7424 }
7425 }
7426
7427 if (func == NULL)
7428 return FALSE;
7429
7430 if (filename_ptr)
7431 *filename_ptr = filename;
7432 if (functionname_ptr)
7433 *functionname_ptr = bfd_asymbol_name (func);
7434
7435 return TRUE;
7436 }
7437
7438
7439 /* Find the nearest line to a particular section and offset, for error
7440 reporting. This code is a duplicate of the code in elf.c, except
7441 that it uses aarch64_elf_find_function. */
7442
7443 static bfd_boolean
7444 elfNN_aarch64_find_nearest_line (bfd *abfd,
7445 asymbol **symbols,
7446 asection *section,
7447 bfd_vma offset,
7448 const char **filename_ptr,
7449 const char **functionname_ptr,
7450 unsigned int *line_ptr,
7451 unsigned int *discriminator_ptr)
7452 {
7453 bfd_boolean found = FALSE;
7454
7455 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7456 filename_ptr, functionname_ptr,
7457 line_ptr, discriminator_ptr,
7458 dwarf_debug_sections, 0,
7459 &elf_tdata (abfd)->dwarf2_find_line_info))
7460 {
7461 if (!*functionname_ptr)
7462 aarch64_elf_find_function (abfd, symbols, section, offset,
7463 *filename_ptr ? NULL : filename_ptr,
7464 functionname_ptr);
7465
7466 return TRUE;
7467 }
7468
7469 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7470 toolchain uses DWARF1. */
7471
7472 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7473 &found, filename_ptr,
7474 functionname_ptr, line_ptr,
7475 &elf_tdata (abfd)->line_info))
7476 return FALSE;
7477
7478 if (found && (*functionname_ptr || *line_ptr))
7479 return TRUE;
7480
7481 if (symbols == NULL)
7482 return FALSE;
7483
7484 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7485 filename_ptr, functionname_ptr))
7486 return FALSE;
7487
7488 *line_ptr = 0;
7489 return TRUE;
7490 }
7491
7492 static bfd_boolean
7493 elfNN_aarch64_find_inliner_info (bfd *abfd,
7494 const char **filename_ptr,
7495 const char **functionname_ptr,
7496 unsigned int *line_ptr)
7497 {
7498 bfd_boolean found;
7499 found = _bfd_dwarf2_find_inliner_info
7500 (abfd, filename_ptr,
7501 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7502 return found;
7503 }
7504
7505
7506 static void
7507 elfNN_aarch64_post_process_headers (bfd *abfd,
7508 struct bfd_link_info *link_info)
7509 {
7510 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7511
7512 i_ehdrp = elf_elfheader (abfd);
7513 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7514
7515 _bfd_elf_post_process_headers (abfd, link_info);
7516 }
7517
7518 static enum elf_reloc_type_class
7519 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7520 const asection *rel_sec ATTRIBUTE_UNUSED,
7521 const Elf_Internal_Rela *rela)
7522 {
7523 switch ((int) ELFNN_R_TYPE (rela->r_info))
7524 {
7525 case AARCH64_R (RELATIVE):
7526 return reloc_class_relative;
7527 case AARCH64_R (JUMP_SLOT):
7528 return reloc_class_plt;
7529 case AARCH64_R (COPY):
7530 return reloc_class_copy;
7531 default:
7532 return reloc_class_normal;
7533 }
7534 }
7535
7536 /* Handle an AArch64 specific section when reading an object file. This is
7537 called when bfd_section_from_shdr finds a section with an unknown
7538 type. */
7539
7540 static bfd_boolean
7541 elfNN_aarch64_section_from_shdr (bfd *abfd,
7542 Elf_Internal_Shdr *hdr,
7543 const char *name, int shindex)
7544 {
7545 /* There ought to be a place to keep ELF backend specific flags, but
7546 at the moment there isn't one. We just keep track of the
7547 sections by their name, instead. Fortunately, the ABI gives
7548 names for all the AArch64 specific sections, so we will probably get
7549 away with this. */
7550 switch (hdr->sh_type)
7551 {
7552 case SHT_AARCH64_ATTRIBUTES:
7553 break;
7554
7555 default:
7556 return FALSE;
7557 }
7558
7559 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7560 return FALSE;
7561
7562 return TRUE;
7563 }
7564
7565 /* A structure used to record a list of sections, independently
7566 of the next and prev fields in the asection structure. */
7567 typedef struct section_list
7568 {
7569 asection *sec;
7570 struct section_list *next;
7571 struct section_list *prev;
7572 }
7573 section_list;
7574
7575 /* Unfortunately we need to keep a list of sections for which
7576 an _aarch64_elf_section_data structure has been allocated. This
7577 is because it is possible for functions like elfNN_aarch64_write_section
7578 to be called on a section which has had an elf_data_structure
7579 allocated for it (and so the used_by_bfd field is valid) but
7580 for which the AArch64 extended version of this structure - the
7581 _aarch64_elf_section_data structure - has not been allocated. */
7582 static section_list *sections_with_aarch64_elf_section_data = NULL;
7583
7584 static void
7585 record_section_with_aarch64_elf_section_data (asection *sec)
7586 {
7587 struct section_list *entry;
7588
7589 entry = bfd_malloc (sizeof (*entry));
7590 if (entry == NULL)
7591 return;
7592 entry->sec = sec;
7593 entry->next = sections_with_aarch64_elf_section_data;
7594 entry->prev = NULL;
7595 if (entry->next != NULL)
7596 entry->next->prev = entry;
7597 sections_with_aarch64_elf_section_data = entry;
7598 }
7599
7600 static struct section_list *
7601 find_aarch64_elf_section_entry (asection *sec)
7602 {
7603 struct section_list *entry;
7604 static struct section_list *last_entry = NULL;
7605
7606 /* This is a short cut for the typical case where the sections are added
7607 to the sections_with_aarch64_elf_section_data list in forward order and
7608 then looked up here in backwards order. This makes a real difference
7609 to the ld-srec/sec64k.exp linker test. */
7610 entry = sections_with_aarch64_elf_section_data;
7611 if (last_entry != NULL)
7612 {
7613 if (last_entry->sec == sec)
7614 entry = last_entry;
7615 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7616 entry = last_entry->next;
7617 }
7618
7619 for (; entry; entry = entry->next)
7620 if (entry->sec == sec)
7621 break;
7622
7623 if (entry)
7624 /* Record the entry prior to this one - it is the entry we are
7625 most likely to want to locate next time. Also this way if we
7626 have been called from
7627 unrecord_section_with_aarch64_elf_section_data () we will not
7628 be caching a pointer that is about to be freed. */
7629 last_entry = entry->prev;
7630
7631 return entry;
7632 }
7633
7634 static void
7635 unrecord_section_with_aarch64_elf_section_data (asection *sec)
7636 {
7637 struct section_list *entry;
7638
7639 entry = find_aarch64_elf_section_entry (sec);
7640
7641 if (entry)
7642 {
7643 if (entry->prev != NULL)
7644 entry->prev->next = entry->next;
7645 if (entry->next != NULL)
7646 entry->next->prev = entry->prev;
7647 if (entry == sections_with_aarch64_elf_section_data)
7648 sections_with_aarch64_elf_section_data = entry->next;
7649 free (entry);
7650 }
7651 }
7652
7653
7654 typedef struct
7655 {
7656 void *finfo;
7657 struct bfd_link_info *info;
7658 asection *sec;
7659 int sec_shndx;
7660 int (*func) (void *, const char *, Elf_Internal_Sym *,
7661 asection *, struct elf_link_hash_entry *);
7662 } output_arch_syminfo;
7663
7664 enum map_symbol_type
7665 {
7666 AARCH64_MAP_INSN,
7667 AARCH64_MAP_DATA
7668 };
7669
7670
7671 /* Output a single mapping symbol. */
7672
7673 static bfd_boolean
7674 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
7675 enum map_symbol_type type, bfd_vma offset)
7676 {
7677 static const char *names[2] = { "$x", "$d" };
7678 Elf_Internal_Sym sym;
7679
7680 sym.st_value = (osi->sec->output_section->vma
7681 + osi->sec->output_offset + offset);
7682 sym.st_size = 0;
7683 sym.st_other = 0;
7684 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7685 sym.st_shndx = osi->sec_shndx;
7686 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7687 }
7688
7689 /* Output a single local symbol for a generated stub. */
7690
7691 static bfd_boolean
7692 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
7693 bfd_vma offset, bfd_vma size)
7694 {
7695 Elf_Internal_Sym sym;
7696
7697 sym.st_value = (osi->sec->output_section->vma
7698 + osi->sec->output_offset + offset);
7699 sym.st_size = size;
7700 sym.st_other = 0;
7701 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7702 sym.st_shndx = osi->sec_shndx;
7703 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7704 }
7705
7706 static bfd_boolean
7707 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7708 {
7709 struct elf_aarch64_stub_hash_entry *stub_entry;
7710 asection *stub_sec;
7711 bfd_vma addr;
7712 char *stub_name;
7713 output_arch_syminfo *osi;
7714
7715 /* Massage our args to the form they really have. */
7716 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
7717 osi = (output_arch_syminfo *) in_arg;
7718
7719 stub_sec = stub_entry->stub_sec;
7720
7721 /* Ensure this stub is attached to the current section being
7722 processed. */
7723 if (stub_sec != osi->sec)
7724 return TRUE;
7725
7726 addr = (bfd_vma) stub_entry->stub_offset;
7727
7728 stub_name = stub_entry->output_name;
7729
7730 switch (stub_entry->stub_type)
7731 {
7732 case aarch64_stub_adrp_branch:
7733 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7734 sizeof (aarch64_adrp_branch_stub)))
7735 return FALSE;
7736 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7737 return FALSE;
7738 break;
7739 case aarch64_stub_long_branch:
7740 if (!elfNN_aarch64_output_stub_sym
7741 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7742 return FALSE;
7743 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7744 return FALSE;
7745 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
7746 return FALSE;
7747 break;
7748 case aarch64_stub_erratum_835769_veneer:
7749 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7750 sizeof (aarch64_erratum_835769_stub)))
7751 return FALSE;
7752 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7753 return FALSE;
7754 break;
7755 case aarch64_stub_erratum_843419_veneer:
7756 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7757 sizeof (aarch64_erratum_843419_stub)))
7758 return FALSE;
7759 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7760 return FALSE;
7761 break;
7762
7763 default:
7764 abort ();
7765 }
7766
7767 return TRUE;
7768 }
7769
7770 /* Output mapping symbols for linker generated sections. */
7771
7772 static bfd_boolean
7773 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
7774 struct bfd_link_info *info,
7775 void *finfo,
7776 int (*func) (void *, const char *,
7777 Elf_Internal_Sym *,
7778 asection *,
7779 struct elf_link_hash_entry
7780 *))
7781 {
7782 output_arch_syminfo osi;
7783 struct elf_aarch64_link_hash_table *htab;
7784
7785 htab = elf_aarch64_hash_table (info);
7786
7787 osi.finfo = finfo;
7788 osi.info = info;
7789 osi.func = func;
7790
7791 /* Long calls stubs. */
7792 if (htab->stub_bfd && htab->stub_bfd->sections)
7793 {
7794 asection *stub_sec;
7795
7796 for (stub_sec = htab->stub_bfd->sections;
7797 stub_sec != NULL; stub_sec = stub_sec->next)
7798 {
7799 /* Ignore non-stub sections. */
7800 if (!strstr (stub_sec->name, STUB_SUFFIX))
7801 continue;
7802
7803 osi.sec = stub_sec;
7804
7805 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7806 (output_bfd, osi.sec->output_section);
7807
7808 /* The first instruction in a stub is always a branch. */
7809 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7810 return FALSE;
7811
7812 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7813 &osi);
7814 }
7815 }
7816
7817 /* Finally, output mapping symbols for the PLT. */
7818 if (!htab->root.splt || htab->root.splt->size == 0)
7819 return TRUE;
7820
7821 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7822 (output_bfd, htab->root.splt->output_section);
7823 osi.sec = htab->root.splt;
7824
7825 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
7826
7827 return TRUE;
7828
7829 }
7830
7831 /* Allocate target specific section data. */
7832
7833 static bfd_boolean
7834 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
7835 {
7836 if (!sec->used_by_bfd)
7837 {
7838 _aarch64_elf_section_data *sdata;
7839 bfd_size_type amt = sizeof (*sdata);
7840
7841 sdata = bfd_zalloc (abfd, amt);
7842 if (sdata == NULL)
7843 return FALSE;
7844 sec->used_by_bfd = sdata;
7845 }
7846
7847 record_section_with_aarch64_elf_section_data (sec);
7848
7849 return _bfd_elf_new_section_hook (abfd, sec);
7850 }
7851
7852
7853 static void
7854 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
7855 asection *sec,
7856 void *ignore ATTRIBUTE_UNUSED)
7857 {
7858 unrecord_section_with_aarch64_elf_section_data (sec);
7859 }
7860
7861 static bfd_boolean
7862 elfNN_aarch64_close_and_cleanup (bfd *abfd)
7863 {
7864 if (abfd->sections)
7865 bfd_map_over_sections (abfd,
7866 unrecord_section_via_map_over_sections, NULL);
7867
7868 return _bfd_elf_close_and_cleanup (abfd);
7869 }
7870
7871 static bfd_boolean
7872 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
7873 {
7874 if (abfd->sections)
7875 bfd_map_over_sections (abfd,
7876 unrecord_section_via_map_over_sections, NULL);
7877
7878 return _bfd_free_cached_info (abfd);
7879 }
7880
7881 /* Create dynamic sections. This is different from the ARM backend in that
7882 the got, plt, gotplt and their relocation sections are all created in the
7883 standard part of the bfd elf backend. */
7884
7885 static bfd_boolean
7886 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
7887 struct bfd_link_info *info)
7888 {
7889 struct elf_aarch64_link_hash_table *htab;
7890
7891 /* We need to create .got section. */
7892 if (!aarch64_elf_create_got_section (dynobj, info))
7893 return FALSE;
7894
7895 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
7896 return FALSE;
7897
7898 htab = elf_aarch64_hash_table (info);
7899 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
7900 if (!bfd_link_pic (info))
7901 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
7902
7903 if (!htab->sdynbss || (!bfd_link_pic (info) && !htab->srelbss))
7904 abort ();
7905
7906 return TRUE;
7907 }
7908
7909
7910 /* Allocate space in .plt, .got and associated reloc sections for
7911 dynamic relocs. */
7912
7913 static bfd_boolean
7914 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7915 {
7916 struct bfd_link_info *info;
7917 struct elf_aarch64_link_hash_table *htab;
7918 struct elf_aarch64_link_hash_entry *eh;
7919 struct elf_dyn_relocs *p;
7920
7921 /* An example of a bfd_link_hash_indirect symbol is versioned
7922 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7923 -> __gxx_personality_v0(bfd_link_hash_defined)
7924
7925 There is no need to process bfd_link_hash_indirect symbols here
7926 because we will also be presented with the concrete instance of
7927 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7928 called to copy all relevant data from the generic to the concrete
7929 symbol instance.
7930 */
7931 if (h->root.type == bfd_link_hash_indirect)
7932 return TRUE;
7933
7934 if (h->root.type == bfd_link_hash_warning)
7935 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7936
7937 info = (struct bfd_link_info *) inf;
7938 htab = elf_aarch64_hash_table (info);
7939
7940 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7941 here if it is defined and referenced in a non-shared object. */
7942 if (h->type == STT_GNU_IFUNC
7943 && h->def_regular)
7944 return TRUE;
7945 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
7946 {
7947 /* Make sure this symbol is output as a dynamic symbol.
7948 Undefined weak syms won't yet be marked as dynamic. */
7949 if (h->dynindx == -1 && !h->forced_local)
7950 {
7951 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7952 return FALSE;
7953 }
7954
7955 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
7956 {
7957 asection *s = htab->root.splt;
7958
7959 /* If this is the first .plt entry, make room for the special
7960 first entry. */
7961 if (s->size == 0)
7962 s->size += htab->plt_header_size;
7963
7964 h->plt.offset = s->size;
7965
7966 /* If this symbol is not defined in a regular file, and we are
7967 not generating a shared library, then set the symbol to this
7968 location in the .plt. This is required to make function
7969 pointers compare as equal between the normal executable and
7970 the shared library. */
7971 if (!bfd_link_pic (info) && !h->def_regular)
7972 {
7973 h->root.u.def.section = s;
7974 h->root.u.def.value = h->plt.offset;
7975 }
7976
7977 /* Make room for this entry. For now we only create the
7978 small model PLT entries. We later need to find a way
7979 of relaxing into these from the large model PLT entries. */
7980 s->size += PLT_SMALL_ENTRY_SIZE;
7981
7982 /* We also need to make an entry in the .got.plt section, which
7983 will be placed in the .got section by the linker script. */
7984 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
7985
7986 /* We also need to make an entry in the .rela.plt section. */
7987 htab->root.srelplt->size += RELOC_SIZE (htab);
7988
7989 /* We need to ensure that all GOT entries that serve the PLT
7990 are consecutive with the special GOT slots [0] [1] and
7991 [2]. Any addtional relocations, such as
7992 R_AARCH64_TLSDESC, must be placed after the PLT related
7993 entries. We abuse the reloc_count such that during
7994 sizing we adjust reloc_count to indicate the number of
7995 PLT related reserved entries. In subsequent phases when
7996 filling in the contents of the reloc entries, PLT related
7997 entries are placed by computing their PLT index (0
7998 .. reloc_count). While other none PLT relocs are placed
7999 at the slot indicated by reloc_count and reloc_count is
8000 updated. */
8001
8002 htab->root.srelplt->reloc_count++;
8003 }
8004 else
8005 {
8006 h->plt.offset = (bfd_vma) - 1;
8007 h->needs_plt = 0;
8008 }
8009 }
8010 else
8011 {
8012 h->plt.offset = (bfd_vma) - 1;
8013 h->needs_plt = 0;
8014 }
8015
8016 eh = (struct elf_aarch64_link_hash_entry *) h;
8017 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8018
8019 if (h->got.refcount > 0)
8020 {
8021 bfd_boolean dyn;
8022 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8023
8024 h->got.offset = (bfd_vma) - 1;
8025
8026 dyn = htab->root.dynamic_sections_created;
8027
8028 /* Make sure this symbol is output as a dynamic symbol.
8029 Undefined weak syms won't yet be marked as dynamic. */
8030 if (dyn && h->dynindx == -1 && !h->forced_local)
8031 {
8032 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8033 return FALSE;
8034 }
8035
8036 if (got_type == GOT_UNKNOWN)
8037 {
8038 }
8039 else if (got_type == GOT_NORMAL)
8040 {
8041 h->got.offset = htab->root.sgot->size;
8042 htab->root.sgot->size += GOT_ENTRY_SIZE;
8043 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8044 || h->root.type != bfd_link_hash_undefweak)
8045 && (bfd_link_pic (info)
8046 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8047 {
8048 htab->root.srelgot->size += RELOC_SIZE (htab);
8049 }
8050 }
8051 else
8052 {
8053 int indx;
8054 if (got_type & GOT_TLSDESC_GD)
8055 {
8056 eh->tlsdesc_got_jump_table_offset =
8057 (htab->root.sgotplt->size
8058 - aarch64_compute_jump_table_size (htab));
8059 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8060 h->got.offset = (bfd_vma) - 2;
8061 }
8062
8063 if (got_type & GOT_TLS_GD)
8064 {
8065 h->got.offset = htab->root.sgot->size;
8066 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8067 }
8068
8069 if (got_type & GOT_TLS_IE)
8070 {
8071 h->got.offset = htab->root.sgot->size;
8072 htab->root.sgot->size += GOT_ENTRY_SIZE;
8073 }
8074
8075 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8076 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8077 || h->root.type != bfd_link_hash_undefweak)
8078 && (bfd_link_pic (info)
8079 || indx != 0
8080 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8081 {
8082 if (got_type & GOT_TLSDESC_GD)
8083 {
8084 htab->root.srelplt->size += RELOC_SIZE (htab);
8085 /* Note reloc_count not incremented here! We have
8086 already adjusted reloc_count for this relocation
8087 type. */
8088
8089 /* TLSDESC PLT is now needed, but not yet determined. */
8090 htab->tlsdesc_plt = (bfd_vma) - 1;
8091 }
8092
8093 if (got_type & GOT_TLS_GD)
8094 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8095
8096 if (got_type & GOT_TLS_IE)
8097 htab->root.srelgot->size += RELOC_SIZE (htab);
8098 }
8099 }
8100 }
8101 else
8102 {
8103 h->got.offset = (bfd_vma) - 1;
8104 }
8105
8106 if (eh->dyn_relocs == NULL)
8107 return TRUE;
8108
8109 /* In the shared -Bsymbolic case, discard space allocated for
8110 dynamic pc-relative relocs against symbols which turn out to be
8111 defined in regular objects. For the normal shared case, discard
8112 space for pc-relative relocs that have become local due to symbol
8113 visibility changes. */
8114
8115 if (bfd_link_pic (info))
8116 {
8117 /* Relocs that use pc_count are those that appear on a call
8118 insn, or certain REL relocs that can generated via assembly.
8119 We want calls to protected symbols to resolve directly to the
8120 function rather than going via the plt. If people want
8121 function pointer comparisons to work as expected then they
8122 should avoid writing weird assembly. */
8123 if (SYMBOL_CALLS_LOCAL (info, h))
8124 {
8125 struct elf_dyn_relocs **pp;
8126
8127 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8128 {
8129 p->count -= p->pc_count;
8130 p->pc_count = 0;
8131 if (p->count == 0)
8132 *pp = p->next;
8133 else
8134 pp = &p->next;
8135 }
8136 }
8137
8138 /* Also discard relocs on undefined weak syms with non-default
8139 visibility. */
8140 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8141 {
8142 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8143 eh->dyn_relocs = NULL;
8144
8145 /* Make sure undefined weak symbols are output as a dynamic
8146 symbol in PIEs. */
8147 else if (h->dynindx == -1
8148 && !h->forced_local
8149 && !bfd_elf_link_record_dynamic_symbol (info, h))
8150 return FALSE;
8151 }
8152
8153 }
8154 else if (ELIMINATE_COPY_RELOCS)
8155 {
8156 /* For the non-shared case, discard space for relocs against
8157 symbols which turn out to need copy relocs or are not
8158 dynamic. */
8159
8160 if (!h->non_got_ref
8161 && ((h->def_dynamic
8162 && !h->def_regular)
8163 || (htab->root.dynamic_sections_created
8164 && (h->root.type == bfd_link_hash_undefweak
8165 || h->root.type == bfd_link_hash_undefined))))
8166 {
8167 /* Make sure this symbol is output as a dynamic symbol.
8168 Undefined weak syms won't yet be marked as dynamic. */
8169 if (h->dynindx == -1
8170 && !h->forced_local
8171 && !bfd_elf_link_record_dynamic_symbol (info, h))
8172 return FALSE;
8173
8174 /* If that succeeded, we know we'll be keeping all the
8175 relocs. */
8176 if (h->dynindx != -1)
8177 goto keep;
8178 }
8179
8180 eh->dyn_relocs = NULL;
8181
8182 keep:;
8183 }
8184
8185 /* Finally, allocate space. */
8186 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8187 {
8188 asection *sreloc;
8189
8190 sreloc = elf_section_data (p->sec)->sreloc;
8191
8192 BFD_ASSERT (sreloc != NULL);
8193
8194 sreloc->size += p->count * RELOC_SIZE (htab);
8195 }
8196
8197 return TRUE;
8198 }
8199
8200 /* Allocate space in .plt, .got and associated reloc sections for
8201 ifunc dynamic relocs. */
8202
8203 static bfd_boolean
8204 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8205 void *inf)
8206 {
8207 struct bfd_link_info *info;
8208 struct elf_aarch64_link_hash_table *htab;
8209 struct elf_aarch64_link_hash_entry *eh;
8210
8211 /* An example of a bfd_link_hash_indirect symbol is versioned
8212 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8213 -> __gxx_personality_v0(bfd_link_hash_defined)
8214
8215 There is no need to process bfd_link_hash_indirect symbols here
8216 because we will also be presented with the concrete instance of
8217 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8218 called to copy all relevant data from the generic to the concrete
8219 symbol instance.
8220 */
8221 if (h->root.type == bfd_link_hash_indirect)
8222 return TRUE;
8223
8224 if (h->root.type == bfd_link_hash_warning)
8225 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8226
8227 info = (struct bfd_link_info *) inf;
8228 htab = elf_aarch64_hash_table (info);
8229
8230 eh = (struct elf_aarch64_link_hash_entry *) h;
8231
8232 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8233 here if it is defined and referenced in a non-shared object. */
8234 if (h->type == STT_GNU_IFUNC
8235 && h->def_regular)
8236 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8237 &eh->dyn_relocs,
8238 NULL,
8239 htab->plt_entry_size,
8240 htab->plt_header_size,
8241 GOT_ENTRY_SIZE);
8242 return TRUE;
8243 }
8244
8245 /* Allocate space in .plt, .got and associated reloc sections for
8246 local dynamic relocs. */
8247
8248 static bfd_boolean
8249 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8250 {
8251 struct elf_link_hash_entry *h
8252 = (struct elf_link_hash_entry *) *slot;
8253
8254 if (h->type != STT_GNU_IFUNC
8255 || !h->def_regular
8256 || !h->ref_regular
8257 || !h->forced_local
8258 || h->root.type != bfd_link_hash_defined)
8259 abort ();
8260
8261 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8262 }
8263
8264 /* Allocate space in .plt, .got and associated reloc sections for
8265 local ifunc dynamic relocs. */
8266
8267 static bfd_boolean
8268 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8269 {
8270 struct elf_link_hash_entry *h
8271 = (struct elf_link_hash_entry *) *slot;
8272
8273 if (h->type != STT_GNU_IFUNC
8274 || !h->def_regular
8275 || !h->ref_regular
8276 || !h->forced_local
8277 || h->root.type != bfd_link_hash_defined)
8278 abort ();
8279
8280 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8281 }
8282
8283 /* Find any dynamic relocs that apply to read-only sections. */
8284
8285 static bfd_boolean
8286 aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
8287 {
8288 struct elf_aarch64_link_hash_entry * eh;
8289 struct elf_dyn_relocs * p;
8290
8291 eh = (struct elf_aarch64_link_hash_entry *) h;
8292 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8293 {
8294 asection *s = p->sec;
8295
8296 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8297 {
8298 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8299
8300 info->flags |= DF_TEXTREL;
8301
8302 /* Not an error, just cut short the traversal. */
8303 return FALSE;
8304 }
8305 }
8306 return TRUE;
8307 }
8308
8309 /* This is the most important function of all . Innocuosly named
8310 though ! */
8311 static bfd_boolean
8312 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8313 struct bfd_link_info *info)
8314 {
8315 struct elf_aarch64_link_hash_table *htab;
8316 bfd *dynobj;
8317 asection *s;
8318 bfd_boolean relocs;
8319 bfd *ibfd;
8320
8321 htab = elf_aarch64_hash_table ((info));
8322 dynobj = htab->root.dynobj;
8323
8324 BFD_ASSERT (dynobj != NULL);
8325
8326 if (htab->root.dynamic_sections_created)
8327 {
8328 if (bfd_link_executable (info) && !info->nointerp)
8329 {
8330 s = bfd_get_linker_section (dynobj, ".interp");
8331 if (s == NULL)
8332 abort ();
8333 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8334 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8335 }
8336 }
8337
8338 /* Set up .got offsets for local syms, and space for local dynamic
8339 relocs. */
8340 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8341 {
8342 struct elf_aarch64_local_symbol *locals = NULL;
8343 Elf_Internal_Shdr *symtab_hdr;
8344 asection *srel;
8345 unsigned int i;
8346
8347 if (!is_aarch64_elf (ibfd))
8348 continue;
8349
8350 for (s = ibfd->sections; s != NULL; s = s->next)
8351 {
8352 struct elf_dyn_relocs *p;
8353
8354 for (p = (struct elf_dyn_relocs *)
8355 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8356 {
8357 if (!bfd_is_abs_section (p->sec)
8358 && bfd_is_abs_section (p->sec->output_section))
8359 {
8360 /* Input section has been discarded, either because
8361 it is a copy of a linkonce section or due to
8362 linker script /DISCARD/, so we'll be discarding
8363 the relocs too. */
8364 }
8365 else if (p->count != 0)
8366 {
8367 srel = elf_section_data (p->sec)->sreloc;
8368 srel->size += p->count * RELOC_SIZE (htab);
8369 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8370 info->flags |= DF_TEXTREL;
8371 }
8372 }
8373 }
8374
8375 locals = elf_aarch64_locals (ibfd);
8376 if (!locals)
8377 continue;
8378
8379 symtab_hdr = &elf_symtab_hdr (ibfd);
8380 srel = htab->root.srelgot;
8381 for (i = 0; i < symtab_hdr->sh_info; i++)
8382 {
8383 locals[i].got_offset = (bfd_vma) - 1;
8384 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8385 if (locals[i].got_refcount > 0)
8386 {
8387 unsigned got_type = locals[i].got_type;
8388 if (got_type & GOT_TLSDESC_GD)
8389 {
8390 locals[i].tlsdesc_got_jump_table_offset =
8391 (htab->root.sgotplt->size
8392 - aarch64_compute_jump_table_size (htab));
8393 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8394 locals[i].got_offset = (bfd_vma) - 2;
8395 }
8396
8397 if (got_type & GOT_TLS_GD)
8398 {
8399 locals[i].got_offset = htab->root.sgot->size;
8400 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8401 }
8402
8403 if (got_type & GOT_TLS_IE
8404 || got_type & GOT_NORMAL)
8405 {
8406 locals[i].got_offset = htab->root.sgot->size;
8407 htab->root.sgot->size += GOT_ENTRY_SIZE;
8408 }
8409
8410 if (got_type == GOT_UNKNOWN)
8411 {
8412 }
8413
8414 if (bfd_link_pic (info))
8415 {
8416 if (got_type & GOT_TLSDESC_GD)
8417 {
8418 htab->root.srelplt->size += RELOC_SIZE (htab);
8419 /* Note RELOC_COUNT not incremented here! */
8420 htab->tlsdesc_plt = (bfd_vma) - 1;
8421 }
8422
8423 if (got_type & GOT_TLS_GD)
8424 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8425
8426 if (got_type & GOT_TLS_IE
8427 || got_type & GOT_NORMAL)
8428 htab->root.srelgot->size += RELOC_SIZE (htab);
8429 }
8430 }
8431 else
8432 {
8433 locals[i].got_refcount = (bfd_vma) - 1;
8434 }
8435 }
8436 }
8437
8438
8439 /* Allocate global sym .plt and .got entries, and space for global
8440 sym dynamic relocs. */
8441 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8442 info);
8443
8444 /* Allocate global ifunc sym .plt and .got entries, and space for global
8445 ifunc sym dynamic relocs. */
8446 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8447 info);
8448
8449 /* Allocate .plt and .got entries, and space for local symbols. */
8450 htab_traverse (htab->loc_hash_table,
8451 elfNN_aarch64_allocate_local_dynrelocs,
8452 info);
8453
8454 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8455 htab_traverse (htab->loc_hash_table,
8456 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8457 info);
8458
8459 /* For every jump slot reserved in the sgotplt, reloc_count is
8460 incremented. However, when we reserve space for TLS descriptors,
8461 it's not incremented, so in order to compute the space reserved
8462 for them, it suffices to multiply the reloc count by the jump
8463 slot size. */
8464
8465 if (htab->root.srelplt)
8466 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8467
8468 if (htab->tlsdesc_plt)
8469 {
8470 if (htab->root.splt->size == 0)
8471 htab->root.splt->size += PLT_ENTRY_SIZE;
8472
8473 htab->tlsdesc_plt = htab->root.splt->size;
8474 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8475
8476 /* If we're not using lazy TLS relocations, don't generate the
8477 GOT entry required. */
8478 if (!(info->flags & DF_BIND_NOW))
8479 {
8480 htab->dt_tlsdesc_got = htab->root.sgot->size;
8481 htab->root.sgot->size += GOT_ENTRY_SIZE;
8482 }
8483 }
8484
8485 /* Init mapping symbols information to use later to distingush between
8486 code and data while scanning for errata. */
8487 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8488 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8489 {
8490 if (!is_aarch64_elf (ibfd))
8491 continue;
8492 bfd_elfNN_aarch64_init_maps (ibfd);
8493 }
8494
8495 /* We now have determined the sizes of the various dynamic sections.
8496 Allocate memory for them. */
8497 relocs = FALSE;
8498 for (s = dynobj->sections; s != NULL; s = s->next)
8499 {
8500 if ((s->flags & SEC_LINKER_CREATED) == 0)
8501 continue;
8502
8503 if (s == htab->root.splt
8504 || s == htab->root.sgot
8505 || s == htab->root.sgotplt
8506 || s == htab->root.iplt
8507 || s == htab->root.igotplt || s == htab->sdynbss)
8508 {
8509 /* Strip this section if we don't need it; see the
8510 comment below. */
8511 }
8512 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8513 {
8514 if (s->size != 0 && s != htab->root.srelplt)
8515 relocs = TRUE;
8516
8517 /* We use the reloc_count field as a counter if we need
8518 to copy relocs into the output file. */
8519 if (s != htab->root.srelplt)
8520 s->reloc_count = 0;
8521 }
8522 else
8523 {
8524 /* It's not one of our sections, so don't allocate space. */
8525 continue;
8526 }
8527
8528 if (s->size == 0)
8529 {
8530 /* If we don't need this section, strip it from the
8531 output file. This is mostly to handle .rela.bss and
8532 .rela.plt. We must create both sections in
8533 create_dynamic_sections, because they must be created
8534 before the linker maps input sections to output
8535 sections. The linker does that before
8536 adjust_dynamic_symbol is called, and it is that
8537 function which decides whether anything needs to go
8538 into these sections. */
8539
8540 s->flags |= SEC_EXCLUDE;
8541 continue;
8542 }
8543
8544 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8545 continue;
8546
8547 /* Allocate memory for the section contents. We use bfd_zalloc
8548 here in case unused entries are not reclaimed before the
8549 section's contents are written out. This should not happen,
8550 but this way if it does, we get a R_AARCH64_NONE reloc instead
8551 of garbage. */
8552 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8553 if (s->contents == NULL)
8554 return FALSE;
8555 }
8556
8557 if (htab->root.dynamic_sections_created)
8558 {
8559 /* Add some entries to the .dynamic section. We fill in the
8560 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8561 must add the entries now so that we get the correct size for
8562 the .dynamic section. The DT_DEBUG entry is filled in by the
8563 dynamic linker and used by the debugger. */
8564 #define add_dynamic_entry(TAG, VAL) \
8565 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8566
8567 if (bfd_link_executable (info))
8568 {
8569 if (!add_dynamic_entry (DT_DEBUG, 0))
8570 return FALSE;
8571 }
8572
8573 if (htab->root.splt->size != 0)
8574 {
8575 if (!add_dynamic_entry (DT_PLTGOT, 0)
8576 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8577 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8578 || !add_dynamic_entry (DT_JMPREL, 0))
8579 return FALSE;
8580
8581 if (htab->tlsdesc_plt
8582 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8583 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8584 return FALSE;
8585 }
8586
8587 if (relocs)
8588 {
8589 if (!add_dynamic_entry (DT_RELA, 0)
8590 || !add_dynamic_entry (DT_RELASZ, 0)
8591 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8592 return FALSE;
8593
8594 /* If any dynamic relocs apply to a read-only section,
8595 then we need a DT_TEXTREL entry. */
8596 if ((info->flags & DF_TEXTREL) == 0)
8597 elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
8598 info);
8599
8600 if ((info->flags & DF_TEXTREL) != 0)
8601 {
8602 if (!add_dynamic_entry (DT_TEXTREL, 0))
8603 return FALSE;
8604 }
8605 }
8606 }
8607 #undef add_dynamic_entry
8608
8609 return TRUE;
8610 }
8611
8612 static inline void
8613 elf_aarch64_update_plt_entry (bfd *output_bfd,
8614 bfd_reloc_code_real_type r_type,
8615 bfd_byte *plt_entry, bfd_vma value)
8616 {
8617 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8618
8619 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8620 }
8621
8622 static void
8623 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8624 struct elf_aarch64_link_hash_table
8625 *htab, bfd *output_bfd,
8626 struct bfd_link_info *info)
8627 {
8628 bfd_byte *plt_entry;
8629 bfd_vma plt_index;
8630 bfd_vma got_offset;
8631 bfd_vma gotplt_entry_address;
8632 bfd_vma plt_entry_address;
8633 Elf_Internal_Rela rela;
8634 bfd_byte *loc;
8635 asection *plt, *gotplt, *relplt;
8636
8637 /* When building a static executable, use .iplt, .igot.plt and
8638 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8639 if (htab->root.splt != NULL)
8640 {
8641 plt = htab->root.splt;
8642 gotplt = htab->root.sgotplt;
8643 relplt = htab->root.srelplt;
8644 }
8645 else
8646 {
8647 plt = htab->root.iplt;
8648 gotplt = htab->root.igotplt;
8649 relplt = htab->root.irelplt;
8650 }
8651
8652 /* Get the index in the procedure linkage table which
8653 corresponds to this symbol. This is the index of this symbol
8654 in all the symbols for which we are making plt entries. The
8655 first entry in the procedure linkage table is reserved.
8656
8657 Get the offset into the .got table of the entry that
8658 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8659 bytes. The first three are reserved for the dynamic linker.
8660
8661 For static executables, we don't reserve anything. */
8662
8663 if (plt == htab->root.splt)
8664 {
8665 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8666 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8667 }
8668 else
8669 {
8670 plt_index = h->plt.offset / htab->plt_entry_size;
8671 got_offset = plt_index * GOT_ENTRY_SIZE;
8672 }
8673
8674 plt_entry = plt->contents + h->plt.offset;
8675 plt_entry_address = plt->output_section->vma
8676 + plt->output_offset + h->plt.offset;
8677 gotplt_entry_address = gotplt->output_section->vma +
8678 gotplt->output_offset + got_offset;
8679
8680 /* Copy in the boiler-plate for the PLTn entry. */
8681 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8682
8683 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8684 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8685 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8686 plt_entry,
8687 PG (gotplt_entry_address) -
8688 PG (plt_entry_address));
8689
8690 /* Fill in the lo12 bits for the load from the pltgot. */
8691 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8692 plt_entry + 4,
8693 PG_OFFSET (gotplt_entry_address));
8694
8695 /* Fill in the lo12 bits for the add from the pltgot entry. */
8696 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8697 plt_entry + 8,
8698 PG_OFFSET (gotplt_entry_address));
8699
8700 /* All the GOTPLT Entries are essentially initialized to PLT0. */
8701 bfd_put_NN (output_bfd,
8702 plt->output_section->vma + plt->output_offset,
8703 gotplt->contents + got_offset);
8704
8705 rela.r_offset = gotplt_entry_address;
8706
8707 if (h->dynindx == -1
8708 || ((bfd_link_executable (info)
8709 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8710 && h->def_regular
8711 && h->type == STT_GNU_IFUNC))
8712 {
8713 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8714 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8715 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8716 rela.r_addend = (h->root.u.def.value
8717 + h->root.u.def.section->output_section->vma
8718 + h->root.u.def.section->output_offset);
8719 }
8720 else
8721 {
8722 /* Fill in the entry in the .rela.plt section. */
8723 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8724 rela.r_addend = 0;
8725 }
8726
8727 /* Compute the relocation entry to used based on PLT index and do
8728 not adjust reloc_count. The reloc_count has already been adjusted
8729 to account for this entry. */
8730 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
8731 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8732 }
8733
8734 /* Size sections even though they're not dynamic. We use it to setup
8735 _TLS_MODULE_BASE_, if needed. */
8736
8737 static bfd_boolean
8738 elfNN_aarch64_always_size_sections (bfd *output_bfd,
8739 struct bfd_link_info *info)
8740 {
8741 asection *tls_sec;
8742
8743 if (bfd_link_relocatable (info))
8744 return TRUE;
8745
8746 tls_sec = elf_hash_table (info)->tls_sec;
8747
8748 if (tls_sec)
8749 {
8750 struct elf_link_hash_entry *tlsbase;
8751
8752 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8753 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8754
8755 if (tlsbase)
8756 {
8757 struct bfd_link_hash_entry *h = NULL;
8758 const struct elf_backend_data *bed =
8759 get_elf_backend_data (output_bfd);
8760
8761 if (!(_bfd_generic_link_add_one_symbol
8762 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8763 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8764 return FALSE;
8765
8766 tlsbase->type = STT_TLS;
8767 tlsbase = (struct elf_link_hash_entry *) h;
8768 tlsbase->def_regular = 1;
8769 tlsbase->other = STV_HIDDEN;
8770 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8771 }
8772 }
8773
8774 return TRUE;
8775 }
8776
8777 /* Finish up dynamic symbol handling. We set the contents of various
8778 dynamic sections here. */
8779 static bfd_boolean
8780 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
8781 struct bfd_link_info *info,
8782 struct elf_link_hash_entry *h,
8783 Elf_Internal_Sym *sym)
8784 {
8785 struct elf_aarch64_link_hash_table *htab;
8786 htab = elf_aarch64_hash_table (info);
8787
8788 if (h->plt.offset != (bfd_vma) - 1)
8789 {
8790 asection *plt, *gotplt, *relplt;
8791
8792 /* This symbol has an entry in the procedure linkage table. Set
8793 it up. */
8794
8795 /* When building a static executable, use .iplt, .igot.plt and
8796 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8797 if (htab->root.splt != NULL)
8798 {
8799 plt = htab->root.splt;
8800 gotplt = htab->root.sgotplt;
8801 relplt = htab->root.srelplt;
8802 }
8803 else
8804 {
8805 plt = htab->root.iplt;
8806 gotplt = htab->root.igotplt;
8807 relplt = htab->root.irelplt;
8808 }
8809
8810 /* This symbol has an entry in the procedure linkage table. Set
8811 it up. */
8812 if ((h->dynindx == -1
8813 && !((h->forced_local || bfd_link_executable (info))
8814 && h->def_regular
8815 && h->type == STT_GNU_IFUNC))
8816 || plt == NULL
8817 || gotplt == NULL
8818 || relplt == NULL)
8819 abort ();
8820
8821 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
8822 if (!h->def_regular)
8823 {
8824 /* Mark the symbol as undefined, rather than as defined in
8825 the .plt section. */
8826 sym->st_shndx = SHN_UNDEF;
8827 /* If the symbol is weak we need to clear the value.
8828 Otherwise, the PLT entry would provide a definition for
8829 the symbol even if the symbol wasn't defined anywhere,
8830 and so the symbol would never be NULL. Leave the value if
8831 there were any relocations where pointer equality matters
8832 (this is a clue for the dynamic linker, to make function
8833 pointer comparisons work between an application and shared
8834 library). */
8835 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8836 sym->st_value = 0;
8837 }
8838 }
8839
8840 if (h->got.offset != (bfd_vma) - 1
8841 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
8842 {
8843 Elf_Internal_Rela rela;
8844 bfd_byte *loc;
8845
8846 /* This symbol has an entry in the global offset table. Set it
8847 up. */
8848 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8849 abort ();
8850
8851 rela.r_offset = (htab->root.sgot->output_section->vma
8852 + htab->root.sgot->output_offset
8853 + (h->got.offset & ~(bfd_vma) 1));
8854
8855 if (h->def_regular
8856 && h->type == STT_GNU_IFUNC)
8857 {
8858 if (bfd_link_pic (info))
8859 {
8860 /* Generate R_AARCH64_GLOB_DAT. */
8861 goto do_glob_dat;
8862 }
8863 else
8864 {
8865 asection *plt;
8866
8867 if (!h->pointer_equality_needed)
8868 abort ();
8869
8870 /* For non-shared object, we can't use .got.plt, which
8871 contains the real function address if we need pointer
8872 equality. We load the GOT entry with the PLT entry. */
8873 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
8874 bfd_put_NN (output_bfd, (plt->output_section->vma
8875 + plt->output_offset
8876 + h->plt.offset),
8877 htab->root.sgot->contents
8878 + (h->got.offset & ~(bfd_vma) 1));
8879 return TRUE;
8880 }
8881 }
8882 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
8883 {
8884 if (!h->def_regular)
8885 return FALSE;
8886
8887 BFD_ASSERT ((h->got.offset & 1) != 0);
8888 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
8889 rela.r_addend = (h->root.u.def.value
8890 + h->root.u.def.section->output_section->vma
8891 + h->root.u.def.section->output_offset);
8892 }
8893 else
8894 {
8895 do_glob_dat:
8896 BFD_ASSERT ((h->got.offset & 1) == 0);
8897 bfd_put_NN (output_bfd, (bfd_vma) 0,
8898 htab->root.sgot->contents + h->got.offset);
8899 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
8900 rela.r_addend = 0;
8901 }
8902
8903 loc = htab->root.srelgot->contents;
8904 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
8905 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8906 }
8907
8908 if (h->needs_copy)
8909 {
8910 Elf_Internal_Rela rela;
8911 bfd_byte *loc;
8912
8913 /* This symbol needs a copy reloc. Set it up. */
8914
8915 if (h->dynindx == -1
8916 || (h->root.type != bfd_link_hash_defined
8917 && h->root.type != bfd_link_hash_defweak)
8918 || htab->srelbss == NULL)
8919 abort ();
8920
8921 rela.r_offset = (h->root.u.def.value
8922 + h->root.u.def.section->output_section->vma
8923 + h->root.u.def.section->output_offset);
8924 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
8925 rela.r_addend = 0;
8926 loc = htab->srelbss->contents;
8927 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
8928 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8929 }
8930
8931 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
8932 be NULL for local symbols. */
8933 if (sym != NULL
8934 && (h == elf_hash_table (info)->hdynamic
8935 || h == elf_hash_table (info)->hgot))
8936 sym->st_shndx = SHN_ABS;
8937
8938 return TRUE;
8939 }
8940
8941 /* Finish up local dynamic symbol handling. We set the contents of
8942 various dynamic sections here. */
8943
8944 static bfd_boolean
8945 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
8946 {
8947 struct elf_link_hash_entry *h
8948 = (struct elf_link_hash_entry *) *slot;
8949 struct bfd_link_info *info
8950 = (struct bfd_link_info *) inf;
8951
8952 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
8953 info, h, NULL);
8954 }
8955
8956 static void
8957 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
8958 struct elf_aarch64_link_hash_table
8959 *htab)
8960 {
8961 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
8962 small and large plts and at the minute just generates
8963 the small PLT. */
8964
8965 /* PLT0 of the small PLT looks like this in ELF64 -
8966 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
8967 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
8968 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
8969 // symbol resolver
8970 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
8971 // GOTPLT entry for this.
8972 br x17
8973 PLT0 will be slightly different in ELF32 due to different got entry
8974 size.
8975 */
8976 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
8977 bfd_vma plt_base;
8978
8979
8980 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
8981 PLT_ENTRY_SIZE);
8982 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
8983 PLT_ENTRY_SIZE;
8984
8985 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
8986 + htab->root.sgotplt->output_offset
8987 + GOT_ENTRY_SIZE * 2);
8988
8989 plt_base = htab->root.splt->output_section->vma +
8990 htab->root.splt->output_offset;
8991
8992 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8993 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8994 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8995 htab->root.splt->contents + 4,
8996 PG (plt_got_2nd_ent) - PG (plt_base + 4));
8997
8998 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8999 htab->root.splt->contents + 8,
9000 PG_OFFSET (plt_got_2nd_ent));
9001
9002 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9003 htab->root.splt->contents + 12,
9004 PG_OFFSET (plt_got_2nd_ent));
9005 }
9006
9007 static bfd_boolean
9008 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9009 struct bfd_link_info *info)
9010 {
9011 struct elf_aarch64_link_hash_table *htab;
9012 bfd *dynobj;
9013 asection *sdyn;
9014
9015 htab = elf_aarch64_hash_table (info);
9016 dynobj = htab->root.dynobj;
9017 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9018
9019 if (htab->root.dynamic_sections_created)
9020 {
9021 ElfNN_External_Dyn *dyncon, *dynconend;
9022
9023 if (sdyn == NULL || htab->root.sgot == NULL)
9024 abort ();
9025
9026 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9027 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9028 for (; dyncon < dynconend; dyncon++)
9029 {
9030 Elf_Internal_Dyn dyn;
9031 asection *s;
9032
9033 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9034
9035 switch (dyn.d_tag)
9036 {
9037 default:
9038 continue;
9039
9040 case DT_PLTGOT:
9041 s = htab->root.sgotplt;
9042 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9043 break;
9044
9045 case DT_JMPREL:
9046 s = htab->root.srelplt;
9047 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9048 break;
9049
9050 case DT_PLTRELSZ:
9051 s = htab->root.srelplt;
9052 dyn.d_un.d_val = s->size;
9053 break;
9054
9055 case DT_RELASZ:
9056 /* The procedure linkage table relocs (DT_JMPREL) should
9057 not be included in the overall relocs (DT_RELA).
9058 Therefore, we override the DT_RELASZ entry here to
9059 make it not include the JMPREL relocs. Since the
9060 linker script arranges for .rela.plt to follow all
9061 other relocation sections, we don't have to worry
9062 about changing the DT_RELA entry. */
9063 if (htab->root.srelplt != NULL)
9064 {
9065 s = htab->root.srelplt;
9066 dyn.d_un.d_val -= s->size;
9067 }
9068 break;
9069
9070 case DT_TLSDESC_PLT:
9071 s = htab->root.splt;
9072 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9073 + htab->tlsdesc_plt;
9074 break;
9075
9076 case DT_TLSDESC_GOT:
9077 s = htab->root.sgot;
9078 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9079 + htab->dt_tlsdesc_got;
9080 break;
9081 }
9082
9083 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9084 }
9085
9086 }
9087
9088 /* Fill in the special first entry in the procedure linkage table. */
9089 if (htab->root.splt && htab->root.splt->size > 0)
9090 {
9091 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9092
9093 elf_section_data (htab->root.splt->output_section)->
9094 this_hdr.sh_entsize = htab->plt_entry_size;
9095
9096
9097 if (htab->tlsdesc_plt)
9098 {
9099 bfd_put_NN (output_bfd, (bfd_vma) 0,
9100 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9101
9102 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9103 elfNN_aarch64_tlsdesc_small_plt_entry,
9104 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
9105
9106 {
9107 bfd_vma adrp1_addr =
9108 htab->root.splt->output_section->vma
9109 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9110
9111 bfd_vma adrp2_addr = adrp1_addr + 4;
9112
9113 bfd_vma got_addr =
9114 htab->root.sgot->output_section->vma
9115 + htab->root.sgot->output_offset;
9116
9117 bfd_vma pltgot_addr =
9118 htab->root.sgotplt->output_section->vma
9119 + htab->root.sgotplt->output_offset;
9120
9121 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9122
9123 bfd_byte *plt_entry =
9124 htab->root.splt->contents + htab->tlsdesc_plt;
9125
9126 /* adrp x2, DT_TLSDESC_GOT */
9127 elf_aarch64_update_plt_entry (output_bfd,
9128 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9129 plt_entry + 4,
9130 (PG (dt_tlsdesc_got)
9131 - PG (adrp1_addr)));
9132
9133 /* adrp x3, 0 */
9134 elf_aarch64_update_plt_entry (output_bfd,
9135 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9136 plt_entry + 8,
9137 (PG (pltgot_addr)
9138 - PG (adrp2_addr)));
9139
9140 /* ldr x2, [x2, #0] */
9141 elf_aarch64_update_plt_entry (output_bfd,
9142 BFD_RELOC_AARCH64_LDSTNN_LO12,
9143 plt_entry + 12,
9144 PG_OFFSET (dt_tlsdesc_got));
9145
9146 /* add x3, x3, 0 */
9147 elf_aarch64_update_plt_entry (output_bfd,
9148 BFD_RELOC_AARCH64_ADD_LO12,
9149 plt_entry + 16,
9150 PG_OFFSET (pltgot_addr));
9151 }
9152 }
9153 }
9154
9155 if (htab->root.sgotplt)
9156 {
9157 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9158 {
9159 (*_bfd_error_handler)
9160 (_("discarded output section: `%A'"), htab->root.sgotplt);
9161 return FALSE;
9162 }
9163
9164 /* Fill in the first three entries in the global offset table. */
9165 if (htab->root.sgotplt->size > 0)
9166 {
9167 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9168
9169 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9170 bfd_put_NN (output_bfd,
9171 (bfd_vma) 0,
9172 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9173 bfd_put_NN (output_bfd,
9174 (bfd_vma) 0,
9175 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9176 }
9177
9178 if (htab->root.sgot)
9179 {
9180 if (htab->root.sgot->size > 0)
9181 {
9182 bfd_vma addr =
9183 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9184 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9185 }
9186 }
9187
9188 elf_section_data (htab->root.sgotplt->output_section)->
9189 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9190 }
9191
9192 if (htab->root.sgot && htab->root.sgot->size > 0)
9193 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9194 = GOT_ENTRY_SIZE;
9195
9196 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9197 htab_traverse (htab->loc_hash_table,
9198 elfNN_aarch64_finish_local_dynamic_symbol,
9199 info);
9200
9201 return TRUE;
9202 }
9203
9204 /* Return address for Ith PLT stub in section PLT, for relocation REL
9205 or (bfd_vma) -1 if it should not be included. */
9206
9207 static bfd_vma
9208 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9209 const arelent *rel ATTRIBUTE_UNUSED)
9210 {
9211 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9212 }
9213
9214
9215 /* We use this so we can override certain functions
9216 (though currently we don't). */
9217
9218 const struct elf_size_info elfNN_aarch64_size_info =
9219 {
9220 sizeof (ElfNN_External_Ehdr),
9221 sizeof (ElfNN_External_Phdr),
9222 sizeof (ElfNN_External_Shdr),
9223 sizeof (ElfNN_External_Rel),
9224 sizeof (ElfNN_External_Rela),
9225 sizeof (ElfNN_External_Sym),
9226 sizeof (ElfNN_External_Dyn),
9227 sizeof (Elf_External_Note),
9228 4, /* Hash table entry size. */
9229 1, /* Internal relocs per external relocs. */
9230 ARCH_SIZE, /* Arch size. */
9231 LOG_FILE_ALIGN, /* Log_file_align. */
9232 ELFCLASSNN, EV_CURRENT,
9233 bfd_elfNN_write_out_phdrs,
9234 bfd_elfNN_write_shdrs_and_ehdr,
9235 bfd_elfNN_checksum_contents,
9236 bfd_elfNN_write_relocs,
9237 bfd_elfNN_swap_symbol_in,
9238 bfd_elfNN_swap_symbol_out,
9239 bfd_elfNN_slurp_reloc_table,
9240 bfd_elfNN_slurp_symbol_table,
9241 bfd_elfNN_swap_dyn_in,
9242 bfd_elfNN_swap_dyn_out,
9243 bfd_elfNN_swap_reloc_in,
9244 bfd_elfNN_swap_reloc_out,
9245 bfd_elfNN_swap_reloca_in,
9246 bfd_elfNN_swap_reloca_out
9247 };
9248
9249 #define ELF_ARCH bfd_arch_aarch64
9250 #define ELF_MACHINE_CODE EM_AARCH64
9251 #define ELF_MAXPAGESIZE 0x10000
9252 #define ELF_MINPAGESIZE 0x1000
9253 #define ELF_COMMONPAGESIZE 0x1000
9254
9255 #define bfd_elfNN_close_and_cleanup \
9256 elfNN_aarch64_close_and_cleanup
9257
9258 #define bfd_elfNN_bfd_free_cached_info \
9259 elfNN_aarch64_bfd_free_cached_info
9260
9261 #define bfd_elfNN_bfd_is_target_special_symbol \
9262 elfNN_aarch64_is_target_special_symbol
9263
9264 #define bfd_elfNN_bfd_link_hash_table_create \
9265 elfNN_aarch64_link_hash_table_create
9266
9267 #define bfd_elfNN_bfd_merge_private_bfd_data \
9268 elfNN_aarch64_merge_private_bfd_data
9269
9270 #define bfd_elfNN_bfd_print_private_bfd_data \
9271 elfNN_aarch64_print_private_bfd_data
9272
9273 #define bfd_elfNN_bfd_reloc_type_lookup \
9274 elfNN_aarch64_reloc_type_lookup
9275
9276 #define bfd_elfNN_bfd_reloc_name_lookup \
9277 elfNN_aarch64_reloc_name_lookup
9278
9279 #define bfd_elfNN_bfd_set_private_flags \
9280 elfNN_aarch64_set_private_flags
9281
9282 #define bfd_elfNN_find_inliner_info \
9283 elfNN_aarch64_find_inliner_info
9284
9285 #define bfd_elfNN_find_nearest_line \
9286 elfNN_aarch64_find_nearest_line
9287
9288 #define bfd_elfNN_mkobject \
9289 elfNN_aarch64_mkobject
9290
9291 #define bfd_elfNN_new_section_hook \
9292 elfNN_aarch64_new_section_hook
9293
9294 #define elf_backend_adjust_dynamic_symbol \
9295 elfNN_aarch64_adjust_dynamic_symbol
9296
9297 #define elf_backend_always_size_sections \
9298 elfNN_aarch64_always_size_sections
9299
9300 #define elf_backend_check_relocs \
9301 elfNN_aarch64_check_relocs
9302
9303 #define elf_backend_copy_indirect_symbol \
9304 elfNN_aarch64_copy_indirect_symbol
9305
9306 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9307 to them in our hash. */
9308 #define elf_backend_create_dynamic_sections \
9309 elfNN_aarch64_create_dynamic_sections
9310
9311 #define elf_backend_init_index_section \
9312 _bfd_elf_init_2_index_sections
9313
9314 #define elf_backend_finish_dynamic_sections \
9315 elfNN_aarch64_finish_dynamic_sections
9316
9317 #define elf_backend_finish_dynamic_symbol \
9318 elfNN_aarch64_finish_dynamic_symbol
9319
9320 #define elf_backend_gc_sweep_hook \
9321 elfNN_aarch64_gc_sweep_hook
9322
9323 #define elf_backend_object_p \
9324 elfNN_aarch64_object_p
9325
9326 #define elf_backend_output_arch_local_syms \
9327 elfNN_aarch64_output_arch_local_syms
9328
9329 #define elf_backend_plt_sym_val \
9330 elfNN_aarch64_plt_sym_val
9331
9332 #define elf_backend_post_process_headers \
9333 elfNN_aarch64_post_process_headers
9334
9335 #define elf_backend_relocate_section \
9336 elfNN_aarch64_relocate_section
9337
9338 #define elf_backend_reloc_type_class \
9339 elfNN_aarch64_reloc_type_class
9340
9341 #define elf_backend_section_from_shdr \
9342 elfNN_aarch64_section_from_shdr
9343
9344 #define elf_backend_size_dynamic_sections \
9345 elfNN_aarch64_size_dynamic_sections
9346
9347 #define elf_backend_size_info \
9348 elfNN_aarch64_size_info
9349
9350 #define elf_backend_write_section \
9351 elfNN_aarch64_write_section
9352
9353 #define elf_backend_can_refcount 1
9354 #define elf_backend_can_gc_sections 1
9355 #define elf_backend_plt_readonly 1
9356 #define elf_backend_want_got_plt 1
9357 #define elf_backend_want_plt_sym 0
9358 #define elf_backend_may_use_rel_p 0
9359 #define elf_backend_may_use_rela_p 1
9360 #define elf_backend_default_use_rela_p 1
9361 #define elf_backend_rela_normal 1
9362 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9363 #define elf_backend_default_execstack 0
9364 #define elf_backend_extern_protected_data 1
9365
9366 #undef elf_backend_obj_attrs_section
9367 #define elf_backend_obj_attrs_section ".ARM.attributes"
9368
9369 #include "elfNN-target.h"
9370
9371 /* CloudABI support. */
9372
9373 #undef TARGET_LITTLE_SYM
9374 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
9375 #undef TARGET_LITTLE_NAME
9376 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
9377 #undef TARGET_BIG_SYM
9378 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
9379 #undef TARGET_BIG_NAME
9380 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
9381
9382 #undef ELF_OSABI
9383 #define ELF_OSABI ELFOSABI_CLOUDABI
9384
9385 #undef elfNN_bed
9386 #define elfNN_bed elfNN_aarch64_cloudabi_bed
9387
9388 #include "elfNN-target.h"
This page took 0.30094 seconds and 5 git commands to generate.