Use %pI, %pR, %pS, %pT in place of %I, %R, %S and %T.
[deliverable/binutils-gdb.git] / bfd / elfnn-riscv.c
1 /* RISC-V-specific support for NN-bit ELF.
2 Copyright (C) 2011-2018 Free Software Foundation, Inc.
3
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
22
23 /* This file handles RISC-V ELF targets. */
24
25 #include "sysdep.h"
26 #include "bfd.h"
27 #include "libbfd.h"
28 #include "bfdlink.h"
29 #include "genlink.h"
30 #include "elf-bfd.h"
31 #include "elfxx-riscv.h"
32 #include "elf/riscv.h"
33 #include "opcode/riscv.h"
34
35 /* Internal relocations used exclusively by the relaxation pass. */
36 #define R_RISCV_DELETE (R_RISCV_max + 1)
37
38 #define ARCH_SIZE NN
39
40 #define MINUS_ONE ((bfd_vma)0 - 1)
41
42 #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
43
44 #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
45
46 /* The name of the dynamic interpreter. This is put in the .interp
47 section. */
48
49 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50 #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
51
52 #define ELF_ARCH bfd_arch_riscv
53 #define ELF_TARGET_ID RISCV_ELF_DATA
54 #define ELF_MACHINE_CODE EM_RISCV
55 #define ELF_MAXPAGESIZE 0x1000
56 #define ELF_COMMONPAGESIZE 0x1000
57
58 /* RISC-V ELF linker hash entry. */
59
60 struct riscv_elf_link_hash_entry
61 {
62 struct elf_link_hash_entry elf;
63
64 /* Track dynamic relocs copied for this symbol. */
65 struct elf_dyn_relocs *dyn_relocs;
66
67 #define GOT_UNKNOWN 0
68 #define GOT_NORMAL 1
69 #define GOT_TLS_GD 2
70 #define GOT_TLS_IE 4
71 #define GOT_TLS_LE 8
72 char tls_type;
73 };
74
75 #define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
77
78 struct _bfd_riscv_elf_obj_tdata
79 {
80 struct elf_obj_tdata root;
81
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type;
84 };
85
86 #define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
88
89 #define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
91
92 #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
95
96 #define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
100
101 #include "elf/common.h"
102 #include "elf/internal.h"
103
104 struct riscv_elf_link_hash_table
105 {
106 struct elf_link_hash_table elf;
107
108 /* Short-cuts to get to dynamic linker sections. */
109 asection *sdyntdata;
110
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache;
113
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment;
116 };
117
118
119 /* Get the RISC-V ELF linker hash table from a link_info structure. */
120 #define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
123
124 static void
125 riscv_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
126 arelent *cache_ptr,
127 Elf_Internal_Rela *dst)
128 {
129 cache_ptr->howto = riscv_elf_rtype_to_howto (ELFNN_R_TYPE (dst->r_info));
130 }
131
132 static void
133 riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
134 {
135 const struct elf_backend_data *bed;
136 bfd_byte *loc;
137
138 bed = get_elf_backend_data (abfd);
139 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
140 bed->s->swap_reloca_out (abfd, rel, loc);
141 }
142
143 /* PLT/GOT stuff. */
144
145 #define PLT_HEADER_INSNS 8
146 #define PLT_ENTRY_INSNS 4
147 #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
148 #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
149
150 #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
151
152 #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
153
154 #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
155
156 static bfd_vma
157 riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
158 {
159 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
160 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
161 }
162
163 #if ARCH_SIZE == 32
164 # define MATCH_LREG MATCH_LW
165 #else
166 # define MATCH_LREG MATCH_LD
167 #endif
168
169 /* Generate a PLT header. */
170
171 static void
172 riscv_make_plt_header (bfd_vma gotplt_addr, bfd_vma addr, uint32_t *entry)
173 {
174 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
175 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
176
177 /* auipc t2, %hi(.got.plt)
178 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
179 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
180 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
181 addi t0, t2, %lo(.got.plt) # &.got.plt
182 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
183 l[w|d] t0, PTRSIZE(t0) # link map
184 jr t3 */
185
186 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
187 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
188 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
189 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
190 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
191 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
192 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
193 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
194 }
195
196 /* Generate a PLT entry. */
197
198 static void
199 riscv_make_plt_entry (bfd_vma got, bfd_vma addr, uint32_t *entry)
200 {
201 /* auipc t3, %hi(.got.plt entry)
202 l[w|d] t3, %lo(.got.plt entry)(t3)
203 jalr t1, t3
204 nop */
205
206 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
207 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
208 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
209 entry[3] = RISCV_NOP;
210 }
211
212 /* Create an entry in an RISC-V ELF linker hash table. */
213
214 static struct bfd_hash_entry *
215 link_hash_newfunc (struct bfd_hash_entry *entry,
216 struct bfd_hash_table *table, const char *string)
217 {
218 /* Allocate the structure if it has not already been allocated by a
219 subclass. */
220 if (entry == NULL)
221 {
222 entry =
223 bfd_hash_allocate (table,
224 sizeof (struct riscv_elf_link_hash_entry));
225 if (entry == NULL)
226 return entry;
227 }
228
229 /* Call the allocation method of the superclass. */
230 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
231 if (entry != NULL)
232 {
233 struct riscv_elf_link_hash_entry *eh;
234
235 eh = (struct riscv_elf_link_hash_entry *) entry;
236 eh->dyn_relocs = NULL;
237 eh->tls_type = GOT_UNKNOWN;
238 }
239
240 return entry;
241 }
242
243 /* Create a RISC-V ELF linker hash table. */
244
245 static struct bfd_link_hash_table *
246 riscv_elf_link_hash_table_create (bfd *abfd)
247 {
248 struct riscv_elf_link_hash_table *ret;
249 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
250
251 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
252 if (ret == NULL)
253 return NULL;
254
255 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
256 sizeof (struct riscv_elf_link_hash_entry),
257 RISCV_ELF_DATA))
258 {
259 free (ret);
260 return NULL;
261 }
262
263 ret->max_alignment = (bfd_vma) -1;
264 return &ret->elf.root;
265 }
266
267 /* Create the .got section. */
268
269 static bfd_boolean
270 riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
271 {
272 flagword flags;
273 asection *s, *s_got;
274 struct elf_link_hash_entry *h;
275 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
276 struct elf_link_hash_table *htab = elf_hash_table (info);
277
278 /* This function may be called more than once. */
279 if (htab->sgot != NULL)
280 return TRUE;
281
282 flags = bed->dynamic_sec_flags;
283
284 s = bfd_make_section_anyway_with_flags (abfd,
285 (bed->rela_plts_and_copies_p
286 ? ".rela.got" : ".rel.got"),
287 (bed->dynamic_sec_flags
288 | SEC_READONLY));
289 if (s == NULL
290 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
291 return FALSE;
292 htab->srelgot = s;
293
294 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
295 if (s == NULL
296 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
297 return FALSE;
298 htab->sgot = s;
299
300 /* The first bit of the global offset table is the header. */
301 s->size += bed->got_header_size;
302
303 if (bed->want_got_plt)
304 {
305 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
306 if (s == NULL
307 || !bfd_set_section_alignment (abfd, s,
308 bed->s->log_file_align))
309 return FALSE;
310 htab->sgotplt = s;
311
312 /* Reserve room for the header. */
313 s->size += GOTPLT_HEADER_SIZE;
314 }
315
316 if (bed->want_got_sym)
317 {
318 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
319 section. We don't do this in the linker script because we don't want
320 to define the symbol if we are not creating a global offset
321 table. */
322 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
323 "_GLOBAL_OFFSET_TABLE_");
324 elf_hash_table (info)->hgot = h;
325 if (h == NULL)
326 return FALSE;
327 }
328
329 return TRUE;
330 }
331
332 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
333 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
334 hash table. */
335
336 static bfd_boolean
337 riscv_elf_create_dynamic_sections (bfd *dynobj,
338 struct bfd_link_info *info)
339 {
340 struct riscv_elf_link_hash_table *htab;
341
342 htab = riscv_elf_hash_table (info);
343 BFD_ASSERT (htab != NULL);
344
345 if (!riscv_elf_create_got_section (dynobj, info))
346 return FALSE;
347
348 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
349 return FALSE;
350
351 if (!bfd_link_pic (info))
352 {
353 htab->sdyntdata =
354 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
355 SEC_ALLOC | SEC_THREAD_LOCAL);
356 }
357
358 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
359 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
360 abort ();
361
362 return TRUE;
363 }
364
365 /* Copy the extra info we tack onto an elf_link_hash_entry. */
366
367 static void
368 riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
369 struct elf_link_hash_entry *dir,
370 struct elf_link_hash_entry *ind)
371 {
372 struct riscv_elf_link_hash_entry *edir, *eind;
373
374 edir = (struct riscv_elf_link_hash_entry *) dir;
375 eind = (struct riscv_elf_link_hash_entry *) ind;
376
377 if (eind->dyn_relocs != NULL)
378 {
379 if (edir->dyn_relocs != NULL)
380 {
381 struct elf_dyn_relocs **pp;
382 struct elf_dyn_relocs *p;
383
384 /* Add reloc counts against the indirect sym to the direct sym
385 list. Merge any entries against the same section. */
386 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
387 {
388 struct elf_dyn_relocs *q;
389
390 for (q = edir->dyn_relocs; q != NULL; q = q->next)
391 if (q->sec == p->sec)
392 {
393 q->pc_count += p->pc_count;
394 q->count += p->count;
395 *pp = p->next;
396 break;
397 }
398 if (q == NULL)
399 pp = &p->next;
400 }
401 *pp = edir->dyn_relocs;
402 }
403
404 edir->dyn_relocs = eind->dyn_relocs;
405 eind->dyn_relocs = NULL;
406 }
407
408 if (ind->root.type == bfd_link_hash_indirect
409 && dir->got.refcount <= 0)
410 {
411 edir->tls_type = eind->tls_type;
412 eind->tls_type = GOT_UNKNOWN;
413 }
414 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
415 }
416
417 static bfd_boolean
418 riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
419 unsigned long symndx, char tls_type)
420 {
421 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
422
423 *new_tls_type |= tls_type;
424 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
425 {
426 (*_bfd_error_handler)
427 (_("%pB: `%s' accessed both as normal and thread local symbol"),
428 abfd, h ? h->root.root.string : "<local>");
429 return FALSE;
430 }
431 return TRUE;
432 }
433
434 static bfd_boolean
435 riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
436 struct elf_link_hash_entry *h, long symndx)
437 {
438 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
439 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
440
441 if (htab->elf.sgot == NULL)
442 {
443 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
444 return FALSE;
445 }
446
447 if (h != NULL)
448 {
449 h->got.refcount += 1;
450 return TRUE;
451 }
452
453 /* This is a global offset table entry for a local symbol. */
454 if (elf_local_got_refcounts (abfd) == NULL)
455 {
456 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
457 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
458 return FALSE;
459 _bfd_riscv_elf_local_got_tls_type (abfd)
460 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
461 }
462 elf_local_got_refcounts (abfd) [symndx] += 1;
463
464 return TRUE;
465 }
466
467 static bfd_boolean
468 bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
469 {
470 (*_bfd_error_handler)
471 (_("%pB: relocation %s against `%s' can not be used when making a shared "
472 "object; recompile with -fPIC"),
473 abfd, riscv_elf_rtype_to_howto (r_type)->name,
474 h != NULL ? h->root.root.string : "a local symbol");
475 bfd_set_error (bfd_error_bad_value);
476 return FALSE;
477 }
478 /* Look through the relocs for a section during the first phase, and
479 allocate space in the global offset table or procedure linkage
480 table. */
481
482 static bfd_boolean
483 riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
484 asection *sec, const Elf_Internal_Rela *relocs)
485 {
486 struct riscv_elf_link_hash_table *htab;
487 Elf_Internal_Shdr *symtab_hdr;
488 struct elf_link_hash_entry **sym_hashes;
489 const Elf_Internal_Rela *rel;
490 asection *sreloc = NULL;
491
492 if (bfd_link_relocatable (info))
493 return TRUE;
494
495 htab = riscv_elf_hash_table (info);
496 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
497 sym_hashes = elf_sym_hashes (abfd);
498
499 if (htab->elf.dynobj == NULL)
500 htab->elf.dynobj = abfd;
501
502 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
503 {
504 unsigned int r_type;
505 unsigned int r_symndx;
506 struct elf_link_hash_entry *h;
507
508 r_symndx = ELFNN_R_SYM (rel->r_info);
509 r_type = ELFNN_R_TYPE (rel->r_info);
510
511 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
512 {
513 (*_bfd_error_handler) (_("%pB: bad symbol index: %d"),
514 abfd, r_symndx);
515 return FALSE;
516 }
517
518 if (r_symndx < symtab_hdr->sh_info)
519 h = NULL;
520 else
521 {
522 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
523 while (h->root.type == bfd_link_hash_indirect
524 || h->root.type == bfd_link_hash_warning)
525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
526 }
527
528 switch (r_type)
529 {
530 case R_RISCV_TLS_GD_HI20:
531 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
532 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
533 return FALSE;
534 break;
535
536 case R_RISCV_TLS_GOT_HI20:
537 if (bfd_link_pic (info))
538 info->flags |= DF_STATIC_TLS;
539 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
540 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
541 return FALSE;
542 break;
543
544 case R_RISCV_GOT_HI20:
545 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
546 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
547 return FALSE;
548 break;
549
550 case R_RISCV_CALL_PLT:
551 /* This symbol requires a procedure linkage table entry. We
552 actually build the entry in adjust_dynamic_symbol,
553 because this might be a case of linking PIC code without
554 linking in any dynamic objects, in which case we don't
555 need to generate a procedure linkage table after all. */
556
557 if (h != NULL)
558 {
559 h->needs_plt = 1;
560 h->plt.refcount += 1;
561 }
562 break;
563
564 case R_RISCV_CALL:
565 case R_RISCV_JAL:
566 case R_RISCV_BRANCH:
567 case R_RISCV_RVC_BRANCH:
568 case R_RISCV_RVC_JUMP:
569 case R_RISCV_PCREL_HI20:
570 /* In shared libraries, these relocs are known to bind locally. */
571 if (bfd_link_pic (info))
572 break;
573 goto static_reloc;
574
575 case R_RISCV_TPREL_HI20:
576 if (!bfd_link_executable (info))
577 return bad_static_reloc (abfd, r_type, h);
578 if (h != NULL)
579 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
580 goto static_reloc;
581
582 case R_RISCV_HI20:
583 if (bfd_link_pic (info))
584 return bad_static_reloc (abfd, r_type, h);
585 /* Fall through. */
586
587 case R_RISCV_COPY:
588 case R_RISCV_JUMP_SLOT:
589 case R_RISCV_RELATIVE:
590 case R_RISCV_64:
591 case R_RISCV_32:
592 /* Fall through. */
593
594 static_reloc:
595 /* This reloc might not bind locally. */
596 if (h != NULL)
597 h->non_got_ref = 1;
598
599 if (h != NULL && !bfd_link_pic (info))
600 {
601 /* We may need a .plt entry if the function this reloc
602 refers to is in a shared lib. */
603 h->plt.refcount += 1;
604 }
605
606 /* If we are creating a shared library, and this is a reloc
607 against a global symbol, or a non PC relative reloc
608 against a local symbol, then we need to copy the reloc
609 into the shared library. However, if we are linking with
610 -Bsymbolic, we do not need to copy a reloc against a
611 global symbol which is defined in an object we are
612 including in the link (i.e., DEF_REGULAR is set). At
613 this point we have not seen all the input files, so it is
614 possible that DEF_REGULAR is not set now but will be set
615 later (it is never cleared). In case of a weak definition,
616 DEF_REGULAR may be cleared later by a strong definition in
617 a shared library. We account for that possibility below by
618 storing information in the relocs_copied field of the hash
619 table entry. A similar situation occurs when creating
620 shared libraries and symbol visibility changes render the
621 symbol local.
622
623 If on the other hand, we are creating an executable, we
624 may need to keep relocations for symbols satisfied by a
625 dynamic library if we manage to avoid copy relocs for the
626 symbol. */
627 if ((bfd_link_pic (info)
628 && (sec->flags & SEC_ALLOC) != 0
629 && (! riscv_elf_rtype_to_howto (r_type)->pc_relative
630 || (h != NULL
631 && (! info->symbolic
632 || h->root.type == bfd_link_hash_defweak
633 || !h->def_regular))))
634 || (!bfd_link_pic (info)
635 && (sec->flags & SEC_ALLOC) != 0
636 && h != NULL
637 && (h->root.type == bfd_link_hash_defweak
638 || !h->def_regular)))
639 {
640 struct elf_dyn_relocs *p;
641 struct elf_dyn_relocs **head;
642
643 /* When creating a shared object, we must copy these
644 relocs into the output file. We create a reloc
645 section in dynobj and make room for the reloc. */
646 if (sreloc == NULL)
647 {
648 sreloc = _bfd_elf_make_dynamic_reloc_section
649 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
650 abfd, /*rela?*/ TRUE);
651
652 if (sreloc == NULL)
653 return FALSE;
654 }
655
656 /* If this is a global symbol, we count the number of
657 relocations we need for this symbol. */
658 if (h != NULL)
659 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
660 else
661 {
662 /* Track dynamic relocs needed for local syms too.
663 We really need local syms available to do this
664 easily. Oh well. */
665
666 asection *s;
667 void *vpp;
668 Elf_Internal_Sym *isym;
669
670 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
671 abfd, r_symndx);
672 if (isym == NULL)
673 return FALSE;
674
675 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
676 if (s == NULL)
677 s = sec;
678
679 vpp = &elf_section_data (s)->local_dynrel;
680 head = (struct elf_dyn_relocs **) vpp;
681 }
682
683 p = *head;
684 if (p == NULL || p->sec != sec)
685 {
686 bfd_size_type amt = sizeof *p;
687 p = ((struct elf_dyn_relocs *)
688 bfd_alloc (htab->elf.dynobj, amt));
689 if (p == NULL)
690 return FALSE;
691 p->next = *head;
692 *head = p;
693 p->sec = sec;
694 p->count = 0;
695 p->pc_count = 0;
696 }
697
698 p->count += 1;
699 p->pc_count += riscv_elf_rtype_to_howto (r_type)->pc_relative;
700 }
701
702 break;
703
704 case R_RISCV_GNU_VTINHERIT:
705 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
706 return FALSE;
707 break;
708
709 case R_RISCV_GNU_VTENTRY:
710 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
711 return FALSE;
712 break;
713
714 default:
715 break;
716 }
717 }
718
719 return TRUE;
720 }
721
722 static asection *
723 riscv_elf_gc_mark_hook (asection *sec,
724 struct bfd_link_info *info,
725 Elf_Internal_Rela *rel,
726 struct elf_link_hash_entry *h,
727 Elf_Internal_Sym *sym)
728 {
729 if (h != NULL)
730 switch (ELFNN_R_TYPE (rel->r_info))
731 {
732 case R_RISCV_GNU_VTINHERIT:
733 case R_RISCV_GNU_VTENTRY:
734 return NULL;
735 }
736
737 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
738 }
739
740 /* Find dynamic relocs for H that apply to read-only sections. */
741
742 static asection *
743 readonly_dynrelocs (struct elf_link_hash_entry *h)
744 {
745 struct elf_dyn_relocs *p;
746
747 for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
748 {
749 asection *s = p->sec->output_section;
750
751 if (s != NULL && (s->flags & SEC_READONLY) != 0)
752 return p->sec;
753 }
754 return NULL;
755 }
756
757 /* Adjust a symbol defined by a dynamic object and referenced by a
758 regular object. The current definition is in some section of the
759 dynamic object, but we're not including those sections. We have to
760 change the definition to something the rest of the link can
761 understand. */
762
763 static bfd_boolean
764 riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
765 struct elf_link_hash_entry *h)
766 {
767 struct riscv_elf_link_hash_table *htab;
768 struct riscv_elf_link_hash_entry * eh;
769 bfd *dynobj;
770 asection *s, *srel;
771
772 htab = riscv_elf_hash_table (info);
773 BFD_ASSERT (htab != NULL);
774
775 dynobj = htab->elf.dynobj;
776
777 /* Make sure we know what is going on here. */
778 BFD_ASSERT (dynobj != NULL
779 && (h->needs_plt
780 || h->type == STT_GNU_IFUNC
781 || h->is_weakalias
782 || (h->def_dynamic
783 && h->ref_regular
784 && !h->def_regular)));
785
786 /* If this is a function, put it in the procedure linkage table. We
787 will fill in the contents of the procedure linkage table later
788 (although we could actually do it here). */
789 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
790 {
791 if (h->plt.refcount <= 0
792 || SYMBOL_CALLS_LOCAL (info, h)
793 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
794 && h->root.type == bfd_link_hash_undefweak))
795 {
796 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
797 input file, but the symbol was never referred to by a dynamic
798 object, or if all references were garbage collected. In such
799 a case, we don't actually need to build a PLT entry. */
800 h->plt.offset = (bfd_vma) -1;
801 h->needs_plt = 0;
802 }
803
804 return TRUE;
805 }
806 else
807 h->plt.offset = (bfd_vma) -1;
808
809 /* If this is a weak symbol, and there is a real definition, the
810 processor independent code will have arranged for us to see the
811 real definition first, and we can just use the same value. */
812 if (h->is_weakalias)
813 {
814 struct elf_link_hash_entry *def = weakdef (h);
815 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
816 h->root.u.def.section = def->root.u.def.section;
817 h->root.u.def.value = def->root.u.def.value;
818 return TRUE;
819 }
820
821 /* This is a reference to a symbol defined by a dynamic object which
822 is not a function. */
823
824 /* If we are creating a shared library, we must presume that the
825 only references to the symbol are via the global offset table.
826 For such cases we need not do anything here; the relocations will
827 be handled correctly by relocate_section. */
828 if (bfd_link_pic (info))
829 return TRUE;
830
831 /* If there are no references to this symbol that do not use the
832 GOT, we don't need to generate a copy reloc. */
833 if (!h->non_got_ref)
834 return TRUE;
835
836 /* If -z nocopyreloc was given, we won't generate them either. */
837 if (info->nocopyreloc)
838 {
839 h->non_got_ref = 0;
840 return TRUE;
841 }
842
843 /* If we don't find any dynamic relocs in read-only sections, then
844 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
845 if (!readonly_dynrelocs (h))
846 {
847 h->non_got_ref = 0;
848 return TRUE;
849 }
850
851 /* We must allocate the symbol in our .dynbss section, which will
852 become part of the .bss section of the executable. There will be
853 an entry for this symbol in the .dynsym section. The dynamic
854 object will contain position independent code, so all references
855 from the dynamic object to this symbol will go through the global
856 offset table. The dynamic linker will use the .dynsym entry to
857 determine the address it must put in the global offset table, so
858 both the dynamic object and the regular object will refer to the
859 same memory location for the variable. */
860
861 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
862 to copy the initial value out of the dynamic object and into the
863 runtime process image. We need to remember the offset into the
864 .rel.bss section we are going to use. */
865 eh = (struct riscv_elf_link_hash_entry *) h;
866 if (eh->tls_type & ~GOT_NORMAL)
867 {
868 s = htab->sdyntdata;
869 srel = htab->elf.srelbss;
870 }
871 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
872 {
873 s = htab->elf.sdynrelro;
874 srel = htab->elf.sreldynrelro;
875 }
876 else
877 {
878 s = htab->elf.sdynbss;
879 srel = htab->elf.srelbss;
880 }
881 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
882 {
883 srel->size += sizeof (ElfNN_External_Rela);
884 h->needs_copy = 1;
885 }
886
887 return _bfd_elf_adjust_dynamic_copy (info, h, s);
888 }
889
890 /* Allocate space in .plt, .got and associated reloc sections for
891 dynamic relocs. */
892
893 static bfd_boolean
894 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
895 {
896 struct bfd_link_info *info;
897 struct riscv_elf_link_hash_table *htab;
898 struct riscv_elf_link_hash_entry *eh;
899 struct elf_dyn_relocs *p;
900
901 if (h->root.type == bfd_link_hash_indirect)
902 return TRUE;
903
904 info = (struct bfd_link_info *) inf;
905 htab = riscv_elf_hash_table (info);
906 BFD_ASSERT (htab != NULL);
907
908 if (htab->elf.dynamic_sections_created
909 && h->plt.refcount > 0)
910 {
911 /* Make sure this symbol is output as a dynamic symbol.
912 Undefined weak syms won't yet be marked as dynamic. */
913 if (h->dynindx == -1
914 && !h->forced_local)
915 {
916 if (! bfd_elf_link_record_dynamic_symbol (info, h))
917 return FALSE;
918 }
919
920 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
921 {
922 asection *s = htab->elf.splt;
923
924 if (s->size == 0)
925 s->size = PLT_HEADER_SIZE;
926
927 h->plt.offset = s->size;
928
929 /* Make room for this entry. */
930 s->size += PLT_ENTRY_SIZE;
931
932 /* We also need to make an entry in the .got.plt section. */
933 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
934
935 /* We also need to make an entry in the .rela.plt section. */
936 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
937
938 /* If this symbol is not defined in a regular file, and we are
939 not generating a shared library, then set the symbol to this
940 location in the .plt. This is required to make function
941 pointers compare as equal between the normal executable and
942 the shared library. */
943 if (! bfd_link_pic (info)
944 && !h->def_regular)
945 {
946 h->root.u.def.section = s;
947 h->root.u.def.value = h->plt.offset;
948 }
949 }
950 else
951 {
952 h->plt.offset = (bfd_vma) -1;
953 h->needs_plt = 0;
954 }
955 }
956 else
957 {
958 h->plt.offset = (bfd_vma) -1;
959 h->needs_plt = 0;
960 }
961
962 if (h->got.refcount > 0)
963 {
964 asection *s;
965 bfd_boolean dyn;
966 int tls_type = riscv_elf_hash_entry (h)->tls_type;
967
968 /* Make sure this symbol is output as a dynamic symbol.
969 Undefined weak syms won't yet be marked as dynamic. */
970 if (h->dynindx == -1
971 && !h->forced_local)
972 {
973 if (! bfd_elf_link_record_dynamic_symbol (info, h))
974 return FALSE;
975 }
976
977 s = htab->elf.sgot;
978 h->got.offset = s->size;
979 dyn = htab->elf.dynamic_sections_created;
980 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
981 {
982 /* TLS_GD needs two dynamic relocs and two GOT slots. */
983 if (tls_type & GOT_TLS_GD)
984 {
985 s->size += 2 * RISCV_ELF_WORD_BYTES;
986 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
987 }
988
989 /* TLS_IE needs one dynamic reloc and one GOT slot. */
990 if (tls_type & GOT_TLS_IE)
991 {
992 s->size += RISCV_ELF_WORD_BYTES;
993 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
994 }
995 }
996 else
997 {
998 s->size += RISCV_ELF_WORD_BYTES;
999 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h))
1000 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1001 }
1002 }
1003 else
1004 h->got.offset = (bfd_vma) -1;
1005
1006 eh = (struct riscv_elf_link_hash_entry *) h;
1007 if (eh->dyn_relocs == NULL)
1008 return TRUE;
1009
1010 /* In the shared -Bsymbolic case, discard space allocated for
1011 dynamic pc-relative relocs against symbols which turn out to be
1012 defined in regular objects. For the normal shared case, discard
1013 space for pc-relative relocs that have become local due to symbol
1014 visibility changes. */
1015
1016 if (bfd_link_pic (info))
1017 {
1018 if (SYMBOL_CALLS_LOCAL (info, h))
1019 {
1020 struct elf_dyn_relocs **pp;
1021
1022 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1023 {
1024 p->count -= p->pc_count;
1025 p->pc_count = 0;
1026 if (p->count == 0)
1027 *pp = p->next;
1028 else
1029 pp = &p->next;
1030 }
1031 }
1032
1033 /* Also discard relocs on undefined weak syms with non-default
1034 visibility. */
1035 if (eh->dyn_relocs != NULL
1036 && h->root.type == bfd_link_hash_undefweak)
1037 {
1038 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1039 eh->dyn_relocs = NULL;
1040
1041 /* Make sure undefined weak symbols are output as a dynamic
1042 symbol in PIEs. */
1043 else if (h->dynindx == -1
1044 && !h->forced_local)
1045 {
1046 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1047 return FALSE;
1048 }
1049 }
1050 }
1051 else
1052 {
1053 /* For the non-shared case, discard space for relocs against
1054 symbols which turn out to need copy relocs or are not
1055 dynamic. */
1056
1057 if (!h->non_got_ref
1058 && ((h->def_dynamic
1059 && !h->def_regular)
1060 || (htab->elf.dynamic_sections_created
1061 && (h->root.type == bfd_link_hash_undefweak
1062 || h->root.type == bfd_link_hash_undefined))))
1063 {
1064 /* Make sure this symbol is output as a dynamic symbol.
1065 Undefined weak syms won't yet be marked as dynamic. */
1066 if (h->dynindx == -1
1067 && !h->forced_local)
1068 {
1069 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1070 return FALSE;
1071 }
1072
1073 /* If that succeeded, we know we'll be keeping all the
1074 relocs. */
1075 if (h->dynindx != -1)
1076 goto keep;
1077 }
1078
1079 eh->dyn_relocs = NULL;
1080
1081 keep: ;
1082 }
1083
1084 /* Finally, allocate space. */
1085 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1086 {
1087 asection *sreloc = elf_section_data (p->sec)->sreloc;
1088 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1089 }
1090
1091 return TRUE;
1092 }
1093
1094 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
1095 read-only sections. */
1096
1097 static bfd_boolean
1098 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
1099 {
1100 asection *sec;
1101
1102 if (h->root.type == bfd_link_hash_indirect)
1103 return TRUE;
1104
1105 sec = readonly_dynrelocs (h);
1106 if (sec != NULL)
1107 {
1108 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
1109
1110 info->flags |= DF_TEXTREL;
1111 info->callbacks->minfo
1112 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
1113 sec->owner, h->root.root.string, sec);
1114
1115 /* Not an error, just cut short the traversal. */
1116 return FALSE;
1117 }
1118 return TRUE;
1119 }
1120
1121 static bfd_boolean
1122 riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1123 {
1124 struct riscv_elf_link_hash_table *htab;
1125 bfd *dynobj;
1126 asection *s;
1127 bfd *ibfd;
1128
1129 htab = riscv_elf_hash_table (info);
1130 BFD_ASSERT (htab != NULL);
1131 dynobj = htab->elf.dynobj;
1132 BFD_ASSERT (dynobj != NULL);
1133
1134 if (elf_hash_table (info)->dynamic_sections_created)
1135 {
1136 /* Set the contents of the .interp section to the interpreter. */
1137 if (bfd_link_executable (info) && !info->nointerp)
1138 {
1139 s = bfd_get_linker_section (dynobj, ".interp");
1140 BFD_ASSERT (s != NULL);
1141 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1142 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1143 }
1144 }
1145
1146 /* Set up .got offsets for local syms, and space for local dynamic
1147 relocs. */
1148 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1149 {
1150 bfd_signed_vma *local_got;
1151 bfd_signed_vma *end_local_got;
1152 char *local_tls_type;
1153 bfd_size_type locsymcount;
1154 Elf_Internal_Shdr *symtab_hdr;
1155 asection *srel;
1156
1157 if (! is_riscv_elf (ibfd))
1158 continue;
1159
1160 for (s = ibfd->sections; s != NULL; s = s->next)
1161 {
1162 struct elf_dyn_relocs *p;
1163
1164 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1165 {
1166 if (!bfd_is_abs_section (p->sec)
1167 && bfd_is_abs_section (p->sec->output_section))
1168 {
1169 /* Input section has been discarded, either because
1170 it is a copy of a linkonce section or due to
1171 linker script /DISCARD/, so we'll be discarding
1172 the relocs too. */
1173 }
1174 else if (p->count != 0)
1175 {
1176 srel = elf_section_data (p->sec)->sreloc;
1177 srel->size += p->count * sizeof (ElfNN_External_Rela);
1178 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1179 info->flags |= DF_TEXTREL;
1180 }
1181 }
1182 }
1183
1184 local_got = elf_local_got_refcounts (ibfd);
1185 if (!local_got)
1186 continue;
1187
1188 symtab_hdr = &elf_symtab_hdr (ibfd);
1189 locsymcount = symtab_hdr->sh_info;
1190 end_local_got = local_got + locsymcount;
1191 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1192 s = htab->elf.sgot;
1193 srel = htab->elf.srelgot;
1194 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1195 {
1196 if (*local_got > 0)
1197 {
1198 *local_got = s->size;
1199 s->size += RISCV_ELF_WORD_BYTES;
1200 if (*local_tls_type & GOT_TLS_GD)
1201 s->size += RISCV_ELF_WORD_BYTES;
1202 if (bfd_link_pic (info)
1203 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1204 srel->size += sizeof (ElfNN_External_Rela);
1205 }
1206 else
1207 *local_got = (bfd_vma) -1;
1208 }
1209 }
1210
1211 /* Allocate global sym .plt and .got entries, and space for global
1212 sym dynamic relocs. */
1213 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1214
1215 if (htab->elf.sgotplt)
1216 {
1217 struct elf_link_hash_entry *got;
1218 got = elf_link_hash_lookup (elf_hash_table (info),
1219 "_GLOBAL_OFFSET_TABLE_",
1220 FALSE, FALSE, FALSE);
1221
1222 /* Don't allocate .got.plt section if there are no GOT nor PLT
1223 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1224 if ((got == NULL
1225 || !got->ref_regular_nonweak)
1226 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1227 && (htab->elf.splt == NULL
1228 || htab->elf.splt->size == 0)
1229 && (htab->elf.sgot == NULL
1230 || (htab->elf.sgot->size
1231 == get_elf_backend_data (output_bfd)->got_header_size)))
1232 htab->elf.sgotplt->size = 0;
1233 }
1234
1235 /* The check_relocs and adjust_dynamic_symbol entry points have
1236 determined the sizes of the various dynamic sections. Allocate
1237 memory for them. */
1238 for (s = dynobj->sections; s != NULL; s = s->next)
1239 {
1240 if ((s->flags & SEC_LINKER_CREATED) == 0)
1241 continue;
1242
1243 if (s == htab->elf.splt
1244 || s == htab->elf.sgot
1245 || s == htab->elf.sgotplt
1246 || s == htab->elf.sdynbss
1247 || s == htab->elf.sdynrelro)
1248 {
1249 /* Strip this section if we don't need it; see the
1250 comment below. */
1251 }
1252 else if (strncmp (s->name, ".rela", 5) == 0)
1253 {
1254 if (s->size != 0)
1255 {
1256 /* We use the reloc_count field as a counter if we need
1257 to copy relocs into the output file. */
1258 s->reloc_count = 0;
1259 }
1260 }
1261 else
1262 {
1263 /* It's not one of our sections. */
1264 continue;
1265 }
1266
1267 if (s->size == 0)
1268 {
1269 /* If we don't need this section, strip it from the
1270 output file. This is mostly to handle .rela.bss and
1271 .rela.plt. We must create both sections in
1272 create_dynamic_sections, because they must be created
1273 before the linker maps input sections to output
1274 sections. The linker does that before
1275 adjust_dynamic_symbol is called, and it is that
1276 function which decides whether anything needs to go
1277 into these sections. */
1278 s->flags |= SEC_EXCLUDE;
1279 continue;
1280 }
1281
1282 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1283 continue;
1284
1285 /* Allocate memory for the section contents. Zero the memory
1286 for the benefit of .rela.plt, which has 4 unused entries
1287 at the beginning, and we don't want garbage. */
1288 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1289 if (s->contents == NULL)
1290 return FALSE;
1291 }
1292
1293 if (elf_hash_table (info)->dynamic_sections_created)
1294 {
1295 /* Add some entries to the .dynamic section. We fill in the
1296 values later, in riscv_elf_finish_dynamic_sections, but we
1297 must add the entries now so that we get the correct size for
1298 the .dynamic section. The DT_DEBUG entry is filled in by the
1299 dynamic linker and used by the debugger. */
1300 #define add_dynamic_entry(TAG, VAL) \
1301 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1302
1303 if (bfd_link_executable (info))
1304 {
1305 if (!add_dynamic_entry (DT_DEBUG, 0))
1306 return FALSE;
1307 }
1308
1309 if (htab->elf.srelplt->size != 0)
1310 {
1311 if (!add_dynamic_entry (DT_PLTGOT, 0)
1312 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1313 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1314 || !add_dynamic_entry (DT_JMPREL, 0))
1315 return FALSE;
1316 }
1317
1318 if (!add_dynamic_entry (DT_RELA, 0)
1319 || !add_dynamic_entry (DT_RELASZ, 0)
1320 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1321 return FALSE;
1322
1323 /* If any dynamic relocs apply to a read-only section,
1324 then we need a DT_TEXTREL entry. */
1325 if ((info->flags & DF_TEXTREL) == 0)
1326 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
1327
1328 if (info->flags & DF_TEXTREL)
1329 {
1330 if (!add_dynamic_entry (DT_TEXTREL, 0))
1331 return FALSE;
1332 }
1333 }
1334 #undef add_dynamic_entry
1335
1336 return TRUE;
1337 }
1338
1339 #define TP_OFFSET 0
1340 #define DTP_OFFSET 0x800
1341
1342 /* Return the relocation value for a TLS dtp-relative reloc. */
1343
1344 static bfd_vma
1345 dtpoff (struct bfd_link_info *info, bfd_vma address)
1346 {
1347 /* If tls_sec is NULL, we should have signalled an error already. */
1348 if (elf_hash_table (info)->tls_sec == NULL)
1349 return 0;
1350 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1351 }
1352
1353 /* Return the relocation value for a static TLS tp-relative relocation. */
1354
1355 static bfd_vma
1356 tpoff (struct bfd_link_info *info, bfd_vma address)
1357 {
1358 /* If tls_sec is NULL, we should have signalled an error already. */
1359 if (elf_hash_table (info)->tls_sec == NULL)
1360 return 0;
1361 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1362 }
1363
1364 /* Return the global pointer's value, or 0 if it is not in use. */
1365
1366 static bfd_vma
1367 riscv_global_pointer_value (struct bfd_link_info *info)
1368 {
1369 struct bfd_link_hash_entry *h;
1370
1371 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
1372 if (h == NULL || h->type != bfd_link_hash_defined)
1373 return 0;
1374
1375 return h->u.def.value + sec_addr (h->u.def.section);
1376 }
1377
1378 /* Emplace a static relocation. */
1379
1380 static bfd_reloc_status_type
1381 perform_relocation (const reloc_howto_type *howto,
1382 const Elf_Internal_Rela *rel,
1383 bfd_vma value,
1384 asection *input_section,
1385 bfd *input_bfd,
1386 bfd_byte *contents)
1387 {
1388 if (howto->pc_relative)
1389 value -= sec_addr (input_section) + rel->r_offset;
1390 value += rel->r_addend;
1391
1392 switch (ELFNN_R_TYPE (rel->r_info))
1393 {
1394 case R_RISCV_HI20:
1395 case R_RISCV_TPREL_HI20:
1396 case R_RISCV_PCREL_HI20:
1397 case R_RISCV_GOT_HI20:
1398 case R_RISCV_TLS_GOT_HI20:
1399 case R_RISCV_TLS_GD_HI20:
1400 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1401 return bfd_reloc_overflow;
1402 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1403 break;
1404
1405 case R_RISCV_LO12_I:
1406 case R_RISCV_GPREL_I:
1407 case R_RISCV_TPREL_LO12_I:
1408 case R_RISCV_TPREL_I:
1409 case R_RISCV_PCREL_LO12_I:
1410 value = ENCODE_ITYPE_IMM (value);
1411 break;
1412
1413 case R_RISCV_LO12_S:
1414 case R_RISCV_GPREL_S:
1415 case R_RISCV_TPREL_LO12_S:
1416 case R_RISCV_TPREL_S:
1417 case R_RISCV_PCREL_LO12_S:
1418 value = ENCODE_STYPE_IMM (value);
1419 break;
1420
1421 case R_RISCV_CALL:
1422 case R_RISCV_CALL_PLT:
1423 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1424 return bfd_reloc_overflow;
1425 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1426 | (ENCODE_ITYPE_IMM (value) << 32);
1427 break;
1428
1429 case R_RISCV_JAL:
1430 if (!VALID_UJTYPE_IMM (value))
1431 return bfd_reloc_overflow;
1432 value = ENCODE_UJTYPE_IMM (value);
1433 break;
1434
1435 case R_RISCV_BRANCH:
1436 if (!VALID_SBTYPE_IMM (value))
1437 return bfd_reloc_overflow;
1438 value = ENCODE_SBTYPE_IMM (value);
1439 break;
1440
1441 case R_RISCV_RVC_BRANCH:
1442 if (!VALID_RVC_B_IMM (value))
1443 return bfd_reloc_overflow;
1444 value = ENCODE_RVC_B_IMM (value);
1445 break;
1446
1447 case R_RISCV_RVC_JUMP:
1448 if (!VALID_RVC_J_IMM (value))
1449 return bfd_reloc_overflow;
1450 value = ENCODE_RVC_J_IMM (value);
1451 break;
1452
1453 case R_RISCV_RVC_LUI:
1454 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1455 return bfd_reloc_overflow;
1456 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1457 break;
1458
1459 case R_RISCV_32:
1460 case R_RISCV_64:
1461 case R_RISCV_ADD8:
1462 case R_RISCV_ADD16:
1463 case R_RISCV_ADD32:
1464 case R_RISCV_ADD64:
1465 case R_RISCV_SUB6:
1466 case R_RISCV_SUB8:
1467 case R_RISCV_SUB16:
1468 case R_RISCV_SUB32:
1469 case R_RISCV_SUB64:
1470 case R_RISCV_SET6:
1471 case R_RISCV_SET8:
1472 case R_RISCV_SET16:
1473 case R_RISCV_SET32:
1474 case R_RISCV_32_PCREL:
1475 case R_RISCV_TLS_DTPREL32:
1476 case R_RISCV_TLS_DTPREL64:
1477 break;
1478
1479 case R_RISCV_DELETE:
1480 return bfd_reloc_ok;
1481
1482 default:
1483 return bfd_reloc_notsupported;
1484 }
1485
1486 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1487 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1488 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1489
1490 return bfd_reloc_ok;
1491 }
1492
1493 /* Remember all PC-relative high-part relocs we've encountered to help us
1494 later resolve the corresponding low-part relocs. */
1495
1496 typedef struct
1497 {
1498 bfd_vma address;
1499 bfd_vma value;
1500 } riscv_pcrel_hi_reloc;
1501
1502 typedef struct riscv_pcrel_lo_reloc
1503 {
1504 asection * input_section;
1505 struct bfd_link_info * info;
1506 reloc_howto_type * howto;
1507 const Elf_Internal_Rela * reloc;
1508 bfd_vma addr;
1509 const char * name;
1510 bfd_byte * contents;
1511 struct riscv_pcrel_lo_reloc * next;
1512 } riscv_pcrel_lo_reloc;
1513
1514 typedef struct
1515 {
1516 htab_t hi_relocs;
1517 riscv_pcrel_lo_reloc *lo_relocs;
1518 } riscv_pcrel_relocs;
1519
1520 static hashval_t
1521 riscv_pcrel_reloc_hash (const void *entry)
1522 {
1523 const riscv_pcrel_hi_reloc *e = entry;
1524 return (hashval_t)(e->address >> 2);
1525 }
1526
1527 static bfd_boolean
1528 riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1529 {
1530 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1531 return e1->address == e2->address;
1532 }
1533
1534 static bfd_boolean
1535 riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1536 {
1537
1538 p->lo_relocs = NULL;
1539 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1540 riscv_pcrel_reloc_eq, free);
1541 return p->hi_relocs != NULL;
1542 }
1543
1544 static void
1545 riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1546 {
1547 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1548
1549 while (cur != NULL)
1550 {
1551 riscv_pcrel_lo_reloc *next = cur->next;
1552 free (cur);
1553 cur = next;
1554 }
1555
1556 htab_delete (p->hi_relocs);
1557 }
1558
1559 static bfd_boolean
1560 riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1561 struct bfd_link_info *info,
1562 bfd_vma pc,
1563 bfd_vma addr,
1564 bfd_byte *contents,
1565 const reloc_howto_type *howto,
1566 bfd *input_bfd)
1567 {
1568 /* We may need to reference low addreses in PC-relative modes even when the
1569 * PC is far away from these addresses. For example, undefweak references
1570 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1571 * addresses that we can link PC-relative programs at, the linker can't
1572 * actually relocate references to those symbols. In order to allow these
1573 * programs to work we simply convert the PC-relative auipc sequences to
1574 * 0-relative lui sequences. */
1575 if (bfd_link_pic (info))
1576 return FALSE;
1577
1578 /* If it's possible to reference the symbol using auipc we do so, as that's
1579 * more in the spirit of the PC-relative relocations we're processing. */
1580 bfd_vma offset = addr - pc;
1581 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1582 return FALSE;
1583
1584 /* If it's impossible to reference this with a LUI-based offset then don't
1585 * bother to convert it at all so users still see the PC-relative relocation
1586 * in the truncation message. */
1587 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1588 return FALSE;
1589
1590 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20);
1591
1592 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset);
1593 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1594 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1595 return TRUE;
1596 }
1597
1598 static bfd_boolean
1599 riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1600 bfd_vma value, bfd_boolean absolute)
1601 {
1602 bfd_vma offset = absolute ? value : value - addr;
1603 riscv_pcrel_hi_reloc entry = {addr, offset};
1604 riscv_pcrel_hi_reloc **slot =
1605 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1606
1607 BFD_ASSERT (*slot == NULL);
1608 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1609 if (*slot == NULL)
1610 return FALSE;
1611 **slot = entry;
1612 return TRUE;
1613 }
1614
1615 static bfd_boolean
1616 riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1617 asection *input_section,
1618 struct bfd_link_info *info,
1619 reloc_howto_type *howto,
1620 const Elf_Internal_Rela *reloc,
1621 bfd_vma addr,
1622 const char *name,
1623 bfd_byte *contents)
1624 {
1625 riscv_pcrel_lo_reloc *entry;
1626 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1627 if (entry == NULL)
1628 return FALSE;
1629 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1630 name, contents, p->lo_relocs};
1631 p->lo_relocs = entry;
1632 return TRUE;
1633 }
1634
1635 static bfd_boolean
1636 riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1637 {
1638 riscv_pcrel_lo_reloc *r;
1639
1640 for (r = p->lo_relocs; r != NULL; r = r->next)
1641 {
1642 bfd *input_bfd = r->input_section->owner;
1643
1644 riscv_pcrel_hi_reloc search = {r->addr, 0};
1645 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
1646 if (entry == NULL)
1647 {
1648 ((*r->info->callbacks->reloc_overflow)
1649 (r->info, NULL, r->name, r->howto->name, (bfd_vma) 0,
1650 input_bfd, r->input_section, r->reloc->r_offset));
1651 return TRUE;
1652 }
1653
1654 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1655 input_bfd, r->contents);
1656 }
1657
1658 return TRUE;
1659 }
1660
1661 /* Relocate a RISC-V ELF section.
1662
1663 The RELOCATE_SECTION function is called by the new ELF backend linker
1664 to handle the relocations for a section.
1665
1666 The relocs are always passed as Rela structures.
1667
1668 This function is responsible for adjusting the section contents as
1669 necessary, and (if generating a relocatable output file) adjusting
1670 the reloc addend as necessary.
1671
1672 This function does not have to worry about setting the reloc
1673 address or the reloc symbol index.
1674
1675 LOCAL_SYMS is a pointer to the swapped in local symbols.
1676
1677 LOCAL_SECTIONS is an array giving the section in the input file
1678 corresponding to the st_shndx field of each local symbol.
1679
1680 The global hash table entry for the global symbols can be found
1681 via elf_sym_hashes (input_bfd).
1682
1683 When generating relocatable output, this function must handle
1684 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1685 going to be the section symbol corresponding to the output
1686 section, which means that the addend must be adjusted
1687 accordingly. */
1688
1689 static bfd_boolean
1690 riscv_elf_relocate_section (bfd *output_bfd,
1691 struct bfd_link_info *info,
1692 bfd *input_bfd,
1693 asection *input_section,
1694 bfd_byte *contents,
1695 Elf_Internal_Rela *relocs,
1696 Elf_Internal_Sym *local_syms,
1697 asection **local_sections)
1698 {
1699 Elf_Internal_Rela *rel;
1700 Elf_Internal_Rela *relend;
1701 riscv_pcrel_relocs pcrel_relocs;
1702 bfd_boolean ret = FALSE;
1703 asection *sreloc = elf_section_data (input_section)->sreloc;
1704 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1705 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1706 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1707 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
1708 bfd_boolean absolute;
1709
1710 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1711 return FALSE;
1712
1713 relend = relocs + input_section->reloc_count;
1714 for (rel = relocs; rel < relend; rel++)
1715 {
1716 unsigned long r_symndx;
1717 struct elf_link_hash_entry *h;
1718 Elf_Internal_Sym *sym;
1719 asection *sec;
1720 bfd_vma relocation;
1721 bfd_reloc_status_type r = bfd_reloc_ok;
1722 const char *name;
1723 bfd_vma off, ie_off;
1724 bfd_boolean unresolved_reloc, is_ie = FALSE;
1725 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1726 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
1727 reloc_howto_type *howto = riscv_elf_rtype_to_howto (r_type);
1728 const char *msg = NULL;
1729
1730 if (r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
1731 continue;
1732
1733 /* This is a final link. */
1734 r_symndx = ELFNN_R_SYM (rel->r_info);
1735 h = NULL;
1736 sym = NULL;
1737 sec = NULL;
1738 unresolved_reloc = FALSE;
1739 if (r_symndx < symtab_hdr->sh_info)
1740 {
1741 sym = local_syms + r_symndx;
1742 sec = local_sections[r_symndx];
1743 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1744 }
1745 else
1746 {
1747 bfd_boolean warned, ignored;
1748
1749 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1750 r_symndx, symtab_hdr, sym_hashes,
1751 h, sec, relocation,
1752 unresolved_reloc, warned, ignored);
1753 if (warned)
1754 {
1755 /* To avoid generating warning messages about truncated
1756 relocations, set the relocation's address to be the same as
1757 the start of this section. */
1758 if (input_section->output_section != NULL)
1759 relocation = input_section->output_section->vma;
1760 else
1761 relocation = 0;
1762 }
1763 }
1764
1765 if (sec != NULL && discarded_section (sec))
1766 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1767 rel, 1, relend, howto, 0, contents);
1768
1769 if (bfd_link_relocatable (info))
1770 continue;
1771
1772 if (h != NULL)
1773 name = h->root.root.string;
1774 else
1775 {
1776 name = (bfd_elf_string_from_elf_section
1777 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1778 if (name == NULL || *name == '\0')
1779 name = bfd_section_name (input_bfd, sec);
1780 }
1781
1782 switch (r_type)
1783 {
1784 case R_RISCV_NONE:
1785 case R_RISCV_RELAX:
1786 case R_RISCV_TPREL_ADD:
1787 case R_RISCV_COPY:
1788 case R_RISCV_JUMP_SLOT:
1789 case R_RISCV_RELATIVE:
1790 /* These require nothing of us at all. */
1791 continue;
1792
1793 case R_RISCV_HI20:
1794 case R_RISCV_BRANCH:
1795 case R_RISCV_RVC_BRANCH:
1796 case R_RISCV_RVC_LUI:
1797 case R_RISCV_LO12_I:
1798 case R_RISCV_LO12_S:
1799 case R_RISCV_SET6:
1800 case R_RISCV_SET8:
1801 case R_RISCV_SET16:
1802 case R_RISCV_SET32:
1803 case R_RISCV_32_PCREL:
1804 case R_RISCV_DELETE:
1805 /* These require no special handling beyond perform_relocation. */
1806 break;
1807
1808 case R_RISCV_GOT_HI20:
1809 if (h != NULL)
1810 {
1811 bfd_boolean dyn, pic;
1812
1813 off = h->got.offset;
1814 BFD_ASSERT (off != (bfd_vma) -1);
1815 dyn = elf_hash_table (info)->dynamic_sections_created;
1816 pic = bfd_link_pic (info);
1817
1818 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1819 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1820 {
1821 /* This is actually a static link, or it is a
1822 -Bsymbolic link and the symbol is defined
1823 locally, or the symbol was forced to be local
1824 because of a version file. We must initialize
1825 this entry in the global offset table. Since the
1826 offset must always be a multiple of the word size,
1827 we use the least significant bit to record whether
1828 we have initialized it already.
1829
1830 When doing a dynamic link, we create a .rela.got
1831 relocation entry to initialize the value. This
1832 is done in the finish_dynamic_symbol routine. */
1833 if ((off & 1) != 0)
1834 off &= ~1;
1835 else
1836 {
1837 bfd_put_NN (output_bfd, relocation,
1838 htab->elf.sgot->contents + off);
1839 h->got.offset |= 1;
1840 }
1841 }
1842 else
1843 unresolved_reloc = FALSE;
1844 }
1845 else
1846 {
1847 BFD_ASSERT (local_got_offsets != NULL
1848 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1849
1850 off = local_got_offsets[r_symndx];
1851
1852 /* The offset must always be a multiple of the word size.
1853 So, we can use the least significant bit to record
1854 whether we have already processed this entry. */
1855 if ((off & 1) != 0)
1856 off &= ~1;
1857 else
1858 {
1859 if (bfd_link_pic (info))
1860 {
1861 asection *s;
1862 Elf_Internal_Rela outrel;
1863
1864 /* We need to generate a R_RISCV_RELATIVE reloc
1865 for the dynamic linker. */
1866 s = htab->elf.srelgot;
1867 BFD_ASSERT (s != NULL);
1868
1869 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1870 outrel.r_info =
1871 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1872 outrel.r_addend = relocation;
1873 relocation = 0;
1874 riscv_elf_append_rela (output_bfd, s, &outrel);
1875 }
1876
1877 bfd_put_NN (output_bfd, relocation,
1878 htab->elf.sgot->contents + off);
1879 local_got_offsets[r_symndx] |= 1;
1880 }
1881 }
1882 relocation = sec_addr (htab->elf.sgot) + off;
1883 absolute = riscv_zero_pcrel_hi_reloc (rel,
1884 info,
1885 pc,
1886 relocation,
1887 contents,
1888 howto,
1889 input_bfd);
1890 r_type = ELFNN_R_TYPE (rel->r_info);
1891 howto = riscv_elf_rtype_to_howto (r_type);
1892 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1893 relocation, absolute))
1894 r = bfd_reloc_overflow;
1895 break;
1896
1897 case R_RISCV_ADD8:
1898 case R_RISCV_ADD16:
1899 case R_RISCV_ADD32:
1900 case R_RISCV_ADD64:
1901 {
1902 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1903 contents + rel->r_offset);
1904 relocation = old_value + relocation;
1905 }
1906 break;
1907
1908 case R_RISCV_SUB6:
1909 case R_RISCV_SUB8:
1910 case R_RISCV_SUB16:
1911 case R_RISCV_SUB32:
1912 case R_RISCV_SUB64:
1913 {
1914 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1915 contents + rel->r_offset);
1916 relocation = old_value - relocation;
1917 }
1918 break;
1919
1920 case R_RISCV_CALL_PLT:
1921 case R_RISCV_CALL:
1922 case R_RISCV_JAL:
1923 case R_RISCV_RVC_JUMP:
1924 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
1925 {
1926 /* Refer to the PLT entry. */
1927 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
1928 unresolved_reloc = FALSE;
1929 }
1930 break;
1931
1932 case R_RISCV_TPREL_HI20:
1933 relocation = tpoff (info, relocation);
1934 break;
1935
1936 case R_RISCV_TPREL_LO12_I:
1937 case R_RISCV_TPREL_LO12_S:
1938 relocation = tpoff (info, relocation);
1939 break;
1940
1941 case R_RISCV_TPREL_I:
1942 case R_RISCV_TPREL_S:
1943 relocation = tpoff (info, relocation);
1944 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
1945 {
1946 /* We can use tp as the base register. */
1947 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
1948 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1949 insn |= X_TP << OP_SH_RS1;
1950 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
1951 }
1952 else
1953 r = bfd_reloc_overflow;
1954 break;
1955
1956 case R_RISCV_GPREL_I:
1957 case R_RISCV_GPREL_S:
1958 {
1959 bfd_vma gp = riscv_global_pointer_value (info);
1960 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
1961 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
1962 {
1963 /* We can use x0 or gp as the base register. */
1964 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
1965 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1966 if (!x0_base)
1967 {
1968 rel->r_addend -= gp;
1969 insn |= X_GP << OP_SH_RS1;
1970 }
1971 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
1972 }
1973 else
1974 r = bfd_reloc_overflow;
1975 break;
1976 }
1977
1978 case R_RISCV_PCREL_HI20:
1979 absolute = riscv_zero_pcrel_hi_reloc (rel,
1980 info,
1981 pc,
1982 relocation,
1983 contents,
1984 howto,
1985 input_bfd);
1986 r_type = ELFNN_R_TYPE (rel->r_info);
1987 howto = riscv_elf_rtype_to_howto (r_type);
1988 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1989 relocation + rel->r_addend,
1990 absolute))
1991 r = bfd_reloc_overflow;
1992 break;
1993
1994 case R_RISCV_PCREL_LO12_I:
1995 case R_RISCV_PCREL_LO12_S:
1996 /* Addends are not allowed, because then riscv_relax_delete_bytes
1997 would have to search through all relocs to update the addends.
1998 Also, riscv_resolve_pcrel_lo_relocs does not support addends
1999 when searching for a matching hi reloc. */
2000 if (rel->r_addend)
2001 {
2002 r = bfd_reloc_dangerous;
2003 break;
2004 }
2005
2006 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
2007 howto, rel, relocation, name,
2008 contents))
2009 continue;
2010 r = bfd_reloc_overflow;
2011 break;
2012
2013 case R_RISCV_TLS_DTPREL32:
2014 case R_RISCV_TLS_DTPREL64:
2015 relocation = dtpoff (info, relocation);
2016 break;
2017
2018 case R_RISCV_32:
2019 case R_RISCV_64:
2020 if ((input_section->flags & SEC_ALLOC) == 0)
2021 break;
2022
2023 if ((bfd_link_pic (info)
2024 && (h == NULL
2025 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2026 || h->root.type != bfd_link_hash_undefweak)
2027 && (! howto->pc_relative
2028 || !SYMBOL_CALLS_LOCAL (info, h)))
2029 || (!bfd_link_pic (info)
2030 && h != NULL
2031 && h->dynindx != -1
2032 && !h->non_got_ref
2033 && ((h->def_dynamic
2034 && !h->def_regular)
2035 || h->root.type == bfd_link_hash_undefweak
2036 || h->root.type == bfd_link_hash_undefined)))
2037 {
2038 Elf_Internal_Rela outrel;
2039 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2040
2041 /* When generating a shared object, these relocations
2042 are copied into the output file to be resolved at run
2043 time. */
2044
2045 outrel.r_offset =
2046 _bfd_elf_section_offset (output_bfd, info, input_section,
2047 rel->r_offset);
2048 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2049 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2050 outrel.r_offset += sec_addr (input_section);
2051
2052 if (skip_dynamic_relocation)
2053 memset (&outrel, 0, sizeof outrel);
2054 else if (h != NULL && h->dynindx != -1
2055 && !(bfd_link_pic (info)
2056 && SYMBOLIC_BIND (info, h)
2057 && h->def_regular))
2058 {
2059 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2060 outrel.r_addend = rel->r_addend;
2061 }
2062 else
2063 {
2064 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2065 outrel.r_addend = relocation + rel->r_addend;
2066 }
2067
2068 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2069 if (skip_static_relocation)
2070 continue;
2071 }
2072 break;
2073
2074 case R_RISCV_TLS_GOT_HI20:
2075 is_ie = TRUE;
2076 /* Fall through. */
2077
2078 case R_RISCV_TLS_GD_HI20:
2079 if (h != NULL)
2080 {
2081 off = h->got.offset;
2082 h->got.offset |= 1;
2083 }
2084 else
2085 {
2086 off = local_got_offsets[r_symndx];
2087 local_got_offsets[r_symndx] |= 1;
2088 }
2089
2090 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2091 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2092 /* If this symbol is referenced by both GD and IE TLS, the IE
2093 reference's GOT slot follows the GD reference's slots. */
2094 ie_off = 0;
2095 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2096 ie_off = 2 * GOT_ENTRY_SIZE;
2097
2098 if ((off & 1) != 0)
2099 off &= ~1;
2100 else
2101 {
2102 Elf_Internal_Rela outrel;
2103 int indx = 0;
2104 bfd_boolean need_relocs = FALSE;
2105
2106 if (htab->elf.srelgot == NULL)
2107 abort ();
2108
2109 if (h != NULL)
2110 {
2111 bfd_boolean dyn, pic;
2112 dyn = htab->elf.dynamic_sections_created;
2113 pic = bfd_link_pic (info);
2114
2115 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2116 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118 }
2119
2120 /* The GOT entries have not been initialized yet. Do it
2121 now, and emit any relocations. */
2122 if ((bfd_link_pic (info) || indx != 0)
2123 && (h == NULL
2124 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2125 || h->root.type != bfd_link_hash_undefweak))
2126 need_relocs = TRUE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 if (need_relocs)
2131 {
2132 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2133 outrel.r_addend = 0;
2134 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2135 bfd_put_NN (output_bfd, 0,
2136 htab->elf.sgot->contents + off);
2137 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2138 if (indx == 0)
2139 {
2140 BFD_ASSERT (! unresolved_reloc);
2141 bfd_put_NN (output_bfd,
2142 dtpoff (info, relocation),
2143 (htab->elf.sgot->contents + off +
2144 RISCV_ELF_WORD_BYTES));
2145 }
2146 else
2147 {
2148 bfd_put_NN (output_bfd, 0,
2149 (htab->elf.sgot->contents + off +
2150 RISCV_ELF_WORD_BYTES));
2151 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2152 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2153 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2154 }
2155 }
2156 else
2157 {
2158 /* If we are not emitting relocations for a
2159 general dynamic reference, then we must be in a
2160 static link or an executable link with the
2161 symbol binding locally. Mark it as belonging
2162 to module 1, the executable. */
2163 bfd_put_NN (output_bfd, 1,
2164 htab->elf.sgot->contents + off);
2165 bfd_put_NN (output_bfd,
2166 dtpoff (info, relocation),
2167 (htab->elf.sgot->contents + off +
2168 RISCV_ELF_WORD_BYTES));
2169 }
2170 }
2171
2172 if (tls_type & GOT_TLS_IE)
2173 {
2174 if (need_relocs)
2175 {
2176 bfd_put_NN (output_bfd, 0,
2177 htab->elf.sgot->contents + off + ie_off);
2178 outrel.r_offset = sec_addr (htab->elf.sgot)
2179 + off + ie_off;
2180 outrel.r_addend = 0;
2181 if (indx == 0)
2182 outrel.r_addend = tpoff (info, relocation);
2183 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2184 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2185 }
2186 else
2187 {
2188 bfd_put_NN (output_bfd, tpoff (info, relocation),
2189 htab->elf.sgot->contents + off + ie_off);
2190 }
2191 }
2192 }
2193
2194 BFD_ASSERT (off < (bfd_vma) -2);
2195 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
2196 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2197 relocation, FALSE))
2198 r = bfd_reloc_overflow;
2199 unresolved_reloc = FALSE;
2200 break;
2201
2202 default:
2203 r = bfd_reloc_notsupported;
2204 }
2205
2206 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2207 because such sections are not SEC_ALLOC and thus ld.so will
2208 not process them. */
2209 if (unresolved_reloc
2210 && !((input_section->flags & SEC_DEBUGGING) != 0
2211 && h->def_dynamic)
2212 && _bfd_elf_section_offset (output_bfd, info, input_section,
2213 rel->r_offset) != (bfd_vma) -1)
2214 {
2215 (*_bfd_error_handler)
2216 (_("%pB(%pA+%#Lx): unresolvable %s relocation against symbol `%s'"),
2217 input_bfd,
2218 input_section,
2219 rel->r_offset,
2220 howto->name,
2221 h->root.root.string);
2222 continue;
2223 }
2224
2225 if (r == bfd_reloc_ok)
2226 r = perform_relocation (howto, rel, relocation, input_section,
2227 input_bfd, contents);
2228
2229 switch (r)
2230 {
2231 case bfd_reloc_ok:
2232 continue;
2233
2234 case bfd_reloc_overflow:
2235 info->callbacks->reloc_overflow
2236 (info, (h ? &h->root : NULL), name, howto->name,
2237 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2238 break;
2239
2240 case bfd_reloc_undefined:
2241 info->callbacks->undefined_symbol
2242 (info, name, input_bfd, input_section, rel->r_offset,
2243 TRUE);
2244 break;
2245
2246 case bfd_reloc_outofrange:
2247 msg = _("%X%P: internal error: out of range error\n");
2248 break;
2249
2250 case bfd_reloc_notsupported:
2251 msg = _("%X%P: internal error: unsupported relocation error\n");
2252 break;
2253
2254 case bfd_reloc_dangerous:
2255 info->callbacks->reloc_dangerous
2256 (info, "%pcrel_lo with addend", input_bfd, input_section,
2257 rel->r_offset);
2258 break;
2259
2260 default:
2261 msg = _("%X%P: internal error: unknown error\n");
2262 break;
2263 }
2264
2265 if (msg)
2266 info->callbacks->einfo (msg);
2267
2268 /* We already reported the error via a callback, so don't try to report
2269 it again by returning false. That leads to spurious errors. */
2270 ret = TRUE;
2271 goto out;
2272 }
2273
2274 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2275 out:
2276 riscv_free_pcrel_relocs (&pcrel_relocs);
2277 return ret;
2278 }
2279
2280 /* Finish up dynamic symbol handling. We set the contents of various
2281 dynamic sections here. */
2282
2283 static bfd_boolean
2284 riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2285 struct bfd_link_info *info,
2286 struct elf_link_hash_entry *h,
2287 Elf_Internal_Sym *sym)
2288 {
2289 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2290 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2291
2292 if (h->plt.offset != (bfd_vma) -1)
2293 {
2294 /* We've decided to create a PLT entry for this symbol. */
2295 bfd_byte *loc;
2296 bfd_vma i, header_address, plt_idx, got_address;
2297 uint32_t plt_entry[PLT_ENTRY_INSNS];
2298 Elf_Internal_Rela rela;
2299
2300 BFD_ASSERT (h->dynindx != -1);
2301
2302 /* Calculate the address of the PLT header. */
2303 header_address = sec_addr (htab->elf.splt);
2304
2305 /* Calculate the index of the entry. */
2306 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2307
2308 /* Calculate the address of the .got.plt entry. */
2309 got_address = riscv_elf_got_plt_val (plt_idx, info);
2310
2311 /* Find out where the .plt entry should go. */
2312 loc = htab->elf.splt->contents + h->plt.offset;
2313
2314 /* Fill in the PLT entry itself. */
2315 riscv_make_plt_entry (got_address, header_address + h->plt.offset,
2316 plt_entry);
2317 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2318 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2319
2320 /* Fill in the initial value of the .got.plt entry. */
2321 loc = htab->elf.sgotplt->contents
2322 + (got_address - sec_addr (htab->elf.sgotplt));
2323 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2324
2325 /* Fill in the entry in the .rela.plt section. */
2326 rela.r_offset = got_address;
2327 rela.r_addend = 0;
2328 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2329
2330 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2331 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2332
2333 if (!h->def_regular)
2334 {
2335 /* Mark the symbol as undefined, rather than as defined in
2336 the .plt section. Leave the value alone. */
2337 sym->st_shndx = SHN_UNDEF;
2338 /* If the symbol is weak, we do need to clear the value.
2339 Otherwise, the PLT entry would provide a definition for
2340 the symbol even if the symbol wasn't defined anywhere,
2341 and so the symbol would never be NULL. */
2342 if (!h->ref_regular_nonweak)
2343 sym->st_value = 0;
2344 }
2345 }
2346
2347 if (h->got.offset != (bfd_vma) -1
2348 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
2349 {
2350 asection *sgot;
2351 asection *srela;
2352 Elf_Internal_Rela rela;
2353
2354 /* This symbol has an entry in the GOT. Set it up. */
2355
2356 sgot = htab->elf.sgot;
2357 srela = htab->elf.srelgot;
2358 BFD_ASSERT (sgot != NULL && srela != NULL);
2359
2360 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2361
2362 /* If this is a -Bsymbolic link, and the symbol is defined
2363 locally, we just want to emit a RELATIVE reloc. Likewise if
2364 the symbol was forced to be local because of a version file.
2365 The entry in the global offset table will already have been
2366 initialized in the relocate_section function. */
2367 if (bfd_link_pic (info)
2368 && (info->symbolic || h->dynindx == -1)
2369 && h->def_regular)
2370 {
2371 asection *sec = h->root.u.def.section;
2372 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2373 rela.r_addend = (h->root.u.def.value
2374 + sec->output_section->vma
2375 + sec->output_offset);
2376 }
2377 else
2378 {
2379 BFD_ASSERT (h->dynindx != -1);
2380 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2381 rela.r_addend = 0;
2382 }
2383
2384 bfd_put_NN (output_bfd, 0,
2385 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2386 riscv_elf_append_rela (output_bfd, srela, &rela);
2387 }
2388
2389 if (h->needs_copy)
2390 {
2391 Elf_Internal_Rela rela;
2392 asection *s;
2393
2394 /* This symbols needs a copy reloc. Set it up. */
2395 BFD_ASSERT (h->dynindx != -1);
2396
2397 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2398 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2399 rela.r_addend = 0;
2400 if (h->root.u.def.section == htab->elf.sdynrelro)
2401 s = htab->elf.sreldynrelro;
2402 else
2403 s = htab->elf.srelbss;
2404 riscv_elf_append_rela (output_bfd, s, &rela);
2405 }
2406
2407 /* Mark some specially defined symbols as absolute. */
2408 if (h == htab->elf.hdynamic
2409 || (h == htab->elf.hgot || h == htab->elf.hplt))
2410 sym->st_shndx = SHN_ABS;
2411
2412 return TRUE;
2413 }
2414
2415 /* Finish up the dynamic sections. */
2416
2417 static bfd_boolean
2418 riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2419 bfd *dynobj, asection *sdyn)
2420 {
2421 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2422 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2423 size_t dynsize = bed->s->sizeof_dyn;
2424 bfd_byte *dyncon, *dynconend;
2425
2426 dynconend = sdyn->contents + sdyn->size;
2427 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2428 {
2429 Elf_Internal_Dyn dyn;
2430 asection *s;
2431
2432 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2433
2434 switch (dyn.d_tag)
2435 {
2436 case DT_PLTGOT:
2437 s = htab->elf.sgotplt;
2438 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2439 break;
2440 case DT_JMPREL:
2441 s = htab->elf.srelplt;
2442 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2443 break;
2444 case DT_PLTRELSZ:
2445 s = htab->elf.srelplt;
2446 dyn.d_un.d_val = s->size;
2447 break;
2448 default:
2449 continue;
2450 }
2451
2452 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2453 }
2454 return TRUE;
2455 }
2456
2457 static bfd_boolean
2458 riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2459 struct bfd_link_info *info)
2460 {
2461 bfd *dynobj;
2462 asection *sdyn;
2463 struct riscv_elf_link_hash_table *htab;
2464
2465 htab = riscv_elf_hash_table (info);
2466 BFD_ASSERT (htab != NULL);
2467 dynobj = htab->elf.dynobj;
2468
2469 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2470
2471 if (elf_hash_table (info)->dynamic_sections_created)
2472 {
2473 asection *splt;
2474 bfd_boolean ret;
2475
2476 splt = htab->elf.splt;
2477 BFD_ASSERT (splt != NULL && sdyn != NULL);
2478
2479 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2480
2481 if (!ret)
2482 return ret;
2483
2484 /* Fill in the head and tail entries in the procedure linkage table. */
2485 if (splt->size > 0)
2486 {
2487 int i;
2488 uint32_t plt_header[PLT_HEADER_INSNS];
2489 riscv_make_plt_header (sec_addr (htab->elf.sgotplt),
2490 sec_addr (splt), plt_header);
2491
2492 for (i = 0; i < PLT_HEADER_INSNS; i++)
2493 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
2494
2495 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2496 = PLT_ENTRY_SIZE;
2497 }
2498 }
2499
2500 if (htab->elf.sgotplt)
2501 {
2502 asection *output_section = htab->elf.sgotplt->output_section;
2503
2504 if (bfd_is_abs_section (output_section))
2505 {
2506 (*_bfd_error_handler)
2507 (_("discarded output section: `%pA'"), htab->elf.sgotplt);
2508 return FALSE;
2509 }
2510
2511 if (htab->elf.sgotplt->size > 0)
2512 {
2513 /* Write the first two entries in .got.plt, needed for the dynamic
2514 linker. */
2515 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2516 bfd_put_NN (output_bfd, (bfd_vma) 0,
2517 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2518 }
2519
2520 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2521 }
2522
2523 if (htab->elf.sgot)
2524 {
2525 asection *output_section = htab->elf.sgot->output_section;
2526
2527 if (htab->elf.sgot->size > 0)
2528 {
2529 /* Set the first entry in the global offset table to the address of
2530 the dynamic section. */
2531 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2532 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2533 }
2534
2535 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2536 }
2537
2538 return TRUE;
2539 }
2540
2541 /* Return address for Ith PLT stub in section PLT, for relocation REL
2542 or (bfd_vma) -1 if it should not be included. */
2543
2544 static bfd_vma
2545 riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2546 const arelent *rel ATTRIBUTE_UNUSED)
2547 {
2548 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2549 }
2550
2551 static enum elf_reloc_type_class
2552 riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2553 const asection *rel_sec ATTRIBUTE_UNUSED,
2554 const Elf_Internal_Rela *rela)
2555 {
2556 switch (ELFNN_R_TYPE (rela->r_info))
2557 {
2558 case R_RISCV_RELATIVE:
2559 return reloc_class_relative;
2560 case R_RISCV_JUMP_SLOT:
2561 return reloc_class_plt;
2562 case R_RISCV_COPY:
2563 return reloc_class_copy;
2564 default:
2565 return reloc_class_normal;
2566 }
2567 }
2568
2569 /* Merge backend specific data from an object file to the output
2570 object file when linking. */
2571
2572 static bfd_boolean
2573 _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
2574 {
2575 bfd *obfd = info->output_bfd;
2576 flagword new_flags = elf_elfheader (ibfd)->e_flags;
2577 flagword old_flags = elf_elfheader (obfd)->e_flags;
2578
2579 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
2580 return TRUE;
2581
2582 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
2583 {
2584 (*_bfd_error_handler)
2585 (_("%pB: ABI is incompatible with that of the selected emulation:\n"
2586 " target emulation `%s' does not match `%s'"),
2587 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
2588 return FALSE;
2589 }
2590
2591 if (!_bfd_elf_merge_object_attributes (ibfd, info))
2592 return FALSE;
2593
2594 if (! elf_flags_init (obfd))
2595 {
2596 elf_flags_init (obfd) = TRUE;
2597 elf_elfheader (obfd)->e_flags = new_flags;
2598 return TRUE;
2599 }
2600
2601 /* Disallow linking different float ABIs. */
2602 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
2603 {
2604 (*_bfd_error_handler)
2605 (_("%pB: can't link hard-float modules with soft-float modules"), ibfd);
2606 goto fail;
2607 }
2608
2609 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
2610 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
2611
2612 return TRUE;
2613
2614 fail:
2615 bfd_set_error (bfd_error_bad_value);
2616 return FALSE;
2617 }
2618
2619 /* Delete some bytes from a section while relaxing. */
2620
2621 static bfd_boolean
2622 riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count,
2623 struct bfd_link_info *link_info)
2624 {
2625 unsigned int i, symcount;
2626 bfd_vma toaddr = sec->size;
2627 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
2628 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2629 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2630 struct bfd_elf_section_data *data = elf_section_data (sec);
2631 bfd_byte *contents = data->this_hdr.contents;
2632
2633 /* Actually delete the bytes. */
2634 sec->size -= count;
2635 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
2636
2637 /* Adjust the location of all of the relocs. Note that we need not
2638 adjust the addends, since all PC-relative references must be against
2639 symbols, which we will adjust below. */
2640 for (i = 0; i < sec->reloc_count; i++)
2641 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
2642 data->relocs[i].r_offset -= count;
2643
2644 /* Adjust the local symbols defined in this section. */
2645 for (i = 0; i < symtab_hdr->sh_info; i++)
2646 {
2647 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
2648 if (sym->st_shndx == sec_shndx)
2649 {
2650 /* If the symbol is in the range of memory we just moved, we
2651 have to adjust its value. */
2652 if (sym->st_value > addr && sym->st_value <= toaddr)
2653 sym->st_value -= count;
2654
2655 /* If the symbol *spans* the bytes we just deleted (i.e. its
2656 *end* is in the moved bytes but its *start* isn't), then we
2657 must adjust its size. */
2658 if (sym->st_value <= addr
2659 && sym->st_value + sym->st_size > addr
2660 && sym->st_value + sym->st_size <= toaddr)
2661 sym->st_size -= count;
2662 }
2663 }
2664
2665 /* Now adjust the global symbols defined in this section. */
2666 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
2667 - symtab_hdr->sh_info);
2668
2669 for (i = 0; i < symcount; i++)
2670 {
2671 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
2672
2673 /* The '--wrap SYMBOL' option is causing a pain when the object file,
2674 containing the definition of __wrap_SYMBOL, includes a direct
2675 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
2676 the same symbol (which is __wrap_SYMBOL), but still exist as two
2677 different symbols in 'sym_hashes', we don't want to adjust
2678 the global symbol __wrap_SYMBOL twice.
2679 This check is only relevant when symbols are being wrapped. */
2680 if (link_info->wrap_hash != NULL)
2681 {
2682 struct elf_link_hash_entry **cur_sym_hashes;
2683
2684 /* Loop only over the symbols which have already been checked. */
2685 for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i];
2686 cur_sym_hashes++)
2687 {
2688 /* If the current symbol is identical to 'sym_hash', that means
2689 the symbol was already adjusted (or at least checked). */
2690 if (*cur_sym_hashes == sym_hash)
2691 break;
2692 }
2693 /* Don't adjust the symbol again. */
2694 if (cur_sym_hashes < &sym_hashes[i])
2695 continue;
2696 }
2697
2698 if ((sym_hash->root.type == bfd_link_hash_defined
2699 || sym_hash->root.type == bfd_link_hash_defweak)
2700 && sym_hash->root.u.def.section == sec)
2701 {
2702 /* As above, adjust the value if needed. */
2703 if (sym_hash->root.u.def.value > addr
2704 && sym_hash->root.u.def.value <= toaddr)
2705 sym_hash->root.u.def.value -= count;
2706
2707 /* As above, adjust the size if needed. */
2708 if (sym_hash->root.u.def.value <= addr
2709 && sym_hash->root.u.def.value + sym_hash->size > addr
2710 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
2711 sym_hash->size -= count;
2712 }
2713 }
2714
2715 return TRUE;
2716 }
2717
2718 /* A second format for recording PC-relative hi relocations. This stores the
2719 information required to relax them to GP-relative addresses. */
2720
2721 typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
2722 struct riscv_pcgp_hi_reloc
2723 {
2724 bfd_vma hi_sec_off;
2725 bfd_vma hi_addend;
2726 bfd_vma hi_addr;
2727 unsigned hi_sym;
2728 asection *sym_sec;
2729 riscv_pcgp_hi_reloc *next;
2730 };
2731
2732 typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
2733 struct riscv_pcgp_lo_reloc
2734 {
2735 bfd_vma hi_sec_off;
2736 riscv_pcgp_lo_reloc *next;
2737 };
2738
2739 typedef struct
2740 {
2741 riscv_pcgp_hi_reloc *hi;
2742 riscv_pcgp_lo_reloc *lo;
2743 } riscv_pcgp_relocs;
2744
2745 static bfd_boolean
2746 riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
2747 {
2748 p->hi = NULL;
2749 p->lo = NULL;
2750 return TRUE;
2751 }
2752
2753 static void
2754 riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
2755 bfd *abfd ATTRIBUTE_UNUSED,
2756 asection *sec ATTRIBUTE_UNUSED)
2757 {
2758 riscv_pcgp_hi_reloc *c;
2759 riscv_pcgp_lo_reloc *l;
2760
2761 for (c = p->hi; c != NULL;)
2762 {
2763 riscv_pcgp_hi_reloc *next = c->next;
2764 free (c);
2765 c = next;
2766 }
2767
2768 for (l = p->lo; l != NULL;)
2769 {
2770 riscv_pcgp_lo_reloc *next = l->next;
2771 free (l);
2772 l = next;
2773 }
2774 }
2775
2776 static bfd_boolean
2777 riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
2778 bfd_vma hi_addend, bfd_vma hi_addr,
2779 unsigned hi_sym, asection *sym_sec)
2780 {
2781 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new));
2782 if (!new)
2783 return FALSE;
2784 new->hi_sec_off = hi_sec_off;
2785 new->hi_addend = hi_addend;
2786 new->hi_addr = hi_addr;
2787 new->hi_sym = hi_sym;
2788 new->sym_sec = sym_sec;
2789 new->next = p->hi;
2790 p->hi = new;
2791 return TRUE;
2792 }
2793
2794 static riscv_pcgp_hi_reloc *
2795 riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2796 {
2797 riscv_pcgp_hi_reloc *c;
2798
2799 for (c = p->hi; c != NULL; c = c->next)
2800 if (c->hi_sec_off == hi_sec_off)
2801 return c;
2802 return NULL;
2803 }
2804
2805 static bfd_boolean
2806 riscv_delete_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2807 {
2808 bfd_boolean out = FALSE;
2809 riscv_pcgp_hi_reloc *c;
2810
2811 for (c = p->hi; c != NULL; c = c->next)
2812 if (c->hi_sec_off == hi_sec_off)
2813 out = TRUE;
2814
2815 return out;
2816 }
2817
2818 static bfd_boolean
2819 riscv_use_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2820 {
2821 bfd_boolean out = FALSE;
2822 riscv_pcgp_hi_reloc *c;
2823
2824 for (c = p->hi; c != NULL; c = c->next)
2825 if (c->hi_sec_off == hi_sec_off)
2826 out = TRUE;
2827
2828 return out;
2829 }
2830
2831 static bfd_boolean
2832 riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2833 {
2834 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new));
2835 if (!new)
2836 return FALSE;
2837 new->hi_sec_off = hi_sec_off;
2838 new->next = p->lo;
2839 p->lo = new;
2840 return TRUE;
2841 }
2842
2843 static bfd_boolean
2844 riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2845 {
2846 riscv_pcgp_lo_reloc *c;
2847
2848 for (c = p->lo; c != NULL; c = c->next)
2849 if (c->hi_sec_off == hi_sec_off)
2850 return TRUE;
2851 return FALSE;
2852 }
2853
2854 static bfd_boolean
2855 riscv_delete_pcgp_lo_reloc (riscv_pcgp_relocs *p ATTRIBUTE_UNUSED,
2856 bfd_vma lo_sec_off ATTRIBUTE_UNUSED,
2857 size_t bytes ATTRIBUTE_UNUSED)
2858 {
2859 return TRUE;
2860 }
2861
2862 typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
2863 struct bfd_link_info *,
2864 Elf_Internal_Rela *,
2865 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *,
2866 riscv_pcgp_relocs *);
2867
2868 /* Relax AUIPC + JALR into JAL. */
2869
2870 static bfd_boolean
2871 _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
2872 struct bfd_link_info *link_info,
2873 Elf_Internal_Rela *rel,
2874 bfd_vma symval,
2875 bfd_vma max_alignment,
2876 bfd_vma reserve_size ATTRIBUTE_UNUSED,
2877 bfd_boolean *again,
2878 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
2879 {
2880 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2881 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
2882 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
2883 bfd_vma auipc, jalr;
2884 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2885
2886 /* If the call crosses section boundaries, an alignment directive could
2887 cause the PC-relative offset to later increase. */
2888 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section)
2889 foff += (foff < 0 ? -max_alignment : max_alignment);
2890
2891 /* See if this function call can be shortened. */
2892 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
2893 return TRUE;
2894
2895 /* Shorten the function call. */
2896 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
2897
2898 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
2899 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
2900 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
2901 rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32;
2902
2903 if (rvc && (rd == 0 || rd == X_RA))
2904 {
2905 /* Relax to C.J[AL] rd, addr. */
2906 r_type = R_RISCV_RVC_JUMP;
2907 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
2908 len = 2;
2909 }
2910 else if (VALID_UJTYPE_IMM (foff))
2911 {
2912 /* Relax to JAL rd, addr. */
2913 r_type = R_RISCV_JAL;
2914 auipc = MATCH_JAL | (rd << OP_SH_RD);
2915 }
2916 else /* near_zero */
2917 {
2918 /* Relax to JALR rd, x0, addr. */
2919 r_type = R_RISCV_LO12_I;
2920 auipc = MATCH_JALR | (rd << OP_SH_RD);
2921 }
2922
2923 /* Replace the R_RISCV_CALL reloc. */
2924 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
2925 /* Replace the AUIPC. */
2926 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
2927
2928 /* Delete unnecessary JALR. */
2929 *again = TRUE;
2930 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len,
2931 link_info);
2932 }
2933
2934 /* Traverse all output sections and return the max alignment. */
2935
2936 static bfd_vma
2937 _bfd_riscv_get_max_alignment (asection *sec)
2938 {
2939 unsigned int max_alignment_power = 0;
2940 asection *o;
2941
2942 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
2943 {
2944 if (o->alignment_power > max_alignment_power)
2945 max_alignment_power = o->alignment_power;
2946 }
2947
2948 return (bfd_vma) 1 << max_alignment_power;
2949 }
2950
2951 /* Relax non-PIC global variable references. */
2952
2953 static bfd_boolean
2954 _bfd_riscv_relax_lui (bfd *abfd,
2955 asection *sec,
2956 asection *sym_sec,
2957 struct bfd_link_info *link_info,
2958 Elf_Internal_Rela *rel,
2959 bfd_vma symval,
2960 bfd_vma max_alignment,
2961 bfd_vma reserve_size,
2962 bfd_boolean *again,
2963 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
2964 {
2965 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2966 bfd_vma gp = riscv_global_pointer_value (link_info);
2967 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2968
2969 /* Mergeable symbols and code might later move out of range. */
2970 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
2971 return TRUE;
2972
2973 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
2974
2975 if (gp)
2976 {
2977 /* If gp and the symbol are in the same output section, then
2978 consider only that section's alignment. */
2979 struct bfd_link_hash_entry *h =
2980 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
2981 TRUE);
2982 if (h->u.def.section->output_section == sym_sec->output_section)
2983 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
2984 }
2985
2986 /* Is the reference in range of x0 or gp?
2987 Valid gp range conservatively because of alignment issue. */
2988 if (VALID_ITYPE_IMM (symval)
2989 || (symval >= gp
2990 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
2991 || (symval < gp
2992 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
2993 {
2994 unsigned sym = ELFNN_R_SYM (rel->r_info);
2995 switch (ELFNN_R_TYPE (rel->r_info))
2996 {
2997 case R_RISCV_LO12_I:
2998 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
2999 return TRUE;
3000
3001 case R_RISCV_LO12_S:
3002 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3003 return TRUE;
3004
3005 case R_RISCV_HI20:
3006 /* We can delete the unnecessary LUI and reloc. */
3007 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3008 *again = TRUE;
3009 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4,
3010 link_info);
3011
3012 default:
3013 abort ();
3014 }
3015 }
3016
3017 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
3018 account for this assuming page alignment at worst. */
3019 if (use_rvc
3020 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
3021 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
3022 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE)))
3023 {
3024 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
3025 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
3026 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
3027 if (rd == 0 || rd == X_SP)
3028 return TRUE;
3029
3030 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
3031 bfd_put_32 (abfd, lui, contents + rel->r_offset);
3032
3033 /* Replace the R_RISCV_HI20 reloc. */
3034 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
3035
3036 *again = TRUE;
3037 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2,
3038 link_info);
3039 }
3040
3041 return TRUE;
3042 }
3043
3044 /* Relax non-PIC TLS references. */
3045
3046 static bfd_boolean
3047 _bfd_riscv_relax_tls_le (bfd *abfd,
3048 asection *sec,
3049 asection *sym_sec ATTRIBUTE_UNUSED,
3050 struct bfd_link_info *link_info,
3051 Elf_Internal_Rela *rel,
3052 bfd_vma symval,
3053 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3054 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3055 bfd_boolean *again,
3056 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED)
3057 {
3058 /* See if this symbol is in range of tp. */
3059 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
3060 return TRUE;
3061
3062 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3063 switch (ELFNN_R_TYPE (rel->r_info))
3064 {
3065 case R_RISCV_TPREL_LO12_I:
3066 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
3067 return TRUE;
3068
3069 case R_RISCV_TPREL_LO12_S:
3070 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
3071 return TRUE;
3072
3073 case R_RISCV_TPREL_HI20:
3074 case R_RISCV_TPREL_ADD:
3075 /* We can delete the unnecessary instruction and reloc. */
3076 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3077 *again = TRUE;
3078 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info);
3079
3080 default:
3081 abort ();
3082 }
3083 }
3084
3085 /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3086
3087 static bfd_boolean
3088 _bfd_riscv_relax_align (bfd *abfd, asection *sec,
3089 asection *sym_sec,
3090 struct bfd_link_info *link_info,
3091 Elf_Internal_Rela *rel,
3092 bfd_vma symval,
3093 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3094 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3095 bfd_boolean *again ATTRIBUTE_UNUSED,
3096 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED)
3097 {
3098 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3099 bfd_vma alignment = 1, pos;
3100 while (alignment <= rel->r_addend)
3101 alignment *= 2;
3102
3103 symval -= rel->r_addend;
3104 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
3105 bfd_vma nop_bytes = aligned_addr - symval;
3106
3107 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3108 sec->sec_flg0 = TRUE;
3109
3110 /* Make sure there are enough NOPs to actually achieve the alignment. */
3111 if (rel->r_addend < nop_bytes)
3112 {
3113 (*_bfd_error_handler)
3114 (_("%pB(%pA+0x%lx): %d bytes required for alignment "
3115 "to %d-byte boundary, but only %d present"),
3116 abfd, sym_sec, rel->r_offset, nop_bytes, alignment, rel->r_addend);
3117 bfd_set_error (bfd_error_bad_value);
3118 return FALSE;
3119 }
3120
3121 /* Delete the reloc. */
3122 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3123
3124 /* If the number of NOPs is already correct, there's nothing to do. */
3125 if (nop_bytes == rel->r_addend)
3126 return TRUE;
3127
3128 /* Write as many RISC-V NOPs as we need. */
3129 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
3130 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
3131
3132 /* Write a final RVC NOP if need be. */
3133 if (nop_bytes % 4 != 0)
3134 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
3135
3136 /* Delete the excess bytes. */
3137 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
3138 rel->r_addend - nop_bytes, link_info);
3139 }
3140
3141 /* Relax PC-relative references to GP-relative references. */
3142
3143 static bfd_boolean
3144 _bfd_riscv_relax_pc (bfd *abfd,
3145 asection *sec,
3146 asection *sym_sec,
3147 struct bfd_link_info *link_info,
3148 Elf_Internal_Rela *rel,
3149 bfd_vma symval,
3150 bfd_vma max_alignment,
3151 bfd_vma reserve_size,
3152 bfd_boolean *again ATTRIBUTE_UNUSED,
3153 riscv_pcgp_relocs *pcgp_relocs)
3154 {
3155 bfd_vma gp = riscv_global_pointer_value (link_info);
3156
3157 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3158
3159 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3160 * actual target address. */
3161 riscv_pcgp_hi_reloc hi_reloc;
3162 memset (&hi_reloc, 0, sizeof (hi_reloc));
3163 switch (ELFNN_R_TYPE (rel->r_info))
3164 {
3165 case R_RISCV_PCREL_LO12_I:
3166 case R_RISCV_PCREL_LO12_S:
3167 {
3168 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
3169 symval - sec_addr(sym_sec));
3170 if (hi == NULL)
3171 {
3172 riscv_record_pcgp_lo_reloc (pcgp_relocs, symval - sec_addr(sym_sec));
3173 return TRUE;
3174 }
3175
3176 hi_reloc = *hi;
3177 symval = hi_reloc.hi_addr;
3178 sym_sec = hi_reloc.sym_sec;
3179 if (!riscv_use_pcgp_hi_reloc(pcgp_relocs, hi->hi_sec_off))
3180 (*_bfd_error_handler)
3181 (_("%pB(%pA+0x%lx): Unable to clear RISCV_PCREL_HI20 reloc"
3182 "for cooresponding RISCV_PCREL_LO12 reloc"),
3183 abfd, sec, rel->r_offset);
3184 }
3185 break;
3186
3187 case R_RISCV_PCREL_HI20:
3188 /* Mergeable symbols and code might later move out of range. */
3189 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3190 return TRUE;
3191
3192 /* If the cooresponding lo relocation has already been seen then it's not
3193 * safe to relax this relocation. */
3194 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
3195 return TRUE;
3196
3197 break;
3198
3199 default:
3200 abort ();
3201 }
3202
3203 if (gp)
3204 {
3205 /* If gp and the symbol are in the same output section, then
3206 consider only that section's alignment. */
3207 struct bfd_link_hash_entry *h =
3208 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
3209 if (h->u.def.section->output_section == sym_sec->output_section)
3210 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3211 }
3212
3213 /* Is the reference in range of x0 or gp?
3214 Valid gp range conservatively because of alignment issue. */
3215 if (VALID_ITYPE_IMM (symval)
3216 || (symval >= gp
3217 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3218 || (symval < gp
3219 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
3220 {
3221 unsigned sym = hi_reloc.hi_sym;
3222 switch (ELFNN_R_TYPE (rel->r_info))
3223 {
3224 case R_RISCV_PCREL_LO12_I:
3225 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3226 rel->r_addend += hi_reloc.hi_addend;
3227 return riscv_delete_pcgp_lo_reloc (pcgp_relocs, rel->r_offset, 4);
3228
3229 case R_RISCV_PCREL_LO12_S:
3230 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3231 rel->r_addend += hi_reloc.hi_addend;
3232 return riscv_delete_pcgp_lo_reloc (pcgp_relocs, rel->r_offset, 4);
3233
3234 case R_RISCV_PCREL_HI20:
3235 riscv_record_pcgp_hi_reloc (pcgp_relocs,
3236 rel->r_offset,
3237 rel->r_addend,
3238 symval,
3239 ELFNN_R_SYM(rel->r_info),
3240 sym_sec);
3241 /* We can delete the unnecessary AUIPC and reloc. */
3242 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
3243 rel->r_addend = 4;
3244 return riscv_delete_pcgp_hi_reloc (pcgp_relocs, rel->r_offset);
3245
3246 default:
3247 abort ();
3248 }
3249 }
3250
3251 return TRUE;
3252 }
3253
3254 /* Relax PC-relative references to GP-relative references. */
3255
3256 static bfd_boolean
3257 _bfd_riscv_relax_delete (bfd *abfd,
3258 asection *sec,
3259 asection *sym_sec ATTRIBUTE_UNUSED,
3260 struct bfd_link_info *link_info,
3261 Elf_Internal_Rela *rel,
3262 bfd_vma symval ATTRIBUTE_UNUSED,
3263 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3264 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3265 bfd_boolean *again ATTRIBUTE_UNUSED,
3266 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
3267 {
3268 if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend,
3269 link_info))
3270 return FALSE;
3271 rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE);
3272 return TRUE;
3273 }
3274
3275 /* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3276 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3277 disabled, handles code alignment directives. */
3278
3279 static bfd_boolean
3280 _bfd_riscv_relax_section (bfd *abfd, asection *sec,
3281 struct bfd_link_info *info,
3282 bfd_boolean *again)
3283 {
3284 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
3285 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3286 struct bfd_elf_section_data *data = elf_section_data (sec);
3287 Elf_Internal_Rela *relocs;
3288 bfd_boolean ret = FALSE;
3289 unsigned int i;
3290 bfd_vma max_alignment, reserve_size = 0;
3291 riscv_pcgp_relocs pcgp_relocs;
3292
3293 *again = FALSE;
3294
3295 if (bfd_link_relocatable (info)
3296 || sec->sec_flg0
3297 || (sec->flags & SEC_RELOC) == 0
3298 || sec->reloc_count == 0
3299 || (info->disable_target_specific_optimizations
3300 && info->relax_pass == 0))
3301 return TRUE;
3302
3303 riscv_init_pcgp_relocs (&pcgp_relocs);
3304
3305 /* Read this BFD's relocs if we haven't done so already. */
3306 if (data->relocs)
3307 relocs = data->relocs;
3308 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3309 info->keep_memory)))
3310 goto fail;
3311
3312 if (htab)
3313 {
3314 max_alignment = htab->max_alignment;
3315 if (max_alignment == (bfd_vma) -1)
3316 {
3317 max_alignment = _bfd_riscv_get_max_alignment (sec);
3318 htab->max_alignment = max_alignment;
3319 }
3320 }
3321 else
3322 max_alignment = _bfd_riscv_get_max_alignment (sec);
3323
3324 /* Examine and consider relaxing each reloc. */
3325 for (i = 0; i < sec->reloc_count; i++)
3326 {
3327 asection *sym_sec;
3328 Elf_Internal_Rela *rel = relocs + i;
3329 relax_func_t relax_func;
3330 int type = ELFNN_R_TYPE (rel->r_info);
3331 bfd_vma symval;
3332
3333 relax_func = NULL;
3334 if (info->relax_pass == 0)
3335 {
3336 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
3337 relax_func = _bfd_riscv_relax_call;
3338 else if (type == R_RISCV_HI20
3339 || type == R_RISCV_LO12_I
3340 || type == R_RISCV_LO12_S)
3341 relax_func = _bfd_riscv_relax_lui;
3342 else if (!bfd_link_pic(info)
3343 && (type == R_RISCV_PCREL_HI20
3344 || type == R_RISCV_PCREL_LO12_I
3345 || type == R_RISCV_PCREL_LO12_S))
3346 relax_func = _bfd_riscv_relax_pc;
3347 else if (type == R_RISCV_TPREL_HI20
3348 || type == R_RISCV_TPREL_ADD
3349 || type == R_RISCV_TPREL_LO12_I
3350 || type == R_RISCV_TPREL_LO12_S)
3351 relax_func = _bfd_riscv_relax_tls_le;
3352 else
3353 continue;
3354
3355 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
3356 if (i == sec->reloc_count - 1
3357 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
3358 || rel->r_offset != (rel + 1)->r_offset)
3359 continue;
3360
3361 /* Skip over the R_RISCV_RELAX. */
3362 i++;
3363 }
3364 else if (info->relax_pass == 1 && type == R_RISCV_DELETE)
3365 relax_func = _bfd_riscv_relax_delete;
3366 else if (info->relax_pass == 2 && type == R_RISCV_ALIGN)
3367 relax_func = _bfd_riscv_relax_align;
3368 else
3369 continue;
3370
3371 data->relocs = relocs;
3372
3373 /* Read this BFD's contents if we haven't done so already. */
3374 if (!data->this_hdr.contents
3375 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
3376 goto fail;
3377
3378 /* Read this BFD's symbols if we haven't done so already. */
3379 if (symtab_hdr->sh_info != 0
3380 && !symtab_hdr->contents
3381 && !(symtab_hdr->contents =
3382 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
3383 symtab_hdr->sh_info,
3384 0, NULL, NULL, NULL)))
3385 goto fail;
3386
3387 /* Get the value of the symbol referred to by the reloc. */
3388 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
3389 {
3390 /* A local symbol. */
3391 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
3392 + ELFNN_R_SYM (rel->r_info));
3393 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
3394 ? 0 : isym->st_size - rel->r_addend;
3395
3396 if (isym->st_shndx == SHN_UNDEF)
3397 sym_sec = sec, symval = sec_addr (sec) + rel->r_offset;
3398 else
3399 {
3400 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
3401 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
3402 #if 0
3403 /* The purpose of this code is unknown. It breaks linker scripts
3404 for embedded development that place sections at address zero.
3405 This code is believed to be unnecessary. Disabling it but not
3406 yet removing it, in case something breaks. */
3407 if (sec_addr (sym_sec) == 0)
3408 continue;
3409 #endif
3410 symval = sec_addr (sym_sec) + isym->st_value;
3411 }
3412 }
3413 else
3414 {
3415 unsigned long indx;
3416 struct elf_link_hash_entry *h;
3417
3418 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
3419 h = elf_sym_hashes (abfd)[indx];
3420
3421 while (h->root.type == bfd_link_hash_indirect
3422 || h->root.type == bfd_link_hash_warning)
3423 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3424
3425 if (h->plt.offset != MINUS_ONE)
3426 symval = sec_addr (htab->elf.splt) + h->plt.offset;
3427 else if (h->root.u.def.section->output_section == NULL
3428 || (h->root.type != bfd_link_hash_defined
3429 && h->root.type != bfd_link_hash_defweak))
3430 continue;
3431 else
3432 symval = sec_addr (h->root.u.def.section) + h->root.u.def.value;
3433
3434 if (h->type != STT_FUNC)
3435 reserve_size =
3436 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
3437 sym_sec = h->root.u.def.section;
3438 }
3439
3440 symval += rel->r_addend;
3441
3442 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
3443 max_alignment, reserve_size, again,
3444 &pcgp_relocs))
3445 goto fail;
3446 }
3447
3448 ret = TRUE;
3449
3450 fail:
3451 if (relocs != data->relocs)
3452 free (relocs);
3453 riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec);
3454
3455 return ret;
3456 }
3457
3458 #if ARCH_SIZE == 32
3459 # define PRSTATUS_SIZE 0 /* FIXME */
3460 # define PRSTATUS_OFFSET_PR_CURSIG 12
3461 # define PRSTATUS_OFFSET_PR_PID 24
3462 # define PRSTATUS_OFFSET_PR_REG 72
3463 # define ELF_GREGSET_T_SIZE 128
3464 # define PRPSINFO_SIZE 128
3465 # define PRPSINFO_OFFSET_PR_PID 16
3466 # define PRPSINFO_OFFSET_PR_FNAME 32
3467 # define PRPSINFO_OFFSET_PR_PSARGS 48
3468 #else
3469 # define PRSTATUS_SIZE 376
3470 # define PRSTATUS_OFFSET_PR_CURSIG 12
3471 # define PRSTATUS_OFFSET_PR_PID 32
3472 # define PRSTATUS_OFFSET_PR_REG 112
3473 # define ELF_GREGSET_T_SIZE 256
3474 # define PRPSINFO_SIZE 136
3475 # define PRPSINFO_OFFSET_PR_PID 24
3476 # define PRPSINFO_OFFSET_PR_FNAME 40
3477 # define PRPSINFO_OFFSET_PR_PSARGS 56
3478 #endif
3479
3480 /* Support for core dump NOTE sections. */
3481
3482 static bfd_boolean
3483 riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3484 {
3485 switch (note->descsz)
3486 {
3487 default:
3488 return FALSE;
3489
3490 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
3491 /* pr_cursig */
3492 elf_tdata (abfd)->core->signal
3493 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
3494
3495 /* pr_pid */
3496 elf_tdata (abfd)->core->lwpid
3497 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
3498 break;
3499 }
3500
3501 /* Make a ".reg/999" section. */
3502 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
3503 note->descpos + PRSTATUS_OFFSET_PR_REG);
3504 }
3505
3506 static bfd_boolean
3507 riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3508 {
3509 switch (note->descsz)
3510 {
3511 default:
3512 return FALSE;
3513
3514 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
3515 /* pr_pid */
3516 elf_tdata (abfd)->core->pid
3517 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
3518
3519 /* pr_fname */
3520 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
3521 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
3522
3523 /* pr_psargs */
3524 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
3525 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
3526 break;
3527 }
3528
3529 /* Note that for some reason, a spurious space is tacked
3530 onto the end of the args in some (at least one anyway)
3531 implementations, so strip it off if it exists. */
3532
3533 {
3534 char *command = elf_tdata (abfd)->core->command;
3535 int n = strlen (command);
3536
3537 if (0 < n && command[n - 1] == ' ')
3538 command[n - 1] = '\0';
3539 }
3540
3541 return TRUE;
3542 }
3543
3544 /* Set the right mach type. */
3545 static bfd_boolean
3546 riscv_elf_object_p (bfd *abfd)
3547 {
3548 /* There are only two mach types in RISCV currently. */
3549 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
3550 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
3551 else
3552 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
3553
3554 return TRUE;
3555 }
3556
3557
3558 #define TARGET_LITTLE_SYM riscv_elfNN_vec
3559 #define TARGET_LITTLE_NAME "elfNN-littleriscv"
3560
3561 #define elf_backend_reloc_type_class riscv_reloc_type_class
3562
3563 #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
3564 #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
3565 #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
3566 #define bfd_elfNN_bfd_merge_private_bfd_data \
3567 _bfd_riscv_elf_merge_private_bfd_data
3568
3569 #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
3570 #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
3571 #define elf_backend_check_relocs riscv_elf_check_relocs
3572 #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
3573 #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
3574 #define elf_backend_relocate_section riscv_elf_relocate_section
3575 #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
3576 #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
3577 #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
3578 #define elf_backend_plt_sym_val riscv_elf_plt_sym_val
3579 #define elf_backend_grok_prstatus riscv_elf_grok_prstatus
3580 #define elf_backend_grok_psinfo riscv_elf_grok_psinfo
3581 #define elf_backend_object_p riscv_elf_object_p
3582 #define elf_info_to_howto_rel NULL
3583 #define elf_info_to_howto riscv_info_to_howto_rela
3584 #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
3585
3586 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3587
3588 #define elf_backend_can_gc_sections 1
3589 #define elf_backend_can_refcount 1
3590 #define elf_backend_want_got_plt 1
3591 #define elf_backend_plt_readonly 1
3592 #define elf_backend_plt_alignment 4
3593 #define elf_backend_want_plt_sym 1
3594 #define elf_backend_got_header_size (ARCH_SIZE / 8)
3595 #define elf_backend_want_dynrelro 1
3596 #define elf_backend_rela_normal 1
3597 #define elf_backend_default_execstack 0
3598
3599 #include "elfNN-target.h"
This page took 0.10983 seconds and 5 git commands to generate.