[MIPS] When calculating a relocation using an undefined weak symbol don't check for...
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/ecoff.h"
44 #include "coff/mips.h"
45
46 #include "hashtab.h"
47
48 /* Types of TLS GOT entry. */
49 enum mips_got_tls_type {
50 GOT_TLS_NONE,
51 GOT_TLS_GD,
52 GOT_TLS_LDM,
53 GOT_TLS_IE
54 };
55
56 /* This structure is used to hold information about one GOT entry.
57 There are four types of entry:
58
59 (1) an absolute address
60 requires: abfd == NULL
61 fields: d.address
62
63 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
64 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
65 fields: abfd, symndx, d.addend, tls_type
66
67 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
68 requires: abfd != NULL, symndx == -1
69 fields: d.h, tls_type
70
71 (4) a TLS LDM slot
72 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
73 fields: none; there's only one of these per GOT. */
74 struct mips_got_entry
75 {
76 /* One input bfd that needs the GOT entry. */
77 bfd *abfd;
78 /* The index of the symbol, as stored in the relocation r_info, if
79 we have a local symbol; -1 otherwise. */
80 long symndx;
81 union
82 {
83 /* If abfd == NULL, an address that must be stored in the got. */
84 bfd_vma address;
85 /* If abfd != NULL && symndx != -1, the addend of the relocation
86 that should be added to the symbol value. */
87 bfd_vma addend;
88 /* If abfd != NULL && symndx == -1, the hash table entry
89 corresponding to a symbol in the GOT. The symbol's entry
90 is in the local area if h->global_got_area is GGA_NONE,
91 otherwise it is in the global area. */
92 struct mips_elf_link_hash_entry *h;
93 } d;
94
95 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
96 symbol entry with r_symndx == 0. */
97 unsigned char tls_type;
98
99 /* True if we have filled in the GOT contents for a TLS entry,
100 and created the associated relocations. */
101 unsigned char tls_initialized;
102
103 /* The offset from the beginning of the .got section to the entry
104 corresponding to this symbol+addend. If it's a global symbol
105 whose offset is yet to be decided, it's going to be -1. */
106 long gotidx;
107 };
108
109 /* This structure represents a GOT page reference from an input bfd.
110 Each instance represents a symbol + ADDEND, where the representation
111 of the symbol depends on whether it is local to the input bfd.
112 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
113 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
114
115 Page references with SYMNDX >= 0 always become page references
116 in the output. Page references with SYMNDX < 0 only become page
117 references if the symbol binds locally; in other cases, the page
118 reference decays to a global GOT reference. */
119 struct mips_got_page_ref
120 {
121 long symndx;
122 union
123 {
124 struct mips_elf_link_hash_entry *h;
125 bfd *abfd;
126 } u;
127 bfd_vma addend;
128 };
129
130 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
131 The structures form a non-overlapping list that is sorted by increasing
132 MIN_ADDEND. */
133 struct mips_got_page_range
134 {
135 struct mips_got_page_range *next;
136 bfd_signed_vma min_addend;
137 bfd_signed_vma max_addend;
138 };
139
140 /* This structure describes the range of addends that are applied to page
141 relocations against a given section. */
142 struct mips_got_page_entry
143 {
144 /* The section that these entries are based on. */
145 asection *sec;
146 /* The ranges for this page entry. */
147 struct mips_got_page_range *ranges;
148 /* The maximum number of page entries needed for RANGES. */
149 bfd_vma num_pages;
150 };
151
152 /* This structure is used to hold .got information when linking. */
153
154 struct mips_got_info
155 {
156 /* The number of global .got entries. */
157 unsigned int global_gotno;
158 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
159 unsigned int reloc_only_gotno;
160 /* The number of .got slots used for TLS. */
161 unsigned int tls_gotno;
162 /* The first unused TLS .got entry. Used only during
163 mips_elf_initialize_tls_index. */
164 unsigned int tls_assigned_gotno;
165 /* The number of local .got entries, eventually including page entries. */
166 unsigned int local_gotno;
167 /* The maximum number of page entries needed. */
168 unsigned int page_gotno;
169 /* The number of relocations needed for the GOT entries. */
170 unsigned int relocs;
171 /* The first unused local .got entry. */
172 unsigned int assigned_low_gotno;
173 /* The last unused local .got entry. */
174 unsigned int assigned_high_gotno;
175 /* A hash table holding members of the got. */
176 struct htab *got_entries;
177 /* A hash table holding mips_got_page_ref structures. */
178 struct htab *got_page_refs;
179 /* A hash table of mips_got_page_entry structures. */
180 struct htab *got_page_entries;
181 /* In multi-got links, a pointer to the next got (err, rather, most
182 of the time, it points to the previous got). */
183 struct mips_got_info *next;
184 };
185
186 /* Structure passed when merging bfds' gots. */
187
188 struct mips_elf_got_per_bfd_arg
189 {
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
211 };
212
213 /* A structure used to pass information to htab_traverse callbacks
214 when laying out the GOT. */
215
216 struct mips_elf_traverse_got_arg
217 {
218 struct bfd_link_info *info;
219 struct mips_got_info *g;
220 int value;
221 };
222
223 struct _mips_elf_section_data
224 {
225 struct bfd_elf_section_data elf;
226 union
227 {
228 bfd_byte *tdata;
229 } u;
230 };
231
232 #define mips_elf_section_data(sec) \
233 ((struct _mips_elf_section_data *) elf_section_data (sec))
234
235 #define is_mips_elf(bfd) \
236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
237 && elf_tdata (bfd) != NULL \
238 && elf_object_id (bfd) == MIPS_ELF_DATA)
239
240 /* The ABI says that every symbol used by dynamic relocations must have
241 a global GOT entry. Among other things, this provides the dynamic
242 linker with a free, directly-indexed cache. The GOT can therefore
243 contain symbols that are not referenced by GOT relocations themselves
244 (in other words, it may have symbols that are not referenced by things
245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246
247 GOT relocations are less likely to overflow if we put the associated
248 GOT entries towards the beginning. We therefore divide the global
249 GOT entries into two areas: "normal" and "reloc-only". Entries in
250 the first area can be used for both dynamic relocations and GP-relative
251 accesses, while those in the "reloc-only" area are for dynamic
252 relocations only.
253
254 These GGA_* ("Global GOT Area") values are organised so that lower
255 values are more general than higher values. Also, non-GGA_NONE
256 values are ordered by the position of the area in the GOT. */
257 #define GGA_NORMAL 0
258 #define GGA_RELOC_ONLY 1
259 #define GGA_NONE 2
260
261 /* Information about a non-PIC interface to a PIC function. There are
262 two ways of creating these interfaces. The first is to add:
263
264 lui $25,%hi(func)
265 addiu $25,$25,%lo(func)
266
267 immediately before a PIC function "func". The second is to add:
268
269 lui $25,%hi(func)
270 j func
271 addiu $25,$25,%lo(func)
272
273 to a separate trampoline section.
274
275 Stubs of the first kind go in a new section immediately before the
276 target function. Stubs of the second kind go in a single section
277 pointed to by the hash table's "strampoline" field. */
278 struct mips_elf_la25_stub {
279 /* The generated section that contains this stub. */
280 asection *stub_section;
281
282 /* The offset of the stub from the start of STUB_SECTION. */
283 bfd_vma offset;
284
285 /* One symbol for the original function. Its location is available
286 in H->root.root.u.def. */
287 struct mips_elf_link_hash_entry *h;
288 };
289
290 /* Macros for populating a mips_elf_la25_stub. */
291
292 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
293 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
295 #define LA25_LUI_MICROMIPS(VAL) \
296 (0x41b90000 | (VAL)) /* lui t9,VAL */
297 #define LA25_J_MICROMIPS(VAL) \
298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
299 #define LA25_ADDIU_MICROMIPS(VAL) \
300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
301
302 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
303 the dynamic symbols. */
304
305 struct mips_elf_hash_sort_data
306 {
307 /* The symbol in the global GOT with the lowest dynamic symbol table
308 index. */
309 struct elf_link_hash_entry *low;
310 /* The least dynamic symbol table index corresponding to a non-TLS
311 symbol with a GOT entry. */
312 long min_got_dynindx;
313 /* The greatest dynamic symbol table index corresponding to a symbol
314 with a GOT entry that is not referenced (e.g., a dynamic symbol
315 with dynamic relocations pointing to it from non-primary GOTs). */
316 long max_unref_got_dynindx;
317 /* The greatest dynamic symbol table index not corresponding to a
318 symbol without a GOT entry. */
319 long max_non_got_dynindx;
320 };
321
322 /* We make up to two PLT entries if needed, one for standard MIPS code
323 and one for compressed code, either a MIPS16 or microMIPS one. We
324 keep a separate record of traditional lazy-binding stubs, for easier
325 processing. */
326
327 struct plt_entry
328 {
329 /* Traditional SVR4 stub offset, or -1 if none. */
330 bfd_vma stub_offset;
331
332 /* Standard PLT entry offset, or -1 if none. */
333 bfd_vma mips_offset;
334
335 /* Compressed PLT entry offset, or -1 if none. */
336 bfd_vma comp_offset;
337
338 /* The corresponding .got.plt index, or -1 if none. */
339 bfd_vma gotplt_index;
340
341 /* Whether we need a standard PLT entry. */
342 unsigned int need_mips : 1;
343
344 /* Whether we need a compressed PLT entry. */
345 unsigned int need_comp : 1;
346 };
347
348 /* The MIPS ELF linker needs additional information for each symbol in
349 the global hash table. */
350
351 struct mips_elf_link_hash_entry
352 {
353 struct elf_link_hash_entry root;
354
355 /* External symbol information. */
356 EXTR esym;
357
358 /* The la25 stub we have created for ths symbol, if any. */
359 struct mips_elf_la25_stub *la25_stub;
360
361 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
362 this symbol. */
363 unsigned int possibly_dynamic_relocs;
364
365 /* If there is a stub that 32 bit functions should use to call this
366 16 bit function, this points to the section containing the stub. */
367 asection *fn_stub;
368
369 /* If there is a stub that 16 bit functions should use to call this
370 32 bit function, this points to the section containing the stub. */
371 asection *call_stub;
372
373 /* This is like the call_stub field, but it is used if the function
374 being called returns a floating point value. */
375 asection *call_fp_stub;
376
377 /* The highest GGA_* value that satisfies all references to this symbol. */
378 unsigned int global_got_area : 2;
379
380 /* True if all GOT relocations against this symbol are for calls. This is
381 a looser condition than no_fn_stub below, because there may be other
382 non-call non-GOT relocations against the symbol. */
383 unsigned int got_only_for_calls : 1;
384
385 /* True if one of the relocations described by possibly_dynamic_relocs
386 is against a readonly section. */
387 unsigned int readonly_reloc : 1;
388
389 /* True if there is a relocation against this symbol that must be
390 resolved by the static linker (in other words, if the relocation
391 cannot possibly be made dynamic). */
392 unsigned int has_static_relocs : 1;
393
394 /* True if we must not create a .MIPS.stubs entry for this symbol.
395 This is set, for example, if there are relocations related to
396 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
397 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
398 unsigned int no_fn_stub : 1;
399
400 /* Whether we need the fn_stub; this is true if this symbol appears
401 in any relocs other than a 16 bit call. */
402 unsigned int need_fn_stub : 1;
403
404 /* True if this symbol is referenced by branch relocations from
405 any non-PIC input file. This is used to determine whether an
406 la25 stub is required. */
407 unsigned int has_nonpic_branches : 1;
408
409 /* Does this symbol need a traditional MIPS lazy-binding stub
410 (as opposed to a PLT entry)? */
411 unsigned int needs_lazy_stub : 1;
412
413 /* Does this symbol resolve to a PLT entry? */
414 unsigned int use_plt_entry : 1;
415 };
416
417 /* MIPS ELF linker hash table. */
418
419 struct mips_elf_link_hash_table
420 {
421 struct elf_link_hash_table root;
422
423 /* The number of .rtproc entries. */
424 bfd_size_type procedure_count;
425
426 /* The size of the .compact_rel section (if SGI_COMPAT). */
427 bfd_size_type compact_rel_size;
428
429 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
430 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
431 bfd_boolean use_rld_obj_head;
432
433 /* The __rld_map or __rld_obj_head symbol. */
434 struct elf_link_hash_entry *rld_symbol;
435
436 /* This is set if we see any mips16 stub sections. */
437 bfd_boolean mips16_stubs_seen;
438
439 /* True if we can generate copy relocs and PLTs. */
440 bfd_boolean use_plts_and_copy_relocs;
441
442 /* True if we can only use 32-bit microMIPS instructions. */
443 bfd_boolean insn32;
444
445 /* True if we're generating code for VxWorks. */
446 bfd_boolean is_vxworks;
447
448 /* True if we already reported the small-data section overflow. */
449 bfd_boolean small_data_overflow_reported;
450
451 /* Shortcuts to some dynamic sections, or NULL if they are not
452 being used. */
453 asection *srelbss;
454 asection *sdynbss;
455 asection *srelplt;
456 asection *srelplt2;
457 asection *sgotplt;
458 asection *splt;
459 asection *sstubs;
460 asection *sgot;
461
462 /* The master GOT information. */
463 struct mips_got_info *got_info;
464
465 /* The global symbol in the GOT with the lowest index in the dynamic
466 symbol table. */
467 struct elf_link_hash_entry *global_gotsym;
468
469 /* The size of the PLT header in bytes. */
470 bfd_vma plt_header_size;
471
472 /* The size of a standard PLT entry in bytes. */
473 bfd_vma plt_mips_entry_size;
474
475 /* The size of a compressed PLT entry in bytes. */
476 bfd_vma plt_comp_entry_size;
477
478 /* The offset of the next standard PLT entry to create. */
479 bfd_vma plt_mips_offset;
480
481 /* The offset of the next compressed PLT entry to create. */
482 bfd_vma plt_comp_offset;
483
484 /* The index of the next .got.plt entry to create. */
485 bfd_vma plt_got_index;
486
487 /* The number of functions that need a lazy-binding stub. */
488 bfd_vma lazy_stub_count;
489
490 /* The size of a function stub entry in bytes. */
491 bfd_vma function_stub_size;
492
493 /* The number of reserved entries at the beginning of the GOT. */
494 unsigned int reserved_gotno;
495
496 /* The section used for mips_elf_la25_stub trampolines.
497 See the comment above that structure for details. */
498 asection *strampoline;
499
500 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
501 pairs. */
502 htab_t la25_stubs;
503
504 /* A function FN (NAME, IS, OS) that creates a new input section
505 called NAME and links it to output section OS. If IS is nonnull,
506 the new section should go immediately before it, otherwise it
507 should go at the (current) beginning of OS.
508
509 The function returns the new section on success, otherwise it
510 returns null. */
511 asection *(*add_stub_section) (const char *, asection *, asection *);
512
513 /* Small local sym cache. */
514 struct sym_cache sym_cache;
515
516 /* Is the PLT header compressed? */
517 unsigned int plt_header_is_comp : 1;
518 };
519
520 /* Get the MIPS ELF linker hash table from a link_info structure. */
521
522 #define mips_elf_hash_table(p) \
523 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
524 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
525
526 /* A structure used to communicate with htab_traverse callbacks. */
527 struct mips_htab_traverse_info
528 {
529 /* The usual link-wide information. */
530 struct bfd_link_info *info;
531 bfd *output_bfd;
532
533 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
534 bfd_boolean error;
535 };
536
537 /* MIPS ELF private object data. */
538
539 struct mips_elf_obj_tdata
540 {
541 /* Generic ELF private object data. */
542 struct elf_obj_tdata root;
543
544 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
545 bfd *abi_fp_bfd;
546
547 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
548 bfd *abi_msa_bfd;
549
550 /* The abiflags for this object. */
551 Elf_Internal_ABIFlags_v0 abiflags;
552 bfd_boolean abiflags_valid;
553
554 /* The GOT requirements of input bfds. */
555 struct mips_got_info *got;
556
557 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
558 included directly in this one, but there's no point to wasting
559 the memory just for the infrequently called find_nearest_line. */
560 struct mips_elf_find_line *find_line_info;
561
562 /* An array of stub sections indexed by symbol number. */
563 asection **local_stubs;
564 asection **local_call_stubs;
565
566 /* The Irix 5 support uses two virtual sections, which represent
567 text/data symbols defined in dynamic objects. */
568 asymbol *elf_data_symbol;
569 asymbol *elf_text_symbol;
570 asection *elf_data_section;
571 asection *elf_text_section;
572 };
573
574 /* Get MIPS ELF private object data from BFD's tdata. */
575
576 #define mips_elf_tdata(bfd) \
577 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
578
579 #define TLS_RELOC_P(r_type) \
580 (r_type == R_MIPS_TLS_DTPMOD32 \
581 || r_type == R_MIPS_TLS_DTPMOD64 \
582 || r_type == R_MIPS_TLS_DTPREL32 \
583 || r_type == R_MIPS_TLS_DTPREL64 \
584 || r_type == R_MIPS_TLS_GD \
585 || r_type == R_MIPS_TLS_LDM \
586 || r_type == R_MIPS_TLS_DTPREL_HI16 \
587 || r_type == R_MIPS_TLS_DTPREL_LO16 \
588 || r_type == R_MIPS_TLS_GOTTPREL \
589 || r_type == R_MIPS_TLS_TPREL32 \
590 || r_type == R_MIPS_TLS_TPREL64 \
591 || r_type == R_MIPS_TLS_TPREL_HI16 \
592 || r_type == R_MIPS_TLS_TPREL_LO16 \
593 || r_type == R_MIPS16_TLS_GD \
594 || r_type == R_MIPS16_TLS_LDM \
595 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
596 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
597 || r_type == R_MIPS16_TLS_GOTTPREL \
598 || r_type == R_MIPS16_TLS_TPREL_HI16 \
599 || r_type == R_MIPS16_TLS_TPREL_LO16 \
600 || r_type == R_MICROMIPS_TLS_GD \
601 || r_type == R_MICROMIPS_TLS_LDM \
602 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
603 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
604 || r_type == R_MICROMIPS_TLS_GOTTPREL \
605 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
606 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
607
608 /* Structure used to pass information to mips_elf_output_extsym. */
609
610 struct extsym_info
611 {
612 bfd *abfd;
613 struct bfd_link_info *info;
614 struct ecoff_debug_info *debug;
615 const struct ecoff_debug_swap *swap;
616 bfd_boolean failed;
617 };
618
619 /* The names of the runtime procedure table symbols used on IRIX5. */
620
621 static const char * const mips_elf_dynsym_rtproc_names[] =
622 {
623 "_procedure_table",
624 "_procedure_string_table",
625 "_procedure_table_size",
626 NULL
627 };
628
629 /* These structures are used to generate the .compact_rel section on
630 IRIX5. */
631
632 typedef struct
633 {
634 unsigned long id1; /* Always one? */
635 unsigned long num; /* Number of compact relocation entries. */
636 unsigned long id2; /* Always two? */
637 unsigned long offset; /* The file offset of the first relocation. */
638 unsigned long reserved0; /* Zero? */
639 unsigned long reserved1; /* Zero? */
640 } Elf32_compact_rel;
641
642 typedef struct
643 {
644 bfd_byte id1[4];
645 bfd_byte num[4];
646 bfd_byte id2[4];
647 bfd_byte offset[4];
648 bfd_byte reserved0[4];
649 bfd_byte reserved1[4];
650 } Elf32_External_compact_rel;
651
652 typedef struct
653 {
654 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
655 unsigned int rtype : 4; /* Relocation types. See below. */
656 unsigned int dist2to : 8;
657 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
658 unsigned long konst; /* KONST field. See below. */
659 unsigned long vaddr; /* VADDR to be relocated. */
660 } Elf32_crinfo;
661
662 typedef struct
663 {
664 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
665 unsigned int rtype : 4; /* Relocation types. See below. */
666 unsigned int dist2to : 8;
667 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
668 unsigned long konst; /* KONST field. See below. */
669 } Elf32_crinfo2;
670
671 typedef struct
672 {
673 bfd_byte info[4];
674 bfd_byte konst[4];
675 bfd_byte vaddr[4];
676 } Elf32_External_crinfo;
677
678 typedef struct
679 {
680 bfd_byte info[4];
681 bfd_byte konst[4];
682 } Elf32_External_crinfo2;
683
684 /* These are the constants used to swap the bitfields in a crinfo. */
685
686 #define CRINFO_CTYPE (0x1)
687 #define CRINFO_CTYPE_SH (31)
688 #define CRINFO_RTYPE (0xf)
689 #define CRINFO_RTYPE_SH (27)
690 #define CRINFO_DIST2TO (0xff)
691 #define CRINFO_DIST2TO_SH (19)
692 #define CRINFO_RELVADDR (0x7ffff)
693 #define CRINFO_RELVADDR_SH (0)
694
695 /* A compact relocation info has long (3 words) or short (2 words)
696 formats. A short format doesn't have VADDR field and relvaddr
697 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
698 #define CRF_MIPS_LONG 1
699 #define CRF_MIPS_SHORT 0
700
701 /* There are 4 types of compact relocation at least. The value KONST
702 has different meaning for each type:
703
704 (type) (konst)
705 CT_MIPS_REL32 Address in data
706 CT_MIPS_WORD Address in word (XXX)
707 CT_MIPS_GPHI_LO GP - vaddr
708 CT_MIPS_JMPAD Address to jump
709 */
710
711 #define CRT_MIPS_REL32 0xa
712 #define CRT_MIPS_WORD 0xb
713 #define CRT_MIPS_GPHI_LO 0xc
714 #define CRT_MIPS_JMPAD 0xd
715
716 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
717 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
718 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
719 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
720 \f
721 /* The structure of the runtime procedure descriptor created by the
722 loader for use by the static exception system. */
723
724 typedef struct runtime_pdr {
725 bfd_vma adr; /* Memory address of start of procedure. */
726 long regmask; /* Save register mask. */
727 long regoffset; /* Save register offset. */
728 long fregmask; /* Save floating point register mask. */
729 long fregoffset; /* Save floating point register offset. */
730 long frameoffset; /* Frame size. */
731 short framereg; /* Frame pointer register. */
732 short pcreg; /* Offset or reg of return pc. */
733 long irpss; /* Index into the runtime string table. */
734 long reserved;
735 struct exception_info *exception_info;/* Pointer to exception array. */
736 } RPDR, *pRPDR;
737 #define cbRPDR sizeof (RPDR)
738 #define rpdNil ((pRPDR) 0)
739 \f
740 static struct mips_got_entry *mips_elf_create_local_got_entry
741 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
742 struct mips_elf_link_hash_entry *, int);
743 static bfd_boolean mips_elf_sort_hash_table_f
744 (struct mips_elf_link_hash_entry *, void *);
745 static bfd_vma mips_elf_high
746 (bfd_vma);
747 static bfd_boolean mips_elf_create_dynamic_relocation
748 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
749 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
750 bfd_vma *, asection *);
751 static bfd_vma mips_elf_adjust_gp
752 (bfd *, struct mips_got_info *, bfd *);
753
754 /* This will be used when we sort the dynamic relocation records. */
755 static bfd *reldyn_sorting_bfd;
756
757 /* True if ABFD is for CPUs with load interlocking that include
758 non-MIPS1 CPUs and R3900. */
759 #define LOAD_INTERLOCKS_P(abfd) \
760 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
761 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
762
763 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
764 This should be safe for all architectures. We enable this predicate
765 for RM9000 for now. */
766 #define JAL_TO_BAL_P(abfd) \
767 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
768
769 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
770 This should be safe for all architectures. We enable this predicate for
771 all CPUs. */
772 #define JALR_TO_BAL_P(abfd) 1
773
774 /* True if ABFD is for CPUs that are faster if JR is converted to B.
775 This should be safe for all architectures. We enable this predicate for
776 all CPUs. */
777 #define JR_TO_B_P(abfd) 1
778
779 /* True if ABFD is a PIC object. */
780 #define PIC_OBJECT_P(abfd) \
781 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
782
783 /* Nonzero if ABFD is using the O32 ABI. */
784 #define ABI_O32_P(abfd) \
785 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
786
787 /* Nonzero if ABFD is using the N32 ABI. */
788 #define ABI_N32_P(abfd) \
789 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
790
791 /* Nonzero if ABFD is using the N64 ABI. */
792 #define ABI_64_P(abfd) \
793 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
794
795 /* Nonzero if ABFD is using NewABI conventions. */
796 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
797
798 /* Nonzero if ABFD has microMIPS code. */
799 #define MICROMIPS_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
801
802 /* Nonzero if ABFD is MIPS R6. */
803 #define MIPSR6_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
805 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
806
807 /* The IRIX compatibility level we are striving for. */
808 #define IRIX_COMPAT(abfd) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
810
811 /* Whether we are trying to be compatible with IRIX at all. */
812 #define SGI_COMPAT(abfd) \
813 (IRIX_COMPAT (abfd) != ict_none)
814
815 /* The name of the options section. */
816 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
817 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
818
819 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
820 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
821 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
822 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
823
824 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
825 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
826 (strcmp (NAME, ".MIPS.abiflags") == 0)
827
828 /* Whether the section is readonly. */
829 #define MIPS_ELF_READONLY_SECTION(sec) \
830 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
831 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
832
833 /* The name of the stub section. */
834 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
835
836 /* The size of an external REL relocation. */
837 #define MIPS_ELF_REL_SIZE(abfd) \
838 (get_elf_backend_data (abfd)->s->sizeof_rel)
839
840 /* The size of an external RELA relocation. */
841 #define MIPS_ELF_RELA_SIZE(abfd) \
842 (get_elf_backend_data (abfd)->s->sizeof_rela)
843
844 /* The size of an external dynamic table entry. */
845 #define MIPS_ELF_DYN_SIZE(abfd) \
846 (get_elf_backend_data (abfd)->s->sizeof_dyn)
847
848 /* The size of a GOT entry. */
849 #define MIPS_ELF_GOT_SIZE(abfd) \
850 (get_elf_backend_data (abfd)->s->arch_size / 8)
851
852 /* The size of the .rld_map section. */
853 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
854 (get_elf_backend_data (abfd)->s->arch_size / 8)
855
856 /* The size of a symbol-table entry. */
857 #define MIPS_ELF_SYM_SIZE(abfd) \
858 (get_elf_backend_data (abfd)->s->sizeof_sym)
859
860 /* The default alignment for sections, as a power of two. */
861 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
862 (get_elf_backend_data (abfd)->s->log_file_align)
863
864 /* Get word-sized data. */
865 #define MIPS_ELF_GET_WORD(abfd, ptr) \
866 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
867
868 /* Put out word-sized data. */
869 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
870 (ABI_64_P (abfd) \
871 ? bfd_put_64 (abfd, val, ptr) \
872 : bfd_put_32 (abfd, val, ptr))
873
874 /* The opcode for word-sized loads (LW or LD). */
875 #define MIPS_ELF_LOAD_WORD(abfd) \
876 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
877
878 /* Add a dynamic symbol table-entry. */
879 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
880 _bfd_elf_add_dynamic_entry (info, tag, val)
881
882 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
883 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
884
885 /* The name of the dynamic relocation section. */
886 #define MIPS_ELF_REL_DYN_NAME(INFO) \
887 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
888
889 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
890 from smaller values. Start with zero, widen, *then* decrement. */
891 #define MINUS_ONE (((bfd_vma)0) - 1)
892 #define MINUS_TWO (((bfd_vma)0) - 2)
893
894 /* The value to write into got[1] for SVR4 targets, to identify it is
895 a GNU object. The dynamic linker can then use got[1] to store the
896 module pointer. */
897 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
898 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
899
900 /* The offset of $gp from the beginning of the .got section. */
901 #define ELF_MIPS_GP_OFFSET(INFO) \
902 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
903
904 /* The maximum size of the GOT for it to be addressable using 16-bit
905 offsets from $gp. */
906 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
907
908 /* Instructions which appear in a stub. */
909 #define STUB_LW(abfd) \
910 ((ABI_64_P (abfd) \
911 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
912 : 0x8f998010)) /* lw t9,0x8010(gp) */
913 #define STUB_MOVE(abfd) \
914 ((ABI_64_P (abfd) \
915 ? 0x03e0782d /* daddu t7,ra */ \
916 : 0x03e07821)) /* addu t7,ra */
917 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
918 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
919 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
920 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
921 #define STUB_LI16S(abfd, VAL) \
922 ((ABI_64_P (abfd) \
923 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
924 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
925
926 /* Likewise for the microMIPS ASE. */
927 #define STUB_LW_MICROMIPS(abfd) \
928 (ABI_64_P (abfd) \
929 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
930 : 0xff3c8010) /* lw t9,0x8010(gp) */
931 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
932 #define STUB_MOVE32_MICROMIPS(abfd) \
933 (ABI_64_P (abfd) \
934 ? 0x581f7950 /* daddu t7,ra,zero */ \
935 : 0x001f7950) /* addu t7,ra,zero */
936 #define STUB_LUI_MICROMIPS(VAL) \
937 (0x41b80000 + (VAL)) /* lui t8,VAL */
938 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
939 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
940 #define STUB_ORI_MICROMIPS(VAL) \
941 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
942 #define STUB_LI16U_MICROMIPS(VAL) \
943 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
944 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
945 (ABI_64_P (abfd) \
946 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
947 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
948
949 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
950 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
951 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
952 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
953 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
954 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
955
956 /* The name of the dynamic interpreter. This is put in the .interp
957 section. */
958
959 #define ELF_DYNAMIC_INTERPRETER(abfd) \
960 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
961 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
962 : "/usr/lib/libc.so.1")
963
964 #ifdef BFD64
965 #define MNAME(bfd,pre,pos) \
966 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
967 #define ELF_R_SYM(bfd, i) \
968 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
969 #define ELF_R_TYPE(bfd, i) \
970 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
971 #define ELF_R_INFO(bfd, s, t) \
972 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
973 #else
974 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
975 #define ELF_R_SYM(bfd, i) \
976 (ELF32_R_SYM (i))
977 #define ELF_R_TYPE(bfd, i) \
978 (ELF32_R_TYPE (i))
979 #define ELF_R_INFO(bfd, s, t) \
980 (ELF32_R_INFO (s, t))
981 #endif
982 \f
983 /* The mips16 compiler uses a couple of special sections to handle
984 floating point arguments.
985
986 Section names that look like .mips16.fn.FNNAME contain stubs that
987 copy floating point arguments from the fp regs to the gp regs and
988 then jump to FNNAME. If any 32 bit function calls FNNAME, the
989 call should be redirected to the stub instead. If no 32 bit
990 function calls FNNAME, the stub should be discarded. We need to
991 consider any reference to the function, not just a call, because
992 if the address of the function is taken we will need the stub,
993 since the address might be passed to a 32 bit function.
994
995 Section names that look like .mips16.call.FNNAME contain stubs
996 that copy floating point arguments from the gp regs to the fp
997 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
998 then any 16 bit function that calls FNNAME should be redirected
999 to the stub instead. If FNNAME is not a 32 bit function, the
1000 stub should be discarded.
1001
1002 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1003 which call FNNAME and then copy the return value from the fp regs
1004 to the gp regs. These stubs store the return value in $18 while
1005 calling FNNAME; any function which might call one of these stubs
1006 must arrange to save $18 around the call. (This case is not
1007 needed for 32 bit functions that call 16 bit functions, because
1008 16 bit functions always return floating point values in both
1009 $f0/$f1 and $2/$3.)
1010
1011 Note that in all cases FNNAME might be defined statically.
1012 Therefore, FNNAME is not used literally. Instead, the relocation
1013 information will indicate which symbol the section is for.
1014
1015 We record any stubs that we find in the symbol table. */
1016
1017 #define FN_STUB ".mips16.fn."
1018 #define CALL_STUB ".mips16.call."
1019 #define CALL_FP_STUB ".mips16.call.fp."
1020
1021 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1022 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1023 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1024 \f
1025 /* The format of the first PLT entry in an O32 executable. */
1026 static const bfd_vma mips_o32_exec_plt0_entry[] =
1027 {
1028 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1029 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1030 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1031 0x031cc023, /* subu $24, $24, $28 */
1032 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1033 0x0018c082, /* srl $24, $24, 2 */
1034 0x0320f809, /* jalr $25 */
1035 0x2718fffe /* subu $24, $24, 2 */
1036 };
1037
1038 /* The format of the first PLT entry in an N32 executable. Different
1039 because gp ($28) is not available; we use t2 ($14) instead. */
1040 static const bfd_vma mips_n32_exec_plt0_entry[] =
1041 {
1042 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1043 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1044 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1045 0x030ec023, /* subu $24, $24, $14 */
1046 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1047 0x0018c082, /* srl $24, $24, 2 */
1048 0x0320f809, /* jalr $25 */
1049 0x2718fffe /* subu $24, $24, 2 */
1050 };
1051
1052 /* The format of the first PLT entry in an N64 executable. Different
1053 from N32 because of the increased size of GOT entries. */
1054 static const bfd_vma mips_n64_exec_plt0_entry[] =
1055 {
1056 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1057 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1058 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1059 0x030ec023, /* subu $24, $24, $14 */
1060 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1061 0x0018c0c2, /* srl $24, $24, 3 */
1062 0x0320f809, /* jalr $25 */
1063 0x2718fffe /* subu $24, $24, 2 */
1064 };
1065
1066 /* The format of the microMIPS first PLT entry in an O32 executable.
1067 We rely on v0 ($2) rather than t8 ($24) to contain the address
1068 of the GOTPLT entry handled, so this stub may only be used when
1069 all the subsequent PLT entries are microMIPS code too.
1070
1071 The trailing NOP is for alignment and correct disassembly only. */
1072 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1073 {
1074 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1075 0xff23, 0x0000, /* lw $25, 0($3) */
1076 0x0535, /* subu $2, $2, $3 */
1077 0x2525, /* srl $2, $2, 2 */
1078 0x3302, 0xfffe, /* subu $24, $2, 2 */
1079 0x0dff, /* move $15, $31 */
1080 0x45f9, /* jalrs $25 */
1081 0x0f83, /* move $28, $3 */
1082 0x0c00 /* nop */
1083 };
1084
1085 /* The format of the microMIPS first PLT entry in an O32 executable
1086 in the insn32 mode. */
1087 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1088 {
1089 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1090 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1091 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1092 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1093 0x001f, 0x7950, /* move $15, $31 */
1094 0x0318, 0x1040, /* srl $24, $24, 2 */
1095 0x03f9, 0x0f3c, /* jalr $25 */
1096 0x3318, 0xfffe /* subu $24, $24, 2 */
1097 };
1098
1099 /* The format of subsequent standard PLT entries. */
1100 static const bfd_vma mips_exec_plt_entry[] =
1101 {
1102 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1103 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1104 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1105 0x03200008 /* jr $25 */
1106 };
1107
1108 /* In the following PLT entry the JR and ADDIU instructions will
1109 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1110 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1111 static const bfd_vma mipsr6_exec_plt_entry[] =
1112 {
1113 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1114 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1115 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1116 0x03200009 /* jr $25 */
1117 };
1118
1119 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1120 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1121 directly addressable. */
1122 static const bfd_vma mips16_o32_exec_plt_entry[] =
1123 {
1124 0xb203, /* lw $2, 12($pc) */
1125 0x9a60, /* lw $3, 0($2) */
1126 0x651a, /* move $24, $2 */
1127 0xeb00, /* jr $3 */
1128 0x653b, /* move $25, $3 */
1129 0x6500, /* nop */
1130 0x0000, 0x0000 /* .word (.got.plt entry) */
1131 };
1132
1133 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1134 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1135 static const bfd_vma micromips_o32_exec_plt_entry[] =
1136 {
1137 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1138 0xff22, 0x0000, /* lw $25, 0($2) */
1139 0x4599, /* jr $25 */
1140 0x0f02 /* move $24, $2 */
1141 };
1142
1143 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1144 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1145 {
1146 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1147 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1148 0x0019, 0x0f3c, /* jr $25 */
1149 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1150 };
1151
1152 /* The format of the first PLT entry in a VxWorks executable. */
1153 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1154 {
1155 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1156 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1157 0x8f390008, /* lw t9, 8(t9) */
1158 0x00000000, /* nop */
1159 0x03200008, /* jr t9 */
1160 0x00000000 /* nop */
1161 };
1162
1163 /* The format of subsequent PLT entries. */
1164 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1165 {
1166 0x10000000, /* b .PLT_resolver */
1167 0x24180000, /* li t8, <pltindex> */
1168 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1169 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1170 0x8f390000, /* lw t9, 0(t9) */
1171 0x00000000, /* nop */
1172 0x03200008, /* jr t9 */
1173 0x00000000 /* nop */
1174 };
1175
1176 /* The format of the first PLT entry in a VxWorks shared object. */
1177 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1178 {
1179 0x8f990008, /* lw t9, 8(gp) */
1180 0x00000000, /* nop */
1181 0x03200008, /* jr t9 */
1182 0x00000000, /* nop */
1183 0x00000000, /* nop */
1184 0x00000000 /* nop */
1185 };
1186
1187 /* The format of subsequent PLT entries. */
1188 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1189 {
1190 0x10000000, /* b .PLT_resolver */
1191 0x24180000 /* li t8, <pltindex> */
1192 };
1193 \f
1194 /* microMIPS 32-bit opcode helper installer. */
1195
1196 static void
1197 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1198 {
1199 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1200 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1201 }
1202
1203 /* microMIPS 32-bit opcode helper retriever. */
1204
1205 static bfd_vma
1206 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1207 {
1208 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1209 }
1210 \f
1211 /* Look up an entry in a MIPS ELF linker hash table. */
1212
1213 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1214 ((struct mips_elf_link_hash_entry *) \
1215 elf_link_hash_lookup (&(table)->root, (string), (create), \
1216 (copy), (follow)))
1217
1218 /* Traverse a MIPS ELF linker hash table. */
1219
1220 #define mips_elf_link_hash_traverse(table, func, info) \
1221 (elf_link_hash_traverse \
1222 (&(table)->root, \
1223 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1224 (info)))
1225
1226 /* Find the base offsets for thread-local storage in this object,
1227 for GD/LD and IE/LE respectively. */
1228
1229 #define TP_OFFSET 0x7000
1230 #define DTP_OFFSET 0x8000
1231
1232 static bfd_vma
1233 dtprel_base (struct bfd_link_info *info)
1234 {
1235 /* If tls_sec is NULL, we should have signalled an error already. */
1236 if (elf_hash_table (info)->tls_sec == NULL)
1237 return 0;
1238 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1239 }
1240
1241 static bfd_vma
1242 tprel_base (struct bfd_link_info *info)
1243 {
1244 /* If tls_sec is NULL, we should have signalled an error already. */
1245 if (elf_hash_table (info)->tls_sec == NULL)
1246 return 0;
1247 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1248 }
1249
1250 /* Create an entry in a MIPS ELF linker hash table. */
1251
1252 static struct bfd_hash_entry *
1253 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1254 struct bfd_hash_table *table, const char *string)
1255 {
1256 struct mips_elf_link_hash_entry *ret =
1257 (struct mips_elf_link_hash_entry *) entry;
1258
1259 /* Allocate the structure if it has not already been allocated by a
1260 subclass. */
1261 if (ret == NULL)
1262 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1263 if (ret == NULL)
1264 return (struct bfd_hash_entry *) ret;
1265
1266 /* Call the allocation method of the superclass. */
1267 ret = ((struct mips_elf_link_hash_entry *)
1268 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1269 table, string));
1270 if (ret != NULL)
1271 {
1272 /* Set local fields. */
1273 memset (&ret->esym, 0, sizeof (EXTR));
1274 /* We use -2 as a marker to indicate that the information has
1275 not been set. -1 means there is no associated ifd. */
1276 ret->esym.ifd = -2;
1277 ret->la25_stub = 0;
1278 ret->possibly_dynamic_relocs = 0;
1279 ret->fn_stub = NULL;
1280 ret->call_stub = NULL;
1281 ret->call_fp_stub = NULL;
1282 ret->global_got_area = GGA_NONE;
1283 ret->got_only_for_calls = TRUE;
1284 ret->readonly_reloc = FALSE;
1285 ret->has_static_relocs = FALSE;
1286 ret->no_fn_stub = FALSE;
1287 ret->need_fn_stub = FALSE;
1288 ret->has_nonpic_branches = FALSE;
1289 ret->needs_lazy_stub = FALSE;
1290 ret->use_plt_entry = FALSE;
1291 }
1292
1293 return (struct bfd_hash_entry *) ret;
1294 }
1295
1296 /* Allocate MIPS ELF private object data. */
1297
1298 bfd_boolean
1299 _bfd_mips_elf_mkobject (bfd *abfd)
1300 {
1301 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1302 MIPS_ELF_DATA);
1303 }
1304
1305 bfd_boolean
1306 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1307 {
1308 if (!sec->used_by_bfd)
1309 {
1310 struct _mips_elf_section_data *sdata;
1311 bfd_size_type amt = sizeof (*sdata);
1312
1313 sdata = bfd_zalloc (abfd, amt);
1314 if (sdata == NULL)
1315 return FALSE;
1316 sec->used_by_bfd = sdata;
1317 }
1318
1319 return _bfd_elf_new_section_hook (abfd, sec);
1320 }
1321 \f
1322 /* Read ECOFF debugging information from a .mdebug section into a
1323 ecoff_debug_info structure. */
1324
1325 bfd_boolean
1326 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1327 struct ecoff_debug_info *debug)
1328 {
1329 HDRR *symhdr;
1330 const struct ecoff_debug_swap *swap;
1331 char *ext_hdr;
1332
1333 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1334 memset (debug, 0, sizeof (*debug));
1335
1336 ext_hdr = bfd_malloc (swap->external_hdr_size);
1337 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1338 goto error_return;
1339
1340 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1341 swap->external_hdr_size))
1342 goto error_return;
1343
1344 symhdr = &debug->symbolic_header;
1345 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1346
1347 /* The symbolic header contains absolute file offsets and sizes to
1348 read. */
1349 #define READ(ptr, offset, count, size, type) \
1350 if (symhdr->count == 0) \
1351 debug->ptr = NULL; \
1352 else \
1353 { \
1354 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1355 debug->ptr = bfd_malloc (amt); \
1356 if (debug->ptr == NULL) \
1357 goto error_return; \
1358 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1359 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1360 goto error_return; \
1361 }
1362
1363 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1364 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1365 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1366 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1367 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1368 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1369 union aux_ext *);
1370 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1371 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1372 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1373 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1374 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1375 #undef READ
1376
1377 debug->fdr = NULL;
1378
1379 return TRUE;
1380
1381 error_return:
1382 if (ext_hdr != NULL)
1383 free (ext_hdr);
1384 if (debug->line != NULL)
1385 free (debug->line);
1386 if (debug->external_dnr != NULL)
1387 free (debug->external_dnr);
1388 if (debug->external_pdr != NULL)
1389 free (debug->external_pdr);
1390 if (debug->external_sym != NULL)
1391 free (debug->external_sym);
1392 if (debug->external_opt != NULL)
1393 free (debug->external_opt);
1394 if (debug->external_aux != NULL)
1395 free (debug->external_aux);
1396 if (debug->ss != NULL)
1397 free (debug->ss);
1398 if (debug->ssext != NULL)
1399 free (debug->ssext);
1400 if (debug->external_fdr != NULL)
1401 free (debug->external_fdr);
1402 if (debug->external_rfd != NULL)
1403 free (debug->external_rfd);
1404 if (debug->external_ext != NULL)
1405 free (debug->external_ext);
1406 return FALSE;
1407 }
1408 \f
1409 /* Swap RPDR (runtime procedure table entry) for output. */
1410
1411 static void
1412 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1413 {
1414 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1415 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1416 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1417 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1418 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1419 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1420
1421 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1422 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1423
1424 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1425 }
1426
1427 /* Create a runtime procedure table from the .mdebug section. */
1428
1429 static bfd_boolean
1430 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1431 struct bfd_link_info *info, asection *s,
1432 struct ecoff_debug_info *debug)
1433 {
1434 const struct ecoff_debug_swap *swap;
1435 HDRR *hdr = &debug->symbolic_header;
1436 RPDR *rpdr, *rp;
1437 struct rpdr_ext *erp;
1438 void *rtproc;
1439 struct pdr_ext *epdr;
1440 struct sym_ext *esym;
1441 char *ss, **sv;
1442 char *str;
1443 bfd_size_type size;
1444 bfd_size_type count;
1445 unsigned long sindex;
1446 unsigned long i;
1447 PDR pdr;
1448 SYMR sym;
1449 const char *no_name_func = _("static procedure (no name)");
1450
1451 epdr = NULL;
1452 rpdr = NULL;
1453 esym = NULL;
1454 ss = NULL;
1455 sv = NULL;
1456
1457 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1458
1459 sindex = strlen (no_name_func) + 1;
1460 count = hdr->ipdMax;
1461 if (count > 0)
1462 {
1463 size = swap->external_pdr_size;
1464
1465 epdr = bfd_malloc (size * count);
1466 if (epdr == NULL)
1467 goto error_return;
1468
1469 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1470 goto error_return;
1471
1472 size = sizeof (RPDR);
1473 rp = rpdr = bfd_malloc (size * count);
1474 if (rpdr == NULL)
1475 goto error_return;
1476
1477 size = sizeof (char *);
1478 sv = bfd_malloc (size * count);
1479 if (sv == NULL)
1480 goto error_return;
1481
1482 count = hdr->isymMax;
1483 size = swap->external_sym_size;
1484 esym = bfd_malloc (size * count);
1485 if (esym == NULL)
1486 goto error_return;
1487
1488 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1489 goto error_return;
1490
1491 count = hdr->issMax;
1492 ss = bfd_malloc (count);
1493 if (ss == NULL)
1494 goto error_return;
1495 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1496 goto error_return;
1497
1498 count = hdr->ipdMax;
1499 for (i = 0; i < (unsigned long) count; i++, rp++)
1500 {
1501 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1502 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1503 rp->adr = sym.value;
1504 rp->regmask = pdr.regmask;
1505 rp->regoffset = pdr.regoffset;
1506 rp->fregmask = pdr.fregmask;
1507 rp->fregoffset = pdr.fregoffset;
1508 rp->frameoffset = pdr.frameoffset;
1509 rp->framereg = pdr.framereg;
1510 rp->pcreg = pdr.pcreg;
1511 rp->irpss = sindex;
1512 sv[i] = ss + sym.iss;
1513 sindex += strlen (sv[i]) + 1;
1514 }
1515 }
1516
1517 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1518 size = BFD_ALIGN (size, 16);
1519 rtproc = bfd_alloc (abfd, size);
1520 if (rtproc == NULL)
1521 {
1522 mips_elf_hash_table (info)->procedure_count = 0;
1523 goto error_return;
1524 }
1525
1526 mips_elf_hash_table (info)->procedure_count = count + 2;
1527
1528 erp = rtproc;
1529 memset (erp, 0, sizeof (struct rpdr_ext));
1530 erp++;
1531 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1532 strcpy (str, no_name_func);
1533 str += strlen (no_name_func) + 1;
1534 for (i = 0; i < count; i++)
1535 {
1536 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1537 strcpy (str, sv[i]);
1538 str += strlen (sv[i]) + 1;
1539 }
1540 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1541
1542 /* Set the size and contents of .rtproc section. */
1543 s->size = size;
1544 s->contents = rtproc;
1545
1546 /* Skip this section later on (I don't think this currently
1547 matters, but someday it might). */
1548 s->map_head.link_order = NULL;
1549
1550 if (epdr != NULL)
1551 free (epdr);
1552 if (rpdr != NULL)
1553 free (rpdr);
1554 if (esym != NULL)
1555 free (esym);
1556 if (ss != NULL)
1557 free (ss);
1558 if (sv != NULL)
1559 free (sv);
1560
1561 return TRUE;
1562
1563 error_return:
1564 if (epdr != NULL)
1565 free (epdr);
1566 if (rpdr != NULL)
1567 free (rpdr);
1568 if (esym != NULL)
1569 free (esym);
1570 if (ss != NULL)
1571 free (ss);
1572 if (sv != NULL)
1573 free (sv);
1574 return FALSE;
1575 }
1576 \f
1577 /* We're going to create a stub for H. Create a symbol for the stub's
1578 value and size, to help make the disassembly easier to read. */
1579
1580 static bfd_boolean
1581 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1582 struct mips_elf_link_hash_entry *h,
1583 const char *prefix, asection *s, bfd_vma value,
1584 bfd_vma size)
1585 {
1586 struct bfd_link_hash_entry *bh;
1587 struct elf_link_hash_entry *elfh;
1588 const char *name;
1589
1590 if (ELF_ST_IS_MICROMIPS (h->root.other))
1591 value |= 1;
1592
1593 /* Create a new symbol. */
1594 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1595 bh = NULL;
1596 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1597 BSF_LOCAL, s, value, NULL,
1598 TRUE, FALSE, &bh))
1599 return FALSE;
1600
1601 /* Make it a local function. */
1602 elfh = (struct elf_link_hash_entry *) bh;
1603 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1604 elfh->size = size;
1605 elfh->forced_local = 1;
1606 return TRUE;
1607 }
1608
1609 /* We're about to redefine H. Create a symbol to represent H's
1610 current value and size, to help make the disassembly easier
1611 to read. */
1612
1613 static bfd_boolean
1614 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1615 struct mips_elf_link_hash_entry *h,
1616 const char *prefix)
1617 {
1618 struct bfd_link_hash_entry *bh;
1619 struct elf_link_hash_entry *elfh;
1620 const char *name;
1621 asection *s;
1622 bfd_vma value;
1623
1624 /* Read the symbol's value. */
1625 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1626 || h->root.root.type == bfd_link_hash_defweak);
1627 s = h->root.root.u.def.section;
1628 value = h->root.root.u.def.value;
1629
1630 /* Create a new symbol. */
1631 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1632 bh = NULL;
1633 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1634 BSF_LOCAL, s, value, NULL,
1635 TRUE, FALSE, &bh))
1636 return FALSE;
1637
1638 /* Make it local and copy the other attributes from H. */
1639 elfh = (struct elf_link_hash_entry *) bh;
1640 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1641 elfh->other = h->root.other;
1642 elfh->size = h->root.size;
1643 elfh->forced_local = 1;
1644 return TRUE;
1645 }
1646
1647 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1648 function rather than to a hard-float stub. */
1649
1650 static bfd_boolean
1651 section_allows_mips16_refs_p (asection *section)
1652 {
1653 const char *name;
1654
1655 name = bfd_get_section_name (section->owner, section);
1656 return (FN_STUB_P (name)
1657 || CALL_STUB_P (name)
1658 || CALL_FP_STUB_P (name)
1659 || strcmp (name, ".pdr") == 0);
1660 }
1661
1662 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1663 stub section of some kind. Return the R_SYMNDX of the target
1664 function, or 0 if we can't decide which function that is. */
1665
1666 static unsigned long
1667 mips16_stub_symndx (const struct elf_backend_data *bed,
1668 asection *sec ATTRIBUTE_UNUSED,
1669 const Elf_Internal_Rela *relocs,
1670 const Elf_Internal_Rela *relend)
1671 {
1672 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1673 const Elf_Internal_Rela *rel;
1674
1675 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1676 one in a compound relocation. */
1677 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1678 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1679 return ELF_R_SYM (sec->owner, rel->r_info);
1680
1681 /* Otherwise trust the first relocation, whatever its kind. This is
1682 the traditional behavior. */
1683 if (relocs < relend)
1684 return ELF_R_SYM (sec->owner, relocs->r_info);
1685
1686 return 0;
1687 }
1688
1689 /* Check the mips16 stubs for a particular symbol, and see if we can
1690 discard them. */
1691
1692 static void
1693 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1694 struct mips_elf_link_hash_entry *h)
1695 {
1696 /* Dynamic symbols must use the standard call interface, in case other
1697 objects try to call them. */
1698 if (h->fn_stub != NULL
1699 && h->root.dynindx != -1)
1700 {
1701 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1702 h->need_fn_stub = TRUE;
1703 }
1704
1705 if (h->fn_stub != NULL
1706 && ! h->need_fn_stub)
1707 {
1708 /* We don't need the fn_stub; the only references to this symbol
1709 are 16 bit calls. Clobber the size to 0 to prevent it from
1710 being included in the link. */
1711 h->fn_stub->size = 0;
1712 h->fn_stub->flags &= ~SEC_RELOC;
1713 h->fn_stub->reloc_count = 0;
1714 h->fn_stub->flags |= SEC_EXCLUDE;
1715 }
1716
1717 if (h->call_stub != NULL
1718 && ELF_ST_IS_MIPS16 (h->root.other))
1719 {
1720 /* We don't need the call_stub; this is a 16 bit function, so
1721 calls from other 16 bit functions are OK. Clobber the size
1722 to 0 to prevent it from being included in the link. */
1723 h->call_stub->size = 0;
1724 h->call_stub->flags &= ~SEC_RELOC;
1725 h->call_stub->reloc_count = 0;
1726 h->call_stub->flags |= SEC_EXCLUDE;
1727 }
1728
1729 if (h->call_fp_stub != NULL
1730 && ELF_ST_IS_MIPS16 (h->root.other))
1731 {
1732 /* We don't need the call_stub; this is a 16 bit function, so
1733 calls from other 16 bit functions are OK. Clobber the size
1734 to 0 to prevent it from being included in the link. */
1735 h->call_fp_stub->size = 0;
1736 h->call_fp_stub->flags &= ~SEC_RELOC;
1737 h->call_fp_stub->reloc_count = 0;
1738 h->call_fp_stub->flags |= SEC_EXCLUDE;
1739 }
1740 }
1741
1742 /* Hashtable callbacks for mips_elf_la25_stubs. */
1743
1744 static hashval_t
1745 mips_elf_la25_stub_hash (const void *entry_)
1746 {
1747 const struct mips_elf_la25_stub *entry;
1748
1749 entry = (struct mips_elf_la25_stub *) entry_;
1750 return entry->h->root.root.u.def.section->id
1751 + entry->h->root.root.u.def.value;
1752 }
1753
1754 static int
1755 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1756 {
1757 const struct mips_elf_la25_stub *entry1, *entry2;
1758
1759 entry1 = (struct mips_elf_la25_stub *) entry1_;
1760 entry2 = (struct mips_elf_la25_stub *) entry2_;
1761 return ((entry1->h->root.root.u.def.section
1762 == entry2->h->root.root.u.def.section)
1763 && (entry1->h->root.root.u.def.value
1764 == entry2->h->root.root.u.def.value));
1765 }
1766
1767 /* Called by the linker to set up the la25 stub-creation code. FN is
1768 the linker's implementation of add_stub_function. Return true on
1769 success. */
1770
1771 bfd_boolean
1772 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1773 asection *(*fn) (const char *, asection *,
1774 asection *))
1775 {
1776 struct mips_elf_link_hash_table *htab;
1777
1778 htab = mips_elf_hash_table (info);
1779 if (htab == NULL)
1780 return FALSE;
1781
1782 htab->add_stub_section = fn;
1783 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1784 mips_elf_la25_stub_eq, NULL);
1785 if (htab->la25_stubs == NULL)
1786 return FALSE;
1787
1788 return TRUE;
1789 }
1790
1791 /* Return true if H is a locally-defined PIC function, in the sense
1792 that it or its fn_stub might need $25 to be valid on entry.
1793 Note that MIPS16 functions set up $gp using PC-relative instructions,
1794 so they themselves never need $25 to be valid. Only non-MIPS16
1795 entry points are of interest here. */
1796
1797 static bfd_boolean
1798 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1799 {
1800 return ((h->root.root.type == bfd_link_hash_defined
1801 || h->root.root.type == bfd_link_hash_defweak)
1802 && h->root.def_regular
1803 && !bfd_is_abs_section (h->root.root.u.def.section)
1804 && (!ELF_ST_IS_MIPS16 (h->root.other)
1805 || (h->fn_stub && h->need_fn_stub))
1806 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1807 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1808 }
1809
1810 /* Set *SEC to the input section that contains the target of STUB.
1811 Return the offset of the target from the start of that section. */
1812
1813 static bfd_vma
1814 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1815 asection **sec)
1816 {
1817 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1818 {
1819 BFD_ASSERT (stub->h->need_fn_stub);
1820 *sec = stub->h->fn_stub;
1821 return 0;
1822 }
1823 else
1824 {
1825 *sec = stub->h->root.root.u.def.section;
1826 return stub->h->root.root.u.def.value;
1827 }
1828 }
1829
1830 /* STUB describes an la25 stub that we have decided to implement
1831 by inserting an LUI/ADDIU pair before the target function.
1832 Create the section and redirect the function symbol to it. */
1833
1834 static bfd_boolean
1835 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1836 struct bfd_link_info *info)
1837 {
1838 struct mips_elf_link_hash_table *htab;
1839 char *name;
1840 asection *s, *input_section;
1841 unsigned int align;
1842
1843 htab = mips_elf_hash_table (info);
1844 if (htab == NULL)
1845 return FALSE;
1846
1847 /* Create a unique name for the new section. */
1848 name = bfd_malloc (11 + sizeof (".text.stub."));
1849 if (name == NULL)
1850 return FALSE;
1851 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1852
1853 /* Create the section. */
1854 mips_elf_get_la25_target (stub, &input_section);
1855 s = htab->add_stub_section (name, input_section,
1856 input_section->output_section);
1857 if (s == NULL)
1858 return FALSE;
1859
1860 /* Make sure that any padding goes before the stub. */
1861 align = input_section->alignment_power;
1862 if (!bfd_set_section_alignment (s->owner, s, align))
1863 return FALSE;
1864 if (align > 3)
1865 s->size = (1 << align) - 8;
1866
1867 /* Create a symbol for the stub. */
1868 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1869 stub->stub_section = s;
1870 stub->offset = s->size;
1871
1872 /* Allocate room for it. */
1873 s->size += 8;
1874 return TRUE;
1875 }
1876
1877 /* STUB describes an la25 stub that we have decided to implement
1878 with a separate trampoline. Allocate room for it and redirect
1879 the function symbol to it. */
1880
1881 static bfd_boolean
1882 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1883 struct bfd_link_info *info)
1884 {
1885 struct mips_elf_link_hash_table *htab;
1886 asection *s;
1887
1888 htab = mips_elf_hash_table (info);
1889 if (htab == NULL)
1890 return FALSE;
1891
1892 /* Create a trampoline section, if we haven't already. */
1893 s = htab->strampoline;
1894 if (s == NULL)
1895 {
1896 asection *input_section = stub->h->root.root.u.def.section;
1897 s = htab->add_stub_section (".text", NULL,
1898 input_section->output_section);
1899 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1900 return FALSE;
1901 htab->strampoline = s;
1902 }
1903
1904 /* Create a symbol for the stub. */
1905 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1906 stub->stub_section = s;
1907 stub->offset = s->size;
1908
1909 /* Allocate room for it. */
1910 s->size += 16;
1911 return TRUE;
1912 }
1913
1914 /* H describes a symbol that needs an la25 stub. Make sure that an
1915 appropriate stub exists and point H at it. */
1916
1917 static bfd_boolean
1918 mips_elf_add_la25_stub (struct bfd_link_info *info,
1919 struct mips_elf_link_hash_entry *h)
1920 {
1921 struct mips_elf_link_hash_table *htab;
1922 struct mips_elf_la25_stub search, *stub;
1923 bfd_boolean use_trampoline_p;
1924 asection *s;
1925 bfd_vma value;
1926 void **slot;
1927
1928 /* Describe the stub we want. */
1929 search.stub_section = NULL;
1930 search.offset = 0;
1931 search.h = h;
1932
1933 /* See if we've already created an equivalent stub. */
1934 htab = mips_elf_hash_table (info);
1935 if (htab == NULL)
1936 return FALSE;
1937
1938 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1939 if (slot == NULL)
1940 return FALSE;
1941
1942 stub = (struct mips_elf_la25_stub *) *slot;
1943 if (stub != NULL)
1944 {
1945 /* We can reuse the existing stub. */
1946 h->la25_stub = stub;
1947 return TRUE;
1948 }
1949
1950 /* Create a permanent copy of ENTRY and add it to the hash table. */
1951 stub = bfd_malloc (sizeof (search));
1952 if (stub == NULL)
1953 return FALSE;
1954 *stub = search;
1955 *slot = stub;
1956
1957 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1958 of the section and if we would need no more than 2 nops. */
1959 value = mips_elf_get_la25_target (stub, &s);
1960 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1961
1962 h->la25_stub = stub;
1963 return (use_trampoline_p
1964 ? mips_elf_add_la25_trampoline (stub, info)
1965 : mips_elf_add_la25_intro (stub, info));
1966 }
1967
1968 /* A mips_elf_link_hash_traverse callback that is called before sizing
1969 sections. DATA points to a mips_htab_traverse_info structure. */
1970
1971 static bfd_boolean
1972 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1973 {
1974 struct mips_htab_traverse_info *hti;
1975
1976 hti = (struct mips_htab_traverse_info *) data;
1977 if (!hti->info->relocatable)
1978 mips_elf_check_mips16_stubs (hti->info, h);
1979
1980 if (mips_elf_local_pic_function_p (h))
1981 {
1982 /* PR 12845: If H is in a section that has been garbage
1983 collected it will have its output section set to *ABS*. */
1984 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1985 return TRUE;
1986
1987 /* H is a function that might need $25 to be valid on entry.
1988 If we're creating a non-PIC relocatable object, mark H as
1989 being PIC. If we're creating a non-relocatable object with
1990 non-PIC branches and jumps to H, make sure that H has an la25
1991 stub. */
1992 if (hti->info->relocatable)
1993 {
1994 if (!PIC_OBJECT_P (hti->output_bfd))
1995 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1996 }
1997 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1998 {
1999 hti->error = TRUE;
2000 return FALSE;
2001 }
2002 }
2003 return TRUE;
2004 }
2005 \f
2006 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2007 Most mips16 instructions are 16 bits, but these instructions
2008 are 32 bits.
2009
2010 The format of these instructions is:
2011
2012 +--------------+--------------------------------+
2013 | JALX | X| Imm 20:16 | Imm 25:21 |
2014 +--------------+--------------------------------+
2015 | Immediate 15:0 |
2016 +-----------------------------------------------+
2017
2018 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2019 Note that the immediate value in the first word is swapped.
2020
2021 When producing a relocatable object file, R_MIPS16_26 is
2022 handled mostly like R_MIPS_26. In particular, the addend is
2023 stored as a straight 26-bit value in a 32-bit instruction.
2024 (gas makes life simpler for itself by never adjusting a
2025 R_MIPS16_26 reloc to be against a section, so the addend is
2026 always zero). However, the 32 bit instruction is stored as 2
2027 16-bit values, rather than a single 32-bit value. In a
2028 big-endian file, the result is the same; in a little-endian
2029 file, the two 16-bit halves of the 32 bit value are swapped.
2030 This is so that a disassembler can recognize the jal
2031 instruction.
2032
2033 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2034 instruction stored as two 16-bit values. The addend A is the
2035 contents of the targ26 field. The calculation is the same as
2036 R_MIPS_26. When storing the calculated value, reorder the
2037 immediate value as shown above, and don't forget to store the
2038 value as two 16-bit values.
2039
2040 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2041 defined as
2042
2043 big-endian:
2044 +--------+----------------------+
2045 | | |
2046 | | targ26-16 |
2047 |31 26|25 0|
2048 +--------+----------------------+
2049
2050 little-endian:
2051 +----------+------+-------------+
2052 | | | |
2053 | sub1 | | sub2 |
2054 |0 9|10 15|16 31|
2055 +----------+--------------------+
2056 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2057 ((sub1 << 16) | sub2)).
2058
2059 When producing a relocatable object file, the calculation is
2060 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2061 When producing a fully linked file, the calculation is
2062 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2063 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2064
2065 The table below lists the other MIPS16 instruction relocations.
2066 Each one is calculated in the same way as the non-MIPS16 relocation
2067 given on the right, but using the extended MIPS16 layout of 16-bit
2068 immediate fields:
2069
2070 R_MIPS16_GPREL R_MIPS_GPREL16
2071 R_MIPS16_GOT16 R_MIPS_GOT16
2072 R_MIPS16_CALL16 R_MIPS_CALL16
2073 R_MIPS16_HI16 R_MIPS_HI16
2074 R_MIPS16_LO16 R_MIPS_LO16
2075
2076 A typical instruction will have a format like this:
2077
2078 +--------------+--------------------------------+
2079 | EXTEND | Imm 10:5 | Imm 15:11 |
2080 +--------------+--------------------------------+
2081 | Major | rx | ry | Imm 4:0 |
2082 +--------------+--------------------------------+
2083
2084 EXTEND is the five bit value 11110. Major is the instruction
2085 opcode.
2086
2087 All we need to do here is shuffle the bits appropriately.
2088 As above, the two 16-bit halves must be swapped on a
2089 little-endian system. */
2090
2091 static inline bfd_boolean
2092 mips16_reloc_p (int r_type)
2093 {
2094 switch (r_type)
2095 {
2096 case R_MIPS16_26:
2097 case R_MIPS16_GPREL:
2098 case R_MIPS16_GOT16:
2099 case R_MIPS16_CALL16:
2100 case R_MIPS16_HI16:
2101 case R_MIPS16_LO16:
2102 case R_MIPS16_TLS_GD:
2103 case R_MIPS16_TLS_LDM:
2104 case R_MIPS16_TLS_DTPREL_HI16:
2105 case R_MIPS16_TLS_DTPREL_LO16:
2106 case R_MIPS16_TLS_GOTTPREL:
2107 case R_MIPS16_TLS_TPREL_HI16:
2108 case R_MIPS16_TLS_TPREL_LO16:
2109 return TRUE;
2110
2111 default:
2112 return FALSE;
2113 }
2114 }
2115
2116 /* Check if a microMIPS reloc. */
2117
2118 static inline bfd_boolean
2119 micromips_reloc_p (unsigned int r_type)
2120 {
2121 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2122 }
2123
2124 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2125 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2126 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2127
2128 static inline bfd_boolean
2129 micromips_reloc_shuffle_p (unsigned int r_type)
2130 {
2131 return (micromips_reloc_p (r_type)
2132 && r_type != R_MICROMIPS_PC7_S1
2133 && r_type != R_MICROMIPS_PC10_S1);
2134 }
2135
2136 static inline bfd_boolean
2137 got16_reloc_p (int r_type)
2138 {
2139 return (r_type == R_MIPS_GOT16
2140 || r_type == R_MIPS16_GOT16
2141 || r_type == R_MICROMIPS_GOT16);
2142 }
2143
2144 static inline bfd_boolean
2145 call16_reloc_p (int r_type)
2146 {
2147 return (r_type == R_MIPS_CALL16
2148 || r_type == R_MIPS16_CALL16
2149 || r_type == R_MICROMIPS_CALL16);
2150 }
2151
2152 static inline bfd_boolean
2153 got_disp_reloc_p (unsigned int r_type)
2154 {
2155 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2156 }
2157
2158 static inline bfd_boolean
2159 got_page_reloc_p (unsigned int r_type)
2160 {
2161 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2162 }
2163
2164 static inline bfd_boolean
2165 got_ofst_reloc_p (unsigned int r_type)
2166 {
2167 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2168 }
2169
2170 static inline bfd_boolean
2171 got_hi16_reloc_p (unsigned int r_type)
2172 {
2173 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2174 }
2175
2176 static inline bfd_boolean
2177 got_lo16_reloc_p (unsigned int r_type)
2178 {
2179 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2180 }
2181
2182 static inline bfd_boolean
2183 call_hi16_reloc_p (unsigned int r_type)
2184 {
2185 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2186 }
2187
2188 static inline bfd_boolean
2189 call_lo16_reloc_p (unsigned int r_type)
2190 {
2191 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2192 }
2193
2194 static inline bfd_boolean
2195 hi16_reloc_p (int r_type)
2196 {
2197 return (r_type == R_MIPS_HI16
2198 || r_type == R_MIPS16_HI16
2199 || r_type == R_MICROMIPS_HI16
2200 || r_type == R_MIPS_PCHI16);
2201 }
2202
2203 static inline bfd_boolean
2204 lo16_reloc_p (int r_type)
2205 {
2206 return (r_type == R_MIPS_LO16
2207 || r_type == R_MIPS16_LO16
2208 || r_type == R_MICROMIPS_LO16
2209 || r_type == R_MIPS_PCLO16);
2210 }
2211
2212 static inline bfd_boolean
2213 mips16_call_reloc_p (int r_type)
2214 {
2215 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2216 }
2217
2218 static inline bfd_boolean
2219 jal_reloc_p (int r_type)
2220 {
2221 return (r_type == R_MIPS_26
2222 || r_type == R_MIPS16_26
2223 || r_type == R_MICROMIPS_26_S1);
2224 }
2225
2226 static inline bfd_boolean
2227 aligned_pcrel_reloc_p (int r_type)
2228 {
2229 return (r_type == R_MIPS_PC18_S3
2230 || r_type == R_MIPS_PC19_S2);
2231 }
2232
2233 static inline bfd_boolean
2234 micromips_branch_reloc_p (int r_type)
2235 {
2236 return (r_type == R_MICROMIPS_26_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 tls_gd_reloc_p (unsigned int r_type)
2244 {
2245 return (r_type == R_MIPS_TLS_GD
2246 || r_type == R_MIPS16_TLS_GD
2247 || r_type == R_MICROMIPS_TLS_GD);
2248 }
2249
2250 static inline bfd_boolean
2251 tls_ldm_reloc_p (unsigned int r_type)
2252 {
2253 return (r_type == R_MIPS_TLS_LDM
2254 || r_type == R_MIPS16_TLS_LDM
2255 || r_type == R_MICROMIPS_TLS_LDM);
2256 }
2257
2258 static inline bfd_boolean
2259 tls_gottprel_reloc_p (unsigned int r_type)
2260 {
2261 return (r_type == R_MIPS_TLS_GOTTPREL
2262 || r_type == R_MIPS16_TLS_GOTTPREL
2263 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2264 }
2265
2266 void
2267 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2268 bfd_boolean jal_shuffle, bfd_byte *data)
2269 {
2270 bfd_vma first, second, val;
2271
2272 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2273 return;
2274
2275 /* Pick up the first and second halfwords of the instruction. */
2276 first = bfd_get_16 (abfd, data);
2277 second = bfd_get_16 (abfd, data + 2);
2278 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2279 val = first << 16 | second;
2280 else if (r_type != R_MIPS16_26)
2281 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2282 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2283 else
2284 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2285 | ((first & 0x1f) << 21) | second);
2286 bfd_put_32 (abfd, val, data);
2287 }
2288
2289 void
2290 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2291 bfd_boolean jal_shuffle, bfd_byte *data)
2292 {
2293 bfd_vma first, second, val;
2294
2295 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2296 return;
2297
2298 val = bfd_get_32 (abfd, data);
2299 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2300 {
2301 second = val & 0xffff;
2302 first = val >> 16;
2303 }
2304 else if (r_type != R_MIPS16_26)
2305 {
2306 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2307 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2308 }
2309 else
2310 {
2311 second = val & 0xffff;
2312 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2313 | ((val >> 21) & 0x1f);
2314 }
2315 bfd_put_16 (abfd, second, data + 2);
2316 bfd_put_16 (abfd, first, data);
2317 }
2318
2319 bfd_reloc_status_type
2320 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2321 arelent *reloc_entry, asection *input_section,
2322 bfd_boolean relocatable, void *data, bfd_vma gp)
2323 {
2324 bfd_vma relocation;
2325 bfd_signed_vma val;
2326 bfd_reloc_status_type status;
2327
2328 if (bfd_is_com_section (symbol->section))
2329 relocation = 0;
2330 else
2331 relocation = symbol->value;
2332
2333 relocation += symbol->section->output_section->vma;
2334 relocation += symbol->section->output_offset;
2335
2336 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2337 return bfd_reloc_outofrange;
2338
2339 /* Set val to the offset into the section or symbol. */
2340 val = reloc_entry->addend;
2341
2342 _bfd_mips_elf_sign_extend (val, 16);
2343
2344 /* Adjust val for the final section location and GP value. If we
2345 are producing relocatable output, we don't want to do this for
2346 an external symbol. */
2347 if (! relocatable
2348 || (symbol->flags & BSF_SECTION_SYM) != 0)
2349 val += relocation - gp;
2350
2351 if (reloc_entry->howto->partial_inplace)
2352 {
2353 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2354 (bfd_byte *) data
2355 + reloc_entry->address);
2356 if (status != bfd_reloc_ok)
2357 return status;
2358 }
2359 else
2360 reloc_entry->addend = val;
2361
2362 if (relocatable)
2363 reloc_entry->address += input_section->output_offset;
2364
2365 return bfd_reloc_ok;
2366 }
2367
2368 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2369 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2370 that contains the relocation field and DATA points to the start of
2371 INPUT_SECTION. */
2372
2373 struct mips_hi16
2374 {
2375 struct mips_hi16 *next;
2376 bfd_byte *data;
2377 asection *input_section;
2378 arelent rel;
2379 };
2380
2381 /* FIXME: This should not be a static variable. */
2382
2383 static struct mips_hi16 *mips_hi16_list;
2384
2385 /* A howto special_function for REL *HI16 relocations. We can only
2386 calculate the correct value once we've seen the partnering
2387 *LO16 relocation, so just save the information for later.
2388
2389 The ABI requires that the *LO16 immediately follow the *HI16.
2390 However, as a GNU extension, we permit an arbitrary number of
2391 *HI16s to be associated with a single *LO16. This significantly
2392 simplies the relocation handling in gcc. */
2393
2394 bfd_reloc_status_type
2395 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2396 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2397 asection *input_section, bfd *output_bfd,
2398 char **error_message ATTRIBUTE_UNUSED)
2399 {
2400 struct mips_hi16 *n;
2401
2402 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2403 return bfd_reloc_outofrange;
2404
2405 n = bfd_malloc (sizeof *n);
2406 if (n == NULL)
2407 return bfd_reloc_outofrange;
2408
2409 n->next = mips_hi16_list;
2410 n->data = data;
2411 n->input_section = input_section;
2412 n->rel = *reloc_entry;
2413 mips_hi16_list = n;
2414
2415 if (output_bfd != NULL)
2416 reloc_entry->address += input_section->output_offset;
2417
2418 return bfd_reloc_ok;
2419 }
2420
2421 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2422 like any other 16-bit relocation when applied to global symbols, but is
2423 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2424
2425 bfd_reloc_status_type
2426 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2427 void *data, asection *input_section,
2428 bfd *output_bfd, char **error_message)
2429 {
2430 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2431 || bfd_is_und_section (bfd_get_section (symbol))
2432 || bfd_is_com_section (bfd_get_section (symbol)))
2433 /* The relocation is against a global symbol. */
2434 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2435 input_section, output_bfd,
2436 error_message);
2437
2438 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2439 input_section, output_bfd, error_message);
2440 }
2441
2442 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2443 is a straightforward 16 bit inplace relocation, but we must deal with
2444 any partnering high-part relocations as well. */
2445
2446 bfd_reloc_status_type
2447 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2448 void *data, asection *input_section,
2449 bfd *output_bfd, char **error_message)
2450 {
2451 bfd_vma vallo;
2452 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2453
2454 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2455 return bfd_reloc_outofrange;
2456
2457 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2458 location);
2459 vallo = bfd_get_32 (abfd, location);
2460 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2461 location);
2462
2463 while (mips_hi16_list != NULL)
2464 {
2465 bfd_reloc_status_type ret;
2466 struct mips_hi16 *hi;
2467
2468 hi = mips_hi16_list;
2469
2470 /* R_MIPS*_GOT16 relocations are something of a special case. We
2471 want to install the addend in the same way as for a R_MIPS*_HI16
2472 relocation (with a rightshift of 16). However, since GOT16
2473 relocations can also be used with global symbols, their howto
2474 has a rightshift of 0. */
2475 if (hi->rel.howto->type == R_MIPS_GOT16)
2476 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2477 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2478 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2479 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2480 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2481
2482 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2483 carry or borrow will induce a change of +1 or -1 in the high part. */
2484 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2485
2486 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2487 hi->input_section, output_bfd,
2488 error_message);
2489 if (ret != bfd_reloc_ok)
2490 return ret;
2491
2492 mips_hi16_list = hi->next;
2493 free (hi);
2494 }
2495
2496 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2497 input_section, output_bfd,
2498 error_message);
2499 }
2500
2501 /* A generic howto special_function. This calculates and installs the
2502 relocation itself, thus avoiding the oft-discussed problems in
2503 bfd_perform_relocation and bfd_install_relocation. */
2504
2505 bfd_reloc_status_type
2506 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2507 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2508 asection *input_section, bfd *output_bfd,
2509 char **error_message ATTRIBUTE_UNUSED)
2510 {
2511 bfd_signed_vma val;
2512 bfd_reloc_status_type status;
2513 bfd_boolean relocatable;
2514
2515 relocatable = (output_bfd != NULL);
2516
2517 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2518 return bfd_reloc_outofrange;
2519
2520 /* Build up the field adjustment in VAL. */
2521 val = 0;
2522 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2523 {
2524 /* Either we're calculating the final field value or we have a
2525 relocation against a section symbol. Add in the section's
2526 offset or address. */
2527 val += symbol->section->output_section->vma;
2528 val += symbol->section->output_offset;
2529 }
2530
2531 if (!relocatable)
2532 {
2533 /* We're calculating the final field value. Add in the symbol's value
2534 and, if pc-relative, subtract the address of the field itself. */
2535 val += symbol->value;
2536 if (reloc_entry->howto->pc_relative)
2537 {
2538 val -= input_section->output_section->vma;
2539 val -= input_section->output_offset;
2540 val -= reloc_entry->address;
2541 }
2542 }
2543
2544 /* VAL is now the final adjustment. If we're keeping this relocation
2545 in the output file, and if the relocation uses a separate addend,
2546 we just need to add VAL to that addend. Otherwise we need to add
2547 VAL to the relocation field itself. */
2548 if (relocatable && !reloc_entry->howto->partial_inplace)
2549 reloc_entry->addend += val;
2550 else
2551 {
2552 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2553
2554 /* Add in the separate addend, if any. */
2555 val += reloc_entry->addend;
2556
2557 /* Add VAL to the relocation field. */
2558 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2559 location);
2560 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2561 location);
2562 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2563 location);
2564
2565 if (status != bfd_reloc_ok)
2566 return status;
2567 }
2568
2569 if (relocatable)
2570 reloc_entry->address += input_section->output_offset;
2571
2572 return bfd_reloc_ok;
2573 }
2574 \f
2575 /* Swap an entry in a .gptab section. Note that these routines rely
2576 on the equivalence of the two elements of the union. */
2577
2578 static void
2579 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2580 Elf32_gptab *in)
2581 {
2582 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2583 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2584 }
2585
2586 static void
2587 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2588 Elf32_External_gptab *ex)
2589 {
2590 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2591 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2592 }
2593
2594 static void
2595 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2596 Elf32_External_compact_rel *ex)
2597 {
2598 H_PUT_32 (abfd, in->id1, ex->id1);
2599 H_PUT_32 (abfd, in->num, ex->num);
2600 H_PUT_32 (abfd, in->id2, ex->id2);
2601 H_PUT_32 (abfd, in->offset, ex->offset);
2602 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2603 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2604 }
2605
2606 static void
2607 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2608 Elf32_External_crinfo *ex)
2609 {
2610 unsigned long l;
2611
2612 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2613 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2614 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2615 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2616 H_PUT_32 (abfd, l, ex->info);
2617 H_PUT_32 (abfd, in->konst, ex->konst);
2618 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2619 }
2620 \f
2621 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2622 routines swap this structure in and out. They are used outside of
2623 BFD, so they are globally visible. */
2624
2625 void
2626 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2627 Elf32_RegInfo *in)
2628 {
2629 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2630 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2631 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2632 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2633 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2634 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2635 }
2636
2637 void
2638 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2639 Elf32_External_RegInfo *ex)
2640 {
2641 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2642 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2643 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2644 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2645 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2646 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2647 }
2648
2649 /* In the 64 bit ABI, the .MIPS.options section holds register
2650 information in an Elf64_Reginfo structure. These routines swap
2651 them in and out. They are globally visible because they are used
2652 outside of BFD. These routines are here so that gas can call them
2653 without worrying about whether the 64 bit ABI has been included. */
2654
2655 void
2656 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2657 Elf64_Internal_RegInfo *in)
2658 {
2659 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2660 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2661 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2662 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2663 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2664 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2665 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2666 }
2667
2668 void
2669 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2670 Elf64_External_RegInfo *ex)
2671 {
2672 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2673 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2674 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2675 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2676 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2677 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2678 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2679 }
2680
2681 /* Swap in an options header. */
2682
2683 void
2684 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2685 Elf_Internal_Options *in)
2686 {
2687 in->kind = H_GET_8 (abfd, ex->kind);
2688 in->size = H_GET_8 (abfd, ex->size);
2689 in->section = H_GET_16 (abfd, ex->section);
2690 in->info = H_GET_32 (abfd, ex->info);
2691 }
2692
2693 /* Swap out an options header. */
2694
2695 void
2696 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2697 Elf_External_Options *ex)
2698 {
2699 H_PUT_8 (abfd, in->kind, ex->kind);
2700 H_PUT_8 (abfd, in->size, ex->size);
2701 H_PUT_16 (abfd, in->section, ex->section);
2702 H_PUT_32 (abfd, in->info, ex->info);
2703 }
2704
2705 /* Swap in an abiflags structure. */
2706
2707 void
2708 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2709 const Elf_External_ABIFlags_v0 *ex,
2710 Elf_Internal_ABIFlags_v0 *in)
2711 {
2712 in->version = H_GET_16 (abfd, ex->version);
2713 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2714 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2715 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2716 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2717 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2718 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2719 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2720 in->ases = H_GET_32 (abfd, ex->ases);
2721 in->flags1 = H_GET_32 (abfd, ex->flags1);
2722 in->flags2 = H_GET_32 (abfd, ex->flags2);
2723 }
2724
2725 /* Swap out an abiflags structure. */
2726
2727 void
2728 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2729 const Elf_Internal_ABIFlags_v0 *in,
2730 Elf_External_ABIFlags_v0 *ex)
2731 {
2732 H_PUT_16 (abfd, in->version, ex->version);
2733 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2734 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2735 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2736 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2737 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2738 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2739 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2740 H_PUT_32 (abfd, in->ases, ex->ases);
2741 H_PUT_32 (abfd, in->flags1, ex->flags1);
2742 H_PUT_32 (abfd, in->flags2, ex->flags2);
2743 }
2744 \f
2745 /* This function is called via qsort() to sort the dynamic relocation
2746 entries by increasing r_symndx value. */
2747
2748 static int
2749 sort_dynamic_relocs (const void *arg1, const void *arg2)
2750 {
2751 Elf_Internal_Rela int_reloc1;
2752 Elf_Internal_Rela int_reloc2;
2753 int diff;
2754
2755 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2756 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2757
2758 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2759 if (diff != 0)
2760 return diff;
2761
2762 if (int_reloc1.r_offset < int_reloc2.r_offset)
2763 return -1;
2764 if (int_reloc1.r_offset > int_reloc2.r_offset)
2765 return 1;
2766 return 0;
2767 }
2768
2769 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2770
2771 static int
2772 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2773 const void *arg2 ATTRIBUTE_UNUSED)
2774 {
2775 #ifdef BFD64
2776 Elf_Internal_Rela int_reloc1[3];
2777 Elf_Internal_Rela int_reloc2[3];
2778
2779 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2780 (reldyn_sorting_bfd, arg1, int_reloc1);
2781 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2782 (reldyn_sorting_bfd, arg2, int_reloc2);
2783
2784 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2785 return -1;
2786 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2787 return 1;
2788
2789 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2790 return -1;
2791 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2792 return 1;
2793 return 0;
2794 #else
2795 abort ();
2796 #endif
2797 }
2798
2799
2800 /* This routine is used to write out ECOFF debugging external symbol
2801 information. It is called via mips_elf_link_hash_traverse. The
2802 ECOFF external symbol information must match the ELF external
2803 symbol information. Unfortunately, at this point we don't know
2804 whether a symbol is required by reloc information, so the two
2805 tables may wind up being different. We must sort out the external
2806 symbol information before we can set the final size of the .mdebug
2807 section, and we must set the size of the .mdebug section before we
2808 can relocate any sections, and we can't know which symbols are
2809 required by relocation until we relocate the sections.
2810 Fortunately, it is relatively unlikely that any symbol will be
2811 stripped but required by a reloc. In particular, it can not happen
2812 when generating a final executable. */
2813
2814 static bfd_boolean
2815 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2816 {
2817 struct extsym_info *einfo = data;
2818 bfd_boolean strip;
2819 asection *sec, *output_section;
2820
2821 if (h->root.indx == -2)
2822 strip = FALSE;
2823 else if ((h->root.def_dynamic
2824 || h->root.ref_dynamic
2825 || h->root.type == bfd_link_hash_new)
2826 && !h->root.def_regular
2827 && !h->root.ref_regular)
2828 strip = TRUE;
2829 else if (einfo->info->strip == strip_all
2830 || (einfo->info->strip == strip_some
2831 && bfd_hash_lookup (einfo->info->keep_hash,
2832 h->root.root.root.string,
2833 FALSE, FALSE) == NULL))
2834 strip = TRUE;
2835 else
2836 strip = FALSE;
2837
2838 if (strip)
2839 return TRUE;
2840
2841 if (h->esym.ifd == -2)
2842 {
2843 h->esym.jmptbl = 0;
2844 h->esym.cobol_main = 0;
2845 h->esym.weakext = 0;
2846 h->esym.reserved = 0;
2847 h->esym.ifd = ifdNil;
2848 h->esym.asym.value = 0;
2849 h->esym.asym.st = stGlobal;
2850
2851 if (h->root.root.type == bfd_link_hash_undefined
2852 || h->root.root.type == bfd_link_hash_undefweak)
2853 {
2854 const char *name;
2855
2856 /* Use undefined class. Also, set class and type for some
2857 special symbols. */
2858 name = h->root.root.root.string;
2859 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2860 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2861 {
2862 h->esym.asym.sc = scData;
2863 h->esym.asym.st = stLabel;
2864 h->esym.asym.value = 0;
2865 }
2866 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2867 {
2868 h->esym.asym.sc = scAbs;
2869 h->esym.asym.st = stLabel;
2870 h->esym.asym.value =
2871 mips_elf_hash_table (einfo->info)->procedure_count;
2872 }
2873 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2874 {
2875 h->esym.asym.sc = scAbs;
2876 h->esym.asym.st = stLabel;
2877 h->esym.asym.value = elf_gp (einfo->abfd);
2878 }
2879 else
2880 h->esym.asym.sc = scUndefined;
2881 }
2882 else if (h->root.root.type != bfd_link_hash_defined
2883 && h->root.root.type != bfd_link_hash_defweak)
2884 h->esym.asym.sc = scAbs;
2885 else
2886 {
2887 const char *name;
2888
2889 sec = h->root.root.u.def.section;
2890 output_section = sec->output_section;
2891
2892 /* When making a shared library and symbol h is the one from
2893 the another shared library, OUTPUT_SECTION may be null. */
2894 if (output_section == NULL)
2895 h->esym.asym.sc = scUndefined;
2896 else
2897 {
2898 name = bfd_section_name (output_section->owner, output_section);
2899
2900 if (strcmp (name, ".text") == 0)
2901 h->esym.asym.sc = scText;
2902 else if (strcmp (name, ".data") == 0)
2903 h->esym.asym.sc = scData;
2904 else if (strcmp (name, ".sdata") == 0)
2905 h->esym.asym.sc = scSData;
2906 else if (strcmp (name, ".rodata") == 0
2907 || strcmp (name, ".rdata") == 0)
2908 h->esym.asym.sc = scRData;
2909 else if (strcmp (name, ".bss") == 0)
2910 h->esym.asym.sc = scBss;
2911 else if (strcmp (name, ".sbss") == 0)
2912 h->esym.asym.sc = scSBss;
2913 else if (strcmp (name, ".init") == 0)
2914 h->esym.asym.sc = scInit;
2915 else if (strcmp (name, ".fini") == 0)
2916 h->esym.asym.sc = scFini;
2917 else
2918 h->esym.asym.sc = scAbs;
2919 }
2920 }
2921
2922 h->esym.asym.reserved = 0;
2923 h->esym.asym.index = indexNil;
2924 }
2925
2926 if (h->root.root.type == bfd_link_hash_common)
2927 h->esym.asym.value = h->root.root.u.c.size;
2928 else if (h->root.root.type == bfd_link_hash_defined
2929 || h->root.root.type == bfd_link_hash_defweak)
2930 {
2931 if (h->esym.asym.sc == scCommon)
2932 h->esym.asym.sc = scBss;
2933 else if (h->esym.asym.sc == scSCommon)
2934 h->esym.asym.sc = scSBss;
2935
2936 sec = h->root.root.u.def.section;
2937 output_section = sec->output_section;
2938 if (output_section != NULL)
2939 h->esym.asym.value = (h->root.root.u.def.value
2940 + sec->output_offset
2941 + output_section->vma);
2942 else
2943 h->esym.asym.value = 0;
2944 }
2945 else
2946 {
2947 struct mips_elf_link_hash_entry *hd = h;
2948
2949 while (hd->root.root.type == bfd_link_hash_indirect)
2950 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2951
2952 if (hd->needs_lazy_stub)
2953 {
2954 BFD_ASSERT (hd->root.plt.plist != NULL);
2955 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2956 /* Set type and value for a symbol with a function stub. */
2957 h->esym.asym.st = stProc;
2958 sec = hd->root.root.u.def.section;
2959 if (sec == NULL)
2960 h->esym.asym.value = 0;
2961 else
2962 {
2963 output_section = sec->output_section;
2964 if (output_section != NULL)
2965 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2966 + sec->output_offset
2967 + output_section->vma);
2968 else
2969 h->esym.asym.value = 0;
2970 }
2971 }
2972 }
2973
2974 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2975 h->root.root.root.string,
2976 &h->esym))
2977 {
2978 einfo->failed = TRUE;
2979 return FALSE;
2980 }
2981
2982 return TRUE;
2983 }
2984
2985 /* A comparison routine used to sort .gptab entries. */
2986
2987 static int
2988 gptab_compare (const void *p1, const void *p2)
2989 {
2990 const Elf32_gptab *a1 = p1;
2991 const Elf32_gptab *a2 = p2;
2992
2993 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2994 }
2995 \f
2996 /* Functions to manage the got entry hash table. */
2997
2998 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2999 hash number. */
3000
3001 static INLINE hashval_t
3002 mips_elf_hash_bfd_vma (bfd_vma addr)
3003 {
3004 #ifdef BFD64
3005 return addr + (addr >> 32);
3006 #else
3007 return addr;
3008 #endif
3009 }
3010
3011 static hashval_t
3012 mips_elf_got_entry_hash (const void *entry_)
3013 {
3014 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3015
3016 return (entry->symndx
3017 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3018 + (entry->tls_type == GOT_TLS_LDM ? 0
3019 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3020 : entry->symndx >= 0 ? (entry->abfd->id
3021 + mips_elf_hash_bfd_vma (entry->d.addend))
3022 : entry->d.h->root.root.root.hash));
3023 }
3024
3025 static int
3026 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3027 {
3028 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3029 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3030
3031 return (e1->symndx == e2->symndx
3032 && e1->tls_type == e2->tls_type
3033 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3034 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3035 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3036 && e1->d.addend == e2->d.addend)
3037 : e2->abfd && e1->d.h == e2->d.h));
3038 }
3039
3040 static hashval_t
3041 mips_got_page_ref_hash (const void *ref_)
3042 {
3043 const struct mips_got_page_ref *ref;
3044
3045 ref = (const struct mips_got_page_ref *) ref_;
3046 return ((ref->symndx >= 0
3047 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3048 : ref->u.h->root.root.root.hash)
3049 + mips_elf_hash_bfd_vma (ref->addend));
3050 }
3051
3052 static int
3053 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3054 {
3055 const struct mips_got_page_ref *ref1, *ref2;
3056
3057 ref1 = (const struct mips_got_page_ref *) ref1_;
3058 ref2 = (const struct mips_got_page_ref *) ref2_;
3059 return (ref1->symndx == ref2->symndx
3060 && (ref1->symndx < 0
3061 ? ref1->u.h == ref2->u.h
3062 : ref1->u.abfd == ref2->u.abfd)
3063 && ref1->addend == ref2->addend);
3064 }
3065
3066 static hashval_t
3067 mips_got_page_entry_hash (const void *entry_)
3068 {
3069 const struct mips_got_page_entry *entry;
3070
3071 entry = (const struct mips_got_page_entry *) entry_;
3072 return entry->sec->id;
3073 }
3074
3075 static int
3076 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3077 {
3078 const struct mips_got_page_entry *entry1, *entry2;
3079
3080 entry1 = (const struct mips_got_page_entry *) entry1_;
3081 entry2 = (const struct mips_got_page_entry *) entry2_;
3082 return entry1->sec == entry2->sec;
3083 }
3084 \f
3085 /* Create and return a new mips_got_info structure. */
3086
3087 static struct mips_got_info *
3088 mips_elf_create_got_info (bfd *abfd)
3089 {
3090 struct mips_got_info *g;
3091
3092 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3093 if (g == NULL)
3094 return NULL;
3095
3096 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3097 mips_elf_got_entry_eq, NULL);
3098 if (g->got_entries == NULL)
3099 return NULL;
3100
3101 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3102 mips_got_page_ref_eq, NULL);
3103 if (g->got_page_refs == NULL)
3104 return NULL;
3105
3106 return g;
3107 }
3108
3109 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3110 CREATE_P and if ABFD doesn't already have a GOT. */
3111
3112 static struct mips_got_info *
3113 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3114 {
3115 struct mips_elf_obj_tdata *tdata;
3116
3117 if (!is_mips_elf (abfd))
3118 return NULL;
3119
3120 tdata = mips_elf_tdata (abfd);
3121 if (!tdata->got && create_p)
3122 tdata->got = mips_elf_create_got_info (abfd);
3123 return tdata->got;
3124 }
3125
3126 /* Record that ABFD should use output GOT G. */
3127
3128 static void
3129 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3130 {
3131 struct mips_elf_obj_tdata *tdata;
3132
3133 BFD_ASSERT (is_mips_elf (abfd));
3134 tdata = mips_elf_tdata (abfd);
3135 if (tdata->got)
3136 {
3137 /* The GOT structure itself and the hash table entries are
3138 allocated to a bfd, but the hash tables aren't. */
3139 htab_delete (tdata->got->got_entries);
3140 htab_delete (tdata->got->got_page_refs);
3141 if (tdata->got->got_page_entries)
3142 htab_delete (tdata->got->got_page_entries);
3143 }
3144 tdata->got = g;
3145 }
3146
3147 /* Return the dynamic relocation section. If it doesn't exist, try to
3148 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3149 if creation fails. */
3150
3151 static asection *
3152 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3153 {
3154 const char *dname;
3155 asection *sreloc;
3156 bfd *dynobj;
3157
3158 dname = MIPS_ELF_REL_DYN_NAME (info);
3159 dynobj = elf_hash_table (info)->dynobj;
3160 sreloc = bfd_get_linker_section (dynobj, dname);
3161 if (sreloc == NULL && create_p)
3162 {
3163 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3164 (SEC_ALLOC
3165 | SEC_LOAD
3166 | SEC_HAS_CONTENTS
3167 | SEC_IN_MEMORY
3168 | SEC_LINKER_CREATED
3169 | SEC_READONLY));
3170 if (sreloc == NULL
3171 || ! bfd_set_section_alignment (dynobj, sreloc,
3172 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3173 return NULL;
3174 }
3175 return sreloc;
3176 }
3177
3178 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3179
3180 static int
3181 mips_elf_reloc_tls_type (unsigned int r_type)
3182 {
3183 if (tls_gd_reloc_p (r_type))
3184 return GOT_TLS_GD;
3185
3186 if (tls_ldm_reloc_p (r_type))
3187 return GOT_TLS_LDM;
3188
3189 if (tls_gottprel_reloc_p (r_type))
3190 return GOT_TLS_IE;
3191
3192 return GOT_TLS_NONE;
3193 }
3194
3195 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3196
3197 static int
3198 mips_tls_got_entries (unsigned int type)
3199 {
3200 switch (type)
3201 {
3202 case GOT_TLS_GD:
3203 case GOT_TLS_LDM:
3204 return 2;
3205
3206 case GOT_TLS_IE:
3207 return 1;
3208
3209 case GOT_TLS_NONE:
3210 return 0;
3211 }
3212 abort ();
3213 }
3214
3215 /* Count the number of relocations needed for a TLS GOT entry, with
3216 access types from TLS_TYPE, and symbol H (or a local symbol if H
3217 is NULL). */
3218
3219 static int
3220 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3221 struct elf_link_hash_entry *h)
3222 {
3223 int indx = 0;
3224 bfd_boolean need_relocs = FALSE;
3225 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3226
3227 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3228 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3229 indx = h->dynindx;
3230
3231 if ((info->shared || indx != 0)
3232 && (h == NULL
3233 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3234 || h->root.type != bfd_link_hash_undefweak))
3235 need_relocs = TRUE;
3236
3237 if (!need_relocs)
3238 return 0;
3239
3240 switch (tls_type)
3241 {
3242 case GOT_TLS_GD:
3243 return indx != 0 ? 2 : 1;
3244
3245 case GOT_TLS_IE:
3246 return 1;
3247
3248 case GOT_TLS_LDM:
3249 return info->shared ? 1 : 0;
3250
3251 default:
3252 return 0;
3253 }
3254 }
3255
3256 /* Add the number of GOT entries and TLS relocations required by ENTRY
3257 to G. */
3258
3259 static void
3260 mips_elf_count_got_entry (struct bfd_link_info *info,
3261 struct mips_got_info *g,
3262 struct mips_got_entry *entry)
3263 {
3264 if (entry->tls_type)
3265 {
3266 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3267 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3268 entry->symndx < 0
3269 ? &entry->d.h->root : NULL);
3270 }
3271 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3272 g->local_gotno += 1;
3273 else
3274 g->global_gotno += 1;
3275 }
3276
3277 /* Output a simple dynamic relocation into SRELOC. */
3278
3279 static void
3280 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3281 asection *sreloc,
3282 unsigned long reloc_index,
3283 unsigned long indx,
3284 int r_type,
3285 bfd_vma offset)
3286 {
3287 Elf_Internal_Rela rel[3];
3288
3289 memset (rel, 0, sizeof (rel));
3290
3291 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3292 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3293
3294 if (ABI_64_P (output_bfd))
3295 {
3296 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3297 (output_bfd, &rel[0],
3298 (sreloc->contents
3299 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3300 }
3301 else
3302 bfd_elf32_swap_reloc_out
3303 (output_bfd, &rel[0],
3304 (sreloc->contents
3305 + reloc_index * sizeof (Elf32_External_Rel)));
3306 }
3307
3308 /* Initialize a set of TLS GOT entries for one symbol. */
3309
3310 static void
3311 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3312 struct mips_got_entry *entry,
3313 struct mips_elf_link_hash_entry *h,
3314 bfd_vma value)
3315 {
3316 struct mips_elf_link_hash_table *htab;
3317 int indx;
3318 asection *sreloc, *sgot;
3319 bfd_vma got_offset, got_offset2;
3320 bfd_boolean need_relocs = FALSE;
3321
3322 htab = mips_elf_hash_table (info);
3323 if (htab == NULL)
3324 return;
3325
3326 sgot = htab->sgot;
3327
3328 indx = 0;
3329 if (h != NULL)
3330 {
3331 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3332
3333 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3334 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3335 indx = h->root.dynindx;
3336 }
3337
3338 if (entry->tls_initialized)
3339 return;
3340
3341 if ((info->shared || indx != 0)
3342 && (h == NULL
3343 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3344 || h->root.type != bfd_link_hash_undefweak))
3345 need_relocs = TRUE;
3346
3347 /* MINUS_ONE means the symbol is not defined in this object. It may not
3348 be defined at all; assume that the value doesn't matter in that
3349 case. Otherwise complain if we would use the value. */
3350 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3351 || h->root.root.type == bfd_link_hash_undefweak);
3352
3353 /* Emit necessary relocations. */
3354 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3355 got_offset = entry->gotidx;
3356
3357 switch (entry->tls_type)
3358 {
3359 case GOT_TLS_GD:
3360 /* General Dynamic. */
3361 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3362
3363 if (need_relocs)
3364 {
3365 mips_elf_output_dynamic_relocation
3366 (abfd, sreloc, sreloc->reloc_count++, indx,
3367 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3368 sgot->output_offset + sgot->output_section->vma + got_offset);
3369
3370 if (indx)
3371 mips_elf_output_dynamic_relocation
3372 (abfd, sreloc, sreloc->reloc_count++, indx,
3373 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3374 sgot->output_offset + sgot->output_section->vma + got_offset2);
3375 else
3376 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3377 sgot->contents + got_offset2);
3378 }
3379 else
3380 {
3381 MIPS_ELF_PUT_WORD (abfd, 1,
3382 sgot->contents + got_offset);
3383 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3384 sgot->contents + got_offset2);
3385 }
3386 break;
3387
3388 case GOT_TLS_IE:
3389 /* Initial Exec model. */
3390 if (need_relocs)
3391 {
3392 if (indx == 0)
3393 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3394 sgot->contents + got_offset);
3395 else
3396 MIPS_ELF_PUT_WORD (abfd, 0,
3397 sgot->contents + got_offset);
3398
3399 mips_elf_output_dynamic_relocation
3400 (abfd, sreloc, sreloc->reloc_count++, indx,
3401 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3402 sgot->output_offset + sgot->output_section->vma + got_offset);
3403 }
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3406 sgot->contents + got_offset);
3407 break;
3408
3409 case GOT_TLS_LDM:
3410 /* The initial offset is zero, and the LD offsets will include the
3411 bias by DTP_OFFSET. */
3412 MIPS_ELF_PUT_WORD (abfd, 0,
3413 sgot->contents + got_offset
3414 + MIPS_ELF_GOT_SIZE (abfd));
3415
3416 if (!info->shared)
3417 MIPS_ELF_PUT_WORD (abfd, 1,
3418 sgot->contents + got_offset);
3419 else
3420 mips_elf_output_dynamic_relocation
3421 (abfd, sreloc, sreloc->reloc_count++, indx,
3422 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3423 sgot->output_offset + sgot->output_section->vma + got_offset);
3424 break;
3425
3426 default:
3427 abort ();
3428 }
3429
3430 entry->tls_initialized = TRUE;
3431 }
3432
3433 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3434 for global symbol H. .got.plt comes before the GOT, so the offset
3435 will be negative. */
3436
3437 static bfd_vma
3438 mips_elf_gotplt_index (struct bfd_link_info *info,
3439 struct elf_link_hash_entry *h)
3440 {
3441 bfd_vma got_address, got_value;
3442 struct mips_elf_link_hash_table *htab;
3443
3444 htab = mips_elf_hash_table (info);
3445 BFD_ASSERT (htab != NULL);
3446
3447 BFD_ASSERT (h->plt.plist != NULL);
3448 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3449
3450 /* Calculate the address of the associated .got.plt entry. */
3451 got_address = (htab->sgotplt->output_section->vma
3452 + htab->sgotplt->output_offset
3453 + (h->plt.plist->gotplt_index
3454 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3455
3456 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3457 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3458 + htab->root.hgot->root.u.def.section->output_offset
3459 + htab->root.hgot->root.u.def.value);
3460
3461 return got_address - got_value;
3462 }
3463
3464 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3465 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3466 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3467 offset can be found. */
3468
3469 static bfd_vma
3470 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3471 bfd_vma value, unsigned long r_symndx,
3472 struct mips_elf_link_hash_entry *h, int r_type)
3473 {
3474 struct mips_elf_link_hash_table *htab;
3475 struct mips_got_entry *entry;
3476
3477 htab = mips_elf_hash_table (info);
3478 BFD_ASSERT (htab != NULL);
3479
3480 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3481 r_symndx, h, r_type);
3482 if (!entry)
3483 return MINUS_ONE;
3484
3485 if (entry->tls_type)
3486 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3487 return entry->gotidx;
3488 }
3489
3490 /* Return the GOT index of global symbol H in the primary GOT. */
3491
3492 static bfd_vma
3493 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3494 struct elf_link_hash_entry *h)
3495 {
3496 struct mips_elf_link_hash_table *htab;
3497 long global_got_dynindx;
3498 struct mips_got_info *g;
3499 bfd_vma got_index;
3500
3501 htab = mips_elf_hash_table (info);
3502 BFD_ASSERT (htab != NULL);
3503
3504 global_got_dynindx = 0;
3505 if (htab->global_gotsym != NULL)
3506 global_got_dynindx = htab->global_gotsym->dynindx;
3507
3508 /* Once we determine the global GOT entry with the lowest dynamic
3509 symbol table index, we must put all dynamic symbols with greater
3510 indices into the primary GOT. That makes it easy to calculate the
3511 GOT offset. */
3512 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3513 g = mips_elf_bfd_got (obfd, FALSE);
3514 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3515 * MIPS_ELF_GOT_SIZE (obfd));
3516 BFD_ASSERT (got_index < htab->sgot->size);
3517
3518 return got_index;
3519 }
3520
3521 /* Return the GOT index for the global symbol indicated by H, which is
3522 referenced by a relocation of type R_TYPE in IBFD. */
3523
3524 static bfd_vma
3525 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3526 struct elf_link_hash_entry *h, int r_type)
3527 {
3528 struct mips_elf_link_hash_table *htab;
3529 struct mips_got_info *g;
3530 struct mips_got_entry lookup, *entry;
3531 bfd_vma gotidx;
3532
3533 htab = mips_elf_hash_table (info);
3534 BFD_ASSERT (htab != NULL);
3535
3536 g = mips_elf_bfd_got (ibfd, FALSE);
3537 BFD_ASSERT (g);
3538
3539 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3540 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3541 return mips_elf_primary_global_got_index (obfd, info, h);
3542
3543 lookup.abfd = ibfd;
3544 lookup.symndx = -1;
3545 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3546 entry = htab_find (g->got_entries, &lookup);
3547 BFD_ASSERT (entry);
3548
3549 gotidx = entry->gotidx;
3550 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3551
3552 if (lookup.tls_type)
3553 {
3554 bfd_vma value = MINUS_ONE;
3555
3556 if ((h->root.type == bfd_link_hash_defined
3557 || h->root.type == bfd_link_hash_defweak)
3558 && h->root.u.def.section->output_section)
3559 value = (h->root.u.def.value
3560 + h->root.u.def.section->output_offset
3561 + h->root.u.def.section->output_section->vma);
3562
3563 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3564 }
3565 return gotidx;
3566 }
3567
3568 /* Find a GOT page entry that points to within 32KB of VALUE. These
3569 entries are supposed to be placed at small offsets in the GOT, i.e.,
3570 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3571 entry could be created. If OFFSETP is nonnull, use it to return the
3572 offset of the GOT entry from VALUE. */
3573
3574 static bfd_vma
3575 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3576 bfd_vma value, bfd_vma *offsetp)
3577 {
3578 bfd_vma page, got_index;
3579 struct mips_got_entry *entry;
3580
3581 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3582 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3583 NULL, R_MIPS_GOT_PAGE);
3584
3585 if (!entry)
3586 return MINUS_ONE;
3587
3588 got_index = entry->gotidx;
3589
3590 if (offsetp)
3591 *offsetp = value - entry->d.address;
3592
3593 return got_index;
3594 }
3595
3596 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3597 EXTERNAL is true if the relocation was originally against a global
3598 symbol that binds locally. */
3599
3600 static bfd_vma
3601 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3602 bfd_vma value, bfd_boolean external)
3603 {
3604 struct mips_got_entry *entry;
3605
3606 /* GOT16 relocations against local symbols are followed by a LO16
3607 relocation; those against global symbols are not. Thus if the
3608 symbol was originally local, the GOT16 relocation should load the
3609 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3610 if (! external)
3611 value = mips_elf_high (value) << 16;
3612
3613 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3614 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3615 same in all cases. */
3616 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3617 NULL, R_MIPS_GOT16);
3618 if (entry)
3619 return entry->gotidx;
3620 else
3621 return MINUS_ONE;
3622 }
3623
3624 /* Returns the offset for the entry at the INDEXth position
3625 in the GOT. */
3626
3627 static bfd_vma
3628 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3629 bfd *input_bfd, bfd_vma got_index)
3630 {
3631 struct mips_elf_link_hash_table *htab;
3632 asection *sgot;
3633 bfd_vma gp;
3634
3635 htab = mips_elf_hash_table (info);
3636 BFD_ASSERT (htab != NULL);
3637
3638 sgot = htab->sgot;
3639 gp = _bfd_get_gp_value (output_bfd)
3640 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3641
3642 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3643 }
3644
3645 /* Create and return a local GOT entry for VALUE, which was calculated
3646 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3647 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3648 instead. */
3649
3650 static struct mips_got_entry *
3651 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3652 bfd *ibfd, bfd_vma value,
3653 unsigned long r_symndx,
3654 struct mips_elf_link_hash_entry *h,
3655 int r_type)
3656 {
3657 struct mips_got_entry lookup, *entry;
3658 void **loc;
3659 struct mips_got_info *g;
3660 struct mips_elf_link_hash_table *htab;
3661 bfd_vma gotidx;
3662
3663 htab = mips_elf_hash_table (info);
3664 BFD_ASSERT (htab != NULL);
3665
3666 g = mips_elf_bfd_got (ibfd, FALSE);
3667 if (g == NULL)
3668 {
3669 g = mips_elf_bfd_got (abfd, FALSE);
3670 BFD_ASSERT (g != NULL);
3671 }
3672
3673 /* This function shouldn't be called for symbols that live in the global
3674 area of the GOT. */
3675 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3676
3677 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3678 if (lookup.tls_type)
3679 {
3680 lookup.abfd = ibfd;
3681 if (tls_ldm_reloc_p (r_type))
3682 {
3683 lookup.symndx = 0;
3684 lookup.d.addend = 0;
3685 }
3686 else if (h == NULL)
3687 {
3688 lookup.symndx = r_symndx;
3689 lookup.d.addend = 0;
3690 }
3691 else
3692 {
3693 lookup.symndx = -1;
3694 lookup.d.h = h;
3695 }
3696
3697 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3698 BFD_ASSERT (entry);
3699
3700 gotidx = entry->gotidx;
3701 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3702
3703 return entry;
3704 }
3705
3706 lookup.abfd = NULL;
3707 lookup.symndx = -1;
3708 lookup.d.address = value;
3709 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3710 if (!loc)
3711 return NULL;
3712
3713 entry = (struct mips_got_entry *) *loc;
3714 if (entry)
3715 return entry;
3716
3717 if (g->assigned_low_gotno > g->assigned_high_gotno)
3718 {
3719 /* We didn't allocate enough space in the GOT. */
3720 (*_bfd_error_handler)
3721 (_("not enough GOT space for local GOT entries"));
3722 bfd_set_error (bfd_error_bad_value);
3723 return NULL;
3724 }
3725
3726 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3727 if (!entry)
3728 return NULL;
3729
3730 if (got16_reloc_p (r_type)
3731 || call16_reloc_p (r_type)
3732 || got_page_reloc_p (r_type)
3733 || got_disp_reloc_p (r_type))
3734 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3735 else
3736 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3737
3738 *entry = lookup;
3739 *loc = entry;
3740
3741 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3742
3743 /* These GOT entries need a dynamic relocation on VxWorks. */
3744 if (htab->is_vxworks)
3745 {
3746 Elf_Internal_Rela outrel;
3747 asection *s;
3748 bfd_byte *rloc;
3749 bfd_vma got_address;
3750
3751 s = mips_elf_rel_dyn_section (info, FALSE);
3752 got_address = (htab->sgot->output_section->vma
3753 + htab->sgot->output_offset
3754 + entry->gotidx);
3755
3756 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3757 outrel.r_offset = got_address;
3758 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3759 outrel.r_addend = value;
3760 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3761 }
3762
3763 return entry;
3764 }
3765
3766 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3767 The number might be exact or a worst-case estimate, depending on how
3768 much information is available to elf_backend_omit_section_dynsym at
3769 the current linking stage. */
3770
3771 static bfd_size_type
3772 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3773 {
3774 bfd_size_type count;
3775
3776 count = 0;
3777 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3778 {
3779 asection *p;
3780 const struct elf_backend_data *bed;
3781
3782 bed = get_elf_backend_data (output_bfd);
3783 for (p = output_bfd->sections; p ; p = p->next)
3784 if ((p->flags & SEC_EXCLUDE) == 0
3785 && (p->flags & SEC_ALLOC) != 0
3786 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3787 ++count;
3788 }
3789 return count;
3790 }
3791
3792 /* Sort the dynamic symbol table so that symbols that need GOT entries
3793 appear towards the end. */
3794
3795 static bfd_boolean
3796 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3797 {
3798 struct mips_elf_link_hash_table *htab;
3799 struct mips_elf_hash_sort_data hsd;
3800 struct mips_got_info *g;
3801
3802 if (elf_hash_table (info)->dynsymcount == 0)
3803 return TRUE;
3804
3805 htab = mips_elf_hash_table (info);
3806 BFD_ASSERT (htab != NULL);
3807
3808 g = htab->got_info;
3809 if (g == NULL)
3810 return TRUE;
3811
3812 hsd.low = NULL;
3813 hsd.max_unref_got_dynindx
3814 = hsd.min_got_dynindx
3815 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3816 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3817 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3818 elf_hash_table (info)),
3819 mips_elf_sort_hash_table_f,
3820 &hsd);
3821
3822 /* There should have been enough room in the symbol table to
3823 accommodate both the GOT and non-GOT symbols. */
3824 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3825 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3826 == elf_hash_table (info)->dynsymcount);
3827 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3828 == g->global_gotno);
3829
3830 /* Now we know which dynamic symbol has the lowest dynamic symbol
3831 table index in the GOT. */
3832 htab->global_gotsym = hsd.low;
3833
3834 return TRUE;
3835 }
3836
3837 /* If H needs a GOT entry, assign it the highest available dynamic
3838 index. Otherwise, assign it the lowest available dynamic
3839 index. */
3840
3841 static bfd_boolean
3842 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3843 {
3844 struct mips_elf_hash_sort_data *hsd = data;
3845
3846 /* Symbols without dynamic symbol table entries aren't interesting
3847 at all. */
3848 if (h->root.dynindx == -1)
3849 return TRUE;
3850
3851 switch (h->global_got_area)
3852 {
3853 case GGA_NONE:
3854 h->root.dynindx = hsd->max_non_got_dynindx++;
3855 break;
3856
3857 case GGA_NORMAL:
3858 h->root.dynindx = --hsd->min_got_dynindx;
3859 hsd->low = (struct elf_link_hash_entry *) h;
3860 break;
3861
3862 case GGA_RELOC_ONLY:
3863 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3864 hsd->low = (struct elf_link_hash_entry *) h;
3865 h->root.dynindx = hsd->max_unref_got_dynindx++;
3866 break;
3867 }
3868
3869 return TRUE;
3870 }
3871
3872 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3873 (which is owned by the caller and shouldn't be added to the
3874 hash table directly). */
3875
3876 static bfd_boolean
3877 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3878 struct mips_got_entry *lookup)
3879 {
3880 struct mips_elf_link_hash_table *htab;
3881 struct mips_got_entry *entry;
3882 struct mips_got_info *g;
3883 void **loc, **bfd_loc;
3884
3885 /* Make sure there's a slot for this entry in the master GOT. */
3886 htab = mips_elf_hash_table (info);
3887 g = htab->got_info;
3888 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3889 if (!loc)
3890 return FALSE;
3891
3892 /* Populate the entry if it isn't already. */
3893 entry = (struct mips_got_entry *) *loc;
3894 if (!entry)
3895 {
3896 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3897 if (!entry)
3898 return FALSE;
3899
3900 lookup->tls_initialized = FALSE;
3901 lookup->gotidx = -1;
3902 *entry = *lookup;
3903 *loc = entry;
3904 }
3905
3906 /* Reuse the same GOT entry for the BFD's GOT. */
3907 g = mips_elf_bfd_got (abfd, TRUE);
3908 if (!g)
3909 return FALSE;
3910
3911 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3912 if (!bfd_loc)
3913 return FALSE;
3914
3915 if (!*bfd_loc)
3916 *bfd_loc = entry;
3917 return TRUE;
3918 }
3919
3920 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3921 entry for it. FOR_CALL is true if the caller is only interested in
3922 using the GOT entry for calls. */
3923
3924 static bfd_boolean
3925 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3926 bfd *abfd, struct bfd_link_info *info,
3927 bfd_boolean for_call, int r_type)
3928 {
3929 struct mips_elf_link_hash_table *htab;
3930 struct mips_elf_link_hash_entry *hmips;
3931 struct mips_got_entry entry;
3932 unsigned char tls_type;
3933
3934 htab = mips_elf_hash_table (info);
3935 BFD_ASSERT (htab != NULL);
3936
3937 hmips = (struct mips_elf_link_hash_entry *) h;
3938 if (!for_call)
3939 hmips->got_only_for_calls = FALSE;
3940
3941 /* A global symbol in the GOT must also be in the dynamic symbol
3942 table. */
3943 if (h->dynindx == -1)
3944 {
3945 switch (ELF_ST_VISIBILITY (h->other))
3946 {
3947 case STV_INTERNAL:
3948 case STV_HIDDEN:
3949 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3950 break;
3951 }
3952 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3953 return FALSE;
3954 }
3955
3956 tls_type = mips_elf_reloc_tls_type (r_type);
3957 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3958 hmips->global_got_area = GGA_NORMAL;
3959
3960 entry.abfd = abfd;
3961 entry.symndx = -1;
3962 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3963 entry.tls_type = tls_type;
3964 return mips_elf_record_got_entry (info, abfd, &entry);
3965 }
3966
3967 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3968 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3969
3970 static bfd_boolean
3971 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3972 struct bfd_link_info *info, int r_type)
3973 {
3974 struct mips_elf_link_hash_table *htab;
3975 struct mips_got_info *g;
3976 struct mips_got_entry entry;
3977
3978 htab = mips_elf_hash_table (info);
3979 BFD_ASSERT (htab != NULL);
3980
3981 g = htab->got_info;
3982 BFD_ASSERT (g != NULL);
3983
3984 entry.abfd = abfd;
3985 entry.symndx = symndx;
3986 entry.d.addend = addend;
3987 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3988 return mips_elf_record_got_entry (info, abfd, &entry);
3989 }
3990
3991 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3992 H is the symbol's hash table entry, or null if SYMNDX is local
3993 to ABFD. */
3994
3995 static bfd_boolean
3996 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3997 long symndx, struct elf_link_hash_entry *h,
3998 bfd_signed_vma addend)
3999 {
4000 struct mips_elf_link_hash_table *htab;
4001 struct mips_got_info *g1, *g2;
4002 struct mips_got_page_ref lookup, *entry;
4003 void **loc, **bfd_loc;
4004
4005 htab = mips_elf_hash_table (info);
4006 BFD_ASSERT (htab != NULL);
4007
4008 g1 = htab->got_info;
4009 BFD_ASSERT (g1 != NULL);
4010
4011 if (h)
4012 {
4013 lookup.symndx = -1;
4014 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4015 }
4016 else
4017 {
4018 lookup.symndx = symndx;
4019 lookup.u.abfd = abfd;
4020 }
4021 lookup.addend = addend;
4022 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4023 if (loc == NULL)
4024 return FALSE;
4025
4026 entry = (struct mips_got_page_ref *) *loc;
4027 if (!entry)
4028 {
4029 entry = bfd_alloc (abfd, sizeof (*entry));
4030 if (!entry)
4031 return FALSE;
4032
4033 *entry = lookup;
4034 *loc = entry;
4035 }
4036
4037 /* Add the same entry to the BFD's GOT. */
4038 g2 = mips_elf_bfd_got (abfd, TRUE);
4039 if (!g2)
4040 return FALSE;
4041
4042 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4043 if (!bfd_loc)
4044 return FALSE;
4045
4046 if (!*bfd_loc)
4047 *bfd_loc = entry;
4048
4049 return TRUE;
4050 }
4051
4052 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4053
4054 static void
4055 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4056 unsigned int n)
4057 {
4058 asection *s;
4059 struct mips_elf_link_hash_table *htab;
4060
4061 htab = mips_elf_hash_table (info);
4062 BFD_ASSERT (htab != NULL);
4063
4064 s = mips_elf_rel_dyn_section (info, FALSE);
4065 BFD_ASSERT (s != NULL);
4066
4067 if (htab->is_vxworks)
4068 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4069 else
4070 {
4071 if (s->size == 0)
4072 {
4073 /* Make room for a null element. */
4074 s->size += MIPS_ELF_REL_SIZE (abfd);
4075 ++s->reloc_count;
4076 }
4077 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4078 }
4079 }
4080 \f
4081 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4082 mips_elf_traverse_got_arg structure. Count the number of GOT
4083 entries and TLS relocs. Set DATA->value to true if we need
4084 to resolve indirect or warning symbols and then recreate the GOT. */
4085
4086 static int
4087 mips_elf_check_recreate_got (void **entryp, void *data)
4088 {
4089 struct mips_got_entry *entry;
4090 struct mips_elf_traverse_got_arg *arg;
4091
4092 entry = (struct mips_got_entry *) *entryp;
4093 arg = (struct mips_elf_traverse_got_arg *) data;
4094 if (entry->abfd != NULL && entry->symndx == -1)
4095 {
4096 struct mips_elf_link_hash_entry *h;
4097
4098 h = entry->d.h;
4099 if (h->root.root.type == bfd_link_hash_indirect
4100 || h->root.root.type == bfd_link_hash_warning)
4101 {
4102 arg->value = TRUE;
4103 return 0;
4104 }
4105 }
4106 mips_elf_count_got_entry (arg->info, arg->g, entry);
4107 return 1;
4108 }
4109
4110 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4111 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4112 converting entries for indirect and warning symbols into entries
4113 for the target symbol. Set DATA->g to null on error. */
4114
4115 static int
4116 mips_elf_recreate_got (void **entryp, void *data)
4117 {
4118 struct mips_got_entry new_entry, *entry;
4119 struct mips_elf_traverse_got_arg *arg;
4120 void **slot;
4121
4122 entry = (struct mips_got_entry *) *entryp;
4123 arg = (struct mips_elf_traverse_got_arg *) data;
4124 if (entry->abfd != NULL
4125 && entry->symndx == -1
4126 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4127 || entry->d.h->root.root.type == bfd_link_hash_warning))
4128 {
4129 struct mips_elf_link_hash_entry *h;
4130
4131 new_entry = *entry;
4132 entry = &new_entry;
4133 h = entry->d.h;
4134 do
4135 {
4136 BFD_ASSERT (h->global_got_area == GGA_NONE);
4137 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4138 }
4139 while (h->root.root.type == bfd_link_hash_indirect
4140 || h->root.root.type == bfd_link_hash_warning);
4141 entry->d.h = h;
4142 }
4143 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4144 if (slot == NULL)
4145 {
4146 arg->g = NULL;
4147 return 0;
4148 }
4149 if (*slot == NULL)
4150 {
4151 if (entry == &new_entry)
4152 {
4153 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4154 if (!entry)
4155 {
4156 arg->g = NULL;
4157 return 0;
4158 }
4159 *entry = new_entry;
4160 }
4161 *slot = entry;
4162 mips_elf_count_got_entry (arg->info, arg->g, entry);
4163 }
4164 return 1;
4165 }
4166
4167 /* Return the maximum number of GOT page entries required for RANGE. */
4168
4169 static bfd_vma
4170 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4171 {
4172 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4173 }
4174
4175 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4176
4177 static bfd_boolean
4178 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4179 asection *sec, bfd_signed_vma addend)
4180 {
4181 struct mips_got_info *g = arg->g;
4182 struct mips_got_page_entry lookup, *entry;
4183 struct mips_got_page_range **range_ptr, *range;
4184 bfd_vma old_pages, new_pages;
4185 void **loc;
4186
4187 /* Find the mips_got_page_entry hash table entry for this section. */
4188 lookup.sec = sec;
4189 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4190 if (loc == NULL)
4191 return FALSE;
4192
4193 /* Create a mips_got_page_entry if this is the first time we've
4194 seen the section. */
4195 entry = (struct mips_got_page_entry *) *loc;
4196 if (!entry)
4197 {
4198 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4199 if (!entry)
4200 return FALSE;
4201
4202 entry->sec = sec;
4203 *loc = entry;
4204 }
4205
4206 /* Skip over ranges whose maximum extent cannot share a page entry
4207 with ADDEND. */
4208 range_ptr = &entry->ranges;
4209 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4210 range_ptr = &(*range_ptr)->next;
4211
4212 /* If we scanned to the end of the list, or found a range whose
4213 minimum extent cannot share a page entry with ADDEND, create
4214 a new singleton range. */
4215 range = *range_ptr;
4216 if (!range || addend < range->min_addend - 0xffff)
4217 {
4218 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4219 if (!range)
4220 return FALSE;
4221
4222 range->next = *range_ptr;
4223 range->min_addend = addend;
4224 range->max_addend = addend;
4225
4226 *range_ptr = range;
4227 entry->num_pages++;
4228 g->page_gotno++;
4229 return TRUE;
4230 }
4231
4232 /* Remember how many pages the old range contributed. */
4233 old_pages = mips_elf_pages_for_range (range);
4234
4235 /* Update the ranges. */
4236 if (addend < range->min_addend)
4237 range->min_addend = addend;
4238 else if (addend > range->max_addend)
4239 {
4240 if (range->next && addend >= range->next->min_addend - 0xffff)
4241 {
4242 old_pages += mips_elf_pages_for_range (range->next);
4243 range->max_addend = range->next->max_addend;
4244 range->next = range->next->next;
4245 }
4246 else
4247 range->max_addend = addend;
4248 }
4249
4250 /* Record any change in the total estimate. */
4251 new_pages = mips_elf_pages_for_range (range);
4252 if (old_pages != new_pages)
4253 {
4254 entry->num_pages += new_pages - old_pages;
4255 g->page_gotno += new_pages - old_pages;
4256 }
4257
4258 return TRUE;
4259 }
4260
4261 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4262 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4263 whether the page reference described by *REFP needs a GOT page entry,
4264 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4265
4266 static bfd_boolean
4267 mips_elf_resolve_got_page_ref (void **refp, void *data)
4268 {
4269 struct mips_got_page_ref *ref;
4270 struct mips_elf_traverse_got_arg *arg;
4271 struct mips_elf_link_hash_table *htab;
4272 asection *sec;
4273 bfd_vma addend;
4274
4275 ref = (struct mips_got_page_ref *) *refp;
4276 arg = (struct mips_elf_traverse_got_arg *) data;
4277 htab = mips_elf_hash_table (arg->info);
4278
4279 if (ref->symndx < 0)
4280 {
4281 struct mips_elf_link_hash_entry *h;
4282
4283 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4284 h = ref->u.h;
4285 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4286 return 1;
4287
4288 /* Ignore undefined symbols; we'll issue an error later if
4289 appropriate. */
4290 if (!((h->root.root.type == bfd_link_hash_defined
4291 || h->root.root.type == bfd_link_hash_defweak)
4292 && h->root.root.u.def.section))
4293 return 1;
4294
4295 sec = h->root.root.u.def.section;
4296 addend = h->root.root.u.def.value + ref->addend;
4297 }
4298 else
4299 {
4300 Elf_Internal_Sym *isym;
4301
4302 /* Read in the symbol. */
4303 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4304 ref->symndx);
4305 if (isym == NULL)
4306 {
4307 arg->g = NULL;
4308 return 0;
4309 }
4310
4311 /* Get the associated input section. */
4312 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4313 if (sec == NULL)
4314 {
4315 arg->g = NULL;
4316 return 0;
4317 }
4318
4319 /* If this is a mergable section, work out the section and offset
4320 of the merged data. For section symbols, the addend specifies
4321 of the offset _of_ the first byte in the data, otherwise it
4322 specifies the offset _from_ the first byte. */
4323 if (sec->flags & SEC_MERGE)
4324 {
4325 void *secinfo;
4326
4327 secinfo = elf_section_data (sec)->sec_info;
4328 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4329 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4330 isym->st_value + ref->addend);
4331 else
4332 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4333 isym->st_value) + ref->addend;
4334 }
4335 else
4336 addend = isym->st_value + ref->addend;
4337 }
4338 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4339 {
4340 arg->g = NULL;
4341 return 0;
4342 }
4343 return 1;
4344 }
4345
4346 /* If any entries in G->got_entries are for indirect or warning symbols,
4347 replace them with entries for the target symbol. Convert g->got_page_refs
4348 into got_page_entry structures and estimate the number of page entries
4349 that they require. */
4350
4351 static bfd_boolean
4352 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4353 struct mips_got_info *g)
4354 {
4355 struct mips_elf_traverse_got_arg tga;
4356 struct mips_got_info oldg;
4357
4358 oldg = *g;
4359
4360 tga.info = info;
4361 tga.g = g;
4362 tga.value = FALSE;
4363 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4364 if (tga.value)
4365 {
4366 *g = oldg;
4367 g->got_entries = htab_create (htab_size (oldg.got_entries),
4368 mips_elf_got_entry_hash,
4369 mips_elf_got_entry_eq, NULL);
4370 if (!g->got_entries)
4371 return FALSE;
4372
4373 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4374 if (!tga.g)
4375 return FALSE;
4376
4377 htab_delete (oldg.got_entries);
4378 }
4379
4380 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4381 mips_got_page_entry_eq, NULL);
4382 if (g->got_page_entries == NULL)
4383 return FALSE;
4384
4385 tga.info = info;
4386 tga.g = g;
4387 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4388
4389 return TRUE;
4390 }
4391
4392 /* Return true if a GOT entry for H should live in the local rather than
4393 global GOT area. */
4394
4395 static bfd_boolean
4396 mips_use_local_got_p (struct bfd_link_info *info,
4397 struct mips_elf_link_hash_entry *h)
4398 {
4399 /* Symbols that aren't in the dynamic symbol table must live in the
4400 local GOT. This includes symbols that are completely undefined
4401 and which therefore don't bind locally. We'll report undefined
4402 symbols later if appropriate. */
4403 if (h->root.dynindx == -1)
4404 return TRUE;
4405
4406 /* Symbols that bind locally can (and in the case of forced-local
4407 symbols, must) live in the local GOT. */
4408 if (h->got_only_for_calls
4409 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4410 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4411 return TRUE;
4412
4413 /* If this is an executable that must provide a definition of the symbol,
4414 either though PLTs or copy relocations, then that address should go in
4415 the local rather than global GOT. */
4416 if (info->executable && h->has_static_relocs)
4417 return TRUE;
4418
4419 return FALSE;
4420 }
4421
4422 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4423 link_info structure. Decide whether the hash entry needs an entry in
4424 the global part of the primary GOT, setting global_got_area accordingly.
4425 Count the number of global symbols that are in the primary GOT only
4426 because they have relocations against them (reloc_only_gotno). */
4427
4428 static int
4429 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4430 {
4431 struct bfd_link_info *info;
4432 struct mips_elf_link_hash_table *htab;
4433 struct mips_got_info *g;
4434
4435 info = (struct bfd_link_info *) data;
4436 htab = mips_elf_hash_table (info);
4437 g = htab->got_info;
4438 if (h->global_got_area != GGA_NONE)
4439 {
4440 /* Make a final decision about whether the symbol belongs in the
4441 local or global GOT. */
4442 if (mips_use_local_got_p (info, h))
4443 /* The symbol belongs in the local GOT. We no longer need this
4444 entry if it was only used for relocations; those relocations
4445 will be against the null or section symbol instead of H. */
4446 h->global_got_area = GGA_NONE;
4447 else if (htab->is_vxworks
4448 && h->got_only_for_calls
4449 && h->root.plt.plist->mips_offset != MINUS_ONE)
4450 /* On VxWorks, calls can refer directly to the .got.plt entry;
4451 they don't need entries in the regular GOT. .got.plt entries
4452 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4453 h->global_got_area = GGA_NONE;
4454 else if (h->global_got_area == GGA_RELOC_ONLY)
4455 {
4456 g->reloc_only_gotno++;
4457 g->global_gotno++;
4458 }
4459 }
4460 return 1;
4461 }
4462 \f
4463 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4464 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4465
4466 static int
4467 mips_elf_add_got_entry (void **entryp, void *data)
4468 {
4469 struct mips_got_entry *entry;
4470 struct mips_elf_traverse_got_arg *arg;
4471 void **slot;
4472
4473 entry = (struct mips_got_entry *) *entryp;
4474 arg = (struct mips_elf_traverse_got_arg *) data;
4475 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4476 if (!slot)
4477 {
4478 arg->g = NULL;
4479 return 0;
4480 }
4481 if (!*slot)
4482 {
4483 *slot = entry;
4484 mips_elf_count_got_entry (arg->info, arg->g, entry);
4485 }
4486 return 1;
4487 }
4488
4489 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4490 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4491
4492 static int
4493 mips_elf_add_got_page_entry (void **entryp, void *data)
4494 {
4495 struct mips_got_page_entry *entry;
4496 struct mips_elf_traverse_got_arg *arg;
4497 void **slot;
4498
4499 entry = (struct mips_got_page_entry *) *entryp;
4500 arg = (struct mips_elf_traverse_got_arg *) data;
4501 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4502 if (!slot)
4503 {
4504 arg->g = NULL;
4505 return 0;
4506 }
4507 if (!*slot)
4508 {
4509 *slot = entry;
4510 arg->g->page_gotno += entry->num_pages;
4511 }
4512 return 1;
4513 }
4514
4515 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4516 this would lead to overflow, 1 if they were merged successfully,
4517 and 0 if a merge failed due to lack of memory. (These values are chosen
4518 so that nonnegative return values can be returned by a htab_traverse
4519 callback.) */
4520
4521 static int
4522 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4523 struct mips_got_info *to,
4524 struct mips_elf_got_per_bfd_arg *arg)
4525 {
4526 struct mips_elf_traverse_got_arg tga;
4527 unsigned int estimate;
4528
4529 /* Work out how many page entries we would need for the combined GOT. */
4530 estimate = arg->max_pages;
4531 if (estimate >= from->page_gotno + to->page_gotno)
4532 estimate = from->page_gotno + to->page_gotno;
4533
4534 /* And conservatively estimate how many local and TLS entries
4535 would be needed. */
4536 estimate += from->local_gotno + to->local_gotno;
4537 estimate += from->tls_gotno + to->tls_gotno;
4538
4539 /* If we're merging with the primary got, any TLS relocations will
4540 come after the full set of global entries. Otherwise estimate those
4541 conservatively as well. */
4542 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4543 estimate += arg->global_count;
4544 else
4545 estimate += from->global_gotno + to->global_gotno;
4546
4547 /* Bail out if the combined GOT might be too big. */
4548 if (estimate > arg->max_count)
4549 return -1;
4550
4551 /* Transfer the bfd's got information from FROM to TO. */
4552 tga.info = arg->info;
4553 tga.g = to;
4554 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4555 if (!tga.g)
4556 return 0;
4557
4558 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4559 if (!tga.g)
4560 return 0;
4561
4562 mips_elf_replace_bfd_got (abfd, to);
4563 return 1;
4564 }
4565
4566 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4567 as possible of the primary got, since it doesn't require explicit
4568 dynamic relocations, but don't use bfds that would reference global
4569 symbols out of the addressable range. Failing the primary got,
4570 attempt to merge with the current got, or finish the current got
4571 and then make make the new got current. */
4572
4573 static bfd_boolean
4574 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4575 struct mips_elf_got_per_bfd_arg *arg)
4576 {
4577 unsigned int estimate;
4578 int result;
4579
4580 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4581 return FALSE;
4582
4583 /* Work out the number of page, local and TLS entries. */
4584 estimate = arg->max_pages;
4585 if (estimate > g->page_gotno)
4586 estimate = g->page_gotno;
4587 estimate += g->local_gotno + g->tls_gotno;
4588
4589 /* We place TLS GOT entries after both locals and globals. The globals
4590 for the primary GOT may overflow the normal GOT size limit, so be
4591 sure not to merge a GOT which requires TLS with the primary GOT in that
4592 case. This doesn't affect non-primary GOTs. */
4593 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4594
4595 if (estimate <= arg->max_count)
4596 {
4597 /* If we don't have a primary GOT, use it as
4598 a starting point for the primary GOT. */
4599 if (!arg->primary)
4600 {
4601 arg->primary = g;
4602 return TRUE;
4603 }
4604
4605 /* Try merging with the primary GOT. */
4606 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4607 if (result >= 0)
4608 return result;
4609 }
4610
4611 /* If we can merge with the last-created got, do it. */
4612 if (arg->current)
4613 {
4614 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4615 if (result >= 0)
4616 return result;
4617 }
4618
4619 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4620 fits; if it turns out that it doesn't, we'll get relocation
4621 overflows anyway. */
4622 g->next = arg->current;
4623 arg->current = g;
4624
4625 return TRUE;
4626 }
4627
4628 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4629 to GOTIDX, duplicating the entry if it has already been assigned
4630 an index in a different GOT. */
4631
4632 static bfd_boolean
4633 mips_elf_set_gotidx (void **entryp, long gotidx)
4634 {
4635 struct mips_got_entry *entry;
4636
4637 entry = (struct mips_got_entry *) *entryp;
4638 if (entry->gotidx > 0)
4639 {
4640 struct mips_got_entry *new_entry;
4641
4642 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4643 if (!new_entry)
4644 return FALSE;
4645
4646 *new_entry = *entry;
4647 *entryp = new_entry;
4648 entry = new_entry;
4649 }
4650 entry->gotidx = gotidx;
4651 return TRUE;
4652 }
4653
4654 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4655 mips_elf_traverse_got_arg in which DATA->value is the size of one
4656 GOT entry. Set DATA->g to null on failure. */
4657
4658 static int
4659 mips_elf_initialize_tls_index (void **entryp, void *data)
4660 {
4661 struct mips_got_entry *entry;
4662 struct mips_elf_traverse_got_arg *arg;
4663
4664 /* We're only interested in TLS symbols. */
4665 entry = (struct mips_got_entry *) *entryp;
4666 if (entry->tls_type == GOT_TLS_NONE)
4667 return 1;
4668
4669 arg = (struct mips_elf_traverse_got_arg *) data;
4670 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4671 {
4672 arg->g = NULL;
4673 return 0;
4674 }
4675
4676 /* Account for the entries we've just allocated. */
4677 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4678 return 1;
4679 }
4680
4681 /* A htab_traverse callback for GOT entries, where DATA points to a
4682 mips_elf_traverse_got_arg. Set the global_got_area of each global
4683 symbol to DATA->value. */
4684
4685 static int
4686 mips_elf_set_global_got_area (void **entryp, void *data)
4687 {
4688 struct mips_got_entry *entry;
4689 struct mips_elf_traverse_got_arg *arg;
4690
4691 entry = (struct mips_got_entry *) *entryp;
4692 arg = (struct mips_elf_traverse_got_arg *) data;
4693 if (entry->abfd != NULL
4694 && entry->symndx == -1
4695 && entry->d.h->global_got_area != GGA_NONE)
4696 entry->d.h->global_got_area = arg->value;
4697 return 1;
4698 }
4699
4700 /* A htab_traverse callback for secondary GOT entries, where DATA points
4701 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4702 and record the number of relocations they require. DATA->value is
4703 the size of one GOT entry. Set DATA->g to null on failure. */
4704
4705 static int
4706 mips_elf_set_global_gotidx (void **entryp, void *data)
4707 {
4708 struct mips_got_entry *entry;
4709 struct mips_elf_traverse_got_arg *arg;
4710
4711 entry = (struct mips_got_entry *) *entryp;
4712 arg = (struct mips_elf_traverse_got_arg *) data;
4713 if (entry->abfd != NULL
4714 && entry->symndx == -1
4715 && entry->d.h->global_got_area != GGA_NONE)
4716 {
4717 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4718 {
4719 arg->g = NULL;
4720 return 0;
4721 }
4722 arg->g->assigned_low_gotno += 1;
4723
4724 if (arg->info->shared
4725 || (elf_hash_table (arg->info)->dynamic_sections_created
4726 && entry->d.h->root.def_dynamic
4727 && !entry->d.h->root.def_regular))
4728 arg->g->relocs += 1;
4729 }
4730
4731 return 1;
4732 }
4733
4734 /* A htab_traverse callback for GOT entries for which DATA is the
4735 bfd_link_info. Forbid any global symbols from having traditional
4736 lazy-binding stubs. */
4737
4738 static int
4739 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4740 {
4741 struct bfd_link_info *info;
4742 struct mips_elf_link_hash_table *htab;
4743 struct mips_got_entry *entry;
4744
4745 entry = (struct mips_got_entry *) *entryp;
4746 info = (struct bfd_link_info *) data;
4747 htab = mips_elf_hash_table (info);
4748 BFD_ASSERT (htab != NULL);
4749
4750 if (entry->abfd != NULL
4751 && entry->symndx == -1
4752 && entry->d.h->needs_lazy_stub)
4753 {
4754 entry->d.h->needs_lazy_stub = FALSE;
4755 htab->lazy_stub_count--;
4756 }
4757
4758 return 1;
4759 }
4760
4761 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4762 the primary GOT. */
4763 static bfd_vma
4764 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4765 {
4766 if (!g->next)
4767 return 0;
4768
4769 g = mips_elf_bfd_got (ibfd, FALSE);
4770 if (! g)
4771 return 0;
4772
4773 BFD_ASSERT (g->next);
4774
4775 g = g->next;
4776
4777 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4778 * MIPS_ELF_GOT_SIZE (abfd);
4779 }
4780
4781 /* Turn a single GOT that is too big for 16-bit addressing into
4782 a sequence of GOTs, each one 16-bit addressable. */
4783
4784 static bfd_boolean
4785 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4786 asection *got, bfd_size_type pages)
4787 {
4788 struct mips_elf_link_hash_table *htab;
4789 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4790 struct mips_elf_traverse_got_arg tga;
4791 struct mips_got_info *g, *gg;
4792 unsigned int assign, needed_relocs;
4793 bfd *dynobj, *ibfd;
4794
4795 dynobj = elf_hash_table (info)->dynobj;
4796 htab = mips_elf_hash_table (info);
4797 BFD_ASSERT (htab != NULL);
4798
4799 g = htab->got_info;
4800
4801 got_per_bfd_arg.obfd = abfd;
4802 got_per_bfd_arg.info = info;
4803 got_per_bfd_arg.current = NULL;
4804 got_per_bfd_arg.primary = NULL;
4805 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4806 / MIPS_ELF_GOT_SIZE (abfd))
4807 - htab->reserved_gotno);
4808 got_per_bfd_arg.max_pages = pages;
4809 /* The number of globals that will be included in the primary GOT.
4810 See the calls to mips_elf_set_global_got_area below for more
4811 information. */
4812 got_per_bfd_arg.global_count = g->global_gotno;
4813
4814 /* Try to merge the GOTs of input bfds together, as long as they
4815 don't seem to exceed the maximum GOT size, choosing one of them
4816 to be the primary GOT. */
4817 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4818 {
4819 gg = mips_elf_bfd_got (ibfd, FALSE);
4820 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4821 return FALSE;
4822 }
4823
4824 /* If we do not find any suitable primary GOT, create an empty one. */
4825 if (got_per_bfd_arg.primary == NULL)
4826 g->next = mips_elf_create_got_info (abfd);
4827 else
4828 g->next = got_per_bfd_arg.primary;
4829 g->next->next = got_per_bfd_arg.current;
4830
4831 /* GG is now the master GOT, and G is the primary GOT. */
4832 gg = g;
4833 g = g->next;
4834
4835 /* Map the output bfd to the primary got. That's what we're going
4836 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4837 didn't mark in check_relocs, and we want a quick way to find it.
4838 We can't just use gg->next because we're going to reverse the
4839 list. */
4840 mips_elf_replace_bfd_got (abfd, g);
4841
4842 /* Every symbol that is referenced in a dynamic relocation must be
4843 present in the primary GOT, so arrange for them to appear after
4844 those that are actually referenced. */
4845 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4846 g->global_gotno = gg->global_gotno;
4847
4848 tga.info = info;
4849 tga.value = GGA_RELOC_ONLY;
4850 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4851 tga.value = GGA_NORMAL;
4852 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4853
4854 /* Now go through the GOTs assigning them offset ranges.
4855 [assigned_low_gotno, local_gotno[ will be set to the range of local
4856 entries in each GOT. We can then compute the end of a GOT by
4857 adding local_gotno to global_gotno. We reverse the list and make
4858 it circular since then we'll be able to quickly compute the
4859 beginning of a GOT, by computing the end of its predecessor. To
4860 avoid special cases for the primary GOT, while still preserving
4861 assertions that are valid for both single- and multi-got links,
4862 we arrange for the main got struct to have the right number of
4863 global entries, but set its local_gotno such that the initial
4864 offset of the primary GOT is zero. Remember that the primary GOT
4865 will become the last item in the circular linked list, so it
4866 points back to the master GOT. */
4867 gg->local_gotno = -g->global_gotno;
4868 gg->global_gotno = g->global_gotno;
4869 gg->tls_gotno = 0;
4870 assign = 0;
4871 gg->next = gg;
4872
4873 do
4874 {
4875 struct mips_got_info *gn;
4876
4877 assign += htab->reserved_gotno;
4878 g->assigned_low_gotno = assign;
4879 g->local_gotno += assign;
4880 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4881 g->assigned_high_gotno = g->local_gotno - 1;
4882 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4883
4884 /* Take g out of the direct list, and push it onto the reversed
4885 list that gg points to. g->next is guaranteed to be nonnull after
4886 this operation, as required by mips_elf_initialize_tls_index. */
4887 gn = g->next;
4888 g->next = gg->next;
4889 gg->next = g;
4890
4891 /* Set up any TLS entries. We always place the TLS entries after
4892 all non-TLS entries. */
4893 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4894 tga.g = g;
4895 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4896 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4897 if (!tga.g)
4898 return FALSE;
4899 BFD_ASSERT (g->tls_assigned_gotno == assign);
4900
4901 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4902 g = gn;
4903
4904 /* Forbid global symbols in every non-primary GOT from having
4905 lazy-binding stubs. */
4906 if (g)
4907 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4908 }
4909 while (g);
4910
4911 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4912
4913 needed_relocs = 0;
4914 for (g = gg->next; g && g->next != gg; g = g->next)
4915 {
4916 unsigned int save_assign;
4917
4918 /* Assign offsets to global GOT entries and count how many
4919 relocations they need. */
4920 save_assign = g->assigned_low_gotno;
4921 g->assigned_low_gotno = g->local_gotno;
4922 tga.info = info;
4923 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4924 tga.g = g;
4925 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4926 if (!tga.g)
4927 return FALSE;
4928 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4929 g->assigned_low_gotno = save_assign;
4930
4931 if (info->shared)
4932 {
4933 g->relocs += g->local_gotno - g->assigned_low_gotno;
4934 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4935 + g->next->global_gotno
4936 + g->next->tls_gotno
4937 + htab->reserved_gotno);
4938 }
4939 needed_relocs += g->relocs;
4940 }
4941 needed_relocs += g->relocs;
4942
4943 if (needed_relocs)
4944 mips_elf_allocate_dynamic_relocations (dynobj, info,
4945 needed_relocs);
4946
4947 return TRUE;
4948 }
4949
4950 \f
4951 /* Returns the first relocation of type r_type found, beginning with
4952 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4953
4954 static const Elf_Internal_Rela *
4955 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4956 const Elf_Internal_Rela *relocation,
4957 const Elf_Internal_Rela *relend)
4958 {
4959 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4960
4961 while (relocation < relend)
4962 {
4963 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4964 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4965 return relocation;
4966
4967 ++relocation;
4968 }
4969
4970 /* We didn't find it. */
4971 return NULL;
4972 }
4973
4974 /* Return whether an input relocation is against a local symbol. */
4975
4976 static bfd_boolean
4977 mips_elf_local_relocation_p (bfd *input_bfd,
4978 const Elf_Internal_Rela *relocation,
4979 asection **local_sections)
4980 {
4981 unsigned long r_symndx;
4982 Elf_Internal_Shdr *symtab_hdr;
4983 size_t extsymoff;
4984
4985 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4986 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4987 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4988
4989 if (r_symndx < extsymoff)
4990 return TRUE;
4991 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4992 return TRUE;
4993
4994 return FALSE;
4995 }
4996 \f
4997 /* Sign-extend VALUE, which has the indicated number of BITS. */
4998
4999 bfd_vma
5000 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5001 {
5002 if (value & ((bfd_vma) 1 << (bits - 1)))
5003 /* VALUE is negative. */
5004 value |= ((bfd_vma) - 1) << bits;
5005
5006 return value;
5007 }
5008
5009 /* Return non-zero if the indicated VALUE has overflowed the maximum
5010 range expressible by a signed number with the indicated number of
5011 BITS. */
5012
5013 static bfd_boolean
5014 mips_elf_overflow_p (bfd_vma value, int bits)
5015 {
5016 bfd_signed_vma svalue = (bfd_signed_vma) value;
5017
5018 if (svalue > (1 << (bits - 1)) - 1)
5019 /* The value is too big. */
5020 return TRUE;
5021 else if (svalue < -(1 << (bits - 1)))
5022 /* The value is too small. */
5023 return TRUE;
5024
5025 /* All is well. */
5026 return FALSE;
5027 }
5028
5029 /* Calculate the %high function. */
5030
5031 static bfd_vma
5032 mips_elf_high (bfd_vma value)
5033 {
5034 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5035 }
5036
5037 /* Calculate the %higher function. */
5038
5039 static bfd_vma
5040 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5041 {
5042 #ifdef BFD64
5043 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5044 #else
5045 abort ();
5046 return MINUS_ONE;
5047 #endif
5048 }
5049
5050 /* Calculate the %highest function. */
5051
5052 static bfd_vma
5053 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5054 {
5055 #ifdef BFD64
5056 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5057 #else
5058 abort ();
5059 return MINUS_ONE;
5060 #endif
5061 }
5062 \f
5063 /* Create the .compact_rel section. */
5064
5065 static bfd_boolean
5066 mips_elf_create_compact_rel_section
5067 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5068 {
5069 flagword flags;
5070 register asection *s;
5071
5072 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5073 {
5074 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5075 | SEC_READONLY);
5076
5077 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5078 if (s == NULL
5079 || ! bfd_set_section_alignment (abfd, s,
5080 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5081 return FALSE;
5082
5083 s->size = sizeof (Elf32_External_compact_rel);
5084 }
5085
5086 return TRUE;
5087 }
5088
5089 /* Create the .got section to hold the global offset table. */
5090
5091 static bfd_boolean
5092 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5093 {
5094 flagword flags;
5095 register asection *s;
5096 struct elf_link_hash_entry *h;
5097 struct bfd_link_hash_entry *bh;
5098 struct mips_elf_link_hash_table *htab;
5099
5100 htab = mips_elf_hash_table (info);
5101 BFD_ASSERT (htab != NULL);
5102
5103 /* This function may be called more than once. */
5104 if (htab->sgot)
5105 return TRUE;
5106
5107 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5108 | SEC_LINKER_CREATED);
5109
5110 /* We have to use an alignment of 2**4 here because this is hardcoded
5111 in the function stub generation and in the linker script. */
5112 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5113 if (s == NULL
5114 || ! bfd_set_section_alignment (abfd, s, 4))
5115 return FALSE;
5116 htab->sgot = s;
5117
5118 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5119 linker script because we don't want to define the symbol if we
5120 are not creating a global offset table. */
5121 bh = NULL;
5122 if (! (_bfd_generic_link_add_one_symbol
5123 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5124 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5125 return FALSE;
5126
5127 h = (struct elf_link_hash_entry *) bh;
5128 h->non_elf = 0;
5129 h->def_regular = 1;
5130 h->type = STT_OBJECT;
5131 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5132 elf_hash_table (info)->hgot = h;
5133
5134 if (info->shared
5135 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5136 return FALSE;
5137
5138 htab->got_info = mips_elf_create_got_info (abfd);
5139 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5140 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5141
5142 /* We also need a .got.plt section when generating PLTs. */
5143 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5144 SEC_ALLOC | SEC_LOAD
5145 | SEC_HAS_CONTENTS
5146 | SEC_IN_MEMORY
5147 | SEC_LINKER_CREATED);
5148 if (s == NULL)
5149 return FALSE;
5150 htab->sgotplt = s;
5151
5152 return TRUE;
5153 }
5154 \f
5155 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5156 __GOTT_INDEX__ symbols. These symbols are only special for
5157 shared objects; they are not used in executables. */
5158
5159 static bfd_boolean
5160 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5161 {
5162 return (mips_elf_hash_table (info)->is_vxworks
5163 && info->shared
5164 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5165 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5166 }
5167
5168 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5169 require an la25 stub. See also mips_elf_local_pic_function_p,
5170 which determines whether the destination function ever requires a
5171 stub. */
5172
5173 static bfd_boolean
5174 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5175 bfd_boolean target_is_16_bit_code_p)
5176 {
5177 /* We specifically ignore branches and jumps from EF_PIC objects,
5178 where the onus is on the compiler or programmer to perform any
5179 necessary initialization of $25. Sometimes such initialization
5180 is unnecessary; for example, -mno-shared functions do not use
5181 the incoming value of $25, and may therefore be called directly. */
5182 if (PIC_OBJECT_P (input_bfd))
5183 return FALSE;
5184
5185 switch (r_type)
5186 {
5187 case R_MIPS_26:
5188 case R_MIPS_PC16:
5189 case R_MIPS_PC21_S2:
5190 case R_MIPS_PC26_S2:
5191 case R_MICROMIPS_26_S1:
5192 case R_MICROMIPS_PC7_S1:
5193 case R_MICROMIPS_PC10_S1:
5194 case R_MICROMIPS_PC16_S1:
5195 case R_MICROMIPS_PC23_S2:
5196 return TRUE;
5197
5198 case R_MIPS16_26:
5199 return !target_is_16_bit_code_p;
5200
5201 default:
5202 return FALSE;
5203 }
5204 }
5205 \f
5206 /* Calculate the value produced by the RELOCATION (which comes from
5207 the INPUT_BFD). The ADDEND is the addend to use for this
5208 RELOCATION; RELOCATION->R_ADDEND is ignored.
5209
5210 The result of the relocation calculation is stored in VALUEP.
5211 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5212 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5213
5214 This function returns bfd_reloc_continue if the caller need take no
5215 further action regarding this relocation, bfd_reloc_notsupported if
5216 something goes dramatically wrong, bfd_reloc_overflow if an
5217 overflow occurs, and bfd_reloc_ok to indicate success. */
5218
5219 static bfd_reloc_status_type
5220 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5221 asection *input_section,
5222 struct bfd_link_info *info,
5223 const Elf_Internal_Rela *relocation,
5224 bfd_vma addend, reloc_howto_type *howto,
5225 Elf_Internal_Sym *local_syms,
5226 asection **local_sections, bfd_vma *valuep,
5227 const char **namep,
5228 bfd_boolean *cross_mode_jump_p,
5229 bfd_boolean save_addend)
5230 {
5231 /* The eventual value we will return. */
5232 bfd_vma value;
5233 /* The address of the symbol against which the relocation is
5234 occurring. */
5235 bfd_vma symbol = 0;
5236 /* The final GP value to be used for the relocatable, executable, or
5237 shared object file being produced. */
5238 bfd_vma gp;
5239 /* The place (section offset or address) of the storage unit being
5240 relocated. */
5241 bfd_vma p;
5242 /* The value of GP used to create the relocatable object. */
5243 bfd_vma gp0;
5244 /* The offset into the global offset table at which the address of
5245 the relocation entry symbol, adjusted by the addend, resides
5246 during execution. */
5247 bfd_vma g = MINUS_ONE;
5248 /* The section in which the symbol referenced by the relocation is
5249 located. */
5250 asection *sec = NULL;
5251 struct mips_elf_link_hash_entry *h = NULL;
5252 /* TRUE if the symbol referred to by this relocation is a local
5253 symbol. */
5254 bfd_boolean local_p, was_local_p;
5255 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5256 bfd_boolean gp_disp_p = FALSE;
5257 /* TRUE if the symbol referred to by this relocation is
5258 "__gnu_local_gp". */
5259 bfd_boolean gnu_local_gp_p = FALSE;
5260 Elf_Internal_Shdr *symtab_hdr;
5261 size_t extsymoff;
5262 unsigned long r_symndx;
5263 int r_type;
5264 /* TRUE if overflow occurred during the calculation of the
5265 relocation value. */
5266 bfd_boolean overflowed_p;
5267 /* TRUE if this relocation refers to a MIPS16 function. */
5268 bfd_boolean target_is_16_bit_code_p = FALSE;
5269 bfd_boolean target_is_micromips_code_p = FALSE;
5270 struct mips_elf_link_hash_table *htab;
5271 bfd *dynobj;
5272
5273 dynobj = elf_hash_table (info)->dynobj;
5274 htab = mips_elf_hash_table (info);
5275 BFD_ASSERT (htab != NULL);
5276
5277 /* Parse the relocation. */
5278 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5279 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5280 p = (input_section->output_section->vma
5281 + input_section->output_offset
5282 + relocation->r_offset);
5283
5284 /* Assume that there will be no overflow. */
5285 overflowed_p = FALSE;
5286
5287 /* Figure out whether or not the symbol is local, and get the offset
5288 used in the array of hash table entries. */
5289 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5290 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5291 local_sections);
5292 was_local_p = local_p;
5293 if (! elf_bad_symtab (input_bfd))
5294 extsymoff = symtab_hdr->sh_info;
5295 else
5296 {
5297 /* The symbol table does not follow the rule that local symbols
5298 must come before globals. */
5299 extsymoff = 0;
5300 }
5301
5302 /* Figure out the value of the symbol. */
5303 if (local_p)
5304 {
5305 Elf_Internal_Sym *sym;
5306
5307 sym = local_syms + r_symndx;
5308 sec = local_sections[r_symndx];
5309
5310 symbol = sec->output_section->vma + sec->output_offset;
5311 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5312 || (sec->flags & SEC_MERGE))
5313 symbol += sym->st_value;
5314 if ((sec->flags & SEC_MERGE)
5315 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5316 {
5317 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5318 addend -= symbol;
5319 addend += sec->output_section->vma + sec->output_offset;
5320 }
5321
5322 /* MIPS16/microMIPS text labels should be treated as odd. */
5323 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5324 ++symbol;
5325
5326 /* Record the name of this symbol, for our caller. */
5327 *namep = bfd_elf_string_from_elf_section (input_bfd,
5328 symtab_hdr->sh_link,
5329 sym->st_name);
5330 if (*namep == '\0')
5331 *namep = bfd_section_name (input_bfd, sec);
5332
5333 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5334 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5335 }
5336 else
5337 {
5338 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5339
5340 /* For global symbols we look up the symbol in the hash-table. */
5341 h = ((struct mips_elf_link_hash_entry *)
5342 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5343 /* Find the real hash-table entry for this symbol. */
5344 while (h->root.root.type == bfd_link_hash_indirect
5345 || h->root.root.type == bfd_link_hash_warning)
5346 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5347
5348 /* Record the name of this symbol, for our caller. */
5349 *namep = h->root.root.root.string;
5350
5351 /* See if this is the special _gp_disp symbol. Note that such a
5352 symbol must always be a global symbol. */
5353 if (strcmp (*namep, "_gp_disp") == 0
5354 && ! NEWABI_P (input_bfd))
5355 {
5356 /* Relocations against _gp_disp are permitted only with
5357 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5358 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5359 return bfd_reloc_notsupported;
5360
5361 gp_disp_p = TRUE;
5362 }
5363 /* See if this is the special _gp symbol. Note that such a
5364 symbol must always be a global symbol. */
5365 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5366 gnu_local_gp_p = TRUE;
5367
5368
5369 /* If this symbol is defined, calculate its address. Note that
5370 _gp_disp is a magic symbol, always implicitly defined by the
5371 linker, so it's inappropriate to check to see whether or not
5372 its defined. */
5373 else if ((h->root.root.type == bfd_link_hash_defined
5374 || h->root.root.type == bfd_link_hash_defweak)
5375 && h->root.root.u.def.section)
5376 {
5377 sec = h->root.root.u.def.section;
5378 if (sec->output_section)
5379 symbol = (h->root.root.u.def.value
5380 + sec->output_section->vma
5381 + sec->output_offset);
5382 else
5383 symbol = h->root.root.u.def.value;
5384 }
5385 else if (h->root.root.type == bfd_link_hash_undefweak)
5386 /* We allow relocations against undefined weak symbols, giving
5387 it the value zero, so that you can undefined weak functions
5388 and check to see if they exist by looking at their
5389 addresses. */
5390 symbol = 0;
5391 else if (info->unresolved_syms_in_objects == RM_IGNORE
5392 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5393 symbol = 0;
5394 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5395 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5396 {
5397 /* If this is a dynamic link, we should have created a
5398 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5399 in in _bfd_mips_elf_create_dynamic_sections.
5400 Otherwise, we should define the symbol with a value of 0.
5401 FIXME: It should probably get into the symbol table
5402 somehow as well. */
5403 BFD_ASSERT (! info->shared);
5404 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5405 symbol = 0;
5406 }
5407 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5408 {
5409 /* This is an optional symbol - an Irix specific extension to the
5410 ELF spec. Ignore it for now.
5411 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5412 than simply ignoring them, but we do not handle this for now.
5413 For information see the "64-bit ELF Object File Specification"
5414 which is available from here:
5415 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5416 symbol = 0;
5417 }
5418 else if ((*info->callbacks->undefined_symbol)
5419 (info, h->root.root.root.string, input_bfd,
5420 input_section, relocation->r_offset,
5421 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5422 || ELF_ST_VISIBILITY (h->root.other)))
5423 {
5424 return bfd_reloc_undefined;
5425 }
5426 else
5427 {
5428 return bfd_reloc_notsupported;
5429 }
5430
5431 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5432 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5433 }
5434
5435 /* If this is a reference to a 16-bit function with a stub, we need
5436 to redirect the relocation to the stub unless:
5437
5438 (a) the relocation is for a MIPS16 JAL;
5439
5440 (b) the relocation is for a MIPS16 PIC call, and there are no
5441 non-MIPS16 uses of the GOT slot; or
5442
5443 (c) the section allows direct references to MIPS16 functions. */
5444 if (r_type != R_MIPS16_26
5445 && !info->relocatable
5446 && ((h != NULL
5447 && h->fn_stub != NULL
5448 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5449 || (local_p
5450 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5451 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5452 && !section_allows_mips16_refs_p (input_section))
5453 {
5454 /* This is a 32- or 64-bit call to a 16-bit function. We should
5455 have already noticed that we were going to need the
5456 stub. */
5457 if (local_p)
5458 {
5459 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5460 value = 0;
5461 }
5462 else
5463 {
5464 BFD_ASSERT (h->need_fn_stub);
5465 if (h->la25_stub)
5466 {
5467 /* If a LA25 header for the stub itself exists, point to the
5468 prepended LUI/ADDIU sequence. */
5469 sec = h->la25_stub->stub_section;
5470 value = h->la25_stub->offset;
5471 }
5472 else
5473 {
5474 sec = h->fn_stub;
5475 value = 0;
5476 }
5477 }
5478
5479 symbol = sec->output_section->vma + sec->output_offset + value;
5480 /* The target is 16-bit, but the stub isn't. */
5481 target_is_16_bit_code_p = FALSE;
5482 }
5483 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5484 to a standard MIPS function, we need to redirect the call to the stub.
5485 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5486 indirect calls should use an indirect stub instead. */
5487 else if (r_type == R_MIPS16_26 && !info->relocatable
5488 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5489 || (local_p
5490 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5491 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5492 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5493 {
5494 if (local_p)
5495 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5496 else
5497 {
5498 /* If both call_stub and call_fp_stub are defined, we can figure
5499 out which one to use by checking which one appears in the input
5500 file. */
5501 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5502 {
5503 asection *o;
5504
5505 sec = NULL;
5506 for (o = input_bfd->sections; o != NULL; o = o->next)
5507 {
5508 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5509 {
5510 sec = h->call_fp_stub;
5511 break;
5512 }
5513 }
5514 if (sec == NULL)
5515 sec = h->call_stub;
5516 }
5517 else if (h->call_stub != NULL)
5518 sec = h->call_stub;
5519 else
5520 sec = h->call_fp_stub;
5521 }
5522
5523 BFD_ASSERT (sec->size > 0);
5524 symbol = sec->output_section->vma + sec->output_offset;
5525 }
5526 /* If this is a direct call to a PIC function, redirect to the
5527 non-PIC stub. */
5528 else if (h != NULL && h->la25_stub
5529 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5530 target_is_16_bit_code_p))
5531 symbol = (h->la25_stub->stub_section->output_section->vma
5532 + h->la25_stub->stub_section->output_offset
5533 + h->la25_stub->offset);
5534 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5535 entry is used if a standard PLT entry has also been made. In this
5536 case the symbol will have been set by mips_elf_set_plt_sym_value
5537 to point to the standard PLT entry, so redirect to the compressed
5538 one. */
5539 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5540 && !info->relocatable
5541 && h != NULL
5542 && h->use_plt_entry
5543 && h->root.plt.plist->comp_offset != MINUS_ONE
5544 && h->root.plt.plist->mips_offset != MINUS_ONE)
5545 {
5546 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5547
5548 sec = htab->splt;
5549 symbol = (sec->output_section->vma
5550 + sec->output_offset
5551 + htab->plt_header_size
5552 + htab->plt_mips_offset
5553 + h->root.plt.plist->comp_offset
5554 + 1);
5555
5556 target_is_16_bit_code_p = !micromips_p;
5557 target_is_micromips_code_p = micromips_p;
5558 }
5559
5560 /* Make sure MIPS16 and microMIPS are not used together. */
5561 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5562 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5563 {
5564 (*_bfd_error_handler)
5565 (_("MIPS16 and microMIPS functions cannot call each other"));
5566 return bfd_reloc_notsupported;
5567 }
5568
5569 /* Calls from 16-bit code to 32-bit code and vice versa require the
5570 mode change. However, we can ignore calls to undefined weak symbols,
5571 which should never be executed at runtime. This exception is important
5572 because the assembly writer may have "known" that any definition of the
5573 symbol would be 16-bit code, and that direct jumps were therefore
5574 acceptable. */
5575 *cross_mode_jump_p = (!info->relocatable
5576 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5577 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5578 || (r_type == R_MICROMIPS_26_S1
5579 && !target_is_micromips_code_p)
5580 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5581 && (target_is_16_bit_code_p
5582 || target_is_micromips_code_p))));
5583
5584 local_p = (h == NULL || mips_use_local_got_p (info, h));
5585
5586 gp0 = _bfd_get_gp_value (input_bfd);
5587 gp = _bfd_get_gp_value (abfd);
5588 if (htab->got_info)
5589 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5590
5591 if (gnu_local_gp_p)
5592 symbol = gp;
5593
5594 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5595 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5596 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5597 if (got_page_reloc_p (r_type) && !local_p)
5598 {
5599 r_type = (micromips_reloc_p (r_type)
5600 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5601 addend = 0;
5602 }
5603
5604 /* If we haven't already determined the GOT offset, and we're going
5605 to need it, get it now. */
5606 switch (r_type)
5607 {
5608 case R_MIPS16_CALL16:
5609 case R_MIPS16_GOT16:
5610 case R_MIPS_CALL16:
5611 case R_MIPS_GOT16:
5612 case R_MIPS_GOT_DISP:
5613 case R_MIPS_GOT_HI16:
5614 case R_MIPS_CALL_HI16:
5615 case R_MIPS_GOT_LO16:
5616 case R_MIPS_CALL_LO16:
5617 case R_MICROMIPS_CALL16:
5618 case R_MICROMIPS_GOT16:
5619 case R_MICROMIPS_GOT_DISP:
5620 case R_MICROMIPS_GOT_HI16:
5621 case R_MICROMIPS_CALL_HI16:
5622 case R_MICROMIPS_GOT_LO16:
5623 case R_MICROMIPS_CALL_LO16:
5624 case R_MIPS_TLS_GD:
5625 case R_MIPS_TLS_GOTTPREL:
5626 case R_MIPS_TLS_LDM:
5627 case R_MIPS16_TLS_GD:
5628 case R_MIPS16_TLS_GOTTPREL:
5629 case R_MIPS16_TLS_LDM:
5630 case R_MICROMIPS_TLS_GD:
5631 case R_MICROMIPS_TLS_GOTTPREL:
5632 case R_MICROMIPS_TLS_LDM:
5633 /* Find the index into the GOT where this value is located. */
5634 if (tls_ldm_reloc_p (r_type))
5635 {
5636 g = mips_elf_local_got_index (abfd, input_bfd, info,
5637 0, 0, NULL, r_type);
5638 if (g == MINUS_ONE)
5639 return bfd_reloc_outofrange;
5640 }
5641 else if (!local_p)
5642 {
5643 /* On VxWorks, CALL relocations should refer to the .got.plt
5644 entry, which is initialized to point at the PLT stub. */
5645 if (htab->is_vxworks
5646 && (call_hi16_reloc_p (r_type)
5647 || call_lo16_reloc_p (r_type)
5648 || call16_reloc_p (r_type)))
5649 {
5650 BFD_ASSERT (addend == 0);
5651 BFD_ASSERT (h->root.needs_plt);
5652 g = mips_elf_gotplt_index (info, &h->root);
5653 }
5654 else
5655 {
5656 BFD_ASSERT (addend == 0);
5657 g = mips_elf_global_got_index (abfd, info, input_bfd,
5658 &h->root, r_type);
5659 if (!TLS_RELOC_P (r_type)
5660 && !elf_hash_table (info)->dynamic_sections_created)
5661 /* This is a static link. We must initialize the GOT entry. */
5662 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5663 }
5664 }
5665 else if (!htab->is_vxworks
5666 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5667 /* The calculation below does not involve "g". */
5668 break;
5669 else
5670 {
5671 g = mips_elf_local_got_index (abfd, input_bfd, info,
5672 symbol + addend, r_symndx, h, r_type);
5673 if (g == MINUS_ONE)
5674 return bfd_reloc_outofrange;
5675 }
5676
5677 /* Convert GOT indices to actual offsets. */
5678 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5679 break;
5680 }
5681
5682 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5683 symbols are resolved by the loader. Add them to .rela.dyn. */
5684 if (h != NULL && is_gott_symbol (info, &h->root))
5685 {
5686 Elf_Internal_Rela outrel;
5687 bfd_byte *loc;
5688 asection *s;
5689
5690 s = mips_elf_rel_dyn_section (info, FALSE);
5691 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5692
5693 outrel.r_offset = (input_section->output_section->vma
5694 + input_section->output_offset
5695 + relocation->r_offset);
5696 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5697 outrel.r_addend = addend;
5698 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5699
5700 /* If we've written this relocation for a readonly section,
5701 we need to set DF_TEXTREL again, so that we do not delete the
5702 DT_TEXTREL tag. */
5703 if (MIPS_ELF_READONLY_SECTION (input_section))
5704 info->flags |= DF_TEXTREL;
5705
5706 *valuep = 0;
5707 return bfd_reloc_ok;
5708 }
5709
5710 /* Figure out what kind of relocation is being performed. */
5711 switch (r_type)
5712 {
5713 case R_MIPS_NONE:
5714 return bfd_reloc_continue;
5715
5716 case R_MIPS_16:
5717 if (howto->partial_inplace)
5718 addend = _bfd_mips_elf_sign_extend (addend, 16);
5719 value = symbol + addend;
5720 overflowed_p = mips_elf_overflow_p (value, 16);
5721 break;
5722
5723 case R_MIPS_32:
5724 case R_MIPS_REL32:
5725 case R_MIPS_64:
5726 if ((info->shared
5727 || (htab->root.dynamic_sections_created
5728 && h != NULL
5729 && h->root.def_dynamic
5730 && !h->root.def_regular
5731 && !h->has_static_relocs))
5732 && r_symndx != STN_UNDEF
5733 && (h == NULL
5734 || h->root.root.type != bfd_link_hash_undefweak
5735 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5736 && (input_section->flags & SEC_ALLOC) != 0)
5737 {
5738 /* If we're creating a shared library, then we can't know
5739 where the symbol will end up. So, we create a relocation
5740 record in the output, and leave the job up to the dynamic
5741 linker. We must do the same for executable references to
5742 shared library symbols, unless we've decided to use copy
5743 relocs or PLTs instead. */
5744 value = addend;
5745 if (!mips_elf_create_dynamic_relocation (abfd,
5746 info,
5747 relocation,
5748 h,
5749 sec,
5750 symbol,
5751 &value,
5752 input_section))
5753 return bfd_reloc_undefined;
5754 }
5755 else
5756 {
5757 if (r_type != R_MIPS_REL32)
5758 value = symbol + addend;
5759 else
5760 value = addend;
5761 }
5762 value &= howto->dst_mask;
5763 break;
5764
5765 case R_MIPS_PC32:
5766 value = symbol + addend - p;
5767 value &= howto->dst_mask;
5768 break;
5769
5770 case R_MIPS16_26:
5771 /* The calculation for R_MIPS16_26 is just the same as for an
5772 R_MIPS_26. It's only the storage of the relocated field into
5773 the output file that's different. That's handled in
5774 mips_elf_perform_relocation. So, we just fall through to the
5775 R_MIPS_26 case here. */
5776 case R_MIPS_26:
5777 case R_MICROMIPS_26_S1:
5778 {
5779 unsigned int shift;
5780
5781 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5782 the correct ISA mode selector and bit 1 must be 0. */
5783 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5784 return bfd_reloc_outofrange;
5785
5786 /* Shift is 2, unusually, for microMIPS JALX. */
5787 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5788
5789 if (was_local_p)
5790 value = addend | ((p + 4) & (0xfc000000 << shift));
5791 else if (howto->partial_inplace)
5792 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5793 else
5794 value = addend;
5795 value = (value + symbol) >> shift;
5796 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5797 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5798 value &= howto->dst_mask;
5799 }
5800 break;
5801
5802 case R_MIPS_TLS_DTPREL_HI16:
5803 case R_MIPS16_TLS_DTPREL_HI16:
5804 case R_MICROMIPS_TLS_DTPREL_HI16:
5805 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5806 & howto->dst_mask);
5807 break;
5808
5809 case R_MIPS_TLS_DTPREL_LO16:
5810 case R_MIPS_TLS_DTPREL32:
5811 case R_MIPS_TLS_DTPREL64:
5812 case R_MIPS16_TLS_DTPREL_LO16:
5813 case R_MICROMIPS_TLS_DTPREL_LO16:
5814 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5815 break;
5816
5817 case R_MIPS_TLS_TPREL_HI16:
5818 case R_MIPS16_TLS_TPREL_HI16:
5819 case R_MICROMIPS_TLS_TPREL_HI16:
5820 value = (mips_elf_high (addend + symbol - tprel_base (info))
5821 & howto->dst_mask);
5822 break;
5823
5824 case R_MIPS_TLS_TPREL_LO16:
5825 case R_MIPS_TLS_TPREL32:
5826 case R_MIPS_TLS_TPREL64:
5827 case R_MIPS16_TLS_TPREL_LO16:
5828 case R_MICROMIPS_TLS_TPREL_LO16:
5829 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5830 break;
5831
5832 case R_MIPS_HI16:
5833 case R_MIPS16_HI16:
5834 case R_MICROMIPS_HI16:
5835 if (!gp_disp_p)
5836 {
5837 value = mips_elf_high (addend + symbol);
5838 value &= howto->dst_mask;
5839 }
5840 else
5841 {
5842 /* For MIPS16 ABI code we generate this sequence
5843 0: li $v0,%hi(_gp_disp)
5844 4: addiupc $v1,%lo(_gp_disp)
5845 8: sll $v0,16
5846 12: addu $v0,$v1
5847 14: move $gp,$v0
5848 So the offsets of hi and lo relocs are the same, but the
5849 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5850 ADDIUPC clears the low two bits of the instruction address,
5851 so the base is ($t9 + 4) & ~3. */
5852 if (r_type == R_MIPS16_HI16)
5853 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5854 /* The microMIPS .cpload sequence uses the same assembly
5855 instructions as the traditional psABI version, but the
5856 incoming $t9 has the low bit set. */
5857 else if (r_type == R_MICROMIPS_HI16)
5858 value = mips_elf_high (addend + gp - p - 1);
5859 else
5860 value = mips_elf_high (addend + gp - p);
5861 overflowed_p = mips_elf_overflow_p (value, 16);
5862 }
5863 break;
5864
5865 case R_MIPS_LO16:
5866 case R_MIPS16_LO16:
5867 case R_MICROMIPS_LO16:
5868 case R_MICROMIPS_HI0_LO16:
5869 if (!gp_disp_p)
5870 value = (symbol + addend) & howto->dst_mask;
5871 else
5872 {
5873 /* See the comment for R_MIPS16_HI16 above for the reason
5874 for this conditional. */
5875 if (r_type == R_MIPS16_LO16)
5876 value = addend + gp - (p & ~(bfd_vma) 0x3);
5877 else if (r_type == R_MICROMIPS_LO16
5878 || r_type == R_MICROMIPS_HI0_LO16)
5879 value = addend + gp - p + 3;
5880 else
5881 value = addend + gp - p + 4;
5882 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5883 for overflow. But, on, say, IRIX5, relocations against
5884 _gp_disp are normally generated from the .cpload
5885 pseudo-op. It generates code that normally looks like
5886 this:
5887
5888 lui $gp,%hi(_gp_disp)
5889 addiu $gp,$gp,%lo(_gp_disp)
5890 addu $gp,$gp,$t9
5891
5892 Here $t9 holds the address of the function being called,
5893 as required by the MIPS ELF ABI. The R_MIPS_LO16
5894 relocation can easily overflow in this situation, but the
5895 R_MIPS_HI16 relocation will handle the overflow.
5896 Therefore, we consider this a bug in the MIPS ABI, and do
5897 not check for overflow here. */
5898 }
5899 break;
5900
5901 case R_MIPS_LITERAL:
5902 case R_MICROMIPS_LITERAL:
5903 /* Because we don't merge literal sections, we can handle this
5904 just like R_MIPS_GPREL16. In the long run, we should merge
5905 shared literals, and then we will need to additional work
5906 here. */
5907
5908 /* Fall through. */
5909
5910 case R_MIPS16_GPREL:
5911 /* The R_MIPS16_GPREL performs the same calculation as
5912 R_MIPS_GPREL16, but stores the relocated bits in a different
5913 order. We don't need to do anything special here; the
5914 differences are handled in mips_elf_perform_relocation. */
5915 case R_MIPS_GPREL16:
5916 case R_MICROMIPS_GPREL7_S2:
5917 case R_MICROMIPS_GPREL16:
5918 /* Only sign-extend the addend if it was extracted from the
5919 instruction. If the addend was separate, leave it alone,
5920 otherwise we may lose significant bits. */
5921 if (howto->partial_inplace)
5922 addend = _bfd_mips_elf_sign_extend (addend, 16);
5923 value = symbol + addend - gp;
5924 /* If the symbol was local, any earlier relocatable links will
5925 have adjusted its addend with the gp offset, so compensate
5926 for that now. Don't do it for symbols forced local in this
5927 link, though, since they won't have had the gp offset applied
5928 to them before. */
5929 if (was_local_p)
5930 value += gp0;
5931 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5932 overflowed_p = mips_elf_overflow_p (value, 16);
5933 break;
5934
5935 case R_MIPS16_GOT16:
5936 case R_MIPS16_CALL16:
5937 case R_MIPS_GOT16:
5938 case R_MIPS_CALL16:
5939 case R_MICROMIPS_GOT16:
5940 case R_MICROMIPS_CALL16:
5941 /* VxWorks does not have separate local and global semantics for
5942 R_MIPS*_GOT16; every relocation evaluates to "G". */
5943 if (!htab->is_vxworks && local_p)
5944 {
5945 value = mips_elf_got16_entry (abfd, input_bfd, info,
5946 symbol + addend, !was_local_p);
5947 if (value == MINUS_ONE)
5948 return bfd_reloc_outofrange;
5949 value
5950 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5951 overflowed_p = mips_elf_overflow_p (value, 16);
5952 break;
5953 }
5954
5955 /* Fall through. */
5956
5957 case R_MIPS_TLS_GD:
5958 case R_MIPS_TLS_GOTTPREL:
5959 case R_MIPS_TLS_LDM:
5960 case R_MIPS_GOT_DISP:
5961 case R_MIPS16_TLS_GD:
5962 case R_MIPS16_TLS_GOTTPREL:
5963 case R_MIPS16_TLS_LDM:
5964 case R_MICROMIPS_TLS_GD:
5965 case R_MICROMIPS_TLS_GOTTPREL:
5966 case R_MICROMIPS_TLS_LDM:
5967 case R_MICROMIPS_GOT_DISP:
5968 value = g;
5969 overflowed_p = mips_elf_overflow_p (value, 16);
5970 break;
5971
5972 case R_MIPS_GPREL32:
5973 value = (addend + symbol + gp0 - gp);
5974 if (!save_addend)
5975 value &= howto->dst_mask;
5976 break;
5977
5978 case R_MIPS_PC16:
5979 case R_MIPS_GNU_REL16_S2:
5980 if (howto->partial_inplace)
5981 addend = _bfd_mips_elf_sign_extend (addend, 18);
5982
5983 if ((symbol + addend) & 3)
5984 return bfd_reloc_outofrange;
5985
5986 value = symbol + addend - p;
5987 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5988 overflowed_p = mips_elf_overflow_p (value, 18);
5989 value >>= howto->rightshift;
5990 value &= howto->dst_mask;
5991 break;
5992
5993 case R_MIPS_PC21_S2:
5994 if (howto->partial_inplace)
5995 addend = _bfd_mips_elf_sign_extend (addend, 23);
5996
5997 if ((symbol + addend) & 3)
5998 return bfd_reloc_outofrange;
5999
6000 value = symbol + addend - p;
6001 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6002 overflowed_p = mips_elf_overflow_p (value, 23);
6003 value >>= howto->rightshift;
6004 value &= howto->dst_mask;
6005 break;
6006
6007 case R_MIPS_PC26_S2:
6008 if (howto->partial_inplace)
6009 addend = _bfd_mips_elf_sign_extend (addend, 28);
6010
6011 if ((symbol + addend) & 3)
6012 return bfd_reloc_outofrange;
6013
6014 value = symbol + addend - p;
6015 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6016 overflowed_p = mips_elf_overflow_p (value, 28);
6017 value >>= howto->rightshift;
6018 value &= howto->dst_mask;
6019 break;
6020
6021 case R_MIPS_PC18_S3:
6022 if (howto->partial_inplace)
6023 addend = _bfd_mips_elf_sign_extend (addend, 21);
6024
6025 if ((symbol + addend) & 7)
6026 return bfd_reloc_outofrange;
6027
6028 value = symbol + addend - ((p | 7) ^ 7);
6029 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6030 overflowed_p = mips_elf_overflow_p (value, 21);
6031 value >>= howto->rightshift;
6032 value &= howto->dst_mask;
6033 break;
6034
6035 case R_MIPS_PC19_S2:
6036 if (howto->partial_inplace)
6037 addend = _bfd_mips_elf_sign_extend (addend, 21);
6038
6039 if ((symbol + addend) & 3)
6040 return bfd_reloc_outofrange;
6041
6042 value = symbol + addend - p;
6043 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6044 overflowed_p = mips_elf_overflow_p (value, 21);
6045 value >>= howto->rightshift;
6046 value &= howto->dst_mask;
6047 break;
6048
6049 case R_MIPS_PCHI16:
6050 value = mips_elf_high (symbol + addend - p);
6051 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6052 overflowed_p = mips_elf_overflow_p (value, 16);
6053 value &= howto->dst_mask;
6054 break;
6055
6056 case R_MIPS_PCLO16:
6057 if (howto->partial_inplace)
6058 addend = _bfd_mips_elf_sign_extend (addend, 16);
6059 value = symbol + addend - p;
6060 value &= howto->dst_mask;
6061 break;
6062
6063 case R_MICROMIPS_PC7_S1:
6064 if (howto->partial_inplace)
6065 addend = _bfd_mips_elf_sign_extend (addend, 8);
6066 value = symbol + addend - p;
6067 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6068 overflowed_p = mips_elf_overflow_p (value, 8);
6069 value >>= howto->rightshift;
6070 value &= howto->dst_mask;
6071 break;
6072
6073 case R_MICROMIPS_PC10_S1:
6074 if (howto->partial_inplace)
6075 addend = _bfd_mips_elf_sign_extend (addend, 11);
6076 value = symbol + addend - p;
6077 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6078 overflowed_p = mips_elf_overflow_p (value, 11);
6079 value >>= howto->rightshift;
6080 value &= howto->dst_mask;
6081 break;
6082
6083 case R_MICROMIPS_PC16_S1:
6084 if (howto->partial_inplace)
6085 addend = _bfd_mips_elf_sign_extend (addend, 17);
6086 value = symbol + addend - p;
6087 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6088 overflowed_p = mips_elf_overflow_p (value, 17);
6089 value >>= howto->rightshift;
6090 value &= howto->dst_mask;
6091 break;
6092
6093 case R_MICROMIPS_PC23_S2:
6094 if (howto->partial_inplace)
6095 addend = _bfd_mips_elf_sign_extend (addend, 25);
6096 value = symbol + addend - ((p | 3) ^ 3);
6097 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6098 overflowed_p = mips_elf_overflow_p (value, 25);
6099 value >>= howto->rightshift;
6100 value &= howto->dst_mask;
6101 break;
6102
6103 case R_MIPS_GOT_HI16:
6104 case R_MIPS_CALL_HI16:
6105 case R_MICROMIPS_GOT_HI16:
6106 case R_MICROMIPS_CALL_HI16:
6107 /* We're allowed to handle these two relocations identically.
6108 The dynamic linker is allowed to handle the CALL relocations
6109 differently by creating a lazy evaluation stub. */
6110 value = g;
6111 value = mips_elf_high (value);
6112 value &= howto->dst_mask;
6113 break;
6114
6115 case R_MIPS_GOT_LO16:
6116 case R_MIPS_CALL_LO16:
6117 case R_MICROMIPS_GOT_LO16:
6118 case R_MICROMIPS_CALL_LO16:
6119 value = g & howto->dst_mask;
6120 break;
6121
6122 case R_MIPS_GOT_PAGE:
6123 case R_MICROMIPS_GOT_PAGE:
6124 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6125 if (value == MINUS_ONE)
6126 return bfd_reloc_outofrange;
6127 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6128 overflowed_p = mips_elf_overflow_p (value, 16);
6129 break;
6130
6131 case R_MIPS_GOT_OFST:
6132 case R_MICROMIPS_GOT_OFST:
6133 if (local_p)
6134 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6135 else
6136 value = addend;
6137 overflowed_p = mips_elf_overflow_p (value, 16);
6138 break;
6139
6140 case R_MIPS_SUB:
6141 case R_MICROMIPS_SUB:
6142 value = symbol - addend;
6143 value &= howto->dst_mask;
6144 break;
6145
6146 case R_MIPS_HIGHER:
6147 case R_MICROMIPS_HIGHER:
6148 value = mips_elf_higher (addend + symbol);
6149 value &= howto->dst_mask;
6150 break;
6151
6152 case R_MIPS_HIGHEST:
6153 case R_MICROMIPS_HIGHEST:
6154 value = mips_elf_highest (addend + symbol);
6155 value &= howto->dst_mask;
6156 break;
6157
6158 case R_MIPS_SCN_DISP:
6159 case R_MICROMIPS_SCN_DISP:
6160 value = symbol + addend - sec->output_offset;
6161 value &= howto->dst_mask;
6162 break;
6163
6164 case R_MIPS_JALR:
6165 case R_MICROMIPS_JALR:
6166 /* This relocation is only a hint. In some cases, we optimize
6167 it into a bal instruction. But we don't try to optimize
6168 when the symbol does not resolve locally. */
6169 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6170 return bfd_reloc_continue;
6171 value = symbol + addend;
6172 break;
6173
6174 case R_MIPS_PJUMP:
6175 case R_MIPS_GNU_VTINHERIT:
6176 case R_MIPS_GNU_VTENTRY:
6177 /* We don't do anything with these at present. */
6178 return bfd_reloc_continue;
6179
6180 default:
6181 /* An unrecognized relocation type. */
6182 return bfd_reloc_notsupported;
6183 }
6184
6185 /* Store the VALUE for our caller. */
6186 *valuep = value;
6187 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6188 }
6189
6190 /* Obtain the field relocated by RELOCATION. */
6191
6192 static bfd_vma
6193 mips_elf_obtain_contents (reloc_howto_type *howto,
6194 const Elf_Internal_Rela *relocation,
6195 bfd *input_bfd, bfd_byte *contents)
6196 {
6197 bfd_vma x;
6198 bfd_byte *location = contents + relocation->r_offset;
6199
6200 /* Obtain the bytes. */
6201 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
6202
6203 return x;
6204 }
6205
6206 /* It has been determined that the result of the RELOCATION is the
6207 VALUE. Use HOWTO to place VALUE into the output file at the
6208 appropriate position. The SECTION is the section to which the
6209 relocation applies.
6210 CROSS_MODE_JUMP_P is true if the relocation field
6211 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6212
6213 Returns FALSE if anything goes wrong. */
6214
6215 static bfd_boolean
6216 mips_elf_perform_relocation (struct bfd_link_info *info,
6217 reloc_howto_type *howto,
6218 const Elf_Internal_Rela *relocation,
6219 bfd_vma value, bfd *input_bfd,
6220 asection *input_section, bfd_byte *contents,
6221 bfd_boolean cross_mode_jump_p)
6222 {
6223 bfd_vma x;
6224 bfd_byte *location;
6225 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6226
6227 /* Figure out where the relocation is occurring. */
6228 location = contents + relocation->r_offset;
6229
6230 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6231
6232 /* Obtain the current value. */
6233 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6234
6235 /* Clear the field we are setting. */
6236 x &= ~howto->dst_mask;
6237
6238 /* Set the field. */
6239 x |= (value & howto->dst_mask);
6240
6241 /* If required, turn JAL into JALX. */
6242 if (cross_mode_jump_p && jal_reloc_p (r_type))
6243 {
6244 bfd_boolean ok;
6245 bfd_vma opcode = x >> 26;
6246 bfd_vma jalx_opcode;
6247
6248 /* Check to see if the opcode is already JAL or JALX. */
6249 if (r_type == R_MIPS16_26)
6250 {
6251 ok = ((opcode == 0x6) || (opcode == 0x7));
6252 jalx_opcode = 0x7;
6253 }
6254 else if (r_type == R_MICROMIPS_26_S1)
6255 {
6256 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6257 jalx_opcode = 0x3c;
6258 }
6259 else
6260 {
6261 ok = ((opcode == 0x3) || (opcode == 0x1d));
6262 jalx_opcode = 0x1d;
6263 }
6264
6265 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6266 convert J or JALS to JALX. */
6267 if (!ok)
6268 {
6269 (*_bfd_error_handler)
6270 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6271 input_bfd,
6272 input_section,
6273 (unsigned long) relocation->r_offset);
6274 bfd_set_error (bfd_error_bad_value);
6275 return FALSE;
6276 }
6277
6278 /* Make this the JALX opcode. */
6279 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6280 }
6281
6282 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6283 range. */
6284 if (!info->relocatable
6285 && !cross_mode_jump_p
6286 && ((JAL_TO_BAL_P (input_bfd)
6287 && r_type == R_MIPS_26
6288 && (x >> 26) == 0x3) /* jal addr */
6289 || (JALR_TO_BAL_P (input_bfd)
6290 && r_type == R_MIPS_JALR
6291 && x == 0x0320f809) /* jalr t9 */
6292 || (JR_TO_B_P (input_bfd)
6293 && r_type == R_MIPS_JALR
6294 && x == 0x03200008))) /* jr t9 */
6295 {
6296 bfd_vma addr;
6297 bfd_vma dest;
6298 bfd_signed_vma off;
6299
6300 addr = (input_section->output_section->vma
6301 + input_section->output_offset
6302 + relocation->r_offset
6303 + 4);
6304 if (r_type == R_MIPS_26)
6305 dest = (value << 2) | ((addr >> 28) << 28);
6306 else
6307 dest = value;
6308 off = dest - addr;
6309 if (off <= 0x1ffff && off >= -0x20000)
6310 {
6311 if (x == 0x03200008) /* jr t9 */
6312 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6313 else
6314 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6315 }
6316 }
6317
6318 /* Put the value into the output. */
6319 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6320
6321 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6322 location);
6323
6324 return TRUE;
6325 }
6326 \f
6327 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6328 is the original relocation, which is now being transformed into a
6329 dynamic relocation. The ADDENDP is adjusted if necessary; the
6330 caller should store the result in place of the original addend. */
6331
6332 static bfd_boolean
6333 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6334 struct bfd_link_info *info,
6335 const Elf_Internal_Rela *rel,
6336 struct mips_elf_link_hash_entry *h,
6337 asection *sec, bfd_vma symbol,
6338 bfd_vma *addendp, asection *input_section)
6339 {
6340 Elf_Internal_Rela outrel[3];
6341 asection *sreloc;
6342 bfd *dynobj;
6343 int r_type;
6344 long indx;
6345 bfd_boolean defined_p;
6346 struct mips_elf_link_hash_table *htab;
6347
6348 htab = mips_elf_hash_table (info);
6349 BFD_ASSERT (htab != NULL);
6350
6351 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6352 dynobj = elf_hash_table (info)->dynobj;
6353 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6354 BFD_ASSERT (sreloc != NULL);
6355 BFD_ASSERT (sreloc->contents != NULL);
6356 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6357 < sreloc->size);
6358
6359 outrel[0].r_offset =
6360 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6361 if (ABI_64_P (output_bfd))
6362 {
6363 outrel[1].r_offset =
6364 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6365 outrel[2].r_offset =
6366 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6367 }
6368
6369 if (outrel[0].r_offset == MINUS_ONE)
6370 /* The relocation field has been deleted. */
6371 return TRUE;
6372
6373 if (outrel[0].r_offset == MINUS_TWO)
6374 {
6375 /* The relocation field has been converted into a relative value of
6376 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6377 the field to be fully relocated, so add in the symbol's value. */
6378 *addendp += symbol;
6379 return TRUE;
6380 }
6381
6382 /* We must now calculate the dynamic symbol table index to use
6383 in the relocation. */
6384 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6385 {
6386 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6387 indx = h->root.dynindx;
6388 if (SGI_COMPAT (output_bfd))
6389 defined_p = h->root.def_regular;
6390 else
6391 /* ??? glibc's ld.so just adds the final GOT entry to the
6392 relocation field. It therefore treats relocs against
6393 defined symbols in the same way as relocs against
6394 undefined symbols. */
6395 defined_p = FALSE;
6396 }
6397 else
6398 {
6399 if (sec != NULL && bfd_is_abs_section (sec))
6400 indx = 0;
6401 else if (sec == NULL || sec->owner == NULL)
6402 {
6403 bfd_set_error (bfd_error_bad_value);
6404 return FALSE;
6405 }
6406 else
6407 {
6408 indx = elf_section_data (sec->output_section)->dynindx;
6409 if (indx == 0)
6410 {
6411 asection *osec = htab->root.text_index_section;
6412 indx = elf_section_data (osec)->dynindx;
6413 }
6414 if (indx == 0)
6415 abort ();
6416 }
6417
6418 /* Instead of generating a relocation using the section
6419 symbol, we may as well make it a fully relative
6420 relocation. We want to avoid generating relocations to
6421 local symbols because we used to generate them
6422 incorrectly, without adding the original symbol value,
6423 which is mandated by the ABI for section symbols. In
6424 order to give dynamic loaders and applications time to
6425 phase out the incorrect use, we refrain from emitting
6426 section-relative relocations. It's not like they're
6427 useful, after all. This should be a bit more efficient
6428 as well. */
6429 /* ??? Although this behavior is compatible with glibc's ld.so,
6430 the ABI says that relocations against STN_UNDEF should have
6431 a symbol value of 0. Irix rld honors this, so relocations
6432 against STN_UNDEF have no effect. */
6433 if (!SGI_COMPAT (output_bfd))
6434 indx = 0;
6435 defined_p = TRUE;
6436 }
6437
6438 /* If the relocation was previously an absolute relocation and
6439 this symbol will not be referred to by the relocation, we must
6440 adjust it by the value we give it in the dynamic symbol table.
6441 Otherwise leave the job up to the dynamic linker. */
6442 if (defined_p && r_type != R_MIPS_REL32)
6443 *addendp += symbol;
6444
6445 if (htab->is_vxworks)
6446 /* VxWorks uses non-relative relocations for this. */
6447 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6448 else
6449 /* The relocation is always an REL32 relocation because we don't
6450 know where the shared library will wind up at load-time. */
6451 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6452 R_MIPS_REL32);
6453
6454 /* For strict adherence to the ABI specification, we should
6455 generate a R_MIPS_64 relocation record by itself before the
6456 _REL32/_64 record as well, such that the addend is read in as
6457 a 64-bit value (REL32 is a 32-bit relocation, after all).
6458 However, since none of the existing ELF64 MIPS dynamic
6459 loaders seems to care, we don't waste space with these
6460 artificial relocations. If this turns out to not be true,
6461 mips_elf_allocate_dynamic_relocation() should be tweaked so
6462 as to make room for a pair of dynamic relocations per
6463 invocation if ABI_64_P, and here we should generate an
6464 additional relocation record with R_MIPS_64 by itself for a
6465 NULL symbol before this relocation record. */
6466 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6467 ABI_64_P (output_bfd)
6468 ? R_MIPS_64
6469 : R_MIPS_NONE);
6470 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6471
6472 /* Adjust the output offset of the relocation to reference the
6473 correct location in the output file. */
6474 outrel[0].r_offset += (input_section->output_section->vma
6475 + input_section->output_offset);
6476 outrel[1].r_offset += (input_section->output_section->vma
6477 + input_section->output_offset);
6478 outrel[2].r_offset += (input_section->output_section->vma
6479 + input_section->output_offset);
6480
6481 /* Put the relocation back out. We have to use the special
6482 relocation outputter in the 64-bit case since the 64-bit
6483 relocation format is non-standard. */
6484 if (ABI_64_P (output_bfd))
6485 {
6486 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6487 (output_bfd, &outrel[0],
6488 (sreloc->contents
6489 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6490 }
6491 else if (htab->is_vxworks)
6492 {
6493 /* VxWorks uses RELA rather than REL dynamic relocations. */
6494 outrel[0].r_addend = *addendp;
6495 bfd_elf32_swap_reloca_out
6496 (output_bfd, &outrel[0],
6497 (sreloc->contents
6498 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6499 }
6500 else
6501 bfd_elf32_swap_reloc_out
6502 (output_bfd, &outrel[0],
6503 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6504
6505 /* We've now added another relocation. */
6506 ++sreloc->reloc_count;
6507
6508 /* Make sure the output section is writable. The dynamic linker
6509 will be writing to it. */
6510 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6511 |= SHF_WRITE;
6512
6513 /* On IRIX5, make an entry of compact relocation info. */
6514 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6515 {
6516 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6517 bfd_byte *cr;
6518
6519 if (scpt)
6520 {
6521 Elf32_crinfo cptrel;
6522
6523 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6524 cptrel.vaddr = (rel->r_offset
6525 + input_section->output_section->vma
6526 + input_section->output_offset);
6527 if (r_type == R_MIPS_REL32)
6528 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6529 else
6530 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6531 mips_elf_set_cr_dist2to (cptrel, 0);
6532 cptrel.konst = *addendp;
6533
6534 cr = (scpt->contents
6535 + sizeof (Elf32_External_compact_rel));
6536 mips_elf_set_cr_relvaddr (cptrel, 0);
6537 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6538 ((Elf32_External_crinfo *) cr
6539 + scpt->reloc_count));
6540 ++scpt->reloc_count;
6541 }
6542 }
6543
6544 /* If we've written this relocation for a readonly section,
6545 we need to set DF_TEXTREL again, so that we do not delete the
6546 DT_TEXTREL tag. */
6547 if (MIPS_ELF_READONLY_SECTION (input_section))
6548 info->flags |= DF_TEXTREL;
6549
6550 return TRUE;
6551 }
6552 \f
6553 /* Return the MACH for a MIPS e_flags value. */
6554
6555 unsigned long
6556 _bfd_elf_mips_mach (flagword flags)
6557 {
6558 switch (flags & EF_MIPS_MACH)
6559 {
6560 case E_MIPS_MACH_3900:
6561 return bfd_mach_mips3900;
6562
6563 case E_MIPS_MACH_4010:
6564 return bfd_mach_mips4010;
6565
6566 case E_MIPS_MACH_4100:
6567 return bfd_mach_mips4100;
6568
6569 case E_MIPS_MACH_4111:
6570 return bfd_mach_mips4111;
6571
6572 case E_MIPS_MACH_4120:
6573 return bfd_mach_mips4120;
6574
6575 case E_MIPS_MACH_4650:
6576 return bfd_mach_mips4650;
6577
6578 case E_MIPS_MACH_5400:
6579 return bfd_mach_mips5400;
6580
6581 case E_MIPS_MACH_5500:
6582 return bfd_mach_mips5500;
6583
6584 case E_MIPS_MACH_5900:
6585 return bfd_mach_mips5900;
6586
6587 case E_MIPS_MACH_9000:
6588 return bfd_mach_mips9000;
6589
6590 case E_MIPS_MACH_SB1:
6591 return bfd_mach_mips_sb1;
6592
6593 case E_MIPS_MACH_LS2E:
6594 return bfd_mach_mips_loongson_2e;
6595
6596 case E_MIPS_MACH_LS2F:
6597 return bfd_mach_mips_loongson_2f;
6598
6599 case E_MIPS_MACH_LS3A:
6600 return bfd_mach_mips_loongson_3a;
6601
6602 case E_MIPS_MACH_OCTEON3:
6603 return bfd_mach_mips_octeon3;
6604
6605 case E_MIPS_MACH_OCTEON2:
6606 return bfd_mach_mips_octeon2;
6607
6608 case E_MIPS_MACH_OCTEON:
6609 return bfd_mach_mips_octeon;
6610
6611 case E_MIPS_MACH_XLR:
6612 return bfd_mach_mips_xlr;
6613
6614 default:
6615 switch (flags & EF_MIPS_ARCH)
6616 {
6617 default:
6618 case E_MIPS_ARCH_1:
6619 return bfd_mach_mips3000;
6620
6621 case E_MIPS_ARCH_2:
6622 return bfd_mach_mips6000;
6623
6624 case E_MIPS_ARCH_3:
6625 return bfd_mach_mips4000;
6626
6627 case E_MIPS_ARCH_4:
6628 return bfd_mach_mips8000;
6629
6630 case E_MIPS_ARCH_5:
6631 return bfd_mach_mips5;
6632
6633 case E_MIPS_ARCH_32:
6634 return bfd_mach_mipsisa32;
6635
6636 case E_MIPS_ARCH_64:
6637 return bfd_mach_mipsisa64;
6638
6639 case E_MIPS_ARCH_32R2:
6640 return bfd_mach_mipsisa32r2;
6641
6642 case E_MIPS_ARCH_64R2:
6643 return bfd_mach_mipsisa64r2;
6644
6645 case E_MIPS_ARCH_32R6:
6646 return bfd_mach_mipsisa32r6;
6647
6648 case E_MIPS_ARCH_64R6:
6649 return bfd_mach_mipsisa64r6;
6650 }
6651 }
6652
6653 return 0;
6654 }
6655
6656 /* Return printable name for ABI. */
6657
6658 static INLINE char *
6659 elf_mips_abi_name (bfd *abfd)
6660 {
6661 flagword flags;
6662
6663 flags = elf_elfheader (abfd)->e_flags;
6664 switch (flags & EF_MIPS_ABI)
6665 {
6666 case 0:
6667 if (ABI_N32_P (abfd))
6668 return "N32";
6669 else if (ABI_64_P (abfd))
6670 return "64";
6671 else
6672 return "none";
6673 case E_MIPS_ABI_O32:
6674 return "O32";
6675 case E_MIPS_ABI_O64:
6676 return "O64";
6677 case E_MIPS_ABI_EABI32:
6678 return "EABI32";
6679 case E_MIPS_ABI_EABI64:
6680 return "EABI64";
6681 default:
6682 return "unknown abi";
6683 }
6684 }
6685 \f
6686 /* MIPS ELF uses two common sections. One is the usual one, and the
6687 other is for small objects. All the small objects are kept
6688 together, and then referenced via the gp pointer, which yields
6689 faster assembler code. This is what we use for the small common
6690 section. This approach is copied from ecoff.c. */
6691 static asection mips_elf_scom_section;
6692 static asymbol mips_elf_scom_symbol;
6693 static asymbol *mips_elf_scom_symbol_ptr;
6694
6695 /* MIPS ELF also uses an acommon section, which represents an
6696 allocated common symbol which may be overridden by a
6697 definition in a shared library. */
6698 static asection mips_elf_acom_section;
6699 static asymbol mips_elf_acom_symbol;
6700 static asymbol *mips_elf_acom_symbol_ptr;
6701
6702 /* This is used for both the 32-bit and the 64-bit ABI. */
6703
6704 void
6705 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6706 {
6707 elf_symbol_type *elfsym;
6708
6709 /* Handle the special MIPS section numbers that a symbol may use. */
6710 elfsym = (elf_symbol_type *) asym;
6711 switch (elfsym->internal_elf_sym.st_shndx)
6712 {
6713 case SHN_MIPS_ACOMMON:
6714 /* This section is used in a dynamically linked executable file.
6715 It is an allocated common section. The dynamic linker can
6716 either resolve these symbols to something in a shared
6717 library, or it can just leave them here. For our purposes,
6718 we can consider these symbols to be in a new section. */
6719 if (mips_elf_acom_section.name == NULL)
6720 {
6721 /* Initialize the acommon section. */
6722 mips_elf_acom_section.name = ".acommon";
6723 mips_elf_acom_section.flags = SEC_ALLOC;
6724 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6725 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6726 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6727 mips_elf_acom_symbol.name = ".acommon";
6728 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6729 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6730 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6731 }
6732 asym->section = &mips_elf_acom_section;
6733 break;
6734
6735 case SHN_COMMON:
6736 /* Common symbols less than the GP size are automatically
6737 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6738 if (asym->value > elf_gp_size (abfd)
6739 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6740 || IRIX_COMPAT (abfd) == ict_irix6)
6741 break;
6742 /* Fall through. */
6743 case SHN_MIPS_SCOMMON:
6744 if (mips_elf_scom_section.name == NULL)
6745 {
6746 /* Initialize the small common section. */
6747 mips_elf_scom_section.name = ".scommon";
6748 mips_elf_scom_section.flags = SEC_IS_COMMON;
6749 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6750 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6751 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6752 mips_elf_scom_symbol.name = ".scommon";
6753 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6754 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6755 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6756 }
6757 asym->section = &mips_elf_scom_section;
6758 asym->value = elfsym->internal_elf_sym.st_size;
6759 break;
6760
6761 case SHN_MIPS_SUNDEFINED:
6762 asym->section = bfd_und_section_ptr;
6763 break;
6764
6765 case SHN_MIPS_TEXT:
6766 {
6767 asection *section = bfd_get_section_by_name (abfd, ".text");
6768
6769 if (section != NULL)
6770 {
6771 asym->section = section;
6772 /* MIPS_TEXT is a bit special, the address is not an offset
6773 to the base of the .text section. So substract the section
6774 base address to make it an offset. */
6775 asym->value -= section->vma;
6776 }
6777 }
6778 break;
6779
6780 case SHN_MIPS_DATA:
6781 {
6782 asection *section = bfd_get_section_by_name (abfd, ".data");
6783
6784 if (section != NULL)
6785 {
6786 asym->section = section;
6787 /* MIPS_DATA is a bit special, the address is not an offset
6788 to the base of the .data section. So substract the section
6789 base address to make it an offset. */
6790 asym->value -= section->vma;
6791 }
6792 }
6793 break;
6794 }
6795
6796 /* If this is an odd-valued function symbol, assume it's a MIPS16
6797 or microMIPS one. */
6798 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6799 && (asym->value & 1) != 0)
6800 {
6801 asym->value--;
6802 if (MICROMIPS_P (abfd))
6803 elfsym->internal_elf_sym.st_other
6804 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6805 else
6806 elfsym->internal_elf_sym.st_other
6807 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6808 }
6809 }
6810 \f
6811 /* Implement elf_backend_eh_frame_address_size. This differs from
6812 the default in the way it handles EABI64.
6813
6814 EABI64 was originally specified as an LP64 ABI, and that is what
6815 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6816 historically accepted the combination of -mabi=eabi and -mlong32,
6817 and this ILP32 variation has become semi-official over time.
6818 Both forms use elf32 and have pointer-sized FDE addresses.
6819
6820 If an EABI object was generated by GCC 4.0 or above, it will have
6821 an empty .gcc_compiled_longXX section, where XX is the size of longs
6822 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6823 have no special marking to distinguish them from LP64 objects.
6824
6825 We don't want users of the official LP64 ABI to be punished for the
6826 existence of the ILP32 variant, but at the same time, we don't want
6827 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6828 We therefore take the following approach:
6829
6830 - If ABFD contains a .gcc_compiled_longXX section, use it to
6831 determine the pointer size.
6832
6833 - Otherwise check the type of the first relocation. Assume that
6834 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6835
6836 - Otherwise punt.
6837
6838 The second check is enough to detect LP64 objects generated by pre-4.0
6839 compilers because, in the kind of output generated by those compilers,
6840 the first relocation will be associated with either a CIE personality
6841 routine or an FDE start address. Furthermore, the compilers never
6842 used a special (non-pointer) encoding for this ABI.
6843
6844 Checking the relocation type should also be safe because there is no
6845 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6846 did so. */
6847
6848 unsigned int
6849 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6850 {
6851 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6852 return 8;
6853 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6854 {
6855 bfd_boolean long32_p, long64_p;
6856
6857 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6858 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6859 if (long32_p && long64_p)
6860 return 0;
6861 if (long32_p)
6862 return 4;
6863 if (long64_p)
6864 return 8;
6865
6866 if (sec->reloc_count > 0
6867 && elf_section_data (sec)->relocs != NULL
6868 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6869 == R_MIPS_64))
6870 return 8;
6871
6872 return 0;
6873 }
6874 return 4;
6875 }
6876 \f
6877 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6878 relocations against two unnamed section symbols to resolve to the
6879 same address. For example, if we have code like:
6880
6881 lw $4,%got_disp(.data)($gp)
6882 lw $25,%got_disp(.text)($gp)
6883 jalr $25
6884
6885 then the linker will resolve both relocations to .data and the program
6886 will jump there rather than to .text.
6887
6888 We can work around this problem by giving names to local section symbols.
6889 This is also what the MIPSpro tools do. */
6890
6891 bfd_boolean
6892 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6893 {
6894 return SGI_COMPAT (abfd);
6895 }
6896 \f
6897 /* Work over a section just before writing it out. This routine is
6898 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6899 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6900 a better way. */
6901
6902 bfd_boolean
6903 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6904 {
6905 if (hdr->sh_type == SHT_MIPS_REGINFO
6906 && hdr->sh_size > 0)
6907 {
6908 bfd_byte buf[4];
6909
6910 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6911 BFD_ASSERT (hdr->contents == NULL);
6912
6913 if (bfd_seek (abfd,
6914 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6915 SEEK_SET) != 0)
6916 return FALSE;
6917 H_PUT_32 (abfd, elf_gp (abfd), buf);
6918 if (bfd_bwrite (buf, 4, abfd) != 4)
6919 return FALSE;
6920 }
6921
6922 if (hdr->sh_type == SHT_MIPS_OPTIONS
6923 && hdr->bfd_section != NULL
6924 && mips_elf_section_data (hdr->bfd_section) != NULL
6925 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6926 {
6927 bfd_byte *contents, *l, *lend;
6928
6929 /* We stored the section contents in the tdata field in the
6930 set_section_contents routine. We save the section contents
6931 so that we don't have to read them again.
6932 At this point we know that elf_gp is set, so we can look
6933 through the section contents to see if there is an
6934 ODK_REGINFO structure. */
6935
6936 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6937 l = contents;
6938 lend = contents + hdr->sh_size;
6939 while (l + sizeof (Elf_External_Options) <= lend)
6940 {
6941 Elf_Internal_Options intopt;
6942
6943 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6944 &intopt);
6945 if (intopt.size < sizeof (Elf_External_Options))
6946 {
6947 (*_bfd_error_handler)
6948 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6949 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6950 break;
6951 }
6952 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6953 {
6954 bfd_byte buf[8];
6955
6956 if (bfd_seek (abfd,
6957 (hdr->sh_offset
6958 + (l - contents)
6959 + sizeof (Elf_External_Options)
6960 + (sizeof (Elf64_External_RegInfo) - 8)),
6961 SEEK_SET) != 0)
6962 return FALSE;
6963 H_PUT_64 (abfd, elf_gp (abfd), buf);
6964 if (bfd_bwrite (buf, 8, abfd) != 8)
6965 return FALSE;
6966 }
6967 else if (intopt.kind == ODK_REGINFO)
6968 {
6969 bfd_byte buf[4];
6970
6971 if (bfd_seek (abfd,
6972 (hdr->sh_offset
6973 + (l - contents)
6974 + sizeof (Elf_External_Options)
6975 + (sizeof (Elf32_External_RegInfo) - 4)),
6976 SEEK_SET) != 0)
6977 return FALSE;
6978 H_PUT_32 (abfd, elf_gp (abfd), buf);
6979 if (bfd_bwrite (buf, 4, abfd) != 4)
6980 return FALSE;
6981 }
6982 l += intopt.size;
6983 }
6984 }
6985
6986 if (hdr->bfd_section != NULL)
6987 {
6988 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6989
6990 /* .sbss is not handled specially here because the GNU/Linux
6991 prelinker can convert .sbss from NOBITS to PROGBITS and
6992 changing it back to NOBITS breaks the binary. The entry in
6993 _bfd_mips_elf_special_sections will ensure the correct flags
6994 are set on .sbss if BFD creates it without reading it from an
6995 input file, and without special handling here the flags set
6996 on it in an input file will be followed. */
6997 if (strcmp (name, ".sdata") == 0
6998 || strcmp (name, ".lit8") == 0
6999 || strcmp (name, ".lit4") == 0)
7000 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7001 else if (strcmp (name, ".srdata") == 0)
7002 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7003 else if (strcmp (name, ".compact_rel") == 0)
7004 hdr->sh_flags = 0;
7005 else if (strcmp (name, ".rtproc") == 0)
7006 {
7007 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7008 {
7009 unsigned int adjust;
7010
7011 adjust = hdr->sh_size % hdr->sh_addralign;
7012 if (adjust != 0)
7013 hdr->sh_size += hdr->sh_addralign - adjust;
7014 }
7015 }
7016 }
7017
7018 return TRUE;
7019 }
7020
7021 /* Handle a MIPS specific section when reading an object file. This
7022 is called when elfcode.h finds a section with an unknown type.
7023 This routine supports both the 32-bit and 64-bit ELF ABI.
7024
7025 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7026 how to. */
7027
7028 bfd_boolean
7029 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7030 Elf_Internal_Shdr *hdr,
7031 const char *name,
7032 int shindex)
7033 {
7034 flagword flags = 0;
7035
7036 /* There ought to be a place to keep ELF backend specific flags, but
7037 at the moment there isn't one. We just keep track of the
7038 sections by their name, instead. Fortunately, the ABI gives
7039 suggested names for all the MIPS specific sections, so we will
7040 probably get away with this. */
7041 switch (hdr->sh_type)
7042 {
7043 case SHT_MIPS_LIBLIST:
7044 if (strcmp (name, ".liblist") != 0)
7045 return FALSE;
7046 break;
7047 case SHT_MIPS_MSYM:
7048 if (strcmp (name, ".msym") != 0)
7049 return FALSE;
7050 break;
7051 case SHT_MIPS_CONFLICT:
7052 if (strcmp (name, ".conflict") != 0)
7053 return FALSE;
7054 break;
7055 case SHT_MIPS_GPTAB:
7056 if (! CONST_STRNEQ (name, ".gptab."))
7057 return FALSE;
7058 break;
7059 case SHT_MIPS_UCODE:
7060 if (strcmp (name, ".ucode") != 0)
7061 return FALSE;
7062 break;
7063 case SHT_MIPS_DEBUG:
7064 if (strcmp (name, ".mdebug") != 0)
7065 return FALSE;
7066 flags = SEC_DEBUGGING;
7067 break;
7068 case SHT_MIPS_REGINFO:
7069 if (strcmp (name, ".reginfo") != 0
7070 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7071 return FALSE;
7072 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7073 break;
7074 case SHT_MIPS_IFACE:
7075 if (strcmp (name, ".MIPS.interfaces") != 0)
7076 return FALSE;
7077 break;
7078 case SHT_MIPS_CONTENT:
7079 if (! CONST_STRNEQ (name, ".MIPS.content"))
7080 return FALSE;
7081 break;
7082 case SHT_MIPS_OPTIONS:
7083 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7084 return FALSE;
7085 break;
7086 case SHT_MIPS_ABIFLAGS:
7087 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7088 return FALSE;
7089 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7090 break;
7091 case SHT_MIPS_DWARF:
7092 if (! CONST_STRNEQ (name, ".debug_")
7093 && ! CONST_STRNEQ (name, ".zdebug_"))
7094 return FALSE;
7095 break;
7096 case SHT_MIPS_SYMBOL_LIB:
7097 if (strcmp (name, ".MIPS.symlib") != 0)
7098 return FALSE;
7099 break;
7100 case SHT_MIPS_EVENTS:
7101 if (! CONST_STRNEQ (name, ".MIPS.events")
7102 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7103 return FALSE;
7104 break;
7105 default:
7106 break;
7107 }
7108
7109 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7110 return FALSE;
7111
7112 if (flags)
7113 {
7114 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7115 (bfd_get_section_flags (abfd,
7116 hdr->bfd_section)
7117 | flags)))
7118 return FALSE;
7119 }
7120
7121 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7122 {
7123 Elf_External_ABIFlags_v0 ext;
7124
7125 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7126 &ext, 0, sizeof ext))
7127 return FALSE;
7128 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7129 &mips_elf_tdata (abfd)->abiflags);
7130 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7131 return FALSE;
7132 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7133 }
7134
7135 /* FIXME: We should record sh_info for a .gptab section. */
7136
7137 /* For a .reginfo section, set the gp value in the tdata information
7138 from the contents of this section. We need the gp value while
7139 processing relocs, so we just get it now. The .reginfo section
7140 is not used in the 64-bit MIPS ELF ABI. */
7141 if (hdr->sh_type == SHT_MIPS_REGINFO)
7142 {
7143 Elf32_External_RegInfo ext;
7144 Elf32_RegInfo s;
7145
7146 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7147 &ext, 0, sizeof ext))
7148 return FALSE;
7149 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7150 elf_gp (abfd) = s.ri_gp_value;
7151 }
7152
7153 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7154 set the gp value based on what we find. We may see both
7155 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7156 they should agree. */
7157 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7158 {
7159 bfd_byte *contents, *l, *lend;
7160
7161 contents = bfd_malloc (hdr->sh_size);
7162 if (contents == NULL)
7163 return FALSE;
7164 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7165 0, hdr->sh_size))
7166 {
7167 free (contents);
7168 return FALSE;
7169 }
7170 l = contents;
7171 lend = contents + hdr->sh_size;
7172 while (l + sizeof (Elf_External_Options) <= lend)
7173 {
7174 Elf_Internal_Options intopt;
7175
7176 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7177 &intopt);
7178 if (intopt.size < sizeof (Elf_External_Options))
7179 {
7180 (*_bfd_error_handler)
7181 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7182 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7183 break;
7184 }
7185 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7186 {
7187 Elf64_Internal_RegInfo intreg;
7188
7189 bfd_mips_elf64_swap_reginfo_in
7190 (abfd,
7191 ((Elf64_External_RegInfo *)
7192 (l + sizeof (Elf_External_Options))),
7193 &intreg);
7194 elf_gp (abfd) = intreg.ri_gp_value;
7195 }
7196 else if (intopt.kind == ODK_REGINFO)
7197 {
7198 Elf32_RegInfo intreg;
7199
7200 bfd_mips_elf32_swap_reginfo_in
7201 (abfd,
7202 ((Elf32_External_RegInfo *)
7203 (l + sizeof (Elf_External_Options))),
7204 &intreg);
7205 elf_gp (abfd) = intreg.ri_gp_value;
7206 }
7207 l += intopt.size;
7208 }
7209 free (contents);
7210 }
7211
7212 return TRUE;
7213 }
7214
7215 /* Set the correct type for a MIPS ELF section. We do this by the
7216 section name, which is a hack, but ought to work. This routine is
7217 used by both the 32-bit and the 64-bit ABI. */
7218
7219 bfd_boolean
7220 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7221 {
7222 const char *name = bfd_get_section_name (abfd, sec);
7223
7224 if (strcmp (name, ".liblist") == 0)
7225 {
7226 hdr->sh_type = SHT_MIPS_LIBLIST;
7227 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7228 /* The sh_link field is set in final_write_processing. */
7229 }
7230 else if (strcmp (name, ".conflict") == 0)
7231 hdr->sh_type = SHT_MIPS_CONFLICT;
7232 else if (CONST_STRNEQ (name, ".gptab."))
7233 {
7234 hdr->sh_type = SHT_MIPS_GPTAB;
7235 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7236 /* The sh_info field is set in final_write_processing. */
7237 }
7238 else if (strcmp (name, ".ucode") == 0)
7239 hdr->sh_type = SHT_MIPS_UCODE;
7240 else if (strcmp (name, ".mdebug") == 0)
7241 {
7242 hdr->sh_type = SHT_MIPS_DEBUG;
7243 /* In a shared object on IRIX 5.3, the .mdebug section has an
7244 entsize of 0. FIXME: Does this matter? */
7245 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7246 hdr->sh_entsize = 0;
7247 else
7248 hdr->sh_entsize = 1;
7249 }
7250 else if (strcmp (name, ".reginfo") == 0)
7251 {
7252 hdr->sh_type = SHT_MIPS_REGINFO;
7253 /* In a shared object on IRIX 5.3, the .reginfo section has an
7254 entsize of 0x18. FIXME: Does this matter? */
7255 if (SGI_COMPAT (abfd))
7256 {
7257 if ((abfd->flags & DYNAMIC) != 0)
7258 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7259 else
7260 hdr->sh_entsize = 1;
7261 }
7262 else
7263 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7264 }
7265 else if (SGI_COMPAT (abfd)
7266 && (strcmp (name, ".hash") == 0
7267 || strcmp (name, ".dynamic") == 0
7268 || strcmp (name, ".dynstr") == 0))
7269 {
7270 if (SGI_COMPAT (abfd))
7271 hdr->sh_entsize = 0;
7272 #if 0
7273 /* This isn't how the IRIX6 linker behaves. */
7274 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7275 #endif
7276 }
7277 else if (strcmp (name, ".got") == 0
7278 || strcmp (name, ".srdata") == 0
7279 || strcmp (name, ".sdata") == 0
7280 || strcmp (name, ".sbss") == 0
7281 || strcmp (name, ".lit4") == 0
7282 || strcmp (name, ".lit8") == 0)
7283 hdr->sh_flags |= SHF_MIPS_GPREL;
7284 else if (strcmp (name, ".MIPS.interfaces") == 0)
7285 {
7286 hdr->sh_type = SHT_MIPS_IFACE;
7287 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7288 }
7289 else if (CONST_STRNEQ (name, ".MIPS.content"))
7290 {
7291 hdr->sh_type = SHT_MIPS_CONTENT;
7292 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7293 /* The sh_info field is set in final_write_processing. */
7294 }
7295 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7296 {
7297 hdr->sh_type = SHT_MIPS_OPTIONS;
7298 hdr->sh_entsize = 1;
7299 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7300 }
7301 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7302 {
7303 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7304 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7305 }
7306 else if (CONST_STRNEQ (name, ".debug_")
7307 || CONST_STRNEQ (name, ".zdebug_"))
7308 {
7309 hdr->sh_type = SHT_MIPS_DWARF;
7310
7311 /* Irix facilities such as libexc expect a single .debug_frame
7312 per executable, the system ones have NOSTRIP set and the linker
7313 doesn't merge sections with different flags so ... */
7314 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7315 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7316 }
7317 else if (strcmp (name, ".MIPS.symlib") == 0)
7318 {
7319 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7320 /* The sh_link and sh_info fields are set in
7321 final_write_processing. */
7322 }
7323 else if (CONST_STRNEQ (name, ".MIPS.events")
7324 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7325 {
7326 hdr->sh_type = SHT_MIPS_EVENTS;
7327 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7328 /* The sh_link field is set in final_write_processing. */
7329 }
7330 else if (strcmp (name, ".msym") == 0)
7331 {
7332 hdr->sh_type = SHT_MIPS_MSYM;
7333 hdr->sh_flags |= SHF_ALLOC;
7334 hdr->sh_entsize = 8;
7335 }
7336
7337 /* The generic elf_fake_sections will set up REL_HDR using the default
7338 kind of relocations. We used to set up a second header for the
7339 non-default kind of relocations here, but only NewABI would use
7340 these, and the IRIX ld doesn't like resulting empty RELA sections.
7341 Thus we create those header only on demand now. */
7342
7343 return TRUE;
7344 }
7345
7346 /* Given a BFD section, try to locate the corresponding ELF section
7347 index. This is used by both the 32-bit and the 64-bit ABI.
7348 Actually, it's not clear to me that the 64-bit ABI supports these,
7349 but for non-PIC objects we will certainly want support for at least
7350 the .scommon section. */
7351
7352 bfd_boolean
7353 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7354 asection *sec, int *retval)
7355 {
7356 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7357 {
7358 *retval = SHN_MIPS_SCOMMON;
7359 return TRUE;
7360 }
7361 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7362 {
7363 *retval = SHN_MIPS_ACOMMON;
7364 return TRUE;
7365 }
7366 return FALSE;
7367 }
7368 \f
7369 /* Hook called by the linker routine which adds symbols from an object
7370 file. We must handle the special MIPS section numbers here. */
7371
7372 bfd_boolean
7373 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7374 Elf_Internal_Sym *sym, const char **namep,
7375 flagword *flagsp ATTRIBUTE_UNUSED,
7376 asection **secp, bfd_vma *valp)
7377 {
7378 if (SGI_COMPAT (abfd)
7379 && (abfd->flags & DYNAMIC) != 0
7380 && strcmp (*namep, "_rld_new_interface") == 0)
7381 {
7382 /* Skip IRIX5 rld entry name. */
7383 *namep = NULL;
7384 return TRUE;
7385 }
7386
7387 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7388 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7389 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7390 a magic symbol resolved by the linker, we ignore this bogus definition
7391 of _gp_disp. New ABI objects do not suffer from this problem so this
7392 is not done for them. */
7393 if (!NEWABI_P(abfd)
7394 && (sym->st_shndx == SHN_ABS)
7395 && (strcmp (*namep, "_gp_disp") == 0))
7396 {
7397 *namep = NULL;
7398 return TRUE;
7399 }
7400
7401 switch (sym->st_shndx)
7402 {
7403 case SHN_COMMON:
7404 /* Common symbols less than the GP size are automatically
7405 treated as SHN_MIPS_SCOMMON symbols. */
7406 if (sym->st_size > elf_gp_size (abfd)
7407 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7408 || IRIX_COMPAT (abfd) == ict_irix6)
7409 break;
7410 /* Fall through. */
7411 case SHN_MIPS_SCOMMON:
7412 *secp = bfd_make_section_old_way (abfd, ".scommon");
7413 (*secp)->flags |= SEC_IS_COMMON;
7414 *valp = sym->st_size;
7415 break;
7416
7417 case SHN_MIPS_TEXT:
7418 /* This section is used in a shared object. */
7419 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7420 {
7421 asymbol *elf_text_symbol;
7422 asection *elf_text_section;
7423 bfd_size_type amt = sizeof (asection);
7424
7425 elf_text_section = bfd_zalloc (abfd, amt);
7426 if (elf_text_section == NULL)
7427 return FALSE;
7428
7429 amt = sizeof (asymbol);
7430 elf_text_symbol = bfd_zalloc (abfd, amt);
7431 if (elf_text_symbol == NULL)
7432 return FALSE;
7433
7434 /* Initialize the section. */
7435
7436 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7437 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7438
7439 elf_text_section->symbol = elf_text_symbol;
7440 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7441
7442 elf_text_section->name = ".text";
7443 elf_text_section->flags = SEC_NO_FLAGS;
7444 elf_text_section->output_section = NULL;
7445 elf_text_section->owner = abfd;
7446 elf_text_symbol->name = ".text";
7447 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7448 elf_text_symbol->section = elf_text_section;
7449 }
7450 /* This code used to do *secp = bfd_und_section_ptr if
7451 info->shared. I don't know why, and that doesn't make sense,
7452 so I took it out. */
7453 *secp = mips_elf_tdata (abfd)->elf_text_section;
7454 break;
7455
7456 case SHN_MIPS_ACOMMON:
7457 /* Fall through. XXX Can we treat this as allocated data? */
7458 case SHN_MIPS_DATA:
7459 /* This section is used in a shared object. */
7460 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7461 {
7462 asymbol *elf_data_symbol;
7463 asection *elf_data_section;
7464 bfd_size_type amt = sizeof (asection);
7465
7466 elf_data_section = bfd_zalloc (abfd, amt);
7467 if (elf_data_section == NULL)
7468 return FALSE;
7469
7470 amt = sizeof (asymbol);
7471 elf_data_symbol = bfd_zalloc (abfd, amt);
7472 if (elf_data_symbol == NULL)
7473 return FALSE;
7474
7475 /* Initialize the section. */
7476
7477 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7478 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7479
7480 elf_data_section->symbol = elf_data_symbol;
7481 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7482
7483 elf_data_section->name = ".data";
7484 elf_data_section->flags = SEC_NO_FLAGS;
7485 elf_data_section->output_section = NULL;
7486 elf_data_section->owner = abfd;
7487 elf_data_symbol->name = ".data";
7488 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7489 elf_data_symbol->section = elf_data_section;
7490 }
7491 /* This code used to do *secp = bfd_und_section_ptr if
7492 info->shared. I don't know why, and that doesn't make sense,
7493 so I took it out. */
7494 *secp = mips_elf_tdata (abfd)->elf_data_section;
7495 break;
7496
7497 case SHN_MIPS_SUNDEFINED:
7498 *secp = bfd_und_section_ptr;
7499 break;
7500 }
7501
7502 if (SGI_COMPAT (abfd)
7503 && ! info->shared
7504 && info->output_bfd->xvec == abfd->xvec
7505 && strcmp (*namep, "__rld_obj_head") == 0)
7506 {
7507 struct elf_link_hash_entry *h;
7508 struct bfd_link_hash_entry *bh;
7509
7510 /* Mark __rld_obj_head as dynamic. */
7511 bh = NULL;
7512 if (! (_bfd_generic_link_add_one_symbol
7513 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7514 get_elf_backend_data (abfd)->collect, &bh)))
7515 return FALSE;
7516
7517 h = (struct elf_link_hash_entry *) bh;
7518 h->non_elf = 0;
7519 h->def_regular = 1;
7520 h->type = STT_OBJECT;
7521
7522 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7523 return FALSE;
7524
7525 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7526 mips_elf_hash_table (info)->rld_symbol = h;
7527 }
7528
7529 /* If this is a mips16 text symbol, add 1 to the value to make it
7530 odd. This will cause something like .word SYM to come up with
7531 the right value when it is loaded into the PC. */
7532 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7533 ++*valp;
7534
7535 return TRUE;
7536 }
7537
7538 /* This hook function is called before the linker writes out a global
7539 symbol. We mark symbols as small common if appropriate. This is
7540 also where we undo the increment of the value for a mips16 symbol. */
7541
7542 int
7543 _bfd_mips_elf_link_output_symbol_hook
7544 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7545 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7546 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7547 {
7548 /* If we see a common symbol, which implies a relocatable link, then
7549 if a symbol was small common in an input file, mark it as small
7550 common in the output file. */
7551 if (sym->st_shndx == SHN_COMMON
7552 && strcmp (input_sec->name, ".scommon") == 0)
7553 sym->st_shndx = SHN_MIPS_SCOMMON;
7554
7555 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7556 sym->st_value &= ~1;
7557
7558 return 1;
7559 }
7560 \f
7561 /* Functions for the dynamic linker. */
7562
7563 /* Create dynamic sections when linking against a dynamic object. */
7564
7565 bfd_boolean
7566 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7567 {
7568 struct elf_link_hash_entry *h;
7569 struct bfd_link_hash_entry *bh;
7570 flagword flags;
7571 register asection *s;
7572 const char * const *namep;
7573 struct mips_elf_link_hash_table *htab;
7574
7575 htab = mips_elf_hash_table (info);
7576 BFD_ASSERT (htab != NULL);
7577
7578 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7579 | SEC_LINKER_CREATED | SEC_READONLY);
7580
7581 /* The psABI requires a read-only .dynamic section, but the VxWorks
7582 EABI doesn't. */
7583 if (!htab->is_vxworks)
7584 {
7585 s = bfd_get_linker_section (abfd, ".dynamic");
7586 if (s != NULL)
7587 {
7588 if (! bfd_set_section_flags (abfd, s, flags))
7589 return FALSE;
7590 }
7591 }
7592
7593 /* We need to create .got section. */
7594 if (!mips_elf_create_got_section (abfd, info))
7595 return FALSE;
7596
7597 if (! mips_elf_rel_dyn_section (info, TRUE))
7598 return FALSE;
7599
7600 /* Create .stub section. */
7601 s = bfd_make_section_anyway_with_flags (abfd,
7602 MIPS_ELF_STUB_SECTION_NAME (abfd),
7603 flags | SEC_CODE);
7604 if (s == NULL
7605 || ! bfd_set_section_alignment (abfd, s,
7606 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7607 return FALSE;
7608 htab->sstubs = s;
7609
7610 if (!mips_elf_hash_table (info)->use_rld_obj_head
7611 && !info->shared
7612 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7613 {
7614 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7615 flags &~ (flagword) SEC_READONLY);
7616 if (s == NULL
7617 || ! bfd_set_section_alignment (abfd, s,
7618 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7619 return FALSE;
7620 }
7621
7622 /* On IRIX5, we adjust add some additional symbols and change the
7623 alignments of several sections. There is no ABI documentation
7624 indicating that this is necessary on IRIX6, nor any evidence that
7625 the linker takes such action. */
7626 if (IRIX_COMPAT (abfd) == ict_irix5)
7627 {
7628 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7629 {
7630 bh = NULL;
7631 if (! (_bfd_generic_link_add_one_symbol
7632 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7633 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7634 return FALSE;
7635
7636 h = (struct elf_link_hash_entry *) bh;
7637 h->non_elf = 0;
7638 h->def_regular = 1;
7639 h->type = STT_SECTION;
7640
7641 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7642 return FALSE;
7643 }
7644
7645 /* We need to create a .compact_rel section. */
7646 if (SGI_COMPAT (abfd))
7647 {
7648 if (!mips_elf_create_compact_rel_section (abfd, info))
7649 return FALSE;
7650 }
7651
7652 /* Change alignments of some sections. */
7653 s = bfd_get_linker_section (abfd, ".hash");
7654 if (s != NULL)
7655 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7656
7657 s = bfd_get_linker_section (abfd, ".dynsym");
7658 if (s != NULL)
7659 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7660
7661 s = bfd_get_linker_section (abfd, ".dynstr");
7662 if (s != NULL)
7663 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7664
7665 /* ??? */
7666 s = bfd_get_section_by_name (abfd, ".reginfo");
7667 if (s != NULL)
7668 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7669
7670 s = bfd_get_linker_section (abfd, ".dynamic");
7671 if (s != NULL)
7672 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7673 }
7674
7675 if (!info->shared)
7676 {
7677 const char *name;
7678
7679 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7680 bh = NULL;
7681 if (!(_bfd_generic_link_add_one_symbol
7682 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7683 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7684 return FALSE;
7685
7686 h = (struct elf_link_hash_entry *) bh;
7687 h->non_elf = 0;
7688 h->def_regular = 1;
7689 h->type = STT_SECTION;
7690
7691 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7692 return FALSE;
7693
7694 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7695 {
7696 /* __rld_map is a four byte word located in the .data section
7697 and is filled in by the rtld to contain a pointer to
7698 the _r_debug structure. Its symbol value will be set in
7699 _bfd_mips_elf_finish_dynamic_symbol. */
7700 s = bfd_get_linker_section (abfd, ".rld_map");
7701 BFD_ASSERT (s != NULL);
7702
7703 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7704 bh = NULL;
7705 if (!(_bfd_generic_link_add_one_symbol
7706 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7707 get_elf_backend_data (abfd)->collect, &bh)))
7708 return FALSE;
7709
7710 h = (struct elf_link_hash_entry *) bh;
7711 h->non_elf = 0;
7712 h->def_regular = 1;
7713 h->type = STT_OBJECT;
7714
7715 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7716 return FALSE;
7717 mips_elf_hash_table (info)->rld_symbol = h;
7718 }
7719 }
7720
7721 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7722 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7723 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7724 return FALSE;
7725
7726 /* Cache the sections created above. */
7727 htab->splt = bfd_get_linker_section (abfd, ".plt");
7728 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7729 if (htab->is_vxworks)
7730 {
7731 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7732 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7733 }
7734 else
7735 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7736 if (!htab->sdynbss
7737 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7738 || !htab->srelplt
7739 || !htab->splt)
7740 abort ();
7741
7742 /* Do the usual VxWorks handling. */
7743 if (htab->is_vxworks
7744 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7745 return FALSE;
7746
7747 return TRUE;
7748 }
7749 \f
7750 /* Return true if relocation REL against section SEC is a REL rather than
7751 RELA relocation. RELOCS is the first relocation in the section and
7752 ABFD is the bfd that contains SEC. */
7753
7754 static bfd_boolean
7755 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7756 const Elf_Internal_Rela *relocs,
7757 const Elf_Internal_Rela *rel)
7758 {
7759 Elf_Internal_Shdr *rel_hdr;
7760 const struct elf_backend_data *bed;
7761
7762 /* To determine which flavor of relocation this is, we depend on the
7763 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7764 rel_hdr = elf_section_data (sec)->rel.hdr;
7765 if (rel_hdr == NULL)
7766 return FALSE;
7767 bed = get_elf_backend_data (abfd);
7768 return ((size_t) (rel - relocs)
7769 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7770 }
7771
7772 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7773 HOWTO is the relocation's howto and CONTENTS points to the contents
7774 of the section that REL is against. */
7775
7776 static bfd_vma
7777 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7778 reloc_howto_type *howto, bfd_byte *contents)
7779 {
7780 bfd_byte *location;
7781 unsigned int r_type;
7782 bfd_vma addend;
7783
7784 r_type = ELF_R_TYPE (abfd, rel->r_info);
7785 location = contents + rel->r_offset;
7786
7787 /* Get the addend, which is stored in the input file. */
7788 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7789 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7790 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7791
7792 return addend & howto->src_mask;
7793 }
7794
7795 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7796 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7797 and update *ADDEND with the final addend. Return true on success
7798 or false if the LO16 could not be found. RELEND is the exclusive
7799 upper bound on the relocations for REL's section. */
7800
7801 static bfd_boolean
7802 mips_elf_add_lo16_rel_addend (bfd *abfd,
7803 const Elf_Internal_Rela *rel,
7804 const Elf_Internal_Rela *relend,
7805 bfd_byte *contents, bfd_vma *addend)
7806 {
7807 unsigned int r_type, lo16_type;
7808 const Elf_Internal_Rela *lo16_relocation;
7809 reloc_howto_type *lo16_howto;
7810 bfd_vma l;
7811
7812 r_type = ELF_R_TYPE (abfd, rel->r_info);
7813 if (mips16_reloc_p (r_type))
7814 lo16_type = R_MIPS16_LO16;
7815 else if (micromips_reloc_p (r_type))
7816 lo16_type = R_MICROMIPS_LO16;
7817 else if (r_type == R_MIPS_PCHI16)
7818 lo16_type = R_MIPS_PCLO16;
7819 else
7820 lo16_type = R_MIPS_LO16;
7821
7822 /* The combined value is the sum of the HI16 addend, left-shifted by
7823 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7824 code does a `lui' of the HI16 value, and then an `addiu' of the
7825 LO16 value.)
7826
7827 Scan ahead to find a matching LO16 relocation.
7828
7829 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7830 be immediately following. However, for the IRIX6 ABI, the next
7831 relocation may be a composed relocation consisting of several
7832 relocations for the same address. In that case, the R_MIPS_LO16
7833 relocation may occur as one of these. We permit a similar
7834 extension in general, as that is useful for GCC.
7835
7836 In some cases GCC dead code elimination removes the LO16 but keeps
7837 the corresponding HI16. This is strictly speaking a violation of
7838 the ABI but not immediately harmful. */
7839 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7840 if (lo16_relocation == NULL)
7841 return FALSE;
7842
7843 /* Obtain the addend kept there. */
7844 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7845 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7846
7847 l <<= lo16_howto->rightshift;
7848 l = _bfd_mips_elf_sign_extend (l, 16);
7849
7850 *addend <<= 16;
7851 *addend += l;
7852 return TRUE;
7853 }
7854
7855 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7856 store the contents in *CONTENTS on success. Assume that *CONTENTS
7857 already holds the contents if it is nonull on entry. */
7858
7859 static bfd_boolean
7860 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7861 {
7862 if (*contents)
7863 return TRUE;
7864
7865 /* Get cached copy if it exists. */
7866 if (elf_section_data (sec)->this_hdr.contents != NULL)
7867 {
7868 *contents = elf_section_data (sec)->this_hdr.contents;
7869 return TRUE;
7870 }
7871
7872 return bfd_malloc_and_get_section (abfd, sec, contents);
7873 }
7874
7875 /* Make a new PLT record to keep internal data. */
7876
7877 static struct plt_entry *
7878 mips_elf_make_plt_record (bfd *abfd)
7879 {
7880 struct plt_entry *entry;
7881
7882 entry = bfd_zalloc (abfd, sizeof (*entry));
7883 if (entry == NULL)
7884 return NULL;
7885
7886 entry->stub_offset = MINUS_ONE;
7887 entry->mips_offset = MINUS_ONE;
7888 entry->comp_offset = MINUS_ONE;
7889 entry->gotplt_index = MINUS_ONE;
7890 return entry;
7891 }
7892
7893 /* Look through the relocs for a section during the first phase, and
7894 allocate space in the global offset table and record the need for
7895 standard MIPS and compressed procedure linkage table entries. */
7896
7897 bfd_boolean
7898 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7899 asection *sec, const Elf_Internal_Rela *relocs)
7900 {
7901 const char *name;
7902 bfd *dynobj;
7903 Elf_Internal_Shdr *symtab_hdr;
7904 struct elf_link_hash_entry **sym_hashes;
7905 size_t extsymoff;
7906 const Elf_Internal_Rela *rel;
7907 const Elf_Internal_Rela *rel_end;
7908 asection *sreloc;
7909 const struct elf_backend_data *bed;
7910 struct mips_elf_link_hash_table *htab;
7911 bfd_byte *contents;
7912 bfd_vma addend;
7913 reloc_howto_type *howto;
7914
7915 if (info->relocatable)
7916 return TRUE;
7917
7918 htab = mips_elf_hash_table (info);
7919 BFD_ASSERT (htab != NULL);
7920
7921 dynobj = elf_hash_table (info)->dynobj;
7922 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7923 sym_hashes = elf_sym_hashes (abfd);
7924 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7925
7926 bed = get_elf_backend_data (abfd);
7927 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7928
7929 /* Check for the mips16 stub sections. */
7930
7931 name = bfd_get_section_name (abfd, sec);
7932 if (FN_STUB_P (name))
7933 {
7934 unsigned long r_symndx;
7935
7936 /* Look at the relocation information to figure out which symbol
7937 this is for. */
7938
7939 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7940 if (r_symndx == 0)
7941 {
7942 (*_bfd_error_handler)
7943 (_("%B: Warning: cannot determine the target function for"
7944 " stub section `%s'"),
7945 abfd, name);
7946 bfd_set_error (bfd_error_bad_value);
7947 return FALSE;
7948 }
7949
7950 if (r_symndx < extsymoff
7951 || sym_hashes[r_symndx - extsymoff] == NULL)
7952 {
7953 asection *o;
7954
7955 /* This stub is for a local symbol. This stub will only be
7956 needed if there is some relocation in this BFD, other
7957 than a 16 bit function call, which refers to this symbol. */
7958 for (o = abfd->sections; o != NULL; o = o->next)
7959 {
7960 Elf_Internal_Rela *sec_relocs;
7961 const Elf_Internal_Rela *r, *rend;
7962
7963 /* We can ignore stub sections when looking for relocs. */
7964 if ((o->flags & SEC_RELOC) == 0
7965 || o->reloc_count == 0
7966 || section_allows_mips16_refs_p (o))
7967 continue;
7968
7969 sec_relocs
7970 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7971 info->keep_memory);
7972 if (sec_relocs == NULL)
7973 return FALSE;
7974
7975 rend = sec_relocs + o->reloc_count;
7976 for (r = sec_relocs; r < rend; r++)
7977 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7978 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7979 break;
7980
7981 if (elf_section_data (o)->relocs != sec_relocs)
7982 free (sec_relocs);
7983
7984 if (r < rend)
7985 break;
7986 }
7987
7988 if (o == NULL)
7989 {
7990 /* There is no non-call reloc for this stub, so we do
7991 not need it. Since this function is called before
7992 the linker maps input sections to output sections, we
7993 can easily discard it by setting the SEC_EXCLUDE
7994 flag. */
7995 sec->flags |= SEC_EXCLUDE;
7996 return TRUE;
7997 }
7998
7999 /* Record this stub in an array of local symbol stubs for
8000 this BFD. */
8001 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8002 {
8003 unsigned long symcount;
8004 asection **n;
8005 bfd_size_type amt;
8006
8007 if (elf_bad_symtab (abfd))
8008 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8009 else
8010 symcount = symtab_hdr->sh_info;
8011 amt = symcount * sizeof (asection *);
8012 n = bfd_zalloc (abfd, amt);
8013 if (n == NULL)
8014 return FALSE;
8015 mips_elf_tdata (abfd)->local_stubs = n;
8016 }
8017
8018 sec->flags |= SEC_KEEP;
8019 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8020
8021 /* We don't need to set mips16_stubs_seen in this case.
8022 That flag is used to see whether we need to look through
8023 the global symbol table for stubs. We don't need to set
8024 it here, because we just have a local stub. */
8025 }
8026 else
8027 {
8028 struct mips_elf_link_hash_entry *h;
8029
8030 h = ((struct mips_elf_link_hash_entry *)
8031 sym_hashes[r_symndx - extsymoff]);
8032
8033 while (h->root.root.type == bfd_link_hash_indirect
8034 || h->root.root.type == bfd_link_hash_warning)
8035 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8036
8037 /* H is the symbol this stub is for. */
8038
8039 /* If we already have an appropriate stub for this function, we
8040 don't need another one, so we can discard this one. Since
8041 this function is called before the linker maps input sections
8042 to output sections, we can easily discard it by setting the
8043 SEC_EXCLUDE flag. */
8044 if (h->fn_stub != NULL)
8045 {
8046 sec->flags |= SEC_EXCLUDE;
8047 return TRUE;
8048 }
8049
8050 sec->flags |= SEC_KEEP;
8051 h->fn_stub = sec;
8052 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8053 }
8054 }
8055 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8056 {
8057 unsigned long r_symndx;
8058 struct mips_elf_link_hash_entry *h;
8059 asection **loc;
8060
8061 /* Look at the relocation information to figure out which symbol
8062 this is for. */
8063
8064 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8065 if (r_symndx == 0)
8066 {
8067 (*_bfd_error_handler)
8068 (_("%B: Warning: cannot determine the target function for"
8069 " stub section `%s'"),
8070 abfd, name);
8071 bfd_set_error (bfd_error_bad_value);
8072 return FALSE;
8073 }
8074
8075 if (r_symndx < extsymoff
8076 || sym_hashes[r_symndx - extsymoff] == NULL)
8077 {
8078 asection *o;
8079
8080 /* This stub is for a local symbol. This stub will only be
8081 needed if there is some relocation (R_MIPS16_26) in this BFD
8082 that refers to this symbol. */
8083 for (o = abfd->sections; o != NULL; o = o->next)
8084 {
8085 Elf_Internal_Rela *sec_relocs;
8086 const Elf_Internal_Rela *r, *rend;
8087
8088 /* We can ignore stub sections when looking for relocs. */
8089 if ((o->flags & SEC_RELOC) == 0
8090 || o->reloc_count == 0
8091 || section_allows_mips16_refs_p (o))
8092 continue;
8093
8094 sec_relocs
8095 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8096 info->keep_memory);
8097 if (sec_relocs == NULL)
8098 return FALSE;
8099
8100 rend = sec_relocs + o->reloc_count;
8101 for (r = sec_relocs; r < rend; r++)
8102 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8103 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8104 break;
8105
8106 if (elf_section_data (o)->relocs != sec_relocs)
8107 free (sec_relocs);
8108
8109 if (r < rend)
8110 break;
8111 }
8112
8113 if (o == NULL)
8114 {
8115 /* There is no non-call reloc for this stub, so we do
8116 not need it. Since this function is called before
8117 the linker maps input sections to output sections, we
8118 can easily discard it by setting the SEC_EXCLUDE
8119 flag. */
8120 sec->flags |= SEC_EXCLUDE;
8121 return TRUE;
8122 }
8123
8124 /* Record this stub in an array of local symbol call_stubs for
8125 this BFD. */
8126 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8127 {
8128 unsigned long symcount;
8129 asection **n;
8130 bfd_size_type amt;
8131
8132 if (elf_bad_symtab (abfd))
8133 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8134 else
8135 symcount = symtab_hdr->sh_info;
8136 amt = symcount * sizeof (asection *);
8137 n = bfd_zalloc (abfd, amt);
8138 if (n == NULL)
8139 return FALSE;
8140 mips_elf_tdata (abfd)->local_call_stubs = n;
8141 }
8142
8143 sec->flags |= SEC_KEEP;
8144 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8145
8146 /* We don't need to set mips16_stubs_seen in this case.
8147 That flag is used to see whether we need to look through
8148 the global symbol table for stubs. We don't need to set
8149 it here, because we just have a local stub. */
8150 }
8151 else
8152 {
8153 h = ((struct mips_elf_link_hash_entry *)
8154 sym_hashes[r_symndx - extsymoff]);
8155
8156 /* H is the symbol this stub is for. */
8157
8158 if (CALL_FP_STUB_P (name))
8159 loc = &h->call_fp_stub;
8160 else
8161 loc = &h->call_stub;
8162
8163 /* If we already have an appropriate stub for this function, we
8164 don't need another one, so we can discard this one. Since
8165 this function is called before the linker maps input sections
8166 to output sections, we can easily discard it by setting the
8167 SEC_EXCLUDE flag. */
8168 if (*loc != NULL)
8169 {
8170 sec->flags |= SEC_EXCLUDE;
8171 return TRUE;
8172 }
8173
8174 sec->flags |= SEC_KEEP;
8175 *loc = sec;
8176 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8177 }
8178 }
8179
8180 sreloc = NULL;
8181 contents = NULL;
8182 for (rel = relocs; rel < rel_end; ++rel)
8183 {
8184 unsigned long r_symndx;
8185 unsigned int r_type;
8186 struct elf_link_hash_entry *h;
8187 bfd_boolean can_make_dynamic_p;
8188 bfd_boolean call_reloc_p;
8189 bfd_boolean constrain_symbol_p;
8190
8191 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8192 r_type = ELF_R_TYPE (abfd, rel->r_info);
8193
8194 if (r_symndx < extsymoff)
8195 h = NULL;
8196 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8197 {
8198 (*_bfd_error_handler)
8199 (_("%B: Malformed reloc detected for section %s"),
8200 abfd, name);
8201 bfd_set_error (bfd_error_bad_value);
8202 return FALSE;
8203 }
8204 else
8205 {
8206 h = sym_hashes[r_symndx - extsymoff];
8207 if (h != NULL)
8208 {
8209 while (h->root.type == bfd_link_hash_indirect
8210 || h->root.type == bfd_link_hash_warning)
8211 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8212
8213 /* PR15323, ref flags aren't set for references in the
8214 same object. */
8215 h->root.non_ir_ref = 1;
8216 }
8217 }
8218
8219 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8220 relocation into a dynamic one. */
8221 can_make_dynamic_p = FALSE;
8222
8223 /* Set CALL_RELOC_P to true if the relocation is for a call,
8224 and if pointer equality therefore doesn't matter. */
8225 call_reloc_p = FALSE;
8226
8227 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8228 into account when deciding how to define the symbol.
8229 Relocations in nonallocatable sections such as .pdr and
8230 .debug* should have no effect. */
8231 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8232
8233 switch (r_type)
8234 {
8235 case R_MIPS_CALL16:
8236 case R_MIPS_CALL_HI16:
8237 case R_MIPS_CALL_LO16:
8238 case R_MIPS16_CALL16:
8239 case R_MICROMIPS_CALL16:
8240 case R_MICROMIPS_CALL_HI16:
8241 case R_MICROMIPS_CALL_LO16:
8242 call_reloc_p = TRUE;
8243 /* Fall through. */
8244
8245 case R_MIPS_GOT16:
8246 case R_MIPS_GOT_HI16:
8247 case R_MIPS_GOT_LO16:
8248 case R_MIPS_GOT_PAGE:
8249 case R_MIPS_GOT_OFST:
8250 case R_MIPS_GOT_DISP:
8251 case R_MIPS_TLS_GOTTPREL:
8252 case R_MIPS_TLS_GD:
8253 case R_MIPS_TLS_LDM:
8254 case R_MIPS16_GOT16:
8255 case R_MIPS16_TLS_GOTTPREL:
8256 case R_MIPS16_TLS_GD:
8257 case R_MIPS16_TLS_LDM:
8258 case R_MICROMIPS_GOT16:
8259 case R_MICROMIPS_GOT_HI16:
8260 case R_MICROMIPS_GOT_LO16:
8261 case R_MICROMIPS_GOT_PAGE:
8262 case R_MICROMIPS_GOT_OFST:
8263 case R_MICROMIPS_GOT_DISP:
8264 case R_MICROMIPS_TLS_GOTTPREL:
8265 case R_MICROMIPS_TLS_GD:
8266 case R_MICROMIPS_TLS_LDM:
8267 if (dynobj == NULL)
8268 elf_hash_table (info)->dynobj = dynobj = abfd;
8269 if (!mips_elf_create_got_section (dynobj, info))
8270 return FALSE;
8271 if (htab->is_vxworks && !info->shared)
8272 {
8273 (*_bfd_error_handler)
8274 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8275 abfd, (unsigned long) rel->r_offset);
8276 bfd_set_error (bfd_error_bad_value);
8277 return FALSE;
8278 }
8279 can_make_dynamic_p = TRUE;
8280 break;
8281
8282 case R_MIPS_NONE:
8283 case R_MIPS_JALR:
8284 case R_MICROMIPS_JALR:
8285 /* These relocations have empty fields and are purely there to
8286 provide link information. The symbol value doesn't matter. */
8287 constrain_symbol_p = FALSE;
8288 break;
8289
8290 case R_MIPS_GPREL16:
8291 case R_MIPS_GPREL32:
8292 case R_MIPS16_GPREL:
8293 case R_MICROMIPS_GPREL16:
8294 /* GP-relative relocations always resolve to a definition in a
8295 regular input file, ignoring the one-definition rule. This is
8296 important for the GP setup sequence in NewABI code, which
8297 always resolves to a local function even if other relocations
8298 against the symbol wouldn't. */
8299 constrain_symbol_p = FALSE;
8300 break;
8301
8302 case R_MIPS_32:
8303 case R_MIPS_REL32:
8304 case R_MIPS_64:
8305 /* In VxWorks executables, references to external symbols
8306 must be handled using copy relocs or PLT entries; it is not
8307 possible to convert this relocation into a dynamic one.
8308
8309 For executables that use PLTs and copy-relocs, we have a
8310 choice between converting the relocation into a dynamic
8311 one or using copy relocations or PLT entries. It is
8312 usually better to do the former, unless the relocation is
8313 against a read-only section. */
8314 if ((info->shared
8315 || (h != NULL
8316 && !htab->is_vxworks
8317 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8318 && !(!info->nocopyreloc
8319 && !PIC_OBJECT_P (abfd)
8320 && MIPS_ELF_READONLY_SECTION (sec))))
8321 && (sec->flags & SEC_ALLOC) != 0)
8322 {
8323 can_make_dynamic_p = TRUE;
8324 if (dynobj == NULL)
8325 elf_hash_table (info)->dynobj = dynobj = abfd;
8326 }
8327 break;
8328
8329 case R_MIPS_26:
8330 case R_MIPS_PC16:
8331 case R_MIPS_PC21_S2:
8332 case R_MIPS_PC26_S2:
8333 case R_MIPS16_26:
8334 case R_MICROMIPS_26_S1:
8335 case R_MICROMIPS_PC7_S1:
8336 case R_MICROMIPS_PC10_S1:
8337 case R_MICROMIPS_PC16_S1:
8338 case R_MICROMIPS_PC23_S2:
8339 call_reloc_p = TRUE;
8340 break;
8341 }
8342
8343 if (h)
8344 {
8345 if (constrain_symbol_p)
8346 {
8347 if (!can_make_dynamic_p)
8348 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8349
8350 if (!call_reloc_p)
8351 h->pointer_equality_needed = 1;
8352
8353 /* We must not create a stub for a symbol that has
8354 relocations related to taking the function's address.
8355 This doesn't apply to VxWorks, where CALL relocs refer
8356 to a .got.plt entry instead of a normal .got entry. */
8357 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8358 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8359 }
8360
8361 /* Relocations against the special VxWorks __GOTT_BASE__ and
8362 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8363 room for them in .rela.dyn. */
8364 if (is_gott_symbol (info, h))
8365 {
8366 if (sreloc == NULL)
8367 {
8368 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8369 if (sreloc == NULL)
8370 return FALSE;
8371 }
8372 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8373 if (MIPS_ELF_READONLY_SECTION (sec))
8374 /* We tell the dynamic linker that there are
8375 relocations against the text segment. */
8376 info->flags |= DF_TEXTREL;
8377 }
8378 }
8379 else if (call_lo16_reloc_p (r_type)
8380 || got_lo16_reloc_p (r_type)
8381 || got_disp_reloc_p (r_type)
8382 || (got16_reloc_p (r_type) && htab->is_vxworks))
8383 {
8384 /* We may need a local GOT entry for this relocation. We
8385 don't count R_MIPS_GOT_PAGE because we can estimate the
8386 maximum number of pages needed by looking at the size of
8387 the segment. Similar comments apply to R_MIPS*_GOT16 and
8388 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8389 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8390 R_MIPS_CALL_HI16 because these are always followed by an
8391 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8392 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8393 rel->r_addend, info, r_type))
8394 return FALSE;
8395 }
8396
8397 if (h != NULL
8398 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8399 ELF_ST_IS_MIPS16 (h->other)))
8400 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8401
8402 switch (r_type)
8403 {
8404 case R_MIPS_CALL16:
8405 case R_MIPS16_CALL16:
8406 case R_MICROMIPS_CALL16:
8407 if (h == NULL)
8408 {
8409 (*_bfd_error_handler)
8410 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8411 abfd, (unsigned long) rel->r_offset);
8412 bfd_set_error (bfd_error_bad_value);
8413 return FALSE;
8414 }
8415 /* Fall through. */
8416
8417 case R_MIPS_CALL_HI16:
8418 case R_MIPS_CALL_LO16:
8419 case R_MICROMIPS_CALL_HI16:
8420 case R_MICROMIPS_CALL_LO16:
8421 if (h != NULL)
8422 {
8423 /* Make sure there is room in the regular GOT to hold the
8424 function's address. We may eliminate it in favour of
8425 a .got.plt entry later; see mips_elf_count_got_symbols. */
8426 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8427 r_type))
8428 return FALSE;
8429
8430 /* We need a stub, not a plt entry for the undefined
8431 function. But we record it as if it needs plt. See
8432 _bfd_elf_adjust_dynamic_symbol. */
8433 h->needs_plt = 1;
8434 h->type = STT_FUNC;
8435 }
8436 break;
8437
8438 case R_MIPS_GOT_PAGE:
8439 case R_MICROMIPS_GOT_PAGE:
8440 case R_MIPS16_GOT16:
8441 case R_MIPS_GOT16:
8442 case R_MIPS_GOT_HI16:
8443 case R_MIPS_GOT_LO16:
8444 case R_MICROMIPS_GOT16:
8445 case R_MICROMIPS_GOT_HI16:
8446 case R_MICROMIPS_GOT_LO16:
8447 if (!h || got_page_reloc_p (r_type))
8448 {
8449 /* This relocation needs (or may need, if h != NULL) a
8450 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8451 know for sure until we know whether the symbol is
8452 preemptible. */
8453 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8454 {
8455 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8456 return FALSE;
8457 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8458 addend = mips_elf_read_rel_addend (abfd, rel,
8459 howto, contents);
8460 if (got16_reloc_p (r_type))
8461 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8462 contents, &addend);
8463 else
8464 addend <<= howto->rightshift;
8465 }
8466 else
8467 addend = rel->r_addend;
8468 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8469 h, addend))
8470 return FALSE;
8471
8472 if (h)
8473 {
8474 struct mips_elf_link_hash_entry *hmips =
8475 (struct mips_elf_link_hash_entry *) h;
8476
8477 /* This symbol is definitely not overridable. */
8478 if (hmips->root.def_regular
8479 && ! (info->shared && ! info->symbolic
8480 && ! hmips->root.forced_local))
8481 h = NULL;
8482 }
8483 }
8484 /* If this is a global, overridable symbol, GOT_PAGE will
8485 decay to GOT_DISP, so we'll need a GOT entry for it. */
8486 /* Fall through. */
8487
8488 case R_MIPS_GOT_DISP:
8489 case R_MICROMIPS_GOT_DISP:
8490 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8491 FALSE, r_type))
8492 return FALSE;
8493 break;
8494
8495 case R_MIPS_TLS_GOTTPREL:
8496 case R_MIPS16_TLS_GOTTPREL:
8497 case R_MICROMIPS_TLS_GOTTPREL:
8498 if (info->shared)
8499 info->flags |= DF_STATIC_TLS;
8500 /* Fall through */
8501
8502 case R_MIPS_TLS_LDM:
8503 case R_MIPS16_TLS_LDM:
8504 case R_MICROMIPS_TLS_LDM:
8505 if (tls_ldm_reloc_p (r_type))
8506 {
8507 r_symndx = STN_UNDEF;
8508 h = NULL;
8509 }
8510 /* Fall through */
8511
8512 case R_MIPS_TLS_GD:
8513 case R_MIPS16_TLS_GD:
8514 case R_MICROMIPS_TLS_GD:
8515 /* This symbol requires a global offset table entry, or two
8516 for TLS GD relocations. */
8517 if (h != NULL)
8518 {
8519 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8520 FALSE, r_type))
8521 return FALSE;
8522 }
8523 else
8524 {
8525 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8526 rel->r_addend,
8527 info, r_type))
8528 return FALSE;
8529 }
8530 break;
8531
8532 case R_MIPS_32:
8533 case R_MIPS_REL32:
8534 case R_MIPS_64:
8535 /* In VxWorks executables, references to external symbols
8536 are handled using copy relocs or PLT stubs, so there's
8537 no need to add a .rela.dyn entry for this relocation. */
8538 if (can_make_dynamic_p)
8539 {
8540 if (sreloc == NULL)
8541 {
8542 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8543 if (sreloc == NULL)
8544 return FALSE;
8545 }
8546 if (info->shared && h == NULL)
8547 {
8548 /* When creating a shared object, we must copy these
8549 reloc types into the output file as R_MIPS_REL32
8550 relocs. Make room for this reloc in .rel(a).dyn. */
8551 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8552 if (MIPS_ELF_READONLY_SECTION (sec))
8553 /* We tell the dynamic linker that there are
8554 relocations against the text segment. */
8555 info->flags |= DF_TEXTREL;
8556 }
8557 else
8558 {
8559 struct mips_elf_link_hash_entry *hmips;
8560
8561 /* For a shared object, we must copy this relocation
8562 unless the symbol turns out to be undefined and
8563 weak with non-default visibility, in which case
8564 it will be left as zero.
8565
8566 We could elide R_MIPS_REL32 for locally binding symbols
8567 in shared libraries, but do not yet do so.
8568
8569 For an executable, we only need to copy this
8570 reloc if the symbol is defined in a dynamic
8571 object. */
8572 hmips = (struct mips_elf_link_hash_entry *) h;
8573 ++hmips->possibly_dynamic_relocs;
8574 if (MIPS_ELF_READONLY_SECTION (sec))
8575 /* We need it to tell the dynamic linker if there
8576 are relocations against the text segment. */
8577 hmips->readonly_reloc = TRUE;
8578 }
8579 }
8580
8581 if (SGI_COMPAT (abfd))
8582 mips_elf_hash_table (info)->compact_rel_size +=
8583 sizeof (Elf32_External_crinfo);
8584 break;
8585
8586 case R_MIPS_26:
8587 case R_MIPS_GPREL16:
8588 case R_MIPS_LITERAL:
8589 case R_MIPS_GPREL32:
8590 case R_MICROMIPS_26_S1:
8591 case R_MICROMIPS_GPREL16:
8592 case R_MICROMIPS_LITERAL:
8593 case R_MICROMIPS_GPREL7_S2:
8594 if (SGI_COMPAT (abfd))
8595 mips_elf_hash_table (info)->compact_rel_size +=
8596 sizeof (Elf32_External_crinfo);
8597 break;
8598
8599 /* This relocation describes the C++ object vtable hierarchy.
8600 Reconstruct it for later use during GC. */
8601 case R_MIPS_GNU_VTINHERIT:
8602 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8603 return FALSE;
8604 break;
8605
8606 /* This relocation describes which C++ vtable entries are actually
8607 used. Record for later use during GC. */
8608 case R_MIPS_GNU_VTENTRY:
8609 BFD_ASSERT (h != NULL);
8610 if (h != NULL
8611 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8612 return FALSE;
8613 break;
8614
8615 default:
8616 break;
8617 }
8618
8619 /* Record the need for a PLT entry. At this point we don't know
8620 yet if we are going to create a PLT in the first place, but
8621 we only record whether the relocation requires a standard MIPS
8622 or a compressed code entry anyway. If we don't make a PLT after
8623 all, then we'll just ignore these arrangements. Likewise if
8624 a PLT entry is not created because the symbol is satisfied
8625 locally. */
8626 if (h != NULL
8627 && jal_reloc_p (r_type)
8628 && !SYMBOL_CALLS_LOCAL (info, h))
8629 {
8630 if (h->plt.plist == NULL)
8631 h->plt.plist = mips_elf_make_plt_record (abfd);
8632 if (h->plt.plist == NULL)
8633 return FALSE;
8634
8635 if (r_type == R_MIPS_26)
8636 h->plt.plist->need_mips = TRUE;
8637 else
8638 h->plt.plist->need_comp = TRUE;
8639 }
8640
8641 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8642 if there is one. We only need to handle global symbols here;
8643 we decide whether to keep or delete stubs for local symbols
8644 when processing the stub's relocations. */
8645 if (h != NULL
8646 && !mips16_call_reloc_p (r_type)
8647 && !section_allows_mips16_refs_p (sec))
8648 {
8649 struct mips_elf_link_hash_entry *mh;
8650
8651 mh = (struct mips_elf_link_hash_entry *) h;
8652 mh->need_fn_stub = TRUE;
8653 }
8654
8655 /* Refuse some position-dependent relocations when creating a
8656 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8657 not PIC, but we can create dynamic relocations and the result
8658 will be fine. Also do not refuse R_MIPS_LO16, which can be
8659 combined with R_MIPS_GOT16. */
8660 if (info->shared)
8661 {
8662 switch (r_type)
8663 {
8664 case R_MIPS16_HI16:
8665 case R_MIPS_HI16:
8666 case R_MIPS_HIGHER:
8667 case R_MIPS_HIGHEST:
8668 case R_MICROMIPS_HI16:
8669 case R_MICROMIPS_HIGHER:
8670 case R_MICROMIPS_HIGHEST:
8671 /* Don't refuse a high part relocation if it's against
8672 no symbol (e.g. part of a compound relocation). */
8673 if (r_symndx == STN_UNDEF)
8674 break;
8675
8676 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8677 and has a special meaning. */
8678 if (!NEWABI_P (abfd) && h != NULL
8679 && strcmp (h->root.root.string, "_gp_disp") == 0)
8680 break;
8681
8682 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8683 if (is_gott_symbol (info, h))
8684 break;
8685
8686 /* FALLTHROUGH */
8687
8688 case R_MIPS16_26:
8689 case R_MIPS_26:
8690 case R_MICROMIPS_26_S1:
8691 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8692 (*_bfd_error_handler)
8693 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8694 abfd, howto->name,
8695 (h) ? h->root.root.string : "a local symbol");
8696 bfd_set_error (bfd_error_bad_value);
8697 return FALSE;
8698 default:
8699 break;
8700 }
8701 }
8702 }
8703
8704 return TRUE;
8705 }
8706 \f
8707 bfd_boolean
8708 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8709 struct bfd_link_info *link_info,
8710 bfd_boolean *again)
8711 {
8712 Elf_Internal_Rela *internal_relocs;
8713 Elf_Internal_Rela *irel, *irelend;
8714 Elf_Internal_Shdr *symtab_hdr;
8715 bfd_byte *contents = NULL;
8716 size_t extsymoff;
8717 bfd_boolean changed_contents = FALSE;
8718 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8719 Elf_Internal_Sym *isymbuf = NULL;
8720
8721 /* We are not currently changing any sizes, so only one pass. */
8722 *again = FALSE;
8723
8724 if (link_info->relocatable)
8725 return TRUE;
8726
8727 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8728 link_info->keep_memory);
8729 if (internal_relocs == NULL)
8730 return TRUE;
8731
8732 irelend = internal_relocs + sec->reloc_count
8733 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8734 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8735 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8736
8737 for (irel = internal_relocs; irel < irelend; irel++)
8738 {
8739 bfd_vma symval;
8740 bfd_signed_vma sym_offset;
8741 unsigned int r_type;
8742 unsigned long r_symndx;
8743 asection *sym_sec;
8744 unsigned long instruction;
8745
8746 /* Turn jalr into bgezal, and jr into beq, if they're marked
8747 with a JALR relocation, that indicate where they jump to.
8748 This saves some pipeline bubbles. */
8749 r_type = ELF_R_TYPE (abfd, irel->r_info);
8750 if (r_type != R_MIPS_JALR)
8751 continue;
8752
8753 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8754 /* Compute the address of the jump target. */
8755 if (r_symndx >= extsymoff)
8756 {
8757 struct mips_elf_link_hash_entry *h
8758 = ((struct mips_elf_link_hash_entry *)
8759 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8760
8761 while (h->root.root.type == bfd_link_hash_indirect
8762 || h->root.root.type == bfd_link_hash_warning)
8763 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8764
8765 /* If a symbol is undefined, or if it may be overridden,
8766 skip it. */
8767 if (! ((h->root.root.type == bfd_link_hash_defined
8768 || h->root.root.type == bfd_link_hash_defweak)
8769 && h->root.root.u.def.section)
8770 || (link_info->shared && ! link_info->symbolic
8771 && !h->root.forced_local))
8772 continue;
8773
8774 sym_sec = h->root.root.u.def.section;
8775 if (sym_sec->output_section)
8776 symval = (h->root.root.u.def.value
8777 + sym_sec->output_section->vma
8778 + sym_sec->output_offset);
8779 else
8780 symval = h->root.root.u.def.value;
8781 }
8782 else
8783 {
8784 Elf_Internal_Sym *isym;
8785
8786 /* Read this BFD's symbols if we haven't done so already. */
8787 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8788 {
8789 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8790 if (isymbuf == NULL)
8791 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8792 symtab_hdr->sh_info, 0,
8793 NULL, NULL, NULL);
8794 if (isymbuf == NULL)
8795 goto relax_return;
8796 }
8797
8798 isym = isymbuf + r_symndx;
8799 if (isym->st_shndx == SHN_UNDEF)
8800 continue;
8801 else if (isym->st_shndx == SHN_ABS)
8802 sym_sec = bfd_abs_section_ptr;
8803 else if (isym->st_shndx == SHN_COMMON)
8804 sym_sec = bfd_com_section_ptr;
8805 else
8806 sym_sec
8807 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8808 symval = isym->st_value
8809 + sym_sec->output_section->vma
8810 + sym_sec->output_offset;
8811 }
8812
8813 /* Compute branch offset, from delay slot of the jump to the
8814 branch target. */
8815 sym_offset = (symval + irel->r_addend)
8816 - (sec_start + irel->r_offset + 4);
8817
8818 /* Branch offset must be properly aligned. */
8819 if ((sym_offset & 3) != 0)
8820 continue;
8821
8822 sym_offset >>= 2;
8823
8824 /* Check that it's in range. */
8825 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8826 continue;
8827
8828 /* Get the section contents if we haven't done so already. */
8829 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8830 goto relax_return;
8831
8832 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8833
8834 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8835 if ((instruction & 0xfc1fffff) == 0x0000f809)
8836 instruction = 0x04110000;
8837 /* If it was jr <reg>, turn it into b <target>. */
8838 else if ((instruction & 0xfc1fffff) == 0x00000008)
8839 instruction = 0x10000000;
8840 else
8841 continue;
8842
8843 instruction |= (sym_offset & 0xffff);
8844 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8845 changed_contents = TRUE;
8846 }
8847
8848 if (contents != NULL
8849 && elf_section_data (sec)->this_hdr.contents != contents)
8850 {
8851 if (!changed_contents && !link_info->keep_memory)
8852 free (contents);
8853 else
8854 {
8855 /* Cache the section contents for elf_link_input_bfd. */
8856 elf_section_data (sec)->this_hdr.contents = contents;
8857 }
8858 }
8859 return TRUE;
8860
8861 relax_return:
8862 if (contents != NULL
8863 && elf_section_data (sec)->this_hdr.contents != contents)
8864 free (contents);
8865 return FALSE;
8866 }
8867 \f
8868 /* Allocate space for global sym dynamic relocs. */
8869
8870 static bfd_boolean
8871 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8872 {
8873 struct bfd_link_info *info = inf;
8874 bfd *dynobj;
8875 struct mips_elf_link_hash_entry *hmips;
8876 struct mips_elf_link_hash_table *htab;
8877
8878 htab = mips_elf_hash_table (info);
8879 BFD_ASSERT (htab != NULL);
8880
8881 dynobj = elf_hash_table (info)->dynobj;
8882 hmips = (struct mips_elf_link_hash_entry *) h;
8883
8884 /* VxWorks executables are handled elsewhere; we only need to
8885 allocate relocations in shared objects. */
8886 if (htab->is_vxworks && !info->shared)
8887 return TRUE;
8888
8889 /* Ignore indirect symbols. All relocations against such symbols
8890 will be redirected to the target symbol. */
8891 if (h->root.type == bfd_link_hash_indirect)
8892 return TRUE;
8893
8894 /* If this symbol is defined in a dynamic object, or we are creating
8895 a shared library, we will need to copy any R_MIPS_32 or
8896 R_MIPS_REL32 relocs against it into the output file. */
8897 if (! info->relocatable
8898 && hmips->possibly_dynamic_relocs != 0
8899 && (h->root.type == bfd_link_hash_defweak
8900 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8901 || info->shared))
8902 {
8903 bfd_boolean do_copy = TRUE;
8904
8905 if (h->root.type == bfd_link_hash_undefweak)
8906 {
8907 /* Do not copy relocations for undefined weak symbols with
8908 non-default visibility. */
8909 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8910 do_copy = FALSE;
8911
8912 /* Make sure undefined weak symbols are output as a dynamic
8913 symbol in PIEs. */
8914 else if (h->dynindx == -1 && !h->forced_local)
8915 {
8916 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8917 return FALSE;
8918 }
8919 }
8920
8921 if (do_copy)
8922 {
8923 /* Even though we don't directly need a GOT entry for this symbol,
8924 the SVR4 psABI requires it to have a dynamic symbol table
8925 index greater that DT_MIPS_GOTSYM if there are dynamic
8926 relocations against it.
8927
8928 VxWorks does not enforce the same mapping between the GOT
8929 and the symbol table, so the same requirement does not
8930 apply there. */
8931 if (!htab->is_vxworks)
8932 {
8933 if (hmips->global_got_area > GGA_RELOC_ONLY)
8934 hmips->global_got_area = GGA_RELOC_ONLY;
8935 hmips->got_only_for_calls = FALSE;
8936 }
8937
8938 mips_elf_allocate_dynamic_relocations
8939 (dynobj, info, hmips->possibly_dynamic_relocs);
8940 if (hmips->readonly_reloc)
8941 /* We tell the dynamic linker that there are relocations
8942 against the text segment. */
8943 info->flags |= DF_TEXTREL;
8944 }
8945 }
8946
8947 return TRUE;
8948 }
8949
8950 /* Adjust a symbol defined by a dynamic object and referenced by a
8951 regular object. The current definition is in some section of the
8952 dynamic object, but we're not including those sections. We have to
8953 change the definition to something the rest of the link can
8954 understand. */
8955
8956 bfd_boolean
8957 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8958 struct elf_link_hash_entry *h)
8959 {
8960 bfd *dynobj;
8961 struct mips_elf_link_hash_entry *hmips;
8962 struct mips_elf_link_hash_table *htab;
8963
8964 htab = mips_elf_hash_table (info);
8965 BFD_ASSERT (htab != NULL);
8966
8967 dynobj = elf_hash_table (info)->dynobj;
8968 hmips = (struct mips_elf_link_hash_entry *) h;
8969
8970 /* Make sure we know what is going on here. */
8971 BFD_ASSERT (dynobj != NULL
8972 && (h->needs_plt
8973 || h->u.weakdef != NULL
8974 || (h->def_dynamic
8975 && h->ref_regular
8976 && !h->def_regular)));
8977
8978 hmips = (struct mips_elf_link_hash_entry *) h;
8979
8980 /* If there are call relocations against an externally-defined symbol,
8981 see whether we can create a MIPS lazy-binding stub for it. We can
8982 only do this if all references to the function are through call
8983 relocations, and in that case, the traditional lazy-binding stubs
8984 are much more efficient than PLT entries.
8985
8986 Traditional stubs are only available on SVR4 psABI-based systems;
8987 VxWorks always uses PLTs instead. */
8988 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8989 {
8990 if (! elf_hash_table (info)->dynamic_sections_created)
8991 return TRUE;
8992
8993 /* If this symbol is not defined in a regular file, then set
8994 the symbol to the stub location. This is required to make
8995 function pointers compare as equal between the normal
8996 executable and the shared library. */
8997 if (!h->def_regular)
8998 {
8999 hmips->needs_lazy_stub = TRUE;
9000 htab->lazy_stub_count++;
9001 return TRUE;
9002 }
9003 }
9004 /* As above, VxWorks requires PLT entries for externally-defined
9005 functions that are only accessed through call relocations.
9006
9007 Both VxWorks and non-VxWorks targets also need PLT entries if there
9008 are static-only relocations against an externally-defined function.
9009 This can technically occur for shared libraries if there are
9010 branches to the symbol, although it is unlikely that this will be
9011 used in practice due to the short ranges involved. It can occur
9012 for any relative or absolute relocation in executables; in that
9013 case, the PLT entry becomes the function's canonical address. */
9014 else if (((h->needs_plt && !hmips->no_fn_stub)
9015 || (h->type == STT_FUNC && hmips->has_static_relocs))
9016 && htab->use_plts_and_copy_relocs
9017 && !SYMBOL_CALLS_LOCAL (info, h)
9018 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9019 && h->root.type == bfd_link_hash_undefweak))
9020 {
9021 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9022 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9023
9024 /* If this is the first symbol to need a PLT entry, then make some
9025 basic setup. Also work out PLT entry sizes. We'll need them
9026 for PLT offset calculations. */
9027 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9028 {
9029 BFD_ASSERT (htab->sgotplt->size == 0);
9030 BFD_ASSERT (htab->plt_got_index == 0);
9031
9032 /* If we're using the PLT additions to the psABI, each PLT
9033 entry is 16 bytes and the PLT0 entry is 32 bytes.
9034 Encourage better cache usage by aligning. We do this
9035 lazily to avoid pessimizing traditional objects. */
9036 if (!htab->is_vxworks
9037 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9038 return FALSE;
9039
9040 /* Make sure that .got.plt is word-aligned. We do this lazily
9041 for the same reason as above. */
9042 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9043 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9044 return FALSE;
9045
9046 /* On non-VxWorks targets, the first two entries in .got.plt
9047 are reserved. */
9048 if (!htab->is_vxworks)
9049 htab->plt_got_index
9050 += (get_elf_backend_data (dynobj)->got_header_size
9051 / MIPS_ELF_GOT_SIZE (dynobj));
9052
9053 /* On VxWorks, also allocate room for the header's
9054 .rela.plt.unloaded entries. */
9055 if (htab->is_vxworks && !info->shared)
9056 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9057
9058 /* Now work out the sizes of individual PLT entries. */
9059 if (htab->is_vxworks && info->shared)
9060 htab->plt_mips_entry_size
9061 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9062 else if (htab->is_vxworks)
9063 htab->plt_mips_entry_size
9064 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9065 else if (newabi_p)
9066 htab->plt_mips_entry_size
9067 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9068 else if (!micromips_p)
9069 {
9070 htab->plt_mips_entry_size
9071 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9072 htab->plt_comp_entry_size
9073 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9074 }
9075 else if (htab->insn32)
9076 {
9077 htab->plt_mips_entry_size
9078 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9079 htab->plt_comp_entry_size
9080 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9081 }
9082 else
9083 {
9084 htab->plt_mips_entry_size
9085 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9086 htab->plt_comp_entry_size
9087 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9088 }
9089 }
9090
9091 if (h->plt.plist == NULL)
9092 h->plt.plist = mips_elf_make_plt_record (dynobj);
9093 if (h->plt.plist == NULL)
9094 return FALSE;
9095
9096 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9097 n32 or n64, so always use a standard entry there.
9098
9099 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9100 all MIPS16 calls will go via that stub, and there is no benefit
9101 to having a MIPS16 entry. And in the case of call_stub a
9102 standard entry actually has to be used as the stub ends with a J
9103 instruction. */
9104 if (newabi_p
9105 || htab->is_vxworks
9106 || hmips->call_stub
9107 || hmips->call_fp_stub)
9108 {
9109 h->plt.plist->need_mips = TRUE;
9110 h->plt.plist->need_comp = FALSE;
9111 }
9112
9113 /* Otherwise, if there are no direct calls to the function, we
9114 have a free choice of whether to use standard or compressed
9115 entries. Prefer microMIPS entries if the object is known to
9116 contain microMIPS code, so that it becomes possible to create
9117 pure microMIPS binaries. Prefer standard entries otherwise,
9118 because MIPS16 ones are no smaller and are usually slower. */
9119 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9120 {
9121 if (micromips_p)
9122 h->plt.plist->need_comp = TRUE;
9123 else
9124 h->plt.plist->need_mips = TRUE;
9125 }
9126
9127 if (h->plt.plist->need_mips)
9128 {
9129 h->plt.plist->mips_offset = htab->plt_mips_offset;
9130 htab->plt_mips_offset += htab->plt_mips_entry_size;
9131 }
9132 if (h->plt.plist->need_comp)
9133 {
9134 h->plt.plist->comp_offset = htab->plt_comp_offset;
9135 htab->plt_comp_offset += htab->plt_comp_entry_size;
9136 }
9137
9138 /* Reserve the corresponding .got.plt entry now too. */
9139 h->plt.plist->gotplt_index = htab->plt_got_index++;
9140
9141 /* If the output file has no definition of the symbol, set the
9142 symbol's value to the address of the stub. */
9143 if (!info->shared && !h->def_regular)
9144 hmips->use_plt_entry = TRUE;
9145
9146 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9147 htab->srelplt->size += (htab->is_vxworks
9148 ? MIPS_ELF_RELA_SIZE (dynobj)
9149 : MIPS_ELF_REL_SIZE (dynobj));
9150
9151 /* Make room for the .rela.plt.unloaded relocations. */
9152 if (htab->is_vxworks && !info->shared)
9153 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9154
9155 /* All relocations against this symbol that could have been made
9156 dynamic will now refer to the PLT entry instead. */
9157 hmips->possibly_dynamic_relocs = 0;
9158
9159 return TRUE;
9160 }
9161
9162 /* If this is a weak symbol, and there is a real definition, the
9163 processor independent code will have arranged for us to see the
9164 real definition first, and we can just use the same value. */
9165 if (h->u.weakdef != NULL)
9166 {
9167 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9168 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9169 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9170 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9171 return TRUE;
9172 }
9173
9174 /* Otherwise, there is nothing further to do for symbols defined
9175 in regular objects. */
9176 if (h->def_regular)
9177 return TRUE;
9178
9179 /* There's also nothing more to do if we'll convert all relocations
9180 against this symbol into dynamic relocations. */
9181 if (!hmips->has_static_relocs)
9182 return TRUE;
9183
9184 /* We're now relying on copy relocations. Complain if we have
9185 some that we can't convert. */
9186 if (!htab->use_plts_and_copy_relocs || info->shared)
9187 {
9188 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9189 "dynamic symbol %s"),
9190 h->root.root.string);
9191 bfd_set_error (bfd_error_bad_value);
9192 return FALSE;
9193 }
9194
9195 /* We must allocate the symbol in our .dynbss section, which will
9196 become part of the .bss section of the executable. There will be
9197 an entry for this symbol in the .dynsym section. The dynamic
9198 object will contain position independent code, so all references
9199 from the dynamic object to this symbol will go through the global
9200 offset table. The dynamic linker will use the .dynsym entry to
9201 determine the address it must put in the global offset table, so
9202 both the dynamic object and the regular object will refer to the
9203 same memory location for the variable. */
9204
9205 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9206 {
9207 if (htab->is_vxworks)
9208 htab->srelbss->size += sizeof (Elf32_External_Rela);
9209 else
9210 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9211 h->needs_copy = 1;
9212 }
9213
9214 /* All relocations against this symbol that could have been made
9215 dynamic will now refer to the local copy instead. */
9216 hmips->possibly_dynamic_relocs = 0;
9217
9218 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
9219 }
9220 \f
9221 /* This function is called after all the input files have been read,
9222 and the input sections have been assigned to output sections. We
9223 check for any mips16 stub sections that we can discard. */
9224
9225 bfd_boolean
9226 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9227 struct bfd_link_info *info)
9228 {
9229 asection *sect;
9230 struct mips_elf_link_hash_table *htab;
9231 struct mips_htab_traverse_info hti;
9232
9233 htab = mips_elf_hash_table (info);
9234 BFD_ASSERT (htab != NULL);
9235
9236 /* The .reginfo section has a fixed size. */
9237 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9238 if (sect != NULL)
9239 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9240
9241 /* The .MIPS.abiflags section has a fixed size. */
9242 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9243 if (sect != NULL)
9244 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9245
9246 hti.info = info;
9247 hti.output_bfd = output_bfd;
9248 hti.error = FALSE;
9249 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9250 mips_elf_check_symbols, &hti);
9251 if (hti.error)
9252 return FALSE;
9253
9254 return TRUE;
9255 }
9256
9257 /* If the link uses a GOT, lay it out and work out its size. */
9258
9259 static bfd_boolean
9260 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9261 {
9262 bfd *dynobj;
9263 asection *s;
9264 struct mips_got_info *g;
9265 bfd_size_type loadable_size = 0;
9266 bfd_size_type page_gotno;
9267 bfd *ibfd;
9268 struct mips_elf_traverse_got_arg tga;
9269 struct mips_elf_link_hash_table *htab;
9270
9271 htab = mips_elf_hash_table (info);
9272 BFD_ASSERT (htab != NULL);
9273
9274 s = htab->sgot;
9275 if (s == NULL)
9276 return TRUE;
9277
9278 dynobj = elf_hash_table (info)->dynobj;
9279 g = htab->got_info;
9280
9281 /* Allocate room for the reserved entries. VxWorks always reserves
9282 3 entries; other objects only reserve 2 entries. */
9283 BFD_ASSERT (g->assigned_low_gotno == 0);
9284 if (htab->is_vxworks)
9285 htab->reserved_gotno = 3;
9286 else
9287 htab->reserved_gotno = 2;
9288 g->local_gotno += htab->reserved_gotno;
9289 g->assigned_low_gotno = htab->reserved_gotno;
9290
9291 /* Decide which symbols need to go in the global part of the GOT and
9292 count the number of reloc-only GOT symbols. */
9293 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9294
9295 if (!mips_elf_resolve_final_got_entries (info, g))
9296 return FALSE;
9297
9298 /* Calculate the total loadable size of the output. That
9299 will give us the maximum number of GOT_PAGE entries
9300 required. */
9301 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9302 {
9303 asection *subsection;
9304
9305 for (subsection = ibfd->sections;
9306 subsection;
9307 subsection = subsection->next)
9308 {
9309 if ((subsection->flags & SEC_ALLOC) == 0)
9310 continue;
9311 loadable_size += ((subsection->size + 0xf)
9312 &~ (bfd_size_type) 0xf);
9313 }
9314 }
9315
9316 if (htab->is_vxworks)
9317 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9318 relocations against local symbols evaluate to "G", and the EABI does
9319 not include R_MIPS_GOT_PAGE. */
9320 page_gotno = 0;
9321 else
9322 /* Assume there are two loadable segments consisting of contiguous
9323 sections. Is 5 enough? */
9324 page_gotno = (loadable_size >> 16) + 5;
9325
9326 /* Choose the smaller of the two page estimates; both are intended to be
9327 conservative. */
9328 if (page_gotno > g->page_gotno)
9329 page_gotno = g->page_gotno;
9330
9331 g->local_gotno += page_gotno;
9332 g->assigned_high_gotno = g->local_gotno - 1;
9333
9334 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9335 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9336 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9337
9338 /* VxWorks does not support multiple GOTs. It initializes $gp to
9339 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9340 dynamic loader. */
9341 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9342 {
9343 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9344 return FALSE;
9345 }
9346 else
9347 {
9348 /* Record that all bfds use G. This also has the effect of freeing
9349 the per-bfd GOTs, which we no longer need. */
9350 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9351 if (mips_elf_bfd_got (ibfd, FALSE))
9352 mips_elf_replace_bfd_got (ibfd, g);
9353 mips_elf_replace_bfd_got (output_bfd, g);
9354
9355 /* Set up TLS entries. */
9356 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9357 tga.info = info;
9358 tga.g = g;
9359 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9360 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9361 if (!tga.g)
9362 return FALSE;
9363 BFD_ASSERT (g->tls_assigned_gotno
9364 == g->global_gotno + g->local_gotno + g->tls_gotno);
9365
9366 /* Each VxWorks GOT entry needs an explicit relocation. */
9367 if (htab->is_vxworks && info->shared)
9368 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9369
9370 /* Allocate room for the TLS relocations. */
9371 if (g->relocs)
9372 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9373 }
9374
9375 return TRUE;
9376 }
9377
9378 /* Estimate the size of the .MIPS.stubs section. */
9379
9380 static void
9381 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9382 {
9383 struct mips_elf_link_hash_table *htab;
9384 bfd_size_type dynsymcount;
9385
9386 htab = mips_elf_hash_table (info);
9387 BFD_ASSERT (htab != NULL);
9388
9389 if (htab->lazy_stub_count == 0)
9390 return;
9391
9392 /* IRIX rld assumes that a function stub isn't at the end of the .text
9393 section, so add a dummy entry to the end. */
9394 htab->lazy_stub_count++;
9395
9396 /* Get a worst-case estimate of the number of dynamic symbols needed.
9397 At this point, dynsymcount does not account for section symbols
9398 and count_section_dynsyms may overestimate the number that will
9399 be needed. */
9400 dynsymcount = (elf_hash_table (info)->dynsymcount
9401 + count_section_dynsyms (output_bfd, info));
9402
9403 /* Determine the size of one stub entry. There's no disadvantage
9404 from using microMIPS code here, so for the sake of pure-microMIPS
9405 binaries we prefer it whenever there's any microMIPS code in
9406 output produced at all. This has a benefit of stubs being
9407 shorter by 4 bytes each too, unless in the insn32 mode. */
9408 if (!MICROMIPS_P (output_bfd))
9409 htab->function_stub_size = (dynsymcount > 0x10000
9410 ? MIPS_FUNCTION_STUB_BIG_SIZE
9411 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9412 else if (htab->insn32)
9413 htab->function_stub_size = (dynsymcount > 0x10000
9414 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9415 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9416 else
9417 htab->function_stub_size = (dynsymcount > 0x10000
9418 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9419 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9420
9421 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9422 }
9423
9424 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9425 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9426 stub, allocate an entry in the stubs section. */
9427
9428 static bfd_boolean
9429 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9430 {
9431 struct mips_htab_traverse_info *hti = data;
9432 struct mips_elf_link_hash_table *htab;
9433 struct bfd_link_info *info;
9434 bfd *output_bfd;
9435
9436 info = hti->info;
9437 output_bfd = hti->output_bfd;
9438 htab = mips_elf_hash_table (info);
9439 BFD_ASSERT (htab != NULL);
9440
9441 if (h->needs_lazy_stub)
9442 {
9443 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9444 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9445 bfd_vma isa_bit = micromips_p;
9446
9447 BFD_ASSERT (htab->root.dynobj != NULL);
9448 if (h->root.plt.plist == NULL)
9449 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9450 if (h->root.plt.plist == NULL)
9451 {
9452 hti->error = TRUE;
9453 return FALSE;
9454 }
9455 h->root.root.u.def.section = htab->sstubs;
9456 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9457 h->root.plt.plist->stub_offset = htab->sstubs->size;
9458 h->root.other = other;
9459 htab->sstubs->size += htab->function_stub_size;
9460 }
9461 return TRUE;
9462 }
9463
9464 /* Allocate offsets in the stubs section to each symbol that needs one.
9465 Set the final size of the .MIPS.stub section. */
9466
9467 static bfd_boolean
9468 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9469 {
9470 bfd *output_bfd = info->output_bfd;
9471 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9472 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9473 bfd_vma isa_bit = micromips_p;
9474 struct mips_elf_link_hash_table *htab;
9475 struct mips_htab_traverse_info hti;
9476 struct elf_link_hash_entry *h;
9477 bfd *dynobj;
9478
9479 htab = mips_elf_hash_table (info);
9480 BFD_ASSERT (htab != NULL);
9481
9482 if (htab->lazy_stub_count == 0)
9483 return TRUE;
9484
9485 htab->sstubs->size = 0;
9486 hti.info = info;
9487 hti.output_bfd = output_bfd;
9488 hti.error = FALSE;
9489 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9490 if (hti.error)
9491 return FALSE;
9492 htab->sstubs->size += htab->function_stub_size;
9493 BFD_ASSERT (htab->sstubs->size
9494 == htab->lazy_stub_count * htab->function_stub_size);
9495
9496 dynobj = elf_hash_table (info)->dynobj;
9497 BFD_ASSERT (dynobj != NULL);
9498 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9499 if (h == NULL)
9500 return FALSE;
9501 h->root.u.def.value = isa_bit;
9502 h->other = other;
9503 h->type = STT_FUNC;
9504
9505 return TRUE;
9506 }
9507
9508 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9509 bfd_link_info. If H uses the address of a PLT entry as the value
9510 of the symbol, then set the entry in the symbol table now. Prefer
9511 a standard MIPS PLT entry. */
9512
9513 static bfd_boolean
9514 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9515 {
9516 struct bfd_link_info *info = data;
9517 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9518 struct mips_elf_link_hash_table *htab;
9519 unsigned int other;
9520 bfd_vma isa_bit;
9521 bfd_vma val;
9522
9523 htab = mips_elf_hash_table (info);
9524 BFD_ASSERT (htab != NULL);
9525
9526 if (h->use_plt_entry)
9527 {
9528 BFD_ASSERT (h->root.plt.plist != NULL);
9529 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9530 || h->root.plt.plist->comp_offset != MINUS_ONE);
9531
9532 val = htab->plt_header_size;
9533 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9534 {
9535 isa_bit = 0;
9536 val += h->root.plt.plist->mips_offset;
9537 other = 0;
9538 }
9539 else
9540 {
9541 isa_bit = 1;
9542 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9543 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9544 }
9545 val += isa_bit;
9546 /* For VxWorks, point at the PLT load stub rather than the lazy
9547 resolution stub; this stub will become the canonical function
9548 address. */
9549 if (htab->is_vxworks)
9550 val += 8;
9551
9552 h->root.root.u.def.section = htab->splt;
9553 h->root.root.u.def.value = val;
9554 h->root.other = other;
9555 }
9556
9557 return TRUE;
9558 }
9559
9560 /* Set the sizes of the dynamic sections. */
9561
9562 bfd_boolean
9563 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9564 struct bfd_link_info *info)
9565 {
9566 bfd *dynobj;
9567 asection *s, *sreldyn;
9568 bfd_boolean reltext;
9569 struct mips_elf_link_hash_table *htab;
9570
9571 htab = mips_elf_hash_table (info);
9572 BFD_ASSERT (htab != NULL);
9573 dynobj = elf_hash_table (info)->dynobj;
9574 BFD_ASSERT (dynobj != NULL);
9575
9576 if (elf_hash_table (info)->dynamic_sections_created)
9577 {
9578 /* Set the contents of the .interp section to the interpreter. */
9579 if (info->executable)
9580 {
9581 s = bfd_get_linker_section (dynobj, ".interp");
9582 BFD_ASSERT (s != NULL);
9583 s->size
9584 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9585 s->contents
9586 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9587 }
9588
9589 /* Figure out the size of the PLT header if we know that we
9590 are using it. For the sake of cache alignment always use
9591 a standard header whenever any standard entries are present
9592 even if microMIPS entries are present as well. This also
9593 lets the microMIPS header rely on the value of $v0 only set
9594 by microMIPS entries, for a small size reduction.
9595
9596 Set symbol table entry values for symbols that use the
9597 address of their PLT entry now that we can calculate it.
9598
9599 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9600 haven't already in _bfd_elf_create_dynamic_sections. */
9601 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9602 {
9603 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9604 && !htab->plt_mips_offset);
9605 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9606 bfd_vma isa_bit = micromips_p;
9607 struct elf_link_hash_entry *h;
9608 bfd_vma size;
9609
9610 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9611 BFD_ASSERT (htab->sgotplt->size == 0);
9612 BFD_ASSERT (htab->splt->size == 0);
9613
9614 if (htab->is_vxworks && info->shared)
9615 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9616 else if (htab->is_vxworks)
9617 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9618 else if (ABI_64_P (output_bfd))
9619 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9620 else if (ABI_N32_P (output_bfd))
9621 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9622 else if (!micromips_p)
9623 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9624 else if (htab->insn32)
9625 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9626 else
9627 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9628
9629 htab->plt_header_is_comp = micromips_p;
9630 htab->plt_header_size = size;
9631 htab->splt->size = (size
9632 + htab->plt_mips_offset
9633 + htab->plt_comp_offset);
9634 htab->sgotplt->size = (htab->plt_got_index
9635 * MIPS_ELF_GOT_SIZE (dynobj));
9636
9637 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9638
9639 if (htab->root.hplt == NULL)
9640 {
9641 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9642 "_PROCEDURE_LINKAGE_TABLE_");
9643 htab->root.hplt = h;
9644 if (h == NULL)
9645 return FALSE;
9646 }
9647
9648 h = htab->root.hplt;
9649 h->root.u.def.value = isa_bit;
9650 h->other = other;
9651 h->type = STT_FUNC;
9652 }
9653 }
9654
9655 /* Allocate space for global sym dynamic relocs. */
9656 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9657
9658 mips_elf_estimate_stub_size (output_bfd, info);
9659
9660 if (!mips_elf_lay_out_got (output_bfd, info))
9661 return FALSE;
9662
9663 mips_elf_lay_out_lazy_stubs (info);
9664
9665 /* The check_relocs and adjust_dynamic_symbol entry points have
9666 determined the sizes of the various dynamic sections. Allocate
9667 memory for them. */
9668 reltext = FALSE;
9669 for (s = dynobj->sections; s != NULL; s = s->next)
9670 {
9671 const char *name;
9672
9673 /* It's OK to base decisions on the section name, because none
9674 of the dynobj section names depend upon the input files. */
9675 name = bfd_get_section_name (dynobj, s);
9676
9677 if ((s->flags & SEC_LINKER_CREATED) == 0)
9678 continue;
9679
9680 if (CONST_STRNEQ (name, ".rel"))
9681 {
9682 if (s->size != 0)
9683 {
9684 const char *outname;
9685 asection *target;
9686
9687 /* If this relocation section applies to a read only
9688 section, then we probably need a DT_TEXTREL entry.
9689 If the relocation section is .rel(a).dyn, we always
9690 assert a DT_TEXTREL entry rather than testing whether
9691 there exists a relocation to a read only section or
9692 not. */
9693 outname = bfd_get_section_name (output_bfd,
9694 s->output_section);
9695 target = bfd_get_section_by_name (output_bfd, outname + 4);
9696 if ((target != NULL
9697 && (target->flags & SEC_READONLY) != 0
9698 && (target->flags & SEC_ALLOC) != 0)
9699 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9700 reltext = TRUE;
9701
9702 /* We use the reloc_count field as a counter if we need
9703 to copy relocs into the output file. */
9704 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9705 s->reloc_count = 0;
9706
9707 /* If combreloc is enabled, elf_link_sort_relocs() will
9708 sort relocations, but in a different way than we do,
9709 and before we're done creating relocations. Also, it
9710 will move them around between input sections'
9711 relocation's contents, so our sorting would be
9712 broken, so don't let it run. */
9713 info->combreloc = 0;
9714 }
9715 }
9716 else if (! info->shared
9717 && ! mips_elf_hash_table (info)->use_rld_obj_head
9718 && CONST_STRNEQ (name, ".rld_map"))
9719 {
9720 /* We add a room for __rld_map. It will be filled in by the
9721 rtld to contain a pointer to the _r_debug structure. */
9722 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9723 }
9724 else if (SGI_COMPAT (output_bfd)
9725 && CONST_STRNEQ (name, ".compact_rel"))
9726 s->size += mips_elf_hash_table (info)->compact_rel_size;
9727 else if (s == htab->splt)
9728 {
9729 /* If the last PLT entry has a branch delay slot, allocate
9730 room for an extra nop to fill the delay slot. This is
9731 for CPUs without load interlocking. */
9732 if (! LOAD_INTERLOCKS_P (output_bfd)
9733 && ! htab->is_vxworks && s->size > 0)
9734 s->size += 4;
9735 }
9736 else if (! CONST_STRNEQ (name, ".init")
9737 && s != htab->sgot
9738 && s != htab->sgotplt
9739 && s != htab->sstubs
9740 && s != htab->sdynbss)
9741 {
9742 /* It's not one of our sections, so don't allocate space. */
9743 continue;
9744 }
9745
9746 if (s->size == 0)
9747 {
9748 s->flags |= SEC_EXCLUDE;
9749 continue;
9750 }
9751
9752 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9753 continue;
9754
9755 /* Allocate memory for the section contents. */
9756 s->contents = bfd_zalloc (dynobj, s->size);
9757 if (s->contents == NULL)
9758 {
9759 bfd_set_error (bfd_error_no_memory);
9760 return FALSE;
9761 }
9762 }
9763
9764 if (elf_hash_table (info)->dynamic_sections_created)
9765 {
9766 /* Add some entries to the .dynamic section. We fill in the
9767 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9768 must add the entries now so that we get the correct size for
9769 the .dynamic section. */
9770
9771 /* SGI object has the equivalence of DT_DEBUG in the
9772 DT_MIPS_RLD_MAP entry. This must come first because glibc
9773 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9774 may only look at the first one they see. */
9775 if (!info->shared
9776 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9777 return FALSE;
9778
9779 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9780 used by the debugger. */
9781 if (info->executable
9782 && !SGI_COMPAT (output_bfd)
9783 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9784 return FALSE;
9785
9786 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9787 info->flags |= DF_TEXTREL;
9788
9789 if ((info->flags & DF_TEXTREL) != 0)
9790 {
9791 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9792 return FALSE;
9793
9794 /* Clear the DF_TEXTREL flag. It will be set again if we
9795 write out an actual text relocation; we may not, because
9796 at this point we do not know whether e.g. any .eh_frame
9797 absolute relocations have been converted to PC-relative. */
9798 info->flags &= ~DF_TEXTREL;
9799 }
9800
9801 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9802 return FALSE;
9803
9804 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9805 if (htab->is_vxworks)
9806 {
9807 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9808 use any of the DT_MIPS_* tags. */
9809 if (sreldyn && sreldyn->size > 0)
9810 {
9811 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9812 return FALSE;
9813
9814 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9815 return FALSE;
9816
9817 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9818 return FALSE;
9819 }
9820 }
9821 else
9822 {
9823 if (sreldyn && sreldyn->size > 0)
9824 {
9825 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9826 return FALSE;
9827
9828 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9829 return FALSE;
9830
9831 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9832 return FALSE;
9833 }
9834
9835 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9836 return FALSE;
9837
9838 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9839 return FALSE;
9840
9841 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9842 return FALSE;
9843
9844 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9845 return FALSE;
9846
9847 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9848 return FALSE;
9849
9850 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9851 return FALSE;
9852
9853 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9854 return FALSE;
9855
9856 if (IRIX_COMPAT (dynobj) == ict_irix5
9857 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9858 return FALSE;
9859
9860 if (IRIX_COMPAT (dynobj) == ict_irix6
9861 && (bfd_get_section_by_name
9862 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9863 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9864 return FALSE;
9865 }
9866 if (htab->splt->size > 0)
9867 {
9868 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9869 return FALSE;
9870
9871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9872 return FALSE;
9873
9874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9875 return FALSE;
9876
9877 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9878 return FALSE;
9879 }
9880 if (htab->is_vxworks
9881 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9882 return FALSE;
9883 }
9884
9885 return TRUE;
9886 }
9887 \f
9888 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9889 Adjust its R_ADDEND field so that it is correct for the output file.
9890 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9891 and sections respectively; both use symbol indexes. */
9892
9893 static void
9894 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9895 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9896 asection **local_sections, Elf_Internal_Rela *rel)
9897 {
9898 unsigned int r_type, r_symndx;
9899 Elf_Internal_Sym *sym;
9900 asection *sec;
9901
9902 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9903 {
9904 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9905 if (gprel16_reloc_p (r_type)
9906 || r_type == R_MIPS_GPREL32
9907 || literal_reloc_p (r_type))
9908 {
9909 rel->r_addend += _bfd_get_gp_value (input_bfd);
9910 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9911 }
9912
9913 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9914 sym = local_syms + r_symndx;
9915
9916 /* Adjust REL's addend to account for section merging. */
9917 if (!info->relocatable)
9918 {
9919 sec = local_sections[r_symndx];
9920 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9921 }
9922
9923 /* This would normally be done by the rela_normal code in elflink.c. */
9924 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9925 rel->r_addend += local_sections[r_symndx]->output_offset;
9926 }
9927 }
9928
9929 /* Handle relocations against symbols from removed linkonce sections,
9930 or sections discarded by a linker script. We use this wrapper around
9931 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9932 on 64-bit ELF targets. In this case for any relocation handled, which
9933 always be the first in a triplet, the remaining two have to be processed
9934 together with the first, even if they are R_MIPS_NONE. It is the symbol
9935 index referred by the first reloc that applies to all the three and the
9936 remaining two never refer to an object symbol. And it is the final
9937 relocation (the last non-null one) that determines the output field of
9938 the whole relocation so retrieve the corresponding howto structure for
9939 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9940
9941 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9942 and therefore requires to be pasted in a loop. It also defines a block
9943 and does not protect any of its arguments, hence the extra brackets. */
9944
9945 static void
9946 mips_reloc_against_discarded_section (bfd *output_bfd,
9947 struct bfd_link_info *info,
9948 bfd *input_bfd, asection *input_section,
9949 Elf_Internal_Rela **rel,
9950 const Elf_Internal_Rela **relend,
9951 bfd_boolean rel_reloc,
9952 reloc_howto_type *howto,
9953 bfd_byte *contents)
9954 {
9955 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9956 int count = bed->s->int_rels_per_ext_rel;
9957 unsigned int r_type;
9958 int i;
9959
9960 for (i = count - 1; i > 0; i--)
9961 {
9962 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9963 if (r_type != R_MIPS_NONE)
9964 {
9965 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9966 break;
9967 }
9968 }
9969 do
9970 {
9971 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9972 (*rel), count, (*relend),
9973 howto, i, contents);
9974 }
9975 while (0);
9976 }
9977
9978 /* Relocate a MIPS ELF section. */
9979
9980 bfd_boolean
9981 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9982 bfd *input_bfd, asection *input_section,
9983 bfd_byte *contents, Elf_Internal_Rela *relocs,
9984 Elf_Internal_Sym *local_syms,
9985 asection **local_sections)
9986 {
9987 Elf_Internal_Rela *rel;
9988 const Elf_Internal_Rela *relend;
9989 bfd_vma addend = 0;
9990 bfd_boolean use_saved_addend_p = FALSE;
9991 const struct elf_backend_data *bed;
9992
9993 bed = get_elf_backend_data (output_bfd);
9994 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9995 for (rel = relocs; rel < relend; ++rel)
9996 {
9997 const char *name;
9998 bfd_vma value = 0;
9999 reloc_howto_type *howto;
10000 bfd_boolean cross_mode_jump_p = FALSE;
10001 /* TRUE if the relocation is a RELA relocation, rather than a
10002 REL relocation. */
10003 bfd_boolean rela_relocation_p = TRUE;
10004 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10005 const char *msg;
10006 unsigned long r_symndx;
10007 asection *sec;
10008 Elf_Internal_Shdr *symtab_hdr;
10009 struct elf_link_hash_entry *h;
10010 bfd_boolean rel_reloc;
10011
10012 rel_reloc = (NEWABI_P (input_bfd)
10013 && mips_elf_rel_relocation_p (input_bfd, input_section,
10014 relocs, rel));
10015 /* Find the relocation howto for this relocation. */
10016 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10017
10018 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10019 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10020 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10021 {
10022 sec = local_sections[r_symndx];
10023 h = NULL;
10024 }
10025 else
10026 {
10027 unsigned long extsymoff;
10028
10029 extsymoff = 0;
10030 if (!elf_bad_symtab (input_bfd))
10031 extsymoff = symtab_hdr->sh_info;
10032 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10033 while (h->root.type == bfd_link_hash_indirect
10034 || h->root.type == bfd_link_hash_warning)
10035 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10036
10037 sec = NULL;
10038 if (h->root.type == bfd_link_hash_defined
10039 || h->root.type == bfd_link_hash_defweak)
10040 sec = h->root.u.def.section;
10041 }
10042
10043 if (sec != NULL && discarded_section (sec))
10044 {
10045 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10046 input_section, &rel, &relend,
10047 rel_reloc, howto, contents);
10048 continue;
10049 }
10050
10051 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10052 {
10053 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10054 64-bit code, but make sure all their addresses are in the
10055 lowermost or uppermost 32-bit section of the 64-bit address
10056 space. Thus, when they use an R_MIPS_64 they mean what is
10057 usually meant by R_MIPS_32, with the exception that the
10058 stored value is sign-extended to 64 bits. */
10059 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10060
10061 /* On big-endian systems, we need to lie about the position
10062 of the reloc. */
10063 if (bfd_big_endian (input_bfd))
10064 rel->r_offset += 4;
10065 }
10066
10067 if (!use_saved_addend_p)
10068 {
10069 /* If these relocations were originally of the REL variety,
10070 we must pull the addend out of the field that will be
10071 relocated. Otherwise, we simply use the contents of the
10072 RELA relocation. */
10073 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10074 relocs, rel))
10075 {
10076 rela_relocation_p = FALSE;
10077 addend = mips_elf_read_rel_addend (input_bfd, rel,
10078 howto, contents);
10079 if (hi16_reloc_p (r_type)
10080 || (got16_reloc_p (r_type)
10081 && mips_elf_local_relocation_p (input_bfd, rel,
10082 local_sections)))
10083 {
10084 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10085 contents, &addend))
10086 {
10087 if (h)
10088 name = h->root.root.string;
10089 else
10090 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10091 local_syms + r_symndx,
10092 sec);
10093 (*_bfd_error_handler)
10094 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10095 input_bfd, input_section, name, howto->name,
10096 rel->r_offset);
10097 }
10098 }
10099 else
10100 addend <<= howto->rightshift;
10101 }
10102 else
10103 addend = rel->r_addend;
10104 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10105 local_syms, local_sections, rel);
10106 }
10107
10108 if (info->relocatable)
10109 {
10110 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10111 && bfd_big_endian (input_bfd))
10112 rel->r_offset -= 4;
10113
10114 if (!rela_relocation_p && rel->r_addend)
10115 {
10116 addend += rel->r_addend;
10117 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10118 addend = mips_elf_high (addend);
10119 else if (r_type == R_MIPS_HIGHER)
10120 addend = mips_elf_higher (addend);
10121 else if (r_type == R_MIPS_HIGHEST)
10122 addend = mips_elf_highest (addend);
10123 else
10124 addend >>= howto->rightshift;
10125
10126 /* We use the source mask, rather than the destination
10127 mask because the place to which we are writing will be
10128 source of the addend in the final link. */
10129 addend &= howto->src_mask;
10130
10131 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10132 /* See the comment above about using R_MIPS_64 in the 32-bit
10133 ABI. Here, we need to update the addend. It would be
10134 possible to get away with just using the R_MIPS_32 reloc
10135 but for endianness. */
10136 {
10137 bfd_vma sign_bits;
10138 bfd_vma low_bits;
10139 bfd_vma high_bits;
10140
10141 if (addend & ((bfd_vma) 1 << 31))
10142 #ifdef BFD64
10143 sign_bits = ((bfd_vma) 1 << 32) - 1;
10144 #else
10145 sign_bits = -1;
10146 #endif
10147 else
10148 sign_bits = 0;
10149
10150 /* If we don't know that we have a 64-bit type,
10151 do two separate stores. */
10152 if (bfd_big_endian (input_bfd))
10153 {
10154 /* Store the sign-bits (which are most significant)
10155 first. */
10156 low_bits = sign_bits;
10157 high_bits = addend;
10158 }
10159 else
10160 {
10161 low_bits = addend;
10162 high_bits = sign_bits;
10163 }
10164 bfd_put_32 (input_bfd, low_bits,
10165 contents + rel->r_offset);
10166 bfd_put_32 (input_bfd, high_bits,
10167 contents + rel->r_offset + 4);
10168 continue;
10169 }
10170
10171 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10172 input_bfd, input_section,
10173 contents, FALSE))
10174 return FALSE;
10175 }
10176
10177 /* Go on to the next relocation. */
10178 continue;
10179 }
10180
10181 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10182 relocations for the same offset. In that case we are
10183 supposed to treat the output of each relocation as the addend
10184 for the next. */
10185 if (rel + 1 < relend
10186 && rel->r_offset == rel[1].r_offset
10187 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10188 use_saved_addend_p = TRUE;
10189 else
10190 use_saved_addend_p = FALSE;
10191
10192 /* Figure out what value we are supposed to relocate. */
10193 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10194 input_section, info, rel,
10195 addend, howto, local_syms,
10196 local_sections, &value,
10197 &name, &cross_mode_jump_p,
10198 use_saved_addend_p))
10199 {
10200 case bfd_reloc_continue:
10201 /* There's nothing to do. */
10202 continue;
10203
10204 case bfd_reloc_undefined:
10205 /* mips_elf_calculate_relocation already called the
10206 undefined_symbol callback. There's no real point in
10207 trying to perform the relocation at this point, so we
10208 just skip ahead to the next relocation. */
10209 continue;
10210
10211 case bfd_reloc_notsupported:
10212 msg = _("internal error: unsupported relocation error");
10213 info->callbacks->warning
10214 (info, msg, name, input_bfd, input_section, rel->r_offset);
10215 return FALSE;
10216
10217 case bfd_reloc_overflow:
10218 if (use_saved_addend_p)
10219 /* Ignore overflow until we reach the last relocation for
10220 a given location. */
10221 ;
10222 else
10223 {
10224 struct mips_elf_link_hash_table *htab;
10225
10226 htab = mips_elf_hash_table (info);
10227 BFD_ASSERT (htab != NULL);
10228 BFD_ASSERT (name != NULL);
10229 if (!htab->small_data_overflow_reported
10230 && (gprel16_reloc_p (howto->type)
10231 || literal_reloc_p (howto->type)))
10232 {
10233 msg = _("small-data section exceeds 64KB;"
10234 " lower small-data size limit (see option -G)");
10235
10236 htab->small_data_overflow_reported = TRUE;
10237 (*info->callbacks->einfo) ("%P: %s\n", msg);
10238 }
10239 if (! ((*info->callbacks->reloc_overflow)
10240 (info, NULL, name, howto->name, (bfd_vma) 0,
10241 input_bfd, input_section, rel->r_offset)))
10242 return FALSE;
10243 }
10244 break;
10245
10246 case bfd_reloc_ok:
10247 break;
10248
10249 case bfd_reloc_outofrange:
10250 if (jal_reloc_p (howto->type))
10251 {
10252 msg = _("JALX to a non-word-aligned address");
10253 info->callbacks->warning
10254 (info, msg, name, input_bfd, input_section, rel->r_offset);
10255 return FALSE;
10256 }
10257 if (aligned_pcrel_reloc_p (howto->type))
10258 {
10259 msg = _("PC-relative load from unaligned address");
10260 info->callbacks->warning
10261 (info, msg, name, input_bfd, input_section, rel->r_offset);
10262 return FALSE;
10263 }
10264 /* Fall through. */
10265
10266 default:
10267 abort ();
10268 break;
10269 }
10270
10271 /* If we've got another relocation for the address, keep going
10272 until we reach the last one. */
10273 if (use_saved_addend_p)
10274 {
10275 addend = value;
10276 continue;
10277 }
10278
10279 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10280 /* See the comment above about using R_MIPS_64 in the 32-bit
10281 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10282 that calculated the right value. Now, however, we
10283 sign-extend the 32-bit result to 64-bits, and store it as a
10284 64-bit value. We are especially generous here in that we
10285 go to extreme lengths to support this usage on systems with
10286 only a 32-bit VMA. */
10287 {
10288 bfd_vma sign_bits;
10289 bfd_vma low_bits;
10290 bfd_vma high_bits;
10291
10292 if (value & ((bfd_vma) 1 << 31))
10293 #ifdef BFD64
10294 sign_bits = ((bfd_vma) 1 << 32) - 1;
10295 #else
10296 sign_bits = -1;
10297 #endif
10298 else
10299 sign_bits = 0;
10300
10301 /* If we don't know that we have a 64-bit type,
10302 do two separate stores. */
10303 if (bfd_big_endian (input_bfd))
10304 {
10305 /* Undo what we did above. */
10306 rel->r_offset -= 4;
10307 /* Store the sign-bits (which are most significant)
10308 first. */
10309 low_bits = sign_bits;
10310 high_bits = value;
10311 }
10312 else
10313 {
10314 low_bits = value;
10315 high_bits = sign_bits;
10316 }
10317 bfd_put_32 (input_bfd, low_bits,
10318 contents + rel->r_offset);
10319 bfd_put_32 (input_bfd, high_bits,
10320 contents + rel->r_offset + 4);
10321 continue;
10322 }
10323
10324 /* Actually perform the relocation. */
10325 if (! mips_elf_perform_relocation (info, howto, rel, value,
10326 input_bfd, input_section,
10327 contents, cross_mode_jump_p))
10328 return FALSE;
10329 }
10330
10331 return TRUE;
10332 }
10333 \f
10334 /* A function that iterates over each entry in la25_stubs and fills
10335 in the code for each one. DATA points to a mips_htab_traverse_info. */
10336
10337 static int
10338 mips_elf_create_la25_stub (void **slot, void *data)
10339 {
10340 struct mips_htab_traverse_info *hti;
10341 struct mips_elf_link_hash_table *htab;
10342 struct mips_elf_la25_stub *stub;
10343 asection *s;
10344 bfd_byte *loc;
10345 bfd_vma offset, target, target_high, target_low;
10346
10347 stub = (struct mips_elf_la25_stub *) *slot;
10348 hti = (struct mips_htab_traverse_info *) data;
10349 htab = mips_elf_hash_table (hti->info);
10350 BFD_ASSERT (htab != NULL);
10351
10352 /* Create the section contents, if we haven't already. */
10353 s = stub->stub_section;
10354 loc = s->contents;
10355 if (loc == NULL)
10356 {
10357 loc = bfd_malloc (s->size);
10358 if (loc == NULL)
10359 {
10360 hti->error = TRUE;
10361 return FALSE;
10362 }
10363 s->contents = loc;
10364 }
10365
10366 /* Work out where in the section this stub should go. */
10367 offset = stub->offset;
10368
10369 /* Work out the target address. */
10370 target = mips_elf_get_la25_target (stub, &s);
10371 target += s->output_section->vma + s->output_offset;
10372
10373 target_high = ((target + 0x8000) >> 16) & 0xffff;
10374 target_low = (target & 0xffff);
10375
10376 if (stub->stub_section != htab->strampoline)
10377 {
10378 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10379 of the section and write the two instructions at the end. */
10380 memset (loc, 0, offset);
10381 loc += offset;
10382 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10383 {
10384 bfd_put_micromips_32 (hti->output_bfd,
10385 LA25_LUI_MICROMIPS (target_high),
10386 loc);
10387 bfd_put_micromips_32 (hti->output_bfd,
10388 LA25_ADDIU_MICROMIPS (target_low),
10389 loc + 4);
10390 }
10391 else
10392 {
10393 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10394 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10395 }
10396 }
10397 else
10398 {
10399 /* This is trampoline. */
10400 loc += offset;
10401 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10402 {
10403 bfd_put_micromips_32 (hti->output_bfd,
10404 LA25_LUI_MICROMIPS (target_high), loc);
10405 bfd_put_micromips_32 (hti->output_bfd,
10406 LA25_J_MICROMIPS (target), loc + 4);
10407 bfd_put_micromips_32 (hti->output_bfd,
10408 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10409 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10410 }
10411 else
10412 {
10413 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10414 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10415 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10416 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10417 }
10418 }
10419 return TRUE;
10420 }
10421
10422 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10423 adjust it appropriately now. */
10424
10425 static void
10426 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10427 const char *name, Elf_Internal_Sym *sym)
10428 {
10429 /* The linker script takes care of providing names and values for
10430 these, but we must place them into the right sections. */
10431 static const char* const text_section_symbols[] = {
10432 "_ftext",
10433 "_etext",
10434 "__dso_displacement",
10435 "__elf_header",
10436 "__program_header_table",
10437 NULL
10438 };
10439
10440 static const char* const data_section_symbols[] = {
10441 "_fdata",
10442 "_edata",
10443 "_end",
10444 "_fbss",
10445 NULL
10446 };
10447
10448 const char* const *p;
10449 int i;
10450
10451 for (i = 0; i < 2; ++i)
10452 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10453 *p;
10454 ++p)
10455 if (strcmp (*p, name) == 0)
10456 {
10457 /* All of these symbols are given type STT_SECTION by the
10458 IRIX6 linker. */
10459 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10460 sym->st_other = STO_PROTECTED;
10461
10462 /* The IRIX linker puts these symbols in special sections. */
10463 if (i == 0)
10464 sym->st_shndx = SHN_MIPS_TEXT;
10465 else
10466 sym->st_shndx = SHN_MIPS_DATA;
10467
10468 break;
10469 }
10470 }
10471
10472 /* Finish up dynamic symbol handling. We set the contents of various
10473 dynamic sections here. */
10474
10475 bfd_boolean
10476 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10477 struct bfd_link_info *info,
10478 struct elf_link_hash_entry *h,
10479 Elf_Internal_Sym *sym)
10480 {
10481 bfd *dynobj;
10482 asection *sgot;
10483 struct mips_got_info *g, *gg;
10484 const char *name;
10485 int idx;
10486 struct mips_elf_link_hash_table *htab;
10487 struct mips_elf_link_hash_entry *hmips;
10488
10489 htab = mips_elf_hash_table (info);
10490 BFD_ASSERT (htab != NULL);
10491 dynobj = elf_hash_table (info)->dynobj;
10492 hmips = (struct mips_elf_link_hash_entry *) h;
10493
10494 BFD_ASSERT (!htab->is_vxworks);
10495
10496 if (h->plt.plist != NULL
10497 && (h->plt.plist->mips_offset != MINUS_ONE
10498 || h->plt.plist->comp_offset != MINUS_ONE))
10499 {
10500 /* We've decided to create a PLT entry for this symbol. */
10501 bfd_byte *loc;
10502 bfd_vma header_address, got_address;
10503 bfd_vma got_address_high, got_address_low, load;
10504 bfd_vma got_index;
10505 bfd_vma isa_bit;
10506
10507 got_index = h->plt.plist->gotplt_index;
10508
10509 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10510 BFD_ASSERT (h->dynindx != -1);
10511 BFD_ASSERT (htab->splt != NULL);
10512 BFD_ASSERT (got_index != MINUS_ONE);
10513 BFD_ASSERT (!h->def_regular);
10514
10515 /* Calculate the address of the PLT header. */
10516 isa_bit = htab->plt_header_is_comp;
10517 header_address = (htab->splt->output_section->vma
10518 + htab->splt->output_offset + isa_bit);
10519
10520 /* Calculate the address of the .got.plt entry. */
10521 got_address = (htab->sgotplt->output_section->vma
10522 + htab->sgotplt->output_offset
10523 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10524
10525 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10526 got_address_low = got_address & 0xffff;
10527
10528 /* Initially point the .got.plt entry at the PLT header. */
10529 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10530 if (ABI_64_P (output_bfd))
10531 bfd_put_64 (output_bfd, header_address, loc);
10532 else
10533 bfd_put_32 (output_bfd, header_address, loc);
10534
10535 /* Now handle the PLT itself. First the standard entry (the order
10536 does not matter, we just have to pick one). */
10537 if (h->plt.plist->mips_offset != MINUS_ONE)
10538 {
10539 const bfd_vma *plt_entry;
10540 bfd_vma plt_offset;
10541
10542 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10543
10544 BFD_ASSERT (plt_offset <= htab->splt->size);
10545
10546 /* Find out where the .plt entry should go. */
10547 loc = htab->splt->contents + plt_offset;
10548
10549 /* Pick the load opcode. */
10550 load = MIPS_ELF_LOAD_WORD (output_bfd);
10551
10552 /* Fill in the PLT entry itself. */
10553
10554 if (MIPSR6_P (output_bfd))
10555 plt_entry = mipsr6_exec_plt_entry;
10556 else
10557 plt_entry = mips_exec_plt_entry;
10558 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10559 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10560 loc + 4);
10561
10562 if (! LOAD_INTERLOCKS_P (output_bfd))
10563 {
10564 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10565 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10566 }
10567 else
10568 {
10569 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10570 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10571 loc + 12);
10572 }
10573 }
10574
10575 /* Now the compressed entry. They come after any standard ones. */
10576 if (h->plt.plist->comp_offset != MINUS_ONE)
10577 {
10578 bfd_vma plt_offset;
10579
10580 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10581 + h->plt.plist->comp_offset);
10582
10583 BFD_ASSERT (plt_offset <= htab->splt->size);
10584
10585 /* Find out where the .plt entry should go. */
10586 loc = htab->splt->contents + plt_offset;
10587
10588 /* Fill in the PLT entry itself. */
10589 if (!MICROMIPS_P (output_bfd))
10590 {
10591 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10592
10593 bfd_put_16 (output_bfd, plt_entry[0], loc);
10594 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10595 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10596 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10597 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10598 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10599 bfd_put_32 (output_bfd, got_address, loc + 12);
10600 }
10601 else if (htab->insn32)
10602 {
10603 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10604
10605 bfd_put_16 (output_bfd, plt_entry[0], loc);
10606 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10607 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10608 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10609 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10610 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10611 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10612 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10613 }
10614 else
10615 {
10616 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10617 bfd_signed_vma gotpc_offset;
10618 bfd_vma loc_address;
10619
10620 BFD_ASSERT (got_address % 4 == 0);
10621
10622 loc_address = (htab->splt->output_section->vma
10623 + htab->splt->output_offset + plt_offset);
10624 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10625
10626 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10627 if (gotpc_offset + 0x1000000 >= 0x2000000)
10628 {
10629 (*_bfd_error_handler)
10630 (_("%B: `%A' offset of %ld from `%A' "
10631 "beyond the range of ADDIUPC"),
10632 output_bfd,
10633 htab->sgotplt->output_section,
10634 htab->splt->output_section,
10635 (long) gotpc_offset);
10636 bfd_set_error (bfd_error_no_error);
10637 return FALSE;
10638 }
10639 bfd_put_16 (output_bfd,
10640 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10641 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10642 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10643 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10644 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10645 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10646 }
10647 }
10648
10649 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10650 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10651 got_index - 2, h->dynindx,
10652 R_MIPS_JUMP_SLOT, got_address);
10653
10654 /* We distinguish between PLT entries and lazy-binding stubs by
10655 giving the former an st_other value of STO_MIPS_PLT. Set the
10656 flag and leave the value if there are any relocations in the
10657 binary where pointer equality matters. */
10658 sym->st_shndx = SHN_UNDEF;
10659 if (h->pointer_equality_needed)
10660 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10661 else
10662 {
10663 sym->st_value = 0;
10664 sym->st_other = 0;
10665 }
10666 }
10667
10668 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10669 {
10670 /* We've decided to create a lazy-binding stub. */
10671 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10672 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10673 bfd_vma stub_size = htab->function_stub_size;
10674 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10675 bfd_vma isa_bit = micromips_p;
10676 bfd_vma stub_big_size;
10677
10678 if (!micromips_p)
10679 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10680 else if (htab->insn32)
10681 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10682 else
10683 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10684
10685 /* This symbol has a stub. Set it up. */
10686
10687 BFD_ASSERT (h->dynindx != -1);
10688
10689 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10690
10691 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10692 sign extension at runtime in the stub, resulting in a negative
10693 index value. */
10694 if (h->dynindx & ~0x7fffffff)
10695 return FALSE;
10696
10697 /* Fill the stub. */
10698 if (micromips_p)
10699 {
10700 idx = 0;
10701 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10702 stub + idx);
10703 idx += 4;
10704 if (htab->insn32)
10705 {
10706 bfd_put_micromips_32 (output_bfd,
10707 STUB_MOVE32_MICROMIPS (output_bfd),
10708 stub + idx);
10709 idx += 4;
10710 }
10711 else
10712 {
10713 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10714 idx += 2;
10715 }
10716 if (stub_size == stub_big_size)
10717 {
10718 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10719
10720 bfd_put_micromips_32 (output_bfd,
10721 STUB_LUI_MICROMIPS (dynindx_hi),
10722 stub + idx);
10723 idx += 4;
10724 }
10725 if (htab->insn32)
10726 {
10727 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10728 stub + idx);
10729 idx += 4;
10730 }
10731 else
10732 {
10733 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10734 idx += 2;
10735 }
10736
10737 /* If a large stub is not required and sign extension is not a
10738 problem, then use legacy code in the stub. */
10739 if (stub_size == stub_big_size)
10740 bfd_put_micromips_32 (output_bfd,
10741 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10742 stub + idx);
10743 else if (h->dynindx & ~0x7fff)
10744 bfd_put_micromips_32 (output_bfd,
10745 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10746 stub + idx);
10747 else
10748 bfd_put_micromips_32 (output_bfd,
10749 STUB_LI16S_MICROMIPS (output_bfd,
10750 h->dynindx),
10751 stub + idx);
10752 }
10753 else
10754 {
10755 idx = 0;
10756 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10757 idx += 4;
10758 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10759 idx += 4;
10760 if (stub_size == stub_big_size)
10761 {
10762 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10763 stub + idx);
10764 idx += 4;
10765 }
10766 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10767 idx += 4;
10768
10769 /* If a large stub is not required and sign extension is not a
10770 problem, then use legacy code in the stub. */
10771 if (stub_size == stub_big_size)
10772 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10773 stub + idx);
10774 else if (h->dynindx & ~0x7fff)
10775 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10776 stub + idx);
10777 else
10778 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10779 stub + idx);
10780 }
10781
10782 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10783 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10784 stub, stub_size);
10785
10786 /* Mark the symbol as undefined. stub_offset != -1 occurs
10787 only for the referenced symbol. */
10788 sym->st_shndx = SHN_UNDEF;
10789
10790 /* The run-time linker uses the st_value field of the symbol
10791 to reset the global offset table entry for this external
10792 to its stub address when unlinking a shared object. */
10793 sym->st_value = (htab->sstubs->output_section->vma
10794 + htab->sstubs->output_offset
10795 + h->plt.plist->stub_offset
10796 + isa_bit);
10797 sym->st_other = other;
10798 }
10799
10800 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10801 refer to the stub, since only the stub uses the standard calling
10802 conventions. */
10803 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10804 {
10805 BFD_ASSERT (hmips->need_fn_stub);
10806 sym->st_value = (hmips->fn_stub->output_section->vma
10807 + hmips->fn_stub->output_offset);
10808 sym->st_size = hmips->fn_stub->size;
10809 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10810 }
10811
10812 BFD_ASSERT (h->dynindx != -1
10813 || h->forced_local);
10814
10815 sgot = htab->sgot;
10816 g = htab->got_info;
10817 BFD_ASSERT (g != NULL);
10818
10819 /* Run through the global symbol table, creating GOT entries for all
10820 the symbols that need them. */
10821 if (hmips->global_got_area != GGA_NONE)
10822 {
10823 bfd_vma offset;
10824 bfd_vma value;
10825
10826 value = sym->st_value;
10827 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10828 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10829 }
10830
10831 if (hmips->global_got_area != GGA_NONE && g->next)
10832 {
10833 struct mips_got_entry e, *p;
10834 bfd_vma entry;
10835 bfd_vma offset;
10836
10837 gg = g;
10838
10839 e.abfd = output_bfd;
10840 e.symndx = -1;
10841 e.d.h = hmips;
10842 e.tls_type = GOT_TLS_NONE;
10843
10844 for (g = g->next; g->next != gg; g = g->next)
10845 {
10846 if (g->got_entries
10847 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10848 &e)))
10849 {
10850 offset = p->gotidx;
10851 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10852 if (info->shared
10853 || (elf_hash_table (info)->dynamic_sections_created
10854 && p->d.h != NULL
10855 && p->d.h->root.def_dynamic
10856 && !p->d.h->root.def_regular))
10857 {
10858 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10859 the various compatibility problems, it's easier to mock
10860 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10861 mips_elf_create_dynamic_relocation to calculate the
10862 appropriate addend. */
10863 Elf_Internal_Rela rel[3];
10864
10865 memset (rel, 0, sizeof (rel));
10866 if (ABI_64_P (output_bfd))
10867 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10868 else
10869 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10870 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10871
10872 entry = 0;
10873 if (! (mips_elf_create_dynamic_relocation
10874 (output_bfd, info, rel,
10875 e.d.h, NULL, sym->st_value, &entry, sgot)))
10876 return FALSE;
10877 }
10878 else
10879 entry = sym->st_value;
10880 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10881 }
10882 }
10883 }
10884
10885 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10886 name = h->root.root.string;
10887 if (h == elf_hash_table (info)->hdynamic
10888 || h == elf_hash_table (info)->hgot)
10889 sym->st_shndx = SHN_ABS;
10890 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10891 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10892 {
10893 sym->st_shndx = SHN_ABS;
10894 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10895 sym->st_value = 1;
10896 }
10897 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10898 {
10899 sym->st_shndx = SHN_ABS;
10900 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10901 sym->st_value = elf_gp (output_bfd);
10902 }
10903 else if (SGI_COMPAT (output_bfd))
10904 {
10905 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10906 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10907 {
10908 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10909 sym->st_other = STO_PROTECTED;
10910 sym->st_value = 0;
10911 sym->st_shndx = SHN_MIPS_DATA;
10912 }
10913 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10914 {
10915 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10916 sym->st_other = STO_PROTECTED;
10917 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10918 sym->st_shndx = SHN_ABS;
10919 }
10920 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10921 {
10922 if (h->type == STT_FUNC)
10923 sym->st_shndx = SHN_MIPS_TEXT;
10924 else if (h->type == STT_OBJECT)
10925 sym->st_shndx = SHN_MIPS_DATA;
10926 }
10927 }
10928
10929 /* Emit a copy reloc, if needed. */
10930 if (h->needs_copy)
10931 {
10932 asection *s;
10933 bfd_vma symval;
10934
10935 BFD_ASSERT (h->dynindx != -1);
10936 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10937
10938 s = mips_elf_rel_dyn_section (info, FALSE);
10939 symval = (h->root.u.def.section->output_section->vma
10940 + h->root.u.def.section->output_offset
10941 + h->root.u.def.value);
10942 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10943 h->dynindx, R_MIPS_COPY, symval);
10944 }
10945
10946 /* Handle the IRIX6-specific symbols. */
10947 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10948 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10949
10950 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10951 to treat compressed symbols like any other. */
10952 if (ELF_ST_IS_MIPS16 (sym->st_other))
10953 {
10954 BFD_ASSERT (sym->st_value & 1);
10955 sym->st_other -= STO_MIPS16;
10956 }
10957 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10958 {
10959 BFD_ASSERT (sym->st_value & 1);
10960 sym->st_other -= STO_MICROMIPS;
10961 }
10962
10963 return TRUE;
10964 }
10965
10966 /* Likewise, for VxWorks. */
10967
10968 bfd_boolean
10969 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10970 struct bfd_link_info *info,
10971 struct elf_link_hash_entry *h,
10972 Elf_Internal_Sym *sym)
10973 {
10974 bfd *dynobj;
10975 asection *sgot;
10976 struct mips_got_info *g;
10977 struct mips_elf_link_hash_table *htab;
10978 struct mips_elf_link_hash_entry *hmips;
10979
10980 htab = mips_elf_hash_table (info);
10981 BFD_ASSERT (htab != NULL);
10982 dynobj = elf_hash_table (info)->dynobj;
10983 hmips = (struct mips_elf_link_hash_entry *) h;
10984
10985 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10986 {
10987 bfd_byte *loc;
10988 bfd_vma plt_address, got_address, got_offset, branch_offset;
10989 Elf_Internal_Rela rel;
10990 static const bfd_vma *plt_entry;
10991 bfd_vma gotplt_index;
10992 bfd_vma plt_offset;
10993
10994 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10995 gotplt_index = h->plt.plist->gotplt_index;
10996
10997 BFD_ASSERT (h->dynindx != -1);
10998 BFD_ASSERT (htab->splt != NULL);
10999 BFD_ASSERT (gotplt_index != MINUS_ONE);
11000 BFD_ASSERT (plt_offset <= htab->splt->size);
11001
11002 /* Calculate the address of the .plt entry. */
11003 plt_address = (htab->splt->output_section->vma
11004 + htab->splt->output_offset
11005 + plt_offset);
11006
11007 /* Calculate the address of the .got.plt entry. */
11008 got_address = (htab->sgotplt->output_section->vma
11009 + htab->sgotplt->output_offset
11010 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11011
11012 /* Calculate the offset of the .got.plt entry from
11013 _GLOBAL_OFFSET_TABLE_. */
11014 got_offset = mips_elf_gotplt_index (info, h);
11015
11016 /* Calculate the offset for the branch at the start of the PLT
11017 entry. The branch jumps to the beginning of .plt. */
11018 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11019
11020 /* Fill in the initial value of the .got.plt entry. */
11021 bfd_put_32 (output_bfd, plt_address,
11022 (htab->sgotplt->contents
11023 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11024
11025 /* Find out where the .plt entry should go. */
11026 loc = htab->splt->contents + plt_offset;
11027
11028 if (info->shared)
11029 {
11030 plt_entry = mips_vxworks_shared_plt_entry;
11031 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11032 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11033 }
11034 else
11035 {
11036 bfd_vma got_address_high, got_address_low;
11037
11038 plt_entry = mips_vxworks_exec_plt_entry;
11039 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11040 got_address_low = got_address & 0xffff;
11041
11042 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11043 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11044 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11045 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11046 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11047 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11048 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11049 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11050
11051 loc = (htab->srelplt2->contents
11052 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11053
11054 /* Emit a relocation for the .got.plt entry. */
11055 rel.r_offset = got_address;
11056 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11057 rel.r_addend = plt_offset;
11058 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11059
11060 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11061 loc += sizeof (Elf32_External_Rela);
11062 rel.r_offset = plt_address + 8;
11063 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11064 rel.r_addend = got_offset;
11065 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11066
11067 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11068 loc += sizeof (Elf32_External_Rela);
11069 rel.r_offset += 4;
11070 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11071 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11072 }
11073
11074 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11075 loc = (htab->srelplt->contents
11076 + gotplt_index * sizeof (Elf32_External_Rela));
11077 rel.r_offset = got_address;
11078 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11079 rel.r_addend = 0;
11080 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11081
11082 if (!h->def_regular)
11083 sym->st_shndx = SHN_UNDEF;
11084 }
11085
11086 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11087
11088 sgot = htab->sgot;
11089 g = htab->got_info;
11090 BFD_ASSERT (g != NULL);
11091
11092 /* See if this symbol has an entry in the GOT. */
11093 if (hmips->global_got_area != GGA_NONE)
11094 {
11095 bfd_vma offset;
11096 Elf_Internal_Rela outrel;
11097 bfd_byte *loc;
11098 asection *s;
11099
11100 /* Install the symbol value in the GOT. */
11101 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11102 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11103
11104 /* Add a dynamic relocation for it. */
11105 s = mips_elf_rel_dyn_section (info, FALSE);
11106 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11107 outrel.r_offset = (sgot->output_section->vma
11108 + sgot->output_offset
11109 + offset);
11110 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11111 outrel.r_addend = 0;
11112 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11113 }
11114
11115 /* Emit a copy reloc, if needed. */
11116 if (h->needs_copy)
11117 {
11118 Elf_Internal_Rela rel;
11119
11120 BFD_ASSERT (h->dynindx != -1);
11121
11122 rel.r_offset = (h->root.u.def.section->output_section->vma
11123 + h->root.u.def.section->output_offset
11124 + h->root.u.def.value);
11125 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11126 rel.r_addend = 0;
11127 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11128 htab->srelbss->contents
11129 + (htab->srelbss->reloc_count
11130 * sizeof (Elf32_External_Rela)));
11131 ++htab->srelbss->reloc_count;
11132 }
11133
11134 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11135 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11136 sym->st_value &= ~1;
11137
11138 return TRUE;
11139 }
11140
11141 /* Write out a plt0 entry to the beginning of .plt. */
11142
11143 static bfd_boolean
11144 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11145 {
11146 bfd_byte *loc;
11147 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11148 static const bfd_vma *plt_entry;
11149 struct mips_elf_link_hash_table *htab;
11150
11151 htab = mips_elf_hash_table (info);
11152 BFD_ASSERT (htab != NULL);
11153
11154 if (ABI_64_P (output_bfd))
11155 plt_entry = mips_n64_exec_plt0_entry;
11156 else if (ABI_N32_P (output_bfd))
11157 plt_entry = mips_n32_exec_plt0_entry;
11158 else if (!htab->plt_header_is_comp)
11159 plt_entry = mips_o32_exec_plt0_entry;
11160 else if (htab->insn32)
11161 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11162 else
11163 plt_entry = micromips_o32_exec_plt0_entry;
11164
11165 /* Calculate the value of .got.plt. */
11166 gotplt_value = (htab->sgotplt->output_section->vma
11167 + htab->sgotplt->output_offset);
11168 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11169 gotplt_value_low = gotplt_value & 0xffff;
11170
11171 /* The PLT sequence is not safe for N64 if .got.plt's address can
11172 not be loaded in two instructions. */
11173 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11174 || ~(gotplt_value | 0x7fffffff) == 0);
11175
11176 /* Install the PLT header. */
11177 loc = htab->splt->contents;
11178 if (plt_entry == micromips_o32_exec_plt0_entry)
11179 {
11180 bfd_vma gotpc_offset;
11181 bfd_vma loc_address;
11182 size_t i;
11183
11184 BFD_ASSERT (gotplt_value % 4 == 0);
11185
11186 loc_address = (htab->splt->output_section->vma
11187 + htab->splt->output_offset);
11188 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11189
11190 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11191 if (gotpc_offset + 0x1000000 >= 0x2000000)
11192 {
11193 (*_bfd_error_handler)
11194 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11195 output_bfd,
11196 htab->sgotplt->output_section,
11197 htab->splt->output_section,
11198 (long) gotpc_offset);
11199 bfd_set_error (bfd_error_no_error);
11200 return FALSE;
11201 }
11202 bfd_put_16 (output_bfd,
11203 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11204 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11205 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11206 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11207 }
11208 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11209 {
11210 size_t i;
11211
11212 bfd_put_16 (output_bfd, plt_entry[0], loc);
11213 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11214 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11215 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11216 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11217 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11218 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11219 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11220 }
11221 else
11222 {
11223 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11224 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11225 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11226 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11227 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11228 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11229 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11230 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11231 }
11232
11233 return TRUE;
11234 }
11235
11236 /* Install the PLT header for a VxWorks executable and finalize the
11237 contents of .rela.plt.unloaded. */
11238
11239 static void
11240 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11241 {
11242 Elf_Internal_Rela rela;
11243 bfd_byte *loc;
11244 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11245 static const bfd_vma *plt_entry;
11246 struct mips_elf_link_hash_table *htab;
11247
11248 htab = mips_elf_hash_table (info);
11249 BFD_ASSERT (htab != NULL);
11250
11251 plt_entry = mips_vxworks_exec_plt0_entry;
11252
11253 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11254 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11255 + htab->root.hgot->root.u.def.section->output_offset
11256 + htab->root.hgot->root.u.def.value);
11257
11258 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11259 got_value_low = got_value & 0xffff;
11260
11261 /* Calculate the address of the PLT header. */
11262 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11263
11264 /* Install the PLT header. */
11265 loc = htab->splt->contents;
11266 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11267 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11268 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11269 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11270 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11271 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11272
11273 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11274 loc = htab->srelplt2->contents;
11275 rela.r_offset = plt_address;
11276 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11277 rela.r_addend = 0;
11278 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11279 loc += sizeof (Elf32_External_Rela);
11280
11281 /* Output the relocation for the following addiu of
11282 %lo(_GLOBAL_OFFSET_TABLE_). */
11283 rela.r_offset += 4;
11284 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11285 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11286 loc += sizeof (Elf32_External_Rela);
11287
11288 /* Fix up the remaining relocations. They may have the wrong
11289 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11290 in which symbols were output. */
11291 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11292 {
11293 Elf_Internal_Rela rel;
11294
11295 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11296 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11297 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11298 loc += sizeof (Elf32_External_Rela);
11299
11300 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11301 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11302 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11303 loc += sizeof (Elf32_External_Rela);
11304
11305 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11306 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11307 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11308 loc += sizeof (Elf32_External_Rela);
11309 }
11310 }
11311
11312 /* Install the PLT header for a VxWorks shared library. */
11313
11314 static void
11315 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11316 {
11317 unsigned int i;
11318 struct mips_elf_link_hash_table *htab;
11319
11320 htab = mips_elf_hash_table (info);
11321 BFD_ASSERT (htab != NULL);
11322
11323 /* We just need to copy the entry byte-by-byte. */
11324 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11325 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11326 htab->splt->contents + i * 4);
11327 }
11328
11329 /* Finish up the dynamic sections. */
11330
11331 bfd_boolean
11332 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11333 struct bfd_link_info *info)
11334 {
11335 bfd *dynobj;
11336 asection *sdyn;
11337 asection *sgot;
11338 struct mips_got_info *gg, *g;
11339 struct mips_elf_link_hash_table *htab;
11340
11341 htab = mips_elf_hash_table (info);
11342 BFD_ASSERT (htab != NULL);
11343
11344 dynobj = elf_hash_table (info)->dynobj;
11345
11346 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11347
11348 sgot = htab->sgot;
11349 gg = htab->got_info;
11350
11351 if (elf_hash_table (info)->dynamic_sections_created)
11352 {
11353 bfd_byte *b;
11354 int dyn_to_skip = 0, dyn_skipped = 0;
11355
11356 BFD_ASSERT (sdyn != NULL);
11357 BFD_ASSERT (gg != NULL);
11358
11359 g = mips_elf_bfd_got (output_bfd, FALSE);
11360 BFD_ASSERT (g != NULL);
11361
11362 for (b = sdyn->contents;
11363 b < sdyn->contents + sdyn->size;
11364 b += MIPS_ELF_DYN_SIZE (dynobj))
11365 {
11366 Elf_Internal_Dyn dyn;
11367 const char *name;
11368 size_t elemsize;
11369 asection *s;
11370 bfd_boolean swap_out_p;
11371
11372 /* Read in the current dynamic entry. */
11373 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11374
11375 /* Assume that we're going to modify it and write it out. */
11376 swap_out_p = TRUE;
11377
11378 switch (dyn.d_tag)
11379 {
11380 case DT_RELENT:
11381 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11382 break;
11383
11384 case DT_RELAENT:
11385 BFD_ASSERT (htab->is_vxworks);
11386 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11387 break;
11388
11389 case DT_STRSZ:
11390 /* Rewrite DT_STRSZ. */
11391 dyn.d_un.d_val =
11392 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11393 break;
11394
11395 case DT_PLTGOT:
11396 s = htab->sgot;
11397 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11398 break;
11399
11400 case DT_MIPS_PLTGOT:
11401 s = htab->sgotplt;
11402 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11403 break;
11404
11405 case DT_MIPS_RLD_VERSION:
11406 dyn.d_un.d_val = 1; /* XXX */
11407 break;
11408
11409 case DT_MIPS_FLAGS:
11410 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11411 break;
11412
11413 case DT_MIPS_TIME_STAMP:
11414 {
11415 time_t t;
11416 time (&t);
11417 dyn.d_un.d_val = t;
11418 }
11419 break;
11420
11421 case DT_MIPS_ICHECKSUM:
11422 /* XXX FIXME: */
11423 swap_out_p = FALSE;
11424 break;
11425
11426 case DT_MIPS_IVERSION:
11427 /* XXX FIXME: */
11428 swap_out_p = FALSE;
11429 break;
11430
11431 case DT_MIPS_BASE_ADDRESS:
11432 s = output_bfd->sections;
11433 BFD_ASSERT (s != NULL);
11434 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11435 break;
11436
11437 case DT_MIPS_LOCAL_GOTNO:
11438 dyn.d_un.d_val = g->local_gotno;
11439 break;
11440
11441 case DT_MIPS_UNREFEXTNO:
11442 /* The index into the dynamic symbol table which is the
11443 entry of the first external symbol that is not
11444 referenced within the same object. */
11445 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11446 break;
11447
11448 case DT_MIPS_GOTSYM:
11449 if (htab->global_gotsym)
11450 {
11451 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11452 break;
11453 }
11454 /* In case if we don't have global got symbols we default
11455 to setting DT_MIPS_GOTSYM to the same value as
11456 DT_MIPS_SYMTABNO, so we just fall through. */
11457
11458 case DT_MIPS_SYMTABNO:
11459 name = ".dynsym";
11460 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11461 s = bfd_get_section_by_name (output_bfd, name);
11462
11463 if (s != NULL)
11464 dyn.d_un.d_val = s->size / elemsize;
11465 else
11466 dyn.d_un.d_val = 0;
11467 break;
11468
11469 case DT_MIPS_HIPAGENO:
11470 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11471 break;
11472
11473 case DT_MIPS_RLD_MAP:
11474 {
11475 struct elf_link_hash_entry *h;
11476 h = mips_elf_hash_table (info)->rld_symbol;
11477 if (!h)
11478 {
11479 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11480 swap_out_p = FALSE;
11481 break;
11482 }
11483 s = h->root.u.def.section;
11484 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11485 + h->root.u.def.value);
11486 }
11487 break;
11488
11489 case DT_MIPS_OPTIONS:
11490 s = (bfd_get_section_by_name
11491 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11492 dyn.d_un.d_ptr = s->vma;
11493 break;
11494
11495 case DT_RELASZ:
11496 BFD_ASSERT (htab->is_vxworks);
11497 /* The count does not include the JUMP_SLOT relocations. */
11498 if (htab->srelplt)
11499 dyn.d_un.d_val -= htab->srelplt->size;
11500 break;
11501
11502 case DT_PLTREL:
11503 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11504 if (htab->is_vxworks)
11505 dyn.d_un.d_val = DT_RELA;
11506 else
11507 dyn.d_un.d_val = DT_REL;
11508 break;
11509
11510 case DT_PLTRELSZ:
11511 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11512 dyn.d_un.d_val = htab->srelplt->size;
11513 break;
11514
11515 case DT_JMPREL:
11516 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11517 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11518 + htab->srelplt->output_offset);
11519 break;
11520
11521 case DT_TEXTREL:
11522 /* If we didn't need any text relocations after all, delete
11523 the dynamic tag. */
11524 if (!(info->flags & DF_TEXTREL))
11525 {
11526 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11527 swap_out_p = FALSE;
11528 }
11529 break;
11530
11531 case DT_FLAGS:
11532 /* If we didn't need any text relocations after all, clear
11533 DF_TEXTREL from DT_FLAGS. */
11534 if (!(info->flags & DF_TEXTREL))
11535 dyn.d_un.d_val &= ~DF_TEXTREL;
11536 else
11537 swap_out_p = FALSE;
11538 break;
11539
11540 default:
11541 swap_out_p = FALSE;
11542 if (htab->is_vxworks
11543 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11544 swap_out_p = TRUE;
11545 break;
11546 }
11547
11548 if (swap_out_p || dyn_skipped)
11549 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11550 (dynobj, &dyn, b - dyn_skipped);
11551
11552 if (dyn_to_skip)
11553 {
11554 dyn_skipped += dyn_to_skip;
11555 dyn_to_skip = 0;
11556 }
11557 }
11558
11559 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11560 if (dyn_skipped > 0)
11561 memset (b - dyn_skipped, 0, dyn_skipped);
11562 }
11563
11564 if (sgot != NULL && sgot->size > 0
11565 && !bfd_is_abs_section (sgot->output_section))
11566 {
11567 if (htab->is_vxworks)
11568 {
11569 /* The first entry of the global offset table points to the
11570 ".dynamic" section. The second is initialized by the
11571 loader and contains the shared library identifier.
11572 The third is also initialized by the loader and points
11573 to the lazy resolution stub. */
11574 MIPS_ELF_PUT_WORD (output_bfd,
11575 sdyn->output_offset + sdyn->output_section->vma,
11576 sgot->contents);
11577 MIPS_ELF_PUT_WORD (output_bfd, 0,
11578 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11579 MIPS_ELF_PUT_WORD (output_bfd, 0,
11580 sgot->contents
11581 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11582 }
11583 else
11584 {
11585 /* The first entry of the global offset table will be filled at
11586 runtime. The second entry will be used by some runtime loaders.
11587 This isn't the case of IRIX rld. */
11588 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11589 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11590 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11591 }
11592
11593 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11594 = MIPS_ELF_GOT_SIZE (output_bfd);
11595 }
11596
11597 /* Generate dynamic relocations for the non-primary gots. */
11598 if (gg != NULL && gg->next)
11599 {
11600 Elf_Internal_Rela rel[3];
11601 bfd_vma addend = 0;
11602
11603 memset (rel, 0, sizeof (rel));
11604 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11605
11606 for (g = gg->next; g->next != gg; g = g->next)
11607 {
11608 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11609 + g->next->tls_gotno;
11610
11611 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11612 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11613 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11614 sgot->contents
11615 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11616
11617 if (! info->shared)
11618 continue;
11619
11620 for (; got_index < g->local_gotno; got_index++)
11621 {
11622 if (got_index >= g->assigned_low_gotno
11623 && got_index <= g->assigned_high_gotno)
11624 continue;
11625
11626 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11627 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11628 if (!(mips_elf_create_dynamic_relocation
11629 (output_bfd, info, rel, NULL,
11630 bfd_abs_section_ptr,
11631 0, &addend, sgot)))
11632 return FALSE;
11633 BFD_ASSERT (addend == 0);
11634 }
11635 }
11636 }
11637
11638 /* The generation of dynamic relocations for the non-primary gots
11639 adds more dynamic relocations. We cannot count them until
11640 here. */
11641
11642 if (elf_hash_table (info)->dynamic_sections_created)
11643 {
11644 bfd_byte *b;
11645 bfd_boolean swap_out_p;
11646
11647 BFD_ASSERT (sdyn != NULL);
11648
11649 for (b = sdyn->contents;
11650 b < sdyn->contents + sdyn->size;
11651 b += MIPS_ELF_DYN_SIZE (dynobj))
11652 {
11653 Elf_Internal_Dyn dyn;
11654 asection *s;
11655
11656 /* Read in the current dynamic entry. */
11657 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11658
11659 /* Assume that we're going to modify it and write it out. */
11660 swap_out_p = TRUE;
11661
11662 switch (dyn.d_tag)
11663 {
11664 case DT_RELSZ:
11665 /* Reduce DT_RELSZ to account for any relocations we
11666 decided not to make. This is for the n64 irix rld,
11667 which doesn't seem to apply any relocations if there
11668 are trailing null entries. */
11669 s = mips_elf_rel_dyn_section (info, FALSE);
11670 dyn.d_un.d_val = (s->reloc_count
11671 * (ABI_64_P (output_bfd)
11672 ? sizeof (Elf64_Mips_External_Rel)
11673 : sizeof (Elf32_External_Rel)));
11674 /* Adjust the section size too. Tools like the prelinker
11675 can reasonably expect the values to the same. */
11676 elf_section_data (s->output_section)->this_hdr.sh_size
11677 = dyn.d_un.d_val;
11678 break;
11679
11680 default:
11681 swap_out_p = FALSE;
11682 break;
11683 }
11684
11685 if (swap_out_p)
11686 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11687 (dynobj, &dyn, b);
11688 }
11689 }
11690
11691 {
11692 asection *s;
11693 Elf32_compact_rel cpt;
11694
11695 if (SGI_COMPAT (output_bfd))
11696 {
11697 /* Write .compact_rel section out. */
11698 s = bfd_get_linker_section (dynobj, ".compact_rel");
11699 if (s != NULL)
11700 {
11701 cpt.id1 = 1;
11702 cpt.num = s->reloc_count;
11703 cpt.id2 = 2;
11704 cpt.offset = (s->output_section->filepos
11705 + sizeof (Elf32_External_compact_rel));
11706 cpt.reserved0 = 0;
11707 cpt.reserved1 = 0;
11708 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11709 ((Elf32_External_compact_rel *)
11710 s->contents));
11711
11712 /* Clean up a dummy stub function entry in .text. */
11713 if (htab->sstubs != NULL)
11714 {
11715 file_ptr dummy_offset;
11716
11717 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11718 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11719 memset (htab->sstubs->contents + dummy_offset, 0,
11720 htab->function_stub_size);
11721 }
11722 }
11723 }
11724
11725 /* The psABI says that the dynamic relocations must be sorted in
11726 increasing order of r_symndx. The VxWorks EABI doesn't require
11727 this, and because the code below handles REL rather than RELA
11728 relocations, using it for VxWorks would be outright harmful. */
11729 if (!htab->is_vxworks)
11730 {
11731 s = mips_elf_rel_dyn_section (info, FALSE);
11732 if (s != NULL
11733 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11734 {
11735 reldyn_sorting_bfd = output_bfd;
11736
11737 if (ABI_64_P (output_bfd))
11738 qsort ((Elf64_External_Rel *) s->contents + 1,
11739 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11740 sort_dynamic_relocs_64);
11741 else
11742 qsort ((Elf32_External_Rel *) s->contents + 1,
11743 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11744 sort_dynamic_relocs);
11745 }
11746 }
11747 }
11748
11749 if (htab->splt && htab->splt->size > 0)
11750 {
11751 if (htab->is_vxworks)
11752 {
11753 if (info->shared)
11754 mips_vxworks_finish_shared_plt (output_bfd, info);
11755 else
11756 mips_vxworks_finish_exec_plt (output_bfd, info);
11757 }
11758 else
11759 {
11760 BFD_ASSERT (!info->shared);
11761 if (!mips_finish_exec_plt (output_bfd, info))
11762 return FALSE;
11763 }
11764 }
11765 return TRUE;
11766 }
11767
11768
11769 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11770
11771 static void
11772 mips_set_isa_flags (bfd *abfd)
11773 {
11774 flagword val;
11775
11776 switch (bfd_get_mach (abfd))
11777 {
11778 default:
11779 case bfd_mach_mips3000:
11780 val = E_MIPS_ARCH_1;
11781 break;
11782
11783 case bfd_mach_mips3900:
11784 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11785 break;
11786
11787 case bfd_mach_mips6000:
11788 val = E_MIPS_ARCH_2;
11789 break;
11790
11791 case bfd_mach_mips4000:
11792 case bfd_mach_mips4300:
11793 case bfd_mach_mips4400:
11794 case bfd_mach_mips4600:
11795 val = E_MIPS_ARCH_3;
11796 break;
11797
11798 case bfd_mach_mips4010:
11799 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11800 break;
11801
11802 case bfd_mach_mips4100:
11803 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11804 break;
11805
11806 case bfd_mach_mips4111:
11807 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11808 break;
11809
11810 case bfd_mach_mips4120:
11811 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11812 break;
11813
11814 case bfd_mach_mips4650:
11815 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11816 break;
11817
11818 case bfd_mach_mips5400:
11819 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11820 break;
11821
11822 case bfd_mach_mips5500:
11823 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11824 break;
11825
11826 case bfd_mach_mips5900:
11827 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11828 break;
11829
11830 case bfd_mach_mips9000:
11831 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11832 break;
11833
11834 case bfd_mach_mips5000:
11835 case bfd_mach_mips7000:
11836 case bfd_mach_mips8000:
11837 case bfd_mach_mips10000:
11838 case bfd_mach_mips12000:
11839 case bfd_mach_mips14000:
11840 case bfd_mach_mips16000:
11841 val = E_MIPS_ARCH_4;
11842 break;
11843
11844 case bfd_mach_mips5:
11845 val = E_MIPS_ARCH_5;
11846 break;
11847
11848 case bfd_mach_mips_loongson_2e:
11849 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11850 break;
11851
11852 case bfd_mach_mips_loongson_2f:
11853 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11854 break;
11855
11856 case bfd_mach_mips_sb1:
11857 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11858 break;
11859
11860 case bfd_mach_mips_loongson_3a:
11861 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11862 break;
11863
11864 case bfd_mach_mips_octeon:
11865 case bfd_mach_mips_octeonp:
11866 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11867 break;
11868
11869 case bfd_mach_mips_octeon3:
11870 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11871 break;
11872
11873 case bfd_mach_mips_xlr:
11874 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11875 break;
11876
11877 case bfd_mach_mips_octeon2:
11878 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11879 break;
11880
11881 case bfd_mach_mipsisa32:
11882 val = E_MIPS_ARCH_32;
11883 break;
11884
11885 case bfd_mach_mipsisa64:
11886 val = E_MIPS_ARCH_64;
11887 break;
11888
11889 case bfd_mach_mipsisa32r2:
11890 case bfd_mach_mipsisa32r3:
11891 case bfd_mach_mipsisa32r5:
11892 val = E_MIPS_ARCH_32R2;
11893 break;
11894
11895 case bfd_mach_mipsisa64r2:
11896 case bfd_mach_mipsisa64r3:
11897 case bfd_mach_mipsisa64r5:
11898 val = E_MIPS_ARCH_64R2;
11899 break;
11900
11901 case bfd_mach_mipsisa32r6:
11902 val = E_MIPS_ARCH_32R6;
11903 break;
11904
11905 case bfd_mach_mipsisa64r6:
11906 val = E_MIPS_ARCH_64R6;
11907 break;
11908 }
11909 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11910 elf_elfheader (abfd)->e_flags |= val;
11911
11912 }
11913
11914
11915 /* The final processing done just before writing out a MIPS ELF object
11916 file. This gets the MIPS architecture right based on the machine
11917 number. This is used by both the 32-bit and the 64-bit ABI. */
11918
11919 void
11920 _bfd_mips_elf_final_write_processing (bfd *abfd,
11921 bfd_boolean linker ATTRIBUTE_UNUSED)
11922 {
11923 unsigned int i;
11924 Elf_Internal_Shdr **hdrpp;
11925 const char *name;
11926 asection *sec;
11927
11928 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11929 is nonzero. This is for compatibility with old objects, which used
11930 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11931 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11932 mips_set_isa_flags (abfd);
11933
11934 /* Set the sh_info field for .gptab sections and other appropriate
11935 info for each special section. */
11936 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11937 i < elf_numsections (abfd);
11938 i++, hdrpp++)
11939 {
11940 switch ((*hdrpp)->sh_type)
11941 {
11942 case SHT_MIPS_MSYM:
11943 case SHT_MIPS_LIBLIST:
11944 sec = bfd_get_section_by_name (abfd, ".dynstr");
11945 if (sec != NULL)
11946 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11947 break;
11948
11949 case SHT_MIPS_GPTAB:
11950 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11951 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11952 BFD_ASSERT (name != NULL
11953 && CONST_STRNEQ (name, ".gptab."));
11954 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11955 BFD_ASSERT (sec != NULL);
11956 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11957 break;
11958
11959 case SHT_MIPS_CONTENT:
11960 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11961 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11962 BFD_ASSERT (name != NULL
11963 && CONST_STRNEQ (name, ".MIPS.content"));
11964 sec = bfd_get_section_by_name (abfd,
11965 name + sizeof ".MIPS.content" - 1);
11966 BFD_ASSERT (sec != NULL);
11967 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11968 break;
11969
11970 case SHT_MIPS_SYMBOL_LIB:
11971 sec = bfd_get_section_by_name (abfd, ".dynsym");
11972 if (sec != NULL)
11973 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11974 sec = bfd_get_section_by_name (abfd, ".liblist");
11975 if (sec != NULL)
11976 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11977 break;
11978
11979 case SHT_MIPS_EVENTS:
11980 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11981 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11982 BFD_ASSERT (name != NULL);
11983 if (CONST_STRNEQ (name, ".MIPS.events"))
11984 sec = bfd_get_section_by_name (abfd,
11985 name + sizeof ".MIPS.events" - 1);
11986 else
11987 {
11988 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11989 sec = bfd_get_section_by_name (abfd,
11990 (name
11991 + sizeof ".MIPS.post_rel" - 1));
11992 }
11993 BFD_ASSERT (sec != NULL);
11994 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11995 break;
11996
11997 }
11998 }
11999 }
12000 \f
12001 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12002 segments. */
12003
12004 int
12005 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12006 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12007 {
12008 asection *s;
12009 int ret = 0;
12010
12011 /* See if we need a PT_MIPS_REGINFO segment. */
12012 s = bfd_get_section_by_name (abfd, ".reginfo");
12013 if (s && (s->flags & SEC_LOAD))
12014 ++ret;
12015
12016 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12017 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12018 ++ret;
12019
12020 /* See if we need a PT_MIPS_OPTIONS segment. */
12021 if (IRIX_COMPAT (abfd) == ict_irix6
12022 && bfd_get_section_by_name (abfd,
12023 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12024 ++ret;
12025
12026 /* See if we need a PT_MIPS_RTPROC segment. */
12027 if (IRIX_COMPAT (abfd) == ict_irix5
12028 && bfd_get_section_by_name (abfd, ".dynamic")
12029 && bfd_get_section_by_name (abfd, ".mdebug"))
12030 ++ret;
12031
12032 /* Allocate a PT_NULL header in dynamic objects. See
12033 _bfd_mips_elf_modify_segment_map for details. */
12034 if (!SGI_COMPAT (abfd)
12035 && bfd_get_section_by_name (abfd, ".dynamic"))
12036 ++ret;
12037
12038 return ret;
12039 }
12040
12041 /* Modify the segment map for an IRIX5 executable. */
12042
12043 bfd_boolean
12044 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12045 struct bfd_link_info *info)
12046 {
12047 asection *s;
12048 struct elf_segment_map *m, **pm;
12049 bfd_size_type amt;
12050
12051 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12052 segment. */
12053 s = bfd_get_section_by_name (abfd, ".reginfo");
12054 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12055 {
12056 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12057 if (m->p_type == PT_MIPS_REGINFO)
12058 break;
12059 if (m == NULL)
12060 {
12061 amt = sizeof *m;
12062 m = bfd_zalloc (abfd, amt);
12063 if (m == NULL)
12064 return FALSE;
12065
12066 m->p_type = PT_MIPS_REGINFO;
12067 m->count = 1;
12068 m->sections[0] = s;
12069
12070 /* We want to put it after the PHDR and INTERP segments. */
12071 pm = &elf_seg_map (abfd);
12072 while (*pm != NULL
12073 && ((*pm)->p_type == PT_PHDR
12074 || (*pm)->p_type == PT_INTERP))
12075 pm = &(*pm)->next;
12076
12077 m->next = *pm;
12078 *pm = m;
12079 }
12080 }
12081
12082 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12083 segment. */
12084 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12085 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12086 {
12087 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12088 if (m->p_type == PT_MIPS_ABIFLAGS)
12089 break;
12090 if (m == NULL)
12091 {
12092 amt = sizeof *m;
12093 m = bfd_zalloc (abfd, amt);
12094 if (m == NULL)
12095 return FALSE;
12096
12097 m->p_type = PT_MIPS_ABIFLAGS;
12098 m->count = 1;
12099 m->sections[0] = s;
12100
12101 /* We want to put it after the PHDR and INTERP segments. */
12102 pm = &elf_seg_map (abfd);
12103 while (*pm != NULL
12104 && ((*pm)->p_type == PT_PHDR
12105 || (*pm)->p_type == PT_INTERP))
12106 pm = &(*pm)->next;
12107
12108 m->next = *pm;
12109 *pm = m;
12110 }
12111 }
12112
12113 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12114 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12115 PT_MIPS_OPTIONS segment immediately following the program header
12116 table. */
12117 if (NEWABI_P (abfd)
12118 /* On non-IRIX6 new abi, we'll have already created a segment
12119 for this section, so don't create another. I'm not sure this
12120 is not also the case for IRIX 6, but I can't test it right
12121 now. */
12122 && IRIX_COMPAT (abfd) == ict_irix6)
12123 {
12124 for (s = abfd->sections; s; s = s->next)
12125 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12126 break;
12127
12128 if (s)
12129 {
12130 struct elf_segment_map *options_segment;
12131
12132 pm = &elf_seg_map (abfd);
12133 while (*pm != NULL
12134 && ((*pm)->p_type == PT_PHDR
12135 || (*pm)->p_type == PT_INTERP))
12136 pm = &(*pm)->next;
12137
12138 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12139 {
12140 amt = sizeof (struct elf_segment_map);
12141 options_segment = bfd_zalloc (abfd, amt);
12142 options_segment->next = *pm;
12143 options_segment->p_type = PT_MIPS_OPTIONS;
12144 options_segment->p_flags = PF_R;
12145 options_segment->p_flags_valid = TRUE;
12146 options_segment->count = 1;
12147 options_segment->sections[0] = s;
12148 *pm = options_segment;
12149 }
12150 }
12151 }
12152 else
12153 {
12154 if (IRIX_COMPAT (abfd) == ict_irix5)
12155 {
12156 /* If there are .dynamic and .mdebug sections, we make a room
12157 for the RTPROC header. FIXME: Rewrite without section names. */
12158 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12159 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12160 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12161 {
12162 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12163 if (m->p_type == PT_MIPS_RTPROC)
12164 break;
12165 if (m == NULL)
12166 {
12167 amt = sizeof *m;
12168 m = bfd_zalloc (abfd, amt);
12169 if (m == NULL)
12170 return FALSE;
12171
12172 m->p_type = PT_MIPS_RTPROC;
12173
12174 s = bfd_get_section_by_name (abfd, ".rtproc");
12175 if (s == NULL)
12176 {
12177 m->count = 0;
12178 m->p_flags = 0;
12179 m->p_flags_valid = 1;
12180 }
12181 else
12182 {
12183 m->count = 1;
12184 m->sections[0] = s;
12185 }
12186
12187 /* We want to put it after the DYNAMIC segment. */
12188 pm = &elf_seg_map (abfd);
12189 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12190 pm = &(*pm)->next;
12191 if (*pm != NULL)
12192 pm = &(*pm)->next;
12193
12194 m->next = *pm;
12195 *pm = m;
12196 }
12197 }
12198 }
12199 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12200 .dynstr, .dynsym, and .hash sections, and everything in
12201 between. */
12202 for (pm = &elf_seg_map (abfd); *pm != NULL;
12203 pm = &(*pm)->next)
12204 if ((*pm)->p_type == PT_DYNAMIC)
12205 break;
12206 m = *pm;
12207 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12208 glibc's dynamic linker has traditionally derived the number of
12209 tags from the p_filesz field, and sometimes allocates stack
12210 arrays of that size. An overly-big PT_DYNAMIC segment can
12211 be actively harmful in such cases. Making PT_DYNAMIC contain
12212 other sections can also make life hard for the prelinker,
12213 which might move one of the other sections to a different
12214 PT_LOAD segment. */
12215 if (SGI_COMPAT (abfd)
12216 && m != NULL
12217 && m->count == 1
12218 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12219 {
12220 static const char *sec_names[] =
12221 {
12222 ".dynamic", ".dynstr", ".dynsym", ".hash"
12223 };
12224 bfd_vma low, high;
12225 unsigned int i, c;
12226 struct elf_segment_map *n;
12227
12228 low = ~(bfd_vma) 0;
12229 high = 0;
12230 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12231 {
12232 s = bfd_get_section_by_name (abfd, sec_names[i]);
12233 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12234 {
12235 bfd_size_type sz;
12236
12237 if (low > s->vma)
12238 low = s->vma;
12239 sz = s->size;
12240 if (high < s->vma + sz)
12241 high = s->vma + sz;
12242 }
12243 }
12244
12245 c = 0;
12246 for (s = abfd->sections; s != NULL; s = s->next)
12247 if ((s->flags & SEC_LOAD) != 0
12248 && s->vma >= low
12249 && s->vma + s->size <= high)
12250 ++c;
12251
12252 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12253 n = bfd_zalloc (abfd, amt);
12254 if (n == NULL)
12255 return FALSE;
12256 *n = *m;
12257 n->count = c;
12258
12259 i = 0;
12260 for (s = abfd->sections; s != NULL; s = s->next)
12261 {
12262 if ((s->flags & SEC_LOAD) != 0
12263 && s->vma >= low
12264 && s->vma + s->size <= high)
12265 {
12266 n->sections[i] = s;
12267 ++i;
12268 }
12269 }
12270
12271 *pm = n;
12272 }
12273 }
12274
12275 /* Allocate a spare program header in dynamic objects so that tools
12276 like the prelinker can add an extra PT_LOAD entry.
12277
12278 If the prelinker needs to make room for a new PT_LOAD entry, its
12279 standard procedure is to move the first (read-only) sections into
12280 the new (writable) segment. However, the MIPS ABI requires
12281 .dynamic to be in a read-only segment, and the section will often
12282 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12283
12284 Although the prelinker could in principle move .dynamic to a
12285 writable segment, it seems better to allocate a spare program
12286 header instead, and avoid the need to move any sections.
12287 There is a long tradition of allocating spare dynamic tags,
12288 so allocating a spare program header seems like a natural
12289 extension.
12290
12291 If INFO is NULL, we may be copying an already prelinked binary
12292 with objcopy or strip, so do not add this header. */
12293 if (info != NULL
12294 && !SGI_COMPAT (abfd)
12295 && bfd_get_section_by_name (abfd, ".dynamic"))
12296 {
12297 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12298 if ((*pm)->p_type == PT_NULL)
12299 break;
12300 if (*pm == NULL)
12301 {
12302 m = bfd_zalloc (abfd, sizeof (*m));
12303 if (m == NULL)
12304 return FALSE;
12305
12306 m->p_type = PT_NULL;
12307 *pm = m;
12308 }
12309 }
12310
12311 return TRUE;
12312 }
12313 \f
12314 /* Return the section that should be marked against GC for a given
12315 relocation. */
12316
12317 asection *
12318 _bfd_mips_elf_gc_mark_hook (asection *sec,
12319 struct bfd_link_info *info,
12320 Elf_Internal_Rela *rel,
12321 struct elf_link_hash_entry *h,
12322 Elf_Internal_Sym *sym)
12323 {
12324 /* ??? Do mips16 stub sections need to be handled special? */
12325
12326 if (h != NULL)
12327 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12328 {
12329 case R_MIPS_GNU_VTINHERIT:
12330 case R_MIPS_GNU_VTENTRY:
12331 return NULL;
12332 }
12333
12334 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12335 }
12336
12337 /* Update the got entry reference counts for the section being removed. */
12338
12339 bfd_boolean
12340 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12341 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12342 asection *sec ATTRIBUTE_UNUSED,
12343 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12344 {
12345 #if 0
12346 Elf_Internal_Shdr *symtab_hdr;
12347 struct elf_link_hash_entry **sym_hashes;
12348 bfd_signed_vma *local_got_refcounts;
12349 const Elf_Internal_Rela *rel, *relend;
12350 unsigned long r_symndx;
12351 struct elf_link_hash_entry *h;
12352
12353 if (info->relocatable)
12354 return TRUE;
12355
12356 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12357 sym_hashes = elf_sym_hashes (abfd);
12358 local_got_refcounts = elf_local_got_refcounts (abfd);
12359
12360 relend = relocs + sec->reloc_count;
12361 for (rel = relocs; rel < relend; rel++)
12362 switch (ELF_R_TYPE (abfd, rel->r_info))
12363 {
12364 case R_MIPS16_GOT16:
12365 case R_MIPS16_CALL16:
12366 case R_MIPS_GOT16:
12367 case R_MIPS_CALL16:
12368 case R_MIPS_CALL_HI16:
12369 case R_MIPS_CALL_LO16:
12370 case R_MIPS_GOT_HI16:
12371 case R_MIPS_GOT_LO16:
12372 case R_MIPS_GOT_DISP:
12373 case R_MIPS_GOT_PAGE:
12374 case R_MIPS_GOT_OFST:
12375 case R_MICROMIPS_GOT16:
12376 case R_MICROMIPS_CALL16:
12377 case R_MICROMIPS_CALL_HI16:
12378 case R_MICROMIPS_CALL_LO16:
12379 case R_MICROMIPS_GOT_HI16:
12380 case R_MICROMIPS_GOT_LO16:
12381 case R_MICROMIPS_GOT_DISP:
12382 case R_MICROMIPS_GOT_PAGE:
12383 case R_MICROMIPS_GOT_OFST:
12384 /* ??? It would seem that the existing MIPS code does no sort
12385 of reference counting or whatnot on its GOT and PLT entries,
12386 so it is not possible to garbage collect them at this time. */
12387 break;
12388
12389 default:
12390 break;
12391 }
12392 #endif
12393
12394 return TRUE;
12395 }
12396
12397 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12398
12399 bfd_boolean
12400 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12401 elf_gc_mark_hook_fn gc_mark_hook)
12402 {
12403 bfd *sub;
12404
12405 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12406
12407 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12408 {
12409 asection *o;
12410
12411 if (! is_mips_elf (sub))
12412 continue;
12413
12414 for (o = sub->sections; o != NULL; o = o->next)
12415 if (!o->gc_mark
12416 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12417 (bfd_get_section_name (sub, o)))
12418 {
12419 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12420 return FALSE;
12421 }
12422 }
12423
12424 return TRUE;
12425 }
12426 \f
12427 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12428 hiding the old indirect symbol. Process additional relocation
12429 information. Also called for weakdefs, in which case we just let
12430 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12431
12432 void
12433 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12434 struct elf_link_hash_entry *dir,
12435 struct elf_link_hash_entry *ind)
12436 {
12437 struct mips_elf_link_hash_entry *dirmips, *indmips;
12438
12439 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12440
12441 dirmips = (struct mips_elf_link_hash_entry *) dir;
12442 indmips = (struct mips_elf_link_hash_entry *) ind;
12443 /* Any absolute non-dynamic relocations against an indirect or weak
12444 definition will be against the target symbol. */
12445 if (indmips->has_static_relocs)
12446 dirmips->has_static_relocs = TRUE;
12447
12448 if (ind->root.type != bfd_link_hash_indirect)
12449 return;
12450
12451 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12452 if (indmips->readonly_reloc)
12453 dirmips->readonly_reloc = TRUE;
12454 if (indmips->no_fn_stub)
12455 dirmips->no_fn_stub = TRUE;
12456 if (indmips->fn_stub)
12457 {
12458 dirmips->fn_stub = indmips->fn_stub;
12459 indmips->fn_stub = NULL;
12460 }
12461 if (indmips->need_fn_stub)
12462 {
12463 dirmips->need_fn_stub = TRUE;
12464 indmips->need_fn_stub = FALSE;
12465 }
12466 if (indmips->call_stub)
12467 {
12468 dirmips->call_stub = indmips->call_stub;
12469 indmips->call_stub = NULL;
12470 }
12471 if (indmips->call_fp_stub)
12472 {
12473 dirmips->call_fp_stub = indmips->call_fp_stub;
12474 indmips->call_fp_stub = NULL;
12475 }
12476 if (indmips->global_got_area < dirmips->global_got_area)
12477 dirmips->global_got_area = indmips->global_got_area;
12478 if (indmips->global_got_area < GGA_NONE)
12479 indmips->global_got_area = GGA_NONE;
12480 if (indmips->has_nonpic_branches)
12481 dirmips->has_nonpic_branches = TRUE;
12482 }
12483 \f
12484 #define PDR_SIZE 32
12485
12486 bfd_boolean
12487 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12488 struct bfd_link_info *info)
12489 {
12490 asection *o;
12491 bfd_boolean ret = FALSE;
12492 unsigned char *tdata;
12493 size_t i, skip;
12494
12495 o = bfd_get_section_by_name (abfd, ".pdr");
12496 if (! o)
12497 return FALSE;
12498 if (o->size == 0)
12499 return FALSE;
12500 if (o->size % PDR_SIZE != 0)
12501 return FALSE;
12502 if (o->output_section != NULL
12503 && bfd_is_abs_section (o->output_section))
12504 return FALSE;
12505
12506 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12507 if (! tdata)
12508 return FALSE;
12509
12510 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12511 info->keep_memory);
12512 if (!cookie->rels)
12513 {
12514 free (tdata);
12515 return FALSE;
12516 }
12517
12518 cookie->rel = cookie->rels;
12519 cookie->relend = cookie->rels + o->reloc_count;
12520
12521 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12522 {
12523 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12524 {
12525 tdata[i] = 1;
12526 skip ++;
12527 }
12528 }
12529
12530 if (skip != 0)
12531 {
12532 mips_elf_section_data (o)->u.tdata = tdata;
12533 if (o->rawsize == 0)
12534 o->rawsize = o->size;
12535 o->size -= skip * PDR_SIZE;
12536 ret = TRUE;
12537 }
12538 else
12539 free (tdata);
12540
12541 if (! info->keep_memory)
12542 free (cookie->rels);
12543
12544 return ret;
12545 }
12546
12547 bfd_boolean
12548 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12549 {
12550 if (strcmp (sec->name, ".pdr") == 0)
12551 return TRUE;
12552 return FALSE;
12553 }
12554
12555 bfd_boolean
12556 _bfd_mips_elf_write_section (bfd *output_bfd,
12557 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12558 asection *sec, bfd_byte *contents)
12559 {
12560 bfd_byte *to, *from, *end;
12561 int i;
12562
12563 if (strcmp (sec->name, ".pdr") != 0)
12564 return FALSE;
12565
12566 if (mips_elf_section_data (sec)->u.tdata == NULL)
12567 return FALSE;
12568
12569 to = contents;
12570 end = contents + sec->size;
12571 for (from = contents, i = 0;
12572 from < end;
12573 from += PDR_SIZE, i++)
12574 {
12575 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12576 continue;
12577 if (to != from)
12578 memcpy (to, from, PDR_SIZE);
12579 to += PDR_SIZE;
12580 }
12581 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12582 sec->output_offset, sec->size);
12583 return TRUE;
12584 }
12585 \f
12586 /* microMIPS code retains local labels for linker relaxation. Omit them
12587 from output by default for clarity. */
12588
12589 bfd_boolean
12590 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12591 {
12592 return _bfd_elf_is_local_label_name (abfd, sym->name);
12593 }
12594
12595 /* MIPS ELF uses a special find_nearest_line routine in order the
12596 handle the ECOFF debugging information. */
12597
12598 struct mips_elf_find_line
12599 {
12600 struct ecoff_debug_info d;
12601 struct ecoff_find_line i;
12602 };
12603
12604 bfd_boolean
12605 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12606 asection *section, bfd_vma offset,
12607 const char **filename_ptr,
12608 const char **functionname_ptr,
12609 unsigned int *line_ptr,
12610 unsigned int *discriminator_ptr)
12611 {
12612 asection *msec;
12613
12614 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12615 filename_ptr, functionname_ptr,
12616 line_ptr, discriminator_ptr,
12617 dwarf_debug_sections,
12618 ABI_64_P (abfd) ? 8 : 0,
12619 &elf_tdata (abfd)->dwarf2_find_line_info))
12620 return TRUE;
12621
12622 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12623 filename_ptr, functionname_ptr,
12624 line_ptr))
12625 return TRUE;
12626
12627 msec = bfd_get_section_by_name (abfd, ".mdebug");
12628 if (msec != NULL)
12629 {
12630 flagword origflags;
12631 struct mips_elf_find_line *fi;
12632 const struct ecoff_debug_swap * const swap =
12633 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12634
12635 /* If we are called during a link, mips_elf_final_link may have
12636 cleared the SEC_HAS_CONTENTS field. We force it back on here
12637 if appropriate (which it normally will be). */
12638 origflags = msec->flags;
12639 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12640 msec->flags |= SEC_HAS_CONTENTS;
12641
12642 fi = mips_elf_tdata (abfd)->find_line_info;
12643 if (fi == NULL)
12644 {
12645 bfd_size_type external_fdr_size;
12646 char *fraw_src;
12647 char *fraw_end;
12648 struct fdr *fdr_ptr;
12649 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12650
12651 fi = bfd_zalloc (abfd, amt);
12652 if (fi == NULL)
12653 {
12654 msec->flags = origflags;
12655 return FALSE;
12656 }
12657
12658 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12659 {
12660 msec->flags = origflags;
12661 return FALSE;
12662 }
12663
12664 /* Swap in the FDR information. */
12665 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12666 fi->d.fdr = bfd_alloc (abfd, amt);
12667 if (fi->d.fdr == NULL)
12668 {
12669 msec->flags = origflags;
12670 return FALSE;
12671 }
12672 external_fdr_size = swap->external_fdr_size;
12673 fdr_ptr = fi->d.fdr;
12674 fraw_src = (char *) fi->d.external_fdr;
12675 fraw_end = (fraw_src
12676 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12677 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12678 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12679
12680 mips_elf_tdata (abfd)->find_line_info = fi;
12681
12682 /* Note that we don't bother to ever free this information.
12683 find_nearest_line is either called all the time, as in
12684 objdump -l, so the information should be saved, or it is
12685 rarely called, as in ld error messages, so the memory
12686 wasted is unimportant. Still, it would probably be a
12687 good idea for free_cached_info to throw it away. */
12688 }
12689
12690 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12691 &fi->i, filename_ptr, functionname_ptr,
12692 line_ptr))
12693 {
12694 msec->flags = origflags;
12695 return TRUE;
12696 }
12697
12698 msec->flags = origflags;
12699 }
12700
12701 /* Fall back on the generic ELF find_nearest_line routine. */
12702
12703 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12704 filename_ptr, functionname_ptr,
12705 line_ptr, discriminator_ptr);
12706 }
12707
12708 bfd_boolean
12709 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12710 const char **filename_ptr,
12711 const char **functionname_ptr,
12712 unsigned int *line_ptr)
12713 {
12714 bfd_boolean found;
12715 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12716 functionname_ptr, line_ptr,
12717 & elf_tdata (abfd)->dwarf2_find_line_info);
12718 return found;
12719 }
12720
12721 \f
12722 /* When are writing out the .options or .MIPS.options section,
12723 remember the bytes we are writing out, so that we can install the
12724 GP value in the section_processing routine. */
12725
12726 bfd_boolean
12727 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12728 const void *location,
12729 file_ptr offset, bfd_size_type count)
12730 {
12731 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12732 {
12733 bfd_byte *c;
12734
12735 if (elf_section_data (section) == NULL)
12736 {
12737 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12738 section->used_by_bfd = bfd_zalloc (abfd, amt);
12739 if (elf_section_data (section) == NULL)
12740 return FALSE;
12741 }
12742 c = mips_elf_section_data (section)->u.tdata;
12743 if (c == NULL)
12744 {
12745 c = bfd_zalloc (abfd, section->size);
12746 if (c == NULL)
12747 return FALSE;
12748 mips_elf_section_data (section)->u.tdata = c;
12749 }
12750
12751 memcpy (c + offset, location, count);
12752 }
12753
12754 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12755 count);
12756 }
12757
12758 /* This is almost identical to bfd_generic_get_... except that some
12759 MIPS relocations need to be handled specially. Sigh. */
12760
12761 bfd_byte *
12762 _bfd_elf_mips_get_relocated_section_contents
12763 (bfd *abfd,
12764 struct bfd_link_info *link_info,
12765 struct bfd_link_order *link_order,
12766 bfd_byte *data,
12767 bfd_boolean relocatable,
12768 asymbol **symbols)
12769 {
12770 /* Get enough memory to hold the stuff */
12771 bfd *input_bfd = link_order->u.indirect.section->owner;
12772 asection *input_section = link_order->u.indirect.section;
12773 bfd_size_type sz;
12774
12775 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12776 arelent **reloc_vector = NULL;
12777 long reloc_count;
12778
12779 if (reloc_size < 0)
12780 goto error_return;
12781
12782 reloc_vector = bfd_malloc (reloc_size);
12783 if (reloc_vector == NULL && reloc_size != 0)
12784 goto error_return;
12785
12786 /* read in the section */
12787 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12788 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12789 goto error_return;
12790
12791 reloc_count = bfd_canonicalize_reloc (input_bfd,
12792 input_section,
12793 reloc_vector,
12794 symbols);
12795 if (reloc_count < 0)
12796 goto error_return;
12797
12798 if (reloc_count > 0)
12799 {
12800 arelent **parent;
12801 /* for mips */
12802 int gp_found;
12803 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12804
12805 {
12806 struct bfd_hash_entry *h;
12807 struct bfd_link_hash_entry *lh;
12808 /* Skip all this stuff if we aren't mixing formats. */
12809 if (abfd && input_bfd
12810 && abfd->xvec == input_bfd->xvec)
12811 lh = 0;
12812 else
12813 {
12814 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12815 lh = (struct bfd_link_hash_entry *) h;
12816 }
12817 lookup:
12818 if (lh)
12819 {
12820 switch (lh->type)
12821 {
12822 case bfd_link_hash_undefined:
12823 case bfd_link_hash_undefweak:
12824 case bfd_link_hash_common:
12825 gp_found = 0;
12826 break;
12827 case bfd_link_hash_defined:
12828 case bfd_link_hash_defweak:
12829 gp_found = 1;
12830 gp = lh->u.def.value;
12831 break;
12832 case bfd_link_hash_indirect:
12833 case bfd_link_hash_warning:
12834 lh = lh->u.i.link;
12835 /* @@FIXME ignoring warning for now */
12836 goto lookup;
12837 case bfd_link_hash_new:
12838 default:
12839 abort ();
12840 }
12841 }
12842 else
12843 gp_found = 0;
12844 }
12845 /* end mips */
12846 for (parent = reloc_vector; *parent != NULL; parent++)
12847 {
12848 char *error_message = NULL;
12849 bfd_reloc_status_type r;
12850
12851 /* Specific to MIPS: Deal with relocation types that require
12852 knowing the gp of the output bfd. */
12853 asymbol *sym = *(*parent)->sym_ptr_ptr;
12854
12855 /* If we've managed to find the gp and have a special
12856 function for the relocation then go ahead, else default
12857 to the generic handling. */
12858 if (gp_found
12859 && (*parent)->howto->special_function
12860 == _bfd_mips_elf32_gprel16_reloc)
12861 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12862 input_section, relocatable,
12863 data, gp);
12864 else
12865 r = bfd_perform_relocation (input_bfd, *parent, data,
12866 input_section,
12867 relocatable ? abfd : NULL,
12868 &error_message);
12869
12870 if (relocatable)
12871 {
12872 asection *os = input_section->output_section;
12873
12874 /* A partial link, so keep the relocs */
12875 os->orelocation[os->reloc_count] = *parent;
12876 os->reloc_count++;
12877 }
12878
12879 if (r != bfd_reloc_ok)
12880 {
12881 switch (r)
12882 {
12883 case bfd_reloc_undefined:
12884 if (!((*link_info->callbacks->undefined_symbol)
12885 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12886 input_bfd, input_section, (*parent)->address, TRUE)))
12887 goto error_return;
12888 break;
12889 case bfd_reloc_dangerous:
12890 BFD_ASSERT (error_message != NULL);
12891 if (!((*link_info->callbacks->reloc_dangerous)
12892 (link_info, error_message, input_bfd, input_section,
12893 (*parent)->address)))
12894 goto error_return;
12895 break;
12896 case bfd_reloc_overflow:
12897 if (!((*link_info->callbacks->reloc_overflow)
12898 (link_info, NULL,
12899 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12900 (*parent)->howto->name, (*parent)->addend,
12901 input_bfd, input_section, (*parent)->address)))
12902 goto error_return;
12903 break;
12904 case bfd_reloc_outofrange:
12905 default:
12906 abort ();
12907 break;
12908 }
12909
12910 }
12911 }
12912 }
12913 if (reloc_vector != NULL)
12914 free (reloc_vector);
12915 return data;
12916
12917 error_return:
12918 if (reloc_vector != NULL)
12919 free (reloc_vector);
12920 return NULL;
12921 }
12922 \f
12923 static bfd_boolean
12924 mips_elf_relax_delete_bytes (bfd *abfd,
12925 asection *sec, bfd_vma addr, int count)
12926 {
12927 Elf_Internal_Shdr *symtab_hdr;
12928 unsigned int sec_shndx;
12929 bfd_byte *contents;
12930 Elf_Internal_Rela *irel, *irelend;
12931 Elf_Internal_Sym *isym;
12932 Elf_Internal_Sym *isymend;
12933 struct elf_link_hash_entry **sym_hashes;
12934 struct elf_link_hash_entry **end_hashes;
12935 struct elf_link_hash_entry **start_hashes;
12936 unsigned int symcount;
12937
12938 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12939 contents = elf_section_data (sec)->this_hdr.contents;
12940
12941 irel = elf_section_data (sec)->relocs;
12942 irelend = irel + sec->reloc_count;
12943
12944 /* Actually delete the bytes. */
12945 memmove (contents + addr, contents + addr + count,
12946 (size_t) (sec->size - addr - count));
12947 sec->size -= count;
12948
12949 /* Adjust all the relocs. */
12950 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12951 {
12952 /* Get the new reloc address. */
12953 if (irel->r_offset > addr)
12954 irel->r_offset -= count;
12955 }
12956
12957 BFD_ASSERT (addr % 2 == 0);
12958 BFD_ASSERT (count % 2 == 0);
12959
12960 /* Adjust the local symbols defined in this section. */
12961 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12962 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12963 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12964 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12965 isym->st_value -= count;
12966
12967 /* Now adjust the global symbols defined in this section. */
12968 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12969 - symtab_hdr->sh_info);
12970 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12971 end_hashes = sym_hashes + symcount;
12972
12973 for (; sym_hashes < end_hashes; sym_hashes++)
12974 {
12975 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12976
12977 if ((sym_hash->root.type == bfd_link_hash_defined
12978 || sym_hash->root.type == bfd_link_hash_defweak)
12979 && sym_hash->root.u.def.section == sec)
12980 {
12981 bfd_vma value = sym_hash->root.u.def.value;
12982
12983 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12984 value &= MINUS_TWO;
12985 if (value > addr)
12986 sym_hash->root.u.def.value -= count;
12987 }
12988 }
12989
12990 return TRUE;
12991 }
12992
12993
12994 /* Opcodes needed for microMIPS relaxation as found in
12995 opcodes/micromips-opc.c. */
12996
12997 struct opcode_descriptor {
12998 unsigned long match;
12999 unsigned long mask;
13000 };
13001
13002 /* The $ra register aka $31. */
13003
13004 #define RA 31
13005
13006 /* 32-bit instruction format register fields. */
13007
13008 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13009 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13010
13011 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13012
13013 #define OP16_VALID_REG(r) \
13014 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13015
13016
13017 /* 32-bit and 16-bit branches. */
13018
13019 static const struct opcode_descriptor b_insns_32[] = {
13020 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13021 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13022 { 0, 0 } /* End marker for find_match(). */
13023 };
13024
13025 static const struct opcode_descriptor bc_insn_32 =
13026 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13027
13028 static const struct opcode_descriptor bz_insn_32 =
13029 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13030
13031 static const struct opcode_descriptor bzal_insn_32 =
13032 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13033
13034 static const struct opcode_descriptor beq_insn_32 =
13035 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13036
13037 static const struct opcode_descriptor b_insn_16 =
13038 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13039
13040 static const struct opcode_descriptor bz_insn_16 =
13041 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13042
13043
13044 /* 32-bit and 16-bit branch EQ and NE zero. */
13045
13046 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13047 eq and second the ne. This convention is used when replacing a
13048 32-bit BEQ/BNE with the 16-bit version. */
13049
13050 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13051
13052 static const struct opcode_descriptor bz_rs_insns_32[] = {
13053 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13054 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13055 { 0, 0 } /* End marker for find_match(). */
13056 };
13057
13058 static const struct opcode_descriptor bz_rt_insns_32[] = {
13059 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13060 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13061 { 0, 0 } /* End marker for find_match(). */
13062 };
13063
13064 static const struct opcode_descriptor bzc_insns_32[] = {
13065 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13066 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13067 { 0, 0 } /* End marker for find_match(). */
13068 };
13069
13070 static const struct opcode_descriptor bz_insns_16[] = {
13071 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13072 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13073 { 0, 0 } /* End marker for find_match(). */
13074 };
13075
13076 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13077
13078 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
13079 #define BZ16_REG_FIELD(r) \
13080 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
13081
13082
13083 /* 32-bit instructions with a delay slot. */
13084
13085 static const struct opcode_descriptor jal_insn_32_bd16 =
13086 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13087
13088 static const struct opcode_descriptor jal_insn_32_bd32 =
13089 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13090
13091 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13092 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13093
13094 static const struct opcode_descriptor j_insn_32 =
13095 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13096
13097 static const struct opcode_descriptor jalr_insn_32 =
13098 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13099
13100 /* This table can be compacted, because no opcode replacement is made. */
13101
13102 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13103 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13104
13105 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13106 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13107
13108 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13109 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13110 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13111 { 0, 0 } /* End marker for find_match(). */
13112 };
13113
13114 /* This table can be compacted, because no opcode replacement is made. */
13115
13116 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13117 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13118
13119 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13120 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13121 { 0, 0 } /* End marker for find_match(). */
13122 };
13123
13124
13125 /* 16-bit instructions with a delay slot. */
13126
13127 static const struct opcode_descriptor jalr_insn_16_bd16 =
13128 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13129
13130 static const struct opcode_descriptor jalr_insn_16_bd32 =
13131 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13132
13133 static const struct opcode_descriptor jr_insn_16 =
13134 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13135
13136 #define JR16_REG(opcode) ((opcode) & 0x1f)
13137
13138 /* This table can be compacted, because no opcode replacement is made. */
13139
13140 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13141 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13142
13143 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13144 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13145 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13146 { 0, 0 } /* End marker for find_match(). */
13147 };
13148
13149
13150 /* LUI instruction. */
13151
13152 static const struct opcode_descriptor lui_insn =
13153 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13154
13155
13156 /* ADDIU instruction. */
13157
13158 static const struct opcode_descriptor addiu_insn =
13159 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13160
13161 static const struct opcode_descriptor addiupc_insn =
13162 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13163
13164 #define ADDIUPC_REG_FIELD(r) \
13165 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13166
13167
13168 /* Relaxable instructions in a JAL delay slot: MOVE. */
13169
13170 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13171 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13172 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13173 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13174
13175 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13176 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13177
13178 static const struct opcode_descriptor move_insns_32[] = {
13179 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13180 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13181 { 0, 0 } /* End marker for find_match(). */
13182 };
13183
13184 static const struct opcode_descriptor move_insn_16 =
13185 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13186
13187
13188 /* NOP instructions. */
13189
13190 static const struct opcode_descriptor nop_insn_32 =
13191 { /* "nop", "", */ 0x00000000, 0xffffffff };
13192
13193 static const struct opcode_descriptor nop_insn_16 =
13194 { /* "nop", "", */ 0x0c00, 0xffff };
13195
13196
13197 /* Instruction match support. */
13198
13199 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13200
13201 static int
13202 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13203 {
13204 unsigned long indx;
13205
13206 for (indx = 0; insn[indx].mask != 0; indx++)
13207 if (MATCH (opcode, insn[indx]))
13208 return indx;
13209
13210 return -1;
13211 }
13212
13213
13214 /* Branch and delay slot decoding support. */
13215
13216 /* If PTR points to what *might* be a 16-bit branch or jump, then
13217 return the minimum length of its delay slot, otherwise return 0.
13218 Non-zero results are not definitive as we might be checking against
13219 the second half of another instruction. */
13220
13221 static int
13222 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13223 {
13224 unsigned long opcode;
13225 int bdsize;
13226
13227 opcode = bfd_get_16 (abfd, ptr);
13228 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13229 /* 16-bit branch/jump with a 32-bit delay slot. */
13230 bdsize = 4;
13231 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13232 || find_match (opcode, ds_insns_16_bd16) >= 0)
13233 /* 16-bit branch/jump with a 16-bit delay slot. */
13234 bdsize = 2;
13235 else
13236 /* No delay slot. */
13237 bdsize = 0;
13238
13239 return bdsize;
13240 }
13241
13242 /* If PTR points to what *might* be a 32-bit branch or jump, then
13243 return the minimum length of its delay slot, otherwise return 0.
13244 Non-zero results are not definitive as we might be checking against
13245 the second half of another instruction. */
13246
13247 static int
13248 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13249 {
13250 unsigned long opcode;
13251 int bdsize;
13252
13253 opcode = bfd_get_micromips_32 (abfd, ptr);
13254 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13255 /* 32-bit branch/jump with a 32-bit delay slot. */
13256 bdsize = 4;
13257 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13258 /* 32-bit branch/jump with a 16-bit delay slot. */
13259 bdsize = 2;
13260 else
13261 /* No delay slot. */
13262 bdsize = 0;
13263
13264 return bdsize;
13265 }
13266
13267 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13268 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13269
13270 static bfd_boolean
13271 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13272 {
13273 unsigned long opcode;
13274
13275 opcode = bfd_get_16 (abfd, ptr);
13276 if (MATCH (opcode, b_insn_16)
13277 /* B16 */
13278 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13279 /* JR16 */
13280 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13281 /* BEQZ16, BNEZ16 */
13282 || (MATCH (opcode, jalr_insn_16_bd32)
13283 /* JALR16 */
13284 && reg != JR16_REG (opcode) && reg != RA))
13285 return TRUE;
13286
13287 return FALSE;
13288 }
13289
13290 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13291 then return TRUE, otherwise FALSE. */
13292
13293 static bfd_boolean
13294 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13295 {
13296 unsigned long opcode;
13297
13298 opcode = bfd_get_micromips_32 (abfd, ptr);
13299 if (MATCH (opcode, j_insn_32)
13300 /* J */
13301 || MATCH (opcode, bc_insn_32)
13302 /* BC1F, BC1T, BC2F, BC2T */
13303 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13304 /* JAL, JALX */
13305 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13306 /* BGEZ, BGTZ, BLEZ, BLTZ */
13307 || (MATCH (opcode, bzal_insn_32)
13308 /* BGEZAL, BLTZAL */
13309 && reg != OP32_SREG (opcode) && reg != RA)
13310 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13311 /* JALR, JALR.HB, BEQ, BNE */
13312 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13313 return TRUE;
13314
13315 return FALSE;
13316 }
13317
13318 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13319 IRELEND) at OFFSET indicate that there must be a compact branch there,
13320 then return TRUE, otherwise FALSE. */
13321
13322 static bfd_boolean
13323 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13324 const Elf_Internal_Rela *internal_relocs,
13325 const Elf_Internal_Rela *irelend)
13326 {
13327 const Elf_Internal_Rela *irel;
13328 unsigned long opcode;
13329
13330 opcode = bfd_get_micromips_32 (abfd, ptr);
13331 if (find_match (opcode, bzc_insns_32) < 0)
13332 return FALSE;
13333
13334 for (irel = internal_relocs; irel < irelend; irel++)
13335 if (irel->r_offset == offset
13336 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13337 return TRUE;
13338
13339 return FALSE;
13340 }
13341
13342 /* Bitsize checking. */
13343 #define IS_BITSIZE(val, N) \
13344 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13345 - (1ULL << ((N) - 1))) == (val))
13346
13347 \f
13348 bfd_boolean
13349 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13350 struct bfd_link_info *link_info,
13351 bfd_boolean *again)
13352 {
13353 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13354 Elf_Internal_Shdr *symtab_hdr;
13355 Elf_Internal_Rela *internal_relocs;
13356 Elf_Internal_Rela *irel, *irelend;
13357 bfd_byte *contents = NULL;
13358 Elf_Internal_Sym *isymbuf = NULL;
13359
13360 /* Assume nothing changes. */
13361 *again = FALSE;
13362
13363 /* We don't have to do anything for a relocatable link, if
13364 this section does not have relocs, or if this is not a
13365 code section. */
13366
13367 if (link_info->relocatable
13368 || (sec->flags & SEC_RELOC) == 0
13369 || sec->reloc_count == 0
13370 || (sec->flags & SEC_CODE) == 0)
13371 return TRUE;
13372
13373 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13374
13375 /* Get a copy of the native relocations. */
13376 internal_relocs = (_bfd_elf_link_read_relocs
13377 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13378 link_info->keep_memory));
13379 if (internal_relocs == NULL)
13380 goto error_return;
13381
13382 /* Walk through them looking for relaxing opportunities. */
13383 irelend = internal_relocs + sec->reloc_count;
13384 for (irel = internal_relocs; irel < irelend; irel++)
13385 {
13386 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13387 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13388 bfd_boolean target_is_micromips_code_p;
13389 unsigned long opcode;
13390 bfd_vma symval;
13391 bfd_vma pcrval;
13392 bfd_byte *ptr;
13393 int fndopc;
13394
13395 /* The number of bytes to delete for relaxation and from where
13396 to delete these bytes starting at irel->r_offset. */
13397 int delcnt = 0;
13398 int deloff = 0;
13399
13400 /* If this isn't something that can be relaxed, then ignore
13401 this reloc. */
13402 if (r_type != R_MICROMIPS_HI16
13403 && r_type != R_MICROMIPS_PC16_S1
13404 && r_type != R_MICROMIPS_26_S1)
13405 continue;
13406
13407 /* Get the section contents if we haven't done so already. */
13408 if (contents == NULL)
13409 {
13410 /* Get cached copy if it exists. */
13411 if (elf_section_data (sec)->this_hdr.contents != NULL)
13412 contents = elf_section_data (sec)->this_hdr.contents;
13413 /* Go get them off disk. */
13414 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13415 goto error_return;
13416 }
13417 ptr = contents + irel->r_offset;
13418
13419 /* Read this BFD's local symbols if we haven't done so already. */
13420 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13421 {
13422 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13423 if (isymbuf == NULL)
13424 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13425 symtab_hdr->sh_info, 0,
13426 NULL, NULL, NULL);
13427 if (isymbuf == NULL)
13428 goto error_return;
13429 }
13430
13431 /* Get the value of the symbol referred to by the reloc. */
13432 if (r_symndx < symtab_hdr->sh_info)
13433 {
13434 /* A local symbol. */
13435 Elf_Internal_Sym *isym;
13436 asection *sym_sec;
13437
13438 isym = isymbuf + r_symndx;
13439 if (isym->st_shndx == SHN_UNDEF)
13440 sym_sec = bfd_und_section_ptr;
13441 else if (isym->st_shndx == SHN_ABS)
13442 sym_sec = bfd_abs_section_ptr;
13443 else if (isym->st_shndx == SHN_COMMON)
13444 sym_sec = bfd_com_section_ptr;
13445 else
13446 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13447 symval = (isym->st_value
13448 + sym_sec->output_section->vma
13449 + sym_sec->output_offset);
13450 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13451 }
13452 else
13453 {
13454 unsigned long indx;
13455 struct elf_link_hash_entry *h;
13456
13457 /* An external symbol. */
13458 indx = r_symndx - symtab_hdr->sh_info;
13459 h = elf_sym_hashes (abfd)[indx];
13460 BFD_ASSERT (h != NULL);
13461
13462 if (h->root.type != bfd_link_hash_defined
13463 && h->root.type != bfd_link_hash_defweak)
13464 /* This appears to be a reference to an undefined
13465 symbol. Just ignore it -- it will be caught by the
13466 regular reloc processing. */
13467 continue;
13468
13469 symval = (h->root.u.def.value
13470 + h->root.u.def.section->output_section->vma
13471 + h->root.u.def.section->output_offset);
13472 target_is_micromips_code_p = (!h->needs_plt
13473 && ELF_ST_IS_MICROMIPS (h->other));
13474 }
13475
13476
13477 /* For simplicity of coding, we are going to modify the
13478 section contents, the section relocs, and the BFD symbol
13479 table. We must tell the rest of the code not to free up this
13480 information. It would be possible to instead create a table
13481 of changes which have to be made, as is done in coff-mips.c;
13482 that would be more work, but would require less memory when
13483 the linker is run. */
13484
13485 /* Only 32-bit instructions relaxed. */
13486 if (irel->r_offset + 4 > sec->size)
13487 continue;
13488
13489 opcode = bfd_get_micromips_32 (abfd, ptr);
13490
13491 /* This is the pc-relative distance from the instruction the
13492 relocation is applied to, to the symbol referred. */
13493 pcrval = (symval
13494 - (sec->output_section->vma + sec->output_offset)
13495 - irel->r_offset);
13496
13497 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13498 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13499 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13500
13501 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13502
13503 where pcrval has first to be adjusted to apply against the LO16
13504 location (we make the adjustment later on, when we have figured
13505 out the offset). */
13506 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13507 {
13508 bfd_boolean bzc = FALSE;
13509 unsigned long nextopc;
13510 unsigned long reg;
13511 bfd_vma offset;
13512
13513 /* Give up if the previous reloc was a HI16 against this symbol
13514 too. */
13515 if (irel > internal_relocs
13516 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13517 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13518 continue;
13519
13520 /* Or if the next reloc is not a LO16 against this symbol. */
13521 if (irel + 1 >= irelend
13522 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13523 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13524 continue;
13525
13526 /* Or if the second next reloc is a LO16 against this symbol too. */
13527 if (irel + 2 >= irelend
13528 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13529 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13530 continue;
13531
13532 /* See if the LUI instruction *might* be in a branch delay slot.
13533 We check whether what looks like a 16-bit branch or jump is
13534 actually an immediate argument to a compact branch, and let
13535 it through if so. */
13536 if (irel->r_offset >= 2
13537 && check_br16_dslot (abfd, ptr - 2)
13538 && !(irel->r_offset >= 4
13539 && (bzc = check_relocated_bzc (abfd,
13540 ptr - 4, irel->r_offset - 4,
13541 internal_relocs, irelend))))
13542 continue;
13543 if (irel->r_offset >= 4
13544 && !bzc
13545 && check_br32_dslot (abfd, ptr - 4))
13546 continue;
13547
13548 reg = OP32_SREG (opcode);
13549
13550 /* We only relax adjacent instructions or ones separated with
13551 a branch or jump that has a delay slot. The branch or jump
13552 must not fiddle with the register used to hold the address.
13553 Subtract 4 for the LUI itself. */
13554 offset = irel[1].r_offset - irel[0].r_offset;
13555 switch (offset - 4)
13556 {
13557 case 0:
13558 break;
13559 case 2:
13560 if (check_br16 (abfd, ptr + 4, reg))
13561 break;
13562 continue;
13563 case 4:
13564 if (check_br32 (abfd, ptr + 4, reg))
13565 break;
13566 continue;
13567 default:
13568 continue;
13569 }
13570
13571 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13572
13573 /* Give up unless the same register is used with both
13574 relocations. */
13575 if (OP32_SREG (nextopc) != reg)
13576 continue;
13577
13578 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13579 and rounding up to take masking of the two LSBs into account. */
13580 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13581
13582 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13583 if (IS_BITSIZE (symval, 16))
13584 {
13585 /* Fix the relocation's type. */
13586 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13587
13588 /* Instructions using R_MICROMIPS_LO16 have the base or
13589 source register in bits 20:16. This register becomes $0
13590 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13591 nextopc &= ~0x001f0000;
13592 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13593 contents + irel[1].r_offset);
13594 }
13595
13596 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13597 We add 4 to take LUI deletion into account while checking
13598 the PC-relative distance. */
13599 else if (symval % 4 == 0
13600 && IS_BITSIZE (pcrval + 4, 25)
13601 && MATCH (nextopc, addiu_insn)
13602 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13603 && OP16_VALID_REG (OP32_TREG (nextopc)))
13604 {
13605 /* Fix the relocation's type. */
13606 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13607
13608 /* Replace ADDIU with the ADDIUPC version. */
13609 nextopc = (addiupc_insn.match
13610 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13611
13612 bfd_put_micromips_32 (abfd, nextopc,
13613 contents + irel[1].r_offset);
13614 }
13615
13616 /* Can't do anything, give up, sigh... */
13617 else
13618 continue;
13619
13620 /* Fix the relocation's type. */
13621 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13622
13623 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13624 delcnt = 4;
13625 deloff = 0;
13626 }
13627
13628 /* Compact branch relaxation -- due to the multitude of macros
13629 employed by the compiler/assembler, compact branches are not
13630 always generated. Obviously, this can/will be fixed elsewhere,
13631 but there is no drawback in double checking it here. */
13632 else if (r_type == R_MICROMIPS_PC16_S1
13633 && irel->r_offset + 5 < sec->size
13634 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13635 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13636 && ((!insn32
13637 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13638 nop_insn_16) ? 2 : 0))
13639 || (irel->r_offset + 7 < sec->size
13640 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13641 ptr + 4),
13642 nop_insn_32) ? 4 : 0))))
13643 {
13644 unsigned long reg;
13645
13646 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13647
13648 /* Replace BEQZ/BNEZ with the compact version. */
13649 opcode = (bzc_insns_32[fndopc].match
13650 | BZC32_REG_FIELD (reg)
13651 | (opcode & 0xffff)); /* Addend value. */
13652
13653 bfd_put_micromips_32 (abfd, opcode, ptr);
13654
13655 /* Delete the delay slot NOP: two or four bytes from
13656 irel->offset + 4; delcnt has already been set above. */
13657 deloff = 4;
13658 }
13659
13660 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13661 to check the distance from the next instruction, so subtract 2. */
13662 else if (!insn32
13663 && r_type == R_MICROMIPS_PC16_S1
13664 && IS_BITSIZE (pcrval - 2, 11)
13665 && find_match (opcode, b_insns_32) >= 0)
13666 {
13667 /* Fix the relocation's type. */
13668 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13669
13670 /* Replace the 32-bit opcode with a 16-bit opcode. */
13671 bfd_put_16 (abfd,
13672 (b_insn_16.match
13673 | (opcode & 0x3ff)), /* Addend value. */
13674 ptr);
13675
13676 /* Delete 2 bytes from irel->r_offset + 2. */
13677 delcnt = 2;
13678 deloff = 2;
13679 }
13680
13681 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13682 to check the distance from the next instruction, so subtract 2. */
13683 else if (!insn32
13684 && r_type == R_MICROMIPS_PC16_S1
13685 && IS_BITSIZE (pcrval - 2, 8)
13686 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13687 && OP16_VALID_REG (OP32_SREG (opcode)))
13688 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13689 && OP16_VALID_REG (OP32_TREG (opcode)))))
13690 {
13691 unsigned long reg;
13692
13693 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13694
13695 /* Fix the relocation's type. */
13696 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13697
13698 /* Replace the 32-bit opcode with a 16-bit opcode. */
13699 bfd_put_16 (abfd,
13700 (bz_insns_16[fndopc].match
13701 | BZ16_REG_FIELD (reg)
13702 | (opcode & 0x7f)), /* Addend value. */
13703 ptr);
13704
13705 /* Delete 2 bytes from irel->r_offset + 2. */
13706 delcnt = 2;
13707 deloff = 2;
13708 }
13709
13710 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13711 else if (!insn32
13712 && r_type == R_MICROMIPS_26_S1
13713 && target_is_micromips_code_p
13714 && irel->r_offset + 7 < sec->size
13715 && MATCH (opcode, jal_insn_32_bd32))
13716 {
13717 unsigned long n32opc;
13718 bfd_boolean relaxed = FALSE;
13719
13720 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13721
13722 if (MATCH (n32opc, nop_insn_32))
13723 {
13724 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13725 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13726
13727 relaxed = TRUE;
13728 }
13729 else if (find_match (n32opc, move_insns_32) >= 0)
13730 {
13731 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13732 bfd_put_16 (abfd,
13733 (move_insn_16.match
13734 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13735 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13736 ptr + 4);
13737
13738 relaxed = TRUE;
13739 }
13740 /* Other 32-bit instructions relaxable to 16-bit
13741 instructions will be handled here later. */
13742
13743 if (relaxed)
13744 {
13745 /* JAL with 32-bit delay slot that is changed to a JALS
13746 with 16-bit delay slot. */
13747 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13748
13749 /* Delete 2 bytes from irel->r_offset + 6. */
13750 delcnt = 2;
13751 deloff = 6;
13752 }
13753 }
13754
13755 if (delcnt != 0)
13756 {
13757 /* Note that we've changed the relocs, section contents, etc. */
13758 elf_section_data (sec)->relocs = internal_relocs;
13759 elf_section_data (sec)->this_hdr.contents = contents;
13760 symtab_hdr->contents = (unsigned char *) isymbuf;
13761
13762 /* Delete bytes depending on the delcnt and deloff. */
13763 if (!mips_elf_relax_delete_bytes (abfd, sec,
13764 irel->r_offset + deloff, delcnt))
13765 goto error_return;
13766
13767 /* That will change things, so we should relax again.
13768 Note that this is not required, and it may be slow. */
13769 *again = TRUE;
13770 }
13771 }
13772
13773 if (isymbuf != NULL
13774 && symtab_hdr->contents != (unsigned char *) isymbuf)
13775 {
13776 if (! link_info->keep_memory)
13777 free (isymbuf);
13778 else
13779 {
13780 /* Cache the symbols for elf_link_input_bfd. */
13781 symtab_hdr->contents = (unsigned char *) isymbuf;
13782 }
13783 }
13784
13785 if (contents != NULL
13786 && elf_section_data (sec)->this_hdr.contents != contents)
13787 {
13788 if (! link_info->keep_memory)
13789 free (contents);
13790 else
13791 {
13792 /* Cache the section contents for elf_link_input_bfd. */
13793 elf_section_data (sec)->this_hdr.contents = contents;
13794 }
13795 }
13796
13797 if (internal_relocs != NULL
13798 && elf_section_data (sec)->relocs != internal_relocs)
13799 free (internal_relocs);
13800
13801 return TRUE;
13802
13803 error_return:
13804 if (isymbuf != NULL
13805 && symtab_hdr->contents != (unsigned char *) isymbuf)
13806 free (isymbuf);
13807 if (contents != NULL
13808 && elf_section_data (sec)->this_hdr.contents != contents)
13809 free (contents);
13810 if (internal_relocs != NULL
13811 && elf_section_data (sec)->relocs != internal_relocs)
13812 free (internal_relocs);
13813
13814 return FALSE;
13815 }
13816 \f
13817 /* Create a MIPS ELF linker hash table. */
13818
13819 struct bfd_link_hash_table *
13820 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13821 {
13822 struct mips_elf_link_hash_table *ret;
13823 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13824
13825 ret = bfd_zmalloc (amt);
13826 if (ret == NULL)
13827 return NULL;
13828
13829 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13830 mips_elf_link_hash_newfunc,
13831 sizeof (struct mips_elf_link_hash_entry),
13832 MIPS_ELF_DATA))
13833 {
13834 free (ret);
13835 return NULL;
13836 }
13837 ret->root.init_plt_refcount.plist = NULL;
13838 ret->root.init_plt_offset.plist = NULL;
13839
13840 return &ret->root.root;
13841 }
13842
13843 /* Likewise, but indicate that the target is VxWorks. */
13844
13845 struct bfd_link_hash_table *
13846 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13847 {
13848 struct bfd_link_hash_table *ret;
13849
13850 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13851 if (ret)
13852 {
13853 struct mips_elf_link_hash_table *htab;
13854
13855 htab = (struct mips_elf_link_hash_table *) ret;
13856 htab->use_plts_and_copy_relocs = TRUE;
13857 htab->is_vxworks = TRUE;
13858 }
13859 return ret;
13860 }
13861
13862 /* A function that the linker calls if we are allowed to use PLTs
13863 and copy relocs. */
13864
13865 void
13866 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13867 {
13868 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13869 }
13870
13871 /* A function that the linker calls to select between all or only
13872 32-bit microMIPS instructions. */
13873
13874 void
13875 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13876 {
13877 mips_elf_hash_table (info)->insn32 = on;
13878 }
13879 \f
13880 /* Return the .MIPS.abiflags value representing each ISA Extension. */
13881
13882 unsigned int
13883 bfd_mips_isa_ext (bfd *abfd)
13884 {
13885 switch (bfd_get_mach (abfd))
13886 {
13887 case bfd_mach_mips3900:
13888 return AFL_EXT_3900;
13889 case bfd_mach_mips4010:
13890 return AFL_EXT_4010;
13891 case bfd_mach_mips4100:
13892 return AFL_EXT_4100;
13893 case bfd_mach_mips4111:
13894 return AFL_EXT_4111;
13895 case bfd_mach_mips4120:
13896 return AFL_EXT_4120;
13897 case bfd_mach_mips4650:
13898 return AFL_EXT_4650;
13899 case bfd_mach_mips5400:
13900 return AFL_EXT_5400;
13901 case bfd_mach_mips5500:
13902 return AFL_EXT_5500;
13903 case bfd_mach_mips5900:
13904 return AFL_EXT_5900;
13905 case bfd_mach_mips10000:
13906 return AFL_EXT_10000;
13907 case bfd_mach_mips_loongson_2e:
13908 return AFL_EXT_LOONGSON_2E;
13909 case bfd_mach_mips_loongson_2f:
13910 return AFL_EXT_LOONGSON_2F;
13911 case bfd_mach_mips_loongson_3a:
13912 return AFL_EXT_LOONGSON_3A;
13913 case bfd_mach_mips_sb1:
13914 return AFL_EXT_SB1;
13915 case bfd_mach_mips_octeon:
13916 return AFL_EXT_OCTEON;
13917 case bfd_mach_mips_octeonp:
13918 return AFL_EXT_OCTEONP;
13919 case bfd_mach_mips_octeon3:
13920 return AFL_EXT_OCTEON3;
13921 case bfd_mach_mips_octeon2:
13922 return AFL_EXT_OCTEON2;
13923 case bfd_mach_mips_xlr:
13924 return AFL_EXT_XLR;
13925 }
13926 return 0;
13927 }
13928
13929 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
13930
13931 static void
13932 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
13933 {
13934 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
13935 {
13936 case E_MIPS_ARCH_1:
13937 abiflags->isa_level = 1;
13938 abiflags->isa_rev = 0;
13939 break;
13940 case E_MIPS_ARCH_2:
13941 abiflags->isa_level = 2;
13942 abiflags->isa_rev = 0;
13943 break;
13944 case E_MIPS_ARCH_3:
13945 abiflags->isa_level = 3;
13946 abiflags->isa_rev = 0;
13947 break;
13948 case E_MIPS_ARCH_4:
13949 abiflags->isa_level = 4;
13950 abiflags->isa_rev = 0;
13951 break;
13952 case E_MIPS_ARCH_5:
13953 abiflags->isa_level = 5;
13954 abiflags->isa_rev = 0;
13955 break;
13956 case E_MIPS_ARCH_32:
13957 abiflags->isa_level = 32;
13958 abiflags->isa_rev = 1;
13959 break;
13960 case E_MIPS_ARCH_32R2:
13961 abiflags->isa_level = 32;
13962 /* Handle MIPS32r3 and MIPS32r5 which do not have a header flag. */
13963 if (abiflags->isa_rev < 2)
13964 abiflags->isa_rev = 2;
13965 break;
13966 case E_MIPS_ARCH_32R6:
13967 abiflags->isa_level = 32;
13968 abiflags->isa_rev = 6;
13969 break;
13970 case E_MIPS_ARCH_64:
13971 abiflags->isa_level = 64;
13972 abiflags->isa_rev = 1;
13973 break;
13974 case E_MIPS_ARCH_64R2:
13975 /* Handle MIPS64r3 and MIPS64r5 which do not have a header flag. */
13976 abiflags->isa_level = 64;
13977 if (abiflags->isa_rev < 2)
13978 abiflags->isa_rev = 2;
13979 break;
13980 case E_MIPS_ARCH_64R6:
13981 abiflags->isa_level = 64;
13982 abiflags->isa_rev = 6;
13983 break;
13984 default:
13985 (*_bfd_error_handler)
13986 (_("%B: Unknown architecture %s"),
13987 abfd, bfd_printable_name (abfd));
13988 }
13989
13990 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
13991 }
13992
13993 /* Return true if the given ELF header flags describe a 32-bit binary. */
13994
13995 static bfd_boolean
13996 mips_32bit_flags_p (flagword flags)
13997 {
13998 return ((flags & EF_MIPS_32BITMODE) != 0
13999 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14000 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14001 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14002 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14003 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14004 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14005 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14006 }
14007
14008 /* Infer the content of the ABI flags based on the elf header. */
14009
14010 static void
14011 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14012 {
14013 obj_attribute *in_attr;
14014
14015 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14016 update_mips_abiflags_isa (abfd, abiflags);
14017
14018 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14019 abiflags->gpr_size = AFL_REG_32;
14020 else
14021 abiflags->gpr_size = AFL_REG_64;
14022
14023 abiflags->cpr1_size = AFL_REG_NONE;
14024
14025 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14026 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14027
14028 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14029 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14030 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14031 && abiflags->gpr_size == AFL_REG_32))
14032 abiflags->cpr1_size = AFL_REG_32;
14033 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14034 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14035 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14036 abiflags->cpr1_size = AFL_REG_64;
14037
14038 abiflags->cpr2_size = AFL_REG_NONE;
14039
14040 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14041 abiflags->ases |= AFL_ASE_MDMX;
14042 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14043 abiflags->ases |= AFL_ASE_MIPS16;
14044 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14045 abiflags->ases |= AFL_ASE_MICROMIPS;
14046
14047 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14048 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14049 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14050 && abiflags->isa_level >= 32
14051 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14052 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14053 }
14054
14055 /* We need to use a special link routine to handle the .reginfo and
14056 the .mdebug sections. We need to merge all instances of these
14057 sections together, not write them all out sequentially. */
14058
14059 bfd_boolean
14060 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14061 {
14062 asection *o;
14063 struct bfd_link_order *p;
14064 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14065 asection *rtproc_sec, *abiflags_sec;
14066 Elf32_RegInfo reginfo;
14067 struct ecoff_debug_info debug;
14068 struct mips_htab_traverse_info hti;
14069 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14070 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14071 HDRR *symhdr = &debug.symbolic_header;
14072 void *mdebug_handle = NULL;
14073 asection *s;
14074 EXTR esym;
14075 unsigned int i;
14076 bfd_size_type amt;
14077 struct mips_elf_link_hash_table *htab;
14078
14079 static const char * const secname[] =
14080 {
14081 ".text", ".init", ".fini", ".data",
14082 ".rodata", ".sdata", ".sbss", ".bss"
14083 };
14084 static const int sc[] =
14085 {
14086 scText, scInit, scFini, scData,
14087 scRData, scSData, scSBss, scBss
14088 };
14089
14090 /* Sort the dynamic symbols so that those with GOT entries come after
14091 those without. */
14092 htab = mips_elf_hash_table (info);
14093 BFD_ASSERT (htab != NULL);
14094
14095 if (!mips_elf_sort_hash_table (abfd, info))
14096 return FALSE;
14097
14098 /* Create any scheduled LA25 stubs. */
14099 hti.info = info;
14100 hti.output_bfd = abfd;
14101 hti.error = FALSE;
14102 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14103 if (hti.error)
14104 return FALSE;
14105
14106 /* Get a value for the GP register. */
14107 if (elf_gp (abfd) == 0)
14108 {
14109 struct bfd_link_hash_entry *h;
14110
14111 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14112 if (h != NULL && h->type == bfd_link_hash_defined)
14113 elf_gp (abfd) = (h->u.def.value
14114 + h->u.def.section->output_section->vma
14115 + h->u.def.section->output_offset);
14116 else if (htab->is_vxworks
14117 && (h = bfd_link_hash_lookup (info->hash,
14118 "_GLOBAL_OFFSET_TABLE_",
14119 FALSE, FALSE, TRUE))
14120 && h->type == bfd_link_hash_defined)
14121 elf_gp (abfd) = (h->u.def.section->output_section->vma
14122 + h->u.def.section->output_offset
14123 + h->u.def.value);
14124 else if (info->relocatable)
14125 {
14126 bfd_vma lo = MINUS_ONE;
14127
14128 /* Find the GP-relative section with the lowest offset. */
14129 for (o = abfd->sections; o != NULL; o = o->next)
14130 if (o->vma < lo
14131 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14132 lo = o->vma;
14133
14134 /* And calculate GP relative to that. */
14135 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14136 }
14137 else
14138 {
14139 /* If the relocate_section function needs to do a reloc
14140 involving the GP value, it should make a reloc_dangerous
14141 callback to warn that GP is not defined. */
14142 }
14143 }
14144
14145 /* Go through the sections and collect the .reginfo and .mdebug
14146 information. */
14147 abiflags_sec = NULL;
14148 reginfo_sec = NULL;
14149 mdebug_sec = NULL;
14150 gptab_data_sec = NULL;
14151 gptab_bss_sec = NULL;
14152 for (o = abfd->sections; o != NULL; o = o->next)
14153 {
14154 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14155 {
14156 /* We have found the .MIPS.abiflags section in the output file.
14157 Look through all the link_orders comprising it and remove them.
14158 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14159 for (p = o->map_head.link_order; p != NULL; p = p->next)
14160 {
14161 asection *input_section;
14162
14163 if (p->type != bfd_indirect_link_order)
14164 {
14165 if (p->type == bfd_data_link_order)
14166 continue;
14167 abort ();
14168 }
14169
14170 input_section = p->u.indirect.section;
14171
14172 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14173 elf_link_input_bfd ignores this section. */
14174 input_section->flags &= ~SEC_HAS_CONTENTS;
14175 }
14176
14177 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14178 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14179
14180 /* Skip this section later on (I don't think this currently
14181 matters, but someday it might). */
14182 o->map_head.link_order = NULL;
14183
14184 abiflags_sec = o;
14185 }
14186
14187 if (strcmp (o->name, ".reginfo") == 0)
14188 {
14189 memset (&reginfo, 0, sizeof reginfo);
14190
14191 /* We have found the .reginfo section in the output file.
14192 Look through all the link_orders comprising it and merge
14193 the information together. */
14194 for (p = o->map_head.link_order; p != NULL; p = p->next)
14195 {
14196 asection *input_section;
14197 bfd *input_bfd;
14198 Elf32_External_RegInfo ext;
14199 Elf32_RegInfo sub;
14200
14201 if (p->type != bfd_indirect_link_order)
14202 {
14203 if (p->type == bfd_data_link_order)
14204 continue;
14205 abort ();
14206 }
14207
14208 input_section = p->u.indirect.section;
14209 input_bfd = input_section->owner;
14210
14211 if (! bfd_get_section_contents (input_bfd, input_section,
14212 &ext, 0, sizeof ext))
14213 return FALSE;
14214
14215 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14216
14217 reginfo.ri_gprmask |= sub.ri_gprmask;
14218 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14219 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14220 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14221 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14222
14223 /* ri_gp_value is set by the function
14224 mips_elf32_section_processing when the section is
14225 finally written out. */
14226
14227 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14228 elf_link_input_bfd ignores this section. */
14229 input_section->flags &= ~SEC_HAS_CONTENTS;
14230 }
14231
14232 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14233 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14234
14235 /* Skip this section later on (I don't think this currently
14236 matters, but someday it might). */
14237 o->map_head.link_order = NULL;
14238
14239 reginfo_sec = o;
14240 }
14241
14242 if (strcmp (o->name, ".mdebug") == 0)
14243 {
14244 struct extsym_info einfo;
14245 bfd_vma last;
14246
14247 /* We have found the .mdebug section in the output file.
14248 Look through all the link_orders comprising it and merge
14249 the information together. */
14250 symhdr->magic = swap->sym_magic;
14251 /* FIXME: What should the version stamp be? */
14252 symhdr->vstamp = 0;
14253 symhdr->ilineMax = 0;
14254 symhdr->cbLine = 0;
14255 symhdr->idnMax = 0;
14256 symhdr->ipdMax = 0;
14257 symhdr->isymMax = 0;
14258 symhdr->ioptMax = 0;
14259 symhdr->iauxMax = 0;
14260 symhdr->issMax = 0;
14261 symhdr->issExtMax = 0;
14262 symhdr->ifdMax = 0;
14263 symhdr->crfd = 0;
14264 symhdr->iextMax = 0;
14265
14266 /* We accumulate the debugging information itself in the
14267 debug_info structure. */
14268 debug.line = NULL;
14269 debug.external_dnr = NULL;
14270 debug.external_pdr = NULL;
14271 debug.external_sym = NULL;
14272 debug.external_opt = NULL;
14273 debug.external_aux = NULL;
14274 debug.ss = NULL;
14275 debug.ssext = debug.ssext_end = NULL;
14276 debug.external_fdr = NULL;
14277 debug.external_rfd = NULL;
14278 debug.external_ext = debug.external_ext_end = NULL;
14279
14280 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14281 if (mdebug_handle == NULL)
14282 return FALSE;
14283
14284 esym.jmptbl = 0;
14285 esym.cobol_main = 0;
14286 esym.weakext = 0;
14287 esym.reserved = 0;
14288 esym.ifd = ifdNil;
14289 esym.asym.iss = issNil;
14290 esym.asym.st = stLocal;
14291 esym.asym.reserved = 0;
14292 esym.asym.index = indexNil;
14293 last = 0;
14294 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14295 {
14296 esym.asym.sc = sc[i];
14297 s = bfd_get_section_by_name (abfd, secname[i]);
14298 if (s != NULL)
14299 {
14300 esym.asym.value = s->vma;
14301 last = s->vma + s->size;
14302 }
14303 else
14304 esym.asym.value = last;
14305 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14306 secname[i], &esym))
14307 return FALSE;
14308 }
14309
14310 for (p = o->map_head.link_order; p != NULL; p = p->next)
14311 {
14312 asection *input_section;
14313 bfd *input_bfd;
14314 const struct ecoff_debug_swap *input_swap;
14315 struct ecoff_debug_info input_debug;
14316 char *eraw_src;
14317 char *eraw_end;
14318
14319 if (p->type != bfd_indirect_link_order)
14320 {
14321 if (p->type == bfd_data_link_order)
14322 continue;
14323 abort ();
14324 }
14325
14326 input_section = p->u.indirect.section;
14327 input_bfd = input_section->owner;
14328
14329 if (!is_mips_elf (input_bfd))
14330 {
14331 /* I don't know what a non MIPS ELF bfd would be
14332 doing with a .mdebug section, but I don't really
14333 want to deal with it. */
14334 continue;
14335 }
14336
14337 input_swap = (get_elf_backend_data (input_bfd)
14338 ->elf_backend_ecoff_debug_swap);
14339
14340 BFD_ASSERT (p->size == input_section->size);
14341
14342 /* The ECOFF linking code expects that we have already
14343 read in the debugging information and set up an
14344 ecoff_debug_info structure, so we do that now. */
14345 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14346 &input_debug))
14347 return FALSE;
14348
14349 if (! (bfd_ecoff_debug_accumulate
14350 (mdebug_handle, abfd, &debug, swap, input_bfd,
14351 &input_debug, input_swap, info)))
14352 return FALSE;
14353
14354 /* Loop through the external symbols. For each one with
14355 interesting information, try to find the symbol in
14356 the linker global hash table and save the information
14357 for the output external symbols. */
14358 eraw_src = input_debug.external_ext;
14359 eraw_end = (eraw_src
14360 + (input_debug.symbolic_header.iextMax
14361 * input_swap->external_ext_size));
14362 for (;
14363 eraw_src < eraw_end;
14364 eraw_src += input_swap->external_ext_size)
14365 {
14366 EXTR ext;
14367 const char *name;
14368 struct mips_elf_link_hash_entry *h;
14369
14370 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14371 if (ext.asym.sc == scNil
14372 || ext.asym.sc == scUndefined
14373 || ext.asym.sc == scSUndefined)
14374 continue;
14375
14376 name = input_debug.ssext + ext.asym.iss;
14377 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14378 name, FALSE, FALSE, TRUE);
14379 if (h == NULL || h->esym.ifd != -2)
14380 continue;
14381
14382 if (ext.ifd != -1)
14383 {
14384 BFD_ASSERT (ext.ifd
14385 < input_debug.symbolic_header.ifdMax);
14386 ext.ifd = input_debug.ifdmap[ext.ifd];
14387 }
14388
14389 h->esym = ext;
14390 }
14391
14392 /* Free up the information we just read. */
14393 free (input_debug.line);
14394 free (input_debug.external_dnr);
14395 free (input_debug.external_pdr);
14396 free (input_debug.external_sym);
14397 free (input_debug.external_opt);
14398 free (input_debug.external_aux);
14399 free (input_debug.ss);
14400 free (input_debug.ssext);
14401 free (input_debug.external_fdr);
14402 free (input_debug.external_rfd);
14403 free (input_debug.external_ext);
14404
14405 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14406 elf_link_input_bfd ignores this section. */
14407 input_section->flags &= ~SEC_HAS_CONTENTS;
14408 }
14409
14410 if (SGI_COMPAT (abfd) && info->shared)
14411 {
14412 /* Create .rtproc section. */
14413 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14414 if (rtproc_sec == NULL)
14415 {
14416 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14417 | SEC_LINKER_CREATED | SEC_READONLY);
14418
14419 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14420 ".rtproc",
14421 flags);
14422 if (rtproc_sec == NULL
14423 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14424 return FALSE;
14425 }
14426
14427 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14428 info, rtproc_sec,
14429 &debug))
14430 return FALSE;
14431 }
14432
14433 /* Build the external symbol information. */
14434 einfo.abfd = abfd;
14435 einfo.info = info;
14436 einfo.debug = &debug;
14437 einfo.swap = swap;
14438 einfo.failed = FALSE;
14439 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14440 mips_elf_output_extsym, &einfo);
14441 if (einfo.failed)
14442 return FALSE;
14443
14444 /* Set the size of the .mdebug section. */
14445 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14446
14447 /* Skip this section later on (I don't think this currently
14448 matters, but someday it might). */
14449 o->map_head.link_order = NULL;
14450
14451 mdebug_sec = o;
14452 }
14453
14454 if (CONST_STRNEQ (o->name, ".gptab."))
14455 {
14456 const char *subname;
14457 unsigned int c;
14458 Elf32_gptab *tab;
14459 Elf32_External_gptab *ext_tab;
14460 unsigned int j;
14461
14462 /* The .gptab.sdata and .gptab.sbss sections hold
14463 information describing how the small data area would
14464 change depending upon the -G switch. These sections
14465 not used in executables files. */
14466 if (! info->relocatable)
14467 {
14468 for (p = o->map_head.link_order; p != NULL; p = p->next)
14469 {
14470 asection *input_section;
14471
14472 if (p->type != bfd_indirect_link_order)
14473 {
14474 if (p->type == bfd_data_link_order)
14475 continue;
14476 abort ();
14477 }
14478
14479 input_section = p->u.indirect.section;
14480
14481 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14482 elf_link_input_bfd ignores this section. */
14483 input_section->flags &= ~SEC_HAS_CONTENTS;
14484 }
14485
14486 /* Skip this section later on (I don't think this
14487 currently matters, but someday it might). */
14488 o->map_head.link_order = NULL;
14489
14490 /* Really remove the section. */
14491 bfd_section_list_remove (abfd, o);
14492 --abfd->section_count;
14493
14494 continue;
14495 }
14496
14497 /* There is one gptab for initialized data, and one for
14498 uninitialized data. */
14499 if (strcmp (o->name, ".gptab.sdata") == 0)
14500 gptab_data_sec = o;
14501 else if (strcmp (o->name, ".gptab.sbss") == 0)
14502 gptab_bss_sec = o;
14503 else
14504 {
14505 (*_bfd_error_handler)
14506 (_("%s: illegal section name `%s'"),
14507 bfd_get_filename (abfd), o->name);
14508 bfd_set_error (bfd_error_nonrepresentable_section);
14509 return FALSE;
14510 }
14511
14512 /* The linker script always combines .gptab.data and
14513 .gptab.sdata into .gptab.sdata, and likewise for
14514 .gptab.bss and .gptab.sbss. It is possible that there is
14515 no .sdata or .sbss section in the output file, in which
14516 case we must change the name of the output section. */
14517 subname = o->name + sizeof ".gptab" - 1;
14518 if (bfd_get_section_by_name (abfd, subname) == NULL)
14519 {
14520 if (o == gptab_data_sec)
14521 o->name = ".gptab.data";
14522 else
14523 o->name = ".gptab.bss";
14524 subname = o->name + sizeof ".gptab" - 1;
14525 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14526 }
14527
14528 /* Set up the first entry. */
14529 c = 1;
14530 amt = c * sizeof (Elf32_gptab);
14531 tab = bfd_malloc (amt);
14532 if (tab == NULL)
14533 return FALSE;
14534 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14535 tab[0].gt_header.gt_unused = 0;
14536
14537 /* Combine the input sections. */
14538 for (p = o->map_head.link_order; p != NULL; p = p->next)
14539 {
14540 asection *input_section;
14541 bfd *input_bfd;
14542 bfd_size_type size;
14543 unsigned long last;
14544 bfd_size_type gpentry;
14545
14546 if (p->type != bfd_indirect_link_order)
14547 {
14548 if (p->type == bfd_data_link_order)
14549 continue;
14550 abort ();
14551 }
14552
14553 input_section = p->u.indirect.section;
14554 input_bfd = input_section->owner;
14555
14556 /* Combine the gptab entries for this input section one
14557 by one. We know that the input gptab entries are
14558 sorted by ascending -G value. */
14559 size = input_section->size;
14560 last = 0;
14561 for (gpentry = sizeof (Elf32_External_gptab);
14562 gpentry < size;
14563 gpentry += sizeof (Elf32_External_gptab))
14564 {
14565 Elf32_External_gptab ext_gptab;
14566 Elf32_gptab int_gptab;
14567 unsigned long val;
14568 unsigned long add;
14569 bfd_boolean exact;
14570 unsigned int look;
14571
14572 if (! (bfd_get_section_contents
14573 (input_bfd, input_section, &ext_gptab, gpentry,
14574 sizeof (Elf32_External_gptab))))
14575 {
14576 free (tab);
14577 return FALSE;
14578 }
14579
14580 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14581 &int_gptab);
14582 val = int_gptab.gt_entry.gt_g_value;
14583 add = int_gptab.gt_entry.gt_bytes - last;
14584
14585 exact = FALSE;
14586 for (look = 1; look < c; look++)
14587 {
14588 if (tab[look].gt_entry.gt_g_value >= val)
14589 tab[look].gt_entry.gt_bytes += add;
14590
14591 if (tab[look].gt_entry.gt_g_value == val)
14592 exact = TRUE;
14593 }
14594
14595 if (! exact)
14596 {
14597 Elf32_gptab *new_tab;
14598 unsigned int max;
14599
14600 /* We need a new table entry. */
14601 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14602 new_tab = bfd_realloc (tab, amt);
14603 if (new_tab == NULL)
14604 {
14605 free (tab);
14606 return FALSE;
14607 }
14608 tab = new_tab;
14609 tab[c].gt_entry.gt_g_value = val;
14610 tab[c].gt_entry.gt_bytes = add;
14611
14612 /* Merge in the size for the next smallest -G
14613 value, since that will be implied by this new
14614 value. */
14615 max = 0;
14616 for (look = 1; look < c; look++)
14617 {
14618 if (tab[look].gt_entry.gt_g_value < val
14619 && (max == 0
14620 || (tab[look].gt_entry.gt_g_value
14621 > tab[max].gt_entry.gt_g_value)))
14622 max = look;
14623 }
14624 if (max != 0)
14625 tab[c].gt_entry.gt_bytes +=
14626 tab[max].gt_entry.gt_bytes;
14627
14628 ++c;
14629 }
14630
14631 last = int_gptab.gt_entry.gt_bytes;
14632 }
14633
14634 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14635 elf_link_input_bfd ignores this section. */
14636 input_section->flags &= ~SEC_HAS_CONTENTS;
14637 }
14638
14639 /* The table must be sorted by -G value. */
14640 if (c > 2)
14641 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14642
14643 /* Swap out the table. */
14644 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14645 ext_tab = bfd_alloc (abfd, amt);
14646 if (ext_tab == NULL)
14647 {
14648 free (tab);
14649 return FALSE;
14650 }
14651
14652 for (j = 0; j < c; j++)
14653 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14654 free (tab);
14655
14656 o->size = c * sizeof (Elf32_External_gptab);
14657 o->contents = (bfd_byte *) ext_tab;
14658
14659 /* Skip this section later on (I don't think this currently
14660 matters, but someday it might). */
14661 o->map_head.link_order = NULL;
14662 }
14663 }
14664
14665 /* Invoke the regular ELF backend linker to do all the work. */
14666 if (!bfd_elf_final_link (abfd, info))
14667 return FALSE;
14668
14669 /* Now write out the computed sections. */
14670
14671 if (abiflags_sec != NULL)
14672 {
14673 Elf_External_ABIFlags_v0 ext;
14674 Elf_Internal_ABIFlags_v0 *abiflags;
14675
14676 abiflags = &mips_elf_tdata (abfd)->abiflags;
14677
14678 /* Set up the abiflags if no valid input sections were found. */
14679 if (!mips_elf_tdata (abfd)->abiflags_valid)
14680 {
14681 infer_mips_abiflags (abfd, abiflags);
14682 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14683 }
14684 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14685 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14686 return FALSE;
14687 }
14688
14689 if (reginfo_sec != NULL)
14690 {
14691 Elf32_External_RegInfo ext;
14692
14693 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14694 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14695 return FALSE;
14696 }
14697
14698 if (mdebug_sec != NULL)
14699 {
14700 BFD_ASSERT (abfd->output_has_begun);
14701 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14702 swap, info,
14703 mdebug_sec->filepos))
14704 return FALSE;
14705
14706 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14707 }
14708
14709 if (gptab_data_sec != NULL)
14710 {
14711 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14712 gptab_data_sec->contents,
14713 0, gptab_data_sec->size))
14714 return FALSE;
14715 }
14716
14717 if (gptab_bss_sec != NULL)
14718 {
14719 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14720 gptab_bss_sec->contents,
14721 0, gptab_bss_sec->size))
14722 return FALSE;
14723 }
14724
14725 if (SGI_COMPAT (abfd))
14726 {
14727 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14728 if (rtproc_sec != NULL)
14729 {
14730 if (! bfd_set_section_contents (abfd, rtproc_sec,
14731 rtproc_sec->contents,
14732 0, rtproc_sec->size))
14733 return FALSE;
14734 }
14735 }
14736
14737 return TRUE;
14738 }
14739 \f
14740 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14741
14742 struct mips_mach_extension
14743 {
14744 unsigned long extension, base;
14745 };
14746
14747
14748 /* An array describing how BFD machines relate to one another. The entries
14749 are ordered topologically with MIPS I extensions listed last. */
14750
14751 static const struct mips_mach_extension mips_mach_extensions[] =
14752 {
14753 /* MIPS64r2 extensions. */
14754 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14755 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14756 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14757 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14758 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14759
14760 /* MIPS64 extensions. */
14761 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14762 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14763 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14764
14765 /* MIPS V extensions. */
14766 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14767
14768 /* R10000 extensions. */
14769 { bfd_mach_mips12000, bfd_mach_mips10000 },
14770 { bfd_mach_mips14000, bfd_mach_mips10000 },
14771 { bfd_mach_mips16000, bfd_mach_mips10000 },
14772
14773 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14774 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14775 better to allow vr5400 and vr5500 code to be merged anyway, since
14776 many libraries will just use the core ISA. Perhaps we could add
14777 some sort of ASE flag if this ever proves a problem. */
14778 { bfd_mach_mips5500, bfd_mach_mips5400 },
14779 { bfd_mach_mips5400, bfd_mach_mips5000 },
14780
14781 /* MIPS IV extensions. */
14782 { bfd_mach_mips5, bfd_mach_mips8000 },
14783 { bfd_mach_mips10000, bfd_mach_mips8000 },
14784 { bfd_mach_mips5000, bfd_mach_mips8000 },
14785 { bfd_mach_mips7000, bfd_mach_mips8000 },
14786 { bfd_mach_mips9000, bfd_mach_mips8000 },
14787
14788 /* VR4100 extensions. */
14789 { bfd_mach_mips4120, bfd_mach_mips4100 },
14790 { bfd_mach_mips4111, bfd_mach_mips4100 },
14791
14792 /* MIPS III extensions. */
14793 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14794 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14795 { bfd_mach_mips8000, bfd_mach_mips4000 },
14796 { bfd_mach_mips4650, bfd_mach_mips4000 },
14797 { bfd_mach_mips4600, bfd_mach_mips4000 },
14798 { bfd_mach_mips4400, bfd_mach_mips4000 },
14799 { bfd_mach_mips4300, bfd_mach_mips4000 },
14800 { bfd_mach_mips4100, bfd_mach_mips4000 },
14801 { bfd_mach_mips4010, bfd_mach_mips4000 },
14802 { bfd_mach_mips5900, bfd_mach_mips4000 },
14803
14804 /* MIPS32 extensions. */
14805 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14806
14807 /* MIPS II extensions. */
14808 { bfd_mach_mips4000, bfd_mach_mips6000 },
14809 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14810
14811 /* MIPS I extensions. */
14812 { bfd_mach_mips6000, bfd_mach_mips3000 },
14813 { bfd_mach_mips3900, bfd_mach_mips3000 }
14814 };
14815
14816
14817 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14818
14819 static bfd_boolean
14820 mips_mach_extends_p (unsigned long base, unsigned long extension)
14821 {
14822 size_t i;
14823
14824 if (extension == base)
14825 return TRUE;
14826
14827 if (base == bfd_mach_mipsisa32
14828 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14829 return TRUE;
14830
14831 if (base == bfd_mach_mipsisa32r2
14832 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14833 return TRUE;
14834
14835 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14836 if (extension == mips_mach_extensions[i].extension)
14837 {
14838 extension = mips_mach_extensions[i].base;
14839 if (extension == base)
14840 return TRUE;
14841 }
14842
14843 return FALSE;
14844 }
14845
14846
14847 /* Merge object attributes from IBFD into OBFD. Raise an error if
14848 there are conflicting attributes. */
14849 static bfd_boolean
14850 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14851 {
14852 obj_attribute *in_attr;
14853 obj_attribute *out_attr;
14854 bfd *abi_fp_bfd;
14855 bfd *abi_msa_bfd;
14856
14857 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14858 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14859 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14860 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14861
14862 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14863 if (!abi_msa_bfd
14864 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14865 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14866
14867 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14868 {
14869 /* This is the first object. Copy the attributes. */
14870 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14871
14872 /* Use the Tag_null value to indicate the attributes have been
14873 initialized. */
14874 elf_known_obj_attributes_proc (obfd)[0].i = 1;
14875
14876 return TRUE;
14877 }
14878
14879 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14880 non-conflicting ones. */
14881 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14882 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14883 {
14884 int out_fp, in_fp;
14885
14886 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
14887 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14888 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14889 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
14890 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
14891 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
14892 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14893 || in_fp == Val_GNU_MIPS_ABI_FP_64
14894 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
14895 {
14896 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14897 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14898 }
14899 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
14900 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14901 || out_fp == Val_GNU_MIPS_ABI_FP_64
14902 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
14903 /* Keep the current setting. */;
14904 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
14905 && in_fp == Val_GNU_MIPS_ABI_FP_64)
14906 {
14907 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14908 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14909 }
14910 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
14911 && out_fp == Val_GNU_MIPS_ABI_FP_64)
14912 /* Keep the current setting. */;
14913 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
14914 {
14915 const char *out_string, *in_string;
14916
14917 out_string = _bfd_mips_fp_abi_string (out_fp);
14918 in_string = _bfd_mips_fp_abi_string (in_fp);
14919 /* First warn about cases involving unrecognised ABIs. */
14920 if (!out_string && !in_string)
14921 _bfd_error_handler
14922 (_("Warning: %B uses unknown floating point ABI %d "
14923 "(set by %B), %B uses unknown floating point ABI %d"),
14924 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
14925 else if (!out_string)
14926 _bfd_error_handler
14927 (_("Warning: %B uses unknown floating point ABI %d "
14928 "(set by %B), %B uses %s"),
14929 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
14930 else if (!in_string)
14931 _bfd_error_handler
14932 (_("Warning: %B uses %s (set by %B), "
14933 "%B uses unknown floating point ABI %d"),
14934 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
14935 else
14936 {
14937 /* If one of the bfds is soft-float, the other must be
14938 hard-float. The exact choice of hard-float ABI isn't
14939 really relevant to the error message. */
14940 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14941 out_string = "-mhard-float";
14942 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14943 in_string = "-mhard-float";
14944 _bfd_error_handler
14945 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14946 obfd, abi_fp_bfd, ibfd, out_string, in_string);
14947 }
14948 }
14949 }
14950
14951 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14952 non-conflicting ones. */
14953 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14954 {
14955 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14956 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
14957 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
14958 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14959 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14960 {
14961 case Val_GNU_MIPS_ABI_MSA_128:
14962 _bfd_error_handler
14963 (_("Warning: %B uses %s (set by %B), "
14964 "%B uses unknown MSA ABI %d"),
14965 obfd, abi_msa_bfd, ibfd,
14966 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14967 break;
14968
14969 default:
14970 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
14971 {
14972 case Val_GNU_MIPS_ABI_MSA_128:
14973 _bfd_error_handler
14974 (_("Warning: %B uses unknown MSA ABI %d "
14975 "(set by %B), %B uses %s"),
14976 obfd, abi_msa_bfd, ibfd,
14977 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
14978 break;
14979
14980 default:
14981 _bfd_error_handler
14982 (_("Warning: %B uses unknown MSA ABI %d "
14983 "(set by %B), %B uses unknown MSA ABI %d"),
14984 obfd, abi_msa_bfd, ibfd,
14985 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
14986 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14987 break;
14988 }
14989 }
14990 }
14991
14992 /* Merge Tag_compatibility attributes and any common GNU ones. */
14993 _bfd_elf_merge_object_attributes (ibfd, obfd);
14994
14995 return TRUE;
14996 }
14997
14998 /* Merge backend specific data from an object file to the output
14999 object file when linking. */
15000
15001 bfd_boolean
15002 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15003 {
15004 flagword old_flags;
15005 flagword new_flags;
15006 bfd_boolean ok;
15007 bfd_boolean null_input_bfd = TRUE;
15008 asection *sec;
15009 obj_attribute *out_attr;
15010
15011 /* Check if we have the same endianness. */
15012 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15013 {
15014 (*_bfd_error_handler)
15015 (_("%B: endianness incompatible with that of the selected emulation"),
15016 ibfd);
15017 return FALSE;
15018 }
15019
15020 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15021 return TRUE;
15022
15023 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15024 {
15025 (*_bfd_error_handler)
15026 (_("%B: ABI is incompatible with that of the selected emulation"),
15027 ibfd);
15028 return FALSE;
15029 }
15030
15031 /* Set up the FP ABI attribute from the abiflags if it is not already
15032 set. */
15033 if (mips_elf_tdata (ibfd)->abiflags_valid)
15034 {
15035 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15036 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15037 in_attr[Tag_GNU_MIPS_ABI_FP].i =
15038 mips_elf_tdata (ibfd)->abiflags.fp_abi;
15039 }
15040
15041 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
15042 return FALSE;
15043
15044 /* Check to see if the input BFD actually contains any sections.
15045 If not, its flags may not have been initialised either, but it cannot
15046 actually cause any incompatibility. */
15047 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15048 {
15049 /* Ignore synthetic sections and empty .text, .data and .bss sections
15050 which are automatically generated by gas. Also ignore fake
15051 (s)common sections, since merely defining a common symbol does
15052 not affect compatibility. */
15053 if ((sec->flags & SEC_IS_COMMON) == 0
15054 && strcmp (sec->name, ".reginfo")
15055 && strcmp (sec->name, ".mdebug")
15056 && (sec->size != 0
15057 || (strcmp (sec->name, ".text")
15058 && strcmp (sec->name, ".data")
15059 && strcmp (sec->name, ".bss"))))
15060 {
15061 null_input_bfd = FALSE;
15062 break;
15063 }
15064 }
15065 if (null_input_bfd)
15066 return TRUE;
15067
15068 /* Populate abiflags using existing information. */
15069 if (!mips_elf_tdata (ibfd)->abiflags_valid)
15070 {
15071 infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags);
15072 mips_elf_tdata (ibfd)->abiflags_valid = TRUE;
15073 }
15074 else
15075 {
15076 Elf_Internal_ABIFlags_v0 abiflags;
15077 Elf_Internal_ABIFlags_v0 in_abiflags;
15078 infer_mips_abiflags (ibfd, &abiflags);
15079 in_abiflags = mips_elf_tdata (ibfd)->abiflags;
15080
15081 /* It is not possible to infer the correct ISA revision
15082 for R3 or R5 so drop down to R2 for the checks. */
15083 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15084 in_abiflags.isa_rev = 2;
15085
15086 if (in_abiflags.isa_level != abiflags.isa_level
15087 || in_abiflags.isa_rev != abiflags.isa_rev
15088 || in_abiflags.isa_ext != abiflags.isa_ext)
15089 (*_bfd_error_handler)
15090 (_("%B: warning: Inconsistent ISA between e_flags and "
15091 ".MIPS.abiflags"), ibfd);
15092 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15093 && in_abiflags.fp_abi != abiflags.fp_abi)
15094 (*_bfd_error_handler)
15095 (_("%B: warning: Inconsistent FP ABI between e_flags and "
15096 ".MIPS.abiflags"), ibfd);
15097 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15098 (*_bfd_error_handler)
15099 (_("%B: warning: Inconsistent ASEs between e_flags and "
15100 ".MIPS.abiflags"), ibfd);
15101 if (in_abiflags.isa_ext != abiflags.isa_ext)
15102 (*_bfd_error_handler)
15103 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15104 ".MIPS.abiflags"), ibfd);
15105 if (in_abiflags.flags2 != 0)
15106 (*_bfd_error_handler)
15107 (_("%B: warning: Unexpected flag in the flags2 field of "
15108 ".MIPS.abiflags (0x%lx)"), ibfd,
15109 (unsigned long) in_abiflags.flags2);
15110 }
15111
15112 if (!mips_elf_tdata (obfd)->abiflags_valid)
15113 {
15114 /* Copy input abiflags if output abiflags are not already valid. */
15115 mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags;
15116 mips_elf_tdata (obfd)->abiflags_valid = TRUE;
15117 }
15118
15119 if (! elf_flags_init (obfd))
15120 {
15121 elf_flags_init (obfd) = TRUE;
15122 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15123 elf_elfheader (obfd)->e_ident[EI_CLASS]
15124 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15125
15126 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15127 && (bfd_get_arch_info (obfd)->the_default
15128 || mips_mach_extends_p (bfd_get_mach (obfd),
15129 bfd_get_mach (ibfd))))
15130 {
15131 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15132 bfd_get_mach (ibfd)))
15133 return FALSE;
15134
15135 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15136 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15137 }
15138
15139 return TRUE;
15140 }
15141
15142 /* Update the output abiflags fp_abi using the computed fp_abi. */
15143 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15144 mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15145
15146 #define max(a,b) ((a) > (b) ? (a) : (b))
15147 /* Merge abiflags. */
15148 mips_elf_tdata (obfd)->abiflags.isa_rev
15149 = max (mips_elf_tdata (obfd)->abiflags.isa_rev,
15150 mips_elf_tdata (ibfd)->abiflags.isa_rev);
15151 mips_elf_tdata (obfd)->abiflags.gpr_size
15152 = max (mips_elf_tdata (obfd)->abiflags.gpr_size,
15153 mips_elf_tdata (ibfd)->abiflags.gpr_size);
15154 mips_elf_tdata (obfd)->abiflags.cpr1_size
15155 = max (mips_elf_tdata (obfd)->abiflags.cpr1_size,
15156 mips_elf_tdata (ibfd)->abiflags.cpr1_size);
15157 mips_elf_tdata (obfd)->abiflags.cpr2_size
15158 = max (mips_elf_tdata (obfd)->abiflags.cpr2_size,
15159 mips_elf_tdata (ibfd)->abiflags.cpr2_size);
15160 #undef max
15161 mips_elf_tdata (obfd)->abiflags.ases
15162 |= mips_elf_tdata (ibfd)->abiflags.ases;
15163 mips_elf_tdata (obfd)->abiflags.flags1
15164 |= mips_elf_tdata (ibfd)->abiflags.flags1;
15165
15166 new_flags = elf_elfheader (ibfd)->e_flags;
15167 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15168 old_flags = elf_elfheader (obfd)->e_flags;
15169
15170 /* Check flag compatibility. */
15171
15172 new_flags &= ~EF_MIPS_NOREORDER;
15173 old_flags &= ~EF_MIPS_NOREORDER;
15174
15175 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15176 doesn't seem to matter. */
15177 new_flags &= ~EF_MIPS_XGOT;
15178 old_flags &= ~EF_MIPS_XGOT;
15179
15180 /* MIPSpro generates ucode info in n64 objects. Again, we should
15181 just be able to ignore this. */
15182 new_flags &= ~EF_MIPS_UCODE;
15183 old_flags &= ~EF_MIPS_UCODE;
15184
15185 /* DSOs should only be linked with CPIC code. */
15186 if ((ibfd->flags & DYNAMIC) != 0)
15187 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15188
15189 if (new_flags == old_flags)
15190 return TRUE;
15191
15192 ok = TRUE;
15193
15194 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15195 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15196 {
15197 (*_bfd_error_handler)
15198 (_("%B: warning: linking abicalls files with non-abicalls files"),
15199 ibfd);
15200 ok = TRUE;
15201 }
15202
15203 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15204 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15205 if (! (new_flags & EF_MIPS_PIC))
15206 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15207
15208 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15209 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15210
15211 /* Compare the ISAs. */
15212 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15213 {
15214 (*_bfd_error_handler)
15215 (_("%B: linking 32-bit code with 64-bit code"),
15216 ibfd);
15217 ok = FALSE;
15218 }
15219 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15220 {
15221 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15222 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15223 {
15224 /* Copy the architecture info from IBFD to OBFD. Also copy
15225 the 32-bit flag (if set) so that we continue to recognise
15226 OBFD as a 32-bit binary. */
15227 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15228 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15229 elf_elfheader (obfd)->e_flags
15230 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15231
15232 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15233 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15234
15235 /* Copy across the ABI flags if OBFD doesn't use them
15236 and if that was what caused us to treat IBFD as 32-bit. */
15237 if ((old_flags & EF_MIPS_ABI) == 0
15238 && mips_32bit_flags_p (new_flags)
15239 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15240 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15241 }
15242 else
15243 {
15244 /* The ISAs aren't compatible. */
15245 (*_bfd_error_handler)
15246 (_("%B: linking %s module with previous %s modules"),
15247 ibfd,
15248 bfd_printable_name (ibfd),
15249 bfd_printable_name (obfd));
15250 ok = FALSE;
15251 }
15252 }
15253
15254 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15255 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15256
15257 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15258 does set EI_CLASS differently from any 32-bit ABI. */
15259 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15260 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15261 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15262 {
15263 /* Only error if both are set (to different values). */
15264 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15265 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15266 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15267 {
15268 (*_bfd_error_handler)
15269 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15270 ibfd,
15271 elf_mips_abi_name (ibfd),
15272 elf_mips_abi_name (obfd));
15273 ok = FALSE;
15274 }
15275 new_flags &= ~EF_MIPS_ABI;
15276 old_flags &= ~EF_MIPS_ABI;
15277 }
15278
15279 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15280 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15281 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15282 {
15283 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15284 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15285 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15286 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15287 int micro_mis = old_m16 && new_micro;
15288 int m16_mis = old_micro && new_m16;
15289
15290 if (m16_mis || micro_mis)
15291 {
15292 (*_bfd_error_handler)
15293 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15294 ibfd,
15295 m16_mis ? "MIPS16" : "microMIPS",
15296 m16_mis ? "microMIPS" : "MIPS16");
15297 ok = FALSE;
15298 }
15299
15300 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15301
15302 new_flags &= ~ EF_MIPS_ARCH_ASE;
15303 old_flags &= ~ EF_MIPS_ARCH_ASE;
15304 }
15305
15306 /* Compare NaN encodings. */
15307 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15308 {
15309 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15310 ibfd,
15311 (new_flags & EF_MIPS_NAN2008
15312 ? "-mnan=2008" : "-mnan=legacy"),
15313 (old_flags & EF_MIPS_NAN2008
15314 ? "-mnan=2008" : "-mnan=legacy"));
15315 ok = FALSE;
15316 new_flags &= ~EF_MIPS_NAN2008;
15317 old_flags &= ~EF_MIPS_NAN2008;
15318 }
15319
15320 /* Compare FP64 state. */
15321 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15322 {
15323 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15324 ibfd,
15325 (new_flags & EF_MIPS_FP64
15326 ? "-mfp64" : "-mfp32"),
15327 (old_flags & EF_MIPS_FP64
15328 ? "-mfp64" : "-mfp32"));
15329 ok = FALSE;
15330 new_flags &= ~EF_MIPS_FP64;
15331 old_flags &= ~EF_MIPS_FP64;
15332 }
15333
15334 /* Warn about any other mismatches */
15335 if (new_flags != old_flags)
15336 {
15337 (*_bfd_error_handler)
15338 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
15339 ibfd, (unsigned long) new_flags,
15340 (unsigned long) old_flags);
15341 ok = FALSE;
15342 }
15343
15344 if (! ok)
15345 {
15346 bfd_set_error (bfd_error_bad_value);
15347 return FALSE;
15348 }
15349
15350 return TRUE;
15351 }
15352
15353 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15354
15355 bfd_boolean
15356 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15357 {
15358 BFD_ASSERT (!elf_flags_init (abfd)
15359 || elf_elfheader (abfd)->e_flags == flags);
15360
15361 elf_elfheader (abfd)->e_flags = flags;
15362 elf_flags_init (abfd) = TRUE;
15363 return TRUE;
15364 }
15365
15366 char *
15367 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15368 {
15369 switch (dtag)
15370 {
15371 default: return "";
15372 case DT_MIPS_RLD_VERSION:
15373 return "MIPS_RLD_VERSION";
15374 case DT_MIPS_TIME_STAMP:
15375 return "MIPS_TIME_STAMP";
15376 case DT_MIPS_ICHECKSUM:
15377 return "MIPS_ICHECKSUM";
15378 case DT_MIPS_IVERSION:
15379 return "MIPS_IVERSION";
15380 case DT_MIPS_FLAGS:
15381 return "MIPS_FLAGS";
15382 case DT_MIPS_BASE_ADDRESS:
15383 return "MIPS_BASE_ADDRESS";
15384 case DT_MIPS_MSYM:
15385 return "MIPS_MSYM";
15386 case DT_MIPS_CONFLICT:
15387 return "MIPS_CONFLICT";
15388 case DT_MIPS_LIBLIST:
15389 return "MIPS_LIBLIST";
15390 case DT_MIPS_LOCAL_GOTNO:
15391 return "MIPS_LOCAL_GOTNO";
15392 case DT_MIPS_CONFLICTNO:
15393 return "MIPS_CONFLICTNO";
15394 case DT_MIPS_LIBLISTNO:
15395 return "MIPS_LIBLISTNO";
15396 case DT_MIPS_SYMTABNO:
15397 return "MIPS_SYMTABNO";
15398 case DT_MIPS_UNREFEXTNO:
15399 return "MIPS_UNREFEXTNO";
15400 case DT_MIPS_GOTSYM:
15401 return "MIPS_GOTSYM";
15402 case DT_MIPS_HIPAGENO:
15403 return "MIPS_HIPAGENO";
15404 case DT_MIPS_RLD_MAP:
15405 return "MIPS_RLD_MAP";
15406 case DT_MIPS_DELTA_CLASS:
15407 return "MIPS_DELTA_CLASS";
15408 case DT_MIPS_DELTA_CLASS_NO:
15409 return "MIPS_DELTA_CLASS_NO";
15410 case DT_MIPS_DELTA_INSTANCE:
15411 return "MIPS_DELTA_INSTANCE";
15412 case DT_MIPS_DELTA_INSTANCE_NO:
15413 return "MIPS_DELTA_INSTANCE_NO";
15414 case DT_MIPS_DELTA_RELOC:
15415 return "MIPS_DELTA_RELOC";
15416 case DT_MIPS_DELTA_RELOC_NO:
15417 return "MIPS_DELTA_RELOC_NO";
15418 case DT_MIPS_DELTA_SYM:
15419 return "MIPS_DELTA_SYM";
15420 case DT_MIPS_DELTA_SYM_NO:
15421 return "MIPS_DELTA_SYM_NO";
15422 case DT_MIPS_DELTA_CLASSSYM:
15423 return "MIPS_DELTA_CLASSSYM";
15424 case DT_MIPS_DELTA_CLASSSYM_NO:
15425 return "MIPS_DELTA_CLASSSYM_NO";
15426 case DT_MIPS_CXX_FLAGS:
15427 return "MIPS_CXX_FLAGS";
15428 case DT_MIPS_PIXIE_INIT:
15429 return "MIPS_PIXIE_INIT";
15430 case DT_MIPS_SYMBOL_LIB:
15431 return "MIPS_SYMBOL_LIB";
15432 case DT_MIPS_LOCALPAGE_GOTIDX:
15433 return "MIPS_LOCALPAGE_GOTIDX";
15434 case DT_MIPS_LOCAL_GOTIDX:
15435 return "MIPS_LOCAL_GOTIDX";
15436 case DT_MIPS_HIDDEN_GOTIDX:
15437 return "MIPS_HIDDEN_GOTIDX";
15438 case DT_MIPS_PROTECTED_GOTIDX:
15439 return "MIPS_PROTECTED_GOT_IDX";
15440 case DT_MIPS_OPTIONS:
15441 return "MIPS_OPTIONS";
15442 case DT_MIPS_INTERFACE:
15443 return "MIPS_INTERFACE";
15444 case DT_MIPS_DYNSTR_ALIGN:
15445 return "DT_MIPS_DYNSTR_ALIGN";
15446 case DT_MIPS_INTERFACE_SIZE:
15447 return "DT_MIPS_INTERFACE_SIZE";
15448 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15449 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15450 case DT_MIPS_PERF_SUFFIX:
15451 return "DT_MIPS_PERF_SUFFIX";
15452 case DT_MIPS_COMPACT_SIZE:
15453 return "DT_MIPS_COMPACT_SIZE";
15454 case DT_MIPS_GP_VALUE:
15455 return "DT_MIPS_GP_VALUE";
15456 case DT_MIPS_AUX_DYNAMIC:
15457 return "DT_MIPS_AUX_DYNAMIC";
15458 case DT_MIPS_PLTGOT:
15459 return "DT_MIPS_PLTGOT";
15460 case DT_MIPS_RWPLT:
15461 return "DT_MIPS_RWPLT";
15462 }
15463 }
15464
15465 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15466 not known. */
15467
15468 const char *
15469 _bfd_mips_fp_abi_string (int fp)
15470 {
15471 switch (fp)
15472 {
15473 /* These strings aren't translated because they're simply
15474 option lists. */
15475 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15476 return "-mdouble-float";
15477
15478 case Val_GNU_MIPS_ABI_FP_SINGLE:
15479 return "-msingle-float";
15480
15481 case Val_GNU_MIPS_ABI_FP_SOFT:
15482 return "-msoft-float";
15483
15484 case Val_GNU_MIPS_ABI_FP_OLD_64:
15485 return _("-mips32r2 -mfp64 (12 callee-saved)");
15486
15487 case Val_GNU_MIPS_ABI_FP_XX:
15488 return "-mfpxx";
15489
15490 case Val_GNU_MIPS_ABI_FP_64:
15491 return "-mgp32 -mfp64";
15492
15493 case Val_GNU_MIPS_ABI_FP_64A:
15494 return "-mgp32 -mfp64 -mno-odd-spreg";
15495
15496 default:
15497 return 0;
15498 }
15499 }
15500
15501 static void
15502 print_mips_ases (FILE *file, unsigned int mask)
15503 {
15504 if (mask & AFL_ASE_DSP)
15505 fputs ("\n\tDSP ASE", file);
15506 if (mask & AFL_ASE_DSPR2)
15507 fputs ("\n\tDSP R2 ASE", file);
15508 if (mask & AFL_ASE_EVA)
15509 fputs ("\n\tEnhanced VA Scheme", file);
15510 if (mask & AFL_ASE_MCU)
15511 fputs ("\n\tMCU (MicroController) ASE", file);
15512 if (mask & AFL_ASE_MDMX)
15513 fputs ("\n\tMDMX ASE", file);
15514 if (mask & AFL_ASE_MIPS3D)
15515 fputs ("\n\tMIPS-3D ASE", file);
15516 if (mask & AFL_ASE_MT)
15517 fputs ("\n\tMT ASE", file);
15518 if (mask & AFL_ASE_SMARTMIPS)
15519 fputs ("\n\tSmartMIPS ASE", file);
15520 if (mask & AFL_ASE_VIRT)
15521 fputs ("\n\tVZ ASE", file);
15522 if (mask & AFL_ASE_MSA)
15523 fputs ("\n\tMSA ASE", file);
15524 if (mask & AFL_ASE_MIPS16)
15525 fputs ("\n\tMIPS16 ASE", file);
15526 if (mask & AFL_ASE_MICROMIPS)
15527 fputs ("\n\tMICROMIPS ASE", file);
15528 if (mask & AFL_ASE_XPA)
15529 fputs ("\n\tXPA ASE", file);
15530 if (mask == 0)
15531 fprintf (file, "\n\t%s", _("None"));
15532 else if ((mask & ~AFL_ASE_MASK) != 0)
15533 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15534 }
15535
15536 static void
15537 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15538 {
15539 switch (isa_ext)
15540 {
15541 case 0:
15542 fputs (_("None"), file);
15543 break;
15544 case AFL_EXT_XLR:
15545 fputs ("RMI XLR", file);
15546 break;
15547 case AFL_EXT_OCTEON3:
15548 fputs ("Cavium Networks Octeon3", file);
15549 break;
15550 case AFL_EXT_OCTEON2:
15551 fputs ("Cavium Networks Octeon2", file);
15552 break;
15553 case AFL_EXT_OCTEONP:
15554 fputs ("Cavium Networks OcteonP", file);
15555 break;
15556 case AFL_EXT_LOONGSON_3A:
15557 fputs ("Loongson 3A", file);
15558 break;
15559 case AFL_EXT_OCTEON:
15560 fputs ("Cavium Networks Octeon", file);
15561 break;
15562 case AFL_EXT_5900:
15563 fputs ("Toshiba R5900", file);
15564 break;
15565 case AFL_EXT_4650:
15566 fputs ("MIPS R4650", file);
15567 break;
15568 case AFL_EXT_4010:
15569 fputs ("LSI R4010", file);
15570 break;
15571 case AFL_EXT_4100:
15572 fputs ("NEC VR4100", file);
15573 break;
15574 case AFL_EXT_3900:
15575 fputs ("Toshiba R3900", file);
15576 break;
15577 case AFL_EXT_10000:
15578 fputs ("MIPS R10000", file);
15579 break;
15580 case AFL_EXT_SB1:
15581 fputs ("Broadcom SB-1", file);
15582 break;
15583 case AFL_EXT_4111:
15584 fputs ("NEC VR4111/VR4181", file);
15585 break;
15586 case AFL_EXT_4120:
15587 fputs ("NEC VR4120", file);
15588 break;
15589 case AFL_EXT_5400:
15590 fputs ("NEC VR5400", file);
15591 break;
15592 case AFL_EXT_5500:
15593 fputs ("NEC VR5500", file);
15594 break;
15595 case AFL_EXT_LOONGSON_2E:
15596 fputs ("ST Microelectronics Loongson 2E", file);
15597 break;
15598 case AFL_EXT_LOONGSON_2F:
15599 fputs ("ST Microelectronics Loongson 2F", file);
15600 break;
15601 default:
15602 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15603 break;
15604 }
15605 }
15606
15607 static void
15608 print_mips_fp_abi_value (FILE *file, int val)
15609 {
15610 switch (val)
15611 {
15612 case Val_GNU_MIPS_ABI_FP_ANY:
15613 fprintf (file, _("Hard or soft float\n"));
15614 break;
15615 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15616 fprintf (file, _("Hard float (double precision)\n"));
15617 break;
15618 case Val_GNU_MIPS_ABI_FP_SINGLE:
15619 fprintf (file, _("Hard float (single precision)\n"));
15620 break;
15621 case Val_GNU_MIPS_ABI_FP_SOFT:
15622 fprintf (file, _("Soft float\n"));
15623 break;
15624 case Val_GNU_MIPS_ABI_FP_OLD_64:
15625 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15626 break;
15627 case Val_GNU_MIPS_ABI_FP_XX:
15628 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15629 break;
15630 case Val_GNU_MIPS_ABI_FP_64:
15631 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15632 break;
15633 case Val_GNU_MIPS_ABI_FP_64A:
15634 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15635 break;
15636 default:
15637 fprintf (file, "??? (%d)\n", val);
15638 break;
15639 }
15640 }
15641
15642 static int
15643 get_mips_reg_size (int reg_size)
15644 {
15645 return (reg_size == AFL_REG_NONE) ? 0
15646 : (reg_size == AFL_REG_32) ? 32
15647 : (reg_size == AFL_REG_64) ? 64
15648 : (reg_size == AFL_REG_128) ? 128
15649 : -1;
15650 }
15651
15652 bfd_boolean
15653 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15654 {
15655 FILE *file = ptr;
15656
15657 BFD_ASSERT (abfd != NULL && ptr != NULL);
15658
15659 /* Print normal ELF private data. */
15660 _bfd_elf_print_private_bfd_data (abfd, ptr);
15661
15662 /* xgettext:c-format */
15663 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15664
15665 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15666 fprintf (file, _(" [abi=O32]"));
15667 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15668 fprintf (file, _(" [abi=O64]"));
15669 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15670 fprintf (file, _(" [abi=EABI32]"));
15671 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15672 fprintf (file, _(" [abi=EABI64]"));
15673 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15674 fprintf (file, _(" [abi unknown]"));
15675 else if (ABI_N32_P (abfd))
15676 fprintf (file, _(" [abi=N32]"));
15677 else if (ABI_64_P (abfd))
15678 fprintf (file, _(" [abi=64]"));
15679 else
15680 fprintf (file, _(" [no abi set]"));
15681
15682 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15683 fprintf (file, " [mips1]");
15684 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15685 fprintf (file, " [mips2]");
15686 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15687 fprintf (file, " [mips3]");
15688 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15689 fprintf (file, " [mips4]");
15690 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15691 fprintf (file, " [mips5]");
15692 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15693 fprintf (file, " [mips32]");
15694 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15695 fprintf (file, " [mips64]");
15696 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15697 fprintf (file, " [mips32r2]");
15698 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15699 fprintf (file, " [mips64r2]");
15700 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15701 fprintf (file, " [mips32r6]");
15702 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15703 fprintf (file, " [mips64r6]");
15704 else
15705 fprintf (file, _(" [unknown ISA]"));
15706
15707 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15708 fprintf (file, " [mdmx]");
15709
15710 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15711 fprintf (file, " [mips16]");
15712
15713 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15714 fprintf (file, " [micromips]");
15715
15716 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15717 fprintf (file, " [nan2008]");
15718
15719 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15720 fprintf (file, " [old fp64]");
15721
15722 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15723 fprintf (file, " [32bitmode]");
15724 else
15725 fprintf (file, _(" [not 32bitmode]"));
15726
15727 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15728 fprintf (file, " [noreorder]");
15729
15730 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15731 fprintf (file, " [PIC]");
15732
15733 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15734 fprintf (file, " [CPIC]");
15735
15736 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15737 fprintf (file, " [XGOT]");
15738
15739 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15740 fprintf (file, " [UCODE]");
15741
15742 fputc ('\n', file);
15743
15744 if (mips_elf_tdata (abfd)->abiflags_valid)
15745 {
15746 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15747 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15748 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15749 if (abiflags->isa_rev > 1)
15750 fprintf (file, "r%d", abiflags->isa_rev);
15751 fprintf (file, "\nGPR size: %d",
15752 get_mips_reg_size (abiflags->gpr_size));
15753 fprintf (file, "\nCPR1 size: %d",
15754 get_mips_reg_size (abiflags->cpr1_size));
15755 fprintf (file, "\nCPR2 size: %d",
15756 get_mips_reg_size (abiflags->cpr2_size));
15757 fputs ("\nFP ABI: ", file);
15758 print_mips_fp_abi_value (file, abiflags->fp_abi);
15759 fputs ("ISA Extension: ", file);
15760 print_mips_isa_ext (file, abiflags->isa_ext);
15761 fputs ("\nASEs:", file);
15762 print_mips_ases (file, abiflags->ases);
15763 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15764 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15765 fputc ('\n', file);
15766 }
15767
15768 return TRUE;
15769 }
15770
15771 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15772 {
15773 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15774 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15775 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15776 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15777 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15778 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15779 { NULL, 0, 0, 0, 0 }
15780 };
15781
15782 /* Merge non visibility st_other attributes. Ensure that the
15783 STO_OPTIONAL flag is copied into h->other, even if this is not a
15784 definiton of the symbol. */
15785 void
15786 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15787 const Elf_Internal_Sym *isym,
15788 bfd_boolean definition,
15789 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15790 {
15791 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15792 {
15793 unsigned char other;
15794
15795 other = (definition ? isym->st_other : h->other);
15796 other &= ~ELF_ST_VISIBILITY (-1);
15797 h->other = other | ELF_ST_VISIBILITY (h->other);
15798 }
15799
15800 if (!definition
15801 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15802 h->other |= STO_OPTIONAL;
15803 }
15804
15805 /* Decide whether an undefined symbol is special and can be ignored.
15806 This is the case for OPTIONAL symbols on IRIX. */
15807 bfd_boolean
15808 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15809 {
15810 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15811 }
15812
15813 bfd_boolean
15814 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15815 {
15816 return (sym->st_shndx == SHN_COMMON
15817 || sym->st_shndx == SHN_MIPS_ACOMMON
15818 || sym->st_shndx == SHN_MIPS_SCOMMON);
15819 }
15820
15821 /* Return address for Ith PLT stub in section PLT, for relocation REL
15822 or (bfd_vma) -1 if it should not be included. */
15823
15824 bfd_vma
15825 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15826 const arelent *rel ATTRIBUTE_UNUSED)
15827 {
15828 return (plt->vma
15829 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15830 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15831 }
15832
15833 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15834 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15835 and .got.plt and also the slots may be of a different size each we walk
15836 the PLT manually fetching instructions and matching them against known
15837 patterns. To make things easier standard MIPS slots, if any, always come
15838 first. As we don't create proper ELF symbols we use the UDATA.I member
15839 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15840 with the ST_OTHER member of the ELF symbol. */
15841
15842 long
15843 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15844 long symcount ATTRIBUTE_UNUSED,
15845 asymbol **syms ATTRIBUTE_UNUSED,
15846 long dynsymcount, asymbol **dynsyms,
15847 asymbol **ret)
15848 {
15849 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15850 static const char microsuffix[] = "@micromipsplt";
15851 static const char m16suffix[] = "@mips16plt";
15852 static const char mipssuffix[] = "@plt";
15853
15854 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15856 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15857 Elf_Internal_Shdr *hdr;
15858 bfd_byte *plt_data;
15859 bfd_vma plt_offset;
15860 unsigned int other;
15861 bfd_vma entry_size;
15862 bfd_vma plt0_size;
15863 asection *relplt;
15864 bfd_vma opcode;
15865 asection *plt;
15866 asymbol *send;
15867 size_t size;
15868 char *names;
15869 long counti;
15870 arelent *p;
15871 asymbol *s;
15872 char *nend;
15873 long count;
15874 long pi;
15875 long i;
15876 long n;
15877
15878 *ret = NULL;
15879
15880 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15881 return 0;
15882
15883 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15884 if (relplt == NULL)
15885 return 0;
15886
15887 hdr = &elf_section_data (relplt)->this_hdr;
15888 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15889 return 0;
15890
15891 plt = bfd_get_section_by_name (abfd, ".plt");
15892 if (plt == NULL)
15893 return 0;
15894
15895 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15896 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15897 return -1;
15898 p = relplt->relocation;
15899
15900 /* Calculating the exact amount of space required for symbols would
15901 require two passes over the PLT, so just pessimise assuming two
15902 PLT slots per relocation. */
15903 count = relplt->size / hdr->sh_entsize;
15904 counti = count * bed->s->int_rels_per_ext_rel;
15905 size = 2 * count * sizeof (asymbol);
15906 size += count * (sizeof (mipssuffix) +
15907 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15908 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15909 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15910
15911 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15912 size += sizeof (asymbol) + sizeof (pltname);
15913
15914 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15915 return -1;
15916
15917 if (plt->size < 16)
15918 return -1;
15919
15920 s = *ret = bfd_malloc (size);
15921 if (s == NULL)
15922 return -1;
15923 send = s + 2 * count + 1;
15924
15925 names = (char *) send;
15926 nend = (char *) s + size;
15927 n = 0;
15928
15929 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15930 if (opcode == 0x3302fffe)
15931 {
15932 if (!micromips_p)
15933 return -1;
15934 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15935 other = STO_MICROMIPS;
15936 }
15937 else if (opcode == 0x0398c1d0)
15938 {
15939 if (!micromips_p)
15940 return -1;
15941 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15942 other = STO_MICROMIPS;
15943 }
15944 else
15945 {
15946 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15947 other = 0;
15948 }
15949
15950 s->the_bfd = abfd;
15951 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15952 s->section = plt;
15953 s->value = 0;
15954 s->name = names;
15955 s->udata.i = other;
15956 memcpy (names, pltname, sizeof (pltname));
15957 names += sizeof (pltname);
15958 ++s, ++n;
15959
15960 pi = 0;
15961 for (plt_offset = plt0_size;
15962 plt_offset + 8 <= plt->size && s < send;
15963 plt_offset += entry_size)
15964 {
15965 bfd_vma gotplt_addr;
15966 const char *suffix;
15967 bfd_vma gotplt_hi;
15968 bfd_vma gotplt_lo;
15969 size_t suffixlen;
15970
15971 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
15972
15973 /* Check if the second word matches the expected MIPS16 instruction. */
15974 if (opcode == 0x651aeb00)
15975 {
15976 if (micromips_p)
15977 return -1;
15978 /* Truncated table??? */
15979 if (plt_offset + 16 > plt->size)
15980 break;
15981 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
15982 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
15983 suffixlen = sizeof (m16suffix);
15984 suffix = m16suffix;
15985 other = STO_MIPS16;
15986 }
15987 /* Likewise the expected microMIPS instruction (no insn32 mode). */
15988 else if (opcode == 0xff220000)
15989 {
15990 if (!micromips_p)
15991 return -1;
15992 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
15993 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
15994 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
15995 gotplt_lo <<= 2;
15996 gotplt_addr = gotplt_hi + gotplt_lo;
15997 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
15998 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
15999 suffixlen = sizeof (microsuffix);
16000 suffix = microsuffix;
16001 other = STO_MICROMIPS;
16002 }
16003 /* Likewise the expected microMIPS instruction (insn32 mode). */
16004 else if ((opcode & 0xffff0000) == 0xff2f0000)
16005 {
16006 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16007 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16008 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16009 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16010 gotplt_addr = gotplt_hi + gotplt_lo;
16011 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16012 suffixlen = sizeof (microsuffix);
16013 suffix = microsuffix;
16014 other = STO_MICROMIPS;
16015 }
16016 /* Otherwise assume standard MIPS code. */
16017 else
16018 {
16019 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16020 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16021 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16022 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16023 gotplt_addr = gotplt_hi + gotplt_lo;
16024 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16025 suffixlen = sizeof (mipssuffix);
16026 suffix = mipssuffix;
16027 other = 0;
16028 }
16029 /* Truncated table??? */
16030 if (plt_offset + entry_size > plt->size)
16031 break;
16032
16033 for (i = 0;
16034 i < count && p[pi].address != gotplt_addr;
16035 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16036
16037 if (i < count)
16038 {
16039 size_t namelen;
16040 size_t len;
16041
16042 *s = **p[pi].sym_ptr_ptr;
16043 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16044 we are defining a symbol, ensure one of them is set. */
16045 if ((s->flags & BSF_LOCAL) == 0)
16046 s->flags |= BSF_GLOBAL;
16047 s->flags |= BSF_SYNTHETIC;
16048 s->section = plt;
16049 s->value = plt_offset;
16050 s->name = names;
16051 s->udata.i = other;
16052
16053 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16054 namelen = len + suffixlen;
16055 if (names + namelen > nend)
16056 break;
16057
16058 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16059 names += len;
16060 memcpy (names, suffix, suffixlen);
16061 names += suffixlen;
16062
16063 ++s, ++n;
16064 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16065 }
16066 }
16067
16068 free (plt_data);
16069
16070 return n;
16071 }
16072
16073 void
16074 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16075 {
16076 struct mips_elf_link_hash_table *htab;
16077 Elf_Internal_Ehdr *i_ehdrp;
16078
16079 i_ehdrp = elf_elfheader (abfd);
16080 if (link_info)
16081 {
16082 htab = mips_elf_hash_table (link_info);
16083 BFD_ASSERT (htab != NULL);
16084
16085 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16086 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16087 }
16088
16089 _bfd_elf_post_process_headers (abfd, link_info);
16090
16091 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16092 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16093 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16094 }
This page took 0.613013 seconds and 4 git commands to generate.