tic4x: sign extension using shifts
[deliverable/binutils-gdb.git] / bfd / elfnn-riscv.c
1 /* RISC-V-specific support for NN-bit ELF.
2 Copyright (C) 2011-2020 Free Software Foundation, Inc.
3
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
22
23 /* This file handles RISC-V ELF targets. */
24
25 #include "sysdep.h"
26 #include "bfd.h"
27 #include "libbfd.h"
28 #include "bfdlink.h"
29 #include "genlink.h"
30 #include "elf-bfd.h"
31 #include "elfxx-riscv.h"
32 #include "elf/riscv.h"
33 #include "opcode/riscv.h"
34
35 /* Internal relocations used exclusively by the relaxation pass. */
36 #define R_RISCV_DELETE (R_RISCV_max + 1)
37
38 #define ARCH_SIZE NN
39
40 #define MINUS_ONE ((bfd_vma)0 - 1)
41
42 #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
43
44 #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
45
46 /* The name of the dynamic interpreter. This is put in the .interp
47 section. */
48
49 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50 #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
51
52 #define ELF_ARCH bfd_arch_riscv
53 #define ELF_TARGET_ID RISCV_ELF_DATA
54 #define ELF_MACHINE_CODE EM_RISCV
55 #define ELF_MAXPAGESIZE 0x1000
56 #define ELF_COMMONPAGESIZE 0x1000
57
58 /* RISC-V ELF linker hash entry. */
59
60 struct riscv_elf_link_hash_entry
61 {
62 struct elf_link_hash_entry elf;
63
64 /* Track dynamic relocs copied for this symbol. */
65 struct elf_dyn_relocs *dyn_relocs;
66
67 #define GOT_UNKNOWN 0
68 #define GOT_NORMAL 1
69 #define GOT_TLS_GD 2
70 #define GOT_TLS_IE 4
71 #define GOT_TLS_LE 8
72 char tls_type;
73 };
74
75 #define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
77
78 struct _bfd_riscv_elf_obj_tdata
79 {
80 struct elf_obj_tdata root;
81
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type;
84 };
85
86 #define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
88
89 #define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
91
92 #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
95
96 #define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
100
101 #include "elf/common.h"
102 #include "elf/internal.h"
103
104 struct riscv_elf_link_hash_table
105 {
106 struct elf_link_hash_table elf;
107
108 /* Short-cuts to get to dynamic linker sections. */
109 asection *sdyntdata;
110
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache;
113
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment;
116 };
117
118
119 /* Get the RISC-V ELF linker hash table from a link_info structure. */
120 #define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
123
124 static bfd_boolean
125 riscv_info_to_howto_rela (bfd *abfd,
126 arelent *cache_ptr,
127 Elf_Internal_Rela *dst)
128 {
129 cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info));
130 return cache_ptr->howto != NULL;
131 }
132
133 static void
134 riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
135 {
136 const struct elf_backend_data *bed;
137 bfd_byte *loc;
138
139 bed = get_elf_backend_data (abfd);
140 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
141 bed->s->swap_reloca_out (abfd, rel, loc);
142 }
143
144 /* PLT/GOT stuff. */
145
146 #define PLT_HEADER_INSNS 8
147 #define PLT_ENTRY_INSNS 4
148 #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
149 #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
150
151 #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
152
153 #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
154
155 #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
156
157 static bfd_vma
158 riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
159 {
160 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
161 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
162 }
163
164 #if ARCH_SIZE == 32
165 # define MATCH_LREG MATCH_LW
166 #else
167 # define MATCH_LREG MATCH_LD
168 #endif
169
170 /* Generate a PLT header. */
171
172 static bfd_boolean
173 riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr,
174 uint32_t *entry)
175 {
176 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
177 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
178
179 /* RVE has no t3 register, so this won't work, and is not supported. */
180 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
181 {
182 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
183 output_bfd);
184 return FALSE;
185 }
186
187 /* auipc t2, %hi(.got.plt)
188 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
189 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
190 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
191 addi t0, t2, %lo(.got.plt) # &.got.plt
192 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
193 l[w|d] t0, PTRSIZE(t0) # link map
194 jr t3 */
195
196 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
197 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
198 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
199 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
200 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
201 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
202 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
203 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
204
205 return TRUE;
206 }
207
208 /* Generate a PLT entry. */
209
210 static bfd_boolean
211 riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr,
212 uint32_t *entry)
213 {
214 /* RVE has no t3 register, so this won't work, and is not supported. */
215 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
216 {
217 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
218 output_bfd);
219 return FALSE;
220 }
221
222 /* auipc t3, %hi(.got.plt entry)
223 l[w|d] t3, %lo(.got.plt entry)(t3)
224 jalr t1, t3
225 nop */
226
227 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
228 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
229 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
230 entry[3] = RISCV_NOP;
231
232 return TRUE;
233 }
234
235 /* Create an entry in an RISC-V ELF linker hash table. */
236
237 static struct bfd_hash_entry *
238 link_hash_newfunc (struct bfd_hash_entry *entry,
239 struct bfd_hash_table *table, const char *string)
240 {
241 /* Allocate the structure if it has not already been allocated by a
242 subclass. */
243 if (entry == NULL)
244 {
245 entry =
246 bfd_hash_allocate (table,
247 sizeof (struct riscv_elf_link_hash_entry));
248 if (entry == NULL)
249 return entry;
250 }
251
252 /* Call the allocation method of the superclass. */
253 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
254 if (entry != NULL)
255 {
256 struct riscv_elf_link_hash_entry *eh;
257
258 eh = (struct riscv_elf_link_hash_entry *) entry;
259 eh->dyn_relocs = NULL;
260 eh->tls_type = GOT_UNKNOWN;
261 }
262
263 return entry;
264 }
265
266 /* Create a RISC-V ELF linker hash table. */
267
268 static struct bfd_link_hash_table *
269 riscv_elf_link_hash_table_create (bfd *abfd)
270 {
271 struct riscv_elf_link_hash_table *ret;
272 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
273
274 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
275 if (ret == NULL)
276 return NULL;
277
278 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
279 sizeof (struct riscv_elf_link_hash_entry),
280 RISCV_ELF_DATA))
281 {
282 free (ret);
283 return NULL;
284 }
285
286 ret->max_alignment = (bfd_vma) -1;
287 return &ret->elf.root;
288 }
289
290 /* Create the .got section. */
291
292 static bfd_boolean
293 riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
294 {
295 flagword flags;
296 asection *s, *s_got;
297 struct elf_link_hash_entry *h;
298 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
299 struct elf_link_hash_table *htab = elf_hash_table (info);
300
301 /* This function may be called more than once. */
302 if (htab->sgot != NULL)
303 return TRUE;
304
305 flags = bed->dynamic_sec_flags;
306
307 s = bfd_make_section_anyway_with_flags (abfd,
308 (bed->rela_plts_and_copies_p
309 ? ".rela.got" : ".rel.got"),
310 (bed->dynamic_sec_flags
311 | SEC_READONLY));
312 if (s == NULL
313 || !bfd_set_section_alignment (s, bed->s->log_file_align))
314 return FALSE;
315 htab->srelgot = s;
316
317 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
318 if (s == NULL
319 || !bfd_set_section_alignment (s, bed->s->log_file_align))
320 return FALSE;
321 htab->sgot = s;
322
323 /* The first bit of the global offset table is the header. */
324 s->size += bed->got_header_size;
325
326 if (bed->want_got_plt)
327 {
328 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
329 if (s == NULL
330 || !bfd_set_section_alignment (s, bed->s->log_file_align))
331 return FALSE;
332 htab->sgotplt = s;
333
334 /* Reserve room for the header. */
335 s->size += GOTPLT_HEADER_SIZE;
336 }
337
338 if (bed->want_got_sym)
339 {
340 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
341 section. We don't do this in the linker script because we don't want
342 to define the symbol if we are not creating a global offset
343 table. */
344 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
345 "_GLOBAL_OFFSET_TABLE_");
346 elf_hash_table (info)->hgot = h;
347 if (h == NULL)
348 return FALSE;
349 }
350
351 return TRUE;
352 }
353
354 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
355 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
356 hash table. */
357
358 static bfd_boolean
359 riscv_elf_create_dynamic_sections (bfd *dynobj,
360 struct bfd_link_info *info)
361 {
362 struct riscv_elf_link_hash_table *htab;
363
364 htab = riscv_elf_hash_table (info);
365 BFD_ASSERT (htab != NULL);
366
367 if (!riscv_elf_create_got_section (dynobj, info))
368 return FALSE;
369
370 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
371 return FALSE;
372
373 if (!bfd_link_pic (info))
374 {
375 /* Technically, this section doesn't have contents. It is used as the
376 target of TLS copy relocs, to copy TLS data from shared libraries into
377 the executable. However, if we don't mark it as loadable, then it
378 matches the IS_TBSS test in ldlang.c, and there is no run-time address
379 space allocated for it even though it has SEC_ALLOC. That test is
380 correct for .tbss, but not correct for this section. There is also
381 a second problem that having a section with no contents can only work
382 if it comes after all sections with contents in the same segment,
383 but the linker script does not guarantee that. This is just mixed in
384 with other .tdata.* sections. We can fix both problems by lying and
385 saying that there are contents. This section is expected to be small
386 so this should not cause a significant extra program startup cost. */
387 htab->sdyntdata =
388 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
389 (SEC_ALLOC | SEC_THREAD_LOCAL
390 | SEC_LOAD | SEC_DATA
391 | SEC_HAS_CONTENTS
392 | SEC_LINKER_CREATED));
393 }
394
395 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
396 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
397 abort ();
398
399 return TRUE;
400 }
401
402 /* Copy the extra info we tack onto an elf_link_hash_entry. */
403
404 static void
405 riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
406 struct elf_link_hash_entry *dir,
407 struct elf_link_hash_entry *ind)
408 {
409 struct riscv_elf_link_hash_entry *edir, *eind;
410
411 edir = (struct riscv_elf_link_hash_entry *) dir;
412 eind = (struct riscv_elf_link_hash_entry *) ind;
413
414 if (eind->dyn_relocs != NULL)
415 {
416 if (edir->dyn_relocs != NULL)
417 {
418 struct elf_dyn_relocs **pp;
419 struct elf_dyn_relocs *p;
420
421 /* Add reloc counts against the indirect sym to the direct sym
422 list. Merge any entries against the same section. */
423 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
424 {
425 struct elf_dyn_relocs *q;
426
427 for (q = edir->dyn_relocs; q != NULL; q = q->next)
428 if (q->sec == p->sec)
429 {
430 q->pc_count += p->pc_count;
431 q->count += p->count;
432 *pp = p->next;
433 break;
434 }
435 if (q == NULL)
436 pp = &p->next;
437 }
438 *pp = edir->dyn_relocs;
439 }
440
441 edir->dyn_relocs = eind->dyn_relocs;
442 eind->dyn_relocs = NULL;
443 }
444
445 if (ind->root.type == bfd_link_hash_indirect
446 && dir->got.refcount <= 0)
447 {
448 edir->tls_type = eind->tls_type;
449 eind->tls_type = GOT_UNKNOWN;
450 }
451 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
452 }
453
454 static bfd_boolean
455 riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
456 unsigned long symndx, char tls_type)
457 {
458 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
459
460 *new_tls_type |= tls_type;
461 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
462 {
463 (*_bfd_error_handler)
464 (_("%pB: `%s' accessed both as normal and thread local symbol"),
465 abfd, h ? h->root.root.string : "<local>");
466 return FALSE;
467 }
468 return TRUE;
469 }
470
471 static bfd_boolean
472 riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
473 struct elf_link_hash_entry *h, long symndx)
474 {
475 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
476 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
477
478 if (htab->elf.sgot == NULL)
479 {
480 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
481 return FALSE;
482 }
483
484 if (h != NULL)
485 {
486 h->got.refcount += 1;
487 return TRUE;
488 }
489
490 /* This is a global offset table entry for a local symbol. */
491 if (elf_local_got_refcounts (abfd) == NULL)
492 {
493 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
494 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
495 return FALSE;
496 _bfd_riscv_elf_local_got_tls_type (abfd)
497 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
498 }
499 elf_local_got_refcounts (abfd) [symndx] += 1;
500
501 return TRUE;
502 }
503
504 static bfd_boolean
505 bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
506 {
507 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
508
509 (*_bfd_error_handler)
510 (_("%pB: relocation %s against `%s' can not be used when making a shared "
511 "object; recompile with -fPIC"),
512 abfd, r ? r->name : _("<unknown>"),
513 h != NULL ? h->root.root.string : "a local symbol");
514 bfd_set_error (bfd_error_bad_value);
515 return FALSE;
516 }
517 /* Look through the relocs for a section during the first phase, and
518 allocate space in the global offset table or procedure linkage
519 table. */
520
521 static bfd_boolean
522 riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
523 asection *sec, const Elf_Internal_Rela *relocs)
524 {
525 struct riscv_elf_link_hash_table *htab;
526 Elf_Internal_Shdr *symtab_hdr;
527 struct elf_link_hash_entry **sym_hashes;
528 const Elf_Internal_Rela *rel;
529 asection *sreloc = NULL;
530
531 if (bfd_link_relocatable (info))
532 return TRUE;
533
534 htab = riscv_elf_hash_table (info);
535 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
536 sym_hashes = elf_sym_hashes (abfd);
537
538 if (htab->elf.dynobj == NULL)
539 htab->elf.dynobj = abfd;
540
541 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
542 {
543 unsigned int r_type;
544 unsigned int r_symndx;
545 struct elf_link_hash_entry *h;
546
547 r_symndx = ELFNN_R_SYM (rel->r_info);
548 r_type = ELFNN_R_TYPE (rel->r_info);
549
550 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
551 {
552 (*_bfd_error_handler) (_("%pB: bad symbol index: %d"),
553 abfd, r_symndx);
554 return FALSE;
555 }
556
557 if (r_symndx < symtab_hdr->sh_info)
558 h = NULL;
559 else
560 {
561 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
562 while (h->root.type == bfd_link_hash_indirect
563 || h->root.type == bfd_link_hash_warning)
564 h = (struct elf_link_hash_entry *) h->root.u.i.link;
565 }
566
567 switch (r_type)
568 {
569 case R_RISCV_TLS_GD_HI20:
570 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
571 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
572 return FALSE;
573 break;
574
575 case R_RISCV_TLS_GOT_HI20:
576 if (bfd_link_pic (info))
577 info->flags |= DF_STATIC_TLS;
578 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
579 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
580 return FALSE;
581 break;
582
583 case R_RISCV_GOT_HI20:
584 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
585 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
586 return FALSE;
587 break;
588
589 case R_RISCV_CALL_PLT:
590 /* This symbol requires a procedure linkage table entry. We
591 actually build the entry in adjust_dynamic_symbol,
592 because this might be a case of linking PIC code without
593 linking in any dynamic objects, in which case we don't
594 need to generate a procedure linkage table after all. */
595
596 if (h != NULL)
597 {
598 h->needs_plt = 1;
599 h->plt.refcount += 1;
600 }
601 break;
602
603 case R_RISCV_CALL:
604 case R_RISCV_JAL:
605 case R_RISCV_BRANCH:
606 case R_RISCV_RVC_BRANCH:
607 case R_RISCV_RVC_JUMP:
608 case R_RISCV_PCREL_HI20:
609 /* In shared libraries, these relocs are known to bind locally. */
610 if (bfd_link_pic (info))
611 break;
612 goto static_reloc;
613
614 case R_RISCV_TPREL_HI20:
615 if (!bfd_link_executable (info))
616 return bad_static_reloc (abfd, r_type, h);
617 if (h != NULL)
618 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
619 goto static_reloc;
620
621 case R_RISCV_HI20:
622 if (bfd_link_pic (info))
623 return bad_static_reloc (abfd, r_type, h);
624 /* Fall through. */
625
626 case R_RISCV_COPY:
627 case R_RISCV_JUMP_SLOT:
628 case R_RISCV_RELATIVE:
629 case R_RISCV_64:
630 case R_RISCV_32:
631 /* Fall through. */
632
633 static_reloc:
634 /* This reloc might not bind locally. */
635 if (h != NULL)
636 h->non_got_ref = 1;
637
638 if (h != NULL && !bfd_link_pic (info))
639 {
640 /* We may need a .plt entry if the function this reloc
641 refers to is in a shared lib. */
642 h->plt.refcount += 1;
643 }
644
645 /* If we are creating a shared library, and this is a reloc
646 against a global symbol, or a non PC relative reloc
647 against a local symbol, then we need to copy the reloc
648 into the shared library. However, if we are linking with
649 -Bsymbolic, we do not need to copy a reloc against a
650 global symbol which is defined in an object we are
651 including in the link (i.e., DEF_REGULAR is set). At
652 this point we have not seen all the input files, so it is
653 possible that DEF_REGULAR is not set now but will be set
654 later (it is never cleared). In case of a weak definition,
655 DEF_REGULAR may be cleared later by a strong definition in
656 a shared library. We account for that possibility below by
657 storing information in the relocs_copied field of the hash
658 table entry. A similar situation occurs when creating
659 shared libraries and symbol visibility changes render the
660 symbol local.
661
662 If on the other hand, we are creating an executable, we
663 may need to keep relocations for symbols satisfied by a
664 dynamic library if we manage to avoid copy relocs for the
665 symbol. */
666 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
667
668 if ((bfd_link_pic (info)
669 && (sec->flags & SEC_ALLOC) != 0
670 && ((r != NULL && ! r->pc_relative)
671 || (h != NULL
672 && (! info->symbolic
673 || h->root.type == bfd_link_hash_defweak
674 || !h->def_regular))))
675 || (!bfd_link_pic (info)
676 && (sec->flags & SEC_ALLOC) != 0
677 && h != NULL
678 && (h->root.type == bfd_link_hash_defweak
679 || !h->def_regular)))
680 {
681 struct elf_dyn_relocs *p;
682 struct elf_dyn_relocs **head;
683
684 /* When creating a shared object, we must copy these
685 relocs into the output file. We create a reloc
686 section in dynobj and make room for the reloc. */
687 if (sreloc == NULL)
688 {
689 sreloc = _bfd_elf_make_dynamic_reloc_section
690 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
691 abfd, /*rela?*/ TRUE);
692
693 if (sreloc == NULL)
694 return FALSE;
695 }
696
697 /* If this is a global symbol, we count the number of
698 relocations we need for this symbol. */
699 if (h != NULL)
700 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
701 else
702 {
703 /* Track dynamic relocs needed for local syms too.
704 We really need local syms available to do this
705 easily. Oh well. */
706
707 asection *s;
708 void *vpp;
709 Elf_Internal_Sym *isym;
710
711 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
712 abfd, r_symndx);
713 if (isym == NULL)
714 return FALSE;
715
716 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
717 if (s == NULL)
718 s = sec;
719
720 vpp = &elf_section_data (s)->local_dynrel;
721 head = (struct elf_dyn_relocs **) vpp;
722 }
723
724 p = *head;
725 if (p == NULL || p->sec != sec)
726 {
727 bfd_size_type amt = sizeof *p;
728 p = ((struct elf_dyn_relocs *)
729 bfd_alloc (htab->elf.dynobj, amt));
730 if (p == NULL)
731 return FALSE;
732 p->next = *head;
733 *head = p;
734 p->sec = sec;
735 p->count = 0;
736 p->pc_count = 0;
737 }
738
739 p->count += 1;
740 p->pc_count += r == NULL ? 0 : r->pc_relative;
741 }
742
743 break;
744
745 case R_RISCV_GNU_VTINHERIT:
746 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
747 return FALSE;
748 break;
749
750 case R_RISCV_GNU_VTENTRY:
751 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
752 return FALSE;
753 break;
754
755 default:
756 break;
757 }
758 }
759
760 return TRUE;
761 }
762
763 static asection *
764 riscv_elf_gc_mark_hook (asection *sec,
765 struct bfd_link_info *info,
766 Elf_Internal_Rela *rel,
767 struct elf_link_hash_entry *h,
768 Elf_Internal_Sym *sym)
769 {
770 if (h != NULL)
771 switch (ELFNN_R_TYPE (rel->r_info))
772 {
773 case R_RISCV_GNU_VTINHERIT:
774 case R_RISCV_GNU_VTENTRY:
775 return NULL;
776 }
777
778 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
779 }
780
781 /* Find dynamic relocs for H that apply to read-only sections. */
782
783 static asection *
784 readonly_dynrelocs (struct elf_link_hash_entry *h)
785 {
786 struct elf_dyn_relocs *p;
787
788 for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
789 {
790 asection *s = p->sec->output_section;
791
792 if (s != NULL && (s->flags & SEC_READONLY) != 0)
793 return p->sec;
794 }
795 return NULL;
796 }
797
798 /* Adjust a symbol defined by a dynamic object and referenced by a
799 regular object. The current definition is in some section of the
800 dynamic object, but we're not including those sections. We have to
801 change the definition to something the rest of the link can
802 understand. */
803
804 static bfd_boolean
805 riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
806 struct elf_link_hash_entry *h)
807 {
808 struct riscv_elf_link_hash_table *htab;
809 struct riscv_elf_link_hash_entry * eh;
810 bfd *dynobj;
811 asection *s, *srel;
812
813 htab = riscv_elf_hash_table (info);
814 BFD_ASSERT (htab != NULL);
815
816 dynobj = htab->elf.dynobj;
817
818 /* Make sure we know what is going on here. */
819 BFD_ASSERT (dynobj != NULL
820 && (h->needs_plt
821 || h->type == STT_GNU_IFUNC
822 || h->is_weakalias
823 || (h->def_dynamic
824 && h->ref_regular
825 && !h->def_regular)));
826
827 /* If this is a function, put it in the procedure linkage table. We
828 will fill in the contents of the procedure linkage table later
829 (although we could actually do it here). */
830 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
831 {
832 if (h->plt.refcount <= 0
833 || SYMBOL_CALLS_LOCAL (info, h)
834 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
835 && h->root.type == bfd_link_hash_undefweak))
836 {
837 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
838 input file, but the symbol was never referred to by a dynamic
839 object, or if all references were garbage collected. In such
840 a case, we don't actually need to build a PLT entry. */
841 h->plt.offset = (bfd_vma) -1;
842 h->needs_plt = 0;
843 }
844
845 return TRUE;
846 }
847 else
848 h->plt.offset = (bfd_vma) -1;
849
850 /* If this is a weak symbol, and there is a real definition, the
851 processor independent code will have arranged for us to see the
852 real definition first, and we can just use the same value. */
853 if (h->is_weakalias)
854 {
855 struct elf_link_hash_entry *def = weakdef (h);
856 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
857 h->root.u.def.section = def->root.u.def.section;
858 h->root.u.def.value = def->root.u.def.value;
859 return TRUE;
860 }
861
862 /* This is a reference to a symbol defined by a dynamic object which
863 is not a function. */
864
865 /* If we are creating a shared library, we must presume that the
866 only references to the symbol are via the global offset table.
867 For such cases we need not do anything here; the relocations will
868 be handled correctly by relocate_section. */
869 if (bfd_link_pic (info))
870 return TRUE;
871
872 /* If there are no references to this symbol that do not use the
873 GOT, we don't need to generate a copy reloc. */
874 if (!h->non_got_ref)
875 return TRUE;
876
877 /* If -z nocopyreloc was given, we won't generate them either. */
878 if (info->nocopyreloc)
879 {
880 h->non_got_ref = 0;
881 return TRUE;
882 }
883
884 /* If we don't find any dynamic relocs in read-only sections, then
885 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
886 if (!readonly_dynrelocs (h))
887 {
888 h->non_got_ref = 0;
889 return TRUE;
890 }
891
892 /* We must allocate the symbol in our .dynbss section, which will
893 become part of the .bss section of the executable. There will be
894 an entry for this symbol in the .dynsym section. The dynamic
895 object will contain position independent code, so all references
896 from the dynamic object to this symbol will go through the global
897 offset table. The dynamic linker will use the .dynsym entry to
898 determine the address it must put in the global offset table, so
899 both the dynamic object and the regular object will refer to the
900 same memory location for the variable. */
901
902 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
903 to copy the initial value out of the dynamic object and into the
904 runtime process image. We need to remember the offset into the
905 .rel.bss section we are going to use. */
906 eh = (struct riscv_elf_link_hash_entry *) h;
907 if (eh->tls_type & ~GOT_NORMAL)
908 {
909 s = htab->sdyntdata;
910 srel = htab->elf.srelbss;
911 }
912 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
913 {
914 s = htab->elf.sdynrelro;
915 srel = htab->elf.sreldynrelro;
916 }
917 else
918 {
919 s = htab->elf.sdynbss;
920 srel = htab->elf.srelbss;
921 }
922 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
923 {
924 srel->size += sizeof (ElfNN_External_Rela);
925 h->needs_copy = 1;
926 }
927
928 return _bfd_elf_adjust_dynamic_copy (info, h, s);
929 }
930
931 /* Allocate space in .plt, .got and associated reloc sections for
932 dynamic relocs. */
933
934 static bfd_boolean
935 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
936 {
937 struct bfd_link_info *info;
938 struct riscv_elf_link_hash_table *htab;
939 struct riscv_elf_link_hash_entry *eh;
940 struct elf_dyn_relocs *p;
941
942 if (h->root.type == bfd_link_hash_indirect)
943 return TRUE;
944
945 info = (struct bfd_link_info *) inf;
946 htab = riscv_elf_hash_table (info);
947 BFD_ASSERT (htab != NULL);
948
949 if (htab->elf.dynamic_sections_created
950 && h->plt.refcount > 0)
951 {
952 /* Make sure this symbol is output as a dynamic symbol.
953 Undefined weak syms won't yet be marked as dynamic. */
954 if (h->dynindx == -1
955 && !h->forced_local)
956 {
957 if (! bfd_elf_link_record_dynamic_symbol (info, h))
958 return FALSE;
959 }
960
961 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
962 {
963 asection *s = htab->elf.splt;
964
965 if (s->size == 0)
966 s->size = PLT_HEADER_SIZE;
967
968 h->plt.offset = s->size;
969
970 /* Make room for this entry. */
971 s->size += PLT_ENTRY_SIZE;
972
973 /* We also need to make an entry in the .got.plt section. */
974 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
975
976 /* We also need to make an entry in the .rela.plt section. */
977 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
978
979 /* If this symbol is not defined in a regular file, and we are
980 not generating a shared library, then set the symbol to this
981 location in the .plt. This is required to make function
982 pointers compare as equal between the normal executable and
983 the shared library. */
984 if (! bfd_link_pic (info)
985 && !h->def_regular)
986 {
987 h->root.u.def.section = s;
988 h->root.u.def.value = h->plt.offset;
989 }
990 }
991 else
992 {
993 h->plt.offset = (bfd_vma) -1;
994 h->needs_plt = 0;
995 }
996 }
997 else
998 {
999 h->plt.offset = (bfd_vma) -1;
1000 h->needs_plt = 0;
1001 }
1002
1003 if (h->got.refcount > 0)
1004 {
1005 asection *s;
1006 bfd_boolean dyn;
1007 int tls_type = riscv_elf_hash_entry (h)->tls_type;
1008
1009 /* Make sure this symbol is output as a dynamic symbol.
1010 Undefined weak syms won't yet be marked as dynamic. */
1011 if (h->dynindx == -1
1012 && !h->forced_local)
1013 {
1014 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1015 return FALSE;
1016 }
1017
1018 s = htab->elf.sgot;
1019 h->got.offset = s->size;
1020 dyn = htab->elf.dynamic_sections_created;
1021 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
1022 {
1023 /* TLS_GD needs two dynamic relocs and two GOT slots. */
1024 if (tls_type & GOT_TLS_GD)
1025 {
1026 s->size += 2 * RISCV_ELF_WORD_BYTES;
1027 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
1028 }
1029
1030 /* TLS_IE needs one dynamic reloc and one GOT slot. */
1031 if (tls_type & GOT_TLS_IE)
1032 {
1033 s->size += RISCV_ELF_WORD_BYTES;
1034 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1035 }
1036 }
1037 else
1038 {
1039 s->size += RISCV_ELF_WORD_BYTES;
1040 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
1041 && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
1042 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1043 }
1044 }
1045 else
1046 h->got.offset = (bfd_vma) -1;
1047
1048 eh = (struct riscv_elf_link_hash_entry *) h;
1049 if (eh->dyn_relocs == NULL)
1050 return TRUE;
1051
1052 /* In the shared -Bsymbolic case, discard space allocated for
1053 dynamic pc-relative relocs against symbols which turn out to be
1054 defined in regular objects. For the normal shared case, discard
1055 space for pc-relative relocs that have become local due to symbol
1056 visibility changes. */
1057
1058 if (bfd_link_pic (info))
1059 {
1060 if (SYMBOL_CALLS_LOCAL (info, h))
1061 {
1062 struct elf_dyn_relocs **pp;
1063
1064 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1065 {
1066 p->count -= p->pc_count;
1067 p->pc_count = 0;
1068 if (p->count == 0)
1069 *pp = p->next;
1070 else
1071 pp = &p->next;
1072 }
1073 }
1074
1075 /* Also discard relocs on undefined weak syms with non-default
1076 visibility. */
1077 if (eh->dyn_relocs != NULL
1078 && h->root.type == bfd_link_hash_undefweak)
1079 {
1080 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1081 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
1082 eh->dyn_relocs = NULL;
1083
1084 /* Make sure undefined weak symbols are output as a dynamic
1085 symbol in PIEs. */
1086 else if (h->dynindx == -1
1087 && !h->forced_local)
1088 {
1089 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1090 return FALSE;
1091 }
1092 }
1093 }
1094 else
1095 {
1096 /* For the non-shared case, discard space for relocs against
1097 symbols which turn out to need copy relocs or are not
1098 dynamic. */
1099
1100 if (!h->non_got_ref
1101 && ((h->def_dynamic
1102 && !h->def_regular)
1103 || (htab->elf.dynamic_sections_created
1104 && (h->root.type == bfd_link_hash_undefweak
1105 || h->root.type == bfd_link_hash_undefined))))
1106 {
1107 /* Make sure this symbol is output as a dynamic symbol.
1108 Undefined weak syms won't yet be marked as dynamic. */
1109 if (h->dynindx == -1
1110 && !h->forced_local)
1111 {
1112 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1113 return FALSE;
1114 }
1115
1116 /* If that succeeded, we know we'll be keeping all the
1117 relocs. */
1118 if (h->dynindx != -1)
1119 goto keep;
1120 }
1121
1122 eh->dyn_relocs = NULL;
1123
1124 keep: ;
1125 }
1126
1127 /* Finally, allocate space. */
1128 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1129 {
1130 asection *sreloc = elf_section_data (p->sec)->sreloc;
1131 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1132 }
1133
1134 return TRUE;
1135 }
1136
1137 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
1138 read-only sections. */
1139
1140 static bfd_boolean
1141 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
1142 {
1143 asection *sec;
1144
1145 if (h->root.type == bfd_link_hash_indirect)
1146 return TRUE;
1147
1148 sec = readonly_dynrelocs (h);
1149 if (sec != NULL)
1150 {
1151 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
1152
1153 info->flags |= DF_TEXTREL;
1154 info->callbacks->minfo
1155 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
1156 sec->owner, h->root.root.string, sec);
1157
1158 /* Not an error, just cut short the traversal. */
1159 return FALSE;
1160 }
1161 return TRUE;
1162 }
1163
1164 static bfd_boolean
1165 riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1166 {
1167 struct riscv_elf_link_hash_table *htab;
1168 bfd *dynobj;
1169 asection *s;
1170 bfd *ibfd;
1171
1172 htab = riscv_elf_hash_table (info);
1173 BFD_ASSERT (htab != NULL);
1174 dynobj = htab->elf.dynobj;
1175 BFD_ASSERT (dynobj != NULL);
1176
1177 if (elf_hash_table (info)->dynamic_sections_created)
1178 {
1179 /* Set the contents of the .interp section to the interpreter. */
1180 if (bfd_link_executable (info) && !info->nointerp)
1181 {
1182 s = bfd_get_linker_section (dynobj, ".interp");
1183 BFD_ASSERT (s != NULL);
1184 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1185 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1186 }
1187 }
1188
1189 /* Set up .got offsets for local syms, and space for local dynamic
1190 relocs. */
1191 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1192 {
1193 bfd_signed_vma *local_got;
1194 bfd_signed_vma *end_local_got;
1195 char *local_tls_type;
1196 bfd_size_type locsymcount;
1197 Elf_Internal_Shdr *symtab_hdr;
1198 asection *srel;
1199
1200 if (! is_riscv_elf (ibfd))
1201 continue;
1202
1203 for (s = ibfd->sections; s != NULL; s = s->next)
1204 {
1205 struct elf_dyn_relocs *p;
1206
1207 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1208 {
1209 if (!bfd_is_abs_section (p->sec)
1210 && bfd_is_abs_section (p->sec->output_section))
1211 {
1212 /* Input section has been discarded, either because
1213 it is a copy of a linkonce section or due to
1214 linker script /DISCARD/, so we'll be discarding
1215 the relocs too. */
1216 }
1217 else if (p->count != 0)
1218 {
1219 srel = elf_section_data (p->sec)->sreloc;
1220 srel->size += p->count * sizeof (ElfNN_External_Rela);
1221 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1222 info->flags |= DF_TEXTREL;
1223 }
1224 }
1225 }
1226
1227 local_got = elf_local_got_refcounts (ibfd);
1228 if (!local_got)
1229 continue;
1230
1231 symtab_hdr = &elf_symtab_hdr (ibfd);
1232 locsymcount = symtab_hdr->sh_info;
1233 end_local_got = local_got + locsymcount;
1234 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1235 s = htab->elf.sgot;
1236 srel = htab->elf.srelgot;
1237 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1238 {
1239 if (*local_got > 0)
1240 {
1241 *local_got = s->size;
1242 s->size += RISCV_ELF_WORD_BYTES;
1243 if (*local_tls_type & GOT_TLS_GD)
1244 s->size += RISCV_ELF_WORD_BYTES;
1245 if (bfd_link_pic (info)
1246 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1247 srel->size += sizeof (ElfNN_External_Rela);
1248 }
1249 else
1250 *local_got = (bfd_vma) -1;
1251 }
1252 }
1253
1254 /* Allocate global sym .plt and .got entries, and space for global
1255 sym dynamic relocs. */
1256 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1257
1258 if (htab->elf.sgotplt)
1259 {
1260 struct elf_link_hash_entry *got;
1261 got = elf_link_hash_lookup (elf_hash_table (info),
1262 "_GLOBAL_OFFSET_TABLE_",
1263 FALSE, FALSE, FALSE);
1264
1265 /* Don't allocate .got.plt section if there are no GOT nor PLT
1266 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1267 if ((got == NULL
1268 || !got->ref_regular_nonweak)
1269 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1270 && (htab->elf.splt == NULL
1271 || htab->elf.splt->size == 0)
1272 && (htab->elf.sgot == NULL
1273 || (htab->elf.sgot->size
1274 == get_elf_backend_data (output_bfd)->got_header_size)))
1275 htab->elf.sgotplt->size = 0;
1276 }
1277
1278 /* The check_relocs and adjust_dynamic_symbol entry points have
1279 determined the sizes of the various dynamic sections. Allocate
1280 memory for them. */
1281 for (s = dynobj->sections; s != NULL; s = s->next)
1282 {
1283 if ((s->flags & SEC_LINKER_CREATED) == 0)
1284 continue;
1285
1286 if (s == htab->elf.splt
1287 || s == htab->elf.sgot
1288 || s == htab->elf.sgotplt
1289 || s == htab->elf.sdynbss
1290 || s == htab->elf.sdynrelro
1291 || s == htab->sdyntdata)
1292 {
1293 /* Strip this section if we don't need it; see the
1294 comment below. */
1295 }
1296 else if (strncmp (s->name, ".rela", 5) == 0)
1297 {
1298 if (s->size != 0)
1299 {
1300 /* We use the reloc_count field as a counter if we need
1301 to copy relocs into the output file. */
1302 s->reloc_count = 0;
1303 }
1304 }
1305 else
1306 {
1307 /* It's not one of our sections. */
1308 continue;
1309 }
1310
1311 if (s->size == 0)
1312 {
1313 /* If we don't need this section, strip it from the
1314 output file. This is mostly to handle .rela.bss and
1315 .rela.plt. We must create both sections in
1316 create_dynamic_sections, because they must be created
1317 before the linker maps input sections to output
1318 sections. The linker does that before
1319 adjust_dynamic_symbol is called, and it is that
1320 function which decides whether anything needs to go
1321 into these sections. */
1322 s->flags |= SEC_EXCLUDE;
1323 continue;
1324 }
1325
1326 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1327 continue;
1328
1329 /* Allocate memory for the section contents. Zero the memory
1330 for the benefit of .rela.plt, which has 4 unused entries
1331 at the beginning, and we don't want garbage. */
1332 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1333 if (s->contents == NULL)
1334 return FALSE;
1335 }
1336
1337 if (elf_hash_table (info)->dynamic_sections_created)
1338 {
1339 /* Add some entries to the .dynamic section. We fill in the
1340 values later, in riscv_elf_finish_dynamic_sections, but we
1341 must add the entries now so that we get the correct size for
1342 the .dynamic section. The DT_DEBUG entry is filled in by the
1343 dynamic linker and used by the debugger. */
1344 #define add_dynamic_entry(TAG, VAL) \
1345 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1346
1347 if (bfd_link_executable (info))
1348 {
1349 if (!add_dynamic_entry (DT_DEBUG, 0))
1350 return FALSE;
1351 }
1352
1353 if (htab->elf.srelplt->size != 0)
1354 {
1355 if (!add_dynamic_entry (DT_PLTGOT, 0)
1356 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1357 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1358 || !add_dynamic_entry (DT_JMPREL, 0))
1359 return FALSE;
1360 }
1361
1362 if (!add_dynamic_entry (DT_RELA, 0)
1363 || !add_dynamic_entry (DT_RELASZ, 0)
1364 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1365 return FALSE;
1366
1367 /* If any dynamic relocs apply to a read-only section,
1368 then we need a DT_TEXTREL entry. */
1369 if ((info->flags & DF_TEXTREL) == 0)
1370 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
1371
1372 if (info->flags & DF_TEXTREL)
1373 {
1374 if (!add_dynamic_entry (DT_TEXTREL, 0))
1375 return FALSE;
1376 }
1377 }
1378 #undef add_dynamic_entry
1379
1380 return TRUE;
1381 }
1382
1383 #define TP_OFFSET 0
1384 #define DTP_OFFSET 0x800
1385
1386 /* Return the relocation value for a TLS dtp-relative reloc. */
1387
1388 static bfd_vma
1389 dtpoff (struct bfd_link_info *info, bfd_vma address)
1390 {
1391 /* If tls_sec is NULL, we should have signalled an error already. */
1392 if (elf_hash_table (info)->tls_sec == NULL)
1393 return 0;
1394 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1395 }
1396
1397 /* Return the relocation value for a static TLS tp-relative relocation. */
1398
1399 static bfd_vma
1400 tpoff (struct bfd_link_info *info, bfd_vma address)
1401 {
1402 /* If tls_sec is NULL, we should have signalled an error already. */
1403 if (elf_hash_table (info)->tls_sec == NULL)
1404 return 0;
1405 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1406 }
1407
1408 /* Return the global pointer's value, or 0 if it is not in use. */
1409
1410 static bfd_vma
1411 riscv_global_pointer_value (struct bfd_link_info *info)
1412 {
1413 struct bfd_link_hash_entry *h;
1414
1415 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
1416 if (h == NULL || h->type != bfd_link_hash_defined)
1417 return 0;
1418
1419 return h->u.def.value + sec_addr (h->u.def.section);
1420 }
1421
1422 /* Emplace a static relocation. */
1423
1424 static bfd_reloc_status_type
1425 perform_relocation (const reloc_howto_type *howto,
1426 const Elf_Internal_Rela *rel,
1427 bfd_vma value,
1428 asection *input_section,
1429 bfd *input_bfd,
1430 bfd_byte *contents)
1431 {
1432 if (howto->pc_relative)
1433 value -= sec_addr (input_section) + rel->r_offset;
1434 value += rel->r_addend;
1435
1436 switch (ELFNN_R_TYPE (rel->r_info))
1437 {
1438 case R_RISCV_HI20:
1439 case R_RISCV_TPREL_HI20:
1440 case R_RISCV_PCREL_HI20:
1441 case R_RISCV_GOT_HI20:
1442 case R_RISCV_TLS_GOT_HI20:
1443 case R_RISCV_TLS_GD_HI20:
1444 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1445 return bfd_reloc_overflow;
1446 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1447 break;
1448
1449 case R_RISCV_LO12_I:
1450 case R_RISCV_GPREL_I:
1451 case R_RISCV_TPREL_LO12_I:
1452 case R_RISCV_TPREL_I:
1453 case R_RISCV_PCREL_LO12_I:
1454 value = ENCODE_ITYPE_IMM (value);
1455 break;
1456
1457 case R_RISCV_LO12_S:
1458 case R_RISCV_GPREL_S:
1459 case R_RISCV_TPREL_LO12_S:
1460 case R_RISCV_TPREL_S:
1461 case R_RISCV_PCREL_LO12_S:
1462 value = ENCODE_STYPE_IMM (value);
1463 break;
1464
1465 case R_RISCV_CALL:
1466 case R_RISCV_CALL_PLT:
1467 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1468 return bfd_reloc_overflow;
1469 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1470 | (ENCODE_ITYPE_IMM (value) << 32);
1471 break;
1472
1473 case R_RISCV_JAL:
1474 if (!VALID_UJTYPE_IMM (value))
1475 return bfd_reloc_overflow;
1476 value = ENCODE_UJTYPE_IMM (value);
1477 break;
1478
1479 case R_RISCV_BRANCH:
1480 if (!VALID_SBTYPE_IMM (value))
1481 return bfd_reloc_overflow;
1482 value = ENCODE_SBTYPE_IMM (value);
1483 break;
1484
1485 case R_RISCV_RVC_BRANCH:
1486 if (!VALID_RVC_B_IMM (value))
1487 return bfd_reloc_overflow;
1488 value = ENCODE_RVC_B_IMM (value);
1489 break;
1490
1491 case R_RISCV_RVC_JUMP:
1492 if (!VALID_RVC_J_IMM (value))
1493 return bfd_reloc_overflow;
1494 value = ENCODE_RVC_J_IMM (value);
1495 break;
1496
1497 case R_RISCV_RVC_LUI:
1498 if (RISCV_CONST_HIGH_PART (value) == 0)
1499 {
1500 /* Linker relaxation can convert an address equal to or greater than
1501 0x800 to slightly below 0x800. C.LUI does not accept zero as a
1502 valid immediate. We can fix this by converting it to a C.LI. */
1503 bfd_vma insn = bfd_get (howto->bitsize, input_bfd,
1504 contents + rel->r_offset);
1505 insn = (insn & ~MATCH_C_LUI) | MATCH_C_LI;
1506 bfd_put (howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1507 value = ENCODE_RVC_IMM (0);
1508 }
1509 else if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1510 return bfd_reloc_overflow;
1511 else
1512 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1513 break;
1514
1515 case R_RISCV_32:
1516 case R_RISCV_64:
1517 case R_RISCV_ADD8:
1518 case R_RISCV_ADD16:
1519 case R_RISCV_ADD32:
1520 case R_RISCV_ADD64:
1521 case R_RISCV_SUB6:
1522 case R_RISCV_SUB8:
1523 case R_RISCV_SUB16:
1524 case R_RISCV_SUB32:
1525 case R_RISCV_SUB64:
1526 case R_RISCV_SET6:
1527 case R_RISCV_SET8:
1528 case R_RISCV_SET16:
1529 case R_RISCV_SET32:
1530 case R_RISCV_32_PCREL:
1531 case R_RISCV_TLS_DTPREL32:
1532 case R_RISCV_TLS_DTPREL64:
1533 break;
1534
1535 case R_RISCV_DELETE:
1536 return bfd_reloc_ok;
1537
1538 default:
1539 return bfd_reloc_notsupported;
1540 }
1541
1542 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1543 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1544 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1545
1546 return bfd_reloc_ok;
1547 }
1548
1549 /* Remember all PC-relative high-part relocs we've encountered to help us
1550 later resolve the corresponding low-part relocs. */
1551
1552 typedef struct
1553 {
1554 bfd_vma address;
1555 bfd_vma value;
1556 } riscv_pcrel_hi_reloc;
1557
1558 typedef struct riscv_pcrel_lo_reloc
1559 {
1560 asection * input_section;
1561 struct bfd_link_info * info;
1562 reloc_howto_type * howto;
1563 const Elf_Internal_Rela * reloc;
1564 bfd_vma addr;
1565 const char * name;
1566 bfd_byte * contents;
1567 struct riscv_pcrel_lo_reloc * next;
1568 } riscv_pcrel_lo_reloc;
1569
1570 typedef struct
1571 {
1572 htab_t hi_relocs;
1573 riscv_pcrel_lo_reloc *lo_relocs;
1574 } riscv_pcrel_relocs;
1575
1576 static hashval_t
1577 riscv_pcrel_reloc_hash (const void *entry)
1578 {
1579 const riscv_pcrel_hi_reloc *e = entry;
1580 return (hashval_t)(e->address >> 2);
1581 }
1582
1583 static bfd_boolean
1584 riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1585 {
1586 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1587 return e1->address == e2->address;
1588 }
1589
1590 static bfd_boolean
1591 riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1592 {
1593
1594 p->lo_relocs = NULL;
1595 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1596 riscv_pcrel_reloc_eq, free);
1597 return p->hi_relocs != NULL;
1598 }
1599
1600 static void
1601 riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1602 {
1603 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1604
1605 while (cur != NULL)
1606 {
1607 riscv_pcrel_lo_reloc *next = cur->next;
1608 free (cur);
1609 cur = next;
1610 }
1611
1612 htab_delete (p->hi_relocs);
1613 }
1614
1615 static bfd_boolean
1616 riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1617 struct bfd_link_info *info,
1618 bfd_vma pc,
1619 bfd_vma addr,
1620 bfd_byte *contents,
1621 const reloc_howto_type *howto,
1622 bfd *input_bfd)
1623 {
1624 /* We may need to reference low addreses in PC-relative modes even when the
1625 * PC is far away from these addresses. For example, undefweak references
1626 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1627 * addresses that we can link PC-relative programs at, the linker can't
1628 * actually relocate references to those symbols. In order to allow these
1629 * programs to work we simply convert the PC-relative auipc sequences to
1630 * 0-relative lui sequences. */
1631 if (bfd_link_pic (info))
1632 return FALSE;
1633
1634 /* If it's possible to reference the symbol using auipc we do so, as that's
1635 * more in the spirit of the PC-relative relocations we're processing. */
1636 bfd_vma offset = addr - pc;
1637 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1638 return FALSE;
1639
1640 /* If it's impossible to reference this with a LUI-based offset then don't
1641 * bother to convert it at all so users still see the PC-relative relocation
1642 * in the truncation message. */
1643 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1644 return FALSE;
1645
1646 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20);
1647
1648 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset);
1649 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1650 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1651 return TRUE;
1652 }
1653
1654 static bfd_boolean
1655 riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1656 bfd_vma value, bfd_boolean absolute)
1657 {
1658 bfd_vma offset = absolute ? value : value - addr;
1659 riscv_pcrel_hi_reloc entry = {addr, offset};
1660 riscv_pcrel_hi_reloc **slot =
1661 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1662
1663 BFD_ASSERT (*slot == NULL);
1664 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1665 if (*slot == NULL)
1666 return FALSE;
1667 **slot = entry;
1668 return TRUE;
1669 }
1670
1671 static bfd_boolean
1672 riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1673 asection *input_section,
1674 struct bfd_link_info *info,
1675 reloc_howto_type *howto,
1676 const Elf_Internal_Rela *reloc,
1677 bfd_vma addr,
1678 const char *name,
1679 bfd_byte *contents)
1680 {
1681 riscv_pcrel_lo_reloc *entry;
1682 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1683 if (entry == NULL)
1684 return FALSE;
1685 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1686 name, contents, p->lo_relocs};
1687 p->lo_relocs = entry;
1688 return TRUE;
1689 }
1690
1691 static bfd_boolean
1692 riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1693 {
1694 riscv_pcrel_lo_reloc *r;
1695
1696 for (r = p->lo_relocs; r != NULL; r = r->next)
1697 {
1698 bfd *input_bfd = r->input_section->owner;
1699
1700 riscv_pcrel_hi_reloc search = {r->addr, 0};
1701 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
1702 if (entry == NULL
1703 /* Check for overflow into bit 11 when adding reloc addend. */
1704 || (! (entry->value & 0x800)
1705 && ((entry->value + r->reloc->r_addend) & 0x800)))
1706 {
1707 char *string = (entry == NULL
1708 ? "%pcrel_lo missing matching %pcrel_hi"
1709 : "%pcrel_lo overflow with an addend");
1710 (*r->info->callbacks->reloc_dangerous)
1711 (r->info, string, input_bfd, r->input_section, r->reloc->r_offset);
1712 return TRUE;
1713 }
1714
1715 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1716 input_bfd, r->contents);
1717 }
1718
1719 return TRUE;
1720 }
1721
1722 /* Relocate a RISC-V ELF section.
1723
1724 The RELOCATE_SECTION function is called by the new ELF backend linker
1725 to handle the relocations for a section.
1726
1727 The relocs are always passed as Rela structures.
1728
1729 This function is responsible for adjusting the section contents as
1730 necessary, and (if generating a relocatable output file) adjusting
1731 the reloc addend as necessary.
1732
1733 This function does not have to worry about setting the reloc
1734 address or the reloc symbol index.
1735
1736 LOCAL_SYMS is a pointer to the swapped in local symbols.
1737
1738 LOCAL_SECTIONS is an array giving the section in the input file
1739 corresponding to the st_shndx field of each local symbol.
1740
1741 The global hash table entry for the global symbols can be found
1742 via elf_sym_hashes (input_bfd).
1743
1744 When generating relocatable output, this function must handle
1745 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1746 going to be the section symbol corresponding to the output
1747 section, which means that the addend must be adjusted
1748 accordingly. */
1749
1750 static bfd_boolean
1751 riscv_elf_relocate_section (bfd *output_bfd,
1752 struct bfd_link_info *info,
1753 bfd *input_bfd,
1754 asection *input_section,
1755 bfd_byte *contents,
1756 Elf_Internal_Rela *relocs,
1757 Elf_Internal_Sym *local_syms,
1758 asection **local_sections)
1759 {
1760 Elf_Internal_Rela *rel;
1761 Elf_Internal_Rela *relend;
1762 riscv_pcrel_relocs pcrel_relocs;
1763 bfd_boolean ret = FALSE;
1764 asection *sreloc = elf_section_data (input_section)->sreloc;
1765 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1766 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1767 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1768 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
1769 bfd_boolean absolute;
1770
1771 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1772 return FALSE;
1773
1774 relend = relocs + input_section->reloc_count;
1775 for (rel = relocs; rel < relend; rel++)
1776 {
1777 unsigned long r_symndx;
1778 struct elf_link_hash_entry *h;
1779 Elf_Internal_Sym *sym;
1780 asection *sec;
1781 bfd_vma relocation;
1782 bfd_reloc_status_type r = bfd_reloc_ok;
1783 const char *name;
1784 bfd_vma off, ie_off;
1785 bfd_boolean unresolved_reloc, is_ie = FALSE;
1786 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1787 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
1788 reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
1789 const char *msg = NULL;
1790 char *msg_buf = NULL;
1791 bfd_boolean resolved_to_zero;
1792
1793 if (howto == NULL
1794 || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
1795 continue;
1796
1797 /* This is a final link. */
1798 r_symndx = ELFNN_R_SYM (rel->r_info);
1799 h = NULL;
1800 sym = NULL;
1801 sec = NULL;
1802 unresolved_reloc = FALSE;
1803 if (r_symndx < symtab_hdr->sh_info)
1804 {
1805 sym = local_syms + r_symndx;
1806 sec = local_sections[r_symndx];
1807 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1808 }
1809 else
1810 {
1811 bfd_boolean warned, ignored;
1812
1813 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1814 r_symndx, symtab_hdr, sym_hashes,
1815 h, sec, relocation,
1816 unresolved_reloc, warned, ignored);
1817 if (warned)
1818 {
1819 /* To avoid generating warning messages about truncated
1820 relocations, set the relocation's address to be the same as
1821 the start of this section. */
1822 if (input_section->output_section != NULL)
1823 relocation = input_section->output_section->vma;
1824 else
1825 relocation = 0;
1826 }
1827 }
1828
1829 if (sec != NULL && discarded_section (sec))
1830 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1831 rel, 1, relend, howto, 0, contents);
1832
1833 if (bfd_link_relocatable (info))
1834 continue;
1835
1836 if (h != NULL)
1837 name = h->root.root.string;
1838 else
1839 {
1840 name = (bfd_elf_string_from_elf_section
1841 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1842 if (name == NULL || *name == '\0')
1843 name = bfd_section_name (sec);
1844 }
1845
1846 resolved_to_zero = (h != NULL
1847 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
1848
1849 switch (r_type)
1850 {
1851 case R_RISCV_NONE:
1852 case R_RISCV_RELAX:
1853 case R_RISCV_TPREL_ADD:
1854 case R_RISCV_COPY:
1855 case R_RISCV_JUMP_SLOT:
1856 case R_RISCV_RELATIVE:
1857 /* These require nothing of us at all. */
1858 continue;
1859
1860 case R_RISCV_HI20:
1861 case R_RISCV_BRANCH:
1862 case R_RISCV_RVC_BRANCH:
1863 case R_RISCV_RVC_LUI:
1864 case R_RISCV_LO12_I:
1865 case R_RISCV_LO12_S:
1866 case R_RISCV_SET6:
1867 case R_RISCV_SET8:
1868 case R_RISCV_SET16:
1869 case R_RISCV_SET32:
1870 case R_RISCV_32_PCREL:
1871 case R_RISCV_DELETE:
1872 /* These require no special handling beyond perform_relocation. */
1873 break;
1874
1875 case R_RISCV_GOT_HI20:
1876 if (h != NULL)
1877 {
1878 bfd_boolean dyn, pic;
1879
1880 off = h->got.offset;
1881 BFD_ASSERT (off != (bfd_vma) -1);
1882 dyn = elf_hash_table (info)->dynamic_sections_created;
1883 pic = bfd_link_pic (info);
1884
1885 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1886 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1887 {
1888 /* This is actually a static link, or it is a
1889 -Bsymbolic link and the symbol is defined
1890 locally, or the symbol was forced to be local
1891 because of a version file. We must initialize
1892 this entry in the global offset table. Since the
1893 offset must always be a multiple of the word size,
1894 we use the least significant bit to record whether
1895 we have initialized it already.
1896
1897 When doing a dynamic link, we create a .rela.got
1898 relocation entry to initialize the value. This
1899 is done in the finish_dynamic_symbol routine. */
1900 if ((off & 1) != 0)
1901 off &= ~1;
1902 else
1903 {
1904 bfd_put_NN (output_bfd, relocation,
1905 htab->elf.sgot->contents + off);
1906 h->got.offset |= 1;
1907 }
1908 }
1909 else
1910 unresolved_reloc = FALSE;
1911 }
1912 else
1913 {
1914 BFD_ASSERT (local_got_offsets != NULL
1915 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1916
1917 off = local_got_offsets[r_symndx];
1918
1919 /* The offset must always be a multiple of the word size.
1920 So, we can use the least significant bit to record
1921 whether we have already processed this entry. */
1922 if ((off & 1) != 0)
1923 off &= ~1;
1924 else
1925 {
1926 if (bfd_link_pic (info))
1927 {
1928 asection *s;
1929 Elf_Internal_Rela outrel;
1930
1931 /* We need to generate a R_RISCV_RELATIVE reloc
1932 for the dynamic linker. */
1933 s = htab->elf.srelgot;
1934 BFD_ASSERT (s != NULL);
1935
1936 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1937 outrel.r_info =
1938 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1939 outrel.r_addend = relocation;
1940 relocation = 0;
1941 riscv_elf_append_rela (output_bfd, s, &outrel);
1942 }
1943
1944 bfd_put_NN (output_bfd, relocation,
1945 htab->elf.sgot->contents + off);
1946 local_got_offsets[r_symndx] |= 1;
1947 }
1948 }
1949 relocation = sec_addr (htab->elf.sgot) + off;
1950 absolute = riscv_zero_pcrel_hi_reloc (rel,
1951 info,
1952 pc,
1953 relocation,
1954 contents,
1955 howto,
1956 input_bfd);
1957 r_type = ELFNN_R_TYPE (rel->r_info);
1958 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
1959 if (howto == NULL)
1960 r = bfd_reloc_notsupported;
1961 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1962 relocation, absolute))
1963 r = bfd_reloc_overflow;
1964 break;
1965
1966 case R_RISCV_ADD8:
1967 case R_RISCV_ADD16:
1968 case R_RISCV_ADD32:
1969 case R_RISCV_ADD64:
1970 {
1971 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1972 contents + rel->r_offset);
1973 relocation = old_value + relocation;
1974 }
1975 break;
1976
1977 case R_RISCV_SUB6:
1978 case R_RISCV_SUB8:
1979 case R_RISCV_SUB16:
1980 case R_RISCV_SUB32:
1981 case R_RISCV_SUB64:
1982 {
1983 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1984 contents + rel->r_offset);
1985 relocation = old_value - relocation;
1986 }
1987 break;
1988
1989 case R_RISCV_CALL:
1990 case R_RISCV_CALL_PLT:
1991 /* Handle a call to an undefined weak function. This won't be
1992 relaxed, so we have to handle it here. */
1993 if (h != NULL && h->root.type == bfd_link_hash_undefweak
1994 && (!bfd_link_pic (info) || h->plt.offset == MINUS_ONE))
1995 {
1996 /* We can use x0 as the base register. */
1997 bfd_vma insn = bfd_get_32 (input_bfd,
1998 contents + rel->r_offset + 4);
1999 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2000 bfd_put_32 (input_bfd, insn, contents + rel->r_offset + 4);
2001 /* Set the relocation value so that we get 0 after the pc
2002 relative adjustment. */
2003 relocation = sec_addr (input_section) + rel->r_offset;
2004 }
2005 /* Fall through. */
2006
2007 case R_RISCV_JAL:
2008 case R_RISCV_RVC_JUMP:
2009 /* This line has to match the check in _bfd_riscv_relax_section. */
2010 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
2011 {
2012 /* Refer to the PLT entry. */
2013 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
2014 unresolved_reloc = FALSE;
2015 }
2016 break;
2017
2018 case R_RISCV_TPREL_HI20:
2019 relocation = tpoff (info, relocation);
2020 break;
2021
2022 case R_RISCV_TPREL_LO12_I:
2023 case R_RISCV_TPREL_LO12_S:
2024 relocation = tpoff (info, relocation);
2025 break;
2026
2027 case R_RISCV_TPREL_I:
2028 case R_RISCV_TPREL_S:
2029 relocation = tpoff (info, relocation);
2030 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
2031 {
2032 /* We can use tp as the base register. */
2033 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2034 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2035 insn |= X_TP << OP_SH_RS1;
2036 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2037 }
2038 else
2039 r = bfd_reloc_overflow;
2040 break;
2041
2042 case R_RISCV_GPREL_I:
2043 case R_RISCV_GPREL_S:
2044 {
2045 bfd_vma gp = riscv_global_pointer_value (info);
2046 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
2047 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
2048 {
2049 /* We can use x0 or gp as the base register. */
2050 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2051 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2052 if (!x0_base)
2053 {
2054 rel->r_addend -= gp;
2055 insn |= X_GP << OP_SH_RS1;
2056 }
2057 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2058 }
2059 else
2060 r = bfd_reloc_overflow;
2061 break;
2062 }
2063
2064 case R_RISCV_PCREL_HI20:
2065 absolute = riscv_zero_pcrel_hi_reloc (rel,
2066 info,
2067 pc,
2068 relocation,
2069 contents,
2070 howto,
2071 input_bfd);
2072 r_type = ELFNN_R_TYPE (rel->r_info);
2073 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
2074 if (howto == NULL)
2075 r = bfd_reloc_notsupported;
2076 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2077 relocation + rel->r_addend,
2078 absolute))
2079 r = bfd_reloc_overflow;
2080 break;
2081
2082 case R_RISCV_PCREL_LO12_I:
2083 case R_RISCV_PCREL_LO12_S:
2084 /* We don't allow section symbols plus addends as the auipc address,
2085 because then riscv_relax_delete_bytes would have to search through
2086 all relocs to update these addends. This is also ambiguous, as
2087 we do allow offsets to be added to the target address, which are
2088 not to be used to find the auipc address. */
2089 if (((sym != NULL && (ELF_ST_TYPE (sym->st_info) == STT_SECTION))
2090 || (h != NULL && h->type == STT_SECTION))
2091 && rel->r_addend)
2092 {
2093 msg = _("%pcrel_lo section symbol with an addend");
2094 r = bfd_reloc_dangerous;
2095 break;
2096 }
2097
2098 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
2099 howto, rel, relocation, name,
2100 contents))
2101 continue;
2102 r = bfd_reloc_overflow;
2103 break;
2104
2105 case R_RISCV_TLS_DTPREL32:
2106 case R_RISCV_TLS_DTPREL64:
2107 relocation = dtpoff (info, relocation);
2108 break;
2109
2110 case R_RISCV_32:
2111 case R_RISCV_64:
2112 if ((input_section->flags & SEC_ALLOC) == 0)
2113 break;
2114
2115 if ((bfd_link_pic (info)
2116 && (h == NULL
2117 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2118 && !resolved_to_zero)
2119 || h->root.type != bfd_link_hash_undefweak)
2120 && (! howto->pc_relative
2121 || !SYMBOL_CALLS_LOCAL (info, h)))
2122 || (!bfd_link_pic (info)
2123 && h != NULL
2124 && h->dynindx != -1
2125 && !h->non_got_ref
2126 && ((h->def_dynamic
2127 && !h->def_regular)
2128 || h->root.type == bfd_link_hash_undefweak
2129 || h->root.type == bfd_link_hash_undefined)))
2130 {
2131 Elf_Internal_Rela outrel;
2132 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2133
2134 /* When generating a shared object, these relocations
2135 are copied into the output file to be resolved at run
2136 time. */
2137
2138 outrel.r_offset =
2139 _bfd_elf_section_offset (output_bfd, info, input_section,
2140 rel->r_offset);
2141 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2142 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2143 outrel.r_offset += sec_addr (input_section);
2144
2145 if (skip_dynamic_relocation)
2146 memset (&outrel, 0, sizeof outrel);
2147 else if (h != NULL && h->dynindx != -1
2148 && !(bfd_link_pic (info)
2149 && SYMBOLIC_BIND (info, h)
2150 && h->def_regular))
2151 {
2152 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2153 outrel.r_addend = rel->r_addend;
2154 }
2155 else
2156 {
2157 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2158 outrel.r_addend = relocation + rel->r_addend;
2159 }
2160
2161 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2162 if (skip_static_relocation)
2163 continue;
2164 }
2165 break;
2166
2167 case R_RISCV_TLS_GOT_HI20:
2168 is_ie = TRUE;
2169 /* Fall through. */
2170
2171 case R_RISCV_TLS_GD_HI20:
2172 if (h != NULL)
2173 {
2174 off = h->got.offset;
2175 h->got.offset |= 1;
2176 }
2177 else
2178 {
2179 off = local_got_offsets[r_symndx];
2180 local_got_offsets[r_symndx] |= 1;
2181 }
2182
2183 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2184 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2185 /* If this symbol is referenced by both GD and IE TLS, the IE
2186 reference's GOT slot follows the GD reference's slots. */
2187 ie_off = 0;
2188 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2189 ie_off = 2 * GOT_ENTRY_SIZE;
2190
2191 if ((off & 1) != 0)
2192 off &= ~1;
2193 else
2194 {
2195 Elf_Internal_Rela outrel;
2196 int indx = 0;
2197 bfd_boolean need_relocs = FALSE;
2198
2199 if (htab->elf.srelgot == NULL)
2200 abort ();
2201
2202 if (h != NULL)
2203 {
2204 bfd_boolean dyn, pic;
2205 dyn = htab->elf.dynamic_sections_created;
2206 pic = bfd_link_pic (info);
2207
2208 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2209 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2210 indx = h->dynindx;
2211 }
2212
2213 /* The GOT entries have not been initialized yet. Do it
2214 now, and emit any relocations. */
2215 if ((bfd_link_pic (info) || indx != 0)
2216 && (h == NULL
2217 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2218 || h->root.type != bfd_link_hash_undefweak))
2219 need_relocs = TRUE;
2220
2221 if (tls_type & GOT_TLS_GD)
2222 {
2223 if (need_relocs)
2224 {
2225 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2226 outrel.r_addend = 0;
2227 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2228 bfd_put_NN (output_bfd, 0,
2229 htab->elf.sgot->contents + off);
2230 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2231 if (indx == 0)
2232 {
2233 BFD_ASSERT (! unresolved_reloc);
2234 bfd_put_NN (output_bfd,
2235 dtpoff (info, relocation),
2236 (htab->elf.sgot->contents + off +
2237 RISCV_ELF_WORD_BYTES));
2238 }
2239 else
2240 {
2241 bfd_put_NN (output_bfd, 0,
2242 (htab->elf.sgot->contents + off +
2243 RISCV_ELF_WORD_BYTES));
2244 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2245 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2246 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2247 }
2248 }
2249 else
2250 {
2251 /* If we are not emitting relocations for a
2252 general dynamic reference, then we must be in a
2253 static link or an executable link with the
2254 symbol binding locally. Mark it as belonging
2255 to module 1, the executable. */
2256 bfd_put_NN (output_bfd, 1,
2257 htab->elf.sgot->contents + off);
2258 bfd_put_NN (output_bfd,
2259 dtpoff (info, relocation),
2260 (htab->elf.sgot->contents + off +
2261 RISCV_ELF_WORD_BYTES));
2262 }
2263 }
2264
2265 if (tls_type & GOT_TLS_IE)
2266 {
2267 if (need_relocs)
2268 {
2269 bfd_put_NN (output_bfd, 0,
2270 htab->elf.sgot->contents + off + ie_off);
2271 outrel.r_offset = sec_addr (htab->elf.sgot)
2272 + off + ie_off;
2273 outrel.r_addend = 0;
2274 if (indx == 0)
2275 outrel.r_addend = tpoff (info, relocation);
2276 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2277 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2278 }
2279 else
2280 {
2281 bfd_put_NN (output_bfd, tpoff (info, relocation),
2282 htab->elf.sgot->contents + off + ie_off);
2283 }
2284 }
2285 }
2286
2287 BFD_ASSERT (off < (bfd_vma) -2);
2288 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
2289 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2290 relocation, FALSE))
2291 r = bfd_reloc_overflow;
2292 unresolved_reloc = FALSE;
2293 break;
2294
2295 default:
2296 r = bfd_reloc_notsupported;
2297 }
2298
2299 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2300 because such sections are not SEC_ALLOC and thus ld.so will
2301 not process them. */
2302 if (unresolved_reloc
2303 && !((input_section->flags & SEC_DEBUGGING) != 0
2304 && h->def_dynamic)
2305 && _bfd_elf_section_offset (output_bfd, info, input_section,
2306 rel->r_offset) != (bfd_vma) -1)
2307 {
2308 switch (r_type)
2309 {
2310 case R_RISCV_CALL:
2311 case R_RISCV_JAL:
2312 case R_RISCV_RVC_JUMP:
2313 if (asprintf (&msg_buf,
2314 _("%%X%%P: relocation %s against `%s' can "
2315 "not be used when making a shared object; "
2316 "recompile with -fPIC\n"),
2317 howto->name,
2318 h->root.root.string) == -1)
2319 msg_buf = NULL;
2320 break;
2321
2322 default:
2323 if (asprintf (&msg_buf,
2324 _("%%X%%P: unresolvable %s relocation against "
2325 "symbol `%s'\n"),
2326 howto->name,
2327 h->root.root.string) == -1)
2328 msg_buf = NULL;
2329 break;
2330 }
2331
2332 msg = msg_buf;
2333 r = bfd_reloc_notsupported;
2334 }
2335
2336 if (r == bfd_reloc_ok)
2337 r = perform_relocation (howto, rel, relocation, input_section,
2338 input_bfd, contents);
2339
2340 /* We should have already detected the error and set message before.
2341 If the error message isn't set since the linker runs out of memory
2342 or we don't set it before, then we should set the default message
2343 with the "internal error" string here. */
2344 switch (r)
2345 {
2346 case bfd_reloc_ok:
2347 continue;
2348
2349 case bfd_reloc_overflow:
2350 info->callbacks->reloc_overflow
2351 (info, (h ? &h->root : NULL), name, howto->name,
2352 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2353 break;
2354
2355 case bfd_reloc_undefined:
2356 info->callbacks->undefined_symbol
2357 (info, name, input_bfd, input_section, rel->r_offset,
2358 TRUE);
2359 break;
2360
2361 case bfd_reloc_outofrange:
2362 if (msg == NULL)
2363 msg = _("%X%P: internal error: out of range error\n");
2364 break;
2365
2366 case bfd_reloc_notsupported:
2367 if (msg == NULL)
2368 msg = _("%X%P: internal error: unsupported relocation error\n");
2369 break;
2370
2371 case bfd_reloc_dangerous:
2372 /* The error message should already be set. */
2373 if (msg == NULL)
2374 msg = _("dangerous relocation error");
2375 info->callbacks->reloc_dangerous
2376 (info, msg, input_bfd, input_section, rel->r_offset);
2377 break;
2378
2379 default:
2380 msg = _("%X%P: internal error: unknown error\n");
2381 break;
2382 }
2383
2384 /* Do not report error message for the dangerous relocation again. */
2385 if (msg && r != bfd_reloc_dangerous)
2386 info->callbacks->einfo (msg);
2387
2388 /* Free the unused `msg_buf` if needed. */
2389 if (msg_buf)
2390 free (msg_buf);
2391
2392 /* We already reported the error via a callback, so don't try to report
2393 it again by returning false. That leads to spurious errors. */
2394 ret = TRUE;
2395 goto out;
2396 }
2397
2398 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2399 out:
2400 riscv_free_pcrel_relocs (&pcrel_relocs);
2401 return ret;
2402 }
2403
2404 /* Finish up dynamic symbol handling. We set the contents of various
2405 dynamic sections here. */
2406
2407 static bfd_boolean
2408 riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2409 struct bfd_link_info *info,
2410 struct elf_link_hash_entry *h,
2411 Elf_Internal_Sym *sym)
2412 {
2413 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2414 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2415
2416 if (h->plt.offset != (bfd_vma) -1)
2417 {
2418 /* We've decided to create a PLT entry for this symbol. */
2419 bfd_byte *loc;
2420 bfd_vma i, header_address, plt_idx, got_address;
2421 uint32_t plt_entry[PLT_ENTRY_INSNS];
2422 Elf_Internal_Rela rela;
2423
2424 BFD_ASSERT (h->dynindx != -1);
2425
2426 /* Calculate the address of the PLT header. */
2427 header_address = sec_addr (htab->elf.splt);
2428
2429 /* Calculate the index of the entry. */
2430 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2431
2432 /* Calculate the address of the .got.plt entry. */
2433 got_address = riscv_elf_got_plt_val (plt_idx, info);
2434
2435 /* Find out where the .plt entry should go. */
2436 loc = htab->elf.splt->contents + h->plt.offset;
2437
2438 /* Fill in the PLT entry itself. */
2439 if (! riscv_make_plt_entry (output_bfd, got_address,
2440 header_address + h->plt.offset,
2441 plt_entry))
2442 return FALSE;
2443
2444 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2445 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2446
2447 /* Fill in the initial value of the .got.plt entry. */
2448 loc = htab->elf.sgotplt->contents
2449 + (got_address - sec_addr (htab->elf.sgotplt));
2450 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2451
2452 /* Fill in the entry in the .rela.plt section. */
2453 rela.r_offset = got_address;
2454 rela.r_addend = 0;
2455 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2456
2457 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2458 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2459
2460 if (!h->def_regular)
2461 {
2462 /* Mark the symbol as undefined, rather than as defined in
2463 the .plt section. Leave the value alone. */
2464 sym->st_shndx = SHN_UNDEF;
2465 /* If the symbol is weak, we do need to clear the value.
2466 Otherwise, the PLT entry would provide a definition for
2467 the symbol even if the symbol wasn't defined anywhere,
2468 and so the symbol would never be NULL. */
2469 if (!h->ref_regular_nonweak)
2470 sym->st_value = 0;
2471 }
2472 }
2473
2474 if (h->got.offset != (bfd_vma) -1
2475 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE))
2476 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2477 {
2478 asection *sgot;
2479 asection *srela;
2480 Elf_Internal_Rela rela;
2481
2482 /* This symbol has an entry in the GOT. Set it up. */
2483
2484 sgot = htab->elf.sgot;
2485 srela = htab->elf.srelgot;
2486 BFD_ASSERT (sgot != NULL && srela != NULL);
2487
2488 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2489
2490 /* If this is a local symbol reference, we just want to emit a RELATIVE
2491 reloc. This can happen if it is a -Bsymbolic link, or a pie link, or
2492 the symbol was forced to be local because of a version file.
2493 The entry in the global offset table will already have been
2494 initialized in the relocate_section function. */
2495 if (bfd_link_pic (info)
2496 && SYMBOL_REFERENCES_LOCAL (info, h))
2497 {
2498 BFD_ASSERT((h->got.offset & 1) != 0);
2499 asection *sec = h->root.u.def.section;
2500 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2501 rela.r_addend = (h->root.u.def.value
2502 + sec->output_section->vma
2503 + sec->output_offset);
2504 }
2505 else
2506 {
2507 BFD_ASSERT((h->got.offset & 1) == 0);
2508 BFD_ASSERT (h->dynindx != -1);
2509 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2510 rela.r_addend = 0;
2511 }
2512
2513 bfd_put_NN (output_bfd, 0,
2514 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2515 riscv_elf_append_rela (output_bfd, srela, &rela);
2516 }
2517
2518 if (h->needs_copy)
2519 {
2520 Elf_Internal_Rela rela;
2521 asection *s;
2522
2523 /* This symbols needs a copy reloc. Set it up. */
2524 BFD_ASSERT (h->dynindx != -1);
2525
2526 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2527 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2528 rela.r_addend = 0;
2529 if (h->root.u.def.section == htab->elf.sdynrelro)
2530 s = htab->elf.sreldynrelro;
2531 else
2532 s = htab->elf.srelbss;
2533 riscv_elf_append_rela (output_bfd, s, &rela);
2534 }
2535
2536 /* Mark some specially defined symbols as absolute. */
2537 if (h == htab->elf.hdynamic
2538 || (h == htab->elf.hgot || h == htab->elf.hplt))
2539 sym->st_shndx = SHN_ABS;
2540
2541 return TRUE;
2542 }
2543
2544 /* Finish up the dynamic sections. */
2545
2546 static bfd_boolean
2547 riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2548 bfd *dynobj, asection *sdyn)
2549 {
2550 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2551 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2552 size_t dynsize = bed->s->sizeof_dyn;
2553 bfd_byte *dyncon, *dynconend;
2554
2555 dynconend = sdyn->contents + sdyn->size;
2556 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2557 {
2558 Elf_Internal_Dyn dyn;
2559 asection *s;
2560
2561 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2562
2563 switch (dyn.d_tag)
2564 {
2565 case DT_PLTGOT:
2566 s = htab->elf.sgotplt;
2567 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2568 break;
2569 case DT_JMPREL:
2570 s = htab->elf.srelplt;
2571 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2572 break;
2573 case DT_PLTRELSZ:
2574 s = htab->elf.srelplt;
2575 dyn.d_un.d_val = s->size;
2576 break;
2577 default:
2578 continue;
2579 }
2580
2581 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2582 }
2583 return TRUE;
2584 }
2585
2586 static bfd_boolean
2587 riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2588 struct bfd_link_info *info)
2589 {
2590 bfd *dynobj;
2591 asection *sdyn;
2592 struct riscv_elf_link_hash_table *htab;
2593
2594 htab = riscv_elf_hash_table (info);
2595 BFD_ASSERT (htab != NULL);
2596 dynobj = htab->elf.dynobj;
2597
2598 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2599
2600 if (elf_hash_table (info)->dynamic_sections_created)
2601 {
2602 asection *splt;
2603 bfd_boolean ret;
2604
2605 splt = htab->elf.splt;
2606 BFD_ASSERT (splt != NULL && sdyn != NULL);
2607
2608 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2609
2610 if (!ret)
2611 return ret;
2612
2613 /* Fill in the head and tail entries in the procedure linkage table. */
2614 if (splt->size > 0)
2615 {
2616 int i;
2617 uint32_t plt_header[PLT_HEADER_INSNS];
2618 ret = riscv_make_plt_header (output_bfd,
2619 sec_addr (htab->elf.sgotplt),
2620 sec_addr (splt), plt_header);
2621 if (!ret)
2622 return ret;
2623
2624 for (i = 0; i < PLT_HEADER_INSNS; i++)
2625 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
2626
2627 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2628 = PLT_ENTRY_SIZE;
2629 }
2630 }
2631
2632 if (htab->elf.sgotplt)
2633 {
2634 asection *output_section = htab->elf.sgotplt->output_section;
2635
2636 if (bfd_is_abs_section (output_section))
2637 {
2638 (*_bfd_error_handler)
2639 (_("discarded output section: `%pA'"), htab->elf.sgotplt);
2640 return FALSE;
2641 }
2642
2643 if (htab->elf.sgotplt->size > 0)
2644 {
2645 /* Write the first two entries in .got.plt, needed for the dynamic
2646 linker. */
2647 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2648 bfd_put_NN (output_bfd, (bfd_vma) 0,
2649 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2650 }
2651
2652 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2653 }
2654
2655 if (htab->elf.sgot)
2656 {
2657 asection *output_section = htab->elf.sgot->output_section;
2658
2659 if (htab->elf.sgot->size > 0)
2660 {
2661 /* Set the first entry in the global offset table to the address of
2662 the dynamic section. */
2663 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2664 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2665 }
2666
2667 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2668 }
2669
2670 return TRUE;
2671 }
2672
2673 /* Return address for Ith PLT stub in section PLT, for relocation REL
2674 or (bfd_vma) -1 if it should not be included. */
2675
2676 static bfd_vma
2677 riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2678 const arelent *rel ATTRIBUTE_UNUSED)
2679 {
2680 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2681 }
2682
2683 static enum elf_reloc_type_class
2684 riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2685 const asection *rel_sec ATTRIBUTE_UNUSED,
2686 const Elf_Internal_Rela *rela)
2687 {
2688 switch (ELFNN_R_TYPE (rela->r_info))
2689 {
2690 case R_RISCV_RELATIVE:
2691 return reloc_class_relative;
2692 case R_RISCV_JUMP_SLOT:
2693 return reloc_class_plt;
2694 case R_RISCV_COPY:
2695 return reloc_class_copy;
2696 default:
2697 return reloc_class_normal;
2698 }
2699 }
2700
2701 /* Given the ELF header flags in FLAGS, it returns a string that describes the
2702 float ABI. */
2703
2704 static const char *
2705 riscv_float_abi_string (flagword flags)
2706 {
2707 switch (flags & EF_RISCV_FLOAT_ABI)
2708 {
2709 case EF_RISCV_FLOAT_ABI_SOFT:
2710 return "soft-float";
2711 break;
2712 case EF_RISCV_FLOAT_ABI_SINGLE:
2713 return "single-float";
2714 break;
2715 case EF_RISCV_FLOAT_ABI_DOUBLE:
2716 return "double-float";
2717 break;
2718 case EF_RISCV_FLOAT_ABI_QUAD:
2719 return "quad-float";
2720 break;
2721 default:
2722 abort ();
2723 }
2724 }
2725
2726 /* The information of architecture attribute. */
2727 static riscv_subset_list_t in_subsets;
2728 static riscv_subset_list_t out_subsets;
2729 static riscv_subset_list_t merged_subsets;
2730
2731 /* Predicator for standard extension. */
2732
2733 static bfd_boolean
2734 riscv_std_ext_p (const char *name)
2735 {
2736 return (strlen (name) == 1) && (name[0] != 'x') && (name[0] != 's');
2737 }
2738
2739 /* Predicator for non-standard extension. */
2740
2741 static bfd_boolean
2742 riscv_non_std_ext_p (const char *name)
2743 {
2744 return (strlen (name) >= 2) && (name[0] == 'x');
2745 }
2746
2747 /* Predicator for standard supervisor extension. */
2748
2749 static bfd_boolean
2750 riscv_std_sv_ext_p (const char *name)
2751 {
2752 return (strlen (name) >= 2) && (name[0] == 's') && (name[1] != 'x');
2753 }
2754
2755 /* Predicator for non-standard supervisor extension. */
2756
2757 static bfd_boolean
2758 riscv_non_std_sv_ext_p (const char *name)
2759 {
2760 return (strlen (name) >= 3) && (name[0] == 's') && (name[1] == 'x');
2761 }
2762
2763 /* Error handler when version mis-match. */
2764
2765 static void
2766 riscv_version_mismatch (bfd *ibfd,
2767 struct riscv_subset_t *in,
2768 struct riscv_subset_t *out)
2769 {
2770 _bfd_error_handler
2771 (_("error: %pB: Mis-matched ISA version for '%s' extension. "
2772 "%d.%d vs %d.%d"),
2773 ibfd, in->name,
2774 in->major_version, in->minor_version,
2775 out->major_version, out->minor_version);
2776 }
2777
2778 /* Return true if subset is 'i' or 'e'. */
2779
2780 static bfd_boolean
2781 riscv_i_or_e_p (bfd *ibfd,
2782 const char *arch,
2783 struct riscv_subset_t *subset)
2784 {
2785 if ((strcasecmp (subset->name, "e") != 0)
2786 && (strcasecmp (subset->name, "i") != 0))
2787 {
2788 _bfd_error_handler
2789 (_("error: %pB: corrupted ISA string '%s'. "
2790 "First letter should be 'i' or 'e' but got '%s'."),
2791 ibfd, arch, subset->name);
2792 return FALSE;
2793 }
2794 return TRUE;
2795 }
2796
2797 /* Merge standard extensions.
2798
2799 Return Value:
2800 Return FALSE if failed to merge.
2801
2802 Arguments:
2803 `bfd`: bfd handler.
2804 `in_arch`: Raw arch string for input object.
2805 `out_arch`: Raw arch string for output object.
2806 `pin`: subset list for input object, and it'll skip all merged subset after
2807 merge.
2808 `pout`: Like `pin`, but for output object. */
2809
2810 static bfd_boolean
2811 riscv_merge_std_ext (bfd *ibfd,
2812 const char *in_arch,
2813 const char *out_arch,
2814 struct riscv_subset_t **pin,
2815 struct riscv_subset_t **pout)
2816 {
2817 const char *standard_exts = riscv_supported_std_ext ();
2818 const char *p;
2819 struct riscv_subset_t *in = *pin;
2820 struct riscv_subset_t *out = *pout;
2821
2822 /* First letter should be 'i' or 'e'. */
2823 if (!riscv_i_or_e_p (ibfd, in_arch, in))
2824 return FALSE;
2825
2826 if (!riscv_i_or_e_p (ibfd, out_arch, out))
2827 return FALSE;
2828
2829 if (in->name[0] != out->name[0])
2830 {
2831 /* TODO: We might allow merge 'i' with 'e'. */
2832 _bfd_error_handler
2833 (_("error: %pB: Mis-matched ISA string to merge '%s' and '%s'."),
2834 ibfd, in->name, out->name);
2835 return FALSE;
2836 }
2837 else if ((in->major_version != out->major_version) ||
2838 (in->minor_version != out->minor_version))
2839 {
2840 /* TODO: Allow different merge policy. */
2841 riscv_version_mismatch (ibfd, in, out);
2842 return FALSE;
2843 }
2844 else
2845 riscv_add_subset (&merged_subsets,
2846 in->name, in->major_version, in->minor_version);
2847
2848 in = in->next;
2849 out = out->next;
2850
2851 /* Handle standard extension first. */
2852 for (p = standard_exts; *p; ++p)
2853 {
2854 char find_ext[2] = {*p, '\0'};
2855 struct riscv_subset_t *find_in =
2856 riscv_lookup_subset (&in_subsets, find_ext);
2857 struct riscv_subset_t *find_out =
2858 riscv_lookup_subset (&out_subsets, find_ext);
2859
2860 if (find_in == NULL && find_out == NULL)
2861 continue;
2862
2863 /* Check version is same or not. */
2864 /* TODO: Allow different merge policy. */
2865 if ((find_in != NULL && find_out != NULL)
2866 && ((find_in->major_version != find_out->major_version)
2867 || (find_in->minor_version != find_out->minor_version)))
2868 {
2869 riscv_version_mismatch (ibfd, in, out);
2870 return FALSE;
2871 }
2872
2873 struct riscv_subset_t *merged = find_in ? find_in : find_out;
2874 riscv_add_subset (&merged_subsets, merged->name,
2875 merged->major_version, merged->minor_version);
2876 }
2877
2878 /* Skip all standard extensions. */
2879 while ((in != NULL) && riscv_std_ext_p (in->name)) in = in->next;
2880 while ((out != NULL) && riscv_std_ext_p (out->name)) out = out->next;
2881
2882 *pin = in;
2883 *pout = out;
2884
2885 return TRUE;
2886 }
2887
2888 /* Merge non-standard and supervisor extensions.
2889 Return Value:
2890 Return FALSE if failed to merge.
2891
2892 Arguments:
2893 `bfd`: bfd handler.
2894 `in_arch`: Raw arch string for input object.
2895 `out_arch`: Raw arch string for output object.
2896 `pin`: subset list for input object, and it'll skip all merged subset after
2897 merge.
2898 `pout`: Like `pin`, but for output object. */
2899
2900 static bfd_boolean
2901 riscv_merge_non_std_and_sv_ext (bfd *ibfd,
2902 riscv_subset_t **pin,
2903 riscv_subset_t **pout,
2904 bfd_boolean (*predicate_func) (const char *))
2905 {
2906 riscv_subset_t *in = *pin;
2907 riscv_subset_t *out = *pout;
2908
2909 for (in = *pin; in != NULL && predicate_func (in->name); in = in->next)
2910 riscv_add_subset (&merged_subsets, in->name, in->major_version,
2911 in->minor_version);
2912
2913 for (out = *pout; out != NULL && predicate_func (out->name); out = out->next)
2914 {
2915 riscv_subset_t *find_ext =
2916 riscv_lookup_subset (&merged_subsets, out->name);
2917 if (find_ext != NULL)
2918 {
2919 /* Check version is same or not. */
2920 /* TODO: Allow different merge policy. */
2921 if ((find_ext->major_version != out->major_version)
2922 || (find_ext->minor_version != out->minor_version))
2923 {
2924 riscv_version_mismatch (ibfd, find_ext, out);
2925 return FALSE;
2926 }
2927 }
2928 else
2929 riscv_add_subset (&merged_subsets, out->name,
2930 out->major_version, out->minor_version);
2931 }
2932
2933 *pin = in;
2934 *pout = out;
2935 return TRUE;
2936 }
2937
2938 /* Merge Tag_RISCV_arch attribute. */
2939
2940 static char *
2941 riscv_merge_arch_attr_info (bfd *ibfd, char *in_arch, char *out_arch)
2942 {
2943 riscv_subset_t *in, *out;
2944 char *merged_arch_str;
2945
2946 unsigned xlen_in, xlen_out;
2947 merged_subsets.head = NULL;
2948 merged_subsets.tail = NULL;
2949
2950 riscv_parse_subset_t rpe_in;
2951 riscv_parse_subset_t rpe_out;
2952
2953 rpe_in.subset_list = &in_subsets;
2954 rpe_in.error_handler = _bfd_error_handler;
2955 rpe_in.xlen = &xlen_in;
2956
2957 rpe_out.subset_list = &out_subsets;
2958 rpe_out.error_handler = _bfd_error_handler;
2959 rpe_out.xlen = &xlen_out;
2960
2961 if (in_arch == NULL && out_arch == NULL)
2962 return NULL;
2963
2964 if (in_arch == NULL && out_arch != NULL)
2965 return out_arch;
2966
2967 if (in_arch != NULL && out_arch == NULL)
2968 return in_arch;
2969
2970 /* Parse subset from arch string. */
2971 if (!riscv_parse_subset (&rpe_in, in_arch))
2972 return NULL;
2973
2974 if (!riscv_parse_subset (&rpe_out, out_arch))
2975 return NULL;
2976
2977 /* Checking XLEN. */
2978 if (xlen_out != xlen_in)
2979 {
2980 _bfd_error_handler
2981 (_("error: %pB: ISA string of input (%s) doesn't match "
2982 "output (%s)."), ibfd, in_arch, out_arch);
2983 return NULL;
2984 }
2985
2986 /* Merge subset list. */
2987 in = in_subsets.head;
2988 out = out_subsets.head;
2989
2990 /* Merge standard extension. */
2991 if (!riscv_merge_std_ext (ibfd, in_arch, out_arch, &in, &out))
2992 return NULL;
2993 /* Merge non-standard extension. */
2994 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_non_std_ext_p))
2995 return NULL;
2996 /* Merge standard supervisor extension. */
2997 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_std_sv_ext_p))
2998 return NULL;
2999 /* Merge non-standard supervisor extension. */
3000 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_non_std_sv_ext_p))
3001 return NULL;
3002
3003 if (xlen_in != xlen_out)
3004 {
3005 _bfd_error_handler
3006 (_("error: %pB: XLEN of input (%u) doesn't match "
3007 "output (%u)."), ibfd, xlen_in, xlen_out);
3008 return NULL;
3009 }
3010
3011 if (xlen_in != ARCH_SIZE)
3012 {
3013 _bfd_error_handler
3014 (_("error: %pB: Unsupported XLEN (%u), you might be "
3015 "using wrong emulation."), ibfd, xlen_in);
3016 return NULL;
3017 }
3018
3019 merged_arch_str = riscv_arch_str (ARCH_SIZE, &merged_subsets);
3020
3021 /* Release the subset lists. */
3022 riscv_release_subset_list (&in_subsets);
3023 riscv_release_subset_list (&out_subsets);
3024 riscv_release_subset_list (&merged_subsets);
3025
3026 return merged_arch_str;
3027 }
3028
3029 /* Merge object attributes from IBFD into output_bfd of INFO.
3030 Raise an error if there are conflicting attributes. */
3031
3032 static bfd_boolean
3033 riscv_merge_attributes (bfd *ibfd, struct bfd_link_info *info)
3034 {
3035 bfd *obfd = info->output_bfd;
3036 obj_attribute *in_attr;
3037 obj_attribute *out_attr;
3038 bfd_boolean result = TRUE;
3039 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
3040 unsigned int i;
3041
3042 /* Skip linker created files. */
3043 if (ibfd->flags & BFD_LINKER_CREATED)
3044 return TRUE;
3045
3046 /* Skip any input that doesn't have an attribute section.
3047 This enables to link object files without attribute section with
3048 any others. */
3049 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
3050 return TRUE;
3051
3052 if (!elf_known_obj_attributes_proc (obfd)[0].i)
3053 {
3054 /* This is the first object. Copy the attributes. */
3055 _bfd_elf_copy_obj_attributes (ibfd, obfd);
3056
3057 out_attr = elf_known_obj_attributes_proc (obfd);
3058
3059 /* Use the Tag_null value to indicate the attributes have been
3060 initialized. */
3061 out_attr[0].i = 1;
3062
3063 return TRUE;
3064 }
3065
3066 in_attr = elf_known_obj_attributes_proc (ibfd);
3067 out_attr = elf_known_obj_attributes_proc (obfd);
3068
3069 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
3070 {
3071 switch (i)
3072 {
3073 case Tag_RISCV_arch:
3074 if (!out_attr[Tag_RISCV_arch].s)
3075 out_attr[Tag_RISCV_arch].s = in_attr[Tag_RISCV_arch].s;
3076 else if (in_attr[Tag_RISCV_arch].s
3077 && out_attr[Tag_RISCV_arch].s)
3078 {
3079 /* Check arch compatible. */
3080 char *merged_arch =
3081 riscv_merge_arch_attr_info (ibfd,
3082 in_attr[Tag_RISCV_arch].s,
3083 out_attr[Tag_RISCV_arch].s);
3084 if (merged_arch == NULL)
3085 {
3086 result = FALSE;
3087 out_attr[Tag_RISCV_arch].s = "";
3088 }
3089 else
3090 out_attr[Tag_RISCV_arch].s = merged_arch;
3091 }
3092 break;
3093 case Tag_RISCV_priv_spec:
3094 case Tag_RISCV_priv_spec_minor:
3095 case Tag_RISCV_priv_spec_revision:
3096 if (out_attr[i].i != in_attr[i].i)
3097 {
3098 _bfd_error_handler
3099 (_("error: %pB: conflicting priv spec version "
3100 "(major/minor/revision)."), ibfd);
3101 result = FALSE;
3102 }
3103 break;
3104 case Tag_RISCV_unaligned_access:
3105 out_attr[i].i |= in_attr[i].i;
3106 break;
3107 case Tag_RISCV_stack_align:
3108 if (out_attr[i].i == 0)
3109 out_attr[i].i = in_attr[i].i;
3110 else if (in_attr[i].i != 0
3111 && out_attr[i].i != 0
3112 && out_attr[i].i != in_attr[i].i)
3113 {
3114 _bfd_error_handler
3115 (_("error: %pB use %u-byte stack aligned but the output "
3116 "use %u-byte stack aligned."),
3117 ibfd, in_attr[i].i, out_attr[i].i);
3118 result = FALSE;
3119 }
3120 break;
3121 default:
3122 result &= _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
3123 }
3124
3125 /* If out_attr was copied from in_attr then it won't have a type yet. */
3126 if (in_attr[i].type && !out_attr[i].type)
3127 out_attr[i].type = in_attr[i].type;
3128 }
3129
3130 /* Merge Tag_compatibility attributes and any common GNU ones. */
3131 if (!_bfd_elf_merge_object_attributes (ibfd, info))
3132 return FALSE;
3133
3134 /* Check for any attributes not known on RISC-V. */
3135 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
3136
3137 return result;
3138 }
3139
3140 /* Merge backend specific data from an object file to the output
3141 object file when linking. */
3142
3143 static bfd_boolean
3144 _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3145 {
3146 bfd *obfd = info->output_bfd;
3147 flagword new_flags, old_flags;
3148
3149 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
3150 return TRUE;
3151
3152 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
3153 {
3154 (*_bfd_error_handler)
3155 (_("%pB: ABI is incompatible with that of the selected emulation:\n"
3156 " target emulation `%s' does not match `%s'"),
3157 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
3158 return FALSE;
3159 }
3160
3161 if (!_bfd_elf_merge_object_attributes (ibfd, info))
3162 return FALSE;
3163
3164 if (!riscv_merge_attributes (ibfd, info))
3165 return FALSE;
3166
3167 new_flags = elf_elfheader (ibfd)->e_flags;
3168 old_flags = elf_elfheader (obfd)->e_flags;
3169
3170 if (! elf_flags_init (obfd))
3171 {
3172 elf_flags_init (obfd) = TRUE;
3173 elf_elfheader (obfd)->e_flags = new_flags;
3174 return TRUE;
3175 }
3176
3177 /* Check to see if the input BFD actually contains any sections. If not,
3178 its flags may not have been initialized either, but it cannot actually
3179 cause any incompatibility. Do not short-circuit dynamic objects; their
3180 section list may be emptied by elf_link_add_object_symbols.
3181
3182 Also check to see if there are no code sections in the input. In this
3183 case, there is no need to check for code specific flags. */
3184 if (!(ibfd->flags & DYNAMIC))
3185 {
3186 bfd_boolean null_input_bfd = TRUE;
3187 bfd_boolean only_data_sections = TRUE;
3188 asection *sec;
3189
3190 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
3191 {
3192 if ((bfd_section_flags (sec)
3193 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
3194 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
3195 only_data_sections = FALSE;
3196
3197 null_input_bfd = FALSE;
3198 break;
3199 }
3200
3201 if (null_input_bfd || only_data_sections)
3202 return TRUE;
3203 }
3204
3205 /* Disallow linking different float ABIs. */
3206 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
3207 {
3208 (*_bfd_error_handler)
3209 (_("%pB: can't link %s modules with %s modules"), ibfd,
3210 riscv_float_abi_string (new_flags),
3211 riscv_float_abi_string (old_flags));
3212 goto fail;
3213 }
3214
3215 /* Disallow linking RVE and non-RVE. */
3216 if ((old_flags ^ new_flags) & EF_RISCV_RVE)
3217 {
3218 (*_bfd_error_handler)
3219 (_("%pB: can't link RVE with other target"), ibfd);
3220 goto fail;
3221 }
3222
3223 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
3224 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
3225
3226 return TRUE;
3227
3228 fail:
3229 bfd_set_error (bfd_error_bad_value);
3230 return FALSE;
3231 }
3232
3233 /* Delete some bytes from a section while relaxing. */
3234
3235 static bfd_boolean
3236 riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count,
3237 struct bfd_link_info *link_info)
3238 {
3239 unsigned int i, symcount;
3240 bfd_vma toaddr = sec->size;
3241 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
3242 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3243 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
3244 struct bfd_elf_section_data *data = elf_section_data (sec);
3245 bfd_byte *contents = data->this_hdr.contents;
3246
3247 /* Actually delete the bytes. */
3248 sec->size -= count;
3249 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
3250
3251 /* Adjust the location of all of the relocs. Note that we need not
3252 adjust the addends, since all PC-relative references must be against
3253 symbols, which we will adjust below. */
3254 for (i = 0; i < sec->reloc_count; i++)
3255 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
3256 data->relocs[i].r_offset -= count;
3257
3258 /* Adjust the local symbols defined in this section. */
3259 for (i = 0; i < symtab_hdr->sh_info; i++)
3260 {
3261 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
3262 if (sym->st_shndx == sec_shndx)
3263 {
3264 /* If the symbol is in the range of memory we just moved, we
3265 have to adjust its value. */
3266 if (sym->st_value > addr && sym->st_value <= toaddr)
3267 sym->st_value -= count;
3268
3269 /* If the symbol *spans* the bytes we just deleted (i.e. its
3270 *end* is in the moved bytes but its *start* isn't), then we
3271 must adjust its size.
3272
3273 This test needs to use the original value of st_value, otherwise
3274 we might accidentally decrease size when deleting bytes right
3275 before the symbol. But since deleted relocs can't span across
3276 symbols, we can't have both a st_value and a st_size decrease,
3277 so it is simpler to just use an else. */
3278 else if (sym->st_value <= addr
3279 && sym->st_value + sym->st_size > addr
3280 && sym->st_value + sym->st_size <= toaddr)
3281 sym->st_size -= count;
3282 }
3283 }
3284
3285 /* Now adjust the global symbols defined in this section. */
3286 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
3287 - symtab_hdr->sh_info);
3288
3289 for (i = 0; i < symcount; i++)
3290 {
3291 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
3292
3293 /* The '--wrap SYMBOL' option is causing a pain when the object file,
3294 containing the definition of __wrap_SYMBOL, includes a direct
3295 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
3296 the same symbol (which is __wrap_SYMBOL), but still exist as two
3297 different symbols in 'sym_hashes', we don't want to adjust
3298 the global symbol __wrap_SYMBOL twice. */
3299 /* The same problem occurs with symbols that are versioned_hidden, as
3300 foo becomes an alias for foo@BAR, and hence they need the same
3301 treatment. */
3302 if (link_info->wrap_hash != NULL
3303 || sym_hash->versioned == versioned_hidden)
3304 {
3305 struct elf_link_hash_entry **cur_sym_hashes;
3306
3307 /* Loop only over the symbols which have already been checked. */
3308 for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i];
3309 cur_sym_hashes++)
3310 {
3311 /* If the current symbol is identical to 'sym_hash', that means
3312 the symbol was already adjusted (or at least checked). */
3313 if (*cur_sym_hashes == sym_hash)
3314 break;
3315 }
3316 /* Don't adjust the symbol again. */
3317 if (cur_sym_hashes < &sym_hashes[i])
3318 continue;
3319 }
3320
3321 if ((sym_hash->root.type == bfd_link_hash_defined
3322 || sym_hash->root.type == bfd_link_hash_defweak)
3323 && sym_hash->root.u.def.section == sec)
3324 {
3325 /* As above, adjust the value if needed. */
3326 if (sym_hash->root.u.def.value > addr
3327 && sym_hash->root.u.def.value <= toaddr)
3328 sym_hash->root.u.def.value -= count;
3329
3330 /* As above, adjust the size if needed. */
3331 else if (sym_hash->root.u.def.value <= addr
3332 && sym_hash->root.u.def.value + sym_hash->size > addr
3333 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
3334 sym_hash->size -= count;
3335 }
3336 }
3337
3338 return TRUE;
3339 }
3340
3341 /* A second format for recording PC-relative hi relocations. This stores the
3342 information required to relax them to GP-relative addresses. */
3343
3344 typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
3345 struct riscv_pcgp_hi_reloc
3346 {
3347 bfd_vma hi_sec_off;
3348 bfd_vma hi_addend;
3349 bfd_vma hi_addr;
3350 unsigned hi_sym;
3351 asection *sym_sec;
3352 bfd_boolean undefined_weak;
3353 riscv_pcgp_hi_reloc *next;
3354 };
3355
3356 typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
3357 struct riscv_pcgp_lo_reloc
3358 {
3359 bfd_vma hi_sec_off;
3360 riscv_pcgp_lo_reloc *next;
3361 };
3362
3363 typedef struct
3364 {
3365 riscv_pcgp_hi_reloc *hi;
3366 riscv_pcgp_lo_reloc *lo;
3367 } riscv_pcgp_relocs;
3368
3369 /* Initialize the pcgp reloc info in P. */
3370
3371 static bfd_boolean
3372 riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
3373 {
3374 p->hi = NULL;
3375 p->lo = NULL;
3376 return TRUE;
3377 }
3378
3379 /* Free the pcgp reloc info in P. */
3380
3381 static void
3382 riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
3383 bfd *abfd ATTRIBUTE_UNUSED,
3384 asection *sec ATTRIBUTE_UNUSED)
3385 {
3386 riscv_pcgp_hi_reloc *c;
3387 riscv_pcgp_lo_reloc *l;
3388
3389 for (c = p->hi; c != NULL;)
3390 {
3391 riscv_pcgp_hi_reloc *next = c->next;
3392 free (c);
3393 c = next;
3394 }
3395
3396 for (l = p->lo; l != NULL;)
3397 {
3398 riscv_pcgp_lo_reloc *next = l->next;
3399 free (l);
3400 l = next;
3401 }
3402 }
3403
3404 /* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index.
3405 The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to
3406 relax the corresponding lo part reloc. */
3407
3408 static bfd_boolean
3409 riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
3410 bfd_vma hi_addend, bfd_vma hi_addr,
3411 unsigned hi_sym, asection *sym_sec,
3412 bfd_boolean undefined_weak)
3413 {
3414 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new));
3415 if (!new)
3416 return FALSE;
3417 new->hi_sec_off = hi_sec_off;
3418 new->hi_addend = hi_addend;
3419 new->hi_addr = hi_addr;
3420 new->hi_sym = hi_sym;
3421 new->sym_sec = sym_sec;
3422 new->undefined_weak = undefined_weak;
3423 new->next = p->hi;
3424 p->hi = new;
3425 return TRUE;
3426 }
3427
3428 /* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
3429 This is used by a lo part reloc to find the corresponding hi part reloc. */
3430
3431 static riscv_pcgp_hi_reloc *
3432 riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3433 {
3434 riscv_pcgp_hi_reloc *c;
3435
3436 for (c = p->hi; c != NULL; c = c->next)
3437 if (c->hi_sec_off == hi_sec_off)
3438 return c;
3439 return NULL;
3440 }
3441
3442 /* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info.
3443 This is used to record relocs that can't be relaxed. */
3444
3445 static bfd_boolean
3446 riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3447 {
3448 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new));
3449 if (!new)
3450 return FALSE;
3451 new->hi_sec_off = hi_sec_off;
3452 new->next = p->lo;
3453 p->lo = new;
3454 return TRUE;
3455 }
3456
3457 /* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
3458 This is used by a hi part reloc to find the corresponding lo part reloc. */
3459
3460 static bfd_boolean
3461 riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3462 {
3463 riscv_pcgp_lo_reloc *c;
3464
3465 for (c = p->lo; c != NULL; c = c->next)
3466 if (c->hi_sec_off == hi_sec_off)
3467 return TRUE;
3468 return FALSE;
3469 }
3470
3471 typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
3472 struct bfd_link_info *,
3473 Elf_Internal_Rela *,
3474 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *,
3475 riscv_pcgp_relocs *,
3476 bfd_boolean undefined_weak);
3477
3478 /* Relax AUIPC + JALR into JAL. */
3479
3480 static bfd_boolean
3481 _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
3482 struct bfd_link_info *link_info,
3483 Elf_Internal_Rela *rel,
3484 bfd_vma symval,
3485 bfd_vma max_alignment,
3486 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3487 bfd_boolean *again,
3488 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED,
3489 bfd_boolean undefined_weak ATTRIBUTE_UNUSED)
3490 {
3491 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3492 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
3493 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
3494 bfd_vma auipc, jalr;
3495 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
3496
3497 /* If the call crosses section boundaries, an alignment directive could
3498 cause the PC-relative offset to later increase, so we need to add in the
3499 max alignment of any section inclusive from the call to the target.
3500 Otherwise, we only need to use the alignment of the current section. */
3501 if (VALID_UJTYPE_IMM (foff))
3502 {
3503 if (sym_sec->output_section == sec->output_section
3504 && sym_sec->output_section != bfd_abs_section_ptr)
3505 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3506 foff += (foff < 0 ? -max_alignment : max_alignment);
3507 }
3508
3509 /* See if this function call can be shortened. */
3510 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
3511 return TRUE;
3512
3513 /* Shorten the function call. */
3514 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
3515
3516 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
3517 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
3518 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
3519 rvc = rvc && VALID_RVC_J_IMM (foff);
3520
3521 /* C.J exists on RV32 and RV64, but C.JAL is RV32-only. */
3522 rvc = rvc && (rd == 0 || (rd == X_RA && ARCH_SIZE == 32));
3523
3524 if (rvc)
3525 {
3526 /* Relax to C.J[AL] rd, addr. */
3527 r_type = R_RISCV_RVC_JUMP;
3528 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
3529 len = 2;
3530 }
3531 else if (VALID_UJTYPE_IMM (foff))
3532 {
3533 /* Relax to JAL rd, addr. */
3534 r_type = R_RISCV_JAL;
3535 auipc = MATCH_JAL | (rd << OP_SH_RD);
3536 }
3537 else /* near_zero */
3538 {
3539 /* Relax to JALR rd, x0, addr. */
3540 r_type = R_RISCV_LO12_I;
3541 auipc = MATCH_JALR | (rd << OP_SH_RD);
3542 }
3543
3544 /* Replace the R_RISCV_CALL reloc. */
3545 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
3546 /* Replace the AUIPC. */
3547 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
3548
3549 /* Delete unnecessary JALR. */
3550 *again = TRUE;
3551 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len,
3552 link_info);
3553 }
3554
3555 /* Traverse all output sections and return the max alignment. */
3556
3557 static bfd_vma
3558 _bfd_riscv_get_max_alignment (asection *sec)
3559 {
3560 unsigned int max_alignment_power = 0;
3561 asection *o;
3562
3563 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
3564 {
3565 if (o->alignment_power > max_alignment_power)
3566 max_alignment_power = o->alignment_power;
3567 }
3568
3569 return (bfd_vma) 1 << max_alignment_power;
3570 }
3571
3572 /* Relax non-PIC global variable references. */
3573
3574 static bfd_boolean
3575 _bfd_riscv_relax_lui (bfd *abfd,
3576 asection *sec,
3577 asection *sym_sec,
3578 struct bfd_link_info *link_info,
3579 Elf_Internal_Rela *rel,
3580 bfd_vma symval,
3581 bfd_vma max_alignment,
3582 bfd_vma reserve_size,
3583 bfd_boolean *again,
3584 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED,
3585 bfd_boolean undefined_weak)
3586 {
3587 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3588 bfd_vma gp = riscv_global_pointer_value (link_info);
3589 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
3590
3591 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3592
3593 if (gp)
3594 {
3595 /* If gp and the symbol are in the same output section, which is not the
3596 abs section, then consider only that output section's alignment. */
3597 struct bfd_link_hash_entry *h =
3598 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
3599 TRUE);
3600 if (h->u.def.section->output_section == sym_sec->output_section
3601 && sym_sec->output_section != bfd_abs_section_ptr)
3602 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3603 }
3604
3605 /* Is the reference in range of x0 or gp?
3606 Valid gp range conservatively because of alignment issue. */
3607 if (undefined_weak
3608 || (VALID_ITYPE_IMM (symval)
3609 || (symval >= gp
3610 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3611 || (symval < gp
3612 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size))))
3613 {
3614 unsigned sym = ELFNN_R_SYM (rel->r_info);
3615 switch (ELFNN_R_TYPE (rel->r_info))
3616 {
3617 case R_RISCV_LO12_I:
3618 if (undefined_weak)
3619 {
3620 /* Change the RS1 to zero. */
3621 bfd_vma insn = bfd_get_32 (abfd, contents + rel->r_offset);
3622 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
3623 bfd_put_32 (abfd, insn, contents + rel->r_offset);
3624 }
3625 else
3626 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3627 return TRUE;
3628
3629 case R_RISCV_LO12_S:
3630 if (undefined_weak)
3631 {
3632 /* Change the RS1 to zero. */
3633 bfd_vma insn = bfd_get_32 (abfd, contents + rel->r_offset);
3634 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
3635 bfd_put_32 (abfd, insn, contents + rel->r_offset);
3636 }
3637 else
3638 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3639 return TRUE;
3640
3641 case R_RISCV_HI20:
3642 /* We can delete the unnecessary LUI and reloc. */
3643 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3644 *again = TRUE;
3645 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4,
3646 link_info);
3647
3648 default:
3649 abort ();
3650 }
3651 }
3652
3653 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
3654 account for this assuming page alignment at worst. In the presence of
3655 RELRO segment the linker aligns it by one page size, therefore sections
3656 after the segment can be moved more than one page. */
3657
3658 if (use_rvc
3659 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
3660 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
3661 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval)
3662 + (link_info->relro ? 2 * ELF_MAXPAGESIZE
3663 : ELF_MAXPAGESIZE)))
3664 {
3665 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
3666 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
3667 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
3668 if (rd == 0 || rd == X_SP)
3669 return TRUE;
3670
3671 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
3672 bfd_put_32 (abfd, lui, contents + rel->r_offset);
3673
3674 /* Replace the R_RISCV_HI20 reloc. */
3675 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
3676
3677 *again = TRUE;
3678 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2,
3679 link_info);
3680 }
3681
3682 return TRUE;
3683 }
3684
3685 /* Relax non-PIC TLS references. */
3686
3687 static bfd_boolean
3688 _bfd_riscv_relax_tls_le (bfd *abfd,
3689 asection *sec,
3690 asection *sym_sec ATTRIBUTE_UNUSED,
3691 struct bfd_link_info *link_info,
3692 Elf_Internal_Rela *rel,
3693 bfd_vma symval,
3694 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3695 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3696 bfd_boolean *again,
3697 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED,
3698 bfd_boolean undefined_weak ATTRIBUTE_UNUSED)
3699 {
3700 /* See if this symbol is in range of tp. */
3701 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
3702 return TRUE;
3703
3704 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3705 switch (ELFNN_R_TYPE (rel->r_info))
3706 {
3707 case R_RISCV_TPREL_LO12_I:
3708 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
3709 return TRUE;
3710
3711 case R_RISCV_TPREL_LO12_S:
3712 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
3713 return TRUE;
3714
3715 case R_RISCV_TPREL_HI20:
3716 case R_RISCV_TPREL_ADD:
3717 /* We can delete the unnecessary instruction and reloc. */
3718 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3719 *again = TRUE;
3720 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info);
3721
3722 default:
3723 abort ();
3724 }
3725 }
3726
3727 /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3728
3729 static bfd_boolean
3730 _bfd_riscv_relax_align (bfd *abfd, asection *sec,
3731 asection *sym_sec,
3732 struct bfd_link_info *link_info,
3733 Elf_Internal_Rela *rel,
3734 bfd_vma symval,
3735 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3736 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3737 bfd_boolean *again ATTRIBUTE_UNUSED,
3738 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED,
3739 bfd_boolean undefined_weak ATTRIBUTE_UNUSED)
3740 {
3741 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3742 bfd_vma alignment = 1, pos;
3743 while (alignment <= rel->r_addend)
3744 alignment *= 2;
3745
3746 symval -= rel->r_addend;
3747 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
3748 bfd_vma nop_bytes = aligned_addr - symval;
3749
3750 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3751 sec->sec_flg0 = TRUE;
3752
3753 /* Make sure there are enough NOPs to actually achieve the alignment. */
3754 if (rel->r_addend < nop_bytes)
3755 {
3756 _bfd_error_handler
3757 (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment "
3758 "to %" PRId64 "-byte boundary, but only %" PRId64 " present"),
3759 abfd, sym_sec, (uint64_t) rel->r_offset,
3760 (int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend);
3761 bfd_set_error (bfd_error_bad_value);
3762 return FALSE;
3763 }
3764
3765 /* Delete the reloc. */
3766 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3767
3768 /* If the number of NOPs is already correct, there's nothing to do. */
3769 if (nop_bytes == rel->r_addend)
3770 return TRUE;
3771
3772 /* Write as many RISC-V NOPs as we need. */
3773 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
3774 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
3775
3776 /* Write a final RVC NOP if need be. */
3777 if (nop_bytes % 4 != 0)
3778 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
3779
3780 /* Delete the excess bytes. */
3781 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
3782 rel->r_addend - nop_bytes, link_info);
3783 }
3784
3785 /* Relax PC-relative references to GP-relative references. */
3786
3787 static bfd_boolean
3788 _bfd_riscv_relax_pc (bfd *abfd ATTRIBUTE_UNUSED,
3789 asection *sec,
3790 asection *sym_sec,
3791 struct bfd_link_info *link_info,
3792 Elf_Internal_Rela *rel,
3793 bfd_vma symval,
3794 bfd_vma max_alignment,
3795 bfd_vma reserve_size,
3796 bfd_boolean *again ATTRIBUTE_UNUSED,
3797 riscv_pcgp_relocs *pcgp_relocs,
3798 bfd_boolean undefined_weak)
3799 {
3800 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3801 bfd_vma gp = riscv_global_pointer_value (link_info);
3802
3803 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3804
3805 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3806 * actual target address. */
3807 riscv_pcgp_hi_reloc hi_reloc;
3808 memset (&hi_reloc, 0, sizeof (hi_reloc));
3809 switch (ELFNN_R_TYPE (rel->r_info))
3810 {
3811 case R_RISCV_PCREL_LO12_I:
3812 case R_RISCV_PCREL_LO12_S:
3813 {
3814 /* If the %lo has an addend, it isn't for the label pointing at the
3815 hi part instruction, but rather for the symbol pointed at by the
3816 hi part instruction. So we must subtract it here for the lookup.
3817 It is still used below in the final symbol address. */
3818 bfd_vma hi_sec_off = symval - sec_addr (sym_sec) - rel->r_addend;
3819 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
3820 hi_sec_off);
3821 if (hi == NULL)
3822 {
3823 riscv_record_pcgp_lo_reloc (pcgp_relocs, hi_sec_off);
3824 return TRUE;
3825 }
3826
3827 hi_reloc = *hi;
3828 symval = hi_reloc.hi_addr;
3829 sym_sec = hi_reloc.sym_sec;
3830
3831 /* We can not know whether the undefined weak symbol is referenced
3832 according to the information of R_RISCV_PCREL_LO12_I/S. Therefore,
3833 we have to record the 'undefined_weak' flag when handling the
3834 corresponding R_RISCV_HI20 reloc in riscv_record_pcgp_hi_reloc. */
3835 undefined_weak = hi_reloc.undefined_weak;
3836 }
3837 break;
3838
3839 case R_RISCV_PCREL_HI20:
3840 /* Mergeable symbols and code might later move out of range. */
3841 if (! undefined_weak
3842 && sym_sec->flags & (SEC_MERGE | SEC_CODE))
3843 return TRUE;
3844
3845 /* If the cooresponding lo relocation has already been seen then it's not
3846 * safe to relax this relocation. */
3847 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
3848 return TRUE;
3849
3850 break;
3851
3852 default:
3853 abort ();
3854 }
3855
3856 if (gp)
3857 {
3858 /* If gp and the symbol are in the same output section, which is not the
3859 abs section, then consider only that output section's alignment. */
3860 struct bfd_link_hash_entry *h =
3861 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
3862 TRUE);
3863 if (h->u.def.section->output_section == sym_sec->output_section
3864 && sym_sec->output_section != bfd_abs_section_ptr)
3865 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3866 }
3867
3868 /* Is the reference in range of x0 or gp?
3869 Valid gp range conservatively because of alignment issue. */
3870 if (undefined_weak
3871 || (VALID_ITYPE_IMM (symval)
3872 || (symval >= gp
3873 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3874 || (symval < gp
3875 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size))))
3876 {
3877 unsigned sym = hi_reloc.hi_sym;
3878 switch (ELFNN_R_TYPE (rel->r_info))
3879 {
3880 case R_RISCV_PCREL_LO12_I:
3881 if (undefined_weak)
3882 {
3883 /* Change the RS1 to zero, and then modify the relocation
3884 type to R_RISCV_LO12_I. */
3885 bfd_vma insn = bfd_get_32 (abfd, contents + rel->r_offset);
3886 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
3887 bfd_put_32 (abfd, insn, contents + rel->r_offset);
3888 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_LO12_I);
3889 rel->r_addend = hi_reloc.hi_addend;
3890 }
3891 else
3892 {
3893 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3894 rel->r_addend += hi_reloc.hi_addend;
3895 }
3896 return TRUE;
3897
3898 case R_RISCV_PCREL_LO12_S:
3899 if (undefined_weak)
3900 {
3901 /* Change the RS1 to zero, and then modify the relocation
3902 type to R_RISCV_LO12_S. */
3903 bfd_vma insn = bfd_get_32 (abfd, contents + rel->r_offset);
3904 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
3905 bfd_put_32 (abfd, insn, contents + rel->r_offset);
3906 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_LO12_S);
3907 rel->r_addend = hi_reloc.hi_addend;
3908 }
3909 else
3910 {
3911 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3912 rel->r_addend += hi_reloc.hi_addend;
3913 }
3914 return TRUE;
3915
3916 case R_RISCV_PCREL_HI20:
3917 riscv_record_pcgp_hi_reloc (pcgp_relocs,
3918 rel->r_offset,
3919 rel->r_addend,
3920 symval,
3921 ELFNN_R_SYM(rel->r_info),
3922 sym_sec,
3923 undefined_weak);
3924 /* We can delete the unnecessary AUIPC and reloc. */
3925 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
3926 rel->r_addend = 4;
3927 return TRUE;
3928
3929 default:
3930 abort ();
3931 }
3932 }
3933
3934 return TRUE;
3935 }
3936
3937 /* Relax PC-relative references to GP-relative references. */
3938
3939 static bfd_boolean
3940 _bfd_riscv_relax_delete (bfd *abfd,
3941 asection *sec,
3942 asection *sym_sec ATTRIBUTE_UNUSED,
3943 struct bfd_link_info *link_info,
3944 Elf_Internal_Rela *rel,
3945 bfd_vma symval ATTRIBUTE_UNUSED,
3946 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3947 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3948 bfd_boolean *again ATTRIBUTE_UNUSED,
3949 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED,
3950 bfd_boolean undefined_weak ATTRIBUTE_UNUSED)
3951 {
3952 if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend,
3953 link_info))
3954 return FALSE;
3955 rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE);
3956 return TRUE;
3957 }
3958
3959 /* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3960 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3961 disabled, handles code alignment directives. */
3962
3963 static bfd_boolean
3964 _bfd_riscv_relax_section (bfd *abfd, asection *sec,
3965 struct bfd_link_info *info,
3966 bfd_boolean *again)
3967 {
3968 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
3969 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3970 struct bfd_elf_section_data *data = elf_section_data (sec);
3971 Elf_Internal_Rela *relocs;
3972 bfd_boolean ret = FALSE;
3973 unsigned int i;
3974 bfd_vma max_alignment, reserve_size = 0;
3975 riscv_pcgp_relocs pcgp_relocs;
3976
3977 *again = FALSE;
3978
3979 if (bfd_link_relocatable (info)
3980 || sec->sec_flg0
3981 || (sec->flags & SEC_RELOC) == 0
3982 || sec->reloc_count == 0
3983 || (info->disable_target_specific_optimizations
3984 && info->relax_pass == 0))
3985 return TRUE;
3986
3987 riscv_init_pcgp_relocs (&pcgp_relocs);
3988
3989 /* Read this BFD's relocs if we haven't done so already. */
3990 if (data->relocs)
3991 relocs = data->relocs;
3992 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3993 info->keep_memory)))
3994 goto fail;
3995
3996 if (htab)
3997 {
3998 max_alignment = htab->max_alignment;
3999 if (max_alignment == (bfd_vma) -1)
4000 {
4001 max_alignment = _bfd_riscv_get_max_alignment (sec);
4002 htab->max_alignment = max_alignment;
4003 }
4004 }
4005 else
4006 max_alignment = _bfd_riscv_get_max_alignment (sec);
4007
4008 /* Examine and consider relaxing each reloc. */
4009 for (i = 0; i < sec->reloc_count; i++)
4010 {
4011 asection *sym_sec;
4012 Elf_Internal_Rela *rel = relocs + i;
4013 relax_func_t relax_func;
4014 int type = ELFNN_R_TYPE (rel->r_info);
4015 bfd_vma symval;
4016 char symtype;
4017 bfd_boolean undefined_weak = FALSE;
4018
4019 relax_func = NULL;
4020 if (info->relax_pass == 0)
4021 {
4022 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
4023 relax_func = _bfd_riscv_relax_call;
4024 else if (type == R_RISCV_HI20
4025 || type == R_RISCV_LO12_I
4026 || type == R_RISCV_LO12_S)
4027 relax_func = _bfd_riscv_relax_lui;
4028 else if (!bfd_link_pic(info)
4029 && (type == R_RISCV_PCREL_HI20
4030 || type == R_RISCV_PCREL_LO12_I
4031 || type == R_RISCV_PCREL_LO12_S))
4032 relax_func = _bfd_riscv_relax_pc;
4033 else if (type == R_RISCV_TPREL_HI20
4034 || type == R_RISCV_TPREL_ADD
4035 || type == R_RISCV_TPREL_LO12_I
4036 || type == R_RISCV_TPREL_LO12_S)
4037 relax_func = _bfd_riscv_relax_tls_le;
4038 else
4039 continue;
4040
4041 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
4042 if (i == sec->reloc_count - 1
4043 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
4044 || rel->r_offset != (rel + 1)->r_offset)
4045 continue;
4046
4047 /* Skip over the R_RISCV_RELAX. */
4048 i++;
4049 }
4050 else if (info->relax_pass == 1 && type == R_RISCV_DELETE)
4051 relax_func = _bfd_riscv_relax_delete;
4052 else if (info->relax_pass == 2 && type == R_RISCV_ALIGN)
4053 relax_func = _bfd_riscv_relax_align;
4054 else
4055 continue;
4056
4057 data->relocs = relocs;
4058
4059 /* Read this BFD's contents if we haven't done so already. */
4060 if (!data->this_hdr.contents
4061 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
4062 goto fail;
4063
4064 /* Read this BFD's symbols if we haven't done so already. */
4065 if (symtab_hdr->sh_info != 0
4066 && !symtab_hdr->contents
4067 && !(symtab_hdr->contents =
4068 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
4069 symtab_hdr->sh_info,
4070 0, NULL, NULL, NULL)))
4071 goto fail;
4072
4073 /* Get the value of the symbol referred to by the reloc. */
4074 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
4075 {
4076 /* A local symbol. */
4077 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
4078 + ELFNN_R_SYM (rel->r_info));
4079 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
4080 ? 0 : isym->st_size - rel->r_addend;
4081
4082 if (isym->st_shndx == SHN_UNDEF)
4083 sym_sec = sec, symval = rel->r_offset;
4084 else
4085 {
4086 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
4087 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
4088 #if 0
4089 /* The purpose of this code is unknown. It breaks linker scripts
4090 for embedded development that place sections at address zero.
4091 This code is believed to be unnecessary. Disabling it but not
4092 yet removing it, in case something breaks. */
4093 if (sec_addr (sym_sec) == 0)
4094 continue;
4095 #endif
4096 symval = isym->st_value;
4097 }
4098 symtype = ELF_ST_TYPE (isym->st_info);
4099 }
4100 else
4101 {
4102 unsigned long indx;
4103 struct elf_link_hash_entry *h;
4104
4105 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
4106 h = elf_sym_hashes (abfd)[indx];
4107
4108 while (h->root.type == bfd_link_hash_indirect
4109 || h->root.type == bfd_link_hash_warning)
4110 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4111
4112 if (h->root.type == bfd_link_hash_undefweak
4113 && (relax_func == _bfd_riscv_relax_lui
4114 || relax_func == _bfd_riscv_relax_pc))
4115 {
4116 /* For the lui and auipc relaxations, since the symbol
4117 value of an undefined weak symbol is always be zero,
4118 we can optimize the patterns into a single LI/MV/ADDI
4119 instruction.
4120
4121 Note that, creating shared libraries and pie output may
4122 break the rule above. Fortunately, since we do not relax
4123 pc relocs when creating shared libraries and pie output,
4124 and the absolute address access for R_RISCV_HI20 isn't
4125 allowed when "-fPIC" is set, the problem of creating shared
4126 libraries can not happen currently. Once we support the
4127 auipc relaxations when creating shared libraries, then we will
4128 need the more rigorous checking for this optimization. */
4129 undefined_weak = TRUE;
4130 }
4131
4132 /* This line has to match the check in riscv_elf_relocate_section
4133 in the R_RISCV_CALL[_PLT] case. */
4134 if (bfd_link_pic (info) && h->plt.offset != MINUS_ONE)
4135 {
4136 sym_sec = htab->elf.splt;
4137 symval = h->plt.offset;
4138 }
4139 else if (undefined_weak)
4140 {
4141 symval = 0;
4142 sym_sec = bfd_und_section_ptr;
4143 }
4144 else if (h->root.u.def.section->output_section == NULL
4145 || (h->root.type != bfd_link_hash_defined
4146 && h->root.type != bfd_link_hash_defweak))
4147 continue;
4148 else
4149 {
4150 symval = h->root.u.def.value;
4151 sym_sec = h->root.u.def.section;
4152 }
4153
4154 if (h->type != STT_FUNC)
4155 reserve_size =
4156 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
4157 symtype = h->type;
4158 }
4159
4160 if (sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE
4161 && (sym_sec->flags & SEC_MERGE))
4162 {
4163 /* At this stage in linking, no SEC_MERGE symbol has been
4164 adjusted, so all references to such symbols need to be
4165 passed through _bfd_merged_section_offset. (Later, in
4166 relocate_section, all SEC_MERGE symbols *except* for
4167 section symbols have been adjusted.)
4168
4169 gas may reduce relocations against symbols in SEC_MERGE
4170 sections to a relocation against the section symbol when
4171 the original addend was zero. When the reloc is against
4172 a section symbol we should include the addend in the
4173 offset passed to _bfd_merged_section_offset, since the
4174 location of interest is the original symbol. On the
4175 other hand, an access to "sym+addend" where "sym" is not
4176 a section symbol should not include the addend; Such an
4177 access is presumed to be an offset from "sym"; The
4178 location of interest is just "sym". */
4179 if (symtype == STT_SECTION)
4180 symval += rel->r_addend;
4181
4182 symval = _bfd_merged_section_offset (abfd, &sym_sec,
4183 elf_section_data (sym_sec)->sec_info,
4184 symval);
4185
4186 if (symtype != STT_SECTION)
4187 symval += rel->r_addend;
4188 }
4189 else
4190 symval += rel->r_addend;
4191
4192 symval += sec_addr (sym_sec);
4193
4194 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
4195 max_alignment, reserve_size, again,
4196 &pcgp_relocs, undefined_weak))
4197 goto fail;
4198 }
4199
4200 ret = TRUE;
4201
4202 fail:
4203 if (relocs != data->relocs)
4204 free (relocs);
4205 riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec);
4206
4207 return ret;
4208 }
4209
4210 #if ARCH_SIZE == 32
4211 # define PRSTATUS_SIZE 204
4212 # define PRSTATUS_OFFSET_PR_CURSIG 12
4213 # define PRSTATUS_OFFSET_PR_PID 24
4214 # define PRSTATUS_OFFSET_PR_REG 72
4215 # define ELF_GREGSET_T_SIZE 128
4216 # define PRPSINFO_SIZE 128
4217 # define PRPSINFO_OFFSET_PR_PID 16
4218 # define PRPSINFO_OFFSET_PR_FNAME 32
4219 # define PRPSINFO_OFFSET_PR_PSARGS 48
4220 #else
4221 # define PRSTATUS_SIZE 376
4222 # define PRSTATUS_OFFSET_PR_CURSIG 12
4223 # define PRSTATUS_OFFSET_PR_PID 32
4224 # define PRSTATUS_OFFSET_PR_REG 112
4225 # define ELF_GREGSET_T_SIZE 256
4226 # define PRPSINFO_SIZE 136
4227 # define PRPSINFO_OFFSET_PR_PID 24
4228 # define PRPSINFO_OFFSET_PR_FNAME 40
4229 # define PRPSINFO_OFFSET_PR_PSARGS 56
4230 #endif
4231
4232 /* Support for core dump NOTE sections. */
4233
4234 static bfd_boolean
4235 riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4236 {
4237 switch (note->descsz)
4238 {
4239 default:
4240 return FALSE;
4241
4242 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
4243 /* pr_cursig */
4244 elf_tdata (abfd)->core->signal
4245 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
4246
4247 /* pr_pid */
4248 elf_tdata (abfd)->core->lwpid
4249 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
4250 break;
4251 }
4252
4253 /* Make a ".reg/999" section. */
4254 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
4255 note->descpos + PRSTATUS_OFFSET_PR_REG);
4256 }
4257
4258 static bfd_boolean
4259 riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4260 {
4261 switch (note->descsz)
4262 {
4263 default:
4264 return FALSE;
4265
4266 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
4267 /* pr_pid */
4268 elf_tdata (abfd)->core->pid
4269 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
4270
4271 /* pr_fname */
4272 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
4273 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
4274
4275 /* pr_psargs */
4276 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
4277 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
4278 break;
4279 }
4280
4281 /* Note that for some reason, a spurious space is tacked
4282 onto the end of the args in some (at least one anyway)
4283 implementations, so strip it off if it exists. */
4284
4285 {
4286 char *command = elf_tdata (abfd)->core->command;
4287 int n = strlen (command);
4288
4289 if (0 < n && command[n - 1] == ' ')
4290 command[n - 1] = '\0';
4291 }
4292
4293 return TRUE;
4294 }
4295
4296 /* Set the right mach type. */
4297 static bfd_boolean
4298 riscv_elf_object_p (bfd *abfd)
4299 {
4300 /* There are only two mach types in RISCV currently. */
4301 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
4302 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
4303 else
4304 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
4305
4306 return TRUE;
4307 }
4308
4309 /* Determine whether an object attribute tag takes an integer, a
4310 string or both. */
4311
4312 static int
4313 riscv_elf_obj_attrs_arg_type (int tag)
4314 {
4315 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
4316 }
4317
4318 #define TARGET_LITTLE_SYM riscv_elfNN_vec
4319 #define TARGET_LITTLE_NAME "elfNN-littleriscv"
4320
4321 #define elf_backend_reloc_type_class riscv_reloc_type_class
4322
4323 #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
4324 #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
4325 #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
4326 #define bfd_elfNN_bfd_merge_private_bfd_data \
4327 _bfd_riscv_elf_merge_private_bfd_data
4328
4329 #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
4330 #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
4331 #define elf_backend_check_relocs riscv_elf_check_relocs
4332 #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
4333 #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
4334 #define elf_backend_relocate_section riscv_elf_relocate_section
4335 #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
4336 #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
4337 #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
4338 #define elf_backend_plt_sym_val riscv_elf_plt_sym_val
4339 #define elf_backend_grok_prstatus riscv_elf_grok_prstatus
4340 #define elf_backend_grok_psinfo riscv_elf_grok_psinfo
4341 #define elf_backend_object_p riscv_elf_object_p
4342 #define elf_info_to_howto_rel NULL
4343 #define elf_info_to_howto riscv_info_to_howto_rela
4344 #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
4345
4346 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4347
4348 #define elf_backend_can_gc_sections 1
4349 #define elf_backend_can_refcount 1
4350 #define elf_backend_want_got_plt 1
4351 #define elf_backend_plt_readonly 1
4352 #define elf_backend_plt_alignment 4
4353 #define elf_backend_want_plt_sym 1
4354 #define elf_backend_got_header_size (ARCH_SIZE / 8)
4355 #define elf_backend_want_dynrelro 1
4356 #define elf_backend_rela_normal 1
4357 #define elf_backend_default_execstack 0
4358
4359 #undef elf_backend_obj_attrs_vendor
4360 #define elf_backend_obj_attrs_vendor "riscv"
4361 #undef elf_backend_obj_attrs_arg_type
4362 #define elf_backend_obj_attrs_arg_type riscv_elf_obj_attrs_arg_type
4363 #undef elf_backend_obj_attrs_section_type
4364 #define elf_backend_obj_attrs_section_type SHT_RISCV_ATTRIBUTES
4365 #undef elf_backend_obj_attrs_section
4366 #define elf_backend_obj_attrs_section ".riscv.attributes"
4367
4368 #include "elfNN-target.h"
This page took 0.119821 seconds and 4 git commands to generate.