Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elfnn-riscv.c
1 /* RISC-V-specific support for NN-bit ELF.
2 Copyright (C) 2011-2020 Free Software Foundation, Inc.
3
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
22
23 /* This file handles RISC-V ELF targets. */
24
25 #include "sysdep.h"
26 #include "bfd.h"
27 #include "libbfd.h"
28 #include "bfdlink.h"
29 #include "genlink.h"
30 #include "elf-bfd.h"
31 #include "elfxx-riscv.h"
32 #include "elf/riscv.h"
33 #include "opcode/riscv.h"
34
35 /* Internal relocations used exclusively by the relaxation pass. */
36 #define R_RISCV_DELETE (R_RISCV_max + 1)
37
38 #define ARCH_SIZE NN
39
40 #define MINUS_ONE ((bfd_vma)0 - 1)
41
42 #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
43
44 #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
45
46 /* The name of the dynamic interpreter. This is put in the .interp
47 section. */
48
49 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50 #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
51
52 #define ELF_ARCH bfd_arch_riscv
53 #define ELF_TARGET_ID RISCV_ELF_DATA
54 #define ELF_MACHINE_CODE EM_RISCV
55 #define ELF_MAXPAGESIZE 0x1000
56 #define ELF_COMMONPAGESIZE 0x1000
57
58 /* RISC-V ELF linker hash entry. */
59
60 struct riscv_elf_link_hash_entry
61 {
62 struct elf_link_hash_entry elf;
63
64 /* Track dynamic relocs copied for this symbol. */
65 struct elf_dyn_relocs *dyn_relocs;
66
67 #define GOT_UNKNOWN 0
68 #define GOT_NORMAL 1
69 #define GOT_TLS_GD 2
70 #define GOT_TLS_IE 4
71 #define GOT_TLS_LE 8
72 char tls_type;
73 };
74
75 #define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
77
78 struct _bfd_riscv_elf_obj_tdata
79 {
80 struct elf_obj_tdata root;
81
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type;
84 };
85
86 #define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
88
89 #define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
91
92 #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
95
96 #define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
100
101 #include "elf/common.h"
102 #include "elf/internal.h"
103
104 struct riscv_elf_link_hash_table
105 {
106 struct elf_link_hash_table elf;
107
108 /* Short-cuts to get to dynamic linker sections. */
109 asection *sdyntdata;
110
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache;
113
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment;
116 };
117
118
119 /* Get the RISC-V ELF linker hash table from a link_info structure. */
120 #define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
123
124 static bfd_boolean
125 riscv_info_to_howto_rela (bfd *abfd,
126 arelent *cache_ptr,
127 Elf_Internal_Rela *dst)
128 {
129 cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info));
130 return cache_ptr->howto != NULL;
131 }
132
133 static void
134 riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
135 {
136 const struct elf_backend_data *bed;
137 bfd_byte *loc;
138
139 bed = get_elf_backend_data (abfd);
140 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
141 bed->s->swap_reloca_out (abfd, rel, loc);
142 }
143
144 /* PLT/GOT stuff. */
145
146 #define PLT_HEADER_INSNS 8
147 #define PLT_ENTRY_INSNS 4
148 #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
149 #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
150
151 #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
152
153 #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
154
155 #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
156
157 static bfd_vma
158 riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
159 {
160 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
161 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
162 }
163
164 #if ARCH_SIZE == 32
165 # define MATCH_LREG MATCH_LW
166 #else
167 # define MATCH_LREG MATCH_LD
168 #endif
169
170 /* Generate a PLT header. */
171
172 static bfd_boolean
173 riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr,
174 uint32_t *entry)
175 {
176 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
177 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
178
179 /* RVE has no t3 register, so this won't work, and is not supported. */
180 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
181 {
182 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
183 output_bfd);
184 return FALSE;
185 }
186
187 /* auipc t2, %hi(.got.plt)
188 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
189 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
190 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
191 addi t0, t2, %lo(.got.plt) # &.got.plt
192 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
193 l[w|d] t0, PTRSIZE(t0) # link map
194 jr t3 */
195
196 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
197 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
198 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
199 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
200 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
201 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
202 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
203 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
204
205 return TRUE;
206 }
207
208 /* Generate a PLT entry. */
209
210 static bfd_boolean
211 riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr,
212 uint32_t *entry)
213 {
214 /* RVE has no t3 register, so this won't work, and is not supported. */
215 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
216 {
217 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
218 output_bfd);
219 return FALSE;
220 }
221
222 /* auipc t3, %hi(.got.plt entry)
223 l[w|d] t3, %lo(.got.plt entry)(t3)
224 jalr t1, t3
225 nop */
226
227 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
228 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
229 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
230 entry[3] = RISCV_NOP;
231
232 return TRUE;
233 }
234
235 /* Create an entry in an RISC-V ELF linker hash table. */
236
237 static struct bfd_hash_entry *
238 link_hash_newfunc (struct bfd_hash_entry *entry,
239 struct bfd_hash_table *table, const char *string)
240 {
241 /* Allocate the structure if it has not already been allocated by a
242 subclass. */
243 if (entry == NULL)
244 {
245 entry =
246 bfd_hash_allocate (table,
247 sizeof (struct riscv_elf_link_hash_entry));
248 if (entry == NULL)
249 return entry;
250 }
251
252 /* Call the allocation method of the superclass. */
253 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
254 if (entry != NULL)
255 {
256 struct riscv_elf_link_hash_entry *eh;
257
258 eh = (struct riscv_elf_link_hash_entry *) entry;
259 eh->dyn_relocs = NULL;
260 eh->tls_type = GOT_UNKNOWN;
261 }
262
263 return entry;
264 }
265
266 /* Create a RISC-V ELF linker hash table. */
267
268 static struct bfd_link_hash_table *
269 riscv_elf_link_hash_table_create (bfd *abfd)
270 {
271 struct riscv_elf_link_hash_table *ret;
272 size_t amt = sizeof (struct riscv_elf_link_hash_table);
273
274 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
275 if (ret == NULL)
276 return NULL;
277
278 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
279 sizeof (struct riscv_elf_link_hash_entry),
280 RISCV_ELF_DATA))
281 {
282 free (ret);
283 return NULL;
284 }
285
286 ret->max_alignment = (bfd_vma) -1;
287 return &ret->elf.root;
288 }
289
290 /* Create the .got section. */
291
292 static bfd_boolean
293 riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
294 {
295 flagword flags;
296 asection *s, *s_got;
297 struct elf_link_hash_entry *h;
298 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
299 struct elf_link_hash_table *htab = elf_hash_table (info);
300
301 /* This function may be called more than once. */
302 if (htab->sgot != NULL)
303 return TRUE;
304
305 flags = bed->dynamic_sec_flags;
306
307 s = bfd_make_section_anyway_with_flags (abfd,
308 (bed->rela_plts_and_copies_p
309 ? ".rela.got" : ".rel.got"),
310 (bed->dynamic_sec_flags
311 | SEC_READONLY));
312 if (s == NULL
313 || !bfd_set_section_alignment (s, bed->s->log_file_align))
314 return FALSE;
315 htab->srelgot = s;
316
317 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
318 if (s == NULL
319 || !bfd_set_section_alignment (s, bed->s->log_file_align))
320 return FALSE;
321 htab->sgot = s;
322
323 /* The first bit of the global offset table is the header. */
324 s->size += bed->got_header_size;
325
326 if (bed->want_got_plt)
327 {
328 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
329 if (s == NULL
330 || !bfd_set_section_alignment (s, bed->s->log_file_align))
331 return FALSE;
332 htab->sgotplt = s;
333
334 /* Reserve room for the header. */
335 s->size += GOTPLT_HEADER_SIZE;
336 }
337
338 if (bed->want_got_sym)
339 {
340 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
341 section. We don't do this in the linker script because we don't want
342 to define the symbol if we are not creating a global offset
343 table. */
344 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
345 "_GLOBAL_OFFSET_TABLE_");
346 elf_hash_table (info)->hgot = h;
347 if (h == NULL)
348 return FALSE;
349 }
350
351 return TRUE;
352 }
353
354 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
355 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
356 hash table. */
357
358 static bfd_boolean
359 riscv_elf_create_dynamic_sections (bfd *dynobj,
360 struct bfd_link_info *info)
361 {
362 struct riscv_elf_link_hash_table *htab;
363
364 htab = riscv_elf_hash_table (info);
365 BFD_ASSERT (htab != NULL);
366
367 if (!riscv_elf_create_got_section (dynobj, info))
368 return FALSE;
369
370 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
371 return FALSE;
372
373 if (!bfd_link_pic (info))
374 {
375 /* Technically, this section doesn't have contents. It is used as the
376 target of TLS copy relocs, to copy TLS data from shared libraries into
377 the executable. However, if we don't mark it as loadable, then it
378 matches the IS_TBSS test in ldlang.c, and there is no run-time address
379 space allocated for it even though it has SEC_ALLOC. That test is
380 correct for .tbss, but not correct for this section. There is also
381 a second problem that having a section with no contents can only work
382 if it comes after all sections with contents in the same segment,
383 but the linker script does not guarantee that. This is just mixed in
384 with other .tdata.* sections. We can fix both problems by lying and
385 saying that there are contents. This section is expected to be small
386 so this should not cause a significant extra program startup cost. */
387 htab->sdyntdata =
388 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
389 (SEC_ALLOC | SEC_THREAD_LOCAL
390 | SEC_LOAD | SEC_DATA
391 | SEC_HAS_CONTENTS
392 | SEC_LINKER_CREATED));
393 }
394
395 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
396 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
397 abort ();
398
399 return TRUE;
400 }
401
402 /* Copy the extra info we tack onto an elf_link_hash_entry. */
403
404 static void
405 riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
406 struct elf_link_hash_entry *dir,
407 struct elf_link_hash_entry *ind)
408 {
409 struct riscv_elf_link_hash_entry *edir, *eind;
410
411 edir = (struct riscv_elf_link_hash_entry *) dir;
412 eind = (struct riscv_elf_link_hash_entry *) ind;
413
414 if (eind->dyn_relocs != NULL)
415 {
416 if (edir->dyn_relocs != NULL)
417 {
418 struct elf_dyn_relocs **pp;
419 struct elf_dyn_relocs *p;
420
421 /* Add reloc counts against the indirect sym to the direct sym
422 list. Merge any entries against the same section. */
423 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
424 {
425 struct elf_dyn_relocs *q;
426
427 for (q = edir->dyn_relocs; q != NULL; q = q->next)
428 if (q->sec == p->sec)
429 {
430 q->pc_count += p->pc_count;
431 q->count += p->count;
432 *pp = p->next;
433 break;
434 }
435 if (q == NULL)
436 pp = &p->next;
437 }
438 *pp = edir->dyn_relocs;
439 }
440
441 edir->dyn_relocs = eind->dyn_relocs;
442 eind->dyn_relocs = NULL;
443 }
444
445 if (ind->root.type == bfd_link_hash_indirect
446 && dir->got.refcount <= 0)
447 {
448 edir->tls_type = eind->tls_type;
449 eind->tls_type = GOT_UNKNOWN;
450 }
451 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
452 }
453
454 static bfd_boolean
455 riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
456 unsigned long symndx, char tls_type)
457 {
458 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
459
460 *new_tls_type |= tls_type;
461 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
462 {
463 (*_bfd_error_handler)
464 (_("%pB: `%s' accessed both as normal and thread local symbol"),
465 abfd, h ? h->root.root.string : "<local>");
466 return FALSE;
467 }
468 return TRUE;
469 }
470
471 static bfd_boolean
472 riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
473 struct elf_link_hash_entry *h, long symndx)
474 {
475 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
476 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
477
478 if (htab->elf.sgot == NULL)
479 {
480 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
481 return FALSE;
482 }
483
484 if (h != NULL)
485 {
486 h->got.refcount += 1;
487 return TRUE;
488 }
489
490 /* This is a global offset table entry for a local symbol. */
491 if (elf_local_got_refcounts (abfd) == NULL)
492 {
493 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
494 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
495 return FALSE;
496 _bfd_riscv_elf_local_got_tls_type (abfd)
497 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
498 }
499 elf_local_got_refcounts (abfd) [symndx] += 1;
500
501 return TRUE;
502 }
503
504 static bfd_boolean
505 bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
506 {
507 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
508
509 (*_bfd_error_handler)
510 (_("%pB: relocation %s against `%s' can not be used when making a shared "
511 "object; recompile with -fPIC"),
512 abfd, r ? r->name : _("<unknown>"),
513 h != NULL ? h->root.root.string : "a local symbol");
514 bfd_set_error (bfd_error_bad_value);
515 return FALSE;
516 }
517 /* Look through the relocs for a section during the first phase, and
518 allocate space in the global offset table or procedure linkage
519 table. */
520
521 static bfd_boolean
522 riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
523 asection *sec, const Elf_Internal_Rela *relocs)
524 {
525 struct riscv_elf_link_hash_table *htab;
526 Elf_Internal_Shdr *symtab_hdr;
527 struct elf_link_hash_entry **sym_hashes;
528 const Elf_Internal_Rela *rel;
529 asection *sreloc = NULL;
530
531 if (bfd_link_relocatable (info))
532 return TRUE;
533
534 htab = riscv_elf_hash_table (info);
535 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
536 sym_hashes = elf_sym_hashes (abfd);
537
538 if (htab->elf.dynobj == NULL)
539 htab->elf.dynobj = abfd;
540
541 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
542 {
543 unsigned int r_type;
544 unsigned int r_symndx;
545 struct elf_link_hash_entry *h;
546
547 r_symndx = ELFNN_R_SYM (rel->r_info);
548 r_type = ELFNN_R_TYPE (rel->r_info);
549
550 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
551 {
552 (*_bfd_error_handler) (_("%pB: bad symbol index: %d"),
553 abfd, r_symndx);
554 return FALSE;
555 }
556
557 if (r_symndx < symtab_hdr->sh_info)
558 h = NULL;
559 else
560 {
561 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
562 while (h->root.type == bfd_link_hash_indirect
563 || h->root.type == bfd_link_hash_warning)
564 h = (struct elf_link_hash_entry *) h->root.u.i.link;
565 }
566
567 switch (r_type)
568 {
569 case R_RISCV_TLS_GD_HI20:
570 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
571 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
572 return FALSE;
573 break;
574
575 case R_RISCV_TLS_GOT_HI20:
576 if (bfd_link_pic (info))
577 info->flags |= DF_STATIC_TLS;
578 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
579 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
580 return FALSE;
581 break;
582
583 case R_RISCV_GOT_HI20:
584 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
585 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
586 return FALSE;
587 break;
588
589 case R_RISCV_CALL_PLT:
590 /* This symbol requires a procedure linkage table entry. We
591 actually build the entry in adjust_dynamic_symbol,
592 because this might be a case of linking PIC code without
593 linking in any dynamic objects, in which case we don't
594 need to generate a procedure linkage table after all. */
595
596 if (h != NULL)
597 {
598 h->needs_plt = 1;
599 h->plt.refcount += 1;
600 }
601 break;
602
603 case R_RISCV_CALL:
604 case R_RISCV_JAL:
605 case R_RISCV_BRANCH:
606 case R_RISCV_RVC_BRANCH:
607 case R_RISCV_RVC_JUMP:
608 case R_RISCV_PCREL_HI20:
609 /* In shared libraries, these relocs are known to bind locally. */
610 if (bfd_link_pic (info))
611 break;
612 goto static_reloc;
613
614 case R_RISCV_TPREL_HI20:
615 if (!bfd_link_executable (info))
616 return bad_static_reloc (abfd, r_type, h);
617 if (h != NULL)
618 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
619 goto static_reloc;
620
621 case R_RISCV_HI20:
622 if (bfd_link_pic (info))
623 return bad_static_reloc (abfd, r_type, h);
624 /* Fall through. */
625
626 case R_RISCV_COPY:
627 case R_RISCV_JUMP_SLOT:
628 case R_RISCV_RELATIVE:
629 case R_RISCV_64:
630 case R_RISCV_32:
631 /* Fall through. */
632
633 static_reloc:
634 /* This reloc might not bind locally. */
635 if (h != NULL)
636 h->non_got_ref = 1;
637
638 if (h != NULL && !bfd_link_pic (info))
639 {
640 /* We may need a .plt entry if the function this reloc
641 refers to is in a shared lib. */
642 h->plt.refcount += 1;
643 }
644
645 /* If we are creating a shared library, and this is a reloc
646 against a global symbol, or a non PC relative reloc
647 against a local symbol, then we need to copy the reloc
648 into the shared library. However, if we are linking with
649 -Bsymbolic, we do not need to copy a reloc against a
650 global symbol which is defined in an object we are
651 including in the link (i.e., DEF_REGULAR is set). At
652 this point we have not seen all the input files, so it is
653 possible that DEF_REGULAR is not set now but will be set
654 later (it is never cleared). In case of a weak definition,
655 DEF_REGULAR may be cleared later by a strong definition in
656 a shared library. We account for that possibility below by
657 storing information in the relocs_copied field of the hash
658 table entry. A similar situation occurs when creating
659 shared libraries and symbol visibility changes render the
660 symbol local.
661
662 If on the other hand, we are creating an executable, we
663 may need to keep relocations for symbols satisfied by a
664 dynamic library if we manage to avoid copy relocs for the
665 symbol. */
666 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
667
668 if ((bfd_link_pic (info)
669 && (sec->flags & SEC_ALLOC) != 0
670 && ((r != NULL && ! r->pc_relative)
671 || (h != NULL
672 && (! info->symbolic
673 || h->root.type == bfd_link_hash_defweak
674 || !h->def_regular))))
675 || (!bfd_link_pic (info)
676 && (sec->flags & SEC_ALLOC) != 0
677 && h != NULL
678 && (h->root.type == bfd_link_hash_defweak
679 || !h->def_regular)))
680 {
681 struct elf_dyn_relocs *p;
682 struct elf_dyn_relocs **head;
683
684 /* When creating a shared object, we must copy these
685 relocs into the output file. We create a reloc
686 section in dynobj and make room for the reloc. */
687 if (sreloc == NULL)
688 {
689 sreloc = _bfd_elf_make_dynamic_reloc_section
690 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
691 abfd, /*rela?*/ TRUE);
692
693 if (sreloc == NULL)
694 return FALSE;
695 }
696
697 /* If this is a global symbol, we count the number of
698 relocations we need for this symbol. */
699 if (h != NULL)
700 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
701 else
702 {
703 /* Track dynamic relocs needed for local syms too.
704 We really need local syms available to do this
705 easily. Oh well. */
706
707 asection *s;
708 void *vpp;
709 Elf_Internal_Sym *isym;
710
711 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
712 abfd, r_symndx);
713 if (isym == NULL)
714 return FALSE;
715
716 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
717 if (s == NULL)
718 s = sec;
719
720 vpp = &elf_section_data (s)->local_dynrel;
721 head = (struct elf_dyn_relocs **) vpp;
722 }
723
724 p = *head;
725 if (p == NULL || p->sec != sec)
726 {
727 size_t amt = sizeof *p;
728 p = ((struct elf_dyn_relocs *)
729 bfd_alloc (htab->elf.dynobj, amt));
730 if (p == NULL)
731 return FALSE;
732 p->next = *head;
733 *head = p;
734 p->sec = sec;
735 p->count = 0;
736 p->pc_count = 0;
737 }
738
739 p->count += 1;
740 p->pc_count += r == NULL ? 0 : r->pc_relative;
741 }
742
743 break;
744
745 case R_RISCV_GNU_VTINHERIT:
746 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
747 return FALSE;
748 break;
749
750 case R_RISCV_GNU_VTENTRY:
751 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
752 return FALSE;
753 break;
754
755 default:
756 break;
757 }
758 }
759
760 return TRUE;
761 }
762
763 static asection *
764 riscv_elf_gc_mark_hook (asection *sec,
765 struct bfd_link_info *info,
766 Elf_Internal_Rela *rel,
767 struct elf_link_hash_entry *h,
768 Elf_Internal_Sym *sym)
769 {
770 if (h != NULL)
771 switch (ELFNN_R_TYPE (rel->r_info))
772 {
773 case R_RISCV_GNU_VTINHERIT:
774 case R_RISCV_GNU_VTENTRY:
775 return NULL;
776 }
777
778 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
779 }
780
781 /* Find dynamic relocs for H that apply to read-only sections. */
782
783 static asection *
784 readonly_dynrelocs (struct elf_link_hash_entry *h)
785 {
786 struct elf_dyn_relocs *p;
787
788 for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
789 {
790 asection *s = p->sec->output_section;
791
792 if (s != NULL && (s->flags & SEC_READONLY) != 0)
793 return p->sec;
794 }
795 return NULL;
796 }
797
798 /* Adjust a symbol defined by a dynamic object and referenced by a
799 regular object. The current definition is in some section of the
800 dynamic object, but we're not including those sections. We have to
801 change the definition to something the rest of the link can
802 understand. */
803
804 static bfd_boolean
805 riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
806 struct elf_link_hash_entry *h)
807 {
808 struct riscv_elf_link_hash_table *htab;
809 struct riscv_elf_link_hash_entry * eh;
810 bfd *dynobj;
811 asection *s, *srel;
812
813 htab = riscv_elf_hash_table (info);
814 BFD_ASSERT (htab != NULL);
815
816 dynobj = htab->elf.dynobj;
817
818 /* Make sure we know what is going on here. */
819 BFD_ASSERT (dynobj != NULL
820 && (h->needs_plt
821 || h->type == STT_GNU_IFUNC
822 || h->is_weakalias
823 || (h->def_dynamic
824 && h->ref_regular
825 && !h->def_regular)));
826
827 /* If this is a function, put it in the procedure linkage table. We
828 will fill in the contents of the procedure linkage table later
829 (although we could actually do it here). */
830 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
831 {
832 if (h->plt.refcount <= 0
833 || SYMBOL_CALLS_LOCAL (info, h)
834 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
835 && h->root.type == bfd_link_hash_undefweak))
836 {
837 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
838 input file, but the symbol was never referred to by a dynamic
839 object, or if all references were garbage collected. In such
840 a case, we don't actually need to build a PLT entry. */
841 h->plt.offset = (bfd_vma) -1;
842 h->needs_plt = 0;
843 }
844
845 return TRUE;
846 }
847 else
848 h->plt.offset = (bfd_vma) -1;
849
850 /* If this is a weak symbol, and there is a real definition, the
851 processor independent code will have arranged for us to see the
852 real definition first, and we can just use the same value. */
853 if (h->is_weakalias)
854 {
855 struct elf_link_hash_entry *def = weakdef (h);
856 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
857 h->root.u.def.section = def->root.u.def.section;
858 h->root.u.def.value = def->root.u.def.value;
859 return TRUE;
860 }
861
862 /* This is a reference to a symbol defined by a dynamic object which
863 is not a function. */
864
865 /* If we are creating a shared library, we must presume that the
866 only references to the symbol are via the global offset table.
867 For such cases we need not do anything here; the relocations will
868 be handled correctly by relocate_section. */
869 if (bfd_link_pic (info))
870 return TRUE;
871
872 /* If there are no references to this symbol that do not use the
873 GOT, we don't need to generate a copy reloc. */
874 if (!h->non_got_ref)
875 return TRUE;
876
877 /* If -z nocopyreloc was given, we won't generate them either. */
878 if (info->nocopyreloc)
879 {
880 h->non_got_ref = 0;
881 return TRUE;
882 }
883
884 /* If we don't find any dynamic relocs in read-only sections, then
885 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
886 if (!readonly_dynrelocs (h))
887 {
888 h->non_got_ref = 0;
889 return TRUE;
890 }
891
892 /* We must allocate the symbol in our .dynbss section, which will
893 become part of the .bss section of the executable. There will be
894 an entry for this symbol in the .dynsym section. The dynamic
895 object will contain position independent code, so all references
896 from the dynamic object to this symbol will go through the global
897 offset table. The dynamic linker will use the .dynsym entry to
898 determine the address it must put in the global offset table, so
899 both the dynamic object and the regular object will refer to the
900 same memory location for the variable. */
901
902 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
903 to copy the initial value out of the dynamic object and into the
904 runtime process image. We need to remember the offset into the
905 .rel.bss section we are going to use. */
906 eh = (struct riscv_elf_link_hash_entry *) h;
907 if (eh->tls_type & ~GOT_NORMAL)
908 {
909 s = htab->sdyntdata;
910 srel = htab->elf.srelbss;
911 }
912 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
913 {
914 s = htab->elf.sdynrelro;
915 srel = htab->elf.sreldynrelro;
916 }
917 else
918 {
919 s = htab->elf.sdynbss;
920 srel = htab->elf.srelbss;
921 }
922 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
923 {
924 srel->size += sizeof (ElfNN_External_Rela);
925 h->needs_copy = 1;
926 }
927
928 return _bfd_elf_adjust_dynamic_copy (info, h, s);
929 }
930
931 /* Allocate space in .plt, .got and associated reloc sections for
932 dynamic relocs. */
933
934 static bfd_boolean
935 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
936 {
937 struct bfd_link_info *info;
938 struct riscv_elf_link_hash_table *htab;
939 struct riscv_elf_link_hash_entry *eh;
940 struct elf_dyn_relocs *p;
941
942 if (h->root.type == bfd_link_hash_indirect)
943 return TRUE;
944
945 info = (struct bfd_link_info *) inf;
946 htab = riscv_elf_hash_table (info);
947 BFD_ASSERT (htab != NULL);
948
949 if (htab->elf.dynamic_sections_created
950 && h->plt.refcount > 0)
951 {
952 /* Make sure this symbol is output as a dynamic symbol.
953 Undefined weak syms won't yet be marked as dynamic. */
954 if (h->dynindx == -1
955 && !h->forced_local)
956 {
957 if (! bfd_elf_link_record_dynamic_symbol (info, h))
958 return FALSE;
959 }
960
961 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
962 {
963 asection *s = htab->elf.splt;
964
965 if (s->size == 0)
966 s->size = PLT_HEADER_SIZE;
967
968 h->plt.offset = s->size;
969
970 /* Make room for this entry. */
971 s->size += PLT_ENTRY_SIZE;
972
973 /* We also need to make an entry in the .got.plt section. */
974 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
975
976 /* We also need to make an entry in the .rela.plt section. */
977 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
978
979 /* If this symbol is not defined in a regular file, and we are
980 not generating a shared library, then set the symbol to this
981 location in the .plt. This is required to make function
982 pointers compare as equal between the normal executable and
983 the shared library. */
984 if (! bfd_link_pic (info)
985 && !h->def_regular)
986 {
987 h->root.u.def.section = s;
988 h->root.u.def.value = h->plt.offset;
989 }
990 }
991 else
992 {
993 h->plt.offset = (bfd_vma) -1;
994 h->needs_plt = 0;
995 }
996 }
997 else
998 {
999 h->plt.offset = (bfd_vma) -1;
1000 h->needs_plt = 0;
1001 }
1002
1003 if (h->got.refcount > 0)
1004 {
1005 asection *s;
1006 bfd_boolean dyn;
1007 int tls_type = riscv_elf_hash_entry (h)->tls_type;
1008
1009 /* Make sure this symbol is output as a dynamic symbol.
1010 Undefined weak syms won't yet be marked as dynamic. */
1011 if (h->dynindx == -1
1012 && !h->forced_local)
1013 {
1014 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1015 return FALSE;
1016 }
1017
1018 s = htab->elf.sgot;
1019 h->got.offset = s->size;
1020 dyn = htab->elf.dynamic_sections_created;
1021 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
1022 {
1023 /* TLS_GD needs two dynamic relocs and two GOT slots. */
1024 if (tls_type & GOT_TLS_GD)
1025 {
1026 s->size += 2 * RISCV_ELF_WORD_BYTES;
1027 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
1028 }
1029
1030 /* TLS_IE needs one dynamic reloc and one GOT slot. */
1031 if (tls_type & GOT_TLS_IE)
1032 {
1033 s->size += RISCV_ELF_WORD_BYTES;
1034 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1035 }
1036 }
1037 else
1038 {
1039 s->size += RISCV_ELF_WORD_BYTES;
1040 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
1041 && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
1042 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1043 }
1044 }
1045 else
1046 h->got.offset = (bfd_vma) -1;
1047
1048 eh = (struct riscv_elf_link_hash_entry *) h;
1049 if (eh->dyn_relocs == NULL)
1050 return TRUE;
1051
1052 /* In the shared -Bsymbolic case, discard space allocated for
1053 dynamic pc-relative relocs against symbols which turn out to be
1054 defined in regular objects. For the normal shared case, discard
1055 space for pc-relative relocs that have become local due to symbol
1056 visibility changes. */
1057
1058 if (bfd_link_pic (info))
1059 {
1060 if (SYMBOL_CALLS_LOCAL (info, h))
1061 {
1062 struct elf_dyn_relocs **pp;
1063
1064 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1065 {
1066 p->count -= p->pc_count;
1067 p->pc_count = 0;
1068 if (p->count == 0)
1069 *pp = p->next;
1070 else
1071 pp = &p->next;
1072 }
1073 }
1074
1075 /* Also discard relocs on undefined weak syms with non-default
1076 visibility. */
1077 if (eh->dyn_relocs != NULL
1078 && h->root.type == bfd_link_hash_undefweak)
1079 {
1080 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1081 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
1082 eh->dyn_relocs = NULL;
1083
1084 /* Make sure undefined weak symbols are output as a dynamic
1085 symbol in PIEs. */
1086 else if (h->dynindx == -1
1087 && !h->forced_local)
1088 {
1089 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1090 return FALSE;
1091 }
1092 }
1093 }
1094 else
1095 {
1096 /* For the non-shared case, discard space for relocs against
1097 symbols which turn out to need copy relocs or are not
1098 dynamic. */
1099
1100 if (!h->non_got_ref
1101 && ((h->def_dynamic
1102 && !h->def_regular)
1103 || (htab->elf.dynamic_sections_created
1104 && (h->root.type == bfd_link_hash_undefweak
1105 || h->root.type == bfd_link_hash_undefined))))
1106 {
1107 /* Make sure this symbol is output as a dynamic symbol.
1108 Undefined weak syms won't yet be marked as dynamic. */
1109 if (h->dynindx == -1
1110 && !h->forced_local)
1111 {
1112 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1113 return FALSE;
1114 }
1115
1116 /* If that succeeded, we know we'll be keeping all the
1117 relocs. */
1118 if (h->dynindx != -1)
1119 goto keep;
1120 }
1121
1122 eh->dyn_relocs = NULL;
1123
1124 keep: ;
1125 }
1126
1127 /* Finally, allocate space. */
1128 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1129 {
1130 asection *sreloc = elf_section_data (p->sec)->sreloc;
1131 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1132 }
1133
1134 return TRUE;
1135 }
1136
1137 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
1138 read-only sections. */
1139
1140 static bfd_boolean
1141 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
1142 {
1143 asection *sec;
1144
1145 if (h->root.type == bfd_link_hash_indirect)
1146 return TRUE;
1147
1148 sec = readonly_dynrelocs (h);
1149 if (sec != NULL)
1150 {
1151 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
1152
1153 info->flags |= DF_TEXTREL;
1154 info->callbacks->minfo
1155 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
1156 sec->owner, h->root.root.string, sec);
1157
1158 /* Not an error, just cut short the traversal. */
1159 return FALSE;
1160 }
1161 return TRUE;
1162 }
1163
1164 static bfd_boolean
1165 riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1166 {
1167 struct riscv_elf_link_hash_table *htab;
1168 bfd *dynobj;
1169 asection *s;
1170 bfd *ibfd;
1171
1172 htab = riscv_elf_hash_table (info);
1173 BFD_ASSERT (htab != NULL);
1174 dynobj = htab->elf.dynobj;
1175 BFD_ASSERT (dynobj != NULL);
1176
1177 if (elf_hash_table (info)->dynamic_sections_created)
1178 {
1179 /* Set the contents of the .interp section to the interpreter. */
1180 if (bfd_link_executable (info) && !info->nointerp)
1181 {
1182 s = bfd_get_linker_section (dynobj, ".interp");
1183 BFD_ASSERT (s != NULL);
1184 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1185 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1186 }
1187 }
1188
1189 /* Set up .got offsets for local syms, and space for local dynamic
1190 relocs. */
1191 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1192 {
1193 bfd_signed_vma *local_got;
1194 bfd_signed_vma *end_local_got;
1195 char *local_tls_type;
1196 bfd_size_type locsymcount;
1197 Elf_Internal_Shdr *symtab_hdr;
1198 asection *srel;
1199
1200 if (! is_riscv_elf (ibfd))
1201 continue;
1202
1203 for (s = ibfd->sections; s != NULL; s = s->next)
1204 {
1205 struct elf_dyn_relocs *p;
1206
1207 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1208 {
1209 if (!bfd_is_abs_section (p->sec)
1210 && bfd_is_abs_section (p->sec->output_section))
1211 {
1212 /* Input section has been discarded, either because
1213 it is a copy of a linkonce section or due to
1214 linker script /DISCARD/, so we'll be discarding
1215 the relocs too. */
1216 }
1217 else if (p->count != 0)
1218 {
1219 srel = elf_section_data (p->sec)->sreloc;
1220 srel->size += p->count * sizeof (ElfNN_External_Rela);
1221 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1222 info->flags |= DF_TEXTREL;
1223 }
1224 }
1225 }
1226
1227 local_got = elf_local_got_refcounts (ibfd);
1228 if (!local_got)
1229 continue;
1230
1231 symtab_hdr = &elf_symtab_hdr (ibfd);
1232 locsymcount = symtab_hdr->sh_info;
1233 end_local_got = local_got + locsymcount;
1234 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1235 s = htab->elf.sgot;
1236 srel = htab->elf.srelgot;
1237 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1238 {
1239 if (*local_got > 0)
1240 {
1241 *local_got = s->size;
1242 s->size += RISCV_ELF_WORD_BYTES;
1243 if (*local_tls_type & GOT_TLS_GD)
1244 s->size += RISCV_ELF_WORD_BYTES;
1245 if (bfd_link_pic (info)
1246 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1247 srel->size += sizeof (ElfNN_External_Rela);
1248 }
1249 else
1250 *local_got = (bfd_vma) -1;
1251 }
1252 }
1253
1254 /* Allocate global sym .plt and .got entries, and space for global
1255 sym dynamic relocs. */
1256 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1257
1258 if (htab->elf.sgotplt)
1259 {
1260 struct elf_link_hash_entry *got;
1261 got = elf_link_hash_lookup (elf_hash_table (info),
1262 "_GLOBAL_OFFSET_TABLE_",
1263 FALSE, FALSE, FALSE);
1264
1265 /* Don't allocate .got.plt section if there are no GOT nor PLT
1266 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1267 if ((got == NULL
1268 || !got->ref_regular_nonweak)
1269 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1270 && (htab->elf.splt == NULL
1271 || htab->elf.splt->size == 0)
1272 && (htab->elf.sgot == NULL
1273 || (htab->elf.sgot->size
1274 == get_elf_backend_data (output_bfd)->got_header_size)))
1275 htab->elf.sgotplt->size = 0;
1276 }
1277
1278 /* The check_relocs and adjust_dynamic_symbol entry points have
1279 determined the sizes of the various dynamic sections. Allocate
1280 memory for them. */
1281 for (s = dynobj->sections; s != NULL; s = s->next)
1282 {
1283 if ((s->flags & SEC_LINKER_CREATED) == 0)
1284 continue;
1285
1286 if (s == htab->elf.splt
1287 || s == htab->elf.sgot
1288 || s == htab->elf.sgotplt
1289 || s == htab->elf.sdynbss
1290 || s == htab->elf.sdynrelro
1291 || s == htab->sdyntdata)
1292 {
1293 /* Strip this section if we don't need it; see the
1294 comment below. */
1295 }
1296 else if (strncmp (s->name, ".rela", 5) == 0)
1297 {
1298 if (s->size != 0)
1299 {
1300 /* We use the reloc_count field as a counter if we need
1301 to copy relocs into the output file. */
1302 s->reloc_count = 0;
1303 }
1304 }
1305 else
1306 {
1307 /* It's not one of our sections. */
1308 continue;
1309 }
1310
1311 if (s->size == 0)
1312 {
1313 /* If we don't need this section, strip it from the
1314 output file. This is mostly to handle .rela.bss and
1315 .rela.plt. We must create both sections in
1316 create_dynamic_sections, because they must be created
1317 before the linker maps input sections to output
1318 sections. The linker does that before
1319 adjust_dynamic_symbol is called, and it is that
1320 function which decides whether anything needs to go
1321 into these sections. */
1322 s->flags |= SEC_EXCLUDE;
1323 continue;
1324 }
1325
1326 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1327 continue;
1328
1329 /* Allocate memory for the section contents. Zero the memory
1330 for the benefit of .rela.plt, which has 4 unused entries
1331 at the beginning, and we don't want garbage. */
1332 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1333 if (s->contents == NULL)
1334 return FALSE;
1335 }
1336
1337 if (elf_hash_table (info)->dynamic_sections_created)
1338 {
1339 /* Add some entries to the .dynamic section. We fill in the
1340 values later, in riscv_elf_finish_dynamic_sections, but we
1341 must add the entries now so that we get the correct size for
1342 the .dynamic section. The DT_DEBUG entry is filled in by the
1343 dynamic linker and used by the debugger. */
1344 #define add_dynamic_entry(TAG, VAL) \
1345 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1346
1347 if (bfd_link_executable (info))
1348 {
1349 if (!add_dynamic_entry (DT_DEBUG, 0))
1350 return FALSE;
1351 }
1352
1353 if (htab->elf.srelplt->size != 0)
1354 {
1355 if (!add_dynamic_entry (DT_PLTGOT, 0)
1356 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1357 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1358 || !add_dynamic_entry (DT_JMPREL, 0))
1359 return FALSE;
1360 }
1361
1362 if (!add_dynamic_entry (DT_RELA, 0)
1363 || !add_dynamic_entry (DT_RELASZ, 0)
1364 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1365 return FALSE;
1366
1367 /* If any dynamic relocs apply to a read-only section,
1368 then we need a DT_TEXTREL entry. */
1369 if ((info->flags & DF_TEXTREL) == 0)
1370 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
1371
1372 if (info->flags & DF_TEXTREL)
1373 {
1374 if (!add_dynamic_entry (DT_TEXTREL, 0))
1375 return FALSE;
1376 }
1377 }
1378 #undef add_dynamic_entry
1379
1380 return TRUE;
1381 }
1382
1383 #define TP_OFFSET 0
1384 #define DTP_OFFSET 0x800
1385
1386 /* Return the relocation value for a TLS dtp-relative reloc. */
1387
1388 static bfd_vma
1389 dtpoff (struct bfd_link_info *info, bfd_vma address)
1390 {
1391 /* If tls_sec is NULL, we should have signalled an error already. */
1392 if (elf_hash_table (info)->tls_sec == NULL)
1393 return 0;
1394 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1395 }
1396
1397 /* Return the relocation value for a static TLS tp-relative relocation. */
1398
1399 static bfd_vma
1400 tpoff (struct bfd_link_info *info, bfd_vma address)
1401 {
1402 /* If tls_sec is NULL, we should have signalled an error already. */
1403 if (elf_hash_table (info)->tls_sec == NULL)
1404 return 0;
1405 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1406 }
1407
1408 /* Return the global pointer's value, or 0 if it is not in use. */
1409
1410 static bfd_vma
1411 riscv_global_pointer_value (struct bfd_link_info *info)
1412 {
1413 struct bfd_link_hash_entry *h;
1414
1415 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
1416 if (h == NULL || h->type != bfd_link_hash_defined)
1417 return 0;
1418
1419 return h->u.def.value + sec_addr (h->u.def.section);
1420 }
1421
1422 /* Emplace a static relocation. */
1423
1424 static bfd_reloc_status_type
1425 perform_relocation (const reloc_howto_type *howto,
1426 const Elf_Internal_Rela *rel,
1427 bfd_vma value,
1428 asection *input_section,
1429 bfd *input_bfd,
1430 bfd_byte *contents)
1431 {
1432 if (howto->pc_relative)
1433 value -= sec_addr (input_section) + rel->r_offset;
1434 value += rel->r_addend;
1435
1436 switch (ELFNN_R_TYPE (rel->r_info))
1437 {
1438 case R_RISCV_HI20:
1439 case R_RISCV_TPREL_HI20:
1440 case R_RISCV_PCREL_HI20:
1441 case R_RISCV_GOT_HI20:
1442 case R_RISCV_TLS_GOT_HI20:
1443 case R_RISCV_TLS_GD_HI20:
1444 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1445 return bfd_reloc_overflow;
1446 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1447 break;
1448
1449 case R_RISCV_LO12_I:
1450 case R_RISCV_GPREL_I:
1451 case R_RISCV_TPREL_LO12_I:
1452 case R_RISCV_TPREL_I:
1453 case R_RISCV_PCREL_LO12_I:
1454 value = ENCODE_ITYPE_IMM (value);
1455 break;
1456
1457 case R_RISCV_LO12_S:
1458 case R_RISCV_GPREL_S:
1459 case R_RISCV_TPREL_LO12_S:
1460 case R_RISCV_TPREL_S:
1461 case R_RISCV_PCREL_LO12_S:
1462 value = ENCODE_STYPE_IMM (value);
1463 break;
1464
1465 case R_RISCV_CALL:
1466 case R_RISCV_CALL_PLT:
1467 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1468 return bfd_reloc_overflow;
1469 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1470 | (ENCODE_ITYPE_IMM (value) << 32);
1471 break;
1472
1473 case R_RISCV_JAL:
1474 if (!VALID_UJTYPE_IMM (value))
1475 return bfd_reloc_overflow;
1476 value = ENCODE_UJTYPE_IMM (value);
1477 break;
1478
1479 case R_RISCV_BRANCH:
1480 if (!VALID_SBTYPE_IMM (value))
1481 return bfd_reloc_overflow;
1482 value = ENCODE_SBTYPE_IMM (value);
1483 break;
1484
1485 case R_RISCV_RVC_BRANCH:
1486 if (!VALID_RVC_B_IMM (value))
1487 return bfd_reloc_overflow;
1488 value = ENCODE_RVC_B_IMM (value);
1489 break;
1490
1491 case R_RISCV_RVC_JUMP:
1492 if (!VALID_RVC_J_IMM (value))
1493 return bfd_reloc_overflow;
1494 value = ENCODE_RVC_J_IMM (value);
1495 break;
1496
1497 case R_RISCV_RVC_LUI:
1498 if (RISCV_CONST_HIGH_PART (value) == 0)
1499 {
1500 /* Linker relaxation can convert an address equal to or greater than
1501 0x800 to slightly below 0x800. C.LUI does not accept zero as a
1502 valid immediate. We can fix this by converting it to a C.LI. */
1503 bfd_vma insn = bfd_get (howto->bitsize, input_bfd,
1504 contents + rel->r_offset);
1505 insn = (insn & ~MATCH_C_LUI) | MATCH_C_LI;
1506 bfd_put (howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1507 value = ENCODE_RVC_IMM (0);
1508 }
1509 else if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1510 return bfd_reloc_overflow;
1511 else
1512 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1513 break;
1514
1515 case R_RISCV_32:
1516 case R_RISCV_64:
1517 case R_RISCV_ADD8:
1518 case R_RISCV_ADD16:
1519 case R_RISCV_ADD32:
1520 case R_RISCV_ADD64:
1521 case R_RISCV_SUB6:
1522 case R_RISCV_SUB8:
1523 case R_RISCV_SUB16:
1524 case R_RISCV_SUB32:
1525 case R_RISCV_SUB64:
1526 case R_RISCV_SET6:
1527 case R_RISCV_SET8:
1528 case R_RISCV_SET16:
1529 case R_RISCV_SET32:
1530 case R_RISCV_32_PCREL:
1531 case R_RISCV_TLS_DTPREL32:
1532 case R_RISCV_TLS_DTPREL64:
1533 break;
1534
1535 case R_RISCV_DELETE:
1536 return bfd_reloc_ok;
1537
1538 default:
1539 return bfd_reloc_notsupported;
1540 }
1541
1542 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1543 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1544 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1545
1546 return bfd_reloc_ok;
1547 }
1548
1549 /* Remember all PC-relative high-part relocs we've encountered to help us
1550 later resolve the corresponding low-part relocs. */
1551
1552 typedef struct
1553 {
1554 bfd_vma address;
1555 bfd_vma value;
1556 } riscv_pcrel_hi_reloc;
1557
1558 typedef struct riscv_pcrel_lo_reloc
1559 {
1560 asection * input_section;
1561 struct bfd_link_info * info;
1562 reloc_howto_type * howto;
1563 const Elf_Internal_Rela * reloc;
1564 bfd_vma addr;
1565 const char * name;
1566 bfd_byte * contents;
1567 struct riscv_pcrel_lo_reloc * next;
1568 } riscv_pcrel_lo_reloc;
1569
1570 typedef struct
1571 {
1572 htab_t hi_relocs;
1573 riscv_pcrel_lo_reloc *lo_relocs;
1574 } riscv_pcrel_relocs;
1575
1576 static hashval_t
1577 riscv_pcrel_reloc_hash (const void *entry)
1578 {
1579 const riscv_pcrel_hi_reloc *e = entry;
1580 return (hashval_t)(e->address >> 2);
1581 }
1582
1583 static bfd_boolean
1584 riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1585 {
1586 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1587 return e1->address == e2->address;
1588 }
1589
1590 static bfd_boolean
1591 riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1592 {
1593
1594 p->lo_relocs = NULL;
1595 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1596 riscv_pcrel_reloc_eq, free);
1597 return p->hi_relocs != NULL;
1598 }
1599
1600 static void
1601 riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1602 {
1603 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1604
1605 while (cur != NULL)
1606 {
1607 riscv_pcrel_lo_reloc *next = cur->next;
1608 free (cur);
1609 cur = next;
1610 }
1611
1612 htab_delete (p->hi_relocs);
1613 }
1614
1615 static bfd_boolean
1616 riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1617 struct bfd_link_info *info,
1618 bfd_vma pc,
1619 bfd_vma addr,
1620 bfd_byte *contents,
1621 const reloc_howto_type *howto,
1622 bfd *input_bfd)
1623 {
1624 /* We may need to reference low addreses in PC-relative modes even when the
1625 * PC is far away from these addresses. For example, undefweak references
1626 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1627 * addresses that we can link PC-relative programs at, the linker can't
1628 * actually relocate references to those symbols. In order to allow these
1629 * programs to work we simply convert the PC-relative auipc sequences to
1630 * 0-relative lui sequences. */
1631 if (bfd_link_pic (info))
1632 return FALSE;
1633
1634 /* If it's possible to reference the symbol using auipc we do so, as that's
1635 * more in the spirit of the PC-relative relocations we're processing. */
1636 bfd_vma offset = addr - pc;
1637 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1638 return FALSE;
1639
1640 /* If it's impossible to reference this with a LUI-based offset then don't
1641 * bother to convert it at all so users still see the PC-relative relocation
1642 * in the truncation message. */
1643 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1644 return FALSE;
1645
1646 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20);
1647
1648 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset);
1649 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1650 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1651 return TRUE;
1652 }
1653
1654 static bfd_boolean
1655 riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1656 bfd_vma value, bfd_boolean absolute)
1657 {
1658 bfd_vma offset = absolute ? value : value - addr;
1659 riscv_pcrel_hi_reloc entry = {addr, offset};
1660 riscv_pcrel_hi_reloc **slot =
1661 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1662
1663 BFD_ASSERT (*slot == NULL);
1664 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1665 if (*slot == NULL)
1666 return FALSE;
1667 **slot = entry;
1668 return TRUE;
1669 }
1670
1671 static bfd_boolean
1672 riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1673 asection *input_section,
1674 struct bfd_link_info *info,
1675 reloc_howto_type *howto,
1676 const Elf_Internal_Rela *reloc,
1677 bfd_vma addr,
1678 const char *name,
1679 bfd_byte *contents)
1680 {
1681 riscv_pcrel_lo_reloc *entry;
1682 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1683 if (entry == NULL)
1684 return FALSE;
1685 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1686 name, contents, p->lo_relocs};
1687 p->lo_relocs = entry;
1688 return TRUE;
1689 }
1690
1691 static bfd_boolean
1692 riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1693 {
1694 riscv_pcrel_lo_reloc *r;
1695
1696 for (r = p->lo_relocs; r != NULL; r = r->next)
1697 {
1698 bfd *input_bfd = r->input_section->owner;
1699
1700 riscv_pcrel_hi_reloc search = {r->addr, 0};
1701 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
1702 if (entry == NULL
1703 /* Check for overflow into bit 11 when adding reloc addend. */
1704 || (! (entry->value & 0x800)
1705 && ((entry->value + r->reloc->r_addend) & 0x800)))
1706 {
1707 char *string = (entry == NULL
1708 ? "%pcrel_lo missing matching %pcrel_hi"
1709 : "%pcrel_lo overflow with an addend");
1710 (*r->info->callbacks->reloc_dangerous)
1711 (r->info, string, input_bfd, r->input_section, r->reloc->r_offset);
1712 return TRUE;
1713 }
1714
1715 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1716 input_bfd, r->contents);
1717 }
1718
1719 return TRUE;
1720 }
1721
1722 /* Relocate a RISC-V ELF section.
1723
1724 The RELOCATE_SECTION function is called by the new ELF backend linker
1725 to handle the relocations for a section.
1726
1727 The relocs are always passed as Rela structures.
1728
1729 This function is responsible for adjusting the section contents as
1730 necessary, and (if generating a relocatable output file) adjusting
1731 the reloc addend as necessary.
1732
1733 This function does not have to worry about setting the reloc
1734 address or the reloc symbol index.
1735
1736 LOCAL_SYMS is a pointer to the swapped in local symbols.
1737
1738 LOCAL_SECTIONS is an array giving the section in the input file
1739 corresponding to the st_shndx field of each local symbol.
1740
1741 The global hash table entry for the global symbols can be found
1742 via elf_sym_hashes (input_bfd).
1743
1744 When generating relocatable output, this function must handle
1745 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1746 going to be the section symbol corresponding to the output
1747 section, which means that the addend must be adjusted
1748 accordingly. */
1749
1750 static bfd_boolean
1751 riscv_elf_relocate_section (bfd *output_bfd,
1752 struct bfd_link_info *info,
1753 bfd *input_bfd,
1754 asection *input_section,
1755 bfd_byte *contents,
1756 Elf_Internal_Rela *relocs,
1757 Elf_Internal_Sym *local_syms,
1758 asection **local_sections)
1759 {
1760 Elf_Internal_Rela *rel;
1761 Elf_Internal_Rela *relend;
1762 riscv_pcrel_relocs pcrel_relocs;
1763 bfd_boolean ret = FALSE;
1764 asection *sreloc = elf_section_data (input_section)->sreloc;
1765 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1766 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1767 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1768 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
1769 bfd_boolean absolute;
1770
1771 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1772 return FALSE;
1773
1774 relend = relocs + input_section->reloc_count;
1775 for (rel = relocs; rel < relend; rel++)
1776 {
1777 unsigned long r_symndx;
1778 struct elf_link_hash_entry *h;
1779 Elf_Internal_Sym *sym;
1780 asection *sec;
1781 bfd_vma relocation;
1782 bfd_reloc_status_type r = bfd_reloc_ok;
1783 const char *name;
1784 bfd_vma off, ie_off;
1785 bfd_boolean unresolved_reloc, is_ie = FALSE;
1786 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1787 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
1788 reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
1789 const char *msg = NULL;
1790 char *msg_buf = NULL;
1791 bfd_boolean resolved_to_zero;
1792
1793 if (howto == NULL
1794 || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
1795 continue;
1796
1797 /* This is a final link. */
1798 r_symndx = ELFNN_R_SYM (rel->r_info);
1799 h = NULL;
1800 sym = NULL;
1801 sec = NULL;
1802 unresolved_reloc = FALSE;
1803 if (r_symndx < symtab_hdr->sh_info)
1804 {
1805 sym = local_syms + r_symndx;
1806 sec = local_sections[r_symndx];
1807 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1808 }
1809 else
1810 {
1811 bfd_boolean warned, ignored;
1812
1813 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1814 r_symndx, symtab_hdr, sym_hashes,
1815 h, sec, relocation,
1816 unresolved_reloc, warned, ignored);
1817 if (warned)
1818 {
1819 /* To avoid generating warning messages about truncated
1820 relocations, set the relocation's address to be the same as
1821 the start of this section. */
1822 if (input_section->output_section != NULL)
1823 relocation = input_section->output_section->vma;
1824 else
1825 relocation = 0;
1826 }
1827 }
1828
1829 if (sec != NULL && discarded_section (sec))
1830 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1831 rel, 1, relend, howto, 0, contents);
1832
1833 if (bfd_link_relocatable (info))
1834 continue;
1835
1836 if (h != NULL)
1837 name = h->root.root.string;
1838 else
1839 {
1840 name = (bfd_elf_string_from_elf_section
1841 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1842 if (name == NULL || *name == '\0')
1843 name = bfd_section_name (sec);
1844 }
1845
1846 resolved_to_zero = (h != NULL
1847 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
1848
1849 switch (r_type)
1850 {
1851 case R_RISCV_NONE:
1852 case R_RISCV_RELAX:
1853 case R_RISCV_TPREL_ADD:
1854 case R_RISCV_COPY:
1855 case R_RISCV_JUMP_SLOT:
1856 case R_RISCV_RELATIVE:
1857 /* These require nothing of us at all. */
1858 continue;
1859
1860 case R_RISCV_HI20:
1861 case R_RISCV_BRANCH:
1862 case R_RISCV_RVC_BRANCH:
1863 case R_RISCV_RVC_LUI:
1864 case R_RISCV_LO12_I:
1865 case R_RISCV_LO12_S:
1866 case R_RISCV_SET6:
1867 case R_RISCV_SET8:
1868 case R_RISCV_SET16:
1869 case R_RISCV_SET32:
1870 case R_RISCV_32_PCREL:
1871 case R_RISCV_DELETE:
1872 /* These require no special handling beyond perform_relocation. */
1873 break;
1874
1875 case R_RISCV_GOT_HI20:
1876 if (h != NULL)
1877 {
1878 bfd_boolean dyn, pic;
1879
1880 off = h->got.offset;
1881 BFD_ASSERT (off != (bfd_vma) -1);
1882 dyn = elf_hash_table (info)->dynamic_sections_created;
1883 pic = bfd_link_pic (info);
1884
1885 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1886 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1887 {
1888 /* This is actually a static link, or it is a
1889 -Bsymbolic link and the symbol is defined
1890 locally, or the symbol was forced to be local
1891 because of a version file. We must initialize
1892 this entry in the global offset table. Since the
1893 offset must always be a multiple of the word size,
1894 we use the least significant bit to record whether
1895 we have initialized it already.
1896
1897 When doing a dynamic link, we create a .rela.got
1898 relocation entry to initialize the value. This
1899 is done in the finish_dynamic_symbol routine. */
1900 if ((off & 1) != 0)
1901 off &= ~1;
1902 else
1903 {
1904 bfd_put_NN (output_bfd, relocation,
1905 htab->elf.sgot->contents + off);
1906 h->got.offset |= 1;
1907 }
1908 }
1909 else
1910 unresolved_reloc = FALSE;
1911 }
1912 else
1913 {
1914 BFD_ASSERT (local_got_offsets != NULL
1915 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1916
1917 off = local_got_offsets[r_symndx];
1918
1919 /* The offset must always be a multiple of the word size.
1920 So, we can use the least significant bit to record
1921 whether we have already processed this entry. */
1922 if ((off & 1) != 0)
1923 off &= ~1;
1924 else
1925 {
1926 if (bfd_link_pic (info))
1927 {
1928 asection *s;
1929 Elf_Internal_Rela outrel;
1930
1931 /* We need to generate a R_RISCV_RELATIVE reloc
1932 for the dynamic linker. */
1933 s = htab->elf.srelgot;
1934 BFD_ASSERT (s != NULL);
1935
1936 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1937 outrel.r_info =
1938 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1939 outrel.r_addend = relocation;
1940 relocation = 0;
1941 riscv_elf_append_rela (output_bfd, s, &outrel);
1942 }
1943
1944 bfd_put_NN (output_bfd, relocation,
1945 htab->elf.sgot->contents + off);
1946 local_got_offsets[r_symndx] |= 1;
1947 }
1948 }
1949 relocation = sec_addr (htab->elf.sgot) + off;
1950 absolute = riscv_zero_pcrel_hi_reloc (rel,
1951 info,
1952 pc,
1953 relocation,
1954 contents,
1955 howto,
1956 input_bfd);
1957 r_type = ELFNN_R_TYPE (rel->r_info);
1958 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
1959 if (howto == NULL)
1960 r = bfd_reloc_notsupported;
1961 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1962 relocation, absolute))
1963 r = bfd_reloc_overflow;
1964 break;
1965
1966 case R_RISCV_ADD8:
1967 case R_RISCV_ADD16:
1968 case R_RISCV_ADD32:
1969 case R_RISCV_ADD64:
1970 {
1971 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1972 contents + rel->r_offset);
1973 relocation = old_value + relocation;
1974 }
1975 break;
1976
1977 case R_RISCV_SUB6:
1978 case R_RISCV_SUB8:
1979 case R_RISCV_SUB16:
1980 case R_RISCV_SUB32:
1981 case R_RISCV_SUB64:
1982 {
1983 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1984 contents + rel->r_offset);
1985 relocation = old_value - relocation;
1986 }
1987 break;
1988
1989 case R_RISCV_CALL:
1990 case R_RISCV_CALL_PLT:
1991 /* Handle a call to an undefined weak function. This won't be
1992 relaxed, so we have to handle it here. */
1993 if (h != NULL && h->root.type == bfd_link_hash_undefweak
1994 && (!bfd_link_pic (info) || h->plt.offset == MINUS_ONE))
1995 {
1996 /* We can use x0 as the base register. */
1997 bfd_vma insn = bfd_get_32 (input_bfd,
1998 contents + rel->r_offset + 4);
1999 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2000 bfd_put_32 (input_bfd, insn, contents + rel->r_offset + 4);
2001 /* Set the relocation value so that we get 0 after the pc
2002 relative adjustment. */
2003 relocation = sec_addr (input_section) + rel->r_offset;
2004 }
2005 /* Fall through. */
2006
2007 case R_RISCV_JAL:
2008 case R_RISCV_RVC_JUMP:
2009 /* This line has to match the check in _bfd_riscv_relax_section. */
2010 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
2011 {
2012 /* Refer to the PLT entry. */
2013 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
2014 unresolved_reloc = FALSE;
2015 }
2016 break;
2017
2018 case R_RISCV_TPREL_HI20:
2019 relocation = tpoff (info, relocation);
2020 break;
2021
2022 case R_RISCV_TPREL_LO12_I:
2023 case R_RISCV_TPREL_LO12_S:
2024 relocation = tpoff (info, relocation);
2025 break;
2026
2027 case R_RISCV_TPREL_I:
2028 case R_RISCV_TPREL_S:
2029 relocation = tpoff (info, relocation);
2030 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
2031 {
2032 /* We can use tp as the base register. */
2033 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2034 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2035 insn |= X_TP << OP_SH_RS1;
2036 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2037 }
2038 else
2039 r = bfd_reloc_overflow;
2040 break;
2041
2042 case R_RISCV_GPREL_I:
2043 case R_RISCV_GPREL_S:
2044 {
2045 bfd_vma gp = riscv_global_pointer_value (info);
2046 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
2047 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
2048 {
2049 /* We can use x0 or gp as the base register. */
2050 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2051 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2052 if (!x0_base)
2053 {
2054 rel->r_addend -= gp;
2055 insn |= X_GP << OP_SH_RS1;
2056 }
2057 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2058 }
2059 else
2060 r = bfd_reloc_overflow;
2061 break;
2062 }
2063
2064 case R_RISCV_PCREL_HI20:
2065 absolute = riscv_zero_pcrel_hi_reloc (rel,
2066 info,
2067 pc,
2068 relocation,
2069 contents,
2070 howto,
2071 input_bfd);
2072 r_type = ELFNN_R_TYPE (rel->r_info);
2073 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
2074 if (howto == NULL)
2075 r = bfd_reloc_notsupported;
2076 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2077 relocation + rel->r_addend,
2078 absolute))
2079 r = bfd_reloc_overflow;
2080 break;
2081
2082 case R_RISCV_PCREL_LO12_I:
2083 case R_RISCV_PCREL_LO12_S:
2084 /* We don't allow section symbols plus addends as the auipc address,
2085 because then riscv_relax_delete_bytes would have to search through
2086 all relocs to update these addends. This is also ambiguous, as
2087 we do allow offsets to be added to the target address, which are
2088 not to be used to find the auipc address. */
2089 if (((sym != NULL && (ELF_ST_TYPE (sym->st_info) == STT_SECTION))
2090 || (h != NULL && h->type == STT_SECTION))
2091 && rel->r_addend)
2092 {
2093 msg = _("%pcrel_lo section symbol with an addend");
2094 r = bfd_reloc_dangerous;
2095 break;
2096 }
2097
2098 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
2099 howto, rel, relocation, name,
2100 contents))
2101 continue;
2102 r = bfd_reloc_overflow;
2103 break;
2104
2105 case R_RISCV_TLS_DTPREL32:
2106 case R_RISCV_TLS_DTPREL64:
2107 relocation = dtpoff (info, relocation);
2108 break;
2109
2110 case R_RISCV_32:
2111 case R_RISCV_64:
2112 if ((input_section->flags & SEC_ALLOC) == 0)
2113 break;
2114
2115 if ((bfd_link_pic (info)
2116 && (h == NULL
2117 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2118 && !resolved_to_zero)
2119 || h->root.type != bfd_link_hash_undefweak)
2120 && (! howto->pc_relative
2121 || !SYMBOL_CALLS_LOCAL (info, h)))
2122 || (!bfd_link_pic (info)
2123 && h != NULL
2124 && h->dynindx != -1
2125 && !h->non_got_ref
2126 && ((h->def_dynamic
2127 && !h->def_regular)
2128 || h->root.type == bfd_link_hash_undefweak
2129 || h->root.type == bfd_link_hash_undefined)))
2130 {
2131 Elf_Internal_Rela outrel;
2132 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2133
2134 /* When generating a shared object, these relocations
2135 are copied into the output file to be resolved at run
2136 time. */
2137
2138 outrel.r_offset =
2139 _bfd_elf_section_offset (output_bfd, info, input_section,
2140 rel->r_offset);
2141 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2142 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2143 outrel.r_offset += sec_addr (input_section);
2144
2145 if (skip_dynamic_relocation)
2146 memset (&outrel, 0, sizeof outrel);
2147 else if (h != NULL && h->dynindx != -1
2148 && !(bfd_link_pic (info)
2149 && SYMBOLIC_BIND (info, h)
2150 && h->def_regular))
2151 {
2152 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2153 outrel.r_addend = rel->r_addend;
2154 }
2155 else
2156 {
2157 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2158 outrel.r_addend = relocation + rel->r_addend;
2159 }
2160
2161 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2162 if (skip_static_relocation)
2163 continue;
2164 }
2165 break;
2166
2167 case R_RISCV_TLS_GOT_HI20:
2168 is_ie = TRUE;
2169 /* Fall through. */
2170
2171 case R_RISCV_TLS_GD_HI20:
2172 if (h != NULL)
2173 {
2174 off = h->got.offset;
2175 h->got.offset |= 1;
2176 }
2177 else
2178 {
2179 off = local_got_offsets[r_symndx];
2180 local_got_offsets[r_symndx] |= 1;
2181 }
2182
2183 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2184 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2185 /* If this symbol is referenced by both GD and IE TLS, the IE
2186 reference's GOT slot follows the GD reference's slots. */
2187 ie_off = 0;
2188 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2189 ie_off = 2 * GOT_ENTRY_SIZE;
2190
2191 if ((off & 1) != 0)
2192 off &= ~1;
2193 else
2194 {
2195 Elf_Internal_Rela outrel;
2196 int indx = 0;
2197 bfd_boolean need_relocs = FALSE;
2198
2199 if (htab->elf.srelgot == NULL)
2200 abort ();
2201
2202 if (h != NULL)
2203 {
2204 bfd_boolean dyn, pic;
2205 dyn = htab->elf.dynamic_sections_created;
2206 pic = bfd_link_pic (info);
2207
2208 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2209 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2210 indx = h->dynindx;
2211 }
2212
2213 /* The GOT entries have not been initialized yet. Do it
2214 now, and emit any relocations. */
2215 if ((bfd_link_pic (info) || indx != 0)
2216 && (h == NULL
2217 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2218 || h->root.type != bfd_link_hash_undefweak))
2219 need_relocs = TRUE;
2220
2221 if (tls_type & GOT_TLS_GD)
2222 {
2223 if (need_relocs)
2224 {
2225 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2226 outrel.r_addend = 0;
2227 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2228 bfd_put_NN (output_bfd, 0,
2229 htab->elf.sgot->contents + off);
2230 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2231 if (indx == 0)
2232 {
2233 BFD_ASSERT (! unresolved_reloc);
2234 bfd_put_NN (output_bfd,
2235 dtpoff (info, relocation),
2236 (htab->elf.sgot->contents + off +
2237 RISCV_ELF_WORD_BYTES));
2238 }
2239 else
2240 {
2241 bfd_put_NN (output_bfd, 0,
2242 (htab->elf.sgot->contents + off +
2243 RISCV_ELF_WORD_BYTES));
2244 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2245 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2246 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2247 }
2248 }
2249 else
2250 {
2251 /* If we are not emitting relocations for a
2252 general dynamic reference, then we must be in a
2253 static link or an executable link with the
2254 symbol binding locally. Mark it as belonging
2255 to module 1, the executable. */
2256 bfd_put_NN (output_bfd, 1,
2257 htab->elf.sgot->contents + off);
2258 bfd_put_NN (output_bfd,
2259 dtpoff (info, relocation),
2260 (htab->elf.sgot->contents + off +
2261 RISCV_ELF_WORD_BYTES));
2262 }
2263 }
2264
2265 if (tls_type & GOT_TLS_IE)
2266 {
2267 if (need_relocs)
2268 {
2269 bfd_put_NN (output_bfd, 0,
2270 htab->elf.sgot->contents + off + ie_off);
2271 outrel.r_offset = sec_addr (htab->elf.sgot)
2272 + off + ie_off;
2273 outrel.r_addend = 0;
2274 if (indx == 0)
2275 outrel.r_addend = tpoff (info, relocation);
2276 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2277 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2278 }
2279 else
2280 {
2281 bfd_put_NN (output_bfd, tpoff (info, relocation),
2282 htab->elf.sgot->contents + off + ie_off);
2283 }
2284 }
2285 }
2286
2287 BFD_ASSERT (off < (bfd_vma) -2);
2288 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
2289 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2290 relocation, FALSE))
2291 r = bfd_reloc_overflow;
2292 unresolved_reloc = FALSE;
2293 break;
2294
2295 default:
2296 r = bfd_reloc_notsupported;
2297 }
2298
2299 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2300 because such sections are not SEC_ALLOC and thus ld.so will
2301 not process them. */
2302 if (unresolved_reloc
2303 && !((input_section->flags & SEC_DEBUGGING) != 0
2304 && h->def_dynamic)
2305 && _bfd_elf_section_offset (output_bfd, info, input_section,
2306 rel->r_offset) != (bfd_vma) -1)
2307 {
2308 switch (r_type)
2309 {
2310 case R_RISCV_CALL:
2311 case R_RISCV_JAL:
2312 case R_RISCV_RVC_JUMP:
2313 if (asprintf (&msg_buf,
2314 _("%%X%%P: relocation %s against `%s' can "
2315 "not be used when making a shared object; "
2316 "recompile with -fPIC\n"),
2317 howto->name,
2318 h->root.root.string) == -1)
2319 msg_buf = NULL;
2320 break;
2321
2322 default:
2323 if (asprintf (&msg_buf,
2324 _("%%X%%P: unresolvable %s relocation against "
2325 "symbol `%s'\n"),
2326 howto->name,
2327 h->root.root.string) == -1)
2328 msg_buf = NULL;
2329 break;
2330 }
2331
2332 msg = msg_buf;
2333 r = bfd_reloc_notsupported;
2334 }
2335
2336 if (r == bfd_reloc_ok)
2337 r = perform_relocation (howto, rel, relocation, input_section,
2338 input_bfd, contents);
2339
2340 /* We should have already detected the error and set message before.
2341 If the error message isn't set since the linker runs out of memory
2342 or we don't set it before, then we should set the default message
2343 with the "internal error" string here. */
2344 switch (r)
2345 {
2346 case bfd_reloc_ok:
2347 continue;
2348
2349 case bfd_reloc_overflow:
2350 info->callbacks->reloc_overflow
2351 (info, (h ? &h->root : NULL), name, howto->name,
2352 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2353 break;
2354
2355 case bfd_reloc_undefined:
2356 info->callbacks->undefined_symbol
2357 (info, name, input_bfd, input_section, rel->r_offset,
2358 TRUE);
2359 break;
2360
2361 case bfd_reloc_outofrange:
2362 if (msg == NULL)
2363 msg = _("%X%P: internal error: out of range error\n");
2364 break;
2365
2366 case bfd_reloc_notsupported:
2367 if (msg == NULL)
2368 msg = _("%X%P: internal error: unsupported relocation error\n");
2369 break;
2370
2371 case bfd_reloc_dangerous:
2372 /* The error message should already be set. */
2373 if (msg == NULL)
2374 msg = _("dangerous relocation error");
2375 info->callbacks->reloc_dangerous
2376 (info, msg, input_bfd, input_section, rel->r_offset);
2377 break;
2378
2379 default:
2380 msg = _("%X%P: internal error: unknown error\n");
2381 break;
2382 }
2383
2384 /* Do not report error message for the dangerous relocation again. */
2385 if (msg && r != bfd_reloc_dangerous)
2386 info->callbacks->einfo (msg);
2387
2388 /* Free the unused `msg_buf` if needed. */
2389 if (msg_buf)
2390 free (msg_buf);
2391
2392 /* We already reported the error via a callback, so don't try to report
2393 it again by returning false. That leads to spurious errors. */
2394 ret = TRUE;
2395 goto out;
2396 }
2397
2398 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2399 out:
2400 riscv_free_pcrel_relocs (&pcrel_relocs);
2401 return ret;
2402 }
2403
2404 /* Finish up dynamic symbol handling. We set the contents of various
2405 dynamic sections here. */
2406
2407 static bfd_boolean
2408 riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2409 struct bfd_link_info *info,
2410 struct elf_link_hash_entry *h,
2411 Elf_Internal_Sym *sym)
2412 {
2413 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2414 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2415
2416 if (h->plt.offset != (bfd_vma) -1)
2417 {
2418 /* We've decided to create a PLT entry for this symbol. */
2419 bfd_byte *loc;
2420 bfd_vma i, header_address, plt_idx, got_address;
2421 uint32_t plt_entry[PLT_ENTRY_INSNS];
2422 Elf_Internal_Rela rela;
2423
2424 BFD_ASSERT (h->dynindx != -1);
2425
2426 /* Calculate the address of the PLT header. */
2427 header_address = sec_addr (htab->elf.splt);
2428
2429 /* Calculate the index of the entry. */
2430 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2431
2432 /* Calculate the address of the .got.plt entry. */
2433 got_address = riscv_elf_got_plt_val (plt_idx, info);
2434
2435 /* Find out where the .plt entry should go. */
2436 loc = htab->elf.splt->contents + h->plt.offset;
2437
2438 /* Fill in the PLT entry itself. */
2439 if (! riscv_make_plt_entry (output_bfd, got_address,
2440 header_address + h->plt.offset,
2441 plt_entry))
2442 return FALSE;
2443
2444 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2445 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2446
2447 /* Fill in the initial value of the .got.plt entry. */
2448 loc = htab->elf.sgotplt->contents
2449 + (got_address - sec_addr (htab->elf.sgotplt));
2450 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2451
2452 /* Fill in the entry in the .rela.plt section. */
2453 rela.r_offset = got_address;
2454 rela.r_addend = 0;
2455 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2456
2457 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2458 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2459
2460 if (!h->def_regular)
2461 {
2462 /* Mark the symbol as undefined, rather than as defined in
2463 the .plt section. Leave the value alone. */
2464 sym->st_shndx = SHN_UNDEF;
2465 /* If the symbol is weak, we do need to clear the value.
2466 Otherwise, the PLT entry would provide a definition for
2467 the symbol even if the symbol wasn't defined anywhere,
2468 and so the symbol would never be NULL. */
2469 if (!h->ref_regular_nonweak)
2470 sym->st_value = 0;
2471 }
2472 }
2473
2474 if (h->got.offset != (bfd_vma) -1
2475 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE))
2476 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2477 {
2478 asection *sgot;
2479 asection *srela;
2480 Elf_Internal_Rela rela;
2481
2482 /* This symbol has an entry in the GOT. Set it up. */
2483
2484 sgot = htab->elf.sgot;
2485 srela = htab->elf.srelgot;
2486 BFD_ASSERT (sgot != NULL && srela != NULL);
2487
2488 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2489
2490 /* If this is a local symbol reference, we just want to emit a RELATIVE
2491 reloc. This can happen if it is a -Bsymbolic link, or a pie link, or
2492 the symbol was forced to be local because of a version file.
2493 The entry in the global offset table will already have been
2494 initialized in the relocate_section function. */
2495 if (bfd_link_pic (info)
2496 && SYMBOL_REFERENCES_LOCAL (info, h))
2497 {
2498 BFD_ASSERT((h->got.offset & 1) != 0);
2499 asection *sec = h->root.u.def.section;
2500 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2501 rela.r_addend = (h->root.u.def.value
2502 + sec->output_section->vma
2503 + sec->output_offset);
2504 }
2505 else
2506 {
2507 BFD_ASSERT((h->got.offset & 1) == 0);
2508 BFD_ASSERT (h->dynindx != -1);
2509 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2510 rela.r_addend = 0;
2511 }
2512
2513 bfd_put_NN (output_bfd, 0,
2514 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2515 riscv_elf_append_rela (output_bfd, srela, &rela);
2516 }
2517
2518 if (h->needs_copy)
2519 {
2520 Elf_Internal_Rela rela;
2521 asection *s;
2522
2523 /* This symbols needs a copy reloc. Set it up. */
2524 BFD_ASSERT (h->dynindx != -1);
2525
2526 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2527 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2528 rela.r_addend = 0;
2529 if (h->root.u.def.section == htab->elf.sdynrelro)
2530 s = htab->elf.sreldynrelro;
2531 else
2532 s = htab->elf.srelbss;
2533 riscv_elf_append_rela (output_bfd, s, &rela);
2534 }
2535
2536 /* Mark some specially defined symbols as absolute. */
2537 if (h == htab->elf.hdynamic
2538 || (h == htab->elf.hgot || h == htab->elf.hplt))
2539 sym->st_shndx = SHN_ABS;
2540
2541 return TRUE;
2542 }
2543
2544 /* Finish up the dynamic sections. */
2545
2546 static bfd_boolean
2547 riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2548 bfd *dynobj, asection *sdyn)
2549 {
2550 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2551 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2552 size_t dynsize = bed->s->sizeof_dyn;
2553 bfd_byte *dyncon, *dynconend;
2554
2555 dynconend = sdyn->contents + sdyn->size;
2556 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2557 {
2558 Elf_Internal_Dyn dyn;
2559 asection *s;
2560
2561 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2562
2563 switch (dyn.d_tag)
2564 {
2565 case DT_PLTGOT:
2566 s = htab->elf.sgotplt;
2567 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2568 break;
2569 case DT_JMPREL:
2570 s = htab->elf.srelplt;
2571 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2572 break;
2573 case DT_PLTRELSZ:
2574 s = htab->elf.srelplt;
2575 dyn.d_un.d_val = s->size;
2576 break;
2577 default:
2578 continue;
2579 }
2580
2581 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2582 }
2583 return TRUE;
2584 }
2585
2586 static bfd_boolean
2587 riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2588 struct bfd_link_info *info)
2589 {
2590 bfd *dynobj;
2591 asection *sdyn;
2592 struct riscv_elf_link_hash_table *htab;
2593
2594 htab = riscv_elf_hash_table (info);
2595 BFD_ASSERT (htab != NULL);
2596 dynobj = htab->elf.dynobj;
2597
2598 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2599
2600 if (elf_hash_table (info)->dynamic_sections_created)
2601 {
2602 asection *splt;
2603 bfd_boolean ret;
2604
2605 splt = htab->elf.splt;
2606 BFD_ASSERT (splt != NULL && sdyn != NULL);
2607
2608 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2609
2610 if (!ret)
2611 return ret;
2612
2613 /* Fill in the head and tail entries in the procedure linkage table. */
2614 if (splt->size > 0)
2615 {
2616 int i;
2617 uint32_t plt_header[PLT_HEADER_INSNS];
2618 ret = riscv_make_plt_header (output_bfd,
2619 sec_addr (htab->elf.sgotplt),
2620 sec_addr (splt), plt_header);
2621 if (!ret)
2622 return ret;
2623
2624 for (i = 0; i < PLT_HEADER_INSNS; i++)
2625 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
2626
2627 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2628 = PLT_ENTRY_SIZE;
2629 }
2630 }
2631
2632 if (htab->elf.sgotplt)
2633 {
2634 asection *output_section = htab->elf.sgotplt->output_section;
2635
2636 if (bfd_is_abs_section (output_section))
2637 {
2638 (*_bfd_error_handler)
2639 (_("discarded output section: `%pA'"), htab->elf.sgotplt);
2640 return FALSE;
2641 }
2642
2643 if (htab->elf.sgotplt->size > 0)
2644 {
2645 /* Write the first two entries in .got.plt, needed for the dynamic
2646 linker. */
2647 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2648 bfd_put_NN (output_bfd, (bfd_vma) 0,
2649 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2650 }
2651
2652 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2653 }
2654
2655 if (htab->elf.sgot)
2656 {
2657 asection *output_section = htab->elf.sgot->output_section;
2658
2659 if (htab->elf.sgot->size > 0)
2660 {
2661 /* Set the first entry in the global offset table to the address of
2662 the dynamic section. */
2663 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2664 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2665 }
2666
2667 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2668 }
2669
2670 return TRUE;
2671 }
2672
2673 /* Return address for Ith PLT stub in section PLT, for relocation REL
2674 or (bfd_vma) -1 if it should not be included. */
2675
2676 static bfd_vma
2677 riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2678 const arelent *rel ATTRIBUTE_UNUSED)
2679 {
2680 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2681 }
2682
2683 static enum elf_reloc_type_class
2684 riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2685 const asection *rel_sec ATTRIBUTE_UNUSED,
2686 const Elf_Internal_Rela *rela)
2687 {
2688 switch (ELFNN_R_TYPE (rela->r_info))
2689 {
2690 case R_RISCV_RELATIVE:
2691 return reloc_class_relative;
2692 case R_RISCV_JUMP_SLOT:
2693 return reloc_class_plt;
2694 case R_RISCV_COPY:
2695 return reloc_class_copy;
2696 default:
2697 return reloc_class_normal;
2698 }
2699 }
2700
2701 /* Given the ELF header flags in FLAGS, it returns a string that describes the
2702 float ABI. */
2703
2704 static const char *
2705 riscv_float_abi_string (flagword flags)
2706 {
2707 switch (flags & EF_RISCV_FLOAT_ABI)
2708 {
2709 case EF_RISCV_FLOAT_ABI_SOFT:
2710 return "soft-float";
2711 break;
2712 case EF_RISCV_FLOAT_ABI_SINGLE:
2713 return "single-float";
2714 break;
2715 case EF_RISCV_FLOAT_ABI_DOUBLE:
2716 return "double-float";
2717 break;
2718 case EF_RISCV_FLOAT_ABI_QUAD:
2719 return "quad-float";
2720 break;
2721 default:
2722 abort ();
2723 }
2724 }
2725
2726 /* The information of architecture attribute. */
2727 static riscv_subset_list_t in_subsets;
2728 static riscv_subset_list_t out_subsets;
2729 static riscv_subset_list_t merged_subsets;
2730
2731 /* Predicator for standard extension. */
2732
2733 static bfd_boolean
2734 riscv_std_ext_p (const char *name)
2735 {
2736 return (strlen (name) == 1) && (name[0] != 'x') && (name[0] != 's');
2737 }
2738
2739 /* Error handler when version mis-match. */
2740
2741 static void
2742 riscv_version_mismatch (bfd *ibfd,
2743 struct riscv_subset_t *in,
2744 struct riscv_subset_t *out)
2745 {
2746 _bfd_error_handler
2747 (_("error: %pB: Mis-matched ISA version for '%s' extension. "
2748 "%d.%d vs %d.%d"),
2749 ibfd, in->name,
2750 in->major_version, in->minor_version,
2751 out->major_version, out->minor_version);
2752 }
2753
2754 /* Return true if subset is 'i' or 'e'. */
2755
2756 static bfd_boolean
2757 riscv_i_or_e_p (bfd *ibfd,
2758 const char *arch,
2759 struct riscv_subset_t *subset)
2760 {
2761 if ((strcasecmp (subset->name, "e") != 0)
2762 && (strcasecmp (subset->name, "i") != 0))
2763 {
2764 _bfd_error_handler
2765 (_("error: %pB: corrupted ISA string '%s'. "
2766 "First letter should be 'i' or 'e' but got '%s'."),
2767 ibfd, arch, subset->name);
2768 return FALSE;
2769 }
2770 return TRUE;
2771 }
2772
2773 /* Merge standard extensions.
2774
2775 Return Value:
2776 Return FALSE if failed to merge.
2777
2778 Arguments:
2779 `bfd`: bfd handler.
2780 `in_arch`: Raw arch string for input object.
2781 `out_arch`: Raw arch string for output object.
2782 `pin`: subset list for input object, and it'll skip all merged subset after
2783 merge.
2784 `pout`: Like `pin`, but for output object. */
2785
2786 static bfd_boolean
2787 riscv_merge_std_ext (bfd *ibfd,
2788 const char *in_arch,
2789 const char *out_arch,
2790 struct riscv_subset_t **pin,
2791 struct riscv_subset_t **pout)
2792 {
2793 const char *standard_exts = riscv_supported_std_ext ();
2794 const char *p;
2795 struct riscv_subset_t *in = *pin;
2796 struct riscv_subset_t *out = *pout;
2797
2798 /* First letter should be 'i' or 'e'. */
2799 if (!riscv_i_or_e_p (ibfd, in_arch, in))
2800 return FALSE;
2801
2802 if (!riscv_i_or_e_p (ibfd, out_arch, out))
2803 return FALSE;
2804
2805 if (in->name[0] != out->name[0])
2806 {
2807 /* TODO: We might allow merge 'i' with 'e'. */
2808 _bfd_error_handler
2809 (_("error: %pB: Mis-matched ISA string to merge '%s' and '%s'."),
2810 ibfd, in->name, out->name);
2811 return FALSE;
2812 }
2813 else if ((in->major_version != out->major_version) ||
2814 (in->minor_version != out->minor_version))
2815 {
2816 /* TODO: Allow different merge policy. */
2817 riscv_version_mismatch (ibfd, in, out);
2818 return FALSE;
2819 }
2820 else
2821 riscv_add_subset (&merged_subsets,
2822 in->name, in->major_version, in->minor_version);
2823
2824 in = in->next;
2825 out = out->next;
2826
2827 /* Handle standard extension first. */
2828 for (p = standard_exts; *p; ++p)
2829 {
2830 char find_ext[2] = {*p, '\0'};
2831 struct riscv_subset_t *find_in =
2832 riscv_lookup_subset (&in_subsets, find_ext);
2833 struct riscv_subset_t *find_out =
2834 riscv_lookup_subset (&out_subsets, find_ext);
2835
2836 if (find_in == NULL && find_out == NULL)
2837 continue;
2838
2839 /* Check version is same or not. */
2840 /* TODO: Allow different merge policy. */
2841 if ((find_in != NULL && find_out != NULL)
2842 && ((find_in->major_version != find_out->major_version)
2843 || (find_in->minor_version != find_out->minor_version)))
2844 {
2845 riscv_version_mismatch (ibfd, in, out);
2846 return FALSE;
2847 }
2848
2849 struct riscv_subset_t *merged = find_in ? find_in : find_out;
2850 riscv_add_subset (&merged_subsets, merged->name,
2851 merged->major_version, merged->minor_version);
2852 }
2853
2854 /* Skip all standard extensions. */
2855 while ((in != NULL) && riscv_std_ext_p (in->name)) in = in->next;
2856 while ((out != NULL) && riscv_std_ext_p (out->name)) out = out->next;
2857
2858 *pin = in;
2859 *pout = out;
2860
2861 return TRUE;
2862 }
2863
2864 /* If C is a prefix class, then return the EXT string without the prefix.
2865 Otherwise return the entire EXT string. */
2866
2867 static const char *
2868 riscv_skip_prefix (const char *ext, riscv_isa_ext_class_t c)
2869 {
2870 switch (c)
2871 {
2872 case RV_ISA_CLASS_X: return &ext[1];
2873 case RV_ISA_CLASS_S: return &ext[1];
2874 case RV_ISA_CLASS_Z: return &ext[1];
2875 default: return ext;
2876 }
2877 }
2878
2879 /* Compare prefixed extension names canonically. */
2880
2881 static int
2882 riscv_prefix_cmp (const char *a, const char *b)
2883 {
2884 riscv_isa_ext_class_t ca = riscv_get_prefix_class (a);
2885 riscv_isa_ext_class_t cb = riscv_get_prefix_class (b);
2886
2887 /* Extension name without prefix */
2888 const char *anp = riscv_skip_prefix (a, ca);
2889 const char *bnp = riscv_skip_prefix (b, cb);
2890
2891 if (ca == cb)
2892 return strcasecmp (anp, bnp);
2893
2894 return (int)ca - (int)cb;
2895 }
2896
2897 /* Merge multi letter extensions. PIN is a pointer to the head of the input
2898 object subset list. Likewise for POUT and the output object. Return TRUE
2899 on success and FALSE when a conflict is found. */
2900
2901 static bfd_boolean
2902 riscv_merge_multi_letter_ext (bfd *ibfd,
2903 riscv_subset_t **pin,
2904 riscv_subset_t **pout)
2905 {
2906 riscv_subset_t *in = *pin;
2907 riscv_subset_t *out = *pout;
2908 riscv_subset_t *tail;
2909
2910 int cmp;
2911
2912 while (in && out)
2913 {
2914 cmp = riscv_prefix_cmp (in->name, out->name);
2915
2916 if (cmp < 0)
2917 {
2918 /* `in' comes before `out', append `in' and increment. */
2919 riscv_add_subset (&merged_subsets, in->name, in->major_version,
2920 in->minor_version);
2921 in = in->next;
2922 }
2923 else if (cmp > 0)
2924 {
2925 /* `out' comes before `in', append `out' and increment. */
2926 riscv_add_subset (&merged_subsets, out->name, out->major_version,
2927 out->minor_version);
2928 out = out->next;
2929 }
2930 else
2931 {
2932 /* Both present, check version and increment both. */
2933 if ((in->major_version != out->major_version)
2934 || (in->minor_version != out->minor_version))
2935 {
2936 riscv_version_mismatch (ibfd, in, out);
2937 return FALSE;
2938 }
2939
2940 riscv_add_subset (&merged_subsets, out->name, out->major_version,
2941 out->minor_version);
2942 out = out->next;
2943 in = in->next;
2944 }
2945 }
2946
2947 if (in || out) {
2948 /* If we're here, either `in' or `out' is running longer than
2949 the other. So, we need to append the corresponding tail. */
2950 tail = in ? in : out;
2951
2952 while (tail)
2953 {
2954 riscv_add_subset (&merged_subsets, tail->name, tail->major_version,
2955 tail->minor_version);
2956 tail = tail->next;
2957 }
2958 }
2959
2960 return TRUE;
2961 }
2962
2963 /* Merge Tag_RISCV_arch attribute. */
2964
2965 static char *
2966 riscv_merge_arch_attr_info (bfd *ibfd, char *in_arch, char *out_arch)
2967 {
2968 riscv_subset_t *in, *out;
2969 char *merged_arch_str;
2970
2971 unsigned xlen_in, xlen_out;
2972 merged_subsets.head = NULL;
2973 merged_subsets.tail = NULL;
2974
2975 riscv_parse_subset_t rpe_in;
2976 riscv_parse_subset_t rpe_out;
2977
2978 rpe_in.subset_list = &in_subsets;
2979 rpe_in.error_handler = _bfd_error_handler;
2980 rpe_in.xlen = &xlen_in;
2981
2982 rpe_out.subset_list = &out_subsets;
2983 rpe_out.error_handler = _bfd_error_handler;
2984 rpe_out.xlen = &xlen_out;
2985
2986 if (in_arch == NULL && out_arch == NULL)
2987 return NULL;
2988
2989 if (in_arch == NULL && out_arch != NULL)
2990 return out_arch;
2991
2992 if (in_arch != NULL && out_arch == NULL)
2993 return in_arch;
2994
2995 /* Parse subset from arch string. */
2996 if (!riscv_parse_subset (&rpe_in, in_arch))
2997 return NULL;
2998
2999 if (!riscv_parse_subset (&rpe_out, out_arch))
3000 return NULL;
3001
3002 /* Checking XLEN. */
3003 if (xlen_out != xlen_in)
3004 {
3005 _bfd_error_handler
3006 (_("error: %pB: ISA string of input (%s) doesn't match "
3007 "output (%s)."), ibfd, in_arch, out_arch);
3008 return NULL;
3009 }
3010
3011 /* Merge subset list. */
3012 in = in_subsets.head;
3013 out = out_subsets.head;
3014
3015 /* Merge standard extension. */
3016 if (!riscv_merge_std_ext (ibfd, in_arch, out_arch, &in, &out))
3017 return NULL;
3018
3019 /* Merge all non-single letter extensions with single call. */
3020 if (!riscv_merge_multi_letter_ext (ibfd, &in, &out))
3021 return NULL;
3022
3023 if (xlen_in != xlen_out)
3024 {
3025 _bfd_error_handler
3026 (_("error: %pB: XLEN of input (%u) doesn't match "
3027 "output (%u)."), ibfd, xlen_in, xlen_out);
3028 return NULL;
3029 }
3030
3031 if (xlen_in != ARCH_SIZE)
3032 {
3033 _bfd_error_handler
3034 (_("error: %pB: Unsupported XLEN (%u), you might be "
3035 "using wrong emulation."), ibfd, xlen_in);
3036 return NULL;
3037 }
3038
3039 merged_arch_str = riscv_arch_str (ARCH_SIZE, &merged_subsets);
3040
3041 /* Release the subset lists. */
3042 riscv_release_subset_list (&in_subsets);
3043 riscv_release_subset_list (&out_subsets);
3044 riscv_release_subset_list (&merged_subsets);
3045
3046 return merged_arch_str;
3047 }
3048
3049 /* Merge object attributes from IBFD into output_bfd of INFO.
3050 Raise an error if there are conflicting attributes. */
3051
3052 static bfd_boolean
3053 riscv_merge_attributes (bfd *ibfd, struct bfd_link_info *info)
3054 {
3055 bfd *obfd = info->output_bfd;
3056 obj_attribute *in_attr;
3057 obj_attribute *out_attr;
3058 bfd_boolean result = TRUE;
3059 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
3060 unsigned int i;
3061
3062 /* Skip linker created files. */
3063 if (ibfd->flags & BFD_LINKER_CREATED)
3064 return TRUE;
3065
3066 /* Skip any input that doesn't have an attribute section.
3067 This enables to link object files without attribute section with
3068 any others. */
3069 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
3070 return TRUE;
3071
3072 if (!elf_known_obj_attributes_proc (obfd)[0].i)
3073 {
3074 /* This is the first object. Copy the attributes. */
3075 _bfd_elf_copy_obj_attributes (ibfd, obfd);
3076
3077 out_attr = elf_known_obj_attributes_proc (obfd);
3078
3079 /* Use the Tag_null value to indicate the attributes have been
3080 initialized. */
3081 out_attr[0].i = 1;
3082
3083 return TRUE;
3084 }
3085
3086 in_attr = elf_known_obj_attributes_proc (ibfd);
3087 out_attr = elf_known_obj_attributes_proc (obfd);
3088
3089 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
3090 {
3091 switch (i)
3092 {
3093 case Tag_RISCV_arch:
3094 if (!out_attr[Tag_RISCV_arch].s)
3095 out_attr[Tag_RISCV_arch].s = in_attr[Tag_RISCV_arch].s;
3096 else if (in_attr[Tag_RISCV_arch].s
3097 && out_attr[Tag_RISCV_arch].s)
3098 {
3099 /* Check arch compatible. */
3100 char *merged_arch =
3101 riscv_merge_arch_attr_info (ibfd,
3102 in_attr[Tag_RISCV_arch].s,
3103 out_attr[Tag_RISCV_arch].s);
3104 if (merged_arch == NULL)
3105 {
3106 result = FALSE;
3107 out_attr[Tag_RISCV_arch].s = "";
3108 }
3109 else
3110 out_attr[Tag_RISCV_arch].s = merged_arch;
3111 }
3112 break;
3113 case Tag_RISCV_priv_spec:
3114 case Tag_RISCV_priv_spec_minor:
3115 case Tag_RISCV_priv_spec_revision:
3116 if (out_attr[i].i != in_attr[i].i)
3117 {
3118 _bfd_error_handler
3119 (_("error: %pB: conflicting priv spec version "
3120 "(major/minor/revision)."), ibfd);
3121 result = FALSE;
3122 }
3123 break;
3124 case Tag_RISCV_unaligned_access:
3125 out_attr[i].i |= in_attr[i].i;
3126 break;
3127 case Tag_RISCV_stack_align:
3128 if (out_attr[i].i == 0)
3129 out_attr[i].i = in_attr[i].i;
3130 else if (in_attr[i].i != 0
3131 && out_attr[i].i != 0
3132 && out_attr[i].i != in_attr[i].i)
3133 {
3134 _bfd_error_handler
3135 (_("error: %pB use %u-byte stack aligned but the output "
3136 "use %u-byte stack aligned."),
3137 ibfd, in_attr[i].i, out_attr[i].i);
3138 result = FALSE;
3139 }
3140 break;
3141 default:
3142 result &= _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
3143 }
3144
3145 /* If out_attr was copied from in_attr then it won't have a type yet. */
3146 if (in_attr[i].type && !out_attr[i].type)
3147 out_attr[i].type = in_attr[i].type;
3148 }
3149
3150 /* Merge Tag_compatibility attributes and any common GNU ones. */
3151 if (!_bfd_elf_merge_object_attributes (ibfd, info))
3152 return FALSE;
3153
3154 /* Check for any attributes not known on RISC-V. */
3155 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
3156
3157 return result;
3158 }
3159
3160 /* Merge backend specific data from an object file to the output
3161 object file when linking. */
3162
3163 static bfd_boolean
3164 _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3165 {
3166 bfd *obfd = info->output_bfd;
3167 flagword new_flags, old_flags;
3168
3169 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
3170 return TRUE;
3171
3172 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
3173 {
3174 (*_bfd_error_handler)
3175 (_("%pB: ABI is incompatible with that of the selected emulation:\n"
3176 " target emulation `%s' does not match `%s'"),
3177 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
3178 return FALSE;
3179 }
3180
3181 if (!_bfd_elf_merge_object_attributes (ibfd, info))
3182 return FALSE;
3183
3184 if (!riscv_merge_attributes (ibfd, info))
3185 return FALSE;
3186
3187 new_flags = elf_elfheader (ibfd)->e_flags;
3188 old_flags = elf_elfheader (obfd)->e_flags;
3189
3190 if (! elf_flags_init (obfd))
3191 {
3192 elf_flags_init (obfd) = TRUE;
3193 elf_elfheader (obfd)->e_flags = new_flags;
3194 return TRUE;
3195 }
3196
3197 /* Check to see if the input BFD actually contains any sections. If not,
3198 its flags may not have been initialized either, but it cannot actually
3199 cause any incompatibility. Do not short-circuit dynamic objects; their
3200 section list may be emptied by elf_link_add_object_symbols.
3201
3202 Also check to see if there are no code sections in the input. In this
3203 case, there is no need to check for code specific flags. */
3204 if (!(ibfd->flags & DYNAMIC))
3205 {
3206 bfd_boolean null_input_bfd = TRUE;
3207 bfd_boolean only_data_sections = TRUE;
3208 asection *sec;
3209
3210 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
3211 {
3212 if ((bfd_section_flags (sec)
3213 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
3214 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
3215 only_data_sections = FALSE;
3216
3217 null_input_bfd = FALSE;
3218 break;
3219 }
3220
3221 if (null_input_bfd || only_data_sections)
3222 return TRUE;
3223 }
3224
3225 /* Disallow linking different float ABIs. */
3226 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
3227 {
3228 (*_bfd_error_handler)
3229 (_("%pB: can't link %s modules with %s modules"), ibfd,
3230 riscv_float_abi_string (new_flags),
3231 riscv_float_abi_string (old_flags));
3232 goto fail;
3233 }
3234
3235 /* Disallow linking RVE and non-RVE. */
3236 if ((old_flags ^ new_flags) & EF_RISCV_RVE)
3237 {
3238 (*_bfd_error_handler)
3239 (_("%pB: can't link RVE with other target"), ibfd);
3240 goto fail;
3241 }
3242
3243 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
3244 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
3245
3246 return TRUE;
3247
3248 fail:
3249 bfd_set_error (bfd_error_bad_value);
3250 return FALSE;
3251 }
3252
3253 /* Delete some bytes from a section while relaxing. */
3254
3255 static bfd_boolean
3256 riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count,
3257 struct bfd_link_info *link_info)
3258 {
3259 unsigned int i, symcount;
3260 bfd_vma toaddr = sec->size;
3261 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
3262 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3263 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
3264 struct bfd_elf_section_data *data = elf_section_data (sec);
3265 bfd_byte *contents = data->this_hdr.contents;
3266
3267 /* Actually delete the bytes. */
3268 sec->size -= count;
3269 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
3270
3271 /* Adjust the location of all of the relocs. Note that we need not
3272 adjust the addends, since all PC-relative references must be against
3273 symbols, which we will adjust below. */
3274 for (i = 0; i < sec->reloc_count; i++)
3275 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
3276 data->relocs[i].r_offset -= count;
3277
3278 /* Adjust the local symbols defined in this section. */
3279 for (i = 0; i < symtab_hdr->sh_info; i++)
3280 {
3281 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
3282 if (sym->st_shndx == sec_shndx)
3283 {
3284 /* If the symbol is in the range of memory we just moved, we
3285 have to adjust its value. */
3286 if (sym->st_value > addr && sym->st_value <= toaddr)
3287 sym->st_value -= count;
3288
3289 /* If the symbol *spans* the bytes we just deleted (i.e. its
3290 *end* is in the moved bytes but its *start* isn't), then we
3291 must adjust its size.
3292
3293 This test needs to use the original value of st_value, otherwise
3294 we might accidentally decrease size when deleting bytes right
3295 before the symbol. But since deleted relocs can't span across
3296 symbols, we can't have both a st_value and a st_size decrease,
3297 so it is simpler to just use an else. */
3298 else if (sym->st_value <= addr
3299 && sym->st_value + sym->st_size > addr
3300 && sym->st_value + sym->st_size <= toaddr)
3301 sym->st_size -= count;
3302 }
3303 }
3304
3305 /* Now adjust the global symbols defined in this section. */
3306 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
3307 - symtab_hdr->sh_info);
3308
3309 for (i = 0; i < symcount; i++)
3310 {
3311 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
3312
3313 /* The '--wrap SYMBOL' option is causing a pain when the object file,
3314 containing the definition of __wrap_SYMBOL, includes a direct
3315 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
3316 the same symbol (which is __wrap_SYMBOL), but still exist as two
3317 different symbols in 'sym_hashes', we don't want to adjust
3318 the global symbol __wrap_SYMBOL twice. */
3319 /* The same problem occurs with symbols that are versioned_hidden, as
3320 foo becomes an alias for foo@BAR, and hence they need the same
3321 treatment. */
3322 if (link_info->wrap_hash != NULL
3323 || sym_hash->versioned == versioned_hidden)
3324 {
3325 struct elf_link_hash_entry **cur_sym_hashes;
3326
3327 /* Loop only over the symbols which have already been checked. */
3328 for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i];
3329 cur_sym_hashes++)
3330 {
3331 /* If the current symbol is identical to 'sym_hash', that means
3332 the symbol was already adjusted (or at least checked). */
3333 if (*cur_sym_hashes == sym_hash)
3334 break;
3335 }
3336 /* Don't adjust the symbol again. */
3337 if (cur_sym_hashes < &sym_hashes[i])
3338 continue;
3339 }
3340
3341 if ((sym_hash->root.type == bfd_link_hash_defined
3342 || sym_hash->root.type == bfd_link_hash_defweak)
3343 && sym_hash->root.u.def.section == sec)
3344 {
3345 /* As above, adjust the value if needed. */
3346 if (sym_hash->root.u.def.value > addr
3347 && sym_hash->root.u.def.value <= toaddr)
3348 sym_hash->root.u.def.value -= count;
3349
3350 /* As above, adjust the size if needed. */
3351 else if (sym_hash->root.u.def.value <= addr
3352 && sym_hash->root.u.def.value + sym_hash->size > addr
3353 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
3354 sym_hash->size -= count;
3355 }
3356 }
3357
3358 return TRUE;
3359 }
3360
3361 /* A second format for recording PC-relative hi relocations. This stores the
3362 information required to relax them to GP-relative addresses. */
3363
3364 typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
3365 struct riscv_pcgp_hi_reloc
3366 {
3367 bfd_vma hi_sec_off;
3368 bfd_vma hi_addend;
3369 bfd_vma hi_addr;
3370 unsigned hi_sym;
3371 asection *sym_sec;
3372 bfd_boolean undefined_weak;
3373 riscv_pcgp_hi_reloc *next;
3374 };
3375
3376 typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
3377 struct riscv_pcgp_lo_reloc
3378 {
3379 bfd_vma hi_sec_off;
3380 riscv_pcgp_lo_reloc *next;
3381 };
3382
3383 typedef struct
3384 {
3385 riscv_pcgp_hi_reloc *hi;
3386 riscv_pcgp_lo_reloc *lo;
3387 } riscv_pcgp_relocs;
3388
3389 /* Initialize the pcgp reloc info in P. */
3390
3391 static bfd_boolean
3392 riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
3393 {
3394 p->hi = NULL;
3395 p->lo = NULL;
3396 return TRUE;
3397 }
3398
3399 /* Free the pcgp reloc info in P. */
3400
3401 static void
3402 riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
3403 bfd *abfd ATTRIBUTE_UNUSED,
3404 asection *sec ATTRIBUTE_UNUSED)
3405 {
3406 riscv_pcgp_hi_reloc *c;
3407 riscv_pcgp_lo_reloc *l;
3408
3409 for (c = p->hi; c != NULL;)
3410 {
3411 riscv_pcgp_hi_reloc *next = c->next;
3412 free (c);
3413 c = next;
3414 }
3415
3416 for (l = p->lo; l != NULL;)
3417 {
3418 riscv_pcgp_lo_reloc *next = l->next;
3419 free (l);
3420 l = next;
3421 }
3422 }
3423
3424 /* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index.
3425 The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to
3426 relax the corresponding lo part reloc. */
3427
3428 static bfd_boolean
3429 riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
3430 bfd_vma hi_addend, bfd_vma hi_addr,
3431 unsigned hi_sym, asection *sym_sec,
3432 bfd_boolean undefined_weak)
3433 {
3434 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new));
3435 if (!new)
3436 return FALSE;
3437 new->hi_sec_off = hi_sec_off;
3438 new->hi_addend = hi_addend;
3439 new->hi_addr = hi_addr;
3440 new->hi_sym = hi_sym;
3441 new->sym_sec = sym_sec;
3442 new->undefined_weak = undefined_weak;
3443 new->next = p->hi;
3444 p->hi = new;
3445 return TRUE;
3446 }
3447
3448 /* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
3449 This is used by a lo part reloc to find the corresponding hi part reloc. */
3450
3451 static riscv_pcgp_hi_reloc *
3452 riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3453 {
3454 riscv_pcgp_hi_reloc *c;
3455
3456 for (c = p->hi; c != NULL; c = c->next)
3457 if (c->hi_sec_off == hi_sec_off)
3458 return c;
3459 return NULL;
3460 }
3461
3462 /* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info.
3463 This is used to record relocs that can't be relaxed. */
3464
3465 static bfd_boolean
3466 riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3467 {
3468 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new));
3469 if (!new)
3470 return FALSE;
3471 new->hi_sec_off = hi_sec_off;
3472 new->next = p->lo;
3473 p->lo = new;
3474 return TRUE;
3475 }
3476
3477 /* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
3478 This is used by a hi part reloc to find the corresponding lo part reloc. */
3479
3480 static bfd_boolean
3481 riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3482 {
3483 riscv_pcgp_lo_reloc *c;
3484
3485 for (c = p->lo; c != NULL; c = c->next)
3486 if (c->hi_sec_off == hi_sec_off)
3487 return TRUE;
3488 return FALSE;
3489 }
3490
3491 typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
3492 struct bfd_link_info *,
3493 Elf_Internal_Rela *,
3494 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *,
3495 riscv_pcgp_relocs *,
3496 bfd_boolean undefined_weak);
3497
3498 /* Relax AUIPC + JALR into JAL. */
3499
3500 static bfd_boolean
3501 _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
3502 struct bfd_link_info *link_info,
3503 Elf_Internal_Rela *rel,
3504 bfd_vma symval,
3505 bfd_vma max_alignment,
3506 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3507 bfd_boolean *again,
3508 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED,
3509 bfd_boolean undefined_weak ATTRIBUTE_UNUSED)
3510 {
3511 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3512 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
3513 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
3514 bfd_vma auipc, jalr;
3515 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
3516
3517 /* If the call crosses section boundaries, an alignment directive could
3518 cause the PC-relative offset to later increase, so we need to add in the
3519 max alignment of any section inclusive from the call to the target.
3520 Otherwise, we only need to use the alignment of the current section. */
3521 if (VALID_UJTYPE_IMM (foff))
3522 {
3523 if (sym_sec->output_section == sec->output_section
3524 && sym_sec->output_section != bfd_abs_section_ptr)
3525 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3526 foff += (foff < 0 ? -max_alignment : max_alignment);
3527 }
3528
3529 /* See if this function call can be shortened. */
3530 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
3531 return TRUE;
3532
3533 /* Shorten the function call. */
3534 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
3535
3536 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
3537 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
3538 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
3539 rvc = rvc && VALID_RVC_J_IMM (foff);
3540
3541 /* C.J exists on RV32 and RV64, but C.JAL is RV32-only. */
3542 rvc = rvc && (rd == 0 || (rd == X_RA && ARCH_SIZE == 32));
3543
3544 if (rvc)
3545 {
3546 /* Relax to C.J[AL] rd, addr. */
3547 r_type = R_RISCV_RVC_JUMP;
3548 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
3549 len = 2;
3550 }
3551 else if (VALID_UJTYPE_IMM (foff))
3552 {
3553 /* Relax to JAL rd, addr. */
3554 r_type = R_RISCV_JAL;
3555 auipc = MATCH_JAL | (rd << OP_SH_RD);
3556 }
3557 else /* near_zero */
3558 {
3559 /* Relax to JALR rd, x0, addr. */
3560 r_type = R_RISCV_LO12_I;
3561 auipc = MATCH_JALR | (rd << OP_SH_RD);
3562 }
3563
3564 /* Replace the R_RISCV_CALL reloc. */
3565 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
3566 /* Replace the AUIPC. */
3567 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
3568
3569 /* Delete unnecessary JALR. */
3570 *again = TRUE;
3571 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len,
3572 link_info);
3573 }
3574
3575 /* Traverse all output sections and return the max alignment. */
3576
3577 static bfd_vma
3578 _bfd_riscv_get_max_alignment (asection *sec)
3579 {
3580 unsigned int max_alignment_power = 0;
3581 asection *o;
3582
3583 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
3584 {
3585 if (o->alignment_power > max_alignment_power)
3586 max_alignment_power = o->alignment_power;
3587 }
3588
3589 return (bfd_vma) 1 << max_alignment_power;
3590 }
3591
3592 /* Relax non-PIC global variable references. */
3593
3594 static bfd_boolean
3595 _bfd_riscv_relax_lui (bfd *abfd,
3596 asection *sec,
3597 asection *sym_sec,
3598 struct bfd_link_info *link_info,
3599 Elf_Internal_Rela *rel,
3600 bfd_vma symval,
3601 bfd_vma max_alignment,
3602 bfd_vma reserve_size,
3603 bfd_boolean *again,
3604 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED,
3605 bfd_boolean undefined_weak)
3606 {
3607 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3608 bfd_vma gp = riscv_global_pointer_value (link_info);
3609 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
3610
3611 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3612
3613 if (gp)
3614 {
3615 /* If gp and the symbol are in the same output section, which is not the
3616 abs section, then consider only that output section's alignment. */
3617 struct bfd_link_hash_entry *h =
3618 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
3619 TRUE);
3620 if (h->u.def.section->output_section == sym_sec->output_section
3621 && sym_sec->output_section != bfd_abs_section_ptr)
3622 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3623 }
3624
3625 /* Is the reference in range of x0 or gp?
3626 Valid gp range conservatively because of alignment issue. */
3627 if (undefined_weak
3628 || (VALID_ITYPE_IMM (symval)
3629 || (symval >= gp
3630 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3631 || (symval < gp
3632 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size))))
3633 {
3634 unsigned sym = ELFNN_R_SYM (rel->r_info);
3635 switch (ELFNN_R_TYPE (rel->r_info))
3636 {
3637 case R_RISCV_LO12_I:
3638 if (undefined_weak)
3639 {
3640 /* Change the RS1 to zero. */
3641 bfd_vma insn = bfd_get_32 (abfd, contents + rel->r_offset);
3642 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
3643 bfd_put_32 (abfd, insn, contents + rel->r_offset);
3644 }
3645 else
3646 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3647 return TRUE;
3648
3649 case R_RISCV_LO12_S:
3650 if (undefined_weak)
3651 {
3652 /* Change the RS1 to zero. */
3653 bfd_vma insn = bfd_get_32 (abfd, contents + rel->r_offset);
3654 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
3655 bfd_put_32 (abfd, insn, contents + rel->r_offset);
3656 }
3657 else
3658 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3659 return TRUE;
3660
3661 case R_RISCV_HI20:
3662 /* We can delete the unnecessary LUI and reloc. */
3663 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3664 *again = TRUE;
3665 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4,
3666 link_info);
3667
3668 default:
3669 abort ();
3670 }
3671 }
3672
3673 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
3674 account for this assuming page alignment at worst. In the presence of
3675 RELRO segment the linker aligns it by one page size, therefore sections
3676 after the segment can be moved more than one page. */
3677
3678 if (use_rvc
3679 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
3680 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
3681 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval)
3682 + (link_info->relro ? 2 * ELF_MAXPAGESIZE
3683 : ELF_MAXPAGESIZE)))
3684 {
3685 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
3686 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
3687 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
3688 if (rd == 0 || rd == X_SP)
3689 return TRUE;
3690
3691 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
3692 bfd_put_32 (abfd, lui, contents + rel->r_offset);
3693
3694 /* Replace the R_RISCV_HI20 reloc. */
3695 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
3696
3697 *again = TRUE;
3698 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2,
3699 link_info);
3700 }
3701
3702 return TRUE;
3703 }
3704
3705 /* Relax non-PIC TLS references. */
3706
3707 static bfd_boolean
3708 _bfd_riscv_relax_tls_le (bfd *abfd,
3709 asection *sec,
3710 asection *sym_sec ATTRIBUTE_UNUSED,
3711 struct bfd_link_info *link_info,
3712 Elf_Internal_Rela *rel,
3713 bfd_vma symval,
3714 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3715 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3716 bfd_boolean *again,
3717 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED,
3718 bfd_boolean undefined_weak ATTRIBUTE_UNUSED)
3719 {
3720 /* See if this symbol is in range of tp. */
3721 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
3722 return TRUE;
3723
3724 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3725 switch (ELFNN_R_TYPE (rel->r_info))
3726 {
3727 case R_RISCV_TPREL_LO12_I:
3728 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
3729 return TRUE;
3730
3731 case R_RISCV_TPREL_LO12_S:
3732 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
3733 return TRUE;
3734
3735 case R_RISCV_TPREL_HI20:
3736 case R_RISCV_TPREL_ADD:
3737 /* We can delete the unnecessary instruction and reloc. */
3738 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3739 *again = TRUE;
3740 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info);
3741
3742 default:
3743 abort ();
3744 }
3745 }
3746
3747 /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3748
3749 static bfd_boolean
3750 _bfd_riscv_relax_align (bfd *abfd, asection *sec,
3751 asection *sym_sec,
3752 struct bfd_link_info *link_info,
3753 Elf_Internal_Rela *rel,
3754 bfd_vma symval,
3755 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3756 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3757 bfd_boolean *again ATTRIBUTE_UNUSED,
3758 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED,
3759 bfd_boolean undefined_weak ATTRIBUTE_UNUSED)
3760 {
3761 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3762 bfd_vma alignment = 1, pos;
3763 while (alignment <= rel->r_addend)
3764 alignment *= 2;
3765
3766 symval -= rel->r_addend;
3767 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
3768 bfd_vma nop_bytes = aligned_addr - symval;
3769
3770 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3771 sec->sec_flg0 = TRUE;
3772
3773 /* Make sure there are enough NOPs to actually achieve the alignment. */
3774 if (rel->r_addend < nop_bytes)
3775 {
3776 _bfd_error_handler
3777 (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment "
3778 "to %" PRId64 "-byte boundary, but only %" PRId64 " present"),
3779 abfd, sym_sec, (uint64_t) rel->r_offset,
3780 (int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend);
3781 bfd_set_error (bfd_error_bad_value);
3782 return FALSE;
3783 }
3784
3785 /* Delete the reloc. */
3786 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3787
3788 /* If the number of NOPs is already correct, there's nothing to do. */
3789 if (nop_bytes == rel->r_addend)
3790 return TRUE;
3791
3792 /* Write as many RISC-V NOPs as we need. */
3793 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
3794 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
3795
3796 /* Write a final RVC NOP if need be. */
3797 if (nop_bytes % 4 != 0)
3798 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
3799
3800 /* Delete the excess bytes. */
3801 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
3802 rel->r_addend - nop_bytes, link_info);
3803 }
3804
3805 /* Relax PC-relative references to GP-relative references. */
3806
3807 static bfd_boolean
3808 _bfd_riscv_relax_pc (bfd *abfd ATTRIBUTE_UNUSED,
3809 asection *sec,
3810 asection *sym_sec,
3811 struct bfd_link_info *link_info,
3812 Elf_Internal_Rela *rel,
3813 bfd_vma symval,
3814 bfd_vma max_alignment,
3815 bfd_vma reserve_size,
3816 bfd_boolean *again ATTRIBUTE_UNUSED,
3817 riscv_pcgp_relocs *pcgp_relocs,
3818 bfd_boolean undefined_weak)
3819 {
3820 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3821 bfd_vma gp = riscv_global_pointer_value (link_info);
3822
3823 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3824
3825 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3826 * actual target address. */
3827 riscv_pcgp_hi_reloc hi_reloc;
3828 memset (&hi_reloc, 0, sizeof (hi_reloc));
3829 switch (ELFNN_R_TYPE (rel->r_info))
3830 {
3831 case R_RISCV_PCREL_LO12_I:
3832 case R_RISCV_PCREL_LO12_S:
3833 {
3834 /* If the %lo has an addend, it isn't for the label pointing at the
3835 hi part instruction, but rather for the symbol pointed at by the
3836 hi part instruction. So we must subtract it here for the lookup.
3837 It is still used below in the final symbol address. */
3838 bfd_vma hi_sec_off = symval - sec_addr (sym_sec) - rel->r_addend;
3839 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
3840 hi_sec_off);
3841 if (hi == NULL)
3842 {
3843 riscv_record_pcgp_lo_reloc (pcgp_relocs, hi_sec_off);
3844 return TRUE;
3845 }
3846
3847 hi_reloc = *hi;
3848 symval = hi_reloc.hi_addr;
3849 sym_sec = hi_reloc.sym_sec;
3850
3851 /* We can not know whether the undefined weak symbol is referenced
3852 according to the information of R_RISCV_PCREL_LO12_I/S. Therefore,
3853 we have to record the 'undefined_weak' flag when handling the
3854 corresponding R_RISCV_HI20 reloc in riscv_record_pcgp_hi_reloc. */
3855 undefined_weak = hi_reloc.undefined_weak;
3856 }
3857 break;
3858
3859 case R_RISCV_PCREL_HI20:
3860 /* Mergeable symbols and code might later move out of range. */
3861 if (! undefined_weak
3862 && sym_sec->flags & (SEC_MERGE | SEC_CODE))
3863 return TRUE;
3864
3865 /* If the cooresponding lo relocation has already been seen then it's not
3866 * safe to relax this relocation. */
3867 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
3868 return TRUE;
3869
3870 break;
3871
3872 default:
3873 abort ();
3874 }
3875
3876 if (gp)
3877 {
3878 /* If gp and the symbol are in the same output section, which is not the
3879 abs section, then consider only that output section's alignment. */
3880 struct bfd_link_hash_entry *h =
3881 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
3882 TRUE);
3883 if (h->u.def.section->output_section == sym_sec->output_section
3884 && sym_sec->output_section != bfd_abs_section_ptr)
3885 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3886 }
3887
3888 /* Is the reference in range of x0 or gp?
3889 Valid gp range conservatively because of alignment issue. */
3890 if (undefined_weak
3891 || (VALID_ITYPE_IMM (symval)
3892 || (symval >= gp
3893 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3894 || (symval < gp
3895 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size))))
3896 {
3897 unsigned sym = hi_reloc.hi_sym;
3898 switch (ELFNN_R_TYPE (rel->r_info))
3899 {
3900 case R_RISCV_PCREL_LO12_I:
3901 if (undefined_weak)
3902 {
3903 /* Change the RS1 to zero, and then modify the relocation
3904 type to R_RISCV_LO12_I. */
3905 bfd_vma insn = bfd_get_32 (abfd, contents + rel->r_offset);
3906 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
3907 bfd_put_32 (abfd, insn, contents + rel->r_offset);
3908 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_LO12_I);
3909 rel->r_addend = hi_reloc.hi_addend;
3910 }
3911 else
3912 {
3913 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3914 rel->r_addend += hi_reloc.hi_addend;
3915 }
3916 return TRUE;
3917
3918 case R_RISCV_PCREL_LO12_S:
3919 if (undefined_weak)
3920 {
3921 /* Change the RS1 to zero, and then modify the relocation
3922 type to R_RISCV_LO12_S. */
3923 bfd_vma insn = bfd_get_32 (abfd, contents + rel->r_offset);
3924 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
3925 bfd_put_32 (abfd, insn, contents + rel->r_offset);
3926 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_LO12_S);
3927 rel->r_addend = hi_reloc.hi_addend;
3928 }
3929 else
3930 {
3931 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3932 rel->r_addend += hi_reloc.hi_addend;
3933 }
3934 return TRUE;
3935
3936 case R_RISCV_PCREL_HI20:
3937 riscv_record_pcgp_hi_reloc (pcgp_relocs,
3938 rel->r_offset,
3939 rel->r_addend,
3940 symval,
3941 ELFNN_R_SYM(rel->r_info),
3942 sym_sec,
3943 undefined_weak);
3944 /* We can delete the unnecessary AUIPC and reloc. */
3945 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
3946 rel->r_addend = 4;
3947 return TRUE;
3948
3949 default:
3950 abort ();
3951 }
3952 }
3953
3954 return TRUE;
3955 }
3956
3957 /* Relax PC-relative references to GP-relative references. */
3958
3959 static bfd_boolean
3960 _bfd_riscv_relax_delete (bfd *abfd,
3961 asection *sec,
3962 asection *sym_sec ATTRIBUTE_UNUSED,
3963 struct bfd_link_info *link_info,
3964 Elf_Internal_Rela *rel,
3965 bfd_vma symval ATTRIBUTE_UNUSED,
3966 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3967 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3968 bfd_boolean *again ATTRIBUTE_UNUSED,
3969 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED,
3970 bfd_boolean undefined_weak ATTRIBUTE_UNUSED)
3971 {
3972 if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend,
3973 link_info))
3974 return FALSE;
3975 rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE);
3976 return TRUE;
3977 }
3978
3979 /* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3980 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3981 disabled, handles code alignment directives. */
3982
3983 static bfd_boolean
3984 _bfd_riscv_relax_section (bfd *abfd, asection *sec,
3985 struct bfd_link_info *info,
3986 bfd_boolean *again)
3987 {
3988 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
3989 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3990 struct bfd_elf_section_data *data = elf_section_data (sec);
3991 Elf_Internal_Rela *relocs;
3992 bfd_boolean ret = FALSE;
3993 unsigned int i;
3994 bfd_vma max_alignment, reserve_size = 0;
3995 riscv_pcgp_relocs pcgp_relocs;
3996
3997 *again = FALSE;
3998
3999 if (bfd_link_relocatable (info)
4000 || sec->sec_flg0
4001 || (sec->flags & SEC_RELOC) == 0
4002 || sec->reloc_count == 0
4003 || (info->disable_target_specific_optimizations
4004 && info->relax_pass == 0))
4005 return TRUE;
4006
4007 riscv_init_pcgp_relocs (&pcgp_relocs);
4008
4009 /* Read this BFD's relocs if we haven't done so already. */
4010 if (data->relocs)
4011 relocs = data->relocs;
4012 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
4013 info->keep_memory)))
4014 goto fail;
4015
4016 if (htab)
4017 {
4018 max_alignment = htab->max_alignment;
4019 if (max_alignment == (bfd_vma) -1)
4020 {
4021 max_alignment = _bfd_riscv_get_max_alignment (sec);
4022 htab->max_alignment = max_alignment;
4023 }
4024 }
4025 else
4026 max_alignment = _bfd_riscv_get_max_alignment (sec);
4027
4028 /* Examine and consider relaxing each reloc. */
4029 for (i = 0; i < sec->reloc_count; i++)
4030 {
4031 asection *sym_sec;
4032 Elf_Internal_Rela *rel = relocs + i;
4033 relax_func_t relax_func;
4034 int type = ELFNN_R_TYPE (rel->r_info);
4035 bfd_vma symval;
4036 char symtype;
4037 bfd_boolean undefined_weak = FALSE;
4038
4039 relax_func = NULL;
4040 if (info->relax_pass == 0)
4041 {
4042 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
4043 relax_func = _bfd_riscv_relax_call;
4044 else if (type == R_RISCV_HI20
4045 || type == R_RISCV_LO12_I
4046 || type == R_RISCV_LO12_S)
4047 relax_func = _bfd_riscv_relax_lui;
4048 else if (!bfd_link_pic(info)
4049 && (type == R_RISCV_PCREL_HI20
4050 || type == R_RISCV_PCREL_LO12_I
4051 || type == R_RISCV_PCREL_LO12_S))
4052 relax_func = _bfd_riscv_relax_pc;
4053 else if (type == R_RISCV_TPREL_HI20
4054 || type == R_RISCV_TPREL_ADD
4055 || type == R_RISCV_TPREL_LO12_I
4056 || type == R_RISCV_TPREL_LO12_S)
4057 relax_func = _bfd_riscv_relax_tls_le;
4058 else
4059 continue;
4060
4061 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
4062 if (i == sec->reloc_count - 1
4063 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
4064 || rel->r_offset != (rel + 1)->r_offset)
4065 continue;
4066
4067 /* Skip over the R_RISCV_RELAX. */
4068 i++;
4069 }
4070 else if (info->relax_pass == 1 && type == R_RISCV_DELETE)
4071 relax_func = _bfd_riscv_relax_delete;
4072 else if (info->relax_pass == 2 && type == R_RISCV_ALIGN)
4073 relax_func = _bfd_riscv_relax_align;
4074 else
4075 continue;
4076
4077 data->relocs = relocs;
4078
4079 /* Read this BFD's contents if we haven't done so already. */
4080 if (!data->this_hdr.contents
4081 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
4082 goto fail;
4083
4084 /* Read this BFD's symbols if we haven't done so already. */
4085 if (symtab_hdr->sh_info != 0
4086 && !symtab_hdr->contents
4087 && !(symtab_hdr->contents =
4088 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
4089 symtab_hdr->sh_info,
4090 0, NULL, NULL, NULL)))
4091 goto fail;
4092
4093 /* Get the value of the symbol referred to by the reloc. */
4094 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
4095 {
4096 /* A local symbol. */
4097 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
4098 + ELFNN_R_SYM (rel->r_info));
4099 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
4100 ? 0 : isym->st_size - rel->r_addend;
4101
4102 if (isym->st_shndx == SHN_UNDEF)
4103 sym_sec = sec, symval = rel->r_offset;
4104 else
4105 {
4106 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
4107 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
4108 #if 0
4109 /* The purpose of this code is unknown. It breaks linker scripts
4110 for embedded development that place sections at address zero.
4111 This code is believed to be unnecessary. Disabling it but not
4112 yet removing it, in case something breaks. */
4113 if (sec_addr (sym_sec) == 0)
4114 continue;
4115 #endif
4116 symval = isym->st_value;
4117 }
4118 symtype = ELF_ST_TYPE (isym->st_info);
4119 }
4120 else
4121 {
4122 unsigned long indx;
4123 struct elf_link_hash_entry *h;
4124
4125 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
4126 h = elf_sym_hashes (abfd)[indx];
4127
4128 while (h->root.type == bfd_link_hash_indirect
4129 || h->root.type == bfd_link_hash_warning)
4130 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4131
4132 if (h->root.type == bfd_link_hash_undefweak
4133 && (relax_func == _bfd_riscv_relax_lui
4134 || relax_func == _bfd_riscv_relax_pc))
4135 {
4136 /* For the lui and auipc relaxations, since the symbol
4137 value of an undefined weak symbol is always be zero,
4138 we can optimize the patterns into a single LI/MV/ADDI
4139 instruction.
4140
4141 Note that, creating shared libraries and pie output may
4142 break the rule above. Fortunately, since we do not relax
4143 pc relocs when creating shared libraries and pie output,
4144 and the absolute address access for R_RISCV_HI20 isn't
4145 allowed when "-fPIC" is set, the problem of creating shared
4146 libraries can not happen currently. Once we support the
4147 auipc relaxations when creating shared libraries, then we will
4148 need the more rigorous checking for this optimization. */
4149 undefined_weak = TRUE;
4150 }
4151
4152 /* This line has to match the check in riscv_elf_relocate_section
4153 in the R_RISCV_CALL[_PLT] case. */
4154 if (bfd_link_pic (info) && h->plt.offset != MINUS_ONE)
4155 {
4156 sym_sec = htab->elf.splt;
4157 symval = h->plt.offset;
4158 }
4159 else if (undefined_weak)
4160 {
4161 symval = 0;
4162 sym_sec = bfd_und_section_ptr;
4163 }
4164 else if ((h->root.type == bfd_link_hash_defined
4165 || h->root.type == bfd_link_hash_defweak)
4166 && h->root.u.def.section != NULL
4167 && h->root.u.def.section->output_section != NULL)
4168 {
4169 symval = h->root.u.def.value;
4170 sym_sec = h->root.u.def.section;
4171 }
4172 else
4173 continue;
4174
4175 if (h->type != STT_FUNC)
4176 reserve_size =
4177 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
4178 symtype = h->type;
4179 }
4180
4181 if (sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE
4182 && (sym_sec->flags & SEC_MERGE))
4183 {
4184 /* At this stage in linking, no SEC_MERGE symbol has been
4185 adjusted, so all references to such symbols need to be
4186 passed through _bfd_merged_section_offset. (Later, in
4187 relocate_section, all SEC_MERGE symbols *except* for
4188 section symbols have been adjusted.)
4189
4190 gas may reduce relocations against symbols in SEC_MERGE
4191 sections to a relocation against the section symbol when
4192 the original addend was zero. When the reloc is against
4193 a section symbol we should include the addend in the
4194 offset passed to _bfd_merged_section_offset, since the
4195 location of interest is the original symbol. On the
4196 other hand, an access to "sym+addend" where "sym" is not
4197 a section symbol should not include the addend; Such an
4198 access is presumed to be an offset from "sym"; The
4199 location of interest is just "sym". */
4200 if (symtype == STT_SECTION)
4201 symval += rel->r_addend;
4202
4203 symval = _bfd_merged_section_offset (abfd, &sym_sec,
4204 elf_section_data (sym_sec)->sec_info,
4205 symval);
4206
4207 if (symtype != STT_SECTION)
4208 symval += rel->r_addend;
4209 }
4210 else
4211 symval += rel->r_addend;
4212
4213 symval += sec_addr (sym_sec);
4214
4215 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
4216 max_alignment, reserve_size, again,
4217 &pcgp_relocs, undefined_weak))
4218 goto fail;
4219 }
4220
4221 ret = TRUE;
4222
4223 fail:
4224 if (relocs != data->relocs)
4225 free (relocs);
4226 riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec);
4227
4228 return ret;
4229 }
4230
4231 #if ARCH_SIZE == 32
4232 # define PRSTATUS_SIZE 204
4233 # define PRSTATUS_OFFSET_PR_CURSIG 12
4234 # define PRSTATUS_OFFSET_PR_PID 24
4235 # define PRSTATUS_OFFSET_PR_REG 72
4236 # define ELF_GREGSET_T_SIZE 128
4237 # define PRPSINFO_SIZE 128
4238 # define PRPSINFO_OFFSET_PR_PID 16
4239 # define PRPSINFO_OFFSET_PR_FNAME 32
4240 # define PRPSINFO_OFFSET_PR_PSARGS 48
4241 #else
4242 # define PRSTATUS_SIZE 376
4243 # define PRSTATUS_OFFSET_PR_CURSIG 12
4244 # define PRSTATUS_OFFSET_PR_PID 32
4245 # define PRSTATUS_OFFSET_PR_REG 112
4246 # define ELF_GREGSET_T_SIZE 256
4247 # define PRPSINFO_SIZE 136
4248 # define PRPSINFO_OFFSET_PR_PID 24
4249 # define PRPSINFO_OFFSET_PR_FNAME 40
4250 # define PRPSINFO_OFFSET_PR_PSARGS 56
4251 #endif
4252
4253 /* Support for core dump NOTE sections. */
4254
4255 static bfd_boolean
4256 riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4257 {
4258 switch (note->descsz)
4259 {
4260 default:
4261 return FALSE;
4262
4263 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
4264 /* pr_cursig */
4265 elf_tdata (abfd)->core->signal
4266 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
4267
4268 /* pr_pid */
4269 elf_tdata (abfd)->core->lwpid
4270 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
4271 break;
4272 }
4273
4274 /* Make a ".reg/999" section. */
4275 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
4276 note->descpos + PRSTATUS_OFFSET_PR_REG);
4277 }
4278
4279 static bfd_boolean
4280 riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4281 {
4282 switch (note->descsz)
4283 {
4284 default:
4285 return FALSE;
4286
4287 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
4288 /* pr_pid */
4289 elf_tdata (abfd)->core->pid
4290 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
4291
4292 /* pr_fname */
4293 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
4294 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
4295
4296 /* pr_psargs */
4297 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
4298 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
4299 break;
4300 }
4301
4302 /* Note that for some reason, a spurious space is tacked
4303 onto the end of the args in some (at least one anyway)
4304 implementations, so strip it off if it exists. */
4305
4306 {
4307 char *command = elf_tdata (abfd)->core->command;
4308 int n = strlen (command);
4309
4310 if (0 < n && command[n - 1] == ' ')
4311 command[n - 1] = '\0';
4312 }
4313
4314 return TRUE;
4315 }
4316
4317 /* Set the right mach type. */
4318 static bfd_boolean
4319 riscv_elf_object_p (bfd *abfd)
4320 {
4321 /* There are only two mach types in RISCV currently. */
4322 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
4323 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
4324 else
4325 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
4326
4327 return TRUE;
4328 }
4329
4330 /* Determine whether an object attribute tag takes an integer, a
4331 string or both. */
4332
4333 static int
4334 riscv_elf_obj_attrs_arg_type (int tag)
4335 {
4336 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
4337 }
4338
4339 #define TARGET_LITTLE_SYM riscv_elfNN_vec
4340 #define TARGET_LITTLE_NAME "elfNN-littleriscv"
4341
4342 #define elf_backend_reloc_type_class riscv_reloc_type_class
4343
4344 #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
4345 #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
4346 #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
4347 #define bfd_elfNN_bfd_merge_private_bfd_data \
4348 _bfd_riscv_elf_merge_private_bfd_data
4349
4350 #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
4351 #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
4352 #define elf_backend_check_relocs riscv_elf_check_relocs
4353 #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
4354 #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
4355 #define elf_backend_relocate_section riscv_elf_relocate_section
4356 #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
4357 #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
4358 #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
4359 #define elf_backend_plt_sym_val riscv_elf_plt_sym_val
4360 #define elf_backend_grok_prstatus riscv_elf_grok_prstatus
4361 #define elf_backend_grok_psinfo riscv_elf_grok_psinfo
4362 #define elf_backend_object_p riscv_elf_object_p
4363 #define elf_info_to_howto_rel NULL
4364 #define elf_info_to_howto riscv_info_to_howto_rela
4365 #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
4366
4367 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4368
4369 #define elf_backend_can_gc_sections 1
4370 #define elf_backend_can_refcount 1
4371 #define elf_backend_want_got_plt 1
4372 #define elf_backend_plt_readonly 1
4373 #define elf_backend_plt_alignment 4
4374 #define elf_backend_want_plt_sym 1
4375 #define elf_backend_got_header_size (ARCH_SIZE / 8)
4376 #define elf_backend_want_dynrelro 1
4377 #define elf_backend_rela_normal 1
4378 #define elf_backend_default_execstack 0
4379
4380 #undef elf_backend_obj_attrs_vendor
4381 #define elf_backend_obj_attrs_vendor "riscv"
4382 #undef elf_backend_obj_attrs_arg_type
4383 #define elf_backend_obj_attrs_arg_type riscv_elf_obj_attrs_arg_type
4384 #undef elf_backend_obj_attrs_section_type
4385 #define elf_backend_obj_attrs_section_type SHT_RISCV_ATTRIBUTES
4386 #undef elf_backend_obj_attrs_section
4387 #define elf_backend_obj_attrs_section ".riscv.attributes"
4388
4389 #include "elfNN-target.h"
This page took 0.128415 seconds and 4 git commands to generate.