[AArch64] Fix PR18841 ifunc relocation ordering
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2017 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
212 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
213
214 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
215 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
237
238 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
239 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
245 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
246 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
251
252 #define ELIMINATE_COPY_RELOCS 1
253
254 /* Return size of a relocation entry. HTAB is the bfd's
255 elf_aarch64_link_hash_entry. */
256 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
257
258 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
259 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
260 #define PLT_ENTRY_SIZE (32)
261 #define PLT_SMALL_ENTRY_SIZE (16)
262 #define PLT_TLSDESC_ENTRY_SIZE (32)
263
264 /* Encoding of the nop instruction. */
265 #define INSN_NOP 0xd503201f
266
267 #define aarch64_compute_jump_table_size(htab) \
268 (((htab)->root.srelplt == NULL) ? 0 \
269 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
270
271 /* The first entry in a procedure linkage table looks like this
272 if the distance between the PLTGOT and the PLT is < 4GB use
273 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
274 in x16 and needs to work out PLTGOT[1] by using an address of
275 [x16,#-GOT_ENTRY_SIZE]. */
276 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
277 {
278 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
279 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
280 #if ARCH_SIZE == 64
281 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
282 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
283 #else
284 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
285 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
286 #endif
287 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
288 0x1f, 0x20, 0x03, 0xd5, /* nop */
289 0x1f, 0x20, 0x03, 0xd5, /* nop */
290 0x1f, 0x20, 0x03, 0xd5, /* nop */
291 };
292
293 /* Per function entry in a procedure linkage table looks like this
294 if the distance between the PLTGOT and the PLT is < 4GB use
295 these PLT entries. */
296 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
297 {
298 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
299 #if ARCH_SIZE == 64
300 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
301 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
302 #else
303 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
304 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
305 #endif
306 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
307 };
308
309 static const bfd_byte
310 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
311 {
312 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
313 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
314 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
315 #if ARCH_SIZE == 64
316 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
317 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
318 #else
319 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
320 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
321 #endif
322 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
323 0x1f, 0x20, 0x03, 0xd5, /* nop */
324 0x1f, 0x20, 0x03, 0xd5, /* nop */
325 };
326
327 #define elf_info_to_howto elfNN_aarch64_info_to_howto
328 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
329
330 #define AARCH64_ELF_ABI_VERSION 0
331
332 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
333 #define ALL_ONES (~ (bfd_vma) 0)
334
335 /* Indexed by the bfd interal reloc enumerators.
336 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
337 in reloc.c. */
338
339 static reloc_howto_type elfNN_aarch64_howto_table[] =
340 {
341 EMPTY_HOWTO (0),
342
343 /* Basic data relocations. */
344
345 /* Deprecated, but retained for backwards compatibility. */
346 HOWTO64 (R_AARCH64_NULL, /* type */
347 0, /* rightshift */
348 3, /* size (0 = byte, 1 = short, 2 = long) */
349 0, /* bitsize */
350 FALSE, /* pc_relative */
351 0, /* bitpos */
352 complain_overflow_dont, /* complain_on_overflow */
353 bfd_elf_generic_reloc, /* special_function */
354 "R_AARCH64_NULL", /* name */
355 FALSE, /* partial_inplace */
356 0, /* src_mask */
357 0, /* dst_mask */
358 FALSE), /* pcrel_offset */
359 HOWTO (R_AARCH64_NONE, /* type */
360 0, /* rightshift */
361 3, /* size (0 = byte, 1 = short, 2 = long) */
362 0, /* bitsize */
363 FALSE, /* pc_relative */
364 0, /* bitpos */
365 complain_overflow_dont, /* complain_on_overflow */
366 bfd_elf_generic_reloc, /* special_function */
367 "R_AARCH64_NONE", /* name */
368 FALSE, /* partial_inplace */
369 0, /* src_mask */
370 0, /* dst_mask */
371 FALSE), /* pcrel_offset */
372
373 /* .xword: (S+A) */
374 HOWTO64 (AARCH64_R (ABS64), /* type */
375 0, /* rightshift */
376 4, /* size (4 = long long) */
377 64, /* bitsize */
378 FALSE, /* pc_relative */
379 0, /* bitpos */
380 complain_overflow_unsigned, /* complain_on_overflow */
381 bfd_elf_generic_reloc, /* special_function */
382 AARCH64_R_STR (ABS64), /* name */
383 FALSE, /* partial_inplace */
384 ALL_ONES, /* src_mask */
385 ALL_ONES, /* dst_mask */
386 FALSE), /* pcrel_offset */
387
388 /* .word: (S+A) */
389 HOWTO (AARCH64_R (ABS32), /* type */
390 0, /* rightshift */
391 2, /* size (0 = byte, 1 = short, 2 = long) */
392 32, /* bitsize */
393 FALSE, /* pc_relative */
394 0, /* bitpos */
395 complain_overflow_unsigned, /* complain_on_overflow */
396 bfd_elf_generic_reloc, /* special_function */
397 AARCH64_R_STR (ABS32), /* name */
398 FALSE, /* partial_inplace */
399 0xffffffff, /* src_mask */
400 0xffffffff, /* dst_mask */
401 FALSE), /* pcrel_offset */
402
403 /* .half: (S+A) */
404 HOWTO (AARCH64_R (ABS16), /* type */
405 0, /* rightshift */
406 1, /* size (0 = byte, 1 = short, 2 = long) */
407 16, /* bitsize */
408 FALSE, /* pc_relative */
409 0, /* bitpos */
410 complain_overflow_unsigned, /* complain_on_overflow */
411 bfd_elf_generic_reloc, /* special_function */
412 AARCH64_R_STR (ABS16), /* name */
413 FALSE, /* partial_inplace */
414 0xffff, /* src_mask */
415 0xffff, /* dst_mask */
416 FALSE), /* pcrel_offset */
417
418 /* .xword: (S+A-P) */
419 HOWTO64 (AARCH64_R (PREL64), /* type */
420 0, /* rightshift */
421 4, /* size (4 = long long) */
422 64, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 AARCH64_R_STR (PREL64), /* name */
428 FALSE, /* partial_inplace */
429 ALL_ONES, /* src_mask */
430 ALL_ONES, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 /* .word: (S+A-P) */
434 HOWTO (AARCH64_R (PREL32), /* type */
435 0, /* rightshift */
436 2, /* size (0 = byte, 1 = short, 2 = long) */
437 32, /* bitsize */
438 TRUE, /* pc_relative */
439 0, /* bitpos */
440 complain_overflow_signed, /* complain_on_overflow */
441 bfd_elf_generic_reloc, /* special_function */
442 AARCH64_R_STR (PREL32), /* name */
443 FALSE, /* partial_inplace */
444 0xffffffff, /* src_mask */
445 0xffffffff, /* dst_mask */
446 TRUE), /* pcrel_offset */
447
448 /* .half: (S+A-P) */
449 HOWTO (AARCH64_R (PREL16), /* type */
450 0, /* rightshift */
451 1, /* size (0 = byte, 1 = short, 2 = long) */
452 16, /* bitsize */
453 TRUE, /* pc_relative */
454 0, /* bitpos */
455 complain_overflow_signed, /* complain_on_overflow */
456 bfd_elf_generic_reloc, /* special_function */
457 AARCH64_R_STR (PREL16), /* name */
458 FALSE, /* partial_inplace */
459 0xffff, /* src_mask */
460 0xffff, /* dst_mask */
461 TRUE), /* pcrel_offset */
462
463 /* Group relocations to create a 16, 32, 48 or 64 bit
464 unsigned data or abs address inline. */
465
466 /* MOVZ: ((S+A) >> 0) & 0xffff */
467 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
468 0, /* rightshift */
469 2, /* size (0 = byte, 1 = short, 2 = long) */
470 16, /* bitsize */
471 FALSE, /* pc_relative */
472 0, /* bitpos */
473 complain_overflow_unsigned, /* complain_on_overflow */
474 bfd_elf_generic_reloc, /* special_function */
475 AARCH64_R_STR (MOVW_UABS_G0), /* name */
476 FALSE, /* partial_inplace */
477 0xffff, /* src_mask */
478 0xffff, /* dst_mask */
479 FALSE), /* pcrel_offset */
480
481 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
482 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
483 0, /* rightshift */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
485 16, /* bitsize */
486 FALSE, /* pc_relative */
487 0, /* bitpos */
488 complain_overflow_dont, /* complain_on_overflow */
489 bfd_elf_generic_reloc, /* special_function */
490 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
491 FALSE, /* partial_inplace */
492 0xffff, /* src_mask */
493 0xffff, /* dst_mask */
494 FALSE), /* pcrel_offset */
495
496 /* MOVZ: ((S+A) >> 16) & 0xffff */
497 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
498 16, /* rightshift */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_unsigned, /* complain_on_overflow */
504 bfd_elf_generic_reloc, /* special_function */
505 AARCH64_R_STR (MOVW_UABS_G1), /* name */
506 FALSE, /* partial_inplace */
507 0xffff, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
512 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
513 16, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 16, /* bitsize */
516 FALSE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_dont, /* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
521 FALSE, /* partial_inplace */
522 0xffff, /* src_mask */
523 0xffff, /* dst_mask */
524 FALSE), /* pcrel_offset */
525
526 /* MOVZ: ((S+A) >> 32) & 0xffff */
527 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
528 32, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 16, /* bitsize */
531 FALSE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_unsigned, /* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
535 AARCH64_R_STR (MOVW_UABS_G2), /* name */
536 FALSE, /* partial_inplace */
537 0xffff, /* src_mask */
538 0xffff, /* dst_mask */
539 FALSE), /* pcrel_offset */
540
541 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
542 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
543 32, /* rightshift */
544 2, /* size (0 = byte, 1 = short, 2 = long) */
545 16, /* bitsize */
546 FALSE, /* pc_relative */
547 0, /* bitpos */
548 complain_overflow_dont, /* complain_on_overflow */
549 bfd_elf_generic_reloc, /* special_function */
550 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
551 FALSE, /* partial_inplace */
552 0xffff, /* src_mask */
553 0xffff, /* dst_mask */
554 FALSE), /* pcrel_offset */
555
556 /* MOVZ: ((S+A) >> 48) & 0xffff */
557 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
558 48, /* rightshift */
559 2, /* size (0 = byte, 1 = short, 2 = long) */
560 16, /* bitsize */
561 FALSE, /* pc_relative */
562 0, /* bitpos */
563 complain_overflow_unsigned, /* complain_on_overflow */
564 bfd_elf_generic_reloc, /* special_function */
565 AARCH64_R_STR (MOVW_UABS_G3), /* name */
566 FALSE, /* partial_inplace */
567 0xffff, /* src_mask */
568 0xffff, /* dst_mask */
569 FALSE), /* pcrel_offset */
570
571 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
572 signed data or abs address inline. Will change instruction
573 to MOVN or MOVZ depending on sign of calculated value. */
574
575 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
576 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
577 0, /* rightshift */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
579 17, /* bitsize */
580 FALSE, /* pc_relative */
581 0, /* bitpos */
582 complain_overflow_signed, /* complain_on_overflow */
583 bfd_elf_generic_reloc, /* special_function */
584 AARCH64_R_STR (MOVW_SABS_G0), /* name */
585 FALSE, /* partial_inplace */
586 0xffff, /* src_mask */
587 0xffff, /* dst_mask */
588 FALSE), /* pcrel_offset */
589
590 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
591 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
592 16, /* rightshift */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
594 17, /* bitsize */
595 FALSE, /* pc_relative */
596 0, /* bitpos */
597 complain_overflow_signed, /* complain_on_overflow */
598 bfd_elf_generic_reloc, /* special_function */
599 AARCH64_R_STR (MOVW_SABS_G1), /* name */
600 FALSE, /* partial_inplace */
601 0xffff, /* src_mask */
602 0xffff, /* dst_mask */
603 FALSE), /* pcrel_offset */
604
605 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
606 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
607 32, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 17, /* bitsize */
610 FALSE, /* pc_relative */
611 0, /* bitpos */
612 complain_overflow_signed, /* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 AARCH64_R_STR (MOVW_SABS_G2), /* name */
615 FALSE, /* partial_inplace */
616 0xffff, /* src_mask */
617 0xffff, /* dst_mask */
618 FALSE), /* pcrel_offset */
619
620 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
621 addresses: PG(x) is (x & ~0xfff). */
622
623 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
624 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
625 2, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 19, /* bitsize */
628 TRUE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_signed, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 AARCH64_R_STR (LD_PREL_LO19), /* name */
633 FALSE, /* partial_inplace */
634 0x7ffff, /* src_mask */
635 0x7ffff, /* dst_mask */
636 TRUE), /* pcrel_offset */
637
638 /* ADR: (S+A-P) & 0x1fffff */
639 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
640 0, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 21, /* bitsize */
643 TRUE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_signed, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (ADR_PREL_LO21), /* name */
648 FALSE, /* partial_inplace */
649 0x1fffff, /* src_mask */
650 0x1fffff, /* dst_mask */
651 TRUE), /* pcrel_offset */
652
653 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
654 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
655 12, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 21, /* bitsize */
658 TRUE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_signed, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
663 FALSE, /* partial_inplace */
664 0x1fffff, /* src_mask */
665 0x1fffff, /* dst_mask */
666 TRUE), /* pcrel_offset */
667
668 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
669 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
670 12, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 21, /* bitsize */
673 TRUE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_dont, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
677 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
678 FALSE, /* partial_inplace */
679 0x1fffff, /* src_mask */
680 0x1fffff, /* dst_mask */
681 TRUE), /* pcrel_offset */
682
683 /* ADD: (S+A) & 0xfff [no overflow check] */
684 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
685 0, /* rightshift */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
687 12, /* bitsize */
688 FALSE, /* pc_relative */
689 10, /* bitpos */
690 complain_overflow_dont, /* complain_on_overflow */
691 bfd_elf_generic_reloc, /* special_function */
692 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
693 FALSE, /* partial_inplace */
694 0x3ffc00, /* src_mask */
695 0x3ffc00, /* dst_mask */
696 FALSE), /* pcrel_offset */
697
698 /* LD/ST8: (S+A) & 0xfff */
699 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 12, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_dont, /* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
708 FALSE, /* partial_inplace */
709 0xfff, /* src_mask */
710 0xfff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 /* Relocations for control-flow instructions. */
714
715 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
716 HOWTO (AARCH64_R (TSTBR14), /* type */
717 2, /* rightshift */
718 2, /* size (0 = byte, 1 = short, 2 = long) */
719 14, /* bitsize */
720 TRUE, /* pc_relative */
721 0, /* bitpos */
722 complain_overflow_signed, /* complain_on_overflow */
723 bfd_elf_generic_reloc, /* special_function */
724 AARCH64_R_STR (TSTBR14), /* name */
725 FALSE, /* partial_inplace */
726 0x3fff, /* src_mask */
727 0x3fff, /* dst_mask */
728 TRUE), /* pcrel_offset */
729
730 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
731 HOWTO (AARCH64_R (CONDBR19), /* type */
732 2, /* rightshift */
733 2, /* size (0 = byte, 1 = short, 2 = long) */
734 19, /* bitsize */
735 TRUE, /* pc_relative */
736 0, /* bitpos */
737 complain_overflow_signed, /* complain_on_overflow */
738 bfd_elf_generic_reloc, /* special_function */
739 AARCH64_R_STR (CONDBR19), /* name */
740 FALSE, /* partial_inplace */
741 0x7ffff, /* src_mask */
742 0x7ffff, /* dst_mask */
743 TRUE), /* pcrel_offset */
744
745 /* B: ((S+A-P) >> 2) & 0x3ffffff */
746 HOWTO (AARCH64_R (JUMP26), /* type */
747 2, /* rightshift */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
749 26, /* bitsize */
750 TRUE, /* pc_relative */
751 0, /* bitpos */
752 complain_overflow_signed, /* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 AARCH64_R_STR (JUMP26), /* name */
755 FALSE, /* partial_inplace */
756 0x3ffffff, /* src_mask */
757 0x3ffffff, /* dst_mask */
758 TRUE), /* pcrel_offset */
759
760 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
761 HOWTO (AARCH64_R (CALL26), /* type */
762 2, /* rightshift */
763 2, /* size (0 = byte, 1 = short, 2 = long) */
764 26, /* bitsize */
765 TRUE, /* pc_relative */
766 0, /* bitpos */
767 complain_overflow_signed, /* complain_on_overflow */
768 bfd_elf_generic_reloc, /* special_function */
769 AARCH64_R_STR (CALL26), /* name */
770 FALSE, /* partial_inplace */
771 0x3ffffff, /* src_mask */
772 0x3ffffff, /* dst_mask */
773 TRUE), /* pcrel_offset */
774
775 /* LD/ST16: (S+A) & 0xffe */
776 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
777 1, /* rightshift */
778 2, /* size (0 = byte, 1 = short, 2 = long) */
779 12, /* bitsize */
780 FALSE, /* pc_relative */
781 0, /* bitpos */
782 complain_overflow_dont, /* complain_on_overflow */
783 bfd_elf_generic_reloc, /* special_function */
784 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
785 FALSE, /* partial_inplace */
786 0xffe, /* src_mask */
787 0xffe, /* dst_mask */
788 FALSE), /* pcrel_offset */
789
790 /* LD/ST32: (S+A) & 0xffc */
791 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
792 2, /* rightshift */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
794 12, /* bitsize */
795 FALSE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_dont, /* complain_on_overflow */
798 bfd_elf_generic_reloc, /* special_function */
799 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
800 FALSE, /* partial_inplace */
801 0xffc, /* src_mask */
802 0xffc, /* dst_mask */
803 FALSE), /* pcrel_offset */
804
805 /* LD/ST64: (S+A) & 0xff8 */
806 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
807 3, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 12, /* bitsize */
810 FALSE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
815 FALSE, /* partial_inplace */
816 0xff8, /* src_mask */
817 0xff8, /* dst_mask */
818 FALSE), /* pcrel_offset */
819
820 /* LD/ST128: (S+A) & 0xff0 */
821 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
822 4, /* rightshift */
823 2, /* size (0 = byte, 1 = short, 2 = long) */
824 12, /* bitsize */
825 FALSE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_dont, /* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
830 FALSE, /* partial_inplace */
831 0xff0, /* src_mask */
832 0xff0, /* dst_mask */
833 FALSE), /* pcrel_offset */
834
835 /* Set a load-literal immediate field to bits
836 0x1FFFFC of G(S)-P */
837 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
838 2, /* rightshift */
839 2, /* size (0 = byte,1 = short,2 = long) */
840 19, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_signed, /* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 AARCH64_R_STR (GOT_LD_PREL19), /* name */
846 FALSE, /* partial_inplace */
847 0xffffe0, /* src_mask */
848 0xffffe0, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 /* Get to the page for the GOT entry for the symbol
852 (G(S) - P) using an ADRP instruction. */
853 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
854 12, /* rightshift */
855 2, /* size (0 = byte, 1 = short, 2 = long) */
856 21, /* bitsize */
857 TRUE, /* pc_relative */
858 0, /* bitpos */
859 complain_overflow_dont, /* complain_on_overflow */
860 bfd_elf_generic_reloc, /* special_function */
861 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
862 FALSE, /* partial_inplace */
863 0x1fffff, /* src_mask */
864 0x1fffff, /* dst_mask */
865 TRUE), /* pcrel_offset */
866
867 /* LD64: GOT offset G(S) & 0xff8 */
868 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
869 3, /* rightshift */
870 2, /* size (0 = byte, 1 = short, 2 = long) */
871 12, /* bitsize */
872 FALSE, /* pc_relative */
873 0, /* bitpos */
874 complain_overflow_dont, /* complain_on_overflow */
875 bfd_elf_generic_reloc, /* special_function */
876 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
877 FALSE, /* partial_inplace */
878 0xff8, /* src_mask */
879 0xff8, /* dst_mask */
880 FALSE), /* pcrel_offset */
881
882 /* LD32: GOT offset G(S) & 0xffc */
883 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
884 2, /* rightshift */
885 2, /* size (0 = byte, 1 = short, 2 = long) */
886 12, /* bitsize */
887 FALSE, /* pc_relative */
888 0, /* bitpos */
889 complain_overflow_dont, /* complain_on_overflow */
890 bfd_elf_generic_reloc, /* special_function */
891 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
892 FALSE, /* partial_inplace */
893 0xffc, /* src_mask */
894 0xffc, /* dst_mask */
895 FALSE), /* pcrel_offset */
896
897 /* Lower 16 bits of GOT offset for the symbol. */
898 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
899 0, /* rightshift */
900 2, /* size (0 = byte, 1 = short, 2 = long) */
901 16, /* bitsize */
902 FALSE, /* pc_relative */
903 0, /* bitpos */
904 complain_overflow_dont, /* complain_on_overflow */
905 bfd_elf_generic_reloc, /* special_function */
906 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
907 FALSE, /* partial_inplace */
908 0xffff, /* src_mask */
909 0xffff, /* dst_mask */
910 FALSE), /* pcrel_offset */
911
912 /* Higher 16 bits of GOT offset for the symbol. */
913 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
914 16, /* rightshift */
915 2, /* size (0 = byte, 1 = short, 2 = long) */
916 16, /* bitsize */
917 FALSE, /* pc_relative */
918 0, /* bitpos */
919 complain_overflow_unsigned, /* complain_on_overflow */
920 bfd_elf_generic_reloc, /* special_function */
921 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
922 FALSE, /* partial_inplace */
923 0xffff, /* src_mask */
924 0xffff, /* dst_mask */
925 FALSE), /* pcrel_offset */
926
927 /* LD64: GOT offset for the symbol. */
928 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
929 3, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 12, /* bitsize */
932 FALSE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_unsigned, /* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
937 FALSE, /* partial_inplace */
938 0x7ff8, /* src_mask */
939 0x7ff8, /* dst_mask */
940 FALSE), /* pcrel_offset */
941
942 /* LD32: GOT offset to the page address of GOT table.
943 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
944 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
945 2, /* rightshift */
946 2, /* size (0 = byte, 1 = short, 2 = long) */
947 12, /* bitsize */
948 FALSE, /* pc_relative */
949 0, /* bitpos */
950 complain_overflow_unsigned, /* complain_on_overflow */
951 bfd_elf_generic_reloc, /* special_function */
952 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
953 FALSE, /* partial_inplace */
954 0x5ffc, /* src_mask */
955 0x5ffc, /* dst_mask */
956 FALSE), /* pcrel_offset */
957
958 /* LD64: GOT offset to the page address of GOT table.
959 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
960 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
961 3, /* rightshift */
962 2, /* size (0 = byte, 1 = short, 2 = long) */
963 12, /* bitsize */
964 FALSE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_unsigned, /* complain_on_overflow */
967 bfd_elf_generic_reloc, /* special_function */
968 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
969 FALSE, /* partial_inplace */
970 0x7ff8, /* src_mask */
971 0x7ff8, /* dst_mask */
972 FALSE), /* pcrel_offset */
973
974 /* Get to the page for the GOT entry for the symbol
975 (G(S) - P) using an ADRP instruction. */
976 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
977 12, /* rightshift */
978 2, /* size (0 = byte, 1 = short, 2 = long) */
979 21, /* bitsize */
980 TRUE, /* pc_relative */
981 0, /* bitpos */
982 complain_overflow_dont, /* complain_on_overflow */
983 bfd_elf_generic_reloc, /* special_function */
984 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
985 FALSE, /* partial_inplace */
986 0x1fffff, /* src_mask */
987 0x1fffff, /* dst_mask */
988 TRUE), /* pcrel_offset */
989
990 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
991 0, /* rightshift */
992 2, /* size (0 = byte, 1 = short, 2 = long) */
993 21, /* bitsize */
994 TRUE, /* pc_relative */
995 0, /* bitpos */
996 complain_overflow_dont, /* complain_on_overflow */
997 bfd_elf_generic_reloc, /* special_function */
998 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
999 FALSE, /* partial_inplace */
1000 0x1fffff, /* src_mask */
1001 0x1fffff, /* dst_mask */
1002 TRUE), /* pcrel_offset */
1003
1004 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1005 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1006 0, /* rightshift */
1007 2, /* size (0 = byte, 1 = short, 2 = long) */
1008 12, /* bitsize */
1009 FALSE, /* pc_relative */
1010 0, /* bitpos */
1011 complain_overflow_dont, /* complain_on_overflow */
1012 bfd_elf_generic_reloc, /* special_function */
1013 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1014 FALSE, /* partial_inplace */
1015 0xfff, /* src_mask */
1016 0xfff, /* dst_mask */
1017 FALSE), /* pcrel_offset */
1018
1019 /* Lower 16 bits of GOT offset to tls_index. */
1020 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1021 0, /* rightshift */
1022 2, /* size (0 = byte, 1 = short, 2 = long) */
1023 16, /* bitsize */
1024 FALSE, /* pc_relative */
1025 0, /* bitpos */
1026 complain_overflow_dont, /* complain_on_overflow */
1027 bfd_elf_generic_reloc, /* special_function */
1028 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1029 FALSE, /* partial_inplace */
1030 0xffff, /* src_mask */
1031 0xffff, /* dst_mask */
1032 FALSE), /* pcrel_offset */
1033
1034 /* Higher 16 bits of GOT offset to tls_index. */
1035 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1036 16, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 16, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_unsigned, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1044 FALSE, /* partial_inplace */
1045 0xffff, /* src_mask */
1046 0xffff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1050 12, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 21, /* bitsize */
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1058 FALSE, /* partial_inplace */
1059 0x1fffff, /* src_mask */
1060 0x1fffff, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
1063 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1064 3, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 12, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1072 FALSE, /* partial_inplace */
1073 0xff8, /* src_mask */
1074 0xff8, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1078 2, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 12, /* bitsize */
1081 FALSE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont, /* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1086 FALSE, /* partial_inplace */
1087 0xffc, /* src_mask */
1088 0xffc, /* dst_mask */
1089 FALSE), /* pcrel_offset */
1090
1091 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1092 2, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 19, /* bitsize */
1095 FALSE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1100 FALSE, /* partial_inplace */
1101 0x1ffffc, /* src_mask */
1102 0x1ffffc, /* dst_mask */
1103 FALSE), /* pcrel_offset */
1104
1105 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 16, /* bitsize */
1109 FALSE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont, /* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1114 FALSE, /* partial_inplace */
1115 0xffff, /* src_mask */
1116 0xffff, /* dst_mask */
1117 FALSE), /* pcrel_offset */
1118
1119 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1120 16, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 16, /* bitsize */
1123 FALSE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_unsigned, /* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1128 FALSE, /* partial_inplace */
1129 0xffff, /* src_mask */
1130 0xffff, /* dst_mask */
1131 FALSE), /* pcrel_offset */
1132
1133 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1134 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1135 12, /* rightshift */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1137 12, /* bitsize */
1138 FALSE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_unsigned, /* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
1142 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1143 FALSE, /* partial_inplace */
1144 0xfff, /* src_mask */
1145 0xfff, /* dst_mask */
1146 FALSE), /* pcrel_offset */
1147
1148 /* Unsigned 12 bit byte offset to module TLS base address. */
1149 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1150 0, /* rightshift */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 12, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_unsigned, /* complain_on_overflow */
1156 bfd_elf_generic_reloc, /* special_function */
1157 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1158 FALSE, /* partial_inplace */
1159 0xfff, /* src_mask */
1160 0xfff, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1164 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1165 0, /* rightshift */
1166 2, /* size (0 = byte, 1 = short, 2 = long) */
1167 12, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_dont, /* complain_on_overflow */
1171 bfd_elf_generic_reloc, /* special_function */
1172 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1173 FALSE, /* partial_inplace */
1174 0xfff, /* src_mask */
1175 0xfff, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1179 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1180 0, /* rightshift */
1181 2, /* size (0 = byte, 1 = short, 2 = long) */
1182 12, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 bfd_elf_generic_reloc, /* special_function */
1187 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1188 FALSE, /* partial_inplace */
1189 0xfff, /* src_mask */
1190 0xfff, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1193 /* Get to the page for the GOT entry for the symbol
1194 (G(S) - P) using an ADRP instruction. */
1195 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1196 12, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 21, /* bitsize */
1199 TRUE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_signed, /* complain_on_overflow */
1202 bfd_elf_generic_reloc, /* special_function */
1203 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1204 FALSE, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE), /* pcrel_offset */
1208
1209 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1210 0, /* rightshift */
1211 2, /* size (0 = byte, 1 = short, 2 = long) */
1212 21, /* bitsize */
1213 TRUE, /* pc_relative */
1214 0, /* bitpos */
1215 complain_overflow_signed, /* complain_on_overflow */
1216 bfd_elf_generic_reloc, /* special_function */
1217 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1218 FALSE, /* partial_inplace */
1219 0x1fffff, /* src_mask */
1220 0x1fffff, /* dst_mask */
1221 TRUE), /* pcrel_offset */
1222
1223 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1224 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1225 1, /* rightshift */
1226 2, /* size (0 = byte, 1 = short, 2 = long) */
1227 11, /* bitsize */
1228 FALSE, /* pc_relative */
1229 10, /* bitpos */
1230 complain_overflow_unsigned, /* complain_on_overflow */
1231 bfd_elf_generic_reloc, /* special_function */
1232 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1233 FALSE, /* partial_inplace */
1234 0x1ffc00, /* src_mask */
1235 0x1ffc00, /* dst_mask */
1236 FALSE), /* pcrel_offset */
1237
1238 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1239 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1240 1, /* rightshift */
1241 2, /* size (0 = byte, 1 = short, 2 = long) */
1242 11, /* bitsize */
1243 FALSE, /* pc_relative */
1244 10, /* bitpos */
1245 complain_overflow_dont, /* complain_on_overflow */
1246 bfd_elf_generic_reloc, /* special_function */
1247 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1248 FALSE, /* partial_inplace */
1249 0x1ffc00, /* src_mask */
1250 0x1ffc00, /* dst_mask */
1251 FALSE), /* pcrel_offset */
1252
1253 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1254 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1255 2, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 10, /* bitsize */
1258 FALSE, /* pc_relative */
1259 10, /* bitpos */
1260 complain_overflow_unsigned, /* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1263 FALSE, /* partial_inplace */
1264 0x3ffc00, /* src_mask */
1265 0x3ffc00, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1269 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1270 2, /* rightshift */
1271 2, /* size (0 = byte, 1 = short, 2 = long) */
1272 10, /* bitsize */
1273 FALSE, /* pc_relative */
1274 10, /* bitpos */
1275 complain_overflow_dont, /* complain_on_overflow */
1276 bfd_elf_generic_reloc, /* special_function */
1277 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1278 FALSE, /* partial_inplace */
1279 0xffc00, /* src_mask */
1280 0xffc00, /* dst_mask */
1281 FALSE), /* pcrel_offset */
1282
1283 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1284 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1285 3, /* rightshift */
1286 2, /* size (0 = byte, 1 = short, 2 = long) */
1287 9, /* bitsize */
1288 FALSE, /* pc_relative */
1289 10, /* bitpos */
1290 complain_overflow_unsigned, /* complain_on_overflow */
1291 bfd_elf_generic_reloc, /* special_function */
1292 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1293 FALSE, /* partial_inplace */
1294 0x3ffc00, /* src_mask */
1295 0x3ffc00, /* dst_mask */
1296 FALSE), /* pcrel_offset */
1297
1298 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1299 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1300 3, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 9, /* bitsize */
1303 FALSE, /* pc_relative */
1304 10, /* bitpos */
1305 complain_overflow_dont, /* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1308 FALSE, /* partial_inplace */
1309 0x7fc00, /* src_mask */
1310 0x7fc00, /* dst_mask */
1311 FALSE), /* pcrel_offset */
1312
1313 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1314 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1315 0, /* rightshift */
1316 2, /* size (0 = byte, 1 = short, 2 = long) */
1317 12, /* bitsize */
1318 FALSE, /* pc_relative */
1319 10, /* bitpos */
1320 complain_overflow_unsigned, /* complain_on_overflow */
1321 bfd_elf_generic_reloc, /* special_function */
1322 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1323 FALSE, /* partial_inplace */
1324 0x3ffc00, /* src_mask */
1325 0x3ffc00, /* dst_mask */
1326 FALSE), /* pcrel_offset */
1327
1328 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1329 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1330 0, /* rightshift */
1331 2, /* size (0 = byte, 1 = short, 2 = long) */
1332 12, /* bitsize */
1333 FALSE, /* pc_relative */
1334 10, /* bitpos */
1335 complain_overflow_dont, /* complain_on_overflow */
1336 bfd_elf_generic_reloc, /* special_function */
1337 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1338 FALSE, /* partial_inplace */
1339 0x3ffc00, /* src_mask */
1340 0x3ffc00, /* dst_mask */
1341 FALSE), /* pcrel_offset */
1342
1343 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1344 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1345 0, /* rightshift */
1346 2, /* size (0 = byte, 1 = short, 2 = long) */
1347 16, /* bitsize */
1348 FALSE, /* pc_relative */
1349 0, /* bitpos */
1350 complain_overflow_unsigned, /* complain_on_overflow */
1351 bfd_elf_generic_reloc, /* special_function */
1352 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1353 FALSE, /* partial_inplace */
1354 0xffff, /* src_mask */
1355 0xffff, /* dst_mask */
1356 FALSE), /* pcrel_offset */
1357
1358 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1359 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 16, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_dont, /* complain_on_overflow */
1366 bfd_elf_generic_reloc, /* special_function */
1367 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1368 FALSE, /* partial_inplace */
1369 0xffff, /* src_mask */
1370 0xffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1374 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1375 16, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 16, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_unsigned, /* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1383 FALSE, /* partial_inplace */
1384 0xffff, /* src_mask */
1385 0xffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1389 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1390 16, /* rightshift */
1391 2, /* size (0 = byte, 1 = short, 2 = long) */
1392 16, /* bitsize */
1393 FALSE, /* pc_relative */
1394 0, /* bitpos */
1395 complain_overflow_dont, /* complain_on_overflow */
1396 bfd_elf_generic_reloc, /* special_function */
1397 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1398 FALSE, /* partial_inplace */
1399 0xffff, /* src_mask */
1400 0xffff, /* dst_mask */
1401 FALSE), /* pcrel_offset */
1402
1403 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1404 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1405 32, /* rightshift */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
1407 16, /* bitsize */
1408 FALSE, /* pc_relative */
1409 0, /* bitpos */
1410 complain_overflow_unsigned, /* complain_on_overflow */
1411 bfd_elf_generic_reloc, /* special_function */
1412 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1413 FALSE, /* partial_inplace */
1414 0xffff, /* src_mask */
1415 0xffff, /* dst_mask */
1416 FALSE), /* pcrel_offset */
1417
1418 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1419 32, /* rightshift */
1420 2, /* size (0 = byte, 1 = short, 2 = long) */
1421 16, /* bitsize */
1422 FALSE, /* pc_relative */
1423 0, /* bitpos */
1424 complain_overflow_unsigned, /* complain_on_overflow */
1425 bfd_elf_generic_reloc, /* special_function */
1426 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1427 FALSE, /* partial_inplace */
1428 0xffff, /* src_mask */
1429 0xffff, /* dst_mask */
1430 FALSE), /* pcrel_offset */
1431
1432 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1433 16, /* rightshift */
1434 2, /* size (0 = byte, 1 = short, 2 = long) */
1435 16, /* bitsize */
1436 FALSE, /* pc_relative */
1437 0, /* bitpos */
1438 complain_overflow_dont, /* complain_on_overflow */
1439 bfd_elf_generic_reloc, /* special_function */
1440 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1441 FALSE, /* partial_inplace */
1442 0xffff, /* src_mask */
1443 0xffff, /* dst_mask */
1444 FALSE), /* pcrel_offset */
1445
1446 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1447 16, /* rightshift */
1448 2, /* size (0 = byte, 1 = short, 2 = long) */
1449 16, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 bfd_elf_generic_reloc, /* special_function */
1454 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1455 FALSE, /* partial_inplace */
1456 0xffff, /* src_mask */
1457 0xffff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1461 0, /* rightshift */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1463 16, /* bitsize */
1464 FALSE, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_dont, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
1468 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1469 FALSE, /* partial_inplace */
1470 0xffff, /* src_mask */
1471 0xffff, /* dst_mask */
1472 FALSE), /* pcrel_offset */
1473
1474 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1475 0, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 16, /* bitsize */
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1483 FALSE, /* partial_inplace */
1484 0xffff, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1489 12, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 12, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_unsigned, /* complain_on_overflow */
1495 bfd_elf_generic_reloc, /* special_function */
1496 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1497 FALSE, /* partial_inplace */
1498 0xfff, /* src_mask */
1499 0xfff, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1503 0, /* rightshift */
1504 2, /* size (0 = byte, 1 = short, 2 = long) */
1505 12, /* bitsize */
1506 FALSE, /* pc_relative */
1507 0, /* bitpos */
1508 complain_overflow_unsigned, /* complain_on_overflow */
1509 bfd_elf_generic_reloc, /* special_function */
1510 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1511 FALSE, /* partial_inplace */
1512 0xfff, /* src_mask */
1513 0xfff, /* dst_mask */
1514 FALSE), /* pcrel_offset */
1515
1516 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1517 0, /* rightshift */
1518 2, /* size (0 = byte, 1 = short, 2 = long) */
1519 12, /* bitsize */
1520 FALSE, /* pc_relative */
1521 0, /* bitpos */
1522 complain_overflow_dont, /* complain_on_overflow */
1523 bfd_elf_generic_reloc, /* special_function */
1524 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1525 FALSE, /* partial_inplace */
1526 0xfff, /* src_mask */
1527 0xfff, /* dst_mask */
1528 FALSE), /* pcrel_offset */
1529
1530 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1531 2, /* rightshift */
1532 2, /* size (0 = byte, 1 = short, 2 = long) */
1533 19, /* bitsize */
1534 TRUE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 bfd_elf_generic_reloc, /* special_function */
1538 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1539 FALSE, /* partial_inplace */
1540 0x0ffffe0, /* src_mask */
1541 0x0ffffe0, /* dst_mask */
1542 TRUE), /* pcrel_offset */
1543
1544 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1545 0, /* rightshift */
1546 2, /* size (0 = byte, 1 = short, 2 = long) */
1547 21, /* bitsize */
1548 TRUE, /* pc_relative */
1549 0, /* bitpos */
1550 complain_overflow_dont, /* complain_on_overflow */
1551 bfd_elf_generic_reloc, /* special_function */
1552 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1553 FALSE, /* partial_inplace */
1554 0x1fffff, /* src_mask */
1555 0x1fffff, /* dst_mask */
1556 TRUE), /* pcrel_offset */
1557
1558 /* Get to the page for the GOT entry for the symbol
1559 (G(S) - P) using an ADRP instruction. */
1560 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1561 12, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 21, /* bitsize */
1564 TRUE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_dont, /* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1569 FALSE, /* partial_inplace */
1570 0x1fffff, /* src_mask */
1571 0x1fffff, /* dst_mask */
1572 TRUE), /* pcrel_offset */
1573
1574 /* LD64: GOT offset G(S) & 0xff8. */
1575 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1576 3, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 12, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_dont, /* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1584 FALSE, /* partial_inplace */
1585 0xff8, /* src_mask */
1586 0xff8, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 /* LD32: GOT offset G(S) & 0xffc. */
1590 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1591 2, /* rightshift */
1592 2, /* size (0 = byte, 1 = short, 2 = long) */
1593 12, /* bitsize */
1594 FALSE, /* pc_relative */
1595 0, /* bitpos */
1596 complain_overflow_dont, /* complain_on_overflow */
1597 bfd_elf_generic_reloc, /* special_function */
1598 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1599 FALSE, /* partial_inplace */
1600 0xffc, /* src_mask */
1601 0xffc, /* dst_mask */
1602 FALSE), /* pcrel_offset */
1603
1604 /* ADD: GOT offset G(S) & 0xfff. */
1605 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1606 0, /* rightshift */
1607 2, /* size (0 = byte, 1 = short, 2 = long) */
1608 12, /* bitsize */
1609 FALSE, /* pc_relative */
1610 0, /* bitpos */
1611 complain_overflow_dont,/* complain_on_overflow */
1612 bfd_elf_generic_reloc, /* special_function */
1613 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1614 FALSE, /* partial_inplace */
1615 0xfff, /* src_mask */
1616 0xfff, /* dst_mask */
1617 FALSE), /* pcrel_offset */
1618
1619 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1620 16, /* rightshift */
1621 2, /* size (0 = byte, 1 = short, 2 = long) */
1622 12, /* bitsize */
1623 FALSE, /* pc_relative */
1624 0, /* bitpos */
1625 complain_overflow_unsigned, /* complain_on_overflow */
1626 bfd_elf_generic_reloc, /* special_function */
1627 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1628 FALSE, /* partial_inplace */
1629 0xffff, /* src_mask */
1630 0xffff, /* dst_mask */
1631 FALSE), /* pcrel_offset */
1632
1633 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1634 0, /* rightshift */
1635 2, /* size (0 = byte, 1 = short, 2 = long) */
1636 12, /* bitsize */
1637 FALSE, /* pc_relative */
1638 0, /* bitpos */
1639 complain_overflow_dont, /* complain_on_overflow */
1640 bfd_elf_generic_reloc, /* special_function */
1641 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1642 FALSE, /* partial_inplace */
1643 0xffff, /* src_mask */
1644 0xffff, /* dst_mask */
1645 FALSE), /* pcrel_offset */
1646
1647 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1648 0, /* rightshift */
1649 2, /* size (0 = byte, 1 = short, 2 = long) */
1650 12, /* bitsize */
1651 FALSE, /* pc_relative */
1652 0, /* bitpos */
1653 complain_overflow_dont, /* complain_on_overflow */
1654 bfd_elf_generic_reloc, /* special_function */
1655 AARCH64_R_STR (TLSDESC_LDR), /* name */
1656 FALSE, /* partial_inplace */
1657 0x0, /* src_mask */
1658 0x0, /* dst_mask */
1659 FALSE), /* pcrel_offset */
1660
1661 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1662 0, /* rightshift */
1663 2, /* size (0 = byte, 1 = short, 2 = long) */
1664 12, /* bitsize */
1665 FALSE, /* pc_relative */
1666 0, /* bitpos */
1667 complain_overflow_dont, /* complain_on_overflow */
1668 bfd_elf_generic_reloc, /* special_function */
1669 AARCH64_R_STR (TLSDESC_ADD), /* name */
1670 FALSE, /* partial_inplace */
1671 0x0, /* src_mask */
1672 0x0, /* dst_mask */
1673 FALSE), /* pcrel_offset */
1674
1675 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1676 0, /* rightshift */
1677 2, /* size (0 = byte, 1 = short, 2 = long) */
1678 0, /* bitsize */
1679 FALSE, /* pc_relative */
1680 0, /* bitpos */
1681 complain_overflow_dont, /* complain_on_overflow */
1682 bfd_elf_generic_reloc, /* special_function */
1683 AARCH64_R_STR (TLSDESC_CALL), /* name */
1684 FALSE, /* partial_inplace */
1685 0x0, /* src_mask */
1686 0x0, /* dst_mask */
1687 FALSE), /* pcrel_offset */
1688
1689 HOWTO (AARCH64_R (COPY), /* type */
1690 0, /* rightshift */
1691 2, /* size (0 = byte, 1 = short, 2 = long) */
1692 64, /* bitsize */
1693 FALSE, /* pc_relative */
1694 0, /* bitpos */
1695 complain_overflow_bitfield, /* complain_on_overflow */
1696 bfd_elf_generic_reloc, /* special_function */
1697 AARCH64_R_STR (COPY), /* name */
1698 TRUE, /* partial_inplace */
1699 0xffffffff, /* src_mask */
1700 0xffffffff, /* dst_mask */
1701 FALSE), /* pcrel_offset */
1702
1703 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1704 0, /* rightshift */
1705 2, /* size (0 = byte, 1 = short, 2 = long) */
1706 64, /* bitsize */
1707 FALSE, /* pc_relative */
1708 0, /* bitpos */
1709 complain_overflow_bitfield, /* complain_on_overflow */
1710 bfd_elf_generic_reloc, /* special_function */
1711 AARCH64_R_STR (GLOB_DAT), /* name */
1712 TRUE, /* partial_inplace */
1713 0xffffffff, /* src_mask */
1714 0xffffffff, /* dst_mask */
1715 FALSE), /* pcrel_offset */
1716
1717 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1718 0, /* rightshift */
1719 2, /* size (0 = byte, 1 = short, 2 = long) */
1720 64, /* bitsize */
1721 FALSE, /* pc_relative */
1722 0, /* bitpos */
1723 complain_overflow_bitfield, /* complain_on_overflow */
1724 bfd_elf_generic_reloc, /* special_function */
1725 AARCH64_R_STR (JUMP_SLOT), /* name */
1726 TRUE, /* partial_inplace */
1727 0xffffffff, /* src_mask */
1728 0xffffffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 HOWTO (AARCH64_R (RELATIVE), /* type */
1732 0, /* rightshift */
1733 2, /* size (0 = byte, 1 = short, 2 = long) */
1734 64, /* bitsize */
1735 FALSE, /* pc_relative */
1736 0, /* bitpos */
1737 complain_overflow_bitfield, /* complain_on_overflow */
1738 bfd_elf_generic_reloc, /* special_function */
1739 AARCH64_R_STR (RELATIVE), /* name */
1740 TRUE, /* partial_inplace */
1741 ALL_ONES, /* src_mask */
1742 ALL_ONES, /* dst_mask */
1743 FALSE), /* pcrel_offset */
1744
1745 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1746 0, /* rightshift */
1747 2, /* size (0 = byte, 1 = short, 2 = long) */
1748 64, /* bitsize */
1749 FALSE, /* pc_relative */
1750 0, /* bitpos */
1751 complain_overflow_dont, /* complain_on_overflow */
1752 bfd_elf_generic_reloc, /* special_function */
1753 #if ARCH_SIZE == 64
1754 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1755 #else
1756 AARCH64_R_STR (TLS_DTPMOD), /* name */
1757 #endif
1758 FALSE, /* partial_inplace */
1759 0, /* src_mask */
1760 ALL_ONES, /* dst_mask */
1761 FALSE), /* pc_reloffset */
1762
1763 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1764 0, /* rightshift */
1765 2, /* size (0 = byte, 1 = short, 2 = long) */
1766 64, /* bitsize */
1767 FALSE, /* pc_relative */
1768 0, /* bitpos */
1769 complain_overflow_dont, /* complain_on_overflow */
1770 bfd_elf_generic_reloc, /* special_function */
1771 #if ARCH_SIZE == 64
1772 AARCH64_R_STR (TLS_DTPREL64), /* name */
1773 #else
1774 AARCH64_R_STR (TLS_DTPREL), /* name */
1775 #endif
1776 FALSE, /* partial_inplace */
1777 0, /* src_mask */
1778 ALL_ONES, /* dst_mask */
1779 FALSE), /* pcrel_offset */
1780
1781 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1782 0, /* rightshift */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1784 64, /* bitsize */
1785 FALSE, /* pc_relative */
1786 0, /* bitpos */
1787 complain_overflow_dont, /* complain_on_overflow */
1788 bfd_elf_generic_reloc, /* special_function */
1789 #if ARCH_SIZE == 64
1790 AARCH64_R_STR (TLS_TPREL64), /* name */
1791 #else
1792 AARCH64_R_STR (TLS_TPREL), /* name */
1793 #endif
1794 FALSE, /* partial_inplace */
1795 0, /* src_mask */
1796 ALL_ONES, /* dst_mask */
1797 FALSE), /* pcrel_offset */
1798
1799 HOWTO (AARCH64_R (TLSDESC), /* type */
1800 0, /* rightshift */
1801 2, /* size (0 = byte, 1 = short, 2 = long) */
1802 64, /* bitsize */
1803 FALSE, /* pc_relative */
1804 0, /* bitpos */
1805 complain_overflow_dont, /* complain_on_overflow */
1806 bfd_elf_generic_reloc, /* special_function */
1807 AARCH64_R_STR (TLSDESC), /* name */
1808 FALSE, /* partial_inplace */
1809 0, /* src_mask */
1810 ALL_ONES, /* dst_mask */
1811 FALSE), /* pcrel_offset */
1812
1813 HOWTO (AARCH64_R (IRELATIVE), /* type */
1814 0, /* rightshift */
1815 2, /* size (0 = byte, 1 = short, 2 = long) */
1816 64, /* bitsize */
1817 FALSE, /* pc_relative */
1818 0, /* bitpos */
1819 complain_overflow_bitfield, /* complain_on_overflow */
1820 bfd_elf_generic_reloc, /* special_function */
1821 AARCH64_R_STR (IRELATIVE), /* name */
1822 FALSE, /* partial_inplace */
1823 0, /* src_mask */
1824 ALL_ONES, /* dst_mask */
1825 FALSE), /* pcrel_offset */
1826
1827 EMPTY_HOWTO (0),
1828 };
1829
1830 static reloc_howto_type elfNN_aarch64_howto_none =
1831 HOWTO (R_AARCH64_NONE, /* type */
1832 0, /* rightshift */
1833 3, /* size (0 = byte, 1 = short, 2 = long) */
1834 0, /* bitsize */
1835 FALSE, /* pc_relative */
1836 0, /* bitpos */
1837 complain_overflow_dont,/* complain_on_overflow */
1838 bfd_elf_generic_reloc, /* special_function */
1839 "R_AARCH64_NONE", /* name */
1840 FALSE, /* partial_inplace */
1841 0, /* src_mask */
1842 0, /* dst_mask */
1843 FALSE); /* pcrel_offset */
1844
1845 /* Given HOWTO, return the bfd internal relocation enumerator. */
1846
1847 static bfd_reloc_code_real_type
1848 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1849 {
1850 const int size
1851 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1852 const ptrdiff_t offset
1853 = howto - elfNN_aarch64_howto_table;
1854
1855 if (offset > 0 && offset < size - 1)
1856 return BFD_RELOC_AARCH64_RELOC_START + offset;
1857
1858 if (howto == &elfNN_aarch64_howto_none)
1859 return BFD_RELOC_AARCH64_NONE;
1860
1861 return BFD_RELOC_AARCH64_RELOC_START;
1862 }
1863
1864 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1865
1866 static bfd_reloc_code_real_type
1867 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1868 {
1869 static bfd_boolean initialized_p = FALSE;
1870 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1871 static unsigned int offsets[R_AARCH64_end];
1872
1873 if (!initialized_p)
1874 {
1875 unsigned int i;
1876
1877 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1878 if (elfNN_aarch64_howto_table[i].type != 0)
1879 offsets[elfNN_aarch64_howto_table[i].type] = i;
1880
1881 initialized_p = TRUE;
1882 }
1883
1884 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1885 return BFD_RELOC_AARCH64_NONE;
1886
1887 /* PR 17512: file: b371e70a. */
1888 if (r_type >= R_AARCH64_end)
1889 {
1890 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1891 bfd_set_error (bfd_error_bad_value);
1892 return BFD_RELOC_AARCH64_NONE;
1893 }
1894
1895 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1896 }
1897
1898 struct elf_aarch64_reloc_map
1899 {
1900 bfd_reloc_code_real_type from;
1901 bfd_reloc_code_real_type to;
1902 };
1903
1904 /* Map bfd generic reloc to AArch64-specific reloc. */
1905 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1906 {
1907 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1908
1909 /* Basic data relocations. */
1910 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1911 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1912 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1913 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1914 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1915 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1916 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1917 };
1918
1919 /* Given the bfd internal relocation enumerator in CODE, return the
1920 corresponding howto entry. */
1921
1922 static reloc_howto_type *
1923 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1924 {
1925 unsigned int i;
1926
1927 /* Convert bfd generic reloc to AArch64-specific reloc. */
1928 if (code < BFD_RELOC_AARCH64_RELOC_START
1929 || code > BFD_RELOC_AARCH64_RELOC_END)
1930 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1931 if (elf_aarch64_reloc_map[i].from == code)
1932 {
1933 code = elf_aarch64_reloc_map[i].to;
1934 break;
1935 }
1936
1937 if (code > BFD_RELOC_AARCH64_RELOC_START
1938 && code < BFD_RELOC_AARCH64_RELOC_END)
1939 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1940 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1941
1942 if (code == BFD_RELOC_AARCH64_NONE)
1943 return &elfNN_aarch64_howto_none;
1944
1945 return NULL;
1946 }
1947
1948 static reloc_howto_type *
1949 elfNN_aarch64_howto_from_type (unsigned int r_type)
1950 {
1951 bfd_reloc_code_real_type val;
1952 reloc_howto_type *howto;
1953
1954 #if ARCH_SIZE == 32
1955 if (r_type > 256)
1956 {
1957 bfd_set_error (bfd_error_bad_value);
1958 return NULL;
1959 }
1960 #endif
1961
1962 if (r_type == R_AARCH64_NONE)
1963 return &elfNN_aarch64_howto_none;
1964
1965 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1966 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1967
1968 if (howto != NULL)
1969 return howto;
1970
1971 bfd_set_error (bfd_error_bad_value);
1972 return NULL;
1973 }
1974
1975 static void
1976 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1977 Elf_Internal_Rela *elf_reloc)
1978 {
1979 unsigned int r_type;
1980
1981 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1982 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1983 }
1984
1985 static reloc_howto_type *
1986 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1987 bfd_reloc_code_real_type code)
1988 {
1989 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1990
1991 if (howto != NULL)
1992 return howto;
1993
1994 bfd_set_error (bfd_error_bad_value);
1995 return NULL;
1996 }
1997
1998 static reloc_howto_type *
1999 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2000 const char *r_name)
2001 {
2002 unsigned int i;
2003
2004 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2005 if (elfNN_aarch64_howto_table[i].name != NULL
2006 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2007 return &elfNN_aarch64_howto_table[i];
2008
2009 return NULL;
2010 }
2011
2012 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2013 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2014 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2015 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2016
2017 /* The linker script knows the section names for placement.
2018 The entry_names are used to do simple name mangling on the stubs.
2019 Given a function name, and its type, the stub can be found. The
2020 name can be changed. The only requirement is the %s be present. */
2021 #define STUB_ENTRY_NAME "__%s_veneer"
2022
2023 /* The name of the dynamic interpreter. This is put in the .interp
2024 section. */
2025 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2026
2027 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2028 (((1 << 25) - 1) << 2)
2029 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2030 (-((1 << 25) << 2))
2031
2032 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2033 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2034
2035 static int
2036 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2037 {
2038 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2039 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2040 }
2041
2042 static int
2043 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2044 {
2045 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2046 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2047 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2048 }
2049
2050 static const uint32_t aarch64_adrp_branch_stub [] =
2051 {
2052 0x90000010, /* adrp ip0, X */
2053 /* R_AARCH64_ADR_HI21_PCREL(X) */
2054 0x91000210, /* add ip0, ip0, :lo12:X */
2055 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2056 0xd61f0200, /* br ip0 */
2057 };
2058
2059 static const uint32_t aarch64_long_branch_stub[] =
2060 {
2061 #if ARCH_SIZE == 64
2062 0x58000090, /* ldr ip0, 1f */
2063 #else
2064 0x18000090, /* ldr wip0, 1f */
2065 #endif
2066 0x10000011, /* adr ip1, #0 */
2067 0x8b110210, /* add ip0, ip0, ip1 */
2068 0xd61f0200, /* br ip0 */
2069 0x00000000, /* 1: .xword or .word
2070 R_AARCH64_PRELNN(X) + 12
2071 */
2072 0x00000000,
2073 };
2074
2075 static const uint32_t aarch64_erratum_835769_stub[] =
2076 {
2077 0x00000000, /* Placeholder for multiply accumulate. */
2078 0x14000000, /* b <label> */
2079 };
2080
2081 static const uint32_t aarch64_erratum_843419_stub[] =
2082 {
2083 0x00000000, /* Placeholder for LDR instruction. */
2084 0x14000000, /* b <label> */
2085 };
2086
2087 /* Section name for stubs is the associated section name plus this
2088 string. */
2089 #define STUB_SUFFIX ".stub"
2090
2091 enum elf_aarch64_stub_type
2092 {
2093 aarch64_stub_none,
2094 aarch64_stub_adrp_branch,
2095 aarch64_stub_long_branch,
2096 aarch64_stub_erratum_835769_veneer,
2097 aarch64_stub_erratum_843419_veneer,
2098 };
2099
2100 struct elf_aarch64_stub_hash_entry
2101 {
2102 /* Base hash table entry structure. */
2103 struct bfd_hash_entry root;
2104
2105 /* The stub section. */
2106 asection *stub_sec;
2107
2108 /* Offset within stub_sec of the beginning of this stub. */
2109 bfd_vma stub_offset;
2110
2111 /* Given the symbol's value and its section we can determine its final
2112 value when building the stubs (so the stub knows where to jump). */
2113 bfd_vma target_value;
2114 asection *target_section;
2115
2116 enum elf_aarch64_stub_type stub_type;
2117
2118 /* The symbol table entry, if any, that this was derived from. */
2119 struct elf_aarch64_link_hash_entry *h;
2120
2121 /* Destination symbol type */
2122 unsigned char st_type;
2123
2124 /* Where this stub is being called from, or, in the case of combined
2125 stub sections, the first input section in the group. */
2126 asection *id_sec;
2127
2128 /* The name for the local symbol at the start of this stub. The
2129 stub name in the hash table has to be unique; this does not, so
2130 it can be friendlier. */
2131 char *output_name;
2132
2133 /* The instruction which caused this stub to be generated (only valid for
2134 erratum 835769 workaround stubs at present). */
2135 uint32_t veneered_insn;
2136
2137 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2138 bfd_vma adrp_offset;
2139 };
2140
2141 /* Used to build a map of a section. This is required for mixed-endian
2142 code/data. */
2143
2144 typedef struct elf_elf_section_map
2145 {
2146 bfd_vma vma;
2147 char type;
2148 }
2149 elf_aarch64_section_map;
2150
2151
2152 typedef struct _aarch64_elf_section_data
2153 {
2154 struct bfd_elf_section_data elf;
2155 unsigned int mapcount;
2156 unsigned int mapsize;
2157 elf_aarch64_section_map *map;
2158 }
2159 _aarch64_elf_section_data;
2160
2161 #define elf_aarch64_section_data(sec) \
2162 ((_aarch64_elf_section_data *) elf_section_data (sec))
2163
2164 /* The size of the thread control block which is defined to be two pointers. */
2165 #define TCB_SIZE (ARCH_SIZE/8)*2
2166
2167 struct elf_aarch64_local_symbol
2168 {
2169 unsigned int got_type;
2170 bfd_signed_vma got_refcount;
2171 bfd_vma got_offset;
2172
2173 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2174 offset is from the end of the jump table and reserved entries
2175 within the PLTGOT.
2176
2177 The magic value (bfd_vma) -1 indicates that an offset has not be
2178 allocated. */
2179 bfd_vma tlsdesc_got_jump_table_offset;
2180 };
2181
2182 struct elf_aarch64_obj_tdata
2183 {
2184 struct elf_obj_tdata root;
2185
2186 /* local symbol descriptors */
2187 struct elf_aarch64_local_symbol *locals;
2188
2189 /* Zero to warn when linking objects with incompatible enum sizes. */
2190 int no_enum_size_warning;
2191
2192 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2193 int no_wchar_size_warning;
2194 };
2195
2196 #define elf_aarch64_tdata(bfd) \
2197 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2198
2199 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2200
2201 #define is_aarch64_elf(bfd) \
2202 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2203 && elf_tdata (bfd) != NULL \
2204 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2205
2206 static bfd_boolean
2207 elfNN_aarch64_mkobject (bfd *abfd)
2208 {
2209 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2210 AARCH64_ELF_DATA);
2211 }
2212
2213 #define elf_aarch64_hash_entry(ent) \
2214 ((struct elf_aarch64_link_hash_entry *)(ent))
2215
2216 #define GOT_UNKNOWN 0
2217 #define GOT_NORMAL 1
2218 #define GOT_TLS_GD 2
2219 #define GOT_TLS_IE 4
2220 #define GOT_TLSDESC_GD 8
2221
2222 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2223
2224 /* AArch64 ELF linker hash entry. */
2225 struct elf_aarch64_link_hash_entry
2226 {
2227 struct elf_link_hash_entry root;
2228
2229 /* Track dynamic relocs copied for this symbol. */
2230 struct elf_dyn_relocs *dyn_relocs;
2231
2232 /* Since PLT entries have variable size, we need to record the
2233 index into .got.plt instead of recomputing it from the PLT
2234 offset. */
2235 bfd_signed_vma plt_got_offset;
2236
2237 /* Bit mask representing the type of GOT entry(s) if any required by
2238 this symbol. */
2239 unsigned int got_type;
2240
2241 /* A pointer to the most recently used stub hash entry against this
2242 symbol. */
2243 struct elf_aarch64_stub_hash_entry *stub_cache;
2244
2245 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2246 is from the end of the jump table and reserved entries within the PLTGOT.
2247
2248 The magic value (bfd_vma) -1 indicates that an offset has not
2249 be allocated. */
2250 bfd_vma tlsdesc_got_jump_table_offset;
2251 };
2252
2253 static unsigned int
2254 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2255 bfd *abfd,
2256 unsigned long r_symndx)
2257 {
2258 if (h)
2259 return elf_aarch64_hash_entry (h)->got_type;
2260
2261 if (! elf_aarch64_locals (abfd))
2262 return GOT_UNKNOWN;
2263
2264 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2265 }
2266
2267 /* Get the AArch64 elf linker hash table from a link_info structure. */
2268 #define elf_aarch64_hash_table(info) \
2269 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2270
2271 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2272 ((struct elf_aarch64_stub_hash_entry *) \
2273 bfd_hash_lookup ((table), (string), (create), (copy)))
2274
2275 /* AArch64 ELF linker hash table. */
2276 struct elf_aarch64_link_hash_table
2277 {
2278 /* The main hash table. */
2279 struct elf_link_hash_table root;
2280
2281 /* Nonzero to force PIC branch veneers. */
2282 int pic_veneer;
2283
2284 /* Fix erratum 835769. */
2285 int fix_erratum_835769;
2286
2287 /* Fix erratum 843419. */
2288 int fix_erratum_843419;
2289
2290 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2291 int fix_erratum_843419_adr;
2292
2293 /* Don't apply link-time values for dynamic relocations. */
2294 int no_apply_dynamic_relocs;
2295
2296 /* The number of bytes in the initial entry in the PLT. */
2297 bfd_size_type plt_header_size;
2298
2299 /* The number of bytes in the subsequent PLT etries. */
2300 bfd_size_type plt_entry_size;
2301
2302 /* Small local sym cache. */
2303 struct sym_cache sym_cache;
2304
2305 /* For convenience in allocate_dynrelocs. */
2306 bfd *obfd;
2307
2308 /* The amount of space used by the reserved portion of the sgotplt
2309 section, plus whatever space is used by the jump slots. */
2310 bfd_vma sgotplt_jump_table_size;
2311
2312 /* The stub hash table. */
2313 struct bfd_hash_table stub_hash_table;
2314
2315 /* Linker stub bfd. */
2316 bfd *stub_bfd;
2317
2318 /* Linker call-backs. */
2319 asection *(*add_stub_section) (const char *, asection *);
2320 void (*layout_sections_again) (void);
2321
2322 /* Array to keep track of which stub sections have been created, and
2323 information on stub grouping. */
2324 struct map_stub
2325 {
2326 /* This is the section to which stubs in the group will be
2327 attached. */
2328 asection *link_sec;
2329 /* The stub section. */
2330 asection *stub_sec;
2331 } *stub_group;
2332
2333 /* Assorted information used by elfNN_aarch64_size_stubs. */
2334 unsigned int bfd_count;
2335 unsigned int top_index;
2336 asection **input_list;
2337
2338 /* The offset into splt of the PLT entry for the TLS descriptor
2339 resolver. Special values are 0, if not necessary (or not found
2340 to be necessary yet), and -1 if needed but not determined
2341 yet. */
2342 bfd_vma tlsdesc_plt;
2343
2344 /* The GOT offset for the lazy trampoline. Communicated to the
2345 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2346 indicates an offset is not allocated. */
2347 bfd_vma dt_tlsdesc_got;
2348
2349 /* Used by local STT_GNU_IFUNC symbols. */
2350 htab_t loc_hash_table;
2351 void * loc_hash_memory;
2352 };
2353
2354 /* Create an entry in an AArch64 ELF linker hash table. */
2355
2356 static struct bfd_hash_entry *
2357 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2358 struct bfd_hash_table *table,
2359 const char *string)
2360 {
2361 struct elf_aarch64_link_hash_entry *ret =
2362 (struct elf_aarch64_link_hash_entry *) entry;
2363
2364 /* Allocate the structure if it has not already been allocated by a
2365 subclass. */
2366 if (ret == NULL)
2367 ret = bfd_hash_allocate (table,
2368 sizeof (struct elf_aarch64_link_hash_entry));
2369 if (ret == NULL)
2370 return (struct bfd_hash_entry *) ret;
2371
2372 /* Call the allocation method of the superclass. */
2373 ret = ((struct elf_aarch64_link_hash_entry *)
2374 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2375 table, string));
2376 if (ret != NULL)
2377 {
2378 ret->dyn_relocs = NULL;
2379 ret->got_type = GOT_UNKNOWN;
2380 ret->plt_got_offset = (bfd_vma) - 1;
2381 ret->stub_cache = NULL;
2382 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2383 }
2384
2385 return (struct bfd_hash_entry *) ret;
2386 }
2387
2388 /* Initialize an entry in the stub hash table. */
2389
2390 static struct bfd_hash_entry *
2391 stub_hash_newfunc (struct bfd_hash_entry *entry,
2392 struct bfd_hash_table *table, const char *string)
2393 {
2394 /* Allocate the structure if it has not already been allocated by a
2395 subclass. */
2396 if (entry == NULL)
2397 {
2398 entry = bfd_hash_allocate (table,
2399 sizeof (struct
2400 elf_aarch64_stub_hash_entry));
2401 if (entry == NULL)
2402 return entry;
2403 }
2404
2405 /* Call the allocation method of the superclass. */
2406 entry = bfd_hash_newfunc (entry, table, string);
2407 if (entry != NULL)
2408 {
2409 struct elf_aarch64_stub_hash_entry *eh;
2410
2411 /* Initialize the local fields. */
2412 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2413 eh->adrp_offset = 0;
2414 eh->stub_sec = NULL;
2415 eh->stub_offset = 0;
2416 eh->target_value = 0;
2417 eh->target_section = NULL;
2418 eh->stub_type = aarch64_stub_none;
2419 eh->h = NULL;
2420 eh->id_sec = NULL;
2421 }
2422
2423 return entry;
2424 }
2425
2426 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2427 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2428 as global symbol. We reuse indx and dynstr_index for local symbol
2429 hash since they aren't used by global symbols in this backend. */
2430
2431 static hashval_t
2432 elfNN_aarch64_local_htab_hash (const void *ptr)
2433 {
2434 struct elf_link_hash_entry *h
2435 = (struct elf_link_hash_entry *) ptr;
2436 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2437 }
2438
2439 /* Compare local hash entries. */
2440
2441 static int
2442 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2443 {
2444 struct elf_link_hash_entry *h1
2445 = (struct elf_link_hash_entry *) ptr1;
2446 struct elf_link_hash_entry *h2
2447 = (struct elf_link_hash_entry *) ptr2;
2448
2449 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2450 }
2451
2452 /* Find and/or create a hash entry for local symbol. */
2453
2454 static struct elf_link_hash_entry *
2455 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2456 bfd *abfd, const Elf_Internal_Rela *rel,
2457 bfd_boolean create)
2458 {
2459 struct elf_aarch64_link_hash_entry e, *ret;
2460 asection *sec = abfd->sections;
2461 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2462 ELFNN_R_SYM (rel->r_info));
2463 void **slot;
2464
2465 e.root.indx = sec->id;
2466 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2467 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2468 create ? INSERT : NO_INSERT);
2469
2470 if (!slot)
2471 return NULL;
2472
2473 if (*slot)
2474 {
2475 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2476 return &ret->root;
2477 }
2478
2479 ret = (struct elf_aarch64_link_hash_entry *)
2480 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2481 sizeof (struct elf_aarch64_link_hash_entry));
2482 if (ret)
2483 {
2484 memset (ret, 0, sizeof (*ret));
2485 ret->root.indx = sec->id;
2486 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2487 ret->root.dynindx = -1;
2488 *slot = ret;
2489 }
2490 return &ret->root;
2491 }
2492
2493 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2494
2495 static void
2496 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2497 struct elf_link_hash_entry *dir,
2498 struct elf_link_hash_entry *ind)
2499 {
2500 struct elf_aarch64_link_hash_entry *edir, *eind;
2501
2502 edir = (struct elf_aarch64_link_hash_entry *) dir;
2503 eind = (struct elf_aarch64_link_hash_entry *) ind;
2504
2505 if (eind->dyn_relocs != NULL)
2506 {
2507 if (edir->dyn_relocs != NULL)
2508 {
2509 struct elf_dyn_relocs **pp;
2510 struct elf_dyn_relocs *p;
2511
2512 /* Add reloc counts against the indirect sym to the direct sym
2513 list. Merge any entries against the same section. */
2514 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2515 {
2516 struct elf_dyn_relocs *q;
2517
2518 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2519 if (q->sec == p->sec)
2520 {
2521 q->pc_count += p->pc_count;
2522 q->count += p->count;
2523 *pp = p->next;
2524 break;
2525 }
2526 if (q == NULL)
2527 pp = &p->next;
2528 }
2529 *pp = edir->dyn_relocs;
2530 }
2531
2532 edir->dyn_relocs = eind->dyn_relocs;
2533 eind->dyn_relocs = NULL;
2534 }
2535
2536 if (ind->root.type == bfd_link_hash_indirect)
2537 {
2538 /* Copy over PLT info. */
2539 if (dir->got.refcount <= 0)
2540 {
2541 edir->got_type = eind->got_type;
2542 eind->got_type = GOT_UNKNOWN;
2543 }
2544 }
2545
2546 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2547 }
2548
2549 /* Destroy an AArch64 elf linker hash table. */
2550
2551 static void
2552 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2553 {
2554 struct elf_aarch64_link_hash_table *ret
2555 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2556
2557 if (ret->loc_hash_table)
2558 htab_delete (ret->loc_hash_table);
2559 if (ret->loc_hash_memory)
2560 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2561
2562 bfd_hash_table_free (&ret->stub_hash_table);
2563 _bfd_elf_link_hash_table_free (obfd);
2564 }
2565
2566 /* Create an AArch64 elf linker hash table. */
2567
2568 static struct bfd_link_hash_table *
2569 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2570 {
2571 struct elf_aarch64_link_hash_table *ret;
2572 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2573
2574 ret = bfd_zmalloc (amt);
2575 if (ret == NULL)
2576 return NULL;
2577
2578 if (!_bfd_elf_link_hash_table_init
2579 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2580 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2581 {
2582 free (ret);
2583 return NULL;
2584 }
2585
2586 ret->plt_header_size = PLT_ENTRY_SIZE;
2587 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2588 ret->obfd = abfd;
2589 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2590
2591 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2592 sizeof (struct elf_aarch64_stub_hash_entry)))
2593 {
2594 _bfd_elf_link_hash_table_free (abfd);
2595 return NULL;
2596 }
2597
2598 ret->loc_hash_table = htab_try_create (1024,
2599 elfNN_aarch64_local_htab_hash,
2600 elfNN_aarch64_local_htab_eq,
2601 NULL);
2602 ret->loc_hash_memory = objalloc_create ();
2603 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2604 {
2605 elfNN_aarch64_link_hash_table_free (abfd);
2606 return NULL;
2607 }
2608 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2609
2610 return &ret->root.root;
2611 }
2612
2613 static bfd_boolean
2614 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2615 bfd_vma offset, bfd_vma value)
2616 {
2617 reloc_howto_type *howto;
2618 bfd_vma place;
2619
2620 howto = elfNN_aarch64_howto_from_type (r_type);
2621 place = (input_section->output_section->vma + input_section->output_offset
2622 + offset);
2623
2624 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2625 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2626 return _bfd_aarch64_elf_put_addend (input_bfd,
2627 input_section->contents + offset, r_type,
2628 howto, value);
2629 }
2630
2631 static enum elf_aarch64_stub_type
2632 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2633 {
2634 if (aarch64_valid_for_adrp_p (value, place))
2635 return aarch64_stub_adrp_branch;
2636 return aarch64_stub_long_branch;
2637 }
2638
2639 /* Determine the type of stub needed, if any, for a call. */
2640
2641 static enum elf_aarch64_stub_type
2642 aarch64_type_of_stub (asection *input_sec,
2643 const Elf_Internal_Rela *rel,
2644 asection *sym_sec,
2645 unsigned char st_type,
2646 bfd_vma destination)
2647 {
2648 bfd_vma location;
2649 bfd_signed_vma branch_offset;
2650 unsigned int r_type;
2651 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2652
2653 if (st_type != STT_FUNC
2654 && (sym_sec == input_sec))
2655 return stub_type;
2656
2657 /* Determine where the call point is. */
2658 location = (input_sec->output_offset
2659 + input_sec->output_section->vma + rel->r_offset);
2660
2661 branch_offset = (bfd_signed_vma) (destination - location);
2662
2663 r_type = ELFNN_R_TYPE (rel->r_info);
2664
2665 /* We don't want to redirect any old unconditional jump in this way,
2666 only one which is being used for a sibcall, where it is
2667 acceptable for the IP0 and IP1 registers to be clobbered. */
2668 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2669 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2670 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2671 {
2672 stub_type = aarch64_stub_long_branch;
2673 }
2674
2675 return stub_type;
2676 }
2677
2678 /* Build a name for an entry in the stub hash table. */
2679
2680 static char *
2681 elfNN_aarch64_stub_name (const asection *input_section,
2682 const asection *sym_sec,
2683 const struct elf_aarch64_link_hash_entry *hash,
2684 const Elf_Internal_Rela *rel)
2685 {
2686 char *stub_name;
2687 bfd_size_type len;
2688
2689 if (hash)
2690 {
2691 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2692 stub_name = bfd_malloc (len);
2693 if (stub_name != NULL)
2694 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2695 (unsigned int) input_section->id,
2696 hash->root.root.root.string,
2697 rel->r_addend);
2698 }
2699 else
2700 {
2701 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2702 stub_name = bfd_malloc (len);
2703 if (stub_name != NULL)
2704 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2705 (unsigned int) input_section->id,
2706 (unsigned int) sym_sec->id,
2707 (unsigned int) ELFNN_R_SYM (rel->r_info),
2708 rel->r_addend);
2709 }
2710
2711 return stub_name;
2712 }
2713
2714 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
2715 executable PLT slots where the executable never takes the address of those
2716 functions, the function symbols are not added to the hash table. */
2717
2718 static bfd_boolean
2719 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
2720 {
2721 if (h->plt.offset != (bfd_vma) -1
2722 && !h->def_regular
2723 && !h->pointer_equality_needed)
2724 return FALSE;
2725
2726 return _bfd_elf_hash_symbol (h);
2727 }
2728
2729
2730 /* Look up an entry in the stub hash. Stub entries are cached because
2731 creating the stub name takes a bit of time. */
2732
2733 static struct elf_aarch64_stub_hash_entry *
2734 elfNN_aarch64_get_stub_entry (const asection *input_section,
2735 const asection *sym_sec,
2736 struct elf_link_hash_entry *hash,
2737 const Elf_Internal_Rela *rel,
2738 struct elf_aarch64_link_hash_table *htab)
2739 {
2740 struct elf_aarch64_stub_hash_entry *stub_entry;
2741 struct elf_aarch64_link_hash_entry *h =
2742 (struct elf_aarch64_link_hash_entry *) hash;
2743 const asection *id_sec;
2744
2745 if ((input_section->flags & SEC_CODE) == 0)
2746 return NULL;
2747
2748 /* If this input section is part of a group of sections sharing one
2749 stub section, then use the id of the first section in the group.
2750 Stub names need to include a section id, as there may well be
2751 more than one stub used to reach say, printf, and we need to
2752 distinguish between them. */
2753 id_sec = htab->stub_group[input_section->id].link_sec;
2754
2755 if (h != NULL && h->stub_cache != NULL
2756 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2757 {
2758 stub_entry = h->stub_cache;
2759 }
2760 else
2761 {
2762 char *stub_name;
2763
2764 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2765 if (stub_name == NULL)
2766 return NULL;
2767
2768 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2769 stub_name, FALSE, FALSE);
2770 if (h != NULL)
2771 h->stub_cache = stub_entry;
2772
2773 free (stub_name);
2774 }
2775
2776 return stub_entry;
2777 }
2778
2779
2780 /* Create a stub section. */
2781
2782 static asection *
2783 _bfd_aarch64_create_stub_section (asection *section,
2784 struct elf_aarch64_link_hash_table *htab)
2785 {
2786 size_t namelen;
2787 bfd_size_type len;
2788 char *s_name;
2789
2790 namelen = strlen (section->name);
2791 len = namelen + sizeof (STUB_SUFFIX);
2792 s_name = bfd_alloc (htab->stub_bfd, len);
2793 if (s_name == NULL)
2794 return NULL;
2795
2796 memcpy (s_name, section->name, namelen);
2797 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2798 return (*htab->add_stub_section) (s_name, section);
2799 }
2800
2801
2802 /* Find or create a stub section for a link section.
2803
2804 Fix or create the stub section used to collect stubs attached to
2805 the specified link section. */
2806
2807 static asection *
2808 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
2809 struct elf_aarch64_link_hash_table *htab)
2810 {
2811 if (htab->stub_group[link_section->id].stub_sec == NULL)
2812 htab->stub_group[link_section->id].stub_sec
2813 = _bfd_aarch64_create_stub_section (link_section, htab);
2814 return htab->stub_group[link_section->id].stub_sec;
2815 }
2816
2817
2818 /* Find or create a stub section in the stub group for an input
2819 section. */
2820
2821 static asection *
2822 _bfd_aarch64_create_or_find_stub_sec (asection *section,
2823 struct elf_aarch64_link_hash_table *htab)
2824 {
2825 asection *link_sec = htab->stub_group[section->id].link_sec;
2826 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
2827 }
2828
2829
2830 /* Add a new stub entry in the stub group associated with an input
2831 section to the stub hash. Not all fields of the new stub entry are
2832 initialised. */
2833
2834 static struct elf_aarch64_stub_hash_entry *
2835 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2836 asection *section,
2837 struct elf_aarch64_link_hash_table *htab)
2838 {
2839 asection *link_sec;
2840 asection *stub_sec;
2841 struct elf_aarch64_stub_hash_entry *stub_entry;
2842
2843 link_sec = htab->stub_group[section->id].link_sec;
2844 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2845
2846 /* Enter this entry into the linker stub hash table. */
2847 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2848 TRUE, FALSE);
2849 if (stub_entry == NULL)
2850 {
2851 /* xgettext:c-format */
2852 _bfd_error_handler (_("%B: cannot create stub entry %s"),
2853 section->owner, stub_name);
2854 return NULL;
2855 }
2856
2857 stub_entry->stub_sec = stub_sec;
2858 stub_entry->stub_offset = 0;
2859 stub_entry->id_sec = link_sec;
2860
2861 return stub_entry;
2862 }
2863
2864 /* Add a new stub entry in the final stub section to the stub hash.
2865 Not all fields of the new stub entry are initialised. */
2866
2867 static struct elf_aarch64_stub_hash_entry *
2868 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
2869 asection *link_section,
2870 struct elf_aarch64_link_hash_table *htab)
2871 {
2872 asection *stub_sec;
2873 struct elf_aarch64_stub_hash_entry *stub_entry;
2874
2875 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2876 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2877 TRUE, FALSE);
2878 if (stub_entry == NULL)
2879 {
2880 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
2881 return NULL;
2882 }
2883
2884 stub_entry->stub_sec = stub_sec;
2885 stub_entry->stub_offset = 0;
2886 stub_entry->id_sec = link_section;
2887
2888 return stub_entry;
2889 }
2890
2891
2892 static bfd_boolean
2893 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2894 void *in_arg ATTRIBUTE_UNUSED)
2895 {
2896 struct elf_aarch64_stub_hash_entry *stub_entry;
2897 asection *stub_sec;
2898 bfd *stub_bfd;
2899 bfd_byte *loc;
2900 bfd_vma sym_value;
2901 bfd_vma veneered_insn_loc;
2902 bfd_vma veneer_entry_loc;
2903 bfd_signed_vma branch_offset = 0;
2904 unsigned int template_size;
2905 const uint32_t *template;
2906 unsigned int i;
2907
2908 /* Massage our args to the form they really have. */
2909 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2910
2911 stub_sec = stub_entry->stub_sec;
2912
2913 /* Make a note of the offset within the stubs for this entry. */
2914 stub_entry->stub_offset = stub_sec->size;
2915 loc = stub_sec->contents + stub_entry->stub_offset;
2916
2917 stub_bfd = stub_sec->owner;
2918
2919 /* This is the address of the stub destination. */
2920 sym_value = (stub_entry->target_value
2921 + stub_entry->target_section->output_offset
2922 + stub_entry->target_section->output_section->vma);
2923
2924 if (stub_entry->stub_type == aarch64_stub_long_branch)
2925 {
2926 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2927 + stub_sec->output_offset);
2928
2929 /* See if we can relax the stub. */
2930 if (aarch64_valid_for_adrp_p (sym_value, place))
2931 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2932 }
2933
2934 switch (stub_entry->stub_type)
2935 {
2936 case aarch64_stub_adrp_branch:
2937 template = aarch64_adrp_branch_stub;
2938 template_size = sizeof (aarch64_adrp_branch_stub);
2939 break;
2940 case aarch64_stub_long_branch:
2941 template = aarch64_long_branch_stub;
2942 template_size = sizeof (aarch64_long_branch_stub);
2943 break;
2944 case aarch64_stub_erratum_835769_veneer:
2945 template = aarch64_erratum_835769_stub;
2946 template_size = sizeof (aarch64_erratum_835769_stub);
2947 break;
2948 case aarch64_stub_erratum_843419_veneer:
2949 template = aarch64_erratum_843419_stub;
2950 template_size = sizeof (aarch64_erratum_843419_stub);
2951 break;
2952 default:
2953 abort ();
2954 }
2955
2956 for (i = 0; i < (template_size / sizeof template[0]); i++)
2957 {
2958 bfd_putl32 (template[i], loc);
2959 loc += 4;
2960 }
2961
2962 template_size = (template_size + 7) & ~7;
2963 stub_sec->size += template_size;
2964
2965 switch (stub_entry->stub_type)
2966 {
2967 case aarch64_stub_adrp_branch:
2968 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2969 stub_entry->stub_offset, sym_value))
2970 /* The stub would not have been relaxed if the offset was out
2971 of range. */
2972 BFD_FAIL ();
2973
2974 if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2975 stub_entry->stub_offset + 4, sym_value))
2976 BFD_FAIL ();
2977 break;
2978
2979 case aarch64_stub_long_branch:
2980 /* We want the value relative to the address 12 bytes back from the
2981 value itself. */
2982 if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2983 stub_entry->stub_offset + 16, sym_value + 12))
2984 BFD_FAIL ();
2985 break;
2986
2987 case aarch64_stub_erratum_835769_veneer:
2988 veneered_insn_loc = stub_entry->target_section->output_section->vma
2989 + stub_entry->target_section->output_offset
2990 + stub_entry->target_value;
2991 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2992 + stub_entry->stub_sec->output_offset
2993 + stub_entry->stub_offset;
2994 branch_offset = veneered_insn_loc - veneer_entry_loc;
2995 branch_offset >>= 2;
2996 branch_offset &= 0x3ffffff;
2997 bfd_putl32 (stub_entry->veneered_insn,
2998 stub_sec->contents + stub_entry->stub_offset);
2999 bfd_putl32 (template[1] | branch_offset,
3000 stub_sec->contents + stub_entry->stub_offset + 4);
3001 break;
3002
3003 case aarch64_stub_erratum_843419_veneer:
3004 if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3005 stub_entry->stub_offset + 4, sym_value + 4))
3006 BFD_FAIL ();
3007 break;
3008
3009 default:
3010 abort ();
3011 }
3012
3013 return TRUE;
3014 }
3015
3016 /* As above, but don't actually build the stub. Just bump offset so
3017 we know stub section sizes. */
3018
3019 static bfd_boolean
3020 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3021 void *in_arg ATTRIBUTE_UNUSED)
3022 {
3023 struct elf_aarch64_stub_hash_entry *stub_entry;
3024 int size;
3025
3026 /* Massage our args to the form they really have. */
3027 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3028
3029 switch (stub_entry->stub_type)
3030 {
3031 case aarch64_stub_adrp_branch:
3032 size = sizeof (aarch64_adrp_branch_stub);
3033 break;
3034 case aarch64_stub_long_branch:
3035 size = sizeof (aarch64_long_branch_stub);
3036 break;
3037 case aarch64_stub_erratum_835769_veneer:
3038 size = sizeof (aarch64_erratum_835769_stub);
3039 break;
3040 case aarch64_stub_erratum_843419_veneer:
3041 size = sizeof (aarch64_erratum_843419_stub);
3042 break;
3043 default:
3044 abort ();
3045 }
3046
3047 size = (size + 7) & ~7;
3048 stub_entry->stub_sec->size += size;
3049 return TRUE;
3050 }
3051
3052 /* External entry points for sizing and building linker stubs. */
3053
3054 /* Set up various things so that we can make a list of input sections
3055 for each output section included in the link. Returns -1 on error,
3056 0 when no stubs will be needed, and 1 on success. */
3057
3058 int
3059 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3060 struct bfd_link_info *info)
3061 {
3062 bfd *input_bfd;
3063 unsigned int bfd_count;
3064 unsigned int top_id, top_index;
3065 asection *section;
3066 asection **input_list, **list;
3067 bfd_size_type amt;
3068 struct elf_aarch64_link_hash_table *htab =
3069 elf_aarch64_hash_table (info);
3070
3071 if (!is_elf_hash_table (htab))
3072 return 0;
3073
3074 /* Count the number of input BFDs and find the top input section id. */
3075 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3076 input_bfd != NULL; input_bfd = input_bfd->link.next)
3077 {
3078 bfd_count += 1;
3079 for (section = input_bfd->sections;
3080 section != NULL; section = section->next)
3081 {
3082 if (top_id < section->id)
3083 top_id = section->id;
3084 }
3085 }
3086 htab->bfd_count = bfd_count;
3087
3088 amt = sizeof (struct map_stub) * (top_id + 1);
3089 htab->stub_group = bfd_zmalloc (amt);
3090 if (htab->stub_group == NULL)
3091 return -1;
3092
3093 /* We can't use output_bfd->section_count here to find the top output
3094 section index as some sections may have been removed, and
3095 _bfd_strip_section_from_output doesn't renumber the indices. */
3096 for (section = output_bfd->sections, top_index = 0;
3097 section != NULL; section = section->next)
3098 {
3099 if (top_index < section->index)
3100 top_index = section->index;
3101 }
3102
3103 htab->top_index = top_index;
3104 amt = sizeof (asection *) * (top_index + 1);
3105 input_list = bfd_malloc (amt);
3106 htab->input_list = input_list;
3107 if (input_list == NULL)
3108 return -1;
3109
3110 /* For sections we aren't interested in, mark their entries with a
3111 value we can check later. */
3112 list = input_list + top_index;
3113 do
3114 *list = bfd_abs_section_ptr;
3115 while (list-- != input_list);
3116
3117 for (section = output_bfd->sections;
3118 section != NULL; section = section->next)
3119 {
3120 if ((section->flags & SEC_CODE) != 0)
3121 input_list[section->index] = NULL;
3122 }
3123
3124 return 1;
3125 }
3126
3127 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3128 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3129
3130 /* The linker repeatedly calls this function for each input section,
3131 in the order that input sections are linked into output sections.
3132 Build lists of input sections to determine groupings between which
3133 we may insert linker stubs. */
3134
3135 void
3136 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3137 {
3138 struct elf_aarch64_link_hash_table *htab =
3139 elf_aarch64_hash_table (info);
3140
3141 if (isec->output_section->index <= htab->top_index)
3142 {
3143 asection **list = htab->input_list + isec->output_section->index;
3144
3145 if (*list != bfd_abs_section_ptr)
3146 {
3147 /* Steal the link_sec pointer for our list. */
3148 /* This happens to make the list in reverse order,
3149 which is what we want. */
3150 PREV_SEC (isec) = *list;
3151 *list = isec;
3152 }
3153 }
3154 }
3155
3156 /* See whether we can group stub sections together. Grouping stub
3157 sections may result in fewer stubs. More importantly, we need to
3158 put all .init* and .fini* stubs at the beginning of the .init or
3159 .fini output sections respectively, because glibc splits the
3160 _init and _fini functions into multiple parts. Putting a stub in
3161 the middle of a function is not a good idea. */
3162
3163 static void
3164 group_sections (struct elf_aarch64_link_hash_table *htab,
3165 bfd_size_type stub_group_size,
3166 bfd_boolean stubs_always_before_branch)
3167 {
3168 asection **list = htab->input_list + htab->top_index;
3169
3170 do
3171 {
3172 asection *tail = *list;
3173
3174 if (tail == bfd_abs_section_ptr)
3175 continue;
3176
3177 while (tail != NULL)
3178 {
3179 asection *curr;
3180 asection *prev;
3181 bfd_size_type total;
3182
3183 curr = tail;
3184 total = tail->size;
3185 while ((prev = PREV_SEC (curr)) != NULL
3186 && ((total += curr->output_offset - prev->output_offset)
3187 < stub_group_size))
3188 curr = prev;
3189
3190 /* OK, the size from the start of CURR to the end is less
3191 than stub_group_size and thus can be handled by one stub
3192 section. (Or the tail section is itself larger than
3193 stub_group_size, in which case we may be toast.)
3194 We should really be keeping track of the total size of
3195 stubs added here, as stubs contribute to the final output
3196 section size. */
3197 do
3198 {
3199 prev = PREV_SEC (tail);
3200 /* Set up this stub group. */
3201 htab->stub_group[tail->id].link_sec = curr;
3202 }
3203 while (tail != curr && (tail = prev) != NULL);
3204
3205 /* But wait, there's more! Input sections up to stub_group_size
3206 bytes before the stub section can be handled by it too. */
3207 if (!stubs_always_before_branch)
3208 {
3209 total = 0;
3210 while (prev != NULL
3211 && ((total += tail->output_offset - prev->output_offset)
3212 < stub_group_size))
3213 {
3214 tail = prev;
3215 prev = PREV_SEC (tail);
3216 htab->stub_group[tail->id].link_sec = curr;
3217 }
3218 }
3219 tail = prev;
3220 }
3221 }
3222 while (list-- != htab->input_list);
3223
3224 free (htab->input_list);
3225 }
3226
3227 #undef PREV_SEC
3228
3229 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3230
3231 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3232 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3233 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3234 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3235 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3236 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3237
3238 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3239 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3240 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3241 #define AARCH64_ZR 0x1f
3242
3243 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3244 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3245
3246 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3247 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3248 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3249 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3250 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3251 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3252 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3253 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3254 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3255 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3256 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3257 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3258 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3259 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3260 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3261 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3262 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3263 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3264
3265 /* Classify an INSN if it is indeed a load/store.
3266
3267 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3268
3269 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3270 is set equal to RT.
3271
3272 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3273
3274 static bfd_boolean
3275 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3276 bfd_boolean *pair, bfd_boolean *load)
3277 {
3278 uint32_t opcode;
3279 unsigned int r;
3280 uint32_t opc = 0;
3281 uint32_t v = 0;
3282 uint32_t opc_v = 0;
3283
3284 /* Bail out quickly if INSN doesn't fall into the load-store
3285 encoding space. */
3286 if (!AARCH64_LDST (insn))
3287 return FALSE;
3288
3289 *pair = FALSE;
3290 *load = FALSE;
3291 if (AARCH64_LDST_EX (insn))
3292 {
3293 *rt = AARCH64_RT (insn);
3294 *rt2 = *rt;
3295 if (AARCH64_BIT (insn, 21) == 1)
3296 {
3297 *pair = TRUE;
3298 *rt2 = AARCH64_RT2 (insn);
3299 }
3300 *load = AARCH64_LD (insn);
3301 return TRUE;
3302 }
3303 else if (AARCH64_LDST_NAP (insn)
3304 || AARCH64_LDSTP_PI (insn)
3305 || AARCH64_LDSTP_O (insn)
3306 || AARCH64_LDSTP_PRE (insn))
3307 {
3308 *pair = TRUE;
3309 *rt = AARCH64_RT (insn);
3310 *rt2 = AARCH64_RT2 (insn);
3311 *load = AARCH64_LD (insn);
3312 return TRUE;
3313 }
3314 else if (AARCH64_LDST_PCREL (insn)
3315 || AARCH64_LDST_UI (insn)
3316 || AARCH64_LDST_PIIMM (insn)
3317 || AARCH64_LDST_U (insn)
3318 || AARCH64_LDST_PREIMM (insn)
3319 || AARCH64_LDST_RO (insn)
3320 || AARCH64_LDST_UIMM (insn))
3321 {
3322 *rt = AARCH64_RT (insn);
3323 *rt2 = *rt;
3324 if (AARCH64_LDST_PCREL (insn))
3325 *load = TRUE;
3326 opc = AARCH64_BITS (insn, 22, 2);
3327 v = AARCH64_BIT (insn, 26);
3328 opc_v = opc | (v << 2);
3329 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3330 || opc_v == 5 || opc_v == 7);
3331 return TRUE;
3332 }
3333 else if (AARCH64_LDST_SIMD_M (insn)
3334 || AARCH64_LDST_SIMD_M_PI (insn))
3335 {
3336 *rt = AARCH64_RT (insn);
3337 *load = AARCH64_BIT (insn, 22);
3338 opcode = (insn >> 12) & 0xf;
3339 switch (opcode)
3340 {
3341 case 0:
3342 case 2:
3343 *rt2 = *rt + 3;
3344 break;
3345
3346 case 4:
3347 case 6:
3348 *rt2 = *rt + 2;
3349 break;
3350
3351 case 7:
3352 *rt2 = *rt;
3353 break;
3354
3355 case 8:
3356 case 10:
3357 *rt2 = *rt + 1;
3358 break;
3359
3360 default:
3361 return FALSE;
3362 }
3363 return TRUE;
3364 }
3365 else if (AARCH64_LDST_SIMD_S (insn)
3366 || AARCH64_LDST_SIMD_S_PI (insn))
3367 {
3368 *rt = AARCH64_RT (insn);
3369 r = (insn >> 21) & 1;
3370 *load = AARCH64_BIT (insn, 22);
3371 opcode = (insn >> 13) & 0x7;
3372 switch (opcode)
3373 {
3374 case 0:
3375 case 2:
3376 case 4:
3377 *rt2 = *rt + r;
3378 break;
3379
3380 case 1:
3381 case 3:
3382 case 5:
3383 *rt2 = *rt + (r == 0 ? 2 : 3);
3384 break;
3385
3386 case 6:
3387 *rt2 = *rt + r;
3388 break;
3389
3390 case 7:
3391 *rt2 = *rt + (r == 0 ? 2 : 3);
3392 break;
3393
3394 default:
3395 return FALSE;
3396 }
3397 return TRUE;
3398 }
3399
3400 return FALSE;
3401 }
3402
3403 /* Return TRUE if INSN is multiply-accumulate. */
3404
3405 static bfd_boolean
3406 aarch64_mlxl_p (uint32_t insn)
3407 {
3408 uint32_t op31 = AARCH64_OP31 (insn);
3409
3410 if (AARCH64_MAC (insn)
3411 && (op31 == 0 || op31 == 1 || op31 == 5)
3412 /* Exclude MUL instructions which are encoded as a multiple accumulate
3413 with RA = XZR. */
3414 && AARCH64_RA (insn) != AARCH64_ZR)
3415 return TRUE;
3416
3417 return FALSE;
3418 }
3419
3420 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3421 it is possible for a 64-bit multiply-accumulate instruction to generate an
3422 incorrect result. The details are quite complex and hard to
3423 determine statically, since branches in the code may exist in some
3424 circumstances, but all cases end with a memory (load, store, or
3425 prefetch) instruction followed immediately by the multiply-accumulate
3426 operation. We employ a linker patching technique, by moving the potentially
3427 affected multiply-accumulate instruction into a patch region and replacing
3428 the original instruction with a branch to the patch. This function checks
3429 if INSN_1 is the memory operation followed by a multiply-accumulate
3430 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3431 if INSN_1 and INSN_2 are safe. */
3432
3433 static bfd_boolean
3434 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3435 {
3436 uint32_t rt;
3437 uint32_t rt2;
3438 uint32_t rn;
3439 uint32_t rm;
3440 uint32_t ra;
3441 bfd_boolean pair;
3442 bfd_boolean load;
3443
3444 if (aarch64_mlxl_p (insn_2)
3445 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3446 {
3447 /* Any SIMD memory op is independent of the subsequent MLA
3448 by definition of the erratum. */
3449 if (AARCH64_BIT (insn_1, 26))
3450 return TRUE;
3451
3452 /* If not SIMD, check for integer memory ops and MLA relationship. */
3453 rn = AARCH64_RN (insn_2);
3454 ra = AARCH64_RA (insn_2);
3455 rm = AARCH64_RM (insn_2);
3456
3457 /* If this is a load and there's a true(RAW) dependency, we are safe
3458 and this is not an erratum sequence. */
3459 if (load &&
3460 (rt == rn || rt == rm || rt == ra
3461 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3462 return FALSE;
3463
3464 /* We conservatively put out stubs for all other cases (including
3465 writebacks). */
3466 return TRUE;
3467 }
3468
3469 return FALSE;
3470 }
3471
3472 /* Used to order a list of mapping symbols by address. */
3473
3474 static int
3475 elf_aarch64_compare_mapping (const void *a, const void *b)
3476 {
3477 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3478 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3479
3480 if (amap->vma > bmap->vma)
3481 return 1;
3482 else if (amap->vma < bmap->vma)
3483 return -1;
3484 else if (amap->type > bmap->type)
3485 /* Ensure results do not depend on the host qsort for objects with
3486 multiple mapping symbols at the same address by sorting on type
3487 after vma. */
3488 return 1;
3489 else if (amap->type < bmap->type)
3490 return -1;
3491 else
3492 return 0;
3493 }
3494
3495
3496 static char *
3497 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3498 {
3499 char *stub_name = (char *) bfd_malloc
3500 (strlen ("__erratum_835769_veneer_") + 16);
3501 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3502 return stub_name;
3503 }
3504
3505 /* Scan for Cortex-A53 erratum 835769 sequence.
3506
3507 Return TRUE else FALSE on abnormal termination. */
3508
3509 static bfd_boolean
3510 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3511 struct bfd_link_info *info,
3512 unsigned int *num_fixes_p)
3513 {
3514 asection *section;
3515 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3516 unsigned int num_fixes = *num_fixes_p;
3517
3518 if (htab == NULL)
3519 return TRUE;
3520
3521 for (section = input_bfd->sections;
3522 section != NULL;
3523 section = section->next)
3524 {
3525 bfd_byte *contents = NULL;
3526 struct _aarch64_elf_section_data *sec_data;
3527 unsigned int span;
3528
3529 if (elf_section_type (section) != SHT_PROGBITS
3530 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3531 || (section->flags & SEC_EXCLUDE) != 0
3532 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3533 || (section->output_section == bfd_abs_section_ptr))
3534 continue;
3535
3536 if (elf_section_data (section)->this_hdr.contents != NULL)
3537 contents = elf_section_data (section)->this_hdr.contents;
3538 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3539 return FALSE;
3540
3541 sec_data = elf_aarch64_section_data (section);
3542
3543 qsort (sec_data->map, sec_data->mapcount,
3544 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3545
3546 for (span = 0; span < sec_data->mapcount; span++)
3547 {
3548 unsigned int span_start = sec_data->map[span].vma;
3549 unsigned int span_end = ((span == sec_data->mapcount - 1)
3550 ? sec_data->map[0].vma + section->size
3551 : sec_data->map[span + 1].vma);
3552 unsigned int i;
3553 char span_type = sec_data->map[span].type;
3554
3555 if (span_type == 'd')
3556 continue;
3557
3558 for (i = span_start; i + 4 < span_end; i += 4)
3559 {
3560 uint32_t insn_1 = bfd_getl32 (contents + i);
3561 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3562
3563 if (aarch64_erratum_sequence (insn_1, insn_2))
3564 {
3565 struct elf_aarch64_stub_hash_entry *stub_entry;
3566 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3567 if (! stub_name)
3568 return FALSE;
3569
3570 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3571 section,
3572 htab);
3573 if (! stub_entry)
3574 return FALSE;
3575
3576 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3577 stub_entry->target_section = section;
3578 stub_entry->target_value = i + 4;
3579 stub_entry->veneered_insn = insn_2;
3580 stub_entry->output_name = stub_name;
3581 num_fixes++;
3582 }
3583 }
3584 }
3585 if (elf_section_data (section)->this_hdr.contents == NULL)
3586 free (contents);
3587 }
3588
3589 *num_fixes_p = num_fixes;
3590
3591 return TRUE;
3592 }
3593
3594
3595 /* Test if instruction INSN is ADRP. */
3596
3597 static bfd_boolean
3598 _bfd_aarch64_adrp_p (uint32_t insn)
3599 {
3600 return ((insn & 0x9f000000) == 0x90000000);
3601 }
3602
3603
3604 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3605
3606 static bfd_boolean
3607 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3608 uint32_t insn_3)
3609 {
3610 uint32_t rt;
3611 uint32_t rt2;
3612 bfd_boolean pair;
3613 bfd_boolean load;
3614
3615 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3616 && (!pair
3617 || (pair && !load))
3618 && AARCH64_LDST_UIMM (insn_3)
3619 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3620 }
3621
3622
3623 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3624
3625 Return TRUE if section CONTENTS at offset I contains one of the
3626 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3627 seen set P_VENEER_I to the offset of the final LOAD/STORE
3628 instruction in the sequence.
3629 */
3630
3631 static bfd_boolean
3632 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3633 bfd_vma i, bfd_vma span_end,
3634 bfd_vma *p_veneer_i)
3635 {
3636 uint32_t insn_1 = bfd_getl32 (contents + i);
3637
3638 if (!_bfd_aarch64_adrp_p (insn_1))
3639 return FALSE;
3640
3641 if (span_end < i + 12)
3642 return FALSE;
3643
3644 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3645 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3646
3647 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3648 return FALSE;
3649
3650 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3651 {
3652 *p_veneer_i = i + 8;
3653 return TRUE;
3654 }
3655
3656 if (span_end < i + 16)
3657 return FALSE;
3658
3659 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3660
3661 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3662 {
3663 *p_veneer_i = i + 12;
3664 return TRUE;
3665 }
3666
3667 return FALSE;
3668 }
3669
3670
3671 /* Resize all stub sections. */
3672
3673 static void
3674 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3675 {
3676 asection *section;
3677
3678 /* OK, we've added some stubs. Find out the new size of the
3679 stub sections. */
3680 for (section = htab->stub_bfd->sections;
3681 section != NULL; section = section->next)
3682 {
3683 /* Ignore non-stub sections. */
3684 if (!strstr (section->name, STUB_SUFFIX))
3685 continue;
3686 section->size = 0;
3687 }
3688
3689 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3690
3691 for (section = htab->stub_bfd->sections;
3692 section != NULL; section = section->next)
3693 {
3694 if (!strstr (section->name, STUB_SUFFIX))
3695 continue;
3696
3697 if (section->size)
3698 section->size += 4;
3699
3700 /* Ensure all stub sections have a size which is a multiple of
3701 4096. This is important in order to ensure that the insertion
3702 of stub sections does not in itself move existing code around
3703 in such a way that new errata sequences are created. */
3704 if (htab->fix_erratum_843419)
3705 if (section->size)
3706 section->size = BFD_ALIGN (section->size, 0x1000);
3707 }
3708 }
3709
3710
3711 /* Construct an erratum 843419 workaround stub name.
3712 */
3713
3714 static char *
3715 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3716 bfd_vma offset)
3717 {
3718 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3719 char *stub_name = bfd_malloc (len);
3720
3721 if (stub_name != NULL)
3722 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3723 input_section->owner->id,
3724 input_section->id,
3725 offset);
3726 return stub_name;
3727 }
3728
3729 /* Build a stub_entry structure describing an 843419 fixup.
3730
3731 The stub_entry constructed is populated with the bit pattern INSN
3732 of the instruction located at OFFSET within input SECTION.
3733
3734 Returns TRUE on success. */
3735
3736 static bfd_boolean
3737 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3738 bfd_vma adrp_offset,
3739 bfd_vma ldst_offset,
3740 asection *section,
3741 struct bfd_link_info *info)
3742 {
3743 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3744 char *stub_name;
3745 struct elf_aarch64_stub_hash_entry *stub_entry;
3746
3747 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3748 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3749 FALSE, FALSE);
3750 if (stub_entry)
3751 {
3752 free (stub_name);
3753 return TRUE;
3754 }
3755
3756 /* We always place an 843419 workaround veneer in the stub section
3757 attached to the input section in which an erratum sequence has
3758 been found. This ensures that later in the link process (in
3759 elfNN_aarch64_write_section) when we copy the veneered
3760 instruction from the input section into the stub section the
3761 copied instruction will have had any relocations applied to it.
3762 If we placed workaround veneers in any other stub section then we
3763 could not assume that all relocations have been processed on the
3764 corresponding input section at the point we output the stub
3765 section.
3766 */
3767
3768 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3769 if (stub_entry == NULL)
3770 {
3771 free (stub_name);
3772 return FALSE;
3773 }
3774
3775 stub_entry->adrp_offset = adrp_offset;
3776 stub_entry->target_value = ldst_offset;
3777 stub_entry->target_section = section;
3778 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3779 stub_entry->veneered_insn = insn;
3780 stub_entry->output_name = stub_name;
3781
3782 return TRUE;
3783 }
3784
3785
3786 /* Scan an input section looking for the signature of erratum 843419.
3787
3788 Scans input SECTION in INPUT_BFD looking for erratum 843419
3789 signatures, for each signature found a stub_entry is created
3790 describing the location of the erratum for subsequent fixup.
3791
3792 Return TRUE on successful scan, FALSE on failure to scan.
3793 */
3794
3795 static bfd_boolean
3796 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3797 struct bfd_link_info *info)
3798 {
3799 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3800
3801 if (htab == NULL)
3802 return TRUE;
3803
3804 if (elf_section_type (section) != SHT_PROGBITS
3805 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3806 || (section->flags & SEC_EXCLUDE) != 0
3807 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3808 || (section->output_section == bfd_abs_section_ptr))
3809 return TRUE;
3810
3811 do
3812 {
3813 bfd_byte *contents = NULL;
3814 struct _aarch64_elf_section_data *sec_data;
3815 unsigned int span;
3816
3817 if (elf_section_data (section)->this_hdr.contents != NULL)
3818 contents = elf_section_data (section)->this_hdr.contents;
3819 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3820 return FALSE;
3821
3822 sec_data = elf_aarch64_section_data (section);
3823
3824 qsort (sec_data->map, sec_data->mapcount,
3825 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3826
3827 for (span = 0; span < sec_data->mapcount; span++)
3828 {
3829 unsigned int span_start = sec_data->map[span].vma;
3830 unsigned int span_end = ((span == sec_data->mapcount - 1)
3831 ? sec_data->map[0].vma + section->size
3832 : sec_data->map[span + 1].vma);
3833 unsigned int i;
3834 char span_type = sec_data->map[span].type;
3835
3836 if (span_type == 'd')
3837 continue;
3838
3839 for (i = span_start; i + 8 < span_end; i += 4)
3840 {
3841 bfd_vma vma = (section->output_section->vma
3842 + section->output_offset
3843 + i);
3844 bfd_vma veneer_i;
3845
3846 if (_bfd_aarch64_erratum_843419_p
3847 (contents, vma, i, span_end, &veneer_i))
3848 {
3849 uint32_t insn = bfd_getl32 (contents + veneer_i);
3850
3851 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3852 section, info))
3853 return FALSE;
3854 }
3855 }
3856 }
3857
3858 if (elf_section_data (section)->this_hdr.contents == NULL)
3859 free (contents);
3860 }
3861 while (0);
3862
3863 return TRUE;
3864 }
3865
3866
3867 /* Determine and set the size of the stub section for a final link.
3868
3869 The basic idea here is to examine all the relocations looking for
3870 PC-relative calls to a target that is unreachable with a "bl"
3871 instruction. */
3872
3873 bfd_boolean
3874 elfNN_aarch64_size_stubs (bfd *output_bfd,
3875 bfd *stub_bfd,
3876 struct bfd_link_info *info,
3877 bfd_signed_vma group_size,
3878 asection * (*add_stub_section) (const char *,
3879 asection *),
3880 void (*layout_sections_again) (void))
3881 {
3882 bfd_size_type stub_group_size;
3883 bfd_boolean stubs_always_before_branch;
3884 bfd_boolean stub_changed = FALSE;
3885 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3886 unsigned int num_erratum_835769_fixes = 0;
3887
3888 /* Propagate mach to stub bfd, because it may not have been
3889 finalized when we created stub_bfd. */
3890 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3891 bfd_get_mach (output_bfd));
3892
3893 /* Stash our params away. */
3894 htab->stub_bfd = stub_bfd;
3895 htab->add_stub_section = add_stub_section;
3896 htab->layout_sections_again = layout_sections_again;
3897 stubs_always_before_branch = group_size < 0;
3898 if (group_size < 0)
3899 stub_group_size = -group_size;
3900 else
3901 stub_group_size = group_size;
3902
3903 if (stub_group_size == 1)
3904 {
3905 /* Default values. */
3906 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
3907 stub_group_size = 127 * 1024 * 1024;
3908 }
3909
3910 group_sections (htab, stub_group_size, stubs_always_before_branch);
3911
3912 (*htab->layout_sections_again) ();
3913
3914 if (htab->fix_erratum_835769)
3915 {
3916 bfd *input_bfd;
3917
3918 for (input_bfd = info->input_bfds;
3919 input_bfd != NULL; input_bfd = input_bfd->link.next)
3920 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3921 &num_erratum_835769_fixes))
3922 return FALSE;
3923
3924 _bfd_aarch64_resize_stubs (htab);
3925 (*htab->layout_sections_again) ();
3926 }
3927
3928 if (htab->fix_erratum_843419)
3929 {
3930 bfd *input_bfd;
3931
3932 for (input_bfd = info->input_bfds;
3933 input_bfd != NULL;
3934 input_bfd = input_bfd->link.next)
3935 {
3936 asection *section;
3937
3938 for (section = input_bfd->sections;
3939 section != NULL;
3940 section = section->next)
3941 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3942 return FALSE;
3943 }
3944
3945 _bfd_aarch64_resize_stubs (htab);
3946 (*htab->layout_sections_again) ();
3947 }
3948
3949 while (1)
3950 {
3951 bfd *input_bfd;
3952
3953 for (input_bfd = info->input_bfds;
3954 input_bfd != NULL; input_bfd = input_bfd->link.next)
3955 {
3956 Elf_Internal_Shdr *symtab_hdr;
3957 asection *section;
3958 Elf_Internal_Sym *local_syms = NULL;
3959
3960 /* We'll need the symbol table in a second. */
3961 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3962 if (symtab_hdr->sh_info == 0)
3963 continue;
3964
3965 /* Walk over each section attached to the input bfd. */
3966 for (section = input_bfd->sections;
3967 section != NULL; section = section->next)
3968 {
3969 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3970
3971 /* If there aren't any relocs, then there's nothing more
3972 to do. */
3973 if ((section->flags & SEC_RELOC) == 0
3974 || section->reloc_count == 0
3975 || (section->flags & SEC_CODE) == 0)
3976 continue;
3977
3978 /* If this section is a link-once section that will be
3979 discarded, then don't create any stubs. */
3980 if (section->output_section == NULL
3981 || section->output_section->owner != output_bfd)
3982 continue;
3983
3984 /* Get the relocs. */
3985 internal_relocs
3986 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3987 NULL, info->keep_memory);
3988 if (internal_relocs == NULL)
3989 goto error_ret_free_local;
3990
3991 /* Now examine each relocation. */
3992 irela = internal_relocs;
3993 irelaend = irela + section->reloc_count;
3994 for (; irela < irelaend; irela++)
3995 {
3996 unsigned int r_type, r_indx;
3997 enum elf_aarch64_stub_type stub_type;
3998 struct elf_aarch64_stub_hash_entry *stub_entry;
3999 asection *sym_sec;
4000 bfd_vma sym_value;
4001 bfd_vma destination;
4002 struct elf_aarch64_link_hash_entry *hash;
4003 const char *sym_name;
4004 char *stub_name;
4005 const asection *id_sec;
4006 unsigned char st_type;
4007 bfd_size_type len;
4008
4009 r_type = ELFNN_R_TYPE (irela->r_info);
4010 r_indx = ELFNN_R_SYM (irela->r_info);
4011
4012 if (r_type >= (unsigned int) R_AARCH64_end)
4013 {
4014 bfd_set_error (bfd_error_bad_value);
4015 error_ret_free_internal:
4016 if (elf_section_data (section)->relocs == NULL)
4017 free (internal_relocs);
4018 goto error_ret_free_local;
4019 }
4020
4021 /* Only look for stubs on unconditional branch and
4022 branch and link instructions. */
4023 if (r_type != (unsigned int) AARCH64_R (CALL26)
4024 && r_type != (unsigned int) AARCH64_R (JUMP26))
4025 continue;
4026
4027 /* Now determine the call target, its name, value,
4028 section. */
4029 sym_sec = NULL;
4030 sym_value = 0;
4031 destination = 0;
4032 hash = NULL;
4033 sym_name = NULL;
4034 if (r_indx < symtab_hdr->sh_info)
4035 {
4036 /* It's a local symbol. */
4037 Elf_Internal_Sym *sym;
4038 Elf_Internal_Shdr *hdr;
4039
4040 if (local_syms == NULL)
4041 {
4042 local_syms
4043 = (Elf_Internal_Sym *) symtab_hdr->contents;
4044 if (local_syms == NULL)
4045 local_syms
4046 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4047 symtab_hdr->sh_info, 0,
4048 NULL, NULL, NULL);
4049 if (local_syms == NULL)
4050 goto error_ret_free_internal;
4051 }
4052
4053 sym = local_syms + r_indx;
4054 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4055 sym_sec = hdr->bfd_section;
4056 if (!sym_sec)
4057 /* This is an undefined symbol. It can never
4058 be resolved. */
4059 continue;
4060
4061 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4062 sym_value = sym->st_value;
4063 destination = (sym_value + irela->r_addend
4064 + sym_sec->output_offset
4065 + sym_sec->output_section->vma);
4066 st_type = ELF_ST_TYPE (sym->st_info);
4067 sym_name
4068 = bfd_elf_string_from_elf_section (input_bfd,
4069 symtab_hdr->sh_link,
4070 sym->st_name);
4071 }
4072 else
4073 {
4074 int e_indx;
4075
4076 e_indx = r_indx - symtab_hdr->sh_info;
4077 hash = ((struct elf_aarch64_link_hash_entry *)
4078 elf_sym_hashes (input_bfd)[e_indx]);
4079
4080 while (hash->root.root.type == bfd_link_hash_indirect
4081 || hash->root.root.type == bfd_link_hash_warning)
4082 hash = ((struct elf_aarch64_link_hash_entry *)
4083 hash->root.root.u.i.link);
4084
4085 if (hash->root.root.type == bfd_link_hash_defined
4086 || hash->root.root.type == bfd_link_hash_defweak)
4087 {
4088 struct elf_aarch64_link_hash_table *globals =
4089 elf_aarch64_hash_table (info);
4090 sym_sec = hash->root.root.u.def.section;
4091 sym_value = hash->root.root.u.def.value;
4092 /* For a destination in a shared library,
4093 use the PLT stub as target address to
4094 decide whether a branch stub is
4095 needed. */
4096 if (globals->root.splt != NULL && hash != NULL
4097 && hash->root.plt.offset != (bfd_vma) - 1)
4098 {
4099 sym_sec = globals->root.splt;
4100 sym_value = hash->root.plt.offset;
4101 if (sym_sec->output_section != NULL)
4102 destination = (sym_value
4103 + sym_sec->output_offset
4104 +
4105 sym_sec->output_section->vma);
4106 }
4107 else if (sym_sec->output_section != NULL)
4108 destination = (sym_value + irela->r_addend
4109 + sym_sec->output_offset
4110 + sym_sec->output_section->vma);
4111 }
4112 else if (hash->root.root.type == bfd_link_hash_undefined
4113 || (hash->root.root.type
4114 == bfd_link_hash_undefweak))
4115 {
4116 /* For a shared library, use the PLT stub as
4117 target address to decide whether a long
4118 branch stub is needed.
4119 For absolute code, they cannot be handled. */
4120 struct elf_aarch64_link_hash_table *globals =
4121 elf_aarch64_hash_table (info);
4122
4123 if (globals->root.splt != NULL && hash != NULL
4124 && hash->root.plt.offset != (bfd_vma) - 1)
4125 {
4126 sym_sec = globals->root.splt;
4127 sym_value = hash->root.plt.offset;
4128 if (sym_sec->output_section != NULL)
4129 destination = (sym_value
4130 + sym_sec->output_offset
4131 +
4132 sym_sec->output_section->vma);
4133 }
4134 else
4135 continue;
4136 }
4137 else
4138 {
4139 bfd_set_error (bfd_error_bad_value);
4140 goto error_ret_free_internal;
4141 }
4142 st_type = ELF_ST_TYPE (hash->root.type);
4143 sym_name = hash->root.root.root.string;
4144 }
4145
4146 /* Determine what (if any) linker stub is needed. */
4147 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4148 st_type, destination);
4149 if (stub_type == aarch64_stub_none)
4150 continue;
4151
4152 /* Support for grouping stub sections. */
4153 id_sec = htab->stub_group[section->id].link_sec;
4154
4155 /* Get the name of this stub. */
4156 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4157 irela);
4158 if (!stub_name)
4159 goto error_ret_free_internal;
4160
4161 stub_entry =
4162 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4163 stub_name, FALSE, FALSE);
4164 if (stub_entry != NULL)
4165 {
4166 /* The proper stub has already been created. */
4167 free (stub_name);
4168 continue;
4169 }
4170
4171 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4172 (stub_name, section, htab);
4173 if (stub_entry == NULL)
4174 {
4175 free (stub_name);
4176 goto error_ret_free_internal;
4177 }
4178
4179 stub_entry->target_value = sym_value + irela->r_addend;
4180 stub_entry->target_section = sym_sec;
4181 stub_entry->stub_type = stub_type;
4182 stub_entry->h = hash;
4183 stub_entry->st_type = st_type;
4184
4185 if (sym_name == NULL)
4186 sym_name = "unnamed";
4187 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4188 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4189 if (stub_entry->output_name == NULL)
4190 {
4191 free (stub_name);
4192 goto error_ret_free_internal;
4193 }
4194
4195 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4196 sym_name);
4197
4198 stub_changed = TRUE;
4199 }
4200
4201 /* We're done with the internal relocs, free them. */
4202 if (elf_section_data (section)->relocs == NULL)
4203 free (internal_relocs);
4204 }
4205 }
4206
4207 if (!stub_changed)
4208 break;
4209
4210 _bfd_aarch64_resize_stubs (htab);
4211
4212 /* Ask the linker to do its stuff. */
4213 (*htab->layout_sections_again) ();
4214 stub_changed = FALSE;
4215 }
4216
4217 return TRUE;
4218
4219 error_ret_free_local:
4220 return FALSE;
4221 }
4222
4223 /* Build all the stubs associated with the current output file. The
4224 stubs are kept in a hash table attached to the main linker hash
4225 table. We also set up the .plt entries for statically linked PIC
4226 functions here. This function is called via aarch64_elf_finish in the
4227 linker. */
4228
4229 bfd_boolean
4230 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4231 {
4232 asection *stub_sec;
4233 struct bfd_hash_table *table;
4234 struct elf_aarch64_link_hash_table *htab;
4235
4236 htab = elf_aarch64_hash_table (info);
4237
4238 for (stub_sec = htab->stub_bfd->sections;
4239 stub_sec != NULL; stub_sec = stub_sec->next)
4240 {
4241 bfd_size_type size;
4242
4243 /* Ignore non-stub sections. */
4244 if (!strstr (stub_sec->name, STUB_SUFFIX))
4245 continue;
4246
4247 /* Allocate memory to hold the linker stubs. */
4248 size = stub_sec->size;
4249 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4250 if (stub_sec->contents == NULL && size != 0)
4251 return FALSE;
4252 stub_sec->size = 0;
4253
4254 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4255 stub_sec->size += 4;
4256 }
4257
4258 /* Build the stubs as directed by the stub hash table. */
4259 table = &htab->stub_hash_table;
4260 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4261
4262 return TRUE;
4263 }
4264
4265
4266 /* Add an entry to the code/data map for section SEC. */
4267
4268 static void
4269 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4270 {
4271 struct _aarch64_elf_section_data *sec_data =
4272 elf_aarch64_section_data (sec);
4273 unsigned int newidx;
4274
4275 if (sec_data->map == NULL)
4276 {
4277 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4278 sec_data->mapcount = 0;
4279 sec_data->mapsize = 1;
4280 }
4281
4282 newidx = sec_data->mapcount++;
4283
4284 if (sec_data->mapcount > sec_data->mapsize)
4285 {
4286 sec_data->mapsize *= 2;
4287 sec_data->map = bfd_realloc_or_free
4288 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4289 }
4290
4291 if (sec_data->map)
4292 {
4293 sec_data->map[newidx].vma = vma;
4294 sec_data->map[newidx].type = type;
4295 }
4296 }
4297
4298
4299 /* Initialise maps of insn/data for input BFDs. */
4300 void
4301 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4302 {
4303 Elf_Internal_Sym *isymbuf;
4304 Elf_Internal_Shdr *hdr;
4305 unsigned int i, localsyms;
4306
4307 /* Make sure that we are dealing with an AArch64 elf binary. */
4308 if (!is_aarch64_elf (abfd))
4309 return;
4310
4311 if ((abfd->flags & DYNAMIC) != 0)
4312 return;
4313
4314 hdr = &elf_symtab_hdr (abfd);
4315 localsyms = hdr->sh_info;
4316
4317 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4318 should contain the number of local symbols, which should come before any
4319 global symbols. Mapping symbols are always local. */
4320 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4321
4322 /* No internal symbols read? Skip this BFD. */
4323 if (isymbuf == NULL)
4324 return;
4325
4326 for (i = 0; i < localsyms; i++)
4327 {
4328 Elf_Internal_Sym *isym = &isymbuf[i];
4329 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4330 const char *name;
4331
4332 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4333 {
4334 name = bfd_elf_string_from_elf_section (abfd,
4335 hdr->sh_link,
4336 isym->st_name);
4337
4338 if (bfd_is_aarch64_special_symbol_name
4339 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4340 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4341 }
4342 }
4343 }
4344
4345 /* Set option values needed during linking. */
4346 void
4347 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4348 struct bfd_link_info *link_info,
4349 int no_enum_warn,
4350 int no_wchar_warn, int pic_veneer,
4351 int fix_erratum_835769,
4352 int fix_erratum_843419,
4353 int no_apply_dynamic_relocs)
4354 {
4355 struct elf_aarch64_link_hash_table *globals;
4356
4357 globals = elf_aarch64_hash_table (link_info);
4358 globals->pic_veneer = pic_veneer;
4359 globals->fix_erratum_835769 = fix_erratum_835769;
4360 globals->fix_erratum_843419 = fix_erratum_843419;
4361 globals->fix_erratum_843419_adr = TRUE;
4362 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4363
4364 BFD_ASSERT (is_aarch64_elf (output_bfd));
4365 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4366 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4367 }
4368
4369 static bfd_vma
4370 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4371 struct elf_aarch64_link_hash_table
4372 *globals, struct bfd_link_info *info,
4373 bfd_vma value, bfd *output_bfd,
4374 bfd_boolean *unresolved_reloc_p)
4375 {
4376 bfd_vma off = (bfd_vma) - 1;
4377 asection *basegot = globals->root.sgot;
4378 bfd_boolean dyn = globals->root.dynamic_sections_created;
4379
4380 if (h != NULL)
4381 {
4382 BFD_ASSERT (basegot != NULL);
4383 off = h->got.offset;
4384 BFD_ASSERT (off != (bfd_vma) - 1);
4385 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4386 || (bfd_link_pic (info)
4387 && SYMBOL_REFERENCES_LOCAL (info, h))
4388 || (ELF_ST_VISIBILITY (h->other)
4389 && h->root.type == bfd_link_hash_undefweak))
4390 {
4391 /* This is actually a static link, or it is a -Bsymbolic link
4392 and the symbol is defined locally. We must initialize this
4393 entry in the global offset table. Since the offset must
4394 always be a multiple of 8 (4 in the case of ILP32), we use
4395 the least significant bit to record whether we have
4396 initialized it already.
4397 When doing a dynamic link, we create a .rel(a).got relocation
4398 entry to initialize the value. This is done in the
4399 finish_dynamic_symbol routine. */
4400 if ((off & 1) != 0)
4401 off &= ~1;
4402 else
4403 {
4404 bfd_put_NN (output_bfd, value, basegot->contents + off);
4405 h->got.offset |= 1;
4406 }
4407 }
4408 else
4409 *unresolved_reloc_p = FALSE;
4410
4411 off = off + basegot->output_section->vma + basegot->output_offset;
4412 }
4413
4414 return off;
4415 }
4416
4417 /* Change R_TYPE to a more efficient access model where possible,
4418 return the new reloc type. */
4419
4420 static bfd_reloc_code_real_type
4421 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4422 struct elf_link_hash_entry *h)
4423 {
4424 bfd_boolean is_local = h == NULL;
4425
4426 switch (r_type)
4427 {
4428 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4429 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4430 return (is_local
4431 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4432 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4433
4434 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4435 return (is_local
4436 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4437 : r_type);
4438
4439 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4440 return (is_local
4441 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4442 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4443
4444 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4445 return (is_local
4446 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4447 : BFD_RELOC_AARCH64_NONE);
4448
4449 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4450 return (is_local
4451 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4452 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4453
4454 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4455 return (is_local
4456 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4457 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4458
4459 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4460 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4461 return (is_local
4462 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4463 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4464
4465 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4466 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4467
4468 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4469 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4470
4471 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4472 return r_type;
4473
4474 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4475 return (is_local
4476 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4477 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4478
4479 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4480 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4481 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4482 /* Instructions with these relocations will become NOPs. */
4483 return BFD_RELOC_AARCH64_NONE;
4484
4485 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4486 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4487 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4488 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4489
4490 #if ARCH_SIZE == 64
4491 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4492 return is_local
4493 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4494 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4495
4496 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4497 return is_local
4498 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4499 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4500 #endif
4501
4502 default:
4503 break;
4504 }
4505
4506 return r_type;
4507 }
4508
4509 static unsigned int
4510 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4511 {
4512 switch (r_type)
4513 {
4514 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4515 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4516 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4517 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4518 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4519 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4520 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4521 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4522 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4523 return GOT_NORMAL;
4524
4525 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4526 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4527 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4528 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4529 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4530 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4531 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4532 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4533 return GOT_TLS_GD;
4534
4535 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4536 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4537 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4538 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4539 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4540 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4541 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
4542 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4543 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4544 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4545 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4546 return GOT_TLSDESC_GD;
4547
4548 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4549 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4550 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4551 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4552 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4553 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4554 return GOT_TLS_IE;
4555
4556 default:
4557 break;
4558 }
4559 return GOT_UNKNOWN;
4560 }
4561
4562 static bfd_boolean
4563 aarch64_can_relax_tls (bfd *input_bfd,
4564 struct bfd_link_info *info,
4565 bfd_reloc_code_real_type r_type,
4566 struct elf_link_hash_entry *h,
4567 unsigned long r_symndx)
4568 {
4569 unsigned int symbol_got_type;
4570 unsigned int reloc_got_type;
4571
4572 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4573 return FALSE;
4574
4575 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4576 reloc_got_type = aarch64_reloc_got_type (r_type);
4577
4578 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4579 return TRUE;
4580
4581 if (bfd_link_pic (info))
4582 return FALSE;
4583
4584 if (h && h->root.type == bfd_link_hash_undefweak)
4585 return FALSE;
4586
4587 return TRUE;
4588 }
4589
4590 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4591 enumerator. */
4592
4593 static bfd_reloc_code_real_type
4594 aarch64_tls_transition (bfd *input_bfd,
4595 struct bfd_link_info *info,
4596 unsigned int r_type,
4597 struct elf_link_hash_entry *h,
4598 unsigned long r_symndx)
4599 {
4600 bfd_reloc_code_real_type bfd_r_type
4601 = elfNN_aarch64_bfd_reloc_from_type (r_type);
4602
4603 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4604 return bfd_r_type;
4605
4606 return aarch64_tls_transition_without_check (bfd_r_type, h);
4607 }
4608
4609 /* Return the base VMA address which should be subtracted from real addresses
4610 when resolving R_AARCH64_TLS_DTPREL relocation. */
4611
4612 static bfd_vma
4613 dtpoff_base (struct bfd_link_info *info)
4614 {
4615 /* If tls_sec is NULL, we should have signalled an error already. */
4616 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4617 return elf_hash_table (info)->tls_sec->vma;
4618 }
4619
4620 /* Return the base VMA address which should be subtracted from real addresses
4621 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4622
4623 static bfd_vma
4624 tpoff_base (struct bfd_link_info *info)
4625 {
4626 struct elf_link_hash_table *htab = elf_hash_table (info);
4627
4628 /* If tls_sec is NULL, we should have signalled an error already. */
4629 BFD_ASSERT (htab->tls_sec != NULL);
4630
4631 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4632 htab->tls_sec->alignment_power);
4633 return htab->tls_sec->vma - base;
4634 }
4635
4636 static bfd_vma *
4637 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4638 unsigned long r_symndx)
4639 {
4640 /* Calculate the address of the GOT entry for symbol
4641 referred to in h. */
4642 if (h != NULL)
4643 return &h->got.offset;
4644 else
4645 {
4646 /* local symbol */
4647 struct elf_aarch64_local_symbol *l;
4648
4649 l = elf_aarch64_locals (input_bfd);
4650 return &l[r_symndx].got_offset;
4651 }
4652 }
4653
4654 static void
4655 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4656 unsigned long r_symndx)
4657 {
4658 bfd_vma *p;
4659 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4660 *p |= 1;
4661 }
4662
4663 static int
4664 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4665 unsigned long r_symndx)
4666 {
4667 bfd_vma value;
4668 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4669 return value & 1;
4670 }
4671
4672 static bfd_vma
4673 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4674 unsigned long r_symndx)
4675 {
4676 bfd_vma value;
4677 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4678 value &= ~1;
4679 return value;
4680 }
4681
4682 static bfd_vma *
4683 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4684 unsigned long r_symndx)
4685 {
4686 /* Calculate the address of the GOT entry for symbol
4687 referred to in h. */
4688 if (h != NULL)
4689 {
4690 struct elf_aarch64_link_hash_entry *eh;
4691 eh = (struct elf_aarch64_link_hash_entry *) h;
4692 return &eh->tlsdesc_got_jump_table_offset;
4693 }
4694 else
4695 {
4696 /* local symbol */
4697 struct elf_aarch64_local_symbol *l;
4698
4699 l = elf_aarch64_locals (input_bfd);
4700 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4701 }
4702 }
4703
4704 static void
4705 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4706 unsigned long r_symndx)
4707 {
4708 bfd_vma *p;
4709 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4710 *p |= 1;
4711 }
4712
4713 static int
4714 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4715 struct elf_link_hash_entry *h,
4716 unsigned long r_symndx)
4717 {
4718 bfd_vma value;
4719 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4720 return value & 1;
4721 }
4722
4723 static bfd_vma
4724 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4725 unsigned long r_symndx)
4726 {
4727 bfd_vma value;
4728 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4729 value &= ~1;
4730 return value;
4731 }
4732
4733 /* Data for make_branch_to_erratum_835769_stub(). */
4734
4735 struct erratum_835769_branch_to_stub_data
4736 {
4737 struct bfd_link_info *info;
4738 asection *output_section;
4739 bfd_byte *contents;
4740 };
4741
4742 /* Helper to insert branches to erratum 835769 stubs in the right
4743 places for a particular section. */
4744
4745 static bfd_boolean
4746 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4747 void *in_arg)
4748 {
4749 struct elf_aarch64_stub_hash_entry *stub_entry;
4750 struct erratum_835769_branch_to_stub_data *data;
4751 bfd_byte *contents;
4752 unsigned long branch_insn = 0;
4753 bfd_vma veneered_insn_loc, veneer_entry_loc;
4754 bfd_signed_vma branch_offset;
4755 unsigned int target;
4756 bfd *abfd;
4757
4758 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4759 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4760
4761 if (stub_entry->target_section != data->output_section
4762 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4763 return TRUE;
4764
4765 contents = data->contents;
4766 veneered_insn_loc = stub_entry->target_section->output_section->vma
4767 + stub_entry->target_section->output_offset
4768 + stub_entry->target_value;
4769 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4770 + stub_entry->stub_sec->output_offset
4771 + stub_entry->stub_offset;
4772 branch_offset = veneer_entry_loc - veneered_insn_loc;
4773
4774 abfd = stub_entry->target_section->owner;
4775 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4776 _bfd_error_handler
4777 (_("%B: error: Erratum 835769 stub out "
4778 "of range (input file too large)"), abfd);
4779
4780 target = stub_entry->target_value;
4781 branch_insn = 0x14000000;
4782 branch_offset >>= 2;
4783 branch_offset &= 0x3ffffff;
4784 branch_insn |= branch_offset;
4785 bfd_putl32 (branch_insn, &contents[target]);
4786
4787 return TRUE;
4788 }
4789
4790
4791 static bfd_boolean
4792 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4793 void *in_arg)
4794 {
4795 struct elf_aarch64_stub_hash_entry *stub_entry
4796 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4797 struct erratum_835769_branch_to_stub_data *data
4798 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4799 struct bfd_link_info *info;
4800 struct elf_aarch64_link_hash_table *htab;
4801 bfd_byte *contents;
4802 asection *section;
4803 bfd *abfd;
4804 bfd_vma place;
4805 uint32_t insn;
4806
4807 info = data->info;
4808 contents = data->contents;
4809 section = data->output_section;
4810
4811 htab = elf_aarch64_hash_table (info);
4812
4813 if (stub_entry->target_section != section
4814 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4815 return TRUE;
4816
4817 insn = bfd_getl32 (contents + stub_entry->target_value);
4818 bfd_putl32 (insn,
4819 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4820
4821 place = (section->output_section->vma + section->output_offset
4822 + stub_entry->adrp_offset);
4823 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4824
4825 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4826 abort ();
4827
4828 bfd_signed_vma imm =
4829 (_bfd_aarch64_sign_extend
4830 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4831 - (place & 0xfff));
4832
4833 if (htab->fix_erratum_843419_adr
4834 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4835 {
4836 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4837 | AARCH64_RT (insn));
4838 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4839 }
4840 else
4841 {
4842 bfd_vma veneered_insn_loc;
4843 bfd_vma veneer_entry_loc;
4844 bfd_signed_vma branch_offset;
4845 uint32_t branch_insn;
4846
4847 veneered_insn_loc = stub_entry->target_section->output_section->vma
4848 + stub_entry->target_section->output_offset
4849 + stub_entry->target_value;
4850 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4851 + stub_entry->stub_sec->output_offset
4852 + stub_entry->stub_offset;
4853 branch_offset = veneer_entry_loc - veneered_insn_loc;
4854
4855 abfd = stub_entry->target_section->owner;
4856 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4857 _bfd_error_handler
4858 (_("%B: error: Erratum 843419 stub out "
4859 "of range (input file too large)"), abfd);
4860
4861 branch_insn = 0x14000000;
4862 branch_offset >>= 2;
4863 branch_offset &= 0x3ffffff;
4864 branch_insn |= branch_offset;
4865 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4866 }
4867 return TRUE;
4868 }
4869
4870
4871 static bfd_boolean
4872 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4873 struct bfd_link_info *link_info,
4874 asection *sec,
4875 bfd_byte *contents)
4876
4877 {
4878 struct elf_aarch64_link_hash_table *globals =
4879 elf_aarch64_hash_table (link_info);
4880
4881 if (globals == NULL)
4882 return FALSE;
4883
4884 /* Fix code to point to erratum 835769 stubs. */
4885 if (globals->fix_erratum_835769)
4886 {
4887 struct erratum_835769_branch_to_stub_data data;
4888
4889 data.info = link_info;
4890 data.output_section = sec;
4891 data.contents = contents;
4892 bfd_hash_traverse (&globals->stub_hash_table,
4893 make_branch_to_erratum_835769_stub, &data);
4894 }
4895
4896 if (globals->fix_erratum_843419)
4897 {
4898 struct erratum_835769_branch_to_stub_data data;
4899
4900 data.info = link_info;
4901 data.output_section = sec;
4902 data.contents = contents;
4903 bfd_hash_traverse (&globals->stub_hash_table,
4904 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4905 }
4906
4907 return FALSE;
4908 }
4909
4910 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
4911
4912 static bfd_boolean
4913 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
4914 {
4915 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
4916 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
4917 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
4918 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
4919 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
4920 }
4921
4922 /* Perform a relocation as part of a final link. The input relocation type
4923 should be TLS relaxed. */
4924
4925 static bfd_reloc_status_type
4926 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
4927 bfd *input_bfd,
4928 bfd *output_bfd,
4929 asection *input_section,
4930 bfd_byte *contents,
4931 Elf_Internal_Rela *rel,
4932 bfd_vma value,
4933 struct bfd_link_info *info,
4934 asection *sym_sec,
4935 struct elf_link_hash_entry *h,
4936 bfd_boolean *unresolved_reloc_p,
4937 bfd_boolean save_addend,
4938 bfd_vma *saved_addend,
4939 Elf_Internal_Sym *sym)
4940 {
4941 Elf_Internal_Shdr *symtab_hdr;
4942 unsigned int r_type = howto->type;
4943 bfd_reloc_code_real_type bfd_r_type
4944 = elfNN_aarch64_bfd_reloc_from_howto (howto);
4945 unsigned long r_symndx;
4946 bfd_byte *hit_data = contents + rel->r_offset;
4947 bfd_vma place, off, got_entry_addr;
4948 bfd_signed_vma signed_addend;
4949 struct elf_aarch64_link_hash_table *globals;
4950 bfd_boolean weak_undef_p;
4951 bfd_boolean relative_reloc;
4952 asection *base_got;
4953 bfd_vma orig_value = value;
4954
4955 globals = elf_aarch64_hash_table (info);
4956
4957 symtab_hdr = &elf_symtab_hdr (input_bfd);
4958
4959 BFD_ASSERT (is_aarch64_elf (input_bfd));
4960
4961 r_symndx = ELFNN_R_SYM (rel->r_info);
4962
4963 place = input_section->output_section->vma
4964 + input_section->output_offset + rel->r_offset;
4965
4966 /* Get addend, accumulating the addend for consecutive relocs
4967 which refer to the same offset. */
4968 signed_addend = saved_addend ? *saved_addend : 0;
4969 signed_addend += rel->r_addend;
4970
4971 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4972 : bfd_is_und_section (sym_sec));
4973
4974 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4975 it here if it is defined in a non-shared object. */
4976 if (h != NULL
4977 && h->type == STT_GNU_IFUNC
4978 && h->def_regular)
4979 {
4980 asection *plt;
4981 const char *name;
4982 bfd_vma addend = 0;
4983
4984 if ((input_section->flags & SEC_ALLOC) == 0
4985 || h->plt.offset == (bfd_vma) -1)
4986 abort ();
4987
4988 /* STT_GNU_IFUNC symbol must go through PLT. */
4989 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
4990 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
4991
4992 switch (bfd_r_type)
4993 {
4994 default:
4995 if (h->root.root.string)
4996 name = h->root.root.string;
4997 else
4998 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4999 NULL);
5000 _bfd_error_handler
5001 /* xgettext:c-format */
5002 (_("%B: relocation %s against STT_GNU_IFUNC "
5003 "symbol `%s' isn't handled by %s"), input_bfd,
5004 howto->name, name, __FUNCTION__);
5005 bfd_set_error (bfd_error_bad_value);
5006 return FALSE;
5007
5008 case BFD_RELOC_AARCH64_NN:
5009 if (rel->r_addend != 0)
5010 {
5011 if (h->root.root.string)
5012 name = h->root.root.string;
5013 else
5014 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5015 sym, NULL);
5016 _bfd_error_handler
5017 /* xgettext:c-format */
5018 (_("%B: relocation %s against STT_GNU_IFUNC "
5019 "symbol `%s' has non-zero addend: %Ld"),
5020 input_bfd, howto->name, name, rel->r_addend);
5021 bfd_set_error (bfd_error_bad_value);
5022 return FALSE;
5023 }
5024
5025 /* Generate dynamic relocation only when there is a
5026 non-GOT reference in a shared object. */
5027 if (bfd_link_pic (info) && h->non_got_ref)
5028 {
5029 Elf_Internal_Rela outrel;
5030 asection *sreloc;
5031
5032 /* Need a dynamic relocation to get the real function
5033 address. */
5034 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5035 info,
5036 input_section,
5037 rel->r_offset);
5038 if (outrel.r_offset == (bfd_vma) -1
5039 || outrel.r_offset == (bfd_vma) -2)
5040 abort ();
5041
5042 outrel.r_offset += (input_section->output_section->vma
5043 + input_section->output_offset);
5044
5045 if (h->dynindx == -1
5046 || h->forced_local
5047 || bfd_link_executable (info))
5048 {
5049 /* This symbol is resolved locally. */
5050 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5051 outrel.r_addend = (h->root.u.def.value
5052 + h->root.u.def.section->output_section->vma
5053 + h->root.u.def.section->output_offset);
5054 }
5055 else
5056 {
5057 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5058 outrel.r_addend = 0;
5059 }
5060
5061 sreloc = globals->root.irelifunc;
5062 elf_append_rela (output_bfd, sreloc, &outrel);
5063
5064 /* If this reloc is against an external symbol, we
5065 do not want to fiddle with the addend. Otherwise,
5066 we need to include the symbol value so that it
5067 becomes an addend for the dynamic reloc. For an
5068 internal symbol, we have updated addend. */
5069 return bfd_reloc_ok;
5070 }
5071 /* FALLTHROUGH */
5072 case BFD_RELOC_AARCH64_CALL26:
5073 case BFD_RELOC_AARCH64_JUMP26:
5074 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5075 signed_addend,
5076 weak_undef_p);
5077 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5078 howto, value);
5079 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5080 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5081 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5082 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5083 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5084 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5085 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5086 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5087 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5088 base_got = globals->root.sgot;
5089 off = h->got.offset;
5090
5091 if (base_got == NULL)
5092 abort ();
5093
5094 if (off == (bfd_vma) -1)
5095 {
5096 bfd_vma plt_index;
5097
5098 /* We can't use h->got.offset here to save state, or
5099 even just remember the offset, as finish_dynamic_symbol
5100 would use that as offset into .got. */
5101
5102 if (globals->root.splt != NULL)
5103 {
5104 plt_index = ((h->plt.offset - globals->plt_header_size) /
5105 globals->plt_entry_size);
5106 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5107 base_got = globals->root.sgotplt;
5108 }
5109 else
5110 {
5111 plt_index = h->plt.offset / globals->plt_entry_size;
5112 off = plt_index * GOT_ENTRY_SIZE;
5113 base_got = globals->root.igotplt;
5114 }
5115
5116 if (h->dynindx == -1
5117 || h->forced_local
5118 || info->symbolic)
5119 {
5120 /* This references the local definition. We must
5121 initialize this entry in the global offset table.
5122 Since the offset must always be a multiple of 8,
5123 we use the least significant bit to record
5124 whether we have initialized it already.
5125
5126 When doing a dynamic link, we create a .rela.got
5127 relocation entry to initialize the value. This
5128 is done in the finish_dynamic_symbol routine. */
5129 if ((off & 1) != 0)
5130 off &= ~1;
5131 else
5132 {
5133 bfd_put_NN (output_bfd, value,
5134 base_got->contents + off);
5135 /* Note that this is harmless as -1 | 1 still is -1. */
5136 h->got.offset |= 1;
5137 }
5138 }
5139 value = (base_got->output_section->vma
5140 + base_got->output_offset + off);
5141 }
5142 else
5143 value = aarch64_calculate_got_entry_vma (h, globals, info,
5144 value, output_bfd,
5145 unresolved_reloc_p);
5146
5147 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5148 addend = (globals->root.sgot->output_section->vma
5149 + globals->root.sgot->output_offset);
5150
5151 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5152 addend, weak_undef_p);
5153 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5154 case BFD_RELOC_AARCH64_ADD_LO12:
5155 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5156 break;
5157 }
5158 }
5159
5160 switch (bfd_r_type)
5161 {
5162 case BFD_RELOC_AARCH64_NONE:
5163 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5164 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5165 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5166 *unresolved_reloc_p = FALSE;
5167 return bfd_reloc_ok;
5168
5169 case BFD_RELOC_AARCH64_NN:
5170
5171 /* When generating a shared object or relocatable executable, these
5172 relocations are copied into the output file to be resolved at
5173 run time. */
5174 if (((bfd_link_pic (info)
5175 || globals->root.is_relocatable_executable)
5176 && (input_section->flags & SEC_ALLOC)
5177 && (h == NULL
5178 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5179 || h->root.type != bfd_link_hash_undefweak))
5180 /* Or we are creating an executable, we may need to keep relocations
5181 for symbols satisfied by a dynamic library if we manage to avoid
5182 copy relocs for the symbol. */
5183 || (ELIMINATE_COPY_RELOCS
5184 && !bfd_link_pic (info)
5185 && h != NULL
5186 && (input_section->flags & SEC_ALLOC)
5187 && h->dynindx != -1
5188 && !h->non_got_ref
5189 && ((h->def_dynamic
5190 && !h->def_regular)
5191 || h->root.type == bfd_link_hash_undefweak
5192 || h->root.type == bfd_link_hash_undefined)))
5193 {
5194 Elf_Internal_Rela outrel;
5195 bfd_byte *loc;
5196 bfd_boolean skip, relocate;
5197 asection *sreloc;
5198
5199 *unresolved_reloc_p = FALSE;
5200
5201 skip = FALSE;
5202 relocate = FALSE;
5203
5204 outrel.r_addend = signed_addend;
5205 outrel.r_offset =
5206 _bfd_elf_section_offset (output_bfd, info, input_section,
5207 rel->r_offset);
5208 if (outrel.r_offset == (bfd_vma) - 1)
5209 skip = TRUE;
5210 else if (outrel.r_offset == (bfd_vma) - 2)
5211 {
5212 skip = TRUE;
5213 relocate = TRUE;
5214 }
5215
5216 outrel.r_offset += (input_section->output_section->vma
5217 + input_section->output_offset);
5218
5219 if (skip)
5220 memset (&outrel, 0, sizeof outrel);
5221 else if (h != NULL
5222 && h->dynindx != -1
5223 && (!bfd_link_pic (info)
5224 || !(bfd_link_pie (info)
5225 || SYMBOLIC_BIND (info, h))
5226 || !h->def_regular))
5227 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5228 else
5229 {
5230 int symbol;
5231
5232 /* On SVR4-ish systems, the dynamic loader cannot
5233 relocate the text and data segments independently,
5234 so the symbol does not matter. */
5235 symbol = 0;
5236 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5237 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5238 outrel.r_addend += value;
5239 }
5240
5241 sreloc = elf_section_data (input_section)->sreloc;
5242 if (sreloc == NULL || sreloc->contents == NULL)
5243 return bfd_reloc_notsupported;
5244
5245 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5246 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5247
5248 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5249 {
5250 /* Sanity to check that we have previously allocated
5251 sufficient space in the relocation section for the
5252 number of relocations we actually want to emit. */
5253 abort ();
5254 }
5255
5256 /* If this reloc is against an external symbol, we do not want to
5257 fiddle with the addend. Otherwise, we need to include the symbol
5258 value so that it becomes an addend for the dynamic reloc. */
5259 if (!relocate)
5260 return bfd_reloc_ok;
5261
5262 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5263 contents, rel->r_offset, value,
5264 signed_addend);
5265 }
5266 else
5267 value += signed_addend;
5268 break;
5269
5270 case BFD_RELOC_AARCH64_CALL26:
5271 case BFD_RELOC_AARCH64_JUMP26:
5272 {
5273 asection *splt = globals->root.splt;
5274 bfd_boolean via_plt_p =
5275 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5276
5277 /* A call to an undefined weak symbol is converted to a jump to
5278 the next instruction unless a PLT entry will be created.
5279 The jump to the next instruction is optimized as a NOP.
5280 Do the same for local undefined symbols. */
5281 if (weak_undef_p && ! via_plt_p)
5282 {
5283 bfd_putl32 (INSN_NOP, hit_data);
5284 return bfd_reloc_ok;
5285 }
5286
5287 /* If the call goes through a PLT entry, make sure to
5288 check distance to the right destination address. */
5289 if (via_plt_p)
5290 value = (splt->output_section->vma
5291 + splt->output_offset + h->plt.offset);
5292
5293 /* Check if a stub has to be inserted because the destination
5294 is too far away. */
5295 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5296
5297 /* If the branch destination is directed to plt stub, "value" will be
5298 the final destination, otherwise we should plus signed_addend, it may
5299 contain non-zero value, for example call to local function symbol
5300 which are turned into "sec_sym + sec_off", and sec_off is kept in
5301 signed_addend. */
5302 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5303 place))
5304 /* The target is out of reach, so redirect the branch to
5305 the local stub for this function. */
5306 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5307 rel, globals);
5308 if (stub_entry != NULL)
5309 {
5310 value = (stub_entry->stub_offset
5311 + stub_entry->stub_sec->output_offset
5312 + stub_entry->stub_sec->output_section->vma);
5313
5314 /* We have redirected the destination to stub entry address,
5315 so ignore any addend record in the original rela entry. */
5316 signed_addend = 0;
5317 }
5318 }
5319 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5320 signed_addend, weak_undef_p);
5321 *unresolved_reloc_p = FALSE;
5322 break;
5323
5324 case BFD_RELOC_AARCH64_16_PCREL:
5325 case BFD_RELOC_AARCH64_32_PCREL:
5326 case BFD_RELOC_AARCH64_64_PCREL:
5327 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5328 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5329 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5330 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5331 if (bfd_link_pic (info)
5332 && (input_section->flags & SEC_ALLOC) != 0
5333 && (input_section->flags & SEC_READONLY) != 0
5334 && !SYMBOL_REFERENCES_LOCAL (info, h))
5335 {
5336 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5337
5338 _bfd_error_handler
5339 /* xgettext:c-format */
5340 (_("%B: relocation %s against symbol `%s' which may bind "
5341 "externally can not be used when making a shared object; "
5342 "recompile with -fPIC"),
5343 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5344 h->root.root.string);
5345 bfd_set_error (bfd_error_bad_value);
5346 return FALSE;
5347 }
5348 /* Fall through. */
5349
5350 case BFD_RELOC_AARCH64_16:
5351 #if ARCH_SIZE == 64
5352 case BFD_RELOC_AARCH64_32:
5353 #endif
5354 case BFD_RELOC_AARCH64_ADD_LO12:
5355 case BFD_RELOC_AARCH64_BRANCH19:
5356 case BFD_RELOC_AARCH64_LDST128_LO12:
5357 case BFD_RELOC_AARCH64_LDST16_LO12:
5358 case BFD_RELOC_AARCH64_LDST32_LO12:
5359 case BFD_RELOC_AARCH64_LDST64_LO12:
5360 case BFD_RELOC_AARCH64_LDST8_LO12:
5361 case BFD_RELOC_AARCH64_MOVW_G0:
5362 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5363 case BFD_RELOC_AARCH64_MOVW_G0_S:
5364 case BFD_RELOC_AARCH64_MOVW_G1:
5365 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5366 case BFD_RELOC_AARCH64_MOVW_G1_S:
5367 case BFD_RELOC_AARCH64_MOVW_G2:
5368 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5369 case BFD_RELOC_AARCH64_MOVW_G2_S:
5370 case BFD_RELOC_AARCH64_MOVW_G3:
5371 case BFD_RELOC_AARCH64_TSTBR14:
5372 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5373 signed_addend, weak_undef_p);
5374 break;
5375
5376 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5377 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5378 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5379 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5380 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5381 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5382 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5383 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5384 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5385 if (globals->root.sgot == NULL)
5386 BFD_ASSERT (h != NULL);
5387
5388 relative_reloc = FALSE;
5389 if (h != NULL)
5390 {
5391 bfd_vma addend = 0;
5392
5393 /* If a symbol is not dynamic and is not undefined weak, bind it
5394 locally and generate a RELATIVE relocation under PIC mode.
5395
5396 NOTE: one symbol may be referenced by several relocations, we
5397 should only generate one RELATIVE relocation for that symbol.
5398 Therefore, check GOT offset mark first. */
5399 if (h->dynindx == -1
5400 && !h->forced_local
5401 && h->root.type != bfd_link_hash_undefweak
5402 && bfd_link_pic (info)
5403 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5404 relative_reloc = TRUE;
5405
5406 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5407 output_bfd,
5408 unresolved_reloc_p);
5409 /* Record the GOT entry address which will be used when generating
5410 RELATIVE relocation. */
5411 if (relative_reloc)
5412 got_entry_addr = value;
5413
5414 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5415 addend = (globals->root.sgot->output_section->vma
5416 + globals->root.sgot->output_offset);
5417 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5418 addend, weak_undef_p);
5419 }
5420 else
5421 {
5422 bfd_vma addend = 0;
5423 struct elf_aarch64_local_symbol *locals
5424 = elf_aarch64_locals (input_bfd);
5425
5426 if (locals == NULL)
5427 {
5428 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5429 _bfd_error_handler
5430 /* xgettext:c-format */
5431 (_("%B: Local symbol descriptor table be NULL when applying "
5432 "relocation %s against local symbol"),
5433 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5434 abort ();
5435 }
5436
5437 off = symbol_got_offset (input_bfd, h, r_symndx);
5438 base_got = globals->root.sgot;
5439 got_entry_addr = (base_got->output_section->vma
5440 + base_got->output_offset + off);
5441
5442 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5443 {
5444 bfd_put_64 (output_bfd, value, base_got->contents + off);
5445
5446 /* For local symbol, we have done absolute relocation in static
5447 linking stage. While for shared library, we need to update the
5448 content of GOT entry according to the shared object's runtime
5449 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5450 for dynamic linker. */
5451 if (bfd_link_pic (info))
5452 relative_reloc = TRUE;
5453
5454 symbol_got_offset_mark (input_bfd, h, r_symndx);
5455 }
5456
5457 /* Update the relocation value to GOT entry addr as we have transformed
5458 the direct data access into indirect data access through GOT. */
5459 value = got_entry_addr;
5460
5461 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5462 addend = base_got->output_section->vma + base_got->output_offset;
5463
5464 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5465 addend, weak_undef_p);
5466 }
5467
5468 if (relative_reloc)
5469 {
5470 asection *s;
5471 Elf_Internal_Rela outrel;
5472
5473 s = globals->root.srelgot;
5474 if (s == NULL)
5475 abort ();
5476
5477 outrel.r_offset = got_entry_addr;
5478 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5479 outrel.r_addend = orig_value;
5480 elf_append_rela (output_bfd, s, &outrel);
5481 }
5482 break;
5483
5484 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5485 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5486 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5487 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5488 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5489 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5490 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5491 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5492 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5493 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5494 if (globals->root.sgot == NULL)
5495 return bfd_reloc_notsupported;
5496
5497 value = (symbol_got_offset (input_bfd, h, r_symndx)
5498 + globals->root.sgot->output_section->vma
5499 + globals->root.sgot->output_offset);
5500
5501 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5502 0, weak_undef_p);
5503 *unresolved_reloc_p = FALSE;
5504 break;
5505
5506 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5507 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5508 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5509 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5510 if (globals->root.sgot == NULL)
5511 return bfd_reloc_notsupported;
5512
5513 value = symbol_got_offset (input_bfd, h, r_symndx);
5514 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5515 0, weak_undef_p);
5516 *unresolved_reloc_p = FALSE;
5517 break;
5518
5519 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5520 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5521 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5522 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5523 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5524 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5525 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5526 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5527 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5528 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5529 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5530 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5531 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5532 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5533 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5534 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5535 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5536 signed_addend - dtpoff_base (info),
5537 weak_undef_p);
5538 break;
5539
5540 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5541 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5542 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5543 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5544 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5545 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5546 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5547 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5548 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5549 signed_addend - tpoff_base (info),
5550 weak_undef_p);
5551 *unresolved_reloc_p = FALSE;
5552 break;
5553
5554 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5555 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5556 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5557 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5558 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5559 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5560 if (globals->root.sgot == NULL)
5561 return bfd_reloc_notsupported;
5562 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5563 + globals->root.sgotplt->output_section->vma
5564 + globals->root.sgotplt->output_offset
5565 + globals->sgotplt_jump_table_size);
5566
5567 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5568 0, weak_undef_p);
5569 *unresolved_reloc_p = FALSE;
5570 break;
5571
5572 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5573 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5574 if (globals->root.sgot == NULL)
5575 return bfd_reloc_notsupported;
5576
5577 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5578 + globals->root.sgotplt->output_section->vma
5579 + globals->root.sgotplt->output_offset
5580 + globals->sgotplt_jump_table_size);
5581
5582 value -= (globals->root.sgot->output_section->vma
5583 + globals->root.sgot->output_offset);
5584
5585 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5586 0, weak_undef_p);
5587 *unresolved_reloc_p = FALSE;
5588 break;
5589
5590 default:
5591 return bfd_reloc_notsupported;
5592 }
5593
5594 if (saved_addend)
5595 *saved_addend = value;
5596
5597 /* Only apply the final relocation in a sequence. */
5598 if (save_addend)
5599 return bfd_reloc_continue;
5600
5601 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5602 howto, value);
5603 }
5604
5605 /* LP64 and ILP32 operates on x- and w-registers respectively.
5606 Next definitions take into account the difference between
5607 corresponding machine codes. R means x-register if the target
5608 arch is LP64, and w-register if the target is ILP32. */
5609
5610 #if ARCH_SIZE == 64
5611 # define add_R0_R0 (0x91000000)
5612 # define add_R0_R0_R1 (0x8b000020)
5613 # define add_R0_R1 (0x91400020)
5614 # define ldr_R0 (0x58000000)
5615 # define ldr_R0_mask(i) (i & 0xffffffe0)
5616 # define ldr_R0_x0 (0xf9400000)
5617 # define ldr_hw_R0 (0xf2a00000)
5618 # define movk_R0 (0xf2800000)
5619 # define movz_R0 (0xd2a00000)
5620 # define movz_hw_R0 (0xd2c00000)
5621 #else /*ARCH_SIZE == 32 */
5622 # define add_R0_R0 (0x11000000)
5623 # define add_R0_R0_R1 (0x0b000020)
5624 # define add_R0_R1 (0x11400020)
5625 # define ldr_R0 (0x18000000)
5626 # define ldr_R0_mask(i) (i & 0xbfffffe0)
5627 # define ldr_R0_x0 (0xb9400000)
5628 # define ldr_hw_R0 (0x72a00000)
5629 # define movk_R0 (0x72800000)
5630 # define movz_R0 (0x52a00000)
5631 # define movz_hw_R0 (0x52c00000)
5632 #endif
5633
5634 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5635 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5636 link.
5637
5638 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5639 is to then call final_link_relocate. Return other values in the
5640 case of error. */
5641
5642 static bfd_reloc_status_type
5643 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5644 bfd *input_bfd, bfd_byte *contents,
5645 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5646 {
5647 bfd_boolean is_local = h == NULL;
5648 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5649 unsigned long insn;
5650
5651 BFD_ASSERT (globals && input_bfd && contents && rel);
5652
5653 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5654 {
5655 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5656 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5657 if (is_local)
5658 {
5659 /* GD->LE relaxation:
5660 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
5661 or
5662 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
5663
5664 Where R is x for LP64, and w for ILP32. */
5665 bfd_putl32 (movz_R0, contents + rel->r_offset);
5666 return bfd_reloc_continue;
5667 }
5668 else
5669 {
5670 /* GD->IE relaxation:
5671 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5672 or
5673 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5674 */
5675 return bfd_reloc_continue;
5676 }
5677
5678 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5679 BFD_ASSERT (0);
5680 break;
5681
5682 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5683 if (is_local)
5684 {
5685 /* Tiny TLSDESC->LE relaxation:
5686 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
5687 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
5688 .tlsdesccall var
5689 blr x1 => nop
5690
5691 Where R is x for LP64, and w for ILP32. */
5692 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5693 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5694
5695 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5696 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5697 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5698
5699 bfd_putl32 (movz_R0, contents + rel->r_offset);
5700 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
5701 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5702 return bfd_reloc_continue;
5703 }
5704 else
5705 {
5706 /* Tiny TLSDESC->IE relaxation:
5707 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5708 adr x0, :tlsdesc:var => nop
5709 .tlsdesccall var
5710 blr x1 => nop
5711 */
5712 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5713 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5714
5715 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5716 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5717
5718 bfd_putl32 (ldr_R0, contents + rel->r_offset);
5719 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5720 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5721 return bfd_reloc_continue;
5722 }
5723
5724 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5725 if (is_local)
5726 {
5727 /* Tiny GD->LE relaxation:
5728 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5729 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
5730 nop => add R0, R0, #:tprel_lo12_nc:x
5731
5732 Where R is x for LP64, and x for Ilp32. */
5733
5734 /* First kill the tls_get_addr reloc on the bl instruction. */
5735 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5736
5737 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5738 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
5739 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
5740
5741 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5742 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5743 rel[1].r_offset = rel->r_offset + 8;
5744
5745 /* Move the current relocation to the second instruction in
5746 the sequence. */
5747 rel->r_offset += 4;
5748 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5749 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5750 return bfd_reloc_continue;
5751 }
5752 else
5753 {
5754 /* Tiny GD->IE relaxation:
5755 adr x0, :tlsgd:var => ldr R0, :gottprel:var
5756 bl __tls_get_addr => mrs x1, tpidr_el0
5757 nop => add R0, R0, R1
5758
5759 Where R is x for LP64, and w for Ilp32. */
5760
5761 /* First kill the tls_get_addr reloc on the bl instruction. */
5762 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5763 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5764
5765 bfd_putl32 (ldr_R0, contents + rel->r_offset);
5766 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5767 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
5768 return bfd_reloc_continue;
5769 }
5770
5771 #if ARCH_SIZE == 64
5772 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5773 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
5774 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
5775 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
5776
5777 if (is_local)
5778 {
5779 /* Large GD->LE relaxation:
5780 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
5781 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5782 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
5783 bl __tls_get_addr => mrs x1, tpidr_el0
5784 nop => add x0, x0, x1
5785 */
5786 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5787 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5788 rel[2].r_offset = rel->r_offset + 8;
5789
5790 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
5791 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
5792 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
5793 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5794 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
5795 }
5796 else
5797 {
5798 /* Large GD->IE relaxation:
5799 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
5800 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
5801 add x0, gp, x0 => ldr x0, [gp, x0]
5802 bl __tls_get_addr => mrs x1, tpidr_el0
5803 nop => add x0, x0, x1
5804 */
5805 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5806 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
5807 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
5808 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5809 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
5810 }
5811 return bfd_reloc_continue;
5812
5813 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5814 return bfd_reloc_continue;
5815 #endif
5816
5817 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5818 return bfd_reloc_continue;
5819
5820 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
5821 if (is_local)
5822 {
5823 /* GD->LE relaxation:
5824 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5825
5826 Where R is x for lp64 mode, and w for ILP32 mode. */
5827 bfd_putl32 (movk_R0, contents + rel->r_offset);
5828 return bfd_reloc_continue;
5829 }
5830 else
5831 {
5832 /* GD->IE relaxation:
5833 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
5834
5835 Where R is x for lp64 mode, and w for ILP32 mode. */
5836 insn = bfd_getl32 (contents + rel->r_offset);
5837 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
5838 return bfd_reloc_continue;
5839 }
5840
5841 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5842 if (is_local)
5843 {
5844 /* GD->LE relaxation
5845 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
5846 bl __tls_get_addr => mrs x1, tpidr_el0
5847 nop => add R0, R1, R0
5848
5849 Where R is x for lp64 mode, and w for ILP32 mode. */
5850
5851 /* First kill the tls_get_addr reloc on the bl instruction. */
5852 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5853 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5854
5855 bfd_putl32 (movk_R0, contents + rel->r_offset);
5856 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5857 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
5858 return bfd_reloc_continue;
5859 }
5860 else
5861 {
5862 /* GD->IE relaxation
5863 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
5864 BL __tls_get_addr => mrs x1, tpidr_el0
5865 R_AARCH64_CALL26
5866 NOP => add R0, R1, R0
5867
5868 Where R is x for lp64 mode, and w for ilp32 mode. */
5869
5870 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5871
5872 /* Remove the relocation on the BL instruction. */
5873 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5874
5875 /* We choose to fixup the BL and NOP instructions using the
5876 offset from the second relocation to allow flexibility in
5877 scheduling instructions between the ADD and BL. */
5878 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
5879 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
5880 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
5881 return bfd_reloc_continue;
5882 }
5883
5884 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5885 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5886 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5887 /* GD->IE/LE relaxation:
5888 add x0, x0, #:tlsdesc_lo12:var => nop
5889 blr xd => nop
5890 */
5891 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5892 return bfd_reloc_ok;
5893
5894 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5895 if (is_local)
5896 {
5897 /* GD->LE relaxation:
5898 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
5899
5900 Where R is x for lp64 mode, and w for ILP32 mode. */
5901 bfd_putl32 (movk_R0, contents + rel->r_offset);
5902 return bfd_reloc_continue;
5903 }
5904 else
5905 {
5906 /* GD->IE relaxation:
5907 ldr xd, [gp, xn] => ldr R0, [gp, xn]
5908
5909 Where R is x for lp64 mode, and w for ILP32 mode. */
5910 insn = bfd_getl32 (contents + rel->r_offset);
5911 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
5912 return bfd_reloc_ok;
5913 }
5914
5915 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5916 /* GD->LE relaxation:
5917 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
5918 GD->IE relaxation:
5919 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
5920
5921 Where R is x for lp64 mode, and w for ILP32 mode. */
5922 if (is_local)
5923 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
5924 return bfd_reloc_continue;
5925
5926 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5927 if (is_local)
5928 {
5929 /* GD->LE relaxation:
5930 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
5931
5932 Where R is x for lp64 mode, and w for ILP32 mode. */
5933 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
5934 return bfd_reloc_continue;
5935 }
5936 else
5937 {
5938 /* GD->IE relaxation:
5939 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
5940
5941 Where R is x for lp64 mode, and w for ILP32 mode. */
5942 insn = bfd_getl32 (contents + rel->r_offset);
5943 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
5944 return bfd_reloc_continue;
5945 }
5946
5947 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5948 /* IE->LE relaxation:
5949 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
5950
5951 Where R is x for lp64 mode, and w for ILP32 mode. */
5952 if (is_local)
5953 {
5954 insn = bfd_getl32 (contents + rel->r_offset);
5955 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
5956 }
5957 return bfd_reloc_continue;
5958
5959 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
5960 /* IE->LE relaxation:
5961 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
5962
5963 Where R is x for lp64 mode, and w for ILP32 mode. */
5964 if (is_local)
5965 {
5966 insn = bfd_getl32 (contents + rel->r_offset);
5967 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
5968 }
5969 return bfd_reloc_continue;
5970
5971 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5972 /* LD->LE relaxation (tiny):
5973 adr x0, :tlsldm:x => mrs x0, tpidr_el0
5974 bl __tls_get_addr => add R0, R0, TCB_SIZE
5975
5976 Where R is x for lp64 mode, and w for ilp32 mode. */
5977 if (is_local)
5978 {
5979 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5980 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5981 /* No need of CALL26 relocation for tls_get_addr. */
5982 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5983 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
5984 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
5985 contents + rel->r_offset + 4);
5986 return bfd_reloc_ok;
5987 }
5988 return bfd_reloc_continue;
5989
5990 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5991 /* LD->LE relaxation (small):
5992 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
5993 */
5994 if (is_local)
5995 {
5996 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
5997 return bfd_reloc_ok;
5998 }
5999 return bfd_reloc_continue;
6000
6001 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6002 /* LD->LE relaxation (small):
6003 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6004 bl __tls_get_addr => nop
6005
6006 Where R is x for lp64 mode, and w for ilp32 mode. */
6007 if (is_local)
6008 {
6009 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6010 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6011 /* No need of CALL26 relocation for tls_get_addr. */
6012 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6013 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6014 contents + rel->r_offset + 0);
6015 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6016 return bfd_reloc_ok;
6017 }
6018 return bfd_reloc_continue;
6019
6020 default:
6021 return bfd_reloc_continue;
6022 }
6023
6024 return bfd_reloc_ok;
6025 }
6026
6027 /* Relocate an AArch64 ELF section. */
6028
6029 static bfd_boolean
6030 elfNN_aarch64_relocate_section (bfd *output_bfd,
6031 struct bfd_link_info *info,
6032 bfd *input_bfd,
6033 asection *input_section,
6034 bfd_byte *contents,
6035 Elf_Internal_Rela *relocs,
6036 Elf_Internal_Sym *local_syms,
6037 asection **local_sections)
6038 {
6039 Elf_Internal_Shdr *symtab_hdr;
6040 struct elf_link_hash_entry **sym_hashes;
6041 Elf_Internal_Rela *rel;
6042 Elf_Internal_Rela *relend;
6043 const char *name;
6044 struct elf_aarch64_link_hash_table *globals;
6045 bfd_boolean save_addend = FALSE;
6046 bfd_vma addend = 0;
6047
6048 globals = elf_aarch64_hash_table (info);
6049
6050 symtab_hdr = &elf_symtab_hdr (input_bfd);
6051 sym_hashes = elf_sym_hashes (input_bfd);
6052
6053 rel = relocs;
6054 relend = relocs + input_section->reloc_count;
6055 for (; rel < relend; rel++)
6056 {
6057 unsigned int r_type;
6058 bfd_reloc_code_real_type bfd_r_type;
6059 bfd_reloc_code_real_type relaxed_bfd_r_type;
6060 reloc_howto_type *howto;
6061 unsigned long r_symndx;
6062 Elf_Internal_Sym *sym;
6063 asection *sec;
6064 struct elf_link_hash_entry *h;
6065 bfd_vma relocation;
6066 bfd_reloc_status_type r;
6067 arelent bfd_reloc;
6068 char sym_type;
6069 bfd_boolean unresolved_reloc = FALSE;
6070 char *error_message = NULL;
6071
6072 r_symndx = ELFNN_R_SYM (rel->r_info);
6073 r_type = ELFNN_R_TYPE (rel->r_info);
6074
6075 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
6076 howto = bfd_reloc.howto;
6077
6078 if (howto == NULL)
6079 {
6080 /* xgettext:c-format */
6081 _bfd_error_handler
6082 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
6083 input_bfd, r_type, input_section);
6084 return FALSE;
6085 }
6086 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6087
6088 h = NULL;
6089 sym = NULL;
6090 sec = NULL;
6091
6092 if (r_symndx < symtab_hdr->sh_info)
6093 {
6094 sym = local_syms + r_symndx;
6095 sym_type = ELFNN_ST_TYPE (sym->st_info);
6096 sec = local_sections[r_symndx];
6097
6098 /* An object file might have a reference to a local
6099 undefined symbol. This is a daft object file, but we
6100 should at least do something about it. */
6101 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6102 && bfd_is_und_section (sec)
6103 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6104 (*info->callbacks->undefined_symbol)
6105 (info, bfd_elf_string_from_elf_section
6106 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6107 input_bfd, input_section, rel->r_offset, TRUE);
6108
6109 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6110
6111 /* Relocate against local STT_GNU_IFUNC symbol. */
6112 if (!bfd_link_relocatable (info)
6113 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6114 {
6115 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6116 rel, FALSE);
6117 if (h == NULL)
6118 abort ();
6119
6120 /* Set STT_GNU_IFUNC symbol value. */
6121 h->root.u.def.value = sym->st_value;
6122 h->root.u.def.section = sec;
6123 }
6124 }
6125 else
6126 {
6127 bfd_boolean warned, ignored;
6128
6129 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6130 r_symndx, symtab_hdr, sym_hashes,
6131 h, sec, relocation,
6132 unresolved_reloc, warned, ignored);
6133
6134 sym_type = h->type;
6135 }
6136
6137 if (sec != NULL && discarded_section (sec))
6138 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6139 rel, 1, relend, howto, 0, contents);
6140
6141 if (bfd_link_relocatable (info))
6142 continue;
6143
6144 if (h != NULL)
6145 name = h->root.root.string;
6146 else
6147 {
6148 name = (bfd_elf_string_from_elf_section
6149 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6150 if (name == NULL || *name == '\0')
6151 name = bfd_section_name (input_bfd, sec);
6152 }
6153
6154 if (r_symndx != 0
6155 && r_type != R_AARCH64_NONE
6156 && r_type != R_AARCH64_NULL
6157 && (h == NULL
6158 || h->root.type == bfd_link_hash_defined
6159 || h->root.type == bfd_link_hash_defweak)
6160 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6161 {
6162 _bfd_error_handler
6163 ((sym_type == STT_TLS
6164 /* xgettext:c-format */
6165 ? _("%B(%A+%#Lx): %s used with TLS symbol %s")
6166 /* xgettext:c-format */
6167 : _("%B(%A+%#Lx): %s used with non-TLS symbol %s")),
6168 input_bfd,
6169 input_section, rel->r_offset, howto->name, name);
6170 }
6171
6172 /* We relax only if we can see that there can be a valid transition
6173 from a reloc type to another.
6174 We call elfNN_aarch64_final_link_relocate unless we're completely
6175 done, i.e., the relaxation produced the final output we want. */
6176
6177 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6178 h, r_symndx);
6179 if (relaxed_bfd_r_type != bfd_r_type)
6180 {
6181 bfd_r_type = relaxed_bfd_r_type;
6182 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6183 BFD_ASSERT (howto != NULL);
6184 r_type = howto->type;
6185 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
6186 unresolved_reloc = 0;
6187 }
6188 else
6189 r = bfd_reloc_continue;
6190
6191 /* There may be multiple consecutive relocations for the
6192 same offset. In that case we are supposed to treat the
6193 output of each relocation as the addend for the next. */
6194 if (rel + 1 < relend
6195 && rel->r_offset == rel[1].r_offset
6196 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6197 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6198 save_addend = TRUE;
6199 else
6200 save_addend = FALSE;
6201
6202 if (r == bfd_reloc_continue)
6203 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6204 input_section, contents, rel,
6205 relocation, info, sec,
6206 h, &unresolved_reloc,
6207 save_addend, &addend, sym);
6208
6209 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
6210 {
6211 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6212 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6213 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6214 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6215 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6216 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6217 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6218 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6219 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6220 {
6221 bfd_boolean need_relocs = FALSE;
6222 bfd_byte *loc;
6223 int indx;
6224 bfd_vma off;
6225
6226 off = symbol_got_offset (input_bfd, h, r_symndx);
6227 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6228
6229 need_relocs =
6230 (bfd_link_pic (info) || indx != 0) &&
6231 (h == NULL
6232 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6233 || h->root.type != bfd_link_hash_undefweak);
6234
6235 BFD_ASSERT (globals->root.srelgot != NULL);
6236
6237 if (need_relocs)
6238 {
6239 Elf_Internal_Rela rela;
6240 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6241 rela.r_addend = 0;
6242 rela.r_offset = globals->root.sgot->output_section->vma +
6243 globals->root.sgot->output_offset + off;
6244
6245
6246 loc = globals->root.srelgot->contents;
6247 loc += globals->root.srelgot->reloc_count++
6248 * RELOC_SIZE (htab);
6249 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6250
6251 bfd_reloc_code_real_type real_type =
6252 elfNN_aarch64_bfd_reloc_from_type (r_type);
6253
6254 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6255 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6256 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6257 {
6258 /* For local dynamic, don't generate DTPREL in any case.
6259 Initialize the DTPREL slot into zero, so we get module
6260 base address when invoke runtime TLS resolver. */
6261 bfd_put_NN (output_bfd, 0,
6262 globals->root.sgot->contents + off
6263 + GOT_ENTRY_SIZE);
6264 }
6265 else if (indx == 0)
6266 {
6267 bfd_put_NN (output_bfd,
6268 relocation - dtpoff_base (info),
6269 globals->root.sgot->contents + off
6270 + GOT_ENTRY_SIZE);
6271 }
6272 else
6273 {
6274 /* This TLS symbol is global. We emit a
6275 relocation to fixup the tls offset at load
6276 time. */
6277 rela.r_info =
6278 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6279 rela.r_addend = 0;
6280 rela.r_offset =
6281 (globals->root.sgot->output_section->vma
6282 + globals->root.sgot->output_offset + off
6283 + GOT_ENTRY_SIZE);
6284
6285 loc = globals->root.srelgot->contents;
6286 loc += globals->root.srelgot->reloc_count++
6287 * RELOC_SIZE (globals);
6288 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6289 bfd_put_NN (output_bfd, (bfd_vma) 0,
6290 globals->root.sgot->contents + off
6291 + GOT_ENTRY_SIZE);
6292 }
6293 }
6294 else
6295 {
6296 bfd_put_NN (output_bfd, (bfd_vma) 1,
6297 globals->root.sgot->contents + off);
6298 bfd_put_NN (output_bfd,
6299 relocation - dtpoff_base (info),
6300 globals->root.sgot->contents + off
6301 + GOT_ENTRY_SIZE);
6302 }
6303
6304 symbol_got_offset_mark (input_bfd, h, r_symndx);
6305 }
6306 break;
6307
6308 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6309 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6310 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6311 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6312 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6313 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6314 {
6315 bfd_boolean need_relocs = FALSE;
6316 bfd_byte *loc;
6317 int indx;
6318 bfd_vma off;
6319
6320 off = symbol_got_offset (input_bfd, h, r_symndx);
6321
6322 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6323
6324 need_relocs =
6325 (bfd_link_pic (info) || indx != 0) &&
6326 (h == NULL
6327 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6328 || h->root.type != bfd_link_hash_undefweak);
6329
6330 BFD_ASSERT (globals->root.srelgot != NULL);
6331
6332 if (need_relocs)
6333 {
6334 Elf_Internal_Rela rela;
6335
6336 if (indx == 0)
6337 rela.r_addend = relocation - dtpoff_base (info);
6338 else
6339 rela.r_addend = 0;
6340
6341 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6342 rela.r_offset = globals->root.sgot->output_section->vma +
6343 globals->root.sgot->output_offset + off;
6344
6345 loc = globals->root.srelgot->contents;
6346 loc += globals->root.srelgot->reloc_count++
6347 * RELOC_SIZE (htab);
6348
6349 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6350
6351 bfd_put_NN (output_bfd, rela.r_addend,
6352 globals->root.sgot->contents + off);
6353 }
6354 else
6355 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6356 globals->root.sgot->contents + off);
6357
6358 symbol_got_offset_mark (input_bfd, h, r_symndx);
6359 }
6360 break;
6361
6362 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6363 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6364 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6365 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6366 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6367 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6368 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6369 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6370 {
6371 bfd_boolean need_relocs = FALSE;
6372 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6373 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6374
6375 need_relocs = (h == NULL
6376 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6377 || h->root.type != bfd_link_hash_undefweak);
6378
6379 BFD_ASSERT (globals->root.srelgot != NULL);
6380 BFD_ASSERT (globals->root.sgot != NULL);
6381
6382 if (need_relocs)
6383 {
6384 bfd_byte *loc;
6385 Elf_Internal_Rela rela;
6386 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6387
6388 rela.r_addend = 0;
6389 rela.r_offset = (globals->root.sgotplt->output_section->vma
6390 + globals->root.sgotplt->output_offset
6391 + off + globals->sgotplt_jump_table_size);
6392
6393 if (indx == 0)
6394 rela.r_addend = relocation - dtpoff_base (info);
6395
6396 /* Allocate the next available slot in the PLT reloc
6397 section to hold our R_AARCH64_TLSDESC, the next
6398 available slot is determined from reloc_count,
6399 which we step. But note, reloc_count was
6400 artifically moved down while allocating slots for
6401 real PLT relocs such that all of the PLT relocs
6402 will fit above the initial reloc_count and the
6403 extra stuff will fit below. */
6404 loc = globals->root.srelplt->contents;
6405 loc += globals->root.srelplt->reloc_count++
6406 * RELOC_SIZE (globals);
6407
6408 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6409
6410 bfd_put_NN (output_bfd, (bfd_vma) 0,
6411 globals->root.sgotplt->contents + off +
6412 globals->sgotplt_jump_table_size);
6413 bfd_put_NN (output_bfd, (bfd_vma) 0,
6414 globals->root.sgotplt->contents + off +
6415 globals->sgotplt_jump_table_size +
6416 GOT_ENTRY_SIZE);
6417 }
6418
6419 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6420 }
6421 break;
6422 default:
6423 break;
6424 }
6425
6426 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6427 because such sections are not SEC_ALLOC and thus ld.so will
6428 not process them. */
6429 if (unresolved_reloc
6430 && !((input_section->flags & SEC_DEBUGGING) != 0
6431 && h->def_dynamic)
6432 && _bfd_elf_section_offset (output_bfd, info, input_section,
6433 +rel->r_offset) != (bfd_vma) - 1)
6434 {
6435 _bfd_error_handler
6436 /* xgettext:c-format */
6437 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
6438 input_bfd, input_section, rel->r_offset, howto->name,
6439 h->root.root.string);
6440 return FALSE;
6441 }
6442
6443 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6444 {
6445 bfd_reloc_code_real_type real_r_type
6446 = elfNN_aarch64_bfd_reloc_from_type (r_type);
6447
6448 switch (r)
6449 {
6450 case bfd_reloc_overflow:
6451 (*info->callbacks->reloc_overflow)
6452 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6453 input_bfd, input_section, rel->r_offset);
6454 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6455 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6456 {
6457 (*info->callbacks->warning)
6458 (info,
6459 _("Too many GOT entries for -fpic, "
6460 "please recompile with -fPIC"),
6461 name, input_bfd, input_section, rel->r_offset);
6462 return FALSE;
6463 }
6464 /* Overflow can occur when a variable is referenced with a type
6465 that has a larger alignment than the type with which it was
6466 declared. eg:
6467 file1.c: extern int foo; int a (void) { return foo; }
6468 file2.c: char bar, foo, baz;
6469 If the variable is placed into a data section at an offset
6470 that is incompatible with the larger alignment requirement
6471 overflow will occur. (Strictly speaking this is not overflow
6472 but rather an alignment problem, but the bfd_reloc_ error
6473 enum does not have a value to cover that situation).
6474
6475 Try to catch this situation here and provide a more helpful
6476 error message to the user. */
6477 if (addend & ((1 << howto->rightshift) - 1)
6478 /* FIXME: Are we testing all of the appropriate reloc
6479 types here ? */
6480 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6481 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6482 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6483 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6484 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6485 {
6486 info->callbacks->warning
6487 (info, _("One possible cause of this error is that the \
6488 symbol is being referenced in the indicated code as if it had a larger \
6489 alignment than was declared where it was defined."),
6490 name, input_bfd, input_section, rel->r_offset);
6491 }
6492 break;
6493
6494 case bfd_reloc_undefined:
6495 (*info->callbacks->undefined_symbol)
6496 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
6497 break;
6498
6499 case bfd_reloc_outofrange:
6500 error_message = _("out of range");
6501 goto common_error;
6502
6503 case bfd_reloc_notsupported:
6504 error_message = _("unsupported relocation");
6505 goto common_error;
6506
6507 case bfd_reloc_dangerous:
6508 /* error_message should already be set. */
6509 goto common_error;
6510
6511 default:
6512 error_message = _("unknown error");
6513 /* Fall through. */
6514
6515 common_error:
6516 BFD_ASSERT (error_message != NULL);
6517 (*info->callbacks->reloc_dangerous)
6518 (info, error_message, input_bfd, input_section, rel->r_offset);
6519 break;
6520 }
6521 }
6522
6523 if (!save_addend)
6524 addend = 0;
6525 }
6526
6527 return TRUE;
6528 }
6529
6530 /* Set the right machine number. */
6531
6532 static bfd_boolean
6533 elfNN_aarch64_object_p (bfd *abfd)
6534 {
6535 #if ARCH_SIZE == 32
6536 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6537 #else
6538 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6539 #endif
6540 return TRUE;
6541 }
6542
6543 /* Function to keep AArch64 specific flags in the ELF header. */
6544
6545 static bfd_boolean
6546 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6547 {
6548 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6549 {
6550 }
6551 else
6552 {
6553 elf_elfheader (abfd)->e_flags = flags;
6554 elf_flags_init (abfd) = TRUE;
6555 }
6556
6557 return TRUE;
6558 }
6559
6560 /* Merge backend specific data from an object file to the output
6561 object file when linking. */
6562
6563 static bfd_boolean
6564 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
6565 {
6566 bfd *obfd = info->output_bfd;
6567 flagword out_flags;
6568 flagword in_flags;
6569 bfd_boolean flags_compatible = TRUE;
6570 asection *sec;
6571
6572 /* Check if we have the same endianess. */
6573 if (!_bfd_generic_verify_endian_match (ibfd, info))
6574 return FALSE;
6575
6576 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6577 return TRUE;
6578
6579 /* The input BFD must have had its flags initialised. */
6580 /* The following seems bogus to me -- The flags are initialized in
6581 the assembler but I don't think an elf_flags_init field is
6582 written into the object. */
6583 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6584
6585 in_flags = elf_elfheader (ibfd)->e_flags;
6586 out_flags = elf_elfheader (obfd)->e_flags;
6587
6588 if (!elf_flags_init (obfd))
6589 {
6590 /* If the input is the default architecture and had the default
6591 flags then do not bother setting the flags for the output
6592 architecture, instead allow future merges to do this. If no
6593 future merges ever set these flags then they will retain their
6594 uninitialised values, which surprise surprise, correspond
6595 to the default values. */
6596 if (bfd_get_arch_info (ibfd)->the_default
6597 && elf_elfheader (ibfd)->e_flags == 0)
6598 return TRUE;
6599
6600 elf_flags_init (obfd) = TRUE;
6601 elf_elfheader (obfd)->e_flags = in_flags;
6602
6603 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6604 && bfd_get_arch_info (obfd)->the_default)
6605 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6606 bfd_get_mach (ibfd));
6607
6608 return TRUE;
6609 }
6610
6611 /* Identical flags must be compatible. */
6612 if (in_flags == out_flags)
6613 return TRUE;
6614
6615 /* Check to see if the input BFD actually contains any sections. If
6616 not, its flags may not have been initialised either, but it
6617 cannot actually cause any incompatiblity. Do not short-circuit
6618 dynamic objects; their section list may be emptied by
6619 elf_link_add_object_symbols.
6620
6621 Also check to see if there are no code sections in the input.
6622 In this case there is no need to check for code specific flags.
6623 XXX - do we need to worry about floating-point format compatability
6624 in data sections ? */
6625 if (!(ibfd->flags & DYNAMIC))
6626 {
6627 bfd_boolean null_input_bfd = TRUE;
6628 bfd_boolean only_data_sections = TRUE;
6629
6630 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6631 {
6632 if ((bfd_get_section_flags (ibfd, sec)
6633 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6634 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6635 only_data_sections = FALSE;
6636
6637 null_input_bfd = FALSE;
6638 break;
6639 }
6640
6641 if (null_input_bfd || only_data_sections)
6642 return TRUE;
6643 }
6644
6645 return flags_compatible;
6646 }
6647
6648 /* Display the flags field. */
6649
6650 static bfd_boolean
6651 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
6652 {
6653 FILE *file = (FILE *) ptr;
6654 unsigned long flags;
6655
6656 BFD_ASSERT (abfd != NULL && ptr != NULL);
6657
6658 /* Print normal ELF private data. */
6659 _bfd_elf_print_private_bfd_data (abfd, ptr);
6660
6661 flags = elf_elfheader (abfd)->e_flags;
6662 /* Ignore init flag - it may not be set, despite the flags field
6663 containing valid data. */
6664
6665 /* xgettext:c-format */
6666 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6667
6668 if (flags)
6669 fprintf (file, _("<Unrecognised flag bits set>"));
6670
6671 fputc ('\n', file);
6672
6673 return TRUE;
6674 }
6675
6676 /* Update the got entry reference counts for the section being removed. */
6677
6678 static bfd_boolean
6679 elfNN_aarch64_gc_sweep_hook (bfd *abfd,
6680 struct bfd_link_info *info,
6681 asection *sec,
6682 const Elf_Internal_Rela * relocs)
6683 {
6684 struct elf_aarch64_link_hash_table *htab;
6685 Elf_Internal_Shdr *symtab_hdr;
6686 struct elf_link_hash_entry **sym_hashes;
6687 struct elf_aarch64_local_symbol *locals;
6688 const Elf_Internal_Rela *rel, *relend;
6689
6690 if (bfd_link_relocatable (info))
6691 return TRUE;
6692
6693 htab = elf_aarch64_hash_table (info);
6694
6695 if (htab == NULL)
6696 return FALSE;
6697
6698 elf_section_data (sec)->local_dynrel = NULL;
6699
6700 symtab_hdr = &elf_symtab_hdr (abfd);
6701 sym_hashes = elf_sym_hashes (abfd);
6702
6703 locals = elf_aarch64_locals (abfd);
6704
6705 relend = relocs + sec->reloc_count;
6706 for (rel = relocs; rel < relend; rel++)
6707 {
6708 unsigned long r_symndx;
6709 unsigned int r_type;
6710 struct elf_link_hash_entry *h = NULL;
6711
6712 r_symndx = ELFNN_R_SYM (rel->r_info);
6713
6714 if (r_symndx >= symtab_hdr->sh_info)
6715 {
6716
6717 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6718 while (h->root.type == bfd_link_hash_indirect
6719 || h->root.type == bfd_link_hash_warning)
6720 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6721 }
6722 else
6723 {
6724 Elf_Internal_Sym *isym;
6725
6726 /* A local symbol. */
6727 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6728 abfd, r_symndx);
6729
6730 /* Check relocation against local STT_GNU_IFUNC symbol. */
6731 if (isym != NULL
6732 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6733 {
6734 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6735 if (h == NULL)
6736 abort ();
6737 }
6738 }
6739
6740 if (h)
6741 {
6742 struct elf_aarch64_link_hash_entry *eh;
6743 struct elf_dyn_relocs **pp;
6744 struct elf_dyn_relocs *p;
6745
6746 eh = (struct elf_aarch64_link_hash_entry *) h;
6747
6748 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6749 if (p->sec == sec)
6750 {
6751 /* Everything must go for SEC. */
6752 *pp = p->next;
6753 break;
6754 }
6755 }
6756
6757 r_type = ELFNN_R_TYPE (rel->r_info);
6758 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
6759 {
6760 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6761 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6762 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6763 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6764 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6765 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6766 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6767 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
6768 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
6769 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6770 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6771 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6772 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6773 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6774 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6775 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6776 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6777 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6778 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6779 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6780 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6781 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6782 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6783 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6784 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6785 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6786 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6787 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6788 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6789 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6790 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6791 if (h != NULL)
6792 {
6793 if (h->got.refcount > 0)
6794 h->got.refcount -= 1;
6795
6796 if (h->type == STT_GNU_IFUNC)
6797 {
6798 if (h->plt.refcount > 0)
6799 h->plt.refcount -= 1;
6800 }
6801 }
6802 else if (locals != NULL)
6803 {
6804 if (locals[r_symndx].got_refcount > 0)
6805 locals[r_symndx].got_refcount -= 1;
6806 }
6807 break;
6808
6809 case BFD_RELOC_AARCH64_CALL26:
6810 case BFD_RELOC_AARCH64_JUMP26:
6811 /* If this is a local symbol then we resolve it
6812 directly without creating a PLT entry. */
6813 if (h == NULL)
6814 continue;
6815
6816 if (h->plt.refcount > 0)
6817 h->plt.refcount -= 1;
6818 break;
6819
6820 case BFD_RELOC_AARCH64_ADD_LO12:
6821 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6822 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6823 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6824 case BFD_RELOC_AARCH64_LDST128_LO12:
6825 case BFD_RELOC_AARCH64_LDST16_LO12:
6826 case BFD_RELOC_AARCH64_LDST32_LO12:
6827 case BFD_RELOC_AARCH64_LDST64_LO12:
6828 case BFD_RELOC_AARCH64_LDST8_LO12:
6829 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
6830 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6831 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6832 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6833 case BFD_RELOC_AARCH64_MOVW_G3:
6834 case BFD_RELOC_AARCH64_NN:
6835 if (h != NULL && !bfd_link_pic (info))
6836 {
6837 if (h->plt.refcount > 0)
6838 h->plt.refcount -= 1;
6839 }
6840 break;
6841
6842 default:
6843 break;
6844 }
6845 }
6846
6847 return TRUE;
6848 }
6849
6850 /* Return true if we need copy relocation against EH. */
6851
6852 static bfd_boolean
6853 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
6854 {
6855 struct elf_dyn_relocs *p;
6856 asection *s;
6857
6858 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6859 {
6860 /* If there is any pc-relative reference, we need to keep copy relocation
6861 to avoid propagating the relocation into runtime that current glibc
6862 does not support. */
6863 if (p->pc_count)
6864 return TRUE;
6865
6866 s = p->sec->output_section;
6867 /* Need copy relocation if it's against read-only section. */
6868 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6869 return TRUE;
6870 }
6871
6872 return FALSE;
6873 }
6874
6875 /* Adjust a symbol defined by a dynamic object and referenced by a
6876 regular object. The current definition is in some section of the
6877 dynamic object, but we're not including those sections. We have to
6878 change the definition to something the rest of the link can
6879 understand. */
6880
6881 static bfd_boolean
6882 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
6883 struct elf_link_hash_entry *h)
6884 {
6885 struct elf_aarch64_link_hash_table *htab;
6886 asection *s, *srel;
6887
6888 /* If this is a function, put it in the procedure linkage table. We
6889 will fill in the contents of the procedure linkage table later,
6890 when we know the address of the .got section. */
6891 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
6892 {
6893 if (h->plt.refcount <= 0
6894 || (h->type != STT_GNU_IFUNC
6895 && (SYMBOL_CALLS_LOCAL (info, h)
6896 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6897 && h->root.type == bfd_link_hash_undefweak))))
6898 {
6899 /* This case can occur if we saw a CALL26 reloc in
6900 an input file, but the symbol wasn't referred to
6901 by a dynamic object or all references were
6902 garbage collected. In which case we can end up
6903 resolving. */
6904 h->plt.offset = (bfd_vma) - 1;
6905 h->needs_plt = 0;
6906 }
6907
6908 return TRUE;
6909 }
6910 else
6911 /* Otherwise, reset to -1. */
6912 h->plt.offset = (bfd_vma) - 1;
6913
6914
6915 /* If this is a weak symbol, and there is a real definition, the
6916 processor independent code will have arranged for us to see the
6917 real definition first, and we can just use the same value. */
6918 if (h->u.weakdef != NULL)
6919 {
6920 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6921 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6922 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6923 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6924 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6925 h->non_got_ref = h->u.weakdef->non_got_ref;
6926 return TRUE;
6927 }
6928
6929 /* If we are creating a shared library, we must presume that the
6930 only references to the symbol are via the global offset table.
6931 For such cases we need not do anything here; the relocations will
6932 be handled correctly by relocate_section. */
6933 if (bfd_link_pic (info))
6934 return TRUE;
6935
6936 /* If there are no references to this symbol that do not use the
6937 GOT, we don't need to generate a copy reloc. */
6938 if (!h->non_got_ref)
6939 return TRUE;
6940
6941 /* If -z nocopyreloc was given, we won't generate them either. */
6942 if (info->nocopyreloc)
6943 {
6944 h->non_got_ref = 0;
6945 return TRUE;
6946 }
6947
6948 if (ELIMINATE_COPY_RELOCS)
6949 {
6950 struct elf_aarch64_link_hash_entry *eh;
6951 /* If we didn't find any dynamic relocs in read-only sections, then
6952 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6953 eh = (struct elf_aarch64_link_hash_entry *) h;
6954 if (!need_copy_relocation_p (eh))
6955 {
6956 h->non_got_ref = 0;
6957 return TRUE;
6958 }
6959 }
6960
6961 /* We must allocate the symbol in our .dynbss section, which will
6962 become part of the .bss section of the executable. There will be
6963 an entry for this symbol in the .dynsym section. The dynamic
6964 object will contain position independent code, so all references
6965 from the dynamic object to this symbol will go through the global
6966 offset table. The dynamic linker will use the .dynsym entry to
6967 determine the address it must put in the global offset table, so
6968 both the dynamic object and the regular object will refer to the
6969 same memory location for the variable. */
6970
6971 htab = elf_aarch64_hash_table (info);
6972
6973 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6974 to copy the initial value out of the dynamic object and into the
6975 runtime process image. */
6976 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6977 {
6978 s = htab->root.sdynrelro;
6979 srel = htab->root.sreldynrelro;
6980 }
6981 else
6982 {
6983 s = htab->root.sdynbss;
6984 srel = htab->root.srelbss;
6985 }
6986 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6987 {
6988 srel->size += RELOC_SIZE (htab);
6989 h->needs_copy = 1;
6990 }
6991
6992 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6993
6994 }
6995
6996 static bfd_boolean
6997 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
6998 {
6999 struct elf_aarch64_local_symbol *locals;
7000 locals = elf_aarch64_locals (abfd);
7001 if (locals == NULL)
7002 {
7003 locals = (struct elf_aarch64_local_symbol *)
7004 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7005 if (locals == NULL)
7006 return FALSE;
7007 elf_aarch64_locals (abfd) = locals;
7008 }
7009 return TRUE;
7010 }
7011
7012 /* Create the .got section to hold the global offset table. */
7013
7014 static bfd_boolean
7015 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7016 {
7017 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7018 flagword flags;
7019 asection *s;
7020 struct elf_link_hash_entry *h;
7021 struct elf_link_hash_table *htab = elf_hash_table (info);
7022
7023 /* This function may be called more than once. */
7024 if (htab->sgot != NULL)
7025 return TRUE;
7026
7027 flags = bed->dynamic_sec_flags;
7028
7029 s = bfd_make_section_anyway_with_flags (abfd,
7030 (bed->rela_plts_and_copies_p
7031 ? ".rela.got" : ".rel.got"),
7032 (bed->dynamic_sec_flags
7033 | SEC_READONLY));
7034 if (s == NULL
7035 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7036 return FALSE;
7037 htab->srelgot = s;
7038
7039 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7040 if (s == NULL
7041 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7042 return FALSE;
7043 htab->sgot = s;
7044 htab->sgot->size += GOT_ENTRY_SIZE;
7045
7046 if (bed->want_got_sym)
7047 {
7048 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7049 (or .got.plt) section. We don't do this in the linker script
7050 because we don't want to define the symbol if we are not creating
7051 a global offset table. */
7052 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7053 "_GLOBAL_OFFSET_TABLE_");
7054 elf_hash_table (info)->hgot = h;
7055 if (h == NULL)
7056 return FALSE;
7057 }
7058
7059 if (bed->want_got_plt)
7060 {
7061 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7062 if (s == NULL
7063 || !bfd_set_section_alignment (abfd, s,
7064 bed->s->log_file_align))
7065 return FALSE;
7066 htab->sgotplt = s;
7067 }
7068
7069 /* The first bit of the global offset table is the header. */
7070 s->size += bed->got_header_size;
7071
7072 return TRUE;
7073 }
7074
7075 /* Look through the relocs for a section during the first phase. */
7076
7077 static bfd_boolean
7078 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7079 asection *sec, const Elf_Internal_Rela *relocs)
7080 {
7081 Elf_Internal_Shdr *symtab_hdr;
7082 struct elf_link_hash_entry **sym_hashes;
7083 const Elf_Internal_Rela *rel;
7084 const Elf_Internal_Rela *rel_end;
7085 asection *sreloc;
7086
7087 struct elf_aarch64_link_hash_table *htab;
7088
7089 if (bfd_link_relocatable (info))
7090 return TRUE;
7091
7092 BFD_ASSERT (is_aarch64_elf (abfd));
7093
7094 htab = elf_aarch64_hash_table (info);
7095 sreloc = NULL;
7096
7097 symtab_hdr = &elf_symtab_hdr (abfd);
7098 sym_hashes = elf_sym_hashes (abfd);
7099
7100 rel_end = relocs + sec->reloc_count;
7101 for (rel = relocs; rel < rel_end; rel++)
7102 {
7103 struct elf_link_hash_entry *h;
7104 unsigned int r_symndx;
7105 unsigned int r_type;
7106 bfd_reloc_code_real_type bfd_r_type;
7107 Elf_Internal_Sym *isym;
7108
7109 r_symndx = ELFNN_R_SYM (rel->r_info);
7110 r_type = ELFNN_R_TYPE (rel->r_info);
7111
7112 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7113 {
7114 /* xgettext:c-format */
7115 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd, r_symndx);
7116 return FALSE;
7117 }
7118
7119 if (r_symndx < symtab_hdr->sh_info)
7120 {
7121 /* A local symbol. */
7122 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7123 abfd, r_symndx);
7124 if (isym == NULL)
7125 return FALSE;
7126
7127 /* Check relocation against local STT_GNU_IFUNC symbol. */
7128 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7129 {
7130 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7131 TRUE);
7132 if (h == NULL)
7133 return FALSE;
7134
7135 /* Fake a STT_GNU_IFUNC symbol. */
7136 h->type = STT_GNU_IFUNC;
7137 h->def_regular = 1;
7138 h->ref_regular = 1;
7139 h->forced_local = 1;
7140 h->root.type = bfd_link_hash_defined;
7141 }
7142 else
7143 h = NULL;
7144 }
7145 else
7146 {
7147 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7148 while (h->root.type == bfd_link_hash_indirect
7149 || h->root.type == bfd_link_hash_warning)
7150 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7151
7152 /* PR15323, ref flags aren't set for references in the same
7153 object. */
7154 h->root.non_ir_ref_regular = 1;
7155 }
7156
7157 /* Could be done earlier, if h were already available. */
7158 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7159
7160 if (h != NULL)
7161 {
7162 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7163 This shows up in particular in an R_AARCH64_PREL64 in large model
7164 when calculating the pc-relative address to .got section which is
7165 used to initialize the gp register. */
7166 if (h->root.root.string
7167 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7168 {
7169 if (htab->root.dynobj == NULL)
7170 htab->root.dynobj = abfd;
7171
7172 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7173 return FALSE;
7174
7175 BFD_ASSERT (h == htab->root.hgot);
7176 }
7177
7178 /* Create the ifunc sections for static executables. If we
7179 never see an indirect function symbol nor we are building
7180 a static executable, those sections will be empty and
7181 won't appear in output. */
7182 switch (bfd_r_type)
7183 {
7184 default:
7185 break;
7186
7187 case BFD_RELOC_AARCH64_ADD_LO12:
7188 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7189 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7190 case BFD_RELOC_AARCH64_CALL26:
7191 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7192 case BFD_RELOC_AARCH64_JUMP26:
7193 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7194 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7195 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7196 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7197 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7198 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7199 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7200 case BFD_RELOC_AARCH64_NN:
7201 if (htab->root.dynobj == NULL)
7202 htab->root.dynobj = abfd;
7203 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7204 return FALSE;
7205 break;
7206 }
7207
7208 /* It is referenced by a non-shared object. */
7209 h->ref_regular = 1;
7210 h->root.non_ir_ref_regular = 1;
7211 }
7212
7213 switch (bfd_r_type)
7214 {
7215 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7216 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7217 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7218 case BFD_RELOC_AARCH64_MOVW_G3:
7219 if (bfd_link_pic (info))
7220 {
7221 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7222 _bfd_error_handler
7223 /* xgettext:c-format */
7224 (_("%B: relocation %s against `%s' can not be used when making "
7225 "a shared object; recompile with -fPIC"),
7226 abfd, elfNN_aarch64_howto_table[howto_index].name,
7227 (h) ? h->root.root.string : "a local symbol");
7228 bfd_set_error (bfd_error_bad_value);
7229 return FALSE;
7230 }
7231 /* Fall through. */
7232
7233 case BFD_RELOC_AARCH64_16_PCREL:
7234 case BFD_RELOC_AARCH64_32_PCREL:
7235 case BFD_RELOC_AARCH64_64_PCREL:
7236 case BFD_RELOC_AARCH64_ADD_LO12:
7237 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7238 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7239 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7240 case BFD_RELOC_AARCH64_LDST128_LO12:
7241 case BFD_RELOC_AARCH64_LDST16_LO12:
7242 case BFD_RELOC_AARCH64_LDST32_LO12:
7243 case BFD_RELOC_AARCH64_LDST64_LO12:
7244 case BFD_RELOC_AARCH64_LDST8_LO12:
7245 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7246 if (h == NULL || bfd_link_pic (info))
7247 break;
7248 /* Fall through. */
7249
7250 case BFD_RELOC_AARCH64_NN:
7251
7252 /* We don't need to handle relocs into sections not going into
7253 the "real" output. */
7254 if ((sec->flags & SEC_ALLOC) == 0)
7255 break;
7256
7257 if (h != NULL)
7258 {
7259 if (!bfd_link_pic (info))
7260 h->non_got_ref = 1;
7261
7262 h->plt.refcount += 1;
7263 h->pointer_equality_needed = 1;
7264 }
7265
7266 /* No need to do anything if we're not creating a shared
7267 object. */
7268 if (!(bfd_link_pic (info)
7269 /* If on the other hand, we are creating an executable, we
7270 may need to keep relocations for symbols satisfied by a
7271 dynamic library if we manage to avoid copy relocs for the
7272 symbol.
7273
7274 NOTE: Currently, there is no support of copy relocs
7275 elimination on pc-relative relocation types, because there is
7276 no dynamic relocation support for them in glibc. We still
7277 record the dynamic symbol reference for them. This is
7278 because one symbol may be referenced by both absolute
7279 relocation (for example, BFD_RELOC_AARCH64_NN) and
7280 pc-relative relocation. We need full symbol reference
7281 information to make correct decision later in
7282 elfNN_aarch64_adjust_dynamic_symbol. */
7283 || (ELIMINATE_COPY_RELOCS
7284 && !bfd_link_pic (info)
7285 && h != NULL
7286 && (h->root.type == bfd_link_hash_defweak
7287 || !h->def_regular))))
7288 break;
7289
7290 {
7291 struct elf_dyn_relocs *p;
7292 struct elf_dyn_relocs **head;
7293 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7294
7295 /* We must copy these reloc types into the output file.
7296 Create a reloc section in dynobj and make room for
7297 this reloc. */
7298 if (sreloc == NULL)
7299 {
7300 if (htab->root.dynobj == NULL)
7301 htab->root.dynobj = abfd;
7302
7303 sreloc = _bfd_elf_make_dynamic_reloc_section
7304 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7305
7306 if (sreloc == NULL)
7307 return FALSE;
7308 }
7309
7310 /* If this is a global symbol, we count the number of
7311 relocations we need for this symbol. */
7312 if (h != NULL)
7313 {
7314 struct elf_aarch64_link_hash_entry *eh;
7315 eh = (struct elf_aarch64_link_hash_entry *) h;
7316 head = &eh->dyn_relocs;
7317 }
7318 else
7319 {
7320 /* Track dynamic relocs needed for local syms too.
7321 We really need local syms available to do this
7322 easily. Oh well. */
7323
7324 asection *s;
7325 void **vpp;
7326
7327 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7328 abfd, r_symndx);
7329 if (isym == NULL)
7330 return FALSE;
7331
7332 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7333 if (s == NULL)
7334 s = sec;
7335
7336 /* Beware of type punned pointers vs strict aliasing
7337 rules. */
7338 vpp = &(elf_section_data (s)->local_dynrel);
7339 head = (struct elf_dyn_relocs **) vpp;
7340 }
7341
7342 p = *head;
7343 if (p == NULL || p->sec != sec)
7344 {
7345 bfd_size_type amt = sizeof *p;
7346 p = ((struct elf_dyn_relocs *)
7347 bfd_zalloc (htab->root.dynobj, amt));
7348 if (p == NULL)
7349 return FALSE;
7350 p->next = *head;
7351 *head = p;
7352 p->sec = sec;
7353 }
7354
7355 p->count += 1;
7356
7357 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7358 p->pc_count += 1;
7359 }
7360 break;
7361
7362 /* RR: We probably want to keep a consistency check that
7363 there are no dangling GOT_PAGE relocs. */
7364 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7365 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7366 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7367 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7368 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7369 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7370 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7371 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7372 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7373 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7374 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7375 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7376 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7377 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7378 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7379 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7380 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7381 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7382 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7383 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7384 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7385 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7386 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7387 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7388 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7389 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7390 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7391 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7392 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7393 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7394 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7395 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7396 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7397 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7398 {
7399 unsigned got_type;
7400 unsigned old_got_type;
7401
7402 got_type = aarch64_reloc_got_type (bfd_r_type);
7403
7404 if (h)
7405 {
7406 h->got.refcount += 1;
7407 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7408 }
7409 else
7410 {
7411 struct elf_aarch64_local_symbol *locals;
7412
7413 if (!elfNN_aarch64_allocate_local_symbols
7414 (abfd, symtab_hdr->sh_info))
7415 return FALSE;
7416
7417 locals = elf_aarch64_locals (abfd);
7418 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7419 locals[r_symndx].got_refcount += 1;
7420 old_got_type = locals[r_symndx].got_type;
7421 }
7422
7423 /* If a variable is accessed with both general dynamic TLS
7424 methods, two slots may be created. */
7425 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7426 got_type |= old_got_type;
7427
7428 /* We will already have issued an error message if there
7429 is a TLS/non-TLS mismatch, based on the symbol type.
7430 So just combine any TLS types needed. */
7431 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7432 && got_type != GOT_NORMAL)
7433 got_type |= old_got_type;
7434
7435 /* If the symbol is accessed by both IE and GD methods, we
7436 are able to relax. Turn off the GD flag, without
7437 messing up with any other kind of TLS types that may be
7438 involved. */
7439 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7440 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7441
7442 if (old_got_type != got_type)
7443 {
7444 if (h != NULL)
7445 elf_aarch64_hash_entry (h)->got_type = got_type;
7446 else
7447 {
7448 struct elf_aarch64_local_symbol *locals;
7449 locals = elf_aarch64_locals (abfd);
7450 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7451 locals[r_symndx].got_type = got_type;
7452 }
7453 }
7454
7455 if (htab->root.dynobj == NULL)
7456 htab->root.dynobj = abfd;
7457 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7458 return FALSE;
7459 break;
7460 }
7461
7462 case BFD_RELOC_AARCH64_CALL26:
7463 case BFD_RELOC_AARCH64_JUMP26:
7464 /* If this is a local symbol then we resolve it
7465 directly without creating a PLT entry. */
7466 if (h == NULL)
7467 continue;
7468
7469 h->needs_plt = 1;
7470 if (h->plt.refcount <= 0)
7471 h->plt.refcount = 1;
7472 else
7473 h->plt.refcount += 1;
7474 break;
7475
7476 default:
7477 break;
7478 }
7479 }
7480
7481 return TRUE;
7482 }
7483
7484 /* Treat mapping symbols as special target symbols. */
7485
7486 static bfd_boolean
7487 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7488 asymbol *sym)
7489 {
7490 return bfd_is_aarch64_special_symbol_name (sym->name,
7491 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7492 }
7493
7494 /* This is a copy of elf_find_function () from elf.c except that
7495 AArch64 mapping symbols are ignored when looking for function names. */
7496
7497 static bfd_boolean
7498 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7499 asymbol **symbols,
7500 asection *section,
7501 bfd_vma offset,
7502 const char **filename_ptr,
7503 const char **functionname_ptr)
7504 {
7505 const char *filename = NULL;
7506 asymbol *func = NULL;
7507 bfd_vma low_func = 0;
7508 asymbol **p;
7509
7510 for (p = symbols; *p != NULL; p++)
7511 {
7512 elf_symbol_type *q;
7513
7514 q = (elf_symbol_type *) * p;
7515
7516 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7517 {
7518 default:
7519 break;
7520 case STT_FILE:
7521 filename = bfd_asymbol_name (&q->symbol);
7522 break;
7523 case STT_FUNC:
7524 case STT_NOTYPE:
7525 /* Skip mapping symbols. */
7526 if ((q->symbol.flags & BSF_LOCAL)
7527 && (bfd_is_aarch64_special_symbol_name
7528 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7529 continue;
7530 /* Fall through. */
7531 if (bfd_get_section (&q->symbol) == section
7532 && q->symbol.value >= low_func && q->symbol.value <= offset)
7533 {
7534 func = (asymbol *) q;
7535 low_func = q->symbol.value;
7536 }
7537 break;
7538 }
7539 }
7540
7541 if (func == NULL)
7542 return FALSE;
7543
7544 if (filename_ptr)
7545 *filename_ptr = filename;
7546 if (functionname_ptr)
7547 *functionname_ptr = bfd_asymbol_name (func);
7548
7549 return TRUE;
7550 }
7551
7552
7553 /* Find the nearest line to a particular section and offset, for error
7554 reporting. This code is a duplicate of the code in elf.c, except
7555 that it uses aarch64_elf_find_function. */
7556
7557 static bfd_boolean
7558 elfNN_aarch64_find_nearest_line (bfd *abfd,
7559 asymbol **symbols,
7560 asection *section,
7561 bfd_vma offset,
7562 const char **filename_ptr,
7563 const char **functionname_ptr,
7564 unsigned int *line_ptr,
7565 unsigned int *discriminator_ptr)
7566 {
7567 bfd_boolean found = FALSE;
7568
7569 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7570 filename_ptr, functionname_ptr,
7571 line_ptr, discriminator_ptr,
7572 dwarf_debug_sections, 0,
7573 &elf_tdata (abfd)->dwarf2_find_line_info))
7574 {
7575 if (!*functionname_ptr)
7576 aarch64_elf_find_function (abfd, symbols, section, offset,
7577 *filename_ptr ? NULL : filename_ptr,
7578 functionname_ptr);
7579
7580 return TRUE;
7581 }
7582
7583 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7584 toolchain uses DWARF1. */
7585
7586 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7587 &found, filename_ptr,
7588 functionname_ptr, line_ptr,
7589 &elf_tdata (abfd)->line_info))
7590 return FALSE;
7591
7592 if (found && (*functionname_ptr || *line_ptr))
7593 return TRUE;
7594
7595 if (symbols == NULL)
7596 return FALSE;
7597
7598 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7599 filename_ptr, functionname_ptr))
7600 return FALSE;
7601
7602 *line_ptr = 0;
7603 return TRUE;
7604 }
7605
7606 static bfd_boolean
7607 elfNN_aarch64_find_inliner_info (bfd *abfd,
7608 const char **filename_ptr,
7609 const char **functionname_ptr,
7610 unsigned int *line_ptr)
7611 {
7612 bfd_boolean found;
7613 found = _bfd_dwarf2_find_inliner_info
7614 (abfd, filename_ptr,
7615 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7616 return found;
7617 }
7618
7619
7620 static void
7621 elfNN_aarch64_post_process_headers (bfd *abfd,
7622 struct bfd_link_info *link_info)
7623 {
7624 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7625
7626 i_ehdrp = elf_elfheader (abfd);
7627 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7628
7629 _bfd_elf_post_process_headers (abfd, link_info);
7630 }
7631
7632 static enum elf_reloc_type_class
7633 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7634 const asection *rel_sec ATTRIBUTE_UNUSED,
7635 const Elf_Internal_Rela *rela)
7636 {
7637 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
7638
7639 if (htab->root.dynsym != NULL
7640 && htab->root.dynsym->contents != NULL)
7641 {
7642 /* Check relocation against STT_GNU_IFUNC symbol if there are
7643 dynamic symbols. */
7644 bfd *abfd = info->output_bfd;
7645 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7646 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
7647 if (r_symndx != STN_UNDEF)
7648 {
7649 Elf_Internal_Sym sym;
7650 if (!bed->s->swap_symbol_in (abfd,
7651 (htab->root.dynsym->contents
7652 + r_symndx * bed->s->sizeof_sym),
7653 0, &sym))
7654 {
7655 /* xgettext:c-format */
7656 _bfd_error_handler (_("%B symbol number %lu references"
7657 " nonexistent SHT_SYMTAB_SHNDX section"),
7658 abfd, r_symndx);
7659 /* Ideally an error class should be returned here. */
7660 }
7661 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
7662 return reloc_class_ifunc;
7663 }
7664 }
7665
7666 switch ((int) ELFNN_R_TYPE (rela->r_info))
7667 {
7668 case AARCH64_R (IRELATIVE):
7669 return reloc_class_ifunc;
7670 case AARCH64_R (RELATIVE):
7671 return reloc_class_relative;
7672 case AARCH64_R (JUMP_SLOT):
7673 return reloc_class_plt;
7674 case AARCH64_R (COPY):
7675 return reloc_class_copy;
7676 default:
7677 return reloc_class_normal;
7678 }
7679 }
7680
7681 /* Handle an AArch64 specific section when reading an object file. This is
7682 called when bfd_section_from_shdr finds a section with an unknown
7683 type. */
7684
7685 static bfd_boolean
7686 elfNN_aarch64_section_from_shdr (bfd *abfd,
7687 Elf_Internal_Shdr *hdr,
7688 const char *name, int shindex)
7689 {
7690 /* There ought to be a place to keep ELF backend specific flags, but
7691 at the moment there isn't one. We just keep track of the
7692 sections by their name, instead. Fortunately, the ABI gives
7693 names for all the AArch64 specific sections, so we will probably get
7694 away with this. */
7695 switch (hdr->sh_type)
7696 {
7697 case SHT_AARCH64_ATTRIBUTES:
7698 break;
7699
7700 default:
7701 return FALSE;
7702 }
7703
7704 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7705 return FALSE;
7706
7707 return TRUE;
7708 }
7709
7710 /* A structure used to record a list of sections, independently
7711 of the next and prev fields in the asection structure. */
7712 typedef struct section_list
7713 {
7714 asection *sec;
7715 struct section_list *next;
7716 struct section_list *prev;
7717 }
7718 section_list;
7719
7720 /* Unfortunately we need to keep a list of sections for which
7721 an _aarch64_elf_section_data structure has been allocated. This
7722 is because it is possible for functions like elfNN_aarch64_write_section
7723 to be called on a section which has had an elf_data_structure
7724 allocated for it (and so the used_by_bfd field is valid) but
7725 for which the AArch64 extended version of this structure - the
7726 _aarch64_elf_section_data structure - has not been allocated. */
7727 static section_list *sections_with_aarch64_elf_section_data = NULL;
7728
7729 static void
7730 record_section_with_aarch64_elf_section_data (asection *sec)
7731 {
7732 struct section_list *entry;
7733
7734 entry = bfd_malloc (sizeof (*entry));
7735 if (entry == NULL)
7736 return;
7737 entry->sec = sec;
7738 entry->next = sections_with_aarch64_elf_section_data;
7739 entry->prev = NULL;
7740 if (entry->next != NULL)
7741 entry->next->prev = entry;
7742 sections_with_aarch64_elf_section_data = entry;
7743 }
7744
7745 static struct section_list *
7746 find_aarch64_elf_section_entry (asection *sec)
7747 {
7748 struct section_list *entry;
7749 static struct section_list *last_entry = NULL;
7750
7751 /* This is a short cut for the typical case where the sections are added
7752 to the sections_with_aarch64_elf_section_data list in forward order and
7753 then looked up here in backwards order. This makes a real difference
7754 to the ld-srec/sec64k.exp linker test. */
7755 entry = sections_with_aarch64_elf_section_data;
7756 if (last_entry != NULL)
7757 {
7758 if (last_entry->sec == sec)
7759 entry = last_entry;
7760 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7761 entry = last_entry->next;
7762 }
7763
7764 for (; entry; entry = entry->next)
7765 if (entry->sec == sec)
7766 break;
7767
7768 if (entry)
7769 /* Record the entry prior to this one - it is the entry we are
7770 most likely to want to locate next time. Also this way if we
7771 have been called from
7772 unrecord_section_with_aarch64_elf_section_data () we will not
7773 be caching a pointer that is about to be freed. */
7774 last_entry = entry->prev;
7775
7776 return entry;
7777 }
7778
7779 static void
7780 unrecord_section_with_aarch64_elf_section_data (asection *sec)
7781 {
7782 struct section_list *entry;
7783
7784 entry = find_aarch64_elf_section_entry (sec);
7785
7786 if (entry)
7787 {
7788 if (entry->prev != NULL)
7789 entry->prev->next = entry->next;
7790 if (entry->next != NULL)
7791 entry->next->prev = entry->prev;
7792 if (entry == sections_with_aarch64_elf_section_data)
7793 sections_with_aarch64_elf_section_data = entry->next;
7794 free (entry);
7795 }
7796 }
7797
7798
7799 typedef struct
7800 {
7801 void *finfo;
7802 struct bfd_link_info *info;
7803 asection *sec;
7804 int sec_shndx;
7805 int (*func) (void *, const char *, Elf_Internal_Sym *,
7806 asection *, struct elf_link_hash_entry *);
7807 } output_arch_syminfo;
7808
7809 enum map_symbol_type
7810 {
7811 AARCH64_MAP_INSN,
7812 AARCH64_MAP_DATA
7813 };
7814
7815
7816 /* Output a single mapping symbol. */
7817
7818 static bfd_boolean
7819 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
7820 enum map_symbol_type type, bfd_vma offset)
7821 {
7822 static const char *names[2] = { "$x", "$d" };
7823 Elf_Internal_Sym sym;
7824
7825 sym.st_value = (osi->sec->output_section->vma
7826 + osi->sec->output_offset + offset);
7827 sym.st_size = 0;
7828 sym.st_other = 0;
7829 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7830 sym.st_shndx = osi->sec_shndx;
7831 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7832 }
7833
7834 /* Output a single local symbol for a generated stub. */
7835
7836 static bfd_boolean
7837 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
7838 bfd_vma offset, bfd_vma size)
7839 {
7840 Elf_Internal_Sym sym;
7841
7842 sym.st_value = (osi->sec->output_section->vma
7843 + osi->sec->output_offset + offset);
7844 sym.st_size = size;
7845 sym.st_other = 0;
7846 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7847 sym.st_shndx = osi->sec_shndx;
7848 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7849 }
7850
7851 static bfd_boolean
7852 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7853 {
7854 struct elf_aarch64_stub_hash_entry *stub_entry;
7855 asection *stub_sec;
7856 bfd_vma addr;
7857 char *stub_name;
7858 output_arch_syminfo *osi;
7859
7860 /* Massage our args to the form they really have. */
7861 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
7862 osi = (output_arch_syminfo *) in_arg;
7863
7864 stub_sec = stub_entry->stub_sec;
7865
7866 /* Ensure this stub is attached to the current section being
7867 processed. */
7868 if (stub_sec != osi->sec)
7869 return TRUE;
7870
7871 addr = (bfd_vma) stub_entry->stub_offset;
7872
7873 stub_name = stub_entry->output_name;
7874
7875 switch (stub_entry->stub_type)
7876 {
7877 case aarch64_stub_adrp_branch:
7878 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7879 sizeof (aarch64_adrp_branch_stub)))
7880 return FALSE;
7881 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7882 return FALSE;
7883 break;
7884 case aarch64_stub_long_branch:
7885 if (!elfNN_aarch64_output_stub_sym
7886 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7887 return FALSE;
7888 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7889 return FALSE;
7890 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
7891 return FALSE;
7892 break;
7893 case aarch64_stub_erratum_835769_veneer:
7894 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7895 sizeof (aarch64_erratum_835769_stub)))
7896 return FALSE;
7897 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7898 return FALSE;
7899 break;
7900 case aarch64_stub_erratum_843419_veneer:
7901 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7902 sizeof (aarch64_erratum_843419_stub)))
7903 return FALSE;
7904 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7905 return FALSE;
7906 break;
7907
7908 default:
7909 abort ();
7910 }
7911
7912 return TRUE;
7913 }
7914
7915 /* Output mapping symbols for linker generated sections. */
7916
7917 static bfd_boolean
7918 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
7919 struct bfd_link_info *info,
7920 void *finfo,
7921 int (*func) (void *, const char *,
7922 Elf_Internal_Sym *,
7923 asection *,
7924 struct elf_link_hash_entry
7925 *))
7926 {
7927 output_arch_syminfo osi;
7928 struct elf_aarch64_link_hash_table *htab;
7929
7930 htab = elf_aarch64_hash_table (info);
7931
7932 osi.finfo = finfo;
7933 osi.info = info;
7934 osi.func = func;
7935
7936 /* Long calls stubs. */
7937 if (htab->stub_bfd && htab->stub_bfd->sections)
7938 {
7939 asection *stub_sec;
7940
7941 for (stub_sec = htab->stub_bfd->sections;
7942 stub_sec != NULL; stub_sec = stub_sec->next)
7943 {
7944 /* Ignore non-stub sections. */
7945 if (!strstr (stub_sec->name, STUB_SUFFIX))
7946 continue;
7947
7948 osi.sec = stub_sec;
7949
7950 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7951 (output_bfd, osi.sec->output_section);
7952
7953 /* The first instruction in a stub is always a branch. */
7954 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7955 return FALSE;
7956
7957 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7958 &osi);
7959 }
7960 }
7961
7962 /* Finally, output mapping symbols for the PLT. */
7963 if (!htab->root.splt || htab->root.splt->size == 0)
7964 return TRUE;
7965
7966 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7967 (output_bfd, htab->root.splt->output_section);
7968 osi.sec = htab->root.splt;
7969
7970 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
7971
7972 return TRUE;
7973
7974 }
7975
7976 /* Allocate target specific section data. */
7977
7978 static bfd_boolean
7979 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
7980 {
7981 if (!sec->used_by_bfd)
7982 {
7983 _aarch64_elf_section_data *sdata;
7984 bfd_size_type amt = sizeof (*sdata);
7985
7986 sdata = bfd_zalloc (abfd, amt);
7987 if (sdata == NULL)
7988 return FALSE;
7989 sec->used_by_bfd = sdata;
7990 }
7991
7992 record_section_with_aarch64_elf_section_data (sec);
7993
7994 return _bfd_elf_new_section_hook (abfd, sec);
7995 }
7996
7997
7998 static void
7999 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8000 asection *sec,
8001 void *ignore ATTRIBUTE_UNUSED)
8002 {
8003 unrecord_section_with_aarch64_elf_section_data (sec);
8004 }
8005
8006 static bfd_boolean
8007 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8008 {
8009 if (abfd->sections)
8010 bfd_map_over_sections (abfd,
8011 unrecord_section_via_map_over_sections, NULL);
8012
8013 return _bfd_elf_close_and_cleanup (abfd);
8014 }
8015
8016 static bfd_boolean
8017 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8018 {
8019 if (abfd->sections)
8020 bfd_map_over_sections (abfd,
8021 unrecord_section_via_map_over_sections, NULL);
8022
8023 return _bfd_free_cached_info (abfd);
8024 }
8025
8026 /* Create dynamic sections. This is different from the ARM backend in that
8027 the got, plt, gotplt and their relocation sections are all created in the
8028 standard part of the bfd elf backend. */
8029
8030 static bfd_boolean
8031 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8032 struct bfd_link_info *info)
8033 {
8034 /* We need to create .got section. */
8035 if (!aarch64_elf_create_got_section (dynobj, info))
8036 return FALSE;
8037
8038 return _bfd_elf_create_dynamic_sections (dynobj, info);
8039 }
8040
8041
8042 /* Allocate space in .plt, .got and associated reloc sections for
8043 dynamic relocs. */
8044
8045 static bfd_boolean
8046 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8047 {
8048 struct bfd_link_info *info;
8049 struct elf_aarch64_link_hash_table *htab;
8050 struct elf_aarch64_link_hash_entry *eh;
8051 struct elf_dyn_relocs *p;
8052
8053 /* An example of a bfd_link_hash_indirect symbol is versioned
8054 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8055 -> __gxx_personality_v0(bfd_link_hash_defined)
8056
8057 There is no need to process bfd_link_hash_indirect symbols here
8058 because we will also be presented with the concrete instance of
8059 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8060 called to copy all relevant data from the generic to the concrete
8061 symbol instance. */
8062 if (h->root.type == bfd_link_hash_indirect)
8063 return TRUE;
8064
8065 if (h->root.type == bfd_link_hash_warning)
8066 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8067
8068 info = (struct bfd_link_info *) inf;
8069 htab = elf_aarch64_hash_table (info);
8070
8071 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8072 here if it is defined and referenced in a non-shared object. */
8073 if (h->type == STT_GNU_IFUNC
8074 && h->def_regular)
8075 return TRUE;
8076 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8077 {
8078 /* Make sure this symbol is output as a dynamic symbol.
8079 Undefined weak syms won't yet be marked as dynamic. */
8080 if (h->dynindx == -1 && !h->forced_local
8081 && h->root.type == bfd_link_hash_undefweak)
8082 {
8083 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8084 return FALSE;
8085 }
8086
8087 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8088 {
8089 asection *s = htab->root.splt;
8090
8091 /* If this is the first .plt entry, make room for the special
8092 first entry. */
8093 if (s->size == 0)
8094 s->size += htab->plt_header_size;
8095
8096 h->plt.offset = s->size;
8097
8098 /* If this symbol is not defined in a regular file, and we are
8099 not generating a shared library, then set the symbol to this
8100 location in the .plt. This is required to make function
8101 pointers compare as equal between the normal executable and
8102 the shared library. */
8103 if (!bfd_link_pic (info) && !h->def_regular)
8104 {
8105 h->root.u.def.section = s;
8106 h->root.u.def.value = h->plt.offset;
8107 }
8108
8109 /* Make room for this entry. For now we only create the
8110 small model PLT entries. We later need to find a way
8111 of relaxing into these from the large model PLT entries. */
8112 s->size += PLT_SMALL_ENTRY_SIZE;
8113
8114 /* We also need to make an entry in the .got.plt section, which
8115 will be placed in the .got section by the linker script. */
8116 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8117
8118 /* We also need to make an entry in the .rela.plt section. */
8119 htab->root.srelplt->size += RELOC_SIZE (htab);
8120
8121 /* We need to ensure that all GOT entries that serve the PLT
8122 are consecutive with the special GOT slots [0] [1] and
8123 [2]. Any addtional relocations, such as
8124 R_AARCH64_TLSDESC, must be placed after the PLT related
8125 entries. We abuse the reloc_count such that during
8126 sizing we adjust reloc_count to indicate the number of
8127 PLT related reserved entries. In subsequent phases when
8128 filling in the contents of the reloc entries, PLT related
8129 entries are placed by computing their PLT index (0
8130 .. reloc_count). While other none PLT relocs are placed
8131 at the slot indicated by reloc_count and reloc_count is
8132 updated. */
8133
8134 htab->root.srelplt->reloc_count++;
8135 }
8136 else
8137 {
8138 h->plt.offset = (bfd_vma) - 1;
8139 h->needs_plt = 0;
8140 }
8141 }
8142 else
8143 {
8144 h->plt.offset = (bfd_vma) - 1;
8145 h->needs_plt = 0;
8146 }
8147
8148 eh = (struct elf_aarch64_link_hash_entry *) h;
8149 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8150
8151 if (h->got.refcount > 0)
8152 {
8153 bfd_boolean dyn;
8154 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8155
8156 h->got.offset = (bfd_vma) - 1;
8157
8158 dyn = htab->root.dynamic_sections_created;
8159
8160 /* Make sure this symbol is output as a dynamic symbol.
8161 Undefined weak syms won't yet be marked as dynamic. */
8162 if (dyn && h->dynindx == -1 && !h->forced_local
8163 && h->root.type == bfd_link_hash_undefweak)
8164 {
8165 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8166 return FALSE;
8167 }
8168
8169 if (got_type == GOT_UNKNOWN)
8170 {
8171 }
8172 else if (got_type == GOT_NORMAL)
8173 {
8174 h->got.offset = htab->root.sgot->size;
8175 htab->root.sgot->size += GOT_ENTRY_SIZE;
8176 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8177 || h->root.type != bfd_link_hash_undefweak)
8178 && (bfd_link_pic (info)
8179 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8180 {
8181 htab->root.srelgot->size += RELOC_SIZE (htab);
8182 }
8183 }
8184 else
8185 {
8186 int indx;
8187 if (got_type & GOT_TLSDESC_GD)
8188 {
8189 eh->tlsdesc_got_jump_table_offset =
8190 (htab->root.sgotplt->size
8191 - aarch64_compute_jump_table_size (htab));
8192 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8193 h->got.offset = (bfd_vma) - 2;
8194 }
8195
8196 if (got_type & GOT_TLS_GD)
8197 {
8198 h->got.offset = htab->root.sgot->size;
8199 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8200 }
8201
8202 if (got_type & GOT_TLS_IE)
8203 {
8204 h->got.offset = htab->root.sgot->size;
8205 htab->root.sgot->size += GOT_ENTRY_SIZE;
8206 }
8207
8208 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8209 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8210 || h->root.type != bfd_link_hash_undefweak)
8211 && (bfd_link_pic (info)
8212 || indx != 0
8213 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8214 {
8215 if (got_type & GOT_TLSDESC_GD)
8216 {
8217 htab->root.srelplt->size += RELOC_SIZE (htab);
8218 /* Note reloc_count not incremented here! We have
8219 already adjusted reloc_count for this relocation
8220 type. */
8221
8222 /* TLSDESC PLT is now needed, but not yet determined. */
8223 htab->tlsdesc_plt = (bfd_vma) - 1;
8224 }
8225
8226 if (got_type & GOT_TLS_GD)
8227 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8228
8229 if (got_type & GOT_TLS_IE)
8230 htab->root.srelgot->size += RELOC_SIZE (htab);
8231 }
8232 }
8233 }
8234 else
8235 {
8236 h->got.offset = (bfd_vma) - 1;
8237 }
8238
8239 if (eh->dyn_relocs == NULL)
8240 return TRUE;
8241
8242 /* In the shared -Bsymbolic case, discard space allocated for
8243 dynamic pc-relative relocs against symbols which turn out to be
8244 defined in regular objects. For the normal shared case, discard
8245 space for pc-relative relocs that have become local due to symbol
8246 visibility changes. */
8247
8248 if (bfd_link_pic (info))
8249 {
8250 /* Relocs that use pc_count are those that appear on a call
8251 insn, or certain REL relocs that can generated via assembly.
8252 We want calls to protected symbols to resolve directly to the
8253 function rather than going via the plt. If people want
8254 function pointer comparisons to work as expected then they
8255 should avoid writing weird assembly. */
8256 if (SYMBOL_CALLS_LOCAL (info, h))
8257 {
8258 struct elf_dyn_relocs **pp;
8259
8260 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8261 {
8262 p->count -= p->pc_count;
8263 p->pc_count = 0;
8264 if (p->count == 0)
8265 *pp = p->next;
8266 else
8267 pp = &p->next;
8268 }
8269 }
8270
8271 /* Also discard relocs on undefined weak syms with non-default
8272 visibility. */
8273 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8274 {
8275 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8276 eh->dyn_relocs = NULL;
8277
8278 /* Make sure undefined weak symbols are output as a dynamic
8279 symbol in PIEs. */
8280 else if (h->dynindx == -1
8281 && !h->forced_local
8282 && h->root.type == bfd_link_hash_undefweak
8283 && !bfd_elf_link_record_dynamic_symbol (info, h))
8284 return FALSE;
8285 }
8286
8287 }
8288 else if (ELIMINATE_COPY_RELOCS)
8289 {
8290 /* For the non-shared case, discard space for relocs against
8291 symbols which turn out to need copy relocs or are not
8292 dynamic. */
8293
8294 if (!h->non_got_ref
8295 && ((h->def_dynamic
8296 && !h->def_regular)
8297 || (htab->root.dynamic_sections_created
8298 && (h->root.type == bfd_link_hash_undefweak
8299 || h->root.type == bfd_link_hash_undefined))))
8300 {
8301 /* Make sure this symbol is output as a dynamic symbol.
8302 Undefined weak syms won't yet be marked as dynamic. */
8303 if (h->dynindx == -1
8304 && !h->forced_local
8305 && h->root.type == bfd_link_hash_undefweak
8306 && !bfd_elf_link_record_dynamic_symbol (info, h))
8307 return FALSE;
8308
8309 /* If that succeeded, we know we'll be keeping all the
8310 relocs. */
8311 if (h->dynindx != -1)
8312 goto keep;
8313 }
8314
8315 eh->dyn_relocs = NULL;
8316
8317 keep:;
8318 }
8319
8320 /* Finally, allocate space. */
8321 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8322 {
8323 asection *sreloc;
8324
8325 sreloc = elf_section_data (p->sec)->sreloc;
8326
8327 BFD_ASSERT (sreloc != NULL);
8328
8329 sreloc->size += p->count * RELOC_SIZE (htab);
8330 }
8331
8332 return TRUE;
8333 }
8334
8335 /* Allocate space in .plt, .got and associated reloc sections for
8336 ifunc dynamic relocs. */
8337
8338 static bfd_boolean
8339 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8340 void *inf)
8341 {
8342 struct bfd_link_info *info;
8343 struct elf_aarch64_link_hash_table *htab;
8344 struct elf_aarch64_link_hash_entry *eh;
8345
8346 /* An example of a bfd_link_hash_indirect symbol is versioned
8347 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8348 -> __gxx_personality_v0(bfd_link_hash_defined)
8349
8350 There is no need to process bfd_link_hash_indirect symbols here
8351 because we will also be presented with the concrete instance of
8352 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8353 called to copy all relevant data from the generic to the concrete
8354 symbol instance. */
8355 if (h->root.type == bfd_link_hash_indirect)
8356 return TRUE;
8357
8358 if (h->root.type == bfd_link_hash_warning)
8359 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8360
8361 info = (struct bfd_link_info *) inf;
8362 htab = elf_aarch64_hash_table (info);
8363
8364 eh = (struct elf_aarch64_link_hash_entry *) h;
8365
8366 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8367 here if it is defined and referenced in a non-shared object. */
8368 if (h->type == STT_GNU_IFUNC
8369 && h->def_regular)
8370 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8371 &eh->dyn_relocs,
8372 NULL,
8373 htab->plt_entry_size,
8374 htab->plt_header_size,
8375 GOT_ENTRY_SIZE,
8376 FALSE);
8377 return TRUE;
8378 }
8379
8380 /* Allocate space in .plt, .got and associated reloc sections for
8381 local dynamic relocs. */
8382
8383 static bfd_boolean
8384 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8385 {
8386 struct elf_link_hash_entry *h
8387 = (struct elf_link_hash_entry *) *slot;
8388
8389 if (h->type != STT_GNU_IFUNC
8390 || !h->def_regular
8391 || !h->ref_regular
8392 || !h->forced_local
8393 || h->root.type != bfd_link_hash_defined)
8394 abort ();
8395
8396 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8397 }
8398
8399 /* Allocate space in .plt, .got and associated reloc sections for
8400 local ifunc dynamic relocs. */
8401
8402 static bfd_boolean
8403 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8404 {
8405 struct elf_link_hash_entry *h
8406 = (struct elf_link_hash_entry *) *slot;
8407
8408 if (h->type != STT_GNU_IFUNC
8409 || !h->def_regular
8410 || !h->ref_regular
8411 || !h->forced_local
8412 || h->root.type != bfd_link_hash_defined)
8413 abort ();
8414
8415 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8416 }
8417
8418 /* Find any dynamic relocs that apply to read-only sections. */
8419
8420 static bfd_boolean
8421 aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
8422 {
8423 struct elf_aarch64_link_hash_entry * eh;
8424 struct elf_dyn_relocs * p;
8425
8426 eh = (struct elf_aarch64_link_hash_entry *) h;
8427 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8428 {
8429 asection *s = p->sec;
8430
8431 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8432 {
8433 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8434
8435 info->flags |= DF_TEXTREL;
8436
8437 /* Not an error, just cut short the traversal. */
8438 return FALSE;
8439 }
8440 }
8441 return TRUE;
8442 }
8443
8444 /* This is the most important function of all . Innocuosly named
8445 though ! */
8446
8447 static bfd_boolean
8448 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8449 struct bfd_link_info *info)
8450 {
8451 struct elf_aarch64_link_hash_table *htab;
8452 bfd *dynobj;
8453 asection *s;
8454 bfd_boolean relocs;
8455 bfd *ibfd;
8456
8457 htab = elf_aarch64_hash_table ((info));
8458 dynobj = htab->root.dynobj;
8459
8460 BFD_ASSERT (dynobj != NULL);
8461
8462 if (htab->root.dynamic_sections_created)
8463 {
8464 if (bfd_link_executable (info) && !info->nointerp)
8465 {
8466 s = bfd_get_linker_section (dynobj, ".interp");
8467 if (s == NULL)
8468 abort ();
8469 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8470 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8471 }
8472 }
8473
8474 /* Set up .got offsets for local syms, and space for local dynamic
8475 relocs. */
8476 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8477 {
8478 struct elf_aarch64_local_symbol *locals = NULL;
8479 Elf_Internal_Shdr *symtab_hdr;
8480 asection *srel;
8481 unsigned int i;
8482
8483 if (!is_aarch64_elf (ibfd))
8484 continue;
8485
8486 for (s = ibfd->sections; s != NULL; s = s->next)
8487 {
8488 struct elf_dyn_relocs *p;
8489
8490 for (p = (struct elf_dyn_relocs *)
8491 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8492 {
8493 if (!bfd_is_abs_section (p->sec)
8494 && bfd_is_abs_section (p->sec->output_section))
8495 {
8496 /* Input section has been discarded, either because
8497 it is a copy of a linkonce section or due to
8498 linker script /DISCARD/, so we'll be discarding
8499 the relocs too. */
8500 }
8501 else if (p->count != 0)
8502 {
8503 srel = elf_section_data (p->sec)->sreloc;
8504 srel->size += p->count * RELOC_SIZE (htab);
8505 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8506 info->flags |= DF_TEXTREL;
8507 }
8508 }
8509 }
8510
8511 locals = elf_aarch64_locals (ibfd);
8512 if (!locals)
8513 continue;
8514
8515 symtab_hdr = &elf_symtab_hdr (ibfd);
8516 srel = htab->root.srelgot;
8517 for (i = 0; i < symtab_hdr->sh_info; i++)
8518 {
8519 locals[i].got_offset = (bfd_vma) - 1;
8520 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8521 if (locals[i].got_refcount > 0)
8522 {
8523 unsigned got_type = locals[i].got_type;
8524 if (got_type & GOT_TLSDESC_GD)
8525 {
8526 locals[i].tlsdesc_got_jump_table_offset =
8527 (htab->root.sgotplt->size
8528 - aarch64_compute_jump_table_size (htab));
8529 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8530 locals[i].got_offset = (bfd_vma) - 2;
8531 }
8532
8533 if (got_type & GOT_TLS_GD)
8534 {
8535 locals[i].got_offset = htab->root.sgot->size;
8536 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8537 }
8538
8539 if (got_type & GOT_TLS_IE
8540 || got_type & GOT_NORMAL)
8541 {
8542 locals[i].got_offset = htab->root.sgot->size;
8543 htab->root.sgot->size += GOT_ENTRY_SIZE;
8544 }
8545
8546 if (got_type == GOT_UNKNOWN)
8547 {
8548 }
8549
8550 if (bfd_link_pic (info))
8551 {
8552 if (got_type & GOT_TLSDESC_GD)
8553 {
8554 htab->root.srelplt->size += RELOC_SIZE (htab);
8555 /* Note RELOC_COUNT not incremented here! */
8556 htab->tlsdesc_plt = (bfd_vma) - 1;
8557 }
8558
8559 if (got_type & GOT_TLS_GD)
8560 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8561
8562 if (got_type & GOT_TLS_IE
8563 || got_type & GOT_NORMAL)
8564 htab->root.srelgot->size += RELOC_SIZE (htab);
8565 }
8566 }
8567 else
8568 {
8569 locals[i].got_refcount = (bfd_vma) - 1;
8570 }
8571 }
8572 }
8573
8574
8575 /* Allocate global sym .plt and .got entries, and space for global
8576 sym dynamic relocs. */
8577 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8578 info);
8579
8580 /* Allocate global ifunc sym .plt and .got entries, and space for global
8581 ifunc sym dynamic relocs. */
8582 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8583 info);
8584
8585 /* Allocate .plt and .got entries, and space for local symbols. */
8586 htab_traverse (htab->loc_hash_table,
8587 elfNN_aarch64_allocate_local_dynrelocs,
8588 info);
8589
8590 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8591 htab_traverse (htab->loc_hash_table,
8592 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8593 info);
8594
8595 /* For every jump slot reserved in the sgotplt, reloc_count is
8596 incremented. However, when we reserve space for TLS descriptors,
8597 it's not incremented, so in order to compute the space reserved
8598 for them, it suffices to multiply the reloc count by the jump
8599 slot size. */
8600
8601 if (htab->root.srelplt)
8602 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8603
8604 if (htab->tlsdesc_plt)
8605 {
8606 if (htab->root.splt->size == 0)
8607 htab->root.splt->size += PLT_ENTRY_SIZE;
8608
8609 htab->tlsdesc_plt = htab->root.splt->size;
8610 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8611
8612 /* If we're not using lazy TLS relocations, don't generate the
8613 GOT entry required. */
8614 if (!(info->flags & DF_BIND_NOW))
8615 {
8616 htab->dt_tlsdesc_got = htab->root.sgot->size;
8617 htab->root.sgot->size += GOT_ENTRY_SIZE;
8618 }
8619 }
8620
8621 /* Init mapping symbols information to use later to distingush between
8622 code and data while scanning for errata. */
8623 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8624 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8625 {
8626 if (!is_aarch64_elf (ibfd))
8627 continue;
8628 bfd_elfNN_aarch64_init_maps (ibfd);
8629 }
8630
8631 /* We now have determined the sizes of the various dynamic sections.
8632 Allocate memory for them. */
8633 relocs = FALSE;
8634 for (s = dynobj->sections; s != NULL; s = s->next)
8635 {
8636 if ((s->flags & SEC_LINKER_CREATED) == 0)
8637 continue;
8638
8639 if (s == htab->root.splt
8640 || s == htab->root.sgot
8641 || s == htab->root.sgotplt
8642 || s == htab->root.iplt
8643 || s == htab->root.igotplt
8644 || s == htab->root.sdynbss
8645 || s == htab->root.sdynrelro)
8646 {
8647 /* Strip this section if we don't need it; see the
8648 comment below. */
8649 }
8650 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8651 {
8652 if (s->size != 0 && s != htab->root.srelplt)
8653 relocs = TRUE;
8654
8655 /* We use the reloc_count field as a counter if we need
8656 to copy relocs into the output file. */
8657 if (s != htab->root.srelplt)
8658 s->reloc_count = 0;
8659 }
8660 else
8661 {
8662 /* It's not one of our sections, so don't allocate space. */
8663 continue;
8664 }
8665
8666 if (s->size == 0)
8667 {
8668 /* If we don't need this section, strip it from the
8669 output file. This is mostly to handle .rela.bss and
8670 .rela.plt. We must create both sections in
8671 create_dynamic_sections, because they must be created
8672 before the linker maps input sections to output
8673 sections. The linker does that before
8674 adjust_dynamic_symbol is called, and it is that
8675 function which decides whether anything needs to go
8676 into these sections. */
8677 s->flags |= SEC_EXCLUDE;
8678 continue;
8679 }
8680
8681 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8682 continue;
8683
8684 /* Allocate memory for the section contents. We use bfd_zalloc
8685 here in case unused entries are not reclaimed before the
8686 section's contents are written out. This should not happen,
8687 but this way if it does, we get a R_AARCH64_NONE reloc instead
8688 of garbage. */
8689 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8690 if (s->contents == NULL)
8691 return FALSE;
8692 }
8693
8694 if (htab->root.dynamic_sections_created)
8695 {
8696 /* Add some entries to the .dynamic section. We fill in the
8697 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8698 must add the entries now so that we get the correct size for
8699 the .dynamic section. The DT_DEBUG entry is filled in by the
8700 dynamic linker and used by the debugger. */
8701 #define add_dynamic_entry(TAG, VAL) \
8702 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8703
8704 if (bfd_link_executable (info))
8705 {
8706 if (!add_dynamic_entry (DT_DEBUG, 0))
8707 return FALSE;
8708 }
8709
8710 if (htab->root.splt->size != 0)
8711 {
8712 if (!add_dynamic_entry (DT_PLTGOT, 0)
8713 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8714 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8715 || !add_dynamic_entry (DT_JMPREL, 0))
8716 return FALSE;
8717
8718 if (htab->tlsdesc_plt
8719 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8720 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8721 return FALSE;
8722 }
8723
8724 if (relocs)
8725 {
8726 if (!add_dynamic_entry (DT_RELA, 0)
8727 || !add_dynamic_entry (DT_RELASZ, 0)
8728 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8729 return FALSE;
8730
8731 /* If any dynamic relocs apply to a read-only section,
8732 then we need a DT_TEXTREL entry. */
8733 if ((info->flags & DF_TEXTREL) == 0)
8734 elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
8735 info);
8736
8737 if ((info->flags & DF_TEXTREL) != 0)
8738 {
8739 if (!add_dynamic_entry (DT_TEXTREL, 0))
8740 return FALSE;
8741 }
8742 }
8743 }
8744 #undef add_dynamic_entry
8745
8746 return TRUE;
8747 }
8748
8749 static inline void
8750 elf_aarch64_update_plt_entry (bfd *output_bfd,
8751 bfd_reloc_code_real_type r_type,
8752 bfd_byte *plt_entry, bfd_vma value)
8753 {
8754 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8755
8756 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8757 }
8758
8759 static void
8760 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8761 struct elf_aarch64_link_hash_table
8762 *htab, bfd *output_bfd,
8763 struct bfd_link_info *info)
8764 {
8765 bfd_byte *plt_entry;
8766 bfd_vma plt_index;
8767 bfd_vma got_offset;
8768 bfd_vma gotplt_entry_address;
8769 bfd_vma plt_entry_address;
8770 Elf_Internal_Rela rela;
8771 bfd_byte *loc;
8772 asection *plt, *gotplt, *relplt;
8773
8774 /* When building a static executable, use .iplt, .igot.plt and
8775 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8776 if (htab->root.splt != NULL)
8777 {
8778 plt = htab->root.splt;
8779 gotplt = htab->root.sgotplt;
8780 relplt = htab->root.srelplt;
8781 }
8782 else
8783 {
8784 plt = htab->root.iplt;
8785 gotplt = htab->root.igotplt;
8786 relplt = htab->root.irelplt;
8787 }
8788
8789 /* Get the index in the procedure linkage table which
8790 corresponds to this symbol. This is the index of this symbol
8791 in all the symbols for which we are making plt entries. The
8792 first entry in the procedure linkage table is reserved.
8793
8794 Get the offset into the .got table of the entry that
8795 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8796 bytes. The first three are reserved for the dynamic linker.
8797
8798 For static executables, we don't reserve anything. */
8799
8800 if (plt == htab->root.splt)
8801 {
8802 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8803 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8804 }
8805 else
8806 {
8807 plt_index = h->plt.offset / htab->plt_entry_size;
8808 got_offset = plt_index * GOT_ENTRY_SIZE;
8809 }
8810
8811 plt_entry = plt->contents + h->plt.offset;
8812 plt_entry_address = plt->output_section->vma
8813 + plt->output_offset + h->plt.offset;
8814 gotplt_entry_address = gotplt->output_section->vma +
8815 gotplt->output_offset + got_offset;
8816
8817 /* Copy in the boiler-plate for the PLTn entry. */
8818 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8819
8820 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8821 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8822 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8823 plt_entry,
8824 PG (gotplt_entry_address) -
8825 PG (plt_entry_address));
8826
8827 /* Fill in the lo12 bits for the load from the pltgot. */
8828 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8829 plt_entry + 4,
8830 PG_OFFSET (gotplt_entry_address));
8831
8832 /* Fill in the lo12 bits for the add from the pltgot entry. */
8833 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8834 plt_entry + 8,
8835 PG_OFFSET (gotplt_entry_address));
8836
8837 /* All the GOTPLT Entries are essentially initialized to PLT0. */
8838 bfd_put_NN (output_bfd,
8839 plt->output_section->vma + plt->output_offset,
8840 gotplt->contents + got_offset);
8841
8842 rela.r_offset = gotplt_entry_address;
8843
8844 if (h->dynindx == -1
8845 || ((bfd_link_executable (info)
8846 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8847 && h->def_regular
8848 && h->type == STT_GNU_IFUNC))
8849 {
8850 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8851 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8852 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8853 rela.r_addend = (h->root.u.def.value
8854 + h->root.u.def.section->output_section->vma
8855 + h->root.u.def.section->output_offset);
8856 }
8857 else
8858 {
8859 /* Fill in the entry in the .rela.plt section. */
8860 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8861 rela.r_addend = 0;
8862 }
8863
8864 /* Compute the relocation entry to used based on PLT index and do
8865 not adjust reloc_count. The reloc_count has already been adjusted
8866 to account for this entry. */
8867 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
8868 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8869 }
8870
8871 /* Size sections even though they're not dynamic. We use it to setup
8872 _TLS_MODULE_BASE_, if needed. */
8873
8874 static bfd_boolean
8875 elfNN_aarch64_always_size_sections (bfd *output_bfd,
8876 struct bfd_link_info *info)
8877 {
8878 asection *tls_sec;
8879
8880 if (bfd_link_relocatable (info))
8881 return TRUE;
8882
8883 tls_sec = elf_hash_table (info)->tls_sec;
8884
8885 if (tls_sec)
8886 {
8887 struct elf_link_hash_entry *tlsbase;
8888
8889 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8890 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8891
8892 if (tlsbase)
8893 {
8894 struct bfd_link_hash_entry *h = NULL;
8895 const struct elf_backend_data *bed =
8896 get_elf_backend_data (output_bfd);
8897
8898 if (!(_bfd_generic_link_add_one_symbol
8899 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8900 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8901 return FALSE;
8902
8903 tlsbase->type = STT_TLS;
8904 tlsbase = (struct elf_link_hash_entry *) h;
8905 tlsbase->def_regular = 1;
8906 tlsbase->other = STV_HIDDEN;
8907 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8908 }
8909 }
8910
8911 return TRUE;
8912 }
8913
8914 /* Finish up dynamic symbol handling. We set the contents of various
8915 dynamic sections here. */
8916
8917 static bfd_boolean
8918 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
8919 struct bfd_link_info *info,
8920 struct elf_link_hash_entry *h,
8921 Elf_Internal_Sym *sym)
8922 {
8923 struct elf_aarch64_link_hash_table *htab;
8924 htab = elf_aarch64_hash_table (info);
8925
8926 if (h->plt.offset != (bfd_vma) - 1)
8927 {
8928 asection *plt, *gotplt, *relplt;
8929
8930 /* This symbol has an entry in the procedure linkage table. Set
8931 it up. */
8932
8933 /* When building a static executable, use .iplt, .igot.plt and
8934 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8935 if (htab->root.splt != NULL)
8936 {
8937 plt = htab->root.splt;
8938 gotplt = htab->root.sgotplt;
8939 relplt = htab->root.srelplt;
8940 }
8941 else
8942 {
8943 plt = htab->root.iplt;
8944 gotplt = htab->root.igotplt;
8945 relplt = htab->root.irelplt;
8946 }
8947
8948 /* This symbol has an entry in the procedure linkage table. Set
8949 it up. */
8950 if ((h->dynindx == -1
8951 && !((h->forced_local || bfd_link_executable (info))
8952 && h->def_regular
8953 && h->type == STT_GNU_IFUNC))
8954 || plt == NULL
8955 || gotplt == NULL
8956 || relplt == NULL)
8957 return FALSE;
8958
8959 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
8960 if (!h->def_regular)
8961 {
8962 /* Mark the symbol as undefined, rather than as defined in
8963 the .plt section. */
8964 sym->st_shndx = SHN_UNDEF;
8965 /* If the symbol is weak we need to clear the value.
8966 Otherwise, the PLT entry would provide a definition for
8967 the symbol even if the symbol wasn't defined anywhere,
8968 and so the symbol would never be NULL. Leave the value if
8969 there were any relocations where pointer equality matters
8970 (this is a clue for the dynamic linker, to make function
8971 pointer comparisons work between an application and shared
8972 library). */
8973 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8974 sym->st_value = 0;
8975 }
8976 }
8977
8978 if (h->got.offset != (bfd_vma) - 1
8979 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
8980 {
8981 Elf_Internal_Rela rela;
8982 bfd_byte *loc;
8983
8984 /* This symbol has an entry in the global offset table. Set it
8985 up. */
8986 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8987 abort ();
8988
8989 rela.r_offset = (htab->root.sgot->output_section->vma
8990 + htab->root.sgot->output_offset
8991 + (h->got.offset & ~(bfd_vma) 1));
8992
8993 if (h->def_regular
8994 && h->type == STT_GNU_IFUNC)
8995 {
8996 if (bfd_link_pic (info))
8997 {
8998 /* Generate R_AARCH64_GLOB_DAT. */
8999 goto do_glob_dat;
9000 }
9001 else
9002 {
9003 asection *plt;
9004
9005 if (!h->pointer_equality_needed)
9006 abort ();
9007
9008 /* For non-shared object, we can't use .got.plt, which
9009 contains the real function address if we need pointer
9010 equality. We load the GOT entry with the PLT entry. */
9011 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9012 bfd_put_NN (output_bfd, (plt->output_section->vma
9013 + plt->output_offset
9014 + h->plt.offset),
9015 htab->root.sgot->contents
9016 + (h->got.offset & ~(bfd_vma) 1));
9017 return TRUE;
9018 }
9019 }
9020 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9021 {
9022 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9023 return FALSE;
9024
9025 BFD_ASSERT ((h->got.offset & 1) != 0);
9026 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9027 rela.r_addend = (h->root.u.def.value
9028 + h->root.u.def.section->output_section->vma
9029 + h->root.u.def.section->output_offset);
9030 }
9031 else
9032 {
9033 do_glob_dat:
9034 BFD_ASSERT ((h->got.offset & 1) == 0);
9035 bfd_put_NN (output_bfd, (bfd_vma) 0,
9036 htab->root.sgot->contents + h->got.offset);
9037 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9038 rela.r_addend = 0;
9039 }
9040
9041 loc = htab->root.srelgot->contents;
9042 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9043 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9044 }
9045
9046 if (h->needs_copy)
9047 {
9048 Elf_Internal_Rela rela;
9049 asection *s;
9050 bfd_byte *loc;
9051
9052 /* This symbol needs a copy reloc. Set it up. */
9053 if (h->dynindx == -1
9054 || (h->root.type != bfd_link_hash_defined
9055 && h->root.type != bfd_link_hash_defweak)
9056 || htab->root.srelbss == NULL)
9057 abort ();
9058
9059 rela.r_offset = (h->root.u.def.value
9060 + h->root.u.def.section->output_section->vma
9061 + h->root.u.def.section->output_offset);
9062 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9063 rela.r_addend = 0;
9064 if (h->root.u.def.section == htab->root.sdynrelro)
9065 s = htab->root.sreldynrelro;
9066 else
9067 s = htab->root.srelbss;
9068 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9069 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9070 }
9071
9072 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9073 be NULL for local symbols. */
9074 if (sym != NULL
9075 && (h == elf_hash_table (info)->hdynamic
9076 || h == elf_hash_table (info)->hgot))
9077 sym->st_shndx = SHN_ABS;
9078
9079 return TRUE;
9080 }
9081
9082 /* Finish up local dynamic symbol handling. We set the contents of
9083 various dynamic sections here. */
9084
9085 static bfd_boolean
9086 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9087 {
9088 struct elf_link_hash_entry *h
9089 = (struct elf_link_hash_entry *) *slot;
9090 struct bfd_link_info *info
9091 = (struct bfd_link_info *) inf;
9092
9093 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9094 info, h, NULL);
9095 }
9096
9097 static void
9098 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9099 struct elf_aarch64_link_hash_table
9100 *htab)
9101 {
9102 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9103 small and large plts and at the minute just generates
9104 the small PLT. */
9105
9106 /* PLT0 of the small PLT looks like this in ELF64 -
9107 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9108 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9109 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9110 // symbol resolver
9111 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9112 // GOTPLT entry for this.
9113 br x17
9114 PLT0 will be slightly different in ELF32 due to different got entry
9115 size. */
9116 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9117 bfd_vma plt_base;
9118
9119
9120 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
9121 PLT_ENTRY_SIZE);
9122 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9123 PLT_ENTRY_SIZE;
9124
9125 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9126 + htab->root.sgotplt->output_offset
9127 + GOT_ENTRY_SIZE * 2);
9128
9129 plt_base = htab->root.splt->output_section->vma +
9130 htab->root.splt->output_offset;
9131
9132 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9133 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9134 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9135 htab->root.splt->contents + 4,
9136 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9137
9138 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9139 htab->root.splt->contents + 8,
9140 PG_OFFSET (plt_got_2nd_ent));
9141
9142 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9143 htab->root.splt->contents + 12,
9144 PG_OFFSET (plt_got_2nd_ent));
9145 }
9146
9147 static bfd_boolean
9148 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9149 struct bfd_link_info *info)
9150 {
9151 struct elf_aarch64_link_hash_table *htab;
9152 bfd *dynobj;
9153 asection *sdyn;
9154
9155 htab = elf_aarch64_hash_table (info);
9156 dynobj = htab->root.dynobj;
9157 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9158
9159 if (htab->root.dynamic_sections_created)
9160 {
9161 ElfNN_External_Dyn *dyncon, *dynconend;
9162
9163 if (sdyn == NULL || htab->root.sgot == NULL)
9164 abort ();
9165
9166 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9167 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9168 for (; dyncon < dynconend; dyncon++)
9169 {
9170 Elf_Internal_Dyn dyn;
9171 asection *s;
9172
9173 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9174
9175 switch (dyn.d_tag)
9176 {
9177 default:
9178 continue;
9179
9180 case DT_PLTGOT:
9181 s = htab->root.sgotplt;
9182 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9183 break;
9184
9185 case DT_JMPREL:
9186 s = htab->root.srelplt;
9187 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9188 break;
9189
9190 case DT_PLTRELSZ:
9191 s = htab->root.srelplt;
9192 dyn.d_un.d_val = s->size;
9193 break;
9194
9195 case DT_TLSDESC_PLT:
9196 s = htab->root.splt;
9197 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9198 + htab->tlsdesc_plt;
9199 break;
9200
9201 case DT_TLSDESC_GOT:
9202 s = htab->root.sgot;
9203 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9204 + htab->dt_tlsdesc_got;
9205 break;
9206 }
9207
9208 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9209 }
9210
9211 }
9212
9213 /* Fill in the special first entry in the procedure linkage table. */
9214 if (htab->root.splt && htab->root.splt->size > 0)
9215 {
9216 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9217
9218 elf_section_data (htab->root.splt->output_section)->
9219 this_hdr.sh_entsize = htab->plt_entry_size;
9220
9221
9222 if (htab->tlsdesc_plt)
9223 {
9224 bfd_put_NN (output_bfd, (bfd_vma) 0,
9225 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9226
9227 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9228 elfNN_aarch64_tlsdesc_small_plt_entry,
9229 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
9230
9231 {
9232 bfd_vma adrp1_addr =
9233 htab->root.splt->output_section->vma
9234 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9235
9236 bfd_vma adrp2_addr = adrp1_addr + 4;
9237
9238 bfd_vma got_addr =
9239 htab->root.sgot->output_section->vma
9240 + htab->root.sgot->output_offset;
9241
9242 bfd_vma pltgot_addr =
9243 htab->root.sgotplt->output_section->vma
9244 + htab->root.sgotplt->output_offset;
9245
9246 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9247
9248 bfd_byte *plt_entry =
9249 htab->root.splt->contents + htab->tlsdesc_plt;
9250
9251 /* adrp x2, DT_TLSDESC_GOT */
9252 elf_aarch64_update_plt_entry (output_bfd,
9253 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9254 plt_entry + 4,
9255 (PG (dt_tlsdesc_got)
9256 - PG (adrp1_addr)));
9257
9258 /* adrp x3, 0 */
9259 elf_aarch64_update_plt_entry (output_bfd,
9260 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9261 plt_entry + 8,
9262 (PG (pltgot_addr)
9263 - PG (adrp2_addr)));
9264
9265 /* ldr x2, [x2, #0] */
9266 elf_aarch64_update_plt_entry (output_bfd,
9267 BFD_RELOC_AARCH64_LDSTNN_LO12,
9268 plt_entry + 12,
9269 PG_OFFSET (dt_tlsdesc_got));
9270
9271 /* add x3, x3, 0 */
9272 elf_aarch64_update_plt_entry (output_bfd,
9273 BFD_RELOC_AARCH64_ADD_LO12,
9274 plt_entry + 16,
9275 PG_OFFSET (pltgot_addr));
9276 }
9277 }
9278 }
9279
9280 if (htab->root.sgotplt)
9281 {
9282 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9283 {
9284 _bfd_error_handler
9285 (_("discarded output section: `%A'"), htab->root.sgotplt);
9286 return FALSE;
9287 }
9288
9289 /* Fill in the first three entries in the global offset table. */
9290 if (htab->root.sgotplt->size > 0)
9291 {
9292 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9293
9294 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9295 bfd_put_NN (output_bfd,
9296 (bfd_vma) 0,
9297 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9298 bfd_put_NN (output_bfd,
9299 (bfd_vma) 0,
9300 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9301 }
9302
9303 if (htab->root.sgot)
9304 {
9305 if (htab->root.sgot->size > 0)
9306 {
9307 bfd_vma addr =
9308 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9309 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9310 }
9311 }
9312
9313 elf_section_data (htab->root.sgotplt->output_section)->
9314 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9315 }
9316
9317 if (htab->root.sgot && htab->root.sgot->size > 0)
9318 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9319 = GOT_ENTRY_SIZE;
9320
9321 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9322 htab_traverse (htab->loc_hash_table,
9323 elfNN_aarch64_finish_local_dynamic_symbol,
9324 info);
9325
9326 return TRUE;
9327 }
9328
9329 /* Return address for Ith PLT stub in section PLT, for relocation REL
9330 or (bfd_vma) -1 if it should not be included. */
9331
9332 static bfd_vma
9333 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9334 const arelent *rel ATTRIBUTE_UNUSED)
9335 {
9336 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9337 }
9338
9339 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9340 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9341 It also allows a period initiated suffix to be added to the symbol, ie:
9342 "$[adtx]\.[:sym_char]+". */
9343
9344 static bfd_boolean
9345 is_aarch64_mapping_symbol (const char * name)
9346 {
9347 return name != NULL /* Paranoia. */
9348 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9349 the mapping symbols could have acquired a prefix.
9350 We do not support this here, since such symbols no
9351 longer conform to the ARM ELF ABI. */
9352 && (name[1] == 'd' || name[1] == 'x')
9353 && (name[2] == 0 || name[2] == '.');
9354 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9355 any characters that follow the period are legal characters for the body
9356 of a symbol's name. For now we just assume that this is the case. */
9357 }
9358
9359 /* Make sure that mapping symbols in object files are not removed via the
9360 "strip --strip-unneeded" tool. These symbols might needed in order to
9361 correctly generate linked files. Once an object file has been linked,
9362 it should be safe to remove them. */
9363
9364 static void
9365 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9366 {
9367 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9368 && sym->section != bfd_abs_section_ptr
9369 && is_aarch64_mapping_symbol (sym->name))
9370 sym->flags |= BSF_KEEP;
9371 }
9372
9373
9374 /* We use this so we can override certain functions
9375 (though currently we don't). */
9376
9377 const struct elf_size_info elfNN_aarch64_size_info =
9378 {
9379 sizeof (ElfNN_External_Ehdr),
9380 sizeof (ElfNN_External_Phdr),
9381 sizeof (ElfNN_External_Shdr),
9382 sizeof (ElfNN_External_Rel),
9383 sizeof (ElfNN_External_Rela),
9384 sizeof (ElfNN_External_Sym),
9385 sizeof (ElfNN_External_Dyn),
9386 sizeof (Elf_External_Note),
9387 4, /* Hash table entry size. */
9388 1, /* Internal relocs per external relocs. */
9389 ARCH_SIZE, /* Arch size. */
9390 LOG_FILE_ALIGN, /* Log_file_align. */
9391 ELFCLASSNN, EV_CURRENT,
9392 bfd_elfNN_write_out_phdrs,
9393 bfd_elfNN_write_shdrs_and_ehdr,
9394 bfd_elfNN_checksum_contents,
9395 bfd_elfNN_write_relocs,
9396 bfd_elfNN_swap_symbol_in,
9397 bfd_elfNN_swap_symbol_out,
9398 bfd_elfNN_slurp_reloc_table,
9399 bfd_elfNN_slurp_symbol_table,
9400 bfd_elfNN_swap_dyn_in,
9401 bfd_elfNN_swap_dyn_out,
9402 bfd_elfNN_swap_reloc_in,
9403 bfd_elfNN_swap_reloc_out,
9404 bfd_elfNN_swap_reloca_in,
9405 bfd_elfNN_swap_reloca_out
9406 };
9407
9408 #define ELF_ARCH bfd_arch_aarch64
9409 #define ELF_MACHINE_CODE EM_AARCH64
9410 #define ELF_MAXPAGESIZE 0x10000
9411 #define ELF_MINPAGESIZE 0x1000
9412 #define ELF_COMMONPAGESIZE 0x1000
9413
9414 #define bfd_elfNN_close_and_cleanup \
9415 elfNN_aarch64_close_and_cleanup
9416
9417 #define bfd_elfNN_bfd_free_cached_info \
9418 elfNN_aarch64_bfd_free_cached_info
9419
9420 #define bfd_elfNN_bfd_is_target_special_symbol \
9421 elfNN_aarch64_is_target_special_symbol
9422
9423 #define bfd_elfNN_bfd_link_hash_table_create \
9424 elfNN_aarch64_link_hash_table_create
9425
9426 #define bfd_elfNN_bfd_merge_private_bfd_data \
9427 elfNN_aarch64_merge_private_bfd_data
9428
9429 #define bfd_elfNN_bfd_print_private_bfd_data \
9430 elfNN_aarch64_print_private_bfd_data
9431
9432 #define bfd_elfNN_bfd_reloc_type_lookup \
9433 elfNN_aarch64_reloc_type_lookup
9434
9435 #define bfd_elfNN_bfd_reloc_name_lookup \
9436 elfNN_aarch64_reloc_name_lookup
9437
9438 #define bfd_elfNN_bfd_set_private_flags \
9439 elfNN_aarch64_set_private_flags
9440
9441 #define bfd_elfNN_find_inliner_info \
9442 elfNN_aarch64_find_inliner_info
9443
9444 #define bfd_elfNN_find_nearest_line \
9445 elfNN_aarch64_find_nearest_line
9446
9447 #define bfd_elfNN_mkobject \
9448 elfNN_aarch64_mkobject
9449
9450 #define bfd_elfNN_new_section_hook \
9451 elfNN_aarch64_new_section_hook
9452
9453 #define elf_backend_adjust_dynamic_symbol \
9454 elfNN_aarch64_adjust_dynamic_symbol
9455
9456 #define elf_backend_always_size_sections \
9457 elfNN_aarch64_always_size_sections
9458
9459 #define elf_backend_check_relocs \
9460 elfNN_aarch64_check_relocs
9461
9462 #define elf_backend_copy_indirect_symbol \
9463 elfNN_aarch64_copy_indirect_symbol
9464
9465 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9466 to them in our hash. */
9467 #define elf_backend_create_dynamic_sections \
9468 elfNN_aarch64_create_dynamic_sections
9469
9470 #define elf_backend_init_index_section \
9471 _bfd_elf_init_2_index_sections
9472
9473 #define elf_backend_finish_dynamic_sections \
9474 elfNN_aarch64_finish_dynamic_sections
9475
9476 #define elf_backend_finish_dynamic_symbol \
9477 elfNN_aarch64_finish_dynamic_symbol
9478
9479 #define elf_backend_gc_sweep_hook \
9480 elfNN_aarch64_gc_sweep_hook
9481
9482 #define elf_backend_object_p \
9483 elfNN_aarch64_object_p
9484
9485 #define elf_backend_output_arch_local_syms \
9486 elfNN_aarch64_output_arch_local_syms
9487
9488 #define elf_backend_plt_sym_val \
9489 elfNN_aarch64_plt_sym_val
9490
9491 #define elf_backend_post_process_headers \
9492 elfNN_aarch64_post_process_headers
9493
9494 #define elf_backend_relocate_section \
9495 elfNN_aarch64_relocate_section
9496
9497 #define elf_backend_reloc_type_class \
9498 elfNN_aarch64_reloc_type_class
9499
9500 #define elf_backend_section_from_shdr \
9501 elfNN_aarch64_section_from_shdr
9502
9503 #define elf_backend_size_dynamic_sections \
9504 elfNN_aarch64_size_dynamic_sections
9505
9506 #define elf_backend_size_info \
9507 elfNN_aarch64_size_info
9508
9509 #define elf_backend_write_section \
9510 elfNN_aarch64_write_section
9511
9512 #define elf_backend_symbol_processing \
9513 elfNN_aarch64_backend_symbol_processing
9514
9515 #define elf_backend_can_refcount 1
9516 #define elf_backend_can_gc_sections 1
9517 #define elf_backend_plt_readonly 1
9518 #define elf_backend_want_got_plt 1
9519 #define elf_backend_want_plt_sym 0
9520 #define elf_backend_want_dynrelro 1
9521 #define elf_backend_may_use_rel_p 0
9522 #define elf_backend_may_use_rela_p 1
9523 #define elf_backend_default_use_rela_p 1
9524 #define elf_backend_rela_normal 1
9525 #define elf_backend_dtrel_excludes_plt 1
9526 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9527 #define elf_backend_default_execstack 0
9528 #define elf_backend_extern_protected_data 1
9529 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
9530
9531 #undef elf_backend_obj_attrs_section
9532 #define elf_backend_obj_attrs_section ".ARM.attributes"
9533
9534 #include "elfNN-target.h"
9535
9536 /* CloudABI support. */
9537
9538 #undef TARGET_LITTLE_SYM
9539 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
9540 #undef TARGET_LITTLE_NAME
9541 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
9542 #undef TARGET_BIG_SYM
9543 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
9544 #undef TARGET_BIG_NAME
9545 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
9546
9547 #undef ELF_OSABI
9548 #define ELF_OSABI ELFOSABI_CLOUDABI
9549
9550 #undef elfNN_bed
9551 #define elfNN_bed elfNN_aarch64_cloudabi_bed
9552
9553 #include "elfNN-target.h"
This page took 0.331911 seconds and 5 git commands to generate.