[LD, AArch64] Move ELF options behind -z
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2019 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147
148 #define ARCH_SIZE NN
149
150 #if ARCH_SIZE == 64
151 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
152 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
153 #define HOWTO64(...) HOWTO (__VA_ARGS__)
154 #define HOWTO32(...) EMPTY_HOWTO (0)
155 #define LOG_FILE_ALIGN 3
156 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
166 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
167 #endif
168
169 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
170 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
219 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
220
221 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
222 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
244
245 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
246 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
258
259 #define ELIMINATE_COPY_RELOCS 1
260
261 /* Return size of a relocation entry. HTAB is the bfd's
262 elf_aarch64_link_hash_entry. */
263 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
264
265 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
266 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
267 #define PLT_ENTRY_SIZE (32)
268 #define PLT_SMALL_ENTRY_SIZE (16)
269 #define PLT_TLSDESC_ENTRY_SIZE (32)
270 /* PLT sizes with BTI insn. */
271 #define PLT_BTI_SMALL_ENTRY_SIZE (24)
272 /* PLT sizes with PAC insn. */
273 #define PLT_PAC_SMALL_ENTRY_SIZE (24)
274 /* PLT sizes with BTI and PAC insn. */
275 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE (24)
276
277 /* Encoding of the nop instruction. */
278 #define INSN_NOP 0xd503201f
279
280 #define aarch64_compute_jump_table_size(htab) \
281 (((htab)->root.srelplt == NULL) ? 0 \
282 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
283
284 /* The first entry in a procedure linkage table looks like this
285 if the distance between the PLTGOT and the PLT is < 4GB use
286 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
287 in x16 and needs to work out PLTGOT[1] by using an address of
288 [x16,#-GOT_ENTRY_SIZE]. */
289 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
290 {
291 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
292 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
293 #if ARCH_SIZE == 64
294 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
295 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
296 #else
297 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
298 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
299 #endif
300 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
301 0x1f, 0x20, 0x03, 0xd5, /* nop */
302 0x1f, 0x20, 0x03, 0xd5, /* nop */
303 0x1f, 0x20, 0x03, 0xd5, /* nop */
304 };
305
306 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_ENTRY_SIZE] =
307 {
308 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
309 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
310 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
311 #if ARCH_SIZE == 64
312 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
313 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
314 #else
315 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
316 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
317 #endif
318 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
319 0x1f, 0x20, 0x03, 0xd5, /* nop */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 };
322
323 /* Per function entry in a procedure linkage table looks like this
324 if the distance between the PLTGOT and the PLT is < 4GB use
325 these PLT entries. Use BTI versions of the PLTs when enabled. */
326 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
327 {
328 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
329 #if ARCH_SIZE == 64
330 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
331 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
332 #else
333 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
334 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
335 #endif
336 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
337 };
338
339 static const bfd_byte
340 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
341 {
342 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
343 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
344 #if ARCH_SIZE == 64
345 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
346 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
347 #else
348 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
349 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
350 #endif
351 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
352 0x1f, 0x20, 0x03, 0xd5, /* nop */
353 };
354
355 static const bfd_byte
356 elfNN_aarch64_small_plt_pac_entry[PLT_PAC_SMALL_ENTRY_SIZE] =
357 {
358 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
359 #if ARCH_SIZE == 64
360 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
361 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
362 #else
363 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
364 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
365 #endif
366 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
367 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
368 0x1f, 0x20, 0x03, 0xd5, /* nop */
369 };
370
371 static const bfd_byte
372 elfNN_aarch64_small_plt_bti_pac_entry[PLT_BTI_PAC_SMALL_ENTRY_SIZE] =
373 {
374 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
375 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
376 #if ARCH_SIZE == 64
377 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
378 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
379 #else
380 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
381 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
382 #endif
383 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
384 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
385 };
386
387 static const bfd_byte
388 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
389 {
390 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
391 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
392 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
393 #if ARCH_SIZE == 64
394 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
395 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
396 #else
397 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
398 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
399 #endif
400 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
401 0x1f, 0x20, 0x03, 0xd5, /* nop */
402 0x1f, 0x20, 0x03, 0xd5, /* nop */
403 };
404
405 static const bfd_byte
406 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_TLSDESC_ENTRY_SIZE] =
407 {
408 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
409 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
410 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
411 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
412 #if ARCH_SIZE == 64
413 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
414 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
415 #else
416 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
417 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
418 #endif
419 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
420 0x1f, 0x20, 0x03, 0xd5, /* nop */
421 };
422
423 #define elf_info_to_howto elfNN_aarch64_info_to_howto
424 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
425
426 #define AARCH64_ELF_ABI_VERSION 0
427
428 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
429 #define ALL_ONES (~ (bfd_vma) 0)
430
431 /* Indexed by the bfd interal reloc enumerators.
432 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
433 in reloc.c. */
434
435 static reloc_howto_type elfNN_aarch64_howto_table[] =
436 {
437 EMPTY_HOWTO (0),
438
439 /* Basic data relocations. */
440
441 /* Deprecated, but retained for backwards compatibility. */
442 HOWTO64 (R_AARCH64_NULL, /* type */
443 0, /* rightshift */
444 3, /* size (0 = byte, 1 = short, 2 = long) */
445 0, /* bitsize */
446 FALSE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_dont, /* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_AARCH64_NULL", /* name */
451 FALSE, /* partial_inplace */
452 0, /* src_mask */
453 0, /* dst_mask */
454 FALSE), /* pcrel_offset */
455 HOWTO (R_AARCH64_NONE, /* type */
456 0, /* rightshift */
457 3, /* size (0 = byte, 1 = short, 2 = long) */
458 0, /* bitsize */
459 FALSE, /* pc_relative */
460 0, /* bitpos */
461 complain_overflow_dont, /* complain_on_overflow */
462 bfd_elf_generic_reloc, /* special_function */
463 "R_AARCH64_NONE", /* name */
464 FALSE, /* partial_inplace */
465 0, /* src_mask */
466 0, /* dst_mask */
467 FALSE), /* pcrel_offset */
468
469 /* .xword: (S+A) */
470 HOWTO64 (AARCH64_R (ABS64), /* type */
471 0, /* rightshift */
472 4, /* size (4 = long long) */
473 64, /* bitsize */
474 FALSE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_unsigned, /* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 AARCH64_R_STR (ABS64), /* name */
479 FALSE, /* partial_inplace */
480 ALL_ONES, /* src_mask */
481 ALL_ONES, /* dst_mask */
482 FALSE), /* pcrel_offset */
483
484 /* .word: (S+A) */
485 HOWTO (AARCH64_R (ABS32), /* type */
486 0, /* rightshift */
487 2, /* size (0 = byte, 1 = short, 2 = long) */
488 32, /* bitsize */
489 FALSE, /* pc_relative */
490 0, /* bitpos */
491 complain_overflow_unsigned, /* complain_on_overflow */
492 bfd_elf_generic_reloc, /* special_function */
493 AARCH64_R_STR (ABS32), /* name */
494 FALSE, /* partial_inplace */
495 0xffffffff, /* src_mask */
496 0xffffffff, /* dst_mask */
497 FALSE), /* pcrel_offset */
498
499 /* .half: (S+A) */
500 HOWTO (AARCH64_R (ABS16), /* type */
501 0, /* rightshift */
502 1, /* size (0 = byte, 1 = short, 2 = long) */
503 16, /* bitsize */
504 FALSE, /* pc_relative */
505 0, /* bitpos */
506 complain_overflow_unsigned, /* complain_on_overflow */
507 bfd_elf_generic_reloc, /* special_function */
508 AARCH64_R_STR (ABS16), /* name */
509 FALSE, /* partial_inplace */
510 0xffff, /* src_mask */
511 0xffff, /* dst_mask */
512 FALSE), /* pcrel_offset */
513
514 /* .xword: (S+A-P) */
515 HOWTO64 (AARCH64_R (PREL64), /* type */
516 0, /* rightshift */
517 4, /* size (4 = long long) */
518 64, /* bitsize */
519 TRUE, /* pc_relative */
520 0, /* bitpos */
521 complain_overflow_signed, /* complain_on_overflow */
522 bfd_elf_generic_reloc, /* special_function */
523 AARCH64_R_STR (PREL64), /* name */
524 FALSE, /* partial_inplace */
525 ALL_ONES, /* src_mask */
526 ALL_ONES, /* dst_mask */
527 TRUE), /* pcrel_offset */
528
529 /* .word: (S+A-P) */
530 HOWTO (AARCH64_R (PREL32), /* type */
531 0, /* rightshift */
532 2, /* size (0 = byte, 1 = short, 2 = long) */
533 32, /* bitsize */
534 TRUE, /* pc_relative */
535 0, /* bitpos */
536 complain_overflow_signed, /* complain_on_overflow */
537 bfd_elf_generic_reloc, /* special_function */
538 AARCH64_R_STR (PREL32), /* name */
539 FALSE, /* partial_inplace */
540 0xffffffff, /* src_mask */
541 0xffffffff, /* dst_mask */
542 TRUE), /* pcrel_offset */
543
544 /* .half: (S+A-P) */
545 HOWTO (AARCH64_R (PREL16), /* type */
546 0, /* rightshift */
547 1, /* size (0 = byte, 1 = short, 2 = long) */
548 16, /* bitsize */
549 TRUE, /* pc_relative */
550 0, /* bitpos */
551 complain_overflow_signed, /* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 AARCH64_R_STR (PREL16), /* name */
554 FALSE, /* partial_inplace */
555 0xffff, /* src_mask */
556 0xffff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 /* Group relocations to create a 16, 32, 48 or 64 bit
560 unsigned data or abs address inline. */
561
562 /* MOVZ: ((S+A) >> 0) & 0xffff */
563 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
564 0, /* rightshift */
565 2, /* size (0 = byte, 1 = short, 2 = long) */
566 16, /* bitsize */
567 FALSE, /* pc_relative */
568 0, /* bitpos */
569 complain_overflow_unsigned, /* complain_on_overflow */
570 bfd_elf_generic_reloc, /* special_function */
571 AARCH64_R_STR (MOVW_UABS_G0), /* name */
572 FALSE, /* partial_inplace */
573 0xffff, /* src_mask */
574 0xffff, /* dst_mask */
575 FALSE), /* pcrel_offset */
576
577 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
578 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
579 0, /* rightshift */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
581 16, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_dont, /* complain_on_overflow */
585 bfd_elf_generic_reloc, /* special_function */
586 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
587 FALSE, /* partial_inplace */
588 0xffff, /* src_mask */
589 0xffff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591
592 /* MOVZ: ((S+A) >> 16) & 0xffff */
593 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
594 16, /* rightshift */
595 2, /* size (0 = byte, 1 = short, 2 = long) */
596 16, /* bitsize */
597 FALSE, /* pc_relative */
598 0, /* bitpos */
599 complain_overflow_unsigned, /* complain_on_overflow */
600 bfd_elf_generic_reloc, /* special_function */
601 AARCH64_R_STR (MOVW_UABS_G1), /* name */
602 FALSE, /* partial_inplace */
603 0xffff, /* src_mask */
604 0xffff, /* dst_mask */
605 FALSE), /* pcrel_offset */
606
607 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
608 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
609 16, /* rightshift */
610 2, /* size (0 = byte, 1 = short, 2 = long) */
611 16, /* bitsize */
612 FALSE, /* pc_relative */
613 0, /* bitpos */
614 complain_overflow_dont, /* complain_on_overflow */
615 bfd_elf_generic_reloc, /* special_function */
616 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
617 FALSE, /* partial_inplace */
618 0xffff, /* src_mask */
619 0xffff, /* dst_mask */
620 FALSE), /* pcrel_offset */
621
622 /* MOVZ: ((S+A) >> 32) & 0xffff */
623 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
624 32, /* rightshift */
625 2, /* size (0 = byte, 1 = short, 2 = long) */
626 16, /* bitsize */
627 FALSE, /* pc_relative */
628 0, /* bitpos */
629 complain_overflow_unsigned, /* complain_on_overflow */
630 bfd_elf_generic_reloc, /* special_function */
631 AARCH64_R_STR (MOVW_UABS_G2), /* name */
632 FALSE, /* partial_inplace */
633 0xffff, /* src_mask */
634 0xffff, /* dst_mask */
635 FALSE), /* pcrel_offset */
636
637 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
638 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
639 32, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 16, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont, /* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
647 FALSE, /* partial_inplace */
648 0xffff, /* src_mask */
649 0xffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 /* MOVZ: ((S+A) >> 48) & 0xffff */
653 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
654 48, /* rightshift */
655 2, /* size (0 = byte, 1 = short, 2 = long) */
656 16, /* bitsize */
657 FALSE, /* pc_relative */
658 0, /* bitpos */
659 complain_overflow_unsigned, /* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
661 AARCH64_R_STR (MOVW_UABS_G3), /* name */
662 FALSE, /* partial_inplace */
663 0xffff, /* src_mask */
664 0xffff, /* dst_mask */
665 FALSE), /* pcrel_offset */
666
667 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
668 signed data or abs address inline. Will change instruction
669 to MOVN or MOVZ depending on sign of calculated value. */
670
671 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
672 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
673 0, /* rightshift */
674 2, /* size (0 = byte, 1 = short, 2 = long) */
675 17, /* bitsize */
676 FALSE, /* pc_relative */
677 0, /* bitpos */
678 complain_overflow_signed, /* complain_on_overflow */
679 bfd_elf_generic_reloc, /* special_function */
680 AARCH64_R_STR (MOVW_SABS_G0), /* name */
681 FALSE, /* partial_inplace */
682 0xffff, /* src_mask */
683 0xffff, /* dst_mask */
684 FALSE), /* pcrel_offset */
685
686 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
687 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
688 16, /* rightshift */
689 2, /* size (0 = byte, 1 = short, 2 = long) */
690 17, /* bitsize */
691 FALSE, /* pc_relative */
692 0, /* bitpos */
693 complain_overflow_signed, /* complain_on_overflow */
694 bfd_elf_generic_reloc, /* special_function */
695 AARCH64_R_STR (MOVW_SABS_G1), /* name */
696 FALSE, /* partial_inplace */
697 0xffff, /* src_mask */
698 0xffff, /* dst_mask */
699 FALSE), /* pcrel_offset */
700
701 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
702 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
703 32, /* rightshift */
704 2, /* size (0 = byte, 1 = short, 2 = long) */
705 17, /* bitsize */
706 FALSE, /* pc_relative */
707 0, /* bitpos */
708 complain_overflow_signed, /* complain_on_overflow */
709 bfd_elf_generic_reloc, /* special_function */
710 AARCH64_R_STR (MOVW_SABS_G2), /* name */
711 FALSE, /* partial_inplace */
712 0xffff, /* src_mask */
713 0xffff, /* dst_mask */
714 FALSE), /* pcrel_offset */
715
716 /* Group relocations to create a 16, 32, 48 or 64 bit
717 PC relative address inline. */
718
719 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
720 HOWTO64 (AARCH64_R (MOVW_PREL_G0), /* type */
721 0, /* rightshift */
722 2, /* size (0 = byte, 1 = short, 2 = long) */
723 17, /* bitsize */
724 TRUE, /* pc_relative */
725 0, /* bitpos */
726 complain_overflow_signed, /* complain_on_overflow */
727 bfd_elf_generic_reloc, /* special_function */
728 AARCH64_R_STR (MOVW_PREL_G0), /* name */
729 FALSE, /* partial_inplace */
730 0xffff, /* src_mask */
731 0xffff, /* dst_mask */
732 TRUE), /* pcrel_offset */
733
734 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
735 HOWTO64 (AARCH64_R (MOVW_PREL_G0_NC), /* type */
736 0, /* rightshift */
737 2, /* size (0 = byte, 1 = short, 2 = long) */
738 16, /* bitsize */
739 TRUE, /* pc_relative */
740 0, /* bitpos */
741 complain_overflow_dont, /* complain_on_overflow */
742 bfd_elf_generic_reloc, /* special_function */
743 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
744 FALSE, /* partial_inplace */
745 0xffff, /* src_mask */
746 0xffff, /* dst_mask */
747 TRUE), /* pcrel_offset */
748
749 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
750 HOWTO64 (AARCH64_R (MOVW_PREL_G1), /* type */
751 16, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 17, /* bitsize */
754 TRUE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_signed, /* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 AARCH64_R_STR (MOVW_PREL_G1), /* name */
759 FALSE, /* partial_inplace */
760 0xffff, /* src_mask */
761 0xffff, /* dst_mask */
762 TRUE), /* pcrel_offset */
763
764 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
765 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
766 16, /* rightshift */
767 2, /* size (0 = byte, 1 = short, 2 = long) */
768 16, /* bitsize */
769 TRUE, /* pc_relative */
770 0, /* bitpos */
771 complain_overflow_dont, /* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
774 FALSE, /* partial_inplace */
775 0xffff, /* src_mask */
776 0xffff, /* dst_mask */
777 TRUE), /* pcrel_offset */
778
779 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
780 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
781 32, /* rightshift */
782 2, /* size (0 = byte, 1 = short, 2 = long) */
783 17, /* bitsize */
784 TRUE, /* pc_relative */
785 0, /* bitpos */
786 complain_overflow_signed, /* complain_on_overflow */
787 bfd_elf_generic_reloc, /* special_function */
788 AARCH64_R_STR (MOVW_PREL_G2), /* name */
789 FALSE, /* partial_inplace */
790 0xffff, /* src_mask */
791 0xffff, /* dst_mask */
792 TRUE), /* pcrel_offset */
793
794 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
795 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
796 32, /* rightshift */
797 2, /* size (0 = byte, 1 = short, 2 = long) */
798 16, /* bitsize */
799 TRUE, /* pc_relative */
800 0, /* bitpos */
801 complain_overflow_dont, /* complain_on_overflow */
802 bfd_elf_generic_reloc, /* special_function */
803 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
804 FALSE, /* partial_inplace */
805 0xffff, /* src_mask */
806 0xffff, /* dst_mask */
807 TRUE), /* pcrel_offset */
808
809 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
810 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
811 48, /* rightshift */
812 2, /* size (0 = byte, 1 = short, 2 = long) */
813 16, /* bitsize */
814 TRUE, /* pc_relative */
815 0, /* bitpos */
816 complain_overflow_dont, /* complain_on_overflow */
817 bfd_elf_generic_reloc, /* special_function */
818 AARCH64_R_STR (MOVW_PREL_G3), /* name */
819 FALSE, /* partial_inplace */
820 0xffff, /* src_mask */
821 0xffff, /* dst_mask */
822 TRUE), /* pcrel_offset */
823
824 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
825 addresses: PG(x) is (x & ~0xfff). */
826
827 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
828 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
829 2, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 19, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_signed, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 AARCH64_R_STR (LD_PREL_LO19), /* name */
837 FALSE, /* partial_inplace */
838 0x7ffff, /* src_mask */
839 0x7ffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 /* ADR: (S+A-P) & 0x1fffff */
843 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
844 0, /* rightshift */
845 2, /* size (0 = byte, 1 = short, 2 = long) */
846 21, /* bitsize */
847 TRUE, /* pc_relative */
848 0, /* bitpos */
849 complain_overflow_signed, /* complain_on_overflow */
850 bfd_elf_generic_reloc, /* special_function */
851 AARCH64_R_STR (ADR_PREL_LO21), /* name */
852 FALSE, /* partial_inplace */
853 0x1fffff, /* src_mask */
854 0x1fffff, /* dst_mask */
855 TRUE), /* pcrel_offset */
856
857 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
858 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
859 12, /* rightshift */
860 2, /* size (0 = byte, 1 = short, 2 = long) */
861 21, /* bitsize */
862 TRUE, /* pc_relative */
863 0, /* bitpos */
864 complain_overflow_signed, /* complain_on_overflow */
865 bfd_elf_generic_reloc, /* special_function */
866 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
867 FALSE, /* partial_inplace */
868 0x1fffff, /* src_mask */
869 0x1fffff, /* dst_mask */
870 TRUE), /* pcrel_offset */
871
872 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
873 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
874 12, /* rightshift */
875 2, /* size (0 = byte, 1 = short, 2 = long) */
876 21, /* bitsize */
877 TRUE, /* pc_relative */
878 0, /* bitpos */
879 complain_overflow_dont, /* complain_on_overflow */
880 bfd_elf_generic_reloc, /* special_function */
881 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
882 FALSE, /* partial_inplace */
883 0x1fffff, /* src_mask */
884 0x1fffff, /* dst_mask */
885 TRUE), /* pcrel_offset */
886
887 /* ADD: (S+A) & 0xfff [no overflow check] */
888 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
889 0, /* rightshift */
890 2, /* size (0 = byte, 1 = short, 2 = long) */
891 12, /* bitsize */
892 FALSE, /* pc_relative */
893 10, /* bitpos */
894 complain_overflow_dont, /* complain_on_overflow */
895 bfd_elf_generic_reloc, /* special_function */
896 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
897 FALSE, /* partial_inplace */
898 0x3ffc00, /* src_mask */
899 0x3ffc00, /* dst_mask */
900 FALSE), /* pcrel_offset */
901
902 /* LD/ST8: (S+A) & 0xfff */
903 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
904 0, /* rightshift */
905 2, /* size (0 = byte, 1 = short, 2 = long) */
906 12, /* bitsize */
907 FALSE, /* pc_relative */
908 0, /* bitpos */
909 complain_overflow_dont, /* complain_on_overflow */
910 bfd_elf_generic_reloc, /* special_function */
911 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
912 FALSE, /* partial_inplace */
913 0xfff, /* src_mask */
914 0xfff, /* dst_mask */
915 FALSE), /* pcrel_offset */
916
917 /* Relocations for control-flow instructions. */
918
919 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
920 HOWTO (AARCH64_R (TSTBR14), /* type */
921 2, /* rightshift */
922 2, /* size (0 = byte, 1 = short, 2 = long) */
923 14, /* bitsize */
924 TRUE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_signed, /* complain_on_overflow */
927 bfd_elf_generic_reloc, /* special_function */
928 AARCH64_R_STR (TSTBR14), /* name */
929 FALSE, /* partial_inplace */
930 0x3fff, /* src_mask */
931 0x3fff, /* dst_mask */
932 TRUE), /* pcrel_offset */
933
934 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
935 HOWTO (AARCH64_R (CONDBR19), /* type */
936 2, /* rightshift */
937 2, /* size (0 = byte, 1 = short, 2 = long) */
938 19, /* bitsize */
939 TRUE, /* pc_relative */
940 0, /* bitpos */
941 complain_overflow_signed, /* complain_on_overflow */
942 bfd_elf_generic_reloc, /* special_function */
943 AARCH64_R_STR (CONDBR19), /* name */
944 FALSE, /* partial_inplace */
945 0x7ffff, /* src_mask */
946 0x7ffff, /* dst_mask */
947 TRUE), /* pcrel_offset */
948
949 /* B: ((S+A-P) >> 2) & 0x3ffffff */
950 HOWTO (AARCH64_R (JUMP26), /* type */
951 2, /* rightshift */
952 2, /* size (0 = byte, 1 = short, 2 = long) */
953 26, /* bitsize */
954 TRUE, /* pc_relative */
955 0, /* bitpos */
956 complain_overflow_signed, /* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 AARCH64_R_STR (JUMP26), /* name */
959 FALSE, /* partial_inplace */
960 0x3ffffff, /* src_mask */
961 0x3ffffff, /* dst_mask */
962 TRUE), /* pcrel_offset */
963
964 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
965 HOWTO (AARCH64_R (CALL26), /* type */
966 2, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 26, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_signed, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 AARCH64_R_STR (CALL26), /* name */
974 FALSE, /* partial_inplace */
975 0x3ffffff, /* src_mask */
976 0x3ffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 /* LD/ST16: (S+A) & 0xffe */
980 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
981 1, /* rightshift */
982 2, /* size (0 = byte, 1 = short, 2 = long) */
983 12, /* bitsize */
984 FALSE, /* pc_relative */
985 0, /* bitpos */
986 complain_overflow_dont, /* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
988 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
989 FALSE, /* partial_inplace */
990 0xffe, /* src_mask */
991 0xffe, /* dst_mask */
992 FALSE), /* pcrel_offset */
993
994 /* LD/ST32: (S+A) & 0xffc */
995 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
996 2, /* rightshift */
997 2, /* size (0 = byte, 1 = short, 2 = long) */
998 12, /* bitsize */
999 FALSE, /* pc_relative */
1000 0, /* bitpos */
1001 complain_overflow_dont, /* complain_on_overflow */
1002 bfd_elf_generic_reloc, /* special_function */
1003 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
1004 FALSE, /* partial_inplace */
1005 0xffc, /* src_mask */
1006 0xffc, /* dst_mask */
1007 FALSE), /* pcrel_offset */
1008
1009 /* LD/ST64: (S+A) & 0xff8 */
1010 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
1011 3, /* rightshift */
1012 2, /* size (0 = byte, 1 = short, 2 = long) */
1013 12, /* bitsize */
1014 FALSE, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_dont, /* complain_on_overflow */
1017 bfd_elf_generic_reloc, /* special_function */
1018 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
1019 FALSE, /* partial_inplace */
1020 0xff8, /* src_mask */
1021 0xff8, /* dst_mask */
1022 FALSE), /* pcrel_offset */
1023
1024 /* LD/ST128: (S+A) & 0xff0 */
1025 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
1026 4, /* rightshift */
1027 2, /* size (0 = byte, 1 = short, 2 = long) */
1028 12, /* bitsize */
1029 FALSE, /* pc_relative */
1030 0, /* bitpos */
1031 complain_overflow_dont, /* complain_on_overflow */
1032 bfd_elf_generic_reloc, /* special_function */
1033 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
1034 FALSE, /* partial_inplace */
1035 0xff0, /* src_mask */
1036 0xff0, /* dst_mask */
1037 FALSE), /* pcrel_offset */
1038
1039 /* Set a load-literal immediate field to bits
1040 0x1FFFFC of G(S)-P */
1041 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
1042 2, /* rightshift */
1043 2, /* size (0 = byte,1 = short,2 = long) */
1044 19, /* bitsize */
1045 TRUE, /* pc_relative */
1046 0, /* bitpos */
1047 complain_overflow_signed, /* complain_on_overflow */
1048 bfd_elf_generic_reloc, /* special_function */
1049 AARCH64_R_STR (GOT_LD_PREL19), /* name */
1050 FALSE, /* partial_inplace */
1051 0xffffe0, /* src_mask */
1052 0xffffe0, /* dst_mask */
1053 TRUE), /* pcrel_offset */
1054
1055 /* Get to the page for the GOT entry for the symbol
1056 (G(S) - P) using an ADRP instruction. */
1057 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
1058 12, /* rightshift */
1059 2, /* size (0 = byte, 1 = short, 2 = long) */
1060 21, /* bitsize */
1061 TRUE, /* pc_relative */
1062 0, /* bitpos */
1063 complain_overflow_dont, /* complain_on_overflow */
1064 bfd_elf_generic_reloc, /* special_function */
1065 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
1066 FALSE, /* partial_inplace */
1067 0x1fffff, /* src_mask */
1068 0x1fffff, /* dst_mask */
1069 TRUE), /* pcrel_offset */
1070
1071 /* LD64: GOT offset G(S) & 0xff8 */
1072 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
1073 3, /* rightshift */
1074 2, /* size (0 = byte, 1 = short, 2 = long) */
1075 12, /* bitsize */
1076 FALSE, /* pc_relative */
1077 0, /* bitpos */
1078 complain_overflow_dont, /* complain_on_overflow */
1079 bfd_elf_generic_reloc, /* special_function */
1080 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
1081 FALSE, /* partial_inplace */
1082 0xff8, /* src_mask */
1083 0xff8, /* dst_mask */
1084 FALSE), /* pcrel_offset */
1085
1086 /* LD32: GOT offset G(S) & 0xffc */
1087 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1088 2, /* rightshift */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1090 12, /* bitsize */
1091 FALSE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont, /* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1096 FALSE, /* partial_inplace */
1097 0xffc, /* src_mask */
1098 0xffc, /* dst_mask */
1099 FALSE), /* pcrel_offset */
1100
1101 /* Lower 16 bits of GOT offset for the symbol. */
1102 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1103 0, /* rightshift */
1104 2, /* size (0 = byte, 1 = short, 2 = long) */
1105 16, /* bitsize */
1106 FALSE, /* pc_relative */
1107 0, /* bitpos */
1108 complain_overflow_dont, /* complain_on_overflow */
1109 bfd_elf_generic_reloc, /* special_function */
1110 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1111 FALSE, /* partial_inplace */
1112 0xffff, /* src_mask */
1113 0xffff, /* dst_mask */
1114 FALSE), /* pcrel_offset */
1115
1116 /* Higher 16 bits of GOT offset for the symbol. */
1117 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1118 16, /* rightshift */
1119 2, /* size (0 = byte, 1 = short, 2 = long) */
1120 16, /* bitsize */
1121 FALSE, /* pc_relative */
1122 0, /* bitpos */
1123 complain_overflow_unsigned, /* complain_on_overflow */
1124 bfd_elf_generic_reloc, /* special_function */
1125 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1126 FALSE, /* partial_inplace */
1127 0xffff, /* src_mask */
1128 0xffff, /* dst_mask */
1129 FALSE), /* pcrel_offset */
1130
1131 /* LD64: GOT offset for the symbol. */
1132 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1133 3, /* rightshift */
1134 2, /* size (0 = byte, 1 = short, 2 = long) */
1135 12, /* bitsize */
1136 FALSE, /* pc_relative */
1137 0, /* bitpos */
1138 complain_overflow_unsigned, /* complain_on_overflow */
1139 bfd_elf_generic_reloc, /* special_function */
1140 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1141 FALSE, /* partial_inplace */
1142 0x7ff8, /* src_mask */
1143 0x7ff8, /* dst_mask */
1144 FALSE), /* pcrel_offset */
1145
1146 /* LD32: GOT offset to the page address of GOT table.
1147 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1148 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1149 2, /* rightshift */
1150 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 12, /* bitsize */
1152 FALSE, /* pc_relative */
1153 0, /* bitpos */
1154 complain_overflow_unsigned, /* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
1156 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1157 FALSE, /* partial_inplace */
1158 0x5ffc, /* src_mask */
1159 0x5ffc, /* dst_mask */
1160 FALSE), /* pcrel_offset */
1161
1162 /* LD64: GOT offset to the page address of GOT table.
1163 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1164 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1165 3, /* rightshift */
1166 2, /* size (0 = byte, 1 = short, 2 = long) */
1167 12, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_unsigned, /* complain_on_overflow */
1171 bfd_elf_generic_reloc, /* special_function */
1172 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1173 FALSE, /* partial_inplace */
1174 0x7ff8, /* src_mask */
1175 0x7ff8, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 /* Get to the page for the GOT entry for the symbol
1179 (G(S) - P) using an ADRP instruction. */
1180 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1181 12, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 21, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont, /* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1189 FALSE, /* partial_inplace */
1190 0x1fffff, /* src_mask */
1191 0x1fffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 21, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont, /* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1203 FALSE, /* partial_inplace */
1204 0x1fffff, /* src_mask */
1205 0x1fffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1209 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1210 0, /* rightshift */
1211 2, /* size (0 = byte, 1 = short, 2 = long) */
1212 12, /* bitsize */
1213 FALSE, /* pc_relative */
1214 0, /* bitpos */
1215 complain_overflow_dont, /* complain_on_overflow */
1216 bfd_elf_generic_reloc, /* special_function */
1217 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1218 FALSE, /* partial_inplace */
1219 0xfff, /* src_mask */
1220 0xfff, /* dst_mask */
1221 FALSE), /* pcrel_offset */
1222
1223 /* Lower 16 bits of GOT offset to tls_index. */
1224 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1225 0, /* rightshift */
1226 2, /* size (0 = byte, 1 = short, 2 = long) */
1227 16, /* bitsize */
1228 FALSE, /* pc_relative */
1229 0, /* bitpos */
1230 complain_overflow_dont, /* complain_on_overflow */
1231 bfd_elf_generic_reloc, /* special_function */
1232 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1233 FALSE, /* partial_inplace */
1234 0xffff, /* src_mask */
1235 0xffff, /* dst_mask */
1236 FALSE), /* pcrel_offset */
1237
1238 /* Higher 16 bits of GOT offset to tls_index. */
1239 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1240 16, /* rightshift */
1241 2, /* size (0 = byte, 1 = short, 2 = long) */
1242 16, /* bitsize */
1243 FALSE, /* pc_relative */
1244 0, /* bitpos */
1245 complain_overflow_unsigned, /* complain_on_overflow */
1246 bfd_elf_generic_reloc, /* special_function */
1247 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1248 FALSE, /* partial_inplace */
1249 0xffff, /* src_mask */
1250 0xffff, /* dst_mask */
1251 FALSE), /* pcrel_offset */
1252
1253 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1254 12, /* rightshift */
1255 2, /* size (0 = byte, 1 = short, 2 = long) */
1256 21, /* bitsize */
1257 FALSE, /* pc_relative */
1258 0, /* bitpos */
1259 complain_overflow_dont, /* complain_on_overflow */
1260 bfd_elf_generic_reloc, /* special_function */
1261 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1262 FALSE, /* partial_inplace */
1263 0x1fffff, /* src_mask */
1264 0x1fffff, /* dst_mask */
1265 FALSE), /* pcrel_offset */
1266
1267 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1268 3, /* rightshift */
1269 2, /* size (0 = byte, 1 = short, 2 = long) */
1270 12, /* bitsize */
1271 FALSE, /* pc_relative */
1272 0, /* bitpos */
1273 complain_overflow_dont, /* complain_on_overflow */
1274 bfd_elf_generic_reloc, /* special_function */
1275 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1276 FALSE, /* partial_inplace */
1277 0xff8, /* src_mask */
1278 0xff8, /* dst_mask */
1279 FALSE), /* pcrel_offset */
1280
1281 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1282 2, /* rightshift */
1283 2, /* size (0 = byte, 1 = short, 2 = long) */
1284 12, /* bitsize */
1285 FALSE, /* pc_relative */
1286 0, /* bitpos */
1287 complain_overflow_dont, /* complain_on_overflow */
1288 bfd_elf_generic_reloc, /* special_function */
1289 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1290 FALSE, /* partial_inplace */
1291 0xffc, /* src_mask */
1292 0xffc, /* dst_mask */
1293 FALSE), /* pcrel_offset */
1294
1295 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1296 2, /* rightshift */
1297 2, /* size (0 = byte, 1 = short, 2 = long) */
1298 19, /* bitsize */
1299 FALSE, /* pc_relative */
1300 0, /* bitpos */
1301 complain_overflow_dont, /* complain_on_overflow */
1302 bfd_elf_generic_reloc, /* special_function */
1303 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1304 FALSE, /* partial_inplace */
1305 0x1ffffc, /* src_mask */
1306 0x1ffffc, /* dst_mask */
1307 FALSE), /* pcrel_offset */
1308
1309 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1310 0, /* rightshift */
1311 2, /* size (0 = byte, 1 = short, 2 = long) */
1312 16, /* bitsize */
1313 FALSE, /* pc_relative */
1314 0, /* bitpos */
1315 complain_overflow_dont, /* complain_on_overflow */
1316 bfd_elf_generic_reloc, /* special_function */
1317 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1318 FALSE, /* partial_inplace */
1319 0xffff, /* src_mask */
1320 0xffff, /* dst_mask */
1321 FALSE), /* pcrel_offset */
1322
1323 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1324 16, /* rightshift */
1325 2, /* size (0 = byte, 1 = short, 2 = long) */
1326 16, /* bitsize */
1327 FALSE, /* pc_relative */
1328 0, /* bitpos */
1329 complain_overflow_unsigned, /* complain_on_overflow */
1330 bfd_elf_generic_reloc, /* special_function */
1331 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1332 FALSE, /* partial_inplace */
1333 0xffff, /* src_mask */
1334 0xffff, /* dst_mask */
1335 FALSE), /* pcrel_offset */
1336
1337 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1338 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1339 12, /* rightshift */
1340 2, /* size (0 = byte, 1 = short, 2 = long) */
1341 12, /* bitsize */
1342 FALSE, /* pc_relative */
1343 0, /* bitpos */
1344 complain_overflow_unsigned, /* complain_on_overflow */
1345 bfd_elf_generic_reloc, /* special_function */
1346 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1347 FALSE, /* partial_inplace */
1348 0xfff, /* src_mask */
1349 0xfff, /* dst_mask */
1350 FALSE), /* pcrel_offset */
1351
1352 /* Unsigned 12 bit byte offset to module TLS base address. */
1353 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1354 0, /* rightshift */
1355 2, /* size (0 = byte, 1 = short, 2 = long) */
1356 12, /* bitsize */
1357 FALSE, /* pc_relative */
1358 0, /* bitpos */
1359 complain_overflow_unsigned, /* complain_on_overflow */
1360 bfd_elf_generic_reloc, /* special_function */
1361 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1362 FALSE, /* partial_inplace */
1363 0xfff, /* src_mask */
1364 0xfff, /* dst_mask */
1365 FALSE), /* pcrel_offset */
1366
1367 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1368 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1369 0, /* rightshift */
1370 2, /* size (0 = byte, 1 = short, 2 = long) */
1371 12, /* bitsize */
1372 FALSE, /* pc_relative */
1373 0, /* bitpos */
1374 complain_overflow_dont, /* complain_on_overflow */
1375 bfd_elf_generic_reloc, /* special_function */
1376 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1377 FALSE, /* partial_inplace */
1378 0xfff, /* src_mask */
1379 0xfff, /* dst_mask */
1380 FALSE), /* pcrel_offset */
1381
1382 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1383 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 12, /* bitsize */
1387 FALSE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1392 FALSE, /* partial_inplace */
1393 0xfff, /* src_mask */
1394 0xfff, /* dst_mask */
1395 FALSE), /* pcrel_offset */
1396
1397 /* Get to the page for the GOT entry for the symbol
1398 (G(S) - P) using an ADRP instruction. */
1399 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1400 12, /* rightshift */
1401 2, /* size (0 = byte, 1 = short, 2 = long) */
1402 21, /* bitsize */
1403 TRUE, /* pc_relative */
1404 0, /* bitpos */
1405 complain_overflow_signed, /* complain_on_overflow */
1406 bfd_elf_generic_reloc, /* special_function */
1407 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1408 FALSE, /* partial_inplace */
1409 0x1fffff, /* src_mask */
1410 0x1fffff, /* dst_mask */
1411 TRUE), /* pcrel_offset */
1412
1413 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1414 0, /* rightshift */
1415 2, /* size (0 = byte, 1 = short, 2 = long) */
1416 21, /* bitsize */
1417 TRUE, /* pc_relative */
1418 0, /* bitpos */
1419 complain_overflow_signed, /* complain_on_overflow */
1420 bfd_elf_generic_reloc, /* special_function */
1421 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1422 FALSE, /* partial_inplace */
1423 0x1fffff, /* src_mask */
1424 0x1fffff, /* dst_mask */
1425 TRUE), /* pcrel_offset */
1426
1427 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1428 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1429 1, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 11, /* bitsize */
1432 FALSE, /* pc_relative */
1433 10, /* bitpos */
1434 complain_overflow_unsigned, /* complain_on_overflow */
1435 bfd_elf_generic_reloc, /* special_function */
1436 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1437 FALSE, /* partial_inplace */
1438 0x1ffc00, /* src_mask */
1439 0x1ffc00, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1443 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1444 1, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 11, /* bitsize */
1447 FALSE, /* pc_relative */
1448 10, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1452 FALSE, /* partial_inplace */
1453 0x1ffc00, /* src_mask */
1454 0x1ffc00, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1458 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1459 2, /* rightshift */
1460 2, /* size (0 = byte, 1 = short, 2 = long) */
1461 10, /* bitsize */
1462 FALSE, /* pc_relative */
1463 10, /* bitpos */
1464 complain_overflow_unsigned, /* complain_on_overflow */
1465 bfd_elf_generic_reloc, /* special_function */
1466 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1467 FALSE, /* partial_inplace */
1468 0x3ffc00, /* src_mask */
1469 0x3ffc00, /* dst_mask */
1470 FALSE), /* pcrel_offset */
1471
1472 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1473 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1474 2, /* rightshift */
1475 2, /* size (0 = byte, 1 = short, 2 = long) */
1476 10, /* bitsize */
1477 FALSE, /* pc_relative */
1478 10, /* bitpos */
1479 complain_overflow_dont, /* complain_on_overflow */
1480 bfd_elf_generic_reloc, /* special_function */
1481 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1482 FALSE, /* partial_inplace */
1483 0xffc00, /* src_mask */
1484 0xffc00, /* dst_mask */
1485 FALSE), /* pcrel_offset */
1486
1487 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1488 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1489 3, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 9, /* bitsize */
1492 FALSE, /* pc_relative */
1493 10, /* bitpos */
1494 complain_overflow_unsigned, /* complain_on_overflow */
1495 bfd_elf_generic_reloc, /* special_function */
1496 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1497 FALSE, /* partial_inplace */
1498 0x3ffc00, /* src_mask */
1499 0x3ffc00, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1503 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1504 3, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 9, /* bitsize */
1507 FALSE, /* pc_relative */
1508 10, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 bfd_elf_generic_reloc, /* special_function */
1511 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1512 FALSE, /* partial_inplace */
1513 0x7fc00, /* src_mask */
1514 0x7fc00, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1518 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1519 0, /* rightshift */
1520 2, /* size (0 = byte, 1 = short, 2 = long) */
1521 12, /* bitsize */
1522 FALSE, /* pc_relative */
1523 10, /* bitpos */
1524 complain_overflow_unsigned, /* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1527 FALSE, /* partial_inplace */
1528 0x3ffc00, /* src_mask */
1529 0x3ffc00, /* dst_mask */
1530 FALSE), /* pcrel_offset */
1531
1532 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1533 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1534 0, /* rightshift */
1535 2, /* size (0 = byte, 1 = short, 2 = long) */
1536 12, /* bitsize */
1537 FALSE, /* pc_relative */
1538 10, /* bitpos */
1539 complain_overflow_dont, /* complain_on_overflow */
1540 bfd_elf_generic_reloc, /* special_function */
1541 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1542 FALSE, /* partial_inplace */
1543 0x3ffc00, /* src_mask */
1544 0x3ffc00, /* dst_mask */
1545 FALSE), /* pcrel_offset */
1546
1547 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1548 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1549 0, /* rightshift */
1550 2, /* size (0 = byte, 1 = short, 2 = long) */
1551 16, /* bitsize */
1552 FALSE, /* pc_relative */
1553 0, /* bitpos */
1554 complain_overflow_unsigned, /* complain_on_overflow */
1555 bfd_elf_generic_reloc, /* special_function */
1556 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1557 FALSE, /* partial_inplace */
1558 0xffff, /* src_mask */
1559 0xffff, /* dst_mask */
1560 FALSE), /* pcrel_offset */
1561
1562 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1563 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1564 0, /* rightshift */
1565 2, /* size (0 = byte, 1 = short, 2 = long) */
1566 16, /* bitsize */
1567 FALSE, /* pc_relative */
1568 0, /* bitpos */
1569 complain_overflow_dont, /* complain_on_overflow */
1570 bfd_elf_generic_reloc, /* special_function */
1571 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1572 FALSE, /* partial_inplace */
1573 0xffff, /* src_mask */
1574 0xffff, /* dst_mask */
1575 FALSE), /* pcrel_offset */
1576
1577 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1578 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1579 16, /* rightshift */
1580 2, /* size (0 = byte, 1 = short, 2 = long) */
1581 16, /* bitsize */
1582 FALSE, /* pc_relative */
1583 0, /* bitpos */
1584 complain_overflow_unsigned, /* complain_on_overflow */
1585 bfd_elf_generic_reloc, /* special_function */
1586 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1587 FALSE, /* partial_inplace */
1588 0xffff, /* src_mask */
1589 0xffff, /* dst_mask */
1590 FALSE), /* pcrel_offset */
1591
1592 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1593 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1594 16, /* rightshift */
1595 2, /* size (0 = byte, 1 = short, 2 = long) */
1596 16, /* bitsize */
1597 FALSE, /* pc_relative */
1598 0, /* bitpos */
1599 complain_overflow_dont, /* complain_on_overflow */
1600 bfd_elf_generic_reloc, /* special_function */
1601 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1602 FALSE, /* partial_inplace */
1603 0xffff, /* src_mask */
1604 0xffff, /* dst_mask */
1605 FALSE), /* pcrel_offset */
1606
1607 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1608 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1609 32, /* rightshift */
1610 2, /* size (0 = byte, 1 = short, 2 = long) */
1611 16, /* bitsize */
1612 FALSE, /* pc_relative */
1613 0, /* bitpos */
1614 complain_overflow_unsigned, /* complain_on_overflow */
1615 bfd_elf_generic_reloc, /* special_function */
1616 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1617 FALSE, /* partial_inplace */
1618 0xffff, /* src_mask */
1619 0xffff, /* dst_mask */
1620 FALSE), /* pcrel_offset */
1621
1622 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1623 32, /* rightshift */
1624 2, /* size (0 = byte, 1 = short, 2 = long) */
1625 16, /* bitsize */
1626 FALSE, /* pc_relative */
1627 0, /* bitpos */
1628 complain_overflow_unsigned, /* complain_on_overflow */
1629 bfd_elf_generic_reloc, /* special_function */
1630 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1631 FALSE, /* partial_inplace */
1632 0xffff, /* src_mask */
1633 0xffff, /* dst_mask */
1634 FALSE), /* pcrel_offset */
1635
1636 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1637 16, /* rightshift */
1638 2, /* size (0 = byte, 1 = short, 2 = long) */
1639 16, /* bitsize */
1640 FALSE, /* pc_relative */
1641 0, /* bitpos */
1642 complain_overflow_dont, /* complain_on_overflow */
1643 bfd_elf_generic_reloc, /* special_function */
1644 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1645 FALSE, /* partial_inplace */
1646 0xffff, /* src_mask */
1647 0xffff, /* dst_mask */
1648 FALSE), /* pcrel_offset */
1649
1650 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1651 16, /* rightshift */
1652 2, /* size (0 = byte, 1 = short, 2 = long) */
1653 16, /* bitsize */
1654 FALSE, /* pc_relative */
1655 0, /* bitpos */
1656 complain_overflow_dont, /* complain_on_overflow */
1657 bfd_elf_generic_reloc, /* special_function */
1658 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1659 FALSE, /* partial_inplace */
1660 0xffff, /* src_mask */
1661 0xffff, /* dst_mask */
1662 FALSE), /* pcrel_offset */
1663
1664 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1665 0, /* rightshift */
1666 2, /* size (0 = byte, 1 = short, 2 = long) */
1667 16, /* bitsize */
1668 FALSE, /* pc_relative */
1669 0, /* bitpos */
1670 complain_overflow_dont, /* complain_on_overflow */
1671 bfd_elf_generic_reloc, /* special_function */
1672 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1673 FALSE, /* partial_inplace */
1674 0xffff, /* src_mask */
1675 0xffff, /* dst_mask */
1676 FALSE), /* pcrel_offset */
1677
1678 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1679 0, /* rightshift */
1680 2, /* size (0 = byte, 1 = short, 2 = long) */
1681 16, /* bitsize */
1682 FALSE, /* pc_relative */
1683 0, /* bitpos */
1684 complain_overflow_dont, /* complain_on_overflow */
1685 bfd_elf_generic_reloc, /* special_function */
1686 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1687 FALSE, /* partial_inplace */
1688 0xffff, /* src_mask */
1689 0xffff, /* dst_mask */
1690 FALSE), /* pcrel_offset */
1691
1692 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1693 12, /* rightshift */
1694 2, /* size (0 = byte, 1 = short, 2 = long) */
1695 12, /* bitsize */
1696 FALSE, /* pc_relative */
1697 0, /* bitpos */
1698 complain_overflow_unsigned, /* complain_on_overflow */
1699 bfd_elf_generic_reloc, /* special_function */
1700 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1701 FALSE, /* partial_inplace */
1702 0xfff, /* src_mask */
1703 0xfff, /* dst_mask */
1704 FALSE), /* pcrel_offset */
1705
1706 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1707 0, /* rightshift */
1708 2, /* size (0 = byte, 1 = short, 2 = long) */
1709 12, /* bitsize */
1710 FALSE, /* pc_relative */
1711 0, /* bitpos */
1712 complain_overflow_unsigned, /* complain_on_overflow */
1713 bfd_elf_generic_reloc, /* special_function */
1714 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1715 FALSE, /* partial_inplace */
1716 0xfff, /* src_mask */
1717 0xfff, /* dst_mask */
1718 FALSE), /* pcrel_offset */
1719
1720 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1721 0, /* rightshift */
1722 2, /* size (0 = byte, 1 = short, 2 = long) */
1723 12, /* bitsize */
1724 FALSE, /* pc_relative */
1725 0, /* bitpos */
1726 complain_overflow_dont, /* complain_on_overflow */
1727 bfd_elf_generic_reloc, /* special_function */
1728 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1729 FALSE, /* partial_inplace */
1730 0xfff, /* src_mask */
1731 0xfff, /* dst_mask */
1732 FALSE), /* pcrel_offset */
1733
1734 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1735 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1736 1, /* rightshift */
1737 2, /* size (0 = byte, 1 = short, 2 = long) */
1738 11, /* bitsize */
1739 FALSE, /* pc_relative */
1740 10, /* bitpos */
1741 complain_overflow_unsigned, /* complain_on_overflow */
1742 bfd_elf_generic_reloc, /* special_function */
1743 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1744 FALSE, /* partial_inplace */
1745 0x1ffc00, /* src_mask */
1746 0x1ffc00, /* dst_mask */
1747 FALSE), /* pcrel_offset */
1748
1749 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1750 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1751 1, /* rightshift */
1752 2, /* size (0 = byte, 1 = short, 2 = long) */
1753 11, /* bitsize */
1754 FALSE, /* pc_relative */
1755 10, /* bitpos */
1756 complain_overflow_dont, /* complain_on_overflow */
1757 bfd_elf_generic_reloc, /* special_function */
1758 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1759 FALSE, /* partial_inplace */
1760 0x1ffc00, /* src_mask */
1761 0x1ffc00, /* dst_mask */
1762 FALSE), /* pcrel_offset */
1763
1764 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1765 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1766 2, /* rightshift */
1767 2, /* size (0 = byte, 1 = short, 2 = long) */
1768 10, /* bitsize */
1769 FALSE, /* pc_relative */
1770 10, /* bitpos */
1771 complain_overflow_unsigned, /* complain_on_overflow */
1772 bfd_elf_generic_reloc, /* special_function */
1773 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1774 FALSE, /* partial_inplace */
1775 0xffc00, /* src_mask */
1776 0xffc00, /* dst_mask */
1777 FALSE), /* pcrel_offset */
1778
1779 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1780 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1781 2, /* rightshift */
1782 2, /* size (0 = byte, 1 = short, 2 = long) */
1783 10, /* bitsize */
1784 FALSE, /* pc_relative */
1785 10, /* bitpos */
1786 complain_overflow_dont, /* complain_on_overflow */
1787 bfd_elf_generic_reloc, /* special_function */
1788 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1789 FALSE, /* partial_inplace */
1790 0xffc00, /* src_mask */
1791 0xffc00, /* dst_mask */
1792 FALSE), /* pcrel_offset */
1793
1794 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1795 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1796 3, /* rightshift */
1797 2, /* size (0 = byte, 1 = short, 2 = long) */
1798 9, /* bitsize */
1799 FALSE, /* pc_relative */
1800 10, /* bitpos */
1801 complain_overflow_unsigned, /* complain_on_overflow */
1802 bfd_elf_generic_reloc, /* special_function */
1803 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1804 FALSE, /* partial_inplace */
1805 0x7fc00, /* src_mask */
1806 0x7fc00, /* dst_mask */
1807 FALSE), /* pcrel_offset */
1808
1809 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1810 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1811 3, /* rightshift */
1812 2, /* size (0 = byte, 1 = short, 2 = long) */
1813 9, /* bitsize */
1814 FALSE, /* pc_relative */
1815 10, /* bitpos */
1816 complain_overflow_dont, /* complain_on_overflow */
1817 bfd_elf_generic_reloc, /* special_function */
1818 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1819 FALSE, /* partial_inplace */
1820 0x7fc00, /* src_mask */
1821 0x7fc00, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1825 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1826 0, /* rightshift */
1827 2, /* size (0 = byte, 1 = short, 2 = long) */
1828 12, /* bitsize */
1829 FALSE, /* pc_relative */
1830 10, /* bitpos */
1831 complain_overflow_unsigned, /* complain_on_overflow */
1832 bfd_elf_generic_reloc, /* special_function */
1833 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1834 FALSE, /* partial_inplace */
1835 0x3ffc00, /* src_mask */
1836 0x3ffc00, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1840 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1841 0, /* rightshift */
1842 2, /* size (0 = byte, 1 = short, 2 = long) */
1843 12, /* bitsize */
1844 FALSE, /* pc_relative */
1845 10, /* bitpos */
1846 complain_overflow_dont, /* complain_on_overflow */
1847 bfd_elf_generic_reloc, /* special_function */
1848 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1849 FALSE, /* partial_inplace */
1850 0x3ffc00, /* src_mask */
1851 0x3ffc00, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1855 2, /* rightshift */
1856 2, /* size (0 = byte, 1 = short, 2 = long) */
1857 19, /* bitsize */
1858 TRUE, /* pc_relative */
1859 0, /* bitpos */
1860 complain_overflow_dont, /* complain_on_overflow */
1861 bfd_elf_generic_reloc, /* special_function */
1862 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1863 FALSE, /* partial_inplace */
1864 0x0ffffe0, /* src_mask */
1865 0x0ffffe0, /* dst_mask */
1866 TRUE), /* pcrel_offset */
1867
1868 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1869 0, /* rightshift */
1870 2, /* size (0 = byte, 1 = short, 2 = long) */
1871 21, /* bitsize */
1872 TRUE, /* pc_relative */
1873 0, /* bitpos */
1874 complain_overflow_dont, /* complain_on_overflow */
1875 bfd_elf_generic_reloc, /* special_function */
1876 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1877 FALSE, /* partial_inplace */
1878 0x1fffff, /* src_mask */
1879 0x1fffff, /* dst_mask */
1880 TRUE), /* pcrel_offset */
1881
1882 /* Get to the page for the GOT entry for the symbol
1883 (G(S) - P) using an ADRP instruction. */
1884 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1885 12, /* rightshift */
1886 2, /* size (0 = byte, 1 = short, 2 = long) */
1887 21, /* bitsize */
1888 TRUE, /* pc_relative */
1889 0, /* bitpos */
1890 complain_overflow_dont, /* complain_on_overflow */
1891 bfd_elf_generic_reloc, /* special_function */
1892 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1893 FALSE, /* partial_inplace */
1894 0x1fffff, /* src_mask */
1895 0x1fffff, /* dst_mask */
1896 TRUE), /* pcrel_offset */
1897
1898 /* LD64: GOT offset G(S) & 0xff8. */
1899 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1900 3, /* rightshift */
1901 2, /* size (0 = byte, 1 = short, 2 = long) */
1902 12, /* bitsize */
1903 FALSE, /* pc_relative */
1904 0, /* bitpos */
1905 complain_overflow_dont, /* complain_on_overflow */
1906 bfd_elf_generic_reloc, /* special_function */
1907 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1908 FALSE, /* partial_inplace */
1909 0xff8, /* src_mask */
1910 0xff8, /* dst_mask */
1911 FALSE), /* pcrel_offset */
1912
1913 /* LD32: GOT offset G(S) & 0xffc. */
1914 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1915 2, /* rightshift */
1916 2, /* size (0 = byte, 1 = short, 2 = long) */
1917 12, /* bitsize */
1918 FALSE, /* pc_relative */
1919 0, /* bitpos */
1920 complain_overflow_dont, /* complain_on_overflow */
1921 bfd_elf_generic_reloc, /* special_function */
1922 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1923 FALSE, /* partial_inplace */
1924 0xffc, /* src_mask */
1925 0xffc, /* dst_mask */
1926 FALSE), /* pcrel_offset */
1927
1928 /* ADD: GOT offset G(S) & 0xfff. */
1929 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1930 0, /* rightshift */
1931 2, /* size (0 = byte, 1 = short, 2 = long) */
1932 12, /* bitsize */
1933 FALSE, /* pc_relative */
1934 0, /* bitpos */
1935 complain_overflow_dont,/* complain_on_overflow */
1936 bfd_elf_generic_reloc, /* special_function */
1937 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1938 FALSE, /* partial_inplace */
1939 0xfff, /* src_mask */
1940 0xfff, /* dst_mask */
1941 FALSE), /* pcrel_offset */
1942
1943 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1944 16, /* rightshift */
1945 2, /* size (0 = byte, 1 = short, 2 = long) */
1946 12, /* bitsize */
1947 FALSE, /* pc_relative */
1948 0, /* bitpos */
1949 complain_overflow_unsigned, /* complain_on_overflow */
1950 bfd_elf_generic_reloc, /* special_function */
1951 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1952 FALSE, /* partial_inplace */
1953 0xffff, /* src_mask */
1954 0xffff, /* dst_mask */
1955 FALSE), /* pcrel_offset */
1956
1957 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1958 0, /* rightshift */
1959 2, /* size (0 = byte, 1 = short, 2 = long) */
1960 12, /* bitsize */
1961 FALSE, /* pc_relative */
1962 0, /* bitpos */
1963 complain_overflow_dont, /* complain_on_overflow */
1964 bfd_elf_generic_reloc, /* special_function */
1965 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1966 FALSE, /* partial_inplace */
1967 0xffff, /* src_mask */
1968 0xffff, /* dst_mask */
1969 FALSE), /* pcrel_offset */
1970
1971 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1972 0, /* rightshift */
1973 2, /* size (0 = byte, 1 = short, 2 = long) */
1974 12, /* bitsize */
1975 FALSE, /* pc_relative */
1976 0, /* bitpos */
1977 complain_overflow_dont, /* complain_on_overflow */
1978 bfd_elf_generic_reloc, /* special_function */
1979 AARCH64_R_STR (TLSDESC_LDR), /* name */
1980 FALSE, /* partial_inplace */
1981 0x0, /* src_mask */
1982 0x0, /* dst_mask */
1983 FALSE), /* pcrel_offset */
1984
1985 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1986 0, /* rightshift */
1987 2, /* size (0 = byte, 1 = short, 2 = long) */
1988 12, /* bitsize */
1989 FALSE, /* pc_relative */
1990 0, /* bitpos */
1991 complain_overflow_dont, /* complain_on_overflow */
1992 bfd_elf_generic_reloc, /* special_function */
1993 AARCH64_R_STR (TLSDESC_ADD), /* name */
1994 FALSE, /* partial_inplace */
1995 0x0, /* src_mask */
1996 0x0, /* dst_mask */
1997 FALSE), /* pcrel_offset */
1998
1999 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
2000 0, /* rightshift */
2001 2, /* size (0 = byte, 1 = short, 2 = long) */
2002 0, /* bitsize */
2003 FALSE, /* pc_relative */
2004 0, /* bitpos */
2005 complain_overflow_dont, /* complain_on_overflow */
2006 bfd_elf_generic_reloc, /* special_function */
2007 AARCH64_R_STR (TLSDESC_CALL), /* name */
2008 FALSE, /* partial_inplace */
2009 0x0, /* src_mask */
2010 0x0, /* dst_mask */
2011 FALSE), /* pcrel_offset */
2012
2013 HOWTO (AARCH64_R (COPY), /* type */
2014 0, /* rightshift */
2015 2, /* size (0 = byte, 1 = short, 2 = long) */
2016 64, /* bitsize */
2017 FALSE, /* pc_relative */
2018 0, /* bitpos */
2019 complain_overflow_bitfield, /* complain_on_overflow */
2020 bfd_elf_generic_reloc, /* special_function */
2021 AARCH64_R_STR (COPY), /* name */
2022 TRUE, /* partial_inplace */
2023 0xffffffff, /* src_mask */
2024 0xffffffff, /* dst_mask */
2025 FALSE), /* pcrel_offset */
2026
2027 HOWTO (AARCH64_R (GLOB_DAT), /* type */
2028 0, /* rightshift */
2029 2, /* size (0 = byte, 1 = short, 2 = long) */
2030 64, /* bitsize */
2031 FALSE, /* pc_relative */
2032 0, /* bitpos */
2033 complain_overflow_bitfield, /* complain_on_overflow */
2034 bfd_elf_generic_reloc, /* special_function */
2035 AARCH64_R_STR (GLOB_DAT), /* name */
2036 TRUE, /* partial_inplace */
2037 0xffffffff, /* src_mask */
2038 0xffffffff, /* dst_mask */
2039 FALSE), /* pcrel_offset */
2040
2041 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
2042 0, /* rightshift */
2043 2, /* size (0 = byte, 1 = short, 2 = long) */
2044 64, /* bitsize */
2045 FALSE, /* pc_relative */
2046 0, /* bitpos */
2047 complain_overflow_bitfield, /* complain_on_overflow */
2048 bfd_elf_generic_reloc, /* special_function */
2049 AARCH64_R_STR (JUMP_SLOT), /* name */
2050 TRUE, /* partial_inplace */
2051 0xffffffff, /* src_mask */
2052 0xffffffff, /* dst_mask */
2053 FALSE), /* pcrel_offset */
2054
2055 HOWTO (AARCH64_R (RELATIVE), /* type */
2056 0, /* rightshift */
2057 2, /* size (0 = byte, 1 = short, 2 = long) */
2058 64, /* bitsize */
2059 FALSE, /* pc_relative */
2060 0, /* bitpos */
2061 complain_overflow_bitfield, /* complain_on_overflow */
2062 bfd_elf_generic_reloc, /* special_function */
2063 AARCH64_R_STR (RELATIVE), /* name */
2064 TRUE, /* partial_inplace */
2065 ALL_ONES, /* src_mask */
2066 ALL_ONES, /* dst_mask */
2067 FALSE), /* pcrel_offset */
2068
2069 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
2070 0, /* rightshift */
2071 2, /* size (0 = byte, 1 = short, 2 = long) */
2072 64, /* bitsize */
2073 FALSE, /* pc_relative */
2074 0, /* bitpos */
2075 complain_overflow_dont, /* complain_on_overflow */
2076 bfd_elf_generic_reloc, /* special_function */
2077 #if ARCH_SIZE == 64
2078 AARCH64_R_STR (TLS_DTPMOD64), /* name */
2079 #else
2080 AARCH64_R_STR (TLS_DTPMOD), /* name */
2081 #endif
2082 FALSE, /* partial_inplace */
2083 0, /* src_mask */
2084 ALL_ONES, /* dst_mask */
2085 FALSE), /* pc_reloffset */
2086
2087 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2088 0, /* rightshift */
2089 2, /* size (0 = byte, 1 = short, 2 = long) */
2090 64, /* bitsize */
2091 FALSE, /* pc_relative */
2092 0, /* bitpos */
2093 complain_overflow_dont, /* complain_on_overflow */
2094 bfd_elf_generic_reloc, /* special_function */
2095 #if ARCH_SIZE == 64
2096 AARCH64_R_STR (TLS_DTPREL64), /* name */
2097 #else
2098 AARCH64_R_STR (TLS_DTPREL), /* name */
2099 #endif
2100 FALSE, /* partial_inplace */
2101 0, /* src_mask */
2102 ALL_ONES, /* dst_mask */
2103 FALSE), /* pcrel_offset */
2104
2105 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2106 0, /* rightshift */
2107 2, /* size (0 = byte, 1 = short, 2 = long) */
2108 64, /* bitsize */
2109 FALSE, /* pc_relative */
2110 0, /* bitpos */
2111 complain_overflow_dont, /* complain_on_overflow */
2112 bfd_elf_generic_reloc, /* special_function */
2113 #if ARCH_SIZE == 64
2114 AARCH64_R_STR (TLS_TPREL64), /* name */
2115 #else
2116 AARCH64_R_STR (TLS_TPREL), /* name */
2117 #endif
2118 FALSE, /* partial_inplace */
2119 0, /* src_mask */
2120 ALL_ONES, /* dst_mask */
2121 FALSE), /* pcrel_offset */
2122
2123 HOWTO (AARCH64_R (TLSDESC), /* type */
2124 0, /* rightshift */
2125 2, /* size (0 = byte, 1 = short, 2 = long) */
2126 64, /* bitsize */
2127 FALSE, /* pc_relative */
2128 0, /* bitpos */
2129 complain_overflow_dont, /* complain_on_overflow */
2130 bfd_elf_generic_reloc, /* special_function */
2131 AARCH64_R_STR (TLSDESC), /* name */
2132 FALSE, /* partial_inplace */
2133 0, /* src_mask */
2134 ALL_ONES, /* dst_mask */
2135 FALSE), /* pcrel_offset */
2136
2137 HOWTO (AARCH64_R (IRELATIVE), /* type */
2138 0, /* rightshift */
2139 2, /* size (0 = byte, 1 = short, 2 = long) */
2140 64, /* bitsize */
2141 FALSE, /* pc_relative */
2142 0, /* bitpos */
2143 complain_overflow_bitfield, /* complain_on_overflow */
2144 bfd_elf_generic_reloc, /* special_function */
2145 AARCH64_R_STR (IRELATIVE), /* name */
2146 FALSE, /* partial_inplace */
2147 0, /* src_mask */
2148 ALL_ONES, /* dst_mask */
2149 FALSE), /* pcrel_offset */
2150
2151 EMPTY_HOWTO (0),
2152 };
2153
2154 static reloc_howto_type elfNN_aarch64_howto_none =
2155 HOWTO (R_AARCH64_NONE, /* type */
2156 0, /* rightshift */
2157 3, /* size (0 = byte, 1 = short, 2 = long) */
2158 0, /* bitsize */
2159 FALSE, /* pc_relative */
2160 0, /* bitpos */
2161 complain_overflow_dont,/* complain_on_overflow */
2162 bfd_elf_generic_reloc, /* special_function */
2163 "R_AARCH64_NONE", /* name */
2164 FALSE, /* partial_inplace */
2165 0, /* src_mask */
2166 0, /* dst_mask */
2167 FALSE); /* pcrel_offset */
2168
2169 /* Given HOWTO, return the bfd internal relocation enumerator. */
2170
2171 static bfd_reloc_code_real_type
2172 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2173 {
2174 const int size
2175 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2176 const ptrdiff_t offset
2177 = howto - elfNN_aarch64_howto_table;
2178
2179 if (offset > 0 && offset < size - 1)
2180 return BFD_RELOC_AARCH64_RELOC_START + offset;
2181
2182 if (howto == &elfNN_aarch64_howto_none)
2183 return BFD_RELOC_AARCH64_NONE;
2184
2185 return BFD_RELOC_AARCH64_RELOC_START;
2186 }
2187
2188 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2189
2190 static bfd_reloc_code_real_type
2191 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2192 {
2193 static bfd_boolean initialized_p = FALSE;
2194 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2195 static unsigned int offsets[R_AARCH64_end];
2196
2197 if (!initialized_p)
2198 {
2199 unsigned int i;
2200
2201 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2202 if (elfNN_aarch64_howto_table[i].type != 0)
2203 offsets[elfNN_aarch64_howto_table[i].type] = i;
2204
2205 initialized_p = TRUE;
2206 }
2207
2208 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2209 return BFD_RELOC_AARCH64_NONE;
2210
2211 /* PR 17512: file: b371e70a. */
2212 if (r_type >= R_AARCH64_end)
2213 {
2214 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2215 abfd, r_type);
2216 bfd_set_error (bfd_error_bad_value);
2217 return BFD_RELOC_AARCH64_NONE;
2218 }
2219
2220 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2221 }
2222
2223 struct elf_aarch64_reloc_map
2224 {
2225 bfd_reloc_code_real_type from;
2226 bfd_reloc_code_real_type to;
2227 };
2228
2229 /* Map bfd generic reloc to AArch64-specific reloc. */
2230 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2231 {
2232 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2233
2234 /* Basic data relocations. */
2235 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2236 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2237 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2238 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2239 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2240 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2241 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2242 };
2243
2244 /* Given the bfd internal relocation enumerator in CODE, return the
2245 corresponding howto entry. */
2246
2247 static reloc_howto_type *
2248 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2249 {
2250 unsigned int i;
2251
2252 /* Convert bfd generic reloc to AArch64-specific reloc. */
2253 if (code < BFD_RELOC_AARCH64_RELOC_START
2254 || code > BFD_RELOC_AARCH64_RELOC_END)
2255 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2256 if (elf_aarch64_reloc_map[i].from == code)
2257 {
2258 code = elf_aarch64_reloc_map[i].to;
2259 break;
2260 }
2261
2262 if (code > BFD_RELOC_AARCH64_RELOC_START
2263 && code < BFD_RELOC_AARCH64_RELOC_END)
2264 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2265 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2266
2267 if (code == BFD_RELOC_AARCH64_NONE)
2268 return &elfNN_aarch64_howto_none;
2269
2270 return NULL;
2271 }
2272
2273 static reloc_howto_type *
2274 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2275 {
2276 bfd_reloc_code_real_type val;
2277 reloc_howto_type *howto;
2278
2279 #if ARCH_SIZE == 32
2280 if (r_type > 256)
2281 {
2282 bfd_set_error (bfd_error_bad_value);
2283 return NULL;
2284 }
2285 #endif
2286
2287 if (r_type == R_AARCH64_NONE)
2288 return &elfNN_aarch64_howto_none;
2289
2290 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2291 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2292
2293 if (howto != NULL)
2294 return howto;
2295
2296 bfd_set_error (bfd_error_bad_value);
2297 return NULL;
2298 }
2299
2300 static bfd_boolean
2301 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2302 Elf_Internal_Rela *elf_reloc)
2303 {
2304 unsigned int r_type;
2305
2306 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2307 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2308
2309 if (bfd_reloc->howto == NULL)
2310 {
2311 /* xgettext:c-format */
2312 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2313 return FALSE;
2314 }
2315 return TRUE;
2316 }
2317
2318 static reloc_howto_type *
2319 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2320 bfd_reloc_code_real_type code)
2321 {
2322 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2323
2324 if (howto != NULL)
2325 return howto;
2326
2327 bfd_set_error (bfd_error_bad_value);
2328 return NULL;
2329 }
2330
2331 static reloc_howto_type *
2332 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2333 const char *r_name)
2334 {
2335 unsigned int i;
2336
2337 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2338 if (elfNN_aarch64_howto_table[i].name != NULL
2339 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2340 return &elfNN_aarch64_howto_table[i];
2341
2342 return NULL;
2343 }
2344
2345 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2346 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2347 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2348 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2349
2350 /* The linker script knows the section names for placement.
2351 The entry_names are used to do simple name mangling on the stubs.
2352 Given a function name, and its type, the stub can be found. The
2353 name can be changed. The only requirement is the %s be present. */
2354 #define STUB_ENTRY_NAME "__%s_veneer"
2355
2356 /* The name of the dynamic interpreter. This is put in the .interp
2357 section. */
2358 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2359
2360 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2361 (((1 << 25) - 1) << 2)
2362 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2363 (-((1 << 25) << 2))
2364
2365 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2366 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2367
2368 static int
2369 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2370 {
2371 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2372 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2373 }
2374
2375 static int
2376 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2377 {
2378 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2379 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2380 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2381 }
2382
2383 static const uint32_t aarch64_adrp_branch_stub [] =
2384 {
2385 0x90000010, /* adrp ip0, X */
2386 /* R_AARCH64_ADR_HI21_PCREL(X) */
2387 0x91000210, /* add ip0, ip0, :lo12:X */
2388 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2389 0xd61f0200, /* br ip0 */
2390 };
2391
2392 static const uint32_t aarch64_long_branch_stub[] =
2393 {
2394 #if ARCH_SIZE == 64
2395 0x58000090, /* ldr ip0, 1f */
2396 #else
2397 0x18000090, /* ldr wip0, 1f */
2398 #endif
2399 0x10000011, /* adr ip1, #0 */
2400 0x8b110210, /* add ip0, ip0, ip1 */
2401 0xd61f0200, /* br ip0 */
2402 0x00000000, /* 1: .xword or .word
2403 R_AARCH64_PRELNN(X) + 12
2404 */
2405 0x00000000,
2406 };
2407
2408 static const uint32_t aarch64_erratum_835769_stub[] =
2409 {
2410 0x00000000, /* Placeholder for multiply accumulate. */
2411 0x14000000, /* b <label> */
2412 };
2413
2414 static const uint32_t aarch64_erratum_843419_stub[] =
2415 {
2416 0x00000000, /* Placeholder for LDR instruction. */
2417 0x14000000, /* b <label> */
2418 };
2419
2420 /* Section name for stubs is the associated section name plus this
2421 string. */
2422 #define STUB_SUFFIX ".stub"
2423
2424 enum elf_aarch64_stub_type
2425 {
2426 aarch64_stub_none,
2427 aarch64_stub_adrp_branch,
2428 aarch64_stub_long_branch,
2429 aarch64_stub_erratum_835769_veneer,
2430 aarch64_stub_erratum_843419_veneer,
2431 };
2432
2433 struct elf_aarch64_stub_hash_entry
2434 {
2435 /* Base hash table entry structure. */
2436 struct bfd_hash_entry root;
2437
2438 /* The stub section. */
2439 asection *stub_sec;
2440
2441 /* Offset within stub_sec of the beginning of this stub. */
2442 bfd_vma stub_offset;
2443
2444 /* Given the symbol's value and its section we can determine its final
2445 value when building the stubs (so the stub knows where to jump). */
2446 bfd_vma target_value;
2447 asection *target_section;
2448
2449 enum elf_aarch64_stub_type stub_type;
2450
2451 /* The symbol table entry, if any, that this was derived from. */
2452 struct elf_aarch64_link_hash_entry *h;
2453
2454 /* Destination symbol type */
2455 unsigned char st_type;
2456
2457 /* Where this stub is being called from, or, in the case of combined
2458 stub sections, the first input section in the group. */
2459 asection *id_sec;
2460
2461 /* The name for the local symbol at the start of this stub. The
2462 stub name in the hash table has to be unique; this does not, so
2463 it can be friendlier. */
2464 char *output_name;
2465
2466 /* The instruction which caused this stub to be generated (only valid for
2467 erratum 835769 workaround stubs at present). */
2468 uint32_t veneered_insn;
2469
2470 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2471 bfd_vma adrp_offset;
2472 };
2473
2474 /* Used to build a map of a section. This is required for mixed-endian
2475 code/data. */
2476
2477 typedef struct elf_elf_section_map
2478 {
2479 bfd_vma vma;
2480 char type;
2481 }
2482 elf_aarch64_section_map;
2483
2484
2485 typedef struct _aarch64_elf_section_data
2486 {
2487 struct bfd_elf_section_data elf;
2488 unsigned int mapcount;
2489 unsigned int mapsize;
2490 elf_aarch64_section_map *map;
2491 }
2492 _aarch64_elf_section_data;
2493
2494 #define elf_aarch64_section_data(sec) \
2495 ((_aarch64_elf_section_data *) elf_section_data (sec))
2496
2497 /* The size of the thread control block which is defined to be two pointers. */
2498 #define TCB_SIZE (ARCH_SIZE/8)*2
2499
2500 struct elf_aarch64_local_symbol
2501 {
2502 unsigned int got_type;
2503 bfd_signed_vma got_refcount;
2504 bfd_vma got_offset;
2505
2506 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2507 offset is from the end of the jump table and reserved entries
2508 within the PLTGOT.
2509
2510 The magic value (bfd_vma) -1 indicates that an offset has not be
2511 allocated. */
2512 bfd_vma tlsdesc_got_jump_table_offset;
2513 };
2514
2515 struct elf_aarch64_obj_tdata
2516 {
2517 struct elf_obj_tdata root;
2518
2519 /* local symbol descriptors */
2520 struct elf_aarch64_local_symbol *locals;
2521
2522 /* Zero to warn when linking objects with incompatible enum sizes. */
2523 int no_enum_size_warning;
2524
2525 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2526 int no_wchar_size_warning;
2527
2528 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2529 uint32_t gnu_and_prop;
2530
2531 /* Zero to warn when linking objects with incompatible
2532 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2533 int no_bti_warn;
2534
2535 /* PLT type based on security. */
2536 aarch64_plt_type plt_type;
2537 };
2538
2539 #define elf_aarch64_tdata(bfd) \
2540 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2541
2542 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2543
2544 #define is_aarch64_elf(bfd) \
2545 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2546 && elf_tdata (bfd) != NULL \
2547 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2548
2549 static bfd_boolean
2550 elfNN_aarch64_mkobject (bfd *abfd)
2551 {
2552 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2553 AARCH64_ELF_DATA);
2554 }
2555
2556 #define elf_aarch64_hash_entry(ent) \
2557 ((struct elf_aarch64_link_hash_entry *)(ent))
2558
2559 #define GOT_UNKNOWN 0
2560 #define GOT_NORMAL 1
2561 #define GOT_TLS_GD 2
2562 #define GOT_TLS_IE 4
2563 #define GOT_TLSDESC_GD 8
2564
2565 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2566
2567 /* AArch64 ELF linker hash entry. */
2568 struct elf_aarch64_link_hash_entry
2569 {
2570 struct elf_link_hash_entry root;
2571
2572 /* Track dynamic relocs copied for this symbol. */
2573 struct elf_dyn_relocs *dyn_relocs;
2574
2575 /* Since PLT entries have variable size, we need to record the
2576 index into .got.plt instead of recomputing it from the PLT
2577 offset. */
2578 bfd_signed_vma plt_got_offset;
2579
2580 /* Bit mask representing the type of GOT entry(s) if any required by
2581 this symbol. */
2582 unsigned int got_type;
2583
2584 /* A pointer to the most recently used stub hash entry against this
2585 symbol. */
2586 struct elf_aarch64_stub_hash_entry *stub_cache;
2587
2588 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2589 is from the end of the jump table and reserved entries within the PLTGOT.
2590
2591 The magic value (bfd_vma) -1 indicates that an offset has not
2592 be allocated. */
2593 bfd_vma tlsdesc_got_jump_table_offset;
2594 };
2595
2596 static unsigned int
2597 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2598 bfd *abfd,
2599 unsigned long r_symndx)
2600 {
2601 if (h)
2602 return elf_aarch64_hash_entry (h)->got_type;
2603
2604 if (! elf_aarch64_locals (abfd))
2605 return GOT_UNKNOWN;
2606
2607 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2608 }
2609
2610 /* Get the AArch64 elf linker hash table from a link_info structure. */
2611 #define elf_aarch64_hash_table(info) \
2612 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2613
2614 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2615 ((struct elf_aarch64_stub_hash_entry *) \
2616 bfd_hash_lookup ((table), (string), (create), (copy)))
2617
2618 /* AArch64 ELF linker hash table. */
2619 struct elf_aarch64_link_hash_table
2620 {
2621 /* The main hash table. */
2622 struct elf_link_hash_table root;
2623
2624 /* Nonzero to force PIC branch veneers. */
2625 int pic_veneer;
2626
2627 /* Fix erratum 835769. */
2628 int fix_erratum_835769;
2629
2630 /* Fix erratum 843419. */
2631 erratum_84319_opts fix_erratum_843419;
2632
2633 /* Don't apply link-time values for dynamic relocations. */
2634 int no_apply_dynamic_relocs;
2635
2636 /* The number of bytes in the initial entry in the PLT. */
2637 bfd_size_type plt_header_size;
2638
2639 /* The bytes of the initial PLT entry. */
2640 const bfd_byte *plt0_entry;
2641
2642 /* The number of bytes in the subsequent PLT entries. */
2643 bfd_size_type plt_entry_size;
2644
2645 /* The bytes of the subsequent PLT entry. */
2646 const bfd_byte *plt_entry;
2647
2648 /* Small local sym cache. */
2649 struct sym_cache sym_cache;
2650
2651 /* For convenience in allocate_dynrelocs. */
2652 bfd *obfd;
2653
2654 /* The amount of space used by the reserved portion of the sgotplt
2655 section, plus whatever space is used by the jump slots. */
2656 bfd_vma sgotplt_jump_table_size;
2657
2658 /* The stub hash table. */
2659 struct bfd_hash_table stub_hash_table;
2660
2661 /* Linker stub bfd. */
2662 bfd *stub_bfd;
2663
2664 /* Linker call-backs. */
2665 asection *(*add_stub_section) (const char *, asection *);
2666 void (*layout_sections_again) (void);
2667
2668 /* Array to keep track of which stub sections have been created, and
2669 information on stub grouping. */
2670 struct map_stub
2671 {
2672 /* This is the section to which stubs in the group will be
2673 attached. */
2674 asection *link_sec;
2675 /* The stub section. */
2676 asection *stub_sec;
2677 } *stub_group;
2678
2679 /* Assorted information used by elfNN_aarch64_size_stubs. */
2680 unsigned int bfd_count;
2681 unsigned int top_index;
2682 asection **input_list;
2683
2684 /* JUMP_SLOT relocs for variant PCS symbols may be present. */
2685 int variant_pcs;
2686
2687 /* The offset into splt of the PLT entry for the TLS descriptor
2688 resolver. Special values are 0, if not necessary (or not found
2689 to be necessary yet), and -1 if needed but not determined
2690 yet. */
2691 bfd_vma tlsdesc_plt;
2692
2693 /* The number of bytes in the PLT enty for the TLS descriptor. */
2694 bfd_size_type tlsdesc_plt_entry_size;
2695
2696 /* The GOT offset for the lazy trampoline. Communicated to the
2697 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2698 indicates an offset is not allocated. */
2699 bfd_vma dt_tlsdesc_got;
2700
2701 /* Used by local STT_GNU_IFUNC symbols. */
2702 htab_t loc_hash_table;
2703 void * loc_hash_memory;
2704 };
2705
2706 /* Create an entry in an AArch64 ELF linker hash table. */
2707
2708 static struct bfd_hash_entry *
2709 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2710 struct bfd_hash_table *table,
2711 const char *string)
2712 {
2713 struct elf_aarch64_link_hash_entry *ret =
2714 (struct elf_aarch64_link_hash_entry *) entry;
2715
2716 /* Allocate the structure if it has not already been allocated by a
2717 subclass. */
2718 if (ret == NULL)
2719 ret = bfd_hash_allocate (table,
2720 sizeof (struct elf_aarch64_link_hash_entry));
2721 if (ret == NULL)
2722 return (struct bfd_hash_entry *) ret;
2723
2724 /* Call the allocation method of the superclass. */
2725 ret = ((struct elf_aarch64_link_hash_entry *)
2726 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2727 table, string));
2728 if (ret != NULL)
2729 {
2730 ret->dyn_relocs = NULL;
2731 ret->got_type = GOT_UNKNOWN;
2732 ret->plt_got_offset = (bfd_vma) - 1;
2733 ret->stub_cache = NULL;
2734 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2735 }
2736
2737 return (struct bfd_hash_entry *) ret;
2738 }
2739
2740 /* Initialize an entry in the stub hash table. */
2741
2742 static struct bfd_hash_entry *
2743 stub_hash_newfunc (struct bfd_hash_entry *entry,
2744 struct bfd_hash_table *table, const char *string)
2745 {
2746 /* Allocate the structure if it has not already been allocated by a
2747 subclass. */
2748 if (entry == NULL)
2749 {
2750 entry = bfd_hash_allocate (table,
2751 sizeof (struct
2752 elf_aarch64_stub_hash_entry));
2753 if (entry == NULL)
2754 return entry;
2755 }
2756
2757 /* Call the allocation method of the superclass. */
2758 entry = bfd_hash_newfunc (entry, table, string);
2759 if (entry != NULL)
2760 {
2761 struct elf_aarch64_stub_hash_entry *eh;
2762
2763 /* Initialize the local fields. */
2764 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2765 eh->adrp_offset = 0;
2766 eh->stub_sec = NULL;
2767 eh->stub_offset = 0;
2768 eh->target_value = 0;
2769 eh->target_section = NULL;
2770 eh->stub_type = aarch64_stub_none;
2771 eh->h = NULL;
2772 eh->id_sec = NULL;
2773 }
2774
2775 return entry;
2776 }
2777
2778 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2779 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2780 as global symbol. We reuse indx and dynstr_index for local symbol
2781 hash since they aren't used by global symbols in this backend. */
2782
2783 static hashval_t
2784 elfNN_aarch64_local_htab_hash (const void *ptr)
2785 {
2786 struct elf_link_hash_entry *h
2787 = (struct elf_link_hash_entry *) ptr;
2788 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2789 }
2790
2791 /* Compare local hash entries. */
2792
2793 static int
2794 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2795 {
2796 struct elf_link_hash_entry *h1
2797 = (struct elf_link_hash_entry *) ptr1;
2798 struct elf_link_hash_entry *h2
2799 = (struct elf_link_hash_entry *) ptr2;
2800
2801 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2802 }
2803
2804 /* Find and/or create a hash entry for local symbol. */
2805
2806 static struct elf_link_hash_entry *
2807 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2808 bfd *abfd, const Elf_Internal_Rela *rel,
2809 bfd_boolean create)
2810 {
2811 struct elf_aarch64_link_hash_entry e, *ret;
2812 asection *sec = abfd->sections;
2813 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2814 ELFNN_R_SYM (rel->r_info));
2815 void **slot;
2816
2817 e.root.indx = sec->id;
2818 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2819 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2820 create ? INSERT : NO_INSERT);
2821
2822 if (!slot)
2823 return NULL;
2824
2825 if (*slot)
2826 {
2827 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2828 return &ret->root;
2829 }
2830
2831 ret = (struct elf_aarch64_link_hash_entry *)
2832 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2833 sizeof (struct elf_aarch64_link_hash_entry));
2834 if (ret)
2835 {
2836 memset (ret, 0, sizeof (*ret));
2837 ret->root.indx = sec->id;
2838 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2839 ret->root.dynindx = -1;
2840 *slot = ret;
2841 }
2842 return &ret->root;
2843 }
2844
2845 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2846
2847 static void
2848 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2849 struct elf_link_hash_entry *dir,
2850 struct elf_link_hash_entry *ind)
2851 {
2852 struct elf_aarch64_link_hash_entry *edir, *eind;
2853
2854 edir = (struct elf_aarch64_link_hash_entry *) dir;
2855 eind = (struct elf_aarch64_link_hash_entry *) ind;
2856
2857 if (eind->dyn_relocs != NULL)
2858 {
2859 if (edir->dyn_relocs != NULL)
2860 {
2861 struct elf_dyn_relocs **pp;
2862 struct elf_dyn_relocs *p;
2863
2864 /* Add reloc counts against the indirect sym to the direct sym
2865 list. Merge any entries against the same section. */
2866 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2867 {
2868 struct elf_dyn_relocs *q;
2869
2870 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2871 if (q->sec == p->sec)
2872 {
2873 q->pc_count += p->pc_count;
2874 q->count += p->count;
2875 *pp = p->next;
2876 break;
2877 }
2878 if (q == NULL)
2879 pp = &p->next;
2880 }
2881 *pp = edir->dyn_relocs;
2882 }
2883
2884 edir->dyn_relocs = eind->dyn_relocs;
2885 eind->dyn_relocs = NULL;
2886 }
2887
2888 if (ind->root.type == bfd_link_hash_indirect)
2889 {
2890 /* Copy over PLT info. */
2891 if (dir->got.refcount <= 0)
2892 {
2893 edir->got_type = eind->got_type;
2894 eind->got_type = GOT_UNKNOWN;
2895 }
2896 }
2897
2898 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2899 }
2900
2901 /* Merge non-visibility st_other attributes. */
2902
2903 static void
2904 elfNN_aarch64_merge_symbol_attribute (struct elf_link_hash_entry *h,
2905 const Elf_Internal_Sym *isym,
2906 bfd_boolean definition ATTRIBUTE_UNUSED,
2907 bfd_boolean dynamic ATTRIBUTE_UNUSED)
2908 {
2909 unsigned int isym_sto = isym->st_other & ~ELF_ST_VISIBILITY (-1);
2910 unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1);
2911
2912 if (isym_sto == h_sto)
2913 return;
2914
2915 if (isym_sto & ~STO_AARCH64_VARIANT_PCS)
2916 /* Not fatal, this callback cannot fail. */
2917 _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
2918 h->root.root.string, isym_sto);
2919
2920 /* Note: Ideally we would warn about any attribute mismatch, but
2921 this api does not allow that without substantial changes. */
2922 if (isym_sto & STO_AARCH64_VARIANT_PCS)
2923 h->other |= STO_AARCH64_VARIANT_PCS;
2924 }
2925
2926 /* Destroy an AArch64 elf linker hash table. */
2927
2928 static void
2929 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2930 {
2931 struct elf_aarch64_link_hash_table *ret
2932 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2933
2934 if (ret->loc_hash_table)
2935 htab_delete (ret->loc_hash_table);
2936 if (ret->loc_hash_memory)
2937 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2938
2939 bfd_hash_table_free (&ret->stub_hash_table);
2940 _bfd_elf_link_hash_table_free (obfd);
2941 }
2942
2943 /* Create an AArch64 elf linker hash table. */
2944
2945 static struct bfd_link_hash_table *
2946 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2947 {
2948 struct elf_aarch64_link_hash_table *ret;
2949 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2950
2951 ret = bfd_zmalloc (amt);
2952 if (ret == NULL)
2953 return NULL;
2954
2955 if (!_bfd_elf_link_hash_table_init
2956 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2957 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2958 {
2959 free (ret);
2960 return NULL;
2961 }
2962
2963 ret->plt_header_size = PLT_ENTRY_SIZE;
2964 ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2965 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2966 ret->plt_entry = elfNN_aarch64_small_plt_entry;
2967 ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2968 ret->obfd = abfd;
2969 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2970
2971 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2972 sizeof (struct elf_aarch64_stub_hash_entry)))
2973 {
2974 _bfd_elf_link_hash_table_free (abfd);
2975 return NULL;
2976 }
2977
2978 ret->loc_hash_table = htab_try_create (1024,
2979 elfNN_aarch64_local_htab_hash,
2980 elfNN_aarch64_local_htab_eq,
2981 NULL);
2982 ret->loc_hash_memory = objalloc_create ();
2983 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2984 {
2985 elfNN_aarch64_link_hash_table_free (abfd);
2986 return NULL;
2987 }
2988 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2989
2990 return &ret->root.root;
2991 }
2992
2993 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2994
2995 static bfd_boolean
2996 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2997 bfd_vma offset, bfd_vma value)
2998 {
2999 reloc_howto_type *howto;
3000 bfd_vma place;
3001
3002 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
3003 place = (input_section->output_section->vma + input_section->output_offset
3004 + offset);
3005
3006 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
3007 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
3008 return _bfd_aarch64_elf_put_addend (input_bfd,
3009 input_section->contents + offset, r_type,
3010 howto, value) == bfd_reloc_ok;
3011 }
3012
3013 static enum elf_aarch64_stub_type
3014 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
3015 {
3016 if (aarch64_valid_for_adrp_p (value, place))
3017 return aarch64_stub_adrp_branch;
3018 return aarch64_stub_long_branch;
3019 }
3020
3021 /* Determine the type of stub needed, if any, for a call. */
3022
3023 static enum elf_aarch64_stub_type
3024 aarch64_type_of_stub (asection *input_sec,
3025 const Elf_Internal_Rela *rel,
3026 asection *sym_sec,
3027 unsigned char st_type,
3028 bfd_vma destination)
3029 {
3030 bfd_vma location;
3031 bfd_signed_vma branch_offset;
3032 unsigned int r_type;
3033 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
3034
3035 if (st_type != STT_FUNC
3036 && (sym_sec == input_sec))
3037 return stub_type;
3038
3039 /* Determine where the call point is. */
3040 location = (input_sec->output_offset
3041 + input_sec->output_section->vma + rel->r_offset);
3042
3043 branch_offset = (bfd_signed_vma) (destination - location);
3044
3045 r_type = ELFNN_R_TYPE (rel->r_info);
3046
3047 /* We don't want to redirect any old unconditional jump in this way,
3048 only one which is being used for a sibcall, where it is
3049 acceptable for the IP0 and IP1 registers to be clobbered. */
3050 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
3051 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
3052 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
3053 {
3054 stub_type = aarch64_stub_long_branch;
3055 }
3056
3057 return stub_type;
3058 }
3059
3060 /* Build a name for an entry in the stub hash table. */
3061
3062 static char *
3063 elfNN_aarch64_stub_name (const asection *input_section,
3064 const asection *sym_sec,
3065 const struct elf_aarch64_link_hash_entry *hash,
3066 const Elf_Internal_Rela *rel)
3067 {
3068 char *stub_name;
3069 bfd_size_type len;
3070
3071 if (hash)
3072 {
3073 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3074 stub_name = bfd_malloc (len);
3075 if (stub_name != NULL)
3076 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3077 (unsigned int) input_section->id,
3078 hash->root.root.root.string,
3079 rel->r_addend);
3080 }
3081 else
3082 {
3083 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3084 stub_name = bfd_malloc (len);
3085 if (stub_name != NULL)
3086 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3087 (unsigned int) input_section->id,
3088 (unsigned int) sym_sec->id,
3089 (unsigned int) ELFNN_R_SYM (rel->r_info),
3090 rel->r_addend);
3091 }
3092
3093 return stub_name;
3094 }
3095
3096 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3097 executable PLT slots where the executable never takes the address of those
3098 functions, the function symbols are not added to the hash table. */
3099
3100 static bfd_boolean
3101 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3102 {
3103 if (h->plt.offset != (bfd_vma) -1
3104 && !h->def_regular
3105 && !h->pointer_equality_needed)
3106 return FALSE;
3107
3108 return _bfd_elf_hash_symbol (h);
3109 }
3110
3111
3112 /* Look up an entry in the stub hash. Stub entries are cached because
3113 creating the stub name takes a bit of time. */
3114
3115 static struct elf_aarch64_stub_hash_entry *
3116 elfNN_aarch64_get_stub_entry (const asection *input_section,
3117 const asection *sym_sec,
3118 struct elf_link_hash_entry *hash,
3119 const Elf_Internal_Rela *rel,
3120 struct elf_aarch64_link_hash_table *htab)
3121 {
3122 struct elf_aarch64_stub_hash_entry *stub_entry;
3123 struct elf_aarch64_link_hash_entry *h =
3124 (struct elf_aarch64_link_hash_entry *) hash;
3125 const asection *id_sec;
3126
3127 if ((input_section->flags & SEC_CODE) == 0)
3128 return NULL;
3129
3130 /* If this input section is part of a group of sections sharing one
3131 stub section, then use the id of the first section in the group.
3132 Stub names need to include a section id, as there may well be
3133 more than one stub used to reach say, printf, and we need to
3134 distinguish between them. */
3135 id_sec = htab->stub_group[input_section->id].link_sec;
3136
3137 if (h != NULL && h->stub_cache != NULL
3138 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3139 {
3140 stub_entry = h->stub_cache;
3141 }
3142 else
3143 {
3144 char *stub_name;
3145
3146 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3147 if (stub_name == NULL)
3148 return NULL;
3149
3150 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3151 stub_name, FALSE, FALSE);
3152 if (h != NULL)
3153 h->stub_cache = stub_entry;
3154
3155 free (stub_name);
3156 }
3157
3158 return stub_entry;
3159 }
3160
3161
3162 /* Create a stub section. */
3163
3164 static asection *
3165 _bfd_aarch64_create_stub_section (asection *section,
3166 struct elf_aarch64_link_hash_table *htab)
3167 {
3168 size_t namelen;
3169 bfd_size_type len;
3170 char *s_name;
3171
3172 namelen = strlen (section->name);
3173 len = namelen + sizeof (STUB_SUFFIX);
3174 s_name = bfd_alloc (htab->stub_bfd, len);
3175 if (s_name == NULL)
3176 return NULL;
3177
3178 memcpy (s_name, section->name, namelen);
3179 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3180 return (*htab->add_stub_section) (s_name, section);
3181 }
3182
3183
3184 /* Find or create a stub section for a link section.
3185
3186 Fix or create the stub section used to collect stubs attached to
3187 the specified link section. */
3188
3189 static asection *
3190 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3191 struct elf_aarch64_link_hash_table *htab)
3192 {
3193 if (htab->stub_group[link_section->id].stub_sec == NULL)
3194 htab->stub_group[link_section->id].stub_sec
3195 = _bfd_aarch64_create_stub_section (link_section, htab);
3196 return htab->stub_group[link_section->id].stub_sec;
3197 }
3198
3199
3200 /* Find or create a stub section in the stub group for an input
3201 section. */
3202
3203 static asection *
3204 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3205 struct elf_aarch64_link_hash_table *htab)
3206 {
3207 asection *link_sec = htab->stub_group[section->id].link_sec;
3208 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3209 }
3210
3211
3212 /* Add a new stub entry in the stub group associated with an input
3213 section to the stub hash. Not all fields of the new stub entry are
3214 initialised. */
3215
3216 static struct elf_aarch64_stub_hash_entry *
3217 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3218 asection *section,
3219 struct elf_aarch64_link_hash_table *htab)
3220 {
3221 asection *link_sec;
3222 asection *stub_sec;
3223 struct elf_aarch64_stub_hash_entry *stub_entry;
3224
3225 link_sec = htab->stub_group[section->id].link_sec;
3226 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3227
3228 /* Enter this entry into the linker stub hash table. */
3229 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3230 TRUE, FALSE);
3231 if (stub_entry == NULL)
3232 {
3233 /* xgettext:c-format */
3234 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3235 section->owner, stub_name);
3236 return NULL;
3237 }
3238
3239 stub_entry->stub_sec = stub_sec;
3240 stub_entry->stub_offset = 0;
3241 stub_entry->id_sec = link_sec;
3242
3243 return stub_entry;
3244 }
3245
3246 /* Add a new stub entry in the final stub section to the stub hash.
3247 Not all fields of the new stub entry are initialised. */
3248
3249 static struct elf_aarch64_stub_hash_entry *
3250 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3251 asection *link_section,
3252 struct elf_aarch64_link_hash_table *htab)
3253 {
3254 asection *stub_sec;
3255 struct elf_aarch64_stub_hash_entry *stub_entry;
3256
3257 stub_sec = NULL;
3258 /* Only create the actual stub if we will end up needing it. */
3259 if (htab->fix_erratum_843419 & ERRAT_ADRP)
3260 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3261 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3262 TRUE, FALSE);
3263 if (stub_entry == NULL)
3264 {
3265 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3266 return NULL;
3267 }
3268
3269 stub_entry->stub_sec = stub_sec;
3270 stub_entry->stub_offset = 0;
3271 stub_entry->id_sec = link_section;
3272
3273 return stub_entry;
3274 }
3275
3276
3277 static bfd_boolean
3278 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3279 void *in_arg ATTRIBUTE_UNUSED)
3280 {
3281 struct elf_aarch64_stub_hash_entry *stub_entry;
3282 asection *stub_sec;
3283 bfd *stub_bfd;
3284 bfd_byte *loc;
3285 bfd_vma sym_value;
3286 bfd_vma veneered_insn_loc;
3287 bfd_vma veneer_entry_loc;
3288 bfd_signed_vma branch_offset = 0;
3289 unsigned int template_size;
3290 const uint32_t *template;
3291 unsigned int i;
3292
3293 /* Massage our args to the form they really have. */
3294 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3295
3296 stub_sec = stub_entry->stub_sec;
3297
3298 /* Make a note of the offset within the stubs for this entry. */
3299 stub_entry->stub_offset = stub_sec->size;
3300 loc = stub_sec->contents + stub_entry->stub_offset;
3301
3302 stub_bfd = stub_sec->owner;
3303
3304 /* This is the address of the stub destination. */
3305 sym_value = (stub_entry->target_value
3306 + stub_entry->target_section->output_offset
3307 + stub_entry->target_section->output_section->vma);
3308
3309 if (stub_entry->stub_type == aarch64_stub_long_branch)
3310 {
3311 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3312 + stub_sec->output_offset);
3313
3314 /* See if we can relax the stub. */
3315 if (aarch64_valid_for_adrp_p (sym_value, place))
3316 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3317 }
3318
3319 switch (stub_entry->stub_type)
3320 {
3321 case aarch64_stub_adrp_branch:
3322 template = aarch64_adrp_branch_stub;
3323 template_size = sizeof (aarch64_adrp_branch_stub);
3324 break;
3325 case aarch64_stub_long_branch:
3326 template = aarch64_long_branch_stub;
3327 template_size = sizeof (aarch64_long_branch_stub);
3328 break;
3329 case aarch64_stub_erratum_835769_veneer:
3330 template = aarch64_erratum_835769_stub;
3331 template_size = sizeof (aarch64_erratum_835769_stub);
3332 break;
3333 case aarch64_stub_erratum_843419_veneer:
3334 template = aarch64_erratum_843419_stub;
3335 template_size = sizeof (aarch64_erratum_843419_stub);
3336 break;
3337 default:
3338 abort ();
3339 }
3340
3341 for (i = 0; i < (template_size / sizeof template[0]); i++)
3342 {
3343 bfd_putl32 (template[i], loc);
3344 loc += 4;
3345 }
3346
3347 template_size = (template_size + 7) & ~7;
3348 stub_sec->size += template_size;
3349
3350 switch (stub_entry->stub_type)
3351 {
3352 case aarch64_stub_adrp_branch:
3353 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3354 stub_entry->stub_offset, sym_value))
3355 /* The stub would not have been relaxed if the offset was out
3356 of range. */
3357 BFD_FAIL ();
3358
3359 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3360 stub_entry->stub_offset + 4, sym_value))
3361 BFD_FAIL ();
3362 break;
3363
3364 case aarch64_stub_long_branch:
3365 /* We want the value relative to the address 12 bytes back from the
3366 value itself. */
3367 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3368 stub_entry->stub_offset + 16, sym_value + 12))
3369 BFD_FAIL ();
3370 break;
3371
3372 case aarch64_stub_erratum_835769_veneer:
3373 veneered_insn_loc = stub_entry->target_section->output_section->vma
3374 + stub_entry->target_section->output_offset
3375 + stub_entry->target_value;
3376 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3377 + stub_entry->stub_sec->output_offset
3378 + stub_entry->stub_offset;
3379 branch_offset = veneered_insn_loc - veneer_entry_loc;
3380 branch_offset >>= 2;
3381 branch_offset &= 0x3ffffff;
3382 bfd_putl32 (stub_entry->veneered_insn,
3383 stub_sec->contents + stub_entry->stub_offset);
3384 bfd_putl32 (template[1] | branch_offset,
3385 stub_sec->contents + stub_entry->stub_offset + 4);
3386 break;
3387
3388 case aarch64_stub_erratum_843419_veneer:
3389 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3390 stub_entry->stub_offset + 4, sym_value + 4))
3391 BFD_FAIL ();
3392 break;
3393
3394 default:
3395 abort ();
3396 }
3397
3398 return TRUE;
3399 }
3400
3401 /* As above, but don't actually build the stub. Just bump offset so
3402 we know stub section sizes. */
3403
3404 static bfd_boolean
3405 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
3406 {
3407 struct elf_aarch64_stub_hash_entry *stub_entry;
3408 struct elf_aarch64_link_hash_table *htab;
3409 int size;
3410
3411 /* Massage our args to the form they really have. */
3412 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3413 htab = (struct elf_aarch64_link_hash_table *) in_arg;
3414
3415 switch (stub_entry->stub_type)
3416 {
3417 case aarch64_stub_adrp_branch:
3418 size = sizeof (aarch64_adrp_branch_stub);
3419 break;
3420 case aarch64_stub_long_branch:
3421 size = sizeof (aarch64_long_branch_stub);
3422 break;
3423 case aarch64_stub_erratum_835769_veneer:
3424 size = sizeof (aarch64_erratum_835769_stub);
3425 break;
3426 case aarch64_stub_erratum_843419_veneer:
3427 {
3428 if (htab->fix_erratum_843419 == ERRAT_ADR)
3429 return TRUE;
3430 size = sizeof (aarch64_erratum_843419_stub);
3431 }
3432 break;
3433 default:
3434 abort ();
3435 }
3436
3437 size = (size + 7) & ~7;
3438 stub_entry->stub_sec->size += size;
3439 return TRUE;
3440 }
3441
3442 /* External entry points for sizing and building linker stubs. */
3443
3444 /* Set up various things so that we can make a list of input sections
3445 for each output section included in the link. Returns -1 on error,
3446 0 when no stubs will be needed, and 1 on success. */
3447
3448 int
3449 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3450 struct bfd_link_info *info)
3451 {
3452 bfd *input_bfd;
3453 unsigned int bfd_count;
3454 unsigned int top_id, top_index;
3455 asection *section;
3456 asection **input_list, **list;
3457 bfd_size_type amt;
3458 struct elf_aarch64_link_hash_table *htab =
3459 elf_aarch64_hash_table (info);
3460
3461 if (!is_elf_hash_table (htab))
3462 return 0;
3463
3464 /* Count the number of input BFDs and find the top input section id. */
3465 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3466 input_bfd != NULL; input_bfd = input_bfd->link.next)
3467 {
3468 bfd_count += 1;
3469 for (section = input_bfd->sections;
3470 section != NULL; section = section->next)
3471 {
3472 if (top_id < section->id)
3473 top_id = section->id;
3474 }
3475 }
3476 htab->bfd_count = bfd_count;
3477
3478 amt = sizeof (struct map_stub) * (top_id + 1);
3479 htab->stub_group = bfd_zmalloc (amt);
3480 if (htab->stub_group == NULL)
3481 return -1;
3482
3483 /* We can't use output_bfd->section_count here to find the top output
3484 section index as some sections may have been removed, and
3485 _bfd_strip_section_from_output doesn't renumber the indices. */
3486 for (section = output_bfd->sections, top_index = 0;
3487 section != NULL; section = section->next)
3488 {
3489 if (top_index < section->index)
3490 top_index = section->index;
3491 }
3492
3493 htab->top_index = top_index;
3494 amt = sizeof (asection *) * (top_index + 1);
3495 input_list = bfd_malloc (amt);
3496 htab->input_list = input_list;
3497 if (input_list == NULL)
3498 return -1;
3499
3500 /* For sections we aren't interested in, mark their entries with a
3501 value we can check later. */
3502 list = input_list + top_index;
3503 do
3504 *list = bfd_abs_section_ptr;
3505 while (list-- != input_list);
3506
3507 for (section = output_bfd->sections;
3508 section != NULL; section = section->next)
3509 {
3510 if ((section->flags & SEC_CODE) != 0)
3511 input_list[section->index] = NULL;
3512 }
3513
3514 return 1;
3515 }
3516
3517 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3518 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3519
3520 /* The linker repeatedly calls this function for each input section,
3521 in the order that input sections are linked into output sections.
3522 Build lists of input sections to determine groupings between which
3523 we may insert linker stubs. */
3524
3525 void
3526 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3527 {
3528 struct elf_aarch64_link_hash_table *htab =
3529 elf_aarch64_hash_table (info);
3530
3531 if (isec->output_section->index <= htab->top_index)
3532 {
3533 asection **list = htab->input_list + isec->output_section->index;
3534
3535 if (*list != bfd_abs_section_ptr)
3536 {
3537 /* Steal the link_sec pointer for our list. */
3538 /* This happens to make the list in reverse order,
3539 which is what we want. */
3540 PREV_SEC (isec) = *list;
3541 *list = isec;
3542 }
3543 }
3544 }
3545
3546 /* See whether we can group stub sections together. Grouping stub
3547 sections may result in fewer stubs. More importantly, we need to
3548 put all .init* and .fini* stubs at the beginning of the .init or
3549 .fini output sections respectively, because glibc splits the
3550 _init and _fini functions into multiple parts. Putting a stub in
3551 the middle of a function is not a good idea. */
3552
3553 static void
3554 group_sections (struct elf_aarch64_link_hash_table *htab,
3555 bfd_size_type stub_group_size,
3556 bfd_boolean stubs_always_before_branch)
3557 {
3558 asection **list = htab->input_list + htab->top_index;
3559
3560 do
3561 {
3562 asection *tail = *list;
3563
3564 if (tail == bfd_abs_section_ptr)
3565 continue;
3566
3567 while (tail != NULL)
3568 {
3569 asection *curr;
3570 asection *prev;
3571 bfd_size_type total;
3572
3573 curr = tail;
3574 total = tail->size;
3575 while ((prev = PREV_SEC (curr)) != NULL
3576 && ((total += curr->output_offset - prev->output_offset)
3577 < stub_group_size))
3578 curr = prev;
3579
3580 /* OK, the size from the start of CURR to the end is less
3581 than stub_group_size and thus can be handled by one stub
3582 section. (Or the tail section is itself larger than
3583 stub_group_size, in which case we may be toast.)
3584 We should really be keeping track of the total size of
3585 stubs added here, as stubs contribute to the final output
3586 section size. */
3587 do
3588 {
3589 prev = PREV_SEC (tail);
3590 /* Set up this stub group. */
3591 htab->stub_group[tail->id].link_sec = curr;
3592 }
3593 while (tail != curr && (tail = prev) != NULL);
3594
3595 /* But wait, there's more! Input sections up to stub_group_size
3596 bytes before the stub section can be handled by it too. */
3597 if (!stubs_always_before_branch)
3598 {
3599 total = 0;
3600 while (prev != NULL
3601 && ((total += tail->output_offset - prev->output_offset)
3602 < stub_group_size))
3603 {
3604 tail = prev;
3605 prev = PREV_SEC (tail);
3606 htab->stub_group[tail->id].link_sec = curr;
3607 }
3608 }
3609 tail = prev;
3610 }
3611 }
3612 while (list-- != htab->input_list);
3613
3614 free (htab->input_list);
3615 }
3616
3617 #undef PREV_SEC
3618
3619 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3620
3621 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3622 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3623 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3624 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3625 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3626 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3627
3628 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3629 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3630 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3631 #define AARCH64_ZR 0x1f
3632
3633 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3634 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3635
3636 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3637 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3638 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3639 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3640 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3641 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3642 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3643 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3644 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3645 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3646 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3647 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3648 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3649 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3650 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3651 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3652 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3653 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3654
3655 /* Classify an INSN if it is indeed a load/store.
3656
3657 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3658
3659 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3660 is set equal to RT.
3661
3662 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3663
3664 static bfd_boolean
3665 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3666 bfd_boolean *pair, bfd_boolean *load)
3667 {
3668 uint32_t opcode;
3669 unsigned int r;
3670 uint32_t opc = 0;
3671 uint32_t v = 0;
3672 uint32_t opc_v = 0;
3673
3674 /* Bail out quickly if INSN doesn't fall into the load-store
3675 encoding space. */
3676 if (!AARCH64_LDST (insn))
3677 return FALSE;
3678
3679 *pair = FALSE;
3680 *load = FALSE;
3681 if (AARCH64_LDST_EX (insn))
3682 {
3683 *rt = AARCH64_RT (insn);
3684 *rt2 = *rt;
3685 if (AARCH64_BIT (insn, 21) == 1)
3686 {
3687 *pair = TRUE;
3688 *rt2 = AARCH64_RT2 (insn);
3689 }
3690 *load = AARCH64_LD (insn);
3691 return TRUE;
3692 }
3693 else if (AARCH64_LDST_NAP (insn)
3694 || AARCH64_LDSTP_PI (insn)
3695 || AARCH64_LDSTP_O (insn)
3696 || AARCH64_LDSTP_PRE (insn))
3697 {
3698 *pair = TRUE;
3699 *rt = AARCH64_RT (insn);
3700 *rt2 = AARCH64_RT2 (insn);
3701 *load = AARCH64_LD (insn);
3702 return TRUE;
3703 }
3704 else if (AARCH64_LDST_PCREL (insn)
3705 || AARCH64_LDST_UI (insn)
3706 || AARCH64_LDST_PIIMM (insn)
3707 || AARCH64_LDST_U (insn)
3708 || AARCH64_LDST_PREIMM (insn)
3709 || AARCH64_LDST_RO (insn)
3710 || AARCH64_LDST_UIMM (insn))
3711 {
3712 *rt = AARCH64_RT (insn);
3713 *rt2 = *rt;
3714 if (AARCH64_LDST_PCREL (insn))
3715 *load = TRUE;
3716 opc = AARCH64_BITS (insn, 22, 2);
3717 v = AARCH64_BIT (insn, 26);
3718 opc_v = opc | (v << 2);
3719 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3720 || opc_v == 5 || opc_v == 7);
3721 return TRUE;
3722 }
3723 else if (AARCH64_LDST_SIMD_M (insn)
3724 || AARCH64_LDST_SIMD_M_PI (insn))
3725 {
3726 *rt = AARCH64_RT (insn);
3727 *load = AARCH64_BIT (insn, 22);
3728 opcode = (insn >> 12) & 0xf;
3729 switch (opcode)
3730 {
3731 case 0:
3732 case 2:
3733 *rt2 = *rt + 3;
3734 break;
3735
3736 case 4:
3737 case 6:
3738 *rt2 = *rt + 2;
3739 break;
3740
3741 case 7:
3742 *rt2 = *rt;
3743 break;
3744
3745 case 8:
3746 case 10:
3747 *rt2 = *rt + 1;
3748 break;
3749
3750 default:
3751 return FALSE;
3752 }
3753 return TRUE;
3754 }
3755 else if (AARCH64_LDST_SIMD_S (insn)
3756 || AARCH64_LDST_SIMD_S_PI (insn))
3757 {
3758 *rt = AARCH64_RT (insn);
3759 r = (insn >> 21) & 1;
3760 *load = AARCH64_BIT (insn, 22);
3761 opcode = (insn >> 13) & 0x7;
3762 switch (opcode)
3763 {
3764 case 0:
3765 case 2:
3766 case 4:
3767 *rt2 = *rt + r;
3768 break;
3769
3770 case 1:
3771 case 3:
3772 case 5:
3773 *rt2 = *rt + (r == 0 ? 2 : 3);
3774 break;
3775
3776 case 6:
3777 *rt2 = *rt + r;
3778 break;
3779
3780 case 7:
3781 *rt2 = *rt + (r == 0 ? 2 : 3);
3782 break;
3783
3784 default:
3785 return FALSE;
3786 }
3787 return TRUE;
3788 }
3789
3790 return FALSE;
3791 }
3792
3793 /* Return TRUE if INSN is multiply-accumulate. */
3794
3795 static bfd_boolean
3796 aarch64_mlxl_p (uint32_t insn)
3797 {
3798 uint32_t op31 = AARCH64_OP31 (insn);
3799
3800 if (AARCH64_MAC (insn)
3801 && (op31 == 0 || op31 == 1 || op31 == 5)
3802 /* Exclude MUL instructions which are encoded as a multiple accumulate
3803 with RA = XZR. */
3804 && AARCH64_RA (insn) != AARCH64_ZR)
3805 return TRUE;
3806
3807 return FALSE;
3808 }
3809
3810 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3811 it is possible for a 64-bit multiply-accumulate instruction to generate an
3812 incorrect result. The details are quite complex and hard to
3813 determine statically, since branches in the code may exist in some
3814 circumstances, but all cases end with a memory (load, store, or
3815 prefetch) instruction followed immediately by the multiply-accumulate
3816 operation. We employ a linker patching technique, by moving the potentially
3817 affected multiply-accumulate instruction into a patch region and replacing
3818 the original instruction with a branch to the patch. This function checks
3819 if INSN_1 is the memory operation followed by a multiply-accumulate
3820 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3821 if INSN_1 and INSN_2 are safe. */
3822
3823 static bfd_boolean
3824 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3825 {
3826 uint32_t rt;
3827 uint32_t rt2;
3828 uint32_t rn;
3829 uint32_t rm;
3830 uint32_t ra;
3831 bfd_boolean pair;
3832 bfd_boolean load;
3833
3834 if (aarch64_mlxl_p (insn_2)
3835 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3836 {
3837 /* Any SIMD memory op is independent of the subsequent MLA
3838 by definition of the erratum. */
3839 if (AARCH64_BIT (insn_1, 26))
3840 return TRUE;
3841
3842 /* If not SIMD, check for integer memory ops and MLA relationship. */
3843 rn = AARCH64_RN (insn_2);
3844 ra = AARCH64_RA (insn_2);
3845 rm = AARCH64_RM (insn_2);
3846
3847 /* If this is a load and there's a true(RAW) dependency, we are safe
3848 and this is not an erratum sequence. */
3849 if (load &&
3850 (rt == rn || rt == rm || rt == ra
3851 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3852 return FALSE;
3853
3854 /* We conservatively put out stubs for all other cases (including
3855 writebacks). */
3856 return TRUE;
3857 }
3858
3859 return FALSE;
3860 }
3861
3862 /* Used to order a list of mapping symbols by address. */
3863
3864 static int
3865 elf_aarch64_compare_mapping (const void *a, const void *b)
3866 {
3867 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3868 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3869
3870 if (amap->vma > bmap->vma)
3871 return 1;
3872 else if (amap->vma < bmap->vma)
3873 return -1;
3874 else if (amap->type > bmap->type)
3875 /* Ensure results do not depend on the host qsort for objects with
3876 multiple mapping symbols at the same address by sorting on type
3877 after vma. */
3878 return 1;
3879 else if (amap->type < bmap->type)
3880 return -1;
3881 else
3882 return 0;
3883 }
3884
3885
3886 static char *
3887 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3888 {
3889 char *stub_name = (char *) bfd_malloc
3890 (strlen ("__erratum_835769_veneer_") + 16);
3891 if (stub_name != NULL)
3892 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3893 return stub_name;
3894 }
3895
3896 /* Scan for Cortex-A53 erratum 835769 sequence.
3897
3898 Return TRUE else FALSE on abnormal termination. */
3899
3900 static bfd_boolean
3901 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3902 struct bfd_link_info *info,
3903 unsigned int *num_fixes_p)
3904 {
3905 asection *section;
3906 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3907 unsigned int num_fixes = *num_fixes_p;
3908
3909 if (htab == NULL)
3910 return TRUE;
3911
3912 for (section = input_bfd->sections;
3913 section != NULL;
3914 section = section->next)
3915 {
3916 bfd_byte *contents = NULL;
3917 struct _aarch64_elf_section_data *sec_data;
3918 unsigned int span;
3919
3920 if (elf_section_type (section) != SHT_PROGBITS
3921 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3922 || (section->flags & SEC_EXCLUDE) != 0
3923 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3924 || (section->output_section == bfd_abs_section_ptr))
3925 continue;
3926
3927 if (elf_section_data (section)->this_hdr.contents != NULL)
3928 contents = elf_section_data (section)->this_hdr.contents;
3929 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3930 return FALSE;
3931
3932 sec_data = elf_aarch64_section_data (section);
3933
3934 qsort (sec_data->map, sec_data->mapcount,
3935 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3936
3937 for (span = 0; span < sec_data->mapcount; span++)
3938 {
3939 unsigned int span_start = sec_data->map[span].vma;
3940 unsigned int span_end = ((span == sec_data->mapcount - 1)
3941 ? sec_data->map[0].vma + section->size
3942 : sec_data->map[span + 1].vma);
3943 unsigned int i;
3944 char span_type = sec_data->map[span].type;
3945
3946 if (span_type == 'd')
3947 continue;
3948
3949 for (i = span_start; i + 4 < span_end; i += 4)
3950 {
3951 uint32_t insn_1 = bfd_getl32 (contents + i);
3952 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3953
3954 if (aarch64_erratum_sequence (insn_1, insn_2))
3955 {
3956 struct elf_aarch64_stub_hash_entry *stub_entry;
3957 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3958 if (! stub_name)
3959 return FALSE;
3960
3961 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3962 section,
3963 htab);
3964 if (! stub_entry)
3965 return FALSE;
3966
3967 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3968 stub_entry->target_section = section;
3969 stub_entry->target_value = i + 4;
3970 stub_entry->veneered_insn = insn_2;
3971 stub_entry->output_name = stub_name;
3972 num_fixes++;
3973 }
3974 }
3975 }
3976 if (elf_section_data (section)->this_hdr.contents == NULL)
3977 free (contents);
3978 }
3979
3980 *num_fixes_p = num_fixes;
3981
3982 return TRUE;
3983 }
3984
3985
3986 /* Test if instruction INSN is ADRP. */
3987
3988 static bfd_boolean
3989 _bfd_aarch64_adrp_p (uint32_t insn)
3990 {
3991 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
3992 }
3993
3994
3995 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3996
3997 static bfd_boolean
3998 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3999 uint32_t insn_3)
4000 {
4001 uint32_t rt;
4002 uint32_t rt2;
4003 bfd_boolean pair;
4004 bfd_boolean load;
4005
4006 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
4007 && (!pair
4008 || (pair && !load))
4009 && AARCH64_LDST_UIMM (insn_3)
4010 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
4011 }
4012
4013
4014 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
4015
4016 Return TRUE if section CONTENTS at offset I contains one of the
4017 erratum 843419 sequences, otherwise return FALSE. If a sequence is
4018 seen set P_VENEER_I to the offset of the final LOAD/STORE
4019 instruction in the sequence.
4020 */
4021
4022 static bfd_boolean
4023 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
4024 bfd_vma i, bfd_vma span_end,
4025 bfd_vma *p_veneer_i)
4026 {
4027 uint32_t insn_1 = bfd_getl32 (contents + i);
4028
4029 if (!_bfd_aarch64_adrp_p (insn_1))
4030 return FALSE;
4031
4032 if (span_end < i + 12)
4033 return FALSE;
4034
4035 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
4036 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
4037
4038 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
4039 return FALSE;
4040
4041 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
4042 {
4043 *p_veneer_i = i + 8;
4044 return TRUE;
4045 }
4046
4047 if (span_end < i + 16)
4048 return FALSE;
4049
4050 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
4051
4052 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
4053 {
4054 *p_veneer_i = i + 12;
4055 return TRUE;
4056 }
4057
4058 return FALSE;
4059 }
4060
4061
4062 /* Resize all stub sections. */
4063
4064 static void
4065 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4066 {
4067 asection *section;
4068
4069 /* OK, we've added some stubs. Find out the new size of the
4070 stub sections. */
4071 for (section = htab->stub_bfd->sections;
4072 section != NULL; section = section->next)
4073 {
4074 /* Ignore non-stub sections. */
4075 if (!strstr (section->name, STUB_SUFFIX))
4076 continue;
4077 section->size = 0;
4078 }
4079
4080 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4081
4082 for (section = htab->stub_bfd->sections;
4083 section != NULL; section = section->next)
4084 {
4085 if (!strstr (section->name, STUB_SUFFIX))
4086 continue;
4087
4088 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4089 as long branch stubs contain a 64-bit address. */
4090 if (section->size)
4091 section->size += 8;
4092
4093 /* Ensure all stub sections have a size which is a multiple of
4094 4096. This is important in order to ensure that the insertion
4095 of stub sections does not in itself move existing code around
4096 in such a way that new errata sequences are created. We only do this
4097 when the ADRP workaround is enabled. If only the ADR workaround is
4098 enabled then the stubs workaround won't ever be used. */
4099 if (htab->fix_erratum_843419 & ERRAT_ADRP)
4100 if (section->size)
4101 section->size = BFD_ALIGN (section->size, 0x1000);
4102 }
4103 }
4104
4105 /* Construct an erratum 843419 workaround stub name. */
4106
4107 static char *
4108 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4109 bfd_vma offset)
4110 {
4111 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4112 char *stub_name = bfd_malloc (len);
4113
4114 if (stub_name != NULL)
4115 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4116 input_section->owner->id,
4117 input_section->id,
4118 offset);
4119 return stub_name;
4120 }
4121
4122 /* Build a stub_entry structure describing an 843419 fixup.
4123
4124 The stub_entry constructed is populated with the bit pattern INSN
4125 of the instruction located at OFFSET within input SECTION.
4126
4127 Returns TRUE on success. */
4128
4129 static bfd_boolean
4130 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4131 bfd_vma adrp_offset,
4132 bfd_vma ldst_offset,
4133 asection *section,
4134 struct bfd_link_info *info)
4135 {
4136 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4137 char *stub_name;
4138 struct elf_aarch64_stub_hash_entry *stub_entry;
4139
4140 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4141 if (stub_name == NULL)
4142 return FALSE;
4143 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4144 FALSE, FALSE);
4145 if (stub_entry)
4146 {
4147 free (stub_name);
4148 return TRUE;
4149 }
4150
4151 /* We always place an 843419 workaround veneer in the stub section
4152 attached to the input section in which an erratum sequence has
4153 been found. This ensures that later in the link process (in
4154 elfNN_aarch64_write_section) when we copy the veneered
4155 instruction from the input section into the stub section the
4156 copied instruction will have had any relocations applied to it.
4157 If we placed workaround veneers in any other stub section then we
4158 could not assume that all relocations have been processed on the
4159 corresponding input section at the point we output the stub
4160 section. */
4161
4162 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4163 if (stub_entry == NULL)
4164 {
4165 free (stub_name);
4166 return FALSE;
4167 }
4168
4169 stub_entry->adrp_offset = adrp_offset;
4170 stub_entry->target_value = ldst_offset;
4171 stub_entry->target_section = section;
4172 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4173 stub_entry->veneered_insn = insn;
4174 stub_entry->output_name = stub_name;
4175
4176 return TRUE;
4177 }
4178
4179
4180 /* Scan an input section looking for the signature of erratum 843419.
4181
4182 Scans input SECTION in INPUT_BFD looking for erratum 843419
4183 signatures, for each signature found a stub_entry is created
4184 describing the location of the erratum for subsequent fixup.
4185
4186 Return TRUE on successful scan, FALSE on failure to scan.
4187 */
4188
4189 static bfd_boolean
4190 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4191 struct bfd_link_info *info)
4192 {
4193 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4194
4195 if (htab == NULL)
4196 return TRUE;
4197
4198 if (elf_section_type (section) != SHT_PROGBITS
4199 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4200 || (section->flags & SEC_EXCLUDE) != 0
4201 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4202 || (section->output_section == bfd_abs_section_ptr))
4203 return TRUE;
4204
4205 do
4206 {
4207 bfd_byte *contents = NULL;
4208 struct _aarch64_elf_section_data *sec_data;
4209 unsigned int span;
4210
4211 if (elf_section_data (section)->this_hdr.contents != NULL)
4212 contents = elf_section_data (section)->this_hdr.contents;
4213 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4214 return FALSE;
4215
4216 sec_data = elf_aarch64_section_data (section);
4217
4218 qsort (sec_data->map, sec_data->mapcount,
4219 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4220
4221 for (span = 0; span < sec_data->mapcount; span++)
4222 {
4223 unsigned int span_start = sec_data->map[span].vma;
4224 unsigned int span_end = ((span == sec_data->mapcount - 1)
4225 ? sec_data->map[0].vma + section->size
4226 : sec_data->map[span + 1].vma);
4227 unsigned int i;
4228 char span_type = sec_data->map[span].type;
4229
4230 if (span_type == 'd')
4231 continue;
4232
4233 for (i = span_start; i + 8 < span_end; i += 4)
4234 {
4235 bfd_vma vma = (section->output_section->vma
4236 + section->output_offset
4237 + i);
4238 bfd_vma veneer_i;
4239
4240 if (_bfd_aarch64_erratum_843419_p
4241 (contents, vma, i, span_end, &veneer_i))
4242 {
4243 uint32_t insn = bfd_getl32 (contents + veneer_i);
4244
4245 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4246 section, info))
4247 return FALSE;
4248 }
4249 }
4250 }
4251
4252 if (elf_section_data (section)->this_hdr.contents == NULL)
4253 free (contents);
4254 }
4255 while (0);
4256
4257 return TRUE;
4258 }
4259
4260
4261 /* Determine and set the size of the stub section for a final link.
4262
4263 The basic idea here is to examine all the relocations looking for
4264 PC-relative calls to a target that is unreachable with a "bl"
4265 instruction. */
4266
4267 bfd_boolean
4268 elfNN_aarch64_size_stubs (bfd *output_bfd,
4269 bfd *stub_bfd,
4270 struct bfd_link_info *info,
4271 bfd_signed_vma group_size,
4272 asection * (*add_stub_section) (const char *,
4273 asection *),
4274 void (*layout_sections_again) (void))
4275 {
4276 bfd_size_type stub_group_size;
4277 bfd_boolean stubs_always_before_branch;
4278 bfd_boolean stub_changed = FALSE;
4279 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4280 unsigned int num_erratum_835769_fixes = 0;
4281
4282 /* Propagate mach to stub bfd, because it may not have been
4283 finalized when we created stub_bfd. */
4284 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4285 bfd_get_mach (output_bfd));
4286
4287 /* Stash our params away. */
4288 htab->stub_bfd = stub_bfd;
4289 htab->add_stub_section = add_stub_section;
4290 htab->layout_sections_again = layout_sections_again;
4291 stubs_always_before_branch = group_size < 0;
4292 if (group_size < 0)
4293 stub_group_size = -group_size;
4294 else
4295 stub_group_size = group_size;
4296
4297 if (stub_group_size == 1)
4298 {
4299 /* Default values. */
4300 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4301 stub_group_size = 127 * 1024 * 1024;
4302 }
4303
4304 group_sections (htab, stub_group_size, stubs_always_before_branch);
4305
4306 (*htab->layout_sections_again) ();
4307
4308 if (htab->fix_erratum_835769)
4309 {
4310 bfd *input_bfd;
4311
4312 for (input_bfd = info->input_bfds;
4313 input_bfd != NULL; input_bfd = input_bfd->link.next)
4314 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4315 &num_erratum_835769_fixes))
4316 return FALSE;
4317
4318 _bfd_aarch64_resize_stubs (htab);
4319 (*htab->layout_sections_again) ();
4320 }
4321
4322 if (htab->fix_erratum_843419 != ERRAT_NONE)
4323 {
4324 bfd *input_bfd;
4325
4326 for (input_bfd = info->input_bfds;
4327 input_bfd != NULL;
4328 input_bfd = input_bfd->link.next)
4329 {
4330 asection *section;
4331
4332 for (section = input_bfd->sections;
4333 section != NULL;
4334 section = section->next)
4335 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4336 return FALSE;
4337 }
4338
4339 _bfd_aarch64_resize_stubs (htab);
4340 (*htab->layout_sections_again) ();
4341 }
4342
4343 while (1)
4344 {
4345 bfd *input_bfd;
4346
4347 for (input_bfd = info->input_bfds;
4348 input_bfd != NULL; input_bfd = input_bfd->link.next)
4349 {
4350 Elf_Internal_Shdr *symtab_hdr;
4351 asection *section;
4352 Elf_Internal_Sym *local_syms = NULL;
4353
4354 /* We'll need the symbol table in a second. */
4355 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4356 if (symtab_hdr->sh_info == 0)
4357 continue;
4358
4359 /* Walk over each section attached to the input bfd. */
4360 for (section = input_bfd->sections;
4361 section != NULL; section = section->next)
4362 {
4363 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4364
4365 /* If there aren't any relocs, then there's nothing more
4366 to do. */
4367 if ((section->flags & SEC_RELOC) == 0
4368 || section->reloc_count == 0
4369 || (section->flags & SEC_CODE) == 0)
4370 continue;
4371
4372 /* If this section is a link-once section that will be
4373 discarded, then don't create any stubs. */
4374 if (section->output_section == NULL
4375 || section->output_section->owner != output_bfd)
4376 continue;
4377
4378 /* Get the relocs. */
4379 internal_relocs
4380 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4381 NULL, info->keep_memory);
4382 if (internal_relocs == NULL)
4383 goto error_ret_free_local;
4384
4385 /* Now examine each relocation. */
4386 irela = internal_relocs;
4387 irelaend = irela + section->reloc_count;
4388 for (; irela < irelaend; irela++)
4389 {
4390 unsigned int r_type, r_indx;
4391 enum elf_aarch64_stub_type stub_type;
4392 struct elf_aarch64_stub_hash_entry *stub_entry;
4393 asection *sym_sec;
4394 bfd_vma sym_value;
4395 bfd_vma destination;
4396 struct elf_aarch64_link_hash_entry *hash;
4397 const char *sym_name;
4398 char *stub_name;
4399 const asection *id_sec;
4400 unsigned char st_type;
4401 bfd_size_type len;
4402
4403 r_type = ELFNN_R_TYPE (irela->r_info);
4404 r_indx = ELFNN_R_SYM (irela->r_info);
4405
4406 if (r_type >= (unsigned int) R_AARCH64_end)
4407 {
4408 bfd_set_error (bfd_error_bad_value);
4409 error_ret_free_internal:
4410 if (elf_section_data (section)->relocs == NULL)
4411 free (internal_relocs);
4412 goto error_ret_free_local;
4413 }
4414
4415 /* Only look for stubs on unconditional branch and
4416 branch and link instructions. */
4417 if (r_type != (unsigned int) AARCH64_R (CALL26)
4418 && r_type != (unsigned int) AARCH64_R (JUMP26))
4419 continue;
4420
4421 /* Now determine the call target, its name, value,
4422 section. */
4423 sym_sec = NULL;
4424 sym_value = 0;
4425 destination = 0;
4426 hash = NULL;
4427 sym_name = NULL;
4428 if (r_indx < symtab_hdr->sh_info)
4429 {
4430 /* It's a local symbol. */
4431 Elf_Internal_Sym *sym;
4432 Elf_Internal_Shdr *hdr;
4433
4434 if (local_syms == NULL)
4435 {
4436 local_syms
4437 = (Elf_Internal_Sym *) symtab_hdr->contents;
4438 if (local_syms == NULL)
4439 local_syms
4440 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4441 symtab_hdr->sh_info, 0,
4442 NULL, NULL, NULL);
4443 if (local_syms == NULL)
4444 goto error_ret_free_internal;
4445 }
4446
4447 sym = local_syms + r_indx;
4448 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4449 sym_sec = hdr->bfd_section;
4450 if (!sym_sec)
4451 /* This is an undefined symbol. It can never
4452 be resolved. */
4453 continue;
4454
4455 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4456 sym_value = sym->st_value;
4457 destination = (sym_value + irela->r_addend
4458 + sym_sec->output_offset
4459 + sym_sec->output_section->vma);
4460 st_type = ELF_ST_TYPE (sym->st_info);
4461 sym_name
4462 = bfd_elf_string_from_elf_section (input_bfd,
4463 symtab_hdr->sh_link,
4464 sym->st_name);
4465 }
4466 else
4467 {
4468 int e_indx;
4469
4470 e_indx = r_indx - symtab_hdr->sh_info;
4471 hash = ((struct elf_aarch64_link_hash_entry *)
4472 elf_sym_hashes (input_bfd)[e_indx]);
4473
4474 while (hash->root.root.type == bfd_link_hash_indirect
4475 || hash->root.root.type == bfd_link_hash_warning)
4476 hash = ((struct elf_aarch64_link_hash_entry *)
4477 hash->root.root.u.i.link);
4478
4479 if (hash->root.root.type == bfd_link_hash_defined
4480 || hash->root.root.type == bfd_link_hash_defweak)
4481 {
4482 struct elf_aarch64_link_hash_table *globals =
4483 elf_aarch64_hash_table (info);
4484 sym_sec = hash->root.root.u.def.section;
4485 sym_value = hash->root.root.u.def.value;
4486 /* For a destination in a shared library,
4487 use the PLT stub as target address to
4488 decide whether a branch stub is
4489 needed. */
4490 if (globals->root.splt != NULL && hash != NULL
4491 && hash->root.plt.offset != (bfd_vma) - 1)
4492 {
4493 sym_sec = globals->root.splt;
4494 sym_value = hash->root.plt.offset;
4495 if (sym_sec->output_section != NULL)
4496 destination = (sym_value
4497 + sym_sec->output_offset
4498 +
4499 sym_sec->output_section->vma);
4500 }
4501 else if (sym_sec->output_section != NULL)
4502 destination = (sym_value + irela->r_addend
4503 + sym_sec->output_offset
4504 + sym_sec->output_section->vma);
4505 }
4506 else if (hash->root.root.type == bfd_link_hash_undefined
4507 || (hash->root.root.type
4508 == bfd_link_hash_undefweak))
4509 {
4510 /* For a shared library, use the PLT stub as
4511 target address to decide whether a long
4512 branch stub is needed.
4513 For absolute code, they cannot be handled. */
4514 struct elf_aarch64_link_hash_table *globals =
4515 elf_aarch64_hash_table (info);
4516
4517 if (globals->root.splt != NULL && hash != NULL
4518 && hash->root.plt.offset != (bfd_vma) - 1)
4519 {
4520 sym_sec = globals->root.splt;
4521 sym_value = hash->root.plt.offset;
4522 if (sym_sec->output_section != NULL)
4523 destination = (sym_value
4524 + sym_sec->output_offset
4525 +
4526 sym_sec->output_section->vma);
4527 }
4528 else
4529 continue;
4530 }
4531 else
4532 {
4533 bfd_set_error (bfd_error_bad_value);
4534 goto error_ret_free_internal;
4535 }
4536 st_type = ELF_ST_TYPE (hash->root.type);
4537 sym_name = hash->root.root.root.string;
4538 }
4539
4540 /* Determine what (if any) linker stub is needed. */
4541 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4542 st_type, destination);
4543 if (stub_type == aarch64_stub_none)
4544 continue;
4545
4546 /* Support for grouping stub sections. */
4547 id_sec = htab->stub_group[section->id].link_sec;
4548
4549 /* Get the name of this stub. */
4550 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4551 irela);
4552 if (!stub_name)
4553 goto error_ret_free_internal;
4554
4555 stub_entry =
4556 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4557 stub_name, FALSE, FALSE);
4558 if (stub_entry != NULL)
4559 {
4560 /* The proper stub has already been created. */
4561 free (stub_name);
4562 /* Always update this stub's target since it may have
4563 changed after layout. */
4564 stub_entry->target_value = sym_value + irela->r_addend;
4565 continue;
4566 }
4567
4568 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4569 (stub_name, section, htab);
4570 if (stub_entry == NULL)
4571 {
4572 free (stub_name);
4573 goto error_ret_free_internal;
4574 }
4575
4576 stub_entry->target_value = sym_value + irela->r_addend;
4577 stub_entry->target_section = sym_sec;
4578 stub_entry->stub_type = stub_type;
4579 stub_entry->h = hash;
4580 stub_entry->st_type = st_type;
4581
4582 if (sym_name == NULL)
4583 sym_name = "unnamed";
4584 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4585 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4586 if (stub_entry->output_name == NULL)
4587 {
4588 free (stub_name);
4589 goto error_ret_free_internal;
4590 }
4591
4592 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4593 sym_name);
4594
4595 stub_changed = TRUE;
4596 }
4597
4598 /* We're done with the internal relocs, free them. */
4599 if (elf_section_data (section)->relocs == NULL)
4600 free (internal_relocs);
4601 }
4602 }
4603
4604 if (!stub_changed)
4605 break;
4606
4607 _bfd_aarch64_resize_stubs (htab);
4608
4609 /* Ask the linker to do its stuff. */
4610 (*htab->layout_sections_again) ();
4611 stub_changed = FALSE;
4612 }
4613
4614 return TRUE;
4615
4616 error_ret_free_local:
4617 return FALSE;
4618 }
4619
4620 /* Build all the stubs associated with the current output file. The
4621 stubs are kept in a hash table attached to the main linker hash
4622 table. We also set up the .plt entries for statically linked PIC
4623 functions here. This function is called via aarch64_elf_finish in the
4624 linker. */
4625
4626 bfd_boolean
4627 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4628 {
4629 asection *stub_sec;
4630 struct bfd_hash_table *table;
4631 struct elf_aarch64_link_hash_table *htab;
4632
4633 htab = elf_aarch64_hash_table (info);
4634
4635 for (stub_sec = htab->stub_bfd->sections;
4636 stub_sec != NULL; stub_sec = stub_sec->next)
4637 {
4638 bfd_size_type size;
4639
4640 /* Ignore non-stub sections. */
4641 if (!strstr (stub_sec->name, STUB_SUFFIX))
4642 continue;
4643
4644 /* Allocate memory to hold the linker stubs. */
4645 size = stub_sec->size;
4646 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4647 if (stub_sec->contents == NULL && size != 0)
4648 return FALSE;
4649 stub_sec->size = 0;
4650
4651 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4652 aligned, as long branch stubs contain a 64-bit address. */
4653 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4654 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4655 stub_sec->size += 8;
4656 }
4657
4658 /* Build the stubs as directed by the stub hash table. */
4659 table = &htab->stub_hash_table;
4660 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4661
4662 return TRUE;
4663 }
4664
4665
4666 /* Add an entry to the code/data map for section SEC. */
4667
4668 static void
4669 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4670 {
4671 struct _aarch64_elf_section_data *sec_data =
4672 elf_aarch64_section_data (sec);
4673 unsigned int newidx;
4674
4675 if (sec_data->map == NULL)
4676 {
4677 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4678 sec_data->mapcount = 0;
4679 sec_data->mapsize = 1;
4680 }
4681
4682 newidx = sec_data->mapcount++;
4683
4684 if (sec_data->mapcount > sec_data->mapsize)
4685 {
4686 sec_data->mapsize *= 2;
4687 sec_data->map = bfd_realloc_or_free
4688 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4689 }
4690
4691 if (sec_data->map)
4692 {
4693 sec_data->map[newidx].vma = vma;
4694 sec_data->map[newidx].type = type;
4695 }
4696 }
4697
4698
4699 /* Initialise maps of insn/data for input BFDs. */
4700 void
4701 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4702 {
4703 Elf_Internal_Sym *isymbuf;
4704 Elf_Internal_Shdr *hdr;
4705 unsigned int i, localsyms;
4706
4707 /* Make sure that we are dealing with an AArch64 elf binary. */
4708 if (!is_aarch64_elf (abfd))
4709 return;
4710
4711 if ((abfd->flags & DYNAMIC) != 0)
4712 return;
4713
4714 hdr = &elf_symtab_hdr (abfd);
4715 localsyms = hdr->sh_info;
4716
4717 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4718 should contain the number of local symbols, which should come before any
4719 global symbols. Mapping symbols are always local. */
4720 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4721
4722 /* No internal symbols read? Skip this BFD. */
4723 if (isymbuf == NULL)
4724 return;
4725
4726 for (i = 0; i < localsyms; i++)
4727 {
4728 Elf_Internal_Sym *isym = &isymbuf[i];
4729 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4730 const char *name;
4731
4732 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4733 {
4734 name = bfd_elf_string_from_elf_section (abfd,
4735 hdr->sh_link,
4736 isym->st_name);
4737
4738 if (bfd_is_aarch64_special_symbol_name
4739 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4740 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4741 }
4742 }
4743 }
4744
4745 static void
4746 setup_plt_values (struct bfd_link_info *link_info,
4747 aarch64_plt_type plt_type)
4748 {
4749 struct elf_aarch64_link_hash_table *globals;
4750 globals = elf_aarch64_hash_table (link_info);
4751
4752 if (plt_type == PLT_BTI_PAC)
4753 {
4754 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4755
4756 /* Only in ET_EXEC we need PLTn with BTI. */
4757 if (bfd_link_pde (link_info))
4758 {
4759 globals->plt_entry_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
4760 globals->plt_entry = elfNN_aarch64_small_plt_bti_pac_entry;
4761 }
4762 else
4763 {
4764 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4765 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4766 }
4767 }
4768 else if (plt_type == PLT_BTI)
4769 {
4770 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4771
4772 /* Only in ET_EXEC we need PLTn with BTI. */
4773 if (bfd_link_pde (link_info))
4774 {
4775 globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4776 globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4777 }
4778 }
4779 else if (plt_type == PLT_PAC)
4780 {
4781 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4782 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4783 }
4784 }
4785
4786 /* Set option values needed during linking. */
4787 void
4788 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4789 struct bfd_link_info *link_info,
4790 int no_enum_warn,
4791 int no_wchar_warn, int pic_veneer,
4792 int fix_erratum_835769,
4793 erratum_84319_opts fix_erratum_843419,
4794 int no_apply_dynamic_relocs,
4795 aarch64_bti_pac_info bp_info)
4796 {
4797 struct elf_aarch64_link_hash_table *globals;
4798
4799 globals = elf_aarch64_hash_table (link_info);
4800 globals->pic_veneer = pic_veneer;
4801 globals->fix_erratum_835769 = fix_erratum_835769;
4802 /* If the default options are used, then ERRAT_ADR will be set by default
4803 which will enable the ADRP->ADR workaround for the erratum 843419
4804 workaround. */
4805 globals->fix_erratum_843419 = fix_erratum_843419;
4806 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4807
4808 BFD_ASSERT (is_aarch64_elf (output_bfd));
4809 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4810 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4811
4812 switch (bp_info.bti_type)
4813 {
4814 case BTI_WARN:
4815 elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4816 elf_aarch64_tdata (output_bfd)->gnu_and_prop
4817 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4818 break;
4819
4820 default:
4821 break;
4822 }
4823 elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4824 setup_plt_values (link_info, bp_info.plt_type);
4825 }
4826
4827 static bfd_vma
4828 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4829 struct elf_aarch64_link_hash_table
4830 *globals, struct bfd_link_info *info,
4831 bfd_vma value, bfd *output_bfd,
4832 bfd_boolean *unresolved_reloc_p)
4833 {
4834 bfd_vma off = (bfd_vma) - 1;
4835 asection *basegot = globals->root.sgot;
4836 bfd_boolean dyn = globals->root.dynamic_sections_created;
4837
4838 if (h != NULL)
4839 {
4840 BFD_ASSERT (basegot != NULL);
4841 off = h->got.offset;
4842 BFD_ASSERT (off != (bfd_vma) - 1);
4843 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4844 || (bfd_link_pic (info)
4845 && SYMBOL_REFERENCES_LOCAL (info, h))
4846 || (ELF_ST_VISIBILITY (h->other)
4847 && h->root.type == bfd_link_hash_undefweak))
4848 {
4849 /* This is actually a static link, or it is a -Bsymbolic link
4850 and the symbol is defined locally. We must initialize this
4851 entry in the global offset table. Since the offset must
4852 always be a multiple of 8 (4 in the case of ILP32), we use
4853 the least significant bit to record whether we have
4854 initialized it already.
4855 When doing a dynamic link, we create a .rel(a).got relocation
4856 entry to initialize the value. This is done in the
4857 finish_dynamic_symbol routine. */
4858 if ((off & 1) != 0)
4859 off &= ~1;
4860 else
4861 {
4862 bfd_put_NN (output_bfd, value, basegot->contents + off);
4863 h->got.offset |= 1;
4864 }
4865 }
4866 else
4867 *unresolved_reloc_p = FALSE;
4868
4869 off = off + basegot->output_section->vma + basegot->output_offset;
4870 }
4871
4872 return off;
4873 }
4874
4875 /* Change R_TYPE to a more efficient access model where possible,
4876 return the new reloc type. */
4877
4878 static bfd_reloc_code_real_type
4879 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4880 struct elf_link_hash_entry *h)
4881 {
4882 bfd_boolean is_local = h == NULL;
4883
4884 switch (r_type)
4885 {
4886 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4887 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4888 return (is_local
4889 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4890 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4891
4892 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4893 return (is_local
4894 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4895 : r_type);
4896
4897 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4898 return (is_local
4899 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4900 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4901
4902 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4903 return (is_local
4904 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4905 : BFD_RELOC_AARCH64_NONE);
4906
4907 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4908 return (is_local
4909 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4910 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4911
4912 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4913 return (is_local
4914 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4915 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4916
4917 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4918 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4919 return (is_local
4920 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4921 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4922
4923 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4924 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4925
4926 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4927 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4928
4929 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4930 return r_type;
4931
4932 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4933 return (is_local
4934 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4935 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4936
4937 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4938 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4939 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4940 /* Instructions with these relocations will become NOPs. */
4941 return BFD_RELOC_AARCH64_NONE;
4942
4943 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4944 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4945 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4946 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4947
4948 #if ARCH_SIZE == 64
4949 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4950 return is_local
4951 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4952 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4953
4954 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4955 return is_local
4956 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4957 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4958 #endif
4959
4960 default:
4961 break;
4962 }
4963
4964 return r_type;
4965 }
4966
4967 static unsigned int
4968 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4969 {
4970 switch (r_type)
4971 {
4972 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4973 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4974 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4975 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4976 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4977 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4978 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4979 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4980 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4981 return GOT_NORMAL;
4982
4983 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4984 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4985 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4986 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4987 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4988 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4989 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4990 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4991 return GOT_TLS_GD;
4992
4993 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4994 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4995 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4996 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4997 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4998 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4999 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5000 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5001 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5002 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5003 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5004 return GOT_TLSDESC_GD;
5005
5006 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5007 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5008 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5009 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5010 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5011 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5012 return GOT_TLS_IE;
5013
5014 default:
5015 break;
5016 }
5017 return GOT_UNKNOWN;
5018 }
5019
5020 static bfd_boolean
5021 aarch64_can_relax_tls (bfd *input_bfd,
5022 struct bfd_link_info *info,
5023 bfd_reloc_code_real_type r_type,
5024 struct elf_link_hash_entry *h,
5025 unsigned long r_symndx)
5026 {
5027 unsigned int symbol_got_type;
5028 unsigned int reloc_got_type;
5029
5030 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
5031 return FALSE;
5032
5033 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
5034 reloc_got_type = aarch64_reloc_got_type (r_type);
5035
5036 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
5037 return TRUE;
5038
5039 if (!bfd_link_executable (info))
5040 return FALSE;
5041
5042 if (h && h->root.type == bfd_link_hash_undefweak)
5043 return FALSE;
5044
5045 return TRUE;
5046 }
5047
5048 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5049 enumerator. */
5050
5051 static bfd_reloc_code_real_type
5052 aarch64_tls_transition (bfd *input_bfd,
5053 struct bfd_link_info *info,
5054 unsigned int r_type,
5055 struct elf_link_hash_entry *h,
5056 unsigned long r_symndx)
5057 {
5058 bfd_reloc_code_real_type bfd_r_type
5059 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
5060
5061 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
5062 return bfd_r_type;
5063
5064 return aarch64_tls_transition_without_check (bfd_r_type, h);
5065 }
5066
5067 /* Return the base VMA address which should be subtracted from real addresses
5068 when resolving R_AARCH64_TLS_DTPREL relocation. */
5069
5070 static bfd_vma
5071 dtpoff_base (struct bfd_link_info *info)
5072 {
5073 /* If tls_sec is NULL, we should have signalled an error already. */
5074 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
5075 return elf_hash_table (info)->tls_sec->vma;
5076 }
5077
5078 /* Return the base VMA address which should be subtracted from real addresses
5079 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
5080
5081 static bfd_vma
5082 tpoff_base (struct bfd_link_info *info)
5083 {
5084 struct elf_link_hash_table *htab = elf_hash_table (info);
5085
5086 /* If tls_sec is NULL, we should have signalled an error already. */
5087 BFD_ASSERT (htab->tls_sec != NULL);
5088
5089 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5090 htab->tls_sec->alignment_power);
5091 return htab->tls_sec->vma - base;
5092 }
5093
5094 static bfd_vma *
5095 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5096 unsigned long r_symndx)
5097 {
5098 /* Calculate the address of the GOT entry for symbol
5099 referred to in h. */
5100 if (h != NULL)
5101 return &h->got.offset;
5102 else
5103 {
5104 /* local symbol */
5105 struct elf_aarch64_local_symbol *l;
5106
5107 l = elf_aarch64_locals (input_bfd);
5108 return &l[r_symndx].got_offset;
5109 }
5110 }
5111
5112 static void
5113 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5114 unsigned long r_symndx)
5115 {
5116 bfd_vma *p;
5117 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5118 *p |= 1;
5119 }
5120
5121 static int
5122 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5123 unsigned long r_symndx)
5124 {
5125 bfd_vma value;
5126 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5127 return value & 1;
5128 }
5129
5130 static bfd_vma
5131 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5132 unsigned long r_symndx)
5133 {
5134 bfd_vma value;
5135 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5136 value &= ~1;
5137 return value;
5138 }
5139
5140 static bfd_vma *
5141 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5142 unsigned long r_symndx)
5143 {
5144 /* Calculate the address of the GOT entry for symbol
5145 referred to in h. */
5146 if (h != NULL)
5147 {
5148 struct elf_aarch64_link_hash_entry *eh;
5149 eh = (struct elf_aarch64_link_hash_entry *) h;
5150 return &eh->tlsdesc_got_jump_table_offset;
5151 }
5152 else
5153 {
5154 /* local symbol */
5155 struct elf_aarch64_local_symbol *l;
5156
5157 l = elf_aarch64_locals (input_bfd);
5158 return &l[r_symndx].tlsdesc_got_jump_table_offset;
5159 }
5160 }
5161
5162 static void
5163 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5164 unsigned long r_symndx)
5165 {
5166 bfd_vma *p;
5167 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5168 *p |= 1;
5169 }
5170
5171 static int
5172 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5173 struct elf_link_hash_entry *h,
5174 unsigned long r_symndx)
5175 {
5176 bfd_vma value;
5177 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5178 return value & 1;
5179 }
5180
5181 static bfd_vma
5182 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5183 unsigned long r_symndx)
5184 {
5185 bfd_vma value;
5186 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5187 value &= ~1;
5188 return value;
5189 }
5190
5191 /* Data for make_branch_to_erratum_835769_stub(). */
5192
5193 struct erratum_835769_branch_to_stub_data
5194 {
5195 struct bfd_link_info *info;
5196 asection *output_section;
5197 bfd_byte *contents;
5198 };
5199
5200 /* Helper to insert branches to erratum 835769 stubs in the right
5201 places for a particular section. */
5202
5203 static bfd_boolean
5204 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5205 void *in_arg)
5206 {
5207 struct elf_aarch64_stub_hash_entry *stub_entry;
5208 struct erratum_835769_branch_to_stub_data *data;
5209 bfd_byte *contents;
5210 unsigned long branch_insn = 0;
5211 bfd_vma veneered_insn_loc, veneer_entry_loc;
5212 bfd_signed_vma branch_offset;
5213 unsigned int target;
5214 bfd *abfd;
5215
5216 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5217 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5218
5219 if (stub_entry->target_section != data->output_section
5220 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5221 return TRUE;
5222
5223 contents = data->contents;
5224 veneered_insn_loc = stub_entry->target_section->output_section->vma
5225 + stub_entry->target_section->output_offset
5226 + stub_entry->target_value;
5227 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5228 + stub_entry->stub_sec->output_offset
5229 + stub_entry->stub_offset;
5230 branch_offset = veneer_entry_loc - veneered_insn_loc;
5231
5232 abfd = stub_entry->target_section->owner;
5233 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5234 _bfd_error_handler
5235 (_("%pB: error: erratum 835769 stub out "
5236 "of range (input file too large)"), abfd);
5237
5238 target = stub_entry->target_value;
5239 branch_insn = 0x14000000;
5240 branch_offset >>= 2;
5241 branch_offset &= 0x3ffffff;
5242 branch_insn |= branch_offset;
5243 bfd_putl32 (branch_insn, &contents[target]);
5244
5245 return TRUE;
5246 }
5247
5248
5249 static bfd_boolean
5250 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5251 void *in_arg)
5252 {
5253 struct elf_aarch64_stub_hash_entry *stub_entry
5254 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5255 struct erratum_835769_branch_to_stub_data *data
5256 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5257 struct bfd_link_info *info;
5258 struct elf_aarch64_link_hash_table *htab;
5259 bfd_byte *contents;
5260 asection *section;
5261 bfd *abfd;
5262 bfd_vma place;
5263 uint32_t insn;
5264
5265 info = data->info;
5266 contents = data->contents;
5267 section = data->output_section;
5268
5269 htab = elf_aarch64_hash_table (info);
5270
5271 if (stub_entry->target_section != section
5272 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5273 return TRUE;
5274
5275 BFD_ASSERT (((htab->fix_erratum_843419 & ERRAT_ADRP) && stub_entry->stub_sec)
5276 || (htab->fix_erratum_843419 & ERRAT_ADR));
5277
5278 /* Only update the stub section if we have one. We should always have one if
5279 we're allowed to use the ADRP errata workaround, otherwise it is not
5280 required. */
5281 if (stub_entry->stub_sec)
5282 {
5283 insn = bfd_getl32 (contents + stub_entry->target_value);
5284 bfd_putl32 (insn,
5285 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5286 }
5287
5288 place = (section->output_section->vma + section->output_offset
5289 + stub_entry->adrp_offset);
5290 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5291
5292 if (!_bfd_aarch64_adrp_p (insn))
5293 abort ();
5294
5295 bfd_signed_vma imm =
5296 (_bfd_aarch64_sign_extend
5297 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5298 - (place & 0xfff));
5299
5300 if ((htab->fix_erratum_843419 & ERRAT_ADR)
5301 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5302 {
5303 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5304 | AARCH64_RT (insn));
5305 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5306 /* Stub is not needed, don't map it out. */
5307 stub_entry->stub_type = aarch64_stub_none;
5308 }
5309 else if (htab->fix_erratum_843419 & ERRAT_ADRP)
5310 {
5311 bfd_vma veneered_insn_loc;
5312 bfd_vma veneer_entry_loc;
5313 bfd_signed_vma branch_offset;
5314 uint32_t branch_insn;
5315
5316 veneered_insn_loc = stub_entry->target_section->output_section->vma
5317 + stub_entry->target_section->output_offset
5318 + stub_entry->target_value;
5319 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5320 + stub_entry->stub_sec->output_offset
5321 + stub_entry->stub_offset;
5322 branch_offset = veneer_entry_loc - veneered_insn_loc;
5323
5324 abfd = stub_entry->target_section->owner;
5325 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5326 _bfd_error_handler
5327 (_("%pB: error: erratum 843419 stub out "
5328 "of range (input file too large)"), abfd);
5329
5330 branch_insn = 0x14000000;
5331 branch_offset >>= 2;
5332 branch_offset &= 0x3ffffff;
5333 branch_insn |= branch_offset;
5334 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5335 }
5336 else
5337 {
5338 abfd = stub_entry->target_section->owner;
5339 _bfd_error_handler
5340 (_("%pB: error: erratum 843419 immediate 0x%" BFD_VMA_FMT "x "
5341 "out of range for ADR (input file too large) and "
5342 "--fix-cortex-a53-843419=adr used. Run the linker with "
5343 "--fix-cortex-a53-843419=full instead"), abfd, imm);
5344 bfd_set_error (bfd_error_bad_value);
5345 /* This function is called inside a hashtable traversal and the error
5346 handlers called above turn into non-fatal errors. Which means this
5347 case ld returns an exit code 0 and also produces a broken object file.
5348 To prevent this, issue a hard abort. */
5349 BFD_FAIL ();
5350 }
5351 return TRUE;
5352 }
5353
5354
5355 static bfd_boolean
5356 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5357 struct bfd_link_info *link_info,
5358 asection *sec,
5359 bfd_byte *contents)
5360
5361 {
5362 struct elf_aarch64_link_hash_table *globals =
5363 elf_aarch64_hash_table (link_info);
5364
5365 if (globals == NULL)
5366 return FALSE;
5367
5368 /* Fix code to point to erratum 835769 stubs. */
5369 if (globals->fix_erratum_835769)
5370 {
5371 struct erratum_835769_branch_to_stub_data data;
5372
5373 data.info = link_info;
5374 data.output_section = sec;
5375 data.contents = contents;
5376 bfd_hash_traverse (&globals->stub_hash_table,
5377 make_branch_to_erratum_835769_stub, &data);
5378 }
5379
5380 if (globals->fix_erratum_843419)
5381 {
5382 struct erratum_835769_branch_to_stub_data data;
5383
5384 data.info = link_info;
5385 data.output_section = sec;
5386 data.contents = contents;
5387 bfd_hash_traverse (&globals->stub_hash_table,
5388 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5389 }
5390
5391 return FALSE;
5392 }
5393
5394 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5395
5396 static bfd_boolean
5397 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5398 {
5399 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5400 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5401 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5402 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5403 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5404 }
5405
5406 /* Perform a relocation as part of a final link. The input relocation type
5407 should be TLS relaxed. */
5408
5409 static bfd_reloc_status_type
5410 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5411 bfd *input_bfd,
5412 bfd *output_bfd,
5413 asection *input_section,
5414 bfd_byte *contents,
5415 Elf_Internal_Rela *rel,
5416 bfd_vma value,
5417 struct bfd_link_info *info,
5418 asection *sym_sec,
5419 struct elf_link_hash_entry *h,
5420 bfd_boolean *unresolved_reloc_p,
5421 bfd_boolean save_addend,
5422 bfd_vma *saved_addend,
5423 Elf_Internal_Sym *sym)
5424 {
5425 Elf_Internal_Shdr *symtab_hdr;
5426 unsigned int r_type = howto->type;
5427 bfd_reloc_code_real_type bfd_r_type
5428 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5429 unsigned long r_symndx;
5430 bfd_byte *hit_data = contents + rel->r_offset;
5431 bfd_vma place, off, got_entry_addr = 0;
5432 bfd_signed_vma signed_addend;
5433 struct elf_aarch64_link_hash_table *globals;
5434 bfd_boolean weak_undef_p;
5435 bfd_boolean relative_reloc;
5436 asection *base_got;
5437 bfd_vma orig_value = value;
5438 bfd_boolean resolved_to_zero;
5439 bfd_boolean abs_symbol_p;
5440
5441 globals = elf_aarch64_hash_table (info);
5442
5443 symtab_hdr = &elf_symtab_hdr (input_bfd);
5444
5445 BFD_ASSERT (is_aarch64_elf (input_bfd));
5446
5447 r_symndx = ELFNN_R_SYM (rel->r_info);
5448
5449 place = input_section->output_section->vma
5450 + input_section->output_offset + rel->r_offset;
5451
5452 /* Get addend, accumulating the addend for consecutive relocs
5453 which refer to the same offset. */
5454 signed_addend = saved_addend ? *saved_addend : 0;
5455 signed_addend += rel->r_addend;
5456
5457 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5458 : bfd_is_und_section (sym_sec));
5459 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5460
5461
5462 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5463 it here if it is defined in a non-shared object. */
5464 if (h != NULL
5465 && h->type == STT_GNU_IFUNC
5466 && h->def_regular)
5467 {
5468 asection *plt;
5469 const char *name;
5470 bfd_vma addend = 0;
5471
5472 if ((input_section->flags & SEC_ALLOC) == 0)
5473 {
5474 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5475 STT_GNU_IFUNC symbol as STT_FUNC. */
5476 if (elf_section_type (input_section) == SHT_NOTE)
5477 goto skip_ifunc;
5478
5479 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5480 sections because such sections are not SEC_ALLOC and
5481 thus ld.so will not process them. */
5482 if ((input_section->flags & SEC_DEBUGGING) != 0)
5483 return bfd_reloc_ok;
5484
5485 if (h->root.root.string)
5486 name = h->root.root.string;
5487 else
5488 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5489 _bfd_error_handler
5490 /* xgettext:c-format */
5491 (_("%pB(%pA+%#" PRIx64 "): "
5492 "unresolvable %s relocation against symbol `%s'"),
5493 input_bfd, input_section, (uint64_t) rel->r_offset,
5494 howto->name, name);
5495 bfd_set_error (bfd_error_bad_value);
5496 return bfd_reloc_notsupported;
5497 }
5498 else if (h->plt.offset == (bfd_vma) -1)
5499 goto bad_ifunc_reloc;
5500
5501 /* STT_GNU_IFUNC symbol must go through PLT. */
5502 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5503 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5504
5505 switch (bfd_r_type)
5506 {
5507 default:
5508 bad_ifunc_reloc:
5509 if (h->root.root.string)
5510 name = h->root.root.string;
5511 else
5512 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5513 NULL);
5514 _bfd_error_handler
5515 /* xgettext:c-format */
5516 (_("%pB: relocation %s against STT_GNU_IFUNC "
5517 "symbol `%s' isn't handled by %s"), input_bfd,
5518 howto->name, name, __FUNCTION__);
5519 bfd_set_error (bfd_error_bad_value);
5520 return bfd_reloc_notsupported;
5521
5522 case BFD_RELOC_AARCH64_NN:
5523 if (rel->r_addend != 0)
5524 {
5525 if (h->root.root.string)
5526 name = h->root.root.string;
5527 else
5528 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5529 sym, NULL);
5530 _bfd_error_handler
5531 /* xgettext:c-format */
5532 (_("%pB: relocation %s against STT_GNU_IFUNC "
5533 "symbol `%s' has non-zero addend: %" PRId64),
5534 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5535 bfd_set_error (bfd_error_bad_value);
5536 return bfd_reloc_notsupported;
5537 }
5538
5539 /* Generate dynamic relocation only when there is a
5540 non-GOT reference in a shared object. */
5541 if (bfd_link_pic (info) && h->non_got_ref)
5542 {
5543 Elf_Internal_Rela outrel;
5544 asection *sreloc;
5545
5546 /* Need a dynamic relocation to get the real function
5547 address. */
5548 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5549 info,
5550 input_section,
5551 rel->r_offset);
5552 if (outrel.r_offset == (bfd_vma) -1
5553 || outrel.r_offset == (bfd_vma) -2)
5554 abort ();
5555
5556 outrel.r_offset += (input_section->output_section->vma
5557 + input_section->output_offset);
5558
5559 if (h->dynindx == -1
5560 || h->forced_local
5561 || bfd_link_executable (info))
5562 {
5563 /* This symbol is resolved locally. */
5564 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5565 outrel.r_addend = (h->root.u.def.value
5566 + h->root.u.def.section->output_section->vma
5567 + h->root.u.def.section->output_offset);
5568 }
5569 else
5570 {
5571 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5572 outrel.r_addend = 0;
5573 }
5574
5575 sreloc = globals->root.irelifunc;
5576 elf_append_rela (output_bfd, sreloc, &outrel);
5577
5578 /* If this reloc is against an external symbol, we
5579 do not want to fiddle with the addend. Otherwise,
5580 we need to include the symbol value so that it
5581 becomes an addend for the dynamic reloc. For an
5582 internal symbol, we have updated addend. */
5583 return bfd_reloc_ok;
5584 }
5585 /* FALLTHROUGH */
5586 case BFD_RELOC_AARCH64_CALL26:
5587 case BFD_RELOC_AARCH64_JUMP26:
5588 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5589 signed_addend,
5590 weak_undef_p);
5591 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5592 howto, value);
5593 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5594 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5595 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5596 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5597 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5598 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5599 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5600 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5601 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5602 base_got = globals->root.sgot;
5603 off = h->got.offset;
5604
5605 if (base_got == NULL)
5606 abort ();
5607
5608 if (off == (bfd_vma) -1)
5609 {
5610 bfd_vma plt_index;
5611
5612 /* We can't use h->got.offset here to save state, or
5613 even just remember the offset, as finish_dynamic_symbol
5614 would use that as offset into .got. */
5615
5616 if (globals->root.splt != NULL)
5617 {
5618 plt_index = ((h->plt.offset - globals->plt_header_size) /
5619 globals->plt_entry_size);
5620 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5621 base_got = globals->root.sgotplt;
5622 }
5623 else
5624 {
5625 plt_index = h->plt.offset / globals->plt_entry_size;
5626 off = plt_index * GOT_ENTRY_SIZE;
5627 base_got = globals->root.igotplt;
5628 }
5629
5630 if (h->dynindx == -1
5631 || h->forced_local
5632 || info->symbolic)
5633 {
5634 /* This references the local definition. We must
5635 initialize this entry in the global offset table.
5636 Since the offset must always be a multiple of 8,
5637 we use the least significant bit to record
5638 whether we have initialized it already.
5639
5640 When doing a dynamic link, we create a .rela.got
5641 relocation entry to initialize the value. This
5642 is done in the finish_dynamic_symbol routine. */
5643 if ((off & 1) != 0)
5644 off &= ~1;
5645 else
5646 {
5647 bfd_put_NN (output_bfd, value,
5648 base_got->contents + off);
5649 /* Note that this is harmless as -1 | 1 still is -1. */
5650 h->got.offset |= 1;
5651 }
5652 }
5653 value = (base_got->output_section->vma
5654 + base_got->output_offset + off);
5655 }
5656 else
5657 value = aarch64_calculate_got_entry_vma (h, globals, info,
5658 value, output_bfd,
5659 unresolved_reloc_p);
5660
5661 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5662 addend = (globals->root.sgot->output_section->vma
5663 + globals->root.sgot->output_offset);
5664
5665 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5666 addend, weak_undef_p);
5667 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5668 case BFD_RELOC_AARCH64_ADD_LO12:
5669 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5670 break;
5671 }
5672 }
5673
5674 skip_ifunc:
5675 resolved_to_zero = (h != NULL
5676 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5677
5678 switch (bfd_r_type)
5679 {
5680 case BFD_RELOC_AARCH64_NONE:
5681 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5682 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5683 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5684 *unresolved_reloc_p = FALSE;
5685 return bfd_reloc_ok;
5686
5687 case BFD_RELOC_AARCH64_NN:
5688
5689 /* When generating a shared object or relocatable executable, these
5690 relocations are copied into the output file to be resolved at
5691 run time. */
5692 if (((bfd_link_pic (info)
5693 || globals->root.is_relocatable_executable)
5694 && (input_section->flags & SEC_ALLOC)
5695 && (h == NULL
5696 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5697 && !resolved_to_zero)
5698 || h->root.type != bfd_link_hash_undefweak))
5699 /* Or we are creating an executable, we may need to keep relocations
5700 for symbols satisfied by a dynamic library if we manage to avoid
5701 copy relocs for the symbol. */
5702 || (ELIMINATE_COPY_RELOCS
5703 && !bfd_link_pic (info)
5704 && h != NULL
5705 && (input_section->flags & SEC_ALLOC)
5706 && h->dynindx != -1
5707 && !h->non_got_ref
5708 && ((h->def_dynamic
5709 && !h->def_regular)
5710 || h->root.type == bfd_link_hash_undefweak
5711 || h->root.type == bfd_link_hash_undefined)))
5712 {
5713 Elf_Internal_Rela outrel;
5714 bfd_byte *loc;
5715 bfd_boolean skip, relocate;
5716 asection *sreloc;
5717
5718 *unresolved_reloc_p = FALSE;
5719
5720 skip = FALSE;
5721 relocate = FALSE;
5722
5723 outrel.r_addend = signed_addend;
5724 outrel.r_offset =
5725 _bfd_elf_section_offset (output_bfd, info, input_section,
5726 rel->r_offset);
5727 if (outrel.r_offset == (bfd_vma) - 1)
5728 skip = TRUE;
5729 else if (outrel.r_offset == (bfd_vma) - 2)
5730 {
5731 skip = TRUE;
5732 relocate = TRUE;
5733 }
5734 else if (abs_symbol_p)
5735 {
5736 /* Local absolute symbol. */
5737 skip = (h->forced_local || (h->dynindx == -1));
5738 relocate = skip;
5739 }
5740
5741 outrel.r_offset += (input_section->output_section->vma
5742 + input_section->output_offset);
5743
5744 if (skip)
5745 memset (&outrel, 0, sizeof outrel);
5746 else if (h != NULL
5747 && h->dynindx != -1
5748 && (!bfd_link_pic (info)
5749 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5750 || !h->def_regular))
5751 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5752 else
5753 {
5754 int symbol;
5755
5756 /* On SVR4-ish systems, the dynamic loader cannot
5757 relocate the text and data segments independently,
5758 so the symbol does not matter. */
5759 symbol = 0;
5760 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5761 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5762 outrel.r_addend += value;
5763 }
5764
5765 sreloc = elf_section_data (input_section)->sreloc;
5766 if (sreloc == NULL || sreloc->contents == NULL)
5767 return bfd_reloc_notsupported;
5768
5769 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5770 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5771
5772 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5773 {
5774 /* Sanity to check that we have previously allocated
5775 sufficient space in the relocation section for the
5776 number of relocations we actually want to emit. */
5777 abort ();
5778 }
5779
5780 /* If this reloc is against an external symbol, we do not want to
5781 fiddle with the addend. Otherwise, we need to include the symbol
5782 value so that it becomes an addend for the dynamic reloc. */
5783 if (!relocate)
5784 return bfd_reloc_ok;
5785
5786 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5787 contents, rel->r_offset, value,
5788 signed_addend);
5789 }
5790 else
5791 value += signed_addend;
5792 break;
5793
5794 case BFD_RELOC_AARCH64_CALL26:
5795 case BFD_RELOC_AARCH64_JUMP26:
5796 {
5797 asection *splt = globals->root.splt;
5798 bfd_boolean via_plt_p =
5799 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5800
5801 /* A call to an undefined weak symbol is converted to a jump to
5802 the next instruction unless a PLT entry will be created.
5803 The jump to the next instruction is optimized as a NOP.
5804 Do the same for local undefined symbols. */
5805 if (weak_undef_p && ! via_plt_p)
5806 {
5807 bfd_putl32 (INSN_NOP, hit_data);
5808 return bfd_reloc_ok;
5809 }
5810
5811 /* If the call goes through a PLT entry, make sure to
5812 check distance to the right destination address. */
5813 if (via_plt_p)
5814 value = (splt->output_section->vma
5815 + splt->output_offset + h->plt.offset);
5816
5817 /* Check if a stub has to be inserted because the destination
5818 is too far away. */
5819 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5820
5821 /* If the branch destination is directed to plt stub, "value" will be
5822 the final destination, otherwise we should plus signed_addend, it may
5823 contain non-zero value, for example call to local function symbol
5824 which are turned into "sec_sym + sec_off", and sec_off is kept in
5825 signed_addend. */
5826 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5827 place))
5828 /* The target is out of reach, so redirect the branch to
5829 the local stub for this function. */
5830 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5831 rel, globals);
5832 if (stub_entry != NULL)
5833 {
5834 value = (stub_entry->stub_offset
5835 + stub_entry->stub_sec->output_offset
5836 + stub_entry->stub_sec->output_section->vma);
5837
5838 /* We have redirected the destination to stub entry address,
5839 so ignore any addend record in the original rela entry. */
5840 signed_addend = 0;
5841 }
5842 }
5843 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5844 signed_addend, weak_undef_p);
5845 *unresolved_reloc_p = FALSE;
5846 break;
5847
5848 case BFD_RELOC_AARCH64_16_PCREL:
5849 case BFD_RELOC_AARCH64_32_PCREL:
5850 case BFD_RELOC_AARCH64_64_PCREL:
5851 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5852 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5853 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5854 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5855 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5856 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5857 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5858 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5859 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5860 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5861 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5862 if (bfd_link_pic (info)
5863 && (input_section->flags & SEC_ALLOC) != 0
5864 && (input_section->flags & SEC_READONLY) != 0
5865 && !SYMBOL_REFERENCES_LOCAL (info, h))
5866 {
5867 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5868
5869 _bfd_error_handler
5870 /* xgettext:c-format */
5871 (_("%pB: relocation %s against symbol `%s' which may bind "
5872 "externally can not be used when making a shared object; "
5873 "recompile with -fPIC"),
5874 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5875 h->root.root.string);
5876 bfd_set_error (bfd_error_bad_value);
5877 return bfd_reloc_notsupported;
5878 }
5879 /* Fall through. */
5880
5881 case BFD_RELOC_AARCH64_16:
5882 #if ARCH_SIZE == 64
5883 case BFD_RELOC_AARCH64_32:
5884 #endif
5885 case BFD_RELOC_AARCH64_ADD_LO12:
5886 case BFD_RELOC_AARCH64_BRANCH19:
5887 case BFD_RELOC_AARCH64_LDST128_LO12:
5888 case BFD_RELOC_AARCH64_LDST16_LO12:
5889 case BFD_RELOC_AARCH64_LDST32_LO12:
5890 case BFD_RELOC_AARCH64_LDST64_LO12:
5891 case BFD_RELOC_AARCH64_LDST8_LO12:
5892 case BFD_RELOC_AARCH64_MOVW_G0:
5893 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5894 case BFD_RELOC_AARCH64_MOVW_G0_S:
5895 case BFD_RELOC_AARCH64_MOVW_G1:
5896 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5897 case BFD_RELOC_AARCH64_MOVW_G1_S:
5898 case BFD_RELOC_AARCH64_MOVW_G2:
5899 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5900 case BFD_RELOC_AARCH64_MOVW_G2_S:
5901 case BFD_RELOC_AARCH64_MOVW_G3:
5902 case BFD_RELOC_AARCH64_TSTBR14:
5903 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5904 signed_addend, weak_undef_p);
5905 break;
5906
5907 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5908 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5909 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5910 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5911 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5912 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5913 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5914 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5915 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5916 if (globals->root.sgot == NULL)
5917 BFD_ASSERT (h != NULL);
5918
5919 relative_reloc = FALSE;
5920 if (h != NULL)
5921 {
5922 bfd_vma addend = 0;
5923
5924 /* If a symbol is not dynamic and is not undefined weak, bind it
5925 locally and generate a RELATIVE relocation under PIC mode.
5926
5927 NOTE: one symbol may be referenced by several relocations, we
5928 should only generate one RELATIVE relocation for that symbol.
5929 Therefore, check GOT offset mark first. */
5930 if (h->dynindx == -1
5931 && !h->forced_local
5932 && h->root.type != bfd_link_hash_undefweak
5933 && bfd_link_pic (info)
5934 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5935 relative_reloc = TRUE;
5936
5937 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5938 output_bfd,
5939 unresolved_reloc_p);
5940 /* Record the GOT entry address which will be used when generating
5941 RELATIVE relocation. */
5942 if (relative_reloc)
5943 got_entry_addr = value;
5944
5945 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5946 addend = (globals->root.sgot->output_section->vma
5947 + globals->root.sgot->output_offset);
5948 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5949 addend, weak_undef_p);
5950 }
5951 else
5952 {
5953 bfd_vma addend = 0;
5954 struct elf_aarch64_local_symbol *locals
5955 = elf_aarch64_locals (input_bfd);
5956
5957 if (locals == NULL)
5958 {
5959 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5960 _bfd_error_handler
5961 /* xgettext:c-format */
5962 (_("%pB: local symbol descriptor table be NULL when applying "
5963 "relocation %s against local symbol"),
5964 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5965 abort ();
5966 }
5967
5968 off = symbol_got_offset (input_bfd, h, r_symndx);
5969 base_got = globals->root.sgot;
5970 got_entry_addr = (base_got->output_section->vma
5971 + base_got->output_offset + off);
5972
5973 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5974 {
5975 bfd_put_64 (output_bfd, value, base_got->contents + off);
5976
5977 /* For local symbol, we have done absolute relocation in static
5978 linking stage. While for shared library, we need to update the
5979 content of GOT entry according to the shared object's runtime
5980 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5981 for dynamic linker. */
5982 if (bfd_link_pic (info))
5983 relative_reloc = TRUE;
5984
5985 symbol_got_offset_mark (input_bfd, h, r_symndx);
5986 }
5987
5988 /* Update the relocation value to GOT entry addr as we have transformed
5989 the direct data access into indirect data access through GOT. */
5990 value = got_entry_addr;
5991
5992 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5993 addend = base_got->output_section->vma + base_got->output_offset;
5994
5995 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5996 addend, weak_undef_p);
5997 }
5998
5999 if (relative_reloc)
6000 {
6001 asection *s;
6002 Elf_Internal_Rela outrel;
6003
6004 s = globals->root.srelgot;
6005 if (s == NULL)
6006 abort ();
6007
6008 outrel.r_offset = got_entry_addr;
6009 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6010 outrel.r_addend = orig_value;
6011 elf_append_rela (output_bfd, s, &outrel);
6012 }
6013 break;
6014
6015 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6016 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6017 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6018 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6019 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6020 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6021 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6022 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6023 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6024 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6025 if (globals->root.sgot == NULL)
6026 return bfd_reloc_notsupported;
6027
6028 value = (symbol_got_offset (input_bfd, h, r_symndx)
6029 + globals->root.sgot->output_section->vma
6030 + globals->root.sgot->output_offset);
6031
6032 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
6033 0, weak_undef_p);
6034 *unresolved_reloc_p = FALSE;
6035 break;
6036
6037 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6038 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6039 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6040 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6041 if (globals->root.sgot == NULL)
6042 return bfd_reloc_notsupported;
6043
6044 value = symbol_got_offset (input_bfd, h, r_symndx);
6045 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
6046 0, weak_undef_p);
6047 *unresolved_reloc_p = FALSE;
6048 break;
6049
6050 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
6051 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
6052 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6053 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
6054 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
6055 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
6056 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
6057 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
6058 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
6059 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
6060 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6061 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6062 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6063 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6064 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6065 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
6066 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
6067 signed_addend - dtpoff_base (info),
6068 weak_undef_p);
6069 break;
6070
6071 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6072 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6073 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6074 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
6075 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6076 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
6077 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6078 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
6079 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6080 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
6081 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6082 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6083 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6084 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6085 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6086 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6087 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
6088 signed_addend - tpoff_base (info),
6089 weak_undef_p);
6090 *unresolved_reloc_p = FALSE;
6091 break;
6092
6093 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6094 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6095 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6096 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6097 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6098 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6099 if (globals->root.sgot == NULL)
6100 return bfd_reloc_notsupported;
6101 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6102 + globals->root.sgotplt->output_section->vma
6103 + globals->root.sgotplt->output_offset
6104 + globals->sgotplt_jump_table_size);
6105
6106 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
6107 0, weak_undef_p);
6108 *unresolved_reloc_p = FALSE;
6109 break;
6110
6111 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6112 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6113 if (globals->root.sgot == NULL)
6114 return bfd_reloc_notsupported;
6115
6116 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6117 + globals->root.sgotplt->output_section->vma
6118 + globals->root.sgotplt->output_offset
6119 + globals->sgotplt_jump_table_size);
6120
6121 value -= (globals->root.sgot->output_section->vma
6122 + globals->root.sgot->output_offset);
6123
6124 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
6125 0, weak_undef_p);
6126 *unresolved_reloc_p = FALSE;
6127 break;
6128
6129 default:
6130 return bfd_reloc_notsupported;
6131 }
6132
6133 if (saved_addend)
6134 *saved_addend = value;
6135
6136 /* Only apply the final relocation in a sequence. */
6137 if (save_addend)
6138 return bfd_reloc_continue;
6139
6140 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6141 howto, value);
6142 }
6143
6144 /* LP64 and ILP32 operates on x- and w-registers respectively.
6145 Next definitions take into account the difference between
6146 corresponding machine codes. R means x-register if the target
6147 arch is LP64, and w-register if the target is ILP32. */
6148
6149 #if ARCH_SIZE == 64
6150 # define add_R0_R0 (0x91000000)
6151 # define add_R0_R0_R1 (0x8b000020)
6152 # define add_R0_R1 (0x91400020)
6153 # define ldr_R0 (0x58000000)
6154 # define ldr_R0_mask(i) (i & 0xffffffe0)
6155 # define ldr_R0_x0 (0xf9400000)
6156 # define ldr_hw_R0 (0xf2a00000)
6157 # define movk_R0 (0xf2800000)
6158 # define movz_R0 (0xd2a00000)
6159 # define movz_hw_R0 (0xd2c00000)
6160 #else /*ARCH_SIZE == 32 */
6161 # define add_R0_R0 (0x11000000)
6162 # define add_R0_R0_R1 (0x0b000020)
6163 # define add_R0_R1 (0x11400020)
6164 # define ldr_R0 (0x18000000)
6165 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6166 # define ldr_R0_x0 (0xb9400000)
6167 # define ldr_hw_R0 (0x72a00000)
6168 # define movk_R0 (0x72800000)
6169 # define movz_R0 (0x52a00000)
6170 # define movz_hw_R0 (0x52c00000)
6171 #endif
6172
6173 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6174 it is used to identify the stub information to reset. */
6175
6176 struct erratum_843419_branch_to_stub_clear_data
6177 {
6178 bfd_vma adrp_offset;
6179 asection *output_section;
6180 };
6181
6182 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6183 section inside IN_ARG matches. The clearing is done by setting the
6184 stub_type to none. */
6185
6186 static bfd_boolean
6187 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6188 void *in_arg)
6189 {
6190 struct elf_aarch64_stub_hash_entry *stub_entry
6191 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6192 struct erratum_843419_branch_to_stub_clear_data *data
6193 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6194
6195 if (stub_entry->target_section != data->output_section
6196 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6197 || stub_entry->adrp_offset != data->adrp_offset)
6198 return TRUE;
6199
6200 /* Change the stub type instead of removing the entry, removing from the hash
6201 table would be slower and we have already reserved the memory for the entry
6202 so there wouldn't be much gain. Changing the stub also keeps around a
6203 record of what was there before. */
6204 stub_entry->stub_type = aarch64_stub_none;
6205
6206 /* We're done and there could have been only one matching stub at that
6207 particular offset, so abort further traversal. */
6208 return FALSE;
6209 }
6210
6211 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6212 sequence. In this case the erratum no longer applies and we need to remove
6213 the entry from the pending stub generation. This clears matching adrp insn
6214 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6215
6216 static void
6217 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6218 bfd_vma adrp_offset, asection *input_section)
6219 {
6220 if (globals->fix_erratum_843419 & ERRAT_ADRP)
6221 {
6222 struct erratum_843419_branch_to_stub_clear_data data;
6223 data.adrp_offset = adrp_offset;
6224 data.output_section = input_section;
6225
6226 bfd_hash_traverse (&globals->stub_hash_table,
6227 _bfd_aarch64_erratum_843419_clear_stub, &data);
6228 }
6229 }
6230
6231 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6232 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6233 link.
6234
6235 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6236 is to then call final_link_relocate. Return other values in the
6237 case of error. */
6238
6239 static bfd_reloc_status_type
6240 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6241 bfd *input_bfd, asection *input_section,
6242 bfd_byte *contents, Elf_Internal_Rela *rel,
6243 struct elf_link_hash_entry *h)
6244 {
6245 bfd_boolean is_local = h == NULL;
6246 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6247 unsigned long insn;
6248
6249 BFD_ASSERT (globals && input_bfd && contents && rel);
6250
6251 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6252 {
6253 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6254 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6255 if (is_local)
6256 {
6257 /* GD->LE relaxation:
6258 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6259 or
6260 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6261
6262 Where R is x for LP64, and w for ILP32. */
6263 bfd_putl32 (movz_R0, contents + rel->r_offset);
6264 /* We have relaxed the adrp into a mov, we may have to clear any
6265 pending erratum fixes. */
6266 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6267 return bfd_reloc_continue;
6268 }
6269 else
6270 {
6271 /* GD->IE relaxation:
6272 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6273 or
6274 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6275 */
6276 return bfd_reloc_continue;
6277 }
6278
6279 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6280 BFD_ASSERT (0);
6281 break;
6282
6283 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6284 if (is_local)
6285 {
6286 /* Tiny TLSDESC->LE relaxation:
6287 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6288 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6289 .tlsdesccall var
6290 blr x1 => nop
6291
6292 Where R is x for LP64, and w for ILP32. */
6293 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6294 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6295
6296 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6297 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6298 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6299
6300 bfd_putl32 (movz_R0, contents + rel->r_offset);
6301 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6302 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6303 return bfd_reloc_continue;
6304 }
6305 else
6306 {
6307 /* Tiny TLSDESC->IE relaxation:
6308 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6309 adr x0, :tlsdesc:var => nop
6310 .tlsdesccall var
6311 blr x1 => nop
6312 */
6313 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6314 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6315
6316 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6317 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6318
6319 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6320 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6321 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6322 return bfd_reloc_continue;
6323 }
6324
6325 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6326 if (is_local)
6327 {
6328 /* Tiny GD->LE relaxation:
6329 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6330 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6331 nop => add R0, R0, #:tprel_lo12_nc:x
6332
6333 Where R is x for LP64, and x for Ilp32. */
6334
6335 /* First kill the tls_get_addr reloc on the bl instruction. */
6336 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6337
6338 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6339 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6340 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6341
6342 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6343 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6344 rel[1].r_offset = rel->r_offset + 8;
6345
6346 /* Move the current relocation to the second instruction in
6347 the sequence. */
6348 rel->r_offset += 4;
6349 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6350 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6351 return bfd_reloc_continue;
6352 }
6353 else
6354 {
6355 /* Tiny GD->IE relaxation:
6356 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6357 bl __tls_get_addr => mrs x1, tpidr_el0
6358 nop => add R0, R0, R1
6359
6360 Where R is x for LP64, and w for Ilp32. */
6361
6362 /* First kill the tls_get_addr reloc on the bl instruction. */
6363 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6364 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6365
6366 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6367 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6368 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6369 return bfd_reloc_continue;
6370 }
6371
6372 #if ARCH_SIZE == 64
6373 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6374 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6375 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6376 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6377
6378 if (is_local)
6379 {
6380 /* Large GD->LE relaxation:
6381 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6382 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6383 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6384 bl __tls_get_addr => mrs x1, tpidr_el0
6385 nop => add x0, x0, x1
6386 */
6387 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6388 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6389 rel[2].r_offset = rel->r_offset + 8;
6390
6391 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6392 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6393 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6394 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6395 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6396 }
6397 else
6398 {
6399 /* Large GD->IE relaxation:
6400 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6401 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6402 add x0, gp, x0 => ldr x0, [gp, x0]
6403 bl __tls_get_addr => mrs x1, tpidr_el0
6404 nop => add x0, x0, x1
6405 */
6406 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6407 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6408 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6409 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6410 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6411 }
6412 return bfd_reloc_continue;
6413
6414 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6415 return bfd_reloc_continue;
6416 #endif
6417
6418 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6419 return bfd_reloc_continue;
6420
6421 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6422 if (is_local)
6423 {
6424 /* GD->LE relaxation:
6425 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6426
6427 Where R is x for lp64 mode, and w for ILP32 mode. */
6428 bfd_putl32 (movk_R0, contents + rel->r_offset);
6429 return bfd_reloc_continue;
6430 }
6431 else
6432 {
6433 /* GD->IE relaxation:
6434 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6435
6436 Where R is x for lp64 mode, and w for ILP32 mode. */
6437 insn = bfd_getl32 (contents + rel->r_offset);
6438 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6439 return bfd_reloc_continue;
6440 }
6441
6442 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6443 if (is_local)
6444 {
6445 /* GD->LE relaxation
6446 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6447 bl __tls_get_addr => mrs x1, tpidr_el0
6448 nop => add R0, R1, R0
6449
6450 Where R is x for lp64 mode, and w for ILP32 mode. */
6451
6452 /* First kill the tls_get_addr reloc on the bl instruction. */
6453 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6454 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6455
6456 bfd_putl32 (movk_R0, contents + rel->r_offset);
6457 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6458 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6459 return bfd_reloc_continue;
6460 }
6461 else
6462 {
6463 /* GD->IE relaxation
6464 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6465 BL __tls_get_addr => mrs x1, tpidr_el0
6466 R_AARCH64_CALL26
6467 NOP => add R0, R1, R0
6468
6469 Where R is x for lp64 mode, and w for ilp32 mode. */
6470
6471 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6472
6473 /* Remove the relocation on the BL instruction. */
6474 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6475
6476 /* We choose to fixup the BL and NOP instructions using the
6477 offset from the second relocation to allow flexibility in
6478 scheduling instructions between the ADD and BL. */
6479 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6480 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6481 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6482 return bfd_reloc_continue;
6483 }
6484
6485 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6486 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6487 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6488 /* GD->IE/LE relaxation:
6489 add x0, x0, #:tlsdesc_lo12:var => nop
6490 blr xd => nop
6491 */
6492 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6493 return bfd_reloc_ok;
6494
6495 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6496 if (is_local)
6497 {
6498 /* GD->LE relaxation:
6499 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6500
6501 Where R is x for lp64 mode, and w for ILP32 mode. */
6502 bfd_putl32 (movk_R0, contents + rel->r_offset);
6503 return bfd_reloc_continue;
6504 }
6505 else
6506 {
6507 /* GD->IE relaxation:
6508 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6509
6510 Where R is x for lp64 mode, and w for ILP32 mode. */
6511 insn = bfd_getl32 (contents + rel->r_offset);
6512 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6513 return bfd_reloc_ok;
6514 }
6515
6516 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6517 /* GD->LE relaxation:
6518 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6519 GD->IE relaxation:
6520 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6521
6522 Where R is x for lp64 mode, and w for ILP32 mode. */
6523 if (is_local)
6524 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6525 return bfd_reloc_continue;
6526
6527 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6528 if (is_local)
6529 {
6530 /* GD->LE relaxation:
6531 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6532
6533 Where R is x for lp64 mode, and w for ILP32 mode. */
6534 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6535 return bfd_reloc_continue;
6536 }
6537 else
6538 {
6539 /* GD->IE relaxation:
6540 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6541
6542 Where R is x for lp64 mode, and w for ILP32 mode. */
6543 insn = bfd_getl32 (contents + rel->r_offset);
6544 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6545 return bfd_reloc_continue;
6546 }
6547
6548 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6549 /* IE->LE relaxation:
6550 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6551
6552 Where R is x for lp64 mode, and w for ILP32 mode. */
6553 if (is_local)
6554 {
6555 insn = bfd_getl32 (contents + rel->r_offset);
6556 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6557 /* We have relaxed the adrp into a mov, we may have to clear any
6558 pending erratum fixes. */
6559 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6560 }
6561 return bfd_reloc_continue;
6562
6563 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6564 /* IE->LE relaxation:
6565 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6566
6567 Where R is x for lp64 mode, and w for ILP32 mode. */
6568 if (is_local)
6569 {
6570 insn = bfd_getl32 (contents + rel->r_offset);
6571 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6572 }
6573 return bfd_reloc_continue;
6574
6575 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6576 /* LD->LE relaxation (tiny):
6577 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6578 bl __tls_get_addr => add R0, R0, TCB_SIZE
6579
6580 Where R is x for lp64 mode, and w for ilp32 mode. */
6581 if (is_local)
6582 {
6583 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6584 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6585 /* No need of CALL26 relocation for tls_get_addr. */
6586 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6587 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6588 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6589 contents + rel->r_offset + 4);
6590 return bfd_reloc_ok;
6591 }
6592 return bfd_reloc_continue;
6593
6594 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6595 /* LD->LE relaxation (small):
6596 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6597 */
6598 if (is_local)
6599 {
6600 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6601 return bfd_reloc_ok;
6602 }
6603 return bfd_reloc_continue;
6604
6605 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6606 /* LD->LE relaxation (small):
6607 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6608 bl __tls_get_addr => nop
6609
6610 Where R is x for lp64 mode, and w for ilp32 mode. */
6611 if (is_local)
6612 {
6613 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6614 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6615 /* No need of CALL26 relocation for tls_get_addr. */
6616 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6617 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6618 contents + rel->r_offset + 0);
6619 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6620 return bfd_reloc_ok;
6621 }
6622 return bfd_reloc_continue;
6623
6624 default:
6625 return bfd_reloc_continue;
6626 }
6627
6628 return bfd_reloc_ok;
6629 }
6630
6631 /* Relocate an AArch64 ELF section. */
6632
6633 static bfd_boolean
6634 elfNN_aarch64_relocate_section (bfd *output_bfd,
6635 struct bfd_link_info *info,
6636 bfd *input_bfd,
6637 asection *input_section,
6638 bfd_byte *contents,
6639 Elf_Internal_Rela *relocs,
6640 Elf_Internal_Sym *local_syms,
6641 asection **local_sections)
6642 {
6643 Elf_Internal_Shdr *symtab_hdr;
6644 struct elf_link_hash_entry **sym_hashes;
6645 Elf_Internal_Rela *rel;
6646 Elf_Internal_Rela *relend;
6647 const char *name;
6648 struct elf_aarch64_link_hash_table *globals;
6649 bfd_boolean save_addend = FALSE;
6650 bfd_vma addend = 0;
6651
6652 globals = elf_aarch64_hash_table (info);
6653
6654 symtab_hdr = &elf_symtab_hdr (input_bfd);
6655 sym_hashes = elf_sym_hashes (input_bfd);
6656
6657 rel = relocs;
6658 relend = relocs + input_section->reloc_count;
6659 for (; rel < relend; rel++)
6660 {
6661 unsigned int r_type;
6662 bfd_reloc_code_real_type bfd_r_type;
6663 bfd_reloc_code_real_type relaxed_bfd_r_type;
6664 reloc_howto_type *howto;
6665 unsigned long r_symndx;
6666 Elf_Internal_Sym *sym;
6667 asection *sec;
6668 struct elf_link_hash_entry *h;
6669 bfd_vma relocation;
6670 bfd_reloc_status_type r;
6671 arelent bfd_reloc;
6672 char sym_type;
6673 bfd_boolean unresolved_reloc = FALSE;
6674 char *error_message = NULL;
6675
6676 r_symndx = ELFNN_R_SYM (rel->r_info);
6677 r_type = ELFNN_R_TYPE (rel->r_info);
6678
6679 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6680 howto = bfd_reloc.howto;
6681
6682 if (howto == NULL)
6683 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6684
6685 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6686
6687 h = NULL;
6688 sym = NULL;
6689 sec = NULL;
6690
6691 if (r_symndx < symtab_hdr->sh_info)
6692 {
6693 sym = local_syms + r_symndx;
6694 sym_type = ELFNN_ST_TYPE (sym->st_info);
6695 sec = local_sections[r_symndx];
6696
6697 /* An object file might have a reference to a local
6698 undefined symbol. This is a daft object file, but we
6699 should at least do something about it. */
6700 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6701 && bfd_is_und_section (sec)
6702 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6703 (*info->callbacks->undefined_symbol)
6704 (info, bfd_elf_string_from_elf_section
6705 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6706 input_bfd, input_section, rel->r_offset, TRUE);
6707
6708 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6709
6710 /* Relocate against local STT_GNU_IFUNC symbol. */
6711 if (!bfd_link_relocatable (info)
6712 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6713 {
6714 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6715 rel, FALSE);
6716 if (h == NULL)
6717 abort ();
6718
6719 /* Set STT_GNU_IFUNC symbol value. */
6720 h->root.u.def.value = sym->st_value;
6721 h->root.u.def.section = sec;
6722 }
6723 }
6724 else
6725 {
6726 bfd_boolean warned, ignored;
6727
6728 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6729 r_symndx, symtab_hdr, sym_hashes,
6730 h, sec, relocation,
6731 unresolved_reloc, warned, ignored);
6732
6733 sym_type = h->type;
6734 }
6735
6736 if (sec != NULL && discarded_section (sec))
6737 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6738 rel, 1, relend, howto, 0, contents);
6739
6740 if (bfd_link_relocatable (info))
6741 continue;
6742
6743 if (h != NULL)
6744 name = h->root.root.string;
6745 else
6746 {
6747 name = (bfd_elf_string_from_elf_section
6748 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6749 if (name == NULL || *name == '\0')
6750 name = bfd_section_name (input_bfd, sec);
6751 }
6752
6753 if (r_symndx != 0
6754 && r_type != R_AARCH64_NONE
6755 && r_type != R_AARCH64_NULL
6756 && (h == NULL
6757 || h->root.type == bfd_link_hash_defined
6758 || h->root.type == bfd_link_hash_defweak)
6759 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6760 {
6761 _bfd_error_handler
6762 ((sym_type == STT_TLS
6763 /* xgettext:c-format */
6764 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6765 /* xgettext:c-format */
6766 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6767 input_bfd,
6768 input_section, (uint64_t) rel->r_offset, howto->name, name);
6769 }
6770
6771 /* We relax only if we can see that there can be a valid transition
6772 from a reloc type to another.
6773 We call elfNN_aarch64_final_link_relocate unless we're completely
6774 done, i.e., the relaxation produced the final output we want. */
6775
6776 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6777 h, r_symndx);
6778 if (relaxed_bfd_r_type != bfd_r_type)
6779 {
6780 bfd_r_type = relaxed_bfd_r_type;
6781 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6782 BFD_ASSERT (howto != NULL);
6783 r_type = howto->type;
6784 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6785 contents, rel, h);
6786 unresolved_reloc = 0;
6787 }
6788 else
6789 r = bfd_reloc_continue;
6790
6791 /* There may be multiple consecutive relocations for the
6792 same offset. In that case we are supposed to treat the
6793 output of each relocation as the addend for the next. */
6794 if (rel + 1 < relend
6795 && rel->r_offset == rel[1].r_offset
6796 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6797 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6798 save_addend = TRUE;
6799 else
6800 save_addend = FALSE;
6801
6802 if (r == bfd_reloc_continue)
6803 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6804 input_section, contents, rel,
6805 relocation, info, sec,
6806 h, &unresolved_reloc,
6807 save_addend, &addend, sym);
6808
6809 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6810 {
6811 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6812 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6813 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6814 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6815 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6816 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6817 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6818 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6819 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6820 {
6821 bfd_boolean need_relocs = FALSE;
6822 bfd_byte *loc;
6823 int indx;
6824 bfd_vma off;
6825
6826 off = symbol_got_offset (input_bfd, h, r_symndx);
6827 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6828
6829 need_relocs =
6830 (!bfd_link_executable (info) || indx != 0) &&
6831 (h == NULL
6832 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6833 || h->root.type != bfd_link_hash_undefweak);
6834
6835 BFD_ASSERT (globals->root.srelgot != NULL);
6836
6837 if (need_relocs)
6838 {
6839 Elf_Internal_Rela rela;
6840 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6841 rela.r_addend = 0;
6842 rela.r_offset = globals->root.sgot->output_section->vma +
6843 globals->root.sgot->output_offset + off;
6844
6845
6846 loc = globals->root.srelgot->contents;
6847 loc += globals->root.srelgot->reloc_count++
6848 * RELOC_SIZE (htab);
6849 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6850
6851 bfd_reloc_code_real_type real_type =
6852 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6853
6854 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6855 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6856 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6857 {
6858 /* For local dynamic, don't generate DTPREL in any case.
6859 Initialize the DTPREL slot into zero, so we get module
6860 base address when invoke runtime TLS resolver. */
6861 bfd_put_NN (output_bfd, 0,
6862 globals->root.sgot->contents + off
6863 + GOT_ENTRY_SIZE);
6864 }
6865 else if (indx == 0)
6866 {
6867 bfd_put_NN (output_bfd,
6868 relocation - dtpoff_base (info),
6869 globals->root.sgot->contents + off
6870 + GOT_ENTRY_SIZE);
6871 }
6872 else
6873 {
6874 /* This TLS symbol is global. We emit a
6875 relocation to fixup the tls offset at load
6876 time. */
6877 rela.r_info =
6878 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6879 rela.r_addend = 0;
6880 rela.r_offset =
6881 (globals->root.sgot->output_section->vma
6882 + globals->root.sgot->output_offset + off
6883 + GOT_ENTRY_SIZE);
6884
6885 loc = globals->root.srelgot->contents;
6886 loc += globals->root.srelgot->reloc_count++
6887 * RELOC_SIZE (globals);
6888 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6889 bfd_put_NN (output_bfd, (bfd_vma) 0,
6890 globals->root.sgot->contents + off
6891 + GOT_ENTRY_SIZE);
6892 }
6893 }
6894 else
6895 {
6896 bfd_put_NN (output_bfd, (bfd_vma) 1,
6897 globals->root.sgot->contents + off);
6898 bfd_put_NN (output_bfd,
6899 relocation - dtpoff_base (info),
6900 globals->root.sgot->contents + off
6901 + GOT_ENTRY_SIZE);
6902 }
6903
6904 symbol_got_offset_mark (input_bfd, h, r_symndx);
6905 }
6906 break;
6907
6908 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6909 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6910 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6911 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6912 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6913 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6914 {
6915 bfd_boolean need_relocs = FALSE;
6916 bfd_byte *loc;
6917 int indx;
6918 bfd_vma off;
6919
6920 off = symbol_got_offset (input_bfd, h, r_symndx);
6921
6922 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6923
6924 need_relocs =
6925 (!bfd_link_executable (info) || indx != 0) &&
6926 (h == NULL
6927 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6928 || h->root.type != bfd_link_hash_undefweak);
6929
6930 BFD_ASSERT (globals->root.srelgot != NULL);
6931
6932 if (need_relocs)
6933 {
6934 Elf_Internal_Rela rela;
6935
6936 if (indx == 0)
6937 rela.r_addend = relocation - dtpoff_base (info);
6938 else
6939 rela.r_addend = 0;
6940
6941 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6942 rela.r_offset = globals->root.sgot->output_section->vma +
6943 globals->root.sgot->output_offset + off;
6944
6945 loc = globals->root.srelgot->contents;
6946 loc += globals->root.srelgot->reloc_count++
6947 * RELOC_SIZE (htab);
6948
6949 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6950
6951 bfd_put_NN (output_bfd, rela.r_addend,
6952 globals->root.sgot->contents + off);
6953 }
6954 else
6955 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6956 globals->root.sgot->contents + off);
6957
6958 symbol_got_offset_mark (input_bfd, h, r_symndx);
6959 }
6960 break;
6961
6962 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6963 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6964 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6965 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6966 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6967 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6968 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6969 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6970 {
6971 bfd_boolean need_relocs = FALSE;
6972 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6973 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6974
6975 need_relocs = (h == NULL
6976 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6977 || h->root.type != bfd_link_hash_undefweak);
6978
6979 BFD_ASSERT (globals->root.srelgot != NULL);
6980 BFD_ASSERT (globals->root.sgot != NULL);
6981
6982 if (need_relocs)
6983 {
6984 bfd_byte *loc;
6985 Elf_Internal_Rela rela;
6986 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6987
6988 rela.r_addend = 0;
6989 rela.r_offset = (globals->root.sgotplt->output_section->vma
6990 + globals->root.sgotplt->output_offset
6991 + off + globals->sgotplt_jump_table_size);
6992
6993 if (indx == 0)
6994 rela.r_addend = relocation - dtpoff_base (info);
6995
6996 /* Allocate the next available slot in the PLT reloc
6997 section to hold our R_AARCH64_TLSDESC, the next
6998 available slot is determined from reloc_count,
6999 which we step. But note, reloc_count was
7000 artifically moved down while allocating slots for
7001 real PLT relocs such that all of the PLT relocs
7002 will fit above the initial reloc_count and the
7003 extra stuff will fit below. */
7004 loc = globals->root.srelplt->contents;
7005 loc += globals->root.srelplt->reloc_count++
7006 * RELOC_SIZE (globals);
7007
7008 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7009
7010 bfd_put_NN (output_bfd, (bfd_vma) 0,
7011 globals->root.sgotplt->contents + off +
7012 globals->sgotplt_jump_table_size);
7013 bfd_put_NN (output_bfd, (bfd_vma) 0,
7014 globals->root.sgotplt->contents + off +
7015 globals->sgotplt_jump_table_size +
7016 GOT_ENTRY_SIZE);
7017 }
7018
7019 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
7020 }
7021 break;
7022 default:
7023 break;
7024 }
7025
7026 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7027 because such sections are not SEC_ALLOC and thus ld.so will
7028 not process them. */
7029 if (unresolved_reloc
7030 && !((input_section->flags & SEC_DEBUGGING) != 0
7031 && h->def_dynamic)
7032 && _bfd_elf_section_offset (output_bfd, info, input_section,
7033 +rel->r_offset) != (bfd_vma) - 1)
7034 {
7035 _bfd_error_handler
7036 /* xgettext:c-format */
7037 (_("%pB(%pA+%#" PRIx64 "): "
7038 "unresolvable %s relocation against symbol `%s'"),
7039 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
7040 h->root.root.string);
7041 return FALSE;
7042 }
7043
7044 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
7045 {
7046 bfd_reloc_code_real_type real_r_type
7047 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
7048
7049 switch (r)
7050 {
7051 case bfd_reloc_overflow:
7052 (*info->callbacks->reloc_overflow)
7053 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
7054 input_bfd, input_section, rel->r_offset);
7055 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
7056 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
7057 {
7058 (*info->callbacks->warning)
7059 (info,
7060 _("too many GOT entries for -fpic, "
7061 "please recompile with -fPIC"),
7062 name, input_bfd, input_section, rel->r_offset);
7063 return FALSE;
7064 }
7065 /* Overflow can occur when a variable is referenced with a type
7066 that has a larger alignment than the type with which it was
7067 declared. eg:
7068 file1.c: extern int foo; int a (void) { return foo; }
7069 file2.c: char bar, foo, baz;
7070 If the variable is placed into a data section at an offset
7071 that is incompatible with the larger alignment requirement
7072 overflow will occur. (Strictly speaking this is not overflow
7073 but rather an alignment problem, but the bfd_reloc_ error
7074 enum does not have a value to cover that situation).
7075
7076 Try to catch this situation here and provide a more helpful
7077 error message to the user. */
7078 if (addend & ((1 << howto->rightshift) - 1)
7079 /* FIXME: Are we testing all of the appropriate reloc
7080 types here ? */
7081 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
7082 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
7083 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
7084 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
7085 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
7086 {
7087 info->callbacks->warning
7088 (info, _("one possible cause of this error is that the \
7089 symbol is being referenced in the indicated code as if it had a larger \
7090 alignment than was declared where it was defined"),
7091 name, input_bfd, input_section, rel->r_offset);
7092 }
7093 break;
7094
7095 case bfd_reloc_undefined:
7096 (*info->callbacks->undefined_symbol)
7097 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
7098 break;
7099
7100 case bfd_reloc_outofrange:
7101 error_message = _("out of range");
7102 goto common_error;
7103
7104 case bfd_reloc_notsupported:
7105 error_message = _("unsupported relocation");
7106 goto common_error;
7107
7108 case bfd_reloc_dangerous:
7109 /* error_message should already be set. */
7110 goto common_error;
7111
7112 default:
7113 error_message = _("unknown error");
7114 /* Fall through. */
7115
7116 common_error:
7117 BFD_ASSERT (error_message != NULL);
7118 (*info->callbacks->reloc_dangerous)
7119 (info, error_message, input_bfd, input_section, rel->r_offset);
7120 break;
7121 }
7122 }
7123
7124 if (!save_addend)
7125 addend = 0;
7126 }
7127
7128 return TRUE;
7129 }
7130
7131 /* Set the right machine number. */
7132
7133 static bfd_boolean
7134 elfNN_aarch64_object_p (bfd *abfd)
7135 {
7136 #if ARCH_SIZE == 32
7137 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7138 #else
7139 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7140 #endif
7141 return TRUE;
7142 }
7143
7144 /* Function to keep AArch64 specific flags in the ELF header. */
7145
7146 static bfd_boolean
7147 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7148 {
7149 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7150 {
7151 }
7152 else
7153 {
7154 elf_elfheader (abfd)->e_flags = flags;
7155 elf_flags_init (abfd) = TRUE;
7156 }
7157
7158 return TRUE;
7159 }
7160
7161 /* Merge backend specific data from an object file to the output
7162 object file when linking. */
7163
7164 static bfd_boolean
7165 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7166 {
7167 bfd *obfd = info->output_bfd;
7168 flagword out_flags;
7169 flagword in_flags;
7170 bfd_boolean flags_compatible = TRUE;
7171 asection *sec;
7172
7173 /* Check if we have the same endianess. */
7174 if (!_bfd_generic_verify_endian_match (ibfd, info))
7175 return FALSE;
7176
7177 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7178 return TRUE;
7179
7180 /* The input BFD must have had its flags initialised. */
7181 /* The following seems bogus to me -- The flags are initialized in
7182 the assembler but I don't think an elf_flags_init field is
7183 written into the object. */
7184 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7185
7186 in_flags = elf_elfheader (ibfd)->e_flags;
7187 out_flags = elf_elfheader (obfd)->e_flags;
7188
7189 if (!elf_flags_init (obfd))
7190 {
7191 /* If the input is the default architecture and had the default
7192 flags then do not bother setting the flags for the output
7193 architecture, instead allow future merges to do this. If no
7194 future merges ever set these flags then they will retain their
7195 uninitialised values, which surprise surprise, correspond
7196 to the default values. */
7197 if (bfd_get_arch_info (ibfd)->the_default
7198 && elf_elfheader (ibfd)->e_flags == 0)
7199 return TRUE;
7200
7201 elf_flags_init (obfd) = TRUE;
7202 elf_elfheader (obfd)->e_flags = in_flags;
7203
7204 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7205 && bfd_get_arch_info (obfd)->the_default)
7206 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7207 bfd_get_mach (ibfd));
7208
7209 return TRUE;
7210 }
7211
7212 /* Identical flags must be compatible. */
7213 if (in_flags == out_flags)
7214 return TRUE;
7215
7216 /* Check to see if the input BFD actually contains any sections. If
7217 not, its flags may not have been initialised either, but it
7218 cannot actually cause any incompatiblity. Do not short-circuit
7219 dynamic objects; their section list may be emptied by
7220 elf_link_add_object_symbols.
7221
7222 Also check to see if there are no code sections in the input.
7223 In this case there is no need to check for code specific flags.
7224 XXX - do we need to worry about floating-point format compatability
7225 in data sections ? */
7226 if (!(ibfd->flags & DYNAMIC))
7227 {
7228 bfd_boolean null_input_bfd = TRUE;
7229 bfd_boolean only_data_sections = TRUE;
7230
7231 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7232 {
7233 if ((bfd_get_section_flags (ibfd, sec)
7234 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7235 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7236 only_data_sections = FALSE;
7237
7238 null_input_bfd = FALSE;
7239 break;
7240 }
7241
7242 if (null_input_bfd || only_data_sections)
7243 return TRUE;
7244 }
7245
7246 return flags_compatible;
7247 }
7248
7249 /* Display the flags field. */
7250
7251 static bfd_boolean
7252 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7253 {
7254 FILE *file = (FILE *) ptr;
7255 unsigned long flags;
7256
7257 BFD_ASSERT (abfd != NULL && ptr != NULL);
7258
7259 /* Print normal ELF private data. */
7260 _bfd_elf_print_private_bfd_data (abfd, ptr);
7261
7262 flags = elf_elfheader (abfd)->e_flags;
7263 /* Ignore init flag - it may not be set, despite the flags field
7264 containing valid data. */
7265
7266 /* xgettext:c-format */
7267 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7268
7269 if (flags)
7270 fprintf (file, _("<Unrecognised flag bits set>"));
7271
7272 fputc ('\n', file);
7273
7274 return TRUE;
7275 }
7276
7277 /* Find dynamic relocs for H that apply to read-only sections. */
7278
7279 static asection *
7280 readonly_dynrelocs (struct elf_link_hash_entry *h)
7281 {
7282 struct elf_dyn_relocs *p;
7283
7284 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
7285 {
7286 asection *s = p->sec->output_section;
7287
7288 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7289 return p->sec;
7290 }
7291 return NULL;
7292 }
7293
7294 /* Return true if we need copy relocation against EH. */
7295
7296 static bfd_boolean
7297 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7298 {
7299 struct elf_dyn_relocs *p;
7300 asection *s;
7301
7302 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7303 {
7304 /* If there is any pc-relative reference, we need to keep copy relocation
7305 to avoid propagating the relocation into runtime that current glibc
7306 does not support. */
7307 if (p->pc_count)
7308 return TRUE;
7309
7310 s = p->sec->output_section;
7311 /* Need copy relocation if it's against read-only section. */
7312 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7313 return TRUE;
7314 }
7315
7316 return FALSE;
7317 }
7318
7319 /* Adjust a symbol defined by a dynamic object and referenced by a
7320 regular object. The current definition is in some section of the
7321 dynamic object, but we're not including those sections. We have to
7322 change the definition to something the rest of the link can
7323 understand. */
7324
7325 static bfd_boolean
7326 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7327 struct elf_link_hash_entry *h)
7328 {
7329 struct elf_aarch64_link_hash_table *htab;
7330 asection *s, *srel;
7331
7332 /* If this is a function, put it in the procedure linkage table. We
7333 will fill in the contents of the procedure linkage table later,
7334 when we know the address of the .got section. */
7335 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7336 {
7337 if (h->plt.refcount <= 0
7338 || (h->type != STT_GNU_IFUNC
7339 && (SYMBOL_CALLS_LOCAL (info, h)
7340 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7341 && h->root.type == bfd_link_hash_undefweak))))
7342 {
7343 /* This case can occur if we saw a CALL26 reloc in
7344 an input file, but the symbol wasn't referred to
7345 by a dynamic object or all references were
7346 garbage collected. In which case we can end up
7347 resolving. */
7348 h->plt.offset = (bfd_vma) - 1;
7349 h->needs_plt = 0;
7350 }
7351
7352 return TRUE;
7353 }
7354 else
7355 /* Otherwise, reset to -1. */
7356 h->plt.offset = (bfd_vma) - 1;
7357
7358
7359 /* If this is a weak symbol, and there is a real definition, the
7360 processor independent code will have arranged for us to see the
7361 real definition first, and we can just use the same value. */
7362 if (h->is_weakalias)
7363 {
7364 struct elf_link_hash_entry *def = weakdef (h);
7365 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7366 h->root.u.def.section = def->root.u.def.section;
7367 h->root.u.def.value = def->root.u.def.value;
7368 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7369 h->non_got_ref = def->non_got_ref;
7370 return TRUE;
7371 }
7372
7373 /* If we are creating a shared library, we must presume that the
7374 only references to the symbol are via the global offset table.
7375 For such cases we need not do anything here; the relocations will
7376 be handled correctly by relocate_section. */
7377 if (bfd_link_pic (info))
7378 return TRUE;
7379
7380 /* If there are no references to this symbol that do not use the
7381 GOT, we don't need to generate a copy reloc. */
7382 if (!h->non_got_ref)
7383 return TRUE;
7384
7385 /* If -z nocopyreloc was given, we won't generate them either. */
7386 if (info->nocopyreloc)
7387 {
7388 h->non_got_ref = 0;
7389 return TRUE;
7390 }
7391
7392 if (ELIMINATE_COPY_RELOCS)
7393 {
7394 struct elf_aarch64_link_hash_entry *eh;
7395 /* If we don't find any dynamic relocs in read-only sections, then
7396 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7397 eh = (struct elf_aarch64_link_hash_entry *) h;
7398 if (!need_copy_relocation_p (eh))
7399 {
7400 h->non_got_ref = 0;
7401 return TRUE;
7402 }
7403 }
7404
7405 /* We must allocate the symbol in our .dynbss section, which will
7406 become part of the .bss section of the executable. There will be
7407 an entry for this symbol in the .dynsym section. The dynamic
7408 object will contain position independent code, so all references
7409 from the dynamic object to this symbol will go through the global
7410 offset table. The dynamic linker will use the .dynsym entry to
7411 determine the address it must put in the global offset table, so
7412 both the dynamic object and the regular object will refer to the
7413 same memory location for the variable. */
7414
7415 htab = elf_aarch64_hash_table (info);
7416
7417 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7418 to copy the initial value out of the dynamic object and into the
7419 runtime process image. */
7420 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7421 {
7422 s = htab->root.sdynrelro;
7423 srel = htab->root.sreldynrelro;
7424 }
7425 else
7426 {
7427 s = htab->root.sdynbss;
7428 srel = htab->root.srelbss;
7429 }
7430 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7431 {
7432 srel->size += RELOC_SIZE (htab);
7433 h->needs_copy = 1;
7434 }
7435
7436 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7437
7438 }
7439
7440 static bfd_boolean
7441 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7442 {
7443 struct elf_aarch64_local_symbol *locals;
7444 locals = elf_aarch64_locals (abfd);
7445 if (locals == NULL)
7446 {
7447 locals = (struct elf_aarch64_local_symbol *)
7448 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7449 if (locals == NULL)
7450 return FALSE;
7451 elf_aarch64_locals (abfd) = locals;
7452 }
7453 return TRUE;
7454 }
7455
7456 /* Create the .got section to hold the global offset table. */
7457
7458 static bfd_boolean
7459 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7460 {
7461 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7462 flagword flags;
7463 asection *s;
7464 struct elf_link_hash_entry *h;
7465 struct elf_link_hash_table *htab = elf_hash_table (info);
7466
7467 /* This function may be called more than once. */
7468 if (htab->sgot != NULL)
7469 return TRUE;
7470
7471 flags = bed->dynamic_sec_flags;
7472
7473 s = bfd_make_section_anyway_with_flags (abfd,
7474 (bed->rela_plts_and_copies_p
7475 ? ".rela.got" : ".rel.got"),
7476 (bed->dynamic_sec_flags
7477 | SEC_READONLY));
7478 if (s == NULL
7479 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7480 return FALSE;
7481 htab->srelgot = s;
7482
7483 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7484 if (s == NULL
7485 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7486 return FALSE;
7487 htab->sgot = s;
7488 htab->sgot->size += GOT_ENTRY_SIZE;
7489
7490 if (bed->want_got_sym)
7491 {
7492 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7493 (or .got.plt) section. We don't do this in the linker script
7494 because we don't want to define the symbol if we are not creating
7495 a global offset table. */
7496 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7497 "_GLOBAL_OFFSET_TABLE_");
7498 elf_hash_table (info)->hgot = h;
7499 if (h == NULL)
7500 return FALSE;
7501 }
7502
7503 if (bed->want_got_plt)
7504 {
7505 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7506 if (s == NULL
7507 || !bfd_set_section_alignment (abfd, s,
7508 bed->s->log_file_align))
7509 return FALSE;
7510 htab->sgotplt = s;
7511 }
7512
7513 /* The first bit of the global offset table is the header. */
7514 s->size += bed->got_header_size;
7515
7516 return TRUE;
7517 }
7518
7519 /* Look through the relocs for a section during the first phase. */
7520
7521 static bfd_boolean
7522 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7523 asection *sec, const Elf_Internal_Rela *relocs)
7524 {
7525 Elf_Internal_Shdr *symtab_hdr;
7526 struct elf_link_hash_entry **sym_hashes;
7527 const Elf_Internal_Rela *rel;
7528 const Elf_Internal_Rela *rel_end;
7529 asection *sreloc;
7530
7531 struct elf_aarch64_link_hash_table *htab;
7532
7533 if (bfd_link_relocatable (info))
7534 return TRUE;
7535
7536 BFD_ASSERT (is_aarch64_elf (abfd));
7537
7538 htab = elf_aarch64_hash_table (info);
7539 sreloc = NULL;
7540
7541 symtab_hdr = &elf_symtab_hdr (abfd);
7542 sym_hashes = elf_sym_hashes (abfd);
7543
7544 rel_end = relocs + sec->reloc_count;
7545 for (rel = relocs; rel < rel_end; rel++)
7546 {
7547 struct elf_link_hash_entry *h;
7548 unsigned int r_symndx;
7549 unsigned int r_type;
7550 bfd_reloc_code_real_type bfd_r_type;
7551 Elf_Internal_Sym *isym;
7552
7553 r_symndx = ELFNN_R_SYM (rel->r_info);
7554 r_type = ELFNN_R_TYPE (rel->r_info);
7555
7556 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7557 {
7558 /* xgettext:c-format */
7559 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7560 return FALSE;
7561 }
7562
7563 if (r_symndx < symtab_hdr->sh_info)
7564 {
7565 /* A local symbol. */
7566 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7567 abfd, r_symndx);
7568 if (isym == NULL)
7569 return FALSE;
7570
7571 /* Check relocation against local STT_GNU_IFUNC symbol. */
7572 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7573 {
7574 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7575 TRUE);
7576 if (h == NULL)
7577 return FALSE;
7578
7579 /* Fake a STT_GNU_IFUNC symbol. */
7580 h->type = STT_GNU_IFUNC;
7581 h->def_regular = 1;
7582 h->ref_regular = 1;
7583 h->forced_local = 1;
7584 h->root.type = bfd_link_hash_defined;
7585 }
7586 else
7587 h = NULL;
7588 }
7589 else
7590 {
7591 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7592 while (h->root.type == bfd_link_hash_indirect
7593 || h->root.type == bfd_link_hash_warning)
7594 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7595 }
7596
7597 /* Could be done earlier, if h were already available. */
7598 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7599
7600 if (h != NULL)
7601 {
7602 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7603 This shows up in particular in an R_AARCH64_PREL64 in large model
7604 when calculating the pc-relative address to .got section which is
7605 used to initialize the gp register. */
7606 if (h->root.root.string
7607 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7608 {
7609 if (htab->root.dynobj == NULL)
7610 htab->root.dynobj = abfd;
7611
7612 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7613 return FALSE;
7614
7615 BFD_ASSERT (h == htab->root.hgot);
7616 }
7617
7618 /* Create the ifunc sections for static executables. If we
7619 never see an indirect function symbol nor we are building
7620 a static executable, those sections will be empty and
7621 won't appear in output. */
7622 switch (bfd_r_type)
7623 {
7624 default:
7625 break;
7626
7627 case BFD_RELOC_AARCH64_ADD_LO12:
7628 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7629 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7630 case BFD_RELOC_AARCH64_CALL26:
7631 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7632 case BFD_RELOC_AARCH64_JUMP26:
7633 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7634 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7635 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7636 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7637 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7638 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7639 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7640 case BFD_RELOC_AARCH64_NN:
7641 if (htab->root.dynobj == NULL)
7642 htab->root.dynobj = abfd;
7643 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7644 return FALSE;
7645 break;
7646 }
7647
7648 /* It is referenced by a non-shared object. */
7649 h->ref_regular = 1;
7650 }
7651
7652 switch (bfd_r_type)
7653 {
7654 case BFD_RELOC_AARCH64_16:
7655 #if ARCH_SIZE == 64
7656 case BFD_RELOC_AARCH64_32:
7657 #endif
7658 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7659 {
7660 if (h != NULL
7661 /* This is an absolute symbol. It represents a value instead
7662 of an address. */
7663 && (bfd_is_abs_symbol (&h->root)
7664 /* This is an undefined symbol. */
7665 || h->root.type == bfd_link_hash_undefined))
7666 break;
7667
7668 /* For local symbols, defined global symbols in a non-ABS section,
7669 it is assumed that the value is an address. */
7670 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7671 _bfd_error_handler
7672 /* xgettext:c-format */
7673 (_("%pB: relocation %s against `%s' can not be used when making "
7674 "a shared object"),
7675 abfd, elfNN_aarch64_howto_table[howto_index].name,
7676 (h) ? h->root.root.string : "a local symbol");
7677 bfd_set_error (bfd_error_bad_value);
7678 return FALSE;
7679 }
7680 else
7681 break;
7682
7683 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7684 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7685 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7686 case BFD_RELOC_AARCH64_MOVW_G3:
7687 if (bfd_link_pic (info))
7688 {
7689 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7690 _bfd_error_handler
7691 /* xgettext:c-format */
7692 (_("%pB: relocation %s against `%s' can not be used when making "
7693 "a shared object; recompile with -fPIC"),
7694 abfd, elfNN_aarch64_howto_table[howto_index].name,
7695 (h) ? h->root.root.string : "a local symbol");
7696 bfd_set_error (bfd_error_bad_value);
7697 return FALSE;
7698 }
7699 /* Fall through. */
7700
7701 case BFD_RELOC_AARCH64_16_PCREL:
7702 case BFD_RELOC_AARCH64_32_PCREL:
7703 case BFD_RELOC_AARCH64_64_PCREL:
7704 case BFD_RELOC_AARCH64_ADD_LO12:
7705 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7706 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7707 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7708 case BFD_RELOC_AARCH64_LDST128_LO12:
7709 case BFD_RELOC_AARCH64_LDST16_LO12:
7710 case BFD_RELOC_AARCH64_LDST32_LO12:
7711 case BFD_RELOC_AARCH64_LDST64_LO12:
7712 case BFD_RELOC_AARCH64_LDST8_LO12:
7713 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7714 if (h == NULL || bfd_link_pic (info))
7715 break;
7716 /* Fall through. */
7717
7718 case BFD_RELOC_AARCH64_NN:
7719
7720 /* We don't need to handle relocs into sections not going into
7721 the "real" output. */
7722 if ((sec->flags & SEC_ALLOC) == 0)
7723 break;
7724
7725 if (h != NULL)
7726 {
7727 if (!bfd_link_pic (info))
7728 h->non_got_ref = 1;
7729
7730 h->plt.refcount += 1;
7731 h->pointer_equality_needed = 1;
7732 }
7733
7734 /* No need to do anything if we're not creating a shared
7735 object. */
7736 if (!(bfd_link_pic (info)
7737 /* If on the other hand, we are creating an executable, we
7738 may need to keep relocations for symbols satisfied by a
7739 dynamic library if we manage to avoid copy relocs for the
7740 symbol.
7741
7742 NOTE: Currently, there is no support of copy relocs
7743 elimination on pc-relative relocation types, because there is
7744 no dynamic relocation support for them in glibc. We still
7745 record the dynamic symbol reference for them. This is
7746 because one symbol may be referenced by both absolute
7747 relocation (for example, BFD_RELOC_AARCH64_NN) and
7748 pc-relative relocation. We need full symbol reference
7749 information to make correct decision later in
7750 elfNN_aarch64_adjust_dynamic_symbol. */
7751 || (ELIMINATE_COPY_RELOCS
7752 && !bfd_link_pic (info)
7753 && h != NULL
7754 && (h->root.type == bfd_link_hash_defweak
7755 || !h->def_regular))))
7756 break;
7757
7758 {
7759 struct elf_dyn_relocs *p;
7760 struct elf_dyn_relocs **head;
7761 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7762
7763 /* We must copy these reloc types into the output file.
7764 Create a reloc section in dynobj and make room for
7765 this reloc. */
7766 if (sreloc == NULL)
7767 {
7768 if (htab->root.dynobj == NULL)
7769 htab->root.dynobj = abfd;
7770
7771 sreloc = _bfd_elf_make_dynamic_reloc_section
7772 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7773
7774 if (sreloc == NULL)
7775 return FALSE;
7776 }
7777
7778 /* If this is a global symbol, we count the number of
7779 relocations we need for this symbol. */
7780 if (h != NULL)
7781 {
7782 struct elf_aarch64_link_hash_entry *eh;
7783 eh = (struct elf_aarch64_link_hash_entry *) h;
7784 head = &eh->dyn_relocs;
7785 }
7786 else
7787 {
7788 /* Track dynamic relocs needed for local syms too.
7789 We really need local syms available to do this
7790 easily. Oh well. */
7791
7792 asection *s;
7793 void **vpp;
7794
7795 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7796 abfd, r_symndx);
7797 if (isym == NULL)
7798 return FALSE;
7799
7800 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7801 if (s == NULL)
7802 s = sec;
7803
7804 /* Beware of type punned pointers vs strict aliasing
7805 rules. */
7806 vpp = &(elf_section_data (s)->local_dynrel);
7807 head = (struct elf_dyn_relocs **) vpp;
7808 }
7809
7810 p = *head;
7811 if (p == NULL || p->sec != sec)
7812 {
7813 bfd_size_type amt = sizeof *p;
7814 p = ((struct elf_dyn_relocs *)
7815 bfd_zalloc (htab->root.dynobj, amt));
7816 if (p == NULL)
7817 return FALSE;
7818 p->next = *head;
7819 *head = p;
7820 p->sec = sec;
7821 }
7822
7823 p->count += 1;
7824
7825 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7826 p->pc_count += 1;
7827 }
7828 break;
7829
7830 /* RR: We probably want to keep a consistency check that
7831 there are no dangling GOT_PAGE relocs. */
7832 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7833 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7834 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7835 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7836 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7837 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7838 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7839 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7840 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7841 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7842 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7843 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7844 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7845 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7846 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7847 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7848 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7849 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7850 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7851 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7852 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7853 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7854 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7855 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7856 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7857 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7858 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7859 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7860 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7861 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7862 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7863 {
7864 unsigned got_type;
7865 unsigned old_got_type;
7866
7867 got_type = aarch64_reloc_got_type (bfd_r_type);
7868
7869 if (h)
7870 {
7871 h->got.refcount += 1;
7872 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7873 }
7874 else
7875 {
7876 struct elf_aarch64_local_symbol *locals;
7877
7878 if (!elfNN_aarch64_allocate_local_symbols
7879 (abfd, symtab_hdr->sh_info))
7880 return FALSE;
7881
7882 locals = elf_aarch64_locals (abfd);
7883 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7884 locals[r_symndx].got_refcount += 1;
7885 old_got_type = locals[r_symndx].got_type;
7886 }
7887
7888 /* If a variable is accessed with both general dynamic TLS
7889 methods, two slots may be created. */
7890 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7891 got_type |= old_got_type;
7892
7893 /* We will already have issued an error message if there
7894 is a TLS/non-TLS mismatch, based on the symbol type.
7895 So just combine any TLS types needed. */
7896 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7897 && got_type != GOT_NORMAL)
7898 got_type |= old_got_type;
7899
7900 /* If the symbol is accessed by both IE and GD methods, we
7901 are able to relax. Turn off the GD flag, without
7902 messing up with any other kind of TLS types that may be
7903 involved. */
7904 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7905 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7906
7907 if (old_got_type != got_type)
7908 {
7909 if (h != NULL)
7910 elf_aarch64_hash_entry (h)->got_type = got_type;
7911 else
7912 {
7913 struct elf_aarch64_local_symbol *locals;
7914 locals = elf_aarch64_locals (abfd);
7915 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7916 locals[r_symndx].got_type = got_type;
7917 }
7918 }
7919
7920 if (htab->root.dynobj == NULL)
7921 htab->root.dynobj = abfd;
7922 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7923 return FALSE;
7924 break;
7925 }
7926
7927 case BFD_RELOC_AARCH64_CALL26:
7928 case BFD_RELOC_AARCH64_JUMP26:
7929 /* If this is a local symbol then we resolve it
7930 directly without creating a PLT entry. */
7931 if (h == NULL)
7932 continue;
7933
7934 h->needs_plt = 1;
7935 if (h->plt.refcount <= 0)
7936 h->plt.refcount = 1;
7937 else
7938 h->plt.refcount += 1;
7939 break;
7940
7941 default:
7942 break;
7943 }
7944 }
7945
7946 return TRUE;
7947 }
7948
7949 /* Treat mapping symbols as special target symbols. */
7950
7951 static bfd_boolean
7952 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7953 asymbol *sym)
7954 {
7955 return bfd_is_aarch64_special_symbol_name (sym->name,
7956 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7957 }
7958
7959 /* This is a copy of elf_find_function () from elf.c except that
7960 AArch64 mapping symbols are ignored when looking for function names. */
7961
7962 static bfd_boolean
7963 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7964 asymbol **symbols,
7965 asection *section,
7966 bfd_vma offset,
7967 const char **filename_ptr,
7968 const char **functionname_ptr)
7969 {
7970 const char *filename = NULL;
7971 asymbol *func = NULL;
7972 bfd_vma low_func = 0;
7973 asymbol **p;
7974
7975 for (p = symbols; *p != NULL; p++)
7976 {
7977 elf_symbol_type *q;
7978
7979 q = (elf_symbol_type *) * p;
7980
7981 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7982 {
7983 default:
7984 break;
7985 case STT_FILE:
7986 filename = bfd_asymbol_name (&q->symbol);
7987 break;
7988 case STT_FUNC:
7989 case STT_NOTYPE:
7990 /* Skip mapping symbols. */
7991 if ((q->symbol.flags & BSF_LOCAL)
7992 && (bfd_is_aarch64_special_symbol_name
7993 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7994 continue;
7995 /* Fall through. */
7996 if (bfd_get_section (&q->symbol) == section
7997 && q->symbol.value >= low_func && q->symbol.value <= offset)
7998 {
7999 func = (asymbol *) q;
8000 low_func = q->symbol.value;
8001 }
8002 break;
8003 }
8004 }
8005
8006 if (func == NULL)
8007 return FALSE;
8008
8009 if (filename_ptr)
8010 *filename_ptr = filename;
8011 if (functionname_ptr)
8012 *functionname_ptr = bfd_asymbol_name (func);
8013
8014 return TRUE;
8015 }
8016
8017
8018 /* Find the nearest line to a particular section and offset, for error
8019 reporting. This code is a duplicate of the code in elf.c, except
8020 that it uses aarch64_elf_find_function. */
8021
8022 static bfd_boolean
8023 elfNN_aarch64_find_nearest_line (bfd *abfd,
8024 asymbol **symbols,
8025 asection *section,
8026 bfd_vma offset,
8027 const char **filename_ptr,
8028 const char **functionname_ptr,
8029 unsigned int *line_ptr,
8030 unsigned int *discriminator_ptr)
8031 {
8032 bfd_boolean found = FALSE;
8033
8034 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8035 filename_ptr, functionname_ptr,
8036 line_ptr, discriminator_ptr,
8037 dwarf_debug_sections, 0,
8038 &elf_tdata (abfd)->dwarf2_find_line_info))
8039 {
8040 if (!*functionname_ptr)
8041 aarch64_elf_find_function (abfd, symbols, section, offset,
8042 *filename_ptr ? NULL : filename_ptr,
8043 functionname_ptr);
8044
8045 return TRUE;
8046 }
8047
8048 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
8049 toolchain uses DWARF1. */
8050
8051 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8052 &found, filename_ptr,
8053 functionname_ptr, line_ptr,
8054 &elf_tdata (abfd)->line_info))
8055 return FALSE;
8056
8057 if (found && (*functionname_ptr || *line_ptr))
8058 return TRUE;
8059
8060 if (symbols == NULL)
8061 return FALSE;
8062
8063 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
8064 filename_ptr, functionname_ptr))
8065 return FALSE;
8066
8067 *line_ptr = 0;
8068 return TRUE;
8069 }
8070
8071 static bfd_boolean
8072 elfNN_aarch64_find_inliner_info (bfd *abfd,
8073 const char **filename_ptr,
8074 const char **functionname_ptr,
8075 unsigned int *line_ptr)
8076 {
8077 bfd_boolean found;
8078 found = _bfd_dwarf2_find_inliner_info
8079 (abfd, filename_ptr,
8080 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
8081 return found;
8082 }
8083
8084
8085 static void
8086 elfNN_aarch64_post_process_headers (bfd *abfd,
8087 struct bfd_link_info *link_info)
8088 {
8089 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
8090
8091 i_ehdrp = elf_elfheader (abfd);
8092 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
8093
8094 _bfd_elf_post_process_headers (abfd, link_info);
8095 }
8096
8097 static enum elf_reloc_type_class
8098 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
8099 const asection *rel_sec ATTRIBUTE_UNUSED,
8100 const Elf_Internal_Rela *rela)
8101 {
8102 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
8103
8104 if (htab->root.dynsym != NULL
8105 && htab->root.dynsym->contents != NULL)
8106 {
8107 /* Check relocation against STT_GNU_IFUNC symbol if there are
8108 dynamic symbols. */
8109 bfd *abfd = info->output_bfd;
8110 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8111 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
8112 if (r_symndx != STN_UNDEF)
8113 {
8114 Elf_Internal_Sym sym;
8115 if (!bed->s->swap_symbol_in (abfd,
8116 (htab->root.dynsym->contents
8117 + r_symndx * bed->s->sizeof_sym),
8118 0, &sym))
8119 {
8120 /* xgettext:c-format */
8121 _bfd_error_handler (_("%pB symbol number %lu references"
8122 " nonexistent SHT_SYMTAB_SHNDX section"),
8123 abfd, r_symndx);
8124 /* Ideally an error class should be returned here. */
8125 }
8126 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8127 return reloc_class_ifunc;
8128 }
8129 }
8130
8131 switch ((int) ELFNN_R_TYPE (rela->r_info))
8132 {
8133 case AARCH64_R (IRELATIVE):
8134 return reloc_class_ifunc;
8135 case AARCH64_R (RELATIVE):
8136 return reloc_class_relative;
8137 case AARCH64_R (JUMP_SLOT):
8138 return reloc_class_plt;
8139 case AARCH64_R (COPY):
8140 return reloc_class_copy;
8141 default:
8142 return reloc_class_normal;
8143 }
8144 }
8145
8146 /* Handle an AArch64 specific section when reading an object file. This is
8147 called when bfd_section_from_shdr finds a section with an unknown
8148 type. */
8149
8150 static bfd_boolean
8151 elfNN_aarch64_section_from_shdr (bfd *abfd,
8152 Elf_Internal_Shdr *hdr,
8153 const char *name, int shindex)
8154 {
8155 /* There ought to be a place to keep ELF backend specific flags, but
8156 at the moment there isn't one. We just keep track of the
8157 sections by their name, instead. Fortunately, the ABI gives
8158 names for all the AArch64 specific sections, so we will probably get
8159 away with this. */
8160 switch (hdr->sh_type)
8161 {
8162 case SHT_AARCH64_ATTRIBUTES:
8163 break;
8164
8165 default:
8166 return FALSE;
8167 }
8168
8169 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8170 return FALSE;
8171
8172 return TRUE;
8173 }
8174
8175 /* A structure used to record a list of sections, independently
8176 of the next and prev fields in the asection structure. */
8177 typedef struct section_list
8178 {
8179 asection *sec;
8180 struct section_list *next;
8181 struct section_list *prev;
8182 }
8183 section_list;
8184
8185 /* Unfortunately we need to keep a list of sections for which
8186 an _aarch64_elf_section_data structure has been allocated. This
8187 is because it is possible for functions like elfNN_aarch64_write_section
8188 to be called on a section which has had an elf_data_structure
8189 allocated for it (and so the used_by_bfd field is valid) but
8190 for which the AArch64 extended version of this structure - the
8191 _aarch64_elf_section_data structure - has not been allocated. */
8192 static section_list *sections_with_aarch64_elf_section_data = NULL;
8193
8194 static void
8195 record_section_with_aarch64_elf_section_data (asection *sec)
8196 {
8197 struct section_list *entry;
8198
8199 entry = bfd_malloc (sizeof (*entry));
8200 if (entry == NULL)
8201 return;
8202 entry->sec = sec;
8203 entry->next = sections_with_aarch64_elf_section_data;
8204 entry->prev = NULL;
8205 if (entry->next != NULL)
8206 entry->next->prev = entry;
8207 sections_with_aarch64_elf_section_data = entry;
8208 }
8209
8210 static struct section_list *
8211 find_aarch64_elf_section_entry (asection *sec)
8212 {
8213 struct section_list *entry;
8214 static struct section_list *last_entry = NULL;
8215
8216 /* This is a short cut for the typical case where the sections are added
8217 to the sections_with_aarch64_elf_section_data list in forward order and
8218 then looked up here in backwards order. This makes a real difference
8219 to the ld-srec/sec64k.exp linker test. */
8220 entry = sections_with_aarch64_elf_section_data;
8221 if (last_entry != NULL)
8222 {
8223 if (last_entry->sec == sec)
8224 entry = last_entry;
8225 else if (last_entry->next != NULL && last_entry->next->sec == sec)
8226 entry = last_entry->next;
8227 }
8228
8229 for (; entry; entry = entry->next)
8230 if (entry->sec == sec)
8231 break;
8232
8233 if (entry)
8234 /* Record the entry prior to this one - it is the entry we are
8235 most likely to want to locate next time. Also this way if we
8236 have been called from
8237 unrecord_section_with_aarch64_elf_section_data () we will not
8238 be caching a pointer that is about to be freed. */
8239 last_entry = entry->prev;
8240
8241 return entry;
8242 }
8243
8244 static void
8245 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8246 {
8247 struct section_list *entry;
8248
8249 entry = find_aarch64_elf_section_entry (sec);
8250
8251 if (entry)
8252 {
8253 if (entry->prev != NULL)
8254 entry->prev->next = entry->next;
8255 if (entry->next != NULL)
8256 entry->next->prev = entry->prev;
8257 if (entry == sections_with_aarch64_elf_section_data)
8258 sections_with_aarch64_elf_section_data = entry->next;
8259 free (entry);
8260 }
8261 }
8262
8263
8264 typedef struct
8265 {
8266 void *finfo;
8267 struct bfd_link_info *info;
8268 asection *sec;
8269 int sec_shndx;
8270 int (*func) (void *, const char *, Elf_Internal_Sym *,
8271 asection *, struct elf_link_hash_entry *);
8272 } output_arch_syminfo;
8273
8274 enum map_symbol_type
8275 {
8276 AARCH64_MAP_INSN,
8277 AARCH64_MAP_DATA
8278 };
8279
8280
8281 /* Output a single mapping symbol. */
8282
8283 static bfd_boolean
8284 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8285 enum map_symbol_type type, bfd_vma offset)
8286 {
8287 static const char *names[2] = { "$x", "$d" };
8288 Elf_Internal_Sym sym;
8289
8290 sym.st_value = (osi->sec->output_section->vma
8291 + osi->sec->output_offset + offset);
8292 sym.st_size = 0;
8293 sym.st_other = 0;
8294 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8295 sym.st_shndx = osi->sec_shndx;
8296 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8297 }
8298
8299 /* Output a single local symbol for a generated stub. */
8300
8301 static bfd_boolean
8302 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8303 bfd_vma offset, bfd_vma size)
8304 {
8305 Elf_Internal_Sym sym;
8306
8307 sym.st_value = (osi->sec->output_section->vma
8308 + osi->sec->output_offset + offset);
8309 sym.st_size = size;
8310 sym.st_other = 0;
8311 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8312 sym.st_shndx = osi->sec_shndx;
8313 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8314 }
8315
8316 static bfd_boolean
8317 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8318 {
8319 struct elf_aarch64_stub_hash_entry *stub_entry;
8320 asection *stub_sec;
8321 bfd_vma addr;
8322 char *stub_name;
8323 output_arch_syminfo *osi;
8324
8325 /* Massage our args to the form they really have. */
8326 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8327 osi = (output_arch_syminfo *) in_arg;
8328
8329 stub_sec = stub_entry->stub_sec;
8330
8331 /* Ensure this stub is attached to the current section being
8332 processed. */
8333 if (stub_sec != osi->sec)
8334 return TRUE;
8335
8336 addr = (bfd_vma) stub_entry->stub_offset;
8337
8338 stub_name = stub_entry->output_name;
8339
8340 switch (stub_entry->stub_type)
8341 {
8342 case aarch64_stub_adrp_branch:
8343 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8344 sizeof (aarch64_adrp_branch_stub)))
8345 return FALSE;
8346 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8347 return FALSE;
8348 break;
8349 case aarch64_stub_long_branch:
8350 if (!elfNN_aarch64_output_stub_sym
8351 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8352 return FALSE;
8353 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8354 return FALSE;
8355 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8356 return FALSE;
8357 break;
8358 case aarch64_stub_erratum_835769_veneer:
8359 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8360 sizeof (aarch64_erratum_835769_stub)))
8361 return FALSE;
8362 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8363 return FALSE;
8364 break;
8365 case aarch64_stub_erratum_843419_veneer:
8366 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8367 sizeof (aarch64_erratum_843419_stub)))
8368 return FALSE;
8369 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8370 return FALSE;
8371 break;
8372 case aarch64_stub_none:
8373 break;
8374
8375 default:
8376 abort ();
8377 }
8378
8379 return TRUE;
8380 }
8381
8382 /* Output mapping symbols for linker generated sections. */
8383
8384 static bfd_boolean
8385 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8386 struct bfd_link_info *info,
8387 void *finfo,
8388 int (*func) (void *, const char *,
8389 Elf_Internal_Sym *,
8390 asection *,
8391 struct elf_link_hash_entry
8392 *))
8393 {
8394 output_arch_syminfo osi;
8395 struct elf_aarch64_link_hash_table *htab;
8396
8397 htab = elf_aarch64_hash_table (info);
8398
8399 osi.finfo = finfo;
8400 osi.info = info;
8401 osi.func = func;
8402
8403 /* Long calls stubs. */
8404 if (htab->stub_bfd && htab->stub_bfd->sections)
8405 {
8406 asection *stub_sec;
8407
8408 for (stub_sec = htab->stub_bfd->sections;
8409 stub_sec != NULL; stub_sec = stub_sec->next)
8410 {
8411 /* Ignore non-stub sections. */
8412 if (!strstr (stub_sec->name, STUB_SUFFIX))
8413 continue;
8414
8415 osi.sec = stub_sec;
8416
8417 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8418 (output_bfd, osi.sec->output_section);
8419
8420 /* The first instruction in a stub is always a branch. */
8421 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8422 return FALSE;
8423
8424 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8425 &osi);
8426 }
8427 }
8428
8429 /* Finally, output mapping symbols for the PLT. */
8430 if (!htab->root.splt || htab->root.splt->size == 0)
8431 return TRUE;
8432
8433 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8434 (output_bfd, htab->root.splt->output_section);
8435 osi.sec = htab->root.splt;
8436
8437 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8438
8439 return TRUE;
8440
8441 }
8442
8443 /* Allocate target specific section data. */
8444
8445 static bfd_boolean
8446 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8447 {
8448 if (!sec->used_by_bfd)
8449 {
8450 _aarch64_elf_section_data *sdata;
8451 bfd_size_type amt = sizeof (*sdata);
8452
8453 sdata = bfd_zalloc (abfd, amt);
8454 if (sdata == NULL)
8455 return FALSE;
8456 sec->used_by_bfd = sdata;
8457 }
8458
8459 record_section_with_aarch64_elf_section_data (sec);
8460
8461 return _bfd_elf_new_section_hook (abfd, sec);
8462 }
8463
8464
8465 static void
8466 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8467 asection *sec,
8468 void *ignore ATTRIBUTE_UNUSED)
8469 {
8470 unrecord_section_with_aarch64_elf_section_data (sec);
8471 }
8472
8473 static bfd_boolean
8474 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8475 {
8476 if (abfd->sections)
8477 bfd_map_over_sections (abfd,
8478 unrecord_section_via_map_over_sections, NULL);
8479
8480 return _bfd_elf_close_and_cleanup (abfd);
8481 }
8482
8483 static bfd_boolean
8484 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8485 {
8486 if (abfd->sections)
8487 bfd_map_over_sections (abfd,
8488 unrecord_section_via_map_over_sections, NULL);
8489
8490 return _bfd_free_cached_info (abfd);
8491 }
8492
8493 /* Create dynamic sections. This is different from the ARM backend in that
8494 the got, plt, gotplt and their relocation sections are all created in the
8495 standard part of the bfd elf backend. */
8496
8497 static bfd_boolean
8498 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8499 struct bfd_link_info *info)
8500 {
8501 /* We need to create .got section. */
8502 if (!aarch64_elf_create_got_section (dynobj, info))
8503 return FALSE;
8504
8505 return _bfd_elf_create_dynamic_sections (dynobj, info);
8506 }
8507
8508
8509 /* Allocate space in .plt, .got and associated reloc sections for
8510 dynamic relocs. */
8511
8512 static bfd_boolean
8513 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8514 {
8515 struct bfd_link_info *info;
8516 struct elf_aarch64_link_hash_table *htab;
8517 struct elf_aarch64_link_hash_entry *eh;
8518 struct elf_dyn_relocs *p;
8519
8520 /* An example of a bfd_link_hash_indirect symbol is versioned
8521 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8522 -> __gxx_personality_v0(bfd_link_hash_defined)
8523
8524 There is no need to process bfd_link_hash_indirect symbols here
8525 because we will also be presented with the concrete instance of
8526 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8527 called to copy all relevant data from the generic to the concrete
8528 symbol instance. */
8529 if (h->root.type == bfd_link_hash_indirect)
8530 return TRUE;
8531
8532 if (h->root.type == bfd_link_hash_warning)
8533 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8534
8535 info = (struct bfd_link_info *) inf;
8536 htab = elf_aarch64_hash_table (info);
8537
8538 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8539 here if it is defined and referenced in a non-shared object. */
8540 if (h->type == STT_GNU_IFUNC
8541 && h->def_regular)
8542 return TRUE;
8543 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8544 {
8545 /* Make sure this symbol is output as a dynamic symbol.
8546 Undefined weak syms won't yet be marked as dynamic. */
8547 if (h->dynindx == -1 && !h->forced_local
8548 && h->root.type == bfd_link_hash_undefweak)
8549 {
8550 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8551 return FALSE;
8552 }
8553
8554 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8555 {
8556 asection *s = htab->root.splt;
8557
8558 /* If this is the first .plt entry, make room for the special
8559 first entry. */
8560 if (s->size == 0)
8561 s->size += htab->plt_header_size;
8562
8563 h->plt.offset = s->size;
8564
8565 /* If this symbol is not defined in a regular file, and we are
8566 not generating a shared library, then set the symbol to this
8567 location in the .plt. This is required to make function
8568 pointers compare as equal between the normal executable and
8569 the shared library. */
8570 if (!bfd_link_pic (info) && !h->def_regular)
8571 {
8572 h->root.u.def.section = s;
8573 h->root.u.def.value = h->plt.offset;
8574 }
8575
8576 /* Make room for this entry. For now we only create the
8577 small model PLT entries. We later need to find a way
8578 of relaxing into these from the large model PLT entries. */
8579 s->size += htab->plt_entry_size;
8580
8581 /* We also need to make an entry in the .got.plt section, which
8582 will be placed in the .got section by the linker script. */
8583 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8584
8585 /* We also need to make an entry in the .rela.plt section. */
8586 htab->root.srelplt->size += RELOC_SIZE (htab);
8587
8588 /* We need to ensure that all GOT entries that serve the PLT
8589 are consecutive with the special GOT slots [0] [1] and
8590 [2]. Any addtional relocations, such as
8591 R_AARCH64_TLSDESC, must be placed after the PLT related
8592 entries. We abuse the reloc_count such that during
8593 sizing we adjust reloc_count to indicate the number of
8594 PLT related reserved entries. In subsequent phases when
8595 filling in the contents of the reloc entries, PLT related
8596 entries are placed by computing their PLT index (0
8597 .. reloc_count). While other none PLT relocs are placed
8598 at the slot indicated by reloc_count and reloc_count is
8599 updated. */
8600
8601 htab->root.srelplt->reloc_count++;
8602
8603 /* Mark the DSO in case R_<CLS>_JUMP_SLOT relocs against
8604 variant PCS symbols are present. */
8605 if (h->other & STO_AARCH64_VARIANT_PCS)
8606 htab->variant_pcs = 1;
8607
8608 }
8609 else
8610 {
8611 h->plt.offset = (bfd_vma) - 1;
8612 h->needs_plt = 0;
8613 }
8614 }
8615 else
8616 {
8617 h->plt.offset = (bfd_vma) - 1;
8618 h->needs_plt = 0;
8619 }
8620
8621 eh = (struct elf_aarch64_link_hash_entry *) h;
8622 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8623
8624 if (h->got.refcount > 0)
8625 {
8626 bfd_boolean dyn;
8627 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8628
8629 h->got.offset = (bfd_vma) - 1;
8630
8631 dyn = htab->root.dynamic_sections_created;
8632
8633 /* Make sure this symbol is output as a dynamic symbol.
8634 Undefined weak syms won't yet be marked as dynamic. */
8635 if (dyn && h->dynindx == -1 && !h->forced_local
8636 && h->root.type == bfd_link_hash_undefweak)
8637 {
8638 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8639 return FALSE;
8640 }
8641
8642 if (got_type == GOT_UNKNOWN)
8643 {
8644 }
8645 else if (got_type == GOT_NORMAL)
8646 {
8647 h->got.offset = htab->root.sgot->size;
8648 htab->root.sgot->size += GOT_ENTRY_SIZE;
8649 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8650 || h->root.type != bfd_link_hash_undefweak)
8651 && (bfd_link_pic (info)
8652 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8653 /* Undefined weak symbol in static PIE resolves to 0 without
8654 any dynamic relocations. */
8655 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8656 {
8657 htab->root.srelgot->size += RELOC_SIZE (htab);
8658 }
8659 }
8660 else
8661 {
8662 int indx;
8663 if (got_type & GOT_TLSDESC_GD)
8664 {
8665 eh->tlsdesc_got_jump_table_offset =
8666 (htab->root.sgotplt->size
8667 - aarch64_compute_jump_table_size (htab));
8668 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8669 h->got.offset = (bfd_vma) - 2;
8670 }
8671
8672 if (got_type & GOT_TLS_GD)
8673 {
8674 h->got.offset = htab->root.sgot->size;
8675 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8676 }
8677
8678 if (got_type & GOT_TLS_IE)
8679 {
8680 h->got.offset = htab->root.sgot->size;
8681 htab->root.sgot->size += GOT_ENTRY_SIZE;
8682 }
8683
8684 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8685 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8686 || h->root.type != bfd_link_hash_undefweak)
8687 && (!bfd_link_executable (info)
8688 || indx != 0
8689 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8690 {
8691 if (got_type & GOT_TLSDESC_GD)
8692 {
8693 htab->root.srelplt->size += RELOC_SIZE (htab);
8694 /* Note reloc_count not incremented here! We have
8695 already adjusted reloc_count for this relocation
8696 type. */
8697
8698 /* TLSDESC PLT is now needed, but not yet determined. */
8699 htab->tlsdesc_plt = (bfd_vma) - 1;
8700 }
8701
8702 if (got_type & GOT_TLS_GD)
8703 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8704
8705 if (got_type & GOT_TLS_IE)
8706 htab->root.srelgot->size += RELOC_SIZE (htab);
8707 }
8708 }
8709 }
8710 else
8711 {
8712 h->got.offset = (bfd_vma) - 1;
8713 }
8714
8715 if (eh->dyn_relocs == NULL)
8716 return TRUE;
8717
8718 /* In the shared -Bsymbolic case, discard space allocated for
8719 dynamic pc-relative relocs against symbols which turn out to be
8720 defined in regular objects. For the normal shared case, discard
8721 space for pc-relative relocs that have become local due to symbol
8722 visibility changes. */
8723
8724 if (bfd_link_pic (info))
8725 {
8726 /* Relocs that use pc_count are those that appear on a call
8727 insn, or certain REL relocs that can generated via assembly.
8728 We want calls to protected symbols to resolve directly to the
8729 function rather than going via the plt. If people want
8730 function pointer comparisons to work as expected then they
8731 should avoid writing weird assembly. */
8732 if (SYMBOL_CALLS_LOCAL (info, h))
8733 {
8734 struct elf_dyn_relocs **pp;
8735
8736 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8737 {
8738 p->count -= p->pc_count;
8739 p->pc_count = 0;
8740 if (p->count == 0)
8741 *pp = p->next;
8742 else
8743 pp = &p->next;
8744 }
8745 }
8746
8747 /* Also discard relocs on undefined weak syms with non-default
8748 visibility. */
8749 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8750 {
8751 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8752 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8753 eh->dyn_relocs = NULL;
8754
8755 /* Make sure undefined weak symbols are output as a dynamic
8756 symbol in PIEs. */
8757 else if (h->dynindx == -1
8758 && !h->forced_local
8759 && h->root.type == bfd_link_hash_undefweak
8760 && !bfd_elf_link_record_dynamic_symbol (info, h))
8761 return FALSE;
8762 }
8763
8764 }
8765 else if (ELIMINATE_COPY_RELOCS)
8766 {
8767 /* For the non-shared case, discard space for relocs against
8768 symbols which turn out to need copy relocs or are not
8769 dynamic. */
8770
8771 if (!h->non_got_ref
8772 && ((h->def_dynamic
8773 && !h->def_regular)
8774 || (htab->root.dynamic_sections_created
8775 && (h->root.type == bfd_link_hash_undefweak
8776 || h->root.type == bfd_link_hash_undefined))))
8777 {
8778 /* Make sure this symbol is output as a dynamic symbol.
8779 Undefined weak syms won't yet be marked as dynamic. */
8780 if (h->dynindx == -1
8781 && !h->forced_local
8782 && h->root.type == bfd_link_hash_undefweak
8783 && !bfd_elf_link_record_dynamic_symbol (info, h))
8784 return FALSE;
8785
8786 /* If that succeeded, we know we'll be keeping all the
8787 relocs. */
8788 if (h->dynindx != -1)
8789 goto keep;
8790 }
8791
8792 eh->dyn_relocs = NULL;
8793
8794 keep:;
8795 }
8796
8797 /* Finally, allocate space. */
8798 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8799 {
8800 asection *sreloc;
8801
8802 sreloc = elf_section_data (p->sec)->sreloc;
8803
8804 BFD_ASSERT (sreloc != NULL);
8805
8806 sreloc->size += p->count * RELOC_SIZE (htab);
8807 }
8808
8809 return TRUE;
8810 }
8811
8812 /* Allocate space in .plt, .got and associated reloc sections for
8813 ifunc dynamic relocs. */
8814
8815 static bfd_boolean
8816 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8817 void *inf)
8818 {
8819 struct bfd_link_info *info;
8820 struct elf_aarch64_link_hash_table *htab;
8821 struct elf_aarch64_link_hash_entry *eh;
8822
8823 /* An example of a bfd_link_hash_indirect symbol is versioned
8824 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8825 -> __gxx_personality_v0(bfd_link_hash_defined)
8826
8827 There is no need to process bfd_link_hash_indirect symbols here
8828 because we will also be presented with the concrete instance of
8829 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8830 called to copy all relevant data from the generic to the concrete
8831 symbol instance. */
8832 if (h->root.type == bfd_link_hash_indirect)
8833 return TRUE;
8834
8835 if (h->root.type == bfd_link_hash_warning)
8836 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8837
8838 info = (struct bfd_link_info *) inf;
8839 htab = elf_aarch64_hash_table (info);
8840
8841 eh = (struct elf_aarch64_link_hash_entry *) h;
8842
8843 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8844 here if it is defined and referenced in a non-shared object. */
8845 if (h->type == STT_GNU_IFUNC
8846 && h->def_regular)
8847 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8848 &eh->dyn_relocs,
8849 NULL,
8850 htab->plt_entry_size,
8851 htab->plt_header_size,
8852 GOT_ENTRY_SIZE,
8853 FALSE);
8854 return TRUE;
8855 }
8856
8857 /* Allocate space in .plt, .got and associated reloc sections for
8858 local dynamic relocs. */
8859
8860 static bfd_boolean
8861 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8862 {
8863 struct elf_link_hash_entry *h
8864 = (struct elf_link_hash_entry *) *slot;
8865
8866 if (h->type != STT_GNU_IFUNC
8867 || !h->def_regular
8868 || !h->ref_regular
8869 || !h->forced_local
8870 || h->root.type != bfd_link_hash_defined)
8871 abort ();
8872
8873 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8874 }
8875
8876 /* Allocate space in .plt, .got and associated reloc sections for
8877 local ifunc dynamic relocs. */
8878
8879 static bfd_boolean
8880 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8881 {
8882 struct elf_link_hash_entry *h
8883 = (struct elf_link_hash_entry *) *slot;
8884
8885 if (h->type != STT_GNU_IFUNC
8886 || !h->def_regular
8887 || !h->ref_regular
8888 || !h->forced_local
8889 || h->root.type != bfd_link_hash_defined)
8890 abort ();
8891
8892 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8893 }
8894
8895 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8896 read-only sections. */
8897
8898 static bfd_boolean
8899 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8900 {
8901 asection *sec;
8902
8903 if (h->root.type == bfd_link_hash_indirect)
8904 return TRUE;
8905
8906 sec = readonly_dynrelocs (h);
8907 if (sec != NULL)
8908 {
8909 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8910
8911 info->flags |= DF_TEXTREL;
8912 info->callbacks->minfo
8913 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8914 sec->owner, h->root.root.string, sec);
8915
8916 /* Not an error, just cut short the traversal. */
8917 return FALSE;
8918 }
8919 return TRUE;
8920 }
8921
8922 /* This is the most important function of all . Innocuosly named
8923 though ! */
8924
8925 static bfd_boolean
8926 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8927 struct bfd_link_info *info)
8928 {
8929 struct elf_aarch64_link_hash_table *htab;
8930 bfd *dynobj;
8931 asection *s;
8932 bfd_boolean relocs;
8933 bfd *ibfd;
8934
8935 htab = elf_aarch64_hash_table ((info));
8936 dynobj = htab->root.dynobj;
8937
8938 BFD_ASSERT (dynobj != NULL);
8939
8940 if (htab->root.dynamic_sections_created)
8941 {
8942 if (bfd_link_executable (info) && !info->nointerp)
8943 {
8944 s = bfd_get_linker_section (dynobj, ".interp");
8945 if (s == NULL)
8946 abort ();
8947 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8948 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8949 }
8950 }
8951
8952 /* Set up .got offsets for local syms, and space for local dynamic
8953 relocs. */
8954 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8955 {
8956 struct elf_aarch64_local_symbol *locals = NULL;
8957 Elf_Internal_Shdr *symtab_hdr;
8958 asection *srel;
8959 unsigned int i;
8960
8961 if (!is_aarch64_elf (ibfd))
8962 continue;
8963
8964 for (s = ibfd->sections; s != NULL; s = s->next)
8965 {
8966 struct elf_dyn_relocs *p;
8967
8968 for (p = (struct elf_dyn_relocs *)
8969 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8970 {
8971 if (!bfd_is_abs_section (p->sec)
8972 && bfd_is_abs_section (p->sec->output_section))
8973 {
8974 /* Input section has been discarded, either because
8975 it is a copy of a linkonce section or due to
8976 linker script /DISCARD/, so we'll be discarding
8977 the relocs too. */
8978 }
8979 else if (p->count != 0)
8980 {
8981 srel = elf_section_data (p->sec)->sreloc;
8982 srel->size += p->count * RELOC_SIZE (htab);
8983 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8984 info->flags |= DF_TEXTREL;
8985 }
8986 }
8987 }
8988
8989 locals = elf_aarch64_locals (ibfd);
8990 if (!locals)
8991 continue;
8992
8993 symtab_hdr = &elf_symtab_hdr (ibfd);
8994 srel = htab->root.srelgot;
8995 for (i = 0; i < symtab_hdr->sh_info; i++)
8996 {
8997 locals[i].got_offset = (bfd_vma) - 1;
8998 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8999 if (locals[i].got_refcount > 0)
9000 {
9001 unsigned got_type = locals[i].got_type;
9002 if (got_type & GOT_TLSDESC_GD)
9003 {
9004 locals[i].tlsdesc_got_jump_table_offset =
9005 (htab->root.sgotplt->size
9006 - aarch64_compute_jump_table_size (htab));
9007 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
9008 locals[i].got_offset = (bfd_vma) - 2;
9009 }
9010
9011 if (got_type & GOT_TLS_GD)
9012 {
9013 locals[i].got_offset = htab->root.sgot->size;
9014 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
9015 }
9016
9017 if (got_type & GOT_TLS_IE
9018 || got_type & GOT_NORMAL)
9019 {
9020 locals[i].got_offset = htab->root.sgot->size;
9021 htab->root.sgot->size += GOT_ENTRY_SIZE;
9022 }
9023
9024 if (got_type == GOT_UNKNOWN)
9025 {
9026 }
9027
9028 if (bfd_link_pic (info))
9029 {
9030 if (got_type & GOT_TLSDESC_GD)
9031 {
9032 htab->root.srelplt->size += RELOC_SIZE (htab);
9033 /* Note RELOC_COUNT not incremented here! */
9034 htab->tlsdesc_plt = (bfd_vma) - 1;
9035 }
9036
9037 if (got_type & GOT_TLS_GD)
9038 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
9039
9040 if (got_type & GOT_TLS_IE
9041 || got_type & GOT_NORMAL)
9042 htab->root.srelgot->size += RELOC_SIZE (htab);
9043 }
9044 }
9045 else
9046 {
9047 locals[i].got_refcount = (bfd_vma) - 1;
9048 }
9049 }
9050 }
9051
9052
9053 /* Allocate global sym .plt and .got entries, and space for global
9054 sym dynamic relocs. */
9055 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
9056 info);
9057
9058 /* Allocate global ifunc sym .plt and .got entries, and space for global
9059 ifunc sym dynamic relocs. */
9060 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
9061 info);
9062
9063 /* Allocate .plt and .got entries, and space for local symbols. */
9064 htab_traverse (htab->loc_hash_table,
9065 elfNN_aarch64_allocate_local_dynrelocs,
9066 info);
9067
9068 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
9069 htab_traverse (htab->loc_hash_table,
9070 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
9071 info);
9072
9073 /* For every jump slot reserved in the sgotplt, reloc_count is
9074 incremented. However, when we reserve space for TLS descriptors,
9075 it's not incremented, so in order to compute the space reserved
9076 for them, it suffices to multiply the reloc count by the jump
9077 slot size. */
9078
9079 if (htab->root.srelplt)
9080 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
9081
9082 if (htab->tlsdesc_plt)
9083 {
9084 if (htab->root.splt->size == 0)
9085 htab->root.splt->size += htab->plt_header_size;
9086
9087 /* If we're not using lazy TLS relocations, don't generate the
9088 GOT and PLT entry required. */
9089 if (!(info->flags & DF_BIND_NOW))
9090 {
9091 htab->tlsdesc_plt = htab->root.splt->size;
9092 htab->root.splt->size += htab->tlsdesc_plt_entry_size;
9093
9094 htab->dt_tlsdesc_got = htab->root.sgot->size;
9095 htab->root.sgot->size += GOT_ENTRY_SIZE;
9096 }
9097 }
9098
9099 /* Init mapping symbols information to use later to distingush between
9100 code and data while scanning for errata. */
9101 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
9102 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9103 {
9104 if (!is_aarch64_elf (ibfd))
9105 continue;
9106 bfd_elfNN_aarch64_init_maps (ibfd);
9107 }
9108
9109 /* We now have determined the sizes of the various dynamic sections.
9110 Allocate memory for them. */
9111 relocs = FALSE;
9112 for (s = dynobj->sections; s != NULL; s = s->next)
9113 {
9114 if ((s->flags & SEC_LINKER_CREATED) == 0)
9115 continue;
9116
9117 if (s == htab->root.splt
9118 || s == htab->root.sgot
9119 || s == htab->root.sgotplt
9120 || s == htab->root.iplt
9121 || s == htab->root.igotplt
9122 || s == htab->root.sdynbss
9123 || s == htab->root.sdynrelro)
9124 {
9125 /* Strip this section if we don't need it; see the
9126 comment below. */
9127 }
9128 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
9129 {
9130 if (s->size != 0 && s != htab->root.srelplt)
9131 relocs = TRUE;
9132
9133 /* We use the reloc_count field as a counter if we need
9134 to copy relocs into the output file. */
9135 if (s != htab->root.srelplt)
9136 s->reloc_count = 0;
9137 }
9138 else
9139 {
9140 /* It's not one of our sections, so don't allocate space. */
9141 continue;
9142 }
9143
9144 if (s->size == 0)
9145 {
9146 /* If we don't need this section, strip it from the
9147 output file. This is mostly to handle .rela.bss and
9148 .rela.plt. We must create both sections in
9149 create_dynamic_sections, because they must be created
9150 before the linker maps input sections to output
9151 sections. The linker does that before
9152 adjust_dynamic_symbol is called, and it is that
9153 function which decides whether anything needs to go
9154 into these sections. */
9155 s->flags |= SEC_EXCLUDE;
9156 continue;
9157 }
9158
9159 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9160 continue;
9161
9162 /* Allocate memory for the section contents. We use bfd_zalloc
9163 here in case unused entries are not reclaimed before the
9164 section's contents are written out. This should not happen,
9165 but this way if it does, we get a R_AARCH64_NONE reloc instead
9166 of garbage. */
9167 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9168 if (s->contents == NULL)
9169 return FALSE;
9170 }
9171
9172 if (htab->root.dynamic_sections_created)
9173 {
9174 /* Add some entries to the .dynamic section. We fill in the
9175 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9176 must add the entries now so that we get the correct size for
9177 the .dynamic section. The DT_DEBUG entry is filled in by the
9178 dynamic linker and used by the debugger. */
9179 #define add_dynamic_entry(TAG, VAL) \
9180 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9181
9182 if (bfd_link_executable (info))
9183 {
9184 if (!add_dynamic_entry (DT_DEBUG, 0))
9185 return FALSE;
9186 }
9187
9188 if (htab->root.splt->size != 0)
9189 {
9190 if (!add_dynamic_entry (DT_PLTGOT, 0)
9191 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9192 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9193 || !add_dynamic_entry (DT_JMPREL, 0))
9194 return FALSE;
9195
9196 if (htab->variant_pcs
9197 && !add_dynamic_entry (DT_AARCH64_VARIANT_PCS, 0))
9198 return FALSE;
9199
9200 if (htab->tlsdesc_plt
9201 && !(info->flags & DF_BIND_NOW)
9202 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
9203 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
9204 return FALSE;
9205
9206 if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI_PAC)
9207 && (!add_dynamic_entry (DT_AARCH64_BTI_PLT, 0)
9208 || !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0)))
9209 return FALSE;
9210
9211 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9212 && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9213 return FALSE;
9214
9215 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_PAC)
9216 && !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0))
9217 return FALSE;
9218 }
9219
9220 if (relocs)
9221 {
9222 if (!add_dynamic_entry (DT_RELA, 0)
9223 || !add_dynamic_entry (DT_RELASZ, 0)
9224 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9225 return FALSE;
9226
9227 /* If any dynamic relocs apply to a read-only section,
9228 then we need a DT_TEXTREL entry. */
9229 if ((info->flags & DF_TEXTREL) == 0)
9230 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
9231
9232 if ((info->flags & DF_TEXTREL) != 0)
9233 {
9234 if (!add_dynamic_entry (DT_TEXTREL, 0))
9235 return FALSE;
9236 }
9237 }
9238 }
9239 #undef add_dynamic_entry
9240
9241 return TRUE;
9242 }
9243
9244 static inline void
9245 elf_aarch64_update_plt_entry (bfd *output_bfd,
9246 bfd_reloc_code_real_type r_type,
9247 bfd_byte *plt_entry, bfd_vma value)
9248 {
9249 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9250
9251 /* FIXME: We should check the return value from this function call. */
9252 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9253 }
9254
9255 static void
9256 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9257 struct elf_aarch64_link_hash_table
9258 *htab, bfd *output_bfd,
9259 struct bfd_link_info *info)
9260 {
9261 bfd_byte *plt_entry;
9262 bfd_vma plt_index;
9263 bfd_vma got_offset;
9264 bfd_vma gotplt_entry_address;
9265 bfd_vma plt_entry_address;
9266 Elf_Internal_Rela rela;
9267 bfd_byte *loc;
9268 asection *plt, *gotplt, *relplt;
9269
9270 /* When building a static executable, use .iplt, .igot.plt and
9271 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9272 if (htab->root.splt != NULL)
9273 {
9274 plt = htab->root.splt;
9275 gotplt = htab->root.sgotplt;
9276 relplt = htab->root.srelplt;
9277 }
9278 else
9279 {
9280 plt = htab->root.iplt;
9281 gotplt = htab->root.igotplt;
9282 relplt = htab->root.irelplt;
9283 }
9284
9285 /* Get the index in the procedure linkage table which
9286 corresponds to this symbol. This is the index of this symbol
9287 in all the symbols for which we are making plt entries. The
9288 first entry in the procedure linkage table is reserved.
9289
9290 Get the offset into the .got table of the entry that
9291 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9292 bytes. The first three are reserved for the dynamic linker.
9293
9294 For static executables, we don't reserve anything. */
9295
9296 if (plt == htab->root.splt)
9297 {
9298 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9299 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9300 }
9301 else
9302 {
9303 plt_index = h->plt.offset / htab->plt_entry_size;
9304 got_offset = plt_index * GOT_ENTRY_SIZE;
9305 }
9306
9307 plt_entry = plt->contents + h->plt.offset;
9308 plt_entry_address = plt->output_section->vma
9309 + plt->output_offset + h->plt.offset;
9310 gotplt_entry_address = gotplt->output_section->vma +
9311 gotplt->output_offset + got_offset;
9312
9313 /* Copy in the boiler-plate for the PLTn entry. */
9314 memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9315
9316 /* First instruction in BTI enabled PLT stub is a BTI
9317 instruction so skip it. */
9318 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9319 && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9320 plt_entry = plt_entry + 4;
9321
9322 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9323 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9324 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9325 plt_entry,
9326 PG (gotplt_entry_address) -
9327 PG (plt_entry_address));
9328
9329 /* Fill in the lo12 bits for the load from the pltgot. */
9330 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9331 plt_entry + 4,
9332 PG_OFFSET (gotplt_entry_address));
9333
9334 /* Fill in the lo12 bits for the add from the pltgot entry. */
9335 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9336 plt_entry + 8,
9337 PG_OFFSET (gotplt_entry_address));
9338
9339 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9340 bfd_put_NN (output_bfd,
9341 plt->output_section->vma + plt->output_offset,
9342 gotplt->contents + got_offset);
9343
9344 rela.r_offset = gotplt_entry_address;
9345
9346 if (h->dynindx == -1
9347 || ((bfd_link_executable (info)
9348 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9349 && h->def_regular
9350 && h->type == STT_GNU_IFUNC))
9351 {
9352 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9353 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9354 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9355 rela.r_addend = (h->root.u.def.value
9356 + h->root.u.def.section->output_section->vma
9357 + h->root.u.def.section->output_offset);
9358 }
9359 else
9360 {
9361 /* Fill in the entry in the .rela.plt section. */
9362 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9363 rela.r_addend = 0;
9364 }
9365
9366 /* Compute the relocation entry to used based on PLT index and do
9367 not adjust reloc_count. The reloc_count has already been adjusted
9368 to account for this entry. */
9369 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9370 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9371 }
9372
9373 /* Size sections even though they're not dynamic. We use it to setup
9374 _TLS_MODULE_BASE_, if needed. */
9375
9376 static bfd_boolean
9377 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9378 struct bfd_link_info *info)
9379 {
9380 asection *tls_sec;
9381
9382 if (bfd_link_relocatable (info))
9383 return TRUE;
9384
9385 tls_sec = elf_hash_table (info)->tls_sec;
9386
9387 if (tls_sec)
9388 {
9389 struct elf_link_hash_entry *tlsbase;
9390
9391 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9392 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9393
9394 if (tlsbase)
9395 {
9396 struct bfd_link_hash_entry *h = NULL;
9397 const struct elf_backend_data *bed =
9398 get_elf_backend_data (output_bfd);
9399
9400 if (!(_bfd_generic_link_add_one_symbol
9401 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9402 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9403 return FALSE;
9404
9405 tlsbase->type = STT_TLS;
9406 tlsbase = (struct elf_link_hash_entry *) h;
9407 tlsbase->def_regular = 1;
9408 tlsbase->other = STV_HIDDEN;
9409 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9410 }
9411 }
9412
9413 return TRUE;
9414 }
9415
9416 /* Finish up dynamic symbol handling. We set the contents of various
9417 dynamic sections here. */
9418
9419 static bfd_boolean
9420 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9421 struct bfd_link_info *info,
9422 struct elf_link_hash_entry *h,
9423 Elf_Internal_Sym *sym)
9424 {
9425 struct elf_aarch64_link_hash_table *htab;
9426 htab = elf_aarch64_hash_table (info);
9427
9428 if (h->plt.offset != (bfd_vma) - 1)
9429 {
9430 asection *plt, *gotplt, *relplt;
9431
9432 /* This symbol has an entry in the procedure linkage table. Set
9433 it up. */
9434
9435 /* When building a static executable, use .iplt, .igot.plt and
9436 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9437 if (htab->root.splt != NULL)
9438 {
9439 plt = htab->root.splt;
9440 gotplt = htab->root.sgotplt;
9441 relplt = htab->root.srelplt;
9442 }
9443 else
9444 {
9445 plt = htab->root.iplt;
9446 gotplt = htab->root.igotplt;
9447 relplt = htab->root.irelplt;
9448 }
9449
9450 /* This symbol has an entry in the procedure linkage table. Set
9451 it up. */
9452 if ((h->dynindx == -1
9453 && !((h->forced_local || bfd_link_executable (info))
9454 && h->def_regular
9455 && h->type == STT_GNU_IFUNC))
9456 || plt == NULL
9457 || gotplt == NULL
9458 || relplt == NULL)
9459 return FALSE;
9460
9461 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9462 if (!h->def_regular)
9463 {
9464 /* Mark the symbol as undefined, rather than as defined in
9465 the .plt section. */
9466 sym->st_shndx = SHN_UNDEF;
9467 /* If the symbol is weak we need to clear the value.
9468 Otherwise, the PLT entry would provide a definition for
9469 the symbol even if the symbol wasn't defined anywhere,
9470 and so the symbol would never be NULL. Leave the value if
9471 there were any relocations where pointer equality matters
9472 (this is a clue for the dynamic linker, to make function
9473 pointer comparisons work between an application and shared
9474 library). */
9475 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9476 sym->st_value = 0;
9477 }
9478 }
9479
9480 if (h->got.offset != (bfd_vma) - 1
9481 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9482 /* Undefined weak symbol in static PIE resolves to 0 without
9483 any dynamic relocations. */
9484 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9485 {
9486 Elf_Internal_Rela rela;
9487 bfd_byte *loc;
9488
9489 /* This symbol has an entry in the global offset table. Set it
9490 up. */
9491 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9492 abort ();
9493
9494 rela.r_offset = (htab->root.sgot->output_section->vma
9495 + htab->root.sgot->output_offset
9496 + (h->got.offset & ~(bfd_vma) 1));
9497
9498 if (h->def_regular
9499 && h->type == STT_GNU_IFUNC)
9500 {
9501 if (bfd_link_pic (info))
9502 {
9503 /* Generate R_AARCH64_GLOB_DAT. */
9504 goto do_glob_dat;
9505 }
9506 else
9507 {
9508 asection *plt;
9509
9510 if (!h->pointer_equality_needed)
9511 abort ();
9512
9513 /* For non-shared object, we can't use .got.plt, which
9514 contains the real function address if we need pointer
9515 equality. We load the GOT entry with the PLT entry. */
9516 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9517 bfd_put_NN (output_bfd, (plt->output_section->vma
9518 + plt->output_offset
9519 + h->plt.offset),
9520 htab->root.sgot->contents
9521 + (h->got.offset & ~(bfd_vma) 1));
9522 return TRUE;
9523 }
9524 }
9525 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9526 {
9527 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9528 return FALSE;
9529
9530 BFD_ASSERT ((h->got.offset & 1) != 0);
9531 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9532 rela.r_addend = (h->root.u.def.value
9533 + h->root.u.def.section->output_section->vma
9534 + h->root.u.def.section->output_offset);
9535 }
9536 else
9537 {
9538 do_glob_dat:
9539 BFD_ASSERT ((h->got.offset & 1) == 0);
9540 bfd_put_NN (output_bfd, (bfd_vma) 0,
9541 htab->root.sgot->contents + h->got.offset);
9542 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9543 rela.r_addend = 0;
9544 }
9545
9546 loc = htab->root.srelgot->contents;
9547 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9548 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9549 }
9550
9551 if (h->needs_copy)
9552 {
9553 Elf_Internal_Rela rela;
9554 asection *s;
9555 bfd_byte *loc;
9556
9557 /* This symbol needs a copy reloc. Set it up. */
9558 if (h->dynindx == -1
9559 || (h->root.type != bfd_link_hash_defined
9560 && h->root.type != bfd_link_hash_defweak)
9561 || htab->root.srelbss == NULL)
9562 abort ();
9563
9564 rela.r_offset = (h->root.u.def.value
9565 + h->root.u.def.section->output_section->vma
9566 + h->root.u.def.section->output_offset);
9567 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9568 rela.r_addend = 0;
9569 if (h->root.u.def.section == htab->root.sdynrelro)
9570 s = htab->root.sreldynrelro;
9571 else
9572 s = htab->root.srelbss;
9573 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9574 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9575 }
9576
9577 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9578 be NULL for local symbols. */
9579 if (sym != NULL
9580 && (h == elf_hash_table (info)->hdynamic
9581 || h == elf_hash_table (info)->hgot))
9582 sym->st_shndx = SHN_ABS;
9583
9584 return TRUE;
9585 }
9586
9587 /* Finish up local dynamic symbol handling. We set the contents of
9588 various dynamic sections here. */
9589
9590 static bfd_boolean
9591 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9592 {
9593 struct elf_link_hash_entry *h
9594 = (struct elf_link_hash_entry *) *slot;
9595 struct bfd_link_info *info
9596 = (struct bfd_link_info *) inf;
9597
9598 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9599 info, h, NULL);
9600 }
9601
9602 static void
9603 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9604 struct elf_aarch64_link_hash_table
9605 *htab)
9606 {
9607 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9608 small and large plts and at the minute just generates
9609 the small PLT. */
9610
9611 /* PLT0 of the small PLT looks like this in ELF64 -
9612 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9613 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9614 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9615 // symbol resolver
9616 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9617 // GOTPLT entry for this.
9618 br x17
9619 PLT0 will be slightly different in ELF32 due to different got entry
9620 size. */
9621 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9622 bfd_vma plt_base;
9623
9624
9625 memcpy (htab->root.splt->contents, htab->plt0_entry,
9626 htab->plt_header_size);
9627 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9628 htab->plt_header_size;
9629
9630 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9631 + htab->root.sgotplt->output_offset
9632 + GOT_ENTRY_SIZE * 2);
9633
9634 plt_base = htab->root.splt->output_section->vma +
9635 htab->root.splt->output_offset;
9636
9637 /* First instruction in BTI enabled PLT stub is a BTI
9638 instruction so skip it. */
9639 bfd_byte *plt0_entry = htab->root.splt->contents;
9640 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9641 plt0_entry = plt0_entry + 4;
9642
9643 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9644 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9645 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9646 plt0_entry + 4,
9647 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9648
9649 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9650 plt0_entry + 8,
9651 PG_OFFSET (plt_got_2nd_ent));
9652
9653 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9654 plt0_entry + 12,
9655 PG_OFFSET (plt_got_2nd_ent));
9656 }
9657
9658 static bfd_boolean
9659 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9660 struct bfd_link_info *info)
9661 {
9662 struct elf_aarch64_link_hash_table *htab;
9663 bfd *dynobj;
9664 asection *sdyn;
9665
9666 htab = elf_aarch64_hash_table (info);
9667 dynobj = htab->root.dynobj;
9668 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9669
9670 if (htab->root.dynamic_sections_created)
9671 {
9672 ElfNN_External_Dyn *dyncon, *dynconend;
9673
9674 if (sdyn == NULL || htab->root.sgot == NULL)
9675 abort ();
9676
9677 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9678 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9679 for (; dyncon < dynconend; dyncon++)
9680 {
9681 Elf_Internal_Dyn dyn;
9682 asection *s;
9683
9684 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9685
9686 switch (dyn.d_tag)
9687 {
9688 default:
9689 continue;
9690
9691 case DT_PLTGOT:
9692 s = htab->root.sgotplt;
9693 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9694 break;
9695
9696 case DT_JMPREL:
9697 s = htab->root.srelplt;
9698 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9699 break;
9700
9701 case DT_PLTRELSZ:
9702 s = htab->root.srelplt;
9703 dyn.d_un.d_val = s->size;
9704 break;
9705
9706 case DT_TLSDESC_PLT:
9707 s = htab->root.splt;
9708 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9709 + htab->tlsdesc_plt;
9710 break;
9711
9712 case DT_TLSDESC_GOT:
9713 s = htab->root.sgot;
9714 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9715 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9716 + htab->dt_tlsdesc_got;
9717 break;
9718 }
9719
9720 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9721 }
9722
9723 }
9724
9725 /* Fill in the special first entry in the procedure linkage table. */
9726 if (htab->root.splt && htab->root.splt->size > 0)
9727 {
9728 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9729
9730 elf_section_data (htab->root.splt->output_section)->
9731 this_hdr.sh_entsize = htab->plt_entry_size;
9732
9733
9734 if (htab->tlsdesc_plt && !(info->flags & DF_BIND_NOW))
9735 {
9736 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9737 bfd_put_NN (output_bfd, (bfd_vma) 0,
9738 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9739
9740 const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9741 htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9742
9743 aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9744 if (type == PLT_BTI || type == PLT_BTI_PAC)
9745 {
9746 entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9747 }
9748
9749 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9750 entry, htab->tlsdesc_plt_entry_size);
9751
9752 {
9753 bfd_vma adrp1_addr =
9754 htab->root.splt->output_section->vma
9755 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9756
9757 bfd_vma adrp2_addr = adrp1_addr + 4;
9758
9759 bfd_vma got_addr =
9760 htab->root.sgot->output_section->vma
9761 + htab->root.sgot->output_offset;
9762
9763 bfd_vma pltgot_addr =
9764 htab->root.sgotplt->output_section->vma
9765 + htab->root.sgotplt->output_offset;
9766
9767 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9768
9769 bfd_byte *plt_entry =
9770 htab->root.splt->contents + htab->tlsdesc_plt;
9771
9772 /* First instruction in BTI enabled PLT stub is a BTI
9773 instruction so skip it. */
9774 if (type & PLT_BTI)
9775 {
9776 plt_entry = plt_entry + 4;
9777 adrp1_addr = adrp1_addr + 4;
9778 adrp2_addr = adrp2_addr + 4;
9779 }
9780
9781 /* adrp x2, DT_TLSDESC_GOT */
9782 elf_aarch64_update_plt_entry (output_bfd,
9783 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9784 plt_entry + 4,
9785 (PG (dt_tlsdesc_got)
9786 - PG (adrp1_addr)));
9787
9788 /* adrp x3, 0 */
9789 elf_aarch64_update_plt_entry (output_bfd,
9790 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9791 plt_entry + 8,
9792 (PG (pltgot_addr)
9793 - PG (adrp2_addr)));
9794
9795 /* ldr x2, [x2, #0] */
9796 elf_aarch64_update_plt_entry (output_bfd,
9797 BFD_RELOC_AARCH64_LDSTNN_LO12,
9798 plt_entry + 12,
9799 PG_OFFSET (dt_tlsdesc_got));
9800
9801 /* add x3, x3, 0 */
9802 elf_aarch64_update_plt_entry (output_bfd,
9803 BFD_RELOC_AARCH64_ADD_LO12,
9804 plt_entry + 16,
9805 PG_OFFSET (pltgot_addr));
9806 }
9807 }
9808 }
9809
9810 if (htab->root.sgotplt)
9811 {
9812 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9813 {
9814 _bfd_error_handler
9815 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9816 return FALSE;
9817 }
9818
9819 /* Fill in the first three entries in the global offset table. */
9820 if (htab->root.sgotplt->size > 0)
9821 {
9822 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9823
9824 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9825 bfd_put_NN (output_bfd,
9826 (bfd_vma) 0,
9827 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9828 bfd_put_NN (output_bfd,
9829 (bfd_vma) 0,
9830 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9831 }
9832
9833 if (htab->root.sgot)
9834 {
9835 if (htab->root.sgot->size > 0)
9836 {
9837 bfd_vma addr =
9838 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9839 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9840 }
9841 }
9842
9843 elf_section_data (htab->root.sgotplt->output_section)->
9844 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9845 }
9846
9847 if (htab->root.sgot && htab->root.sgot->size > 0)
9848 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9849 = GOT_ENTRY_SIZE;
9850
9851 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9852 htab_traverse (htab->loc_hash_table,
9853 elfNN_aarch64_finish_local_dynamic_symbol,
9854 info);
9855
9856 return TRUE;
9857 }
9858
9859 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
9860 static aarch64_plt_type
9861 get_plt_type (bfd *abfd)
9862 {
9863 aarch64_plt_type ret = PLT_NORMAL;
9864 bfd_byte *contents, *extdyn, *extdynend;
9865 asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9866 if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9867 return ret;
9868 extdyn = contents;
9869 extdynend = contents + sec->size;
9870 for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9871 {
9872 Elf_Internal_Dyn dyn;
9873 bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9874
9875 /* Let's check the processor specific dynamic array tags. */
9876 bfd_vma tag = dyn.d_tag;
9877 if (tag < DT_LOPROC || tag > DT_HIPROC)
9878 continue;
9879
9880 switch (tag)
9881 {
9882 case DT_AARCH64_BTI_PLT:
9883 ret |= PLT_BTI;
9884 break;
9885
9886 case DT_AARCH64_PAC_PLT:
9887 ret |= PLT_PAC;
9888 break;
9889
9890 default: break;
9891 }
9892 }
9893 free (contents);
9894 return ret;
9895 }
9896
9897 static long
9898 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9899 long symcount,
9900 asymbol **syms,
9901 long dynsymcount,
9902 asymbol **dynsyms,
9903 asymbol **ret)
9904 {
9905 elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9906 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9907 dynsymcount, dynsyms, ret);
9908 }
9909
9910 /* Return address for Ith PLT stub in section PLT, for relocation REL
9911 or (bfd_vma) -1 if it should not be included. */
9912
9913 static bfd_vma
9914 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9915 const arelent *rel ATTRIBUTE_UNUSED)
9916 {
9917 size_t plt0_size = PLT_ENTRY_SIZE;
9918 size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9919
9920 if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI_PAC)
9921 {
9922 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9923 pltn_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
9924 else
9925 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9926 }
9927 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9928 {
9929 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9930 pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9931 }
9932 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_PAC)
9933 {
9934 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9935 }
9936
9937 return plt->vma + plt0_size + i * pltn_size;
9938 }
9939
9940 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9941 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9942 It also allows a period initiated suffix to be added to the symbol, ie:
9943 "$[adtx]\.[:sym_char]+". */
9944
9945 static bfd_boolean
9946 is_aarch64_mapping_symbol (const char * name)
9947 {
9948 return name != NULL /* Paranoia. */
9949 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9950 the mapping symbols could have acquired a prefix.
9951 We do not support this here, since such symbols no
9952 longer conform to the ARM ELF ABI. */
9953 && (name[1] == 'd' || name[1] == 'x')
9954 && (name[2] == 0 || name[2] == '.');
9955 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9956 any characters that follow the period are legal characters for the body
9957 of a symbol's name. For now we just assume that this is the case. */
9958 }
9959
9960 /* Make sure that mapping symbols in object files are not removed via the
9961 "strip --strip-unneeded" tool. These symbols might needed in order to
9962 correctly generate linked files. Once an object file has been linked,
9963 it should be safe to remove them. */
9964
9965 static void
9966 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9967 {
9968 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9969 && sym->section != bfd_abs_section_ptr
9970 && is_aarch64_mapping_symbol (sym->name))
9971 sym->flags |= BSF_KEEP;
9972 }
9973
9974 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
9975 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
9976 for the effect of GNU properties of the output_bfd. */
9977 static bfd *
9978 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
9979 {
9980 uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9981 bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
9982 elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
9983 elf_aarch64_tdata (info->output_bfd)->plt_type
9984 |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
9985 setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
9986 return pbfd;
9987 }
9988
9989 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
9990 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
9991 for the effect of GNU properties of the output_bfd. */
9992 static bfd_boolean
9993 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
9994 bfd *abfd, bfd *bbfd,
9995 elf_property *aprop,
9996 elf_property *bprop)
9997 {
9998 uint32_t prop
9999 = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
10000
10001 /* If output has been marked with BTI using command line argument, give out
10002 warning if necessary. */
10003 /* Properties are merged per type, hence only check for warnings when merging
10004 GNU_PROPERTY_AARCH64_FEATURE_1_AND. */
10005 if (((aprop && aprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
10006 || (bprop && bprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND))
10007 && (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
10008 && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
10009 {
10010 if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
10011 || !aprop)
10012 {
10013 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
10014 "all inputs do not have BTI in NOTE section."),
10015 abfd);
10016 }
10017 if ((bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
10018 || !bprop)
10019 {
10020 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
10021 "all inputs do not have BTI in NOTE section."),
10022 bbfd);
10023 }
10024 }
10025
10026 return _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
10027 bprop, prop);
10028 }
10029
10030 /* We use this so we can override certain functions
10031 (though currently we don't). */
10032
10033 const struct elf_size_info elfNN_aarch64_size_info =
10034 {
10035 sizeof (ElfNN_External_Ehdr),
10036 sizeof (ElfNN_External_Phdr),
10037 sizeof (ElfNN_External_Shdr),
10038 sizeof (ElfNN_External_Rel),
10039 sizeof (ElfNN_External_Rela),
10040 sizeof (ElfNN_External_Sym),
10041 sizeof (ElfNN_External_Dyn),
10042 sizeof (Elf_External_Note),
10043 4, /* Hash table entry size. */
10044 1, /* Internal relocs per external relocs. */
10045 ARCH_SIZE, /* Arch size. */
10046 LOG_FILE_ALIGN, /* Log_file_align. */
10047 ELFCLASSNN, EV_CURRENT,
10048 bfd_elfNN_write_out_phdrs,
10049 bfd_elfNN_write_shdrs_and_ehdr,
10050 bfd_elfNN_checksum_contents,
10051 bfd_elfNN_write_relocs,
10052 bfd_elfNN_swap_symbol_in,
10053 bfd_elfNN_swap_symbol_out,
10054 bfd_elfNN_slurp_reloc_table,
10055 bfd_elfNN_slurp_symbol_table,
10056 bfd_elfNN_swap_dyn_in,
10057 bfd_elfNN_swap_dyn_out,
10058 bfd_elfNN_swap_reloc_in,
10059 bfd_elfNN_swap_reloc_out,
10060 bfd_elfNN_swap_reloca_in,
10061 bfd_elfNN_swap_reloca_out
10062 };
10063
10064 #define ELF_ARCH bfd_arch_aarch64
10065 #define ELF_MACHINE_CODE EM_AARCH64
10066 #define ELF_MAXPAGESIZE 0x10000
10067 #define ELF_MINPAGESIZE 0x1000
10068 #define ELF_COMMONPAGESIZE 0x1000
10069
10070 #define bfd_elfNN_close_and_cleanup \
10071 elfNN_aarch64_close_and_cleanup
10072
10073 #define bfd_elfNN_bfd_free_cached_info \
10074 elfNN_aarch64_bfd_free_cached_info
10075
10076 #define bfd_elfNN_bfd_is_target_special_symbol \
10077 elfNN_aarch64_is_target_special_symbol
10078
10079 #define bfd_elfNN_bfd_link_hash_table_create \
10080 elfNN_aarch64_link_hash_table_create
10081
10082 #define bfd_elfNN_bfd_merge_private_bfd_data \
10083 elfNN_aarch64_merge_private_bfd_data
10084
10085 #define bfd_elfNN_bfd_print_private_bfd_data \
10086 elfNN_aarch64_print_private_bfd_data
10087
10088 #define bfd_elfNN_bfd_reloc_type_lookup \
10089 elfNN_aarch64_reloc_type_lookup
10090
10091 #define bfd_elfNN_bfd_reloc_name_lookup \
10092 elfNN_aarch64_reloc_name_lookup
10093
10094 #define bfd_elfNN_bfd_set_private_flags \
10095 elfNN_aarch64_set_private_flags
10096
10097 #define bfd_elfNN_find_inliner_info \
10098 elfNN_aarch64_find_inliner_info
10099
10100 #define bfd_elfNN_find_nearest_line \
10101 elfNN_aarch64_find_nearest_line
10102
10103 #define bfd_elfNN_get_synthetic_symtab \
10104 elfNN_aarch64_get_synthetic_symtab
10105
10106 #define bfd_elfNN_mkobject \
10107 elfNN_aarch64_mkobject
10108
10109 #define bfd_elfNN_new_section_hook \
10110 elfNN_aarch64_new_section_hook
10111
10112 #define elf_backend_adjust_dynamic_symbol \
10113 elfNN_aarch64_adjust_dynamic_symbol
10114
10115 #define elf_backend_always_size_sections \
10116 elfNN_aarch64_always_size_sections
10117
10118 #define elf_backend_check_relocs \
10119 elfNN_aarch64_check_relocs
10120
10121 #define elf_backend_copy_indirect_symbol \
10122 elfNN_aarch64_copy_indirect_symbol
10123
10124 #define elf_backend_merge_symbol_attribute \
10125 elfNN_aarch64_merge_symbol_attribute
10126
10127 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10128 to them in our hash. */
10129 #define elf_backend_create_dynamic_sections \
10130 elfNN_aarch64_create_dynamic_sections
10131
10132 #define elf_backend_init_index_section \
10133 _bfd_elf_init_2_index_sections
10134
10135 #define elf_backend_finish_dynamic_sections \
10136 elfNN_aarch64_finish_dynamic_sections
10137
10138 #define elf_backend_finish_dynamic_symbol \
10139 elfNN_aarch64_finish_dynamic_symbol
10140
10141 #define elf_backend_object_p \
10142 elfNN_aarch64_object_p
10143
10144 #define elf_backend_output_arch_local_syms \
10145 elfNN_aarch64_output_arch_local_syms
10146
10147 #define elf_backend_plt_sym_val \
10148 elfNN_aarch64_plt_sym_val
10149
10150 #define elf_backend_post_process_headers \
10151 elfNN_aarch64_post_process_headers
10152
10153 #define elf_backend_relocate_section \
10154 elfNN_aarch64_relocate_section
10155
10156 #define elf_backend_reloc_type_class \
10157 elfNN_aarch64_reloc_type_class
10158
10159 #define elf_backend_section_from_shdr \
10160 elfNN_aarch64_section_from_shdr
10161
10162 #define elf_backend_size_dynamic_sections \
10163 elfNN_aarch64_size_dynamic_sections
10164
10165 #define elf_backend_size_info \
10166 elfNN_aarch64_size_info
10167
10168 #define elf_backend_write_section \
10169 elfNN_aarch64_write_section
10170
10171 #define elf_backend_symbol_processing \
10172 elfNN_aarch64_backend_symbol_processing
10173
10174 #define elf_backend_setup_gnu_properties \
10175 elfNN_aarch64_link_setup_gnu_properties
10176
10177 #define elf_backend_merge_gnu_properties \
10178 elfNN_aarch64_merge_gnu_properties
10179
10180 #define elf_backend_can_refcount 1
10181 #define elf_backend_can_gc_sections 1
10182 #define elf_backend_plt_readonly 1
10183 #define elf_backend_want_got_plt 1
10184 #define elf_backend_want_plt_sym 0
10185 #define elf_backend_want_dynrelro 1
10186 #define elf_backend_may_use_rel_p 0
10187 #define elf_backend_may_use_rela_p 1
10188 #define elf_backend_default_use_rela_p 1
10189 #define elf_backend_rela_normal 1
10190 #define elf_backend_dtrel_excludes_plt 1
10191 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10192 #define elf_backend_default_execstack 0
10193 #define elf_backend_extern_protected_data 1
10194 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10195
10196 #undef elf_backend_obj_attrs_section
10197 #define elf_backend_obj_attrs_section ".ARM.attributes"
10198
10199 #include "elfNN-target.h"
10200
10201 /* CloudABI support. */
10202
10203 #undef TARGET_LITTLE_SYM
10204 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10205 #undef TARGET_LITTLE_NAME
10206 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10207 #undef TARGET_BIG_SYM
10208 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10209 #undef TARGET_BIG_NAME
10210 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10211
10212 #undef ELF_OSABI
10213 #define ELF_OSABI ELFOSABI_CLOUDABI
10214
10215 #undef elfNN_bed
10216 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10217
10218 #include "elfNN-target.h"
This page took 0.374029 seconds and 5 git commands to generate.