Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elfnn-riscv.c
1 /* RISC-V-specific support for NN-bit ELF.
2 Copyright (C) 2011-2019 Free Software Foundation, Inc.
3
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
22
23 /* This file handles RISC-V ELF targets. */
24
25 #include "sysdep.h"
26 #include "bfd.h"
27 #include "libbfd.h"
28 #include "bfdlink.h"
29 #include "genlink.h"
30 #include "elf-bfd.h"
31 #include "elfxx-riscv.h"
32 #include "elf/riscv.h"
33 #include "opcode/riscv.h"
34
35 /* Internal relocations used exclusively by the relaxation pass. */
36 #define R_RISCV_DELETE (R_RISCV_max + 1)
37
38 #define ARCH_SIZE NN
39
40 #define MINUS_ONE ((bfd_vma)0 - 1)
41
42 #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
43
44 #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
45
46 /* The name of the dynamic interpreter. This is put in the .interp
47 section. */
48
49 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50 #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
51
52 #define ELF_ARCH bfd_arch_riscv
53 #define ELF_TARGET_ID RISCV_ELF_DATA
54 #define ELF_MACHINE_CODE EM_RISCV
55 #define ELF_MAXPAGESIZE 0x1000
56 #define ELF_COMMONPAGESIZE 0x1000
57
58 /* RISC-V ELF linker hash entry. */
59
60 struct riscv_elf_link_hash_entry
61 {
62 struct elf_link_hash_entry elf;
63
64 /* Track dynamic relocs copied for this symbol. */
65 struct elf_dyn_relocs *dyn_relocs;
66
67 #define GOT_UNKNOWN 0
68 #define GOT_NORMAL 1
69 #define GOT_TLS_GD 2
70 #define GOT_TLS_IE 4
71 #define GOT_TLS_LE 8
72 char tls_type;
73 };
74
75 #define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
77
78 struct _bfd_riscv_elf_obj_tdata
79 {
80 struct elf_obj_tdata root;
81
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type;
84 };
85
86 #define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
88
89 #define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
91
92 #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
95
96 #define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
100
101 #include "elf/common.h"
102 #include "elf/internal.h"
103
104 struct riscv_elf_link_hash_table
105 {
106 struct elf_link_hash_table elf;
107
108 /* Short-cuts to get to dynamic linker sections. */
109 asection *sdyntdata;
110
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache;
113
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment;
116 };
117
118
119 /* Get the RISC-V ELF linker hash table from a link_info structure. */
120 #define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
123
124 static bfd_boolean
125 riscv_info_to_howto_rela (bfd *abfd,
126 arelent *cache_ptr,
127 Elf_Internal_Rela *dst)
128 {
129 cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info));
130 return cache_ptr->howto != NULL;
131 }
132
133 static void
134 riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
135 {
136 const struct elf_backend_data *bed;
137 bfd_byte *loc;
138
139 bed = get_elf_backend_data (abfd);
140 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
141 bed->s->swap_reloca_out (abfd, rel, loc);
142 }
143
144 /* PLT/GOT stuff. */
145
146 #define PLT_HEADER_INSNS 8
147 #define PLT_ENTRY_INSNS 4
148 #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
149 #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
150
151 #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
152
153 #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
154
155 #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
156
157 static bfd_vma
158 riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
159 {
160 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
161 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
162 }
163
164 #if ARCH_SIZE == 32
165 # define MATCH_LREG MATCH_LW
166 #else
167 # define MATCH_LREG MATCH_LD
168 #endif
169
170 /* Generate a PLT header. */
171
172 static bfd_boolean
173 riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr,
174 uint32_t *entry)
175 {
176 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
177 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
178
179 /* RVE has no t3 register, so this won't work, and is not supported. */
180 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
181 {
182 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
183 output_bfd);
184 return FALSE;
185 }
186
187 /* auipc t2, %hi(.got.plt)
188 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
189 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
190 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
191 addi t0, t2, %lo(.got.plt) # &.got.plt
192 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
193 l[w|d] t0, PTRSIZE(t0) # link map
194 jr t3 */
195
196 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
197 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
198 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
199 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
200 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
201 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
202 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
203 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
204
205 return TRUE;
206 }
207
208 /* Generate a PLT entry. */
209
210 static bfd_boolean
211 riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr,
212 uint32_t *entry)
213 {
214 /* RVE has no t3 register, so this won't work, and is not supported. */
215 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
216 {
217 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
218 output_bfd);
219 return FALSE;
220 }
221
222 /* auipc t3, %hi(.got.plt entry)
223 l[w|d] t3, %lo(.got.plt entry)(t3)
224 jalr t1, t3
225 nop */
226
227 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
228 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
229 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
230 entry[3] = RISCV_NOP;
231
232 return TRUE;
233 }
234
235 /* Create an entry in an RISC-V ELF linker hash table. */
236
237 static struct bfd_hash_entry *
238 link_hash_newfunc (struct bfd_hash_entry *entry,
239 struct bfd_hash_table *table, const char *string)
240 {
241 /* Allocate the structure if it has not already been allocated by a
242 subclass. */
243 if (entry == NULL)
244 {
245 entry =
246 bfd_hash_allocate (table,
247 sizeof (struct riscv_elf_link_hash_entry));
248 if (entry == NULL)
249 return entry;
250 }
251
252 /* Call the allocation method of the superclass. */
253 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
254 if (entry != NULL)
255 {
256 struct riscv_elf_link_hash_entry *eh;
257
258 eh = (struct riscv_elf_link_hash_entry *) entry;
259 eh->dyn_relocs = NULL;
260 eh->tls_type = GOT_UNKNOWN;
261 }
262
263 return entry;
264 }
265
266 /* Create a RISC-V ELF linker hash table. */
267
268 static struct bfd_link_hash_table *
269 riscv_elf_link_hash_table_create (bfd *abfd)
270 {
271 struct riscv_elf_link_hash_table *ret;
272 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
273
274 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
275 if (ret == NULL)
276 return NULL;
277
278 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
279 sizeof (struct riscv_elf_link_hash_entry),
280 RISCV_ELF_DATA))
281 {
282 free (ret);
283 return NULL;
284 }
285
286 ret->max_alignment = (bfd_vma) -1;
287 return &ret->elf.root;
288 }
289
290 /* Create the .got section. */
291
292 static bfd_boolean
293 riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
294 {
295 flagword flags;
296 asection *s, *s_got;
297 struct elf_link_hash_entry *h;
298 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
299 struct elf_link_hash_table *htab = elf_hash_table (info);
300
301 /* This function may be called more than once. */
302 if (htab->sgot != NULL)
303 return TRUE;
304
305 flags = bed->dynamic_sec_flags;
306
307 s = bfd_make_section_anyway_with_flags (abfd,
308 (bed->rela_plts_and_copies_p
309 ? ".rela.got" : ".rel.got"),
310 (bed->dynamic_sec_flags
311 | SEC_READONLY));
312 if (s == NULL
313 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
314 return FALSE;
315 htab->srelgot = s;
316
317 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
318 if (s == NULL
319 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
320 return FALSE;
321 htab->sgot = s;
322
323 /* The first bit of the global offset table is the header. */
324 s->size += bed->got_header_size;
325
326 if (bed->want_got_plt)
327 {
328 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
329 if (s == NULL
330 || !bfd_set_section_alignment (abfd, s,
331 bed->s->log_file_align))
332 return FALSE;
333 htab->sgotplt = s;
334
335 /* Reserve room for the header. */
336 s->size += GOTPLT_HEADER_SIZE;
337 }
338
339 if (bed->want_got_sym)
340 {
341 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
342 section. We don't do this in the linker script because we don't want
343 to define the symbol if we are not creating a global offset
344 table. */
345 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
346 "_GLOBAL_OFFSET_TABLE_");
347 elf_hash_table (info)->hgot = h;
348 if (h == NULL)
349 return FALSE;
350 }
351
352 return TRUE;
353 }
354
355 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
356 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
357 hash table. */
358
359 static bfd_boolean
360 riscv_elf_create_dynamic_sections (bfd *dynobj,
361 struct bfd_link_info *info)
362 {
363 struct riscv_elf_link_hash_table *htab;
364
365 htab = riscv_elf_hash_table (info);
366 BFD_ASSERT (htab != NULL);
367
368 if (!riscv_elf_create_got_section (dynobj, info))
369 return FALSE;
370
371 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
372 return FALSE;
373
374 if (!bfd_link_pic (info))
375 {
376 /* Technically, this section doesn't have contents. It is used as the
377 target of TLS copy relocs, to copy TLS data from shared libraries into
378 the executable. However, if we don't mark it as loadable, then it
379 matches the IS_TBSS test in ldlang.c, and there is no run-time address
380 space allocated for it even though it has SEC_ALLOC. That test is
381 correct for .tbss, but not correct for this section. There is also
382 a second problem that having a section with no contents can only work
383 if it comes after all sections with contents in the same segment,
384 but the linker script does not guarantee that. This is just mixed in
385 with other .tdata.* sections. We can fix both problems by lying and
386 saying that there are contents. This section is expected to be small
387 so this should not cause a significant extra program startup cost. */
388 htab->sdyntdata =
389 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
390 (SEC_ALLOC | SEC_THREAD_LOCAL
391 | SEC_LOAD | SEC_DATA
392 | SEC_HAS_CONTENTS
393 | SEC_LINKER_CREATED));
394 }
395
396 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
397 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
398 abort ();
399
400 return TRUE;
401 }
402
403 /* Copy the extra info we tack onto an elf_link_hash_entry. */
404
405 static void
406 riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
407 struct elf_link_hash_entry *dir,
408 struct elf_link_hash_entry *ind)
409 {
410 struct riscv_elf_link_hash_entry *edir, *eind;
411
412 edir = (struct riscv_elf_link_hash_entry *) dir;
413 eind = (struct riscv_elf_link_hash_entry *) ind;
414
415 if (eind->dyn_relocs != NULL)
416 {
417 if (edir->dyn_relocs != NULL)
418 {
419 struct elf_dyn_relocs **pp;
420 struct elf_dyn_relocs *p;
421
422 /* Add reloc counts against the indirect sym to the direct sym
423 list. Merge any entries against the same section. */
424 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
425 {
426 struct elf_dyn_relocs *q;
427
428 for (q = edir->dyn_relocs; q != NULL; q = q->next)
429 if (q->sec == p->sec)
430 {
431 q->pc_count += p->pc_count;
432 q->count += p->count;
433 *pp = p->next;
434 break;
435 }
436 if (q == NULL)
437 pp = &p->next;
438 }
439 *pp = edir->dyn_relocs;
440 }
441
442 edir->dyn_relocs = eind->dyn_relocs;
443 eind->dyn_relocs = NULL;
444 }
445
446 if (ind->root.type == bfd_link_hash_indirect
447 && dir->got.refcount <= 0)
448 {
449 edir->tls_type = eind->tls_type;
450 eind->tls_type = GOT_UNKNOWN;
451 }
452 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
453 }
454
455 static bfd_boolean
456 riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
457 unsigned long symndx, char tls_type)
458 {
459 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
460
461 *new_tls_type |= tls_type;
462 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
463 {
464 (*_bfd_error_handler)
465 (_("%pB: `%s' accessed both as normal and thread local symbol"),
466 abfd, h ? h->root.root.string : "<local>");
467 return FALSE;
468 }
469 return TRUE;
470 }
471
472 static bfd_boolean
473 riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
474 struct elf_link_hash_entry *h, long symndx)
475 {
476 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
477 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
478
479 if (htab->elf.sgot == NULL)
480 {
481 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
482 return FALSE;
483 }
484
485 if (h != NULL)
486 {
487 h->got.refcount += 1;
488 return TRUE;
489 }
490
491 /* This is a global offset table entry for a local symbol. */
492 if (elf_local_got_refcounts (abfd) == NULL)
493 {
494 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
495 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
496 return FALSE;
497 _bfd_riscv_elf_local_got_tls_type (abfd)
498 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
499 }
500 elf_local_got_refcounts (abfd) [symndx] += 1;
501
502 return TRUE;
503 }
504
505 static bfd_boolean
506 bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
507 {
508 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
509
510 (*_bfd_error_handler)
511 (_("%pB: relocation %s against `%s' can not be used when making a shared "
512 "object; recompile with -fPIC"),
513 abfd, r ? r->name : _("<unknown>"),
514 h != NULL ? h->root.root.string : "a local symbol");
515 bfd_set_error (bfd_error_bad_value);
516 return FALSE;
517 }
518 /* Look through the relocs for a section during the first phase, and
519 allocate space in the global offset table or procedure linkage
520 table. */
521
522 static bfd_boolean
523 riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
524 asection *sec, const Elf_Internal_Rela *relocs)
525 {
526 struct riscv_elf_link_hash_table *htab;
527 Elf_Internal_Shdr *symtab_hdr;
528 struct elf_link_hash_entry **sym_hashes;
529 const Elf_Internal_Rela *rel;
530 asection *sreloc = NULL;
531
532 if (bfd_link_relocatable (info))
533 return TRUE;
534
535 htab = riscv_elf_hash_table (info);
536 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
537 sym_hashes = elf_sym_hashes (abfd);
538
539 if (htab->elf.dynobj == NULL)
540 htab->elf.dynobj = abfd;
541
542 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
543 {
544 unsigned int r_type;
545 unsigned int r_symndx;
546 struct elf_link_hash_entry *h;
547
548 r_symndx = ELFNN_R_SYM (rel->r_info);
549 r_type = ELFNN_R_TYPE (rel->r_info);
550
551 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
552 {
553 (*_bfd_error_handler) (_("%pB: bad symbol index: %d"),
554 abfd, r_symndx);
555 return FALSE;
556 }
557
558 if (r_symndx < symtab_hdr->sh_info)
559 h = NULL;
560 else
561 {
562 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
563 while (h->root.type == bfd_link_hash_indirect
564 || h->root.type == bfd_link_hash_warning)
565 h = (struct elf_link_hash_entry *) h->root.u.i.link;
566 }
567
568 switch (r_type)
569 {
570 case R_RISCV_TLS_GD_HI20:
571 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
572 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
573 return FALSE;
574 break;
575
576 case R_RISCV_TLS_GOT_HI20:
577 if (bfd_link_pic (info))
578 info->flags |= DF_STATIC_TLS;
579 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
580 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
581 return FALSE;
582 break;
583
584 case R_RISCV_GOT_HI20:
585 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
586 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
587 return FALSE;
588 break;
589
590 case R_RISCV_CALL_PLT:
591 /* This symbol requires a procedure linkage table entry. We
592 actually build the entry in adjust_dynamic_symbol,
593 because this might be a case of linking PIC code without
594 linking in any dynamic objects, in which case we don't
595 need to generate a procedure linkage table after all. */
596
597 if (h != NULL)
598 {
599 h->needs_plt = 1;
600 h->plt.refcount += 1;
601 }
602 break;
603
604 case R_RISCV_CALL:
605 case R_RISCV_JAL:
606 case R_RISCV_BRANCH:
607 case R_RISCV_RVC_BRANCH:
608 case R_RISCV_RVC_JUMP:
609 case R_RISCV_PCREL_HI20:
610 /* In shared libraries, these relocs are known to bind locally. */
611 if (bfd_link_pic (info))
612 break;
613 goto static_reloc;
614
615 case R_RISCV_TPREL_HI20:
616 if (!bfd_link_executable (info))
617 return bad_static_reloc (abfd, r_type, h);
618 if (h != NULL)
619 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
620 goto static_reloc;
621
622 case R_RISCV_HI20:
623 if (bfd_link_pic (info))
624 return bad_static_reloc (abfd, r_type, h);
625 /* Fall through. */
626
627 case R_RISCV_COPY:
628 case R_RISCV_JUMP_SLOT:
629 case R_RISCV_RELATIVE:
630 case R_RISCV_64:
631 case R_RISCV_32:
632 /* Fall through. */
633
634 static_reloc:
635 /* This reloc might not bind locally. */
636 if (h != NULL)
637 h->non_got_ref = 1;
638
639 if (h != NULL && !bfd_link_pic (info))
640 {
641 /* We may need a .plt entry if the function this reloc
642 refers to is in a shared lib. */
643 h->plt.refcount += 1;
644 }
645
646 /* If we are creating a shared library, and this is a reloc
647 against a global symbol, or a non PC relative reloc
648 against a local symbol, then we need to copy the reloc
649 into the shared library. However, if we are linking with
650 -Bsymbolic, we do not need to copy a reloc against a
651 global symbol which is defined in an object we are
652 including in the link (i.e., DEF_REGULAR is set). At
653 this point we have not seen all the input files, so it is
654 possible that DEF_REGULAR is not set now but will be set
655 later (it is never cleared). In case of a weak definition,
656 DEF_REGULAR may be cleared later by a strong definition in
657 a shared library. We account for that possibility below by
658 storing information in the relocs_copied field of the hash
659 table entry. A similar situation occurs when creating
660 shared libraries and symbol visibility changes render the
661 symbol local.
662
663 If on the other hand, we are creating an executable, we
664 may need to keep relocations for symbols satisfied by a
665 dynamic library if we manage to avoid copy relocs for the
666 symbol. */
667 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
668
669 if ((bfd_link_pic (info)
670 && (sec->flags & SEC_ALLOC) != 0
671 && ((r != NULL && ! r->pc_relative)
672 || (h != NULL
673 && (! info->symbolic
674 || h->root.type == bfd_link_hash_defweak
675 || !h->def_regular))))
676 || (!bfd_link_pic (info)
677 && (sec->flags & SEC_ALLOC) != 0
678 && h != NULL
679 && (h->root.type == bfd_link_hash_defweak
680 || !h->def_regular)))
681 {
682 struct elf_dyn_relocs *p;
683 struct elf_dyn_relocs **head;
684
685 /* When creating a shared object, we must copy these
686 relocs into the output file. We create a reloc
687 section in dynobj and make room for the reloc. */
688 if (sreloc == NULL)
689 {
690 sreloc = _bfd_elf_make_dynamic_reloc_section
691 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
692 abfd, /*rela?*/ TRUE);
693
694 if (sreloc == NULL)
695 return FALSE;
696 }
697
698 /* If this is a global symbol, we count the number of
699 relocations we need for this symbol. */
700 if (h != NULL)
701 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
702 else
703 {
704 /* Track dynamic relocs needed for local syms too.
705 We really need local syms available to do this
706 easily. Oh well. */
707
708 asection *s;
709 void *vpp;
710 Elf_Internal_Sym *isym;
711
712 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
713 abfd, r_symndx);
714 if (isym == NULL)
715 return FALSE;
716
717 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
718 if (s == NULL)
719 s = sec;
720
721 vpp = &elf_section_data (s)->local_dynrel;
722 head = (struct elf_dyn_relocs **) vpp;
723 }
724
725 p = *head;
726 if (p == NULL || p->sec != sec)
727 {
728 bfd_size_type amt = sizeof *p;
729 p = ((struct elf_dyn_relocs *)
730 bfd_alloc (htab->elf.dynobj, amt));
731 if (p == NULL)
732 return FALSE;
733 p->next = *head;
734 *head = p;
735 p->sec = sec;
736 p->count = 0;
737 p->pc_count = 0;
738 }
739
740 p->count += 1;
741 p->pc_count += r == NULL ? 0 : r->pc_relative;
742 }
743
744 break;
745
746 case R_RISCV_GNU_VTINHERIT:
747 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
748 return FALSE;
749 break;
750
751 case R_RISCV_GNU_VTENTRY:
752 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
753 return FALSE;
754 break;
755
756 default:
757 break;
758 }
759 }
760
761 return TRUE;
762 }
763
764 static asection *
765 riscv_elf_gc_mark_hook (asection *sec,
766 struct bfd_link_info *info,
767 Elf_Internal_Rela *rel,
768 struct elf_link_hash_entry *h,
769 Elf_Internal_Sym *sym)
770 {
771 if (h != NULL)
772 switch (ELFNN_R_TYPE (rel->r_info))
773 {
774 case R_RISCV_GNU_VTINHERIT:
775 case R_RISCV_GNU_VTENTRY:
776 return NULL;
777 }
778
779 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
780 }
781
782 /* Find dynamic relocs for H that apply to read-only sections. */
783
784 static asection *
785 readonly_dynrelocs (struct elf_link_hash_entry *h)
786 {
787 struct elf_dyn_relocs *p;
788
789 for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
790 {
791 asection *s = p->sec->output_section;
792
793 if (s != NULL && (s->flags & SEC_READONLY) != 0)
794 return p->sec;
795 }
796 return NULL;
797 }
798
799 /* Adjust a symbol defined by a dynamic object and referenced by a
800 regular object. The current definition is in some section of the
801 dynamic object, but we're not including those sections. We have to
802 change the definition to something the rest of the link can
803 understand. */
804
805 static bfd_boolean
806 riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
807 struct elf_link_hash_entry *h)
808 {
809 struct riscv_elf_link_hash_table *htab;
810 struct riscv_elf_link_hash_entry * eh;
811 bfd *dynobj;
812 asection *s, *srel;
813
814 htab = riscv_elf_hash_table (info);
815 BFD_ASSERT (htab != NULL);
816
817 dynobj = htab->elf.dynobj;
818
819 /* Make sure we know what is going on here. */
820 BFD_ASSERT (dynobj != NULL
821 && (h->needs_plt
822 || h->type == STT_GNU_IFUNC
823 || h->is_weakalias
824 || (h->def_dynamic
825 && h->ref_regular
826 && !h->def_regular)));
827
828 /* If this is a function, put it in the procedure linkage table. We
829 will fill in the contents of the procedure linkage table later
830 (although we could actually do it here). */
831 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
832 {
833 if (h->plt.refcount <= 0
834 || SYMBOL_CALLS_LOCAL (info, h)
835 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
836 && h->root.type == bfd_link_hash_undefweak))
837 {
838 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
839 input file, but the symbol was never referred to by a dynamic
840 object, or if all references were garbage collected. In such
841 a case, we don't actually need to build a PLT entry. */
842 h->plt.offset = (bfd_vma) -1;
843 h->needs_plt = 0;
844 }
845
846 return TRUE;
847 }
848 else
849 h->plt.offset = (bfd_vma) -1;
850
851 /* If this is a weak symbol, and there is a real definition, the
852 processor independent code will have arranged for us to see the
853 real definition first, and we can just use the same value. */
854 if (h->is_weakalias)
855 {
856 struct elf_link_hash_entry *def = weakdef (h);
857 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
858 h->root.u.def.section = def->root.u.def.section;
859 h->root.u.def.value = def->root.u.def.value;
860 return TRUE;
861 }
862
863 /* This is a reference to a symbol defined by a dynamic object which
864 is not a function. */
865
866 /* If we are creating a shared library, we must presume that the
867 only references to the symbol are via the global offset table.
868 For such cases we need not do anything here; the relocations will
869 be handled correctly by relocate_section. */
870 if (bfd_link_pic (info))
871 return TRUE;
872
873 /* If there are no references to this symbol that do not use the
874 GOT, we don't need to generate a copy reloc. */
875 if (!h->non_got_ref)
876 return TRUE;
877
878 /* If -z nocopyreloc was given, we won't generate them either. */
879 if (info->nocopyreloc)
880 {
881 h->non_got_ref = 0;
882 return TRUE;
883 }
884
885 /* If we don't find any dynamic relocs in read-only sections, then
886 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
887 if (!readonly_dynrelocs (h))
888 {
889 h->non_got_ref = 0;
890 return TRUE;
891 }
892
893 /* We must allocate the symbol in our .dynbss section, which will
894 become part of the .bss section of the executable. There will be
895 an entry for this symbol in the .dynsym section. The dynamic
896 object will contain position independent code, so all references
897 from the dynamic object to this symbol will go through the global
898 offset table. The dynamic linker will use the .dynsym entry to
899 determine the address it must put in the global offset table, so
900 both the dynamic object and the regular object will refer to the
901 same memory location for the variable. */
902
903 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
904 to copy the initial value out of the dynamic object and into the
905 runtime process image. We need to remember the offset into the
906 .rel.bss section we are going to use. */
907 eh = (struct riscv_elf_link_hash_entry *) h;
908 if (eh->tls_type & ~GOT_NORMAL)
909 {
910 s = htab->sdyntdata;
911 srel = htab->elf.srelbss;
912 }
913 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
914 {
915 s = htab->elf.sdynrelro;
916 srel = htab->elf.sreldynrelro;
917 }
918 else
919 {
920 s = htab->elf.sdynbss;
921 srel = htab->elf.srelbss;
922 }
923 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
924 {
925 srel->size += sizeof (ElfNN_External_Rela);
926 h->needs_copy = 1;
927 }
928
929 return _bfd_elf_adjust_dynamic_copy (info, h, s);
930 }
931
932 /* Allocate space in .plt, .got and associated reloc sections for
933 dynamic relocs. */
934
935 static bfd_boolean
936 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
937 {
938 struct bfd_link_info *info;
939 struct riscv_elf_link_hash_table *htab;
940 struct riscv_elf_link_hash_entry *eh;
941 struct elf_dyn_relocs *p;
942
943 if (h->root.type == bfd_link_hash_indirect)
944 return TRUE;
945
946 info = (struct bfd_link_info *) inf;
947 htab = riscv_elf_hash_table (info);
948 BFD_ASSERT (htab != NULL);
949
950 if (htab->elf.dynamic_sections_created
951 && h->plt.refcount > 0)
952 {
953 /* Make sure this symbol is output as a dynamic symbol.
954 Undefined weak syms won't yet be marked as dynamic. */
955 if (h->dynindx == -1
956 && !h->forced_local)
957 {
958 if (! bfd_elf_link_record_dynamic_symbol (info, h))
959 return FALSE;
960 }
961
962 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
963 {
964 asection *s = htab->elf.splt;
965
966 if (s->size == 0)
967 s->size = PLT_HEADER_SIZE;
968
969 h->plt.offset = s->size;
970
971 /* Make room for this entry. */
972 s->size += PLT_ENTRY_SIZE;
973
974 /* We also need to make an entry in the .got.plt section. */
975 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
976
977 /* We also need to make an entry in the .rela.plt section. */
978 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
979
980 /* If this symbol is not defined in a regular file, and we are
981 not generating a shared library, then set the symbol to this
982 location in the .plt. This is required to make function
983 pointers compare as equal between the normal executable and
984 the shared library. */
985 if (! bfd_link_pic (info)
986 && !h->def_regular)
987 {
988 h->root.u.def.section = s;
989 h->root.u.def.value = h->plt.offset;
990 }
991 }
992 else
993 {
994 h->plt.offset = (bfd_vma) -1;
995 h->needs_plt = 0;
996 }
997 }
998 else
999 {
1000 h->plt.offset = (bfd_vma) -1;
1001 h->needs_plt = 0;
1002 }
1003
1004 if (h->got.refcount > 0)
1005 {
1006 asection *s;
1007 bfd_boolean dyn;
1008 int tls_type = riscv_elf_hash_entry (h)->tls_type;
1009
1010 /* Make sure this symbol is output as a dynamic symbol.
1011 Undefined weak syms won't yet be marked as dynamic. */
1012 if (h->dynindx == -1
1013 && !h->forced_local)
1014 {
1015 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1016 return FALSE;
1017 }
1018
1019 s = htab->elf.sgot;
1020 h->got.offset = s->size;
1021 dyn = htab->elf.dynamic_sections_created;
1022 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
1023 {
1024 /* TLS_GD needs two dynamic relocs and two GOT slots. */
1025 if (tls_type & GOT_TLS_GD)
1026 {
1027 s->size += 2 * RISCV_ELF_WORD_BYTES;
1028 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
1029 }
1030
1031 /* TLS_IE needs one dynamic reloc and one GOT slot. */
1032 if (tls_type & GOT_TLS_IE)
1033 {
1034 s->size += RISCV_ELF_WORD_BYTES;
1035 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1036 }
1037 }
1038 else
1039 {
1040 s->size += RISCV_ELF_WORD_BYTES;
1041 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
1042 && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
1043 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1044 }
1045 }
1046 else
1047 h->got.offset = (bfd_vma) -1;
1048
1049 eh = (struct riscv_elf_link_hash_entry *) h;
1050 if (eh->dyn_relocs == NULL)
1051 return TRUE;
1052
1053 /* In the shared -Bsymbolic case, discard space allocated for
1054 dynamic pc-relative relocs against symbols which turn out to be
1055 defined in regular objects. For the normal shared case, discard
1056 space for pc-relative relocs that have become local due to symbol
1057 visibility changes. */
1058
1059 if (bfd_link_pic (info))
1060 {
1061 if (SYMBOL_CALLS_LOCAL (info, h))
1062 {
1063 struct elf_dyn_relocs **pp;
1064
1065 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1066 {
1067 p->count -= p->pc_count;
1068 p->pc_count = 0;
1069 if (p->count == 0)
1070 *pp = p->next;
1071 else
1072 pp = &p->next;
1073 }
1074 }
1075
1076 /* Also discard relocs on undefined weak syms with non-default
1077 visibility. */
1078 if (eh->dyn_relocs != NULL
1079 && h->root.type == bfd_link_hash_undefweak)
1080 {
1081 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1082 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
1083 eh->dyn_relocs = NULL;
1084
1085 /* Make sure undefined weak symbols are output as a dynamic
1086 symbol in PIEs. */
1087 else if (h->dynindx == -1
1088 && !h->forced_local)
1089 {
1090 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1091 return FALSE;
1092 }
1093 }
1094 }
1095 else
1096 {
1097 /* For the non-shared case, discard space for relocs against
1098 symbols which turn out to need copy relocs or are not
1099 dynamic. */
1100
1101 if (!h->non_got_ref
1102 && ((h->def_dynamic
1103 && !h->def_regular)
1104 || (htab->elf.dynamic_sections_created
1105 && (h->root.type == bfd_link_hash_undefweak
1106 || h->root.type == bfd_link_hash_undefined))))
1107 {
1108 /* Make sure this symbol is output as a dynamic symbol.
1109 Undefined weak syms won't yet be marked as dynamic. */
1110 if (h->dynindx == -1
1111 && !h->forced_local)
1112 {
1113 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1114 return FALSE;
1115 }
1116
1117 /* If that succeeded, we know we'll be keeping all the
1118 relocs. */
1119 if (h->dynindx != -1)
1120 goto keep;
1121 }
1122
1123 eh->dyn_relocs = NULL;
1124
1125 keep: ;
1126 }
1127
1128 /* Finally, allocate space. */
1129 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1130 {
1131 asection *sreloc = elf_section_data (p->sec)->sreloc;
1132 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1133 }
1134
1135 return TRUE;
1136 }
1137
1138 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
1139 read-only sections. */
1140
1141 static bfd_boolean
1142 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
1143 {
1144 asection *sec;
1145
1146 if (h->root.type == bfd_link_hash_indirect)
1147 return TRUE;
1148
1149 sec = readonly_dynrelocs (h);
1150 if (sec != NULL)
1151 {
1152 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
1153
1154 info->flags |= DF_TEXTREL;
1155 info->callbacks->minfo
1156 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
1157 sec->owner, h->root.root.string, sec);
1158
1159 /* Not an error, just cut short the traversal. */
1160 return FALSE;
1161 }
1162 return TRUE;
1163 }
1164
1165 static bfd_boolean
1166 riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1167 {
1168 struct riscv_elf_link_hash_table *htab;
1169 bfd *dynobj;
1170 asection *s;
1171 bfd *ibfd;
1172
1173 htab = riscv_elf_hash_table (info);
1174 BFD_ASSERT (htab != NULL);
1175 dynobj = htab->elf.dynobj;
1176 BFD_ASSERT (dynobj != NULL);
1177
1178 if (elf_hash_table (info)->dynamic_sections_created)
1179 {
1180 /* Set the contents of the .interp section to the interpreter. */
1181 if (bfd_link_executable (info) && !info->nointerp)
1182 {
1183 s = bfd_get_linker_section (dynobj, ".interp");
1184 BFD_ASSERT (s != NULL);
1185 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1186 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1187 }
1188 }
1189
1190 /* Set up .got offsets for local syms, and space for local dynamic
1191 relocs. */
1192 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1193 {
1194 bfd_signed_vma *local_got;
1195 bfd_signed_vma *end_local_got;
1196 char *local_tls_type;
1197 bfd_size_type locsymcount;
1198 Elf_Internal_Shdr *symtab_hdr;
1199 asection *srel;
1200
1201 if (! is_riscv_elf (ibfd))
1202 continue;
1203
1204 for (s = ibfd->sections; s != NULL; s = s->next)
1205 {
1206 struct elf_dyn_relocs *p;
1207
1208 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1209 {
1210 if (!bfd_is_abs_section (p->sec)
1211 && bfd_is_abs_section (p->sec->output_section))
1212 {
1213 /* Input section has been discarded, either because
1214 it is a copy of a linkonce section or due to
1215 linker script /DISCARD/, so we'll be discarding
1216 the relocs too. */
1217 }
1218 else if (p->count != 0)
1219 {
1220 srel = elf_section_data (p->sec)->sreloc;
1221 srel->size += p->count * sizeof (ElfNN_External_Rela);
1222 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1223 info->flags |= DF_TEXTREL;
1224 }
1225 }
1226 }
1227
1228 local_got = elf_local_got_refcounts (ibfd);
1229 if (!local_got)
1230 continue;
1231
1232 symtab_hdr = &elf_symtab_hdr (ibfd);
1233 locsymcount = symtab_hdr->sh_info;
1234 end_local_got = local_got + locsymcount;
1235 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1236 s = htab->elf.sgot;
1237 srel = htab->elf.srelgot;
1238 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1239 {
1240 if (*local_got > 0)
1241 {
1242 *local_got = s->size;
1243 s->size += RISCV_ELF_WORD_BYTES;
1244 if (*local_tls_type & GOT_TLS_GD)
1245 s->size += RISCV_ELF_WORD_BYTES;
1246 if (bfd_link_pic (info)
1247 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1248 srel->size += sizeof (ElfNN_External_Rela);
1249 }
1250 else
1251 *local_got = (bfd_vma) -1;
1252 }
1253 }
1254
1255 /* Allocate global sym .plt and .got entries, and space for global
1256 sym dynamic relocs. */
1257 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1258
1259 if (htab->elf.sgotplt)
1260 {
1261 struct elf_link_hash_entry *got;
1262 got = elf_link_hash_lookup (elf_hash_table (info),
1263 "_GLOBAL_OFFSET_TABLE_",
1264 FALSE, FALSE, FALSE);
1265
1266 /* Don't allocate .got.plt section if there are no GOT nor PLT
1267 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1268 if ((got == NULL
1269 || !got->ref_regular_nonweak)
1270 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1271 && (htab->elf.splt == NULL
1272 || htab->elf.splt->size == 0)
1273 && (htab->elf.sgot == NULL
1274 || (htab->elf.sgot->size
1275 == get_elf_backend_data (output_bfd)->got_header_size)))
1276 htab->elf.sgotplt->size = 0;
1277 }
1278
1279 /* The check_relocs and adjust_dynamic_symbol entry points have
1280 determined the sizes of the various dynamic sections. Allocate
1281 memory for them. */
1282 for (s = dynobj->sections; s != NULL; s = s->next)
1283 {
1284 if ((s->flags & SEC_LINKER_CREATED) == 0)
1285 continue;
1286
1287 if (s == htab->elf.splt
1288 || s == htab->elf.sgot
1289 || s == htab->elf.sgotplt
1290 || s == htab->elf.sdynbss
1291 || s == htab->elf.sdynrelro
1292 || s == htab->sdyntdata)
1293 {
1294 /* Strip this section if we don't need it; see the
1295 comment below. */
1296 }
1297 else if (strncmp (s->name, ".rela", 5) == 0)
1298 {
1299 if (s->size != 0)
1300 {
1301 /* We use the reloc_count field as a counter if we need
1302 to copy relocs into the output file. */
1303 s->reloc_count = 0;
1304 }
1305 }
1306 else
1307 {
1308 /* It's not one of our sections. */
1309 continue;
1310 }
1311
1312 if (s->size == 0)
1313 {
1314 /* If we don't need this section, strip it from the
1315 output file. This is mostly to handle .rela.bss and
1316 .rela.plt. We must create both sections in
1317 create_dynamic_sections, because they must be created
1318 before the linker maps input sections to output
1319 sections. The linker does that before
1320 adjust_dynamic_symbol is called, and it is that
1321 function which decides whether anything needs to go
1322 into these sections. */
1323 s->flags |= SEC_EXCLUDE;
1324 continue;
1325 }
1326
1327 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1328 continue;
1329
1330 /* Allocate memory for the section contents. Zero the memory
1331 for the benefit of .rela.plt, which has 4 unused entries
1332 at the beginning, and we don't want garbage. */
1333 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1334 if (s->contents == NULL)
1335 return FALSE;
1336 }
1337
1338 if (elf_hash_table (info)->dynamic_sections_created)
1339 {
1340 /* Add some entries to the .dynamic section. We fill in the
1341 values later, in riscv_elf_finish_dynamic_sections, but we
1342 must add the entries now so that we get the correct size for
1343 the .dynamic section. The DT_DEBUG entry is filled in by the
1344 dynamic linker and used by the debugger. */
1345 #define add_dynamic_entry(TAG, VAL) \
1346 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1347
1348 if (bfd_link_executable (info))
1349 {
1350 if (!add_dynamic_entry (DT_DEBUG, 0))
1351 return FALSE;
1352 }
1353
1354 if (htab->elf.srelplt->size != 0)
1355 {
1356 if (!add_dynamic_entry (DT_PLTGOT, 0)
1357 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1358 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1359 || !add_dynamic_entry (DT_JMPREL, 0))
1360 return FALSE;
1361 }
1362
1363 if (!add_dynamic_entry (DT_RELA, 0)
1364 || !add_dynamic_entry (DT_RELASZ, 0)
1365 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1366 return FALSE;
1367
1368 /* If any dynamic relocs apply to a read-only section,
1369 then we need a DT_TEXTREL entry. */
1370 if ((info->flags & DF_TEXTREL) == 0)
1371 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
1372
1373 if (info->flags & DF_TEXTREL)
1374 {
1375 if (!add_dynamic_entry (DT_TEXTREL, 0))
1376 return FALSE;
1377 }
1378 }
1379 #undef add_dynamic_entry
1380
1381 return TRUE;
1382 }
1383
1384 #define TP_OFFSET 0
1385 #define DTP_OFFSET 0x800
1386
1387 /* Return the relocation value for a TLS dtp-relative reloc. */
1388
1389 static bfd_vma
1390 dtpoff (struct bfd_link_info *info, bfd_vma address)
1391 {
1392 /* If tls_sec is NULL, we should have signalled an error already. */
1393 if (elf_hash_table (info)->tls_sec == NULL)
1394 return 0;
1395 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1396 }
1397
1398 /* Return the relocation value for a static TLS tp-relative relocation. */
1399
1400 static bfd_vma
1401 tpoff (struct bfd_link_info *info, bfd_vma address)
1402 {
1403 /* If tls_sec is NULL, we should have signalled an error already. */
1404 if (elf_hash_table (info)->tls_sec == NULL)
1405 return 0;
1406 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1407 }
1408
1409 /* Return the global pointer's value, or 0 if it is not in use. */
1410
1411 static bfd_vma
1412 riscv_global_pointer_value (struct bfd_link_info *info)
1413 {
1414 struct bfd_link_hash_entry *h;
1415
1416 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
1417 if (h == NULL || h->type != bfd_link_hash_defined)
1418 return 0;
1419
1420 return h->u.def.value + sec_addr (h->u.def.section);
1421 }
1422
1423 /* Emplace a static relocation. */
1424
1425 static bfd_reloc_status_type
1426 perform_relocation (const reloc_howto_type *howto,
1427 const Elf_Internal_Rela *rel,
1428 bfd_vma value,
1429 asection *input_section,
1430 bfd *input_bfd,
1431 bfd_byte *contents)
1432 {
1433 if (howto->pc_relative)
1434 value -= sec_addr (input_section) + rel->r_offset;
1435 value += rel->r_addend;
1436
1437 switch (ELFNN_R_TYPE (rel->r_info))
1438 {
1439 case R_RISCV_HI20:
1440 case R_RISCV_TPREL_HI20:
1441 case R_RISCV_PCREL_HI20:
1442 case R_RISCV_GOT_HI20:
1443 case R_RISCV_TLS_GOT_HI20:
1444 case R_RISCV_TLS_GD_HI20:
1445 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1446 return bfd_reloc_overflow;
1447 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1448 break;
1449
1450 case R_RISCV_LO12_I:
1451 case R_RISCV_GPREL_I:
1452 case R_RISCV_TPREL_LO12_I:
1453 case R_RISCV_TPREL_I:
1454 case R_RISCV_PCREL_LO12_I:
1455 value = ENCODE_ITYPE_IMM (value);
1456 break;
1457
1458 case R_RISCV_LO12_S:
1459 case R_RISCV_GPREL_S:
1460 case R_RISCV_TPREL_LO12_S:
1461 case R_RISCV_TPREL_S:
1462 case R_RISCV_PCREL_LO12_S:
1463 value = ENCODE_STYPE_IMM (value);
1464 break;
1465
1466 case R_RISCV_CALL:
1467 case R_RISCV_CALL_PLT:
1468 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1469 return bfd_reloc_overflow;
1470 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1471 | (ENCODE_ITYPE_IMM (value) << 32);
1472 break;
1473
1474 case R_RISCV_JAL:
1475 if (!VALID_UJTYPE_IMM (value))
1476 return bfd_reloc_overflow;
1477 value = ENCODE_UJTYPE_IMM (value);
1478 break;
1479
1480 case R_RISCV_BRANCH:
1481 if (!VALID_SBTYPE_IMM (value))
1482 return bfd_reloc_overflow;
1483 value = ENCODE_SBTYPE_IMM (value);
1484 break;
1485
1486 case R_RISCV_RVC_BRANCH:
1487 if (!VALID_RVC_B_IMM (value))
1488 return bfd_reloc_overflow;
1489 value = ENCODE_RVC_B_IMM (value);
1490 break;
1491
1492 case R_RISCV_RVC_JUMP:
1493 if (!VALID_RVC_J_IMM (value))
1494 return bfd_reloc_overflow;
1495 value = ENCODE_RVC_J_IMM (value);
1496 break;
1497
1498 case R_RISCV_RVC_LUI:
1499 if (RISCV_CONST_HIGH_PART (value) == 0)
1500 {
1501 /* Linker relaxation can convert an address equal to or greater than
1502 0x800 to slightly below 0x800. C.LUI does not accept zero as a
1503 valid immediate. We can fix this by converting it to a C.LI. */
1504 bfd_vma insn = bfd_get (howto->bitsize, input_bfd,
1505 contents + rel->r_offset);
1506 insn = (insn & ~MATCH_C_LUI) | MATCH_C_LI;
1507 bfd_put (howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1508 value = ENCODE_RVC_IMM (0);
1509 }
1510 else if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1511 return bfd_reloc_overflow;
1512 else
1513 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1514 break;
1515
1516 case R_RISCV_32:
1517 case R_RISCV_64:
1518 case R_RISCV_ADD8:
1519 case R_RISCV_ADD16:
1520 case R_RISCV_ADD32:
1521 case R_RISCV_ADD64:
1522 case R_RISCV_SUB6:
1523 case R_RISCV_SUB8:
1524 case R_RISCV_SUB16:
1525 case R_RISCV_SUB32:
1526 case R_RISCV_SUB64:
1527 case R_RISCV_SET6:
1528 case R_RISCV_SET8:
1529 case R_RISCV_SET16:
1530 case R_RISCV_SET32:
1531 case R_RISCV_32_PCREL:
1532 case R_RISCV_TLS_DTPREL32:
1533 case R_RISCV_TLS_DTPREL64:
1534 break;
1535
1536 case R_RISCV_DELETE:
1537 return bfd_reloc_ok;
1538
1539 default:
1540 return bfd_reloc_notsupported;
1541 }
1542
1543 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1544 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1545 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1546
1547 return bfd_reloc_ok;
1548 }
1549
1550 /* Remember all PC-relative high-part relocs we've encountered to help us
1551 later resolve the corresponding low-part relocs. */
1552
1553 typedef struct
1554 {
1555 bfd_vma address;
1556 bfd_vma value;
1557 } riscv_pcrel_hi_reloc;
1558
1559 typedef struct riscv_pcrel_lo_reloc
1560 {
1561 asection * input_section;
1562 struct bfd_link_info * info;
1563 reloc_howto_type * howto;
1564 const Elf_Internal_Rela * reloc;
1565 bfd_vma addr;
1566 const char * name;
1567 bfd_byte * contents;
1568 struct riscv_pcrel_lo_reloc * next;
1569 } riscv_pcrel_lo_reloc;
1570
1571 typedef struct
1572 {
1573 htab_t hi_relocs;
1574 riscv_pcrel_lo_reloc *lo_relocs;
1575 } riscv_pcrel_relocs;
1576
1577 static hashval_t
1578 riscv_pcrel_reloc_hash (const void *entry)
1579 {
1580 const riscv_pcrel_hi_reloc *e = entry;
1581 return (hashval_t)(e->address >> 2);
1582 }
1583
1584 static bfd_boolean
1585 riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1586 {
1587 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1588 return e1->address == e2->address;
1589 }
1590
1591 static bfd_boolean
1592 riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1593 {
1594
1595 p->lo_relocs = NULL;
1596 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1597 riscv_pcrel_reloc_eq, free);
1598 return p->hi_relocs != NULL;
1599 }
1600
1601 static void
1602 riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1603 {
1604 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1605
1606 while (cur != NULL)
1607 {
1608 riscv_pcrel_lo_reloc *next = cur->next;
1609 free (cur);
1610 cur = next;
1611 }
1612
1613 htab_delete (p->hi_relocs);
1614 }
1615
1616 static bfd_boolean
1617 riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1618 struct bfd_link_info *info,
1619 bfd_vma pc,
1620 bfd_vma addr,
1621 bfd_byte *contents,
1622 const reloc_howto_type *howto,
1623 bfd *input_bfd)
1624 {
1625 /* We may need to reference low addreses in PC-relative modes even when the
1626 * PC is far away from these addresses. For example, undefweak references
1627 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1628 * addresses that we can link PC-relative programs at, the linker can't
1629 * actually relocate references to those symbols. In order to allow these
1630 * programs to work we simply convert the PC-relative auipc sequences to
1631 * 0-relative lui sequences. */
1632 if (bfd_link_pic (info))
1633 return FALSE;
1634
1635 /* If it's possible to reference the symbol using auipc we do so, as that's
1636 * more in the spirit of the PC-relative relocations we're processing. */
1637 bfd_vma offset = addr - pc;
1638 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1639 return FALSE;
1640
1641 /* If it's impossible to reference this with a LUI-based offset then don't
1642 * bother to convert it at all so users still see the PC-relative relocation
1643 * in the truncation message. */
1644 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1645 return FALSE;
1646
1647 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20);
1648
1649 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset);
1650 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1651 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1652 return TRUE;
1653 }
1654
1655 static bfd_boolean
1656 riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1657 bfd_vma value, bfd_boolean absolute)
1658 {
1659 bfd_vma offset = absolute ? value : value - addr;
1660 riscv_pcrel_hi_reloc entry = {addr, offset};
1661 riscv_pcrel_hi_reloc **slot =
1662 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1663
1664 BFD_ASSERT (*slot == NULL);
1665 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1666 if (*slot == NULL)
1667 return FALSE;
1668 **slot = entry;
1669 return TRUE;
1670 }
1671
1672 static bfd_boolean
1673 riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1674 asection *input_section,
1675 struct bfd_link_info *info,
1676 reloc_howto_type *howto,
1677 const Elf_Internal_Rela *reloc,
1678 bfd_vma addr,
1679 const char *name,
1680 bfd_byte *contents)
1681 {
1682 riscv_pcrel_lo_reloc *entry;
1683 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1684 if (entry == NULL)
1685 return FALSE;
1686 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1687 name, contents, p->lo_relocs};
1688 p->lo_relocs = entry;
1689 return TRUE;
1690 }
1691
1692 static bfd_boolean
1693 riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1694 {
1695 riscv_pcrel_lo_reloc *r;
1696
1697 for (r = p->lo_relocs; r != NULL; r = r->next)
1698 {
1699 bfd *input_bfd = r->input_section->owner;
1700
1701 riscv_pcrel_hi_reloc search = {r->addr, 0};
1702 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
1703 if (entry == NULL
1704 /* Check for overflow into bit 11 when adding reloc addend. */
1705 || (! (entry->value & 0x800)
1706 && ((entry->value + r->reloc->r_addend) & 0x800)))
1707 {
1708 char *string = (entry == NULL
1709 ? "%pcrel_lo missing matching %pcrel_hi"
1710 : "%pcrel_lo overflow with an addend");
1711 (*r->info->callbacks->reloc_dangerous)
1712 (r->info, string, input_bfd, r->input_section, r->reloc->r_offset);
1713 return TRUE;
1714 }
1715
1716 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1717 input_bfd, r->contents);
1718 }
1719
1720 return TRUE;
1721 }
1722
1723 /* Relocate a RISC-V ELF section.
1724
1725 The RELOCATE_SECTION function is called by the new ELF backend linker
1726 to handle the relocations for a section.
1727
1728 The relocs are always passed as Rela structures.
1729
1730 This function is responsible for adjusting the section contents as
1731 necessary, and (if generating a relocatable output file) adjusting
1732 the reloc addend as necessary.
1733
1734 This function does not have to worry about setting the reloc
1735 address or the reloc symbol index.
1736
1737 LOCAL_SYMS is a pointer to the swapped in local symbols.
1738
1739 LOCAL_SECTIONS is an array giving the section in the input file
1740 corresponding to the st_shndx field of each local symbol.
1741
1742 The global hash table entry for the global symbols can be found
1743 via elf_sym_hashes (input_bfd).
1744
1745 When generating relocatable output, this function must handle
1746 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1747 going to be the section symbol corresponding to the output
1748 section, which means that the addend must be adjusted
1749 accordingly. */
1750
1751 static bfd_boolean
1752 riscv_elf_relocate_section (bfd *output_bfd,
1753 struct bfd_link_info *info,
1754 bfd *input_bfd,
1755 asection *input_section,
1756 bfd_byte *contents,
1757 Elf_Internal_Rela *relocs,
1758 Elf_Internal_Sym *local_syms,
1759 asection **local_sections)
1760 {
1761 Elf_Internal_Rela *rel;
1762 Elf_Internal_Rela *relend;
1763 riscv_pcrel_relocs pcrel_relocs;
1764 bfd_boolean ret = FALSE;
1765 asection *sreloc = elf_section_data (input_section)->sreloc;
1766 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1767 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1768 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1769 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
1770 bfd_boolean absolute;
1771
1772 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1773 return FALSE;
1774
1775 relend = relocs + input_section->reloc_count;
1776 for (rel = relocs; rel < relend; rel++)
1777 {
1778 unsigned long r_symndx;
1779 struct elf_link_hash_entry *h;
1780 Elf_Internal_Sym *sym;
1781 asection *sec;
1782 bfd_vma relocation;
1783 bfd_reloc_status_type r = bfd_reloc_ok;
1784 const char *name;
1785 bfd_vma off, ie_off;
1786 bfd_boolean unresolved_reloc, is_ie = FALSE;
1787 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1788 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
1789 reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
1790 const char *msg = NULL;
1791 bfd_boolean resolved_to_zero;
1792
1793 if (howto == NULL
1794 || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
1795 continue;
1796
1797 /* This is a final link. */
1798 r_symndx = ELFNN_R_SYM (rel->r_info);
1799 h = NULL;
1800 sym = NULL;
1801 sec = NULL;
1802 unresolved_reloc = FALSE;
1803 if (r_symndx < symtab_hdr->sh_info)
1804 {
1805 sym = local_syms + r_symndx;
1806 sec = local_sections[r_symndx];
1807 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1808 }
1809 else
1810 {
1811 bfd_boolean warned, ignored;
1812
1813 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1814 r_symndx, symtab_hdr, sym_hashes,
1815 h, sec, relocation,
1816 unresolved_reloc, warned, ignored);
1817 if (warned)
1818 {
1819 /* To avoid generating warning messages about truncated
1820 relocations, set the relocation's address to be the same as
1821 the start of this section. */
1822 if (input_section->output_section != NULL)
1823 relocation = input_section->output_section->vma;
1824 else
1825 relocation = 0;
1826 }
1827 }
1828
1829 if (sec != NULL && discarded_section (sec))
1830 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1831 rel, 1, relend, howto, 0, contents);
1832
1833 if (bfd_link_relocatable (info))
1834 continue;
1835
1836 if (h != NULL)
1837 name = h->root.root.string;
1838 else
1839 {
1840 name = (bfd_elf_string_from_elf_section
1841 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1842 if (name == NULL || *name == '\0')
1843 name = bfd_section_name (input_bfd, sec);
1844 }
1845
1846 resolved_to_zero = (h != NULL
1847 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
1848
1849 switch (r_type)
1850 {
1851 case R_RISCV_NONE:
1852 case R_RISCV_RELAX:
1853 case R_RISCV_TPREL_ADD:
1854 case R_RISCV_COPY:
1855 case R_RISCV_JUMP_SLOT:
1856 case R_RISCV_RELATIVE:
1857 /* These require nothing of us at all. */
1858 continue;
1859
1860 case R_RISCV_HI20:
1861 case R_RISCV_BRANCH:
1862 case R_RISCV_RVC_BRANCH:
1863 case R_RISCV_RVC_LUI:
1864 case R_RISCV_LO12_I:
1865 case R_RISCV_LO12_S:
1866 case R_RISCV_SET6:
1867 case R_RISCV_SET8:
1868 case R_RISCV_SET16:
1869 case R_RISCV_SET32:
1870 case R_RISCV_32_PCREL:
1871 case R_RISCV_DELETE:
1872 /* These require no special handling beyond perform_relocation. */
1873 break;
1874
1875 case R_RISCV_GOT_HI20:
1876 if (h != NULL)
1877 {
1878 bfd_boolean dyn, pic;
1879
1880 off = h->got.offset;
1881 BFD_ASSERT (off != (bfd_vma) -1);
1882 dyn = elf_hash_table (info)->dynamic_sections_created;
1883 pic = bfd_link_pic (info);
1884
1885 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1886 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1887 {
1888 /* This is actually a static link, or it is a
1889 -Bsymbolic link and the symbol is defined
1890 locally, or the symbol was forced to be local
1891 because of a version file. We must initialize
1892 this entry in the global offset table. Since the
1893 offset must always be a multiple of the word size,
1894 we use the least significant bit to record whether
1895 we have initialized it already.
1896
1897 When doing a dynamic link, we create a .rela.got
1898 relocation entry to initialize the value. This
1899 is done in the finish_dynamic_symbol routine. */
1900 if ((off & 1) != 0)
1901 off &= ~1;
1902 else
1903 {
1904 bfd_put_NN (output_bfd, relocation,
1905 htab->elf.sgot->contents + off);
1906 h->got.offset |= 1;
1907 }
1908 }
1909 else
1910 unresolved_reloc = FALSE;
1911 }
1912 else
1913 {
1914 BFD_ASSERT (local_got_offsets != NULL
1915 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1916
1917 off = local_got_offsets[r_symndx];
1918
1919 /* The offset must always be a multiple of the word size.
1920 So, we can use the least significant bit to record
1921 whether we have already processed this entry. */
1922 if ((off & 1) != 0)
1923 off &= ~1;
1924 else
1925 {
1926 if (bfd_link_pic (info))
1927 {
1928 asection *s;
1929 Elf_Internal_Rela outrel;
1930
1931 /* We need to generate a R_RISCV_RELATIVE reloc
1932 for the dynamic linker. */
1933 s = htab->elf.srelgot;
1934 BFD_ASSERT (s != NULL);
1935
1936 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1937 outrel.r_info =
1938 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1939 outrel.r_addend = relocation;
1940 relocation = 0;
1941 riscv_elf_append_rela (output_bfd, s, &outrel);
1942 }
1943
1944 bfd_put_NN (output_bfd, relocation,
1945 htab->elf.sgot->contents + off);
1946 local_got_offsets[r_symndx] |= 1;
1947 }
1948 }
1949 relocation = sec_addr (htab->elf.sgot) + off;
1950 absolute = riscv_zero_pcrel_hi_reloc (rel,
1951 info,
1952 pc,
1953 relocation,
1954 contents,
1955 howto,
1956 input_bfd);
1957 r_type = ELFNN_R_TYPE (rel->r_info);
1958 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
1959 if (howto == NULL)
1960 r = bfd_reloc_notsupported;
1961 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1962 relocation, absolute))
1963 r = bfd_reloc_overflow;
1964 break;
1965
1966 case R_RISCV_ADD8:
1967 case R_RISCV_ADD16:
1968 case R_RISCV_ADD32:
1969 case R_RISCV_ADD64:
1970 {
1971 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1972 contents + rel->r_offset);
1973 relocation = old_value + relocation;
1974 }
1975 break;
1976
1977 case R_RISCV_SUB6:
1978 case R_RISCV_SUB8:
1979 case R_RISCV_SUB16:
1980 case R_RISCV_SUB32:
1981 case R_RISCV_SUB64:
1982 {
1983 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1984 contents + rel->r_offset);
1985 relocation = old_value - relocation;
1986 }
1987 break;
1988
1989 case R_RISCV_CALL:
1990 /* Handle a call to an undefined weak function. This won't be
1991 relaxed, so we have to handle it here. */
1992 if (h != NULL && h->root.type == bfd_link_hash_undefweak
1993 && h->plt.offset == MINUS_ONE)
1994 {
1995 /* We can use x0 as the base register. */
1996 bfd_vma insn = bfd_get_32 (input_bfd,
1997 contents + rel->r_offset + 4);
1998 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1999 bfd_put_32 (input_bfd, insn, contents + rel->r_offset + 4);
2000 /* Set the relocation value so that we get 0 after the pc
2001 relative adjustment. */
2002 relocation = sec_addr (input_section) + rel->r_offset;
2003 }
2004 /* Fall through. */
2005
2006 case R_RISCV_CALL_PLT:
2007 case R_RISCV_JAL:
2008 case R_RISCV_RVC_JUMP:
2009 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
2010 {
2011 /* Refer to the PLT entry. */
2012 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
2013 unresolved_reloc = FALSE;
2014 }
2015 break;
2016
2017 case R_RISCV_TPREL_HI20:
2018 relocation = tpoff (info, relocation);
2019 break;
2020
2021 case R_RISCV_TPREL_LO12_I:
2022 case R_RISCV_TPREL_LO12_S:
2023 relocation = tpoff (info, relocation);
2024 break;
2025
2026 case R_RISCV_TPREL_I:
2027 case R_RISCV_TPREL_S:
2028 relocation = tpoff (info, relocation);
2029 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
2030 {
2031 /* We can use tp as the base register. */
2032 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2033 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2034 insn |= X_TP << OP_SH_RS1;
2035 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2036 }
2037 else
2038 r = bfd_reloc_overflow;
2039 break;
2040
2041 case R_RISCV_GPREL_I:
2042 case R_RISCV_GPREL_S:
2043 {
2044 bfd_vma gp = riscv_global_pointer_value (info);
2045 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
2046 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
2047 {
2048 /* We can use x0 or gp as the base register. */
2049 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2050 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2051 if (!x0_base)
2052 {
2053 rel->r_addend -= gp;
2054 insn |= X_GP << OP_SH_RS1;
2055 }
2056 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2057 }
2058 else
2059 r = bfd_reloc_overflow;
2060 break;
2061 }
2062
2063 case R_RISCV_PCREL_HI20:
2064 absolute = riscv_zero_pcrel_hi_reloc (rel,
2065 info,
2066 pc,
2067 relocation,
2068 contents,
2069 howto,
2070 input_bfd);
2071 r_type = ELFNN_R_TYPE (rel->r_info);
2072 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
2073 if (howto == NULL)
2074 r = bfd_reloc_notsupported;
2075 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2076 relocation + rel->r_addend,
2077 absolute))
2078 r = bfd_reloc_overflow;
2079 break;
2080
2081 case R_RISCV_PCREL_LO12_I:
2082 case R_RISCV_PCREL_LO12_S:
2083 /* We don't allow section symbols plus addends as the auipc address,
2084 because then riscv_relax_delete_bytes would have to search through
2085 all relocs to update these addends. This is also ambiguous, as
2086 we do allow offsets to be added to the target address, which are
2087 not to be used to find the auipc address. */
2088 if (((sym != NULL && (ELF_ST_TYPE (sym->st_info) == STT_SECTION))
2089 || (h != NULL && h->type == STT_SECTION))
2090 && rel->r_addend)
2091 {
2092 r = bfd_reloc_dangerous;
2093 break;
2094 }
2095
2096 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
2097 howto, rel, relocation, name,
2098 contents))
2099 continue;
2100 r = bfd_reloc_overflow;
2101 break;
2102
2103 case R_RISCV_TLS_DTPREL32:
2104 case R_RISCV_TLS_DTPREL64:
2105 relocation = dtpoff (info, relocation);
2106 break;
2107
2108 case R_RISCV_32:
2109 case R_RISCV_64:
2110 if ((input_section->flags & SEC_ALLOC) == 0)
2111 break;
2112
2113 if ((bfd_link_pic (info)
2114 && (h == NULL
2115 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2116 && !resolved_to_zero)
2117 || h->root.type != bfd_link_hash_undefweak)
2118 && (! howto->pc_relative
2119 || !SYMBOL_CALLS_LOCAL (info, h)))
2120 || (!bfd_link_pic (info)
2121 && h != NULL
2122 && h->dynindx != -1
2123 && !h->non_got_ref
2124 && ((h->def_dynamic
2125 && !h->def_regular)
2126 || h->root.type == bfd_link_hash_undefweak
2127 || h->root.type == bfd_link_hash_undefined)))
2128 {
2129 Elf_Internal_Rela outrel;
2130 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2131
2132 /* When generating a shared object, these relocations
2133 are copied into the output file to be resolved at run
2134 time. */
2135
2136 outrel.r_offset =
2137 _bfd_elf_section_offset (output_bfd, info, input_section,
2138 rel->r_offset);
2139 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2140 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2141 outrel.r_offset += sec_addr (input_section);
2142
2143 if (skip_dynamic_relocation)
2144 memset (&outrel, 0, sizeof outrel);
2145 else if (h != NULL && h->dynindx != -1
2146 && !(bfd_link_pic (info)
2147 && SYMBOLIC_BIND (info, h)
2148 && h->def_regular))
2149 {
2150 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2151 outrel.r_addend = rel->r_addend;
2152 }
2153 else
2154 {
2155 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2156 outrel.r_addend = relocation + rel->r_addend;
2157 }
2158
2159 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2160 if (skip_static_relocation)
2161 continue;
2162 }
2163 break;
2164
2165 case R_RISCV_TLS_GOT_HI20:
2166 is_ie = TRUE;
2167 /* Fall through. */
2168
2169 case R_RISCV_TLS_GD_HI20:
2170 if (h != NULL)
2171 {
2172 off = h->got.offset;
2173 h->got.offset |= 1;
2174 }
2175 else
2176 {
2177 off = local_got_offsets[r_symndx];
2178 local_got_offsets[r_symndx] |= 1;
2179 }
2180
2181 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2182 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2183 /* If this symbol is referenced by both GD and IE TLS, the IE
2184 reference's GOT slot follows the GD reference's slots. */
2185 ie_off = 0;
2186 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2187 ie_off = 2 * GOT_ENTRY_SIZE;
2188
2189 if ((off & 1) != 0)
2190 off &= ~1;
2191 else
2192 {
2193 Elf_Internal_Rela outrel;
2194 int indx = 0;
2195 bfd_boolean need_relocs = FALSE;
2196
2197 if (htab->elf.srelgot == NULL)
2198 abort ();
2199
2200 if (h != NULL)
2201 {
2202 bfd_boolean dyn, pic;
2203 dyn = htab->elf.dynamic_sections_created;
2204 pic = bfd_link_pic (info);
2205
2206 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2207 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2208 indx = h->dynindx;
2209 }
2210
2211 /* The GOT entries have not been initialized yet. Do it
2212 now, and emit any relocations. */
2213 if ((bfd_link_pic (info) || indx != 0)
2214 && (h == NULL
2215 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2216 || h->root.type != bfd_link_hash_undefweak))
2217 need_relocs = TRUE;
2218
2219 if (tls_type & GOT_TLS_GD)
2220 {
2221 if (need_relocs)
2222 {
2223 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2224 outrel.r_addend = 0;
2225 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2226 bfd_put_NN (output_bfd, 0,
2227 htab->elf.sgot->contents + off);
2228 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2229 if (indx == 0)
2230 {
2231 BFD_ASSERT (! unresolved_reloc);
2232 bfd_put_NN (output_bfd,
2233 dtpoff (info, relocation),
2234 (htab->elf.sgot->contents + off +
2235 RISCV_ELF_WORD_BYTES));
2236 }
2237 else
2238 {
2239 bfd_put_NN (output_bfd, 0,
2240 (htab->elf.sgot->contents + off +
2241 RISCV_ELF_WORD_BYTES));
2242 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2243 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2244 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2245 }
2246 }
2247 else
2248 {
2249 /* If we are not emitting relocations for a
2250 general dynamic reference, then we must be in a
2251 static link or an executable link with the
2252 symbol binding locally. Mark it as belonging
2253 to module 1, the executable. */
2254 bfd_put_NN (output_bfd, 1,
2255 htab->elf.sgot->contents + off);
2256 bfd_put_NN (output_bfd,
2257 dtpoff (info, relocation),
2258 (htab->elf.sgot->contents + off +
2259 RISCV_ELF_WORD_BYTES));
2260 }
2261 }
2262
2263 if (tls_type & GOT_TLS_IE)
2264 {
2265 if (need_relocs)
2266 {
2267 bfd_put_NN (output_bfd, 0,
2268 htab->elf.sgot->contents + off + ie_off);
2269 outrel.r_offset = sec_addr (htab->elf.sgot)
2270 + off + ie_off;
2271 outrel.r_addend = 0;
2272 if (indx == 0)
2273 outrel.r_addend = tpoff (info, relocation);
2274 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2275 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2276 }
2277 else
2278 {
2279 bfd_put_NN (output_bfd, tpoff (info, relocation),
2280 htab->elf.sgot->contents + off + ie_off);
2281 }
2282 }
2283 }
2284
2285 BFD_ASSERT (off < (bfd_vma) -2);
2286 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
2287 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2288 relocation, FALSE))
2289 r = bfd_reloc_overflow;
2290 unresolved_reloc = FALSE;
2291 break;
2292
2293 default:
2294 r = bfd_reloc_notsupported;
2295 }
2296
2297 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2298 because such sections are not SEC_ALLOC and thus ld.so will
2299 not process them. */
2300 if (unresolved_reloc
2301 && !((input_section->flags & SEC_DEBUGGING) != 0
2302 && h->def_dynamic)
2303 && _bfd_elf_section_offset (output_bfd, info, input_section,
2304 rel->r_offset) != (bfd_vma) -1)
2305 {
2306 (*_bfd_error_handler)
2307 (_("%pB(%pA+%#" PRIx64 "): "
2308 "unresolvable %s relocation against symbol `%s'"),
2309 input_bfd,
2310 input_section,
2311 (uint64_t) rel->r_offset,
2312 howto->name,
2313 h->root.root.string);
2314
2315 bfd_set_error (bfd_error_bad_value);
2316 ret = FALSE;
2317 goto out;
2318 }
2319
2320 if (r == bfd_reloc_ok)
2321 r = perform_relocation (howto, rel, relocation, input_section,
2322 input_bfd, contents);
2323
2324 switch (r)
2325 {
2326 case bfd_reloc_ok:
2327 continue;
2328
2329 case bfd_reloc_overflow:
2330 info->callbacks->reloc_overflow
2331 (info, (h ? &h->root : NULL), name, howto->name,
2332 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2333 break;
2334
2335 case bfd_reloc_undefined:
2336 info->callbacks->undefined_symbol
2337 (info, name, input_bfd, input_section, rel->r_offset,
2338 TRUE);
2339 break;
2340
2341 case bfd_reloc_outofrange:
2342 msg = _("%X%P: internal error: out of range error\n");
2343 break;
2344
2345 case bfd_reloc_notsupported:
2346 msg = _("%X%P: internal error: unsupported relocation error\n");
2347 break;
2348
2349 case bfd_reloc_dangerous:
2350 info->callbacks->reloc_dangerous
2351 (info, "%pcrel_lo section symbol with an addend", input_bfd,
2352 input_section, rel->r_offset);
2353 break;
2354
2355 default:
2356 msg = _("%X%P: internal error: unknown error\n");
2357 break;
2358 }
2359
2360 if (msg)
2361 info->callbacks->einfo (msg);
2362
2363 /* We already reported the error via a callback, so don't try to report
2364 it again by returning false. That leads to spurious errors. */
2365 ret = TRUE;
2366 goto out;
2367 }
2368
2369 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2370 out:
2371 riscv_free_pcrel_relocs (&pcrel_relocs);
2372 return ret;
2373 }
2374
2375 /* Finish up dynamic symbol handling. We set the contents of various
2376 dynamic sections here. */
2377
2378 static bfd_boolean
2379 riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2380 struct bfd_link_info *info,
2381 struct elf_link_hash_entry *h,
2382 Elf_Internal_Sym *sym)
2383 {
2384 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2385 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2386
2387 if (h->plt.offset != (bfd_vma) -1)
2388 {
2389 /* We've decided to create a PLT entry for this symbol. */
2390 bfd_byte *loc;
2391 bfd_vma i, header_address, plt_idx, got_address;
2392 uint32_t plt_entry[PLT_ENTRY_INSNS];
2393 Elf_Internal_Rela rela;
2394
2395 BFD_ASSERT (h->dynindx != -1);
2396
2397 /* Calculate the address of the PLT header. */
2398 header_address = sec_addr (htab->elf.splt);
2399
2400 /* Calculate the index of the entry. */
2401 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2402
2403 /* Calculate the address of the .got.plt entry. */
2404 got_address = riscv_elf_got_plt_val (plt_idx, info);
2405
2406 /* Find out where the .plt entry should go. */
2407 loc = htab->elf.splt->contents + h->plt.offset;
2408
2409 /* Fill in the PLT entry itself. */
2410 if (! riscv_make_plt_entry (output_bfd, got_address,
2411 header_address + h->plt.offset,
2412 plt_entry))
2413 return FALSE;
2414
2415 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2416 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2417
2418 /* Fill in the initial value of the .got.plt entry. */
2419 loc = htab->elf.sgotplt->contents
2420 + (got_address - sec_addr (htab->elf.sgotplt));
2421 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2422
2423 /* Fill in the entry in the .rela.plt section. */
2424 rela.r_offset = got_address;
2425 rela.r_addend = 0;
2426 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2427
2428 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2429 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2430
2431 if (!h->def_regular)
2432 {
2433 /* Mark the symbol as undefined, rather than as defined in
2434 the .plt section. Leave the value alone. */
2435 sym->st_shndx = SHN_UNDEF;
2436 /* If the symbol is weak, we do need to clear the value.
2437 Otherwise, the PLT entry would provide a definition for
2438 the symbol even if the symbol wasn't defined anywhere,
2439 and so the symbol would never be NULL. */
2440 if (!h->ref_regular_nonweak)
2441 sym->st_value = 0;
2442 }
2443 }
2444
2445 if (h->got.offset != (bfd_vma) -1
2446 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE))
2447 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2448 {
2449 asection *sgot;
2450 asection *srela;
2451 Elf_Internal_Rela rela;
2452
2453 /* This symbol has an entry in the GOT. Set it up. */
2454
2455 sgot = htab->elf.sgot;
2456 srela = htab->elf.srelgot;
2457 BFD_ASSERT (sgot != NULL && srela != NULL);
2458
2459 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2460
2461 /* If this is a local symbol reference, we just want to emit a RELATIVE
2462 reloc. This can happen if it is a -Bsymbolic link, or a pie link, or
2463 the symbol was forced to be local because of a version file.
2464 The entry in the global offset table will already have been
2465 initialized in the relocate_section function. */
2466 if (bfd_link_pic (info)
2467 && SYMBOL_REFERENCES_LOCAL (info, h))
2468 {
2469 BFD_ASSERT((h->got.offset & 1) != 0);
2470 asection *sec = h->root.u.def.section;
2471 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2472 rela.r_addend = (h->root.u.def.value
2473 + sec->output_section->vma
2474 + sec->output_offset);
2475 }
2476 else
2477 {
2478 BFD_ASSERT((h->got.offset & 1) == 0);
2479 BFD_ASSERT (h->dynindx != -1);
2480 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2481 rela.r_addend = 0;
2482 }
2483
2484 bfd_put_NN (output_bfd, 0,
2485 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2486 riscv_elf_append_rela (output_bfd, srela, &rela);
2487 }
2488
2489 if (h->needs_copy)
2490 {
2491 Elf_Internal_Rela rela;
2492 asection *s;
2493
2494 /* This symbols needs a copy reloc. Set it up. */
2495 BFD_ASSERT (h->dynindx != -1);
2496
2497 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2498 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2499 rela.r_addend = 0;
2500 if (h->root.u.def.section == htab->elf.sdynrelro)
2501 s = htab->elf.sreldynrelro;
2502 else
2503 s = htab->elf.srelbss;
2504 riscv_elf_append_rela (output_bfd, s, &rela);
2505 }
2506
2507 /* Mark some specially defined symbols as absolute. */
2508 if (h == htab->elf.hdynamic
2509 || (h == htab->elf.hgot || h == htab->elf.hplt))
2510 sym->st_shndx = SHN_ABS;
2511
2512 return TRUE;
2513 }
2514
2515 /* Finish up the dynamic sections. */
2516
2517 static bfd_boolean
2518 riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2519 bfd *dynobj, asection *sdyn)
2520 {
2521 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2522 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2523 size_t dynsize = bed->s->sizeof_dyn;
2524 bfd_byte *dyncon, *dynconend;
2525
2526 dynconend = sdyn->contents + sdyn->size;
2527 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2528 {
2529 Elf_Internal_Dyn dyn;
2530 asection *s;
2531
2532 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2533
2534 switch (dyn.d_tag)
2535 {
2536 case DT_PLTGOT:
2537 s = htab->elf.sgotplt;
2538 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2539 break;
2540 case DT_JMPREL:
2541 s = htab->elf.srelplt;
2542 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2543 break;
2544 case DT_PLTRELSZ:
2545 s = htab->elf.srelplt;
2546 dyn.d_un.d_val = s->size;
2547 break;
2548 default:
2549 continue;
2550 }
2551
2552 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2553 }
2554 return TRUE;
2555 }
2556
2557 static bfd_boolean
2558 riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2559 struct bfd_link_info *info)
2560 {
2561 bfd *dynobj;
2562 asection *sdyn;
2563 struct riscv_elf_link_hash_table *htab;
2564
2565 htab = riscv_elf_hash_table (info);
2566 BFD_ASSERT (htab != NULL);
2567 dynobj = htab->elf.dynobj;
2568
2569 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2570
2571 if (elf_hash_table (info)->dynamic_sections_created)
2572 {
2573 asection *splt;
2574 bfd_boolean ret;
2575
2576 splt = htab->elf.splt;
2577 BFD_ASSERT (splt != NULL && sdyn != NULL);
2578
2579 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2580
2581 if (!ret)
2582 return ret;
2583
2584 /* Fill in the head and tail entries in the procedure linkage table. */
2585 if (splt->size > 0)
2586 {
2587 int i;
2588 uint32_t plt_header[PLT_HEADER_INSNS];
2589 ret = riscv_make_plt_header (output_bfd,
2590 sec_addr (htab->elf.sgotplt),
2591 sec_addr (splt), plt_header);
2592 if (!ret)
2593 return ret;
2594
2595 for (i = 0; i < PLT_HEADER_INSNS; i++)
2596 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
2597
2598 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2599 = PLT_ENTRY_SIZE;
2600 }
2601 }
2602
2603 if (htab->elf.sgotplt)
2604 {
2605 asection *output_section = htab->elf.sgotplt->output_section;
2606
2607 if (bfd_is_abs_section (output_section))
2608 {
2609 (*_bfd_error_handler)
2610 (_("discarded output section: `%pA'"), htab->elf.sgotplt);
2611 return FALSE;
2612 }
2613
2614 if (htab->elf.sgotplt->size > 0)
2615 {
2616 /* Write the first two entries in .got.plt, needed for the dynamic
2617 linker. */
2618 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2619 bfd_put_NN (output_bfd, (bfd_vma) 0,
2620 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2621 }
2622
2623 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2624 }
2625
2626 if (htab->elf.sgot)
2627 {
2628 asection *output_section = htab->elf.sgot->output_section;
2629
2630 if (htab->elf.sgot->size > 0)
2631 {
2632 /* Set the first entry in the global offset table to the address of
2633 the dynamic section. */
2634 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2635 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2636 }
2637
2638 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2639 }
2640
2641 return TRUE;
2642 }
2643
2644 /* Return address for Ith PLT stub in section PLT, for relocation REL
2645 or (bfd_vma) -1 if it should not be included. */
2646
2647 static bfd_vma
2648 riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2649 const arelent *rel ATTRIBUTE_UNUSED)
2650 {
2651 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2652 }
2653
2654 static enum elf_reloc_type_class
2655 riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2656 const asection *rel_sec ATTRIBUTE_UNUSED,
2657 const Elf_Internal_Rela *rela)
2658 {
2659 switch (ELFNN_R_TYPE (rela->r_info))
2660 {
2661 case R_RISCV_RELATIVE:
2662 return reloc_class_relative;
2663 case R_RISCV_JUMP_SLOT:
2664 return reloc_class_plt;
2665 case R_RISCV_COPY:
2666 return reloc_class_copy;
2667 default:
2668 return reloc_class_normal;
2669 }
2670 }
2671
2672 /* Given the ELF header flags in FLAGS, it returns a string that describes the
2673 float ABI. */
2674
2675 static const char *
2676 riscv_float_abi_string (flagword flags)
2677 {
2678 switch (flags & EF_RISCV_FLOAT_ABI)
2679 {
2680 case EF_RISCV_FLOAT_ABI_SOFT:
2681 return "soft-float";
2682 break;
2683 case EF_RISCV_FLOAT_ABI_SINGLE:
2684 return "single-float";
2685 break;
2686 case EF_RISCV_FLOAT_ABI_DOUBLE:
2687 return "double-float";
2688 break;
2689 case EF_RISCV_FLOAT_ABI_QUAD:
2690 return "quad-float";
2691 break;
2692 default:
2693 abort ();
2694 }
2695 }
2696
2697 /* The information of architecture attribute. */
2698 static riscv_subset_list_t in_subsets;
2699 static riscv_subset_list_t out_subsets;
2700 static riscv_subset_list_t merged_subsets;
2701
2702 /* Predicator for standard extension. */
2703
2704 static bfd_boolean
2705 riscv_std_ext_p (const char *name)
2706 {
2707 return (strlen (name) == 1) && (name[0] != 'x') && (name[0] != 's');
2708 }
2709
2710 /* Predicator for non-standard extension. */
2711
2712 static bfd_boolean
2713 riscv_non_std_ext_p (const char *name)
2714 {
2715 return (strlen (name) >= 2) && (name[0] == 'x');
2716 }
2717
2718 /* Predicator for standard supervisor extension. */
2719
2720 static bfd_boolean
2721 riscv_std_sv_ext_p (const char *name)
2722 {
2723 return (strlen (name) >= 2) && (name[0] == 's') && (name[1] != 'x');
2724 }
2725
2726 /* Predicator for non-standard supervisor extension. */
2727
2728 static bfd_boolean
2729 riscv_non_std_sv_ext_p (const char *name)
2730 {
2731 return (strlen (name) >= 3) && (name[0] == 's') && (name[1] == 'x');
2732 }
2733
2734 /* Error handler when version mis-match. */
2735
2736 static void
2737 riscv_version_mismatch (bfd *ibfd,
2738 struct riscv_subset_t *in,
2739 struct riscv_subset_t *out)
2740 {
2741 _bfd_error_handler
2742 (_("error: %pB: Mis-matched ISA version for '%s' extension. "
2743 "%d.%d vs %d.%d"),
2744 ibfd, in->name,
2745 in->major_version, in->minor_version,
2746 out->major_version, out->minor_version);
2747 }
2748
2749 /* Return true if subset is 'i' or 'e'. */
2750
2751 static bfd_boolean
2752 riscv_i_or_e_p (bfd *ibfd,
2753 const char *arch,
2754 struct riscv_subset_t *subset)
2755 {
2756 if ((strcasecmp (subset->name, "e") != 0)
2757 && (strcasecmp (subset->name, "i") != 0))
2758 {
2759 _bfd_error_handler
2760 (_("error: %pB: corrupted ISA string '%s'. "
2761 "First letter should be 'i' or 'e' but got '%s'."),
2762 ibfd, arch, subset->name);
2763 return FALSE;
2764 }
2765 return TRUE;
2766 }
2767
2768 /* Merge standard extensions.
2769
2770 Return Value:
2771 Return FALSE if failed to merge.
2772
2773 Arguments:
2774 `bfd`: bfd handler.
2775 `in_arch`: Raw arch string for input object.
2776 `out_arch`: Raw arch string for output object.
2777 `pin`: subset list for input object, and it'll skip all merged subset after
2778 merge.
2779 `pout`: Like `pin`, but for output object. */
2780
2781 static bfd_boolean
2782 riscv_merge_std_ext (bfd *ibfd,
2783 const char *in_arch,
2784 const char *out_arch,
2785 struct riscv_subset_t **pin,
2786 struct riscv_subset_t **pout)
2787 {
2788 const char *standard_exts = riscv_supported_std_ext ();
2789 const char *p;
2790 struct riscv_subset_t *in = *pin;
2791 struct riscv_subset_t *out = *pout;
2792
2793 /* First letter should be 'i' or 'e'. */
2794 if (!riscv_i_or_e_p (ibfd, in_arch, in))
2795 return FALSE;
2796
2797 if (!riscv_i_or_e_p (ibfd, out_arch, out))
2798 return FALSE;
2799
2800 if (in->name[0] != out->name[0])
2801 {
2802 /* TODO: We might allow merge 'i' with 'e'. */
2803 _bfd_error_handler
2804 (_("error: %pB: Mis-matched ISA string to merge '%s' and '%s'."),
2805 ibfd, in->name, out->name);
2806 return FALSE;
2807 }
2808 else if ((in->major_version != out->major_version) ||
2809 (in->minor_version != out->minor_version))
2810 {
2811 /* TODO: Allow different merge policy. */
2812 riscv_version_mismatch (ibfd, in, out);
2813 return FALSE;
2814 }
2815 else
2816 riscv_add_subset (&merged_subsets,
2817 in->name, in->major_version, in->minor_version);
2818
2819 in = in->next;
2820 out = out->next;
2821
2822 /* Handle standard extension first. */
2823 for (p = standard_exts; *p; ++p)
2824 {
2825 char find_ext[2] = {*p, '\0'};
2826 struct riscv_subset_t *find_in =
2827 riscv_lookup_subset (&in_subsets, find_ext);
2828 struct riscv_subset_t *find_out =
2829 riscv_lookup_subset (&out_subsets, find_ext);
2830
2831 if (find_in == NULL && find_out == NULL)
2832 continue;
2833
2834 /* Check version is same or not. */
2835 /* TODO: Allow different merge policy. */
2836 if ((find_in != NULL && find_out != NULL)
2837 && ((find_in->major_version != find_out->major_version)
2838 || (find_in->minor_version != find_out->minor_version)))
2839 {
2840 riscv_version_mismatch (ibfd, in, out);
2841 return FALSE;
2842 }
2843
2844 struct riscv_subset_t *merged = find_in ? find_in : find_out;
2845 riscv_add_subset (&merged_subsets, merged->name,
2846 merged->major_version, merged->minor_version);
2847 }
2848
2849 /* Skip all standard extensions. */
2850 while ((in != NULL) && riscv_std_ext_p (in->name)) in = in->next;
2851 while ((out != NULL) && riscv_std_ext_p (out->name)) out = out->next;
2852
2853 *pin = in;
2854 *pout = out;
2855
2856 return TRUE;
2857 }
2858
2859 /* Merge non-standard and supervisor extensions.
2860 Return Value:
2861 Return FALSE if failed to merge.
2862
2863 Arguments:
2864 `bfd`: bfd handler.
2865 `in_arch`: Raw arch string for input object.
2866 `out_arch`: Raw arch string for output object.
2867 `pin`: subset list for input object, and it'll skip all merged subset after
2868 merge.
2869 `pout`: Like `pin`, but for output object. */
2870
2871 static bfd_boolean
2872 riscv_merge_non_std_and_sv_ext (bfd *ibfd,
2873 riscv_subset_t **pin,
2874 riscv_subset_t **pout,
2875 bfd_boolean (*predicate_func) (const char *))
2876 {
2877 riscv_subset_t *in = *pin;
2878 riscv_subset_t *out = *pout;
2879
2880 for (in = *pin; in != NULL && predicate_func (in->name); in = in->next)
2881 riscv_add_subset (&merged_subsets, in->name, in->major_version,
2882 in->minor_version);
2883
2884 for (out = *pout; out != NULL && predicate_func (out->name); out = out->next)
2885 {
2886 riscv_subset_t *find_ext =
2887 riscv_lookup_subset (&merged_subsets, out->name);
2888 if (find_ext != NULL)
2889 {
2890 /* Check version is same or not. */
2891 /* TODO: Allow different merge policy. */
2892 if ((find_ext->major_version != out->major_version)
2893 || (find_ext->minor_version != out->minor_version))
2894 {
2895 riscv_version_mismatch (ibfd, find_ext, out);
2896 return FALSE;
2897 }
2898 }
2899 else
2900 riscv_add_subset (&merged_subsets, out->name,
2901 out->major_version, out->minor_version);
2902 }
2903
2904 *pin = in;
2905 *pout = out;
2906 return TRUE;
2907 }
2908
2909 /* Merge Tag_RISCV_arch attribute. */
2910
2911 static char *
2912 riscv_merge_arch_attr_info (bfd *ibfd, char *in_arch, char *out_arch)
2913 {
2914 riscv_subset_t *in, *out;
2915 char *merged_arch_str;
2916
2917 unsigned xlen_in, xlen_out;
2918 merged_subsets.head = NULL;
2919 merged_subsets.tail = NULL;
2920
2921 riscv_parse_subset_t rpe_in;
2922 riscv_parse_subset_t rpe_out;
2923
2924 rpe_in.subset_list = &in_subsets;
2925 rpe_in.error_handler = _bfd_error_handler;
2926 rpe_in.xlen = &xlen_in;
2927
2928 rpe_out.subset_list = &out_subsets;
2929 rpe_out.error_handler = _bfd_error_handler;
2930 rpe_out.xlen = &xlen_out;
2931
2932 if (in_arch == NULL && out_arch == NULL)
2933 return NULL;
2934
2935 if (in_arch == NULL && out_arch != NULL)
2936 return out_arch;
2937
2938 if (in_arch != NULL && out_arch == NULL)
2939 return in_arch;
2940
2941 /* Parse subset from arch string. */
2942 if (!riscv_parse_subset (&rpe_in, in_arch))
2943 return NULL;
2944
2945 if (!riscv_parse_subset (&rpe_out, out_arch))
2946 return NULL;
2947
2948 /* Checking XLEN. */
2949 if (xlen_out != xlen_in)
2950 {
2951 _bfd_error_handler
2952 (_("error: %pB: ISA string of input (%s) doesn't match "
2953 "output (%s)."), ibfd, in_arch, out_arch);
2954 return NULL;
2955 }
2956
2957 /* Merge subset list. */
2958 in = in_subsets.head;
2959 out = out_subsets.head;
2960
2961 /* Merge standard extension. */
2962 if (!riscv_merge_std_ext (ibfd, in_arch, out_arch, &in, &out))
2963 return NULL;
2964 /* Merge non-standard extension. */
2965 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_non_std_ext_p))
2966 return NULL;
2967 /* Merge standard supervisor extension. */
2968 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_std_sv_ext_p))
2969 return NULL;
2970 /* Merge non-standard supervisor extension. */
2971 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_non_std_sv_ext_p))
2972 return NULL;
2973
2974 if (xlen_in != xlen_out)
2975 {
2976 _bfd_error_handler
2977 (_("error: %pB: XLEN of input (%u) doesn't match "
2978 "output (%u)."), ibfd, xlen_in, xlen_out);
2979 return NULL;
2980 }
2981
2982 if (xlen_in != ARCH_SIZE)
2983 {
2984 _bfd_error_handler
2985 (_("error: %pB: Unsupported XLEN (%u), you might be "
2986 "using wrong emulation."), ibfd, xlen_in);
2987 return NULL;
2988 }
2989
2990 merged_arch_str = riscv_arch_str (ARCH_SIZE, &merged_subsets);
2991
2992 /* Release the subset lists. */
2993 riscv_release_subset_list (&in_subsets);
2994 riscv_release_subset_list (&out_subsets);
2995 riscv_release_subset_list (&merged_subsets);
2996
2997 return merged_arch_str;
2998 }
2999
3000 /* Merge object attributes from IBFD into output_bfd of INFO.
3001 Raise an error if there are conflicting attributes. */
3002
3003 static bfd_boolean
3004 riscv_merge_attributes (bfd *ibfd, struct bfd_link_info *info)
3005 {
3006 bfd *obfd = info->output_bfd;
3007 obj_attribute *in_attr;
3008 obj_attribute *out_attr;
3009 bfd_boolean result = TRUE;
3010 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
3011 unsigned int i;
3012
3013 /* Skip linker created files. */
3014 if (ibfd->flags & BFD_LINKER_CREATED)
3015 return TRUE;
3016
3017 /* Skip any input that doesn't have an attribute section.
3018 This enables to link object files without attribute section with
3019 any others. */
3020 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
3021 return TRUE;
3022
3023 if (!elf_known_obj_attributes_proc (obfd)[0].i)
3024 {
3025 /* This is the first object. Copy the attributes. */
3026 _bfd_elf_copy_obj_attributes (ibfd, obfd);
3027
3028 out_attr = elf_known_obj_attributes_proc (obfd);
3029
3030 /* Use the Tag_null value to indicate the attributes have been
3031 initialized. */
3032 out_attr[0].i = 1;
3033
3034 return TRUE;
3035 }
3036
3037 in_attr = elf_known_obj_attributes_proc (ibfd);
3038 out_attr = elf_known_obj_attributes_proc (obfd);
3039
3040 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
3041 {
3042 switch (i)
3043 {
3044 case Tag_RISCV_arch:
3045 if (!out_attr[Tag_RISCV_arch].s)
3046 out_attr[Tag_RISCV_arch].s = in_attr[Tag_RISCV_arch].s;
3047 else if (in_attr[Tag_RISCV_arch].s
3048 && out_attr[Tag_RISCV_arch].s)
3049 {
3050 /* Check arch compatible. */
3051 char *merged_arch =
3052 riscv_merge_arch_attr_info (ibfd,
3053 in_attr[Tag_RISCV_arch].s,
3054 out_attr[Tag_RISCV_arch].s);
3055 if (merged_arch == NULL)
3056 {
3057 result = FALSE;
3058 out_attr[Tag_RISCV_arch].s = "";
3059 }
3060 else
3061 out_attr[Tag_RISCV_arch].s = merged_arch;
3062 }
3063 break;
3064 case Tag_RISCV_priv_spec:
3065 case Tag_RISCV_priv_spec_minor:
3066 case Tag_RISCV_priv_spec_revision:
3067 if (out_attr[i].i != in_attr[i].i)
3068 {
3069 _bfd_error_handler
3070 (_("error: %pB: conflicting priv spec version "
3071 "(major/minor/revision)."), ibfd);
3072 result = FALSE;
3073 }
3074 break;
3075 case Tag_RISCV_unaligned_access:
3076 out_attr[i].i |= in_attr[i].i;
3077 break;
3078 case Tag_RISCV_stack_align:
3079 if (out_attr[i].i == 0)
3080 out_attr[i].i = in_attr[i].i;
3081 else if (in_attr[i].i != 0
3082 && out_attr[i].i != 0
3083 && out_attr[i].i != in_attr[i].i)
3084 {
3085 _bfd_error_handler
3086 (_("error: %pB use %u-byte stack aligned but the output "
3087 "use %u-byte stack aligned."),
3088 ibfd, in_attr[i].i, out_attr[i].i);
3089 result = FALSE;
3090 }
3091 break;
3092 default:
3093 result &= _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
3094 }
3095
3096 /* If out_attr was copied from in_attr then it won't have a type yet. */
3097 if (in_attr[i].type && !out_attr[i].type)
3098 out_attr[i].type = in_attr[i].type;
3099 }
3100
3101 /* Merge Tag_compatibility attributes and any common GNU ones. */
3102 if (!_bfd_elf_merge_object_attributes (ibfd, info))
3103 return FALSE;
3104
3105 /* Check for any attributes not known on RISC-V. */
3106 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
3107
3108 return result;
3109 }
3110
3111 /* Merge backend specific data from an object file to the output
3112 object file when linking. */
3113
3114 static bfd_boolean
3115 _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3116 {
3117 bfd *obfd = info->output_bfd;
3118 flagword new_flags, old_flags;
3119
3120 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
3121 return TRUE;
3122
3123 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
3124 {
3125 (*_bfd_error_handler)
3126 (_("%pB: ABI is incompatible with that of the selected emulation:\n"
3127 " target emulation `%s' does not match `%s'"),
3128 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
3129 return FALSE;
3130 }
3131
3132 if (!_bfd_elf_merge_object_attributes (ibfd, info))
3133 return FALSE;
3134
3135 if (!riscv_merge_attributes (ibfd, info))
3136 return FALSE;
3137
3138 new_flags = elf_elfheader (ibfd)->e_flags;
3139 old_flags = elf_elfheader (obfd)->e_flags;
3140
3141 if (! elf_flags_init (obfd))
3142 {
3143 elf_flags_init (obfd) = TRUE;
3144 elf_elfheader (obfd)->e_flags = new_flags;
3145 return TRUE;
3146 }
3147
3148 /* Check to see if the input BFD actually contains any sections. If not,
3149 its flags may not have been initialized either, but it cannot actually
3150 cause any incompatibility. Do not short-circuit dynamic objects; their
3151 section list may be emptied by elf_link_add_object_symbols.
3152
3153 Also check to see if there are no code sections in the input. In this
3154 case, there is no need to check for code specific flags. */
3155 if (!(ibfd->flags & DYNAMIC))
3156 {
3157 bfd_boolean null_input_bfd = TRUE;
3158 bfd_boolean only_data_sections = TRUE;
3159 asection *sec;
3160
3161 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
3162 {
3163 if ((bfd_get_section_flags (ibfd, sec)
3164 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
3165 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
3166 only_data_sections = FALSE;
3167
3168 null_input_bfd = FALSE;
3169 break;
3170 }
3171
3172 if (null_input_bfd || only_data_sections)
3173 return TRUE;
3174 }
3175
3176 /* Disallow linking different float ABIs. */
3177 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
3178 {
3179 (*_bfd_error_handler)
3180 (_("%pB: can't link %s modules with %s modules"), ibfd,
3181 riscv_float_abi_string (new_flags),
3182 riscv_float_abi_string (old_flags));
3183 goto fail;
3184 }
3185
3186 /* Disallow linking RVE and non-RVE. */
3187 if ((old_flags ^ new_flags) & EF_RISCV_RVE)
3188 {
3189 (*_bfd_error_handler)
3190 (_("%pB: can't link RVE with other target"), ibfd);
3191 goto fail;
3192 }
3193
3194 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
3195 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
3196
3197 return TRUE;
3198
3199 fail:
3200 bfd_set_error (bfd_error_bad_value);
3201 return FALSE;
3202 }
3203
3204 /* Delete some bytes from a section while relaxing. */
3205
3206 static bfd_boolean
3207 riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count,
3208 struct bfd_link_info *link_info)
3209 {
3210 unsigned int i, symcount;
3211 bfd_vma toaddr = sec->size;
3212 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
3213 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3214 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
3215 struct bfd_elf_section_data *data = elf_section_data (sec);
3216 bfd_byte *contents = data->this_hdr.contents;
3217
3218 /* Actually delete the bytes. */
3219 sec->size -= count;
3220 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
3221
3222 /* Adjust the location of all of the relocs. Note that we need not
3223 adjust the addends, since all PC-relative references must be against
3224 symbols, which we will adjust below. */
3225 for (i = 0; i < sec->reloc_count; i++)
3226 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
3227 data->relocs[i].r_offset -= count;
3228
3229 /* Adjust the local symbols defined in this section. */
3230 for (i = 0; i < symtab_hdr->sh_info; i++)
3231 {
3232 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
3233 if (sym->st_shndx == sec_shndx)
3234 {
3235 /* If the symbol is in the range of memory we just moved, we
3236 have to adjust its value. */
3237 if (sym->st_value > addr && sym->st_value <= toaddr)
3238 sym->st_value -= count;
3239
3240 /* If the symbol *spans* the bytes we just deleted (i.e. its
3241 *end* is in the moved bytes but its *start* isn't), then we
3242 must adjust its size.
3243
3244 This test needs to use the original value of st_value, otherwise
3245 we might accidentally decrease size when deleting bytes right
3246 before the symbol. But since deleted relocs can't span across
3247 symbols, we can't have both a st_value and a st_size decrease,
3248 so it is simpler to just use an else. */
3249 else if (sym->st_value <= addr
3250 && sym->st_value + sym->st_size > addr
3251 && sym->st_value + sym->st_size <= toaddr)
3252 sym->st_size -= count;
3253 }
3254 }
3255
3256 /* Now adjust the global symbols defined in this section. */
3257 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
3258 - symtab_hdr->sh_info);
3259
3260 for (i = 0; i < symcount; i++)
3261 {
3262 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
3263
3264 /* The '--wrap SYMBOL' option is causing a pain when the object file,
3265 containing the definition of __wrap_SYMBOL, includes a direct
3266 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
3267 the same symbol (which is __wrap_SYMBOL), but still exist as two
3268 different symbols in 'sym_hashes', we don't want to adjust
3269 the global symbol __wrap_SYMBOL twice. */
3270 /* The same problem occurs with symbols that are versioned_hidden, as
3271 foo becomes an alias for foo@BAR, and hence they need the same
3272 treatment. */
3273 if (link_info->wrap_hash != NULL
3274 || sym_hash->versioned == versioned_hidden)
3275 {
3276 struct elf_link_hash_entry **cur_sym_hashes;
3277
3278 /* Loop only over the symbols which have already been checked. */
3279 for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i];
3280 cur_sym_hashes++)
3281 {
3282 /* If the current symbol is identical to 'sym_hash', that means
3283 the symbol was already adjusted (or at least checked). */
3284 if (*cur_sym_hashes == sym_hash)
3285 break;
3286 }
3287 /* Don't adjust the symbol again. */
3288 if (cur_sym_hashes < &sym_hashes[i])
3289 continue;
3290 }
3291
3292 if ((sym_hash->root.type == bfd_link_hash_defined
3293 || sym_hash->root.type == bfd_link_hash_defweak)
3294 && sym_hash->root.u.def.section == sec)
3295 {
3296 /* As above, adjust the value if needed. */
3297 if (sym_hash->root.u.def.value > addr
3298 && sym_hash->root.u.def.value <= toaddr)
3299 sym_hash->root.u.def.value -= count;
3300
3301 /* As above, adjust the size if needed. */
3302 else if (sym_hash->root.u.def.value <= addr
3303 && sym_hash->root.u.def.value + sym_hash->size > addr
3304 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
3305 sym_hash->size -= count;
3306 }
3307 }
3308
3309 return TRUE;
3310 }
3311
3312 /* A second format for recording PC-relative hi relocations. This stores the
3313 information required to relax them to GP-relative addresses. */
3314
3315 typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
3316 struct riscv_pcgp_hi_reloc
3317 {
3318 bfd_vma hi_sec_off;
3319 bfd_vma hi_addend;
3320 bfd_vma hi_addr;
3321 unsigned hi_sym;
3322 asection *sym_sec;
3323 riscv_pcgp_hi_reloc *next;
3324 };
3325
3326 typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
3327 struct riscv_pcgp_lo_reloc
3328 {
3329 bfd_vma hi_sec_off;
3330 riscv_pcgp_lo_reloc *next;
3331 };
3332
3333 typedef struct
3334 {
3335 riscv_pcgp_hi_reloc *hi;
3336 riscv_pcgp_lo_reloc *lo;
3337 } riscv_pcgp_relocs;
3338
3339 /* Initialize the pcgp reloc info in P. */
3340
3341 static bfd_boolean
3342 riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
3343 {
3344 p->hi = NULL;
3345 p->lo = NULL;
3346 return TRUE;
3347 }
3348
3349 /* Free the pcgp reloc info in P. */
3350
3351 static void
3352 riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
3353 bfd *abfd ATTRIBUTE_UNUSED,
3354 asection *sec ATTRIBUTE_UNUSED)
3355 {
3356 riscv_pcgp_hi_reloc *c;
3357 riscv_pcgp_lo_reloc *l;
3358
3359 for (c = p->hi; c != NULL;)
3360 {
3361 riscv_pcgp_hi_reloc *next = c->next;
3362 free (c);
3363 c = next;
3364 }
3365
3366 for (l = p->lo; l != NULL;)
3367 {
3368 riscv_pcgp_lo_reloc *next = l->next;
3369 free (l);
3370 l = next;
3371 }
3372 }
3373
3374 /* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index.
3375 The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to
3376 relax the corresponding lo part reloc. */
3377
3378 static bfd_boolean
3379 riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
3380 bfd_vma hi_addend, bfd_vma hi_addr,
3381 unsigned hi_sym, asection *sym_sec)
3382 {
3383 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new));
3384 if (!new)
3385 return FALSE;
3386 new->hi_sec_off = hi_sec_off;
3387 new->hi_addend = hi_addend;
3388 new->hi_addr = hi_addr;
3389 new->hi_sym = hi_sym;
3390 new->sym_sec = sym_sec;
3391 new->next = p->hi;
3392 p->hi = new;
3393 return TRUE;
3394 }
3395
3396 /* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
3397 This is used by a lo part reloc to find the corresponding hi part reloc. */
3398
3399 static riscv_pcgp_hi_reloc *
3400 riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3401 {
3402 riscv_pcgp_hi_reloc *c;
3403
3404 for (c = p->hi; c != NULL; c = c->next)
3405 if (c->hi_sec_off == hi_sec_off)
3406 return c;
3407 return NULL;
3408 }
3409
3410 /* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info.
3411 This is used to record relocs that can't be relaxed. */
3412
3413 static bfd_boolean
3414 riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3415 {
3416 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new));
3417 if (!new)
3418 return FALSE;
3419 new->hi_sec_off = hi_sec_off;
3420 new->next = p->lo;
3421 p->lo = new;
3422 return TRUE;
3423 }
3424
3425 /* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
3426 This is used by a hi part reloc to find the corresponding lo part reloc. */
3427
3428 static bfd_boolean
3429 riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3430 {
3431 riscv_pcgp_lo_reloc *c;
3432
3433 for (c = p->lo; c != NULL; c = c->next)
3434 if (c->hi_sec_off == hi_sec_off)
3435 return TRUE;
3436 return FALSE;
3437 }
3438
3439 typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
3440 struct bfd_link_info *,
3441 Elf_Internal_Rela *,
3442 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *,
3443 riscv_pcgp_relocs *);
3444
3445 /* Relax AUIPC + JALR into JAL. */
3446
3447 static bfd_boolean
3448 _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
3449 struct bfd_link_info *link_info,
3450 Elf_Internal_Rela *rel,
3451 bfd_vma symval,
3452 bfd_vma max_alignment,
3453 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3454 bfd_boolean *again,
3455 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
3456 {
3457 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3458 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
3459 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
3460 bfd_vma auipc, jalr;
3461 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
3462
3463 /* If the call crosses section boundaries, an alignment directive could
3464 cause the PC-relative offset to later increase. */
3465 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section)
3466 foff += (foff < 0 ? -max_alignment : max_alignment);
3467
3468 /* See if this function call can be shortened. */
3469 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
3470 return TRUE;
3471
3472 /* Shorten the function call. */
3473 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
3474
3475 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
3476 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
3477 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
3478 rvc = rvc && VALID_RVC_J_IMM (foff);
3479
3480 /* C.J exists on RV32 and RV64, but C.JAL is RV32-only. */
3481 rvc = rvc && (rd == 0 || (rd == X_RA && ARCH_SIZE == 32));
3482
3483 if (rvc)
3484 {
3485 /* Relax to C.J[AL] rd, addr. */
3486 r_type = R_RISCV_RVC_JUMP;
3487 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
3488 len = 2;
3489 }
3490 else if (VALID_UJTYPE_IMM (foff))
3491 {
3492 /* Relax to JAL rd, addr. */
3493 r_type = R_RISCV_JAL;
3494 auipc = MATCH_JAL | (rd << OP_SH_RD);
3495 }
3496 else /* near_zero */
3497 {
3498 /* Relax to JALR rd, x0, addr. */
3499 r_type = R_RISCV_LO12_I;
3500 auipc = MATCH_JALR | (rd << OP_SH_RD);
3501 }
3502
3503 /* Replace the R_RISCV_CALL reloc. */
3504 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
3505 /* Replace the AUIPC. */
3506 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
3507
3508 /* Delete unnecessary JALR. */
3509 *again = TRUE;
3510 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len,
3511 link_info);
3512 }
3513
3514 /* Traverse all output sections and return the max alignment. */
3515
3516 static bfd_vma
3517 _bfd_riscv_get_max_alignment (asection *sec)
3518 {
3519 unsigned int max_alignment_power = 0;
3520 asection *o;
3521
3522 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
3523 {
3524 if (o->alignment_power > max_alignment_power)
3525 max_alignment_power = o->alignment_power;
3526 }
3527
3528 return (bfd_vma) 1 << max_alignment_power;
3529 }
3530
3531 /* Relax non-PIC global variable references. */
3532
3533 static bfd_boolean
3534 _bfd_riscv_relax_lui (bfd *abfd,
3535 asection *sec,
3536 asection *sym_sec,
3537 struct bfd_link_info *link_info,
3538 Elf_Internal_Rela *rel,
3539 bfd_vma symval,
3540 bfd_vma max_alignment,
3541 bfd_vma reserve_size,
3542 bfd_boolean *again,
3543 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
3544 {
3545 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3546 bfd_vma gp = riscv_global_pointer_value (link_info);
3547 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
3548
3549 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3550
3551 if (gp)
3552 {
3553 /* If gp and the symbol are in the same output section, which is not the
3554 abs section, then consider only that output section's alignment. */
3555 struct bfd_link_hash_entry *h =
3556 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
3557 TRUE);
3558 if (h->u.def.section->output_section == sym_sec->output_section
3559 && sym_sec->output_section != bfd_abs_section_ptr)
3560 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3561 }
3562
3563 /* Is the reference in range of x0 or gp?
3564 Valid gp range conservatively because of alignment issue. */
3565 if (VALID_ITYPE_IMM (symval)
3566 || (symval >= gp
3567 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3568 || (symval < gp
3569 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
3570 {
3571 unsigned sym = ELFNN_R_SYM (rel->r_info);
3572 switch (ELFNN_R_TYPE (rel->r_info))
3573 {
3574 case R_RISCV_LO12_I:
3575 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3576 return TRUE;
3577
3578 case R_RISCV_LO12_S:
3579 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3580 return TRUE;
3581
3582 case R_RISCV_HI20:
3583 /* We can delete the unnecessary LUI and reloc. */
3584 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3585 *again = TRUE;
3586 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4,
3587 link_info);
3588
3589 default:
3590 abort ();
3591 }
3592 }
3593
3594 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
3595 account for this assuming page alignment at worst. In the presence of
3596 RELRO segment the linker aligns it by one page size, therefore sections
3597 after the segment can be moved more than one page. */
3598
3599 if (use_rvc
3600 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
3601 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
3602 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval)
3603 + (link_info->relro ? 2 * ELF_MAXPAGESIZE
3604 : ELF_MAXPAGESIZE)))
3605 {
3606 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
3607 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
3608 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
3609 if (rd == 0 || rd == X_SP)
3610 return TRUE;
3611
3612 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
3613 bfd_put_32 (abfd, lui, contents + rel->r_offset);
3614
3615 /* Replace the R_RISCV_HI20 reloc. */
3616 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
3617
3618 *again = TRUE;
3619 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2,
3620 link_info);
3621 }
3622
3623 return TRUE;
3624 }
3625
3626 /* Relax non-PIC TLS references. */
3627
3628 static bfd_boolean
3629 _bfd_riscv_relax_tls_le (bfd *abfd,
3630 asection *sec,
3631 asection *sym_sec ATTRIBUTE_UNUSED,
3632 struct bfd_link_info *link_info,
3633 Elf_Internal_Rela *rel,
3634 bfd_vma symval,
3635 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3636 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3637 bfd_boolean *again,
3638 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED)
3639 {
3640 /* See if this symbol is in range of tp. */
3641 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
3642 return TRUE;
3643
3644 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3645 switch (ELFNN_R_TYPE (rel->r_info))
3646 {
3647 case R_RISCV_TPREL_LO12_I:
3648 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
3649 return TRUE;
3650
3651 case R_RISCV_TPREL_LO12_S:
3652 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
3653 return TRUE;
3654
3655 case R_RISCV_TPREL_HI20:
3656 case R_RISCV_TPREL_ADD:
3657 /* We can delete the unnecessary instruction and reloc. */
3658 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3659 *again = TRUE;
3660 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info);
3661
3662 default:
3663 abort ();
3664 }
3665 }
3666
3667 /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3668
3669 static bfd_boolean
3670 _bfd_riscv_relax_align (bfd *abfd, asection *sec,
3671 asection *sym_sec,
3672 struct bfd_link_info *link_info,
3673 Elf_Internal_Rela *rel,
3674 bfd_vma symval,
3675 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3676 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3677 bfd_boolean *again ATTRIBUTE_UNUSED,
3678 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED)
3679 {
3680 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3681 bfd_vma alignment = 1, pos;
3682 while (alignment <= rel->r_addend)
3683 alignment *= 2;
3684
3685 symval -= rel->r_addend;
3686 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
3687 bfd_vma nop_bytes = aligned_addr - symval;
3688
3689 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3690 sec->sec_flg0 = TRUE;
3691
3692 /* Make sure there are enough NOPs to actually achieve the alignment. */
3693 if (rel->r_addend < nop_bytes)
3694 {
3695 _bfd_error_handler
3696 (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment "
3697 "to %" PRId64 "-byte boundary, but only %" PRId64 " present"),
3698 abfd, sym_sec, (uint64_t) rel->r_offset,
3699 (int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend);
3700 bfd_set_error (bfd_error_bad_value);
3701 return FALSE;
3702 }
3703
3704 /* Delete the reloc. */
3705 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3706
3707 /* If the number of NOPs is already correct, there's nothing to do. */
3708 if (nop_bytes == rel->r_addend)
3709 return TRUE;
3710
3711 /* Write as many RISC-V NOPs as we need. */
3712 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
3713 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
3714
3715 /* Write a final RVC NOP if need be. */
3716 if (nop_bytes % 4 != 0)
3717 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
3718
3719 /* Delete the excess bytes. */
3720 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
3721 rel->r_addend - nop_bytes, link_info);
3722 }
3723
3724 /* Relax PC-relative references to GP-relative references. */
3725
3726 static bfd_boolean
3727 _bfd_riscv_relax_pc (bfd *abfd ATTRIBUTE_UNUSED,
3728 asection *sec,
3729 asection *sym_sec,
3730 struct bfd_link_info *link_info,
3731 Elf_Internal_Rela *rel,
3732 bfd_vma symval,
3733 bfd_vma max_alignment,
3734 bfd_vma reserve_size,
3735 bfd_boolean *again ATTRIBUTE_UNUSED,
3736 riscv_pcgp_relocs *pcgp_relocs)
3737 {
3738 bfd_vma gp = riscv_global_pointer_value (link_info);
3739
3740 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3741
3742 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3743 * actual target address. */
3744 riscv_pcgp_hi_reloc hi_reloc;
3745 memset (&hi_reloc, 0, sizeof (hi_reloc));
3746 switch (ELFNN_R_TYPE (rel->r_info))
3747 {
3748 case R_RISCV_PCREL_LO12_I:
3749 case R_RISCV_PCREL_LO12_S:
3750 {
3751 /* If the %lo has an addend, it isn't for the label pointing at the
3752 hi part instruction, but rather for the symbol pointed at by the
3753 hi part instruction. So we must subtract it here for the lookup.
3754 It is still used below in the final symbol address. */
3755 bfd_vma hi_sec_off = symval - sec_addr (sym_sec) - rel->r_addend;
3756 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
3757 hi_sec_off);
3758 if (hi == NULL)
3759 {
3760 riscv_record_pcgp_lo_reloc (pcgp_relocs, hi_sec_off);
3761 return TRUE;
3762 }
3763
3764 hi_reloc = *hi;
3765 symval = hi_reloc.hi_addr;
3766 sym_sec = hi_reloc.sym_sec;
3767 }
3768 break;
3769
3770 case R_RISCV_PCREL_HI20:
3771 /* Mergeable symbols and code might later move out of range. */
3772 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3773 return TRUE;
3774
3775 /* If the cooresponding lo relocation has already been seen then it's not
3776 * safe to relax this relocation. */
3777 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
3778 return TRUE;
3779
3780 break;
3781
3782 default:
3783 abort ();
3784 }
3785
3786 if (gp)
3787 {
3788 /* If gp and the symbol are in the same output section, which is not the
3789 abs section, then consider only that output section's alignment. */
3790 struct bfd_link_hash_entry *h =
3791 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
3792 TRUE);
3793 if (h->u.def.section->output_section == sym_sec->output_section
3794 && sym_sec->output_section != bfd_abs_section_ptr)
3795 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3796 }
3797
3798 /* Is the reference in range of x0 or gp?
3799 Valid gp range conservatively because of alignment issue. */
3800 if (VALID_ITYPE_IMM (symval)
3801 || (symval >= gp
3802 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3803 || (symval < gp
3804 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
3805 {
3806 unsigned sym = hi_reloc.hi_sym;
3807 switch (ELFNN_R_TYPE (rel->r_info))
3808 {
3809 case R_RISCV_PCREL_LO12_I:
3810 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3811 rel->r_addend += hi_reloc.hi_addend;
3812 return TRUE;
3813
3814 case R_RISCV_PCREL_LO12_S:
3815 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3816 rel->r_addend += hi_reloc.hi_addend;
3817 return TRUE;
3818
3819 case R_RISCV_PCREL_HI20:
3820 riscv_record_pcgp_hi_reloc (pcgp_relocs,
3821 rel->r_offset,
3822 rel->r_addend,
3823 symval,
3824 ELFNN_R_SYM(rel->r_info),
3825 sym_sec);
3826 /* We can delete the unnecessary AUIPC and reloc. */
3827 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
3828 rel->r_addend = 4;
3829 return TRUE;
3830
3831 default:
3832 abort ();
3833 }
3834 }
3835
3836 return TRUE;
3837 }
3838
3839 /* Relax PC-relative references to GP-relative references. */
3840
3841 static bfd_boolean
3842 _bfd_riscv_relax_delete (bfd *abfd,
3843 asection *sec,
3844 asection *sym_sec ATTRIBUTE_UNUSED,
3845 struct bfd_link_info *link_info,
3846 Elf_Internal_Rela *rel,
3847 bfd_vma symval ATTRIBUTE_UNUSED,
3848 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3849 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3850 bfd_boolean *again ATTRIBUTE_UNUSED,
3851 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
3852 {
3853 if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend,
3854 link_info))
3855 return FALSE;
3856 rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE);
3857 return TRUE;
3858 }
3859
3860 /* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3861 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3862 disabled, handles code alignment directives. */
3863
3864 static bfd_boolean
3865 _bfd_riscv_relax_section (bfd *abfd, asection *sec,
3866 struct bfd_link_info *info,
3867 bfd_boolean *again)
3868 {
3869 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
3870 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3871 struct bfd_elf_section_data *data = elf_section_data (sec);
3872 Elf_Internal_Rela *relocs;
3873 bfd_boolean ret = FALSE;
3874 unsigned int i;
3875 bfd_vma max_alignment, reserve_size = 0;
3876 riscv_pcgp_relocs pcgp_relocs;
3877
3878 *again = FALSE;
3879
3880 if (bfd_link_relocatable (info)
3881 || sec->sec_flg0
3882 || (sec->flags & SEC_RELOC) == 0
3883 || sec->reloc_count == 0
3884 || (info->disable_target_specific_optimizations
3885 && info->relax_pass == 0))
3886 return TRUE;
3887
3888 riscv_init_pcgp_relocs (&pcgp_relocs);
3889
3890 /* Read this BFD's relocs if we haven't done so already. */
3891 if (data->relocs)
3892 relocs = data->relocs;
3893 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3894 info->keep_memory)))
3895 goto fail;
3896
3897 if (htab)
3898 {
3899 max_alignment = htab->max_alignment;
3900 if (max_alignment == (bfd_vma) -1)
3901 {
3902 max_alignment = _bfd_riscv_get_max_alignment (sec);
3903 htab->max_alignment = max_alignment;
3904 }
3905 }
3906 else
3907 max_alignment = _bfd_riscv_get_max_alignment (sec);
3908
3909 /* Examine and consider relaxing each reloc. */
3910 for (i = 0; i < sec->reloc_count; i++)
3911 {
3912 asection *sym_sec;
3913 Elf_Internal_Rela *rel = relocs + i;
3914 relax_func_t relax_func;
3915 int type = ELFNN_R_TYPE (rel->r_info);
3916 bfd_vma symval;
3917 char symtype;
3918
3919 relax_func = NULL;
3920 if (info->relax_pass == 0)
3921 {
3922 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
3923 relax_func = _bfd_riscv_relax_call;
3924 else if (type == R_RISCV_HI20
3925 || type == R_RISCV_LO12_I
3926 || type == R_RISCV_LO12_S)
3927 relax_func = _bfd_riscv_relax_lui;
3928 else if (!bfd_link_pic(info)
3929 && (type == R_RISCV_PCREL_HI20
3930 || type == R_RISCV_PCREL_LO12_I
3931 || type == R_RISCV_PCREL_LO12_S))
3932 relax_func = _bfd_riscv_relax_pc;
3933 else if (type == R_RISCV_TPREL_HI20
3934 || type == R_RISCV_TPREL_ADD
3935 || type == R_RISCV_TPREL_LO12_I
3936 || type == R_RISCV_TPREL_LO12_S)
3937 relax_func = _bfd_riscv_relax_tls_le;
3938 else
3939 continue;
3940
3941 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
3942 if (i == sec->reloc_count - 1
3943 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
3944 || rel->r_offset != (rel + 1)->r_offset)
3945 continue;
3946
3947 /* Skip over the R_RISCV_RELAX. */
3948 i++;
3949 }
3950 else if (info->relax_pass == 1 && type == R_RISCV_DELETE)
3951 relax_func = _bfd_riscv_relax_delete;
3952 else if (info->relax_pass == 2 && type == R_RISCV_ALIGN)
3953 relax_func = _bfd_riscv_relax_align;
3954 else
3955 continue;
3956
3957 data->relocs = relocs;
3958
3959 /* Read this BFD's contents if we haven't done so already. */
3960 if (!data->this_hdr.contents
3961 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
3962 goto fail;
3963
3964 /* Read this BFD's symbols if we haven't done so already. */
3965 if (symtab_hdr->sh_info != 0
3966 && !symtab_hdr->contents
3967 && !(symtab_hdr->contents =
3968 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
3969 symtab_hdr->sh_info,
3970 0, NULL, NULL, NULL)))
3971 goto fail;
3972
3973 /* Get the value of the symbol referred to by the reloc. */
3974 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
3975 {
3976 /* A local symbol. */
3977 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
3978 + ELFNN_R_SYM (rel->r_info));
3979 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
3980 ? 0 : isym->st_size - rel->r_addend;
3981
3982 if (isym->st_shndx == SHN_UNDEF)
3983 sym_sec = sec, symval = rel->r_offset;
3984 else
3985 {
3986 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
3987 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
3988 #if 0
3989 /* The purpose of this code is unknown. It breaks linker scripts
3990 for embedded development that place sections at address zero.
3991 This code is believed to be unnecessary. Disabling it but not
3992 yet removing it, in case something breaks. */
3993 if (sec_addr (sym_sec) == 0)
3994 continue;
3995 #endif
3996 symval = isym->st_value;
3997 }
3998 symtype = ELF_ST_TYPE (isym->st_info);
3999 }
4000 else
4001 {
4002 unsigned long indx;
4003 struct elf_link_hash_entry *h;
4004
4005 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
4006 h = elf_sym_hashes (abfd)[indx];
4007
4008 while (h->root.type == bfd_link_hash_indirect
4009 || h->root.type == bfd_link_hash_warning)
4010 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4011
4012 if (h->plt.offset != MINUS_ONE)
4013 {
4014 sym_sec = htab->elf.splt;
4015 symval = h->plt.offset;
4016 }
4017 else if (h->root.u.def.section->output_section == NULL
4018 || (h->root.type != bfd_link_hash_defined
4019 && h->root.type != bfd_link_hash_defweak))
4020 continue;
4021 else
4022 {
4023 symval = h->root.u.def.value;
4024 sym_sec = h->root.u.def.section;
4025 }
4026
4027 if (h->type != STT_FUNC)
4028 reserve_size =
4029 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
4030 symtype = h->type;
4031 }
4032
4033 if (sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE
4034 && (sym_sec->flags & SEC_MERGE))
4035 {
4036 /* At this stage in linking, no SEC_MERGE symbol has been
4037 adjusted, so all references to such symbols need to be
4038 passed through _bfd_merged_section_offset. (Later, in
4039 relocate_section, all SEC_MERGE symbols *except* for
4040 section symbols have been adjusted.)
4041
4042 gas may reduce relocations against symbols in SEC_MERGE
4043 sections to a relocation against the section symbol when
4044 the original addend was zero. When the reloc is against
4045 a section symbol we should include the addend in the
4046 offset passed to _bfd_merged_section_offset, since the
4047 location of interest is the original symbol. On the
4048 other hand, an access to "sym+addend" where "sym" is not
4049 a section symbol should not include the addend; Such an
4050 access is presumed to be an offset from "sym"; The
4051 location of interest is just "sym". */
4052 if (symtype == STT_SECTION)
4053 symval += rel->r_addend;
4054
4055 symval = _bfd_merged_section_offset (abfd, &sym_sec,
4056 elf_section_data (sym_sec)->sec_info,
4057 symval);
4058
4059 if (symtype != STT_SECTION)
4060 symval += rel->r_addend;
4061 }
4062 else
4063 symval += rel->r_addend;
4064
4065 symval += sec_addr (sym_sec);
4066
4067 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
4068 max_alignment, reserve_size, again,
4069 &pcgp_relocs))
4070 goto fail;
4071 }
4072
4073 ret = TRUE;
4074
4075 fail:
4076 if (relocs != data->relocs)
4077 free (relocs);
4078 riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec);
4079
4080 return ret;
4081 }
4082
4083 #if ARCH_SIZE == 32
4084 # define PRSTATUS_SIZE 204
4085 # define PRSTATUS_OFFSET_PR_CURSIG 12
4086 # define PRSTATUS_OFFSET_PR_PID 24
4087 # define PRSTATUS_OFFSET_PR_REG 72
4088 # define ELF_GREGSET_T_SIZE 128
4089 # define PRPSINFO_SIZE 128
4090 # define PRPSINFO_OFFSET_PR_PID 16
4091 # define PRPSINFO_OFFSET_PR_FNAME 32
4092 # define PRPSINFO_OFFSET_PR_PSARGS 48
4093 #else
4094 # define PRSTATUS_SIZE 376
4095 # define PRSTATUS_OFFSET_PR_CURSIG 12
4096 # define PRSTATUS_OFFSET_PR_PID 32
4097 # define PRSTATUS_OFFSET_PR_REG 112
4098 # define ELF_GREGSET_T_SIZE 256
4099 # define PRPSINFO_SIZE 136
4100 # define PRPSINFO_OFFSET_PR_PID 24
4101 # define PRPSINFO_OFFSET_PR_FNAME 40
4102 # define PRPSINFO_OFFSET_PR_PSARGS 56
4103 #endif
4104
4105 /* Support for core dump NOTE sections. */
4106
4107 static bfd_boolean
4108 riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4109 {
4110 switch (note->descsz)
4111 {
4112 default:
4113 return FALSE;
4114
4115 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
4116 /* pr_cursig */
4117 elf_tdata (abfd)->core->signal
4118 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
4119
4120 /* pr_pid */
4121 elf_tdata (abfd)->core->lwpid
4122 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
4123 break;
4124 }
4125
4126 /* Make a ".reg/999" section. */
4127 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
4128 note->descpos + PRSTATUS_OFFSET_PR_REG);
4129 }
4130
4131 static bfd_boolean
4132 riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4133 {
4134 switch (note->descsz)
4135 {
4136 default:
4137 return FALSE;
4138
4139 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
4140 /* pr_pid */
4141 elf_tdata (abfd)->core->pid
4142 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
4143
4144 /* pr_fname */
4145 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
4146 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
4147
4148 /* pr_psargs */
4149 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
4150 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
4151 break;
4152 }
4153
4154 /* Note that for some reason, a spurious space is tacked
4155 onto the end of the args in some (at least one anyway)
4156 implementations, so strip it off if it exists. */
4157
4158 {
4159 char *command = elf_tdata (abfd)->core->command;
4160 int n = strlen (command);
4161
4162 if (0 < n && command[n - 1] == ' ')
4163 command[n - 1] = '\0';
4164 }
4165
4166 return TRUE;
4167 }
4168
4169 /* Set the right mach type. */
4170 static bfd_boolean
4171 riscv_elf_object_p (bfd *abfd)
4172 {
4173 /* There are only two mach types in RISCV currently. */
4174 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
4175 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
4176 else
4177 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
4178
4179 return TRUE;
4180 }
4181
4182 /* Determine whether an object attribute tag takes an integer, a
4183 string or both. */
4184
4185 static int
4186 riscv_elf_obj_attrs_arg_type (int tag)
4187 {
4188 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
4189 }
4190
4191 #define TARGET_LITTLE_SYM riscv_elfNN_vec
4192 #define TARGET_LITTLE_NAME "elfNN-littleriscv"
4193
4194 #define elf_backend_reloc_type_class riscv_reloc_type_class
4195
4196 #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
4197 #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
4198 #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
4199 #define bfd_elfNN_bfd_merge_private_bfd_data \
4200 _bfd_riscv_elf_merge_private_bfd_data
4201
4202 #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
4203 #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
4204 #define elf_backend_check_relocs riscv_elf_check_relocs
4205 #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
4206 #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
4207 #define elf_backend_relocate_section riscv_elf_relocate_section
4208 #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
4209 #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
4210 #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
4211 #define elf_backend_plt_sym_val riscv_elf_plt_sym_val
4212 #define elf_backend_grok_prstatus riscv_elf_grok_prstatus
4213 #define elf_backend_grok_psinfo riscv_elf_grok_psinfo
4214 #define elf_backend_object_p riscv_elf_object_p
4215 #define elf_info_to_howto_rel NULL
4216 #define elf_info_to_howto riscv_info_to_howto_rela
4217 #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
4218
4219 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4220
4221 #define elf_backend_can_gc_sections 1
4222 #define elf_backend_can_refcount 1
4223 #define elf_backend_want_got_plt 1
4224 #define elf_backend_plt_readonly 1
4225 #define elf_backend_plt_alignment 4
4226 #define elf_backend_want_plt_sym 1
4227 #define elf_backend_got_header_size (ARCH_SIZE / 8)
4228 #define elf_backend_want_dynrelro 1
4229 #define elf_backend_rela_normal 1
4230 #define elf_backend_default_execstack 0
4231
4232 #undef elf_backend_obj_attrs_vendor
4233 #define elf_backend_obj_attrs_vendor "riscv"
4234 #undef elf_backend_obj_attrs_arg_type
4235 #define elf_backend_obj_attrs_arg_type riscv_elf_obj_attrs_arg_type
4236 #undef elf_backend_obj_attrs_section_type
4237 #define elf_backend_obj_attrs_section_type SHT_RISCV_ATTRIBUTES
4238 #undef elf_backend_obj_attrs_section
4239 #define elf_backend_obj_attrs_section ".riscv.attributes"
4240
4241 #include "elfNN-target.h"
This page took 0.201908 seconds and 4 git commands to generate.