bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-ia64.c
1 /* IA-64 support for 64-bit ELF
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "opcode/ia64.h"
27 #include "elf/ia64.h"
28 #include "objalloc.h"
29 #include "hashtab.h"
30
31 #define ARCH_SIZE NN
32
33 #if ARCH_SIZE == 64
34 #define LOG_SECTION_ALIGN 3
35 #endif
36
37 #if ARCH_SIZE == 32
38 #define LOG_SECTION_ALIGN 2
39 #endif
40
41 /* THE RULES for all the stuff the linker creates --
42
43 GOT Entries created in response to LTOFF or LTOFF_FPTR
44 relocations. Dynamic relocs created for dynamic
45 symbols in an application; REL relocs for locals
46 in a shared library.
47
48 FPTR The canonical function descriptor. Created for local
49 symbols in applications. Descriptors for dynamic symbols
50 and local symbols in shared libraries are created by
51 ld.so. Thus there are no dynamic relocs against these
52 objects. The FPTR relocs for such _are_ passed through
53 to the dynamic relocation tables.
54
55 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol.
56 Requires the creation of a PLTOFF entry. This does not
57 require any dynamic relocations.
58
59 PLTOFF Created by PLTOFF relocations. For local symbols, this
60 is an alternate function descriptor, and in shared libraries
61 requires two REL relocations. Note that this cannot be
62 transformed into an FPTR relocation, since it must be in
63 range of the GP. For dynamic symbols, this is a function
64 descriptor for a MIN_PLT entry, and requires one IPLT reloc.
65
66 MIN_PLT Created by PLTOFF entries against dynamic symbols. This
67 does not require dynamic relocations. */
68
69 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0])))
70
71 typedef struct bfd_hash_entry *(*new_hash_entry_func)
72 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
73
74 /* In dynamically (linker-) created sections, we generally need to keep track
75 of the place a symbol or expression got allocated to. This is done via hash
76 tables that store entries of the following type. */
77
78 struct elfNN_ia64_dyn_sym_info
79 {
80 /* The addend for which this entry is relevant. */
81 bfd_vma addend;
82
83 bfd_vma got_offset;
84 bfd_vma fptr_offset;
85 bfd_vma pltoff_offset;
86 bfd_vma plt_offset;
87 bfd_vma plt2_offset;
88 bfd_vma tprel_offset;
89 bfd_vma dtpmod_offset;
90 bfd_vma dtprel_offset;
91
92 /* The symbol table entry, if any, that this was derived from. */
93 struct elf_link_hash_entry *h;
94
95 /* Used to count non-got, non-plt relocations for delayed sizing
96 of relocation sections. */
97 struct elfNN_ia64_dyn_reloc_entry
98 {
99 struct elfNN_ia64_dyn_reloc_entry *next;
100 asection *srel;
101 int type;
102 int count;
103
104 /* Is this reloc against readonly section? */
105 bfd_boolean reltext;
106 } *reloc_entries;
107
108 /* TRUE when the section contents have been updated. */
109 unsigned got_done : 1;
110 unsigned fptr_done : 1;
111 unsigned pltoff_done : 1;
112 unsigned tprel_done : 1;
113 unsigned dtpmod_done : 1;
114 unsigned dtprel_done : 1;
115
116 /* TRUE for the different kinds of linker data we want created. */
117 unsigned want_got : 1;
118 unsigned want_gotx : 1;
119 unsigned want_fptr : 1;
120 unsigned want_ltoff_fptr : 1;
121 unsigned want_plt : 1;
122 unsigned want_plt2 : 1;
123 unsigned want_pltoff : 1;
124 unsigned want_tprel : 1;
125 unsigned want_dtpmod : 1;
126 unsigned want_dtprel : 1;
127 };
128
129 struct elfNN_ia64_local_hash_entry
130 {
131 int id;
132 unsigned int r_sym;
133 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
134 unsigned int count;
135 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
136 unsigned int sorted_count;
137 /* The size of elfNN_ia64_dyn_sym_info array. */
138 unsigned int size;
139 /* The array of elfNN_ia64_dyn_sym_info. */
140 struct elfNN_ia64_dyn_sym_info *info;
141
142 /* TRUE if this hash entry's addends was translated for
143 SHF_MERGE optimization. */
144 unsigned sec_merge_done : 1;
145 };
146
147 struct elfNN_ia64_link_hash_entry
148 {
149 struct elf_link_hash_entry root;
150 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
151 unsigned int count;
152 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
153 unsigned int sorted_count;
154 /* The size of elfNN_ia64_dyn_sym_info array. */
155 unsigned int size;
156 /* The array of elfNN_ia64_dyn_sym_info. */
157 struct elfNN_ia64_dyn_sym_info *info;
158 };
159
160 struct elfNN_ia64_link_hash_table
161 {
162 /* The main hash table. */
163 struct elf_link_hash_table root;
164
165 asection *got_sec; /* the linkage table section (or NULL) */
166 asection *rel_got_sec; /* dynamic relocation section for same */
167 asection *fptr_sec; /* function descriptor table (or NULL) */
168 asection *rel_fptr_sec; /* dynamic relocation section for same */
169 asection *plt_sec; /* the primary plt section (or NULL) */
170 asection *pltoff_sec; /* private descriptors for plt (or NULL) */
171 asection *rel_pltoff_sec; /* dynamic relocation section for same */
172
173 bfd_size_type minplt_entries; /* number of minplt entries */
174 unsigned reltext : 1; /* are there relocs against readonly sections? */
175 unsigned self_dtpmod_done : 1;/* has self DTPMOD entry been finished? */
176 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry */
177
178 htab_t loc_hash_table;
179 void *loc_hash_memory;
180 };
181
182 struct elfNN_ia64_allocate_data
183 {
184 struct bfd_link_info *info;
185 bfd_size_type ofs;
186 bfd_boolean only_got;
187 };
188
189 #define elfNN_ia64_hash_table(p) \
190 ((struct elfNN_ia64_link_hash_table *) ((p)->hash))
191
192 static bfd_reloc_status_type elfNN_ia64_reloc
193 PARAMS ((bfd *abfd, arelent *reloc, asymbol *sym, PTR data,
194 asection *input_section, bfd *output_bfd, char **error_message));
195 static reloc_howto_type * lookup_howto
196 PARAMS ((unsigned int rtype));
197 static reloc_howto_type *elfNN_ia64_reloc_type_lookup
198 PARAMS ((bfd *abfd, bfd_reloc_code_real_type bfd_code));
199 static void elfNN_ia64_info_to_howto
200 PARAMS ((bfd *abfd, arelent *bfd_reloc, Elf_Internal_Rela *elf_reloc));
201 static bfd_boolean elfNN_ia64_relax_section
202 PARAMS((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
203 bfd_boolean *again));
204 static void elfNN_ia64_relax_ldxmov
205 PARAMS((bfd_byte *contents, bfd_vma off));
206 static bfd_boolean is_unwind_section_name
207 PARAMS ((bfd *abfd, const char *));
208 static bfd_boolean elfNN_ia64_section_flags
209 PARAMS ((flagword *, const Elf_Internal_Shdr *));
210 static bfd_boolean elfNN_ia64_fake_sections
211 PARAMS ((bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec));
212 static void elfNN_ia64_final_write_processing
213 PARAMS ((bfd *abfd, bfd_boolean linker));
214 static bfd_boolean elfNN_ia64_add_symbol_hook
215 PARAMS ((bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym,
216 const char **namep, flagword *flagsp, asection **secp,
217 bfd_vma *valp));
218 static bfd_boolean elfNN_ia64_is_local_label_name
219 PARAMS ((bfd *abfd, const char *name));
220 static bfd_boolean elfNN_ia64_dynamic_symbol_p
221 PARAMS ((struct elf_link_hash_entry *h, struct bfd_link_info *info, int));
222 static struct bfd_hash_entry *elfNN_ia64_new_elf_hash_entry
223 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
224 const char *string));
225 static void elfNN_ia64_hash_copy_indirect
226 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *,
227 struct elf_link_hash_entry *));
228 static void elfNN_ia64_hash_hide_symbol
229 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean));
230 static hashval_t elfNN_ia64_local_htab_hash PARAMS ((const void *));
231 static int elfNN_ia64_local_htab_eq PARAMS ((const void *ptr1,
232 const void *ptr2));
233 static struct bfd_link_hash_table *elfNN_ia64_hash_table_create
234 PARAMS ((bfd *abfd));
235 static void elfNN_ia64_hash_table_free
236 PARAMS ((struct bfd_link_hash_table *hash));
237 static bfd_boolean elfNN_ia64_global_dyn_sym_thunk
238 PARAMS ((struct bfd_hash_entry *, PTR));
239 static int elfNN_ia64_local_dyn_sym_thunk
240 PARAMS ((void **, PTR));
241 static void elfNN_ia64_dyn_sym_traverse
242 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
243 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
244 PTR info));
245 static bfd_boolean elfNN_ia64_create_dynamic_sections
246 PARAMS ((bfd *abfd, struct bfd_link_info *info));
247 static struct elfNN_ia64_local_hash_entry * get_local_sym_hash
248 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
249 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
250 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info
251 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
252 struct elf_link_hash_entry *h,
253 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
254 static asection *get_got
255 PARAMS ((bfd *abfd, struct bfd_link_info *info,
256 struct elfNN_ia64_link_hash_table *ia64_info));
257 static asection *get_fptr
258 PARAMS ((bfd *abfd, struct bfd_link_info *info,
259 struct elfNN_ia64_link_hash_table *ia64_info));
260 static asection *get_pltoff
261 PARAMS ((bfd *abfd, struct bfd_link_info *info,
262 struct elfNN_ia64_link_hash_table *ia64_info));
263 static asection *get_reloc_section
264 PARAMS ((bfd *abfd, struct elfNN_ia64_link_hash_table *ia64_info,
265 asection *sec, bfd_boolean create));
266 static bfd_boolean elfNN_ia64_check_relocs
267 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
268 const Elf_Internal_Rela *relocs));
269 static bfd_boolean elfNN_ia64_adjust_dynamic_symbol
270 PARAMS ((struct bfd_link_info *info, struct elf_link_hash_entry *h));
271 static long global_sym_index
272 PARAMS ((struct elf_link_hash_entry *h));
273 static bfd_boolean allocate_fptr
274 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
275 static bfd_boolean allocate_global_data_got
276 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
277 static bfd_boolean allocate_global_fptr_got
278 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
279 static bfd_boolean allocate_local_got
280 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
281 static bfd_boolean allocate_pltoff_entries
282 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
283 static bfd_boolean allocate_plt_entries
284 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
285 static bfd_boolean allocate_plt2_entries
286 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
287 static bfd_boolean allocate_dynrel_entries
288 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
289 static bfd_boolean elfNN_ia64_size_dynamic_sections
290 PARAMS ((bfd *output_bfd, struct bfd_link_info *info));
291 static bfd_reloc_status_type elfNN_ia64_install_value
292 PARAMS ((bfd_byte *hit_addr, bfd_vma val, unsigned int r_type));
293 static void elfNN_ia64_install_dyn_reloc
294 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
295 asection *srel, bfd_vma offset, unsigned int type,
296 long dynindx, bfd_vma addend));
297 static bfd_vma set_got_entry
298 PARAMS ((bfd *abfd, struct bfd_link_info *info,
299 struct elfNN_ia64_dyn_sym_info *dyn_i, long dynindx,
300 bfd_vma addend, bfd_vma value, unsigned int dyn_r_type));
301 static bfd_vma set_fptr_entry
302 PARAMS ((bfd *abfd, struct bfd_link_info *info,
303 struct elfNN_ia64_dyn_sym_info *dyn_i,
304 bfd_vma value));
305 static bfd_vma set_pltoff_entry
306 PARAMS ((bfd *abfd, struct bfd_link_info *info,
307 struct elfNN_ia64_dyn_sym_info *dyn_i,
308 bfd_vma value, bfd_boolean));
309 static bfd_vma elfNN_ia64_tprel_base
310 PARAMS ((struct bfd_link_info *info));
311 static bfd_vma elfNN_ia64_dtprel_base
312 PARAMS ((struct bfd_link_info *info));
313 static int elfNN_ia64_unwind_entry_compare
314 PARAMS ((const PTR, const PTR));
315 static bfd_boolean elfNN_ia64_choose_gp
316 PARAMS ((bfd *abfd, struct bfd_link_info *info));
317 static bfd_boolean elfNN_ia64_final_link
318 PARAMS ((bfd *abfd, struct bfd_link_info *info));
319 static bfd_boolean elfNN_ia64_relocate_section
320 PARAMS ((bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd,
321 asection *input_section, bfd_byte *contents,
322 Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms,
323 asection **local_sections));
324 static bfd_boolean elfNN_ia64_finish_dynamic_symbol
325 PARAMS ((bfd *output_bfd, struct bfd_link_info *info,
326 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym));
327 static bfd_boolean elfNN_ia64_finish_dynamic_sections
328 PARAMS ((bfd *abfd, struct bfd_link_info *info));
329 static bfd_boolean elfNN_ia64_set_private_flags
330 PARAMS ((bfd *abfd, flagword flags));
331 static bfd_boolean elfNN_ia64_merge_private_bfd_data
332 PARAMS ((bfd *ibfd, bfd *obfd));
333 static bfd_boolean elfNN_ia64_print_private_bfd_data
334 PARAMS ((bfd *abfd, PTR ptr));
335 static enum elf_reloc_type_class elfNN_ia64_reloc_type_class
336 PARAMS ((const Elf_Internal_Rela *));
337 static bfd_boolean elfNN_ia64_hpux_vec
338 PARAMS ((const bfd_target *vec));
339 static void elfNN_hpux_post_process_headers
340 PARAMS ((bfd *abfd, struct bfd_link_info *info));
341 bfd_boolean elfNN_hpux_backend_section_from_bfd_section
342 PARAMS ((bfd *abfd, asection *sec, int *retval));
343 \f
344 /* ia64-specific relocation. */
345
346 /* Perform a relocation. Not much to do here as all the hard work is
347 done in elfNN_ia64_final_link_relocate. */
348 static bfd_reloc_status_type
349 elfNN_ia64_reloc (abfd, reloc, sym, data, input_section,
350 output_bfd, error_message)
351 bfd *abfd ATTRIBUTE_UNUSED;
352 arelent *reloc;
353 asymbol *sym ATTRIBUTE_UNUSED;
354 PTR data ATTRIBUTE_UNUSED;
355 asection *input_section;
356 bfd *output_bfd;
357 char **error_message;
358 {
359 if (output_bfd)
360 {
361 reloc->address += input_section->output_offset;
362 return bfd_reloc_ok;
363 }
364
365 if (input_section->flags & SEC_DEBUGGING)
366 return bfd_reloc_continue;
367
368 *error_message = "Unsupported call to elfNN_ia64_reloc";
369 return bfd_reloc_notsupported;
370 }
371
372 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \
373 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \
374 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN)
375
376 /* This table has to be sorted according to increasing number of the
377 TYPE field. */
378 static reloc_howto_type ia64_howto_table[] =
379 {
380 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE),
381
382 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE),
383 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE),
384 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE),
385 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE),
386 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE),
387 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE),
388 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE),
389
390 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE),
391 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE),
392 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE),
393 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE),
394 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE),
395 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE),
396
397 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE),
398 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE),
399
400 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE),
401 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE),
402 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE),
403 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE),
404
405 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE),
406 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE),
407 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE),
408 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE),
409 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE),
410
411 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE),
412 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE),
413 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE),
414 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE),
415 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE),
416 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE),
417 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE),
418 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE),
419
420 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE),
421 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE),
422 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE),
423 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE),
424 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE),
425 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE),
426
427 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE),
428 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE),
429 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE),
430 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE),
431
432 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE),
433 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE),
434 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE),
435 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE),
436
437 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE),
438 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE),
439 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE),
440 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE),
441
442 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE),
443 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE),
444 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE),
445 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE),
446
447 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE),
448 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE),
449 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE),
450
451 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE),
452 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE),
453 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE),
454 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE),
455 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE),
456
457 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE),
458 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE),
459 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE),
460 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 4, FALSE, FALSE),
461 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 4, FALSE, FALSE),
462 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE),
463
464 IA64_HOWTO (R_IA64_DTPMOD64MSB, "DTPMOD64MSB", 4, FALSE, FALSE),
465 IA64_HOWTO (R_IA64_DTPMOD64LSB, "DTPMOD64LSB", 4, FALSE, FALSE),
466 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE),
467
468 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE),
469 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE),
470 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE),
471 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 2, FALSE, FALSE),
472 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 2, FALSE, FALSE),
473 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 4, FALSE, FALSE),
474 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 4, FALSE, FALSE),
475 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE),
476 };
477
478 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1];
479
480 /* Given a BFD reloc type, return the matching HOWTO structure. */
481
482 static reloc_howto_type *
483 lookup_howto (rtype)
484 unsigned int rtype;
485 {
486 static int inited = 0;
487 int i;
488
489 if (!inited)
490 {
491 inited = 1;
492
493 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index));
494 for (i = 0; i < NELEMS (ia64_howto_table); ++i)
495 elf_code_to_howto_index[ia64_howto_table[i].type] = i;
496 }
497
498 if (rtype > R_IA64_MAX_RELOC_CODE)
499 return 0;
500 i = elf_code_to_howto_index[rtype];
501 if (i >= NELEMS (ia64_howto_table))
502 return 0;
503 return ia64_howto_table + i;
504 }
505
506 static reloc_howto_type*
507 elfNN_ia64_reloc_type_lookup (abfd, bfd_code)
508 bfd *abfd ATTRIBUTE_UNUSED;
509 bfd_reloc_code_real_type bfd_code;
510 {
511 unsigned int rtype;
512
513 switch (bfd_code)
514 {
515 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break;
516
517 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break;
518 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break;
519 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break;
520
521 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break;
522 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break;
523 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break;
524 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break;
525
526 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break;
527 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break;
528 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break;
529 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break;
530 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break;
531 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break;
532
533 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break;
534 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break;
535
536 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break;
537 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break;
538 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break;
539 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break;
540 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break;
541 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break;
542 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break;
543 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break;
544 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break;
545
546 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break;
547 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break;
548 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break;
549 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break;
550 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break;
551 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break;
552 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break;
553 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break;
554 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break;
555 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break;
556 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break;
557
558 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break;
559 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break;
560 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break;
561 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break;
562 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break;
563 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break;
564
565 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break;
566 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break;
567 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break;
568 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break;
569
570 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break;
571 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break;
572 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break;
573 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break;
574
575 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break;
576 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break;
577 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break;
578 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break;
579
580 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break;
581 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break;
582 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break;
583 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break;
584
585 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break;
586 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break;
587 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break;
588 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break;
589 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break;
590
591 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break;
592 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break;
593 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break;
594 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break;
595 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break;
596 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break;
597
598 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break;
599 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break;
600 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break;
601
602 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break;
603 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break;
604 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break;
605 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break;
606 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break;
607 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break;
608 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break;
609 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break;
610
611 default: return 0;
612 }
613 return lookup_howto (rtype);
614 }
615
616 /* Given a ELF reloc, return the matching HOWTO structure. */
617
618 static void
619 elfNN_ia64_info_to_howto (abfd, bfd_reloc, elf_reloc)
620 bfd *abfd ATTRIBUTE_UNUSED;
621 arelent *bfd_reloc;
622 Elf_Internal_Rela *elf_reloc;
623 {
624 bfd_reloc->howto
625 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info));
626 }
627 \f
628 #define PLT_HEADER_SIZE (3 * 16)
629 #define PLT_MIN_ENTRY_SIZE (1 * 16)
630 #define PLT_FULL_ENTRY_SIZE (2 * 16)
631 #define PLT_RESERVED_WORDS 3
632
633 static const bfd_byte plt_header[PLT_HEADER_SIZE] =
634 {
635 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */
636 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */
637 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
638 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */
639 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */
640 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
641 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */
642 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */
643 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
644 };
645
646 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] =
647 {
648 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */
649 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */
650 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */
651 };
652
653 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] =
654 {
655 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */
656 0x00, 0x41, 0x3c, 0x70, 0x29, 0xc0, /* ld8.acq r16=[r15],8*/
657 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */
658 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */
659 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
660 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
661 };
662
663 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
664
665 static const bfd_byte oor_brl[16] =
666 {
667 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
668 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */
669 0x00, 0x00, 0x00, 0xc0
670 };
671
672 static const bfd_byte oor_ip[48] =
673 {
674 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
675 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, /* movl r15=0 */
676 0x01, 0x00, 0x00, 0x60,
677 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MII] nop.m 0 */
678 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, /* mov r16=ip;; */
679 0xf2, 0x80, 0x00, 0x80, /* add r16=r15,r16;; */
680 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
681 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
682 0x60, 0x00, 0x80, 0x00 /* br b6;; */
683 };
684
685 static size_t oor_branch_size = sizeof (oor_brl);
686
687 void
688 bfd_elfNN_ia64_after_parse (int itanium)
689 {
690 oor_branch_size = itanium ? sizeof (oor_ip) : sizeof (oor_brl);
691 }
692
693 #define BTYPE_SHIFT 6
694 #define Y_SHIFT 26
695 #define X6_SHIFT 27
696 #define X4_SHIFT 27
697 #define X3_SHIFT 33
698 #define X2_SHIFT 31
699 #define X_SHIFT 33
700 #define OPCODE_SHIFT 37
701
702 #define OPCODE_BITS (0xfLL << OPCODE_SHIFT)
703 #define X6_BITS (0x3fLL << X6_SHIFT)
704 #define X4_BITS (0xfLL << X4_SHIFT)
705 #define X3_BITS (0x7LL << X3_SHIFT)
706 #define X2_BITS (0x3LL << X2_SHIFT)
707 #define X_BITS (0x1LL << X_SHIFT)
708 #define Y_BITS (0x1LL << Y_SHIFT)
709 #define BTYPE_BITS (0x7LL << BTYPE_SHIFT)
710 #define PREDICATE_BITS (0x3fLL)
711
712 #define IS_NOP_B(i) \
713 (((i) & (OPCODE_BITS | X6_BITS)) == (2LL << OPCODE_SHIFT))
714 #define IS_NOP_F(i) \
715 (((i) & (OPCODE_BITS | X_BITS | X6_BITS | Y_BITS)) \
716 == (0x1LL << X6_SHIFT))
717 #define IS_NOP_I(i) \
718 (((i) & (OPCODE_BITS | X3_BITS | X6_BITS | Y_BITS)) \
719 == (0x1LL << X6_SHIFT))
720 #define IS_NOP_M(i) \
721 (((i) & (OPCODE_BITS | X3_BITS | X2_BITS | X4_BITS | Y_BITS)) \
722 == (0x1LL << X4_SHIFT))
723 #define IS_BR_COND(i) \
724 (((i) & (OPCODE_BITS | BTYPE_BITS)) == (0x4LL << OPCODE_SHIFT))
725 #define IS_BR_CALL(i) \
726 (((i) & OPCODE_BITS) == (0x5LL << OPCODE_SHIFT))
727
728 static bfd_boolean
729 elfNN_ia64_relax_br (bfd_byte *contents, bfd_vma off)
730 {
731 unsigned int template, mlx;
732 bfd_vma t0, t1, s0, s1, s2, br_code;
733 long br_slot;
734 bfd_byte *hit_addr;
735
736 hit_addr = (bfd_byte *) (contents + off);
737 br_slot = (long) hit_addr & 0x3;
738 hit_addr -= br_slot;
739 t0 = bfd_getl64 (hit_addr + 0);
740 t1 = bfd_getl64 (hit_addr + 8);
741
742 /* Check if we can turn br into brl. A label is always at the start
743 of the bundle. Even if there are predicates on NOPs, we still
744 perform this optimization. */
745 template = t0 & 0x1e;
746 s0 = (t0 >> 5) & 0x1ffffffffffLL;
747 s1 = ((t0 >> 46) | (t1 << 18)) & 0x1ffffffffffLL;
748 s2 = (t1 >> 23) & 0x1ffffffffffLL;
749 switch (br_slot)
750 {
751 case 0:
752 /* Check if slot 1 and slot 2 are NOPs. Possible template is
753 BBB. We only need to check nop.b. */
754 if (!(IS_NOP_B (s1) && IS_NOP_B (s2)))
755 return FALSE;
756 br_code = s0;
757 break;
758 case 1:
759 /* Check if slot 2 is NOP. Possible templates are MBB and BBB.
760 For BBB, slot 0 also has to be nop.b. */
761 if (!((template == 0x12 /* MBB */
762 && IS_NOP_B (s2))
763 || (template == 0x16 /* BBB */
764 && IS_NOP_B (s0)
765 && IS_NOP_B (s2))))
766 return FALSE;
767 br_code = s1;
768 break;
769 case 2:
770 /* Check if slot 1 is NOP. Possible templates are MIB, MBB, BBB,
771 MMB and MFB. For BBB, slot 0 also has to be nop.b. */
772 if (!((template == 0x10 /* MIB */
773 && IS_NOP_I (s1))
774 || (template == 0x12 /* MBB */
775 && IS_NOP_B (s1))
776 || (template == 0x16 /* BBB */
777 && IS_NOP_B (s0)
778 && IS_NOP_B (s1))
779 || (template == 0x18 /* MMB */
780 && IS_NOP_M (s1))
781 || (template == 0x1c /* MFB */
782 && IS_NOP_F (s1))))
783 return FALSE;
784 br_code = s2;
785 break;
786 default:
787 /* It should never happen. */
788 abort ();
789 }
790
791 /* We can turn br.cond/br.call into brl.cond/brl.call. */
792 if (!(IS_BR_COND (br_code) || IS_BR_CALL (br_code)))
793 return FALSE;
794
795 /* Turn br into brl by setting bit 40. */
796 br_code |= 0x1LL << 40;
797
798 /* Turn the old bundle into a MLX bundle with the same stop-bit
799 variety. */
800 if (t0 & 0x1)
801 mlx = 0x5;
802 else
803 mlx = 0x4;
804
805 if (template == 0x16)
806 {
807 /* For BBB, we need to put nop.m in slot 0. We keep the original
808 predicate only if slot 0 isn't br. */
809 if (br_slot == 0)
810 t0 = 0LL;
811 else
812 t0 &= PREDICATE_BITS << 5;
813 t0 |= 0x1LL << (X4_SHIFT + 5);
814 }
815 else
816 {
817 /* Keep the original instruction in slot 0. */
818 t0 &= 0x1ffffffffffLL << 5;
819 }
820
821 t0 |= mlx;
822
823 /* Put brl in slot 1. */
824 t1 = br_code << 23;
825
826 bfd_putl64 (t0, hit_addr);
827 bfd_putl64 (t1, hit_addr + 8);
828 return TRUE;
829 }
830
831 static void
832 elfNN_ia64_relax_brl (bfd_byte *contents, bfd_vma off)
833 {
834 int template;
835 bfd_byte *hit_addr;
836 bfd_vma t0, t1, i0, i1, i2;
837
838 hit_addr = (bfd_byte *) (contents + off);
839 hit_addr -= (long) hit_addr & 0x3;
840 t0 = bfd_getl64 (hit_addr);
841 t1 = bfd_getl64 (hit_addr + 8);
842
843 /* Keep the instruction in slot 0. */
844 i0 = (t0 >> 5) & 0x1ffffffffffLL;
845 /* Use nop.b for slot 1. */
846 i1 = 0x4000000000LL;
847 /* For slot 2, turn brl into br by masking out bit 40. */
848 i2 = (t1 >> 23) & 0x0ffffffffffLL;
849
850 /* Turn a MLX bundle into a MBB bundle with the same stop-bit
851 variety. */
852 if (t0 & 0x1)
853 template = 0x13;
854 else
855 template = 0x12;
856 t0 = (i1 << 46) | (i0 << 5) | template;
857 t1 = (i2 << 23) | (i1 >> 18);
858
859 bfd_putl64 (t0, hit_addr);
860 bfd_putl64 (t1, hit_addr + 8);
861 }
862
863 /* Rename some of the generic section flags to better document how they
864 are used here. */
865 #define skip_relax_pass_0 need_finalize_relax
866 #define skip_relax_pass_1 has_gp_reloc
867
868 \f
869 /* These functions do relaxation for IA-64 ELF. */
870
871 static bfd_boolean
872 elfNN_ia64_relax_section (abfd, sec, link_info, again)
873 bfd *abfd;
874 asection *sec;
875 struct bfd_link_info *link_info;
876 bfd_boolean *again;
877 {
878 struct one_fixup
879 {
880 struct one_fixup *next;
881 asection *tsec;
882 bfd_vma toff;
883 bfd_vma trampoff;
884 };
885
886 Elf_Internal_Shdr *symtab_hdr;
887 Elf_Internal_Rela *internal_relocs;
888 Elf_Internal_Rela *irel, *irelend;
889 bfd_byte *contents;
890 Elf_Internal_Sym *isymbuf = NULL;
891 struct elfNN_ia64_link_hash_table *ia64_info;
892 struct one_fixup *fixups = NULL;
893 bfd_boolean changed_contents = FALSE;
894 bfd_boolean changed_relocs = FALSE;
895 bfd_boolean changed_got = FALSE;
896 bfd_boolean skip_relax_pass_0 = TRUE;
897 bfd_boolean skip_relax_pass_1 = TRUE;
898 bfd_vma gp = 0;
899
900 /* Assume we're not going to change any sizes, and we'll only need
901 one pass. */
902 *again = FALSE;
903
904 /* Don't even try to relax for non-ELF outputs. */
905 if (!is_elf_hash_table (link_info->hash))
906 return FALSE;
907
908 /* Nothing to do if there are no relocations or there is no need for
909 the current pass. */
910 if ((sec->flags & SEC_RELOC) == 0
911 || sec->reloc_count == 0
912 || (link_info->relax_pass == 0 && sec->skip_relax_pass_0)
913 || (link_info->relax_pass == 1 && sec->skip_relax_pass_1))
914 return TRUE;
915
916 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
917
918 /* Load the relocations for this section. */
919 internal_relocs = (_bfd_elf_link_read_relocs
920 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
921 link_info->keep_memory));
922 if (internal_relocs == NULL)
923 return FALSE;
924
925 ia64_info = elfNN_ia64_hash_table (link_info);
926 irelend = internal_relocs + sec->reloc_count;
927
928 /* Get the section contents. */
929 if (elf_section_data (sec)->this_hdr.contents != NULL)
930 contents = elf_section_data (sec)->this_hdr.contents;
931 else
932 {
933 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
934 goto error_return;
935 }
936
937 for (irel = internal_relocs; irel < irelend; irel++)
938 {
939 unsigned long r_type = ELFNN_R_TYPE (irel->r_info);
940 bfd_vma symaddr, reladdr, trampoff, toff, roff;
941 asection *tsec;
942 struct one_fixup *f;
943 bfd_size_type amt;
944 bfd_boolean is_branch;
945 struct elfNN_ia64_dyn_sym_info *dyn_i;
946 char symtype;
947
948 switch (r_type)
949 {
950 case R_IA64_PCREL21B:
951 case R_IA64_PCREL21BI:
952 case R_IA64_PCREL21M:
953 case R_IA64_PCREL21F:
954 /* In pass 1, all br relaxations are done. We can skip it. */
955 if (link_info->relax_pass == 1)
956 continue;
957 skip_relax_pass_0 = FALSE;
958 is_branch = TRUE;
959 break;
960
961 case R_IA64_PCREL60B:
962 /* We can't optimize brl to br in pass 0 since br relaxations
963 will increase the code size. Defer it to pass 1. */
964 if (link_info->relax_pass == 0)
965 {
966 skip_relax_pass_1 = FALSE;
967 continue;
968 }
969 is_branch = TRUE;
970 break;
971
972 case R_IA64_LTOFF22X:
973 case R_IA64_LDXMOV:
974 /* We can't relax ldx/mov in pass 0 since br relaxations will
975 increase the code size. Defer it to pass 1. */
976 if (link_info->relax_pass == 0)
977 {
978 skip_relax_pass_1 = FALSE;
979 continue;
980 }
981 is_branch = FALSE;
982 break;
983
984 default:
985 continue;
986 }
987
988 /* Get the value of the symbol referred to by the reloc. */
989 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info)
990 {
991 /* A local symbol. */
992 Elf_Internal_Sym *isym;
993
994 /* Read this BFD's local symbols. */
995 if (isymbuf == NULL)
996 {
997 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
998 if (isymbuf == NULL)
999 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1000 symtab_hdr->sh_info, 0,
1001 NULL, NULL, NULL);
1002 if (isymbuf == 0)
1003 goto error_return;
1004 }
1005
1006 isym = isymbuf + ELFNN_R_SYM (irel->r_info);
1007 if (isym->st_shndx == SHN_UNDEF)
1008 continue; /* We can't do anything with undefined symbols. */
1009 else if (isym->st_shndx == SHN_ABS)
1010 tsec = bfd_abs_section_ptr;
1011 else if (isym->st_shndx == SHN_COMMON)
1012 tsec = bfd_com_section_ptr;
1013 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON)
1014 tsec = bfd_com_section_ptr;
1015 else
1016 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1017
1018 toff = isym->st_value;
1019 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE);
1020 symtype = ELF_ST_TYPE (isym->st_info);
1021 }
1022 else
1023 {
1024 unsigned long indx;
1025 struct elf_link_hash_entry *h;
1026
1027 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info;
1028 h = elf_sym_hashes (abfd)[indx];
1029 BFD_ASSERT (h != NULL);
1030
1031 while (h->root.type == bfd_link_hash_indirect
1032 || h->root.type == bfd_link_hash_warning)
1033 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1034
1035 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE);
1036
1037 /* For branches to dynamic symbols, we're interested instead
1038 in a branch to the PLT entry. */
1039 if (is_branch && dyn_i && dyn_i->want_plt2)
1040 {
1041 /* Internal branches shouldn't be sent to the PLT.
1042 Leave this for now and we'll give an error later. */
1043 if (r_type != R_IA64_PCREL21B)
1044 continue;
1045
1046 tsec = ia64_info->plt_sec;
1047 toff = dyn_i->plt2_offset;
1048 BFD_ASSERT (irel->r_addend == 0);
1049 }
1050
1051 /* Can't do anything else with dynamic symbols. */
1052 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type))
1053 continue;
1054
1055 else
1056 {
1057 /* We can't do anything with undefined symbols. */
1058 if (h->root.type == bfd_link_hash_undefined
1059 || h->root.type == bfd_link_hash_undefweak)
1060 continue;
1061
1062 tsec = h->root.u.def.section;
1063 toff = h->root.u.def.value;
1064 }
1065
1066 symtype = h->type;
1067 }
1068
1069 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE)
1070 {
1071 /* At this stage in linking, no SEC_MERGE symbol has been
1072 adjusted, so all references to such symbols need to be
1073 passed through _bfd_merged_section_offset. (Later, in
1074 relocate_section, all SEC_MERGE symbols *except* for
1075 section symbols have been adjusted.)
1076
1077 gas may reduce relocations against symbols in SEC_MERGE
1078 sections to a relocation against the section symbol when
1079 the original addend was zero. When the reloc is against
1080 a section symbol we should include the addend in the
1081 offset passed to _bfd_merged_section_offset, since the
1082 location of interest is the original symbol. On the
1083 other hand, an access to "sym+addend" where "sym" is not
1084 a section symbol should not include the addend; Such an
1085 access is presumed to be an offset from "sym"; The
1086 location of interest is just "sym". */
1087 if (symtype == STT_SECTION)
1088 toff += irel->r_addend;
1089
1090 toff = _bfd_merged_section_offset (abfd, &tsec,
1091 elf_section_data (tsec)->sec_info,
1092 toff);
1093
1094 if (symtype != STT_SECTION)
1095 toff += irel->r_addend;
1096 }
1097 else
1098 toff += irel->r_addend;
1099
1100 symaddr = tsec->output_section->vma + tsec->output_offset + toff;
1101
1102 roff = irel->r_offset;
1103
1104 if (is_branch)
1105 {
1106 bfd_signed_vma offset;
1107
1108 reladdr = (sec->output_section->vma
1109 + sec->output_offset
1110 + roff) & (bfd_vma) -4;
1111
1112 /* If the branch is in range, no need to do anything. */
1113 if ((bfd_signed_vma) (symaddr - reladdr) >= -0x1000000
1114 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0)
1115 {
1116 /* If the 60-bit branch is in 21-bit range, optimize it. */
1117 if (r_type == R_IA64_PCREL60B)
1118 {
1119 elfNN_ia64_relax_brl (contents, roff);
1120
1121 irel->r_info
1122 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1123 R_IA64_PCREL21B);
1124
1125 /* If the original relocation offset points to slot
1126 1, change it to slot 2. */
1127 if ((irel->r_offset & 3) == 1)
1128 irel->r_offset += 1;
1129 }
1130
1131 continue;
1132 }
1133 else if (r_type == R_IA64_PCREL60B)
1134 continue;
1135 else if (elfNN_ia64_relax_br (contents, roff))
1136 {
1137 irel->r_info
1138 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1139 R_IA64_PCREL60B);
1140
1141 /* Make the relocation offset point to slot 1. */
1142 irel->r_offset = (irel->r_offset & ~((bfd_vma) 0x3)) + 1;
1143 continue;
1144 }
1145
1146 /* We can't put a trampoline in a .init/.fini section. Issue
1147 an error. */
1148 if (strcmp (sec->output_section->name, ".init") == 0
1149 || strcmp (sec->output_section->name, ".fini") == 0)
1150 {
1151 (*_bfd_error_handler)
1152 (_("%B: Can't relax br at 0x%lx in section `%A'. Please use brl or indirect branch."),
1153 sec->owner, sec, (unsigned long) roff);
1154 bfd_set_error (bfd_error_bad_value);
1155 goto error_return;
1156 }
1157
1158 /* If the branch and target are in the same section, you've
1159 got one honking big section and we can't help you unless
1160 you are branching backwards. You'll get an error message
1161 later. */
1162 if (tsec == sec && toff > roff)
1163 continue;
1164
1165 /* Look for an existing fixup to this address. */
1166 for (f = fixups; f ; f = f->next)
1167 if (f->tsec == tsec && f->toff == toff)
1168 break;
1169
1170 if (f == NULL)
1171 {
1172 /* Two alternatives: If it's a branch to a PLT entry, we can
1173 make a copy of the FULL_PLT entry. Otherwise, we'll have
1174 to use a `brl' insn to get where we're going. */
1175
1176 size_t size;
1177
1178 if (tsec == ia64_info->plt_sec)
1179 size = sizeof (plt_full_entry);
1180 else
1181 size = oor_branch_size;
1182
1183 /* Resize the current section to make room for the new branch. */
1184 trampoff = (sec->size + 15) & (bfd_vma) -16;
1185
1186 /* If trampoline is out of range, there is nothing we
1187 can do. */
1188 offset = trampoff - (roff & (bfd_vma) -4);
1189 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1190 continue;
1191
1192 amt = trampoff + size;
1193 contents = (bfd_byte *) bfd_realloc (contents, amt);
1194 if (contents == NULL)
1195 goto error_return;
1196 sec->size = amt;
1197
1198 if (tsec == ia64_info->plt_sec)
1199 {
1200 memcpy (contents + trampoff, plt_full_entry, size);
1201
1202 /* Hijack the old relocation for use as the PLTOFF reloc. */
1203 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1204 R_IA64_PLTOFF22);
1205 irel->r_offset = trampoff;
1206 }
1207 else
1208 {
1209 if (size == sizeof (oor_ip))
1210 {
1211 memcpy (contents + trampoff, oor_ip, size);
1212 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1213 R_IA64_PCREL64I);
1214 irel->r_addend -= 16;
1215 irel->r_offset = trampoff + 2;
1216 }
1217 else
1218 {
1219 memcpy (contents + trampoff, oor_brl, size);
1220 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1221 R_IA64_PCREL60B);
1222 irel->r_offset = trampoff + 2;
1223 }
1224
1225 }
1226
1227 /* Record the fixup so we don't do it again this section. */
1228 f = (struct one_fixup *)
1229 bfd_malloc ((bfd_size_type) sizeof (*f));
1230 f->next = fixups;
1231 f->tsec = tsec;
1232 f->toff = toff;
1233 f->trampoff = trampoff;
1234 fixups = f;
1235 }
1236 else
1237 {
1238 /* If trampoline is out of range, there is nothing we
1239 can do. */
1240 offset = f->trampoff - (roff & (bfd_vma) -4);
1241 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1242 continue;
1243
1244 /* Nop out the reloc, since we're finalizing things here. */
1245 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1246 }
1247
1248 /* Fix up the existing branch to hit the trampoline. */
1249 if (elfNN_ia64_install_value (contents + roff, offset, r_type)
1250 != bfd_reloc_ok)
1251 goto error_return;
1252
1253 changed_contents = TRUE;
1254 changed_relocs = TRUE;
1255 }
1256 else
1257 {
1258 /* Fetch the gp. */
1259 if (gp == 0)
1260 {
1261 bfd *obfd = sec->output_section->owner;
1262 gp = _bfd_get_gp_value (obfd);
1263 if (gp == 0)
1264 {
1265 if (!elfNN_ia64_choose_gp (obfd, link_info))
1266 goto error_return;
1267 gp = _bfd_get_gp_value (obfd);
1268 }
1269 }
1270
1271 /* If the data is out of range, do nothing. */
1272 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000
1273 ||(bfd_signed_vma) (symaddr - gp) < -0x200000)
1274 continue;
1275
1276 if (r_type == R_IA64_LTOFF22X)
1277 {
1278 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1279 R_IA64_GPREL22);
1280 changed_relocs = TRUE;
1281 if (dyn_i->want_gotx)
1282 {
1283 dyn_i->want_gotx = 0;
1284 changed_got |= !dyn_i->want_got;
1285 }
1286 }
1287 else
1288 {
1289 elfNN_ia64_relax_ldxmov (contents, roff);
1290 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1291 changed_contents = TRUE;
1292 changed_relocs = TRUE;
1293 }
1294 }
1295 }
1296
1297 /* ??? If we created fixups, this may push the code segment large
1298 enough that the data segment moves, which will change the GP.
1299 Reset the GP so that we re-calculate next round. We need to
1300 do this at the _beginning_ of the next round; now will not do. */
1301
1302 /* Clean up and go home. */
1303 while (fixups)
1304 {
1305 struct one_fixup *f = fixups;
1306 fixups = fixups->next;
1307 free (f);
1308 }
1309
1310 if (isymbuf != NULL
1311 && symtab_hdr->contents != (unsigned char *) isymbuf)
1312 {
1313 if (! link_info->keep_memory)
1314 free (isymbuf);
1315 else
1316 {
1317 /* Cache the symbols for elf_link_input_bfd. */
1318 symtab_hdr->contents = (unsigned char *) isymbuf;
1319 }
1320 }
1321
1322 if (contents != NULL
1323 && elf_section_data (sec)->this_hdr.contents != contents)
1324 {
1325 if (!changed_contents && !link_info->keep_memory)
1326 free (contents);
1327 else
1328 {
1329 /* Cache the section contents for elf_link_input_bfd. */
1330 elf_section_data (sec)->this_hdr.contents = contents;
1331 }
1332 }
1333
1334 if (elf_section_data (sec)->relocs != internal_relocs)
1335 {
1336 if (!changed_relocs)
1337 free (internal_relocs);
1338 else
1339 elf_section_data (sec)->relocs = internal_relocs;
1340 }
1341
1342 if (changed_got)
1343 {
1344 struct elfNN_ia64_allocate_data data;
1345 data.info = link_info;
1346 data.ofs = 0;
1347 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
1348
1349 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
1350 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
1351 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
1352 ia64_info->got_sec->size = data.ofs;
1353
1354 if (ia64_info->root.dynamic_sections_created
1355 && ia64_info->rel_got_sec != NULL)
1356 {
1357 /* Resize .rela.got. */
1358 ia64_info->rel_got_sec->size = 0;
1359 if (link_info->shared
1360 && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
1361 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
1362 data.only_got = TRUE;
1363 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries,
1364 &data);
1365 }
1366 }
1367
1368 if (link_info->relax_pass == 0)
1369 {
1370 /* Pass 0 is only needed to relax br. */
1371 sec->skip_relax_pass_0 = skip_relax_pass_0;
1372 sec->skip_relax_pass_1 = skip_relax_pass_1;
1373 }
1374
1375 *again = changed_contents || changed_relocs;
1376 return TRUE;
1377
1378 error_return:
1379 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
1380 free (isymbuf);
1381 if (contents != NULL
1382 && elf_section_data (sec)->this_hdr.contents != contents)
1383 free (contents);
1384 if (internal_relocs != NULL
1385 && elf_section_data (sec)->relocs != internal_relocs)
1386 free (internal_relocs);
1387 return FALSE;
1388 }
1389 #undef skip_relax_pass_0
1390 #undef skip_relax_pass_1
1391
1392 static void
1393 elfNN_ia64_relax_ldxmov (contents, off)
1394 bfd_byte *contents;
1395 bfd_vma off;
1396 {
1397 int shift, r1, r3;
1398 bfd_vma dword, insn;
1399
1400 switch ((int)off & 0x3)
1401 {
1402 case 0: shift = 5; break;
1403 case 1: shift = 14; off += 3; break;
1404 case 2: shift = 23; off += 6; break;
1405 default:
1406 abort ();
1407 }
1408
1409 dword = bfd_getl64 (contents + off);
1410 insn = (dword >> shift) & 0x1ffffffffffLL;
1411
1412 r1 = (insn >> 6) & 127;
1413 r3 = (insn >> 20) & 127;
1414 if (r1 == r3)
1415 insn = 0x8000000; /* nop */
1416 else
1417 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */
1418
1419 dword &= ~(0x1ffffffffffLL << shift);
1420 dword |= (insn << shift);
1421 bfd_putl64 (dword, contents + off);
1422 }
1423 \f
1424 /* Return TRUE if NAME is an unwind table section name. */
1425
1426 static inline bfd_boolean
1427 is_unwind_section_name (bfd *abfd, const char *name)
1428 {
1429 if (elfNN_ia64_hpux_vec (abfd->xvec)
1430 && !strcmp (name, ELF_STRING_ia64_unwind_hdr))
1431 return FALSE;
1432
1433 return ((CONST_STRNEQ (name, ELF_STRING_ia64_unwind)
1434 && ! CONST_STRNEQ (name, ELF_STRING_ia64_unwind_info))
1435 || CONST_STRNEQ (name, ELF_STRING_ia64_unwind_once));
1436 }
1437
1438 /* Handle an IA-64 specific section when reading an object file. This
1439 is called when bfd_section_from_shdr finds a section with an unknown
1440 type. */
1441
1442 static bfd_boolean
1443 elfNN_ia64_section_from_shdr (bfd *abfd,
1444 Elf_Internal_Shdr *hdr,
1445 const char *name,
1446 int shindex)
1447 {
1448 asection *newsect;
1449
1450 /* There ought to be a place to keep ELF backend specific flags, but
1451 at the moment there isn't one. We just keep track of the
1452 sections by their name, instead. Fortunately, the ABI gives
1453 suggested names for all the MIPS specific sections, so we will
1454 probably get away with this. */
1455 switch (hdr->sh_type)
1456 {
1457 case SHT_IA_64_UNWIND:
1458 case SHT_IA_64_HP_OPT_ANOT:
1459 break;
1460
1461 case SHT_IA_64_EXT:
1462 if (strcmp (name, ELF_STRING_ia64_archext) != 0)
1463 return FALSE;
1464 break;
1465
1466 default:
1467 return FALSE;
1468 }
1469
1470 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1471 return FALSE;
1472 newsect = hdr->bfd_section;
1473
1474 return TRUE;
1475 }
1476
1477 /* Convert IA-64 specific section flags to bfd internal section flags. */
1478
1479 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV
1480 flag. */
1481
1482 static bfd_boolean
1483 elfNN_ia64_section_flags (flags, hdr)
1484 flagword *flags;
1485 const Elf_Internal_Shdr *hdr;
1486 {
1487 if (hdr->sh_flags & SHF_IA_64_SHORT)
1488 *flags |= SEC_SMALL_DATA;
1489
1490 return TRUE;
1491 }
1492
1493 /* Set the correct type for an IA-64 ELF section. We do this by the
1494 section name, which is a hack, but ought to work. */
1495
1496 static bfd_boolean
1497 elfNN_ia64_fake_sections (abfd, hdr, sec)
1498 bfd *abfd ATTRIBUTE_UNUSED;
1499 Elf_Internal_Shdr *hdr;
1500 asection *sec;
1501 {
1502 register const char *name;
1503
1504 name = bfd_get_section_name (abfd, sec);
1505
1506 if (is_unwind_section_name (abfd, name))
1507 {
1508 /* We don't have the sections numbered at this point, so sh_info
1509 is set later, in elfNN_ia64_final_write_processing. */
1510 hdr->sh_type = SHT_IA_64_UNWIND;
1511 hdr->sh_flags |= SHF_LINK_ORDER;
1512 }
1513 else if (strcmp (name, ELF_STRING_ia64_archext) == 0)
1514 hdr->sh_type = SHT_IA_64_EXT;
1515 else if (strcmp (name, ".HP.opt_annot") == 0)
1516 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT;
1517 else if (strcmp (name, ".reloc") == 0)
1518 /* This is an ugly, but unfortunately necessary hack that is
1519 needed when producing EFI binaries on IA-64. It tells
1520 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1521 containing ELF relocation info. We need this hack in order to
1522 be able to generate ELF binaries that can be translated into
1523 EFI applications (which are essentially COFF objects). Those
1524 files contain a COFF ".reloc" section inside an ELFNN object,
1525 which would normally cause BFD to segfault because it would
1526 attempt to interpret this section as containing relocation
1527 entries for section "oc". With this hack enabled, ".reloc"
1528 will be treated as a normal data section, which will avoid the
1529 segfault. However, you won't be able to create an ELFNN binary
1530 with a section named "oc" that needs relocations, but that's
1531 the kind of ugly side-effects you get when detecting section
1532 types based on their names... In practice, this limitation is
1533 unlikely to bite. */
1534 hdr->sh_type = SHT_PROGBITS;
1535
1536 if (sec->flags & SEC_SMALL_DATA)
1537 hdr->sh_flags |= SHF_IA_64_SHORT;
1538
1539 /* Some HP linkers look for the SHF_IA_64_HP_TLS flag instead of SHF_TLS. */
1540
1541 if (elfNN_ia64_hpux_vec (abfd->xvec) && (sec->flags & SHF_TLS))
1542 hdr->sh_flags |= SHF_IA_64_HP_TLS;
1543
1544 return TRUE;
1545 }
1546
1547 /* The final processing done just before writing out an IA-64 ELF
1548 object file. */
1549
1550 static void
1551 elfNN_ia64_final_write_processing (abfd, linker)
1552 bfd *abfd;
1553 bfd_boolean linker ATTRIBUTE_UNUSED;
1554 {
1555 Elf_Internal_Shdr *hdr;
1556 asection *s;
1557
1558 for (s = abfd->sections; s; s = s->next)
1559 {
1560 hdr = &elf_section_data (s)->this_hdr;
1561 switch (hdr->sh_type)
1562 {
1563 case SHT_IA_64_UNWIND:
1564 /* The IA-64 processor-specific ABI requires setting sh_link
1565 to the unwind section, whereas HP-UX requires sh_info to
1566 do so. For maximum compatibility, we'll set both for
1567 now... */
1568 hdr->sh_info = hdr->sh_link;
1569 break;
1570 }
1571 }
1572
1573 if (! elf_flags_init (abfd))
1574 {
1575 unsigned long flags = 0;
1576
1577 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
1578 flags |= EF_IA_64_BE;
1579 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
1580 flags |= EF_IA_64_ABI64;
1581
1582 elf_elfheader(abfd)->e_flags = flags;
1583 elf_flags_init (abfd) = TRUE;
1584 }
1585 }
1586
1587 /* Hook called by the linker routine which adds symbols from an object
1588 file. We use it to put .comm items in .sbss, and not .bss. */
1589
1590 static bfd_boolean
1591 elfNN_ia64_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1592 bfd *abfd;
1593 struct bfd_link_info *info;
1594 Elf_Internal_Sym *sym;
1595 const char **namep ATTRIBUTE_UNUSED;
1596 flagword *flagsp ATTRIBUTE_UNUSED;
1597 asection **secp;
1598 bfd_vma *valp;
1599 {
1600 if (sym->st_shndx == SHN_COMMON
1601 && !info->relocatable
1602 && sym->st_size <= elf_gp_size (abfd))
1603 {
1604 /* Common symbols less than or equal to -G nn bytes are
1605 automatically put into .sbss. */
1606
1607 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1608
1609 if (scomm == NULL)
1610 {
1611 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1612 (SEC_ALLOC
1613 | SEC_IS_COMMON
1614 | SEC_LINKER_CREATED));
1615 if (scomm == NULL)
1616 return FALSE;
1617 }
1618
1619 *secp = scomm;
1620 *valp = sym->st_size;
1621 }
1622
1623 return TRUE;
1624 }
1625
1626 /* Return the number of additional phdrs we will need. */
1627
1628 static int
1629 elfNN_ia64_additional_program_headers (bfd *abfd,
1630 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1631 {
1632 asection *s;
1633 int ret = 0;
1634
1635 /* See if we need a PT_IA_64_ARCHEXT segment. */
1636 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1637 if (s && (s->flags & SEC_LOAD))
1638 ++ret;
1639
1640 /* Count how many PT_IA_64_UNWIND segments we need. */
1641 for (s = abfd->sections; s; s = s->next)
1642 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD))
1643 ++ret;
1644
1645 return ret;
1646 }
1647
1648 static bfd_boolean
1649 elfNN_ia64_modify_segment_map (bfd *abfd,
1650 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1651 {
1652 struct elf_segment_map *m, **pm;
1653 Elf_Internal_Shdr *hdr;
1654 asection *s;
1655
1656 /* If we need a PT_IA_64_ARCHEXT segment, it must come before
1657 all PT_LOAD segments. */
1658 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1659 if (s && (s->flags & SEC_LOAD))
1660 {
1661 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1662 if (m->p_type == PT_IA_64_ARCHEXT)
1663 break;
1664 if (m == NULL)
1665 {
1666 m = ((struct elf_segment_map *)
1667 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1668 if (m == NULL)
1669 return FALSE;
1670
1671 m->p_type = PT_IA_64_ARCHEXT;
1672 m->count = 1;
1673 m->sections[0] = s;
1674
1675 /* We want to put it after the PHDR and INTERP segments. */
1676 pm = &elf_tdata (abfd)->segment_map;
1677 while (*pm != NULL
1678 && ((*pm)->p_type == PT_PHDR
1679 || (*pm)->p_type == PT_INTERP))
1680 pm = &(*pm)->next;
1681
1682 m->next = *pm;
1683 *pm = m;
1684 }
1685 }
1686
1687 /* Install PT_IA_64_UNWIND segments, if needed. */
1688 for (s = abfd->sections; s; s = s->next)
1689 {
1690 hdr = &elf_section_data (s)->this_hdr;
1691 if (hdr->sh_type != SHT_IA_64_UNWIND)
1692 continue;
1693
1694 if (s && (s->flags & SEC_LOAD))
1695 {
1696 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1697 if (m->p_type == PT_IA_64_UNWIND)
1698 {
1699 int i;
1700
1701 /* Look through all sections in the unwind segment
1702 for a match since there may be multiple sections
1703 to a segment. */
1704 for (i = m->count - 1; i >= 0; --i)
1705 if (m->sections[i] == s)
1706 break;
1707
1708 if (i >= 0)
1709 break;
1710 }
1711
1712 if (m == NULL)
1713 {
1714 m = ((struct elf_segment_map *)
1715 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1716 if (m == NULL)
1717 return FALSE;
1718
1719 m->p_type = PT_IA_64_UNWIND;
1720 m->count = 1;
1721 m->sections[0] = s;
1722 m->next = NULL;
1723
1724 /* We want to put it last. */
1725 pm = &elf_tdata (abfd)->segment_map;
1726 while (*pm != NULL)
1727 pm = &(*pm)->next;
1728 *pm = m;
1729 }
1730 }
1731 }
1732
1733 return TRUE;
1734 }
1735
1736 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of
1737 the input sections for each output section in the segment and testing
1738 for SHF_IA_64_NORECOV on each. */
1739
1740 static bfd_boolean
1741 elfNN_ia64_modify_program_headers (bfd *abfd,
1742 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1743 {
1744 struct elf_obj_tdata *tdata = elf_tdata (abfd);
1745 struct elf_segment_map *m;
1746 Elf_Internal_Phdr *p;
1747
1748 for (p = tdata->phdr, m = tdata->segment_map; m != NULL; m = m->next, p++)
1749 if (m->p_type == PT_LOAD)
1750 {
1751 int i;
1752 for (i = m->count - 1; i >= 0; --i)
1753 {
1754 struct bfd_link_order *order = m->sections[i]->map_head.link_order;
1755
1756 while (order != NULL)
1757 {
1758 if (order->type == bfd_indirect_link_order)
1759 {
1760 asection *is = order->u.indirect.section;
1761 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags;
1762 if (flags & SHF_IA_64_NORECOV)
1763 {
1764 p->p_flags |= PF_IA_64_NORECOV;
1765 goto found;
1766 }
1767 }
1768 order = order->next;
1769 }
1770 }
1771 found:;
1772 }
1773
1774 return TRUE;
1775 }
1776
1777 /* According to the Tahoe assembler spec, all labels starting with a
1778 '.' are local. */
1779
1780 static bfd_boolean
1781 elfNN_ia64_is_local_label_name (abfd, name)
1782 bfd *abfd ATTRIBUTE_UNUSED;
1783 const char *name;
1784 {
1785 return name[0] == '.';
1786 }
1787
1788 /* Should we do dynamic things to this symbol? */
1789
1790 static bfd_boolean
1791 elfNN_ia64_dynamic_symbol_p (h, info, r_type)
1792 struct elf_link_hash_entry *h;
1793 struct bfd_link_info *info;
1794 int r_type;
1795 {
1796 bfd_boolean ignore_protected
1797 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */
1798 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */
1799
1800 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected);
1801 }
1802 \f
1803 static struct bfd_hash_entry*
1804 elfNN_ia64_new_elf_hash_entry (entry, table, string)
1805 struct bfd_hash_entry *entry;
1806 struct bfd_hash_table *table;
1807 const char *string;
1808 {
1809 struct elfNN_ia64_link_hash_entry *ret;
1810 ret = (struct elfNN_ia64_link_hash_entry *) entry;
1811
1812 /* Allocate the structure if it has not already been allocated by a
1813 subclass. */
1814 if (!ret)
1815 ret = bfd_hash_allocate (table, sizeof (*ret));
1816
1817 if (!ret)
1818 return 0;
1819
1820 /* Call the allocation method of the superclass. */
1821 ret = ((struct elfNN_ia64_link_hash_entry *)
1822 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1823 table, string));
1824
1825 ret->info = NULL;
1826 ret->count = 0;
1827 ret->sorted_count = 0;
1828 ret->size = 0;
1829 return (struct bfd_hash_entry *) ret;
1830 }
1831
1832 static void
1833 elfNN_ia64_hash_copy_indirect (info, xdir, xind)
1834 struct bfd_link_info *info;
1835 struct elf_link_hash_entry *xdir, *xind;
1836 {
1837 struct elfNN_ia64_link_hash_entry *dir, *ind;
1838
1839 dir = (struct elfNN_ia64_link_hash_entry *) xdir;
1840 ind = (struct elfNN_ia64_link_hash_entry *) xind;
1841
1842 /* Copy down any references that we may have already seen to the
1843 symbol which just became indirect. */
1844
1845 dir->root.ref_dynamic |= ind->root.ref_dynamic;
1846 dir->root.ref_regular |= ind->root.ref_regular;
1847 dir->root.ref_regular_nonweak |= ind->root.ref_regular_nonweak;
1848 dir->root.needs_plt |= ind->root.needs_plt;
1849
1850 if (ind->root.root.type != bfd_link_hash_indirect)
1851 return;
1852
1853 /* Copy over the got and plt data. This would have been done
1854 by check_relocs. */
1855
1856 if (ind->info != NULL)
1857 {
1858 struct elfNN_ia64_dyn_sym_info *dyn_i;
1859 unsigned int count;
1860
1861 if (dir->info)
1862 free (dir->info);
1863
1864 dir->info = ind->info;
1865 dir->count = ind->count;
1866 dir->sorted_count = ind->sorted_count;
1867 dir->size = ind->size;
1868
1869 ind->info = NULL;
1870 ind->count = 0;
1871 ind->sorted_count = 0;
1872 ind->size = 0;
1873
1874 /* Fix up the dyn_sym_info pointers to the global symbol. */
1875 for (count = dir->count, dyn_i = dir->info;
1876 count != 0;
1877 count--, dyn_i++)
1878 dyn_i->h = &dir->root;
1879 }
1880
1881 /* Copy over the dynindx. */
1882
1883 if (ind->root.dynindx != -1)
1884 {
1885 if (dir->root.dynindx != -1)
1886 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1887 dir->root.dynstr_index);
1888 dir->root.dynindx = ind->root.dynindx;
1889 dir->root.dynstr_index = ind->root.dynstr_index;
1890 ind->root.dynindx = -1;
1891 ind->root.dynstr_index = 0;
1892 }
1893 }
1894
1895 static void
1896 elfNN_ia64_hash_hide_symbol (info, xh, force_local)
1897 struct bfd_link_info *info;
1898 struct elf_link_hash_entry *xh;
1899 bfd_boolean force_local;
1900 {
1901 struct elfNN_ia64_link_hash_entry *h;
1902 struct elfNN_ia64_dyn_sym_info *dyn_i;
1903 unsigned int count;
1904
1905 h = (struct elfNN_ia64_link_hash_entry *)xh;
1906
1907 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
1908
1909 for (count = h->count, dyn_i = h->info;
1910 count != 0;
1911 count--, dyn_i++)
1912 {
1913 dyn_i->want_plt2 = 0;
1914 dyn_i->want_plt = 0;
1915 }
1916 }
1917
1918 /* Compute a hash of a local hash entry. */
1919
1920 static hashval_t
1921 elfNN_ia64_local_htab_hash (ptr)
1922 const void *ptr;
1923 {
1924 struct elfNN_ia64_local_hash_entry *entry
1925 = (struct elfNN_ia64_local_hash_entry *) ptr;
1926
1927 return (((entry->id & 0xff) << 24) | ((entry->id & 0xff00) << 8))
1928 ^ entry->r_sym ^ (entry->id >> 16);
1929 }
1930
1931 /* Compare local hash entries. */
1932
1933 static int
1934 elfNN_ia64_local_htab_eq (ptr1, ptr2)
1935 const void *ptr1, *ptr2;
1936 {
1937 struct elfNN_ia64_local_hash_entry *entry1
1938 = (struct elfNN_ia64_local_hash_entry *) ptr1;
1939 struct elfNN_ia64_local_hash_entry *entry2
1940 = (struct elfNN_ia64_local_hash_entry *) ptr2;
1941
1942 return entry1->id == entry2->id && entry1->r_sym == entry2->r_sym;
1943 }
1944
1945 /* Create the derived linker hash table. The IA-64 ELF port uses this
1946 derived hash table to keep information specific to the IA-64 ElF
1947 linker (without using static variables). */
1948
1949 static struct bfd_link_hash_table*
1950 elfNN_ia64_hash_table_create (abfd)
1951 bfd *abfd;
1952 {
1953 struct elfNN_ia64_link_hash_table *ret;
1954
1955 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret));
1956 if (!ret)
1957 return 0;
1958
1959 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
1960 elfNN_ia64_new_elf_hash_entry,
1961 sizeof (struct elfNN_ia64_link_hash_entry)))
1962 {
1963 free (ret);
1964 return 0;
1965 }
1966
1967 ret->loc_hash_table = htab_try_create (1024, elfNN_ia64_local_htab_hash,
1968 elfNN_ia64_local_htab_eq, NULL);
1969 ret->loc_hash_memory = objalloc_create ();
1970 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1971 {
1972 free (ret);
1973 return 0;
1974 }
1975
1976 return &ret->root.root;
1977 }
1978
1979 /* Free the global elfNN_ia64_dyn_sym_info array. */
1980
1981 static bfd_boolean
1982 elfNN_ia64_global_dyn_info_free (void **xentry,
1983 PTR unused ATTRIBUTE_UNUSED)
1984 {
1985 struct elfNN_ia64_link_hash_entry *entry
1986 = (struct elfNN_ia64_link_hash_entry *) xentry;
1987
1988 if (entry->root.root.type == bfd_link_hash_warning)
1989 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1990
1991 if (entry->info)
1992 {
1993 free (entry->info);
1994 entry->info = NULL;
1995 entry->count = 0;
1996 entry->sorted_count = 0;
1997 entry->size = 0;
1998 }
1999
2000 return TRUE;
2001 }
2002
2003 /* Free the local elfNN_ia64_dyn_sym_info array. */
2004
2005 static bfd_boolean
2006 elfNN_ia64_local_dyn_info_free (void **slot,
2007 PTR unused ATTRIBUTE_UNUSED)
2008 {
2009 struct elfNN_ia64_local_hash_entry *entry
2010 = (struct elfNN_ia64_local_hash_entry *) *slot;
2011
2012 if (entry->info)
2013 {
2014 free (entry->info);
2015 entry->info = NULL;
2016 entry->count = 0;
2017 entry->sorted_count = 0;
2018 entry->size = 0;
2019 }
2020
2021 return TRUE;
2022 }
2023
2024 /* Destroy IA-64 linker hash table. */
2025
2026 static void
2027 elfNN_ia64_hash_table_free (hash)
2028 struct bfd_link_hash_table *hash;
2029 {
2030 struct elfNN_ia64_link_hash_table *ia64_info
2031 = (struct elfNN_ia64_link_hash_table *) hash;
2032 if (ia64_info->loc_hash_table)
2033 {
2034 htab_traverse (ia64_info->loc_hash_table,
2035 elfNN_ia64_local_dyn_info_free, NULL);
2036 htab_delete (ia64_info->loc_hash_table);
2037 }
2038 if (ia64_info->loc_hash_memory)
2039 objalloc_free ((struct objalloc *) ia64_info->loc_hash_memory);
2040 elf_link_hash_traverse (&ia64_info->root,
2041 elfNN_ia64_global_dyn_info_free, NULL);
2042 _bfd_generic_link_hash_table_free (hash);
2043 }
2044
2045 /* Traverse both local and global hash tables. */
2046
2047 struct elfNN_ia64_dyn_sym_traverse_data
2048 {
2049 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
2050 PTR data;
2051 };
2052
2053 static bfd_boolean
2054 elfNN_ia64_global_dyn_sym_thunk (xentry, xdata)
2055 struct bfd_hash_entry *xentry;
2056 PTR xdata;
2057 {
2058 struct elfNN_ia64_link_hash_entry *entry
2059 = (struct elfNN_ia64_link_hash_entry *) xentry;
2060 struct elfNN_ia64_dyn_sym_traverse_data *data
2061 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
2062 struct elfNN_ia64_dyn_sym_info *dyn_i;
2063 unsigned int count;
2064
2065 if (entry->root.root.type == bfd_link_hash_warning)
2066 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
2067
2068 for (count = entry->count, dyn_i = entry->info;
2069 count != 0;
2070 count--, dyn_i++)
2071 if (! (*data->func) (dyn_i, data->data))
2072 return FALSE;
2073 return TRUE;
2074 }
2075
2076 static bfd_boolean
2077 elfNN_ia64_local_dyn_sym_thunk (slot, xdata)
2078 void **slot;
2079 PTR xdata;
2080 {
2081 struct elfNN_ia64_local_hash_entry *entry
2082 = (struct elfNN_ia64_local_hash_entry *) *slot;
2083 struct elfNN_ia64_dyn_sym_traverse_data *data
2084 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
2085 struct elfNN_ia64_dyn_sym_info *dyn_i;
2086 unsigned int count;
2087
2088 for (count = entry->count, dyn_i = entry->info;
2089 count != 0;
2090 count--, dyn_i++)
2091 if (! (*data->func) (dyn_i, data->data))
2092 return FALSE;
2093 return TRUE;
2094 }
2095
2096 static void
2097 elfNN_ia64_dyn_sym_traverse (ia64_info, func, data)
2098 struct elfNN_ia64_link_hash_table *ia64_info;
2099 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
2100 PTR data;
2101 {
2102 struct elfNN_ia64_dyn_sym_traverse_data xdata;
2103
2104 xdata.func = func;
2105 xdata.data = data;
2106
2107 elf_link_hash_traverse (&ia64_info->root,
2108 elfNN_ia64_global_dyn_sym_thunk, &xdata);
2109 htab_traverse (ia64_info->loc_hash_table,
2110 elfNN_ia64_local_dyn_sym_thunk, &xdata);
2111 }
2112 \f
2113 static bfd_boolean
2114 elfNN_ia64_create_dynamic_sections (abfd, info)
2115 bfd *abfd;
2116 struct bfd_link_info *info;
2117 {
2118 struct elfNN_ia64_link_hash_table *ia64_info;
2119 asection *s;
2120
2121 if (! _bfd_elf_create_dynamic_sections (abfd, info))
2122 return FALSE;
2123
2124 ia64_info = elfNN_ia64_hash_table (info);
2125
2126 ia64_info->plt_sec = bfd_get_section_by_name (abfd, ".plt");
2127 ia64_info->got_sec = bfd_get_section_by_name (abfd, ".got");
2128
2129 {
2130 flagword flags = bfd_get_section_flags (abfd, ia64_info->got_sec);
2131 bfd_set_section_flags (abfd, ia64_info->got_sec, SEC_SMALL_DATA | flags);
2132 /* The .got section is always aligned at 8 bytes. */
2133 bfd_set_section_alignment (abfd, ia64_info->got_sec, 3);
2134 }
2135
2136 if (!get_pltoff (abfd, info, ia64_info))
2137 return FALSE;
2138
2139 s = bfd_make_section_with_flags (abfd, ".rela.IA_64.pltoff",
2140 (SEC_ALLOC | SEC_LOAD
2141 | SEC_HAS_CONTENTS
2142 | SEC_IN_MEMORY
2143 | SEC_LINKER_CREATED
2144 | SEC_READONLY));
2145 if (s == NULL
2146 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2147 return FALSE;
2148 ia64_info->rel_pltoff_sec = s;
2149
2150 s = bfd_make_section_with_flags (abfd, ".rela.got",
2151 (SEC_ALLOC | SEC_LOAD
2152 | SEC_HAS_CONTENTS
2153 | SEC_IN_MEMORY
2154 | SEC_LINKER_CREATED
2155 | SEC_READONLY));
2156 if (s == NULL
2157 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2158 return FALSE;
2159 ia64_info->rel_got_sec = s;
2160
2161 return TRUE;
2162 }
2163
2164 /* Find and/or create a hash entry for local symbol. */
2165 static struct elfNN_ia64_local_hash_entry *
2166 get_local_sym_hash (ia64_info, abfd, rel, create)
2167 struct elfNN_ia64_link_hash_table *ia64_info;
2168 bfd *abfd;
2169 const Elf_Internal_Rela *rel;
2170 bfd_boolean create;
2171 {
2172 struct elfNN_ia64_local_hash_entry e, *ret;
2173 asection *sec = abfd->sections;
2174 hashval_t h = (((sec->id & 0xff) << 24) | ((sec->id & 0xff00) << 8))
2175 ^ ELFNN_R_SYM (rel->r_info) ^ (sec->id >> 16);
2176 void **slot;
2177
2178 e.id = sec->id;
2179 e.r_sym = ELFNN_R_SYM (rel->r_info);
2180 slot = htab_find_slot_with_hash (ia64_info->loc_hash_table, &e, h,
2181 create ? INSERT : NO_INSERT);
2182
2183 if (!slot)
2184 return NULL;
2185
2186 if (*slot)
2187 return (struct elfNN_ia64_local_hash_entry *) *slot;
2188
2189 ret = (struct elfNN_ia64_local_hash_entry *)
2190 objalloc_alloc ((struct objalloc *) ia64_info->loc_hash_memory,
2191 sizeof (struct elfNN_ia64_local_hash_entry));
2192 if (ret)
2193 {
2194 memset (ret, 0, sizeof (*ret));
2195 ret->id = sec->id;
2196 ret->r_sym = ELFNN_R_SYM (rel->r_info);
2197 *slot = ret;
2198 }
2199 return ret;
2200 }
2201
2202 /* Used to sort elfNN_ia64_dyn_sym_info array. */
2203
2204 static int
2205 addend_compare (const void *xp, const void *yp)
2206 {
2207 const struct elfNN_ia64_dyn_sym_info *x
2208 = (const struct elfNN_ia64_dyn_sym_info *) xp;
2209 const struct elfNN_ia64_dyn_sym_info *y
2210 = (const struct elfNN_ia64_dyn_sym_info *) yp;
2211
2212 return x->addend < y->addend ? -1 : x->addend > y->addend ? 1 : 0;
2213 }
2214
2215 /* Sort elfNN_ia64_dyn_sym_info array and remove duplicates. */
2216
2217 static unsigned int
2218 sort_dyn_sym_info (struct elfNN_ia64_dyn_sym_info *info,
2219 unsigned int count)
2220 {
2221 bfd_vma curr, prev;
2222 unsigned int i, dup, diff, dest, src, len;
2223
2224 qsort (info, count, sizeof (*info), addend_compare);
2225
2226 /* Find the first duplicate. */
2227 prev = info [0].addend;
2228 for (i = 1; i < count; i++)
2229 {
2230 curr = info [i].addend;
2231 if (curr == prev)
2232 break;
2233 prev = curr;
2234 }
2235
2236 /* Remove duplicates. */
2237 if (i < count)
2238 {
2239 /* We need to move a block of elements to here. */
2240 dest = i++;
2241 while (i < count)
2242 {
2243 curr = info [i].addend;
2244
2245 /* Move a block of elements whose first one is different from
2246 the previous. */
2247 if (curr == prev)
2248 {
2249 for (src = i + 1; src < count; src++)
2250 if (info [src].addend != curr)
2251 break;
2252 }
2253 else
2254 src = i;
2255
2256 if (src >= count)
2257 break;
2258
2259 /* Find the next duplicate. */
2260 prev = info [src].addend;
2261 for (dup = src + 1; dup < count; dup++)
2262 {
2263 curr = info [dup].addend;
2264 if (curr == prev)
2265 break;
2266 prev = curr;
2267 }
2268
2269 /* How much to move. */
2270 len = dup - src;
2271 i = dup + 1;
2272
2273 if (len == 1 && dup < count)
2274 {
2275 /* If we only move 1 element, we combine it with the next
2276 one. Find the next different one. */
2277 for (diff = dup + 1, src++; diff < count; diff++, src++)
2278 if (info [diff].addend != curr)
2279 break;
2280
2281 if (diff < count)
2282 {
2283 /* Find the next duplicate. */
2284 prev = info [diff].addend;
2285 for (dup = diff + 1; dup < count; dup++)
2286 {
2287 curr = info [dup].addend;
2288 if (curr == prev)
2289 break;
2290 prev = curr;
2291 diff++;
2292 }
2293
2294 len = diff - src + 1;
2295 i = diff + 1;
2296 }
2297 }
2298
2299 memmove (&info [dest], &info [src], len * sizeof (*info));
2300
2301 dest += len;
2302 }
2303
2304 count = dest;
2305 }
2306
2307 return count;
2308 }
2309
2310 /* Find and/or create a descriptor for dynamic symbol info. This will
2311 vary based on global or local symbol, and the addend to the reloc.
2312
2313 We don't sort when inserting. Also, we sort and eliminate
2314 duplicates if there is an unsorted section. Typically, this will
2315 only happen once, because we do all insertions before lookups. We
2316 then use bsearch to do a lookup. This also allows lookups to be
2317 fast. So we have fast insertion (O(log N) due to duplicate check),
2318 fast lookup (O(log N)) and one sort (O(N log N) expected time).
2319 Previously, all lookups were O(N) because of the use of the linked
2320 list and also all insertions were O(N) because of the check for
2321 duplicates. There are some complications here because the array
2322 size grows occasionally, which may add an O(N) factor, but this
2323 should be rare. Also, we free the excess array allocation, which
2324 requires a copy which is O(N), but this only happens once. */
2325
2326 static struct elfNN_ia64_dyn_sym_info *
2327 get_dyn_sym_info (ia64_info, h, abfd, rel, create)
2328 struct elfNN_ia64_link_hash_table *ia64_info;
2329 struct elf_link_hash_entry *h;
2330 bfd *abfd;
2331 const Elf_Internal_Rela *rel;
2332 bfd_boolean create;
2333 {
2334 struct elfNN_ia64_dyn_sym_info **info_p, *info, *dyn_i, key;
2335 unsigned int *count_p, *sorted_count_p, *size_p;
2336 unsigned int count, sorted_count, size;
2337 bfd_vma addend = rel ? rel->r_addend : 0;
2338 bfd_size_type amt;
2339
2340 if (h)
2341 {
2342 struct elfNN_ia64_link_hash_entry *global_h;
2343
2344 global_h = (struct elfNN_ia64_link_hash_entry *) h;
2345 info_p = &global_h->info;
2346 count_p = &global_h->count;
2347 sorted_count_p = &global_h->sorted_count;
2348 size_p = &global_h->size;
2349 }
2350 else
2351 {
2352 struct elfNN_ia64_local_hash_entry *loc_h;
2353
2354 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create);
2355 if (!loc_h)
2356 {
2357 BFD_ASSERT (!create);
2358 return NULL;
2359 }
2360
2361 info_p = &loc_h->info;
2362 count_p = &loc_h->count;
2363 sorted_count_p = &loc_h->sorted_count;
2364 size_p = &loc_h->size;
2365 }
2366
2367 count = *count_p;
2368 sorted_count = *sorted_count_p;
2369 size = *size_p;
2370 info = *info_p;
2371 if (create)
2372 {
2373 /* When we create the array, we don't check for duplicates,
2374 except in the previously sorted section if one exists, and
2375 against the last inserted entry. This allows insertions to
2376 be fast. */
2377 if (info)
2378 {
2379 if (sorted_count)
2380 {
2381 /* Try bsearch first on the sorted section. */
2382 key.addend = addend;
2383 dyn_i = bsearch (&key, info, sorted_count,
2384 sizeof (*info), addend_compare);
2385
2386 if (dyn_i)
2387 {
2388 return dyn_i;
2389 }
2390 }
2391
2392 /* Do a quick check for the last inserted entry. */
2393 dyn_i = info + count - 1;
2394 if (dyn_i->addend == addend)
2395 {
2396 return dyn_i;
2397 }
2398 }
2399
2400 if (size == 0)
2401 {
2402 /* It is the very first element. We create the array of size
2403 1. */
2404 size = 1;
2405 amt = size * sizeof (*info);
2406 info = bfd_malloc (amt);
2407 }
2408 else if (size <= count)
2409 {
2410 /* We double the array size every time when we reach the
2411 size limit. */
2412 size += size;
2413 amt = size * sizeof (*info);
2414 info = bfd_realloc (info, amt);
2415 }
2416 else
2417 goto has_space;
2418
2419 if (info == NULL)
2420 return NULL;
2421 *size_p = size;
2422 *info_p = info;
2423
2424 has_space:
2425 /* Append the new one to the array. */
2426 dyn_i = info + count;
2427 memset (dyn_i, 0, sizeof (*dyn_i));
2428 dyn_i->addend = addend;
2429
2430 /* We increment count only since the new ones are unsorted and
2431 may have duplicate. */
2432 (*count_p)++;
2433 }
2434 else
2435 {
2436 /* It is a lookup without insertion. Sort array if part of the
2437 array isn't sorted. */
2438 if (count != sorted_count)
2439 {
2440 count = sort_dyn_sym_info (info, count);
2441 *count_p = count;
2442 *sorted_count_p = count;
2443 }
2444
2445 /* Free unused memory. */
2446 if (size != count)
2447 {
2448 amt = count * sizeof (*info);
2449 info = bfd_malloc (amt);
2450 if (info != NULL)
2451 {
2452 memcpy (info, *info_p, amt);
2453 free (*info_p);
2454 *size_p = count;
2455 *info_p = info;
2456 }
2457 }
2458
2459 key.addend = addend;
2460 dyn_i = bsearch (&key, info, count,
2461 sizeof (*info), addend_compare);
2462 }
2463
2464 return dyn_i;
2465 }
2466
2467 static asection *
2468 get_got (abfd, info, ia64_info)
2469 bfd *abfd;
2470 struct bfd_link_info *info;
2471 struct elfNN_ia64_link_hash_table *ia64_info;
2472 {
2473 asection *got;
2474 bfd *dynobj;
2475
2476 got = ia64_info->got_sec;
2477 if (!got)
2478 {
2479 flagword flags;
2480
2481 dynobj = ia64_info->root.dynobj;
2482 if (!dynobj)
2483 ia64_info->root.dynobj = dynobj = abfd;
2484 if (!_bfd_elf_create_got_section (dynobj, info))
2485 return 0;
2486
2487 got = bfd_get_section_by_name (dynobj, ".got");
2488 BFD_ASSERT (got);
2489 ia64_info->got_sec = got;
2490
2491 /* The .got section is always aligned at 8 bytes. */
2492 if (!bfd_set_section_alignment (abfd, got, 3))
2493 return 0;
2494
2495 flags = bfd_get_section_flags (abfd, got);
2496 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags);
2497 }
2498
2499 return got;
2500 }
2501
2502 /* Create function descriptor section (.opd). This section is called .opd
2503 because it contains "official procedure descriptors". The "official"
2504 refers to the fact that these descriptors are used when taking the address
2505 of a procedure, thus ensuring a unique address for each procedure. */
2506
2507 static asection *
2508 get_fptr (abfd, info, ia64_info)
2509 bfd *abfd;
2510 struct bfd_link_info *info;
2511 struct elfNN_ia64_link_hash_table *ia64_info;
2512 {
2513 asection *fptr;
2514 bfd *dynobj;
2515
2516 fptr = ia64_info->fptr_sec;
2517 if (!fptr)
2518 {
2519 dynobj = ia64_info->root.dynobj;
2520 if (!dynobj)
2521 ia64_info->root.dynobj = dynobj = abfd;
2522
2523 fptr = bfd_make_section_with_flags (dynobj, ".opd",
2524 (SEC_ALLOC
2525 | SEC_LOAD
2526 | SEC_HAS_CONTENTS
2527 | SEC_IN_MEMORY
2528 | (info->pie ? 0 : SEC_READONLY)
2529 | SEC_LINKER_CREATED));
2530 if (!fptr
2531 || !bfd_set_section_alignment (abfd, fptr, 4))
2532 {
2533 BFD_ASSERT (0);
2534 return NULL;
2535 }
2536
2537 ia64_info->fptr_sec = fptr;
2538
2539 if (info->pie)
2540 {
2541 asection *fptr_rel;
2542 fptr_rel = bfd_make_section_with_flags (dynobj, ".rela.opd",
2543 (SEC_ALLOC | SEC_LOAD
2544 | SEC_HAS_CONTENTS
2545 | SEC_IN_MEMORY
2546 | SEC_LINKER_CREATED
2547 | SEC_READONLY));
2548 if (fptr_rel == NULL
2549 || !bfd_set_section_alignment (abfd, fptr_rel,
2550 LOG_SECTION_ALIGN))
2551 {
2552 BFD_ASSERT (0);
2553 return NULL;
2554 }
2555
2556 ia64_info->rel_fptr_sec = fptr_rel;
2557 }
2558 }
2559
2560 return fptr;
2561 }
2562
2563 static asection *
2564 get_pltoff (abfd, info, ia64_info)
2565 bfd *abfd;
2566 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2567 struct elfNN_ia64_link_hash_table *ia64_info;
2568 {
2569 asection *pltoff;
2570 bfd *dynobj;
2571
2572 pltoff = ia64_info->pltoff_sec;
2573 if (!pltoff)
2574 {
2575 dynobj = ia64_info->root.dynobj;
2576 if (!dynobj)
2577 ia64_info->root.dynobj = dynobj = abfd;
2578
2579 pltoff = bfd_make_section_with_flags (dynobj,
2580 ELF_STRING_ia64_pltoff,
2581 (SEC_ALLOC
2582 | SEC_LOAD
2583 | SEC_HAS_CONTENTS
2584 | SEC_IN_MEMORY
2585 | SEC_SMALL_DATA
2586 | SEC_LINKER_CREATED));
2587 if (!pltoff
2588 || !bfd_set_section_alignment (abfd, pltoff, 4))
2589 {
2590 BFD_ASSERT (0);
2591 return NULL;
2592 }
2593
2594 ia64_info->pltoff_sec = pltoff;
2595 }
2596
2597 return pltoff;
2598 }
2599
2600 static asection *
2601 get_reloc_section (abfd, ia64_info, sec, create)
2602 bfd *abfd;
2603 struct elfNN_ia64_link_hash_table *ia64_info;
2604 asection *sec;
2605 bfd_boolean create;
2606 {
2607 const char *srel_name;
2608 asection *srel;
2609 bfd *dynobj;
2610
2611 srel_name = (bfd_elf_string_from_elf_section
2612 (abfd, elf_elfheader(abfd)->e_shstrndx,
2613 elf_section_data(sec)->rel_hdr.sh_name));
2614 if (srel_name == NULL)
2615 return NULL;
2616
2617 BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
2618 && strcmp (bfd_get_section_name (abfd, sec),
2619 srel_name+5) == 0)
2620 || (CONST_STRNEQ (srel_name, ".rel")
2621 && strcmp (bfd_get_section_name (abfd, sec),
2622 srel_name+4) == 0));
2623
2624 dynobj = ia64_info->root.dynobj;
2625 if (!dynobj)
2626 ia64_info->root.dynobj = dynobj = abfd;
2627
2628 srel = bfd_get_section_by_name (dynobj, srel_name);
2629 if (srel == NULL && create)
2630 {
2631 srel = bfd_make_section_with_flags (dynobj, srel_name,
2632 (SEC_ALLOC | SEC_LOAD
2633 | SEC_HAS_CONTENTS
2634 | SEC_IN_MEMORY
2635 | SEC_LINKER_CREATED
2636 | SEC_READONLY));
2637 if (srel == NULL
2638 || !bfd_set_section_alignment (dynobj, srel,
2639 LOG_SECTION_ALIGN))
2640 return NULL;
2641 }
2642
2643 return srel;
2644 }
2645
2646 static bfd_boolean
2647 count_dyn_reloc (bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i,
2648 asection *srel, int type, bfd_boolean reltext)
2649 {
2650 struct elfNN_ia64_dyn_reloc_entry *rent;
2651
2652 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2653 if (rent->srel == srel && rent->type == type)
2654 break;
2655
2656 if (!rent)
2657 {
2658 rent = ((struct elfNN_ia64_dyn_reloc_entry *)
2659 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)));
2660 if (!rent)
2661 return FALSE;
2662
2663 rent->next = dyn_i->reloc_entries;
2664 rent->srel = srel;
2665 rent->type = type;
2666 rent->count = 0;
2667 dyn_i->reloc_entries = rent;
2668 }
2669 rent->reltext = reltext;
2670 rent->count++;
2671
2672 return TRUE;
2673 }
2674
2675 static bfd_boolean
2676 elfNN_ia64_check_relocs (abfd, info, sec, relocs)
2677 bfd *abfd;
2678 struct bfd_link_info *info;
2679 asection *sec;
2680 const Elf_Internal_Rela *relocs;
2681 {
2682 struct elfNN_ia64_link_hash_table *ia64_info;
2683 const Elf_Internal_Rela *relend;
2684 Elf_Internal_Shdr *symtab_hdr;
2685 const Elf_Internal_Rela *rel;
2686 asection *got, *fptr, *srel, *pltoff;
2687 enum {
2688 NEED_GOT = 1,
2689 NEED_GOTX = 2,
2690 NEED_FPTR = 4,
2691 NEED_PLTOFF = 8,
2692 NEED_MIN_PLT = 16,
2693 NEED_FULL_PLT = 32,
2694 NEED_DYNREL = 64,
2695 NEED_LTOFF_FPTR = 128,
2696 NEED_TPREL = 256,
2697 NEED_DTPMOD = 512,
2698 NEED_DTPREL = 1024
2699 };
2700 int need_entry;
2701 struct elf_link_hash_entry *h;
2702 unsigned long r_symndx;
2703 bfd_boolean maybe_dynamic;
2704
2705 if (info->relocatable)
2706 return TRUE;
2707
2708 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2709 ia64_info = elfNN_ia64_hash_table (info);
2710
2711 got = fptr = srel = pltoff = NULL;
2712
2713 relend = relocs + sec->reloc_count;
2714
2715 /* We scan relocations first to create dynamic relocation arrays. We
2716 modified get_dyn_sym_info to allow fast insertion and support fast
2717 lookup in the next loop. */
2718 for (rel = relocs; rel < relend; ++rel)
2719 {
2720 r_symndx = ELFNN_R_SYM (rel->r_info);
2721 if (r_symndx >= symtab_hdr->sh_info)
2722 {
2723 long indx = r_symndx - symtab_hdr->sh_info;
2724 h = elf_sym_hashes (abfd)[indx];
2725 while (h->root.type == bfd_link_hash_indirect
2726 || h->root.type == bfd_link_hash_warning)
2727 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2728 }
2729 else
2730 h = NULL;
2731
2732 /* We can only get preliminary data on whether a symbol is
2733 locally or externally defined, as not all of the input files
2734 have yet been processed. Do something with what we know, as
2735 this may help reduce memory usage and processing time later. */
2736 maybe_dynamic = (h && ((!info->executable
2737 && (!SYMBOLIC_BIND (info, h)
2738 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2739 || !h->def_regular
2740 || h->root.type == bfd_link_hash_defweak));
2741
2742 need_entry = 0;
2743 switch (ELFNN_R_TYPE (rel->r_info))
2744 {
2745 case R_IA64_TPREL64MSB:
2746 case R_IA64_TPREL64LSB:
2747 if (info->shared || maybe_dynamic)
2748 need_entry = NEED_DYNREL;
2749 break;
2750
2751 case R_IA64_LTOFF_TPREL22:
2752 need_entry = NEED_TPREL;
2753 if (info->shared)
2754 info->flags |= DF_STATIC_TLS;
2755 break;
2756
2757 case R_IA64_DTPREL32MSB:
2758 case R_IA64_DTPREL32LSB:
2759 case R_IA64_DTPREL64MSB:
2760 case R_IA64_DTPREL64LSB:
2761 if (info->shared || maybe_dynamic)
2762 need_entry = NEED_DYNREL;
2763 break;
2764
2765 case R_IA64_LTOFF_DTPREL22:
2766 need_entry = NEED_DTPREL;
2767 break;
2768
2769 case R_IA64_DTPMOD64MSB:
2770 case R_IA64_DTPMOD64LSB:
2771 if (info->shared || maybe_dynamic)
2772 need_entry = NEED_DYNREL;
2773 break;
2774
2775 case R_IA64_LTOFF_DTPMOD22:
2776 need_entry = NEED_DTPMOD;
2777 break;
2778
2779 case R_IA64_LTOFF_FPTR22:
2780 case R_IA64_LTOFF_FPTR64I:
2781 case R_IA64_LTOFF_FPTR32MSB:
2782 case R_IA64_LTOFF_FPTR32LSB:
2783 case R_IA64_LTOFF_FPTR64MSB:
2784 case R_IA64_LTOFF_FPTR64LSB:
2785 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2786 break;
2787
2788 case R_IA64_FPTR64I:
2789 case R_IA64_FPTR32MSB:
2790 case R_IA64_FPTR32LSB:
2791 case R_IA64_FPTR64MSB:
2792 case R_IA64_FPTR64LSB:
2793 if (info->shared || h)
2794 need_entry = NEED_FPTR | NEED_DYNREL;
2795 else
2796 need_entry = NEED_FPTR;
2797 break;
2798
2799 case R_IA64_LTOFF22:
2800 case R_IA64_LTOFF64I:
2801 need_entry = NEED_GOT;
2802 break;
2803
2804 case R_IA64_LTOFF22X:
2805 need_entry = NEED_GOTX;
2806 break;
2807
2808 case R_IA64_PLTOFF22:
2809 case R_IA64_PLTOFF64I:
2810 case R_IA64_PLTOFF64MSB:
2811 case R_IA64_PLTOFF64LSB:
2812 need_entry = NEED_PLTOFF;
2813 if (h)
2814 {
2815 if (maybe_dynamic)
2816 need_entry |= NEED_MIN_PLT;
2817 }
2818 else
2819 {
2820 (*info->callbacks->warning)
2821 (info, _("@pltoff reloc against local symbol"), 0,
2822 abfd, 0, (bfd_vma) 0);
2823 }
2824 break;
2825
2826 case R_IA64_PCREL21B:
2827 case R_IA64_PCREL60B:
2828 /* Depending on where this symbol is defined, we may or may not
2829 need a full plt entry. Only skip if we know we'll not need
2830 the entry -- static or symbolic, and the symbol definition
2831 has already been seen. */
2832 if (maybe_dynamic && rel->r_addend == 0)
2833 need_entry = NEED_FULL_PLT;
2834 break;
2835
2836 case R_IA64_IMM14:
2837 case R_IA64_IMM22:
2838 case R_IA64_IMM64:
2839 case R_IA64_DIR32MSB:
2840 case R_IA64_DIR32LSB:
2841 case R_IA64_DIR64MSB:
2842 case R_IA64_DIR64LSB:
2843 /* Shared objects will always need at least a REL relocation. */
2844 if (info->shared || maybe_dynamic)
2845 need_entry = NEED_DYNREL;
2846 break;
2847
2848 case R_IA64_IPLTMSB:
2849 case R_IA64_IPLTLSB:
2850 /* Shared objects will always need at least a REL relocation. */
2851 if (info->shared || maybe_dynamic)
2852 need_entry = NEED_DYNREL;
2853 break;
2854
2855 case R_IA64_PCREL22:
2856 case R_IA64_PCREL64I:
2857 case R_IA64_PCREL32MSB:
2858 case R_IA64_PCREL32LSB:
2859 case R_IA64_PCREL64MSB:
2860 case R_IA64_PCREL64LSB:
2861 if (maybe_dynamic)
2862 need_entry = NEED_DYNREL;
2863 break;
2864 }
2865
2866 if (!need_entry)
2867 continue;
2868
2869 if ((need_entry & NEED_FPTR) != 0
2870 && rel->r_addend)
2871 {
2872 (*info->callbacks->warning)
2873 (info, _("non-zero addend in @fptr reloc"), 0,
2874 abfd, 0, (bfd_vma) 0);
2875 }
2876
2877 if (get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE) == NULL)
2878 return FALSE;
2879 }
2880
2881 /* Now, we only do lookup without insertion, which is very fast
2882 with the modified get_dyn_sym_info. */
2883 for (rel = relocs; rel < relend; ++rel)
2884 {
2885 struct elfNN_ia64_dyn_sym_info *dyn_i;
2886 int dynrel_type = R_IA64_NONE;
2887
2888 r_symndx = ELFNN_R_SYM (rel->r_info);
2889 if (r_symndx >= symtab_hdr->sh_info)
2890 {
2891 /* We're dealing with a global symbol -- find its hash entry
2892 and mark it as being referenced. */
2893 long indx = r_symndx - symtab_hdr->sh_info;
2894 h = elf_sym_hashes (abfd)[indx];
2895 while (h->root.type == bfd_link_hash_indirect
2896 || h->root.type == bfd_link_hash_warning)
2897 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2898
2899 h->ref_regular = 1;
2900 }
2901 else
2902 h = NULL;
2903
2904 /* We can only get preliminary data on whether a symbol is
2905 locally or externally defined, as not all of the input files
2906 have yet been processed. Do something with what we know, as
2907 this may help reduce memory usage and processing time later. */
2908 maybe_dynamic = (h && ((!info->executable
2909 && (!SYMBOLIC_BIND (info, h)
2910 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2911 || !h->def_regular
2912 || h->root.type == bfd_link_hash_defweak));
2913
2914 need_entry = 0;
2915 switch (ELFNN_R_TYPE (rel->r_info))
2916 {
2917 case R_IA64_TPREL64MSB:
2918 case R_IA64_TPREL64LSB:
2919 if (info->shared || maybe_dynamic)
2920 need_entry = NEED_DYNREL;
2921 dynrel_type = R_IA64_TPREL64LSB;
2922 if (info->shared)
2923 info->flags |= DF_STATIC_TLS;
2924 break;
2925
2926 case R_IA64_LTOFF_TPREL22:
2927 need_entry = NEED_TPREL;
2928 if (info->shared)
2929 info->flags |= DF_STATIC_TLS;
2930 break;
2931
2932 case R_IA64_DTPREL32MSB:
2933 case R_IA64_DTPREL32LSB:
2934 case R_IA64_DTPREL64MSB:
2935 case R_IA64_DTPREL64LSB:
2936 if (info->shared || maybe_dynamic)
2937 need_entry = NEED_DYNREL;
2938 dynrel_type = R_IA64_DTPRELNNLSB;
2939 break;
2940
2941 case R_IA64_LTOFF_DTPREL22:
2942 need_entry = NEED_DTPREL;
2943 break;
2944
2945 case R_IA64_DTPMOD64MSB:
2946 case R_IA64_DTPMOD64LSB:
2947 if (info->shared || maybe_dynamic)
2948 need_entry = NEED_DYNREL;
2949 dynrel_type = R_IA64_DTPMOD64LSB;
2950 break;
2951
2952 case R_IA64_LTOFF_DTPMOD22:
2953 need_entry = NEED_DTPMOD;
2954 break;
2955
2956 case R_IA64_LTOFF_FPTR22:
2957 case R_IA64_LTOFF_FPTR64I:
2958 case R_IA64_LTOFF_FPTR32MSB:
2959 case R_IA64_LTOFF_FPTR32LSB:
2960 case R_IA64_LTOFF_FPTR64MSB:
2961 case R_IA64_LTOFF_FPTR64LSB:
2962 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2963 break;
2964
2965 case R_IA64_FPTR64I:
2966 case R_IA64_FPTR32MSB:
2967 case R_IA64_FPTR32LSB:
2968 case R_IA64_FPTR64MSB:
2969 case R_IA64_FPTR64LSB:
2970 if (info->shared || h)
2971 need_entry = NEED_FPTR | NEED_DYNREL;
2972 else
2973 need_entry = NEED_FPTR;
2974 dynrel_type = R_IA64_FPTRNNLSB;
2975 break;
2976
2977 case R_IA64_LTOFF22:
2978 case R_IA64_LTOFF64I:
2979 need_entry = NEED_GOT;
2980 break;
2981
2982 case R_IA64_LTOFF22X:
2983 need_entry = NEED_GOTX;
2984 break;
2985
2986 case R_IA64_PLTOFF22:
2987 case R_IA64_PLTOFF64I:
2988 case R_IA64_PLTOFF64MSB:
2989 case R_IA64_PLTOFF64LSB:
2990 need_entry = NEED_PLTOFF;
2991 if (h)
2992 {
2993 if (maybe_dynamic)
2994 need_entry |= NEED_MIN_PLT;
2995 }
2996 break;
2997
2998 case R_IA64_PCREL21B:
2999 case R_IA64_PCREL60B:
3000 /* Depending on where this symbol is defined, we may or may not
3001 need a full plt entry. Only skip if we know we'll not need
3002 the entry -- static or symbolic, and the symbol definition
3003 has already been seen. */
3004 if (maybe_dynamic && rel->r_addend == 0)
3005 need_entry = NEED_FULL_PLT;
3006 break;
3007
3008 case R_IA64_IMM14:
3009 case R_IA64_IMM22:
3010 case R_IA64_IMM64:
3011 case R_IA64_DIR32MSB:
3012 case R_IA64_DIR32LSB:
3013 case R_IA64_DIR64MSB:
3014 case R_IA64_DIR64LSB:
3015 /* Shared objects will always need at least a REL relocation. */
3016 if (info->shared || maybe_dynamic)
3017 need_entry = NEED_DYNREL;
3018 dynrel_type = R_IA64_DIRNNLSB;
3019 break;
3020
3021 case R_IA64_IPLTMSB:
3022 case R_IA64_IPLTLSB:
3023 /* Shared objects will always need at least a REL relocation. */
3024 if (info->shared || maybe_dynamic)
3025 need_entry = NEED_DYNREL;
3026 dynrel_type = R_IA64_IPLTLSB;
3027 break;
3028
3029 case R_IA64_PCREL22:
3030 case R_IA64_PCREL64I:
3031 case R_IA64_PCREL32MSB:
3032 case R_IA64_PCREL32LSB:
3033 case R_IA64_PCREL64MSB:
3034 case R_IA64_PCREL64LSB:
3035 if (maybe_dynamic)
3036 need_entry = NEED_DYNREL;
3037 dynrel_type = R_IA64_PCRELNNLSB;
3038 break;
3039 }
3040
3041 if (!need_entry)
3042 continue;
3043
3044 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, FALSE);
3045
3046 /* Record whether or not this is a local symbol. */
3047 dyn_i->h = h;
3048
3049 /* Create what's needed. */
3050 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL
3051 | NEED_DTPMOD | NEED_DTPREL))
3052 {
3053 if (!got)
3054 {
3055 got = get_got (abfd, info, ia64_info);
3056 if (!got)
3057 return FALSE;
3058 }
3059 if (need_entry & NEED_GOT)
3060 dyn_i->want_got = 1;
3061 if (need_entry & NEED_GOTX)
3062 dyn_i->want_gotx = 1;
3063 if (need_entry & NEED_TPREL)
3064 dyn_i->want_tprel = 1;
3065 if (need_entry & NEED_DTPMOD)
3066 dyn_i->want_dtpmod = 1;
3067 if (need_entry & NEED_DTPREL)
3068 dyn_i->want_dtprel = 1;
3069 }
3070 if (need_entry & NEED_FPTR)
3071 {
3072 if (!fptr)
3073 {
3074 fptr = get_fptr (abfd, info, ia64_info);
3075 if (!fptr)
3076 return FALSE;
3077 }
3078
3079 /* FPTRs for shared libraries are allocated by the dynamic
3080 linker. Make sure this local symbol will appear in the
3081 dynamic symbol table. */
3082 if (!h && info->shared)
3083 {
3084 if (! (bfd_elf_link_record_local_dynamic_symbol
3085 (info, abfd, (long) r_symndx)))
3086 return FALSE;
3087 }
3088
3089 dyn_i->want_fptr = 1;
3090 }
3091 if (need_entry & NEED_LTOFF_FPTR)
3092 dyn_i->want_ltoff_fptr = 1;
3093 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT))
3094 {
3095 if (!ia64_info->root.dynobj)
3096 ia64_info->root.dynobj = abfd;
3097 h->needs_plt = 1;
3098 dyn_i->want_plt = 1;
3099 }
3100 if (need_entry & NEED_FULL_PLT)
3101 dyn_i->want_plt2 = 1;
3102 if (need_entry & NEED_PLTOFF)
3103 {
3104 /* This is needed here, in case @pltoff is used in a non-shared
3105 link. */
3106 if (!pltoff)
3107 {
3108 pltoff = get_pltoff (abfd, info, ia64_info);
3109 if (!pltoff)
3110 return FALSE;
3111 }
3112
3113 dyn_i->want_pltoff = 1;
3114 }
3115 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
3116 {
3117 if (!srel)
3118 {
3119 srel = get_reloc_section (abfd, ia64_info, sec, TRUE);
3120 if (!srel)
3121 return FALSE;
3122 }
3123 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type,
3124 (sec->flags & SEC_READONLY) != 0))
3125 return FALSE;
3126 }
3127 }
3128
3129 return TRUE;
3130 }
3131
3132 /* For cleanliness, and potentially faster dynamic loading, allocate
3133 external GOT entries first. */
3134
3135 static bfd_boolean
3136 allocate_global_data_got (dyn_i, data)
3137 struct elfNN_ia64_dyn_sym_info *dyn_i;
3138 PTR data;
3139 {
3140 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3141
3142 if ((dyn_i->want_got || dyn_i->want_gotx)
3143 && ! dyn_i->want_fptr
3144 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3145 {
3146 dyn_i->got_offset = x->ofs;
3147 x->ofs += 8;
3148 }
3149 if (dyn_i->want_tprel)
3150 {
3151 dyn_i->tprel_offset = x->ofs;
3152 x->ofs += 8;
3153 }
3154 if (dyn_i->want_dtpmod)
3155 {
3156 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3157 {
3158 dyn_i->dtpmod_offset = x->ofs;
3159 x->ofs += 8;
3160 }
3161 else
3162 {
3163 struct elfNN_ia64_link_hash_table *ia64_info;
3164
3165 ia64_info = elfNN_ia64_hash_table (x->info);
3166 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1)
3167 {
3168 ia64_info->self_dtpmod_offset = x->ofs;
3169 x->ofs += 8;
3170 }
3171 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset;
3172 }
3173 }
3174 if (dyn_i->want_dtprel)
3175 {
3176 dyn_i->dtprel_offset = x->ofs;
3177 x->ofs += 8;
3178 }
3179 return TRUE;
3180 }
3181
3182 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */
3183
3184 static bfd_boolean
3185 allocate_global_fptr_got (dyn_i, data)
3186 struct elfNN_ia64_dyn_sym_info *dyn_i;
3187 PTR data;
3188 {
3189 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3190
3191 if (dyn_i->want_got
3192 && dyn_i->want_fptr
3193 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTRNNLSB))
3194 {
3195 dyn_i->got_offset = x->ofs;
3196 x->ofs += 8;
3197 }
3198 return TRUE;
3199 }
3200
3201 /* Lastly, allocate all the GOT entries for local data. */
3202
3203 static bfd_boolean
3204 allocate_local_got (dyn_i, data)
3205 struct elfNN_ia64_dyn_sym_info *dyn_i;
3206 PTR data;
3207 {
3208 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3209
3210 if ((dyn_i->want_got || dyn_i->want_gotx)
3211 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3212 {
3213 dyn_i->got_offset = x->ofs;
3214 x->ofs += 8;
3215 }
3216 return TRUE;
3217 }
3218
3219 /* Search for the index of a global symbol in it's defining object file. */
3220
3221 static long
3222 global_sym_index (h)
3223 struct elf_link_hash_entry *h;
3224 {
3225 struct elf_link_hash_entry **p;
3226 bfd *obj;
3227
3228 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3229 || h->root.type == bfd_link_hash_defweak);
3230
3231 obj = h->root.u.def.section->owner;
3232 for (p = elf_sym_hashes (obj); *p != h; ++p)
3233 continue;
3234
3235 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info;
3236 }
3237
3238 /* Allocate function descriptors. We can do these for every function
3239 in a main executable that is not exported. */
3240
3241 static bfd_boolean
3242 allocate_fptr (dyn_i, data)
3243 struct elfNN_ia64_dyn_sym_info *dyn_i;
3244 PTR data;
3245 {
3246 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3247
3248 if (dyn_i->want_fptr)
3249 {
3250 struct elf_link_hash_entry *h = dyn_i->h;
3251
3252 if (h)
3253 while (h->root.type == bfd_link_hash_indirect
3254 || h->root.type == bfd_link_hash_warning)
3255 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3256
3257 if (!x->info->executable
3258 && (!h
3259 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3260 || (h->root.type != bfd_link_hash_undefweak
3261 && h->root.type != bfd_link_hash_undefined)))
3262 {
3263 if (h && h->dynindx == -1)
3264 {
3265 BFD_ASSERT ((h->root.type == bfd_link_hash_defined)
3266 || (h->root.type == bfd_link_hash_defweak));
3267
3268 if (!bfd_elf_link_record_local_dynamic_symbol
3269 (x->info, h->root.u.def.section->owner,
3270 global_sym_index (h)))
3271 return FALSE;
3272 }
3273
3274 dyn_i->want_fptr = 0;
3275 }
3276 else if (h == NULL || h->dynindx == -1)
3277 {
3278 dyn_i->fptr_offset = x->ofs;
3279 x->ofs += 16;
3280 }
3281 else
3282 dyn_i->want_fptr = 0;
3283 }
3284 return TRUE;
3285 }
3286
3287 /* Allocate all the minimal PLT entries. */
3288
3289 static bfd_boolean
3290 allocate_plt_entries (dyn_i, data)
3291 struct elfNN_ia64_dyn_sym_info *dyn_i;
3292 PTR data;
3293 {
3294 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3295
3296 if (dyn_i->want_plt)
3297 {
3298 struct elf_link_hash_entry *h = dyn_i->h;
3299
3300 if (h)
3301 while (h->root.type == bfd_link_hash_indirect
3302 || h->root.type == bfd_link_hash_warning)
3303 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3304
3305 /* ??? Versioned symbols seem to lose NEEDS_PLT. */
3306 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0))
3307 {
3308 bfd_size_type offset = x->ofs;
3309 if (offset == 0)
3310 offset = PLT_HEADER_SIZE;
3311 dyn_i->plt_offset = offset;
3312 x->ofs = offset + PLT_MIN_ENTRY_SIZE;
3313
3314 dyn_i->want_pltoff = 1;
3315 }
3316 else
3317 {
3318 dyn_i->want_plt = 0;
3319 dyn_i->want_plt2 = 0;
3320 }
3321 }
3322 return TRUE;
3323 }
3324
3325 /* Allocate all the full PLT entries. */
3326
3327 static bfd_boolean
3328 allocate_plt2_entries (dyn_i, data)
3329 struct elfNN_ia64_dyn_sym_info *dyn_i;
3330 PTR data;
3331 {
3332 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3333
3334 if (dyn_i->want_plt2)
3335 {
3336 struct elf_link_hash_entry *h = dyn_i->h;
3337 bfd_size_type ofs = x->ofs;
3338
3339 dyn_i->plt2_offset = ofs;
3340 x->ofs = ofs + PLT_FULL_ENTRY_SIZE;
3341
3342 while (h->root.type == bfd_link_hash_indirect
3343 || h->root.type == bfd_link_hash_warning)
3344 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3345 dyn_i->h->plt.offset = ofs;
3346 }
3347 return TRUE;
3348 }
3349
3350 /* Allocate all the PLTOFF entries requested by relocations and
3351 plt entries. We can't share space with allocated FPTR entries,
3352 because the latter are not necessarily addressable by the GP.
3353 ??? Relaxation might be able to determine that they are. */
3354
3355 static bfd_boolean
3356 allocate_pltoff_entries (dyn_i, data)
3357 struct elfNN_ia64_dyn_sym_info *dyn_i;
3358 PTR data;
3359 {
3360 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3361
3362 if (dyn_i->want_pltoff)
3363 {
3364 dyn_i->pltoff_offset = x->ofs;
3365 x->ofs += 16;
3366 }
3367 return TRUE;
3368 }
3369
3370 /* Allocate dynamic relocations for those symbols that turned out
3371 to be dynamic. */
3372
3373 static bfd_boolean
3374 allocate_dynrel_entries (dyn_i, data)
3375 struct elfNN_ia64_dyn_sym_info *dyn_i;
3376 PTR data;
3377 {
3378 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3379 struct elfNN_ia64_link_hash_table *ia64_info;
3380 struct elfNN_ia64_dyn_reloc_entry *rent;
3381 bfd_boolean dynamic_symbol, shared, resolved_zero;
3382
3383 ia64_info = elfNN_ia64_hash_table (x->info);
3384
3385 /* Note that this can't be used in relation to FPTR relocs below. */
3386 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0);
3387
3388 shared = x->info->shared;
3389 resolved_zero = (dyn_i->h
3390 && ELF_ST_VISIBILITY (dyn_i->h->other)
3391 && dyn_i->h->root.type == bfd_link_hash_undefweak);
3392
3393 /* Take care of the GOT and PLT relocations. */
3394
3395 if ((!resolved_zero
3396 && (dynamic_symbol || shared)
3397 && (dyn_i->want_got || dyn_i->want_gotx))
3398 || (dyn_i->want_ltoff_fptr
3399 && dyn_i->h
3400 && dyn_i->h->dynindx != -1))
3401 {
3402 if (!dyn_i->want_ltoff_fptr
3403 || !x->info->pie
3404 || dyn_i->h == NULL
3405 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3406 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3407 }
3408 if ((dynamic_symbol || shared) && dyn_i->want_tprel)
3409 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3410 if (dynamic_symbol && dyn_i->want_dtpmod)
3411 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3412 if (dynamic_symbol && dyn_i->want_dtprel)
3413 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3414
3415 if (x->only_got)
3416 return TRUE;
3417
3418 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr)
3419 {
3420 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak)
3421 ia64_info->rel_fptr_sec->size += sizeof (ElfNN_External_Rela);
3422 }
3423
3424 if (!resolved_zero && dyn_i->want_pltoff)
3425 {
3426 bfd_size_type t = 0;
3427
3428 /* Dynamic symbols get one IPLT relocation. Local symbols in
3429 shared libraries get two REL relocations. Local symbols in
3430 main applications get nothing. */
3431 if (dynamic_symbol)
3432 t = sizeof (ElfNN_External_Rela);
3433 else if (shared)
3434 t = 2 * sizeof (ElfNN_External_Rela);
3435
3436 ia64_info->rel_pltoff_sec->size += t;
3437 }
3438
3439 /* Take care of the normal data relocations. */
3440
3441 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
3442 {
3443 int count = rent->count;
3444
3445 switch (rent->type)
3446 {
3447 case R_IA64_FPTR32LSB:
3448 case R_IA64_FPTR64LSB:
3449 /* Allocate one iff !want_fptr and not PIE, which by this point
3450 will be true only if we're actually allocating one statically
3451 in the main executable. Position independent executables
3452 need a relative reloc. */
3453 if (dyn_i->want_fptr && !x->info->pie)
3454 continue;
3455 break;
3456 case R_IA64_PCREL32LSB:
3457 case R_IA64_PCREL64LSB:
3458 if (!dynamic_symbol)
3459 continue;
3460 break;
3461 case R_IA64_DIR32LSB:
3462 case R_IA64_DIR64LSB:
3463 if (!dynamic_symbol && !shared)
3464 continue;
3465 break;
3466 case R_IA64_IPLTLSB:
3467 if (!dynamic_symbol && !shared)
3468 continue;
3469 /* Use two REL relocations for IPLT relocations
3470 against local symbols. */
3471 if (!dynamic_symbol)
3472 count *= 2;
3473 break;
3474 case R_IA64_DTPREL32LSB:
3475 case R_IA64_TPREL64LSB:
3476 case R_IA64_DTPREL64LSB:
3477 case R_IA64_DTPMOD64LSB:
3478 break;
3479 default:
3480 abort ();
3481 }
3482 if (rent->reltext)
3483 ia64_info->reltext = 1;
3484 rent->srel->size += sizeof (ElfNN_External_Rela) * count;
3485 }
3486
3487 return TRUE;
3488 }
3489
3490 static bfd_boolean
3491 elfNN_ia64_adjust_dynamic_symbol (info, h)
3492 struct bfd_link_info *info ATTRIBUTE_UNUSED;
3493 struct elf_link_hash_entry *h;
3494 {
3495 /* ??? Undefined symbols with PLT entries should be re-defined
3496 to be the PLT entry. */
3497
3498 /* If this is a weak symbol, and there is a real definition, the
3499 processor independent code will have arranged for us to see the
3500 real definition first, and we can just use the same value. */
3501 if (h->u.weakdef != NULL)
3502 {
3503 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3504 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3505 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3506 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3507 return TRUE;
3508 }
3509
3510 /* If this is a reference to a symbol defined by a dynamic object which
3511 is not a function, we might allocate the symbol in our .dynbss section
3512 and allocate a COPY dynamic relocation.
3513
3514 But IA-64 code is canonically PIC, so as a rule we can avoid this sort
3515 of hackery. */
3516
3517 return TRUE;
3518 }
3519
3520 static bfd_boolean
3521 elfNN_ia64_size_dynamic_sections (output_bfd, info)
3522 bfd *output_bfd ATTRIBUTE_UNUSED;
3523 struct bfd_link_info *info;
3524 {
3525 struct elfNN_ia64_allocate_data data;
3526 struct elfNN_ia64_link_hash_table *ia64_info;
3527 asection *sec;
3528 bfd *dynobj;
3529 bfd_boolean relplt = FALSE;
3530
3531 dynobj = elf_hash_table(info)->dynobj;
3532 ia64_info = elfNN_ia64_hash_table (info);
3533 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
3534 BFD_ASSERT(dynobj != NULL);
3535 data.info = info;
3536
3537 /* Set the contents of the .interp section to the interpreter. */
3538 if (ia64_info->root.dynamic_sections_created
3539 && info->executable)
3540 {
3541 sec = bfd_get_section_by_name (dynobj, ".interp");
3542 BFD_ASSERT (sec != NULL);
3543 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
3544 sec->size = strlen (ELF_DYNAMIC_INTERPRETER) + 1;
3545 }
3546
3547 /* Allocate the GOT entries. */
3548
3549 if (ia64_info->got_sec)
3550 {
3551 data.ofs = 0;
3552 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
3553 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
3554 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
3555 ia64_info->got_sec->size = data.ofs;
3556 }
3557
3558 /* Allocate the FPTR entries. */
3559
3560 if (ia64_info->fptr_sec)
3561 {
3562 data.ofs = 0;
3563 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data);
3564 ia64_info->fptr_sec->size = data.ofs;
3565 }
3566
3567 /* Now that we've seen all of the input files, we can decide which
3568 symbols need plt entries. Allocate the minimal PLT entries first.
3569 We do this even though dynamic_sections_created may be FALSE, because
3570 this has the side-effect of clearing want_plt and want_plt2. */
3571
3572 data.ofs = 0;
3573 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data);
3574
3575 ia64_info->minplt_entries = 0;
3576 if (data.ofs)
3577 {
3578 ia64_info->minplt_entries
3579 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
3580 }
3581
3582 /* Align the pointer for the plt2 entries. */
3583 data.ofs = (data.ofs + 31) & (bfd_vma) -32;
3584
3585 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data);
3586 if (data.ofs != 0 || ia64_info->root.dynamic_sections_created)
3587 {
3588 /* FIXME: we always reserve the memory for dynamic linker even if
3589 there are no PLT entries since dynamic linker may assume the
3590 reserved memory always exists. */
3591
3592 BFD_ASSERT (ia64_info->root.dynamic_sections_created);
3593
3594 ia64_info->plt_sec->size = data.ofs;
3595
3596 /* If we've got a .plt, we need some extra memory for the dynamic
3597 linker. We stuff these in .got.plt. */
3598 sec = bfd_get_section_by_name (dynobj, ".got.plt");
3599 sec->size = 8 * PLT_RESERVED_WORDS;
3600 }
3601
3602 /* Allocate the PLTOFF entries. */
3603
3604 if (ia64_info->pltoff_sec)
3605 {
3606 data.ofs = 0;
3607 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data);
3608 ia64_info->pltoff_sec->size = data.ofs;
3609 }
3610
3611 if (ia64_info->root.dynamic_sections_created)
3612 {
3613 /* Allocate space for the dynamic relocations that turned out to be
3614 required. */
3615
3616 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
3617 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3618 data.only_got = FALSE;
3619 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data);
3620 }
3621
3622 /* We have now determined the sizes of the various dynamic sections.
3623 Allocate memory for them. */
3624 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
3625 {
3626 bfd_boolean strip;
3627
3628 if (!(sec->flags & SEC_LINKER_CREATED))
3629 continue;
3630
3631 /* If we don't need this section, strip it from the output file.
3632 There were several sections primarily related to dynamic
3633 linking that must be create before the linker maps input
3634 sections to output sections. The linker does that before
3635 bfd_elf_size_dynamic_sections is called, and it is that
3636 function which decides whether anything needs to go into
3637 these sections. */
3638
3639 strip = (sec->size == 0);
3640
3641 if (sec == ia64_info->got_sec)
3642 strip = FALSE;
3643 else if (sec == ia64_info->rel_got_sec)
3644 {
3645 if (strip)
3646 ia64_info->rel_got_sec = NULL;
3647 else
3648 /* We use the reloc_count field as a counter if we need to
3649 copy relocs into the output file. */
3650 sec->reloc_count = 0;
3651 }
3652 else if (sec == ia64_info->fptr_sec)
3653 {
3654 if (strip)
3655 ia64_info->fptr_sec = NULL;
3656 }
3657 else if (sec == ia64_info->rel_fptr_sec)
3658 {
3659 if (strip)
3660 ia64_info->rel_fptr_sec = NULL;
3661 else
3662 /* We use the reloc_count field as a counter if we need to
3663 copy relocs into the output file. */
3664 sec->reloc_count = 0;
3665 }
3666 else if (sec == ia64_info->plt_sec)
3667 {
3668 if (strip)
3669 ia64_info->plt_sec = NULL;
3670 }
3671 else if (sec == ia64_info->pltoff_sec)
3672 {
3673 if (strip)
3674 ia64_info->pltoff_sec = NULL;
3675 }
3676 else if (sec == ia64_info->rel_pltoff_sec)
3677 {
3678 if (strip)
3679 ia64_info->rel_pltoff_sec = NULL;
3680 else
3681 {
3682 relplt = TRUE;
3683 /* We use the reloc_count field as a counter if we need to
3684 copy relocs into the output file. */
3685 sec->reloc_count = 0;
3686 }
3687 }
3688 else
3689 {
3690 const char *name;
3691
3692 /* It's OK to base decisions on the section name, because none
3693 of the dynobj section names depend upon the input files. */
3694 name = bfd_get_section_name (dynobj, sec);
3695
3696 if (strcmp (name, ".got.plt") == 0)
3697 strip = FALSE;
3698 else if (CONST_STRNEQ (name, ".rel"))
3699 {
3700 if (!strip)
3701 {
3702 /* We use the reloc_count field as a counter if we need to
3703 copy relocs into the output file. */
3704 sec->reloc_count = 0;
3705 }
3706 }
3707 else
3708 continue;
3709 }
3710
3711 if (strip)
3712 sec->flags |= SEC_EXCLUDE;
3713 else
3714 {
3715 /* Allocate memory for the section contents. */
3716 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
3717 if (sec->contents == NULL && sec->size != 0)
3718 return FALSE;
3719 }
3720 }
3721
3722 if (elf_hash_table (info)->dynamic_sections_created)
3723 {
3724 /* Add some entries to the .dynamic section. We fill in the values
3725 later (in finish_dynamic_sections) but we must add the entries now
3726 so that we get the correct size for the .dynamic section. */
3727
3728 if (info->executable)
3729 {
3730 /* The DT_DEBUG entry is filled in by the dynamic linker and used
3731 by the debugger. */
3732 #define add_dynamic_entry(TAG, VAL) \
3733 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3734
3735 if (!add_dynamic_entry (DT_DEBUG, 0))
3736 return FALSE;
3737 }
3738
3739 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0))
3740 return FALSE;
3741 if (!add_dynamic_entry (DT_PLTGOT, 0))
3742 return FALSE;
3743
3744 if (relplt)
3745 {
3746 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3747 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3748 || !add_dynamic_entry (DT_JMPREL, 0))
3749 return FALSE;
3750 }
3751
3752 if (!add_dynamic_entry (DT_RELA, 0)
3753 || !add_dynamic_entry (DT_RELASZ, 0)
3754 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
3755 return FALSE;
3756
3757 if (ia64_info->reltext)
3758 {
3759 if (!add_dynamic_entry (DT_TEXTREL, 0))
3760 return FALSE;
3761 info->flags |= DF_TEXTREL;
3762 }
3763 }
3764
3765 /* ??? Perhaps force __gp local. */
3766
3767 return TRUE;
3768 }
3769
3770 static bfd_reloc_status_type
3771 elfNN_ia64_install_value (hit_addr, v, r_type)
3772 bfd_byte *hit_addr;
3773 bfd_vma v;
3774 unsigned int r_type;
3775 {
3776 const struct ia64_operand *op;
3777 int bigendian = 0, shift = 0;
3778 bfd_vma t0, t1, dword;
3779 ia64_insn insn;
3780 enum ia64_opnd opnd;
3781 const char *err;
3782 size_t size = 8;
3783 #ifdef BFD_HOST_U_64_BIT
3784 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v;
3785 #else
3786 bfd_vma val = v;
3787 #endif
3788
3789 opnd = IA64_OPND_NIL;
3790 switch (r_type)
3791 {
3792 case R_IA64_NONE:
3793 case R_IA64_LDXMOV:
3794 return bfd_reloc_ok;
3795
3796 /* Instruction relocations. */
3797
3798 case R_IA64_IMM14:
3799 case R_IA64_TPREL14:
3800 case R_IA64_DTPREL14:
3801 opnd = IA64_OPND_IMM14;
3802 break;
3803
3804 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break;
3805 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break;
3806 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break;
3807 case R_IA64_PCREL21B:
3808 case R_IA64_PCREL21BI:
3809 opnd = IA64_OPND_TGT25c;
3810 break;
3811
3812 case R_IA64_IMM22:
3813 case R_IA64_GPREL22:
3814 case R_IA64_LTOFF22:
3815 case R_IA64_LTOFF22X:
3816 case R_IA64_PLTOFF22:
3817 case R_IA64_PCREL22:
3818 case R_IA64_LTOFF_FPTR22:
3819 case R_IA64_TPREL22:
3820 case R_IA64_DTPREL22:
3821 case R_IA64_LTOFF_TPREL22:
3822 case R_IA64_LTOFF_DTPMOD22:
3823 case R_IA64_LTOFF_DTPREL22:
3824 opnd = IA64_OPND_IMM22;
3825 break;
3826
3827 case R_IA64_IMM64:
3828 case R_IA64_GPREL64I:
3829 case R_IA64_LTOFF64I:
3830 case R_IA64_PLTOFF64I:
3831 case R_IA64_PCREL64I:
3832 case R_IA64_FPTR64I:
3833 case R_IA64_LTOFF_FPTR64I:
3834 case R_IA64_TPREL64I:
3835 case R_IA64_DTPREL64I:
3836 opnd = IA64_OPND_IMMU64;
3837 break;
3838
3839 /* Data relocations. */
3840
3841 case R_IA64_DIR32MSB:
3842 case R_IA64_GPREL32MSB:
3843 case R_IA64_FPTR32MSB:
3844 case R_IA64_PCREL32MSB:
3845 case R_IA64_LTOFF_FPTR32MSB:
3846 case R_IA64_SEGREL32MSB:
3847 case R_IA64_SECREL32MSB:
3848 case R_IA64_LTV32MSB:
3849 case R_IA64_DTPREL32MSB:
3850 size = 4; bigendian = 1;
3851 break;
3852
3853 case R_IA64_DIR32LSB:
3854 case R_IA64_GPREL32LSB:
3855 case R_IA64_FPTR32LSB:
3856 case R_IA64_PCREL32LSB:
3857 case R_IA64_LTOFF_FPTR32LSB:
3858 case R_IA64_SEGREL32LSB:
3859 case R_IA64_SECREL32LSB:
3860 case R_IA64_LTV32LSB:
3861 case R_IA64_DTPREL32LSB:
3862 size = 4; bigendian = 0;
3863 break;
3864
3865 case R_IA64_DIR64MSB:
3866 case R_IA64_GPREL64MSB:
3867 case R_IA64_PLTOFF64MSB:
3868 case R_IA64_FPTR64MSB:
3869 case R_IA64_PCREL64MSB:
3870 case R_IA64_LTOFF_FPTR64MSB:
3871 case R_IA64_SEGREL64MSB:
3872 case R_IA64_SECREL64MSB:
3873 case R_IA64_LTV64MSB:
3874 case R_IA64_TPREL64MSB:
3875 case R_IA64_DTPMOD64MSB:
3876 case R_IA64_DTPREL64MSB:
3877 size = 8; bigendian = 1;
3878 break;
3879
3880 case R_IA64_DIR64LSB:
3881 case R_IA64_GPREL64LSB:
3882 case R_IA64_PLTOFF64LSB:
3883 case R_IA64_FPTR64LSB:
3884 case R_IA64_PCREL64LSB:
3885 case R_IA64_LTOFF_FPTR64LSB:
3886 case R_IA64_SEGREL64LSB:
3887 case R_IA64_SECREL64LSB:
3888 case R_IA64_LTV64LSB:
3889 case R_IA64_TPREL64LSB:
3890 case R_IA64_DTPMOD64LSB:
3891 case R_IA64_DTPREL64LSB:
3892 size = 8; bigendian = 0;
3893 break;
3894
3895 /* Unsupported / Dynamic relocations. */
3896 default:
3897 return bfd_reloc_notsupported;
3898 }
3899
3900 switch (opnd)
3901 {
3902 case IA64_OPND_IMMU64:
3903 hit_addr -= (long) hit_addr & 0x3;
3904 t0 = bfd_getl64 (hit_addr);
3905 t1 = bfd_getl64 (hit_addr + 8);
3906
3907 /* tmpl/s: bits 0.. 5 in t0
3908 slot 0: bits 5..45 in t0
3909 slot 1: bits 46..63 in t0, bits 0..22 in t1
3910 slot 2: bits 23..63 in t1 */
3911
3912 /* First, clear the bits that form the 64 bit constant. */
3913 t0 &= ~(0x3ffffLL << 46);
3914 t1 &= ~(0x7fffffLL
3915 | (( (0x07fLL << 13) | (0x1ffLL << 27)
3916 | (0x01fLL << 22) | (0x001LL << 21)
3917 | (0x001LL << 36)) << 23));
3918
3919 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */
3920 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */
3921 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */
3922 | (((val >> 7) & 0x1ff) << 27) /* imm9d */
3923 | (((val >> 16) & 0x01f) << 22) /* imm5c */
3924 | (((val >> 21) & 0x001) << 21) /* ic */
3925 | (((val >> 63) & 0x001) << 36)) << 23; /* i */
3926
3927 bfd_putl64 (t0, hit_addr);
3928 bfd_putl64 (t1, hit_addr + 8);
3929 break;
3930
3931 case IA64_OPND_TGT64:
3932 hit_addr -= (long) hit_addr & 0x3;
3933 t0 = bfd_getl64 (hit_addr);
3934 t1 = bfd_getl64 (hit_addr + 8);
3935
3936 /* tmpl/s: bits 0.. 5 in t0
3937 slot 0: bits 5..45 in t0
3938 slot 1: bits 46..63 in t0, bits 0..22 in t1
3939 slot 2: bits 23..63 in t1 */
3940
3941 /* First, clear the bits that form the 64 bit constant. */
3942 t0 &= ~(0x3ffffLL << 46);
3943 t1 &= ~(0x7fffffLL
3944 | ((1LL << 36 | 0xfffffLL << 13) << 23));
3945
3946 val >>= 4;
3947 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */
3948 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */
3949 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */
3950 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */
3951
3952 bfd_putl64 (t0, hit_addr);
3953 bfd_putl64 (t1, hit_addr + 8);
3954 break;
3955
3956 default:
3957 switch ((long) hit_addr & 0x3)
3958 {
3959 case 0: shift = 5; break;
3960 case 1: shift = 14; hit_addr += 3; break;
3961 case 2: shift = 23; hit_addr += 6; break;
3962 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */
3963 }
3964 dword = bfd_getl64 (hit_addr);
3965 insn = (dword >> shift) & 0x1ffffffffffLL;
3966
3967 op = elf64_ia64_operands + opnd;
3968 err = (*op->insert) (op, val, &insn);
3969 if (err)
3970 return bfd_reloc_overflow;
3971
3972 dword &= ~(0x1ffffffffffLL << shift);
3973 dword |= (insn << shift);
3974 bfd_putl64 (dword, hit_addr);
3975 break;
3976
3977 case IA64_OPND_NIL:
3978 /* A data relocation. */
3979 if (bigendian)
3980 if (size == 4)
3981 bfd_putb32 (val, hit_addr);
3982 else
3983 bfd_putb64 (val, hit_addr);
3984 else
3985 if (size == 4)
3986 bfd_putl32 (val, hit_addr);
3987 else
3988 bfd_putl64 (val, hit_addr);
3989 break;
3990 }
3991
3992 return bfd_reloc_ok;
3993 }
3994
3995 static void
3996 elfNN_ia64_install_dyn_reloc (abfd, info, sec, srel, offset, type,
3997 dynindx, addend)
3998 bfd *abfd;
3999 struct bfd_link_info *info;
4000 asection *sec;
4001 asection *srel;
4002 bfd_vma offset;
4003 unsigned int type;
4004 long dynindx;
4005 bfd_vma addend;
4006 {
4007 Elf_Internal_Rela outrel;
4008 bfd_byte *loc;
4009
4010 BFD_ASSERT (dynindx != -1);
4011 outrel.r_info = ELFNN_R_INFO (dynindx, type);
4012 outrel.r_addend = addend;
4013 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset);
4014 if (outrel.r_offset >= (bfd_vma) -2)
4015 {
4016 /* Run for the hills. We shouldn't be outputting a relocation
4017 for this. So do what everyone else does and output a no-op. */
4018 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE);
4019 outrel.r_addend = 0;
4020 outrel.r_offset = 0;
4021 }
4022 else
4023 outrel.r_offset += sec->output_section->vma + sec->output_offset;
4024
4025 loc = srel->contents;
4026 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela);
4027 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
4028 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count <= srel->size);
4029 }
4030
4031 /* Store an entry for target address TARGET_ADDR in the linkage table
4032 and return the gp-relative address of the linkage table entry. */
4033
4034 static bfd_vma
4035 set_got_entry (abfd, info, dyn_i, dynindx, addend, value, dyn_r_type)
4036 bfd *abfd;
4037 struct bfd_link_info *info;
4038 struct elfNN_ia64_dyn_sym_info *dyn_i;
4039 long dynindx;
4040 bfd_vma addend;
4041 bfd_vma value;
4042 unsigned int dyn_r_type;
4043 {
4044 struct elfNN_ia64_link_hash_table *ia64_info;
4045 asection *got_sec;
4046 bfd_boolean done;
4047 bfd_vma got_offset;
4048
4049 ia64_info = elfNN_ia64_hash_table (info);
4050 got_sec = ia64_info->got_sec;
4051
4052 switch (dyn_r_type)
4053 {
4054 case R_IA64_TPREL64LSB:
4055 done = dyn_i->tprel_done;
4056 dyn_i->tprel_done = TRUE;
4057 got_offset = dyn_i->tprel_offset;
4058 break;
4059 case R_IA64_DTPMOD64LSB:
4060 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset)
4061 {
4062 done = dyn_i->dtpmod_done;
4063 dyn_i->dtpmod_done = TRUE;
4064 }
4065 else
4066 {
4067 done = ia64_info->self_dtpmod_done;
4068 ia64_info->self_dtpmod_done = TRUE;
4069 dynindx = 0;
4070 }
4071 got_offset = dyn_i->dtpmod_offset;
4072 break;
4073 case R_IA64_DTPREL32LSB:
4074 case R_IA64_DTPREL64LSB:
4075 done = dyn_i->dtprel_done;
4076 dyn_i->dtprel_done = TRUE;
4077 got_offset = dyn_i->dtprel_offset;
4078 break;
4079 default:
4080 done = dyn_i->got_done;
4081 dyn_i->got_done = TRUE;
4082 got_offset = dyn_i->got_offset;
4083 break;
4084 }
4085
4086 BFD_ASSERT ((got_offset & 7) == 0);
4087
4088 if (! done)
4089 {
4090 /* Store the target address in the linkage table entry. */
4091 bfd_put_64 (abfd, value, got_sec->contents + got_offset);
4092
4093 /* Install a dynamic relocation if needed. */
4094 if (((info->shared
4095 && (!dyn_i->h
4096 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
4097 || dyn_i->h->root.type != bfd_link_hash_undefweak)
4098 && dyn_r_type != R_IA64_DTPREL32LSB
4099 && dyn_r_type != R_IA64_DTPREL64LSB)
4100 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type)
4101 || (dynindx != -1
4102 && (dyn_r_type == R_IA64_FPTR32LSB
4103 || dyn_r_type == R_IA64_FPTR64LSB)))
4104 && (!dyn_i->want_ltoff_fptr
4105 || !info->pie
4106 || !dyn_i->h
4107 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4108 {
4109 if (dynindx == -1
4110 && dyn_r_type != R_IA64_TPREL64LSB
4111 && dyn_r_type != R_IA64_DTPMOD64LSB
4112 && dyn_r_type != R_IA64_DTPREL32LSB
4113 && dyn_r_type != R_IA64_DTPREL64LSB)
4114 {
4115 dyn_r_type = R_IA64_RELNNLSB;
4116 dynindx = 0;
4117 addend = value;
4118 }
4119
4120 if (bfd_big_endian (abfd))
4121 {
4122 switch (dyn_r_type)
4123 {
4124 case R_IA64_REL32LSB:
4125 dyn_r_type = R_IA64_REL32MSB;
4126 break;
4127 case R_IA64_DIR32LSB:
4128 dyn_r_type = R_IA64_DIR32MSB;
4129 break;
4130 case R_IA64_FPTR32LSB:
4131 dyn_r_type = R_IA64_FPTR32MSB;
4132 break;
4133 case R_IA64_DTPREL32LSB:
4134 dyn_r_type = R_IA64_DTPREL32MSB;
4135 break;
4136 case R_IA64_REL64LSB:
4137 dyn_r_type = R_IA64_REL64MSB;
4138 break;
4139 case R_IA64_DIR64LSB:
4140 dyn_r_type = R_IA64_DIR64MSB;
4141 break;
4142 case R_IA64_FPTR64LSB:
4143 dyn_r_type = R_IA64_FPTR64MSB;
4144 break;
4145 case R_IA64_TPREL64LSB:
4146 dyn_r_type = R_IA64_TPREL64MSB;
4147 break;
4148 case R_IA64_DTPMOD64LSB:
4149 dyn_r_type = R_IA64_DTPMOD64MSB;
4150 break;
4151 case R_IA64_DTPREL64LSB:
4152 dyn_r_type = R_IA64_DTPREL64MSB;
4153 break;
4154 default:
4155 BFD_ASSERT (FALSE);
4156 break;
4157 }
4158 }
4159
4160 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec,
4161 ia64_info->rel_got_sec,
4162 got_offset, dyn_r_type,
4163 dynindx, addend);
4164 }
4165 }
4166
4167 /* Return the address of the linkage table entry. */
4168 value = (got_sec->output_section->vma
4169 + got_sec->output_offset
4170 + got_offset);
4171
4172 return value;
4173 }
4174
4175 /* Fill in a function descriptor consisting of the function's code
4176 address and its global pointer. Return the descriptor's address. */
4177
4178 static bfd_vma
4179 set_fptr_entry (abfd, info, dyn_i, value)
4180 bfd *abfd;
4181 struct bfd_link_info *info;
4182 struct elfNN_ia64_dyn_sym_info *dyn_i;
4183 bfd_vma value;
4184 {
4185 struct elfNN_ia64_link_hash_table *ia64_info;
4186 asection *fptr_sec;
4187
4188 ia64_info = elfNN_ia64_hash_table (info);
4189 fptr_sec = ia64_info->fptr_sec;
4190
4191 if (!dyn_i->fptr_done)
4192 {
4193 dyn_i->fptr_done = 1;
4194
4195 /* Fill in the function descriptor. */
4196 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset);
4197 bfd_put_64 (abfd, _bfd_get_gp_value (abfd),
4198 fptr_sec->contents + dyn_i->fptr_offset + 8);
4199 if (ia64_info->rel_fptr_sec)
4200 {
4201 Elf_Internal_Rela outrel;
4202 bfd_byte *loc;
4203
4204 if (bfd_little_endian (abfd))
4205 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB);
4206 else
4207 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB);
4208 outrel.r_addend = value;
4209 outrel.r_offset = (fptr_sec->output_section->vma
4210 + fptr_sec->output_offset
4211 + dyn_i->fptr_offset);
4212 loc = ia64_info->rel_fptr_sec->contents;
4213 loc += ia64_info->rel_fptr_sec->reloc_count++
4214 * sizeof (ElfNN_External_Rela);
4215 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
4216 }
4217 }
4218
4219 /* Return the descriptor's address. */
4220 value = (fptr_sec->output_section->vma
4221 + fptr_sec->output_offset
4222 + dyn_i->fptr_offset);
4223
4224 return value;
4225 }
4226
4227 /* Fill in a PLTOFF entry consisting of the function's code address
4228 and its global pointer. Return the descriptor's address. */
4229
4230 static bfd_vma
4231 set_pltoff_entry (abfd, info, dyn_i, value, is_plt)
4232 bfd *abfd;
4233 struct bfd_link_info *info;
4234 struct elfNN_ia64_dyn_sym_info *dyn_i;
4235 bfd_vma value;
4236 bfd_boolean is_plt;
4237 {
4238 struct elfNN_ia64_link_hash_table *ia64_info;
4239 asection *pltoff_sec;
4240
4241 ia64_info = elfNN_ia64_hash_table (info);
4242 pltoff_sec = ia64_info->pltoff_sec;
4243
4244 /* Don't do anything if this symbol uses a real PLT entry. In
4245 that case, we'll fill this in during finish_dynamic_symbol. */
4246 if ((! dyn_i->want_plt || is_plt)
4247 && !dyn_i->pltoff_done)
4248 {
4249 bfd_vma gp = _bfd_get_gp_value (abfd);
4250
4251 /* Fill in the function descriptor. */
4252 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset);
4253 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8);
4254
4255 /* Install dynamic relocations if needed. */
4256 if (!is_plt
4257 && info->shared
4258 && (!dyn_i->h
4259 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
4260 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4261 {
4262 unsigned int dyn_r_type;
4263
4264 if (bfd_big_endian (abfd))
4265 dyn_r_type = R_IA64_RELNNMSB;
4266 else
4267 dyn_r_type = R_IA64_RELNNLSB;
4268
4269 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4270 ia64_info->rel_pltoff_sec,
4271 dyn_i->pltoff_offset,
4272 dyn_r_type, 0, value);
4273 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4274 ia64_info->rel_pltoff_sec,
4275 dyn_i->pltoff_offset + ARCH_SIZE / 8,
4276 dyn_r_type, 0, gp);
4277 }
4278
4279 dyn_i->pltoff_done = 1;
4280 }
4281
4282 /* Return the descriptor's address. */
4283 value = (pltoff_sec->output_section->vma
4284 + pltoff_sec->output_offset
4285 + dyn_i->pltoff_offset);
4286
4287 return value;
4288 }
4289
4290 /* Return the base VMA address which should be subtracted from real addresses
4291 when resolving @tprel() relocation.
4292 Main program TLS (whose template starts at PT_TLS p_vaddr)
4293 is assigned offset round(2 * size of pointer, PT_TLS p_align). */
4294
4295 static bfd_vma
4296 elfNN_ia64_tprel_base (info)
4297 struct bfd_link_info *info;
4298 {
4299 asection *tls_sec = elf_hash_table (info)->tls_sec;
4300
4301 BFD_ASSERT (tls_sec != NULL);
4302 return tls_sec->vma - align_power ((bfd_vma) ARCH_SIZE / 4,
4303 tls_sec->alignment_power);
4304 }
4305
4306 /* Return the base VMA address which should be subtracted from real addresses
4307 when resolving @dtprel() relocation.
4308 This is PT_TLS segment p_vaddr. */
4309
4310 static bfd_vma
4311 elfNN_ia64_dtprel_base (info)
4312 struct bfd_link_info *info;
4313 {
4314 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4315 return elf_hash_table (info)->tls_sec->vma;
4316 }
4317
4318 /* Called through qsort to sort the .IA_64.unwind section during a
4319 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd
4320 to the output bfd so we can do proper endianness frobbing. */
4321
4322 static bfd *elfNN_ia64_unwind_entry_compare_bfd;
4323
4324 static int
4325 elfNN_ia64_unwind_entry_compare (a, b)
4326 const PTR a;
4327 const PTR b;
4328 {
4329 bfd_vma av, bv;
4330
4331 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a);
4332 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b);
4333
4334 return (av < bv ? -1 : av > bv ? 1 : 0);
4335 }
4336
4337 /* Make sure we've got ourselves a nice fat __gp value. */
4338 static bfd_boolean
4339 elfNN_ia64_choose_gp (abfd, info)
4340 bfd *abfd;
4341 struct bfd_link_info *info;
4342 {
4343 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0;
4344 bfd_vma min_short_vma = min_vma, max_short_vma = 0;
4345 struct elf_link_hash_entry *gp;
4346 bfd_vma gp_val;
4347 asection *os;
4348 struct elfNN_ia64_link_hash_table *ia64_info;
4349
4350 ia64_info = elfNN_ia64_hash_table (info);
4351
4352 /* Find the min and max vma of all sections marked short. Also collect
4353 min and max vma of any type, for use in selecting a nice gp. */
4354 for (os = abfd->sections; os ; os = os->next)
4355 {
4356 bfd_vma lo, hi;
4357
4358 if ((os->flags & SEC_ALLOC) == 0)
4359 continue;
4360
4361 lo = os->vma;
4362 hi = os->vma + (os->rawsize ? os->rawsize : os->size);
4363 if (hi < lo)
4364 hi = (bfd_vma) -1;
4365
4366 if (min_vma > lo)
4367 min_vma = lo;
4368 if (max_vma < hi)
4369 max_vma = hi;
4370 if (os->flags & SEC_SMALL_DATA)
4371 {
4372 if (min_short_vma > lo)
4373 min_short_vma = lo;
4374 if (max_short_vma < hi)
4375 max_short_vma = hi;
4376 }
4377 }
4378
4379 /* See if the user wants to force a value. */
4380 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4381 FALSE, FALSE);
4382
4383 if (gp
4384 && (gp->root.type == bfd_link_hash_defined
4385 || gp->root.type == bfd_link_hash_defweak))
4386 {
4387 asection *gp_sec = gp->root.u.def.section;
4388 gp_val = (gp->root.u.def.value
4389 + gp_sec->output_section->vma
4390 + gp_sec->output_offset);
4391 }
4392 else
4393 {
4394 /* Pick a sensible value. */
4395
4396 asection *got_sec = ia64_info->got_sec;
4397
4398 /* Start with just the address of the .got. */
4399 if (got_sec)
4400 gp_val = got_sec->output_section->vma;
4401 else if (max_short_vma != 0)
4402 gp_val = min_short_vma;
4403 else if (max_vma - min_vma < 0x200000)
4404 gp_val = min_vma;
4405 else
4406 gp_val = max_vma - 0x200000 + 8;
4407
4408 /* If it is possible to address the entire image, but we
4409 don't with the choice above, adjust. */
4410 if (max_vma - min_vma < 0x400000
4411 && (max_vma - gp_val >= 0x200000
4412 || gp_val - min_vma > 0x200000))
4413 gp_val = min_vma + 0x200000;
4414 else if (max_short_vma != 0)
4415 {
4416 /* If we don't cover all the short data, adjust. */
4417 if (max_short_vma - gp_val >= 0x200000)
4418 gp_val = min_short_vma + 0x200000;
4419
4420 /* If we're addressing stuff past the end, adjust back. */
4421 if (gp_val > max_vma)
4422 gp_val = max_vma - 0x200000 + 8;
4423 }
4424 }
4425
4426 /* Validate whether all SHF_IA_64_SHORT sections are within
4427 range of the chosen GP. */
4428
4429 if (max_short_vma != 0)
4430 {
4431 if (max_short_vma - min_short_vma >= 0x400000)
4432 {
4433 (*_bfd_error_handler)
4434 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"),
4435 bfd_get_filename (abfd),
4436 (unsigned long) (max_short_vma - min_short_vma));
4437 return FALSE;
4438 }
4439 else if ((gp_val > min_short_vma
4440 && gp_val - min_short_vma > 0x200000)
4441 || (gp_val < max_short_vma
4442 && max_short_vma - gp_val >= 0x200000))
4443 {
4444 (*_bfd_error_handler)
4445 (_("%s: __gp does not cover short data segment"),
4446 bfd_get_filename (abfd));
4447 return FALSE;
4448 }
4449 }
4450
4451 _bfd_set_gp_value (abfd, gp_val);
4452
4453 return TRUE;
4454 }
4455
4456 static bfd_boolean
4457 elfNN_ia64_final_link (abfd, info)
4458 bfd *abfd;
4459 struct bfd_link_info *info;
4460 {
4461 struct elfNN_ia64_link_hash_table *ia64_info;
4462 asection *unwind_output_sec;
4463
4464 ia64_info = elfNN_ia64_hash_table (info);
4465
4466 /* Make sure we've got ourselves a nice fat __gp value. */
4467 if (!info->relocatable)
4468 {
4469 bfd_vma gp_val;
4470 struct elf_link_hash_entry *gp;
4471
4472 /* We assume after gp is set, section size will only decrease. We
4473 need to adjust gp for it. */
4474 _bfd_set_gp_value (abfd, 0);
4475 if (! elfNN_ia64_choose_gp (abfd, info))
4476 return FALSE;
4477 gp_val = _bfd_get_gp_value (abfd);
4478
4479 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4480 FALSE, FALSE);
4481 if (gp)
4482 {
4483 gp->root.type = bfd_link_hash_defined;
4484 gp->root.u.def.value = gp_val;
4485 gp->root.u.def.section = bfd_abs_section_ptr;
4486 }
4487 }
4488
4489 /* If we're producing a final executable, we need to sort the contents
4490 of the .IA_64.unwind section. Force this section to be relocated
4491 into memory rather than written immediately to the output file. */
4492 unwind_output_sec = NULL;
4493 if (!info->relocatable)
4494 {
4495 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind);
4496 if (s)
4497 {
4498 unwind_output_sec = s->output_section;
4499 unwind_output_sec->contents
4500 = bfd_malloc (unwind_output_sec->size);
4501 if (unwind_output_sec->contents == NULL)
4502 return FALSE;
4503 }
4504 }
4505
4506 /* Invoke the regular ELF backend linker to do all the work. */
4507 if (!bfd_elf_final_link (abfd, info))
4508 return FALSE;
4509
4510 if (unwind_output_sec)
4511 {
4512 elfNN_ia64_unwind_entry_compare_bfd = abfd;
4513 qsort (unwind_output_sec->contents,
4514 (size_t) (unwind_output_sec->size / 24),
4515 24,
4516 elfNN_ia64_unwind_entry_compare);
4517
4518 if (! bfd_set_section_contents (abfd, unwind_output_sec,
4519 unwind_output_sec->contents, (bfd_vma) 0,
4520 unwind_output_sec->size))
4521 return FALSE;
4522 }
4523
4524 return TRUE;
4525 }
4526
4527 static bfd_boolean
4528 elfNN_ia64_relocate_section (output_bfd, info, input_bfd, input_section,
4529 contents, relocs, local_syms, local_sections)
4530 bfd *output_bfd;
4531 struct bfd_link_info *info;
4532 bfd *input_bfd;
4533 asection *input_section;
4534 bfd_byte *contents;
4535 Elf_Internal_Rela *relocs;
4536 Elf_Internal_Sym *local_syms;
4537 asection **local_sections;
4538 {
4539 struct elfNN_ia64_link_hash_table *ia64_info;
4540 Elf_Internal_Shdr *symtab_hdr;
4541 Elf_Internal_Rela *rel;
4542 Elf_Internal_Rela *relend;
4543 asection *srel;
4544 bfd_boolean ret_val = TRUE; /* for non-fatal errors */
4545 bfd_vma gp_val;
4546
4547 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4548 ia64_info = elfNN_ia64_hash_table (info);
4549
4550 /* Infect various flags from the input section to the output section. */
4551 if (info->relocatable)
4552 {
4553 bfd_vma flags;
4554
4555 flags = elf_section_data(input_section)->this_hdr.sh_flags;
4556 flags &= SHF_IA_64_NORECOV;
4557
4558 elf_section_data(input_section->output_section)
4559 ->this_hdr.sh_flags |= flags;
4560 return TRUE;
4561 }
4562
4563 gp_val = _bfd_get_gp_value (output_bfd);
4564 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE);
4565
4566 rel = relocs;
4567 relend = relocs + input_section->reloc_count;
4568 for (; rel < relend; ++rel)
4569 {
4570 struct elf_link_hash_entry *h;
4571 struct elfNN_ia64_dyn_sym_info *dyn_i;
4572 bfd_reloc_status_type r;
4573 reloc_howto_type *howto;
4574 unsigned long r_symndx;
4575 Elf_Internal_Sym *sym;
4576 unsigned int r_type;
4577 bfd_vma value;
4578 asection *sym_sec;
4579 bfd_byte *hit_addr;
4580 bfd_boolean dynamic_symbol_p;
4581 bfd_boolean undef_weak_ref;
4582
4583 r_type = ELFNN_R_TYPE (rel->r_info);
4584 if (r_type > R_IA64_MAX_RELOC_CODE)
4585 {
4586 (*_bfd_error_handler)
4587 (_("%B: unknown relocation type %d"),
4588 input_bfd, (int) r_type);
4589 bfd_set_error (bfd_error_bad_value);
4590 ret_val = FALSE;
4591 continue;
4592 }
4593
4594 howto = lookup_howto (r_type);
4595 r_symndx = ELFNN_R_SYM (rel->r_info);
4596 h = NULL;
4597 sym = NULL;
4598 sym_sec = NULL;
4599 undef_weak_ref = FALSE;
4600
4601 if (r_symndx < symtab_hdr->sh_info)
4602 {
4603 /* Reloc against local symbol. */
4604 asection *msec;
4605 sym = local_syms + r_symndx;
4606 sym_sec = local_sections[r_symndx];
4607 msec = sym_sec;
4608 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4609 if ((sym_sec->flags & SEC_MERGE)
4610 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4611 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
4612 {
4613 struct elfNN_ia64_local_hash_entry *loc_h;
4614
4615 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE);
4616 if (loc_h && ! loc_h->sec_merge_done)
4617 {
4618 struct elfNN_ia64_dyn_sym_info *dynent;
4619 unsigned int count;
4620
4621 for (count = loc_h->count, dynent = loc_h->info;
4622 count != 0;
4623 count--, dynent++)
4624 {
4625 msec = sym_sec;
4626 dynent->addend =
4627 _bfd_merged_section_offset (output_bfd, &msec,
4628 elf_section_data (msec)->
4629 sec_info,
4630 sym->st_value
4631 + dynent->addend);
4632 dynent->addend -= sym->st_value;
4633 dynent->addend += msec->output_section->vma
4634 + msec->output_offset
4635 - sym_sec->output_section->vma
4636 - sym_sec->output_offset;
4637 }
4638
4639 qsort (loc_h->info, loc_h->count,
4640 sizeof (*loc_h->info), addend_compare);
4641
4642 loc_h->sec_merge_done = 1;
4643 }
4644 }
4645 }
4646 else
4647 {
4648 bfd_boolean unresolved_reloc;
4649 bfd_boolean warned;
4650 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4651
4652 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4653 r_symndx, symtab_hdr, sym_hashes,
4654 h, sym_sec, value,
4655 unresolved_reloc, warned);
4656
4657 if (h->root.type == bfd_link_hash_undefweak)
4658 undef_weak_ref = TRUE;
4659 else if (warned)
4660 continue;
4661 }
4662
4663 hit_addr = contents + rel->r_offset;
4664 value += rel->r_addend;
4665 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type);
4666
4667 switch (r_type)
4668 {
4669 case R_IA64_NONE:
4670 case R_IA64_LDXMOV:
4671 continue;
4672
4673 case R_IA64_IMM14:
4674 case R_IA64_IMM22:
4675 case R_IA64_IMM64:
4676 case R_IA64_DIR32MSB:
4677 case R_IA64_DIR32LSB:
4678 case R_IA64_DIR64MSB:
4679 case R_IA64_DIR64LSB:
4680 /* Install a dynamic relocation for this reloc. */
4681 if ((dynamic_symbol_p || info->shared)
4682 && r_symndx != 0
4683 && (input_section->flags & SEC_ALLOC) != 0)
4684 {
4685 unsigned int dyn_r_type;
4686 long dynindx;
4687 bfd_vma addend;
4688
4689 BFD_ASSERT (srel != NULL);
4690
4691 switch (r_type)
4692 {
4693 case R_IA64_IMM14:
4694 case R_IA64_IMM22:
4695 case R_IA64_IMM64:
4696 /* ??? People shouldn't be doing non-pic code in
4697 shared libraries nor dynamic executables. */
4698 (*_bfd_error_handler)
4699 (_("%B: non-pic code with imm relocation against dynamic symbol `%s'"),
4700 input_bfd,
4701 h ? h->root.root.string
4702 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4703 sym_sec));
4704 ret_val = FALSE;
4705 continue;
4706
4707 default:
4708 break;
4709 }
4710
4711 /* If we don't need dynamic symbol lookup, find a
4712 matching RELATIVE relocation. */
4713 dyn_r_type = r_type;
4714 if (dynamic_symbol_p)
4715 {
4716 dynindx = h->dynindx;
4717 addend = rel->r_addend;
4718 value = 0;
4719 }
4720 else
4721 {
4722 switch (r_type)
4723 {
4724 case R_IA64_DIR32MSB:
4725 dyn_r_type = R_IA64_REL32MSB;
4726 break;
4727 case R_IA64_DIR32LSB:
4728 dyn_r_type = R_IA64_REL32LSB;
4729 break;
4730 case R_IA64_DIR64MSB:
4731 dyn_r_type = R_IA64_REL64MSB;
4732 break;
4733 case R_IA64_DIR64LSB:
4734 dyn_r_type = R_IA64_REL64LSB;
4735 break;
4736
4737 default:
4738 break;
4739 }
4740 dynindx = 0;
4741 addend = value;
4742 }
4743
4744 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4745 srel, rel->r_offset, dyn_r_type,
4746 dynindx, addend);
4747 }
4748 /* Fall through. */
4749
4750 case R_IA64_LTV32MSB:
4751 case R_IA64_LTV32LSB:
4752 case R_IA64_LTV64MSB:
4753 case R_IA64_LTV64LSB:
4754 /* r_symndx will be zero only for relocs against symbols
4755 from removed linkonce sections, or sections discarded by
4756 a linker script. */
4757 if (r_symndx == 0)
4758 value = 0;
4759
4760 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4761 break;
4762
4763 case R_IA64_GPREL22:
4764 case R_IA64_GPREL64I:
4765 case R_IA64_GPREL32MSB:
4766 case R_IA64_GPREL32LSB:
4767 case R_IA64_GPREL64MSB:
4768 case R_IA64_GPREL64LSB:
4769 if (dynamic_symbol_p)
4770 {
4771 (*_bfd_error_handler)
4772 (_("%B: @gprel relocation against dynamic symbol %s"),
4773 input_bfd,
4774 h ? h->root.root.string
4775 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4776 sym_sec));
4777 ret_val = FALSE;
4778 continue;
4779 }
4780 value -= gp_val;
4781 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4782 break;
4783
4784 case R_IA64_LTOFF22:
4785 case R_IA64_LTOFF22X:
4786 case R_IA64_LTOFF64I:
4787 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4788 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1),
4789 rel->r_addend, value, R_IA64_DIRNNLSB);
4790 value -= gp_val;
4791 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4792 break;
4793
4794 case R_IA64_PLTOFF22:
4795 case R_IA64_PLTOFF64I:
4796 case R_IA64_PLTOFF64MSB:
4797 case R_IA64_PLTOFF64LSB:
4798 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4799 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE);
4800 value -= gp_val;
4801 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4802 break;
4803
4804 case R_IA64_FPTR64I:
4805 case R_IA64_FPTR32MSB:
4806 case R_IA64_FPTR32LSB:
4807 case R_IA64_FPTR64MSB:
4808 case R_IA64_FPTR64LSB:
4809 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4810 if (dyn_i->want_fptr)
4811 {
4812 if (!undef_weak_ref)
4813 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4814 }
4815 if (!dyn_i->want_fptr || info->pie)
4816 {
4817 long dynindx;
4818 unsigned int dyn_r_type = r_type;
4819 bfd_vma addend = rel->r_addend;
4820
4821 /* Otherwise, we expect the dynamic linker to create
4822 the entry. */
4823
4824 if (dyn_i->want_fptr)
4825 {
4826 if (r_type == R_IA64_FPTR64I)
4827 {
4828 /* We can't represent this without a dynamic symbol.
4829 Adjust the relocation to be against an output
4830 section symbol, which are always present in the
4831 dynamic symbol table. */
4832 /* ??? People shouldn't be doing non-pic code in
4833 shared libraries. Hork. */
4834 (*_bfd_error_handler)
4835 (_("%B: linking non-pic code in a position independent executable"),
4836 input_bfd);
4837 ret_val = FALSE;
4838 continue;
4839 }
4840 dynindx = 0;
4841 addend = value;
4842 dyn_r_type = r_type + R_IA64_RELNNLSB - R_IA64_FPTRNNLSB;
4843 }
4844 else if (h)
4845 {
4846 if (h->dynindx != -1)
4847 dynindx = h->dynindx;
4848 else
4849 dynindx = (_bfd_elf_link_lookup_local_dynindx
4850 (info, h->root.u.def.section->owner,
4851 global_sym_index (h)));
4852 value = 0;
4853 }
4854 else
4855 {
4856 dynindx = (_bfd_elf_link_lookup_local_dynindx
4857 (info, input_bfd, (long) r_symndx));
4858 value = 0;
4859 }
4860
4861 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4862 srel, rel->r_offset, dyn_r_type,
4863 dynindx, addend);
4864 }
4865
4866 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4867 break;
4868
4869 case R_IA64_LTOFF_FPTR22:
4870 case R_IA64_LTOFF_FPTR64I:
4871 case R_IA64_LTOFF_FPTR32MSB:
4872 case R_IA64_LTOFF_FPTR32LSB:
4873 case R_IA64_LTOFF_FPTR64MSB:
4874 case R_IA64_LTOFF_FPTR64LSB:
4875 {
4876 long dynindx;
4877
4878 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4879 if (dyn_i->want_fptr)
4880 {
4881 BFD_ASSERT (h == NULL || h->dynindx == -1);
4882 if (!undef_weak_ref)
4883 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4884 dynindx = -1;
4885 }
4886 else
4887 {
4888 /* Otherwise, we expect the dynamic linker to create
4889 the entry. */
4890 if (h)
4891 {
4892 if (h->dynindx != -1)
4893 dynindx = h->dynindx;
4894 else
4895 dynindx = (_bfd_elf_link_lookup_local_dynindx
4896 (info, h->root.u.def.section->owner,
4897 global_sym_index (h)));
4898 }
4899 else
4900 dynindx = (_bfd_elf_link_lookup_local_dynindx
4901 (info, input_bfd, (long) r_symndx));
4902 value = 0;
4903 }
4904
4905 value = set_got_entry (output_bfd, info, dyn_i, dynindx,
4906 rel->r_addend, value, R_IA64_FPTRNNLSB);
4907 value -= gp_val;
4908 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4909 }
4910 break;
4911
4912 case R_IA64_PCREL32MSB:
4913 case R_IA64_PCREL32LSB:
4914 case R_IA64_PCREL64MSB:
4915 case R_IA64_PCREL64LSB:
4916 /* Install a dynamic relocation for this reloc. */
4917 if (dynamic_symbol_p && r_symndx != 0)
4918 {
4919 BFD_ASSERT (srel != NULL);
4920
4921 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4922 srel, rel->r_offset, r_type,
4923 h->dynindx, rel->r_addend);
4924 }
4925 goto finish_pcrel;
4926
4927 case R_IA64_PCREL21B:
4928 case R_IA64_PCREL60B:
4929 /* We should have created a PLT entry for any dynamic symbol. */
4930 dyn_i = NULL;
4931 if (h)
4932 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4933
4934 if (dyn_i && dyn_i->want_plt2)
4935 {
4936 /* Should have caught this earlier. */
4937 BFD_ASSERT (rel->r_addend == 0);
4938
4939 value = (ia64_info->plt_sec->output_section->vma
4940 + ia64_info->plt_sec->output_offset
4941 + dyn_i->plt2_offset);
4942 }
4943 else
4944 {
4945 /* Since there's no PLT entry, Validate that this is
4946 locally defined. */
4947 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL);
4948
4949 /* If the symbol is undef_weak, we shouldn't be trying
4950 to call it. There's every chance that we'd wind up
4951 with an out-of-range fixup here. Don't bother setting
4952 any value at all. */
4953 if (undef_weak_ref)
4954 continue;
4955 }
4956 goto finish_pcrel;
4957
4958 case R_IA64_PCREL21BI:
4959 case R_IA64_PCREL21F:
4960 case R_IA64_PCREL21M:
4961 case R_IA64_PCREL22:
4962 case R_IA64_PCREL64I:
4963 /* The PCREL21BI reloc is specifically not intended for use with
4964 dynamic relocs. PCREL21F and PCREL21M are used for speculation
4965 fixup code, and thus probably ought not be dynamic. The
4966 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */
4967 if (dynamic_symbol_p)
4968 {
4969 const char *msg;
4970
4971 if (r_type == R_IA64_PCREL21BI)
4972 msg = _("%B: @internal branch to dynamic symbol %s");
4973 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M)
4974 msg = _("%B: speculation fixup to dynamic symbol %s");
4975 else
4976 msg = _("%B: @pcrel relocation against dynamic symbol %s");
4977 (*_bfd_error_handler) (msg, input_bfd,
4978 h ? h->root.root.string
4979 : bfd_elf_sym_name (input_bfd,
4980 symtab_hdr,
4981 sym,
4982 sym_sec));
4983 ret_val = FALSE;
4984 continue;
4985 }
4986 goto finish_pcrel;
4987
4988 finish_pcrel:
4989 /* Make pc-relative. */
4990 value -= (input_section->output_section->vma
4991 + input_section->output_offset
4992 + rel->r_offset) & ~ (bfd_vma) 0x3;
4993 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4994 break;
4995
4996 case R_IA64_SEGREL32MSB:
4997 case R_IA64_SEGREL32LSB:
4998 case R_IA64_SEGREL64MSB:
4999 case R_IA64_SEGREL64LSB:
5000 if (r_symndx == 0)
5001 {
5002 /* If the input section was discarded from the output, then
5003 do nothing. */
5004 r = bfd_reloc_ok;
5005 }
5006 else
5007 {
5008 struct elf_segment_map *m;
5009 Elf_Internal_Phdr *p;
5010
5011 /* Find the segment that contains the output_section. */
5012 for (m = elf_tdata (output_bfd)->segment_map,
5013 p = elf_tdata (output_bfd)->phdr;
5014 m != NULL;
5015 m = m->next, p++)
5016 {
5017 int i;
5018 for (i = m->count - 1; i >= 0; i--)
5019 if (m->sections[i] == input_section->output_section)
5020 break;
5021 if (i >= 0)
5022 break;
5023 }
5024
5025 if (m == NULL)
5026 {
5027 r = bfd_reloc_notsupported;
5028 }
5029 else
5030 {
5031 /* The VMA of the segment is the vaddr of the associated
5032 program header. */
5033 if (value > p->p_vaddr)
5034 value -= p->p_vaddr;
5035 else
5036 value = 0;
5037 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5038 }
5039 break;
5040 }
5041
5042 case R_IA64_SECREL32MSB:
5043 case R_IA64_SECREL32LSB:
5044 case R_IA64_SECREL64MSB:
5045 case R_IA64_SECREL64LSB:
5046 /* Make output-section relative to section where the symbol
5047 is defined. PR 475 */
5048 if (sym_sec)
5049 value -= sym_sec->output_section->vma;
5050 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5051 break;
5052
5053 case R_IA64_IPLTMSB:
5054 case R_IA64_IPLTLSB:
5055 /* Install a dynamic relocation for this reloc. */
5056 if ((dynamic_symbol_p || info->shared)
5057 && (input_section->flags & SEC_ALLOC) != 0)
5058 {
5059 BFD_ASSERT (srel != NULL);
5060
5061 /* If we don't need dynamic symbol lookup, install two
5062 RELATIVE relocations. */
5063 if (!dynamic_symbol_p)
5064 {
5065 unsigned int dyn_r_type;
5066
5067 if (r_type == R_IA64_IPLTMSB)
5068 dyn_r_type = R_IA64_REL64MSB;
5069 else
5070 dyn_r_type = R_IA64_REL64LSB;
5071
5072 elfNN_ia64_install_dyn_reloc (output_bfd, info,
5073 input_section,
5074 srel, rel->r_offset,
5075 dyn_r_type, 0, value);
5076 elfNN_ia64_install_dyn_reloc (output_bfd, info,
5077 input_section,
5078 srel, rel->r_offset + 8,
5079 dyn_r_type, 0, gp_val);
5080 }
5081 else
5082 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
5083 srel, rel->r_offset, r_type,
5084 h->dynindx, rel->r_addend);
5085 }
5086
5087 if (r_type == R_IA64_IPLTMSB)
5088 r_type = R_IA64_DIR64MSB;
5089 else
5090 r_type = R_IA64_DIR64LSB;
5091 elfNN_ia64_install_value (hit_addr, value, r_type);
5092 r = elfNN_ia64_install_value (hit_addr + 8, gp_val, r_type);
5093 break;
5094
5095 case R_IA64_TPREL14:
5096 case R_IA64_TPREL22:
5097 case R_IA64_TPREL64I:
5098 value -= elfNN_ia64_tprel_base (info);
5099 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5100 break;
5101
5102 case R_IA64_DTPREL14:
5103 case R_IA64_DTPREL22:
5104 case R_IA64_DTPREL64I:
5105 case R_IA64_DTPREL32LSB:
5106 case R_IA64_DTPREL32MSB:
5107 case R_IA64_DTPREL64LSB:
5108 case R_IA64_DTPREL64MSB:
5109 value -= elfNN_ia64_dtprel_base (info);
5110 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5111 break;
5112
5113 case R_IA64_LTOFF_TPREL22:
5114 case R_IA64_LTOFF_DTPMOD22:
5115 case R_IA64_LTOFF_DTPREL22:
5116 {
5117 int got_r_type;
5118 long dynindx = h ? h->dynindx : -1;
5119 bfd_vma r_addend = rel->r_addend;
5120
5121 switch (r_type)
5122 {
5123 default:
5124 case R_IA64_LTOFF_TPREL22:
5125 if (!dynamic_symbol_p)
5126 {
5127 if (!info->shared)
5128 value -= elfNN_ia64_tprel_base (info);
5129 else
5130 {
5131 r_addend += value - elfNN_ia64_dtprel_base (info);
5132 dynindx = 0;
5133 }
5134 }
5135 got_r_type = R_IA64_TPREL64LSB;
5136 break;
5137 case R_IA64_LTOFF_DTPMOD22:
5138 if (!dynamic_symbol_p && !info->shared)
5139 value = 1;
5140 got_r_type = R_IA64_DTPMOD64LSB;
5141 break;
5142 case R_IA64_LTOFF_DTPREL22:
5143 if (!dynamic_symbol_p)
5144 value -= elfNN_ia64_dtprel_base (info);
5145 got_r_type = R_IA64_DTPRELNNLSB;
5146 break;
5147 }
5148 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
5149 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend,
5150 value, got_r_type);
5151 value -= gp_val;
5152 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5153 }
5154 break;
5155
5156 default:
5157 r = bfd_reloc_notsupported;
5158 break;
5159 }
5160
5161 switch (r)
5162 {
5163 case bfd_reloc_ok:
5164 break;
5165
5166 case bfd_reloc_undefined:
5167 /* This can happen for global table relative relocs if
5168 __gp is undefined. This is a panic situation so we
5169 don't try to continue. */
5170 (*info->callbacks->undefined_symbol)
5171 (info, "__gp", input_bfd, input_section, rel->r_offset, 1);
5172 return FALSE;
5173
5174 case bfd_reloc_notsupported:
5175 {
5176 const char *name;
5177
5178 if (h)
5179 name = h->root.root.string;
5180 else
5181 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5182 sym_sec);
5183 if (!(*info->callbacks->warning) (info, _("unsupported reloc"),
5184 name, input_bfd,
5185 input_section, rel->r_offset))
5186 return FALSE;
5187 ret_val = FALSE;
5188 }
5189 break;
5190
5191 case bfd_reloc_dangerous:
5192 case bfd_reloc_outofrange:
5193 case bfd_reloc_overflow:
5194 default:
5195 {
5196 const char *name;
5197
5198 if (h)
5199 name = h->root.root.string;
5200 else
5201 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5202 sym_sec);
5203
5204 switch (r_type)
5205 {
5206 case R_IA64_PCREL21B:
5207 case R_IA64_PCREL21BI:
5208 case R_IA64_PCREL21M:
5209 case R_IA64_PCREL21F:
5210 if (is_elf_hash_table (info->hash))
5211 {
5212 /* Relaxtion is always performed for ELF output.
5213 Overflow failures for those relocations mean
5214 that the section is too big to relax. */
5215 (*_bfd_error_handler)
5216 (_("%B: Can't relax br (%s) to `%s' at 0x%lx in section `%A' with size 0x%lx (> 0x1000000)."),
5217 input_bfd, input_section, howto->name, name,
5218 rel->r_offset, input_section->size);
5219 break;
5220 }
5221 default:
5222 if (!(*info->callbacks->reloc_overflow) (info,
5223 &h->root,
5224 name,
5225 howto->name,
5226 (bfd_vma) 0,
5227 input_bfd,
5228 input_section,
5229 rel->r_offset))
5230 return FALSE;
5231 break;
5232 }
5233
5234 ret_val = FALSE;
5235 }
5236 break;
5237 }
5238 }
5239
5240 return ret_val;
5241 }
5242
5243 static bfd_boolean
5244 elfNN_ia64_finish_dynamic_symbol (output_bfd, info, h, sym)
5245 bfd *output_bfd;
5246 struct bfd_link_info *info;
5247 struct elf_link_hash_entry *h;
5248 Elf_Internal_Sym *sym;
5249 {
5250 struct elfNN_ia64_link_hash_table *ia64_info;
5251 struct elfNN_ia64_dyn_sym_info *dyn_i;
5252
5253 ia64_info = elfNN_ia64_hash_table (info);
5254 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
5255
5256 /* Fill in the PLT data, if required. */
5257 if (dyn_i && dyn_i->want_plt)
5258 {
5259 Elf_Internal_Rela outrel;
5260 bfd_byte *loc;
5261 asection *plt_sec;
5262 bfd_vma plt_addr, pltoff_addr, gp_val, index;
5263
5264 gp_val = _bfd_get_gp_value (output_bfd);
5265
5266 /* Initialize the minimal PLT entry. */
5267
5268 index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
5269 plt_sec = ia64_info->plt_sec;
5270 loc = plt_sec->contents + dyn_i->plt_offset;
5271
5272 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE);
5273 elfNN_ia64_install_value (loc, index, R_IA64_IMM22);
5274 elfNN_ia64_install_value (loc+2, -dyn_i->plt_offset, R_IA64_PCREL21B);
5275
5276 plt_addr = (plt_sec->output_section->vma
5277 + plt_sec->output_offset
5278 + dyn_i->plt_offset);
5279 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE);
5280
5281 /* Initialize the FULL PLT entry, if needed. */
5282 if (dyn_i->want_plt2)
5283 {
5284 loc = plt_sec->contents + dyn_i->plt2_offset;
5285
5286 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE);
5287 elfNN_ia64_install_value (loc, pltoff_addr - gp_val, R_IA64_IMM22);
5288
5289 /* Mark the symbol as undefined, rather than as defined in the
5290 plt section. Leave the value alone. */
5291 /* ??? We didn't redefine it in adjust_dynamic_symbol in the
5292 first place. But perhaps elflink.c did some for us. */
5293 if (!h->def_regular)
5294 sym->st_shndx = SHN_UNDEF;
5295 }
5296
5297 /* Create the dynamic relocation. */
5298 outrel.r_offset = pltoff_addr;
5299 if (bfd_little_endian (output_bfd))
5300 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB);
5301 else
5302 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB);
5303 outrel.r_addend = 0;
5304
5305 /* This is fun. In the .IA_64.pltoff section, we've got entries
5306 that correspond both to real PLT entries, and those that
5307 happened to resolve to local symbols but need to be created
5308 to satisfy @pltoff relocations. The .rela.IA_64.pltoff
5309 relocations for the real PLT should come at the end of the
5310 section, so that they can be indexed by plt entry at runtime.
5311
5312 We emitted all of the relocations for the non-PLT @pltoff
5313 entries during relocate_section. So we can consider the
5314 existing sec->reloc_count to be the base of the array of
5315 PLT relocations. */
5316
5317 loc = ia64_info->rel_pltoff_sec->contents;
5318 loc += ((ia64_info->rel_pltoff_sec->reloc_count + index)
5319 * sizeof (ElfNN_External_Rela));
5320 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5321 }
5322
5323 /* Mark some specially defined symbols as absolute. */
5324 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
5325 || h == ia64_info->root.hgot
5326 || h == ia64_info->root.hplt)
5327 sym->st_shndx = SHN_ABS;
5328
5329 return TRUE;
5330 }
5331
5332 static bfd_boolean
5333 elfNN_ia64_finish_dynamic_sections (abfd, info)
5334 bfd *abfd;
5335 struct bfd_link_info *info;
5336 {
5337 struct elfNN_ia64_link_hash_table *ia64_info;
5338 bfd *dynobj;
5339
5340 ia64_info = elfNN_ia64_hash_table (info);
5341 dynobj = ia64_info->root.dynobj;
5342
5343 if (elf_hash_table (info)->dynamic_sections_created)
5344 {
5345 ElfNN_External_Dyn *dyncon, *dynconend;
5346 asection *sdyn, *sgotplt;
5347 bfd_vma gp_val;
5348
5349 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
5350 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
5351 BFD_ASSERT (sdyn != NULL);
5352 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
5353 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
5354
5355 gp_val = _bfd_get_gp_value (abfd);
5356
5357 for (; dyncon < dynconend; dyncon++)
5358 {
5359 Elf_Internal_Dyn dyn;
5360
5361 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
5362
5363 switch (dyn.d_tag)
5364 {
5365 case DT_PLTGOT:
5366 dyn.d_un.d_ptr = gp_val;
5367 break;
5368
5369 case DT_PLTRELSZ:
5370 dyn.d_un.d_val = (ia64_info->minplt_entries
5371 * sizeof (ElfNN_External_Rela));
5372 break;
5373
5374 case DT_JMPREL:
5375 /* See the comment above in finish_dynamic_symbol. */
5376 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma
5377 + ia64_info->rel_pltoff_sec->output_offset
5378 + (ia64_info->rel_pltoff_sec->reloc_count
5379 * sizeof (ElfNN_External_Rela)));
5380 break;
5381
5382 case DT_IA_64_PLT_RESERVE:
5383 dyn.d_un.d_ptr = (sgotplt->output_section->vma
5384 + sgotplt->output_offset);
5385 break;
5386
5387 case DT_RELASZ:
5388 /* Do not have RELASZ include JMPREL. This makes things
5389 easier on ld.so. This is not what the rest of BFD set up. */
5390 dyn.d_un.d_val -= (ia64_info->minplt_entries
5391 * sizeof (ElfNN_External_Rela));
5392 break;
5393 }
5394
5395 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon);
5396 }
5397
5398 /* Initialize the PLT0 entry. */
5399 if (ia64_info->plt_sec)
5400 {
5401 bfd_byte *loc = ia64_info->plt_sec->contents;
5402 bfd_vma pltres;
5403
5404 memcpy (loc, plt_header, PLT_HEADER_SIZE);
5405
5406 pltres = (sgotplt->output_section->vma
5407 + sgotplt->output_offset
5408 - gp_val);
5409
5410 elfNN_ia64_install_value (loc+1, pltres, R_IA64_GPREL22);
5411 }
5412 }
5413
5414 return TRUE;
5415 }
5416 \f
5417 /* ELF file flag handling: */
5418
5419 /* Function to keep IA-64 specific file flags. */
5420 static bfd_boolean
5421 elfNN_ia64_set_private_flags (abfd, flags)
5422 bfd *abfd;
5423 flagword flags;
5424 {
5425 BFD_ASSERT (!elf_flags_init (abfd)
5426 || elf_elfheader (abfd)->e_flags == flags);
5427
5428 elf_elfheader (abfd)->e_flags = flags;
5429 elf_flags_init (abfd) = TRUE;
5430 return TRUE;
5431 }
5432
5433 /* Merge backend specific data from an object file to the output
5434 object file when linking. */
5435 static bfd_boolean
5436 elfNN_ia64_merge_private_bfd_data (ibfd, obfd)
5437 bfd *ibfd, *obfd;
5438 {
5439 flagword out_flags;
5440 flagword in_flags;
5441 bfd_boolean ok = TRUE;
5442
5443 /* Don't even pretend to support mixed-format linking. */
5444 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5445 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5446 return FALSE;
5447
5448 in_flags = elf_elfheader (ibfd)->e_flags;
5449 out_flags = elf_elfheader (obfd)->e_flags;
5450
5451 if (! elf_flags_init (obfd))
5452 {
5453 elf_flags_init (obfd) = TRUE;
5454 elf_elfheader (obfd)->e_flags = in_flags;
5455
5456 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
5457 && bfd_get_arch_info (obfd)->the_default)
5458 {
5459 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
5460 bfd_get_mach (ibfd));
5461 }
5462
5463 return TRUE;
5464 }
5465
5466 /* Check flag compatibility. */
5467 if (in_flags == out_flags)
5468 return TRUE;
5469
5470 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */
5471 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP))
5472 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP;
5473
5474 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL))
5475 {
5476 (*_bfd_error_handler)
5477 (_("%B: linking trap-on-NULL-dereference with non-trapping files"),
5478 ibfd);
5479
5480 bfd_set_error (bfd_error_bad_value);
5481 ok = FALSE;
5482 }
5483 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE))
5484 {
5485 (*_bfd_error_handler)
5486 (_("%B: linking big-endian files with little-endian files"),
5487 ibfd);
5488
5489 bfd_set_error (bfd_error_bad_value);
5490 ok = FALSE;
5491 }
5492 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64))
5493 {
5494 (*_bfd_error_handler)
5495 (_("%B: linking 64-bit files with 32-bit files"),
5496 ibfd);
5497
5498 bfd_set_error (bfd_error_bad_value);
5499 ok = FALSE;
5500 }
5501 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP))
5502 {
5503 (*_bfd_error_handler)
5504 (_("%B: linking constant-gp files with non-constant-gp files"),
5505 ibfd);
5506
5507 bfd_set_error (bfd_error_bad_value);
5508 ok = FALSE;
5509 }
5510 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP)
5511 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
5512 {
5513 (*_bfd_error_handler)
5514 (_("%B: linking auto-pic files with non-auto-pic files"),
5515 ibfd);
5516
5517 bfd_set_error (bfd_error_bad_value);
5518 ok = FALSE;
5519 }
5520
5521 return ok;
5522 }
5523
5524 static bfd_boolean
5525 elfNN_ia64_print_private_bfd_data (abfd, ptr)
5526 bfd *abfd;
5527 PTR ptr;
5528 {
5529 FILE *file = (FILE *) ptr;
5530 flagword flags = elf_elfheader (abfd)->e_flags;
5531
5532 BFD_ASSERT (abfd != NULL && ptr != NULL);
5533
5534 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n",
5535 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "",
5536 (flags & EF_IA_64_EXT) ? "EXT, " : "",
5537 (flags & EF_IA_64_BE) ? "BE, " : "LE, ",
5538 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "",
5539 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "",
5540 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "",
5541 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "",
5542 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32");
5543
5544 _bfd_elf_print_private_bfd_data (abfd, ptr);
5545 return TRUE;
5546 }
5547
5548 static enum elf_reloc_type_class
5549 elfNN_ia64_reloc_type_class (rela)
5550 const Elf_Internal_Rela *rela;
5551 {
5552 switch ((int) ELFNN_R_TYPE (rela->r_info))
5553 {
5554 case R_IA64_REL32MSB:
5555 case R_IA64_REL32LSB:
5556 case R_IA64_REL64MSB:
5557 case R_IA64_REL64LSB:
5558 return reloc_class_relative;
5559 case R_IA64_IPLTMSB:
5560 case R_IA64_IPLTLSB:
5561 return reloc_class_plt;
5562 case R_IA64_COPY:
5563 return reloc_class_copy;
5564 default:
5565 return reloc_class_normal;
5566 }
5567 }
5568
5569 static const struct bfd_elf_special_section elfNN_ia64_special_sections[] =
5570 {
5571 { STRING_COMMA_LEN (".sbss"), -1, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5572 { STRING_COMMA_LEN (".sdata"), -1, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5573 { NULL, 0, 0, 0, 0 }
5574 };
5575
5576 static bfd_boolean
5577 elfNN_ia64_object_p (bfd *abfd)
5578 {
5579 asection *sec;
5580 asection *group, *unwi, *unw;
5581 flagword flags;
5582 const char *name;
5583 char *unwi_name, *unw_name;
5584 bfd_size_type amt;
5585
5586 if (abfd->flags & DYNAMIC)
5587 return TRUE;
5588
5589 /* Flags for fake group section. */
5590 flags = (SEC_LINKER_CREATED | SEC_GROUP | SEC_LINK_ONCE
5591 | SEC_EXCLUDE);
5592
5593 /* We add a fake section group for each .gnu.linkonce.t.* section,
5594 which isn't in a section group, and its unwind sections. */
5595 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5596 {
5597 if (elf_sec_group (sec) == NULL
5598 && ((sec->flags & (SEC_LINK_ONCE | SEC_CODE | SEC_GROUP))
5599 == (SEC_LINK_ONCE | SEC_CODE))
5600 && CONST_STRNEQ (sec->name, ".gnu.linkonce.t."))
5601 {
5602 name = sec->name + 16;
5603
5604 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unwi.");
5605 unwi_name = bfd_alloc (abfd, amt);
5606 if (!unwi_name)
5607 return FALSE;
5608
5609 strcpy (stpcpy (unwi_name, ".gnu.linkonce.ia64unwi."), name);
5610 unwi = bfd_get_section_by_name (abfd, unwi_name);
5611
5612 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unw.");
5613 unw_name = bfd_alloc (abfd, amt);
5614 if (!unw_name)
5615 return FALSE;
5616
5617 strcpy (stpcpy (unw_name, ".gnu.linkonce.ia64unw."), name);
5618 unw = bfd_get_section_by_name (abfd, unw_name);
5619
5620 /* We need to create a fake group section for it and its
5621 unwind sections. */
5622 group = bfd_make_section_anyway_with_flags (abfd, name,
5623 flags);
5624 if (group == NULL)
5625 return FALSE;
5626
5627 /* Move the fake group section to the beginning. */
5628 bfd_section_list_remove (abfd, group);
5629 bfd_section_list_prepend (abfd, group);
5630
5631 elf_next_in_group (group) = sec;
5632
5633 elf_group_name (sec) = name;
5634 elf_next_in_group (sec) = sec;
5635 elf_sec_group (sec) = group;
5636
5637 if (unwi)
5638 {
5639 elf_group_name (unwi) = name;
5640 elf_next_in_group (unwi) = sec;
5641 elf_next_in_group (sec) = unwi;
5642 elf_sec_group (unwi) = group;
5643 }
5644
5645 if (unw)
5646 {
5647 elf_group_name (unw) = name;
5648 if (unwi)
5649 {
5650 elf_next_in_group (unw) = elf_next_in_group (unwi);
5651 elf_next_in_group (unwi) = unw;
5652 }
5653 else
5654 {
5655 elf_next_in_group (unw) = sec;
5656 elf_next_in_group (sec) = unw;
5657 }
5658 elf_sec_group (unw) = group;
5659 }
5660
5661 /* Fake SHT_GROUP section header. */
5662 elf_section_data (group)->this_hdr.bfd_section = group;
5663 elf_section_data (group)->this_hdr.sh_type = SHT_GROUP;
5664 }
5665 }
5666 return TRUE;
5667 }
5668
5669 static bfd_boolean
5670 elfNN_ia64_hpux_vec (const bfd_target *vec)
5671 {
5672 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec;
5673 return (vec == & bfd_elfNN_ia64_hpux_big_vec);
5674 }
5675
5676 static void
5677 elfNN_hpux_post_process_headers (abfd, info)
5678 bfd *abfd;
5679 struct bfd_link_info *info ATTRIBUTE_UNUSED;
5680 {
5681 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5682
5683 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
5684 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
5685 }
5686
5687 bfd_boolean
5688 elfNN_hpux_backend_section_from_bfd_section (abfd, sec, retval)
5689 bfd *abfd ATTRIBUTE_UNUSED;
5690 asection *sec;
5691 int *retval;
5692 {
5693 if (bfd_is_com_section (sec))
5694 {
5695 *retval = SHN_IA_64_ANSI_COMMON;
5696 return TRUE;
5697 }
5698 return FALSE;
5699 }
5700
5701 static void
5702 elfNN_hpux_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5703 asymbol *asym)
5704 {
5705 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5706
5707 switch (elfsym->internal_elf_sym.st_shndx)
5708 {
5709 case SHN_IA_64_ANSI_COMMON:
5710 asym->section = bfd_com_section_ptr;
5711 asym->value = elfsym->internal_elf_sym.st_size;
5712 asym->flags &= ~BSF_GLOBAL;
5713 break;
5714 }
5715 }
5716
5717 \f
5718 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec
5719 #define TARGET_LITTLE_NAME "elfNN-ia64-little"
5720 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec
5721 #define TARGET_BIG_NAME "elfNN-ia64-big"
5722 #define ELF_ARCH bfd_arch_ia64
5723 #define ELF_MACHINE_CODE EM_IA_64
5724 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */
5725 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */
5726 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
5727 #define ELF_COMMONPAGESIZE 0x4000 /* 16KB */
5728
5729 #define elf_backend_section_from_shdr \
5730 elfNN_ia64_section_from_shdr
5731 #define elf_backend_section_flags \
5732 elfNN_ia64_section_flags
5733 #define elf_backend_fake_sections \
5734 elfNN_ia64_fake_sections
5735 #define elf_backend_final_write_processing \
5736 elfNN_ia64_final_write_processing
5737 #define elf_backend_add_symbol_hook \
5738 elfNN_ia64_add_symbol_hook
5739 #define elf_backend_additional_program_headers \
5740 elfNN_ia64_additional_program_headers
5741 #define elf_backend_modify_segment_map \
5742 elfNN_ia64_modify_segment_map
5743 #define elf_backend_modify_program_headers \
5744 elfNN_ia64_modify_program_headers
5745 #define elf_info_to_howto \
5746 elfNN_ia64_info_to_howto
5747
5748 #define bfd_elfNN_bfd_reloc_type_lookup \
5749 elfNN_ia64_reloc_type_lookup
5750 #define bfd_elfNN_bfd_is_local_label_name \
5751 elfNN_ia64_is_local_label_name
5752 #define bfd_elfNN_bfd_relax_section \
5753 elfNN_ia64_relax_section
5754
5755 #define elf_backend_object_p \
5756 elfNN_ia64_object_p
5757
5758 /* Stuff for the BFD linker: */
5759 #define bfd_elfNN_bfd_link_hash_table_create \
5760 elfNN_ia64_hash_table_create
5761 #define bfd_elfNN_bfd_link_hash_table_free \
5762 elfNN_ia64_hash_table_free
5763 #define elf_backend_create_dynamic_sections \
5764 elfNN_ia64_create_dynamic_sections
5765 #define elf_backend_check_relocs \
5766 elfNN_ia64_check_relocs
5767 #define elf_backend_adjust_dynamic_symbol \
5768 elfNN_ia64_adjust_dynamic_symbol
5769 #define elf_backend_size_dynamic_sections \
5770 elfNN_ia64_size_dynamic_sections
5771 #define elf_backend_omit_section_dynsym \
5772 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
5773 #define elf_backend_relocate_section \
5774 elfNN_ia64_relocate_section
5775 #define elf_backend_finish_dynamic_symbol \
5776 elfNN_ia64_finish_dynamic_symbol
5777 #define elf_backend_finish_dynamic_sections \
5778 elfNN_ia64_finish_dynamic_sections
5779 #define bfd_elfNN_bfd_final_link \
5780 elfNN_ia64_final_link
5781
5782 #define bfd_elfNN_bfd_merge_private_bfd_data \
5783 elfNN_ia64_merge_private_bfd_data
5784 #define bfd_elfNN_bfd_set_private_flags \
5785 elfNN_ia64_set_private_flags
5786 #define bfd_elfNN_bfd_print_private_bfd_data \
5787 elfNN_ia64_print_private_bfd_data
5788
5789 #define elf_backend_plt_readonly 1
5790 #define elf_backend_want_plt_sym 0
5791 #define elf_backend_plt_alignment 5
5792 #define elf_backend_got_header_size 0
5793 #define elf_backend_want_got_plt 1
5794 #define elf_backend_may_use_rel_p 1
5795 #define elf_backend_may_use_rela_p 1
5796 #define elf_backend_default_use_rela_p 1
5797 #define elf_backend_want_dynbss 0
5798 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect
5799 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol
5800 #define elf_backend_fixup_symbol _bfd_elf_link_hash_fixup_symbol
5801 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class
5802 #define elf_backend_rela_normal 1
5803 #define elf_backend_special_sections elfNN_ia64_special_sections
5804
5805 /* FIXME: PR 290: The Intel C compiler generates SHT_IA_64_UNWIND with
5806 SHF_LINK_ORDER. But it doesn't set the sh_link or sh_info fields.
5807 We don't want to flood users with so many error messages. We turn
5808 off the warning for now. It will be turned on later when the Intel
5809 compiler is fixed. */
5810 #define elf_backend_link_order_error_handler NULL
5811
5812 #include "elfNN-target.h"
5813
5814 /* HPUX-specific vectors. */
5815
5816 #undef TARGET_LITTLE_SYM
5817 #undef TARGET_LITTLE_NAME
5818 #undef TARGET_BIG_SYM
5819 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec
5820 #undef TARGET_BIG_NAME
5821 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big"
5822
5823 /* These are HP-UX specific functions. */
5824
5825 #undef elf_backend_post_process_headers
5826 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers
5827
5828 #undef elf_backend_section_from_bfd_section
5829 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section
5830
5831 #undef elf_backend_symbol_processing
5832 #define elf_backend_symbol_processing elfNN_hpux_backend_symbol_processing
5833
5834 #undef elf_backend_want_p_paddr_set_to_zero
5835 #define elf_backend_want_p_paddr_set_to_zero 1
5836
5837 #undef ELF_MAXPAGESIZE
5838 #define ELF_MAXPAGESIZE 0x1000 /* 4K */
5839 #undef ELF_COMMONPAGESIZE
5840
5841 #undef elfNN_bed
5842 #define elfNN_bed elfNN_ia64_hpux_bed
5843
5844 #include "elfNN-target.h"
5845
5846 #undef elf_backend_want_p_paddr_set_to_zero
This page took 0.156269 seconds and 5 git commands to generate.