x86: Correct EVEX vector load/store optimization
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* True if we use the special `__gnu_absolute_zero' symbol. */
459 bfd_boolean use_absolute_zero;
460
461 /* True if we have been configured for a GNU target. */
462 bfd_boolean gnu_target;
463
464 /* Shortcuts to some dynamic sections, or NULL if they are not
465 being used. */
466 asection *srelplt2;
467 asection *sstubs;
468
469 /* The master GOT information. */
470 struct mips_got_info *got_info;
471
472 /* The global symbol in the GOT with the lowest index in the dynamic
473 symbol table. */
474 struct elf_link_hash_entry *global_gotsym;
475
476 /* The size of the PLT header in bytes. */
477 bfd_vma plt_header_size;
478
479 /* The size of a standard PLT entry in bytes. */
480 bfd_vma plt_mips_entry_size;
481
482 /* The size of a compressed PLT entry in bytes. */
483 bfd_vma plt_comp_entry_size;
484
485 /* The offset of the next standard PLT entry to create. */
486 bfd_vma plt_mips_offset;
487
488 /* The offset of the next compressed PLT entry to create. */
489 bfd_vma plt_comp_offset;
490
491 /* The index of the next .got.plt entry to create. */
492 bfd_vma plt_got_index;
493
494 /* The number of functions that need a lazy-binding stub. */
495 bfd_vma lazy_stub_count;
496
497 /* The size of a function stub entry in bytes. */
498 bfd_vma function_stub_size;
499
500 /* The number of reserved entries at the beginning of the GOT. */
501 unsigned int reserved_gotno;
502
503 /* The section used for mips_elf_la25_stub trampolines.
504 See the comment above that structure for details. */
505 asection *strampoline;
506
507 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
508 pairs. */
509 htab_t la25_stubs;
510
511 /* A function FN (NAME, IS, OS) that creates a new input section
512 called NAME and links it to output section OS. If IS is nonnull,
513 the new section should go immediately before it, otherwise it
514 should go at the (current) beginning of OS.
515
516 The function returns the new section on success, otherwise it
517 returns null. */
518 asection *(*add_stub_section) (const char *, asection *, asection *);
519
520 /* Small local sym cache. */
521 struct sym_cache sym_cache;
522
523 /* Is the PLT header compressed? */
524 unsigned int plt_header_is_comp : 1;
525 };
526
527 /* Get the MIPS ELF linker hash table from a link_info structure. */
528
529 #define mips_elf_hash_table(p) \
530 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
531 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
532
533 /* A structure used to communicate with htab_traverse callbacks. */
534 struct mips_htab_traverse_info
535 {
536 /* The usual link-wide information. */
537 struct bfd_link_info *info;
538 bfd *output_bfd;
539
540 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
541 bfd_boolean error;
542 };
543
544 /* MIPS ELF private object data. */
545
546 struct mips_elf_obj_tdata
547 {
548 /* Generic ELF private object data. */
549 struct elf_obj_tdata root;
550
551 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
552 bfd *abi_fp_bfd;
553
554 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
555 bfd *abi_msa_bfd;
556
557 /* The abiflags for this object. */
558 Elf_Internal_ABIFlags_v0 abiflags;
559 bfd_boolean abiflags_valid;
560
561 /* The GOT requirements of input bfds. */
562 struct mips_got_info *got;
563
564 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
565 included directly in this one, but there's no point to wasting
566 the memory just for the infrequently called find_nearest_line. */
567 struct mips_elf_find_line *find_line_info;
568
569 /* An array of stub sections indexed by symbol number. */
570 asection **local_stubs;
571 asection **local_call_stubs;
572
573 /* The Irix 5 support uses two virtual sections, which represent
574 text/data symbols defined in dynamic objects. */
575 asymbol *elf_data_symbol;
576 asymbol *elf_text_symbol;
577 asection *elf_data_section;
578 asection *elf_text_section;
579 };
580
581 /* Get MIPS ELF private object data from BFD's tdata. */
582
583 #define mips_elf_tdata(bfd) \
584 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
585
586 #define TLS_RELOC_P(r_type) \
587 (r_type == R_MIPS_TLS_DTPMOD32 \
588 || r_type == R_MIPS_TLS_DTPMOD64 \
589 || r_type == R_MIPS_TLS_DTPREL32 \
590 || r_type == R_MIPS_TLS_DTPREL64 \
591 || r_type == R_MIPS_TLS_GD \
592 || r_type == R_MIPS_TLS_LDM \
593 || r_type == R_MIPS_TLS_DTPREL_HI16 \
594 || r_type == R_MIPS_TLS_DTPREL_LO16 \
595 || r_type == R_MIPS_TLS_GOTTPREL \
596 || r_type == R_MIPS_TLS_TPREL32 \
597 || r_type == R_MIPS_TLS_TPREL64 \
598 || r_type == R_MIPS_TLS_TPREL_HI16 \
599 || r_type == R_MIPS_TLS_TPREL_LO16 \
600 || r_type == R_MIPS16_TLS_GD \
601 || r_type == R_MIPS16_TLS_LDM \
602 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
603 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
604 || r_type == R_MIPS16_TLS_GOTTPREL \
605 || r_type == R_MIPS16_TLS_TPREL_HI16 \
606 || r_type == R_MIPS16_TLS_TPREL_LO16 \
607 || r_type == R_MICROMIPS_TLS_GD \
608 || r_type == R_MICROMIPS_TLS_LDM \
609 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
610 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
611 || r_type == R_MICROMIPS_TLS_GOTTPREL \
612 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
613 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
614
615 /* Structure used to pass information to mips_elf_output_extsym. */
616
617 struct extsym_info
618 {
619 bfd *abfd;
620 struct bfd_link_info *info;
621 struct ecoff_debug_info *debug;
622 const struct ecoff_debug_swap *swap;
623 bfd_boolean failed;
624 };
625
626 /* The names of the runtime procedure table symbols used on IRIX5. */
627
628 static const char * const mips_elf_dynsym_rtproc_names[] =
629 {
630 "_procedure_table",
631 "_procedure_string_table",
632 "_procedure_table_size",
633 NULL
634 };
635
636 /* These structures are used to generate the .compact_rel section on
637 IRIX5. */
638
639 typedef struct
640 {
641 unsigned long id1; /* Always one? */
642 unsigned long num; /* Number of compact relocation entries. */
643 unsigned long id2; /* Always two? */
644 unsigned long offset; /* The file offset of the first relocation. */
645 unsigned long reserved0; /* Zero? */
646 unsigned long reserved1; /* Zero? */
647 } Elf32_compact_rel;
648
649 typedef struct
650 {
651 bfd_byte id1[4];
652 bfd_byte num[4];
653 bfd_byte id2[4];
654 bfd_byte offset[4];
655 bfd_byte reserved0[4];
656 bfd_byte reserved1[4];
657 } Elf32_External_compact_rel;
658
659 typedef struct
660 {
661 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
662 unsigned int rtype : 4; /* Relocation types. See below. */
663 unsigned int dist2to : 8;
664 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
665 unsigned long konst; /* KONST field. See below. */
666 unsigned long vaddr; /* VADDR to be relocated. */
667 } Elf32_crinfo;
668
669 typedef struct
670 {
671 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
672 unsigned int rtype : 4; /* Relocation types. See below. */
673 unsigned int dist2to : 8;
674 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
675 unsigned long konst; /* KONST field. See below. */
676 } Elf32_crinfo2;
677
678 typedef struct
679 {
680 bfd_byte info[4];
681 bfd_byte konst[4];
682 bfd_byte vaddr[4];
683 } Elf32_External_crinfo;
684
685 typedef struct
686 {
687 bfd_byte info[4];
688 bfd_byte konst[4];
689 } Elf32_External_crinfo2;
690
691 /* These are the constants used to swap the bitfields in a crinfo. */
692
693 #define CRINFO_CTYPE (0x1)
694 #define CRINFO_CTYPE_SH (31)
695 #define CRINFO_RTYPE (0xf)
696 #define CRINFO_RTYPE_SH (27)
697 #define CRINFO_DIST2TO (0xff)
698 #define CRINFO_DIST2TO_SH (19)
699 #define CRINFO_RELVADDR (0x7ffff)
700 #define CRINFO_RELVADDR_SH (0)
701
702 /* A compact relocation info has long (3 words) or short (2 words)
703 formats. A short format doesn't have VADDR field and relvaddr
704 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
705 #define CRF_MIPS_LONG 1
706 #define CRF_MIPS_SHORT 0
707
708 /* There are 4 types of compact relocation at least. The value KONST
709 has different meaning for each type:
710
711 (type) (konst)
712 CT_MIPS_REL32 Address in data
713 CT_MIPS_WORD Address in word (XXX)
714 CT_MIPS_GPHI_LO GP - vaddr
715 CT_MIPS_JMPAD Address to jump
716 */
717
718 #define CRT_MIPS_REL32 0xa
719 #define CRT_MIPS_WORD 0xb
720 #define CRT_MIPS_GPHI_LO 0xc
721 #define CRT_MIPS_JMPAD 0xd
722
723 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
724 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
725 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
726 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
727 \f
728 /* The structure of the runtime procedure descriptor created by the
729 loader for use by the static exception system. */
730
731 typedef struct runtime_pdr {
732 bfd_vma adr; /* Memory address of start of procedure. */
733 long regmask; /* Save register mask. */
734 long regoffset; /* Save register offset. */
735 long fregmask; /* Save floating point register mask. */
736 long fregoffset; /* Save floating point register offset. */
737 long frameoffset; /* Frame size. */
738 short framereg; /* Frame pointer register. */
739 short pcreg; /* Offset or reg of return pc. */
740 long irpss; /* Index into the runtime string table. */
741 long reserved;
742 struct exception_info *exception_info;/* Pointer to exception array. */
743 } RPDR, *pRPDR;
744 #define cbRPDR sizeof (RPDR)
745 #define rpdNil ((pRPDR) 0)
746 \f
747 static struct mips_got_entry *mips_elf_create_local_got_entry
748 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
749 struct mips_elf_link_hash_entry *, int);
750 static bfd_boolean mips_elf_sort_hash_table_f
751 (struct mips_elf_link_hash_entry *, void *);
752 static bfd_vma mips_elf_high
753 (bfd_vma);
754 static bfd_boolean mips_elf_create_dynamic_relocation
755 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
756 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
757 bfd_vma *, asection *);
758 static bfd_vma mips_elf_adjust_gp
759 (bfd *, struct mips_got_info *, bfd *);
760
761 /* This will be used when we sort the dynamic relocation records. */
762 static bfd *reldyn_sorting_bfd;
763
764 /* True if ABFD is for CPUs with load interlocking that include
765 non-MIPS1 CPUs and R3900. */
766 #define LOAD_INTERLOCKS_P(abfd) \
767 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
768 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
769
770 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
771 This should be safe for all architectures. We enable this predicate
772 for RM9000 for now. */
773 #define JAL_TO_BAL_P(abfd) \
774 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
775
776 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
777 This should be safe for all architectures. We enable this predicate for
778 all CPUs. */
779 #define JALR_TO_BAL_P(abfd) 1
780
781 /* True if ABFD is for CPUs that are faster if JR is converted to B.
782 This should be safe for all architectures. We enable this predicate for
783 all CPUs. */
784 #define JR_TO_B_P(abfd) 1
785
786 /* True if ABFD is a PIC object. */
787 #define PIC_OBJECT_P(abfd) \
788 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
789
790 /* Nonzero if ABFD is using the O32 ABI. */
791 #define ABI_O32_P(abfd) \
792 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
793
794 /* Nonzero if ABFD is using the N32 ABI. */
795 #define ABI_N32_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
797
798 /* Nonzero if ABFD is using the N64 ABI. */
799 #define ABI_64_P(abfd) \
800 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
801
802 /* Nonzero if ABFD is using NewABI conventions. */
803 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
804
805 /* Nonzero if ABFD has microMIPS code. */
806 #define MICROMIPS_P(abfd) \
807 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
808
809 /* Nonzero if ABFD is MIPS R6. */
810 #define MIPSR6_P(abfd) \
811 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
812 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
813
814 /* The IRIX compatibility level we are striving for. */
815 #define IRIX_COMPAT(abfd) \
816 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
817
818 /* Whether we are trying to be compatible with IRIX at all. */
819 #define SGI_COMPAT(abfd) \
820 (IRIX_COMPAT (abfd) != ict_none)
821
822 /* The name of the options section. */
823 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
824 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
825
826 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
827 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
828 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
829 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
830
831 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
832 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
833 (strcmp (NAME, ".MIPS.abiflags") == 0)
834
835 /* Whether the section is readonly. */
836 #define MIPS_ELF_READONLY_SECTION(sec) \
837 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
838 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
839
840 /* The name of the stub section. */
841 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
842
843 /* The size of an external REL relocation. */
844 #define MIPS_ELF_REL_SIZE(abfd) \
845 (get_elf_backend_data (abfd)->s->sizeof_rel)
846
847 /* The size of an external RELA relocation. */
848 #define MIPS_ELF_RELA_SIZE(abfd) \
849 (get_elf_backend_data (abfd)->s->sizeof_rela)
850
851 /* The size of an external dynamic table entry. */
852 #define MIPS_ELF_DYN_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_dyn)
854
855 /* The size of a GOT entry. */
856 #define MIPS_ELF_GOT_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->arch_size / 8)
858
859 /* The size of the .rld_map section. */
860 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->arch_size / 8)
862
863 /* The size of a symbol-table entry. */
864 #define MIPS_ELF_SYM_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->sizeof_sym)
866
867 /* The default alignment for sections, as a power of two. */
868 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
869 (get_elf_backend_data (abfd)->s->log_file_align)
870
871 /* Get word-sized data. */
872 #define MIPS_ELF_GET_WORD(abfd, ptr) \
873 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
874
875 /* Put out word-sized data. */
876 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
877 (ABI_64_P (abfd) \
878 ? bfd_put_64 (abfd, val, ptr) \
879 : bfd_put_32 (abfd, val, ptr))
880
881 /* The opcode for word-sized loads (LW or LD). */
882 #define MIPS_ELF_LOAD_WORD(abfd) \
883 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
884
885 /* Add a dynamic symbol table-entry. */
886 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
887 _bfd_elf_add_dynamic_entry (info, tag, val)
888
889 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
890 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
891
892 /* The name of the dynamic relocation section. */
893 #define MIPS_ELF_REL_DYN_NAME(INFO) \
894 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
895
896 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
897 from smaller values. Start with zero, widen, *then* decrement. */
898 #define MINUS_ONE (((bfd_vma)0) - 1)
899 #define MINUS_TWO (((bfd_vma)0) - 2)
900
901 /* The value to write into got[1] for SVR4 targets, to identify it is
902 a GNU object. The dynamic linker can then use got[1] to store the
903 module pointer. */
904 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
905 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
906
907 /* The offset of $gp from the beginning of the .got section. */
908 #define ELF_MIPS_GP_OFFSET(INFO) \
909 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
910
911 /* The maximum size of the GOT for it to be addressable using 16-bit
912 offsets from $gp. */
913 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
914
915 /* Instructions which appear in a stub. */
916 #define STUB_LW(abfd) \
917 ((ABI_64_P (abfd) \
918 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
919 : 0x8f998010)) /* lw t9,0x8010(gp) */
920 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
921 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
922 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
923 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
924 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
925 #define STUB_LI16S(abfd, VAL) \
926 ((ABI_64_P (abfd) \
927 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
928 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
929
930 /* Likewise for the microMIPS ASE. */
931 #define STUB_LW_MICROMIPS(abfd) \
932 (ABI_64_P (abfd) \
933 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
934 : 0xff3c8010) /* lw t9,0x8010(gp) */
935 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
936 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
937 #define STUB_LUI_MICROMIPS(VAL) \
938 (0x41b80000 + (VAL)) /* lui t8,VAL */
939 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
940 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
941 #define STUB_ORI_MICROMIPS(VAL) \
942 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
943 #define STUB_LI16U_MICROMIPS(VAL) \
944 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
945 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
946 (ABI_64_P (abfd) \
947 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
948 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
949
950 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
951 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
952 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
953 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
954 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
955 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
956
957 /* The name of the dynamic interpreter. This is put in the .interp
958 section. */
959
960 #define ELF_DYNAMIC_INTERPRETER(abfd) \
961 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
962 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
963 : "/usr/lib/libc.so.1")
964
965 #ifdef BFD64
966 #define MNAME(bfd,pre,pos) \
967 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
968 #define ELF_R_SYM(bfd, i) \
969 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
970 #define ELF_R_TYPE(bfd, i) \
971 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
972 #define ELF_R_INFO(bfd, s, t) \
973 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
974 #else
975 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
976 #define ELF_R_SYM(bfd, i) \
977 (ELF32_R_SYM (i))
978 #define ELF_R_TYPE(bfd, i) \
979 (ELF32_R_TYPE (i))
980 #define ELF_R_INFO(bfd, s, t) \
981 (ELF32_R_INFO (s, t))
982 #endif
983 \f
984 /* The mips16 compiler uses a couple of special sections to handle
985 floating point arguments.
986
987 Section names that look like .mips16.fn.FNNAME contain stubs that
988 copy floating point arguments from the fp regs to the gp regs and
989 then jump to FNNAME. If any 32 bit function calls FNNAME, the
990 call should be redirected to the stub instead. If no 32 bit
991 function calls FNNAME, the stub should be discarded. We need to
992 consider any reference to the function, not just a call, because
993 if the address of the function is taken we will need the stub,
994 since the address might be passed to a 32 bit function.
995
996 Section names that look like .mips16.call.FNNAME contain stubs
997 that copy floating point arguments from the gp regs to the fp
998 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
999 then any 16 bit function that calls FNNAME should be redirected
1000 to the stub instead. If FNNAME is not a 32 bit function, the
1001 stub should be discarded.
1002
1003 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1004 which call FNNAME and then copy the return value from the fp regs
1005 to the gp regs. These stubs store the return value in $18 while
1006 calling FNNAME; any function which might call one of these stubs
1007 must arrange to save $18 around the call. (This case is not
1008 needed for 32 bit functions that call 16 bit functions, because
1009 16 bit functions always return floating point values in both
1010 $f0/$f1 and $2/$3.)
1011
1012 Note that in all cases FNNAME might be defined statically.
1013 Therefore, FNNAME is not used literally. Instead, the relocation
1014 information will indicate which symbol the section is for.
1015
1016 We record any stubs that we find in the symbol table. */
1017
1018 #define FN_STUB ".mips16.fn."
1019 #define CALL_STUB ".mips16.call."
1020 #define CALL_FP_STUB ".mips16.call.fp."
1021
1022 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1023 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1024 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1025 \f
1026 /* The format of the first PLT entry in an O32 executable. */
1027 static const bfd_vma mips_o32_exec_plt0_entry[] =
1028 {
1029 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1030 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1031 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1032 0x031cc023, /* subu $24, $24, $28 */
1033 0x03e07825, /* or t7, ra, zero */
1034 0x0018c082, /* srl $24, $24, 2 */
1035 0x0320f809, /* jalr $25 */
1036 0x2718fffe /* subu $24, $24, 2 */
1037 };
1038
1039 /* The format of the first PLT entry in an N32 executable. Different
1040 because gp ($28) is not available; we use t2 ($14) instead. */
1041 static const bfd_vma mips_n32_exec_plt0_entry[] =
1042 {
1043 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1044 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1045 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1046 0x030ec023, /* subu $24, $24, $14 */
1047 0x03e07825, /* or t7, ra, zero */
1048 0x0018c082, /* srl $24, $24, 2 */
1049 0x0320f809, /* jalr $25 */
1050 0x2718fffe /* subu $24, $24, 2 */
1051 };
1052
1053 /* The format of the first PLT entry in an N64 executable. Different
1054 from N32 because of the increased size of GOT entries. */
1055 static const bfd_vma mips_n64_exec_plt0_entry[] =
1056 {
1057 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1058 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1059 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1060 0x030ec023, /* subu $24, $24, $14 */
1061 0x03e07825, /* or t7, ra, zero */
1062 0x0018c0c2, /* srl $24, $24, 3 */
1063 0x0320f809, /* jalr $25 */
1064 0x2718fffe /* subu $24, $24, 2 */
1065 };
1066
1067 /* The format of the microMIPS first PLT entry in an O32 executable.
1068 We rely on v0 ($2) rather than t8 ($24) to contain the address
1069 of the GOTPLT entry handled, so this stub may only be used when
1070 all the subsequent PLT entries are microMIPS code too.
1071
1072 The trailing NOP is for alignment and correct disassembly only. */
1073 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1074 {
1075 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1076 0xff23, 0x0000, /* lw $25, 0($3) */
1077 0x0535, /* subu $2, $2, $3 */
1078 0x2525, /* srl $2, $2, 2 */
1079 0x3302, 0xfffe, /* subu $24, $2, 2 */
1080 0x0dff, /* move $15, $31 */
1081 0x45f9, /* jalrs $25 */
1082 0x0f83, /* move $28, $3 */
1083 0x0c00 /* nop */
1084 };
1085
1086 /* The format of the microMIPS first PLT entry in an O32 executable
1087 in the insn32 mode. */
1088 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1089 {
1090 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1091 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1092 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1093 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1094 0x001f, 0x7a90, /* or $15, $31, zero */
1095 0x0318, 0x1040, /* srl $24, $24, 2 */
1096 0x03f9, 0x0f3c, /* jalr $25 */
1097 0x3318, 0xfffe /* subu $24, $24, 2 */
1098 };
1099
1100 /* The format of subsequent standard PLT entries. */
1101 static const bfd_vma mips_exec_plt_entry[] =
1102 {
1103 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1104 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1105 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1106 0x03200008 /* jr $25 */
1107 };
1108
1109 /* In the following PLT entry the JR and ADDIU instructions will
1110 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1111 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1112 static const bfd_vma mipsr6_exec_plt_entry[] =
1113 {
1114 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1115 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1116 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1117 0x03200009 /* jr $25 */
1118 };
1119
1120 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1121 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1122 directly addressable. */
1123 static const bfd_vma mips16_o32_exec_plt_entry[] =
1124 {
1125 0xb203, /* lw $2, 12($pc) */
1126 0x9a60, /* lw $3, 0($2) */
1127 0x651a, /* move $24, $2 */
1128 0xeb00, /* jr $3 */
1129 0x653b, /* move $25, $3 */
1130 0x6500, /* nop */
1131 0x0000, 0x0000 /* .word (.got.plt entry) */
1132 };
1133
1134 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1135 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1136 static const bfd_vma micromips_o32_exec_plt_entry[] =
1137 {
1138 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1139 0xff22, 0x0000, /* lw $25, 0($2) */
1140 0x4599, /* jr $25 */
1141 0x0f02 /* move $24, $2 */
1142 };
1143
1144 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1145 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1146 {
1147 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1148 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1149 0x0019, 0x0f3c, /* jr $25 */
1150 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1151 };
1152
1153 /* The format of the first PLT entry in a VxWorks executable. */
1154 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1155 {
1156 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1157 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1158 0x8f390008, /* lw t9, 8(t9) */
1159 0x00000000, /* nop */
1160 0x03200008, /* jr t9 */
1161 0x00000000 /* nop */
1162 };
1163
1164 /* The format of subsequent PLT entries. */
1165 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1166 {
1167 0x10000000, /* b .PLT_resolver */
1168 0x24180000, /* li t8, <pltindex> */
1169 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1170 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1171 0x8f390000, /* lw t9, 0(t9) */
1172 0x00000000, /* nop */
1173 0x03200008, /* jr t9 */
1174 0x00000000 /* nop */
1175 };
1176
1177 /* The format of the first PLT entry in a VxWorks shared object. */
1178 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1179 {
1180 0x8f990008, /* lw t9, 8(gp) */
1181 0x00000000, /* nop */
1182 0x03200008, /* jr t9 */
1183 0x00000000, /* nop */
1184 0x00000000, /* nop */
1185 0x00000000 /* nop */
1186 };
1187
1188 /* The format of subsequent PLT entries. */
1189 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1190 {
1191 0x10000000, /* b .PLT_resolver */
1192 0x24180000 /* li t8, <pltindex> */
1193 };
1194 \f
1195 /* microMIPS 32-bit opcode helper installer. */
1196
1197 static void
1198 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1199 {
1200 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1201 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1202 }
1203
1204 /* microMIPS 32-bit opcode helper retriever. */
1205
1206 static bfd_vma
1207 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1208 {
1209 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1210 }
1211 \f
1212 /* Look up an entry in a MIPS ELF linker hash table. */
1213
1214 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1215 ((struct mips_elf_link_hash_entry *) \
1216 elf_link_hash_lookup (&(table)->root, (string), (create), \
1217 (copy), (follow)))
1218
1219 /* Traverse a MIPS ELF linker hash table. */
1220
1221 #define mips_elf_link_hash_traverse(table, func, info) \
1222 (elf_link_hash_traverse \
1223 (&(table)->root, \
1224 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1225 (info)))
1226
1227 /* Find the base offsets for thread-local storage in this object,
1228 for GD/LD and IE/LE respectively. */
1229
1230 #define TP_OFFSET 0x7000
1231 #define DTP_OFFSET 0x8000
1232
1233 static bfd_vma
1234 dtprel_base (struct bfd_link_info *info)
1235 {
1236 /* If tls_sec is NULL, we should have signalled an error already. */
1237 if (elf_hash_table (info)->tls_sec == NULL)
1238 return 0;
1239 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1240 }
1241
1242 static bfd_vma
1243 tprel_base (struct bfd_link_info *info)
1244 {
1245 /* If tls_sec is NULL, we should have signalled an error already. */
1246 if (elf_hash_table (info)->tls_sec == NULL)
1247 return 0;
1248 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1249 }
1250
1251 /* Create an entry in a MIPS ELF linker hash table. */
1252
1253 static struct bfd_hash_entry *
1254 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1255 struct bfd_hash_table *table, const char *string)
1256 {
1257 struct mips_elf_link_hash_entry *ret =
1258 (struct mips_elf_link_hash_entry *) entry;
1259
1260 /* Allocate the structure if it has not already been allocated by a
1261 subclass. */
1262 if (ret == NULL)
1263 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1264 if (ret == NULL)
1265 return (struct bfd_hash_entry *) ret;
1266
1267 /* Call the allocation method of the superclass. */
1268 ret = ((struct mips_elf_link_hash_entry *)
1269 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1270 table, string));
1271 if (ret != NULL)
1272 {
1273 /* Set local fields. */
1274 memset (&ret->esym, 0, sizeof (EXTR));
1275 /* We use -2 as a marker to indicate that the information has
1276 not been set. -1 means there is no associated ifd. */
1277 ret->esym.ifd = -2;
1278 ret->la25_stub = 0;
1279 ret->possibly_dynamic_relocs = 0;
1280 ret->fn_stub = NULL;
1281 ret->call_stub = NULL;
1282 ret->call_fp_stub = NULL;
1283 ret->global_got_area = GGA_NONE;
1284 ret->got_only_for_calls = TRUE;
1285 ret->readonly_reloc = FALSE;
1286 ret->has_static_relocs = FALSE;
1287 ret->no_fn_stub = FALSE;
1288 ret->need_fn_stub = FALSE;
1289 ret->has_nonpic_branches = FALSE;
1290 ret->needs_lazy_stub = FALSE;
1291 ret->use_plt_entry = FALSE;
1292 }
1293
1294 return (struct bfd_hash_entry *) ret;
1295 }
1296
1297 /* Allocate MIPS ELF private object data. */
1298
1299 bfd_boolean
1300 _bfd_mips_elf_mkobject (bfd *abfd)
1301 {
1302 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1303 MIPS_ELF_DATA);
1304 }
1305
1306 bfd_boolean
1307 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1308 {
1309 if (!sec->used_by_bfd)
1310 {
1311 struct _mips_elf_section_data *sdata;
1312 bfd_size_type amt = sizeof (*sdata);
1313
1314 sdata = bfd_zalloc (abfd, amt);
1315 if (sdata == NULL)
1316 return FALSE;
1317 sec->used_by_bfd = sdata;
1318 }
1319
1320 return _bfd_elf_new_section_hook (abfd, sec);
1321 }
1322 \f
1323 /* Read ECOFF debugging information from a .mdebug section into a
1324 ecoff_debug_info structure. */
1325
1326 bfd_boolean
1327 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1328 struct ecoff_debug_info *debug)
1329 {
1330 HDRR *symhdr;
1331 const struct ecoff_debug_swap *swap;
1332 char *ext_hdr;
1333
1334 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1335 memset (debug, 0, sizeof (*debug));
1336
1337 ext_hdr = bfd_malloc (swap->external_hdr_size);
1338 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1339 goto error_return;
1340
1341 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1342 swap->external_hdr_size))
1343 goto error_return;
1344
1345 symhdr = &debug->symbolic_header;
1346 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1347
1348 /* The symbolic header contains absolute file offsets and sizes to
1349 read. */
1350 #define READ(ptr, offset, count, size, type) \
1351 if (symhdr->count == 0) \
1352 debug->ptr = NULL; \
1353 else \
1354 { \
1355 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1356 debug->ptr = bfd_malloc (amt); \
1357 if (debug->ptr == NULL) \
1358 goto error_return; \
1359 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1360 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1361 goto error_return; \
1362 }
1363
1364 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1365 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1366 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1367 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1368 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1369 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1370 union aux_ext *);
1371 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1372 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1373 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1374 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1375 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1376 #undef READ
1377
1378 debug->fdr = NULL;
1379
1380 return TRUE;
1381
1382 error_return:
1383 if (ext_hdr != NULL)
1384 free (ext_hdr);
1385 if (debug->line != NULL)
1386 free (debug->line);
1387 if (debug->external_dnr != NULL)
1388 free (debug->external_dnr);
1389 if (debug->external_pdr != NULL)
1390 free (debug->external_pdr);
1391 if (debug->external_sym != NULL)
1392 free (debug->external_sym);
1393 if (debug->external_opt != NULL)
1394 free (debug->external_opt);
1395 if (debug->external_aux != NULL)
1396 free (debug->external_aux);
1397 if (debug->ss != NULL)
1398 free (debug->ss);
1399 if (debug->ssext != NULL)
1400 free (debug->ssext);
1401 if (debug->external_fdr != NULL)
1402 free (debug->external_fdr);
1403 if (debug->external_rfd != NULL)
1404 free (debug->external_rfd);
1405 if (debug->external_ext != NULL)
1406 free (debug->external_ext);
1407 return FALSE;
1408 }
1409 \f
1410 /* Swap RPDR (runtime procedure table entry) for output. */
1411
1412 static void
1413 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1414 {
1415 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1416 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1417 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1418 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1419 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1420 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1421
1422 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1423 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1424
1425 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1426 }
1427
1428 /* Create a runtime procedure table from the .mdebug section. */
1429
1430 static bfd_boolean
1431 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1432 struct bfd_link_info *info, asection *s,
1433 struct ecoff_debug_info *debug)
1434 {
1435 const struct ecoff_debug_swap *swap;
1436 HDRR *hdr = &debug->symbolic_header;
1437 RPDR *rpdr, *rp;
1438 struct rpdr_ext *erp;
1439 void *rtproc;
1440 struct pdr_ext *epdr;
1441 struct sym_ext *esym;
1442 char *ss, **sv;
1443 char *str;
1444 bfd_size_type size;
1445 bfd_size_type count;
1446 unsigned long sindex;
1447 unsigned long i;
1448 PDR pdr;
1449 SYMR sym;
1450 const char *no_name_func = _("static procedure (no name)");
1451
1452 epdr = NULL;
1453 rpdr = NULL;
1454 esym = NULL;
1455 ss = NULL;
1456 sv = NULL;
1457
1458 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1459
1460 sindex = strlen (no_name_func) + 1;
1461 count = hdr->ipdMax;
1462 if (count > 0)
1463 {
1464 size = swap->external_pdr_size;
1465
1466 epdr = bfd_malloc (size * count);
1467 if (epdr == NULL)
1468 goto error_return;
1469
1470 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1471 goto error_return;
1472
1473 size = sizeof (RPDR);
1474 rp = rpdr = bfd_malloc (size * count);
1475 if (rpdr == NULL)
1476 goto error_return;
1477
1478 size = sizeof (char *);
1479 sv = bfd_malloc (size * count);
1480 if (sv == NULL)
1481 goto error_return;
1482
1483 count = hdr->isymMax;
1484 size = swap->external_sym_size;
1485 esym = bfd_malloc (size * count);
1486 if (esym == NULL)
1487 goto error_return;
1488
1489 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1490 goto error_return;
1491
1492 count = hdr->issMax;
1493 ss = bfd_malloc (count);
1494 if (ss == NULL)
1495 goto error_return;
1496 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1497 goto error_return;
1498
1499 count = hdr->ipdMax;
1500 for (i = 0; i < (unsigned long) count; i++, rp++)
1501 {
1502 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1503 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1504 rp->adr = sym.value;
1505 rp->regmask = pdr.regmask;
1506 rp->regoffset = pdr.regoffset;
1507 rp->fregmask = pdr.fregmask;
1508 rp->fregoffset = pdr.fregoffset;
1509 rp->frameoffset = pdr.frameoffset;
1510 rp->framereg = pdr.framereg;
1511 rp->pcreg = pdr.pcreg;
1512 rp->irpss = sindex;
1513 sv[i] = ss + sym.iss;
1514 sindex += strlen (sv[i]) + 1;
1515 }
1516 }
1517
1518 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1519 size = BFD_ALIGN (size, 16);
1520 rtproc = bfd_alloc (abfd, size);
1521 if (rtproc == NULL)
1522 {
1523 mips_elf_hash_table (info)->procedure_count = 0;
1524 goto error_return;
1525 }
1526
1527 mips_elf_hash_table (info)->procedure_count = count + 2;
1528
1529 erp = rtproc;
1530 memset (erp, 0, sizeof (struct rpdr_ext));
1531 erp++;
1532 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1533 strcpy (str, no_name_func);
1534 str += strlen (no_name_func) + 1;
1535 for (i = 0; i < count; i++)
1536 {
1537 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1538 strcpy (str, sv[i]);
1539 str += strlen (sv[i]) + 1;
1540 }
1541 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1542
1543 /* Set the size and contents of .rtproc section. */
1544 s->size = size;
1545 s->contents = rtproc;
1546
1547 /* Skip this section later on (I don't think this currently
1548 matters, but someday it might). */
1549 s->map_head.link_order = NULL;
1550
1551 if (epdr != NULL)
1552 free (epdr);
1553 if (rpdr != NULL)
1554 free (rpdr);
1555 if (esym != NULL)
1556 free (esym);
1557 if (ss != NULL)
1558 free (ss);
1559 if (sv != NULL)
1560 free (sv);
1561
1562 return TRUE;
1563
1564 error_return:
1565 if (epdr != NULL)
1566 free (epdr);
1567 if (rpdr != NULL)
1568 free (rpdr);
1569 if (esym != NULL)
1570 free (esym);
1571 if (ss != NULL)
1572 free (ss);
1573 if (sv != NULL)
1574 free (sv);
1575 return FALSE;
1576 }
1577 \f
1578 /* We're going to create a stub for H. Create a symbol for the stub's
1579 value and size, to help make the disassembly easier to read. */
1580
1581 static bfd_boolean
1582 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1583 struct mips_elf_link_hash_entry *h,
1584 const char *prefix, asection *s, bfd_vma value,
1585 bfd_vma size)
1586 {
1587 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1588 struct bfd_link_hash_entry *bh;
1589 struct elf_link_hash_entry *elfh;
1590 char *name;
1591 bfd_boolean res;
1592
1593 if (micromips_p)
1594 value |= 1;
1595
1596 /* Create a new symbol. */
1597 name = concat (prefix, h->root.root.root.string, NULL);
1598 bh = NULL;
1599 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1600 BSF_LOCAL, s, value, NULL,
1601 TRUE, FALSE, &bh);
1602 free (name);
1603 if (! res)
1604 return FALSE;
1605
1606 /* Make it a local function. */
1607 elfh = (struct elf_link_hash_entry *) bh;
1608 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1609 elfh->size = size;
1610 elfh->forced_local = 1;
1611 if (micromips_p)
1612 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1613 return TRUE;
1614 }
1615
1616 /* We're about to redefine H. Create a symbol to represent H's
1617 current value and size, to help make the disassembly easier
1618 to read. */
1619
1620 static bfd_boolean
1621 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1622 struct mips_elf_link_hash_entry *h,
1623 const char *prefix)
1624 {
1625 struct bfd_link_hash_entry *bh;
1626 struct elf_link_hash_entry *elfh;
1627 char *name;
1628 asection *s;
1629 bfd_vma value;
1630 bfd_boolean res;
1631
1632 /* Read the symbol's value. */
1633 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1634 || h->root.root.type == bfd_link_hash_defweak);
1635 s = h->root.root.u.def.section;
1636 value = h->root.root.u.def.value;
1637
1638 /* Create a new symbol. */
1639 name = concat (prefix, h->root.root.root.string, NULL);
1640 bh = NULL;
1641 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1642 BSF_LOCAL, s, value, NULL,
1643 TRUE, FALSE, &bh);
1644 free (name);
1645 if (! res)
1646 return FALSE;
1647
1648 /* Make it local and copy the other attributes from H. */
1649 elfh = (struct elf_link_hash_entry *) bh;
1650 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1651 elfh->other = h->root.other;
1652 elfh->size = h->root.size;
1653 elfh->forced_local = 1;
1654 return TRUE;
1655 }
1656
1657 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1658 function rather than to a hard-float stub. */
1659
1660 static bfd_boolean
1661 section_allows_mips16_refs_p (asection *section)
1662 {
1663 const char *name;
1664
1665 name = bfd_get_section_name (section->owner, section);
1666 return (FN_STUB_P (name)
1667 || CALL_STUB_P (name)
1668 || CALL_FP_STUB_P (name)
1669 || strcmp (name, ".pdr") == 0);
1670 }
1671
1672 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1673 stub section of some kind. Return the R_SYMNDX of the target
1674 function, or 0 if we can't decide which function that is. */
1675
1676 static unsigned long
1677 mips16_stub_symndx (const struct elf_backend_data *bed,
1678 asection *sec ATTRIBUTE_UNUSED,
1679 const Elf_Internal_Rela *relocs,
1680 const Elf_Internal_Rela *relend)
1681 {
1682 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1683 const Elf_Internal_Rela *rel;
1684
1685 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1686 one in a compound relocation. */
1687 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1688 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1689 return ELF_R_SYM (sec->owner, rel->r_info);
1690
1691 /* Otherwise trust the first relocation, whatever its kind. This is
1692 the traditional behavior. */
1693 if (relocs < relend)
1694 return ELF_R_SYM (sec->owner, relocs->r_info);
1695
1696 return 0;
1697 }
1698
1699 /* Check the mips16 stubs for a particular symbol, and see if we can
1700 discard them. */
1701
1702 static void
1703 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1704 struct mips_elf_link_hash_entry *h)
1705 {
1706 /* Dynamic symbols must use the standard call interface, in case other
1707 objects try to call them. */
1708 if (h->fn_stub != NULL
1709 && h->root.dynindx != -1)
1710 {
1711 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1712 h->need_fn_stub = TRUE;
1713 }
1714
1715 if (h->fn_stub != NULL
1716 && ! h->need_fn_stub)
1717 {
1718 /* We don't need the fn_stub; the only references to this symbol
1719 are 16 bit calls. Clobber the size to 0 to prevent it from
1720 being included in the link. */
1721 h->fn_stub->size = 0;
1722 h->fn_stub->flags &= ~SEC_RELOC;
1723 h->fn_stub->reloc_count = 0;
1724 h->fn_stub->flags |= SEC_EXCLUDE;
1725 h->fn_stub->output_section = bfd_abs_section_ptr;
1726 }
1727
1728 if (h->call_stub != NULL
1729 && ELF_ST_IS_MIPS16 (h->root.other))
1730 {
1731 /* We don't need the call_stub; this is a 16 bit function, so
1732 calls from other 16 bit functions are OK. Clobber the size
1733 to 0 to prevent it from being included in the link. */
1734 h->call_stub->size = 0;
1735 h->call_stub->flags &= ~SEC_RELOC;
1736 h->call_stub->reloc_count = 0;
1737 h->call_stub->flags |= SEC_EXCLUDE;
1738 h->call_stub->output_section = bfd_abs_section_ptr;
1739 }
1740
1741 if (h->call_fp_stub != NULL
1742 && ELF_ST_IS_MIPS16 (h->root.other))
1743 {
1744 /* We don't need the call_stub; this is a 16 bit function, so
1745 calls from other 16 bit functions are OK. Clobber the size
1746 to 0 to prevent it from being included in the link. */
1747 h->call_fp_stub->size = 0;
1748 h->call_fp_stub->flags &= ~SEC_RELOC;
1749 h->call_fp_stub->reloc_count = 0;
1750 h->call_fp_stub->flags |= SEC_EXCLUDE;
1751 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1752 }
1753 }
1754
1755 /* Hashtable callbacks for mips_elf_la25_stubs. */
1756
1757 static hashval_t
1758 mips_elf_la25_stub_hash (const void *entry_)
1759 {
1760 const struct mips_elf_la25_stub *entry;
1761
1762 entry = (struct mips_elf_la25_stub *) entry_;
1763 return entry->h->root.root.u.def.section->id
1764 + entry->h->root.root.u.def.value;
1765 }
1766
1767 static int
1768 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1769 {
1770 const struct mips_elf_la25_stub *entry1, *entry2;
1771
1772 entry1 = (struct mips_elf_la25_stub *) entry1_;
1773 entry2 = (struct mips_elf_la25_stub *) entry2_;
1774 return ((entry1->h->root.root.u.def.section
1775 == entry2->h->root.root.u.def.section)
1776 && (entry1->h->root.root.u.def.value
1777 == entry2->h->root.root.u.def.value));
1778 }
1779
1780 /* Called by the linker to set up the la25 stub-creation code. FN is
1781 the linker's implementation of add_stub_function. Return true on
1782 success. */
1783
1784 bfd_boolean
1785 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1786 asection *(*fn) (const char *, asection *,
1787 asection *))
1788 {
1789 struct mips_elf_link_hash_table *htab;
1790
1791 htab = mips_elf_hash_table (info);
1792 if (htab == NULL)
1793 return FALSE;
1794
1795 htab->add_stub_section = fn;
1796 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1797 mips_elf_la25_stub_eq, NULL);
1798 if (htab->la25_stubs == NULL)
1799 return FALSE;
1800
1801 return TRUE;
1802 }
1803
1804 /* Return true if H is a locally-defined PIC function, in the sense
1805 that it or its fn_stub might need $25 to be valid on entry.
1806 Note that MIPS16 functions set up $gp using PC-relative instructions,
1807 so they themselves never need $25 to be valid. Only non-MIPS16
1808 entry points are of interest here. */
1809
1810 static bfd_boolean
1811 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1812 {
1813 return ((h->root.root.type == bfd_link_hash_defined
1814 || h->root.root.type == bfd_link_hash_defweak)
1815 && h->root.def_regular
1816 && !bfd_is_abs_section (h->root.root.u.def.section)
1817 && !bfd_is_und_section (h->root.root.u.def.section)
1818 && (!ELF_ST_IS_MIPS16 (h->root.other)
1819 || (h->fn_stub && h->need_fn_stub))
1820 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1821 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1822 }
1823
1824 /* Set *SEC to the input section that contains the target of STUB.
1825 Return the offset of the target from the start of that section. */
1826
1827 static bfd_vma
1828 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1829 asection **sec)
1830 {
1831 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1832 {
1833 BFD_ASSERT (stub->h->need_fn_stub);
1834 *sec = stub->h->fn_stub;
1835 return 0;
1836 }
1837 else
1838 {
1839 *sec = stub->h->root.root.u.def.section;
1840 return stub->h->root.root.u.def.value;
1841 }
1842 }
1843
1844 /* STUB describes an la25 stub that we have decided to implement
1845 by inserting an LUI/ADDIU pair before the target function.
1846 Create the section and redirect the function symbol to it. */
1847
1848 static bfd_boolean
1849 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1850 struct bfd_link_info *info)
1851 {
1852 struct mips_elf_link_hash_table *htab;
1853 char *name;
1854 asection *s, *input_section;
1855 unsigned int align;
1856
1857 htab = mips_elf_hash_table (info);
1858 if (htab == NULL)
1859 return FALSE;
1860
1861 /* Create a unique name for the new section. */
1862 name = bfd_malloc (11 + sizeof (".text.stub."));
1863 if (name == NULL)
1864 return FALSE;
1865 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1866
1867 /* Create the section. */
1868 mips_elf_get_la25_target (stub, &input_section);
1869 s = htab->add_stub_section (name, input_section,
1870 input_section->output_section);
1871 if (s == NULL)
1872 return FALSE;
1873
1874 /* Make sure that any padding goes before the stub. */
1875 align = input_section->alignment_power;
1876 if (!bfd_set_section_alignment (s->owner, s, align))
1877 return FALSE;
1878 if (align > 3)
1879 s->size = (1 << align) - 8;
1880
1881 /* Create a symbol for the stub. */
1882 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1883 stub->stub_section = s;
1884 stub->offset = s->size;
1885
1886 /* Allocate room for it. */
1887 s->size += 8;
1888 return TRUE;
1889 }
1890
1891 /* STUB describes an la25 stub that we have decided to implement
1892 with a separate trampoline. Allocate room for it and redirect
1893 the function symbol to it. */
1894
1895 static bfd_boolean
1896 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1897 struct bfd_link_info *info)
1898 {
1899 struct mips_elf_link_hash_table *htab;
1900 asection *s;
1901
1902 htab = mips_elf_hash_table (info);
1903 if (htab == NULL)
1904 return FALSE;
1905
1906 /* Create a trampoline section, if we haven't already. */
1907 s = htab->strampoline;
1908 if (s == NULL)
1909 {
1910 asection *input_section = stub->h->root.root.u.def.section;
1911 s = htab->add_stub_section (".text", NULL,
1912 input_section->output_section);
1913 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1914 return FALSE;
1915 htab->strampoline = s;
1916 }
1917
1918 /* Create a symbol for the stub. */
1919 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1920 stub->stub_section = s;
1921 stub->offset = s->size;
1922
1923 /* Allocate room for it. */
1924 s->size += 16;
1925 return TRUE;
1926 }
1927
1928 /* H describes a symbol that needs an la25 stub. Make sure that an
1929 appropriate stub exists and point H at it. */
1930
1931 static bfd_boolean
1932 mips_elf_add_la25_stub (struct bfd_link_info *info,
1933 struct mips_elf_link_hash_entry *h)
1934 {
1935 struct mips_elf_link_hash_table *htab;
1936 struct mips_elf_la25_stub search, *stub;
1937 bfd_boolean use_trampoline_p;
1938 asection *s;
1939 bfd_vma value;
1940 void **slot;
1941
1942 /* Describe the stub we want. */
1943 search.stub_section = NULL;
1944 search.offset = 0;
1945 search.h = h;
1946
1947 /* See if we've already created an equivalent stub. */
1948 htab = mips_elf_hash_table (info);
1949 if (htab == NULL)
1950 return FALSE;
1951
1952 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1953 if (slot == NULL)
1954 return FALSE;
1955
1956 stub = (struct mips_elf_la25_stub *) *slot;
1957 if (stub != NULL)
1958 {
1959 /* We can reuse the existing stub. */
1960 h->la25_stub = stub;
1961 return TRUE;
1962 }
1963
1964 /* Create a permanent copy of ENTRY and add it to the hash table. */
1965 stub = bfd_malloc (sizeof (search));
1966 if (stub == NULL)
1967 return FALSE;
1968 *stub = search;
1969 *slot = stub;
1970
1971 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1972 of the section and if we would need no more than 2 nops. */
1973 value = mips_elf_get_la25_target (stub, &s);
1974 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1975 value &= ~1;
1976 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1977
1978 h->la25_stub = stub;
1979 return (use_trampoline_p
1980 ? mips_elf_add_la25_trampoline (stub, info)
1981 : mips_elf_add_la25_intro (stub, info));
1982 }
1983
1984 /* A mips_elf_link_hash_traverse callback that is called before sizing
1985 sections. DATA points to a mips_htab_traverse_info structure. */
1986
1987 static bfd_boolean
1988 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1989 {
1990 struct mips_htab_traverse_info *hti;
1991
1992 hti = (struct mips_htab_traverse_info *) data;
1993 if (!bfd_link_relocatable (hti->info))
1994 mips_elf_check_mips16_stubs (hti->info, h);
1995
1996 if (mips_elf_local_pic_function_p (h))
1997 {
1998 /* PR 12845: If H is in a section that has been garbage
1999 collected it will have its output section set to *ABS*. */
2000 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2001 return TRUE;
2002
2003 /* H is a function that might need $25 to be valid on entry.
2004 If we're creating a non-PIC relocatable object, mark H as
2005 being PIC. If we're creating a non-relocatable object with
2006 non-PIC branches and jumps to H, make sure that H has an la25
2007 stub. */
2008 if (bfd_link_relocatable (hti->info))
2009 {
2010 if (!PIC_OBJECT_P (hti->output_bfd))
2011 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2012 }
2013 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2014 {
2015 hti->error = TRUE;
2016 return FALSE;
2017 }
2018 }
2019 return TRUE;
2020 }
2021 \f
2022 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2023 Most mips16 instructions are 16 bits, but these instructions
2024 are 32 bits.
2025
2026 The format of these instructions is:
2027
2028 +--------------+--------------------------------+
2029 | JALX | X| Imm 20:16 | Imm 25:21 |
2030 +--------------+--------------------------------+
2031 | Immediate 15:0 |
2032 +-----------------------------------------------+
2033
2034 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2035 Note that the immediate value in the first word is swapped.
2036
2037 When producing a relocatable object file, R_MIPS16_26 is
2038 handled mostly like R_MIPS_26. In particular, the addend is
2039 stored as a straight 26-bit value in a 32-bit instruction.
2040 (gas makes life simpler for itself by never adjusting a
2041 R_MIPS16_26 reloc to be against a section, so the addend is
2042 always zero). However, the 32 bit instruction is stored as 2
2043 16-bit values, rather than a single 32-bit value. In a
2044 big-endian file, the result is the same; in a little-endian
2045 file, the two 16-bit halves of the 32 bit value are swapped.
2046 This is so that a disassembler can recognize the jal
2047 instruction.
2048
2049 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2050 instruction stored as two 16-bit values. The addend A is the
2051 contents of the targ26 field. The calculation is the same as
2052 R_MIPS_26. When storing the calculated value, reorder the
2053 immediate value as shown above, and don't forget to store the
2054 value as two 16-bit values.
2055
2056 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2057 defined as
2058
2059 big-endian:
2060 +--------+----------------------+
2061 | | |
2062 | | targ26-16 |
2063 |31 26|25 0|
2064 +--------+----------------------+
2065
2066 little-endian:
2067 +----------+------+-------------+
2068 | | | |
2069 | sub1 | | sub2 |
2070 |0 9|10 15|16 31|
2071 +----------+--------------------+
2072 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2073 ((sub1 << 16) | sub2)).
2074
2075 When producing a relocatable object file, the calculation is
2076 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2077 When producing a fully linked file, the calculation is
2078 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2079 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2080
2081 The table below lists the other MIPS16 instruction relocations.
2082 Each one is calculated in the same way as the non-MIPS16 relocation
2083 given on the right, but using the extended MIPS16 layout of 16-bit
2084 immediate fields:
2085
2086 R_MIPS16_GPREL R_MIPS_GPREL16
2087 R_MIPS16_GOT16 R_MIPS_GOT16
2088 R_MIPS16_CALL16 R_MIPS_CALL16
2089 R_MIPS16_HI16 R_MIPS_HI16
2090 R_MIPS16_LO16 R_MIPS_LO16
2091
2092 A typical instruction will have a format like this:
2093
2094 +--------------+--------------------------------+
2095 | EXTEND | Imm 10:5 | Imm 15:11 |
2096 +--------------+--------------------------------+
2097 | Major | rx | ry | Imm 4:0 |
2098 +--------------+--------------------------------+
2099
2100 EXTEND is the five bit value 11110. Major is the instruction
2101 opcode.
2102
2103 All we need to do here is shuffle the bits appropriately.
2104 As above, the two 16-bit halves must be swapped on a
2105 little-endian system.
2106
2107 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2108 relocatable field is shifted by 1 rather than 2 and the same bit
2109 shuffling is done as with the relocations above. */
2110
2111 static inline bfd_boolean
2112 mips16_reloc_p (int r_type)
2113 {
2114 switch (r_type)
2115 {
2116 case R_MIPS16_26:
2117 case R_MIPS16_GPREL:
2118 case R_MIPS16_GOT16:
2119 case R_MIPS16_CALL16:
2120 case R_MIPS16_HI16:
2121 case R_MIPS16_LO16:
2122 case R_MIPS16_TLS_GD:
2123 case R_MIPS16_TLS_LDM:
2124 case R_MIPS16_TLS_DTPREL_HI16:
2125 case R_MIPS16_TLS_DTPREL_LO16:
2126 case R_MIPS16_TLS_GOTTPREL:
2127 case R_MIPS16_TLS_TPREL_HI16:
2128 case R_MIPS16_TLS_TPREL_LO16:
2129 case R_MIPS16_PC16_S1:
2130 return TRUE;
2131
2132 default:
2133 return FALSE;
2134 }
2135 }
2136
2137 /* Check if a microMIPS reloc. */
2138
2139 static inline bfd_boolean
2140 micromips_reloc_p (unsigned int r_type)
2141 {
2142 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2143 }
2144
2145 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2146 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2147 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2148
2149 static inline bfd_boolean
2150 micromips_reloc_shuffle_p (unsigned int r_type)
2151 {
2152 return (micromips_reloc_p (r_type)
2153 && r_type != R_MICROMIPS_PC7_S1
2154 && r_type != R_MICROMIPS_PC10_S1);
2155 }
2156
2157 static inline bfd_boolean
2158 got16_reloc_p (int r_type)
2159 {
2160 return (r_type == R_MIPS_GOT16
2161 || r_type == R_MIPS16_GOT16
2162 || r_type == R_MICROMIPS_GOT16);
2163 }
2164
2165 static inline bfd_boolean
2166 call16_reloc_p (int r_type)
2167 {
2168 return (r_type == R_MIPS_CALL16
2169 || r_type == R_MIPS16_CALL16
2170 || r_type == R_MICROMIPS_CALL16);
2171 }
2172
2173 static inline bfd_boolean
2174 got_disp_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2177 }
2178
2179 static inline bfd_boolean
2180 got_page_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2183 }
2184
2185 static inline bfd_boolean
2186 got_lo16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_hi16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2195 }
2196
2197 static inline bfd_boolean
2198 call_lo16_reloc_p (unsigned int r_type)
2199 {
2200 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2201 }
2202
2203 static inline bfd_boolean
2204 hi16_reloc_p (int r_type)
2205 {
2206 return (r_type == R_MIPS_HI16
2207 || r_type == R_MIPS16_HI16
2208 || r_type == R_MICROMIPS_HI16
2209 || r_type == R_MIPS_PCHI16);
2210 }
2211
2212 static inline bfd_boolean
2213 lo16_reloc_p (int r_type)
2214 {
2215 return (r_type == R_MIPS_LO16
2216 || r_type == R_MIPS16_LO16
2217 || r_type == R_MICROMIPS_LO16
2218 || r_type == R_MIPS_PCLO16);
2219 }
2220
2221 static inline bfd_boolean
2222 mips16_call_reloc_p (int r_type)
2223 {
2224 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2225 }
2226
2227 static inline bfd_boolean
2228 jal_reloc_p (int r_type)
2229 {
2230 return (r_type == R_MIPS_26
2231 || r_type == R_MIPS16_26
2232 || r_type == R_MICROMIPS_26_S1);
2233 }
2234
2235 static inline bfd_boolean
2236 b_reloc_p (int r_type)
2237 {
2238 return (r_type == R_MIPS_PC26_S2
2239 || r_type == R_MIPS_PC21_S2
2240 || r_type == R_MIPS_PC16
2241 || r_type == R_MIPS_GNU_REL16_S2
2242 || r_type == R_MIPS16_PC16_S1
2243 || r_type == R_MICROMIPS_PC16_S1
2244 || r_type == R_MICROMIPS_PC10_S1
2245 || r_type == R_MICROMIPS_PC7_S1);
2246 }
2247
2248 static inline bfd_boolean
2249 aligned_pcrel_reloc_p (int r_type)
2250 {
2251 return (r_type == R_MIPS_PC18_S3
2252 || r_type == R_MIPS_PC19_S2);
2253 }
2254
2255 static inline bfd_boolean
2256 branch_reloc_p (int r_type)
2257 {
2258 return (r_type == R_MIPS_26
2259 || r_type == R_MIPS_PC26_S2
2260 || r_type == R_MIPS_PC21_S2
2261 || r_type == R_MIPS_PC16
2262 || r_type == R_MIPS_GNU_REL16_S2);
2263 }
2264
2265 static inline bfd_boolean
2266 mips16_branch_reloc_p (int r_type)
2267 {
2268 return (r_type == R_MIPS16_26
2269 || r_type == R_MIPS16_PC16_S1);
2270 }
2271
2272 static inline bfd_boolean
2273 micromips_branch_reloc_p (int r_type)
2274 {
2275 return (r_type == R_MICROMIPS_26_S1
2276 || r_type == R_MICROMIPS_PC16_S1
2277 || r_type == R_MICROMIPS_PC10_S1
2278 || r_type == R_MICROMIPS_PC7_S1);
2279 }
2280
2281 static inline bfd_boolean
2282 tls_gd_reloc_p (unsigned int r_type)
2283 {
2284 return (r_type == R_MIPS_TLS_GD
2285 || r_type == R_MIPS16_TLS_GD
2286 || r_type == R_MICROMIPS_TLS_GD);
2287 }
2288
2289 static inline bfd_boolean
2290 tls_ldm_reloc_p (unsigned int r_type)
2291 {
2292 return (r_type == R_MIPS_TLS_LDM
2293 || r_type == R_MIPS16_TLS_LDM
2294 || r_type == R_MICROMIPS_TLS_LDM);
2295 }
2296
2297 static inline bfd_boolean
2298 tls_gottprel_reloc_p (unsigned int r_type)
2299 {
2300 return (r_type == R_MIPS_TLS_GOTTPREL
2301 || r_type == R_MIPS16_TLS_GOTTPREL
2302 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2303 }
2304
2305 void
2306 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2307 bfd_boolean jal_shuffle, bfd_byte *data)
2308 {
2309 bfd_vma first, second, val;
2310
2311 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2312 return;
2313
2314 /* Pick up the first and second halfwords of the instruction. */
2315 first = bfd_get_16 (abfd, data);
2316 second = bfd_get_16 (abfd, data + 2);
2317 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2318 val = first << 16 | second;
2319 else if (r_type != R_MIPS16_26)
2320 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2321 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2322 else
2323 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2324 | ((first & 0x1f) << 21) | second);
2325 bfd_put_32 (abfd, val, data);
2326 }
2327
2328 void
2329 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2330 bfd_boolean jal_shuffle, bfd_byte *data)
2331 {
2332 bfd_vma first, second, val;
2333
2334 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2335 return;
2336
2337 val = bfd_get_32 (abfd, data);
2338 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2339 {
2340 second = val & 0xffff;
2341 first = val >> 16;
2342 }
2343 else if (r_type != R_MIPS16_26)
2344 {
2345 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2346 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2347 }
2348 else
2349 {
2350 second = val & 0xffff;
2351 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2352 | ((val >> 21) & 0x1f);
2353 }
2354 bfd_put_16 (abfd, second, data + 2);
2355 bfd_put_16 (abfd, first, data);
2356 }
2357
2358 bfd_reloc_status_type
2359 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2360 arelent *reloc_entry, asection *input_section,
2361 bfd_boolean relocatable, void *data, bfd_vma gp)
2362 {
2363 bfd_vma relocation;
2364 bfd_signed_vma val;
2365 bfd_reloc_status_type status;
2366
2367 if (bfd_is_com_section (symbol->section))
2368 relocation = 0;
2369 else
2370 relocation = symbol->value;
2371
2372 relocation += symbol->section->output_section->vma;
2373 relocation += symbol->section->output_offset;
2374
2375 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2376 return bfd_reloc_outofrange;
2377
2378 /* Set val to the offset into the section or symbol. */
2379 val = reloc_entry->addend;
2380
2381 _bfd_mips_elf_sign_extend (val, 16);
2382
2383 /* Adjust val for the final section location and GP value. If we
2384 are producing relocatable output, we don't want to do this for
2385 an external symbol. */
2386 if (! relocatable
2387 || (symbol->flags & BSF_SECTION_SYM) != 0)
2388 val += relocation - gp;
2389
2390 if (reloc_entry->howto->partial_inplace)
2391 {
2392 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2393 (bfd_byte *) data
2394 + reloc_entry->address);
2395 if (status != bfd_reloc_ok)
2396 return status;
2397 }
2398 else
2399 reloc_entry->addend = val;
2400
2401 if (relocatable)
2402 reloc_entry->address += input_section->output_offset;
2403
2404 return bfd_reloc_ok;
2405 }
2406
2407 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2408 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2409 that contains the relocation field and DATA points to the start of
2410 INPUT_SECTION. */
2411
2412 struct mips_hi16
2413 {
2414 struct mips_hi16 *next;
2415 bfd_byte *data;
2416 asection *input_section;
2417 arelent rel;
2418 };
2419
2420 /* FIXME: This should not be a static variable. */
2421
2422 static struct mips_hi16 *mips_hi16_list;
2423
2424 /* A howto special_function for REL *HI16 relocations. We can only
2425 calculate the correct value once we've seen the partnering
2426 *LO16 relocation, so just save the information for later.
2427
2428 The ABI requires that the *LO16 immediately follow the *HI16.
2429 However, as a GNU extension, we permit an arbitrary number of
2430 *HI16s to be associated with a single *LO16. This significantly
2431 simplies the relocation handling in gcc. */
2432
2433 bfd_reloc_status_type
2434 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2435 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2436 asection *input_section, bfd *output_bfd,
2437 char **error_message ATTRIBUTE_UNUSED)
2438 {
2439 struct mips_hi16 *n;
2440
2441 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2442 return bfd_reloc_outofrange;
2443
2444 n = bfd_malloc (sizeof *n);
2445 if (n == NULL)
2446 return bfd_reloc_outofrange;
2447
2448 n->next = mips_hi16_list;
2449 n->data = data;
2450 n->input_section = input_section;
2451 n->rel = *reloc_entry;
2452 mips_hi16_list = n;
2453
2454 if (output_bfd != NULL)
2455 reloc_entry->address += input_section->output_offset;
2456
2457 return bfd_reloc_ok;
2458 }
2459
2460 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2461 like any other 16-bit relocation when applied to global symbols, but is
2462 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2463
2464 bfd_reloc_status_type
2465 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468 {
2469 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2470 || bfd_is_und_section (bfd_get_section (symbol))
2471 || bfd_is_com_section (bfd_get_section (symbol)))
2472 /* The relocation is against a global symbol. */
2473 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd,
2475 error_message);
2476
2477 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2478 input_section, output_bfd, error_message);
2479 }
2480
2481 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2482 is a straightforward 16 bit inplace relocation, but we must deal with
2483 any partnering high-part relocations as well. */
2484
2485 bfd_reloc_status_type
2486 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2487 void *data, asection *input_section,
2488 bfd *output_bfd, char **error_message)
2489 {
2490 bfd_vma vallo;
2491 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2492
2493 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2494 return bfd_reloc_outofrange;
2495
2496 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2497 location);
2498 vallo = bfd_get_32 (abfd, location);
2499 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2500 location);
2501
2502 while (mips_hi16_list != NULL)
2503 {
2504 bfd_reloc_status_type ret;
2505 struct mips_hi16 *hi;
2506
2507 hi = mips_hi16_list;
2508
2509 /* R_MIPS*_GOT16 relocations are something of a special case. We
2510 want to install the addend in the same way as for a R_MIPS*_HI16
2511 relocation (with a rightshift of 16). However, since GOT16
2512 relocations can also be used with global symbols, their howto
2513 has a rightshift of 0. */
2514 if (hi->rel.howto->type == R_MIPS_GOT16)
2515 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2516 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2517 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2518 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2519 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2520
2521 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2522 carry or borrow will induce a change of +1 or -1 in the high part. */
2523 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2524
2525 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2526 hi->input_section, output_bfd,
2527 error_message);
2528 if (ret != bfd_reloc_ok)
2529 return ret;
2530
2531 mips_hi16_list = hi->next;
2532 free (hi);
2533 }
2534
2535 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2536 input_section, output_bfd,
2537 error_message);
2538 }
2539
2540 /* A generic howto special_function. This calculates and installs the
2541 relocation itself, thus avoiding the oft-discussed problems in
2542 bfd_perform_relocation and bfd_install_relocation. */
2543
2544 bfd_reloc_status_type
2545 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2546 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2547 asection *input_section, bfd *output_bfd,
2548 char **error_message ATTRIBUTE_UNUSED)
2549 {
2550 bfd_signed_vma val;
2551 bfd_reloc_status_type status;
2552 bfd_boolean relocatable;
2553
2554 relocatable = (output_bfd != NULL);
2555
2556 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2557 return bfd_reloc_outofrange;
2558
2559 /* Build up the field adjustment in VAL. */
2560 val = 0;
2561 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2562 {
2563 /* Either we're calculating the final field value or we have a
2564 relocation against a section symbol. Add in the section's
2565 offset or address. */
2566 val += symbol->section->output_section->vma;
2567 val += symbol->section->output_offset;
2568 }
2569
2570 if (!relocatable)
2571 {
2572 /* We're calculating the final field value. Add in the symbol's value
2573 and, if pc-relative, subtract the address of the field itself. */
2574 val += symbol->value;
2575 if (reloc_entry->howto->pc_relative)
2576 {
2577 val -= input_section->output_section->vma;
2578 val -= input_section->output_offset;
2579 val -= reloc_entry->address;
2580 }
2581 }
2582
2583 /* VAL is now the final adjustment. If we're keeping this relocation
2584 in the output file, and if the relocation uses a separate addend,
2585 we just need to add VAL to that addend. Otherwise we need to add
2586 VAL to the relocation field itself. */
2587 if (relocatable && !reloc_entry->howto->partial_inplace)
2588 reloc_entry->addend += val;
2589 else
2590 {
2591 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2592
2593 /* Add in the separate addend, if any. */
2594 val += reloc_entry->addend;
2595
2596 /* Add VAL to the relocation field. */
2597 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2598 location);
2599 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2600 location);
2601 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2602 location);
2603
2604 if (status != bfd_reloc_ok)
2605 return status;
2606 }
2607
2608 if (relocatable)
2609 reloc_entry->address += input_section->output_offset;
2610
2611 return bfd_reloc_ok;
2612 }
2613 \f
2614 /* Swap an entry in a .gptab section. Note that these routines rely
2615 on the equivalence of the two elements of the union. */
2616
2617 static void
2618 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2619 Elf32_gptab *in)
2620 {
2621 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2622 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2623 }
2624
2625 static void
2626 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2627 Elf32_External_gptab *ex)
2628 {
2629 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2630 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2631 }
2632
2633 static void
2634 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2635 Elf32_External_compact_rel *ex)
2636 {
2637 H_PUT_32 (abfd, in->id1, ex->id1);
2638 H_PUT_32 (abfd, in->num, ex->num);
2639 H_PUT_32 (abfd, in->id2, ex->id2);
2640 H_PUT_32 (abfd, in->offset, ex->offset);
2641 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2642 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2643 }
2644
2645 static void
2646 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2647 Elf32_External_crinfo *ex)
2648 {
2649 unsigned long l;
2650
2651 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2652 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2653 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2654 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2655 H_PUT_32 (abfd, l, ex->info);
2656 H_PUT_32 (abfd, in->konst, ex->konst);
2657 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2658 }
2659 \f
2660 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2661 routines swap this structure in and out. They are used outside of
2662 BFD, so they are globally visible. */
2663
2664 void
2665 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2666 Elf32_RegInfo *in)
2667 {
2668 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2669 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2670 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2671 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2672 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2673 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2674 }
2675
2676 void
2677 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2678 Elf32_External_RegInfo *ex)
2679 {
2680 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2681 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2682 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2683 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2684 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2685 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2686 }
2687
2688 /* In the 64 bit ABI, the .MIPS.options section holds register
2689 information in an Elf64_Reginfo structure. These routines swap
2690 them in and out. They are globally visible because they are used
2691 outside of BFD. These routines are here so that gas can call them
2692 without worrying about whether the 64 bit ABI has been included. */
2693
2694 void
2695 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2696 Elf64_Internal_RegInfo *in)
2697 {
2698 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2699 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2700 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2701 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2702 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2703 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2704 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2705 }
2706
2707 void
2708 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2709 Elf64_External_RegInfo *ex)
2710 {
2711 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2712 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2713 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2714 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2715 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2716 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2717 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2718 }
2719
2720 /* Swap in an options header. */
2721
2722 void
2723 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2724 Elf_Internal_Options *in)
2725 {
2726 in->kind = H_GET_8 (abfd, ex->kind);
2727 in->size = H_GET_8 (abfd, ex->size);
2728 in->section = H_GET_16 (abfd, ex->section);
2729 in->info = H_GET_32 (abfd, ex->info);
2730 }
2731
2732 /* Swap out an options header. */
2733
2734 void
2735 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2736 Elf_External_Options *ex)
2737 {
2738 H_PUT_8 (abfd, in->kind, ex->kind);
2739 H_PUT_8 (abfd, in->size, ex->size);
2740 H_PUT_16 (abfd, in->section, ex->section);
2741 H_PUT_32 (abfd, in->info, ex->info);
2742 }
2743
2744 /* Swap in an abiflags structure. */
2745
2746 void
2747 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2748 const Elf_External_ABIFlags_v0 *ex,
2749 Elf_Internal_ABIFlags_v0 *in)
2750 {
2751 in->version = H_GET_16 (abfd, ex->version);
2752 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2753 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2754 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2755 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2756 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2757 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2758 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2759 in->ases = H_GET_32 (abfd, ex->ases);
2760 in->flags1 = H_GET_32 (abfd, ex->flags1);
2761 in->flags2 = H_GET_32 (abfd, ex->flags2);
2762 }
2763
2764 /* Swap out an abiflags structure. */
2765
2766 void
2767 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2768 const Elf_Internal_ABIFlags_v0 *in,
2769 Elf_External_ABIFlags_v0 *ex)
2770 {
2771 H_PUT_16 (abfd, in->version, ex->version);
2772 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2773 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2774 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2775 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2776 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2777 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2778 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2779 H_PUT_32 (abfd, in->ases, ex->ases);
2780 H_PUT_32 (abfd, in->flags1, ex->flags1);
2781 H_PUT_32 (abfd, in->flags2, ex->flags2);
2782 }
2783 \f
2784 /* This function is called via qsort() to sort the dynamic relocation
2785 entries by increasing r_symndx value. */
2786
2787 static int
2788 sort_dynamic_relocs (const void *arg1, const void *arg2)
2789 {
2790 Elf_Internal_Rela int_reloc1;
2791 Elf_Internal_Rela int_reloc2;
2792 int diff;
2793
2794 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2795 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2796
2797 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2798 if (diff != 0)
2799 return diff;
2800
2801 if (int_reloc1.r_offset < int_reloc2.r_offset)
2802 return -1;
2803 if (int_reloc1.r_offset > int_reloc2.r_offset)
2804 return 1;
2805 return 0;
2806 }
2807
2808 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2809
2810 static int
2811 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2812 const void *arg2 ATTRIBUTE_UNUSED)
2813 {
2814 #ifdef BFD64
2815 Elf_Internal_Rela int_reloc1[3];
2816 Elf_Internal_Rela int_reloc2[3];
2817
2818 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2819 (reldyn_sorting_bfd, arg1, int_reloc1);
2820 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2821 (reldyn_sorting_bfd, arg2, int_reloc2);
2822
2823 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2824 return -1;
2825 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2826 return 1;
2827
2828 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2829 return -1;
2830 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2831 return 1;
2832 return 0;
2833 #else
2834 abort ();
2835 #endif
2836 }
2837
2838
2839 /* This routine is used to write out ECOFF debugging external symbol
2840 information. It is called via mips_elf_link_hash_traverse. The
2841 ECOFF external symbol information must match the ELF external
2842 symbol information. Unfortunately, at this point we don't know
2843 whether a symbol is required by reloc information, so the two
2844 tables may wind up being different. We must sort out the external
2845 symbol information before we can set the final size of the .mdebug
2846 section, and we must set the size of the .mdebug section before we
2847 can relocate any sections, and we can't know which symbols are
2848 required by relocation until we relocate the sections.
2849 Fortunately, it is relatively unlikely that any symbol will be
2850 stripped but required by a reloc. In particular, it can not happen
2851 when generating a final executable. */
2852
2853 static bfd_boolean
2854 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2855 {
2856 struct extsym_info *einfo = data;
2857 bfd_boolean strip;
2858 asection *sec, *output_section;
2859
2860 if (h->root.indx == -2)
2861 strip = FALSE;
2862 else if ((h->root.def_dynamic
2863 || h->root.ref_dynamic
2864 || h->root.type == bfd_link_hash_new)
2865 && !h->root.def_regular
2866 && !h->root.ref_regular)
2867 strip = TRUE;
2868 else if (einfo->info->strip == strip_all
2869 || (einfo->info->strip == strip_some
2870 && bfd_hash_lookup (einfo->info->keep_hash,
2871 h->root.root.root.string,
2872 FALSE, FALSE) == NULL))
2873 strip = TRUE;
2874 else
2875 strip = FALSE;
2876
2877 if (strip)
2878 return TRUE;
2879
2880 if (h->esym.ifd == -2)
2881 {
2882 h->esym.jmptbl = 0;
2883 h->esym.cobol_main = 0;
2884 h->esym.weakext = 0;
2885 h->esym.reserved = 0;
2886 h->esym.ifd = ifdNil;
2887 h->esym.asym.value = 0;
2888 h->esym.asym.st = stGlobal;
2889
2890 if (h->root.root.type == bfd_link_hash_undefined
2891 || h->root.root.type == bfd_link_hash_undefweak)
2892 {
2893 const char *name;
2894
2895 /* Use undefined class. Also, set class and type for some
2896 special symbols. */
2897 name = h->root.root.root.string;
2898 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2899 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2900 {
2901 h->esym.asym.sc = scData;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value = 0;
2904 }
2905 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2906 {
2907 h->esym.asym.sc = scAbs;
2908 h->esym.asym.st = stLabel;
2909 h->esym.asym.value =
2910 mips_elf_hash_table (einfo->info)->procedure_count;
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 /* A comparison routine used to sort .gptab entries. */
3019
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 \f
3029 /* Functions to manage the got entry hash table. */
3030
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3042 }
3043
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056 }
3057
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097 }
3098
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106 }
3107
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116 }
3117 \f
3118 /* Create and return a new mips_got_info structure. */
3119
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140 }
3141
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157 }
3158
3159 /* Record that ABFD should use output GOT G. */
3160
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178 }
3179
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209 }
3210
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226 }
3227
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246 }
3247
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255 {
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h != NULL
3261 && h->dynindx != -1
3262 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3263 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3264 indx = h->dynindx;
3265
3266 if ((bfd_link_dll (info) || indx != 0)
3267 && (h == NULL
3268 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3269 || h->root.type != bfd_link_hash_undefweak))
3270 need_relocs = TRUE;
3271
3272 if (!need_relocs)
3273 return 0;
3274
3275 switch (tls_type)
3276 {
3277 case GOT_TLS_GD:
3278 return indx != 0 ? 2 : 1;
3279
3280 case GOT_TLS_IE:
3281 return 1;
3282
3283 case GOT_TLS_LDM:
3284 return bfd_link_dll (info) ? 1 : 0;
3285
3286 default:
3287 return 0;
3288 }
3289 }
3290
3291 /* Add the number of GOT entries and TLS relocations required by ENTRY
3292 to G. */
3293
3294 static void
3295 mips_elf_count_got_entry (struct bfd_link_info *info,
3296 struct mips_got_info *g,
3297 struct mips_got_entry *entry)
3298 {
3299 if (entry->tls_type)
3300 {
3301 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3302 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3303 entry->symndx < 0
3304 ? &entry->d.h->root : NULL);
3305 }
3306 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3307 g->local_gotno += 1;
3308 else
3309 g->global_gotno += 1;
3310 }
3311
3312 /* Output a simple dynamic relocation into SRELOC. */
3313
3314 static void
3315 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3316 asection *sreloc,
3317 unsigned long reloc_index,
3318 unsigned long indx,
3319 int r_type,
3320 bfd_vma offset)
3321 {
3322 Elf_Internal_Rela rel[3];
3323
3324 memset (rel, 0, sizeof (rel));
3325
3326 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3327 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3328
3329 if (ABI_64_P (output_bfd))
3330 {
3331 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3332 (output_bfd, &rel[0],
3333 (sreloc->contents
3334 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3335 }
3336 else
3337 bfd_elf32_swap_reloc_out
3338 (output_bfd, &rel[0],
3339 (sreloc->contents
3340 + reloc_index * sizeof (Elf32_External_Rel)));
3341 }
3342
3343 /* Initialize a set of TLS GOT entries for one symbol. */
3344
3345 static void
3346 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3347 struct mips_got_entry *entry,
3348 struct mips_elf_link_hash_entry *h,
3349 bfd_vma value)
3350 {
3351 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3352 struct mips_elf_link_hash_table *htab;
3353 int indx;
3354 asection *sreloc, *sgot;
3355 bfd_vma got_offset, got_offset2;
3356 bfd_boolean need_relocs = FALSE;
3357
3358 htab = mips_elf_hash_table (info);
3359 if (htab == NULL)
3360 return;
3361
3362 sgot = htab->root.sgot;
3363
3364 indx = 0;
3365 if (h != NULL
3366 && h->root.dynindx != -1
3367 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3368 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3369 indx = h->root.dynindx;
3370
3371 if (entry->tls_initialized)
3372 return;
3373
3374 if ((bfd_link_dll (info) || indx != 0)
3375 && (h == NULL
3376 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3377 || h->root.type != bfd_link_hash_undefweak))
3378 need_relocs = TRUE;
3379
3380 /* MINUS_ONE means the symbol is not defined in this object. It may not
3381 be defined at all; assume that the value doesn't matter in that
3382 case. Otherwise complain if we would use the value. */
3383 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3384 || h->root.root.type == bfd_link_hash_undefweak);
3385
3386 /* Emit necessary relocations. */
3387 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3388 got_offset = entry->gotidx;
3389
3390 switch (entry->tls_type)
3391 {
3392 case GOT_TLS_GD:
3393 /* General Dynamic. */
3394 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3395
3396 if (need_relocs)
3397 {
3398 mips_elf_output_dynamic_relocation
3399 (abfd, sreloc, sreloc->reloc_count++, indx,
3400 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3401 sgot->output_offset + sgot->output_section->vma + got_offset);
3402
3403 if (indx)
3404 mips_elf_output_dynamic_relocation
3405 (abfd, sreloc, sreloc->reloc_count++, indx,
3406 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3407 sgot->output_offset + sgot->output_section->vma + got_offset2);
3408 else
3409 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3410 sgot->contents + got_offset2);
3411 }
3412 else
3413 {
3414 MIPS_ELF_PUT_WORD (abfd, 1,
3415 sgot->contents + got_offset);
3416 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3417 sgot->contents + got_offset2);
3418 }
3419 break;
3420
3421 case GOT_TLS_IE:
3422 /* Initial Exec model. */
3423 if (need_relocs)
3424 {
3425 if (indx == 0)
3426 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3427 sgot->contents + got_offset);
3428 else
3429 MIPS_ELF_PUT_WORD (abfd, 0,
3430 sgot->contents + got_offset);
3431
3432 mips_elf_output_dynamic_relocation
3433 (abfd, sreloc, sreloc->reloc_count++, indx,
3434 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3435 sgot->output_offset + sgot->output_section->vma + got_offset);
3436 }
3437 else
3438 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3439 sgot->contents + got_offset);
3440 break;
3441
3442 case GOT_TLS_LDM:
3443 /* The initial offset is zero, and the LD offsets will include the
3444 bias by DTP_OFFSET. */
3445 MIPS_ELF_PUT_WORD (abfd, 0,
3446 sgot->contents + got_offset
3447 + MIPS_ELF_GOT_SIZE (abfd));
3448
3449 if (!bfd_link_dll (info))
3450 MIPS_ELF_PUT_WORD (abfd, 1,
3451 sgot->contents + got_offset);
3452 else
3453 mips_elf_output_dynamic_relocation
3454 (abfd, sreloc, sreloc->reloc_count++, indx,
3455 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3456 sgot->output_offset + sgot->output_section->vma + got_offset);
3457 break;
3458
3459 default:
3460 abort ();
3461 }
3462
3463 entry->tls_initialized = TRUE;
3464 }
3465
3466 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3467 for global symbol H. .got.plt comes before the GOT, so the offset
3468 will be negative. */
3469
3470 static bfd_vma
3471 mips_elf_gotplt_index (struct bfd_link_info *info,
3472 struct elf_link_hash_entry *h)
3473 {
3474 bfd_vma got_address, got_value;
3475 struct mips_elf_link_hash_table *htab;
3476
3477 htab = mips_elf_hash_table (info);
3478 BFD_ASSERT (htab != NULL);
3479
3480 BFD_ASSERT (h->plt.plist != NULL);
3481 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3482
3483 /* Calculate the address of the associated .got.plt entry. */
3484 got_address = (htab->root.sgotplt->output_section->vma
3485 + htab->root.sgotplt->output_offset
3486 + (h->plt.plist->gotplt_index
3487 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3488
3489 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3490 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3491 + htab->root.hgot->root.u.def.section->output_offset
3492 + htab->root.hgot->root.u.def.value);
3493
3494 return got_address - got_value;
3495 }
3496
3497 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3498 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3499 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3500 offset can be found. */
3501
3502 static bfd_vma
3503 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3504 bfd_vma value, unsigned long r_symndx,
3505 struct mips_elf_link_hash_entry *h, int r_type)
3506 {
3507 struct mips_elf_link_hash_table *htab;
3508 struct mips_got_entry *entry;
3509
3510 htab = mips_elf_hash_table (info);
3511 BFD_ASSERT (htab != NULL);
3512
3513 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3514 r_symndx, h, r_type);
3515 if (!entry)
3516 return MINUS_ONE;
3517
3518 if (entry->tls_type)
3519 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3520 return entry->gotidx;
3521 }
3522
3523 /* Return the GOT index of global symbol H in the primary GOT. */
3524
3525 static bfd_vma
3526 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3527 struct elf_link_hash_entry *h)
3528 {
3529 struct mips_elf_link_hash_table *htab;
3530 long global_got_dynindx;
3531 struct mips_got_info *g;
3532 bfd_vma got_index;
3533
3534 htab = mips_elf_hash_table (info);
3535 BFD_ASSERT (htab != NULL);
3536
3537 global_got_dynindx = 0;
3538 if (htab->global_gotsym != NULL)
3539 global_got_dynindx = htab->global_gotsym->dynindx;
3540
3541 /* Once we determine the global GOT entry with the lowest dynamic
3542 symbol table index, we must put all dynamic symbols with greater
3543 indices into the primary GOT. That makes it easy to calculate the
3544 GOT offset. */
3545 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3546 g = mips_elf_bfd_got (obfd, FALSE);
3547 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3548 * MIPS_ELF_GOT_SIZE (obfd));
3549 BFD_ASSERT (got_index < htab->root.sgot->size);
3550
3551 return got_index;
3552 }
3553
3554 /* Return the GOT index for the global symbol indicated by H, which is
3555 referenced by a relocation of type R_TYPE in IBFD. */
3556
3557 static bfd_vma
3558 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3559 struct elf_link_hash_entry *h, int r_type)
3560 {
3561 struct mips_elf_link_hash_table *htab;
3562 struct mips_got_info *g;
3563 struct mips_got_entry lookup, *entry;
3564 bfd_vma gotidx;
3565
3566 htab = mips_elf_hash_table (info);
3567 BFD_ASSERT (htab != NULL);
3568
3569 g = mips_elf_bfd_got (ibfd, FALSE);
3570 BFD_ASSERT (g);
3571
3572 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3573 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3574 return mips_elf_primary_global_got_index (obfd, info, h);
3575
3576 lookup.abfd = ibfd;
3577 lookup.symndx = -1;
3578 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3579 entry = htab_find (g->got_entries, &lookup);
3580 BFD_ASSERT (entry);
3581
3582 gotidx = entry->gotidx;
3583 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3584
3585 if (lookup.tls_type)
3586 {
3587 bfd_vma value = MINUS_ONE;
3588
3589 if ((h->root.type == bfd_link_hash_defined
3590 || h->root.type == bfd_link_hash_defweak)
3591 && h->root.u.def.section->output_section)
3592 value = (h->root.u.def.value
3593 + h->root.u.def.section->output_offset
3594 + h->root.u.def.section->output_section->vma);
3595
3596 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3597 }
3598 return gotidx;
3599 }
3600
3601 /* Find a GOT page entry that points to within 32KB of VALUE. These
3602 entries are supposed to be placed at small offsets in the GOT, i.e.,
3603 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3604 entry could be created. If OFFSETP is nonnull, use it to return the
3605 offset of the GOT entry from VALUE. */
3606
3607 static bfd_vma
3608 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3609 bfd_vma value, bfd_vma *offsetp)
3610 {
3611 bfd_vma page, got_index;
3612 struct mips_got_entry *entry;
3613
3614 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3615 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3616 NULL, R_MIPS_GOT_PAGE);
3617
3618 if (!entry)
3619 return MINUS_ONE;
3620
3621 got_index = entry->gotidx;
3622
3623 if (offsetp)
3624 *offsetp = value - entry->d.address;
3625
3626 return got_index;
3627 }
3628
3629 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3630 EXTERNAL is true if the relocation was originally against a global
3631 symbol that binds locally. */
3632
3633 static bfd_vma
3634 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3635 bfd_vma value, bfd_boolean external)
3636 {
3637 struct mips_got_entry *entry;
3638
3639 /* GOT16 relocations against local symbols are followed by a LO16
3640 relocation; those against global symbols are not. Thus if the
3641 symbol was originally local, the GOT16 relocation should load the
3642 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3643 if (! external)
3644 value = mips_elf_high (value) << 16;
3645
3646 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3647 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3648 same in all cases. */
3649 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3650 NULL, R_MIPS_GOT16);
3651 if (entry)
3652 return entry->gotidx;
3653 else
3654 return MINUS_ONE;
3655 }
3656
3657 /* Returns the offset for the entry at the INDEXth position
3658 in the GOT. */
3659
3660 static bfd_vma
3661 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3662 bfd *input_bfd, bfd_vma got_index)
3663 {
3664 struct mips_elf_link_hash_table *htab;
3665 asection *sgot;
3666 bfd_vma gp;
3667
3668 htab = mips_elf_hash_table (info);
3669 BFD_ASSERT (htab != NULL);
3670
3671 sgot = htab->root.sgot;
3672 gp = _bfd_get_gp_value (output_bfd)
3673 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3674
3675 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3676 }
3677
3678 /* Create and return a local GOT entry for VALUE, which was calculated
3679 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3680 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3681 instead. */
3682
3683 static struct mips_got_entry *
3684 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3685 bfd *ibfd, bfd_vma value,
3686 unsigned long r_symndx,
3687 struct mips_elf_link_hash_entry *h,
3688 int r_type)
3689 {
3690 struct mips_got_entry lookup, *entry;
3691 void **loc;
3692 struct mips_got_info *g;
3693 struct mips_elf_link_hash_table *htab;
3694 bfd_vma gotidx;
3695
3696 htab = mips_elf_hash_table (info);
3697 BFD_ASSERT (htab != NULL);
3698
3699 g = mips_elf_bfd_got (ibfd, FALSE);
3700 if (g == NULL)
3701 {
3702 g = mips_elf_bfd_got (abfd, FALSE);
3703 BFD_ASSERT (g != NULL);
3704 }
3705
3706 /* This function shouldn't be called for symbols that live in the global
3707 area of the GOT. */
3708 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3709
3710 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3711 if (lookup.tls_type)
3712 {
3713 lookup.abfd = ibfd;
3714 if (tls_ldm_reloc_p (r_type))
3715 {
3716 lookup.symndx = 0;
3717 lookup.d.addend = 0;
3718 }
3719 else if (h == NULL)
3720 {
3721 lookup.symndx = r_symndx;
3722 lookup.d.addend = 0;
3723 }
3724 else
3725 {
3726 lookup.symndx = -1;
3727 lookup.d.h = h;
3728 }
3729
3730 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3731 BFD_ASSERT (entry);
3732
3733 gotidx = entry->gotidx;
3734 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3735
3736 return entry;
3737 }
3738
3739 lookup.abfd = NULL;
3740 lookup.symndx = -1;
3741 lookup.d.address = value;
3742 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3743 if (!loc)
3744 return NULL;
3745
3746 entry = (struct mips_got_entry *) *loc;
3747 if (entry)
3748 return entry;
3749
3750 if (g->assigned_low_gotno > g->assigned_high_gotno)
3751 {
3752 /* We didn't allocate enough space in the GOT. */
3753 _bfd_error_handler
3754 (_("not enough GOT space for local GOT entries"));
3755 bfd_set_error (bfd_error_bad_value);
3756 return NULL;
3757 }
3758
3759 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3760 if (!entry)
3761 return NULL;
3762
3763 if (got16_reloc_p (r_type)
3764 || call16_reloc_p (r_type)
3765 || got_page_reloc_p (r_type)
3766 || got_disp_reloc_p (r_type))
3767 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3768 else
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3770
3771 *entry = lookup;
3772 *loc = entry;
3773
3774 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3775
3776 /* These GOT entries need a dynamic relocation on VxWorks. */
3777 if (htab->is_vxworks)
3778 {
3779 Elf_Internal_Rela outrel;
3780 asection *s;
3781 bfd_byte *rloc;
3782 bfd_vma got_address;
3783
3784 s = mips_elf_rel_dyn_section (info, FALSE);
3785 got_address = (htab->root.sgot->output_section->vma
3786 + htab->root.sgot->output_offset
3787 + entry->gotidx);
3788
3789 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3790 outrel.r_offset = got_address;
3791 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3792 outrel.r_addend = value;
3793 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3794 }
3795
3796 return entry;
3797 }
3798
3799 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3800 The number might be exact or a worst-case estimate, depending on how
3801 much information is available to elf_backend_omit_section_dynsym at
3802 the current linking stage. */
3803
3804 static bfd_size_type
3805 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3806 {
3807 bfd_size_type count;
3808
3809 count = 0;
3810 if (bfd_link_pic (info)
3811 || elf_hash_table (info)->is_relocatable_executable)
3812 {
3813 asection *p;
3814 const struct elf_backend_data *bed;
3815
3816 bed = get_elf_backend_data (output_bfd);
3817 for (p = output_bfd->sections; p ; p = p->next)
3818 if ((p->flags & SEC_EXCLUDE) == 0
3819 && (p->flags & SEC_ALLOC) != 0
3820 && elf_hash_table (info)->dynamic_relocs
3821 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3822 ++count;
3823 }
3824 return count;
3825 }
3826
3827 /* Sort the dynamic symbol table so that symbols that need GOT entries
3828 appear towards the end. */
3829
3830 static bfd_boolean
3831 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3832 {
3833 struct mips_elf_link_hash_table *htab;
3834 struct mips_elf_hash_sort_data hsd;
3835 struct mips_got_info *g;
3836
3837 htab = mips_elf_hash_table (info);
3838 BFD_ASSERT (htab != NULL);
3839
3840 if (htab->root.dynsymcount == 0)
3841 return TRUE;
3842
3843 g = htab->got_info;
3844 if (g == NULL)
3845 return TRUE;
3846
3847 hsd.low = NULL;
3848 hsd.max_unref_got_dynindx
3849 = hsd.min_got_dynindx
3850 = (htab->root.dynsymcount - g->reloc_only_gotno);
3851 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3852 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3853 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3854 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3855 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3856
3857 /* There should have been enough room in the symbol table to
3858 accommodate both the GOT and non-GOT symbols. */
3859 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3860 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3861 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3862 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3863
3864 /* Now we know which dynamic symbol has the lowest dynamic symbol
3865 table index in the GOT. */
3866 htab->global_gotsym = hsd.low;
3867
3868 return TRUE;
3869 }
3870
3871 /* If H needs a GOT entry, assign it the highest available dynamic
3872 index. Otherwise, assign it the lowest available dynamic
3873 index. */
3874
3875 static bfd_boolean
3876 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3877 {
3878 struct mips_elf_hash_sort_data *hsd = data;
3879
3880 /* Symbols without dynamic symbol table entries aren't interesting
3881 at all. */
3882 if (h->root.dynindx == -1)
3883 return TRUE;
3884
3885 switch (h->global_got_area)
3886 {
3887 case GGA_NONE:
3888 if (h->root.forced_local)
3889 h->root.dynindx = hsd->max_local_dynindx++;
3890 else
3891 h->root.dynindx = hsd->max_non_got_dynindx++;
3892 break;
3893
3894 case GGA_NORMAL:
3895 h->root.dynindx = --hsd->min_got_dynindx;
3896 hsd->low = (struct elf_link_hash_entry *) h;
3897 break;
3898
3899 case GGA_RELOC_ONLY:
3900 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3901 hsd->low = (struct elf_link_hash_entry *) h;
3902 h->root.dynindx = hsd->max_unref_got_dynindx++;
3903 break;
3904 }
3905
3906 return TRUE;
3907 }
3908
3909 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3910 (which is owned by the caller and shouldn't be added to the
3911 hash table directly). */
3912
3913 static bfd_boolean
3914 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3915 struct mips_got_entry *lookup)
3916 {
3917 struct mips_elf_link_hash_table *htab;
3918 struct mips_got_entry *entry;
3919 struct mips_got_info *g;
3920 void **loc, **bfd_loc;
3921
3922 /* Make sure there's a slot for this entry in the master GOT. */
3923 htab = mips_elf_hash_table (info);
3924 g = htab->got_info;
3925 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3926 if (!loc)
3927 return FALSE;
3928
3929 /* Populate the entry if it isn't already. */
3930 entry = (struct mips_got_entry *) *loc;
3931 if (!entry)
3932 {
3933 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3934 if (!entry)
3935 return FALSE;
3936
3937 lookup->tls_initialized = FALSE;
3938 lookup->gotidx = -1;
3939 *entry = *lookup;
3940 *loc = entry;
3941 }
3942
3943 /* Reuse the same GOT entry for the BFD's GOT. */
3944 g = mips_elf_bfd_got (abfd, TRUE);
3945 if (!g)
3946 return FALSE;
3947
3948 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3949 if (!bfd_loc)
3950 return FALSE;
3951
3952 if (!*bfd_loc)
3953 *bfd_loc = entry;
3954 return TRUE;
3955 }
3956
3957 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3958 entry for it. FOR_CALL is true if the caller is only interested in
3959 using the GOT entry for calls. */
3960
3961 static bfd_boolean
3962 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3963 bfd *abfd, struct bfd_link_info *info,
3964 bfd_boolean for_call, int r_type)
3965 {
3966 struct mips_elf_link_hash_table *htab;
3967 struct mips_elf_link_hash_entry *hmips;
3968 struct mips_got_entry entry;
3969 unsigned char tls_type;
3970
3971 htab = mips_elf_hash_table (info);
3972 BFD_ASSERT (htab != NULL);
3973
3974 hmips = (struct mips_elf_link_hash_entry *) h;
3975 if (!for_call)
3976 hmips->got_only_for_calls = FALSE;
3977
3978 /* A global symbol in the GOT must also be in the dynamic symbol
3979 table. */
3980 if (h->dynindx == -1)
3981 {
3982 switch (ELF_ST_VISIBILITY (h->other))
3983 {
3984 case STV_INTERNAL:
3985 case STV_HIDDEN:
3986 _bfd_mips_elf_hide_symbol (info, h, TRUE);
3987 break;
3988 }
3989 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3990 return FALSE;
3991 }
3992
3993 tls_type = mips_elf_reloc_tls_type (r_type);
3994 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3995 hmips->global_got_area = GGA_NORMAL;
3996
3997 entry.abfd = abfd;
3998 entry.symndx = -1;
3999 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4000 entry.tls_type = tls_type;
4001 return mips_elf_record_got_entry (info, abfd, &entry);
4002 }
4003
4004 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4005 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4006
4007 static bfd_boolean
4008 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4009 struct bfd_link_info *info, int r_type)
4010 {
4011 struct mips_elf_link_hash_table *htab;
4012 struct mips_got_info *g;
4013 struct mips_got_entry entry;
4014
4015 htab = mips_elf_hash_table (info);
4016 BFD_ASSERT (htab != NULL);
4017
4018 g = htab->got_info;
4019 BFD_ASSERT (g != NULL);
4020
4021 entry.abfd = abfd;
4022 entry.symndx = symndx;
4023 entry.d.addend = addend;
4024 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4025 return mips_elf_record_got_entry (info, abfd, &entry);
4026 }
4027
4028 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4029 H is the symbol's hash table entry, or null if SYMNDX is local
4030 to ABFD. */
4031
4032 static bfd_boolean
4033 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4034 long symndx, struct elf_link_hash_entry *h,
4035 bfd_signed_vma addend)
4036 {
4037 struct mips_elf_link_hash_table *htab;
4038 struct mips_got_info *g1, *g2;
4039 struct mips_got_page_ref lookup, *entry;
4040 void **loc, **bfd_loc;
4041
4042 htab = mips_elf_hash_table (info);
4043 BFD_ASSERT (htab != NULL);
4044
4045 g1 = htab->got_info;
4046 BFD_ASSERT (g1 != NULL);
4047
4048 if (h)
4049 {
4050 lookup.symndx = -1;
4051 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4052 }
4053 else
4054 {
4055 lookup.symndx = symndx;
4056 lookup.u.abfd = abfd;
4057 }
4058 lookup.addend = addend;
4059 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4060 if (loc == NULL)
4061 return FALSE;
4062
4063 entry = (struct mips_got_page_ref *) *loc;
4064 if (!entry)
4065 {
4066 entry = bfd_alloc (abfd, sizeof (*entry));
4067 if (!entry)
4068 return FALSE;
4069
4070 *entry = lookup;
4071 *loc = entry;
4072 }
4073
4074 /* Add the same entry to the BFD's GOT. */
4075 g2 = mips_elf_bfd_got (abfd, TRUE);
4076 if (!g2)
4077 return FALSE;
4078
4079 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4080 if (!bfd_loc)
4081 return FALSE;
4082
4083 if (!*bfd_loc)
4084 *bfd_loc = entry;
4085
4086 return TRUE;
4087 }
4088
4089 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4090
4091 static void
4092 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4093 unsigned int n)
4094 {
4095 asection *s;
4096 struct mips_elf_link_hash_table *htab;
4097
4098 htab = mips_elf_hash_table (info);
4099 BFD_ASSERT (htab != NULL);
4100
4101 s = mips_elf_rel_dyn_section (info, FALSE);
4102 BFD_ASSERT (s != NULL);
4103
4104 if (htab->is_vxworks)
4105 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4106 else
4107 {
4108 if (s->size == 0)
4109 {
4110 /* Make room for a null element. */
4111 s->size += MIPS_ELF_REL_SIZE (abfd);
4112 ++s->reloc_count;
4113 }
4114 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4115 }
4116 }
4117 \f
4118 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4119 mips_elf_traverse_got_arg structure. Count the number of GOT
4120 entries and TLS relocs. Set DATA->value to true if we need
4121 to resolve indirect or warning symbols and then recreate the GOT. */
4122
4123 static int
4124 mips_elf_check_recreate_got (void **entryp, void *data)
4125 {
4126 struct mips_got_entry *entry;
4127 struct mips_elf_traverse_got_arg *arg;
4128
4129 entry = (struct mips_got_entry *) *entryp;
4130 arg = (struct mips_elf_traverse_got_arg *) data;
4131 if (entry->abfd != NULL && entry->symndx == -1)
4132 {
4133 struct mips_elf_link_hash_entry *h;
4134
4135 h = entry->d.h;
4136 if (h->root.root.type == bfd_link_hash_indirect
4137 || h->root.root.type == bfd_link_hash_warning)
4138 {
4139 arg->value = TRUE;
4140 return 0;
4141 }
4142 }
4143 mips_elf_count_got_entry (arg->info, arg->g, entry);
4144 return 1;
4145 }
4146
4147 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4148 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4149 converting entries for indirect and warning symbols into entries
4150 for the target symbol. Set DATA->g to null on error. */
4151
4152 static int
4153 mips_elf_recreate_got (void **entryp, void *data)
4154 {
4155 struct mips_got_entry new_entry, *entry;
4156 struct mips_elf_traverse_got_arg *arg;
4157 void **slot;
4158
4159 entry = (struct mips_got_entry *) *entryp;
4160 arg = (struct mips_elf_traverse_got_arg *) data;
4161 if (entry->abfd != NULL
4162 && entry->symndx == -1
4163 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4164 || entry->d.h->root.root.type == bfd_link_hash_warning))
4165 {
4166 struct mips_elf_link_hash_entry *h;
4167
4168 new_entry = *entry;
4169 entry = &new_entry;
4170 h = entry->d.h;
4171 do
4172 {
4173 BFD_ASSERT (h->global_got_area == GGA_NONE);
4174 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4175 }
4176 while (h->root.root.type == bfd_link_hash_indirect
4177 || h->root.root.type == bfd_link_hash_warning);
4178 entry->d.h = h;
4179 }
4180 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4181 if (slot == NULL)
4182 {
4183 arg->g = NULL;
4184 return 0;
4185 }
4186 if (*slot == NULL)
4187 {
4188 if (entry == &new_entry)
4189 {
4190 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4191 if (!entry)
4192 {
4193 arg->g = NULL;
4194 return 0;
4195 }
4196 *entry = new_entry;
4197 }
4198 *slot = entry;
4199 mips_elf_count_got_entry (arg->info, arg->g, entry);
4200 }
4201 return 1;
4202 }
4203
4204 /* Return the maximum number of GOT page entries required for RANGE. */
4205
4206 static bfd_vma
4207 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4208 {
4209 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4210 }
4211
4212 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4213
4214 static bfd_boolean
4215 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4216 asection *sec, bfd_signed_vma addend)
4217 {
4218 struct mips_got_info *g = arg->g;
4219 struct mips_got_page_entry lookup, *entry;
4220 struct mips_got_page_range **range_ptr, *range;
4221 bfd_vma old_pages, new_pages;
4222 void **loc;
4223
4224 /* Find the mips_got_page_entry hash table entry for this section. */
4225 lookup.sec = sec;
4226 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4227 if (loc == NULL)
4228 return FALSE;
4229
4230 /* Create a mips_got_page_entry if this is the first time we've
4231 seen the section. */
4232 entry = (struct mips_got_page_entry *) *loc;
4233 if (!entry)
4234 {
4235 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4236 if (!entry)
4237 return FALSE;
4238
4239 entry->sec = sec;
4240 *loc = entry;
4241 }
4242
4243 /* Skip over ranges whose maximum extent cannot share a page entry
4244 with ADDEND. */
4245 range_ptr = &entry->ranges;
4246 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4247 range_ptr = &(*range_ptr)->next;
4248
4249 /* If we scanned to the end of the list, or found a range whose
4250 minimum extent cannot share a page entry with ADDEND, create
4251 a new singleton range. */
4252 range = *range_ptr;
4253 if (!range || addend < range->min_addend - 0xffff)
4254 {
4255 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4256 if (!range)
4257 return FALSE;
4258
4259 range->next = *range_ptr;
4260 range->min_addend = addend;
4261 range->max_addend = addend;
4262
4263 *range_ptr = range;
4264 entry->num_pages++;
4265 g->page_gotno++;
4266 return TRUE;
4267 }
4268
4269 /* Remember how many pages the old range contributed. */
4270 old_pages = mips_elf_pages_for_range (range);
4271
4272 /* Update the ranges. */
4273 if (addend < range->min_addend)
4274 range->min_addend = addend;
4275 else if (addend > range->max_addend)
4276 {
4277 if (range->next && addend >= range->next->min_addend - 0xffff)
4278 {
4279 old_pages += mips_elf_pages_for_range (range->next);
4280 range->max_addend = range->next->max_addend;
4281 range->next = range->next->next;
4282 }
4283 else
4284 range->max_addend = addend;
4285 }
4286
4287 /* Record any change in the total estimate. */
4288 new_pages = mips_elf_pages_for_range (range);
4289 if (old_pages != new_pages)
4290 {
4291 entry->num_pages += new_pages - old_pages;
4292 g->page_gotno += new_pages - old_pages;
4293 }
4294
4295 return TRUE;
4296 }
4297
4298 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4299 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4300 whether the page reference described by *REFP needs a GOT page entry,
4301 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4302
4303 static bfd_boolean
4304 mips_elf_resolve_got_page_ref (void **refp, void *data)
4305 {
4306 struct mips_got_page_ref *ref;
4307 struct mips_elf_traverse_got_arg *arg;
4308 struct mips_elf_link_hash_table *htab;
4309 asection *sec;
4310 bfd_vma addend;
4311
4312 ref = (struct mips_got_page_ref *) *refp;
4313 arg = (struct mips_elf_traverse_got_arg *) data;
4314 htab = mips_elf_hash_table (arg->info);
4315
4316 if (ref->symndx < 0)
4317 {
4318 struct mips_elf_link_hash_entry *h;
4319
4320 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4321 h = ref->u.h;
4322 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4323 return 1;
4324
4325 /* Ignore undefined symbols; we'll issue an error later if
4326 appropriate. */
4327 if (!((h->root.root.type == bfd_link_hash_defined
4328 || h->root.root.type == bfd_link_hash_defweak)
4329 && h->root.root.u.def.section))
4330 return 1;
4331
4332 sec = h->root.root.u.def.section;
4333 addend = h->root.root.u.def.value + ref->addend;
4334 }
4335 else
4336 {
4337 Elf_Internal_Sym *isym;
4338
4339 /* Read in the symbol. */
4340 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4341 ref->symndx);
4342 if (isym == NULL)
4343 {
4344 arg->g = NULL;
4345 return 0;
4346 }
4347
4348 /* Get the associated input section. */
4349 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4350 if (sec == NULL)
4351 {
4352 arg->g = NULL;
4353 return 0;
4354 }
4355
4356 /* If this is a mergable section, work out the section and offset
4357 of the merged data. For section symbols, the addend specifies
4358 of the offset _of_ the first byte in the data, otherwise it
4359 specifies the offset _from_ the first byte. */
4360 if (sec->flags & SEC_MERGE)
4361 {
4362 void *secinfo;
4363
4364 secinfo = elf_section_data (sec)->sec_info;
4365 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4366 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4367 isym->st_value + ref->addend);
4368 else
4369 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4370 isym->st_value) + ref->addend;
4371 }
4372 else
4373 addend = isym->st_value + ref->addend;
4374 }
4375 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4376 {
4377 arg->g = NULL;
4378 return 0;
4379 }
4380 return 1;
4381 }
4382
4383 /* If any entries in G->got_entries are for indirect or warning symbols,
4384 replace them with entries for the target symbol. Convert g->got_page_refs
4385 into got_page_entry structures and estimate the number of page entries
4386 that they require. */
4387
4388 static bfd_boolean
4389 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4390 struct mips_got_info *g)
4391 {
4392 struct mips_elf_traverse_got_arg tga;
4393 struct mips_got_info oldg;
4394
4395 oldg = *g;
4396
4397 tga.info = info;
4398 tga.g = g;
4399 tga.value = FALSE;
4400 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4401 if (tga.value)
4402 {
4403 *g = oldg;
4404 g->got_entries = htab_create (htab_size (oldg.got_entries),
4405 mips_elf_got_entry_hash,
4406 mips_elf_got_entry_eq, NULL);
4407 if (!g->got_entries)
4408 return FALSE;
4409
4410 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4411 if (!tga.g)
4412 return FALSE;
4413
4414 htab_delete (oldg.got_entries);
4415 }
4416
4417 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4418 mips_got_page_entry_eq, NULL);
4419 if (g->got_page_entries == NULL)
4420 return FALSE;
4421
4422 tga.info = info;
4423 tga.g = g;
4424 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4425
4426 return TRUE;
4427 }
4428
4429 /* Return true if a GOT entry for H should live in the local rather than
4430 global GOT area. */
4431
4432 static bfd_boolean
4433 mips_use_local_got_p (struct bfd_link_info *info,
4434 struct mips_elf_link_hash_entry *h)
4435 {
4436 /* Symbols that aren't in the dynamic symbol table must live in the
4437 local GOT. This includes symbols that are completely undefined
4438 and which therefore don't bind locally. We'll report undefined
4439 symbols later if appropriate. */
4440 if (h->root.dynindx == -1)
4441 return TRUE;
4442
4443 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4444 to the local GOT, as they would be implicitly relocated by the
4445 base address by the dynamic loader. */
4446 if (bfd_is_abs_symbol (&h->root.root))
4447 return FALSE;
4448
4449 /* Symbols that bind locally can (and in the case of forced-local
4450 symbols, must) live in the local GOT. */
4451 if (h->got_only_for_calls
4452 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4453 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4454 return TRUE;
4455
4456 /* If this is an executable that must provide a definition of the symbol,
4457 either though PLTs or copy relocations, then that address should go in
4458 the local rather than global GOT. */
4459 if (bfd_link_executable (info) && h->has_static_relocs)
4460 return TRUE;
4461
4462 return FALSE;
4463 }
4464
4465 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4466 link_info structure. Decide whether the hash entry needs an entry in
4467 the global part of the primary GOT, setting global_got_area accordingly.
4468 Count the number of global symbols that are in the primary GOT only
4469 because they have relocations against them (reloc_only_gotno). */
4470
4471 static int
4472 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4473 {
4474 struct bfd_link_info *info;
4475 struct mips_elf_link_hash_table *htab;
4476 struct mips_got_info *g;
4477
4478 info = (struct bfd_link_info *) data;
4479 htab = mips_elf_hash_table (info);
4480 g = htab->got_info;
4481 if (h->global_got_area != GGA_NONE)
4482 {
4483 /* Make a final decision about whether the symbol belongs in the
4484 local or global GOT. */
4485 if (mips_use_local_got_p (info, h))
4486 /* The symbol belongs in the local GOT. We no longer need this
4487 entry if it was only used for relocations; those relocations
4488 will be against the null or section symbol instead of H. */
4489 h->global_got_area = GGA_NONE;
4490 else if (htab->is_vxworks
4491 && h->got_only_for_calls
4492 && h->root.plt.plist->mips_offset != MINUS_ONE)
4493 /* On VxWorks, calls can refer directly to the .got.plt entry;
4494 they don't need entries in the regular GOT. .got.plt entries
4495 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4496 h->global_got_area = GGA_NONE;
4497 else if (h->global_got_area == GGA_RELOC_ONLY)
4498 {
4499 g->reloc_only_gotno++;
4500 g->global_gotno++;
4501 }
4502 }
4503 return 1;
4504 }
4505 \f
4506 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4507 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4508
4509 static int
4510 mips_elf_add_got_entry (void **entryp, void *data)
4511 {
4512 struct mips_got_entry *entry;
4513 struct mips_elf_traverse_got_arg *arg;
4514 void **slot;
4515
4516 entry = (struct mips_got_entry *) *entryp;
4517 arg = (struct mips_elf_traverse_got_arg *) data;
4518 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4519 if (!slot)
4520 {
4521 arg->g = NULL;
4522 return 0;
4523 }
4524 if (!*slot)
4525 {
4526 *slot = entry;
4527 mips_elf_count_got_entry (arg->info, arg->g, entry);
4528 }
4529 return 1;
4530 }
4531
4532 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4533 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4534
4535 static int
4536 mips_elf_add_got_page_entry (void **entryp, void *data)
4537 {
4538 struct mips_got_page_entry *entry;
4539 struct mips_elf_traverse_got_arg *arg;
4540 void **slot;
4541
4542 entry = (struct mips_got_page_entry *) *entryp;
4543 arg = (struct mips_elf_traverse_got_arg *) data;
4544 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4545 if (!slot)
4546 {
4547 arg->g = NULL;
4548 return 0;
4549 }
4550 if (!*slot)
4551 {
4552 *slot = entry;
4553 arg->g->page_gotno += entry->num_pages;
4554 }
4555 return 1;
4556 }
4557
4558 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4559 this would lead to overflow, 1 if they were merged successfully,
4560 and 0 if a merge failed due to lack of memory. (These values are chosen
4561 so that nonnegative return values can be returned by a htab_traverse
4562 callback.) */
4563
4564 static int
4565 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4566 struct mips_got_info *to,
4567 struct mips_elf_got_per_bfd_arg *arg)
4568 {
4569 struct mips_elf_traverse_got_arg tga;
4570 unsigned int estimate;
4571
4572 /* Work out how many page entries we would need for the combined GOT. */
4573 estimate = arg->max_pages;
4574 if (estimate >= from->page_gotno + to->page_gotno)
4575 estimate = from->page_gotno + to->page_gotno;
4576
4577 /* And conservatively estimate how many local and TLS entries
4578 would be needed. */
4579 estimate += from->local_gotno + to->local_gotno;
4580 estimate += from->tls_gotno + to->tls_gotno;
4581
4582 /* If we're merging with the primary got, any TLS relocations will
4583 come after the full set of global entries. Otherwise estimate those
4584 conservatively as well. */
4585 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4586 estimate += arg->global_count;
4587 else
4588 estimate += from->global_gotno + to->global_gotno;
4589
4590 /* Bail out if the combined GOT might be too big. */
4591 if (estimate > arg->max_count)
4592 return -1;
4593
4594 /* Transfer the bfd's got information from FROM to TO. */
4595 tga.info = arg->info;
4596 tga.g = to;
4597 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4598 if (!tga.g)
4599 return 0;
4600
4601 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4602 if (!tga.g)
4603 return 0;
4604
4605 mips_elf_replace_bfd_got (abfd, to);
4606 return 1;
4607 }
4608
4609 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4610 as possible of the primary got, since it doesn't require explicit
4611 dynamic relocations, but don't use bfds that would reference global
4612 symbols out of the addressable range. Failing the primary got,
4613 attempt to merge with the current got, or finish the current got
4614 and then make make the new got current. */
4615
4616 static bfd_boolean
4617 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4618 struct mips_elf_got_per_bfd_arg *arg)
4619 {
4620 unsigned int estimate;
4621 int result;
4622
4623 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4624 return FALSE;
4625
4626 /* Work out the number of page, local and TLS entries. */
4627 estimate = arg->max_pages;
4628 if (estimate > g->page_gotno)
4629 estimate = g->page_gotno;
4630 estimate += g->local_gotno + g->tls_gotno;
4631
4632 /* We place TLS GOT entries after both locals and globals. The globals
4633 for the primary GOT may overflow the normal GOT size limit, so be
4634 sure not to merge a GOT which requires TLS with the primary GOT in that
4635 case. This doesn't affect non-primary GOTs. */
4636 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4637
4638 if (estimate <= arg->max_count)
4639 {
4640 /* If we don't have a primary GOT, use it as
4641 a starting point for the primary GOT. */
4642 if (!arg->primary)
4643 {
4644 arg->primary = g;
4645 return TRUE;
4646 }
4647
4648 /* Try merging with the primary GOT. */
4649 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4650 if (result >= 0)
4651 return result;
4652 }
4653
4654 /* If we can merge with the last-created got, do it. */
4655 if (arg->current)
4656 {
4657 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4658 if (result >= 0)
4659 return result;
4660 }
4661
4662 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4663 fits; if it turns out that it doesn't, we'll get relocation
4664 overflows anyway. */
4665 g->next = arg->current;
4666 arg->current = g;
4667
4668 return TRUE;
4669 }
4670
4671 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4672 to GOTIDX, duplicating the entry if it has already been assigned
4673 an index in a different GOT. */
4674
4675 static bfd_boolean
4676 mips_elf_set_gotidx (void **entryp, long gotidx)
4677 {
4678 struct mips_got_entry *entry;
4679
4680 entry = (struct mips_got_entry *) *entryp;
4681 if (entry->gotidx > 0)
4682 {
4683 struct mips_got_entry *new_entry;
4684
4685 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4686 if (!new_entry)
4687 return FALSE;
4688
4689 *new_entry = *entry;
4690 *entryp = new_entry;
4691 entry = new_entry;
4692 }
4693 entry->gotidx = gotidx;
4694 return TRUE;
4695 }
4696
4697 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4698 mips_elf_traverse_got_arg in which DATA->value is the size of one
4699 GOT entry. Set DATA->g to null on failure. */
4700
4701 static int
4702 mips_elf_initialize_tls_index (void **entryp, void *data)
4703 {
4704 struct mips_got_entry *entry;
4705 struct mips_elf_traverse_got_arg *arg;
4706
4707 /* We're only interested in TLS symbols. */
4708 entry = (struct mips_got_entry *) *entryp;
4709 if (entry->tls_type == GOT_TLS_NONE)
4710 return 1;
4711
4712 arg = (struct mips_elf_traverse_got_arg *) data;
4713 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4714 {
4715 arg->g = NULL;
4716 return 0;
4717 }
4718
4719 /* Account for the entries we've just allocated. */
4720 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4721 return 1;
4722 }
4723
4724 /* A htab_traverse callback for GOT entries, where DATA points to a
4725 mips_elf_traverse_got_arg. Set the global_got_area of each global
4726 symbol to DATA->value. */
4727
4728 static int
4729 mips_elf_set_global_got_area (void **entryp, void *data)
4730 {
4731 struct mips_got_entry *entry;
4732 struct mips_elf_traverse_got_arg *arg;
4733
4734 entry = (struct mips_got_entry *) *entryp;
4735 arg = (struct mips_elf_traverse_got_arg *) data;
4736 if (entry->abfd != NULL
4737 && entry->symndx == -1
4738 && entry->d.h->global_got_area != GGA_NONE)
4739 entry->d.h->global_got_area = arg->value;
4740 return 1;
4741 }
4742
4743 /* A htab_traverse callback for secondary GOT entries, where DATA points
4744 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4745 and record the number of relocations they require. DATA->value is
4746 the size of one GOT entry. Set DATA->g to null on failure. */
4747
4748 static int
4749 mips_elf_set_global_gotidx (void **entryp, void *data)
4750 {
4751 struct mips_got_entry *entry;
4752 struct mips_elf_traverse_got_arg *arg;
4753
4754 entry = (struct mips_got_entry *) *entryp;
4755 arg = (struct mips_elf_traverse_got_arg *) data;
4756 if (entry->abfd != NULL
4757 && entry->symndx == -1
4758 && entry->d.h->global_got_area != GGA_NONE)
4759 {
4760 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4761 {
4762 arg->g = NULL;
4763 return 0;
4764 }
4765 arg->g->assigned_low_gotno += 1;
4766
4767 if (bfd_link_pic (arg->info)
4768 || (elf_hash_table (arg->info)->dynamic_sections_created
4769 && entry->d.h->root.def_dynamic
4770 && !entry->d.h->root.def_regular))
4771 arg->g->relocs += 1;
4772 }
4773
4774 return 1;
4775 }
4776
4777 /* A htab_traverse callback for GOT entries for which DATA is the
4778 bfd_link_info. Forbid any global symbols from having traditional
4779 lazy-binding stubs. */
4780
4781 static int
4782 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4783 {
4784 struct bfd_link_info *info;
4785 struct mips_elf_link_hash_table *htab;
4786 struct mips_got_entry *entry;
4787
4788 entry = (struct mips_got_entry *) *entryp;
4789 info = (struct bfd_link_info *) data;
4790 htab = mips_elf_hash_table (info);
4791 BFD_ASSERT (htab != NULL);
4792
4793 if (entry->abfd != NULL
4794 && entry->symndx == -1
4795 && entry->d.h->needs_lazy_stub)
4796 {
4797 entry->d.h->needs_lazy_stub = FALSE;
4798 htab->lazy_stub_count--;
4799 }
4800
4801 return 1;
4802 }
4803
4804 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4805 the primary GOT. */
4806 static bfd_vma
4807 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4808 {
4809 if (!g->next)
4810 return 0;
4811
4812 g = mips_elf_bfd_got (ibfd, FALSE);
4813 if (! g)
4814 return 0;
4815
4816 BFD_ASSERT (g->next);
4817
4818 g = g->next;
4819
4820 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4821 * MIPS_ELF_GOT_SIZE (abfd);
4822 }
4823
4824 /* Turn a single GOT that is too big for 16-bit addressing into
4825 a sequence of GOTs, each one 16-bit addressable. */
4826
4827 static bfd_boolean
4828 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4829 asection *got, bfd_size_type pages)
4830 {
4831 struct mips_elf_link_hash_table *htab;
4832 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4833 struct mips_elf_traverse_got_arg tga;
4834 struct mips_got_info *g, *gg;
4835 unsigned int assign, needed_relocs;
4836 bfd *dynobj, *ibfd;
4837
4838 dynobj = elf_hash_table (info)->dynobj;
4839 htab = mips_elf_hash_table (info);
4840 BFD_ASSERT (htab != NULL);
4841
4842 g = htab->got_info;
4843
4844 got_per_bfd_arg.obfd = abfd;
4845 got_per_bfd_arg.info = info;
4846 got_per_bfd_arg.current = NULL;
4847 got_per_bfd_arg.primary = NULL;
4848 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4849 / MIPS_ELF_GOT_SIZE (abfd))
4850 - htab->reserved_gotno);
4851 got_per_bfd_arg.max_pages = pages;
4852 /* The number of globals that will be included in the primary GOT.
4853 See the calls to mips_elf_set_global_got_area below for more
4854 information. */
4855 got_per_bfd_arg.global_count = g->global_gotno;
4856
4857 /* Try to merge the GOTs of input bfds together, as long as they
4858 don't seem to exceed the maximum GOT size, choosing one of them
4859 to be the primary GOT. */
4860 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4861 {
4862 gg = mips_elf_bfd_got (ibfd, FALSE);
4863 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4864 return FALSE;
4865 }
4866
4867 /* If we do not find any suitable primary GOT, create an empty one. */
4868 if (got_per_bfd_arg.primary == NULL)
4869 g->next = mips_elf_create_got_info (abfd);
4870 else
4871 g->next = got_per_bfd_arg.primary;
4872 g->next->next = got_per_bfd_arg.current;
4873
4874 /* GG is now the master GOT, and G is the primary GOT. */
4875 gg = g;
4876 g = g->next;
4877
4878 /* Map the output bfd to the primary got. That's what we're going
4879 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4880 didn't mark in check_relocs, and we want a quick way to find it.
4881 We can't just use gg->next because we're going to reverse the
4882 list. */
4883 mips_elf_replace_bfd_got (abfd, g);
4884
4885 /* Every symbol that is referenced in a dynamic relocation must be
4886 present in the primary GOT, so arrange for them to appear after
4887 those that are actually referenced. */
4888 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4889 g->global_gotno = gg->global_gotno;
4890
4891 tga.info = info;
4892 tga.value = GGA_RELOC_ONLY;
4893 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4894 tga.value = GGA_NORMAL;
4895 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4896
4897 /* Now go through the GOTs assigning them offset ranges.
4898 [assigned_low_gotno, local_gotno[ will be set to the range of local
4899 entries in each GOT. We can then compute the end of a GOT by
4900 adding local_gotno to global_gotno. We reverse the list and make
4901 it circular since then we'll be able to quickly compute the
4902 beginning of a GOT, by computing the end of its predecessor. To
4903 avoid special cases for the primary GOT, while still preserving
4904 assertions that are valid for both single- and multi-got links,
4905 we arrange for the main got struct to have the right number of
4906 global entries, but set its local_gotno such that the initial
4907 offset of the primary GOT is zero. Remember that the primary GOT
4908 will become the last item in the circular linked list, so it
4909 points back to the master GOT. */
4910 gg->local_gotno = -g->global_gotno;
4911 gg->global_gotno = g->global_gotno;
4912 gg->tls_gotno = 0;
4913 assign = 0;
4914 gg->next = gg;
4915
4916 do
4917 {
4918 struct mips_got_info *gn;
4919
4920 assign += htab->reserved_gotno;
4921 g->assigned_low_gotno = assign;
4922 g->local_gotno += assign;
4923 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4924 g->assigned_high_gotno = g->local_gotno - 1;
4925 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4926
4927 /* Take g out of the direct list, and push it onto the reversed
4928 list that gg points to. g->next is guaranteed to be nonnull after
4929 this operation, as required by mips_elf_initialize_tls_index. */
4930 gn = g->next;
4931 g->next = gg->next;
4932 gg->next = g;
4933
4934 /* Set up any TLS entries. We always place the TLS entries after
4935 all non-TLS entries. */
4936 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4937 tga.g = g;
4938 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4939 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4940 if (!tga.g)
4941 return FALSE;
4942 BFD_ASSERT (g->tls_assigned_gotno == assign);
4943
4944 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4945 g = gn;
4946
4947 /* Forbid global symbols in every non-primary GOT from having
4948 lazy-binding stubs. */
4949 if (g)
4950 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4951 }
4952 while (g);
4953
4954 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4955
4956 needed_relocs = 0;
4957 for (g = gg->next; g && g->next != gg; g = g->next)
4958 {
4959 unsigned int save_assign;
4960
4961 /* Assign offsets to global GOT entries and count how many
4962 relocations they need. */
4963 save_assign = g->assigned_low_gotno;
4964 g->assigned_low_gotno = g->local_gotno;
4965 tga.info = info;
4966 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4967 tga.g = g;
4968 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4969 if (!tga.g)
4970 return FALSE;
4971 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4972 g->assigned_low_gotno = save_assign;
4973
4974 if (bfd_link_pic (info))
4975 {
4976 g->relocs += g->local_gotno - g->assigned_low_gotno;
4977 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4978 + g->next->global_gotno
4979 + g->next->tls_gotno
4980 + htab->reserved_gotno);
4981 }
4982 needed_relocs += g->relocs;
4983 }
4984 needed_relocs += g->relocs;
4985
4986 if (needed_relocs)
4987 mips_elf_allocate_dynamic_relocations (dynobj, info,
4988 needed_relocs);
4989
4990 return TRUE;
4991 }
4992
4993 \f
4994 /* Returns the first relocation of type r_type found, beginning with
4995 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4996
4997 static const Elf_Internal_Rela *
4998 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4999 const Elf_Internal_Rela *relocation,
5000 const Elf_Internal_Rela *relend)
5001 {
5002 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5003
5004 while (relocation < relend)
5005 {
5006 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5007 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5008 return relocation;
5009
5010 ++relocation;
5011 }
5012
5013 /* We didn't find it. */
5014 return NULL;
5015 }
5016
5017 /* Return whether an input relocation is against a local symbol. */
5018
5019 static bfd_boolean
5020 mips_elf_local_relocation_p (bfd *input_bfd,
5021 const Elf_Internal_Rela *relocation,
5022 asection **local_sections)
5023 {
5024 unsigned long r_symndx;
5025 Elf_Internal_Shdr *symtab_hdr;
5026 size_t extsymoff;
5027
5028 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5029 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5030 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5031
5032 if (r_symndx < extsymoff)
5033 return TRUE;
5034 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5035 return TRUE;
5036
5037 return FALSE;
5038 }
5039 \f
5040 /* Sign-extend VALUE, which has the indicated number of BITS. */
5041
5042 bfd_vma
5043 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5044 {
5045 if (value & ((bfd_vma) 1 << (bits - 1)))
5046 /* VALUE is negative. */
5047 value |= ((bfd_vma) - 1) << bits;
5048
5049 return value;
5050 }
5051
5052 /* Return non-zero if the indicated VALUE has overflowed the maximum
5053 range expressible by a signed number with the indicated number of
5054 BITS. */
5055
5056 static bfd_boolean
5057 mips_elf_overflow_p (bfd_vma value, int bits)
5058 {
5059 bfd_signed_vma svalue = (bfd_signed_vma) value;
5060
5061 if (svalue > (1 << (bits - 1)) - 1)
5062 /* The value is too big. */
5063 return TRUE;
5064 else if (svalue < -(1 << (bits - 1)))
5065 /* The value is too small. */
5066 return TRUE;
5067
5068 /* All is well. */
5069 return FALSE;
5070 }
5071
5072 /* Calculate the %high function. */
5073
5074 static bfd_vma
5075 mips_elf_high (bfd_vma value)
5076 {
5077 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5078 }
5079
5080 /* Calculate the %higher function. */
5081
5082 static bfd_vma
5083 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5084 {
5085 #ifdef BFD64
5086 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5087 #else
5088 abort ();
5089 return MINUS_ONE;
5090 #endif
5091 }
5092
5093 /* Calculate the %highest function. */
5094
5095 static bfd_vma
5096 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5097 {
5098 #ifdef BFD64
5099 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5100 #else
5101 abort ();
5102 return MINUS_ONE;
5103 #endif
5104 }
5105 \f
5106 /* Create the .compact_rel section. */
5107
5108 static bfd_boolean
5109 mips_elf_create_compact_rel_section
5110 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5111 {
5112 flagword flags;
5113 register asection *s;
5114
5115 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5116 {
5117 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5118 | SEC_READONLY);
5119
5120 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5121 if (s == NULL
5122 || ! bfd_set_section_alignment (abfd, s,
5123 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5124 return FALSE;
5125
5126 s->size = sizeof (Elf32_External_compact_rel);
5127 }
5128
5129 return TRUE;
5130 }
5131
5132 /* Create the .got section to hold the global offset table. */
5133
5134 static bfd_boolean
5135 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5136 {
5137 flagword flags;
5138 register asection *s;
5139 struct elf_link_hash_entry *h;
5140 struct bfd_link_hash_entry *bh;
5141 struct mips_elf_link_hash_table *htab;
5142
5143 htab = mips_elf_hash_table (info);
5144 BFD_ASSERT (htab != NULL);
5145
5146 /* This function may be called more than once. */
5147 if (htab->root.sgot)
5148 return TRUE;
5149
5150 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5151 | SEC_LINKER_CREATED);
5152
5153 /* We have to use an alignment of 2**4 here because this is hardcoded
5154 in the function stub generation and in the linker script. */
5155 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5156 if (s == NULL
5157 || ! bfd_set_section_alignment (abfd, s, 4))
5158 return FALSE;
5159 htab->root.sgot = s;
5160
5161 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5162 linker script because we don't want to define the symbol if we
5163 are not creating a global offset table. */
5164 bh = NULL;
5165 if (! (_bfd_generic_link_add_one_symbol
5166 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5167 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5168 return FALSE;
5169
5170 h = (struct elf_link_hash_entry *) bh;
5171 h->non_elf = 0;
5172 h->def_regular = 1;
5173 h->type = STT_OBJECT;
5174 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5175 elf_hash_table (info)->hgot = h;
5176
5177 if (bfd_link_pic (info)
5178 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5179 return FALSE;
5180
5181 htab->got_info = mips_elf_create_got_info (abfd);
5182 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5183 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5184
5185 /* We also need a .got.plt section when generating PLTs. */
5186 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5187 SEC_ALLOC | SEC_LOAD
5188 | SEC_HAS_CONTENTS
5189 | SEC_IN_MEMORY
5190 | SEC_LINKER_CREATED);
5191 if (s == NULL)
5192 return FALSE;
5193 htab->root.sgotplt = s;
5194
5195 return TRUE;
5196 }
5197 \f
5198 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5199 __GOTT_INDEX__ symbols. These symbols are only special for
5200 shared objects; they are not used in executables. */
5201
5202 static bfd_boolean
5203 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5204 {
5205 return (mips_elf_hash_table (info)->is_vxworks
5206 && bfd_link_pic (info)
5207 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5208 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5209 }
5210
5211 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5212 require an la25 stub. See also mips_elf_local_pic_function_p,
5213 which determines whether the destination function ever requires a
5214 stub. */
5215
5216 static bfd_boolean
5217 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5218 bfd_boolean target_is_16_bit_code_p)
5219 {
5220 /* We specifically ignore branches and jumps from EF_PIC objects,
5221 where the onus is on the compiler or programmer to perform any
5222 necessary initialization of $25. Sometimes such initialization
5223 is unnecessary; for example, -mno-shared functions do not use
5224 the incoming value of $25, and may therefore be called directly. */
5225 if (PIC_OBJECT_P (input_bfd))
5226 return FALSE;
5227
5228 switch (r_type)
5229 {
5230 case R_MIPS_26:
5231 case R_MIPS_PC16:
5232 case R_MIPS_PC21_S2:
5233 case R_MIPS_PC26_S2:
5234 case R_MICROMIPS_26_S1:
5235 case R_MICROMIPS_PC7_S1:
5236 case R_MICROMIPS_PC10_S1:
5237 case R_MICROMIPS_PC16_S1:
5238 case R_MICROMIPS_PC23_S2:
5239 return TRUE;
5240
5241 case R_MIPS16_26:
5242 return !target_is_16_bit_code_p;
5243
5244 default:
5245 return FALSE;
5246 }
5247 }
5248 \f
5249 /* Obtain the field relocated by RELOCATION. */
5250
5251 static bfd_vma
5252 mips_elf_obtain_contents (reloc_howto_type *howto,
5253 const Elf_Internal_Rela *relocation,
5254 bfd *input_bfd, bfd_byte *contents)
5255 {
5256 bfd_vma x = 0;
5257 bfd_byte *location = contents + relocation->r_offset;
5258 unsigned int size = bfd_get_reloc_size (howto);
5259
5260 /* Obtain the bytes. */
5261 if (size != 0)
5262 x = bfd_get (8 * size, input_bfd, location);
5263
5264 return x;
5265 }
5266
5267 /* Store the field relocated by RELOCATION. */
5268
5269 static void
5270 mips_elf_store_contents (reloc_howto_type *howto,
5271 const Elf_Internal_Rela *relocation,
5272 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5273 {
5274 bfd_byte *location = contents + relocation->r_offset;
5275 unsigned int size = bfd_get_reloc_size (howto);
5276
5277 /* Put the value into the output. */
5278 if (size != 0)
5279 bfd_put (8 * size, input_bfd, x, location);
5280 }
5281
5282 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5283 RELOCATION described by HOWTO, with a move of 0 to the load target
5284 register, returning TRUE if that is successful and FALSE otherwise.
5285 If DOIT is FALSE, then only determine it patching is possible and
5286 return status without actually changing CONTENTS.
5287 */
5288
5289 static bfd_boolean
5290 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5291 const Elf_Internal_Rela *relocation,
5292 reloc_howto_type *howto, bfd_boolean doit)
5293 {
5294 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5295 bfd_byte *location = contents + relocation->r_offset;
5296 bfd_boolean nullified = TRUE;
5297 bfd_vma x;
5298
5299 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5300
5301 /* Obtain the current value. */
5302 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5303
5304 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5305 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5306 if (mips16_reloc_p (r_type)
5307 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5308 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5309 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5310 else if (micromips_reloc_p (r_type)
5311 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5312 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5313 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5314 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5315 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5316 else
5317 nullified = FALSE;
5318
5319 /* Put the value into the output. */
5320 if (doit && nullified)
5321 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5322
5323 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5324
5325 return nullified;
5326 }
5327
5328 /* Calculate the value produced by the RELOCATION (which comes from
5329 the INPUT_BFD). The ADDEND is the addend to use for this
5330 RELOCATION; RELOCATION->R_ADDEND is ignored.
5331
5332 The result of the relocation calculation is stored in VALUEP.
5333 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5334 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5335
5336 This function returns bfd_reloc_continue if the caller need take no
5337 further action regarding this relocation, bfd_reloc_notsupported if
5338 something goes dramatically wrong, bfd_reloc_overflow if an
5339 overflow occurs, and bfd_reloc_ok to indicate success. */
5340
5341 static bfd_reloc_status_type
5342 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5343 asection *input_section, bfd_byte *contents,
5344 struct bfd_link_info *info,
5345 const Elf_Internal_Rela *relocation,
5346 bfd_vma addend, reloc_howto_type *howto,
5347 Elf_Internal_Sym *local_syms,
5348 asection **local_sections, bfd_vma *valuep,
5349 const char **namep,
5350 bfd_boolean *cross_mode_jump_p,
5351 bfd_boolean save_addend)
5352 {
5353 /* The eventual value we will return. */
5354 bfd_vma value;
5355 /* The address of the symbol against which the relocation is
5356 occurring. */
5357 bfd_vma symbol = 0;
5358 /* The final GP value to be used for the relocatable, executable, or
5359 shared object file being produced. */
5360 bfd_vma gp;
5361 /* The place (section offset or address) of the storage unit being
5362 relocated. */
5363 bfd_vma p;
5364 /* The value of GP used to create the relocatable object. */
5365 bfd_vma gp0;
5366 /* The offset into the global offset table at which the address of
5367 the relocation entry symbol, adjusted by the addend, resides
5368 during execution. */
5369 bfd_vma g = MINUS_ONE;
5370 /* The section in which the symbol referenced by the relocation is
5371 located. */
5372 asection *sec = NULL;
5373 struct mips_elf_link_hash_entry *h = NULL;
5374 /* TRUE if the symbol referred to by this relocation is a local
5375 symbol. */
5376 bfd_boolean local_p, was_local_p;
5377 /* TRUE if the symbol referred to by this relocation is a section
5378 symbol. */
5379 bfd_boolean section_p = FALSE;
5380 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5381 bfd_boolean gp_disp_p = FALSE;
5382 /* TRUE if the symbol referred to by this relocation is
5383 "__gnu_local_gp". */
5384 bfd_boolean gnu_local_gp_p = FALSE;
5385 Elf_Internal_Shdr *symtab_hdr;
5386 size_t extsymoff;
5387 unsigned long r_symndx;
5388 int r_type;
5389 /* TRUE if overflow occurred during the calculation of the
5390 relocation value. */
5391 bfd_boolean overflowed_p;
5392 /* TRUE if this relocation refers to a MIPS16 function. */
5393 bfd_boolean target_is_16_bit_code_p = FALSE;
5394 bfd_boolean target_is_micromips_code_p = FALSE;
5395 struct mips_elf_link_hash_table *htab;
5396 bfd *dynobj;
5397 bfd_boolean resolved_to_zero;
5398
5399 dynobj = elf_hash_table (info)->dynobj;
5400 htab = mips_elf_hash_table (info);
5401 BFD_ASSERT (htab != NULL);
5402
5403 /* Parse the relocation. */
5404 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5405 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5406 p = (input_section->output_section->vma
5407 + input_section->output_offset
5408 + relocation->r_offset);
5409
5410 /* Assume that there will be no overflow. */
5411 overflowed_p = FALSE;
5412
5413 /* Figure out whether or not the symbol is local, and get the offset
5414 used in the array of hash table entries. */
5415 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5416 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5417 local_sections);
5418 was_local_p = local_p;
5419 if (! elf_bad_symtab (input_bfd))
5420 extsymoff = symtab_hdr->sh_info;
5421 else
5422 {
5423 /* The symbol table does not follow the rule that local symbols
5424 must come before globals. */
5425 extsymoff = 0;
5426 }
5427
5428 /* Figure out the value of the symbol. */
5429 if (local_p)
5430 {
5431 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5432 Elf_Internal_Sym *sym;
5433
5434 sym = local_syms + r_symndx;
5435 sec = local_sections[r_symndx];
5436
5437 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5438
5439 symbol = sec->output_section->vma + sec->output_offset;
5440 if (!section_p || (sec->flags & SEC_MERGE))
5441 symbol += sym->st_value;
5442 if ((sec->flags & SEC_MERGE) && section_p)
5443 {
5444 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5445 addend -= symbol;
5446 addend += sec->output_section->vma + sec->output_offset;
5447 }
5448
5449 /* MIPS16/microMIPS text labels should be treated as odd. */
5450 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5451 ++symbol;
5452
5453 /* Record the name of this symbol, for our caller. */
5454 *namep = bfd_elf_string_from_elf_section (input_bfd,
5455 symtab_hdr->sh_link,
5456 sym->st_name);
5457 if (*namep == NULL || **namep == '\0')
5458 *namep = bfd_section_name (input_bfd, sec);
5459
5460 /* For relocations against a section symbol and ones against no
5461 symbol (absolute relocations) infer the ISA mode from the addend. */
5462 if (section_p || r_symndx == STN_UNDEF)
5463 {
5464 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5465 target_is_micromips_code_p = (addend & 1) && micromips_p;
5466 }
5467 /* For relocations against an absolute symbol infer the ISA mode
5468 from the value of the symbol plus addend. */
5469 else if (bfd_is_abs_section (sec))
5470 {
5471 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5472 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5473 }
5474 /* Otherwise just use the regular symbol annotation available. */
5475 else
5476 {
5477 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5478 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5479 }
5480 }
5481 else
5482 {
5483 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5484
5485 /* For global symbols we look up the symbol in the hash-table. */
5486 h = ((struct mips_elf_link_hash_entry *)
5487 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5488 /* Find the real hash-table entry for this symbol. */
5489 while (h->root.root.type == bfd_link_hash_indirect
5490 || h->root.root.type == bfd_link_hash_warning)
5491 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5492
5493 /* Record the name of this symbol, for our caller. */
5494 *namep = h->root.root.root.string;
5495
5496 /* See if this is the special _gp_disp symbol. Note that such a
5497 symbol must always be a global symbol. */
5498 if (strcmp (*namep, "_gp_disp") == 0
5499 && ! NEWABI_P (input_bfd))
5500 {
5501 /* Relocations against _gp_disp are permitted only with
5502 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5503 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5504 return bfd_reloc_notsupported;
5505
5506 gp_disp_p = TRUE;
5507 }
5508 /* See if this is the special _gp symbol. Note that such a
5509 symbol must always be a global symbol. */
5510 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5511 gnu_local_gp_p = TRUE;
5512
5513
5514 /* If this symbol is defined, calculate its address. Note that
5515 _gp_disp is a magic symbol, always implicitly defined by the
5516 linker, so it's inappropriate to check to see whether or not
5517 its defined. */
5518 else if ((h->root.root.type == bfd_link_hash_defined
5519 || h->root.root.type == bfd_link_hash_defweak)
5520 && h->root.root.u.def.section)
5521 {
5522 sec = h->root.root.u.def.section;
5523 if (sec->output_section)
5524 symbol = (h->root.root.u.def.value
5525 + sec->output_section->vma
5526 + sec->output_offset);
5527 else
5528 symbol = h->root.root.u.def.value;
5529 }
5530 else if (h->root.root.type == bfd_link_hash_undefweak)
5531 /* We allow relocations against undefined weak symbols, giving
5532 it the value zero, so that you can undefined weak functions
5533 and check to see if they exist by looking at their
5534 addresses. */
5535 symbol = 0;
5536 else if (info->unresolved_syms_in_objects == RM_IGNORE
5537 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5538 symbol = 0;
5539 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5540 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5541 {
5542 /* If this is a dynamic link, we should have created a
5543 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5544 in _bfd_mips_elf_create_dynamic_sections.
5545 Otherwise, we should define the symbol with a value of 0.
5546 FIXME: It should probably get into the symbol table
5547 somehow as well. */
5548 BFD_ASSERT (! bfd_link_pic (info));
5549 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5550 symbol = 0;
5551 }
5552 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5553 {
5554 /* This is an optional symbol - an Irix specific extension to the
5555 ELF spec. Ignore it for now.
5556 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5557 than simply ignoring them, but we do not handle this for now.
5558 For information see the "64-bit ELF Object File Specification"
5559 which is available from here:
5560 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5561 symbol = 0;
5562 }
5563 else
5564 {
5565 bfd_boolean reject_undefined
5566 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5567 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5568
5569 (*info->callbacks->undefined_symbol)
5570 (info, h->root.root.root.string, input_bfd,
5571 input_section, relocation->r_offset, reject_undefined);
5572
5573 if (reject_undefined)
5574 return bfd_reloc_undefined;
5575
5576 symbol = 0;
5577 }
5578
5579 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5580 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5581 }
5582
5583 /* If this is a reference to a 16-bit function with a stub, we need
5584 to redirect the relocation to the stub unless:
5585
5586 (a) the relocation is for a MIPS16 JAL;
5587
5588 (b) the relocation is for a MIPS16 PIC call, and there are no
5589 non-MIPS16 uses of the GOT slot; or
5590
5591 (c) the section allows direct references to MIPS16 functions. */
5592 if (r_type != R_MIPS16_26
5593 && !bfd_link_relocatable (info)
5594 && ((h != NULL
5595 && h->fn_stub != NULL
5596 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5597 || (local_p
5598 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5599 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5600 && !section_allows_mips16_refs_p (input_section))
5601 {
5602 /* This is a 32- or 64-bit call to a 16-bit function. We should
5603 have already noticed that we were going to need the
5604 stub. */
5605 if (local_p)
5606 {
5607 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5608 value = 0;
5609 }
5610 else
5611 {
5612 BFD_ASSERT (h->need_fn_stub);
5613 if (h->la25_stub)
5614 {
5615 /* If a LA25 header for the stub itself exists, point to the
5616 prepended LUI/ADDIU sequence. */
5617 sec = h->la25_stub->stub_section;
5618 value = h->la25_stub->offset;
5619 }
5620 else
5621 {
5622 sec = h->fn_stub;
5623 value = 0;
5624 }
5625 }
5626
5627 symbol = sec->output_section->vma + sec->output_offset + value;
5628 /* The target is 16-bit, but the stub isn't. */
5629 target_is_16_bit_code_p = FALSE;
5630 }
5631 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5632 to a standard MIPS function, we need to redirect the call to the stub.
5633 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5634 indirect calls should use an indirect stub instead. */
5635 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5636 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5637 || (local_p
5638 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5639 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5640 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5641 {
5642 if (local_p)
5643 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5644 else
5645 {
5646 /* If both call_stub and call_fp_stub are defined, we can figure
5647 out which one to use by checking which one appears in the input
5648 file. */
5649 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5650 {
5651 asection *o;
5652
5653 sec = NULL;
5654 for (o = input_bfd->sections; o != NULL; o = o->next)
5655 {
5656 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5657 {
5658 sec = h->call_fp_stub;
5659 break;
5660 }
5661 }
5662 if (sec == NULL)
5663 sec = h->call_stub;
5664 }
5665 else if (h->call_stub != NULL)
5666 sec = h->call_stub;
5667 else
5668 sec = h->call_fp_stub;
5669 }
5670
5671 BFD_ASSERT (sec->size > 0);
5672 symbol = sec->output_section->vma + sec->output_offset;
5673 }
5674 /* If this is a direct call to a PIC function, redirect to the
5675 non-PIC stub. */
5676 else if (h != NULL && h->la25_stub
5677 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5678 target_is_16_bit_code_p))
5679 {
5680 symbol = (h->la25_stub->stub_section->output_section->vma
5681 + h->la25_stub->stub_section->output_offset
5682 + h->la25_stub->offset);
5683 if (ELF_ST_IS_MICROMIPS (h->root.other))
5684 symbol |= 1;
5685 }
5686 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5687 entry is used if a standard PLT entry has also been made. In this
5688 case the symbol will have been set by mips_elf_set_plt_sym_value
5689 to point to the standard PLT entry, so redirect to the compressed
5690 one. */
5691 else if ((mips16_branch_reloc_p (r_type)
5692 || micromips_branch_reloc_p (r_type))
5693 && !bfd_link_relocatable (info)
5694 && h != NULL
5695 && h->use_plt_entry
5696 && h->root.plt.plist->comp_offset != MINUS_ONE
5697 && h->root.plt.plist->mips_offset != MINUS_ONE)
5698 {
5699 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5700
5701 sec = htab->root.splt;
5702 symbol = (sec->output_section->vma
5703 + sec->output_offset
5704 + htab->plt_header_size
5705 + htab->plt_mips_offset
5706 + h->root.plt.plist->comp_offset
5707 + 1);
5708
5709 target_is_16_bit_code_p = !micromips_p;
5710 target_is_micromips_code_p = micromips_p;
5711 }
5712
5713 /* Make sure MIPS16 and microMIPS are not used together. */
5714 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5715 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5716 {
5717 _bfd_error_handler
5718 (_("MIPS16 and microMIPS functions cannot call each other"));
5719 return bfd_reloc_notsupported;
5720 }
5721
5722 /* Calls from 16-bit code to 32-bit code and vice versa require the
5723 mode change. However, we can ignore calls to undefined weak symbols,
5724 which should never be executed at runtime. This exception is important
5725 because the assembly writer may have "known" that any definition of the
5726 symbol would be 16-bit code, and that direct jumps were therefore
5727 acceptable. */
5728 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5729 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5730 && ((mips16_branch_reloc_p (r_type)
5731 && !target_is_16_bit_code_p)
5732 || (micromips_branch_reloc_p (r_type)
5733 && !target_is_micromips_code_p)
5734 || ((branch_reloc_p (r_type)
5735 || r_type == R_MIPS_JALR)
5736 && (target_is_16_bit_code_p
5737 || target_is_micromips_code_p))));
5738
5739 resolved_to_zero = (h != NULL
5740 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5741
5742 switch (r_type)
5743 {
5744 case R_MIPS16_CALL16:
5745 case R_MIPS16_GOT16:
5746 case R_MIPS_CALL16:
5747 case R_MIPS_GOT16:
5748 case R_MIPS_GOT_PAGE:
5749 case R_MIPS_GOT_DISP:
5750 case R_MIPS_GOT_LO16:
5751 case R_MIPS_CALL_LO16:
5752 case R_MICROMIPS_CALL16:
5753 case R_MICROMIPS_GOT16:
5754 case R_MICROMIPS_GOT_PAGE:
5755 case R_MICROMIPS_GOT_DISP:
5756 case R_MICROMIPS_GOT_LO16:
5757 case R_MICROMIPS_CALL_LO16:
5758 if (resolved_to_zero
5759 && !bfd_link_relocatable (info)
5760 && mips_elf_nullify_got_load (input_bfd, contents,
5761 relocation, howto, TRUE))
5762 return bfd_reloc_continue;
5763
5764 /* Fall through. */
5765 case R_MIPS_GOT_HI16:
5766 case R_MIPS_CALL_HI16:
5767 case R_MICROMIPS_GOT_HI16:
5768 case R_MICROMIPS_CALL_HI16:
5769 if (resolved_to_zero
5770 && htab->use_absolute_zero
5771 && bfd_link_pic (info))
5772 {
5773 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5774 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5775 FALSE, FALSE, FALSE);
5776 BFD_ASSERT (h != NULL);
5777 }
5778 break;
5779 }
5780
5781 local_p = (h == NULL || mips_use_local_got_p (info, h));
5782
5783 gp0 = _bfd_get_gp_value (input_bfd);
5784 gp = _bfd_get_gp_value (abfd);
5785 if (htab->got_info)
5786 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5787
5788 if (gnu_local_gp_p)
5789 symbol = gp;
5790
5791 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5792 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5793 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5794 if (got_page_reloc_p (r_type) && !local_p)
5795 {
5796 r_type = (micromips_reloc_p (r_type)
5797 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5798 addend = 0;
5799 }
5800
5801 /* If we haven't already determined the GOT offset, and we're going
5802 to need it, get it now. */
5803 switch (r_type)
5804 {
5805 case R_MIPS16_CALL16:
5806 case R_MIPS16_GOT16:
5807 case R_MIPS_CALL16:
5808 case R_MIPS_GOT16:
5809 case R_MIPS_GOT_DISP:
5810 case R_MIPS_GOT_HI16:
5811 case R_MIPS_CALL_HI16:
5812 case R_MIPS_GOT_LO16:
5813 case R_MIPS_CALL_LO16:
5814 case R_MICROMIPS_CALL16:
5815 case R_MICROMIPS_GOT16:
5816 case R_MICROMIPS_GOT_DISP:
5817 case R_MICROMIPS_GOT_HI16:
5818 case R_MICROMIPS_CALL_HI16:
5819 case R_MICROMIPS_GOT_LO16:
5820 case R_MICROMIPS_CALL_LO16:
5821 case R_MIPS_TLS_GD:
5822 case R_MIPS_TLS_GOTTPREL:
5823 case R_MIPS_TLS_LDM:
5824 case R_MIPS16_TLS_GD:
5825 case R_MIPS16_TLS_GOTTPREL:
5826 case R_MIPS16_TLS_LDM:
5827 case R_MICROMIPS_TLS_GD:
5828 case R_MICROMIPS_TLS_GOTTPREL:
5829 case R_MICROMIPS_TLS_LDM:
5830 /* Find the index into the GOT where this value is located. */
5831 if (tls_ldm_reloc_p (r_type))
5832 {
5833 g = mips_elf_local_got_index (abfd, input_bfd, info,
5834 0, 0, NULL, r_type);
5835 if (g == MINUS_ONE)
5836 return bfd_reloc_outofrange;
5837 }
5838 else if (!local_p)
5839 {
5840 /* On VxWorks, CALL relocations should refer to the .got.plt
5841 entry, which is initialized to point at the PLT stub. */
5842 if (htab->is_vxworks
5843 && (call_hi16_reloc_p (r_type)
5844 || call_lo16_reloc_p (r_type)
5845 || call16_reloc_p (r_type)))
5846 {
5847 BFD_ASSERT (addend == 0);
5848 BFD_ASSERT (h->root.needs_plt);
5849 g = mips_elf_gotplt_index (info, &h->root);
5850 }
5851 else
5852 {
5853 BFD_ASSERT (addend == 0);
5854 g = mips_elf_global_got_index (abfd, info, input_bfd,
5855 &h->root, r_type);
5856 if (!TLS_RELOC_P (r_type)
5857 && !elf_hash_table (info)->dynamic_sections_created)
5858 /* This is a static link. We must initialize the GOT entry. */
5859 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5860 }
5861 }
5862 else if (!htab->is_vxworks
5863 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5864 /* The calculation below does not involve "g". */
5865 break;
5866 else
5867 {
5868 g = mips_elf_local_got_index (abfd, input_bfd, info,
5869 symbol + addend, r_symndx, h, r_type);
5870 if (g == MINUS_ONE)
5871 return bfd_reloc_outofrange;
5872 }
5873
5874 /* Convert GOT indices to actual offsets. */
5875 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5876 break;
5877 }
5878
5879 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5880 symbols are resolved by the loader. Add them to .rela.dyn. */
5881 if (h != NULL && is_gott_symbol (info, &h->root))
5882 {
5883 Elf_Internal_Rela outrel;
5884 bfd_byte *loc;
5885 asection *s;
5886
5887 s = mips_elf_rel_dyn_section (info, FALSE);
5888 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5889
5890 outrel.r_offset = (input_section->output_section->vma
5891 + input_section->output_offset
5892 + relocation->r_offset);
5893 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5894 outrel.r_addend = addend;
5895 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5896
5897 /* If we've written this relocation for a readonly section,
5898 we need to set DF_TEXTREL again, so that we do not delete the
5899 DT_TEXTREL tag. */
5900 if (MIPS_ELF_READONLY_SECTION (input_section))
5901 info->flags |= DF_TEXTREL;
5902
5903 *valuep = 0;
5904 return bfd_reloc_ok;
5905 }
5906
5907 /* Figure out what kind of relocation is being performed. */
5908 switch (r_type)
5909 {
5910 case R_MIPS_NONE:
5911 return bfd_reloc_continue;
5912
5913 case R_MIPS_16:
5914 if (howto->partial_inplace)
5915 addend = _bfd_mips_elf_sign_extend (addend, 16);
5916 value = symbol + addend;
5917 overflowed_p = mips_elf_overflow_p (value, 16);
5918 break;
5919
5920 case R_MIPS_32:
5921 case R_MIPS_REL32:
5922 case R_MIPS_64:
5923 if ((bfd_link_pic (info)
5924 || (htab->root.dynamic_sections_created
5925 && h != NULL
5926 && h->root.def_dynamic
5927 && !h->root.def_regular
5928 && !h->has_static_relocs))
5929 && r_symndx != STN_UNDEF
5930 && (h == NULL
5931 || h->root.root.type != bfd_link_hash_undefweak
5932 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5933 && !resolved_to_zero))
5934 && (input_section->flags & SEC_ALLOC) != 0)
5935 {
5936 /* If we're creating a shared library, then we can't know
5937 where the symbol will end up. So, we create a relocation
5938 record in the output, and leave the job up to the dynamic
5939 linker. We must do the same for executable references to
5940 shared library symbols, unless we've decided to use copy
5941 relocs or PLTs instead. */
5942 value = addend;
5943 if (!mips_elf_create_dynamic_relocation (abfd,
5944 info,
5945 relocation,
5946 h,
5947 sec,
5948 symbol,
5949 &value,
5950 input_section))
5951 return bfd_reloc_undefined;
5952 }
5953 else
5954 {
5955 if (r_type != R_MIPS_REL32)
5956 value = symbol + addend;
5957 else
5958 value = addend;
5959 }
5960 value &= howto->dst_mask;
5961 break;
5962
5963 case R_MIPS_PC32:
5964 value = symbol + addend - p;
5965 value &= howto->dst_mask;
5966 break;
5967
5968 case R_MIPS16_26:
5969 /* The calculation for R_MIPS16_26 is just the same as for an
5970 R_MIPS_26. It's only the storage of the relocated field into
5971 the output file that's different. That's handled in
5972 mips_elf_perform_relocation. So, we just fall through to the
5973 R_MIPS_26 case here. */
5974 case R_MIPS_26:
5975 case R_MICROMIPS_26_S1:
5976 {
5977 unsigned int shift;
5978
5979 /* Shift is 2, unusually, for microMIPS JALX. */
5980 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5981
5982 if (howto->partial_inplace && !section_p)
5983 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5984 else
5985 value = addend;
5986 value += symbol;
5987
5988 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5989 be the correct ISA mode selector except for weak undefined
5990 symbols. */
5991 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5992 && (*cross_mode_jump_p
5993 ? (value & 3) != (r_type == R_MIPS_26)
5994 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5995 return bfd_reloc_outofrange;
5996
5997 value >>= shift;
5998 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5999 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6000 value &= howto->dst_mask;
6001 }
6002 break;
6003
6004 case R_MIPS_TLS_DTPREL_HI16:
6005 case R_MIPS16_TLS_DTPREL_HI16:
6006 case R_MICROMIPS_TLS_DTPREL_HI16:
6007 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6008 & howto->dst_mask);
6009 break;
6010
6011 case R_MIPS_TLS_DTPREL_LO16:
6012 case R_MIPS_TLS_DTPREL32:
6013 case R_MIPS_TLS_DTPREL64:
6014 case R_MIPS16_TLS_DTPREL_LO16:
6015 case R_MICROMIPS_TLS_DTPREL_LO16:
6016 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6017 break;
6018
6019 case R_MIPS_TLS_TPREL_HI16:
6020 case R_MIPS16_TLS_TPREL_HI16:
6021 case R_MICROMIPS_TLS_TPREL_HI16:
6022 value = (mips_elf_high (addend + symbol - tprel_base (info))
6023 & howto->dst_mask);
6024 break;
6025
6026 case R_MIPS_TLS_TPREL_LO16:
6027 case R_MIPS_TLS_TPREL32:
6028 case R_MIPS_TLS_TPREL64:
6029 case R_MIPS16_TLS_TPREL_LO16:
6030 case R_MICROMIPS_TLS_TPREL_LO16:
6031 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6032 break;
6033
6034 case R_MIPS_HI16:
6035 case R_MIPS16_HI16:
6036 case R_MICROMIPS_HI16:
6037 if (!gp_disp_p)
6038 {
6039 value = mips_elf_high (addend + symbol);
6040 value &= howto->dst_mask;
6041 }
6042 else
6043 {
6044 /* For MIPS16 ABI code we generate this sequence
6045 0: li $v0,%hi(_gp_disp)
6046 4: addiupc $v1,%lo(_gp_disp)
6047 8: sll $v0,16
6048 12: addu $v0,$v1
6049 14: move $gp,$v0
6050 So the offsets of hi and lo relocs are the same, but the
6051 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6052 ADDIUPC clears the low two bits of the instruction address,
6053 so the base is ($t9 + 4) & ~3. */
6054 if (r_type == R_MIPS16_HI16)
6055 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6056 /* The microMIPS .cpload sequence uses the same assembly
6057 instructions as the traditional psABI version, but the
6058 incoming $t9 has the low bit set. */
6059 else if (r_type == R_MICROMIPS_HI16)
6060 value = mips_elf_high (addend + gp - p - 1);
6061 else
6062 value = mips_elf_high (addend + gp - p);
6063 }
6064 break;
6065
6066 case R_MIPS_LO16:
6067 case R_MIPS16_LO16:
6068 case R_MICROMIPS_LO16:
6069 case R_MICROMIPS_HI0_LO16:
6070 if (!gp_disp_p)
6071 value = (symbol + addend) & howto->dst_mask;
6072 else
6073 {
6074 /* See the comment for R_MIPS16_HI16 above for the reason
6075 for this conditional. */
6076 if (r_type == R_MIPS16_LO16)
6077 value = addend + gp - (p & ~(bfd_vma) 0x3);
6078 else if (r_type == R_MICROMIPS_LO16
6079 || r_type == R_MICROMIPS_HI0_LO16)
6080 value = addend + gp - p + 3;
6081 else
6082 value = addend + gp - p + 4;
6083 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6084 for overflow. But, on, say, IRIX5, relocations against
6085 _gp_disp are normally generated from the .cpload
6086 pseudo-op. It generates code that normally looks like
6087 this:
6088
6089 lui $gp,%hi(_gp_disp)
6090 addiu $gp,$gp,%lo(_gp_disp)
6091 addu $gp,$gp,$t9
6092
6093 Here $t9 holds the address of the function being called,
6094 as required by the MIPS ELF ABI. The R_MIPS_LO16
6095 relocation can easily overflow in this situation, but the
6096 R_MIPS_HI16 relocation will handle the overflow.
6097 Therefore, we consider this a bug in the MIPS ABI, and do
6098 not check for overflow here. */
6099 }
6100 break;
6101
6102 case R_MIPS_LITERAL:
6103 case R_MICROMIPS_LITERAL:
6104 /* Because we don't merge literal sections, we can handle this
6105 just like R_MIPS_GPREL16. In the long run, we should merge
6106 shared literals, and then we will need to additional work
6107 here. */
6108
6109 /* Fall through. */
6110
6111 case R_MIPS16_GPREL:
6112 /* The R_MIPS16_GPREL performs the same calculation as
6113 R_MIPS_GPREL16, but stores the relocated bits in a different
6114 order. We don't need to do anything special here; the
6115 differences are handled in mips_elf_perform_relocation. */
6116 case R_MIPS_GPREL16:
6117 case R_MICROMIPS_GPREL7_S2:
6118 case R_MICROMIPS_GPREL16:
6119 /* Only sign-extend the addend if it was extracted from the
6120 instruction. If the addend was separate, leave it alone,
6121 otherwise we may lose significant bits. */
6122 if (howto->partial_inplace)
6123 addend = _bfd_mips_elf_sign_extend (addend, 16);
6124 value = symbol + addend - gp;
6125 /* If the symbol was local, any earlier relocatable links will
6126 have adjusted its addend with the gp offset, so compensate
6127 for that now. Don't do it for symbols forced local in this
6128 link, though, since they won't have had the gp offset applied
6129 to them before. */
6130 if (was_local_p)
6131 value += gp0;
6132 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6133 overflowed_p = mips_elf_overflow_p (value, 16);
6134 break;
6135
6136 case R_MIPS16_GOT16:
6137 case R_MIPS16_CALL16:
6138 case R_MIPS_GOT16:
6139 case R_MIPS_CALL16:
6140 case R_MICROMIPS_GOT16:
6141 case R_MICROMIPS_CALL16:
6142 /* VxWorks does not have separate local and global semantics for
6143 R_MIPS*_GOT16; every relocation evaluates to "G". */
6144 if (!htab->is_vxworks && local_p)
6145 {
6146 value = mips_elf_got16_entry (abfd, input_bfd, info,
6147 symbol + addend, !was_local_p);
6148 if (value == MINUS_ONE)
6149 return bfd_reloc_outofrange;
6150 value
6151 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6152 overflowed_p = mips_elf_overflow_p (value, 16);
6153 break;
6154 }
6155
6156 /* Fall through. */
6157
6158 case R_MIPS_TLS_GD:
6159 case R_MIPS_TLS_GOTTPREL:
6160 case R_MIPS_TLS_LDM:
6161 case R_MIPS_GOT_DISP:
6162 case R_MIPS16_TLS_GD:
6163 case R_MIPS16_TLS_GOTTPREL:
6164 case R_MIPS16_TLS_LDM:
6165 case R_MICROMIPS_TLS_GD:
6166 case R_MICROMIPS_TLS_GOTTPREL:
6167 case R_MICROMIPS_TLS_LDM:
6168 case R_MICROMIPS_GOT_DISP:
6169 value = g;
6170 overflowed_p = mips_elf_overflow_p (value, 16);
6171 break;
6172
6173 case R_MIPS_GPREL32:
6174 value = (addend + symbol + gp0 - gp);
6175 if (!save_addend)
6176 value &= howto->dst_mask;
6177 break;
6178
6179 case R_MIPS_PC16:
6180 case R_MIPS_GNU_REL16_S2:
6181 if (howto->partial_inplace)
6182 addend = _bfd_mips_elf_sign_extend (addend, 18);
6183
6184 /* No need to exclude weak undefined symbols here as they resolve
6185 to 0 and never set `*cross_mode_jump_p', so this alignment check
6186 will never trigger for them. */
6187 if (*cross_mode_jump_p
6188 ? ((symbol + addend) & 3) != 1
6189 : ((symbol + addend) & 3) != 0)
6190 return bfd_reloc_outofrange;
6191
6192 value = symbol + addend - p;
6193 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6194 overflowed_p = mips_elf_overflow_p (value, 18);
6195 value >>= howto->rightshift;
6196 value &= howto->dst_mask;
6197 break;
6198
6199 case R_MIPS16_PC16_S1:
6200 if (howto->partial_inplace)
6201 addend = _bfd_mips_elf_sign_extend (addend, 17);
6202
6203 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6204 && (*cross_mode_jump_p
6205 ? ((symbol + addend) & 3) != 0
6206 : ((symbol + addend) & 1) == 0))
6207 return bfd_reloc_outofrange;
6208
6209 value = symbol + addend - p;
6210 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6211 overflowed_p = mips_elf_overflow_p (value, 17);
6212 value >>= howto->rightshift;
6213 value &= howto->dst_mask;
6214 break;
6215
6216 case R_MIPS_PC21_S2:
6217 if (howto->partial_inplace)
6218 addend = _bfd_mips_elf_sign_extend (addend, 23);
6219
6220 if ((symbol + addend) & 3)
6221 return bfd_reloc_outofrange;
6222
6223 value = symbol + addend - p;
6224 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6225 overflowed_p = mips_elf_overflow_p (value, 23);
6226 value >>= howto->rightshift;
6227 value &= howto->dst_mask;
6228 break;
6229
6230 case R_MIPS_PC26_S2:
6231 if (howto->partial_inplace)
6232 addend = _bfd_mips_elf_sign_extend (addend, 28);
6233
6234 if ((symbol + addend) & 3)
6235 return bfd_reloc_outofrange;
6236
6237 value = symbol + addend - p;
6238 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6239 overflowed_p = mips_elf_overflow_p (value, 28);
6240 value >>= howto->rightshift;
6241 value &= howto->dst_mask;
6242 break;
6243
6244 case R_MIPS_PC18_S3:
6245 if (howto->partial_inplace)
6246 addend = _bfd_mips_elf_sign_extend (addend, 21);
6247
6248 if ((symbol + addend) & 7)
6249 return bfd_reloc_outofrange;
6250
6251 value = symbol + addend - ((p | 7) ^ 7);
6252 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6253 overflowed_p = mips_elf_overflow_p (value, 21);
6254 value >>= howto->rightshift;
6255 value &= howto->dst_mask;
6256 break;
6257
6258 case R_MIPS_PC19_S2:
6259 if (howto->partial_inplace)
6260 addend = _bfd_mips_elf_sign_extend (addend, 21);
6261
6262 if ((symbol + addend) & 3)
6263 return bfd_reloc_outofrange;
6264
6265 value = symbol + addend - p;
6266 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6267 overflowed_p = mips_elf_overflow_p (value, 21);
6268 value >>= howto->rightshift;
6269 value &= howto->dst_mask;
6270 break;
6271
6272 case R_MIPS_PCHI16:
6273 value = mips_elf_high (symbol + addend - p);
6274 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6275 overflowed_p = mips_elf_overflow_p (value, 16);
6276 value &= howto->dst_mask;
6277 break;
6278
6279 case R_MIPS_PCLO16:
6280 if (howto->partial_inplace)
6281 addend = _bfd_mips_elf_sign_extend (addend, 16);
6282 value = symbol + addend - p;
6283 value &= howto->dst_mask;
6284 break;
6285
6286 case R_MICROMIPS_PC7_S1:
6287 if (howto->partial_inplace)
6288 addend = _bfd_mips_elf_sign_extend (addend, 8);
6289
6290 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6291 && (*cross_mode_jump_p
6292 ? ((symbol + addend + 2) & 3) != 0
6293 : ((symbol + addend + 2) & 1) == 0))
6294 return bfd_reloc_outofrange;
6295
6296 value = symbol + addend - p;
6297 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6298 overflowed_p = mips_elf_overflow_p (value, 8);
6299 value >>= howto->rightshift;
6300 value &= howto->dst_mask;
6301 break;
6302
6303 case R_MICROMIPS_PC10_S1:
6304 if (howto->partial_inplace)
6305 addend = _bfd_mips_elf_sign_extend (addend, 11);
6306
6307 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6308 && (*cross_mode_jump_p
6309 ? ((symbol + addend + 2) & 3) != 0
6310 : ((symbol + addend + 2) & 1) == 0))
6311 return bfd_reloc_outofrange;
6312
6313 value = symbol + addend - p;
6314 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6315 overflowed_p = mips_elf_overflow_p (value, 11);
6316 value >>= howto->rightshift;
6317 value &= howto->dst_mask;
6318 break;
6319
6320 case R_MICROMIPS_PC16_S1:
6321 if (howto->partial_inplace)
6322 addend = _bfd_mips_elf_sign_extend (addend, 17);
6323
6324 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6325 && (*cross_mode_jump_p
6326 ? ((symbol + addend) & 3) != 0
6327 : ((symbol + addend) & 1) == 0))
6328 return bfd_reloc_outofrange;
6329
6330 value = symbol + addend - p;
6331 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6332 overflowed_p = mips_elf_overflow_p (value, 17);
6333 value >>= howto->rightshift;
6334 value &= howto->dst_mask;
6335 break;
6336
6337 case R_MICROMIPS_PC23_S2:
6338 if (howto->partial_inplace)
6339 addend = _bfd_mips_elf_sign_extend (addend, 25);
6340 value = symbol + addend - ((p | 3) ^ 3);
6341 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6342 overflowed_p = mips_elf_overflow_p (value, 25);
6343 value >>= howto->rightshift;
6344 value &= howto->dst_mask;
6345 break;
6346
6347 case R_MIPS_GOT_HI16:
6348 case R_MIPS_CALL_HI16:
6349 case R_MICROMIPS_GOT_HI16:
6350 case R_MICROMIPS_CALL_HI16:
6351 /* We're allowed to handle these two relocations identically.
6352 The dynamic linker is allowed to handle the CALL relocations
6353 differently by creating a lazy evaluation stub. */
6354 value = g;
6355 value = mips_elf_high (value);
6356 value &= howto->dst_mask;
6357 break;
6358
6359 case R_MIPS_GOT_LO16:
6360 case R_MIPS_CALL_LO16:
6361 case R_MICROMIPS_GOT_LO16:
6362 case R_MICROMIPS_CALL_LO16:
6363 value = g & howto->dst_mask;
6364 break;
6365
6366 case R_MIPS_GOT_PAGE:
6367 case R_MICROMIPS_GOT_PAGE:
6368 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6369 if (value == MINUS_ONE)
6370 return bfd_reloc_outofrange;
6371 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6372 overflowed_p = mips_elf_overflow_p (value, 16);
6373 break;
6374
6375 case R_MIPS_GOT_OFST:
6376 case R_MICROMIPS_GOT_OFST:
6377 if (local_p)
6378 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6379 else
6380 value = addend;
6381 overflowed_p = mips_elf_overflow_p (value, 16);
6382 break;
6383
6384 case R_MIPS_SUB:
6385 case R_MICROMIPS_SUB:
6386 value = symbol - addend;
6387 value &= howto->dst_mask;
6388 break;
6389
6390 case R_MIPS_HIGHER:
6391 case R_MICROMIPS_HIGHER:
6392 value = mips_elf_higher (addend + symbol);
6393 value &= howto->dst_mask;
6394 break;
6395
6396 case R_MIPS_HIGHEST:
6397 case R_MICROMIPS_HIGHEST:
6398 value = mips_elf_highest (addend + symbol);
6399 value &= howto->dst_mask;
6400 break;
6401
6402 case R_MIPS_SCN_DISP:
6403 case R_MICROMIPS_SCN_DISP:
6404 value = symbol + addend - sec->output_offset;
6405 value &= howto->dst_mask;
6406 break;
6407
6408 case R_MIPS_JALR:
6409 case R_MICROMIPS_JALR:
6410 /* This relocation is only a hint. In some cases, we optimize
6411 it into a bal instruction. But we don't try to optimize
6412 when the symbol does not resolve locally. */
6413 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6414 return bfd_reloc_continue;
6415 /* We can't optimize cross-mode jumps either. */
6416 if (*cross_mode_jump_p)
6417 return bfd_reloc_continue;
6418 value = symbol + addend;
6419 /* Neither we can non-instruction-aligned targets. */
6420 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6421 return bfd_reloc_continue;
6422 break;
6423
6424 case R_MIPS_PJUMP:
6425 case R_MIPS_GNU_VTINHERIT:
6426 case R_MIPS_GNU_VTENTRY:
6427 /* We don't do anything with these at present. */
6428 return bfd_reloc_continue;
6429
6430 default:
6431 /* An unrecognized relocation type. */
6432 return bfd_reloc_notsupported;
6433 }
6434
6435 /* Store the VALUE for our caller. */
6436 *valuep = value;
6437 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6438 }
6439
6440 /* It has been determined that the result of the RELOCATION is the
6441 VALUE. Use HOWTO to place VALUE into the output file at the
6442 appropriate position. The SECTION is the section to which the
6443 relocation applies.
6444 CROSS_MODE_JUMP_P is true if the relocation field
6445 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6446
6447 Returns FALSE if anything goes wrong. */
6448
6449 static bfd_boolean
6450 mips_elf_perform_relocation (struct bfd_link_info *info,
6451 reloc_howto_type *howto,
6452 const Elf_Internal_Rela *relocation,
6453 bfd_vma value, bfd *input_bfd,
6454 asection *input_section, bfd_byte *contents,
6455 bfd_boolean cross_mode_jump_p)
6456 {
6457 bfd_vma x;
6458 bfd_byte *location;
6459 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6460
6461 /* Figure out where the relocation is occurring. */
6462 location = contents + relocation->r_offset;
6463
6464 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6465
6466 /* Obtain the current value. */
6467 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6468
6469 /* Clear the field we are setting. */
6470 x &= ~howto->dst_mask;
6471
6472 /* Set the field. */
6473 x |= (value & howto->dst_mask);
6474
6475 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6476 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6477 {
6478 bfd_vma opcode = x >> 26;
6479
6480 if (r_type == R_MIPS16_26 ? opcode == 0x7
6481 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6482 : opcode == 0x1d)
6483 {
6484 info->callbacks->einfo
6485 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6486 input_bfd, input_section, relocation->r_offset);
6487 return TRUE;
6488 }
6489 }
6490 if (cross_mode_jump_p && jal_reloc_p (r_type))
6491 {
6492 bfd_boolean ok;
6493 bfd_vma opcode = x >> 26;
6494 bfd_vma jalx_opcode;
6495
6496 /* Check to see if the opcode is already JAL or JALX. */
6497 if (r_type == R_MIPS16_26)
6498 {
6499 ok = ((opcode == 0x6) || (opcode == 0x7));
6500 jalx_opcode = 0x7;
6501 }
6502 else if (r_type == R_MICROMIPS_26_S1)
6503 {
6504 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6505 jalx_opcode = 0x3c;
6506 }
6507 else
6508 {
6509 ok = ((opcode == 0x3) || (opcode == 0x1d));
6510 jalx_opcode = 0x1d;
6511 }
6512
6513 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6514 convert J or JALS to JALX. */
6515 if (!ok)
6516 {
6517 info->callbacks->einfo
6518 (_("%X%H: unsupported jump between ISA modes; "
6519 "consider recompiling with interlinking enabled\n"),
6520 input_bfd, input_section, relocation->r_offset);
6521 return TRUE;
6522 }
6523
6524 /* Make this the JALX opcode. */
6525 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6526 }
6527 else if (cross_mode_jump_p && b_reloc_p (r_type))
6528 {
6529 bfd_boolean ok = FALSE;
6530 bfd_vma opcode = x >> 16;
6531 bfd_vma jalx_opcode = 0;
6532 bfd_vma sign_bit = 0;
6533 bfd_vma addr;
6534 bfd_vma dest;
6535
6536 if (r_type == R_MICROMIPS_PC16_S1)
6537 {
6538 ok = opcode == 0x4060;
6539 jalx_opcode = 0x3c;
6540 sign_bit = 0x10000;
6541 value <<= 1;
6542 }
6543 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6544 {
6545 ok = opcode == 0x411;
6546 jalx_opcode = 0x1d;
6547 sign_bit = 0x20000;
6548 value <<= 2;
6549 }
6550
6551 if (ok && !bfd_link_pic (info))
6552 {
6553 addr = (input_section->output_section->vma
6554 + input_section->output_offset
6555 + relocation->r_offset
6556 + 4);
6557 dest = (addr
6558 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6559
6560 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6561 {
6562 info->callbacks->einfo
6563 (_("%X%H: cannot convert branch between ISA modes "
6564 "to JALX: relocation out of range\n"),
6565 input_bfd, input_section, relocation->r_offset);
6566 return TRUE;
6567 }
6568
6569 /* Make this the JALX opcode. */
6570 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6571 }
6572 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6573 {
6574 info->callbacks->einfo
6575 (_("%X%H: unsupported branch between ISA modes\n"),
6576 input_bfd, input_section, relocation->r_offset);
6577 return TRUE;
6578 }
6579 }
6580
6581 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6582 range. */
6583 if (!bfd_link_relocatable (info)
6584 && !cross_mode_jump_p
6585 && ((JAL_TO_BAL_P (input_bfd)
6586 && r_type == R_MIPS_26
6587 && (x >> 26) == 0x3) /* jal addr */
6588 || (JALR_TO_BAL_P (input_bfd)
6589 && r_type == R_MIPS_JALR
6590 && x == 0x0320f809) /* jalr t9 */
6591 || (JR_TO_B_P (input_bfd)
6592 && r_type == R_MIPS_JALR
6593 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6594 {
6595 bfd_vma addr;
6596 bfd_vma dest;
6597 bfd_signed_vma off;
6598
6599 addr = (input_section->output_section->vma
6600 + input_section->output_offset
6601 + relocation->r_offset
6602 + 4);
6603 if (r_type == R_MIPS_26)
6604 dest = (value << 2) | ((addr >> 28) << 28);
6605 else
6606 dest = value;
6607 off = dest - addr;
6608 if (off <= 0x1ffff && off >= -0x20000)
6609 {
6610 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6611 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6612 else
6613 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6614 }
6615 }
6616
6617 /* Put the value into the output. */
6618 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6619
6620 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6621 location);
6622
6623 return TRUE;
6624 }
6625 \f
6626 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6627 is the original relocation, which is now being transformed into a
6628 dynamic relocation. The ADDENDP is adjusted if necessary; the
6629 caller should store the result in place of the original addend. */
6630
6631 static bfd_boolean
6632 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6633 struct bfd_link_info *info,
6634 const Elf_Internal_Rela *rel,
6635 struct mips_elf_link_hash_entry *h,
6636 asection *sec, bfd_vma symbol,
6637 bfd_vma *addendp, asection *input_section)
6638 {
6639 Elf_Internal_Rela outrel[3];
6640 asection *sreloc;
6641 bfd *dynobj;
6642 int r_type;
6643 long indx;
6644 bfd_boolean defined_p;
6645 struct mips_elf_link_hash_table *htab;
6646
6647 htab = mips_elf_hash_table (info);
6648 BFD_ASSERT (htab != NULL);
6649
6650 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6651 dynobj = elf_hash_table (info)->dynobj;
6652 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6653 BFD_ASSERT (sreloc != NULL);
6654 BFD_ASSERT (sreloc->contents != NULL);
6655 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6656 < sreloc->size);
6657
6658 outrel[0].r_offset =
6659 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6660 if (ABI_64_P (output_bfd))
6661 {
6662 outrel[1].r_offset =
6663 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6664 outrel[2].r_offset =
6665 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6666 }
6667
6668 if (outrel[0].r_offset == MINUS_ONE)
6669 /* The relocation field has been deleted. */
6670 return TRUE;
6671
6672 if (outrel[0].r_offset == MINUS_TWO)
6673 {
6674 /* The relocation field has been converted into a relative value of
6675 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6676 the field to be fully relocated, so add in the symbol's value. */
6677 *addendp += symbol;
6678 return TRUE;
6679 }
6680
6681 /* We must now calculate the dynamic symbol table index to use
6682 in the relocation. */
6683 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6684 {
6685 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6686 indx = h->root.dynindx;
6687 if (SGI_COMPAT (output_bfd))
6688 defined_p = h->root.def_regular;
6689 else
6690 /* ??? glibc's ld.so just adds the final GOT entry to the
6691 relocation field. It therefore treats relocs against
6692 defined symbols in the same way as relocs against
6693 undefined symbols. */
6694 defined_p = FALSE;
6695 }
6696 else
6697 {
6698 if (sec != NULL && bfd_is_abs_section (sec))
6699 indx = 0;
6700 else if (sec == NULL || sec->owner == NULL)
6701 {
6702 bfd_set_error (bfd_error_bad_value);
6703 return FALSE;
6704 }
6705 else
6706 {
6707 indx = elf_section_data (sec->output_section)->dynindx;
6708 if (indx == 0)
6709 {
6710 asection *osec = htab->root.text_index_section;
6711 indx = elf_section_data (osec)->dynindx;
6712 }
6713 if (indx == 0)
6714 abort ();
6715 }
6716
6717 /* Instead of generating a relocation using the section
6718 symbol, we may as well make it a fully relative
6719 relocation. We want to avoid generating relocations to
6720 local symbols because we used to generate them
6721 incorrectly, without adding the original symbol value,
6722 which is mandated by the ABI for section symbols. In
6723 order to give dynamic loaders and applications time to
6724 phase out the incorrect use, we refrain from emitting
6725 section-relative relocations. It's not like they're
6726 useful, after all. This should be a bit more efficient
6727 as well. */
6728 /* ??? Although this behavior is compatible with glibc's ld.so,
6729 the ABI says that relocations against STN_UNDEF should have
6730 a symbol value of 0. Irix rld honors this, so relocations
6731 against STN_UNDEF have no effect. */
6732 if (!SGI_COMPAT (output_bfd))
6733 indx = 0;
6734 defined_p = TRUE;
6735 }
6736
6737 /* If the relocation was previously an absolute relocation and
6738 this symbol will not be referred to by the relocation, we must
6739 adjust it by the value we give it in the dynamic symbol table.
6740 Otherwise leave the job up to the dynamic linker. */
6741 if (defined_p && r_type != R_MIPS_REL32)
6742 *addendp += symbol;
6743
6744 if (htab->is_vxworks)
6745 /* VxWorks uses non-relative relocations for this. */
6746 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6747 else
6748 /* The relocation is always an REL32 relocation because we don't
6749 know where the shared library will wind up at load-time. */
6750 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6751 R_MIPS_REL32);
6752
6753 /* For strict adherence to the ABI specification, we should
6754 generate a R_MIPS_64 relocation record by itself before the
6755 _REL32/_64 record as well, such that the addend is read in as
6756 a 64-bit value (REL32 is a 32-bit relocation, after all).
6757 However, since none of the existing ELF64 MIPS dynamic
6758 loaders seems to care, we don't waste space with these
6759 artificial relocations. If this turns out to not be true,
6760 mips_elf_allocate_dynamic_relocation() should be tweaked so
6761 as to make room for a pair of dynamic relocations per
6762 invocation if ABI_64_P, and here we should generate an
6763 additional relocation record with R_MIPS_64 by itself for a
6764 NULL symbol before this relocation record. */
6765 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6766 ABI_64_P (output_bfd)
6767 ? R_MIPS_64
6768 : R_MIPS_NONE);
6769 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6770
6771 /* Adjust the output offset of the relocation to reference the
6772 correct location in the output file. */
6773 outrel[0].r_offset += (input_section->output_section->vma
6774 + input_section->output_offset);
6775 outrel[1].r_offset += (input_section->output_section->vma
6776 + input_section->output_offset);
6777 outrel[2].r_offset += (input_section->output_section->vma
6778 + input_section->output_offset);
6779
6780 /* Put the relocation back out. We have to use the special
6781 relocation outputter in the 64-bit case since the 64-bit
6782 relocation format is non-standard. */
6783 if (ABI_64_P (output_bfd))
6784 {
6785 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6786 (output_bfd, &outrel[0],
6787 (sreloc->contents
6788 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6789 }
6790 else if (htab->is_vxworks)
6791 {
6792 /* VxWorks uses RELA rather than REL dynamic relocations. */
6793 outrel[0].r_addend = *addendp;
6794 bfd_elf32_swap_reloca_out
6795 (output_bfd, &outrel[0],
6796 (sreloc->contents
6797 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6798 }
6799 else
6800 bfd_elf32_swap_reloc_out
6801 (output_bfd, &outrel[0],
6802 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6803
6804 /* We've now added another relocation. */
6805 ++sreloc->reloc_count;
6806
6807 /* Make sure the output section is writable. The dynamic linker
6808 will be writing to it. */
6809 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6810 |= SHF_WRITE;
6811
6812 /* On IRIX5, make an entry of compact relocation info. */
6813 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6814 {
6815 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6816 bfd_byte *cr;
6817
6818 if (scpt)
6819 {
6820 Elf32_crinfo cptrel;
6821
6822 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6823 cptrel.vaddr = (rel->r_offset
6824 + input_section->output_section->vma
6825 + input_section->output_offset);
6826 if (r_type == R_MIPS_REL32)
6827 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6828 else
6829 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6830 mips_elf_set_cr_dist2to (cptrel, 0);
6831 cptrel.konst = *addendp;
6832
6833 cr = (scpt->contents
6834 + sizeof (Elf32_External_compact_rel));
6835 mips_elf_set_cr_relvaddr (cptrel, 0);
6836 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6837 ((Elf32_External_crinfo *) cr
6838 + scpt->reloc_count));
6839 ++scpt->reloc_count;
6840 }
6841 }
6842
6843 /* If we've written this relocation for a readonly section,
6844 we need to set DF_TEXTREL again, so that we do not delete the
6845 DT_TEXTREL tag. */
6846 if (MIPS_ELF_READONLY_SECTION (input_section))
6847 info->flags |= DF_TEXTREL;
6848
6849 return TRUE;
6850 }
6851 \f
6852 /* Return the MACH for a MIPS e_flags value. */
6853
6854 unsigned long
6855 _bfd_elf_mips_mach (flagword flags)
6856 {
6857 switch (flags & EF_MIPS_MACH)
6858 {
6859 case E_MIPS_MACH_3900:
6860 return bfd_mach_mips3900;
6861
6862 case E_MIPS_MACH_4010:
6863 return bfd_mach_mips4010;
6864
6865 case E_MIPS_MACH_4100:
6866 return bfd_mach_mips4100;
6867
6868 case E_MIPS_MACH_4111:
6869 return bfd_mach_mips4111;
6870
6871 case E_MIPS_MACH_4120:
6872 return bfd_mach_mips4120;
6873
6874 case E_MIPS_MACH_4650:
6875 return bfd_mach_mips4650;
6876
6877 case E_MIPS_MACH_5400:
6878 return bfd_mach_mips5400;
6879
6880 case E_MIPS_MACH_5500:
6881 return bfd_mach_mips5500;
6882
6883 case E_MIPS_MACH_5900:
6884 return bfd_mach_mips5900;
6885
6886 case E_MIPS_MACH_9000:
6887 return bfd_mach_mips9000;
6888
6889 case E_MIPS_MACH_SB1:
6890 return bfd_mach_mips_sb1;
6891
6892 case E_MIPS_MACH_LS2E:
6893 return bfd_mach_mips_loongson_2e;
6894
6895 case E_MIPS_MACH_LS2F:
6896 return bfd_mach_mips_loongson_2f;
6897
6898 case E_MIPS_MACH_GS464:
6899 return bfd_mach_mips_gs464;
6900
6901 case E_MIPS_MACH_GS464E:
6902 return bfd_mach_mips_gs464e;
6903
6904 case E_MIPS_MACH_GS264E:
6905 return bfd_mach_mips_gs264e;
6906
6907 case E_MIPS_MACH_OCTEON3:
6908 return bfd_mach_mips_octeon3;
6909
6910 case E_MIPS_MACH_OCTEON2:
6911 return bfd_mach_mips_octeon2;
6912
6913 case E_MIPS_MACH_OCTEON:
6914 return bfd_mach_mips_octeon;
6915
6916 case E_MIPS_MACH_XLR:
6917 return bfd_mach_mips_xlr;
6918
6919 case E_MIPS_MACH_IAMR2:
6920 return bfd_mach_mips_interaptiv_mr2;
6921
6922 default:
6923 switch (flags & EF_MIPS_ARCH)
6924 {
6925 default:
6926 case E_MIPS_ARCH_1:
6927 return bfd_mach_mips3000;
6928
6929 case E_MIPS_ARCH_2:
6930 return bfd_mach_mips6000;
6931
6932 case E_MIPS_ARCH_3:
6933 return bfd_mach_mips4000;
6934
6935 case E_MIPS_ARCH_4:
6936 return bfd_mach_mips8000;
6937
6938 case E_MIPS_ARCH_5:
6939 return bfd_mach_mips5;
6940
6941 case E_MIPS_ARCH_32:
6942 return bfd_mach_mipsisa32;
6943
6944 case E_MIPS_ARCH_64:
6945 return bfd_mach_mipsisa64;
6946
6947 case E_MIPS_ARCH_32R2:
6948 return bfd_mach_mipsisa32r2;
6949
6950 case E_MIPS_ARCH_64R2:
6951 return bfd_mach_mipsisa64r2;
6952
6953 case E_MIPS_ARCH_32R6:
6954 return bfd_mach_mipsisa32r6;
6955
6956 case E_MIPS_ARCH_64R6:
6957 return bfd_mach_mipsisa64r6;
6958 }
6959 }
6960
6961 return 0;
6962 }
6963
6964 /* Return printable name for ABI. */
6965
6966 static INLINE char *
6967 elf_mips_abi_name (bfd *abfd)
6968 {
6969 flagword flags;
6970
6971 flags = elf_elfheader (abfd)->e_flags;
6972 switch (flags & EF_MIPS_ABI)
6973 {
6974 case 0:
6975 if (ABI_N32_P (abfd))
6976 return "N32";
6977 else if (ABI_64_P (abfd))
6978 return "64";
6979 else
6980 return "none";
6981 case E_MIPS_ABI_O32:
6982 return "O32";
6983 case E_MIPS_ABI_O64:
6984 return "O64";
6985 case E_MIPS_ABI_EABI32:
6986 return "EABI32";
6987 case E_MIPS_ABI_EABI64:
6988 return "EABI64";
6989 default:
6990 return "unknown abi";
6991 }
6992 }
6993 \f
6994 /* MIPS ELF uses two common sections. One is the usual one, and the
6995 other is for small objects. All the small objects are kept
6996 together, and then referenced via the gp pointer, which yields
6997 faster assembler code. This is what we use for the small common
6998 section. This approach is copied from ecoff.c. */
6999 static asection mips_elf_scom_section;
7000 static asymbol mips_elf_scom_symbol;
7001 static asymbol *mips_elf_scom_symbol_ptr;
7002
7003 /* MIPS ELF also uses an acommon section, which represents an
7004 allocated common symbol which may be overridden by a
7005 definition in a shared library. */
7006 static asection mips_elf_acom_section;
7007 static asymbol mips_elf_acom_symbol;
7008 static asymbol *mips_elf_acom_symbol_ptr;
7009
7010 /* This is used for both the 32-bit and the 64-bit ABI. */
7011
7012 void
7013 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7014 {
7015 elf_symbol_type *elfsym;
7016
7017 /* Handle the special MIPS section numbers that a symbol may use. */
7018 elfsym = (elf_symbol_type *) asym;
7019 switch (elfsym->internal_elf_sym.st_shndx)
7020 {
7021 case SHN_MIPS_ACOMMON:
7022 /* This section is used in a dynamically linked executable file.
7023 It is an allocated common section. The dynamic linker can
7024 either resolve these symbols to something in a shared
7025 library, or it can just leave them here. For our purposes,
7026 we can consider these symbols to be in a new section. */
7027 if (mips_elf_acom_section.name == NULL)
7028 {
7029 /* Initialize the acommon section. */
7030 mips_elf_acom_section.name = ".acommon";
7031 mips_elf_acom_section.flags = SEC_ALLOC;
7032 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7033 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7034 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7035 mips_elf_acom_symbol.name = ".acommon";
7036 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7037 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7038 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7039 }
7040 asym->section = &mips_elf_acom_section;
7041 break;
7042
7043 case SHN_COMMON:
7044 /* Common symbols less than the GP size are automatically
7045 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7046 if (asym->value > elf_gp_size (abfd)
7047 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7048 || IRIX_COMPAT (abfd) == ict_irix6)
7049 break;
7050 /* Fall through. */
7051 case SHN_MIPS_SCOMMON:
7052 if (mips_elf_scom_section.name == NULL)
7053 {
7054 /* Initialize the small common section. */
7055 mips_elf_scom_section.name = ".scommon";
7056 mips_elf_scom_section.flags = SEC_IS_COMMON;
7057 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7058 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7059 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7060 mips_elf_scom_symbol.name = ".scommon";
7061 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7062 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7063 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7064 }
7065 asym->section = &mips_elf_scom_section;
7066 asym->value = elfsym->internal_elf_sym.st_size;
7067 break;
7068
7069 case SHN_MIPS_SUNDEFINED:
7070 asym->section = bfd_und_section_ptr;
7071 break;
7072
7073 case SHN_MIPS_TEXT:
7074 {
7075 asection *section = bfd_get_section_by_name (abfd, ".text");
7076
7077 if (section != NULL)
7078 {
7079 asym->section = section;
7080 /* MIPS_TEXT is a bit special, the address is not an offset
7081 to the base of the .text section. So subtract the section
7082 base address to make it an offset. */
7083 asym->value -= section->vma;
7084 }
7085 }
7086 break;
7087
7088 case SHN_MIPS_DATA:
7089 {
7090 asection *section = bfd_get_section_by_name (abfd, ".data");
7091
7092 if (section != NULL)
7093 {
7094 asym->section = section;
7095 /* MIPS_DATA is a bit special, the address is not an offset
7096 to the base of the .data section. So subtract the section
7097 base address to make it an offset. */
7098 asym->value -= section->vma;
7099 }
7100 }
7101 break;
7102 }
7103
7104 /* If this is an odd-valued function symbol, assume it's a MIPS16
7105 or microMIPS one. */
7106 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7107 && (asym->value & 1) != 0)
7108 {
7109 asym->value--;
7110 if (MICROMIPS_P (abfd))
7111 elfsym->internal_elf_sym.st_other
7112 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7113 else
7114 elfsym->internal_elf_sym.st_other
7115 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7116 }
7117 }
7118 \f
7119 /* Implement elf_backend_eh_frame_address_size. This differs from
7120 the default in the way it handles EABI64.
7121
7122 EABI64 was originally specified as an LP64 ABI, and that is what
7123 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7124 historically accepted the combination of -mabi=eabi and -mlong32,
7125 and this ILP32 variation has become semi-official over time.
7126 Both forms use elf32 and have pointer-sized FDE addresses.
7127
7128 If an EABI object was generated by GCC 4.0 or above, it will have
7129 an empty .gcc_compiled_longXX section, where XX is the size of longs
7130 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7131 have no special marking to distinguish them from LP64 objects.
7132
7133 We don't want users of the official LP64 ABI to be punished for the
7134 existence of the ILP32 variant, but at the same time, we don't want
7135 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7136 We therefore take the following approach:
7137
7138 - If ABFD contains a .gcc_compiled_longXX section, use it to
7139 determine the pointer size.
7140
7141 - Otherwise check the type of the first relocation. Assume that
7142 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7143
7144 - Otherwise punt.
7145
7146 The second check is enough to detect LP64 objects generated by pre-4.0
7147 compilers because, in the kind of output generated by those compilers,
7148 the first relocation will be associated with either a CIE personality
7149 routine or an FDE start address. Furthermore, the compilers never
7150 used a special (non-pointer) encoding for this ABI.
7151
7152 Checking the relocation type should also be safe because there is no
7153 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7154 did so. */
7155
7156 unsigned int
7157 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7158 {
7159 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7160 return 8;
7161 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7162 {
7163 bfd_boolean long32_p, long64_p;
7164
7165 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7166 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7167 if (long32_p && long64_p)
7168 return 0;
7169 if (long32_p)
7170 return 4;
7171 if (long64_p)
7172 return 8;
7173
7174 if (sec->reloc_count > 0
7175 && elf_section_data (sec)->relocs != NULL
7176 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7177 == R_MIPS_64))
7178 return 8;
7179
7180 return 0;
7181 }
7182 return 4;
7183 }
7184 \f
7185 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7186 relocations against two unnamed section symbols to resolve to the
7187 same address. For example, if we have code like:
7188
7189 lw $4,%got_disp(.data)($gp)
7190 lw $25,%got_disp(.text)($gp)
7191 jalr $25
7192
7193 then the linker will resolve both relocations to .data and the program
7194 will jump there rather than to .text.
7195
7196 We can work around this problem by giving names to local section symbols.
7197 This is also what the MIPSpro tools do. */
7198
7199 bfd_boolean
7200 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7201 {
7202 return SGI_COMPAT (abfd);
7203 }
7204 \f
7205 /* Work over a section just before writing it out. This routine is
7206 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7207 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7208 a better way. */
7209
7210 bfd_boolean
7211 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7212 {
7213 if (hdr->sh_type == SHT_MIPS_REGINFO
7214 && hdr->sh_size > 0)
7215 {
7216 bfd_byte buf[4];
7217
7218 BFD_ASSERT (hdr->contents == NULL);
7219
7220 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7221 {
7222 _bfd_error_handler
7223 (_("%pB: incorrect `.reginfo' section size; "
7224 "expected %" PRIu64 ", got %" PRIu64),
7225 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7226 (uint64_t) hdr->sh_size);
7227 bfd_set_error (bfd_error_bad_value);
7228 return FALSE;
7229 }
7230
7231 if (bfd_seek (abfd,
7232 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7233 SEEK_SET) != 0)
7234 return FALSE;
7235 H_PUT_32 (abfd, elf_gp (abfd), buf);
7236 if (bfd_bwrite (buf, 4, abfd) != 4)
7237 return FALSE;
7238 }
7239
7240 if (hdr->sh_type == SHT_MIPS_OPTIONS
7241 && hdr->bfd_section != NULL
7242 && mips_elf_section_data (hdr->bfd_section) != NULL
7243 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7244 {
7245 bfd_byte *contents, *l, *lend;
7246
7247 /* We stored the section contents in the tdata field in the
7248 set_section_contents routine. We save the section contents
7249 so that we don't have to read them again.
7250 At this point we know that elf_gp is set, so we can look
7251 through the section contents to see if there is an
7252 ODK_REGINFO structure. */
7253
7254 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7255 l = contents;
7256 lend = contents + hdr->sh_size;
7257 while (l + sizeof (Elf_External_Options) <= lend)
7258 {
7259 Elf_Internal_Options intopt;
7260
7261 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7262 &intopt);
7263 if (intopt.size < sizeof (Elf_External_Options))
7264 {
7265 _bfd_error_handler
7266 /* xgettext:c-format */
7267 (_("%pB: warning: bad `%s' option size %u smaller than"
7268 " its header"),
7269 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7270 break;
7271 }
7272 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7273 {
7274 bfd_byte buf[8];
7275
7276 if (bfd_seek (abfd,
7277 (hdr->sh_offset
7278 + (l - contents)
7279 + sizeof (Elf_External_Options)
7280 + (sizeof (Elf64_External_RegInfo) - 8)),
7281 SEEK_SET) != 0)
7282 return FALSE;
7283 H_PUT_64 (abfd, elf_gp (abfd), buf);
7284 if (bfd_bwrite (buf, 8, abfd) != 8)
7285 return FALSE;
7286 }
7287 else if (intopt.kind == ODK_REGINFO)
7288 {
7289 bfd_byte buf[4];
7290
7291 if (bfd_seek (abfd,
7292 (hdr->sh_offset
7293 + (l - contents)
7294 + sizeof (Elf_External_Options)
7295 + (sizeof (Elf32_External_RegInfo) - 4)),
7296 SEEK_SET) != 0)
7297 return FALSE;
7298 H_PUT_32 (abfd, elf_gp (abfd), buf);
7299 if (bfd_bwrite (buf, 4, abfd) != 4)
7300 return FALSE;
7301 }
7302 l += intopt.size;
7303 }
7304 }
7305
7306 if (hdr->bfd_section != NULL)
7307 {
7308 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7309
7310 /* .sbss is not handled specially here because the GNU/Linux
7311 prelinker can convert .sbss from NOBITS to PROGBITS and
7312 changing it back to NOBITS breaks the binary. The entry in
7313 _bfd_mips_elf_special_sections will ensure the correct flags
7314 are set on .sbss if BFD creates it without reading it from an
7315 input file, and without special handling here the flags set
7316 on it in an input file will be followed. */
7317 if (strcmp (name, ".sdata") == 0
7318 || strcmp (name, ".lit8") == 0
7319 || strcmp (name, ".lit4") == 0)
7320 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7321 else if (strcmp (name, ".srdata") == 0)
7322 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7323 else if (strcmp (name, ".compact_rel") == 0)
7324 hdr->sh_flags = 0;
7325 else if (strcmp (name, ".rtproc") == 0)
7326 {
7327 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7328 {
7329 unsigned int adjust;
7330
7331 adjust = hdr->sh_size % hdr->sh_addralign;
7332 if (adjust != 0)
7333 hdr->sh_size += hdr->sh_addralign - adjust;
7334 }
7335 }
7336 }
7337
7338 return TRUE;
7339 }
7340
7341 /* Handle a MIPS specific section when reading an object file. This
7342 is called when elfcode.h finds a section with an unknown type.
7343 This routine supports both the 32-bit and 64-bit ELF ABI.
7344
7345 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7346 how to. */
7347
7348 bfd_boolean
7349 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7350 Elf_Internal_Shdr *hdr,
7351 const char *name,
7352 int shindex)
7353 {
7354 flagword flags = 0;
7355
7356 /* There ought to be a place to keep ELF backend specific flags, but
7357 at the moment there isn't one. We just keep track of the
7358 sections by their name, instead. Fortunately, the ABI gives
7359 suggested names for all the MIPS specific sections, so we will
7360 probably get away with this. */
7361 switch (hdr->sh_type)
7362 {
7363 case SHT_MIPS_LIBLIST:
7364 if (strcmp (name, ".liblist") != 0)
7365 return FALSE;
7366 break;
7367 case SHT_MIPS_MSYM:
7368 if (strcmp (name, ".msym") != 0)
7369 return FALSE;
7370 break;
7371 case SHT_MIPS_CONFLICT:
7372 if (strcmp (name, ".conflict") != 0)
7373 return FALSE;
7374 break;
7375 case SHT_MIPS_GPTAB:
7376 if (! CONST_STRNEQ (name, ".gptab."))
7377 return FALSE;
7378 break;
7379 case SHT_MIPS_UCODE:
7380 if (strcmp (name, ".ucode") != 0)
7381 return FALSE;
7382 break;
7383 case SHT_MIPS_DEBUG:
7384 if (strcmp (name, ".mdebug") != 0)
7385 return FALSE;
7386 flags = SEC_DEBUGGING;
7387 break;
7388 case SHT_MIPS_REGINFO:
7389 if (strcmp (name, ".reginfo") != 0
7390 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7391 return FALSE;
7392 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7393 break;
7394 case SHT_MIPS_IFACE:
7395 if (strcmp (name, ".MIPS.interfaces") != 0)
7396 return FALSE;
7397 break;
7398 case SHT_MIPS_CONTENT:
7399 if (! CONST_STRNEQ (name, ".MIPS.content"))
7400 return FALSE;
7401 break;
7402 case SHT_MIPS_OPTIONS:
7403 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7404 return FALSE;
7405 break;
7406 case SHT_MIPS_ABIFLAGS:
7407 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7408 return FALSE;
7409 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7410 break;
7411 case SHT_MIPS_DWARF:
7412 if (! CONST_STRNEQ (name, ".debug_")
7413 && ! CONST_STRNEQ (name, ".zdebug_"))
7414 return FALSE;
7415 break;
7416 case SHT_MIPS_SYMBOL_LIB:
7417 if (strcmp (name, ".MIPS.symlib") != 0)
7418 return FALSE;
7419 break;
7420 case SHT_MIPS_EVENTS:
7421 if (! CONST_STRNEQ (name, ".MIPS.events")
7422 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7423 return FALSE;
7424 break;
7425 default:
7426 break;
7427 }
7428
7429 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7430 return FALSE;
7431
7432 if (flags)
7433 {
7434 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7435 (bfd_get_section_flags (abfd,
7436 hdr->bfd_section)
7437 | flags)))
7438 return FALSE;
7439 }
7440
7441 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7442 {
7443 Elf_External_ABIFlags_v0 ext;
7444
7445 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7446 &ext, 0, sizeof ext))
7447 return FALSE;
7448 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7449 &mips_elf_tdata (abfd)->abiflags);
7450 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7451 return FALSE;
7452 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7453 }
7454
7455 /* FIXME: We should record sh_info for a .gptab section. */
7456
7457 /* For a .reginfo section, set the gp value in the tdata information
7458 from the contents of this section. We need the gp value while
7459 processing relocs, so we just get it now. The .reginfo section
7460 is not used in the 64-bit MIPS ELF ABI. */
7461 if (hdr->sh_type == SHT_MIPS_REGINFO)
7462 {
7463 Elf32_External_RegInfo ext;
7464 Elf32_RegInfo s;
7465
7466 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7467 &ext, 0, sizeof ext))
7468 return FALSE;
7469 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7470 elf_gp (abfd) = s.ri_gp_value;
7471 }
7472
7473 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7474 set the gp value based on what we find. We may see both
7475 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7476 they should agree. */
7477 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7478 {
7479 bfd_byte *contents, *l, *lend;
7480
7481 contents = bfd_malloc (hdr->sh_size);
7482 if (contents == NULL)
7483 return FALSE;
7484 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7485 0, hdr->sh_size))
7486 {
7487 free (contents);
7488 return FALSE;
7489 }
7490 l = contents;
7491 lend = contents + hdr->sh_size;
7492 while (l + sizeof (Elf_External_Options) <= lend)
7493 {
7494 Elf_Internal_Options intopt;
7495
7496 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7497 &intopt);
7498 if (intopt.size < sizeof (Elf_External_Options))
7499 {
7500 _bfd_error_handler
7501 /* xgettext:c-format */
7502 (_("%pB: warning: bad `%s' option size %u smaller than"
7503 " its header"),
7504 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7505 break;
7506 }
7507 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7508 {
7509 Elf64_Internal_RegInfo intreg;
7510
7511 bfd_mips_elf64_swap_reginfo_in
7512 (abfd,
7513 ((Elf64_External_RegInfo *)
7514 (l + sizeof (Elf_External_Options))),
7515 &intreg);
7516 elf_gp (abfd) = intreg.ri_gp_value;
7517 }
7518 else if (intopt.kind == ODK_REGINFO)
7519 {
7520 Elf32_RegInfo intreg;
7521
7522 bfd_mips_elf32_swap_reginfo_in
7523 (abfd,
7524 ((Elf32_External_RegInfo *)
7525 (l + sizeof (Elf_External_Options))),
7526 &intreg);
7527 elf_gp (abfd) = intreg.ri_gp_value;
7528 }
7529 l += intopt.size;
7530 }
7531 free (contents);
7532 }
7533
7534 return TRUE;
7535 }
7536
7537 /* Set the correct type for a MIPS ELF section. We do this by the
7538 section name, which is a hack, but ought to work. This routine is
7539 used by both the 32-bit and the 64-bit ABI. */
7540
7541 bfd_boolean
7542 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7543 {
7544 const char *name = bfd_get_section_name (abfd, sec);
7545
7546 if (strcmp (name, ".liblist") == 0)
7547 {
7548 hdr->sh_type = SHT_MIPS_LIBLIST;
7549 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7550 /* The sh_link field is set in final_write_processing. */
7551 }
7552 else if (strcmp (name, ".conflict") == 0)
7553 hdr->sh_type = SHT_MIPS_CONFLICT;
7554 else if (CONST_STRNEQ (name, ".gptab."))
7555 {
7556 hdr->sh_type = SHT_MIPS_GPTAB;
7557 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7558 /* The sh_info field is set in final_write_processing. */
7559 }
7560 else if (strcmp (name, ".ucode") == 0)
7561 hdr->sh_type = SHT_MIPS_UCODE;
7562 else if (strcmp (name, ".mdebug") == 0)
7563 {
7564 hdr->sh_type = SHT_MIPS_DEBUG;
7565 /* In a shared object on IRIX 5.3, the .mdebug section has an
7566 entsize of 0. FIXME: Does this matter? */
7567 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7568 hdr->sh_entsize = 0;
7569 else
7570 hdr->sh_entsize = 1;
7571 }
7572 else if (strcmp (name, ".reginfo") == 0)
7573 {
7574 hdr->sh_type = SHT_MIPS_REGINFO;
7575 /* In a shared object on IRIX 5.3, the .reginfo section has an
7576 entsize of 0x18. FIXME: Does this matter? */
7577 if (SGI_COMPAT (abfd))
7578 {
7579 if ((abfd->flags & DYNAMIC) != 0)
7580 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7581 else
7582 hdr->sh_entsize = 1;
7583 }
7584 else
7585 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7586 }
7587 else if (SGI_COMPAT (abfd)
7588 && (strcmp (name, ".hash") == 0
7589 || strcmp (name, ".dynamic") == 0
7590 || strcmp (name, ".dynstr") == 0))
7591 {
7592 if (SGI_COMPAT (abfd))
7593 hdr->sh_entsize = 0;
7594 #if 0
7595 /* This isn't how the IRIX6 linker behaves. */
7596 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7597 #endif
7598 }
7599 else if (strcmp (name, ".got") == 0
7600 || strcmp (name, ".srdata") == 0
7601 || strcmp (name, ".sdata") == 0
7602 || strcmp (name, ".sbss") == 0
7603 || strcmp (name, ".lit4") == 0
7604 || strcmp (name, ".lit8") == 0)
7605 hdr->sh_flags |= SHF_MIPS_GPREL;
7606 else if (strcmp (name, ".MIPS.interfaces") == 0)
7607 {
7608 hdr->sh_type = SHT_MIPS_IFACE;
7609 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7610 }
7611 else if (CONST_STRNEQ (name, ".MIPS.content"))
7612 {
7613 hdr->sh_type = SHT_MIPS_CONTENT;
7614 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7615 /* The sh_info field is set in final_write_processing. */
7616 }
7617 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7618 {
7619 hdr->sh_type = SHT_MIPS_OPTIONS;
7620 hdr->sh_entsize = 1;
7621 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7622 }
7623 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7624 {
7625 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7626 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7627 }
7628 else if (CONST_STRNEQ (name, ".debug_")
7629 || CONST_STRNEQ (name, ".zdebug_"))
7630 {
7631 hdr->sh_type = SHT_MIPS_DWARF;
7632
7633 /* Irix facilities such as libexc expect a single .debug_frame
7634 per executable, the system ones have NOSTRIP set and the linker
7635 doesn't merge sections with different flags so ... */
7636 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7637 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7638 }
7639 else if (strcmp (name, ".MIPS.symlib") == 0)
7640 {
7641 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7642 /* The sh_link and sh_info fields are set in
7643 final_write_processing. */
7644 }
7645 else if (CONST_STRNEQ (name, ".MIPS.events")
7646 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7647 {
7648 hdr->sh_type = SHT_MIPS_EVENTS;
7649 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7650 /* The sh_link field is set in final_write_processing. */
7651 }
7652 else if (strcmp (name, ".msym") == 0)
7653 {
7654 hdr->sh_type = SHT_MIPS_MSYM;
7655 hdr->sh_flags |= SHF_ALLOC;
7656 hdr->sh_entsize = 8;
7657 }
7658
7659 /* The generic elf_fake_sections will set up REL_HDR using the default
7660 kind of relocations. We used to set up a second header for the
7661 non-default kind of relocations here, but only NewABI would use
7662 these, and the IRIX ld doesn't like resulting empty RELA sections.
7663 Thus we create those header only on demand now. */
7664
7665 return TRUE;
7666 }
7667
7668 /* Given a BFD section, try to locate the corresponding ELF section
7669 index. This is used by both the 32-bit and the 64-bit ABI.
7670 Actually, it's not clear to me that the 64-bit ABI supports these,
7671 but for non-PIC objects we will certainly want support for at least
7672 the .scommon section. */
7673
7674 bfd_boolean
7675 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7676 asection *sec, int *retval)
7677 {
7678 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7679 {
7680 *retval = SHN_MIPS_SCOMMON;
7681 return TRUE;
7682 }
7683 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7684 {
7685 *retval = SHN_MIPS_ACOMMON;
7686 return TRUE;
7687 }
7688 return FALSE;
7689 }
7690 \f
7691 /* Hook called by the linker routine which adds symbols from an object
7692 file. We must handle the special MIPS section numbers here. */
7693
7694 bfd_boolean
7695 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7696 Elf_Internal_Sym *sym, const char **namep,
7697 flagword *flagsp ATTRIBUTE_UNUSED,
7698 asection **secp, bfd_vma *valp)
7699 {
7700 if (SGI_COMPAT (abfd)
7701 && (abfd->flags & DYNAMIC) != 0
7702 && strcmp (*namep, "_rld_new_interface") == 0)
7703 {
7704 /* Skip IRIX5 rld entry name. */
7705 *namep = NULL;
7706 return TRUE;
7707 }
7708
7709 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7710 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7711 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7712 a magic symbol resolved by the linker, we ignore this bogus definition
7713 of _gp_disp. New ABI objects do not suffer from this problem so this
7714 is not done for them. */
7715 if (!NEWABI_P(abfd)
7716 && (sym->st_shndx == SHN_ABS)
7717 && (strcmp (*namep, "_gp_disp") == 0))
7718 {
7719 *namep = NULL;
7720 return TRUE;
7721 }
7722
7723 switch (sym->st_shndx)
7724 {
7725 case SHN_COMMON:
7726 /* Common symbols less than the GP size are automatically
7727 treated as SHN_MIPS_SCOMMON symbols. */
7728 if (sym->st_size > elf_gp_size (abfd)
7729 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7730 || IRIX_COMPAT (abfd) == ict_irix6)
7731 break;
7732 /* Fall through. */
7733 case SHN_MIPS_SCOMMON:
7734 *secp = bfd_make_section_old_way (abfd, ".scommon");
7735 (*secp)->flags |= SEC_IS_COMMON;
7736 *valp = sym->st_size;
7737 break;
7738
7739 case SHN_MIPS_TEXT:
7740 /* This section is used in a shared object. */
7741 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7742 {
7743 asymbol *elf_text_symbol;
7744 asection *elf_text_section;
7745 bfd_size_type amt = sizeof (asection);
7746
7747 elf_text_section = bfd_zalloc (abfd, amt);
7748 if (elf_text_section == NULL)
7749 return FALSE;
7750
7751 amt = sizeof (asymbol);
7752 elf_text_symbol = bfd_zalloc (abfd, amt);
7753 if (elf_text_symbol == NULL)
7754 return FALSE;
7755
7756 /* Initialize the section. */
7757
7758 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7759 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7760
7761 elf_text_section->symbol = elf_text_symbol;
7762 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7763
7764 elf_text_section->name = ".text";
7765 elf_text_section->flags = SEC_NO_FLAGS;
7766 elf_text_section->output_section = NULL;
7767 elf_text_section->owner = abfd;
7768 elf_text_symbol->name = ".text";
7769 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7770 elf_text_symbol->section = elf_text_section;
7771 }
7772 /* This code used to do *secp = bfd_und_section_ptr if
7773 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7774 so I took it out. */
7775 *secp = mips_elf_tdata (abfd)->elf_text_section;
7776 break;
7777
7778 case SHN_MIPS_ACOMMON:
7779 /* Fall through. XXX Can we treat this as allocated data? */
7780 case SHN_MIPS_DATA:
7781 /* This section is used in a shared object. */
7782 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7783 {
7784 asymbol *elf_data_symbol;
7785 asection *elf_data_section;
7786 bfd_size_type amt = sizeof (asection);
7787
7788 elf_data_section = bfd_zalloc (abfd, amt);
7789 if (elf_data_section == NULL)
7790 return FALSE;
7791
7792 amt = sizeof (asymbol);
7793 elf_data_symbol = bfd_zalloc (abfd, amt);
7794 if (elf_data_symbol == NULL)
7795 return FALSE;
7796
7797 /* Initialize the section. */
7798
7799 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7800 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7801
7802 elf_data_section->symbol = elf_data_symbol;
7803 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7804
7805 elf_data_section->name = ".data";
7806 elf_data_section->flags = SEC_NO_FLAGS;
7807 elf_data_section->output_section = NULL;
7808 elf_data_section->owner = abfd;
7809 elf_data_symbol->name = ".data";
7810 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7811 elf_data_symbol->section = elf_data_section;
7812 }
7813 /* This code used to do *secp = bfd_und_section_ptr if
7814 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7815 so I took it out. */
7816 *secp = mips_elf_tdata (abfd)->elf_data_section;
7817 break;
7818
7819 case SHN_MIPS_SUNDEFINED:
7820 *secp = bfd_und_section_ptr;
7821 break;
7822 }
7823
7824 if (SGI_COMPAT (abfd)
7825 && ! bfd_link_pic (info)
7826 && info->output_bfd->xvec == abfd->xvec
7827 && strcmp (*namep, "__rld_obj_head") == 0)
7828 {
7829 struct elf_link_hash_entry *h;
7830 struct bfd_link_hash_entry *bh;
7831
7832 /* Mark __rld_obj_head as dynamic. */
7833 bh = NULL;
7834 if (! (_bfd_generic_link_add_one_symbol
7835 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7836 get_elf_backend_data (abfd)->collect, &bh)))
7837 return FALSE;
7838
7839 h = (struct elf_link_hash_entry *) bh;
7840 h->non_elf = 0;
7841 h->def_regular = 1;
7842 h->type = STT_OBJECT;
7843
7844 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7845 return FALSE;
7846
7847 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7848 mips_elf_hash_table (info)->rld_symbol = h;
7849 }
7850
7851 /* If this is a mips16 text symbol, add 1 to the value to make it
7852 odd. This will cause something like .word SYM to come up with
7853 the right value when it is loaded into the PC. */
7854 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7855 ++*valp;
7856
7857 return TRUE;
7858 }
7859
7860 /* This hook function is called before the linker writes out a global
7861 symbol. We mark symbols as small common if appropriate. This is
7862 also where we undo the increment of the value for a mips16 symbol. */
7863
7864 int
7865 _bfd_mips_elf_link_output_symbol_hook
7866 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7867 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7868 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7869 {
7870 /* If we see a common symbol, which implies a relocatable link, then
7871 if a symbol was small common in an input file, mark it as small
7872 common in the output file. */
7873 if (sym->st_shndx == SHN_COMMON
7874 && strcmp (input_sec->name, ".scommon") == 0)
7875 sym->st_shndx = SHN_MIPS_SCOMMON;
7876
7877 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7878 sym->st_value &= ~1;
7879
7880 return 1;
7881 }
7882 \f
7883 /* Functions for the dynamic linker. */
7884
7885 /* Create dynamic sections when linking against a dynamic object. */
7886
7887 bfd_boolean
7888 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7889 {
7890 struct elf_link_hash_entry *h;
7891 struct bfd_link_hash_entry *bh;
7892 flagword flags;
7893 register asection *s;
7894 const char * const *namep;
7895 struct mips_elf_link_hash_table *htab;
7896
7897 htab = mips_elf_hash_table (info);
7898 BFD_ASSERT (htab != NULL);
7899
7900 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7901 | SEC_LINKER_CREATED | SEC_READONLY);
7902
7903 /* The psABI requires a read-only .dynamic section, but the VxWorks
7904 EABI doesn't. */
7905 if (!htab->is_vxworks)
7906 {
7907 s = bfd_get_linker_section (abfd, ".dynamic");
7908 if (s != NULL)
7909 {
7910 if (! bfd_set_section_flags (abfd, s, flags))
7911 return FALSE;
7912 }
7913 }
7914
7915 /* We need to create .got section. */
7916 if (!mips_elf_create_got_section (abfd, info))
7917 return FALSE;
7918
7919 if (! mips_elf_rel_dyn_section (info, TRUE))
7920 return FALSE;
7921
7922 /* Create .stub section. */
7923 s = bfd_make_section_anyway_with_flags (abfd,
7924 MIPS_ELF_STUB_SECTION_NAME (abfd),
7925 flags | SEC_CODE);
7926 if (s == NULL
7927 || ! bfd_set_section_alignment (abfd, s,
7928 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7929 return FALSE;
7930 htab->sstubs = s;
7931
7932 if (!mips_elf_hash_table (info)->use_rld_obj_head
7933 && bfd_link_executable (info)
7934 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7935 {
7936 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7937 flags &~ (flagword) SEC_READONLY);
7938 if (s == NULL
7939 || ! bfd_set_section_alignment (abfd, s,
7940 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7941 return FALSE;
7942 }
7943
7944 /* On IRIX5, we adjust add some additional symbols and change the
7945 alignments of several sections. There is no ABI documentation
7946 indicating that this is necessary on IRIX6, nor any evidence that
7947 the linker takes such action. */
7948 if (IRIX_COMPAT (abfd) == ict_irix5)
7949 {
7950 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7951 {
7952 bh = NULL;
7953 if (! (_bfd_generic_link_add_one_symbol
7954 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7955 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7956 return FALSE;
7957
7958 h = (struct elf_link_hash_entry *) bh;
7959 h->mark = 1;
7960 h->non_elf = 0;
7961 h->def_regular = 1;
7962 h->type = STT_SECTION;
7963
7964 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7965 return FALSE;
7966 }
7967
7968 /* We need to create a .compact_rel section. */
7969 if (SGI_COMPAT (abfd))
7970 {
7971 if (!mips_elf_create_compact_rel_section (abfd, info))
7972 return FALSE;
7973 }
7974
7975 /* Change alignments of some sections. */
7976 s = bfd_get_linker_section (abfd, ".hash");
7977 if (s != NULL)
7978 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7979
7980 s = bfd_get_linker_section (abfd, ".dynsym");
7981 if (s != NULL)
7982 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7983
7984 s = bfd_get_linker_section (abfd, ".dynstr");
7985 if (s != NULL)
7986 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7987
7988 /* ??? */
7989 s = bfd_get_section_by_name (abfd, ".reginfo");
7990 if (s != NULL)
7991 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7992
7993 s = bfd_get_linker_section (abfd, ".dynamic");
7994 if (s != NULL)
7995 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7996 }
7997
7998 if (bfd_link_executable (info))
7999 {
8000 const char *name;
8001
8002 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8003 bh = NULL;
8004 if (!(_bfd_generic_link_add_one_symbol
8005 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8006 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8007 return FALSE;
8008
8009 h = (struct elf_link_hash_entry *) bh;
8010 h->non_elf = 0;
8011 h->def_regular = 1;
8012 h->type = STT_SECTION;
8013
8014 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8015 return FALSE;
8016
8017 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8018 {
8019 /* __rld_map is a four byte word located in the .data section
8020 and is filled in by the rtld to contain a pointer to
8021 the _r_debug structure. Its symbol value will be set in
8022 _bfd_mips_elf_finish_dynamic_symbol. */
8023 s = bfd_get_linker_section (abfd, ".rld_map");
8024 BFD_ASSERT (s != NULL);
8025
8026 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8027 bh = NULL;
8028 if (!(_bfd_generic_link_add_one_symbol
8029 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8030 get_elf_backend_data (abfd)->collect, &bh)))
8031 return FALSE;
8032
8033 h = (struct elf_link_hash_entry *) bh;
8034 h->non_elf = 0;
8035 h->def_regular = 1;
8036 h->type = STT_OBJECT;
8037
8038 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8039 return FALSE;
8040 mips_elf_hash_table (info)->rld_symbol = h;
8041 }
8042 }
8043
8044 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8045 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8046 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8047 return FALSE;
8048
8049 /* Do the usual VxWorks handling. */
8050 if (htab->is_vxworks
8051 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8052 return FALSE;
8053
8054 return TRUE;
8055 }
8056 \f
8057 /* Return true if relocation REL against section SEC is a REL rather than
8058 RELA relocation. RELOCS is the first relocation in the section and
8059 ABFD is the bfd that contains SEC. */
8060
8061 static bfd_boolean
8062 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8063 const Elf_Internal_Rela *relocs,
8064 const Elf_Internal_Rela *rel)
8065 {
8066 Elf_Internal_Shdr *rel_hdr;
8067 const struct elf_backend_data *bed;
8068
8069 /* To determine which flavor of relocation this is, we depend on the
8070 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8071 rel_hdr = elf_section_data (sec)->rel.hdr;
8072 if (rel_hdr == NULL)
8073 return FALSE;
8074 bed = get_elf_backend_data (abfd);
8075 return ((size_t) (rel - relocs)
8076 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8077 }
8078
8079 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8080 HOWTO is the relocation's howto and CONTENTS points to the contents
8081 of the section that REL is against. */
8082
8083 static bfd_vma
8084 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8085 reloc_howto_type *howto, bfd_byte *contents)
8086 {
8087 bfd_byte *location;
8088 unsigned int r_type;
8089 bfd_vma addend;
8090 bfd_vma bytes;
8091
8092 r_type = ELF_R_TYPE (abfd, rel->r_info);
8093 location = contents + rel->r_offset;
8094
8095 /* Get the addend, which is stored in the input file. */
8096 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8097 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8098 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8099
8100 addend = bytes & howto->src_mask;
8101
8102 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8103 accordingly. */
8104 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8105 addend <<= 1;
8106
8107 return addend;
8108 }
8109
8110 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8111 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8112 and update *ADDEND with the final addend. Return true on success
8113 or false if the LO16 could not be found. RELEND is the exclusive
8114 upper bound on the relocations for REL's section. */
8115
8116 static bfd_boolean
8117 mips_elf_add_lo16_rel_addend (bfd *abfd,
8118 const Elf_Internal_Rela *rel,
8119 const Elf_Internal_Rela *relend,
8120 bfd_byte *contents, bfd_vma *addend)
8121 {
8122 unsigned int r_type, lo16_type;
8123 const Elf_Internal_Rela *lo16_relocation;
8124 reloc_howto_type *lo16_howto;
8125 bfd_vma l;
8126
8127 r_type = ELF_R_TYPE (abfd, rel->r_info);
8128 if (mips16_reloc_p (r_type))
8129 lo16_type = R_MIPS16_LO16;
8130 else if (micromips_reloc_p (r_type))
8131 lo16_type = R_MICROMIPS_LO16;
8132 else if (r_type == R_MIPS_PCHI16)
8133 lo16_type = R_MIPS_PCLO16;
8134 else
8135 lo16_type = R_MIPS_LO16;
8136
8137 /* The combined value is the sum of the HI16 addend, left-shifted by
8138 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8139 code does a `lui' of the HI16 value, and then an `addiu' of the
8140 LO16 value.)
8141
8142 Scan ahead to find a matching LO16 relocation.
8143
8144 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8145 be immediately following. However, for the IRIX6 ABI, the next
8146 relocation may be a composed relocation consisting of several
8147 relocations for the same address. In that case, the R_MIPS_LO16
8148 relocation may occur as one of these. We permit a similar
8149 extension in general, as that is useful for GCC.
8150
8151 In some cases GCC dead code elimination removes the LO16 but keeps
8152 the corresponding HI16. This is strictly speaking a violation of
8153 the ABI but not immediately harmful. */
8154 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8155 if (lo16_relocation == NULL)
8156 return FALSE;
8157
8158 /* Obtain the addend kept there. */
8159 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8160 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8161
8162 l <<= lo16_howto->rightshift;
8163 l = _bfd_mips_elf_sign_extend (l, 16);
8164
8165 *addend <<= 16;
8166 *addend += l;
8167 return TRUE;
8168 }
8169
8170 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8171 store the contents in *CONTENTS on success. Assume that *CONTENTS
8172 already holds the contents if it is nonull on entry. */
8173
8174 static bfd_boolean
8175 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8176 {
8177 if (*contents)
8178 return TRUE;
8179
8180 /* Get cached copy if it exists. */
8181 if (elf_section_data (sec)->this_hdr.contents != NULL)
8182 {
8183 *contents = elf_section_data (sec)->this_hdr.contents;
8184 return TRUE;
8185 }
8186
8187 return bfd_malloc_and_get_section (abfd, sec, contents);
8188 }
8189
8190 /* Make a new PLT record to keep internal data. */
8191
8192 static struct plt_entry *
8193 mips_elf_make_plt_record (bfd *abfd)
8194 {
8195 struct plt_entry *entry;
8196
8197 entry = bfd_zalloc (abfd, sizeof (*entry));
8198 if (entry == NULL)
8199 return NULL;
8200
8201 entry->stub_offset = MINUS_ONE;
8202 entry->mips_offset = MINUS_ONE;
8203 entry->comp_offset = MINUS_ONE;
8204 entry->gotplt_index = MINUS_ONE;
8205 return entry;
8206 }
8207
8208 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8209 for PIC code, as otherwise there is no load-time relocation involved
8210 and local GOT entries whose value is zero at static link time will
8211 retain their value at load time. */
8212
8213 static bfd_boolean
8214 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8215 struct mips_elf_link_hash_table *htab,
8216 unsigned int r_type)
8217 {
8218 union
8219 {
8220 struct elf_link_hash_entry *eh;
8221 struct bfd_link_hash_entry *bh;
8222 }
8223 hzero;
8224
8225 BFD_ASSERT (!htab->use_absolute_zero);
8226 BFD_ASSERT (bfd_link_pic (info));
8227
8228 hzero.bh = NULL;
8229 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8230 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8231 NULL, FALSE, FALSE, &hzero.bh))
8232 return FALSE;
8233
8234 BFD_ASSERT (hzero.bh != NULL);
8235 hzero.eh->size = 0;
8236 hzero.eh->type = STT_NOTYPE;
8237 hzero.eh->other = STV_PROTECTED;
8238 hzero.eh->def_regular = 1;
8239 hzero.eh->non_elf = 0;
8240
8241 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8242 return FALSE;
8243
8244 htab->use_absolute_zero = TRUE;
8245
8246 return TRUE;
8247 }
8248
8249 /* Look through the relocs for a section during the first phase, and
8250 allocate space in the global offset table and record the need for
8251 standard MIPS and compressed procedure linkage table entries. */
8252
8253 bfd_boolean
8254 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8255 asection *sec, const Elf_Internal_Rela *relocs)
8256 {
8257 const char *name;
8258 bfd *dynobj;
8259 Elf_Internal_Shdr *symtab_hdr;
8260 struct elf_link_hash_entry **sym_hashes;
8261 size_t extsymoff;
8262 const Elf_Internal_Rela *rel;
8263 const Elf_Internal_Rela *rel_end;
8264 asection *sreloc;
8265 const struct elf_backend_data *bed;
8266 struct mips_elf_link_hash_table *htab;
8267 bfd_byte *contents;
8268 bfd_vma addend;
8269 reloc_howto_type *howto;
8270
8271 if (bfd_link_relocatable (info))
8272 return TRUE;
8273
8274 htab = mips_elf_hash_table (info);
8275 BFD_ASSERT (htab != NULL);
8276
8277 dynobj = elf_hash_table (info)->dynobj;
8278 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8279 sym_hashes = elf_sym_hashes (abfd);
8280 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8281
8282 bed = get_elf_backend_data (abfd);
8283 rel_end = relocs + sec->reloc_count;
8284
8285 /* Check for the mips16 stub sections. */
8286
8287 name = bfd_get_section_name (abfd, sec);
8288 if (FN_STUB_P (name))
8289 {
8290 unsigned long r_symndx;
8291
8292 /* Look at the relocation information to figure out which symbol
8293 this is for. */
8294
8295 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8296 if (r_symndx == 0)
8297 {
8298 _bfd_error_handler
8299 /* xgettext:c-format */
8300 (_("%pB: warning: cannot determine the target function for"
8301 " stub section `%s'"),
8302 abfd, name);
8303 bfd_set_error (bfd_error_bad_value);
8304 return FALSE;
8305 }
8306
8307 if (r_symndx < extsymoff
8308 || sym_hashes[r_symndx - extsymoff] == NULL)
8309 {
8310 asection *o;
8311
8312 /* This stub is for a local symbol. This stub will only be
8313 needed if there is some relocation in this BFD, other
8314 than a 16 bit function call, which refers to this symbol. */
8315 for (o = abfd->sections; o != NULL; o = o->next)
8316 {
8317 Elf_Internal_Rela *sec_relocs;
8318 const Elf_Internal_Rela *r, *rend;
8319
8320 /* We can ignore stub sections when looking for relocs. */
8321 if ((o->flags & SEC_RELOC) == 0
8322 || o->reloc_count == 0
8323 || section_allows_mips16_refs_p (o))
8324 continue;
8325
8326 sec_relocs
8327 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8328 info->keep_memory);
8329 if (sec_relocs == NULL)
8330 return FALSE;
8331
8332 rend = sec_relocs + o->reloc_count;
8333 for (r = sec_relocs; r < rend; r++)
8334 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8335 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8336 break;
8337
8338 if (elf_section_data (o)->relocs != sec_relocs)
8339 free (sec_relocs);
8340
8341 if (r < rend)
8342 break;
8343 }
8344
8345 if (o == NULL)
8346 {
8347 /* There is no non-call reloc for this stub, so we do
8348 not need it. Since this function is called before
8349 the linker maps input sections to output sections, we
8350 can easily discard it by setting the SEC_EXCLUDE
8351 flag. */
8352 sec->flags |= SEC_EXCLUDE;
8353 return TRUE;
8354 }
8355
8356 /* Record this stub in an array of local symbol stubs for
8357 this BFD. */
8358 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8359 {
8360 unsigned long symcount;
8361 asection **n;
8362 bfd_size_type amt;
8363
8364 if (elf_bad_symtab (abfd))
8365 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8366 else
8367 symcount = symtab_hdr->sh_info;
8368 amt = symcount * sizeof (asection *);
8369 n = bfd_zalloc (abfd, amt);
8370 if (n == NULL)
8371 return FALSE;
8372 mips_elf_tdata (abfd)->local_stubs = n;
8373 }
8374
8375 sec->flags |= SEC_KEEP;
8376 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8377
8378 /* We don't need to set mips16_stubs_seen in this case.
8379 That flag is used to see whether we need to look through
8380 the global symbol table for stubs. We don't need to set
8381 it here, because we just have a local stub. */
8382 }
8383 else
8384 {
8385 struct mips_elf_link_hash_entry *h;
8386
8387 h = ((struct mips_elf_link_hash_entry *)
8388 sym_hashes[r_symndx - extsymoff]);
8389
8390 while (h->root.root.type == bfd_link_hash_indirect
8391 || h->root.root.type == bfd_link_hash_warning)
8392 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8393
8394 /* H is the symbol this stub is for. */
8395
8396 /* If we already have an appropriate stub for this function, we
8397 don't need another one, so we can discard this one. Since
8398 this function is called before the linker maps input sections
8399 to output sections, we can easily discard it by setting the
8400 SEC_EXCLUDE flag. */
8401 if (h->fn_stub != NULL)
8402 {
8403 sec->flags |= SEC_EXCLUDE;
8404 return TRUE;
8405 }
8406
8407 sec->flags |= SEC_KEEP;
8408 h->fn_stub = sec;
8409 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8410 }
8411 }
8412 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8413 {
8414 unsigned long r_symndx;
8415 struct mips_elf_link_hash_entry *h;
8416 asection **loc;
8417
8418 /* Look at the relocation information to figure out which symbol
8419 this is for. */
8420
8421 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8422 if (r_symndx == 0)
8423 {
8424 _bfd_error_handler
8425 /* xgettext:c-format */
8426 (_("%pB: warning: cannot determine the target function for"
8427 " stub section `%s'"),
8428 abfd, name);
8429 bfd_set_error (bfd_error_bad_value);
8430 return FALSE;
8431 }
8432
8433 if (r_symndx < extsymoff
8434 || sym_hashes[r_symndx - extsymoff] == NULL)
8435 {
8436 asection *o;
8437
8438 /* This stub is for a local symbol. This stub will only be
8439 needed if there is some relocation (R_MIPS16_26) in this BFD
8440 that refers to this symbol. */
8441 for (o = abfd->sections; o != NULL; o = o->next)
8442 {
8443 Elf_Internal_Rela *sec_relocs;
8444 const Elf_Internal_Rela *r, *rend;
8445
8446 /* We can ignore stub sections when looking for relocs. */
8447 if ((o->flags & SEC_RELOC) == 0
8448 || o->reloc_count == 0
8449 || section_allows_mips16_refs_p (o))
8450 continue;
8451
8452 sec_relocs
8453 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8454 info->keep_memory);
8455 if (sec_relocs == NULL)
8456 return FALSE;
8457
8458 rend = sec_relocs + o->reloc_count;
8459 for (r = sec_relocs; r < rend; r++)
8460 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8461 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8462 break;
8463
8464 if (elf_section_data (o)->relocs != sec_relocs)
8465 free (sec_relocs);
8466
8467 if (r < rend)
8468 break;
8469 }
8470
8471 if (o == NULL)
8472 {
8473 /* There is no non-call reloc for this stub, so we do
8474 not need it. Since this function is called before
8475 the linker maps input sections to output sections, we
8476 can easily discard it by setting the SEC_EXCLUDE
8477 flag. */
8478 sec->flags |= SEC_EXCLUDE;
8479 return TRUE;
8480 }
8481
8482 /* Record this stub in an array of local symbol call_stubs for
8483 this BFD. */
8484 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8485 {
8486 unsigned long symcount;
8487 asection **n;
8488 bfd_size_type amt;
8489
8490 if (elf_bad_symtab (abfd))
8491 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8492 else
8493 symcount = symtab_hdr->sh_info;
8494 amt = symcount * sizeof (asection *);
8495 n = bfd_zalloc (abfd, amt);
8496 if (n == NULL)
8497 return FALSE;
8498 mips_elf_tdata (abfd)->local_call_stubs = n;
8499 }
8500
8501 sec->flags |= SEC_KEEP;
8502 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8503
8504 /* We don't need to set mips16_stubs_seen in this case.
8505 That flag is used to see whether we need to look through
8506 the global symbol table for stubs. We don't need to set
8507 it here, because we just have a local stub. */
8508 }
8509 else
8510 {
8511 h = ((struct mips_elf_link_hash_entry *)
8512 sym_hashes[r_symndx - extsymoff]);
8513
8514 /* H is the symbol this stub is for. */
8515
8516 if (CALL_FP_STUB_P (name))
8517 loc = &h->call_fp_stub;
8518 else
8519 loc = &h->call_stub;
8520
8521 /* If we already have an appropriate stub for this function, we
8522 don't need another one, so we can discard this one. Since
8523 this function is called before the linker maps input sections
8524 to output sections, we can easily discard it by setting the
8525 SEC_EXCLUDE flag. */
8526 if (*loc != NULL)
8527 {
8528 sec->flags |= SEC_EXCLUDE;
8529 return TRUE;
8530 }
8531
8532 sec->flags |= SEC_KEEP;
8533 *loc = sec;
8534 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8535 }
8536 }
8537
8538 sreloc = NULL;
8539 contents = NULL;
8540 for (rel = relocs; rel < rel_end; ++rel)
8541 {
8542 unsigned long r_symndx;
8543 unsigned int r_type;
8544 struct elf_link_hash_entry *h;
8545 bfd_boolean can_make_dynamic_p;
8546 bfd_boolean call_reloc_p;
8547 bfd_boolean constrain_symbol_p;
8548
8549 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8550 r_type = ELF_R_TYPE (abfd, rel->r_info);
8551
8552 if (r_symndx < extsymoff)
8553 h = NULL;
8554 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8555 {
8556 _bfd_error_handler
8557 /* xgettext:c-format */
8558 (_("%pB: malformed reloc detected for section %s"),
8559 abfd, name);
8560 bfd_set_error (bfd_error_bad_value);
8561 return FALSE;
8562 }
8563 else
8564 {
8565 h = sym_hashes[r_symndx - extsymoff];
8566 if (h != NULL)
8567 {
8568 while (h->root.type == bfd_link_hash_indirect
8569 || h->root.type == bfd_link_hash_warning)
8570 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8571 }
8572 }
8573
8574 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8575 relocation into a dynamic one. */
8576 can_make_dynamic_p = FALSE;
8577
8578 /* Set CALL_RELOC_P to true if the relocation is for a call,
8579 and if pointer equality therefore doesn't matter. */
8580 call_reloc_p = FALSE;
8581
8582 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8583 into account when deciding how to define the symbol.
8584 Relocations in nonallocatable sections such as .pdr and
8585 .debug* should have no effect. */
8586 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8587
8588 switch (r_type)
8589 {
8590 case R_MIPS_CALL16:
8591 case R_MIPS_CALL_HI16:
8592 case R_MIPS_CALL_LO16:
8593 case R_MIPS16_CALL16:
8594 case R_MICROMIPS_CALL16:
8595 case R_MICROMIPS_CALL_HI16:
8596 case R_MICROMIPS_CALL_LO16:
8597 call_reloc_p = TRUE;
8598 /* Fall through. */
8599
8600 case R_MIPS_GOT16:
8601 case R_MIPS_GOT_LO16:
8602 case R_MIPS_GOT_PAGE:
8603 case R_MIPS_GOT_DISP:
8604 case R_MIPS16_GOT16:
8605 case R_MICROMIPS_GOT16:
8606 case R_MICROMIPS_GOT_LO16:
8607 case R_MICROMIPS_GOT_PAGE:
8608 case R_MICROMIPS_GOT_DISP:
8609 /* If we have a symbol that will resolve to zero at static link
8610 time and it is used by a GOT relocation applied to code we
8611 cannot relax to an immediate zero load, then we will be using
8612 the special `__gnu_absolute_zero' symbol whose value is zero
8613 at dynamic load time. We ignore HI16-type GOT relocations at
8614 this stage, because their handling will depend entirely on
8615 the corresponding LO16-type GOT relocation. */
8616 if (!call_hi16_reloc_p (r_type)
8617 && h != NULL
8618 && bfd_link_pic (info)
8619 && !htab->use_absolute_zero
8620 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8621 {
8622 bfd_boolean rel_reloc;
8623
8624 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8625 return FALSE;
8626
8627 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8628 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8629
8630 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8631 FALSE))
8632 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8633 return FALSE;
8634 }
8635
8636 /* Fall through. */
8637 case R_MIPS_GOT_HI16:
8638 case R_MIPS_GOT_OFST:
8639 case R_MIPS_TLS_GOTTPREL:
8640 case R_MIPS_TLS_GD:
8641 case R_MIPS_TLS_LDM:
8642 case R_MIPS16_TLS_GOTTPREL:
8643 case R_MIPS16_TLS_GD:
8644 case R_MIPS16_TLS_LDM:
8645 case R_MICROMIPS_GOT_HI16:
8646 case R_MICROMIPS_GOT_OFST:
8647 case R_MICROMIPS_TLS_GOTTPREL:
8648 case R_MICROMIPS_TLS_GD:
8649 case R_MICROMIPS_TLS_LDM:
8650 if (dynobj == NULL)
8651 elf_hash_table (info)->dynobj = dynobj = abfd;
8652 if (!mips_elf_create_got_section (dynobj, info))
8653 return FALSE;
8654 if (htab->is_vxworks && !bfd_link_pic (info))
8655 {
8656 _bfd_error_handler
8657 /* xgettext:c-format */
8658 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8659 abfd, (uint64_t) rel->r_offset);
8660 bfd_set_error (bfd_error_bad_value);
8661 return FALSE;
8662 }
8663 can_make_dynamic_p = TRUE;
8664 break;
8665
8666 case R_MIPS_NONE:
8667 case R_MIPS_JALR:
8668 case R_MICROMIPS_JALR:
8669 /* These relocations have empty fields and are purely there to
8670 provide link information. The symbol value doesn't matter. */
8671 constrain_symbol_p = FALSE;
8672 break;
8673
8674 case R_MIPS_GPREL16:
8675 case R_MIPS_GPREL32:
8676 case R_MIPS16_GPREL:
8677 case R_MICROMIPS_GPREL16:
8678 /* GP-relative relocations always resolve to a definition in a
8679 regular input file, ignoring the one-definition rule. This is
8680 important for the GP setup sequence in NewABI code, which
8681 always resolves to a local function even if other relocations
8682 against the symbol wouldn't. */
8683 constrain_symbol_p = FALSE;
8684 break;
8685
8686 case R_MIPS_32:
8687 case R_MIPS_REL32:
8688 case R_MIPS_64:
8689 /* In VxWorks executables, references to external symbols
8690 must be handled using copy relocs or PLT entries; it is not
8691 possible to convert this relocation into a dynamic one.
8692
8693 For executables that use PLTs and copy-relocs, we have a
8694 choice between converting the relocation into a dynamic
8695 one or using copy relocations or PLT entries. It is
8696 usually better to do the former, unless the relocation is
8697 against a read-only section. */
8698 if ((bfd_link_pic (info)
8699 || (h != NULL
8700 && !htab->is_vxworks
8701 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8702 && !(!info->nocopyreloc
8703 && !PIC_OBJECT_P (abfd)
8704 && MIPS_ELF_READONLY_SECTION (sec))))
8705 && (sec->flags & SEC_ALLOC) != 0)
8706 {
8707 can_make_dynamic_p = TRUE;
8708 if (dynobj == NULL)
8709 elf_hash_table (info)->dynobj = dynobj = abfd;
8710 }
8711 break;
8712
8713 case R_MIPS_26:
8714 case R_MIPS_PC16:
8715 case R_MIPS_PC21_S2:
8716 case R_MIPS_PC26_S2:
8717 case R_MIPS16_26:
8718 case R_MIPS16_PC16_S1:
8719 case R_MICROMIPS_26_S1:
8720 case R_MICROMIPS_PC7_S1:
8721 case R_MICROMIPS_PC10_S1:
8722 case R_MICROMIPS_PC16_S1:
8723 case R_MICROMIPS_PC23_S2:
8724 call_reloc_p = TRUE;
8725 break;
8726 }
8727
8728 if (h)
8729 {
8730 if (constrain_symbol_p)
8731 {
8732 if (!can_make_dynamic_p)
8733 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8734
8735 if (!call_reloc_p)
8736 h->pointer_equality_needed = 1;
8737
8738 /* We must not create a stub for a symbol that has
8739 relocations related to taking the function's address.
8740 This doesn't apply to VxWorks, where CALL relocs refer
8741 to a .got.plt entry instead of a normal .got entry. */
8742 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8743 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8744 }
8745
8746 /* Relocations against the special VxWorks __GOTT_BASE__ and
8747 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8748 room for them in .rela.dyn. */
8749 if (is_gott_symbol (info, h))
8750 {
8751 if (sreloc == NULL)
8752 {
8753 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8754 if (sreloc == NULL)
8755 return FALSE;
8756 }
8757 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8758 if (MIPS_ELF_READONLY_SECTION (sec))
8759 /* We tell the dynamic linker that there are
8760 relocations against the text segment. */
8761 info->flags |= DF_TEXTREL;
8762 }
8763 }
8764 else if (call_lo16_reloc_p (r_type)
8765 || got_lo16_reloc_p (r_type)
8766 || got_disp_reloc_p (r_type)
8767 || (got16_reloc_p (r_type) && htab->is_vxworks))
8768 {
8769 /* We may need a local GOT entry for this relocation. We
8770 don't count R_MIPS_GOT_PAGE because we can estimate the
8771 maximum number of pages needed by looking at the size of
8772 the segment. Similar comments apply to R_MIPS*_GOT16 and
8773 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8774 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8775 R_MIPS_CALL_HI16 because these are always followed by an
8776 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8777 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8778 rel->r_addend, info, r_type))
8779 return FALSE;
8780 }
8781
8782 if (h != NULL
8783 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8784 ELF_ST_IS_MIPS16 (h->other)))
8785 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8786
8787 switch (r_type)
8788 {
8789 case R_MIPS_CALL16:
8790 case R_MIPS16_CALL16:
8791 case R_MICROMIPS_CALL16:
8792 if (h == NULL)
8793 {
8794 _bfd_error_handler
8795 /* xgettext:c-format */
8796 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8797 abfd, (uint64_t) rel->r_offset);
8798 bfd_set_error (bfd_error_bad_value);
8799 return FALSE;
8800 }
8801 /* Fall through. */
8802
8803 case R_MIPS_CALL_HI16:
8804 case R_MIPS_CALL_LO16:
8805 case R_MICROMIPS_CALL_HI16:
8806 case R_MICROMIPS_CALL_LO16:
8807 if (h != NULL)
8808 {
8809 /* Make sure there is room in the regular GOT to hold the
8810 function's address. We may eliminate it in favour of
8811 a .got.plt entry later; see mips_elf_count_got_symbols. */
8812 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8813 r_type))
8814 return FALSE;
8815
8816 /* We need a stub, not a plt entry for the undefined
8817 function. But we record it as if it needs plt. See
8818 _bfd_elf_adjust_dynamic_symbol. */
8819 h->needs_plt = 1;
8820 h->type = STT_FUNC;
8821 }
8822 break;
8823
8824 case R_MIPS_GOT_PAGE:
8825 case R_MICROMIPS_GOT_PAGE:
8826 case R_MIPS16_GOT16:
8827 case R_MIPS_GOT16:
8828 case R_MIPS_GOT_HI16:
8829 case R_MIPS_GOT_LO16:
8830 case R_MICROMIPS_GOT16:
8831 case R_MICROMIPS_GOT_HI16:
8832 case R_MICROMIPS_GOT_LO16:
8833 if (!h || got_page_reloc_p (r_type))
8834 {
8835 /* This relocation needs (or may need, if h != NULL) a
8836 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8837 know for sure until we know whether the symbol is
8838 preemptible. */
8839 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8840 {
8841 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8842 return FALSE;
8843 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8844 addend = mips_elf_read_rel_addend (abfd, rel,
8845 howto, contents);
8846 if (got16_reloc_p (r_type))
8847 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8848 contents, &addend);
8849 else
8850 addend <<= howto->rightshift;
8851 }
8852 else
8853 addend = rel->r_addend;
8854 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8855 h, addend))
8856 return FALSE;
8857
8858 if (h)
8859 {
8860 struct mips_elf_link_hash_entry *hmips =
8861 (struct mips_elf_link_hash_entry *) h;
8862
8863 /* This symbol is definitely not overridable. */
8864 if (hmips->root.def_regular
8865 && ! (bfd_link_pic (info) && ! info->symbolic
8866 && ! hmips->root.forced_local))
8867 h = NULL;
8868 }
8869 }
8870 /* If this is a global, overridable symbol, GOT_PAGE will
8871 decay to GOT_DISP, so we'll need a GOT entry for it. */
8872 /* Fall through. */
8873
8874 case R_MIPS_GOT_DISP:
8875 case R_MICROMIPS_GOT_DISP:
8876 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8877 FALSE, r_type))
8878 return FALSE;
8879 break;
8880
8881 case R_MIPS_TLS_GOTTPREL:
8882 case R_MIPS16_TLS_GOTTPREL:
8883 case R_MICROMIPS_TLS_GOTTPREL:
8884 if (bfd_link_pic (info))
8885 info->flags |= DF_STATIC_TLS;
8886 /* Fall through */
8887
8888 case R_MIPS_TLS_LDM:
8889 case R_MIPS16_TLS_LDM:
8890 case R_MICROMIPS_TLS_LDM:
8891 if (tls_ldm_reloc_p (r_type))
8892 {
8893 r_symndx = STN_UNDEF;
8894 h = NULL;
8895 }
8896 /* Fall through */
8897
8898 case R_MIPS_TLS_GD:
8899 case R_MIPS16_TLS_GD:
8900 case R_MICROMIPS_TLS_GD:
8901 /* This symbol requires a global offset table entry, or two
8902 for TLS GD relocations. */
8903 if (h != NULL)
8904 {
8905 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8906 FALSE, r_type))
8907 return FALSE;
8908 }
8909 else
8910 {
8911 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8912 rel->r_addend,
8913 info, r_type))
8914 return FALSE;
8915 }
8916 break;
8917
8918 case R_MIPS_32:
8919 case R_MIPS_REL32:
8920 case R_MIPS_64:
8921 /* In VxWorks executables, references to external symbols
8922 are handled using copy relocs or PLT stubs, so there's
8923 no need to add a .rela.dyn entry for this relocation. */
8924 if (can_make_dynamic_p)
8925 {
8926 if (sreloc == NULL)
8927 {
8928 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8929 if (sreloc == NULL)
8930 return FALSE;
8931 }
8932 if (bfd_link_pic (info) && h == NULL)
8933 {
8934 /* When creating a shared object, we must copy these
8935 reloc types into the output file as R_MIPS_REL32
8936 relocs. Make room for this reloc in .rel(a).dyn. */
8937 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8938 if (MIPS_ELF_READONLY_SECTION (sec))
8939 /* We tell the dynamic linker that there are
8940 relocations against the text segment. */
8941 info->flags |= DF_TEXTREL;
8942 }
8943 else
8944 {
8945 struct mips_elf_link_hash_entry *hmips;
8946
8947 /* For a shared object, we must copy this relocation
8948 unless the symbol turns out to be undefined and
8949 weak with non-default visibility, in which case
8950 it will be left as zero.
8951
8952 We could elide R_MIPS_REL32 for locally binding symbols
8953 in shared libraries, but do not yet do so.
8954
8955 For an executable, we only need to copy this
8956 reloc if the symbol is defined in a dynamic
8957 object. */
8958 hmips = (struct mips_elf_link_hash_entry *) h;
8959 ++hmips->possibly_dynamic_relocs;
8960 if (MIPS_ELF_READONLY_SECTION (sec))
8961 /* We need it to tell the dynamic linker if there
8962 are relocations against the text segment. */
8963 hmips->readonly_reloc = TRUE;
8964 }
8965 }
8966
8967 if (SGI_COMPAT (abfd))
8968 mips_elf_hash_table (info)->compact_rel_size +=
8969 sizeof (Elf32_External_crinfo);
8970 break;
8971
8972 case R_MIPS_26:
8973 case R_MIPS_GPREL16:
8974 case R_MIPS_LITERAL:
8975 case R_MIPS_GPREL32:
8976 case R_MICROMIPS_26_S1:
8977 case R_MICROMIPS_GPREL16:
8978 case R_MICROMIPS_LITERAL:
8979 case R_MICROMIPS_GPREL7_S2:
8980 if (SGI_COMPAT (abfd))
8981 mips_elf_hash_table (info)->compact_rel_size +=
8982 sizeof (Elf32_External_crinfo);
8983 break;
8984
8985 /* This relocation describes the C++ object vtable hierarchy.
8986 Reconstruct it for later use during GC. */
8987 case R_MIPS_GNU_VTINHERIT:
8988 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8989 return FALSE;
8990 break;
8991
8992 /* This relocation describes which C++ vtable entries are actually
8993 used. Record for later use during GC. */
8994 case R_MIPS_GNU_VTENTRY:
8995 BFD_ASSERT (h != NULL);
8996 if (h != NULL
8997 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8998 return FALSE;
8999 break;
9000
9001 default:
9002 break;
9003 }
9004
9005 /* Record the need for a PLT entry. At this point we don't know
9006 yet if we are going to create a PLT in the first place, but
9007 we only record whether the relocation requires a standard MIPS
9008 or a compressed code entry anyway. If we don't make a PLT after
9009 all, then we'll just ignore these arrangements. Likewise if
9010 a PLT entry is not created because the symbol is satisfied
9011 locally. */
9012 if (h != NULL
9013 && (branch_reloc_p (r_type)
9014 || mips16_branch_reloc_p (r_type)
9015 || micromips_branch_reloc_p (r_type))
9016 && !SYMBOL_CALLS_LOCAL (info, h))
9017 {
9018 if (h->plt.plist == NULL)
9019 h->plt.plist = mips_elf_make_plt_record (abfd);
9020 if (h->plt.plist == NULL)
9021 return FALSE;
9022
9023 if (branch_reloc_p (r_type))
9024 h->plt.plist->need_mips = TRUE;
9025 else
9026 h->plt.plist->need_comp = TRUE;
9027 }
9028
9029 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9030 if there is one. We only need to handle global symbols here;
9031 we decide whether to keep or delete stubs for local symbols
9032 when processing the stub's relocations. */
9033 if (h != NULL
9034 && !mips16_call_reloc_p (r_type)
9035 && !section_allows_mips16_refs_p (sec))
9036 {
9037 struct mips_elf_link_hash_entry *mh;
9038
9039 mh = (struct mips_elf_link_hash_entry *) h;
9040 mh->need_fn_stub = TRUE;
9041 }
9042
9043 /* Refuse some position-dependent relocations when creating a
9044 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9045 not PIC, but we can create dynamic relocations and the result
9046 will be fine. Also do not refuse R_MIPS_LO16, which can be
9047 combined with R_MIPS_GOT16. */
9048 if (bfd_link_pic (info))
9049 {
9050 switch (r_type)
9051 {
9052 case R_MIPS16_HI16:
9053 case R_MIPS_HI16:
9054 case R_MIPS_HIGHER:
9055 case R_MIPS_HIGHEST:
9056 case R_MICROMIPS_HI16:
9057 case R_MICROMIPS_HIGHER:
9058 case R_MICROMIPS_HIGHEST:
9059 /* Don't refuse a high part relocation if it's against
9060 no symbol (e.g. part of a compound relocation). */
9061 if (r_symndx == STN_UNDEF)
9062 break;
9063
9064 /* Likewise an absolute symbol. */
9065 if (bfd_is_abs_symbol (&h->root))
9066 break;
9067
9068 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9069 and has a special meaning. */
9070 if (!NEWABI_P (abfd) && h != NULL
9071 && strcmp (h->root.root.string, "_gp_disp") == 0)
9072 break;
9073
9074 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9075 if (is_gott_symbol (info, h))
9076 break;
9077
9078 /* FALLTHROUGH */
9079
9080 case R_MIPS16_26:
9081 case R_MIPS_26:
9082 case R_MICROMIPS_26_S1:
9083 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
9084 info->callbacks->einfo
9085 /* xgettext:c-format */
9086 (_("%X%H: relocation %s against `%s' cannot be used"
9087 " when making a shared object; recompile with -fPIC\n"),
9088 abfd, sec, rel->r_offset, howto->name,
9089 (h) ? h->root.root.string : "a local symbol");
9090 break;
9091 default:
9092 break;
9093 }
9094 }
9095 }
9096
9097 return TRUE;
9098 }
9099 \f
9100 /* Allocate space for global sym dynamic relocs. */
9101
9102 static bfd_boolean
9103 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9104 {
9105 struct bfd_link_info *info = inf;
9106 bfd *dynobj;
9107 struct mips_elf_link_hash_entry *hmips;
9108 struct mips_elf_link_hash_table *htab;
9109
9110 htab = mips_elf_hash_table (info);
9111 BFD_ASSERT (htab != NULL);
9112
9113 dynobj = elf_hash_table (info)->dynobj;
9114 hmips = (struct mips_elf_link_hash_entry *) h;
9115
9116 /* VxWorks executables are handled elsewhere; we only need to
9117 allocate relocations in shared objects. */
9118 if (htab->is_vxworks && !bfd_link_pic (info))
9119 return TRUE;
9120
9121 /* Ignore indirect symbols. All relocations against such symbols
9122 will be redirected to the target symbol. */
9123 if (h->root.type == bfd_link_hash_indirect)
9124 return TRUE;
9125
9126 /* If this symbol is defined in a dynamic object, or we are creating
9127 a shared library, we will need to copy any R_MIPS_32 or
9128 R_MIPS_REL32 relocs against it into the output file. */
9129 if (! bfd_link_relocatable (info)
9130 && hmips->possibly_dynamic_relocs != 0
9131 && (h->root.type == bfd_link_hash_defweak
9132 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9133 || bfd_link_pic (info)))
9134 {
9135 bfd_boolean do_copy = TRUE;
9136
9137 if (h->root.type == bfd_link_hash_undefweak)
9138 {
9139 /* Do not copy relocations for undefined weak symbols that
9140 we are not going to export. */
9141 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9142 do_copy = FALSE;
9143
9144 /* Make sure undefined weak symbols are output as a dynamic
9145 symbol in PIEs. */
9146 else if (h->dynindx == -1 && !h->forced_local)
9147 {
9148 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9149 return FALSE;
9150 }
9151 }
9152
9153 if (do_copy)
9154 {
9155 /* Even though we don't directly need a GOT entry for this symbol,
9156 the SVR4 psABI requires it to have a dynamic symbol table
9157 index greater that DT_MIPS_GOTSYM if there are dynamic
9158 relocations against it.
9159
9160 VxWorks does not enforce the same mapping between the GOT
9161 and the symbol table, so the same requirement does not
9162 apply there. */
9163 if (!htab->is_vxworks)
9164 {
9165 if (hmips->global_got_area > GGA_RELOC_ONLY)
9166 hmips->global_got_area = GGA_RELOC_ONLY;
9167 hmips->got_only_for_calls = FALSE;
9168 }
9169
9170 mips_elf_allocate_dynamic_relocations
9171 (dynobj, info, hmips->possibly_dynamic_relocs);
9172 if (hmips->readonly_reloc)
9173 /* We tell the dynamic linker that there are relocations
9174 against the text segment. */
9175 info->flags |= DF_TEXTREL;
9176 }
9177 }
9178
9179 return TRUE;
9180 }
9181
9182 /* Adjust a symbol defined by a dynamic object and referenced by a
9183 regular object. The current definition is in some section of the
9184 dynamic object, but we're not including those sections. We have to
9185 change the definition to something the rest of the link can
9186 understand. */
9187
9188 bfd_boolean
9189 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9190 struct elf_link_hash_entry *h)
9191 {
9192 bfd *dynobj;
9193 struct mips_elf_link_hash_entry *hmips;
9194 struct mips_elf_link_hash_table *htab;
9195 asection *s, *srel;
9196
9197 htab = mips_elf_hash_table (info);
9198 BFD_ASSERT (htab != NULL);
9199
9200 dynobj = elf_hash_table (info)->dynobj;
9201 hmips = (struct mips_elf_link_hash_entry *) h;
9202
9203 /* Make sure we know what is going on here. */
9204 BFD_ASSERT (dynobj != NULL
9205 && (h->needs_plt
9206 || h->is_weakalias
9207 || (h->def_dynamic
9208 && h->ref_regular
9209 && !h->def_regular)));
9210
9211 hmips = (struct mips_elf_link_hash_entry *) h;
9212
9213 /* If there are call relocations against an externally-defined symbol,
9214 see whether we can create a MIPS lazy-binding stub for it. We can
9215 only do this if all references to the function are through call
9216 relocations, and in that case, the traditional lazy-binding stubs
9217 are much more efficient than PLT entries.
9218
9219 Traditional stubs are only available on SVR4 psABI-based systems;
9220 VxWorks always uses PLTs instead. */
9221 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9222 {
9223 if (! elf_hash_table (info)->dynamic_sections_created)
9224 return TRUE;
9225
9226 /* If this symbol is not defined in a regular file, then set
9227 the symbol to the stub location. This is required to make
9228 function pointers compare as equal between the normal
9229 executable and the shared library. */
9230 if (!h->def_regular
9231 && !bfd_is_abs_section (htab->sstubs->output_section))
9232 {
9233 hmips->needs_lazy_stub = TRUE;
9234 htab->lazy_stub_count++;
9235 return TRUE;
9236 }
9237 }
9238 /* As above, VxWorks requires PLT entries for externally-defined
9239 functions that are only accessed through call relocations.
9240
9241 Both VxWorks and non-VxWorks targets also need PLT entries if there
9242 are static-only relocations against an externally-defined function.
9243 This can technically occur for shared libraries if there are
9244 branches to the symbol, although it is unlikely that this will be
9245 used in practice due to the short ranges involved. It can occur
9246 for any relative or absolute relocation in executables; in that
9247 case, the PLT entry becomes the function's canonical address. */
9248 else if (((h->needs_plt && !hmips->no_fn_stub)
9249 || (h->type == STT_FUNC && hmips->has_static_relocs))
9250 && htab->use_plts_and_copy_relocs
9251 && !SYMBOL_CALLS_LOCAL (info, h)
9252 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9253 && h->root.type == bfd_link_hash_undefweak))
9254 {
9255 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9256 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9257
9258 /* If this is the first symbol to need a PLT entry, then make some
9259 basic setup. Also work out PLT entry sizes. We'll need them
9260 for PLT offset calculations. */
9261 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9262 {
9263 BFD_ASSERT (htab->root.sgotplt->size == 0);
9264 BFD_ASSERT (htab->plt_got_index == 0);
9265
9266 /* If we're using the PLT additions to the psABI, each PLT
9267 entry is 16 bytes and the PLT0 entry is 32 bytes.
9268 Encourage better cache usage by aligning. We do this
9269 lazily to avoid pessimizing traditional objects. */
9270 if (!htab->is_vxworks
9271 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9272 return FALSE;
9273
9274 /* Make sure that .got.plt is word-aligned. We do this lazily
9275 for the same reason as above. */
9276 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9277 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9278 return FALSE;
9279
9280 /* On non-VxWorks targets, the first two entries in .got.plt
9281 are reserved. */
9282 if (!htab->is_vxworks)
9283 htab->plt_got_index
9284 += (get_elf_backend_data (dynobj)->got_header_size
9285 / MIPS_ELF_GOT_SIZE (dynobj));
9286
9287 /* On VxWorks, also allocate room for the header's
9288 .rela.plt.unloaded entries. */
9289 if (htab->is_vxworks && !bfd_link_pic (info))
9290 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9291
9292 /* Now work out the sizes of individual PLT entries. */
9293 if (htab->is_vxworks && bfd_link_pic (info))
9294 htab->plt_mips_entry_size
9295 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9296 else if (htab->is_vxworks)
9297 htab->plt_mips_entry_size
9298 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9299 else if (newabi_p)
9300 htab->plt_mips_entry_size
9301 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9302 else if (!micromips_p)
9303 {
9304 htab->plt_mips_entry_size
9305 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9306 htab->plt_comp_entry_size
9307 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9308 }
9309 else if (htab->insn32)
9310 {
9311 htab->plt_mips_entry_size
9312 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9313 htab->plt_comp_entry_size
9314 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9315 }
9316 else
9317 {
9318 htab->plt_mips_entry_size
9319 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9320 htab->plt_comp_entry_size
9321 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9322 }
9323 }
9324
9325 if (h->plt.plist == NULL)
9326 h->plt.plist = mips_elf_make_plt_record (dynobj);
9327 if (h->plt.plist == NULL)
9328 return FALSE;
9329
9330 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9331 n32 or n64, so always use a standard entry there.
9332
9333 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9334 all MIPS16 calls will go via that stub, and there is no benefit
9335 to having a MIPS16 entry. And in the case of call_stub a
9336 standard entry actually has to be used as the stub ends with a J
9337 instruction. */
9338 if (newabi_p
9339 || htab->is_vxworks
9340 || hmips->call_stub
9341 || hmips->call_fp_stub)
9342 {
9343 h->plt.plist->need_mips = TRUE;
9344 h->plt.plist->need_comp = FALSE;
9345 }
9346
9347 /* Otherwise, if there are no direct calls to the function, we
9348 have a free choice of whether to use standard or compressed
9349 entries. Prefer microMIPS entries if the object is known to
9350 contain microMIPS code, so that it becomes possible to create
9351 pure microMIPS binaries. Prefer standard entries otherwise,
9352 because MIPS16 ones are no smaller and are usually slower. */
9353 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9354 {
9355 if (micromips_p)
9356 h->plt.plist->need_comp = TRUE;
9357 else
9358 h->plt.plist->need_mips = TRUE;
9359 }
9360
9361 if (h->plt.plist->need_mips)
9362 {
9363 h->plt.plist->mips_offset = htab->plt_mips_offset;
9364 htab->plt_mips_offset += htab->plt_mips_entry_size;
9365 }
9366 if (h->plt.plist->need_comp)
9367 {
9368 h->plt.plist->comp_offset = htab->plt_comp_offset;
9369 htab->plt_comp_offset += htab->plt_comp_entry_size;
9370 }
9371
9372 /* Reserve the corresponding .got.plt entry now too. */
9373 h->plt.plist->gotplt_index = htab->plt_got_index++;
9374
9375 /* If the output file has no definition of the symbol, set the
9376 symbol's value to the address of the stub. */
9377 if (!bfd_link_pic (info) && !h->def_regular)
9378 hmips->use_plt_entry = TRUE;
9379
9380 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9381 htab->root.srelplt->size += (htab->is_vxworks
9382 ? MIPS_ELF_RELA_SIZE (dynobj)
9383 : MIPS_ELF_REL_SIZE (dynobj));
9384
9385 /* Make room for the .rela.plt.unloaded relocations. */
9386 if (htab->is_vxworks && !bfd_link_pic (info))
9387 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9388
9389 /* All relocations against this symbol that could have been made
9390 dynamic will now refer to the PLT entry instead. */
9391 hmips->possibly_dynamic_relocs = 0;
9392
9393 return TRUE;
9394 }
9395
9396 /* If this is a weak symbol, and there is a real definition, the
9397 processor independent code will have arranged for us to see the
9398 real definition first, and we can just use the same value. */
9399 if (h->is_weakalias)
9400 {
9401 struct elf_link_hash_entry *def = weakdef (h);
9402 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9403 h->root.u.def.section = def->root.u.def.section;
9404 h->root.u.def.value = def->root.u.def.value;
9405 return TRUE;
9406 }
9407
9408 /* Otherwise, there is nothing further to do for symbols defined
9409 in regular objects. */
9410 if (h->def_regular)
9411 return TRUE;
9412
9413 /* There's also nothing more to do if we'll convert all relocations
9414 against this symbol into dynamic relocations. */
9415 if (!hmips->has_static_relocs)
9416 return TRUE;
9417
9418 /* We're now relying on copy relocations. Complain if we have
9419 some that we can't convert. */
9420 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9421 {
9422 _bfd_error_handler (_("non-dynamic relocations refer to "
9423 "dynamic symbol %s"),
9424 h->root.root.string);
9425 bfd_set_error (bfd_error_bad_value);
9426 return FALSE;
9427 }
9428
9429 /* We must allocate the symbol in our .dynbss section, which will
9430 become part of the .bss section of the executable. There will be
9431 an entry for this symbol in the .dynsym section. The dynamic
9432 object will contain position independent code, so all references
9433 from the dynamic object to this symbol will go through the global
9434 offset table. The dynamic linker will use the .dynsym entry to
9435 determine the address it must put in the global offset table, so
9436 both the dynamic object and the regular object will refer to the
9437 same memory location for the variable. */
9438
9439 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9440 {
9441 s = htab->root.sdynrelro;
9442 srel = htab->root.sreldynrelro;
9443 }
9444 else
9445 {
9446 s = htab->root.sdynbss;
9447 srel = htab->root.srelbss;
9448 }
9449 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9450 {
9451 if (htab->is_vxworks)
9452 srel->size += sizeof (Elf32_External_Rela);
9453 else
9454 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9455 h->needs_copy = 1;
9456 }
9457
9458 /* All relocations against this symbol that could have been made
9459 dynamic will now refer to the local copy instead. */
9460 hmips->possibly_dynamic_relocs = 0;
9461
9462 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9463 }
9464 \f
9465 /* This function is called after all the input files have been read,
9466 and the input sections have been assigned to output sections. We
9467 check for any mips16 stub sections that we can discard. */
9468
9469 bfd_boolean
9470 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9471 struct bfd_link_info *info)
9472 {
9473 asection *sect;
9474 struct mips_elf_link_hash_table *htab;
9475 struct mips_htab_traverse_info hti;
9476
9477 htab = mips_elf_hash_table (info);
9478 BFD_ASSERT (htab != NULL);
9479
9480 /* The .reginfo section has a fixed size. */
9481 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9482 if (sect != NULL)
9483 {
9484 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9485 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9486 }
9487
9488 /* The .MIPS.abiflags section has a fixed size. */
9489 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9490 if (sect != NULL)
9491 {
9492 bfd_set_section_size (output_bfd, sect,
9493 sizeof (Elf_External_ABIFlags_v0));
9494 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9495 }
9496
9497 hti.info = info;
9498 hti.output_bfd = output_bfd;
9499 hti.error = FALSE;
9500 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9501 mips_elf_check_symbols, &hti);
9502 if (hti.error)
9503 return FALSE;
9504
9505 return TRUE;
9506 }
9507
9508 /* If the link uses a GOT, lay it out and work out its size. */
9509
9510 static bfd_boolean
9511 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9512 {
9513 bfd *dynobj;
9514 asection *s;
9515 struct mips_got_info *g;
9516 bfd_size_type loadable_size = 0;
9517 bfd_size_type page_gotno;
9518 bfd *ibfd;
9519 struct mips_elf_traverse_got_arg tga;
9520 struct mips_elf_link_hash_table *htab;
9521
9522 htab = mips_elf_hash_table (info);
9523 BFD_ASSERT (htab != NULL);
9524
9525 s = htab->root.sgot;
9526 if (s == NULL)
9527 return TRUE;
9528
9529 dynobj = elf_hash_table (info)->dynobj;
9530 g = htab->got_info;
9531
9532 /* Allocate room for the reserved entries. VxWorks always reserves
9533 3 entries; other objects only reserve 2 entries. */
9534 BFD_ASSERT (g->assigned_low_gotno == 0);
9535 if (htab->is_vxworks)
9536 htab->reserved_gotno = 3;
9537 else
9538 htab->reserved_gotno = 2;
9539 g->local_gotno += htab->reserved_gotno;
9540 g->assigned_low_gotno = htab->reserved_gotno;
9541
9542 /* Decide which symbols need to go in the global part of the GOT and
9543 count the number of reloc-only GOT symbols. */
9544 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9545
9546 if (!mips_elf_resolve_final_got_entries (info, g))
9547 return FALSE;
9548
9549 /* Calculate the total loadable size of the output. That
9550 will give us the maximum number of GOT_PAGE entries
9551 required. */
9552 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9553 {
9554 asection *subsection;
9555
9556 for (subsection = ibfd->sections;
9557 subsection;
9558 subsection = subsection->next)
9559 {
9560 if ((subsection->flags & SEC_ALLOC) == 0)
9561 continue;
9562 loadable_size += ((subsection->size + 0xf)
9563 &~ (bfd_size_type) 0xf);
9564 }
9565 }
9566
9567 if (htab->is_vxworks)
9568 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9569 relocations against local symbols evaluate to "G", and the EABI does
9570 not include R_MIPS_GOT_PAGE. */
9571 page_gotno = 0;
9572 else
9573 /* Assume there are two loadable segments consisting of contiguous
9574 sections. Is 5 enough? */
9575 page_gotno = (loadable_size >> 16) + 5;
9576
9577 /* Choose the smaller of the two page estimates; both are intended to be
9578 conservative. */
9579 if (page_gotno > g->page_gotno)
9580 page_gotno = g->page_gotno;
9581
9582 g->local_gotno += page_gotno;
9583 g->assigned_high_gotno = g->local_gotno - 1;
9584
9585 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9586 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9587 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9588
9589 /* VxWorks does not support multiple GOTs. It initializes $gp to
9590 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9591 dynamic loader. */
9592 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9593 {
9594 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9595 return FALSE;
9596 }
9597 else
9598 {
9599 /* Record that all bfds use G. This also has the effect of freeing
9600 the per-bfd GOTs, which we no longer need. */
9601 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9602 if (mips_elf_bfd_got (ibfd, FALSE))
9603 mips_elf_replace_bfd_got (ibfd, g);
9604 mips_elf_replace_bfd_got (output_bfd, g);
9605
9606 /* Set up TLS entries. */
9607 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9608 tga.info = info;
9609 tga.g = g;
9610 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9611 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9612 if (!tga.g)
9613 return FALSE;
9614 BFD_ASSERT (g->tls_assigned_gotno
9615 == g->global_gotno + g->local_gotno + g->tls_gotno);
9616
9617 /* Each VxWorks GOT entry needs an explicit relocation. */
9618 if (htab->is_vxworks && bfd_link_pic (info))
9619 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9620
9621 /* Allocate room for the TLS relocations. */
9622 if (g->relocs)
9623 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9624 }
9625
9626 return TRUE;
9627 }
9628
9629 /* Estimate the size of the .MIPS.stubs section. */
9630
9631 static void
9632 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9633 {
9634 struct mips_elf_link_hash_table *htab;
9635 bfd_size_type dynsymcount;
9636
9637 htab = mips_elf_hash_table (info);
9638 BFD_ASSERT (htab != NULL);
9639
9640 if (htab->lazy_stub_count == 0)
9641 return;
9642
9643 /* IRIX rld assumes that a function stub isn't at the end of the .text
9644 section, so add a dummy entry to the end. */
9645 htab->lazy_stub_count++;
9646
9647 /* Get a worst-case estimate of the number of dynamic symbols needed.
9648 At this point, dynsymcount does not account for section symbols
9649 and count_section_dynsyms may overestimate the number that will
9650 be needed. */
9651 dynsymcount = (elf_hash_table (info)->dynsymcount
9652 + count_section_dynsyms (output_bfd, info));
9653
9654 /* Determine the size of one stub entry. There's no disadvantage
9655 from using microMIPS code here, so for the sake of pure-microMIPS
9656 binaries we prefer it whenever there's any microMIPS code in
9657 output produced at all. This has a benefit of stubs being
9658 shorter by 4 bytes each too, unless in the insn32 mode. */
9659 if (!MICROMIPS_P (output_bfd))
9660 htab->function_stub_size = (dynsymcount > 0x10000
9661 ? MIPS_FUNCTION_STUB_BIG_SIZE
9662 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9663 else if (htab->insn32)
9664 htab->function_stub_size = (dynsymcount > 0x10000
9665 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9666 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9667 else
9668 htab->function_stub_size = (dynsymcount > 0x10000
9669 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9670 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9671
9672 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9673 }
9674
9675 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9676 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9677 stub, allocate an entry in the stubs section. */
9678
9679 static bfd_boolean
9680 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9681 {
9682 struct mips_htab_traverse_info *hti = data;
9683 struct mips_elf_link_hash_table *htab;
9684 struct bfd_link_info *info;
9685 bfd *output_bfd;
9686
9687 info = hti->info;
9688 output_bfd = hti->output_bfd;
9689 htab = mips_elf_hash_table (info);
9690 BFD_ASSERT (htab != NULL);
9691
9692 if (h->needs_lazy_stub)
9693 {
9694 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9695 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9696 bfd_vma isa_bit = micromips_p;
9697
9698 BFD_ASSERT (htab->root.dynobj != NULL);
9699 if (h->root.plt.plist == NULL)
9700 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9701 if (h->root.plt.plist == NULL)
9702 {
9703 hti->error = TRUE;
9704 return FALSE;
9705 }
9706 h->root.root.u.def.section = htab->sstubs;
9707 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9708 h->root.plt.plist->stub_offset = htab->sstubs->size;
9709 h->root.other = other;
9710 htab->sstubs->size += htab->function_stub_size;
9711 }
9712 return TRUE;
9713 }
9714
9715 /* Allocate offsets in the stubs section to each symbol that needs one.
9716 Set the final size of the .MIPS.stub section. */
9717
9718 static bfd_boolean
9719 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9720 {
9721 bfd *output_bfd = info->output_bfd;
9722 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9723 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9724 bfd_vma isa_bit = micromips_p;
9725 struct mips_elf_link_hash_table *htab;
9726 struct mips_htab_traverse_info hti;
9727 struct elf_link_hash_entry *h;
9728 bfd *dynobj;
9729
9730 htab = mips_elf_hash_table (info);
9731 BFD_ASSERT (htab != NULL);
9732
9733 if (htab->lazy_stub_count == 0)
9734 return TRUE;
9735
9736 htab->sstubs->size = 0;
9737 hti.info = info;
9738 hti.output_bfd = output_bfd;
9739 hti.error = FALSE;
9740 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9741 if (hti.error)
9742 return FALSE;
9743 htab->sstubs->size += htab->function_stub_size;
9744 BFD_ASSERT (htab->sstubs->size
9745 == htab->lazy_stub_count * htab->function_stub_size);
9746
9747 dynobj = elf_hash_table (info)->dynobj;
9748 BFD_ASSERT (dynobj != NULL);
9749 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9750 if (h == NULL)
9751 return FALSE;
9752 h->root.u.def.value = isa_bit;
9753 h->other = other;
9754 h->type = STT_FUNC;
9755
9756 return TRUE;
9757 }
9758
9759 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9760 bfd_link_info. If H uses the address of a PLT entry as the value
9761 of the symbol, then set the entry in the symbol table now. Prefer
9762 a standard MIPS PLT entry. */
9763
9764 static bfd_boolean
9765 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9766 {
9767 struct bfd_link_info *info = data;
9768 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9769 struct mips_elf_link_hash_table *htab;
9770 unsigned int other;
9771 bfd_vma isa_bit;
9772 bfd_vma val;
9773
9774 htab = mips_elf_hash_table (info);
9775 BFD_ASSERT (htab != NULL);
9776
9777 if (h->use_plt_entry)
9778 {
9779 BFD_ASSERT (h->root.plt.plist != NULL);
9780 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9781 || h->root.plt.plist->comp_offset != MINUS_ONE);
9782
9783 val = htab->plt_header_size;
9784 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9785 {
9786 isa_bit = 0;
9787 val += h->root.plt.plist->mips_offset;
9788 other = 0;
9789 }
9790 else
9791 {
9792 isa_bit = 1;
9793 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9794 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9795 }
9796 val += isa_bit;
9797 /* For VxWorks, point at the PLT load stub rather than the lazy
9798 resolution stub; this stub will become the canonical function
9799 address. */
9800 if (htab->is_vxworks)
9801 val += 8;
9802
9803 h->root.root.u.def.section = htab->root.splt;
9804 h->root.root.u.def.value = val;
9805 h->root.other = other;
9806 }
9807
9808 return TRUE;
9809 }
9810
9811 /* Set the sizes of the dynamic sections. */
9812
9813 bfd_boolean
9814 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9815 struct bfd_link_info *info)
9816 {
9817 bfd *dynobj;
9818 asection *s, *sreldyn;
9819 bfd_boolean reltext;
9820 struct mips_elf_link_hash_table *htab;
9821
9822 htab = mips_elf_hash_table (info);
9823 BFD_ASSERT (htab != NULL);
9824 dynobj = elf_hash_table (info)->dynobj;
9825 BFD_ASSERT (dynobj != NULL);
9826
9827 if (elf_hash_table (info)->dynamic_sections_created)
9828 {
9829 /* Set the contents of the .interp section to the interpreter. */
9830 if (bfd_link_executable (info) && !info->nointerp)
9831 {
9832 s = bfd_get_linker_section (dynobj, ".interp");
9833 BFD_ASSERT (s != NULL);
9834 s->size
9835 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9836 s->contents
9837 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9838 }
9839
9840 /* Figure out the size of the PLT header if we know that we
9841 are using it. For the sake of cache alignment always use
9842 a standard header whenever any standard entries are present
9843 even if microMIPS entries are present as well. This also
9844 lets the microMIPS header rely on the value of $v0 only set
9845 by microMIPS entries, for a small size reduction.
9846
9847 Set symbol table entry values for symbols that use the
9848 address of their PLT entry now that we can calculate it.
9849
9850 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9851 haven't already in _bfd_elf_create_dynamic_sections. */
9852 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9853 {
9854 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9855 && !htab->plt_mips_offset);
9856 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9857 bfd_vma isa_bit = micromips_p;
9858 struct elf_link_hash_entry *h;
9859 bfd_vma size;
9860
9861 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9862 BFD_ASSERT (htab->root.sgotplt->size == 0);
9863 BFD_ASSERT (htab->root.splt->size == 0);
9864
9865 if (htab->is_vxworks && bfd_link_pic (info))
9866 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9867 else if (htab->is_vxworks)
9868 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9869 else if (ABI_64_P (output_bfd))
9870 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9871 else if (ABI_N32_P (output_bfd))
9872 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9873 else if (!micromips_p)
9874 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9875 else if (htab->insn32)
9876 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9877 else
9878 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9879
9880 htab->plt_header_is_comp = micromips_p;
9881 htab->plt_header_size = size;
9882 htab->root.splt->size = (size
9883 + htab->plt_mips_offset
9884 + htab->plt_comp_offset);
9885 htab->root.sgotplt->size = (htab->plt_got_index
9886 * MIPS_ELF_GOT_SIZE (dynobj));
9887
9888 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9889
9890 if (htab->root.hplt == NULL)
9891 {
9892 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9893 "_PROCEDURE_LINKAGE_TABLE_");
9894 htab->root.hplt = h;
9895 if (h == NULL)
9896 return FALSE;
9897 }
9898
9899 h = htab->root.hplt;
9900 h->root.u.def.value = isa_bit;
9901 h->other = other;
9902 h->type = STT_FUNC;
9903 }
9904 }
9905
9906 /* Allocate space for global sym dynamic relocs. */
9907 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9908
9909 mips_elf_estimate_stub_size (output_bfd, info);
9910
9911 if (!mips_elf_lay_out_got (output_bfd, info))
9912 return FALSE;
9913
9914 mips_elf_lay_out_lazy_stubs (info);
9915
9916 /* The check_relocs and adjust_dynamic_symbol entry points have
9917 determined the sizes of the various dynamic sections. Allocate
9918 memory for them. */
9919 reltext = FALSE;
9920 for (s = dynobj->sections; s != NULL; s = s->next)
9921 {
9922 const char *name;
9923
9924 /* It's OK to base decisions on the section name, because none
9925 of the dynobj section names depend upon the input files. */
9926 name = bfd_get_section_name (dynobj, s);
9927
9928 if ((s->flags & SEC_LINKER_CREATED) == 0)
9929 continue;
9930
9931 if (CONST_STRNEQ (name, ".rel"))
9932 {
9933 if (s->size != 0)
9934 {
9935 const char *outname;
9936 asection *target;
9937
9938 /* If this relocation section applies to a read only
9939 section, then we probably need a DT_TEXTREL entry.
9940 If the relocation section is .rel(a).dyn, we always
9941 assert a DT_TEXTREL entry rather than testing whether
9942 there exists a relocation to a read only section or
9943 not. */
9944 outname = bfd_get_section_name (output_bfd,
9945 s->output_section);
9946 target = bfd_get_section_by_name (output_bfd, outname + 4);
9947 if ((target != NULL
9948 && (target->flags & SEC_READONLY) != 0
9949 && (target->flags & SEC_ALLOC) != 0)
9950 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9951 reltext = TRUE;
9952
9953 /* We use the reloc_count field as a counter if we need
9954 to copy relocs into the output file. */
9955 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9956 s->reloc_count = 0;
9957
9958 /* If combreloc is enabled, elf_link_sort_relocs() will
9959 sort relocations, but in a different way than we do,
9960 and before we're done creating relocations. Also, it
9961 will move them around between input sections'
9962 relocation's contents, so our sorting would be
9963 broken, so don't let it run. */
9964 info->combreloc = 0;
9965 }
9966 }
9967 else if (bfd_link_executable (info)
9968 && ! mips_elf_hash_table (info)->use_rld_obj_head
9969 && CONST_STRNEQ (name, ".rld_map"))
9970 {
9971 /* We add a room for __rld_map. It will be filled in by the
9972 rtld to contain a pointer to the _r_debug structure. */
9973 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9974 }
9975 else if (SGI_COMPAT (output_bfd)
9976 && CONST_STRNEQ (name, ".compact_rel"))
9977 s->size += mips_elf_hash_table (info)->compact_rel_size;
9978 else if (s == htab->root.splt)
9979 {
9980 /* If the last PLT entry has a branch delay slot, allocate
9981 room for an extra nop to fill the delay slot. This is
9982 for CPUs without load interlocking. */
9983 if (! LOAD_INTERLOCKS_P (output_bfd)
9984 && ! htab->is_vxworks && s->size > 0)
9985 s->size += 4;
9986 }
9987 else if (! CONST_STRNEQ (name, ".init")
9988 && s != htab->root.sgot
9989 && s != htab->root.sgotplt
9990 && s != htab->sstubs
9991 && s != htab->root.sdynbss
9992 && s != htab->root.sdynrelro)
9993 {
9994 /* It's not one of our sections, so don't allocate space. */
9995 continue;
9996 }
9997
9998 if (s->size == 0)
9999 {
10000 s->flags |= SEC_EXCLUDE;
10001 continue;
10002 }
10003
10004 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10005 continue;
10006
10007 /* Allocate memory for the section contents. */
10008 s->contents = bfd_zalloc (dynobj, s->size);
10009 if (s->contents == NULL)
10010 {
10011 bfd_set_error (bfd_error_no_memory);
10012 return FALSE;
10013 }
10014 }
10015
10016 if (elf_hash_table (info)->dynamic_sections_created)
10017 {
10018 /* Add some entries to the .dynamic section. We fill in the
10019 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10020 must add the entries now so that we get the correct size for
10021 the .dynamic section. */
10022
10023 /* SGI object has the equivalence of DT_DEBUG in the
10024 DT_MIPS_RLD_MAP entry. This must come first because glibc
10025 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10026 may only look at the first one they see. */
10027 if (!bfd_link_pic (info)
10028 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10029 return FALSE;
10030
10031 if (bfd_link_executable (info)
10032 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10033 return FALSE;
10034
10035 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10036 used by the debugger. */
10037 if (bfd_link_executable (info)
10038 && !SGI_COMPAT (output_bfd)
10039 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10040 return FALSE;
10041
10042 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
10043 info->flags |= DF_TEXTREL;
10044
10045 if ((info->flags & DF_TEXTREL) != 0)
10046 {
10047 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10048 return FALSE;
10049
10050 /* Clear the DF_TEXTREL flag. It will be set again if we
10051 write out an actual text relocation; we may not, because
10052 at this point we do not know whether e.g. any .eh_frame
10053 absolute relocations have been converted to PC-relative. */
10054 info->flags &= ~DF_TEXTREL;
10055 }
10056
10057 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10058 return FALSE;
10059
10060 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10061 if (htab->is_vxworks)
10062 {
10063 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10064 use any of the DT_MIPS_* tags. */
10065 if (sreldyn && sreldyn->size > 0)
10066 {
10067 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10068 return FALSE;
10069
10070 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10071 return FALSE;
10072
10073 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10074 return FALSE;
10075 }
10076 }
10077 else
10078 {
10079 if (sreldyn && sreldyn->size > 0
10080 && !bfd_is_abs_section (sreldyn->output_section))
10081 {
10082 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10083 return FALSE;
10084
10085 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10086 return FALSE;
10087
10088 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10089 return FALSE;
10090 }
10091
10092 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10093 return FALSE;
10094
10095 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10096 return FALSE;
10097
10098 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10099 return FALSE;
10100
10101 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10102 return FALSE;
10103
10104 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10105 return FALSE;
10106
10107 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10108 return FALSE;
10109
10110 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10111 return FALSE;
10112
10113 if (IRIX_COMPAT (dynobj) == ict_irix5
10114 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10115 return FALSE;
10116
10117 if (IRIX_COMPAT (dynobj) == ict_irix6
10118 && (bfd_get_section_by_name
10119 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10120 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10121 return FALSE;
10122 }
10123 if (htab->root.splt->size > 0)
10124 {
10125 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10126 return FALSE;
10127
10128 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10129 return FALSE;
10130
10131 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10132 return FALSE;
10133
10134 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10135 return FALSE;
10136 }
10137 if (htab->is_vxworks
10138 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10139 return FALSE;
10140 }
10141
10142 return TRUE;
10143 }
10144 \f
10145 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10146 Adjust its R_ADDEND field so that it is correct for the output file.
10147 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10148 and sections respectively; both use symbol indexes. */
10149
10150 static void
10151 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10152 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10153 asection **local_sections, Elf_Internal_Rela *rel)
10154 {
10155 unsigned int r_type, r_symndx;
10156 Elf_Internal_Sym *sym;
10157 asection *sec;
10158
10159 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10160 {
10161 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10162 if (gprel16_reloc_p (r_type)
10163 || r_type == R_MIPS_GPREL32
10164 || literal_reloc_p (r_type))
10165 {
10166 rel->r_addend += _bfd_get_gp_value (input_bfd);
10167 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10168 }
10169
10170 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10171 sym = local_syms + r_symndx;
10172
10173 /* Adjust REL's addend to account for section merging. */
10174 if (!bfd_link_relocatable (info))
10175 {
10176 sec = local_sections[r_symndx];
10177 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10178 }
10179
10180 /* This would normally be done by the rela_normal code in elflink.c. */
10181 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10182 rel->r_addend += local_sections[r_symndx]->output_offset;
10183 }
10184 }
10185
10186 /* Handle relocations against symbols from removed linkonce sections,
10187 or sections discarded by a linker script. We use this wrapper around
10188 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10189 on 64-bit ELF targets. In this case for any relocation handled, which
10190 always be the first in a triplet, the remaining two have to be processed
10191 together with the first, even if they are R_MIPS_NONE. It is the symbol
10192 index referred by the first reloc that applies to all the three and the
10193 remaining two never refer to an object symbol. And it is the final
10194 relocation (the last non-null one) that determines the output field of
10195 the whole relocation so retrieve the corresponding howto structure for
10196 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10197
10198 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10199 and therefore requires to be pasted in a loop. It also defines a block
10200 and does not protect any of its arguments, hence the extra brackets. */
10201
10202 static void
10203 mips_reloc_against_discarded_section (bfd *output_bfd,
10204 struct bfd_link_info *info,
10205 bfd *input_bfd, asection *input_section,
10206 Elf_Internal_Rela **rel,
10207 const Elf_Internal_Rela **relend,
10208 bfd_boolean rel_reloc,
10209 reloc_howto_type *howto,
10210 bfd_byte *contents)
10211 {
10212 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10213 int count = bed->s->int_rels_per_ext_rel;
10214 unsigned int r_type;
10215 int i;
10216
10217 for (i = count - 1; i > 0; i--)
10218 {
10219 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10220 if (r_type != R_MIPS_NONE)
10221 {
10222 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10223 break;
10224 }
10225 }
10226 do
10227 {
10228 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10229 (*rel), count, (*relend),
10230 howto, i, contents);
10231 }
10232 while (0);
10233 }
10234
10235 /* Relocate a MIPS ELF section. */
10236
10237 bfd_boolean
10238 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10239 bfd *input_bfd, asection *input_section,
10240 bfd_byte *contents, Elf_Internal_Rela *relocs,
10241 Elf_Internal_Sym *local_syms,
10242 asection **local_sections)
10243 {
10244 Elf_Internal_Rela *rel;
10245 const Elf_Internal_Rela *relend;
10246 bfd_vma addend = 0;
10247 bfd_boolean use_saved_addend_p = FALSE;
10248
10249 relend = relocs + input_section->reloc_count;
10250 for (rel = relocs; rel < relend; ++rel)
10251 {
10252 const char *name;
10253 bfd_vma value = 0;
10254 reloc_howto_type *howto;
10255 bfd_boolean cross_mode_jump_p = FALSE;
10256 /* TRUE if the relocation is a RELA relocation, rather than a
10257 REL relocation. */
10258 bfd_boolean rela_relocation_p = TRUE;
10259 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10260 const char *msg;
10261 unsigned long r_symndx;
10262 asection *sec;
10263 Elf_Internal_Shdr *symtab_hdr;
10264 struct elf_link_hash_entry *h;
10265 bfd_boolean rel_reloc;
10266
10267 rel_reloc = (NEWABI_P (input_bfd)
10268 && mips_elf_rel_relocation_p (input_bfd, input_section,
10269 relocs, rel));
10270 /* Find the relocation howto for this relocation. */
10271 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10272
10273 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10274 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10275 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10276 {
10277 sec = local_sections[r_symndx];
10278 h = NULL;
10279 }
10280 else
10281 {
10282 unsigned long extsymoff;
10283
10284 extsymoff = 0;
10285 if (!elf_bad_symtab (input_bfd))
10286 extsymoff = symtab_hdr->sh_info;
10287 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10288 while (h->root.type == bfd_link_hash_indirect
10289 || h->root.type == bfd_link_hash_warning)
10290 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10291
10292 sec = NULL;
10293 if (h->root.type == bfd_link_hash_defined
10294 || h->root.type == bfd_link_hash_defweak)
10295 sec = h->root.u.def.section;
10296 }
10297
10298 if (sec != NULL && discarded_section (sec))
10299 {
10300 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10301 input_section, &rel, &relend,
10302 rel_reloc, howto, contents);
10303 continue;
10304 }
10305
10306 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10307 {
10308 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10309 64-bit code, but make sure all their addresses are in the
10310 lowermost or uppermost 32-bit section of the 64-bit address
10311 space. Thus, when they use an R_MIPS_64 they mean what is
10312 usually meant by R_MIPS_32, with the exception that the
10313 stored value is sign-extended to 64 bits. */
10314 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10315
10316 /* On big-endian systems, we need to lie about the position
10317 of the reloc. */
10318 if (bfd_big_endian (input_bfd))
10319 rel->r_offset += 4;
10320 }
10321
10322 if (!use_saved_addend_p)
10323 {
10324 /* If these relocations were originally of the REL variety,
10325 we must pull the addend out of the field that will be
10326 relocated. Otherwise, we simply use the contents of the
10327 RELA relocation. */
10328 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10329 relocs, rel))
10330 {
10331 rela_relocation_p = FALSE;
10332 addend = mips_elf_read_rel_addend (input_bfd, rel,
10333 howto, contents);
10334 if (hi16_reloc_p (r_type)
10335 || (got16_reloc_p (r_type)
10336 && mips_elf_local_relocation_p (input_bfd, rel,
10337 local_sections)))
10338 {
10339 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10340 contents, &addend))
10341 {
10342 if (h)
10343 name = h->root.root.string;
10344 else
10345 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10346 local_syms + r_symndx,
10347 sec);
10348 _bfd_error_handler
10349 /* xgettext:c-format */
10350 (_("%pB: can't find matching LO16 reloc against `%s'"
10351 " for %s at %#" PRIx64 " in section `%pA'"),
10352 input_bfd, name,
10353 howto->name, (uint64_t) rel->r_offset, input_section);
10354 }
10355 }
10356 else
10357 addend <<= howto->rightshift;
10358 }
10359 else
10360 addend = rel->r_addend;
10361 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10362 local_syms, local_sections, rel);
10363 }
10364
10365 if (bfd_link_relocatable (info))
10366 {
10367 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10368 && bfd_big_endian (input_bfd))
10369 rel->r_offset -= 4;
10370
10371 if (!rela_relocation_p && rel->r_addend)
10372 {
10373 addend += rel->r_addend;
10374 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10375 addend = mips_elf_high (addend);
10376 else if (r_type == R_MIPS_HIGHER)
10377 addend = mips_elf_higher (addend);
10378 else if (r_type == R_MIPS_HIGHEST)
10379 addend = mips_elf_highest (addend);
10380 else
10381 addend >>= howto->rightshift;
10382
10383 /* We use the source mask, rather than the destination
10384 mask because the place to which we are writing will be
10385 source of the addend in the final link. */
10386 addend &= howto->src_mask;
10387
10388 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10389 /* See the comment above about using R_MIPS_64 in the 32-bit
10390 ABI. Here, we need to update the addend. It would be
10391 possible to get away with just using the R_MIPS_32 reloc
10392 but for endianness. */
10393 {
10394 bfd_vma sign_bits;
10395 bfd_vma low_bits;
10396 bfd_vma high_bits;
10397
10398 if (addend & ((bfd_vma) 1 << 31))
10399 #ifdef BFD64
10400 sign_bits = ((bfd_vma) 1 << 32) - 1;
10401 #else
10402 sign_bits = -1;
10403 #endif
10404 else
10405 sign_bits = 0;
10406
10407 /* If we don't know that we have a 64-bit type,
10408 do two separate stores. */
10409 if (bfd_big_endian (input_bfd))
10410 {
10411 /* Store the sign-bits (which are most significant)
10412 first. */
10413 low_bits = sign_bits;
10414 high_bits = addend;
10415 }
10416 else
10417 {
10418 low_bits = addend;
10419 high_bits = sign_bits;
10420 }
10421 bfd_put_32 (input_bfd, low_bits,
10422 contents + rel->r_offset);
10423 bfd_put_32 (input_bfd, high_bits,
10424 contents + rel->r_offset + 4);
10425 continue;
10426 }
10427
10428 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10429 input_bfd, input_section,
10430 contents, FALSE))
10431 return FALSE;
10432 }
10433
10434 /* Go on to the next relocation. */
10435 continue;
10436 }
10437
10438 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10439 relocations for the same offset. In that case we are
10440 supposed to treat the output of each relocation as the addend
10441 for the next. */
10442 if (rel + 1 < relend
10443 && rel->r_offset == rel[1].r_offset
10444 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10445 use_saved_addend_p = TRUE;
10446 else
10447 use_saved_addend_p = FALSE;
10448
10449 /* Figure out what value we are supposed to relocate. */
10450 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10451 input_section, contents,
10452 info, rel, addend, howto,
10453 local_syms, local_sections,
10454 &value, &name, &cross_mode_jump_p,
10455 use_saved_addend_p))
10456 {
10457 case bfd_reloc_continue:
10458 /* There's nothing to do. */
10459 continue;
10460
10461 case bfd_reloc_undefined:
10462 /* mips_elf_calculate_relocation already called the
10463 undefined_symbol callback. There's no real point in
10464 trying to perform the relocation at this point, so we
10465 just skip ahead to the next relocation. */
10466 continue;
10467
10468 case bfd_reloc_notsupported:
10469 msg = _("internal error: unsupported relocation error");
10470 info->callbacks->warning
10471 (info, msg, name, input_bfd, input_section, rel->r_offset);
10472 return FALSE;
10473
10474 case bfd_reloc_overflow:
10475 if (use_saved_addend_p)
10476 /* Ignore overflow until we reach the last relocation for
10477 a given location. */
10478 ;
10479 else
10480 {
10481 struct mips_elf_link_hash_table *htab;
10482
10483 htab = mips_elf_hash_table (info);
10484 BFD_ASSERT (htab != NULL);
10485 BFD_ASSERT (name != NULL);
10486 if (!htab->small_data_overflow_reported
10487 && (gprel16_reloc_p (howto->type)
10488 || literal_reloc_p (howto->type)))
10489 {
10490 msg = _("small-data section exceeds 64KB;"
10491 " lower small-data size limit (see option -G)");
10492
10493 htab->small_data_overflow_reported = TRUE;
10494 (*info->callbacks->einfo) ("%P: %s\n", msg);
10495 }
10496 (*info->callbacks->reloc_overflow)
10497 (info, NULL, name, howto->name, (bfd_vma) 0,
10498 input_bfd, input_section, rel->r_offset);
10499 }
10500 break;
10501
10502 case bfd_reloc_ok:
10503 break;
10504
10505 case bfd_reloc_outofrange:
10506 msg = NULL;
10507 if (jal_reloc_p (howto->type))
10508 msg = (cross_mode_jump_p
10509 ? _("cannot convert a jump to JALX "
10510 "for a non-word-aligned address")
10511 : (howto->type == R_MIPS16_26
10512 ? _("jump to a non-word-aligned address")
10513 : _("jump to a non-instruction-aligned address")));
10514 else if (b_reloc_p (howto->type))
10515 msg = (cross_mode_jump_p
10516 ? _("cannot convert a branch to JALX "
10517 "for a non-word-aligned address")
10518 : _("branch to a non-instruction-aligned address"));
10519 else if (aligned_pcrel_reloc_p (howto->type))
10520 msg = _("PC-relative load from unaligned address");
10521 if (msg)
10522 {
10523 info->callbacks->einfo
10524 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10525 break;
10526 }
10527 /* Fall through. */
10528
10529 default:
10530 abort ();
10531 break;
10532 }
10533
10534 /* If we've got another relocation for the address, keep going
10535 until we reach the last one. */
10536 if (use_saved_addend_p)
10537 {
10538 addend = value;
10539 continue;
10540 }
10541
10542 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10543 /* See the comment above about using R_MIPS_64 in the 32-bit
10544 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10545 that calculated the right value. Now, however, we
10546 sign-extend the 32-bit result to 64-bits, and store it as a
10547 64-bit value. We are especially generous here in that we
10548 go to extreme lengths to support this usage on systems with
10549 only a 32-bit VMA. */
10550 {
10551 bfd_vma sign_bits;
10552 bfd_vma low_bits;
10553 bfd_vma high_bits;
10554
10555 if (value & ((bfd_vma) 1 << 31))
10556 #ifdef BFD64
10557 sign_bits = ((bfd_vma) 1 << 32) - 1;
10558 #else
10559 sign_bits = -1;
10560 #endif
10561 else
10562 sign_bits = 0;
10563
10564 /* If we don't know that we have a 64-bit type,
10565 do two separate stores. */
10566 if (bfd_big_endian (input_bfd))
10567 {
10568 /* Undo what we did above. */
10569 rel->r_offset -= 4;
10570 /* Store the sign-bits (which are most significant)
10571 first. */
10572 low_bits = sign_bits;
10573 high_bits = value;
10574 }
10575 else
10576 {
10577 low_bits = value;
10578 high_bits = sign_bits;
10579 }
10580 bfd_put_32 (input_bfd, low_bits,
10581 contents + rel->r_offset);
10582 bfd_put_32 (input_bfd, high_bits,
10583 contents + rel->r_offset + 4);
10584 continue;
10585 }
10586
10587 /* Actually perform the relocation. */
10588 if (! mips_elf_perform_relocation (info, howto, rel, value,
10589 input_bfd, input_section,
10590 contents, cross_mode_jump_p))
10591 return FALSE;
10592 }
10593
10594 return TRUE;
10595 }
10596 \f
10597 /* A function that iterates over each entry in la25_stubs and fills
10598 in the code for each one. DATA points to a mips_htab_traverse_info. */
10599
10600 static int
10601 mips_elf_create_la25_stub (void **slot, void *data)
10602 {
10603 struct mips_htab_traverse_info *hti;
10604 struct mips_elf_link_hash_table *htab;
10605 struct mips_elf_la25_stub *stub;
10606 asection *s;
10607 bfd_byte *loc;
10608 bfd_vma offset, target, target_high, target_low;
10609
10610 stub = (struct mips_elf_la25_stub *) *slot;
10611 hti = (struct mips_htab_traverse_info *) data;
10612 htab = mips_elf_hash_table (hti->info);
10613 BFD_ASSERT (htab != NULL);
10614
10615 /* Create the section contents, if we haven't already. */
10616 s = stub->stub_section;
10617 loc = s->contents;
10618 if (loc == NULL)
10619 {
10620 loc = bfd_malloc (s->size);
10621 if (loc == NULL)
10622 {
10623 hti->error = TRUE;
10624 return FALSE;
10625 }
10626 s->contents = loc;
10627 }
10628
10629 /* Work out where in the section this stub should go. */
10630 offset = stub->offset;
10631
10632 /* Work out the target address. */
10633 target = mips_elf_get_la25_target (stub, &s);
10634 target += s->output_section->vma + s->output_offset;
10635
10636 target_high = ((target + 0x8000) >> 16) & 0xffff;
10637 target_low = (target & 0xffff);
10638
10639 if (stub->stub_section != htab->strampoline)
10640 {
10641 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10642 of the section and write the two instructions at the end. */
10643 memset (loc, 0, offset);
10644 loc += offset;
10645 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10646 {
10647 bfd_put_micromips_32 (hti->output_bfd,
10648 LA25_LUI_MICROMIPS (target_high),
10649 loc);
10650 bfd_put_micromips_32 (hti->output_bfd,
10651 LA25_ADDIU_MICROMIPS (target_low),
10652 loc + 4);
10653 }
10654 else
10655 {
10656 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10657 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10658 }
10659 }
10660 else
10661 {
10662 /* This is trampoline. */
10663 loc += offset;
10664 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10665 {
10666 bfd_put_micromips_32 (hti->output_bfd,
10667 LA25_LUI_MICROMIPS (target_high), loc);
10668 bfd_put_micromips_32 (hti->output_bfd,
10669 LA25_J_MICROMIPS (target), loc + 4);
10670 bfd_put_micromips_32 (hti->output_bfd,
10671 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10672 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10673 }
10674 else
10675 {
10676 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10677 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10678 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10679 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10680 }
10681 }
10682 return TRUE;
10683 }
10684
10685 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10686 adjust it appropriately now. */
10687
10688 static void
10689 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10690 const char *name, Elf_Internal_Sym *sym)
10691 {
10692 /* The linker script takes care of providing names and values for
10693 these, but we must place them into the right sections. */
10694 static const char* const text_section_symbols[] = {
10695 "_ftext",
10696 "_etext",
10697 "__dso_displacement",
10698 "__elf_header",
10699 "__program_header_table",
10700 NULL
10701 };
10702
10703 static const char* const data_section_symbols[] = {
10704 "_fdata",
10705 "_edata",
10706 "_end",
10707 "_fbss",
10708 NULL
10709 };
10710
10711 const char* const *p;
10712 int i;
10713
10714 for (i = 0; i < 2; ++i)
10715 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10716 *p;
10717 ++p)
10718 if (strcmp (*p, name) == 0)
10719 {
10720 /* All of these symbols are given type STT_SECTION by the
10721 IRIX6 linker. */
10722 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10723 sym->st_other = STO_PROTECTED;
10724
10725 /* The IRIX linker puts these symbols in special sections. */
10726 if (i == 0)
10727 sym->st_shndx = SHN_MIPS_TEXT;
10728 else
10729 sym->st_shndx = SHN_MIPS_DATA;
10730
10731 break;
10732 }
10733 }
10734
10735 /* Finish up dynamic symbol handling. We set the contents of various
10736 dynamic sections here. */
10737
10738 bfd_boolean
10739 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10740 struct bfd_link_info *info,
10741 struct elf_link_hash_entry *h,
10742 Elf_Internal_Sym *sym)
10743 {
10744 bfd *dynobj;
10745 asection *sgot;
10746 struct mips_got_info *g, *gg;
10747 const char *name;
10748 int idx;
10749 struct mips_elf_link_hash_table *htab;
10750 struct mips_elf_link_hash_entry *hmips;
10751
10752 htab = mips_elf_hash_table (info);
10753 BFD_ASSERT (htab != NULL);
10754 dynobj = elf_hash_table (info)->dynobj;
10755 hmips = (struct mips_elf_link_hash_entry *) h;
10756
10757 BFD_ASSERT (!htab->is_vxworks);
10758
10759 if (h->plt.plist != NULL
10760 && (h->plt.plist->mips_offset != MINUS_ONE
10761 || h->plt.plist->comp_offset != MINUS_ONE))
10762 {
10763 /* We've decided to create a PLT entry for this symbol. */
10764 bfd_byte *loc;
10765 bfd_vma header_address, got_address;
10766 bfd_vma got_address_high, got_address_low, load;
10767 bfd_vma got_index;
10768 bfd_vma isa_bit;
10769
10770 got_index = h->plt.plist->gotplt_index;
10771
10772 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10773 BFD_ASSERT (h->dynindx != -1);
10774 BFD_ASSERT (htab->root.splt != NULL);
10775 BFD_ASSERT (got_index != MINUS_ONE);
10776 BFD_ASSERT (!h->def_regular);
10777
10778 /* Calculate the address of the PLT header. */
10779 isa_bit = htab->plt_header_is_comp;
10780 header_address = (htab->root.splt->output_section->vma
10781 + htab->root.splt->output_offset + isa_bit);
10782
10783 /* Calculate the address of the .got.plt entry. */
10784 got_address = (htab->root.sgotplt->output_section->vma
10785 + htab->root.sgotplt->output_offset
10786 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10787
10788 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10789 got_address_low = got_address & 0xffff;
10790
10791 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10792 cannot be loaded in two instructions. */
10793 if (ABI_64_P (output_bfd)
10794 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10795 {
10796 _bfd_error_handler
10797 /* xgettext:c-format */
10798 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10799 "supported; consider using `-Ttext-segment=...'"),
10800 output_bfd,
10801 htab->root.sgotplt->output_section,
10802 (int64_t) got_address);
10803 bfd_set_error (bfd_error_no_error);
10804 return FALSE;
10805 }
10806
10807 /* Initially point the .got.plt entry at the PLT header. */
10808 loc = (htab->root.sgotplt->contents
10809 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10810 if (ABI_64_P (output_bfd))
10811 bfd_put_64 (output_bfd, header_address, loc);
10812 else
10813 bfd_put_32 (output_bfd, header_address, loc);
10814
10815 /* Now handle the PLT itself. First the standard entry (the order
10816 does not matter, we just have to pick one). */
10817 if (h->plt.plist->mips_offset != MINUS_ONE)
10818 {
10819 const bfd_vma *plt_entry;
10820 bfd_vma plt_offset;
10821
10822 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10823
10824 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10825
10826 /* Find out where the .plt entry should go. */
10827 loc = htab->root.splt->contents + plt_offset;
10828
10829 /* Pick the load opcode. */
10830 load = MIPS_ELF_LOAD_WORD (output_bfd);
10831
10832 /* Fill in the PLT entry itself. */
10833
10834 if (MIPSR6_P (output_bfd))
10835 plt_entry = mipsr6_exec_plt_entry;
10836 else
10837 plt_entry = mips_exec_plt_entry;
10838 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10839 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10840 loc + 4);
10841
10842 if (! LOAD_INTERLOCKS_P (output_bfd))
10843 {
10844 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10845 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10846 }
10847 else
10848 {
10849 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10850 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10851 loc + 12);
10852 }
10853 }
10854
10855 /* Now the compressed entry. They come after any standard ones. */
10856 if (h->plt.plist->comp_offset != MINUS_ONE)
10857 {
10858 bfd_vma plt_offset;
10859
10860 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10861 + h->plt.plist->comp_offset);
10862
10863 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10864
10865 /* Find out where the .plt entry should go. */
10866 loc = htab->root.splt->contents + plt_offset;
10867
10868 /* Fill in the PLT entry itself. */
10869 if (!MICROMIPS_P (output_bfd))
10870 {
10871 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10872
10873 bfd_put_16 (output_bfd, plt_entry[0], loc);
10874 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10875 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10876 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10877 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10878 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10879 bfd_put_32 (output_bfd, got_address, loc + 12);
10880 }
10881 else if (htab->insn32)
10882 {
10883 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10884
10885 bfd_put_16 (output_bfd, plt_entry[0], loc);
10886 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10887 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10888 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10889 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10890 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10891 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10892 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10893 }
10894 else
10895 {
10896 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10897 bfd_signed_vma gotpc_offset;
10898 bfd_vma loc_address;
10899
10900 BFD_ASSERT (got_address % 4 == 0);
10901
10902 loc_address = (htab->root.splt->output_section->vma
10903 + htab->root.splt->output_offset + plt_offset);
10904 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10905
10906 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10907 if (gotpc_offset + 0x1000000 >= 0x2000000)
10908 {
10909 _bfd_error_handler
10910 /* xgettext:c-format */
10911 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10912 "beyond the range of ADDIUPC"),
10913 output_bfd,
10914 htab->root.sgotplt->output_section,
10915 (int64_t) gotpc_offset,
10916 htab->root.splt->output_section);
10917 bfd_set_error (bfd_error_no_error);
10918 return FALSE;
10919 }
10920 bfd_put_16 (output_bfd,
10921 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10922 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10923 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10924 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10925 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10926 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10927 }
10928 }
10929
10930 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10931 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10932 got_index - 2, h->dynindx,
10933 R_MIPS_JUMP_SLOT, got_address);
10934
10935 /* We distinguish between PLT entries and lazy-binding stubs by
10936 giving the former an st_other value of STO_MIPS_PLT. Set the
10937 flag and leave the value if there are any relocations in the
10938 binary where pointer equality matters. */
10939 sym->st_shndx = SHN_UNDEF;
10940 if (h->pointer_equality_needed)
10941 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10942 else
10943 {
10944 sym->st_value = 0;
10945 sym->st_other = 0;
10946 }
10947 }
10948
10949 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10950 {
10951 /* We've decided to create a lazy-binding stub. */
10952 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10953 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10954 bfd_vma stub_size = htab->function_stub_size;
10955 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10956 bfd_vma isa_bit = micromips_p;
10957 bfd_vma stub_big_size;
10958
10959 if (!micromips_p)
10960 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10961 else if (htab->insn32)
10962 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10963 else
10964 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10965
10966 /* This symbol has a stub. Set it up. */
10967
10968 BFD_ASSERT (h->dynindx != -1);
10969
10970 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10971
10972 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10973 sign extension at runtime in the stub, resulting in a negative
10974 index value. */
10975 if (h->dynindx & ~0x7fffffff)
10976 return FALSE;
10977
10978 /* Fill the stub. */
10979 if (micromips_p)
10980 {
10981 idx = 0;
10982 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10983 stub + idx);
10984 idx += 4;
10985 if (htab->insn32)
10986 {
10987 bfd_put_micromips_32 (output_bfd,
10988 STUB_MOVE32_MICROMIPS, stub + idx);
10989 idx += 4;
10990 }
10991 else
10992 {
10993 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10994 idx += 2;
10995 }
10996 if (stub_size == stub_big_size)
10997 {
10998 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10999
11000 bfd_put_micromips_32 (output_bfd,
11001 STUB_LUI_MICROMIPS (dynindx_hi),
11002 stub + idx);
11003 idx += 4;
11004 }
11005 if (htab->insn32)
11006 {
11007 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11008 stub + idx);
11009 idx += 4;
11010 }
11011 else
11012 {
11013 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11014 idx += 2;
11015 }
11016
11017 /* If a large stub is not required and sign extension is not a
11018 problem, then use legacy code in the stub. */
11019 if (stub_size == stub_big_size)
11020 bfd_put_micromips_32 (output_bfd,
11021 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11022 stub + idx);
11023 else if (h->dynindx & ~0x7fff)
11024 bfd_put_micromips_32 (output_bfd,
11025 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11026 stub + idx);
11027 else
11028 bfd_put_micromips_32 (output_bfd,
11029 STUB_LI16S_MICROMIPS (output_bfd,
11030 h->dynindx),
11031 stub + idx);
11032 }
11033 else
11034 {
11035 idx = 0;
11036 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11037 idx += 4;
11038 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11039 idx += 4;
11040 if (stub_size == stub_big_size)
11041 {
11042 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11043 stub + idx);
11044 idx += 4;
11045 }
11046 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11047 idx += 4;
11048
11049 /* If a large stub is not required and sign extension is not a
11050 problem, then use legacy code in the stub. */
11051 if (stub_size == stub_big_size)
11052 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11053 stub + idx);
11054 else if (h->dynindx & ~0x7fff)
11055 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11056 stub + idx);
11057 else
11058 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11059 stub + idx);
11060 }
11061
11062 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11063 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11064 stub, stub_size);
11065
11066 /* Mark the symbol as undefined. stub_offset != -1 occurs
11067 only for the referenced symbol. */
11068 sym->st_shndx = SHN_UNDEF;
11069
11070 /* The run-time linker uses the st_value field of the symbol
11071 to reset the global offset table entry for this external
11072 to its stub address when unlinking a shared object. */
11073 sym->st_value = (htab->sstubs->output_section->vma
11074 + htab->sstubs->output_offset
11075 + h->plt.plist->stub_offset
11076 + isa_bit);
11077 sym->st_other = other;
11078 }
11079
11080 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11081 refer to the stub, since only the stub uses the standard calling
11082 conventions. */
11083 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11084 {
11085 BFD_ASSERT (hmips->need_fn_stub);
11086 sym->st_value = (hmips->fn_stub->output_section->vma
11087 + hmips->fn_stub->output_offset);
11088 sym->st_size = hmips->fn_stub->size;
11089 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11090 }
11091
11092 BFD_ASSERT (h->dynindx != -1
11093 || h->forced_local);
11094
11095 sgot = htab->root.sgot;
11096 g = htab->got_info;
11097 BFD_ASSERT (g != NULL);
11098
11099 /* Run through the global symbol table, creating GOT entries for all
11100 the symbols that need them. */
11101 if (hmips->global_got_area != GGA_NONE)
11102 {
11103 bfd_vma offset;
11104 bfd_vma value;
11105
11106 value = sym->st_value;
11107 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11108 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11109 }
11110
11111 if (hmips->global_got_area != GGA_NONE && g->next)
11112 {
11113 struct mips_got_entry e, *p;
11114 bfd_vma entry;
11115 bfd_vma offset;
11116
11117 gg = g;
11118
11119 e.abfd = output_bfd;
11120 e.symndx = -1;
11121 e.d.h = hmips;
11122 e.tls_type = GOT_TLS_NONE;
11123
11124 for (g = g->next; g->next != gg; g = g->next)
11125 {
11126 if (g->got_entries
11127 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11128 &e)))
11129 {
11130 offset = p->gotidx;
11131 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11132 if (bfd_link_pic (info)
11133 || (elf_hash_table (info)->dynamic_sections_created
11134 && p->d.h != NULL
11135 && p->d.h->root.def_dynamic
11136 && !p->d.h->root.def_regular))
11137 {
11138 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11139 the various compatibility problems, it's easier to mock
11140 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11141 mips_elf_create_dynamic_relocation to calculate the
11142 appropriate addend. */
11143 Elf_Internal_Rela rel[3];
11144
11145 memset (rel, 0, sizeof (rel));
11146 if (ABI_64_P (output_bfd))
11147 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11148 else
11149 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11150 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11151
11152 entry = 0;
11153 if (! (mips_elf_create_dynamic_relocation
11154 (output_bfd, info, rel,
11155 e.d.h, NULL, sym->st_value, &entry, sgot)))
11156 return FALSE;
11157 }
11158 else
11159 entry = sym->st_value;
11160 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11161 }
11162 }
11163 }
11164
11165 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11166 name = h->root.root.string;
11167 if (h == elf_hash_table (info)->hdynamic
11168 || h == elf_hash_table (info)->hgot)
11169 sym->st_shndx = SHN_ABS;
11170 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11171 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11172 {
11173 sym->st_shndx = SHN_ABS;
11174 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11175 sym->st_value = 1;
11176 }
11177 else if (SGI_COMPAT (output_bfd))
11178 {
11179 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11180 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11181 {
11182 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11183 sym->st_other = STO_PROTECTED;
11184 sym->st_value = 0;
11185 sym->st_shndx = SHN_MIPS_DATA;
11186 }
11187 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11188 {
11189 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11190 sym->st_other = STO_PROTECTED;
11191 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11192 sym->st_shndx = SHN_ABS;
11193 }
11194 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11195 {
11196 if (h->type == STT_FUNC)
11197 sym->st_shndx = SHN_MIPS_TEXT;
11198 else if (h->type == STT_OBJECT)
11199 sym->st_shndx = SHN_MIPS_DATA;
11200 }
11201 }
11202
11203 /* Emit a copy reloc, if needed. */
11204 if (h->needs_copy)
11205 {
11206 asection *s;
11207 bfd_vma symval;
11208
11209 BFD_ASSERT (h->dynindx != -1);
11210 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11211
11212 s = mips_elf_rel_dyn_section (info, FALSE);
11213 symval = (h->root.u.def.section->output_section->vma
11214 + h->root.u.def.section->output_offset
11215 + h->root.u.def.value);
11216 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11217 h->dynindx, R_MIPS_COPY, symval);
11218 }
11219
11220 /* Handle the IRIX6-specific symbols. */
11221 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11222 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11223
11224 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11225 to treat compressed symbols like any other. */
11226 if (ELF_ST_IS_MIPS16 (sym->st_other))
11227 {
11228 BFD_ASSERT (sym->st_value & 1);
11229 sym->st_other -= STO_MIPS16;
11230 }
11231 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11232 {
11233 BFD_ASSERT (sym->st_value & 1);
11234 sym->st_other -= STO_MICROMIPS;
11235 }
11236
11237 return TRUE;
11238 }
11239
11240 /* Likewise, for VxWorks. */
11241
11242 bfd_boolean
11243 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11244 struct bfd_link_info *info,
11245 struct elf_link_hash_entry *h,
11246 Elf_Internal_Sym *sym)
11247 {
11248 bfd *dynobj;
11249 asection *sgot;
11250 struct mips_got_info *g;
11251 struct mips_elf_link_hash_table *htab;
11252 struct mips_elf_link_hash_entry *hmips;
11253
11254 htab = mips_elf_hash_table (info);
11255 BFD_ASSERT (htab != NULL);
11256 dynobj = elf_hash_table (info)->dynobj;
11257 hmips = (struct mips_elf_link_hash_entry *) h;
11258
11259 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11260 {
11261 bfd_byte *loc;
11262 bfd_vma plt_address, got_address, got_offset, branch_offset;
11263 Elf_Internal_Rela rel;
11264 static const bfd_vma *plt_entry;
11265 bfd_vma gotplt_index;
11266 bfd_vma plt_offset;
11267
11268 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11269 gotplt_index = h->plt.plist->gotplt_index;
11270
11271 BFD_ASSERT (h->dynindx != -1);
11272 BFD_ASSERT (htab->root.splt != NULL);
11273 BFD_ASSERT (gotplt_index != MINUS_ONE);
11274 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11275
11276 /* Calculate the address of the .plt entry. */
11277 plt_address = (htab->root.splt->output_section->vma
11278 + htab->root.splt->output_offset
11279 + plt_offset);
11280
11281 /* Calculate the address of the .got.plt entry. */
11282 got_address = (htab->root.sgotplt->output_section->vma
11283 + htab->root.sgotplt->output_offset
11284 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11285
11286 /* Calculate the offset of the .got.plt entry from
11287 _GLOBAL_OFFSET_TABLE_. */
11288 got_offset = mips_elf_gotplt_index (info, h);
11289
11290 /* Calculate the offset for the branch at the start of the PLT
11291 entry. The branch jumps to the beginning of .plt. */
11292 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11293
11294 /* Fill in the initial value of the .got.plt entry. */
11295 bfd_put_32 (output_bfd, plt_address,
11296 (htab->root.sgotplt->contents
11297 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11298
11299 /* Find out where the .plt entry should go. */
11300 loc = htab->root.splt->contents + plt_offset;
11301
11302 if (bfd_link_pic (info))
11303 {
11304 plt_entry = mips_vxworks_shared_plt_entry;
11305 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11306 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11307 }
11308 else
11309 {
11310 bfd_vma got_address_high, got_address_low;
11311
11312 plt_entry = mips_vxworks_exec_plt_entry;
11313 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11314 got_address_low = got_address & 0xffff;
11315
11316 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11317 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11318 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11319 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11320 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11321 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11322 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11323 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11324
11325 loc = (htab->srelplt2->contents
11326 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11327
11328 /* Emit a relocation for the .got.plt entry. */
11329 rel.r_offset = got_address;
11330 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11331 rel.r_addend = plt_offset;
11332 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11333
11334 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11335 loc += sizeof (Elf32_External_Rela);
11336 rel.r_offset = plt_address + 8;
11337 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11338 rel.r_addend = got_offset;
11339 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11340
11341 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11342 loc += sizeof (Elf32_External_Rela);
11343 rel.r_offset += 4;
11344 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11345 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11346 }
11347
11348 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11349 loc = (htab->root.srelplt->contents
11350 + gotplt_index * sizeof (Elf32_External_Rela));
11351 rel.r_offset = got_address;
11352 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11353 rel.r_addend = 0;
11354 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11355
11356 if (!h->def_regular)
11357 sym->st_shndx = SHN_UNDEF;
11358 }
11359
11360 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11361
11362 sgot = htab->root.sgot;
11363 g = htab->got_info;
11364 BFD_ASSERT (g != NULL);
11365
11366 /* See if this symbol has an entry in the GOT. */
11367 if (hmips->global_got_area != GGA_NONE)
11368 {
11369 bfd_vma offset;
11370 Elf_Internal_Rela outrel;
11371 bfd_byte *loc;
11372 asection *s;
11373
11374 /* Install the symbol value in the GOT. */
11375 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11376 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11377
11378 /* Add a dynamic relocation for it. */
11379 s = mips_elf_rel_dyn_section (info, FALSE);
11380 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11381 outrel.r_offset = (sgot->output_section->vma
11382 + sgot->output_offset
11383 + offset);
11384 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11385 outrel.r_addend = 0;
11386 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11387 }
11388
11389 /* Emit a copy reloc, if needed. */
11390 if (h->needs_copy)
11391 {
11392 Elf_Internal_Rela rel;
11393 asection *srel;
11394 bfd_byte *loc;
11395
11396 BFD_ASSERT (h->dynindx != -1);
11397
11398 rel.r_offset = (h->root.u.def.section->output_section->vma
11399 + h->root.u.def.section->output_offset
11400 + h->root.u.def.value);
11401 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11402 rel.r_addend = 0;
11403 if (h->root.u.def.section == htab->root.sdynrelro)
11404 srel = htab->root.sreldynrelro;
11405 else
11406 srel = htab->root.srelbss;
11407 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11408 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11409 ++srel->reloc_count;
11410 }
11411
11412 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11413 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11414 sym->st_value &= ~1;
11415
11416 return TRUE;
11417 }
11418
11419 /* Write out a plt0 entry to the beginning of .plt. */
11420
11421 static bfd_boolean
11422 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11423 {
11424 bfd_byte *loc;
11425 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11426 static const bfd_vma *plt_entry;
11427 struct mips_elf_link_hash_table *htab;
11428
11429 htab = mips_elf_hash_table (info);
11430 BFD_ASSERT (htab != NULL);
11431
11432 if (ABI_64_P (output_bfd))
11433 plt_entry = mips_n64_exec_plt0_entry;
11434 else if (ABI_N32_P (output_bfd))
11435 plt_entry = mips_n32_exec_plt0_entry;
11436 else if (!htab->plt_header_is_comp)
11437 plt_entry = mips_o32_exec_plt0_entry;
11438 else if (htab->insn32)
11439 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11440 else
11441 plt_entry = micromips_o32_exec_plt0_entry;
11442
11443 /* Calculate the value of .got.plt. */
11444 gotplt_value = (htab->root.sgotplt->output_section->vma
11445 + htab->root.sgotplt->output_offset);
11446 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11447 gotplt_value_low = gotplt_value & 0xffff;
11448
11449 /* The PLT sequence is not safe for N64 if .got.plt's address can
11450 not be loaded in two instructions. */
11451 if (ABI_64_P (output_bfd)
11452 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11453 {
11454 _bfd_error_handler
11455 /* xgettext:c-format */
11456 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11457 "supported; consider using `-Ttext-segment=...'"),
11458 output_bfd,
11459 htab->root.sgotplt->output_section,
11460 (int64_t) gotplt_value);
11461 bfd_set_error (bfd_error_no_error);
11462 return FALSE;
11463 }
11464
11465 /* Install the PLT header. */
11466 loc = htab->root.splt->contents;
11467 if (plt_entry == micromips_o32_exec_plt0_entry)
11468 {
11469 bfd_vma gotpc_offset;
11470 bfd_vma loc_address;
11471 size_t i;
11472
11473 BFD_ASSERT (gotplt_value % 4 == 0);
11474
11475 loc_address = (htab->root.splt->output_section->vma
11476 + htab->root.splt->output_offset);
11477 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11478
11479 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11480 if (gotpc_offset + 0x1000000 >= 0x2000000)
11481 {
11482 _bfd_error_handler
11483 /* xgettext:c-format */
11484 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11485 "beyond the range of ADDIUPC"),
11486 output_bfd,
11487 htab->root.sgotplt->output_section,
11488 (int64_t) gotpc_offset,
11489 htab->root.splt->output_section);
11490 bfd_set_error (bfd_error_no_error);
11491 return FALSE;
11492 }
11493 bfd_put_16 (output_bfd,
11494 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11495 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11496 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11497 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11498 }
11499 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11500 {
11501 size_t i;
11502
11503 bfd_put_16 (output_bfd, plt_entry[0], loc);
11504 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11505 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11506 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11507 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11508 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11509 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11510 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11511 }
11512 else
11513 {
11514 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11515 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11516 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11517 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11518 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11519 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11520 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11521 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11522 }
11523
11524 return TRUE;
11525 }
11526
11527 /* Install the PLT header for a VxWorks executable and finalize the
11528 contents of .rela.plt.unloaded. */
11529
11530 static void
11531 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11532 {
11533 Elf_Internal_Rela rela;
11534 bfd_byte *loc;
11535 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11536 static const bfd_vma *plt_entry;
11537 struct mips_elf_link_hash_table *htab;
11538
11539 htab = mips_elf_hash_table (info);
11540 BFD_ASSERT (htab != NULL);
11541
11542 plt_entry = mips_vxworks_exec_plt0_entry;
11543
11544 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11545 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11546 + htab->root.hgot->root.u.def.section->output_offset
11547 + htab->root.hgot->root.u.def.value);
11548
11549 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11550 got_value_low = got_value & 0xffff;
11551
11552 /* Calculate the address of the PLT header. */
11553 plt_address = (htab->root.splt->output_section->vma
11554 + htab->root.splt->output_offset);
11555
11556 /* Install the PLT header. */
11557 loc = htab->root.splt->contents;
11558 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11559 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11560 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11561 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11562 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11563 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11564
11565 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11566 loc = htab->srelplt2->contents;
11567 rela.r_offset = plt_address;
11568 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11569 rela.r_addend = 0;
11570 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11571 loc += sizeof (Elf32_External_Rela);
11572
11573 /* Output the relocation for the following addiu of
11574 %lo(_GLOBAL_OFFSET_TABLE_). */
11575 rela.r_offset += 4;
11576 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11577 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11578 loc += sizeof (Elf32_External_Rela);
11579
11580 /* Fix up the remaining relocations. They may have the wrong
11581 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11582 in which symbols were output. */
11583 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11584 {
11585 Elf_Internal_Rela rel;
11586
11587 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11588 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11589 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11590 loc += sizeof (Elf32_External_Rela);
11591
11592 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11593 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11594 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11595 loc += sizeof (Elf32_External_Rela);
11596
11597 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11598 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11599 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11600 loc += sizeof (Elf32_External_Rela);
11601 }
11602 }
11603
11604 /* Install the PLT header for a VxWorks shared library. */
11605
11606 static void
11607 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11608 {
11609 unsigned int i;
11610 struct mips_elf_link_hash_table *htab;
11611
11612 htab = mips_elf_hash_table (info);
11613 BFD_ASSERT (htab != NULL);
11614
11615 /* We just need to copy the entry byte-by-byte. */
11616 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11617 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11618 htab->root.splt->contents + i * 4);
11619 }
11620
11621 /* Finish up the dynamic sections. */
11622
11623 bfd_boolean
11624 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11625 struct bfd_link_info *info)
11626 {
11627 bfd *dynobj;
11628 asection *sdyn;
11629 asection *sgot;
11630 struct mips_got_info *gg, *g;
11631 struct mips_elf_link_hash_table *htab;
11632
11633 htab = mips_elf_hash_table (info);
11634 BFD_ASSERT (htab != NULL);
11635
11636 dynobj = elf_hash_table (info)->dynobj;
11637
11638 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11639
11640 sgot = htab->root.sgot;
11641 gg = htab->got_info;
11642
11643 if (elf_hash_table (info)->dynamic_sections_created)
11644 {
11645 bfd_byte *b;
11646 int dyn_to_skip = 0, dyn_skipped = 0;
11647
11648 BFD_ASSERT (sdyn != NULL);
11649 BFD_ASSERT (gg != NULL);
11650
11651 g = mips_elf_bfd_got (output_bfd, FALSE);
11652 BFD_ASSERT (g != NULL);
11653
11654 for (b = sdyn->contents;
11655 b < sdyn->contents + sdyn->size;
11656 b += MIPS_ELF_DYN_SIZE (dynobj))
11657 {
11658 Elf_Internal_Dyn dyn;
11659 const char *name;
11660 size_t elemsize;
11661 asection *s;
11662 bfd_boolean swap_out_p;
11663
11664 /* Read in the current dynamic entry. */
11665 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11666
11667 /* Assume that we're going to modify it and write it out. */
11668 swap_out_p = TRUE;
11669
11670 switch (dyn.d_tag)
11671 {
11672 case DT_RELENT:
11673 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11674 break;
11675
11676 case DT_RELAENT:
11677 BFD_ASSERT (htab->is_vxworks);
11678 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11679 break;
11680
11681 case DT_STRSZ:
11682 /* Rewrite DT_STRSZ. */
11683 dyn.d_un.d_val =
11684 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11685 break;
11686
11687 case DT_PLTGOT:
11688 s = htab->root.sgot;
11689 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11690 break;
11691
11692 case DT_MIPS_PLTGOT:
11693 s = htab->root.sgotplt;
11694 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11695 break;
11696
11697 case DT_MIPS_RLD_VERSION:
11698 dyn.d_un.d_val = 1; /* XXX */
11699 break;
11700
11701 case DT_MIPS_FLAGS:
11702 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11703 break;
11704
11705 case DT_MIPS_TIME_STAMP:
11706 {
11707 time_t t;
11708 time (&t);
11709 dyn.d_un.d_val = t;
11710 }
11711 break;
11712
11713 case DT_MIPS_ICHECKSUM:
11714 /* XXX FIXME: */
11715 swap_out_p = FALSE;
11716 break;
11717
11718 case DT_MIPS_IVERSION:
11719 /* XXX FIXME: */
11720 swap_out_p = FALSE;
11721 break;
11722
11723 case DT_MIPS_BASE_ADDRESS:
11724 s = output_bfd->sections;
11725 BFD_ASSERT (s != NULL);
11726 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11727 break;
11728
11729 case DT_MIPS_LOCAL_GOTNO:
11730 dyn.d_un.d_val = g->local_gotno;
11731 break;
11732
11733 case DT_MIPS_UNREFEXTNO:
11734 /* The index into the dynamic symbol table which is the
11735 entry of the first external symbol that is not
11736 referenced within the same object. */
11737 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11738 break;
11739
11740 case DT_MIPS_GOTSYM:
11741 if (htab->global_gotsym)
11742 {
11743 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11744 break;
11745 }
11746 /* In case if we don't have global got symbols we default
11747 to setting DT_MIPS_GOTSYM to the same value as
11748 DT_MIPS_SYMTABNO. */
11749 /* Fall through. */
11750
11751 case DT_MIPS_SYMTABNO:
11752 name = ".dynsym";
11753 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11754 s = bfd_get_linker_section (dynobj, name);
11755
11756 if (s != NULL)
11757 dyn.d_un.d_val = s->size / elemsize;
11758 else
11759 dyn.d_un.d_val = 0;
11760 break;
11761
11762 case DT_MIPS_HIPAGENO:
11763 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11764 break;
11765
11766 case DT_MIPS_RLD_MAP:
11767 {
11768 struct elf_link_hash_entry *h;
11769 h = mips_elf_hash_table (info)->rld_symbol;
11770 if (!h)
11771 {
11772 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11773 swap_out_p = FALSE;
11774 break;
11775 }
11776 s = h->root.u.def.section;
11777
11778 /* The MIPS_RLD_MAP tag stores the absolute address of the
11779 debug pointer. */
11780 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11781 + h->root.u.def.value);
11782 }
11783 break;
11784
11785 case DT_MIPS_RLD_MAP_REL:
11786 {
11787 struct elf_link_hash_entry *h;
11788 bfd_vma dt_addr, rld_addr;
11789 h = mips_elf_hash_table (info)->rld_symbol;
11790 if (!h)
11791 {
11792 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11793 swap_out_p = FALSE;
11794 break;
11795 }
11796 s = h->root.u.def.section;
11797
11798 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11799 pointer, relative to the address of the tag. */
11800 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11801 + (b - sdyn->contents));
11802 rld_addr = (s->output_section->vma + s->output_offset
11803 + h->root.u.def.value);
11804 dyn.d_un.d_ptr = rld_addr - dt_addr;
11805 }
11806 break;
11807
11808 case DT_MIPS_OPTIONS:
11809 s = (bfd_get_section_by_name
11810 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11811 dyn.d_un.d_ptr = s->vma;
11812 break;
11813
11814 case DT_PLTREL:
11815 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11816 if (htab->is_vxworks)
11817 dyn.d_un.d_val = DT_RELA;
11818 else
11819 dyn.d_un.d_val = DT_REL;
11820 break;
11821
11822 case DT_PLTRELSZ:
11823 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11824 dyn.d_un.d_val = htab->root.srelplt->size;
11825 break;
11826
11827 case DT_JMPREL:
11828 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11829 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11830 + htab->root.srelplt->output_offset);
11831 break;
11832
11833 case DT_TEXTREL:
11834 /* If we didn't need any text relocations after all, delete
11835 the dynamic tag. */
11836 if (!(info->flags & DF_TEXTREL))
11837 {
11838 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11839 swap_out_p = FALSE;
11840 }
11841 break;
11842
11843 case DT_FLAGS:
11844 /* If we didn't need any text relocations after all, clear
11845 DF_TEXTREL from DT_FLAGS. */
11846 if (!(info->flags & DF_TEXTREL))
11847 dyn.d_un.d_val &= ~DF_TEXTREL;
11848 else
11849 swap_out_p = FALSE;
11850 break;
11851
11852 default:
11853 swap_out_p = FALSE;
11854 if (htab->is_vxworks
11855 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11856 swap_out_p = TRUE;
11857 break;
11858 }
11859
11860 if (swap_out_p || dyn_skipped)
11861 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11862 (dynobj, &dyn, b - dyn_skipped);
11863
11864 if (dyn_to_skip)
11865 {
11866 dyn_skipped += dyn_to_skip;
11867 dyn_to_skip = 0;
11868 }
11869 }
11870
11871 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11872 if (dyn_skipped > 0)
11873 memset (b - dyn_skipped, 0, dyn_skipped);
11874 }
11875
11876 if (sgot != NULL && sgot->size > 0
11877 && !bfd_is_abs_section (sgot->output_section))
11878 {
11879 if (htab->is_vxworks)
11880 {
11881 /* The first entry of the global offset table points to the
11882 ".dynamic" section. The second is initialized by the
11883 loader and contains the shared library identifier.
11884 The third is also initialized by the loader and points
11885 to the lazy resolution stub. */
11886 MIPS_ELF_PUT_WORD (output_bfd,
11887 sdyn->output_offset + sdyn->output_section->vma,
11888 sgot->contents);
11889 MIPS_ELF_PUT_WORD (output_bfd, 0,
11890 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11891 MIPS_ELF_PUT_WORD (output_bfd, 0,
11892 sgot->contents
11893 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11894 }
11895 else
11896 {
11897 /* The first entry of the global offset table will be filled at
11898 runtime. The second entry will be used by some runtime loaders.
11899 This isn't the case of IRIX rld. */
11900 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11901 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11902 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11903 }
11904
11905 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11906 = MIPS_ELF_GOT_SIZE (output_bfd);
11907 }
11908
11909 /* Generate dynamic relocations for the non-primary gots. */
11910 if (gg != NULL && gg->next)
11911 {
11912 Elf_Internal_Rela rel[3];
11913 bfd_vma addend = 0;
11914
11915 memset (rel, 0, sizeof (rel));
11916 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11917
11918 for (g = gg->next; g->next != gg; g = g->next)
11919 {
11920 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11921 + g->next->tls_gotno;
11922
11923 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11924 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11925 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11926 sgot->contents
11927 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11928
11929 if (! bfd_link_pic (info))
11930 continue;
11931
11932 for (; got_index < g->local_gotno; got_index++)
11933 {
11934 if (got_index >= g->assigned_low_gotno
11935 && got_index <= g->assigned_high_gotno)
11936 continue;
11937
11938 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11939 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11940 if (!(mips_elf_create_dynamic_relocation
11941 (output_bfd, info, rel, NULL,
11942 bfd_abs_section_ptr,
11943 0, &addend, sgot)))
11944 return FALSE;
11945 BFD_ASSERT (addend == 0);
11946 }
11947 }
11948 }
11949
11950 /* The generation of dynamic relocations for the non-primary gots
11951 adds more dynamic relocations. We cannot count them until
11952 here. */
11953
11954 if (elf_hash_table (info)->dynamic_sections_created)
11955 {
11956 bfd_byte *b;
11957 bfd_boolean swap_out_p;
11958
11959 BFD_ASSERT (sdyn != NULL);
11960
11961 for (b = sdyn->contents;
11962 b < sdyn->contents + sdyn->size;
11963 b += MIPS_ELF_DYN_SIZE (dynobj))
11964 {
11965 Elf_Internal_Dyn dyn;
11966 asection *s;
11967
11968 /* Read in the current dynamic entry. */
11969 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11970
11971 /* Assume that we're going to modify it and write it out. */
11972 swap_out_p = TRUE;
11973
11974 switch (dyn.d_tag)
11975 {
11976 case DT_RELSZ:
11977 /* Reduce DT_RELSZ to account for any relocations we
11978 decided not to make. This is for the n64 irix rld,
11979 which doesn't seem to apply any relocations if there
11980 are trailing null entries. */
11981 s = mips_elf_rel_dyn_section (info, FALSE);
11982 dyn.d_un.d_val = (s->reloc_count
11983 * (ABI_64_P (output_bfd)
11984 ? sizeof (Elf64_Mips_External_Rel)
11985 : sizeof (Elf32_External_Rel)));
11986 /* Adjust the section size too. Tools like the prelinker
11987 can reasonably expect the values to the same. */
11988 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
11989 elf_section_data (s->output_section)->this_hdr.sh_size
11990 = dyn.d_un.d_val;
11991 break;
11992
11993 default:
11994 swap_out_p = FALSE;
11995 break;
11996 }
11997
11998 if (swap_out_p)
11999 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12000 (dynobj, &dyn, b);
12001 }
12002 }
12003
12004 {
12005 asection *s;
12006 Elf32_compact_rel cpt;
12007
12008 if (SGI_COMPAT (output_bfd))
12009 {
12010 /* Write .compact_rel section out. */
12011 s = bfd_get_linker_section (dynobj, ".compact_rel");
12012 if (s != NULL)
12013 {
12014 cpt.id1 = 1;
12015 cpt.num = s->reloc_count;
12016 cpt.id2 = 2;
12017 cpt.offset = (s->output_section->filepos
12018 + sizeof (Elf32_External_compact_rel));
12019 cpt.reserved0 = 0;
12020 cpt.reserved1 = 0;
12021 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12022 ((Elf32_External_compact_rel *)
12023 s->contents));
12024
12025 /* Clean up a dummy stub function entry in .text. */
12026 if (htab->sstubs != NULL)
12027 {
12028 file_ptr dummy_offset;
12029
12030 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12031 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12032 memset (htab->sstubs->contents + dummy_offset, 0,
12033 htab->function_stub_size);
12034 }
12035 }
12036 }
12037
12038 /* The psABI says that the dynamic relocations must be sorted in
12039 increasing order of r_symndx. The VxWorks EABI doesn't require
12040 this, and because the code below handles REL rather than RELA
12041 relocations, using it for VxWorks would be outright harmful. */
12042 if (!htab->is_vxworks)
12043 {
12044 s = mips_elf_rel_dyn_section (info, FALSE);
12045 if (s != NULL
12046 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12047 {
12048 reldyn_sorting_bfd = output_bfd;
12049
12050 if (ABI_64_P (output_bfd))
12051 qsort ((Elf64_External_Rel *) s->contents + 1,
12052 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12053 sort_dynamic_relocs_64);
12054 else
12055 qsort ((Elf32_External_Rel *) s->contents + 1,
12056 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12057 sort_dynamic_relocs);
12058 }
12059 }
12060 }
12061
12062 if (htab->root.splt && htab->root.splt->size > 0)
12063 {
12064 if (htab->is_vxworks)
12065 {
12066 if (bfd_link_pic (info))
12067 mips_vxworks_finish_shared_plt (output_bfd, info);
12068 else
12069 mips_vxworks_finish_exec_plt (output_bfd, info);
12070 }
12071 else
12072 {
12073 BFD_ASSERT (!bfd_link_pic (info));
12074 if (!mips_finish_exec_plt (output_bfd, info))
12075 return FALSE;
12076 }
12077 }
12078 return TRUE;
12079 }
12080
12081
12082 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12083
12084 static void
12085 mips_set_isa_flags (bfd *abfd)
12086 {
12087 flagword val;
12088
12089 switch (bfd_get_mach (abfd))
12090 {
12091 default:
12092 case bfd_mach_mips3000:
12093 val = E_MIPS_ARCH_1;
12094 break;
12095
12096 case bfd_mach_mips3900:
12097 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12098 break;
12099
12100 case bfd_mach_mips6000:
12101 val = E_MIPS_ARCH_2;
12102 break;
12103
12104 case bfd_mach_mips4010:
12105 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12106 break;
12107
12108 case bfd_mach_mips4000:
12109 case bfd_mach_mips4300:
12110 case bfd_mach_mips4400:
12111 case bfd_mach_mips4600:
12112 val = E_MIPS_ARCH_3;
12113 break;
12114
12115 case bfd_mach_mips4100:
12116 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12117 break;
12118
12119 case bfd_mach_mips4111:
12120 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12121 break;
12122
12123 case bfd_mach_mips4120:
12124 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12125 break;
12126
12127 case bfd_mach_mips4650:
12128 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12129 break;
12130
12131 case bfd_mach_mips5400:
12132 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12133 break;
12134
12135 case bfd_mach_mips5500:
12136 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12137 break;
12138
12139 case bfd_mach_mips5900:
12140 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12141 break;
12142
12143 case bfd_mach_mips9000:
12144 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12145 break;
12146
12147 case bfd_mach_mips5000:
12148 case bfd_mach_mips7000:
12149 case bfd_mach_mips8000:
12150 case bfd_mach_mips10000:
12151 case bfd_mach_mips12000:
12152 case bfd_mach_mips14000:
12153 case bfd_mach_mips16000:
12154 val = E_MIPS_ARCH_4;
12155 break;
12156
12157 case bfd_mach_mips5:
12158 val = E_MIPS_ARCH_5;
12159 break;
12160
12161 case bfd_mach_mips_loongson_2e:
12162 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12163 break;
12164
12165 case bfd_mach_mips_loongson_2f:
12166 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12167 break;
12168
12169 case bfd_mach_mips_sb1:
12170 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12171 break;
12172
12173 case bfd_mach_mips_gs464:
12174 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12175 break;
12176
12177 case bfd_mach_mips_gs464e:
12178 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12179 break;
12180
12181 case bfd_mach_mips_gs264e:
12182 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12183 break;
12184
12185 case bfd_mach_mips_octeon:
12186 case bfd_mach_mips_octeonp:
12187 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12188 break;
12189
12190 case bfd_mach_mips_octeon3:
12191 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12192 break;
12193
12194 case bfd_mach_mips_xlr:
12195 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12196 break;
12197
12198 case bfd_mach_mips_octeon2:
12199 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12200 break;
12201
12202 case bfd_mach_mipsisa32:
12203 val = E_MIPS_ARCH_32;
12204 break;
12205
12206 case bfd_mach_mipsisa64:
12207 val = E_MIPS_ARCH_64;
12208 break;
12209
12210 case bfd_mach_mipsisa32r2:
12211 case bfd_mach_mipsisa32r3:
12212 case bfd_mach_mipsisa32r5:
12213 val = E_MIPS_ARCH_32R2;
12214 break;
12215
12216 case bfd_mach_mips_interaptiv_mr2:
12217 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12218 break;
12219
12220 case bfd_mach_mipsisa64r2:
12221 case bfd_mach_mipsisa64r3:
12222 case bfd_mach_mipsisa64r5:
12223 val = E_MIPS_ARCH_64R2;
12224 break;
12225
12226 case bfd_mach_mipsisa32r6:
12227 val = E_MIPS_ARCH_32R6;
12228 break;
12229
12230 case bfd_mach_mipsisa64r6:
12231 val = E_MIPS_ARCH_64R6;
12232 break;
12233 }
12234 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12235 elf_elfheader (abfd)->e_flags |= val;
12236
12237 }
12238
12239
12240 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12241 Don't do so for code sections. We want to keep ordering of HI16/LO16
12242 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12243 relocs to be sorted. */
12244
12245 bfd_boolean
12246 _bfd_mips_elf_sort_relocs_p (asection *sec)
12247 {
12248 return (sec->flags & SEC_CODE) == 0;
12249 }
12250
12251
12252 /* The final processing done just before writing out a MIPS ELF object
12253 file. This gets the MIPS architecture right based on the machine
12254 number. This is used by both the 32-bit and the 64-bit ABI. */
12255
12256 void
12257 _bfd_mips_elf_final_write_processing (bfd *abfd,
12258 bfd_boolean linker ATTRIBUTE_UNUSED)
12259 {
12260 unsigned int i;
12261 Elf_Internal_Shdr **hdrpp;
12262 const char *name;
12263 asection *sec;
12264
12265 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12266 is nonzero. This is for compatibility with old objects, which used
12267 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12268 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12269 mips_set_isa_flags (abfd);
12270
12271 /* Set the sh_info field for .gptab sections and other appropriate
12272 info for each special section. */
12273 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12274 i < elf_numsections (abfd);
12275 i++, hdrpp++)
12276 {
12277 switch ((*hdrpp)->sh_type)
12278 {
12279 case SHT_MIPS_MSYM:
12280 case SHT_MIPS_LIBLIST:
12281 sec = bfd_get_section_by_name (abfd, ".dynstr");
12282 if (sec != NULL)
12283 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12284 break;
12285
12286 case SHT_MIPS_GPTAB:
12287 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12288 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12289 BFD_ASSERT (name != NULL
12290 && CONST_STRNEQ (name, ".gptab."));
12291 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12292 BFD_ASSERT (sec != NULL);
12293 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12294 break;
12295
12296 case SHT_MIPS_CONTENT:
12297 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12298 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12299 BFD_ASSERT (name != NULL
12300 && CONST_STRNEQ (name, ".MIPS.content"));
12301 sec = bfd_get_section_by_name (abfd,
12302 name + sizeof ".MIPS.content" - 1);
12303 BFD_ASSERT (sec != NULL);
12304 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12305 break;
12306
12307 case SHT_MIPS_SYMBOL_LIB:
12308 sec = bfd_get_section_by_name (abfd, ".dynsym");
12309 if (sec != NULL)
12310 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12311 sec = bfd_get_section_by_name (abfd, ".liblist");
12312 if (sec != NULL)
12313 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12314 break;
12315
12316 case SHT_MIPS_EVENTS:
12317 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12318 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12319 BFD_ASSERT (name != NULL);
12320 if (CONST_STRNEQ (name, ".MIPS.events"))
12321 sec = bfd_get_section_by_name (abfd,
12322 name + sizeof ".MIPS.events" - 1);
12323 else
12324 {
12325 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12326 sec = bfd_get_section_by_name (abfd,
12327 (name
12328 + sizeof ".MIPS.post_rel" - 1));
12329 }
12330 BFD_ASSERT (sec != NULL);
12331 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12332 break;
12333
12334 }
12335 }
12336 }
12337 \f
12338 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12339 segments. */
12340
12341 int
12342 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12343 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12344 {
12345 asection *s;
12346 int ret = 0;
12347
12348 /* See if we need a PT_MIPS_REGINFO segment. */
12349 s = bfd_get_section_by_name (abfd, ".reginfo");
12350 if (s && (s->flags & SEC_LOAD))
12351 ++ret;
12352
12353 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12354 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12355 ++ret;
12356
12357 /* See if we need a PT_MIPS_OPTIONS segment. */
12358 if (IRIX_COMPAT (abfd) == ict_irix6
12359 && bfd_get_section_by_name (abfd,
12360 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12361 ++ret;
12362
12363 /* See if we need a PT_MIPS_RTPROC segment. */
12364 if (IRIX_COMPAT (abfd) == ict_irix5
12365 && bfd_get_section_by_name (abfd, ".dynamic")
12366 && bfd_get_section_by_name (abfd, ".mdebug"))
12367 ++ret;
12368
12369 /* Allocate a PT_NULL header in dynamic objects. See
12370 _bfd_mips_elf_modify_segment_map for details. */
12371 if (!SGI_COMPAT (abfd)
12372 && bfd_get_section_by_name (abfd, ".dynamic"))
12373 ++ret;
12374
12375 return ret;
12376 }
12377
12378 /* Modify the segment map for an IRIX5 executable. */
12379
12380 bfd_boolean
12381 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12382 struct bfd_link_info *info)
12383 {
12384 asection *s;
12385 struct elf_segment_map *m, **pm;
12386 bfd_size_type amt;
12387
12388 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12389 segment. */
12390 s = bfd_get_section_by_name (abfd, ".reginfo");
12391 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12392 {
12393 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12394 if (m->p_type == PT_MIPS_REGINFO)
12395 break;
12396 if (m == NULL)
12397 {
12398 amt = sizeof *m;
12399 m = bfd_zalloc (abfd, amt);
12400 if (m == NULL)
12401 return FALSE;
12402
12403 m->p_type = PT_MIPS_REGINFO;
12404 m->count = 1;
12405 m->sections[0] = s;
12406
12407 /* We want to put it after the PHDR and INTERP segments. */
12408 pm = &elf_seg_map (abfd);
12409 while (*pm != NULL
12410 && ((*pm)->p_type == PT_PHDR
12411 || (*pm)->p_type == PT_INTERP))
12412 pm = &(*pm)->next;
12413
12414 m->next = *pm;
12415 *pm = m;
12416 }
12417 }
12418
12419 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12420 segment. */
12421 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12422 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12423 {
12424 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12425 if (m->p_type == PT_MIPS_ABIFLAGS)
12426 break;
12427 if (m == NULL)
12428 {
12429 amt = sizeof *m;
12430 m = bfd_zalloc (abfd, amt);
12431 if (m == NULL)
12432 return FALSE;
12433
12434 m->p_type = PT_MIPS_ABIFLAGS;
12435 m->count = 1;
12436 m->sections[0] = s;
12437
12438 /* We want to put it after the PHDR and INTERP segments. */
12439 pm = &elf_seg_map (abfd);
12440 while (*pm != NULL
12441 && ((*pm)->p_type == PT_PHDR
12442 || (*pm)->p_type == PT_INTERP))
12443 pm = &(*pm)->next;
12444
12445 m->next = *pm;
12446 *pm = m;
12447 }
12448 }
12449
12450 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12451 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12452 PT_MIPS_OPTIONS segment immediately following the program header
12453 table. */
12454 if (NEWABI_P (abfd)
12455 /* On non-IRIX6 new abi, we'll have already created a segment
12456 for this section, so don't create another. I'm not sure this
12457 is not also the case for IRIX 6, but I can't test it right
12458 now. */
12459 && IRIX_COMPAT (abfd) == ict_irix6)
12460 {
12461 for (s = abfd->sections; s; s = s->next)
12462 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12463 break;
12464
12465 if (s)
12466 {
12467 struct elf_segment_map *options_segment;
12468
12469 pm = &elf_seg_map (abfd);
12470 while (*pm != NULL
12471 && ((*pm)->p_type == PT_PHDR
12472 || (*pm)->p_type == PT_INTERP))
12473 pm = &(*pm)->next;
12474
12475 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12476 {
12477 amt = sizeof (struct elf_segment_map);
12478 options_segment = bfd_zalloc (abfd, amt);
12479 options_segment->next = *pm;
12480 options_segment->p_type = PT_MIPS_OPTIONS;
12481 options_segment->p_flags = PF_R;
12482 options_segment->p_flags_valid = TRUE;
12483 options_segment->count = 1;
12484 options_segment->sections[0] = s;
12485 *pm = options_segment;
12486 }
12487 }
12488 }
12489 else
12490 {
12491 if (IRIX_COMPAT (abfd) == ict_irix5)
12492 {
12493 /* If there are .dynamic and .mdebug sections, we make a room
12494 for the RTPROC header. FIXME: Rewrite without section names. */
12495 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12496 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12497 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12498 {
12499 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12500 if (m->p_type == PT_MIPS_RTPROC)
12501 break;
12502 if (m == NULL)
12503 {
12504 amt = sizeof *m;
12505 m = bfd_zalloc (abfd, amt);
12506 if (m == NULL)
12507 return FALSE;
12508
12509 m->p_type = PT_MIPS_RTPROC;
12510
12511 s = bfd_get_section_by_name (abfd, ".rtproc");
12512 if (s == NULL)
12513 {
12514 m->count = 0;
12515 m->p_flags = 0;
12516 m->p_flags_valid = 1;
12517 }
12518 else
12519 {
12520 m->count = 1;
12521 m->sections[0] = s;
12522 }
12523
12524 /* We want to put it after the DYNAMIC segment. */
12525 pm = &elf_seg_map (abfd);
12526 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12527 pm = &(*pm)->next;
12528 if (*pm != NULL)
12529 pm = &(*pm)->next;
12530
12531 m->next = *pm;
12532 *pm = m;
12533 }
12534 }
12535 }
12536 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12537 .dynstr, .dynsym, and .hash sections, and everything in
12538 between. */
12539 for (pm = &elf_seg_map (abfd); *pm != NULL;
12540 pm = &(*pm)->next)
12541 if ((*pm)->p_type == PT_DYNAMIC)
12542 break;
12543 m = *pm;
12544 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12545 glibc's dynamic linker has traditionally derived the number of
12546 tags from the p_filesz field, and sometimes allocates stack
12547 arrays of that size. An overly-big PT_DYNAMIC segment can
12548 be actively harmful in such cases. Making PT_DYNAMIC contain
12549 other sections can also make life hard for the prelinker,
12550 which might move one of the other sections to a different
12551 PT_LOAD segment. */
12552 if (SGI_COMPAT (abfd)
12553 && m != NULL
12554 && m->count == 1
12555 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12556 {
12557 static const char *sec_names[] =
12558 {
12559 ".dynamic", ".dynstr", ".dynsym", ".hash"
12560 };
12561 bfd_vma low, high;
12562 unsigned int i, c;
12563 struct elf_segment_map *n;
12564
12565 low = ~(bfd_vma) 0;
12566 high = 0;
12567 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12568 {
12569 s = bfd_get_section_by_name (abfd, sec_names[i]);
12570 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12571 {
12572 bfd_size_type sz;
12573
12574 if (low > s->vma)
12575 low = s->vma;
12576 sz = s->size;
12577 if (high < s->vma + sz)
12578 high = s->vma + sz;
12579 }
12580 }
12581
12582 c = 0;
12583 for (s = abfd->sections; s != NULL; s = s->next)
12584 if ((s->flags & SEC_LOAD) != 0
12585 && s->vma >= low
12586 && s->vma + s->size <= high)
12587 ++c;
12588
12589 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12590 n = bfd_zalloc (abfd, amt);
12591 if (n == NULL)
12592 return FALSE;
12593 *n = *m;
12594 n->count = c;
12595
12596 i = 0;
12597 for (s = abfd->sections; s != NULL; s = s->next)
12598 {
12599 if ((s->flags & SEC_LOAD) != 0
12600 && s->vma >= low
12601 && s->vma + s->size <= high)
12602 {
12603 n->sections[i] = s;
12604 ++i;
12605 }
12606 }
12607
12608 *pm = n;
12609 }
12610 }
12611
12612 /* Allocate a spare program header in dynamic objects so that tools
12613 like the prelinker can add an extra PT_LOAD entry.
12614
12615 If the prelinker needs to make room for a new PT_LOAD entry, its
12616 standard procedure is to move the first (read-only) sections into
12617 the new (writable) segment. However, the MIPS ABI requires
12618 .dynamic to be in a read-only segment, and the section will often
12619 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12620
12621 Although the prelinker could in principle move .dynamic to a
12622 writable segment, it seems better to allocate a spare program
12623 header instead, and avoid the need to move any sections.
12624 There is a long tradition of allocating spare dynamic tags,
12625 so allocating a spare program header seems like a natural
12626 extension.
12627
12628 If INFO is NULL, we may be copying an already prelinked binary
12629 with objcopy or strip, so do not add this header. */
12630 if (info != NULL
12631 && !SGI_COMPAT (abfd)
12632 && bfd_get_section_by_name (abfd, ".dynamic"))
12633 {
12634 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12635 if ((*pm)->p_type == PT_NULL)
12636 break;
12637 if (*pm == NULL)
12638 {
12639 m = bfd_zalloc (abfd, sizeof (*m));
12640 if (m == NULL)
12641 return FALSE;
12642
12643 m->p_type = PT_NULL;
12644 *pm = m;
12645 }
12646 }
12647
12648 return TRUE;
12649 }
12650 \f
12651 /* Return the section that should be marked against GC for a given
12652 relocation. */
12653
12654 asection *
12655 _bfd_mips_elf_gc_mark_hook (asection *sec,
12656 struct bfd_link_info *info,
12657 Elf_Internal_Rela *rel,
12658 struct elf_link_hash_entry *h,
12659 Elf_Internal_Sym *sym)
12660 {
12661 /* ??? Do mips16 stub sections need to be handled special? */
12662
12663 if (h != NULL)
12664 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12665 {
12666 case R_MIPS_GNU_VTINHERIT:
12667 case R_MIPS_GNU_VTENTRY:
12668 return NULL;
12669 }
12670
12671 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12672 }
12673
12674 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12675
12676 bfd_boolean
12677 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12678 elf_gc_mark_hook_fn gc_mark_hook)
12679 {
12680 bfd *sub;
12681
12682 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12683
12684 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12685 {
12686 asection *o;
12687
12688 if (! is_mips_elf (sub))
12689 continue;
12690
12691 for (o = sub->sections; o != NULL; o = o->next)
12692 if (!o->gc_mark
12693 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12694 (bfd_get_section_name (sub, o)))
12695 {
12696 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12697 return FALSE;
12698 }
12699 }
12700
12701 return TRUE;
12702 }
12703 \f
12704 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12705 hiding the old indirect symbol. Process additional relocation
12706 information. Also called for weakdefs, in which case we just let
12707 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12708
12709 void
12710 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12711 struct elf_link_hash_entry *dir,
12712 struct elf_link_hash_entry *ind)
12713 {
12714 struct mips_elf_link_hash_entry *dirmips, *indmips;
12715
12716 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12717
12718 dirmips = (struct mips_elf_link_hash_entry *) dir;
12719 indmips = (struct mips_elf_link_hash_entry *) ind;
12720 /* Any absolute non-dynamic relocations against an indirect or weak
12721 definition will be against the target symbol. */
12722 if (indmips->has_static_relocs)
12723 dirmips->has_static_relocs = TRUE;
12724
12725 if (ind->root.type != bfd_link_hash_indirect)
12726 return;
12727
12728 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12729 if (indmips->readonly_reloc)
12730 dirmips->readonly_reloc = TRUE;
12731 if (indmips->no_fn_stub)
12732 dirmips->no_fn_stub = TRUE;
12733 if (indmips->fn_stub)
12734 {
12735 dirmips->fn_stub = indmips->fn_stub;
12736 indmips->fn_stub = NULL;
12737 }
12738 if (indmips->need_fn_stub)
12739 {
12740 dirmips->need_fn_stub = TRUE;
12741 indmips->need_fn_stub = FALSE;
12742 }
12743 if (indmips->call_stub)
12744 {
12745 dirmips->call_stub = indmips->call_stub;
12746 indmips->call_stub = NULL;
12747 }
12748 if (indmips->call_fp_stub)
12749 {
12750 dirmips->call_fp_stub = indmips->call_fp_stub;
12751 indmips->call_fp_stub = NULL;
12752 }
12753 if (indmips->global_got_area < dirmips->global_got_area)
12754 dirmips->global_got_area = indmips->global_got_area;
12755 if (indmips->global_got_area < GGA_NONE)
12756 indmips->global_got_area = GGA_NONE;
12757 if (indmips->has_nonpic_branches)
12758 dirmips->has_nonpic_branches = TRUE;
12759 }
12760
12761 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12762 to hide it. It has to remain global (it will also be protected) so as to
12763 be assigned a global GOT entry, which will then remain unchanged at load
12764 time. */
12765
12766 void
12767 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12768 struct elf_link_hash_entry *entry,
12769 bfd_boolean force_local)
12770 {
12771 struct mips_elf_link_hash_table *htab;
12772
12773 htab = mips_elf_hash_table (info);
12774 BFD_ASSERT (htab != NULL);
12775 if (htab->use_absolute_zero
12776 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12777 return;
12778
12779 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12780 }
12781 \f
12782 #define PDR_SIZE 32
12783
12784 bfd_boolean
12785 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12786 struct bfd_link_info *info)
12787 {
12788 asection *o;
12789 bfd_boolean ret = FALSE;
12790 unsigned char *tdata;
12791 size_t i, skip;
12792
12793 o = bfd_get_section_by_name (abfd, ".pdr");
12794 if (! o)
12795 return FALSE;
12796 if (o->size == 0)
12797 return FALSE;
12798 if (o->size % PDR_SIZE != 0)
12799 return FALSE;
12800 if (o->output_section != NULL
12801 && bfd_is_abs_section (o->output_section))
12802 return FALSE;
12803
12804 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12805 if (! tdata)
12806 return FALSE;
12807
12808 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12809 info->keep_memory);
12810 if (!cookie->rels)
12811 {
12812 free (tdata);
12813 return FALSE;
12814 }
12815
12816 cookie->rel = cookie->rels;
12817 cookie->relend = cookie->rels + o->reloc_count;
12818
12819 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12820 {
12821 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12822 {
12823 tdata[i] = 1;
12824 skip ++;
12825 }
12826 }
12827
12828 if (skip != 0)
12829 {
12830 mips_elf_section_data (o)->u.tdata = tdata;
12831 if (o->rawsize == 0)
12832 o->rawsize = o->size;
12833 o->size -= skip * PDR_SIZE;
12834 ret = TRUE;
12835 }
12836 else
12837 free (tdata);
12838
12839 if (! info->keep_memory)
12840 free (cookie->rels);
12841
12842 return ret;
12843 }
12844
12845 bfd_boolean
12846 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12847 {
12848 if (strcmp (sec->name, ".pdr") == 0)
12849 return TRUE;
12850 return FALSE;
12851 }
12852
12853 bfd_boolean
12854 _bfd_mips_elf_write_section (bfd *output_bfd,
12855 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12856 asection *sec, bfd_byte *contents)
12857 {
12858 bfd_byte *to, *from, *end;
12859 int i;
12860
12861 if (strcmp (sec->name, ".pdr") != 0)
12862 return FALSE;
12863
12864 if (mips_elf_section_data (sec)->u.tdata == NULL)
12865 return FALSE;
12866
12867 to = contents;
12868 end = contents + sec->size;
12869 for (from = contents, i = 0;
12870 from < end;
12871 from += PDR_SIZE, i++)
12872 {
12873 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12874 continue;
12875 if (to != from)
12876 memcpy (to, from, PDR_SIZE);
12877 to += PDR_SIZE;
12878 }
12879 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12880 sec->output_offset, sec->size);
12881 return TRUE;
12882 }
12883 \f
12884 /* microMIPS code retains local labels for linker relaxation. Omit them
12885 from output by default for clarity. */
12886
12887 bfd_boolean
12888 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12889 {
12890 return _bfd_elf_is_local_label_name (abfd, sym->name);
12891 }
12892
12893 /* MIPS ELF uses a special find_nearest_line routine in order the
12894 handle the ECOFF debugging information. */
12895
12896 struct mips_elf_find_line
12897 {
12898 struct ecoff_debug_info d;
12899 struct ecoff_find_line i;
12900 };
12901
12902 bfd_boolean
12903 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12904 asection *section, bfd_vma offset,
12905 const char **filename_ptr,
12906 const char **functionname_ptr,
12907 unsigned int *line_ptr,
12908 unsigned int *discriminator_ptr)
12909 {
12910 asection *msec;
12911
12912 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12913 filename_ptr, functionname_ptr,
12914 line_ptr, discriminator_ptr,
12915 dwarf_debug_sections,
12916 ABI_64_P (abfd) ? 8 : 0,
12917 &elf_tdata (abfd)->dwarf2_find_line_info)
12918 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12919 filename_ptr, functionname_ptr,
12920 line_ptr))
12921 {
12922 /* PR 22789: If the function name or filename was not found through
12923 the debug information, then try an ordinary lookup instead. */
12924 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12925 || (filename_ptr != NULL && *filename_ptr == NULL))
12926 {
12927 /* Do not override already discovered names. */
12928 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12929 functionname_ptr = NULL;
12930
12931 if (filename_ptr != NULL && *filename_ptr != NULL)
12932 filename_ptr = NULL;
12933
12934 _bfd_elf_find_function (abfd, symbols, section, offset,
12935 filename_ptr, functionname_ptr);
12936 }
12937
12938 return TRUE;
12939 }
12940
12941 msec = bfd_get_section_by_name (abfd, ".mdebug");
12942 if (msec != NULL)
12943 {
12944 flagword origflags;
12945 struct mips_elf_find_line *fi;
12946 const struct ecoff_debug_swap * const swap =
12947 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12948
12949 /* If we are called during a link, mips_elf_final_link may have
12950 cleared the SEC_HAS_CONTENTS field. We force it back on here
12951 if appropriate (which it normally will be). */
12952 origflags = msec->flags;
12953 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12954 msec->flags |= SEC_HAS_CONTENTS;
12955
12956 fi = mips_elf_tdata (abfd)->find_line_info;
12957 if (fi == NULL)
12958 {
12959 bfd_size_type external_fdr_size;
12960 char *fraw_src;
12961 char *fraw_end;
12962 struct fdr *fdr_ptr;
12963 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12964
12965 fi = bfd_zalloc (abfd, amt);
12966 if (fi == NULL)
12967 {
12968 msec->flags = origflags;
12969 return FALSE;
12970 }
12971
12972 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12973 {
12974 msec->flags = origflags;
12975 return FALSE;
12976 }
12977
12978 /* Swap in the FDR information. */
12979 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12980 fi->d.fdr = bfd_alloc (abfd, amt);
12981 if (fi->d.fdr == NULL)
12982 {
12983 msec->flags = origflags;
12984 return FALSE;
12985 }
12986 external_fdr_size = swap->external_fdr_size;
12987 fdr_ptr = fi->d.fdr;
12988 fraw_src = (char *) fi->d.external_fdr;
12989 fraw_end = (fraw_src
12990 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12991 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12992 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12993
12994 mips_elf_tdata (abfd)->find_line_info = fi;
12995
12996 /* Note that we don't bother to ever free this information.
12997 find_nearest_line is either called all the time, as in
12998 objdump -l, so the information should be saved, or it is
12999 rarely called, as in ld error messages, so the memory
13000 wasted is unimportant. Still, it would probably be a
13001 good idea for free_cached_info to throw it away. */
13002 }
13003
13004 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13005 &fi->i, filename_ptr, functionname_ptr,
13006 line_ptr))
13007 {
13008 msec->flags = origflags;
13009 return TRUE;
13010 }
13011
13012 msec->flags = origflags;
13013 }
13014
13015 /* Fall back on the generic ELF find_nearest_line routine. */
13016
13017 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13018 filename_ptr, functionname_ptr,
13019 line_ptr, discriminator_ptr);
13020 }
13021
13022 bfd_boolean
13023 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13024 const char **filename_ptr,
13025 const char **functionname_ptr,
13026 unsigned int *line_ptr)
13027 {
13028 bfd_boolean found;
13029 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13030 functionname_ptr, line_ptr,
13031 & elf_tdata (abfd)->dwarf2_find_line_info);
13032 return found;
13033 }
13034
13035 \f
13036 /* When are writing out the .options or .MIPS.options section,
13037 remember the bytes we are writing out, so that we can install the
13038 GP value in the section_processing routine. */
13039
13040 bfd_boolean
13041 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13042 const void *location,
13043 file_ptr offset, bfd_size_type count)
13044 {
13045 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13046 {
13047 bfd_byte *c;
13048
13049 if (elf_section_data (section) == NULL)
13050 {
13051 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
13052 section->used_by_bfd = bfd_zalloc (abfd, amt);
13053 if (elf_section_data (section) == NULL)
13054 return FALSE;
13055 }
13056 c = mips_elf_section_data (section)->u.tdata;
13057 if (c == NULL)
13058 {
13059 c = bfd_zalloc (abfd, section->size);
13060 if (c == NULL)
13061 return FALSE;
13062 mips_elf_section_data (section)->u.tdata = c;
13063 }
13064
13065 memcpy (c + offset, location, count);
13066 }
13067
13068 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13069 count);
13070 }
13071
13072 /* This is almost identical to bfd_generic_get_... except that some
13073 MIPS relocations need to be handled specially. Sigh. */
13074
13075 bfd_byte *
13076 _bfd_elf_mips_get_relocated_section_contents
13077 (bfd *abfd,
13078 struct bfd_link_info *link_info,
13079 struct bfd_link_order *link_order,
13080 bfd_byte *data,
13081 bfd_boolean relocatable,
13082 asymbol **symbols)
13083 {
13084 /* Get enough memory to hold the stuff */
13085 bfd *input_bfd = link_order->u.indirect.section->owner;
13086 asection *input_section = link_order->u.indirect.section;
13087 bfd_size_type sz;
13088
13089 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13090 arelent **reloc_vector = NULL;
13091 long reloc_count;
13092
13093 if (reloc_size < 0)
13094 goto error_return;
13095
13096 reloc_vector = bfd_malloc (reloc_size);
13097 if (reloc_vector == NULL && reloc_size != 0)
13098 goto error_return;
13099
13100 /* read in the section */
13101 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13102 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13103 goto error_return;
13104
13105 reloc_count = bfd_canonicalize_reloc (input_bfd,
13106 input_section,
13107 reloc_vector,
13108 symbols);
13109 if (reloc_count < 0)
13110 goto error_return;
13111
13112 if (reloc_count > 0)
13113 {
13114 arelent **parent;
13115 /* for mips */
13116 int gp_found;
13117 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13118
13119 {
13120 struct bfd_hash_entry *h;
13121 struct bfd_link_hash_entry *lh;
13122 /* Skip all this stuff if we aren't mixing formats. */
13123 if (abfd && input_bfd
13124 && abfd->xvec == input_bfd->xvec)
13125 lh = 0;
13126 else
13127 {
13128 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13129 lh = (struct bfd_link_hash_entry *) h;
13130 }
13131 lookup:
13132 if (lh)
13133 {
13134 switch (lh->type)
13135 {
13136 case bfd_link_hash_undefined:
13137 case bfd_link_hash_undefweak:
13138 case bfd_link_hash_common:
13139 gp_found = 0;
13140 break;
13141 case bfd_link_hash_defined:
13142 case bfd_link_hash_defweak:
13143 gp_found = 1;
13144 gp = lh->u.def.value;
13145 break;
13146 case bfd_link_hash_indirect:
13147 case bfd_link_hash_warning:
13148 lh = lh->u.i.link;
13149 /* @@FIXME ignoring warning for now */
13150 goto lookup;
13151 case bfd_link_hash_new:
13152 default:
13153 abort ();
13154 }
13155 }
13156 else
13157 gp_found = 0;
13158 }
13159 /* end mips */
13160 for (parent = reloc_vector; *parent != NULL; parent++)
13161 {
13162 char *error_message = NULL;
13163 bfd_reloc_status_type r;
13164
13165 /* Specific to MIPS: Deal with relocation types that require
13166 knowing the gp of the output bfd. */
13167 asymbol *sym = *(*parent)->sym_ptr_ptr;
13168
13169 /* If we've managed to find the gp and have a special
13170 function for the relocation then go ahead, else default
13171 to the generic handling. */
13172 if (gp_found
13173 && (*parent)->howto->special_function
13174 == _bfd_mips_elf32_gprel16_reloc)
13175 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13176 input_section, relocatable,
13177 data, gp);
13178 else
13179 r = bfd_perform_relocation (input_bfd, *parent, data,
13180 input_section,
13181 relocatable ? abfd : NULL,
13182 &error_message);
13183
13184 if (relocatable)
13185 {
13186 asection *os = input_section->output_section;
13187
13188 /* A partial link, so keep the relocs */
13189 os->orelocation[os->reloc_count] = *parent;
13190 os->reloc_count++;
13191 }
13192
13193 if (r != bfd_reloc_ok)
13194 {
13195 switch (r)
13196 {
13197 case bfd_reloc_undefined:
13198 (*link_info->callbacks->undefined_symbol)
13199 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13200 input_bfd, input_section, (*parent)->address, TRUE);
13201 break;
13202 case bfd_reloc_dangerous:
13203 BFD_ASSERT (error_message != NULL);
13204 (*link_info->callbacks->reloc_dangerous)
13205 (link_info, error_message,
13206 input_bfd, input_section, (*parent)->address);
13207 break;
13208 case bfd_reloc_overflow:
13209 (*link_info->callbacks->reloc_overflow)
13210 (link_info, NULL,
13211 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13212 (*parent)->howto->name, (*parent)->addend,
13213 input_bfd, input_section, (*parent)->address);
13214 break;
13215 case bfd_reloc_outofrange:
13216 default:
13217 abort ();
13218 break;
13219 }
13220
13221 }
13222 }
13223 }
13224 if (reloc_vector != NULL)
13225 free (reloc_vector);
13226 return data;
13227
13228 error_return:
13229 if (reloc_vector != NULL)
13230 free (reloc_vector);
13231 return NULL;
13232 }
13233 \f
13234 static bfd_boolean
13235 mips_elf_relax_delete_bytes (bfd *abfd,
13236 asection *sec, bfd_vma addr, int count)
13237 {
13238 Elf_Internal_Shdr *symtab_hdr;
13239 unsigned int sec_shndx;
13240 bfd_byte *contents;
13241 Elf_Internal_Rela *irel, *irelend;
13242 Elf_Internal_Sym *isym;
13243 Elf_Internal_Sym *isymend;
13244 struct elf_link_hash_entry **sym_hashes;
13245 struct elf_link_hash_entry **end_hashes;
13246 struct elf_link_hash_entry **start_hashes;
13247 unsigned int symcount;
13248
13249 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13250 contents = elf_section_data (sec)->this_hdr.contents;
13251
13252 irel = elf_section_data (sec)->relocs;
13253 irelend = irel + sec->reloc_count;
13254
13255 /* Actually delete the bytes. */
13256 memmove (contents + addr, contents + addr + count,
13257 (size_t) (sec->size - addr - count));
13258 sec->size -= count;
13259
13260 /* Adjust all the relocs. */
13261 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13262 {
13263 /* Get the new reloc address. */
13264 if (irel->r_offset > addr)
13265 irel->r_offset -= count;
13266 }
13267
13268 BFD_ASSERT (addr % 2 == 0);
13269 BFD_ASSERT (count % 2 == 0);
13270
13271 /* Adjust the local symbols defined in this section. */
13272 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13273 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13274 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13275 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13276 isym->st_value -= count;
13277
13278 /* Now adjust the global symbols defined in this section. */
13279 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13280 - symtab_hdr->sh_info);
13281 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13282 end_hashes = sym_hashes + symcount;
13283
13284 for (; sym_hashes < end_hashes; sym_hashes++)
13285 {
13286 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13287
13288 if ((sym_hash->root.type == bfd_link_hash_defined
13289 || sym_hash->root.type == bfd_link_hash_defweak)
13290 && sym_hash->root.u.def.section == sec)
13291 {
13292 bfd_vma value = sym_hash->root.u.def.value;
13293
13294 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13295 value &= MINUS_TWO;
13296 if (value > addr)
13297 sym_hash->root.u.def.value -= count;
13298 }
13299 }
13300
13301 return TRUE;
13302 }
13303
13304
13305 /* Opcodes needed for microMIPS relaxation as found in
13306 opcodes/micromips-opc.c. */
13307
13308 struct opcode_descriptor {
13309 unsigned long match;
13310 unsigned long mask;
13311 };
13312
13313 /* The $ra register aka $31. */
13314
13315 #define RA 31
13316
13317 /* 32-bit instruction format register fields. */
13318
13319 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13320 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13321
13322 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13323
13324 #define OP16_VALID_REG(r) \
13325 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13326
13327
13328 /* 32-bit and 16-bit branches. */
13329
13330 static const struct opcode_descriptor b_insns_32[] = {
13331 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13332 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13333 { 0, 0 } /* End marker for find_match(). */
13334 };
13335
13336 static const struct opcode_descriptor bc_insn_32 =
13337 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13338
13339 static const struct opcode_descriptor bz_insn_32 =
13340 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13341
13342 static const struct opcode_descriptor bzal_insn_32 =
13343 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13344
13345 static const struct opcode_descriptor beq_insn_32 =
13346 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13347
13348 static const struct opcode_descriptor b_insn_16 =
13349 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13350
13351 static const struct opcode_descriptor bz_insn_16 =
13352 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13353
13354
13355 /* 32-bit and 16-bit branch EQ and NE zero. */
13356
13357 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13358 eq and second the ne. This convention is used when replacing a
13359 32-bit BEQ/BNE with the 16-bit version. */
13360
13361 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13362
13363 static const struct opcode_descriptor bz_rs_insns_32[] = {
13364 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13365 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13366 { 0, 0 } /* End marker for find_match(). */
13367 };
13368
13369 static const struct opcode_descriptor bz_rt_insns_32[] = {
13370 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13371 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13372 { 0, 0 } /* End marker for find_match(). */
13373 };
13374
13375 static const struct opcode_descriptor bzc_insns_32[] = {
13376 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13377 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13378 { 0, 0 } /* End marker for find_match(). */
13379 };
13380
13381 static const struct opcode_descriptor bz_insns_16[] = {
13382 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13383 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13384 { 0, 0 } /* End marker for find_match(). */
13385 };
13386
13387 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13388
13389 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13390 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13391
13392
13393 /* 32-bit instructions with a delay slot. */
13394
13395 static const struct opcode_descriptor jal_insn_32_bd16 =
13396 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13397
13398 static const struct opcode_descriptor jal_insn_32_bd32 =
13399 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13400
13401 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13402 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13403
13404 static const struct opcode_descriptor j_insn_32 =
13405 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13406
13407 static const struct opcode_descriptor jalr_insn_32 =
13408 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13409
13410 /* This table can be compacted, because no opcode replacement is made. */
13411
13412 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13413 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13414
13415 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13416 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13417
13418 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13419 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13420 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13421 { 0, 0 } /* End marker for find_match(). */
13422 };
13423
13424 /* This table can be compacted, because no opcode replacement is made. */
13425
13426 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13427 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13428
13429 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13430 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13431 { 0, 0 } /* End marker for find_match(). */
13432 };
13433
13434
13435 /* 16-bit instructions with a delay slot. */
13436
13437 static const struct opcode_descriptor jalr_insn_16_bd16 =
13438 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13439
13440 static const struct opcode_descriptor jalr_insn_16_bd32 =
13441 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13442
13443 static const struct opcode_descriptor jr_insn_16 =
13444 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13445
13446 #define JR16_REG(opcode) ((opcode) & 0x1f)
13447
13448 /* This table can be compacted, because no opcode replacement is made. */
13449
13450 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13451 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13452
13453 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13454 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13455 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13456 { 0, 0 } /* End marker for find_match(). */
13457 };
13458
13459
13460 /* LUI instruction. */
13461
13462 static const struct opcode_descriptor lui_insn =
13463 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13464
13465
13466 /* ADDIU instruction. */
13467
13468 static const struct opcode_descriptor addiu_insn =
13469 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13470
13471 static const struct opcode_descriptor addiupc_insn =
13472 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13473
13474 #define ADDIUPC_REG_FIELD(r) \
13475 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13476
13477
13478 /* Relaxable instructions in a JAL delay slot: MOVE. */
13479
13480 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13481 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13482 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13483 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13484
13485 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13486 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13487
13488 static const struct opcode_descriptor move_insns_32[] = {
13489 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13490 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13491 { 0, 0 } /* End marker for find_match(). */
13492 };
13493
13494 static const struct opcode_descriptor move_insn_16 =
13495 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13496
13497
13498 /* NOP instructions. */
13499
13500 static const struct opcode_descriptor nop_insn_32 =
13501 { /* "nop", "", */ 0x00000000, 0xffffffff };
13502
13503 static const struct opcode_descriptor nop_insn_16 =
13504 { /* "nop", "", */ 0x0c00, 0xffff };
13505
13506
13507 /* Instruction match support. */
13508
13509 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13510
13511 static int
13512 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13513 {
13514 unsigned long indx;
13515
13516 for (indx = 0; insn[indx].mask != 0; indx++)
13517 if (MATCH (opcode, insn[indx]))
13518 return indx;
13519
13520 return -1;
13521 }
13522
13523
13524 /* Branch and delay slot decoding support. */
13525
13526 /* If PTR points to what *might* be a 16-bit branch or jump, then
13527 return the minimum length of its delay slot, otherwise return 0.
13528 Non-zero results are not definitive as we might be checking against
13529 the second half of another instruction. */
13530
13531 static int
13532 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13533 {
13534 unsigned long opcode;
13535 int bdsize;
13536
13537 opcode = bfd_get_16 (abfd, ptr);
13538 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13539 /* 16-bit branch/jump with a 32-bit delay slot. */
13540 bdsize = 4;
13541 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13542 || find_match (opcode, ds_insns_16_bd16) >= 0)
13543 /* 16-bit branch/jump with a 16-bit delay slot. */
13544 bdsize = 2;
13545 else
13546 /* No delay slot. */
13547 bdsize = 0;
13548
13549 return bdsize;
13550 }
13551
13552 /* If PTR points to what *might* be a 32-bit branch or jump, then
13553 return the minimum length of its delay slot, otherwise return 0.
13554 Non-zero results are not definitive as we might be checking against
13555 the second half of another instruction. */
13556
13557 static int
13558 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13559 {
13560 unsigned long opcode;
13561 int bdsize;
13562
13563 opcode = bfd_get_micromips_32 (abfd, ptr);
13564 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13565 /* 32-bit branch/jump with a 32-bit delay slot. */
13566 bdsize = 4;
13567 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13568 /* 32-bit branch/jump with a 16-bit delay slot. */
13569 bdsize = 2;
13570 else
13571 /* No delay slot. */
13572 bdsize = 0;
13573
13574 return bdsize;
13575 }
13576
13577 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13578 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13579
13580 static bfd_boolean
13581 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13582 {
13583 unsigned long opcode;
13584
13585 opcode = bfd_get_16 (abfd, ptr);
13586 if (MATCH (opcode, b_insn_16)
13587 /* B16 */
13588 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13589 /* JR16 */
13590 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13591 /* BEQZ16, BNEZ16 */
13592 || (MATCH (opcode, jalr_insn_16_bd32)
13593 /* JALR16 */
13594 && reg != JR16_REG (opcode) && reg != RA))
13595 return TRUE;
13596
13597 return FALSE;
13598 }
13599
13600 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13601 then return TRUE, otherwise FALSE. */
13602
13603 static bfd_boolean
13604 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13605 {
13606 unsigned long opcode;
13607
13608 opcode = bfd_get_micromips_32 (abfd, ptr);
13609 if (MATCH (opcode, j_insn_32)
13610 /* J */
13611 || MATCH (opcode, bc_insn_32)
13612 /* BC1F, BC1T, BC2F, BC2T */
13613 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13614 /* JAL, JALX */
13615 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13616 /* BGEZ, BGTZ, BLEZ, BLTZ */
13617 || (MATCH (opcode, bzal_insn_32)
13618 /* BGEZAL, BLTZAL */
13619 && reg != OP32_SREG (opcode) && reg != RA)
13620 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13621 /* JALR, JALR.HB, BEQ, BNE */
13622 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13623 return TRUE;
13624
13625 return FALSE;
13626 }
13627
13628 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13629 IRELEND) at OFFSET indicate that there must be a compact branch there,
13630 then return TRUE, otherwise FALSE. */
13631
13632 static bfd_boolean
13633 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13634 const Elf_Internal_Rela *internal_relocs,
13635 const Elf_Internal_Rela *irelend)
13636 {
13637 const Elf_Internal_Rela *irel;
13638 unsigned long opcode;
13639
13640 opcode = bfd_get_micromips_32 (abfd, ptr);
13641 if (find_match (opcode, bzc_insns_32) < 0)
13642 return FALSE;
13643
13644 for (irel = internal_relocs; irel < irelend; irel++)
13645 if (irel->r_offset == offset
13646 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13647 return TRUE;
13648
13649 return FALSE;
13650 }
13651
13652 /* Bitsize checking. */
13653 #define IS_BITSIZE(val, N) \
13654 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13655 - (1ULL << ((N) - 1))) == (val))
13656
13657 \f
13658 bfd_boolean
13659 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13660 struct bfd_link_info *link_info,
13661 bfd_boolean *again)
13662 {
13663 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13664 Elf_Internal_Shdr *symtab_hdr;
13665 Elf_Internal_Rela *internal_relocs;
13666 Elf_Internal_Rela *irel, *irelend;
13667 bfd_byte *contents = NULL;
13668 Elf_Internal_Sym *isymbuf = NULL;
13669
13670 /* Assume nothing changes. */
13671 *again = FALSE;
13672
13673 /* We don't have to do anything for a relocatable link, if
13674 this section does not have relocs, or if this is not a
13675 code section. */
13676
13677 if (bfd_link_relocatable (link_info)
13678 || (sec->flags & SEC_RELOC) == 0
13679 || sec->reloc_count == 0
13680 || (sec->flags & SEC_CODE) == 0)
13681 return TRUE;
13682
13683 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13684
13685 /* Get a copy of the native relocations. */
13686 internal_relocs = (_bfd_elf_link_read_relocs
13687 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13688 link_info->keep_memory));
13689 if (internal_relocs == NULL)
13690 goto error_return;
13691
13692 /* Walk through them looking for relaxing opportunities. */
13693 irelend = internal_relocs + sec->reloc_count;
13694 for (irel = internal_relocs; irel < irelend; irel++)
13695 {
13696 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13697 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13698 bfd_boolean target_is_micromips_code_p;
13699 unsigned long opcode;
13700 bfd_vma symval;
13701 bfd_vma pcrval;
13702 bfd_byte *ptr;
13703 int fndopc;
13704
13705 /* The number of bytes to delete for relaxation and from where
13706 to delete these bytes starting at irel->r_offset. */
13707 int delcnt = 0;
13708 int deloff = 0;
13709
13710 /* If this isn't something that can be relaxed, then ignore
13711 this reloc. */
13712 if (r_type != R_MICROMIPS_HI16
13713 && r_type != R_MICROMIPS_PC16_S1
13714 && r_type != R_MICROMIPS_26_S1)
13715 continue;
13716
13717 /* Get the section contents if we haven't done so already. */
13718 if (contents == NULL)
13719 {
13720 /* Get cached copy if it exists. */
13721 if (elf_section_data (sec)->this_hdr.contents != NULL)
13722 contents = elf_section_data (sec)->this_hdr.contents;
13723 /* Go get them off disk. */
13724 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13725 goto error_return;
13726 }
13727 ptr = contents + irel->r_offset;
13728
13729 /* Read this BFD's local symbols if we haven't done so already. */
13730 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13731 {
13732 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13733 if (isymbuf == NULL)
13734 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13735 symtab_hdr->sh_info, 0,
13736 NULL, NULL, NULL);
13737 if (isymbuf == NULL)
13738 goto error_return;
13739 }
13740
13741 /* Get the value of the symbol referred to by the reloc. */
13742 if (r_symndx < symtab_hdr->sh_info)
13743 {
13744 /* A local symbol. */
13745 Elf_Internal_Sym *isym;
13746 asection *sym_sec;
13747
13748 isym = isymbuf + r_symndx;
13749 if (isym->st_shndx == SHN_UNDEF)
13750 sym_sec = bfd_und_section_ptr;
13751 else if (isym->st_shndx == SHN_ABS)
13752 sym_sec = bfd_abs_section_ptr;
13753 else if (isym->st_shndx == SHN_COMMON)
13754 sym_sec = bfd_com_section_ptr;
13755 else
13756 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13757 symval = (isym->st_value
13758 + sym_sec->output_section->vma
13759 + sym_sec->output_offset);
13760 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13761 }
13762 else
13763 {
13764 unsigned long indx;
13765 struct elf_link_hash_entry *h;
13766
13767 /* An external symbol. */
13768 indx = r_symndx - symtab_hdr->sh_info;
13769 h = elf_sym_hashes (abfd)[indx];
13770 BFD_ASSERT (h != NULL);
13771
13772 if (h->root.type != bfd_link_hash_defined
13773 && h->root.type != bfd_link_hash_defweak)
13774 /* This appears to be a reference to an undefined
13775 symbol. Just ignore it -- it will be caught by the
13776 regular reloc processing. */
13777 continue;
13778
13779 symval = (h->root.u.def.value
13780 + h->root.u.def.section->output_section->vma
13781 + h->root.u.def.section->output_offset);
13782 target_is_micromips_code_p = (!h->needs_plt
13783 && ELF_ST_IS_MICROMIPS (h->other));
13784 }
13785
13786
13787 /* For simplicity of coding, we are going to modify the
13788 section contents, the section relocs, and the BFD symbol
13789 table. We must tell the rest of the code not to free up this
13790 information. It would be possible to instead create a table
13791 of changes which have to be made, as is done in coff-mips.c;
13792 that would be more work, but would require less memory when
13793 the linker is run. */
13794
13795 /* Only 32-bit instructions relaxed. */
13796 if (irel->r_offset + 4 > sec->size)
13797 continue;
13798
13799 opcode = bfd_get_micromips_32 (abfd, ptr);
13800
13801 /* This is the pc-relative distance from the instruction the
13802 relocation is applied to, to the symbol referred. */
13803 pcrval = (symval
13804 - (sec->output_section->vma + sec->output_offset)
13805 - irel->r_offset);
13806
13807 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13808 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13809 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13810
13811 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13812
13813 where pcrval has first to be adjusted to apply against the LO16
13814 location (we make the adjustment later on, when we have figured
13815 out the offset). */
13816 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13817 {
13818 bfd_boolean bzc = FALSE;
13819 unsigned long nextopc;
13820 unsigned long reg;
13821 bfd_vma offset;
13822
13823 /* Give up if the previous reloc was a HI16 against this symbol
13824 too. */
13825 if (irel > internal_relocs
13826 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13827 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13828 continue;
13829
13830 /* Or if the next reloc is not a LO16 against this symbol. */
13831 if (irel + 1 >= irelend
13832 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13833 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13834 continue;
13835
13836 /* Or if the second next reloc is a LO16 against this symbol too. */
13837 if (irel + 2 >= irelend
13838 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13839 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13840 continue;
13841
13842 /* See if the LUI instruction *might* be in a branch delay slot.
13843 We check whether what looks like a 16-bit branch or jump is
13844 actually an immediate argument to a compact branch, and let
13845 it through if so. */
13846 if (irel->r_offset >= 2
13847 && check_br16_dslot (abfd, ptr - 2)
13848 && !(irel->r_offset >= 4
13849 && (bzc = check_relocated_bzc (abfd,
13850 ptr - 4, irel->r_offset - 4,
13851 internal_relocs, irelend))))
13852 continue;
13853 if (irel->r_offset >= 4
13854 && !bzc
13855 && check_br32_dslot (abfd, ptr - 4))
13856 continue;
13857
13858 reg = OP32_SREG (opcode);
13859
13860 /* We only relax adjacent instructions or ones separated with
13861 a branch or jump that has a delay slot. The branch or jump
13862 must not fiddle with the register used to hold the address.
13863 Subtract 4 for the LUI itself. */
13864 offset = irel[1].r_offset - irel[0].r_offset;
13865 switch (offset - 4)
13866 {
13867 case 0:
13868 break;
13869 case 2:
13870 if (check_br16 (abfd, ptr + 4, reg))
13871 break;
13872 continue;
13873 case 4:
13874 if (check_br32 (abfd, ptr + 4, reg))
13875 break;
13876 continue;
13877 default:
13878 continue;
13879 }
13880
13881 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13882
13883 /* Give up unless the same register is used with both
13884 relocations. */
13885 if (OP32_SREG (nextopc) != reg)
13886 continue;
13887
13888 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13889 and rounding up to take masking of the two LSBs into account. */
13890 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13891
13892 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13893 if (IS_BITSIZE (symval, 16))
13894 {
13895 /* Fix the relocation's type. */
13896 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13897
13898 /* Instructions using R_MICROMIPS_LO16 have the base or
13899 source register in bits 20:16. This register becomes $0
13900 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13901 nextopc &= ~0x001f0000;
13902 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13903 contents + irel[1].r_offset);
13904 }
13905
13906 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13907 We add 4 to take LUI deletion into account while checking
13908 the PC-relative distance. */
13909 else if (symval % 4 == 0
13910 && IS_BITSIZE (pcrval + 4, 25)
13911 && MATCH (nextopc, addiu_insn)
13912 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13913 && OP16_VALID_REG (OP32_TREG (nextopc)))
13914 {
13915 /* Fix the relocation's type. */
13916 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13917
13918 /* Replace ADDIU with the ADDIUPC version. */
13919 nextopc = (addiupc_insn.match
13920 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13921
13922 bfd_put_micromips_32 (abfd, nextopc,
13923 contents + irel[1].r_offset);
13924 }
13925
13926 /* Can't do anything, give up, sigh... */
13927 else
13928 continue;
13929
13930 /* Fix the relocation's type. */
13931 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13932
13933 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13934 delcnt = 4;
13935 deloff = 0;
13936 }
13937
13938 /* Compact branch relaxation -- due to the multitude of macros
13939 employed by the compiler/assembler, compact branches are not
13940 always generated. Obviously, this can/will be fixed elsewhere,
13941 but there is no drawback in double checking it here. */
13942 else if (r_type == R_MICROMIPS_PC16_S1
13943 && irel->r_offset + 5 < sec->size
13944 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13945 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13946 && ((!insn32
13947 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13948 nop_insn_16) ? 2 : 0))
13949 || (irel->r_offset + 7 < sec->size
13950 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13951 ptr + 4),
13952 nop_insn_32) ? 4 : 0))))
13953 {
13954 unsigned long reg;
13955
13956 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13957
13958 /* Replace BEQZ/BNEZ with the compact version. */
13959 opcode = (bzc_insns_32[fndopc].match
13960 | BZC32_REG_FIELD (reg)
13961 | (opcode & 0xffff)); /* Addend value. */
13962
13963 bfd_put_micromips_32 (abfd, opcode, ptr);
13964
13965 /* Delete the delay slot NOP: two or four bytes from
13966 irel->offset + 4; delcnt has already been set above. */
13967 deloff = 4;
13968 }
13969
13970 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13971 to check the distance from the next instruction, so subtract 2. */
13972 else if (!insn32
13973 && r_type == R_MICROMIPS_PC16_S1
13974 && IS_BITSIZE (pcrval - 2, 11)
13975 && find_match (opcode, b_insns_32) >= 0)
13976 {
13977 /* Fix the relocation's type. */
13978 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13979
13980 /* Replace the 32-bit opcode with a 16-bit opcode. */
13981 bfd_put_16 (abfd,
13982 (b_insn_16.match
13983 | (opcode & 0x3ff)), /* Addend value. */
13984 ptr);
13985
13986 /* Delete 2 bytes from irel->r_offset + 2. */
13987 delcnt = 2;
13988 deloff = 2;
13989 }
13990
13991 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13992 to check the distance from the next instruction, so subtract 2. */
13993 else if (!insn32
13994 && r_type == R_MICROMIPS_PC16_S1
13995 && IS_BITSIZE (pcrval - 2, 8)
13996 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13997 && OP16_VALID_REG (OP32_SREG (opcode)))
13998 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13999 && OP16_VALID_REG (OP32_TREG (opcode)))))
14000 {
14001 unsigned long reg;
14002
14003 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14004
14005 /* Fix the relocation's type. */
14006 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14007
14008 /* Replace the 32-bit opcode with a 16-bit opcode. */
14009 bfd_put_16 (abfd,
14010 (bz_insns_16[fndopc].match
14011 | BZ16_REG_FIELD (reg)
14012 | (opcode & 0x7f)), /* Addend value. */
14013 ptr);
14014
14015 /* Delete 2 bytes from irel->r_offset + 2. */
14016 delcnt = 2;
14017 deloff = 2;
14018 }
14019
14020 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14021 else if (!insn32
14022 && r_type == R_MICROMIPS_26_S1
14023 && target_is_micromips_code_p
14024 && irel->r_offset + 7 < sec->size
14025 && MATCH (opcode, jal_insn_32_bd32))
14026 {
14027 unsigned long n32opc;
14028 bfd_boolean relaxed = FALSE;
14029
14030 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14031
14032 if (MATCH (n32opc, nop_insn_32))
14033 {
14034 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14035 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14036
14037 relaxed = TRUE;
14038 }
14039 else if (find_match (n32opc, move_insns_32) >= 0)
14040 {
14041 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14042 bfd_put_16 (abfd,
14043 (move_insn_16.match
14044 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14045 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14046 ptr + 4);
14047
14048 relaxed = TRUE;
14049 }
14050 /* Other 32-bit instructions relaxable to 16-bit
14051 instructions will be handled here later. */
14052
14053 if (relaxed)
14054 {
14055 /* JAL with 32-bit delay slot that is changed to a JALS
14056 with 16-bit delay slot. */
14057 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14058
14059 /* Delete 2 bytes from irel->r_offset + 6. */
14060 delcnt = 2;
14061 deloff = 6;
14062 }
14063 }
14064
14065 if (delcnt != 0)
14066 {
14067 /* Note that we've changed the relocs, section contents, etc. */
14068 elf_section_data (sec)->relocs = internal_relocs;
14069 elf_section_data (sec)->this_hdr.contents = contents;
14070 symtab_hdr->contents = (unsigned char *) isymbuf;
14071
14072 /* Delete bytes depending on the delcnt and deloff. */
14073 if (!mips_elf_relax_delete_bytes (abfd, sec,
14074 irel->r_offset + deloff, delcnt))
14075 goto error_return;
14076
14077 /* That will change things, so we should relax again.
14078 Note that this is not required, and it may be slow. */
14079 *again = TRUE;
14080 }
14081 }
14082
14083 if (isymbuf != NULL
14084 && symtab_hdr->contents != (unsigned char *) isymbuf)
14085 {
14086 if (! link_info->keep_memory)
14087 free (isymbuf);
14088 else
14089 {
14090 /* Cache the symbols for elf_link_input_bfd. */
14091 symtab_hdr->contents = (unsigned char *) isymbuf;
14092 }
14093 }
14094
14095 if (contents != NULL
14096 && elf_section_data (sec)->this_hdr.contents != contents)
14097 {
14098 if (! link_info->keep_memory)
14099 free (contents);
14100 else
14101 {
14102 /* Cache the section contents for elf_link_input_bfd. */
14103 elf_section_data (sec)->this_hdr.contents = contents;
14104 }
14105 }
14106
14107 if (internal_relocs != NULL
14108 && elf_section_data (sec)->relocs != internal_relocs)
14109 free (internal_relocs);
14110
14111 return TRUE;
14112
14113 error_return:
14114 if (isymbuf != NULL
14115 && symtab_hdr->contents != (unsigned char *) isymbuf)
14116 free (isymbuf);
14117 if (contents != NULL
14118 && elf_section_data (sec)->this_hdr.contents != contents)
14119 free (contents);
14120 if (internal_relocs != NULL
14121 && elf_section_data (sec)->relocs != internal_relocs)
14122 free (internal_relocs);
14123
14124 return FALSE;
14125 }
14126 \f
14127 /* Create a MIPS ELF linker hash table. */
14128
14129 struct bfd_link_hash_table *
14130 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14131 {
14132 struct mips_elf_link_hash_table *ret;
14133 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14134
14135 ret = bfd_zmalloc (amt);
14136 if (ret == NULL)
14137 return NULL;
14138
14139 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14140 mips_elf_link_hash_newfunc,
14141 sizeof (struct mips_elf_link_hash_entry),
14142 MIPS_ELF_DATA))
14143 {
14144 free (ret);
14145 return NULL;
14146 }
14147 ret->root.init_plt_refcount.plist = NULL;
14148 ret->root.init_plt_offset.plist = NULL;
14149
14150 return &ret->root.root;
14151 }
14152
14153 /* Likewise, but indicate that the target is VxWorks. */
14154
14155 struct bfd_link_hash_table *
14156 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14157 {
14158 struct bfd_link_hash_table *ret;
14159
14160 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14161 if (ret)
14162 {
14163 struct mips_elf_link_hash_table *htab;
14164
14165 htab = (struct mips_elf_link_hash_table *) ret;
14166 htab->use_plts_and_copy_relocs = TRUE;
14167 htab->is_vxworks = TRUE;
14168 }
14169 return ret;
14170 }
14171
14172 /* A function that the linker calls if we are allowed to use PLTs
14173 and copy relocs. */
14174
14175 void
14176 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14177 {
14178 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14179 }
14180
14181 /* A function that the linker calls to select between all or only
14182 32-bit microMIPS instructions, and between making or ignoring
14183 branch relocation checks for invalid transitions between ISA modes.
14184 Also record whether we have been configured for a GNU target. */
14185
14186 void
14187 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14188 bfd_boolean ignore_branch_isa,
14189 bfd_boolean gnu_target)
14190 {
14191 mips_elf_hash_table (info)->insn32 = insn32;
14192 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14193 mips_elf_hash_table (info)->gnu_target = gnu_target;
14194 }
14195 \f
14196 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14197
14198 struct mips_mach_extension
14199 {
14200 unsigned long extension, base;
14201 };
14202
14203
14204 /* An array describing how BFD machines relate to one another. The entries
14205 are ordered topologically with MIPS I extensions listed last. */
14206
14207 static const struct mips_mach_extension mips_mach_extensions[] =
14208 {
14209 /* MIPS64r2 extensions. */
14210 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14211 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14212 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14213 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14214 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14215 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14216 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14217
14218 /* MIPS64 extensions. */
14219 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14220 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14221 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14222
14223 /* MIPS V extensions. */
14224 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14225
14226 /* R10000 extensions. */
14227 { bfd_mach_mips12000, bfd_mach_mips10000 },
14228 { bfd_mach_mips14000, bfd_mach_mips10000 },
14229 { bfd_mach_mips16000, bfd_mach_mips10000 },
14230
14231 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14232 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14233 better to allow vr5400 and vr5500 code to be merged anyway, since
14234 many libraries will just use the core ISA. Perhaps we could add
14235 some sort of ASE flag if this ever proves a problem. */
14236 { bfd_mach_mips5500, bfd_mach_mips5400 },
14237 { bfd_mach_mips5400, bfd_mach_mips5000 },
14238
14239 /* MIPS IV extensions. */
14240 { bfd_mach_mips5, bfd_mach_mips8000 },
14241 { bfd_mach_mips10000, bfd_mach_mips8000 },
14242 { bfd_mach_mips5000, bfd_mach_mips8000 },
14243 { bfd_mach_mips7000, bfd_mach_mips8000 },
14244 { bfd_mach_mips9000, bfd_mach_mips8000 },
14245
14246 /* VR4100 extensions. */
14247 { bfd_mach_mips4120, bfd_mach_mips4100 },
14248 { bfd_mach_mips4111, bfd_mach_mips4100 },
14249
14250 /* MIPS III extensions. */
14251 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14252 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14253 { bfd_mach_mips8000, bfd_mach_mips4000 },
14254 { bfd_mach_mips4650, bfd_mach_mips4000 },
14255 { bfd_mach_mips4600, bfd_mach_mips4000 },
14256 { bfd_mach_mips4400, bfd_mach_mips4000 },
14257 { bfd_mach_mips4300, bfd_mach_mips4000 },
14258 { bfd_mach_mips4100, bfd_mach_mips4000 },
14259 { bfd_mach_mips5900, bfd_mach_mips4000 },
14260
14261 /* MIPS32r3 extensions. */
14262 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14263
14264 /* MIPS32r2 extensions. */
14265 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14266
14267 /* MIPS32 extensions. */
14268 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14269
14270 /* MIPS II extensions. */
14271 { bfd_mach_mips4000, bfd_mach_mips6000 },
14272 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14273 { bfd_mach_mips4010, bfd_mach_mips6000 },
14274
14275 /* MIPS I extensions. */
14276 { bfd_mach_mips6000, bfd_mach_mips3000 },
14277 { bfd_mach_mips3900, bfd_mach_mips3000 }
14278 };
14279
14280 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14281
14282 static bfd_boolean
14283 mips_mach_extends_p (unsigned long base, unsigned long extension)
14284 {
14285 size_t i;
14286
14287 if (extension == base)
14288 return TRUE;
14289
14290 if (base == bfd_mach_mipsisa32
14291 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14292 return TRUE;
14293
14294 if (base == bfd_mach_mipsisa32r2
14295 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14296 return TRUE;
14297
14298 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14299 if (extension == mips_mach_extensions[i].extension)
14300 {
14301 extension = mips_mach_extensions[i].base;
14302 if (extension == base)
14303 return TRUE;
14304 }
14305
14306 return FALSE;
14307 }
14308
14309 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14310
14311 static unsigned long
14312 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14313 {
14314 switch (isa_ext)
14315 {
14316 case AFL_EXT_3900: return bfd_mach_mips3900;
14317 case AFL_EXT_4010: return bfd_mach_mips4010;
14318 case AFL_EXT_4100: return bfd_mach_mips4100;
14319 case AFL_EXT_4111: return bfd_mach_mips4111;
14320 case AFL_EXT_4120: return bfd_mach_mips4120;
14321 case AFL_EXT_4650: return bfd_mach_mips4650;
14322 case AFL_EXT_5400: return bfd_mach_mips5400;
14323 case AFL_EXT_5500: return bfd_mach_mips5500;
14324 case AFL_EXT_5900: return bfd_mach_mips5900;
14325 case AFL_EXT_10000: return bfd_mach_mips10000;
14326 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14327 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14328 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14329 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14330 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14331 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14332 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14333 default: return bfd_mach_mips3000;
14334 }
14335 }
14336
14337 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14338
14339 unsigned int
14340 bfd_mips_isa_ext (bfd *abfd)
14341 {
14342 switch (bfd_get_mach (abfd))
14343 {
14344 case bfd_mach_mips3900: return AFL_EXT_3900;
14345 case bfd_mach_mips4010: return AFL_EXT_4010;
14346 case bfd_mach_mips4100: return AFL_EXT_4100;
14347 case bfd_mach_mips4111: return AFL_EXT_4111;
14348 case bfd_mach_mips4120: return AFL_EXT_4120;
14349 case bfd_mach_mips4650: return AFL_EXT_4650;
14350 case bfd_mach_mips5400: return AFL_EXT_5400;
14351 case bfd_mach_mips5500: return AFL_EXT_5500;
14352 case bfd_mach_mips5900: return AFL_EXT_5900;
14353 case bfd_mach_mips10000: return AFL_EXT_10000;
14354 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14355 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14356 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14357 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14358 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14359 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14360 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14361 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14362 case bfd_mach_mips_interaptiv_mr2:
14363 return AFL_EXT_INTERAPTIV_MR2;
14364 default: return 0;
14365 }
14366 }
14367
14368 /* Encode ISA level and revision as a single value. */
14369 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14370
14371 /* Decode a single value into level and revision. */
14372 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14373 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14374
14375 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14376
14377 static void
14378 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14379 {
14380 int new_isa = 0;
14381 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14382 {
14383 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14384 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14385 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14386 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14387 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14388 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14389 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14390 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14391 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14392 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14393 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14394 default:
14395 _bfd_error_handler
14396 /* xgettext:c-format */
14397 (_("%pB: unknown architecture %s"),
14398 abfd, bfd_printable_name (abfd));
14399 }
14400
14401 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14402 {
14403 abiflags->isa_level = ISA_LEVEL (new_isa);
14404 abiflags->isa_rev = ISA_REV (new_isa);
14405 }
14406
14407 /* Update the isa_ext if ABFD describes a further extension. */
14408 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14409 bfd_get_mach (abfd)))
14410 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14411 }
14412
14413 /* Return true if the given ELF header flags describe a 32-bit binary. */
14414
14415 static bfd_boolean
14416 mips_32bit_flags_p (flagword flags)
14417 {
14418 return ((flags & EF_MIPS_32BITMODE) != 0
14419 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14420 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14421 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14422 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14423 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14424 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14425 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14426 }
14427
14428 /* Infer the content of the ABI flags based on the elf header. */
14429
14430 static void
14431 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14432 {
14433 obj_attribute *in_attr;
14434
14435 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14436 update_mips_abiflags_isa (abfd, abiflags);
14437
14438 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14439 abiflags->gpr_size = AFL_REG_32;
14440 else
14441 abiflags->gpr_size = AFL_REG_64;
14442
14443 abiflags->cpr1_size = AFL_REG_NONE;
14444
14445 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14446 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14447
14448 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14449 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14450 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14451 && abiflags->gpr_size == AFL_REG_32))
14452 abiflags->cpr1_size = AFL_REG_32;
14453 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14454 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14455 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14456 abiflags->cpr1_size = AFL_REG_64;
14457
14458 abiflags->cpr2_size = AFL_REG_NONE;
14459
14460 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14461 abiflags->ases |= AFL_ASE_MDMX;
14462 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14463 abiflags->ases |= AFL_ASE_MIPS16;
14464 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14465 abiflags->ases |= AFL_ASE_MICROMIPS;
14466
14467 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14468 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14469 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14470 && abiflags->isa_level >= 32
14471 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14472 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14473 }
14474
14475 /* We need to use a special link routine to handle the .reginfo and
14476 the .mdebug sections. We need to merge all instances of these
14477 sections together, not write them all out sequentially. */
14478
14479 bfd_boolean
14480 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14481 {
14482 asection *o;
14483 struct bfd_link_order *p;
14484 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14485 asection *rtproc_sec, *abiflags_sec;
14486 Elf32_RegInfo reginfo;
14487 struct ecoff_debug_info debug;
14488 struct mips_htab_traverse_info hti;
14489 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14490 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14491 HDRR *symhdr = &debug.symbolic_header;
14492 void *mdebug_handle = NULL;
14493 asection *s;
14494 EXTR esym;
14495 unsigned int i;
14496 bfd_size_type amt;
14497 struct mips_elf_link_hash_table *htab;
14498
14499 static const char * const secname[] =
14500 {
14501 ".text", ".init", ".fini", ".data",
14502 ".rodata", ".sdata", ".sbss", ".bss"
14503 };
14504 static const int sc[] =
14505 {
14506 scText, scInit, scFini, scData,
14507 scRData, scSData, scSBss, scBss
14508 };
14509
14510 htab = mips_elf_hash_table (info);
14511 BFD_ASSERT (htab != NULL);
14512
14513 /* Sort the dynamic symbols so that those with GOT entries come after
14514 those without. */
14515 if (!mips_elf_sort_hash_table (abfd, info))
14516 return FALSE;
14517
14518 /* Create any scheduled LA25 stubs. */
14519 hti.info = info;
14520 hti.output_bfd = abfd;
14521 hti.error = FALSE;
14522 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14523 if (hti.error)
14524 return FALSE;
14525
14526 /* Get a value for the GP register. */
14527 if (elf_gp (abfd) == 0)
14528 {
14529 struct bfd_link_hash_entry *h;
14530
14531 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14532 if (h != NULL && h->type == bfd_link_hash_defined)
14533 elf_gp (abfd) = (h->u.def.value
14534 + h->u.def.section->output_section->vma
14535 + h->u.def.section->output_offset);
14536 else if (htab->is_vxworks
14537 && (h = bfd_link_hash_lookup (info->hash,
14538 "_GLOBAL_OFFSET_TABLE_",
14539 FALSE, FALSE, TRUE))
14540 && h->type == bfd_link_hash_defined)
14541 elf_gp (abfd) = (h->u.def.section->output_section->vma
14542 + h->u.def.section->output_offset
14543 + h->u.def.value);
14544 else if (bfd_link_relocatable (info))
14545 {
14546 bfd_vma lo = MINUS_ONE;
14547
14548 /* Find the GP-relative section with the lowest offset. */
14549 for (o = abfd->sections; o != NULL; o = o->next)
14550 if (o->vma < lo
14551 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14552 lo = o->vma;
14553
14554 /* And calculate GP relative to that. */
14555 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14556 }
14557 else
14558 {
14559 /* If the relocate_section function needs to do a reloc
14560 involving the GP value, it should make a reloc_dangerous
14561 callback to warn that GP is not defined. */
14562 }
14563 }
14564
14565 /* Go through the sections and collect the .reginfo and .mdebug
14566 information. */
14567 abiflags_sec = NULL;
14568 reginfo_sec = NULL;
14569 mdebug_sec = NULL;
14570 gptab_data_sec = NULL;
14571 gptab_bss_sec = NULL;
14572 for (o = abfd->sections; o != NULL; o = o->next)
14573 {
14574 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14575 {
14576 /* We have found the .MIPS.abiflags section in the output file.
14577 Look through all the link_orders comprising it and remove them.
14578 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14579 for (p = o->map_head.link_order; p != NULL; p = p->next)
14580 {
14581 asection *input_section;
14582
14583 if (p->type != bfd_indirect_link_order)
14584 {
14585 if (p->type == bfd_data_link_order)
14586 continue;
14587 abort ();
14588 }
14589
14590 input_section = p->u.indirect.section;
14591
14592 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14593 elf_link_input_bfd ignores this section. */
14594 input_section->flags &= ~SEC_HAS_CONTENTS;
14595 }
14596
14597 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14598 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14599
14600 /* Skip this section later on (I don't think this currently
14601 matters, but someday it might). */
14602 o->map_head.link_order = NULL;
14603
14604 abiflags_sec = o;
14605 }
14606
14607 if (strcmp (o->name, ".reginfo") == 0)
14608 {
14609 memset (&reginfo, 0, sizeof reginfo);
14610
14611 /* We have found the .reginfo section in the output file.
14612 Look through all the link_orders comprising it and merge
14613 the information together. */
14614 for (p = o->map_head.link_order; p != NULL; p = p->next)
14615 {
14616 asection *input_section;
14617 bfd *input_bfd;
14618 Elf32_External_RegInfo ext;
14619 Elf32_RegInfo sub;
14620 bfd_size_type sz;
14621
14622 if (p->type != bfd_indirect_link_order)
14623 {
14624 if (p->type == bfd_data_link_order)
14625 continue;
14626 abort ();
14627 }
14628
14629 input_section = p->u.indirect.section;
14630 input_bfd = input_section->owner;
14631
14632 sz = (input_section->size < sizeof (ext)
14633 ? input_section->size : sizeof (ext));
14634 memset (&ext, 0, sizeof (ext));
14635 if (! bfd_get_section_contents (input_bfd, input_section,
14636 &ext, 0, sz))
14637 return FALSE;
14638
14639 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14640
14641 reginfo.ri_gprmask |= sub.ri_gprmask;
14642 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14643 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14644 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14645 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14646
14647 /* ri_gp_value is set by the function
14648 `_bfd_mips_elf_section_processing' when the section is
14649 finally written out. */
14650
14651 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14652 elf_link_input_bfd ignores this section. */
14653 input_section->flags &= ~SEC_HAS_CONTENTS;
14654 }
14655
14656 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14657 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14658
14659 /* Skip this section later on (I don't think this currently
14660 matters, but someday it might). */
14661 o->map_head.link_order = NULL;
14662
14663 reginfo_sec = o;
14664 }
14665
14666 if (strcmp (o->name, ".mdebug") == 0)
14667 {
14668 struct extsym_info einfo;
14669 bfd_vma last;
14670
14671 /* We have found the .mdebug section in the output file.
14672 Look through all the link_orders comprising it and merge
14673 the information together. */
14674 symhdr->magic = swap->sym_magic;
14675 /* FIXME: What should the version stamp be? */
14676 symhdr->vstamp = 0;
14677 symhdr->ilineMax = 0;
14678 symhdr->cbLine = 0;
14679 symhdr->idnMax = 0;
14680 symhdr->ipdMax = 0;
14681 symhdr->isymMax = 0;
14682 symhdr->ioptMax = 0;
14683 symhdr->iauxMax = 0;
14684 symhdr->issMax = 0;
14685 symhdr->issExtMax = 0;
14686 symhdr->ifdMax = 0;
14687 symhdr->crfd = 0;
14688 symhdr->iextMax = 0;
14689
14690 /* We accumulate the debugging information itself in the
14691 debug_info structure. */
14692 debug.line = NULL;
14693 debug.external_dnr = NULL;
14694 debug.external_pdr = NULL;
14695 debug.external_sym = NULL;
14696 debug.external_opt = NULL;
14697 debug.external_aux = NULL;
14698 debug.ss = NULL;
14699 debug.ssext = debug.ssext_end = NULL;
14700 debug.external_fdr = NULL;
14701 debug.external_rfd = NULL;
14702 debug.external_ext = debug.external_ext_end = NULL;
14703
14704 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14705 if (mdebug_handle == NULL)
14706 return FALSE;
14707
14708 esym.jmptbl = 0;
14709 esym.cobol_main = 0;
14710 esym.weakext = 0;
14711 esym.reserved = 0;
14712 esym.ifd = ifdNil;
14713 esym.asym.iss = issNil;
14714 esym.asym.st = stLocal;
14715 esym.asym.reserved = 0;
14716 esym.asym.index = indexNil;
14717 last = 0;
14718 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14719 {
14720 esym.asym.sc = sc[i];
14721 s = bfd_get_section_by_name (abfd, secname[i]);
14722 if (s != NULL)
14723 {
14724 esym.asym.value = s->vma;
14725 last = s->vma + s->size;
14726 }
14727 else
14728 esym.asym.value = last;
14729 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14730 secname[i], &esym))
14731 return FALSE;
14732 }
14733
14734 for (p = o->map_head.link_order; p != NULL; p = p->next)
14735 {
14736 asection *input_section;
14737 bfd *input_bfd;
14738 const struct ecoff_debug_swap *input_swap;
14739 struct ecoff_debug_info input_debug;
14740 char *eraw_src;
14741 char *eraw_end;
14742
14743 if (p->type != bfd_indirect_link_order)
14744 {
14745 if (p->type == bfd_data_link_order)
14746 continue;
14747 abort ();
14748 }
14749
14750 input_section = p->u.indirect.section;
14751 input_bfd = input_section->owner;
14752
14753 if (!is_mips_elf (input_bfd))
14754 {
14755 /* I don't know what a non MIPS ELF bfd would be
14756 doing with a .mdebug section, but I don't really
14757 want to deal with it. */
14758 continue;
14759 }
14760
14761 input_swap = (get_elf_backend_data (input_bfd)
14762 ->elf_backend_ecoff_debug_swap);
14763
14764 BFD_ASSERT (p->size == input_section->size);
14765
14766 /* The ECOFF linking code expects that we have already
14767 read in the debugging information and set up an
14768 ecoff_debug_info structure, so we do that now. */
14769 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14770 &input_debug))
14771 return FALSE;
14772
14773 if (! (bfd_ecoff_debug_accumulate
14774 (mdebug_handle, abfd, &debug, swap, input_bfd,
14775 &input_debug, input_swap, info)))
14776 return FALSE;
14777
14778 /* Loop through the external symbols. For each one with
14779 interesting information, try to find the symbol in
14780 the linker global hash table and save the information
14781 for the output external symbols. */
14782 eraw_src = input_debug.external_ext;
14783 eraw_end = (eraw_src
14784 + (input_debug.symbolic_header.iextMax
14785 * input_swap->external_ext_size));
14786 for (;
14787 eraw_src < eraw_end;
14788 eraw_src += input_swap->external_ext_size)
14789 {
14790 EXTR ext;
14791 const char *name;
14792 struct mips_elf_link_hash_entry *h;
14793
14794 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14795 if (ext.asym.sc == scNil
14796 || ext.asym.sc == scUndefined
14797 || ext.asym.sc == scSUndefined)
14798 continue;
14799
14800 name = input_debug.ssext + ext.asym.iss;
14801 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14802 name, FALSE, FALSE, TRUE);
14803 if (h == NULL || h->esym.ifd != -2)
14804 continue;
14805
14806 if (ext.ifd != -1)
14807 {
14808 BFD_ASSERT (ext.ifd
14809 < input_debug.symbolic_header.ifdMax);
14810 ext.ifd = input_debug.ifdmap[ext.ifd];
14811 }
14812
14813 h->esym = ext;
14814 }
14815
14816 /* Free up the information we just read. */
14817 free (input_debug.line);
14818 free (input_debug.external_dnr);
14819 free (input_debug.external_pdr);
14820 free (input_debug.external_sym);
14821 free (input_debug.external_opt);
14822 free (input_debug.external_aux);
14823 free (input_debug.ss);
14824 free (input_debug.ssext);
14825 free (input_debug.external_fdr);
14826 free (input_debug.external_rfd);
14827 free (input_debug.external_ext);
14828
14829 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14830 elf_link_input_bfd ignores this section. */
14831 input_section->flags &= ~SEC_HAS_CONTENTS;
14832 }
14833
14834 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14835 {
14836 /* Create .rtproc section. */
14837 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14838 if (rtproc_sec == NULL)
14839 {
14840 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14841 | SEC_LINKER_CREATED | SEC_READONLY);
14842
14843 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14844 ".rtproc",
14845 flags);
14846 if (rtproc_sec == NULL
14847 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14848 return FALSE;
14849 }
14850
14851 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14852 info, rtproc_sec,
14853 &debug))
14854 return FALSE;
14855 }
14856
14857 /* Build the external symbol information. */
14858 einfo.abfd = abfd;
14859 einfo.info = info;
14860 einfo.debug = &debug;
14861 einfo.swap = swap;
14862 einfo.failed = FALSE;
14863 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14864 mips_elf_output_extsym, &einfo);
14865 if (einfo.failed)
14866 return FALSE;
14867
14868 /* Set the size of the .mdebug section. */
14869 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14870
14871 /* Skip this section later on (I don't think this currently
14872 matters, but someday it might). */
14873 o->map_head.link_order = NULL;
14874
14875 mdebug_sec = o;
14876 }
14877
14878 if (CONST_STRNEQ (o->name, ".gptab."))
14879 {
14880 const char *subname;
14881 unsigned int c;
14882 Elf32_gptab *tab;
14883 Elf32_External_gptab *ext_tab;
14884 unsigned int j;
14885
14886 /* The .gptab.sdata and .gptab.sbss sections hold
14887 information describing how the small data area would
14888 change depending upon the -G switch. These sections
14889 not used in executables files. */
14890 if (! bfd_link_relocatable (info))
14891 {
14892 for (p = o->map_head.link_order; p != NULL; p = p->next)
14893 {
14894 asection *input_section;
14895
14896 if (p->type != bfd_indirect_link_order)
14897 {
14898 if (p->type == bfd_data_link_order)
14899 continue;
14900 abort ();
14901 }
14902
14903 input_section = p->u.indirect.section;
14904
14905 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14906 elf_link_input_bfd ignores this section. */
14907 input_section->flags &= ~SEC_HAS_CONTENTS;
14908 }
14909
14910 /* Skip this section later on (I don't think this
14911 currently matters, but someday it might). */
14912 o->map_head.link_order = NULL;
14913
14914 /* Really remove the section. */
14915 bfd_section_list_remove (abfd, o);
14916 --abfd->section_count;
14917
14918 continue;
14919 }
14920
14921 /* There is one gptab for initialized data, and one for
14922 uninitialized data. */
14923 if (strcmp (o->name, ".gptab.sdata") == 0)
14924 gptab_data_sec = o;
14925 else if (strcmp (o->name, ".gptab.sbss") == 0)
14926 gptab_bss_sec = o;
14927 else
14928 {
14929 _bfd_error_handler
14930 /* xgettext:c-format */
14931 (_("%pB: illegal section name `%pA'"), abfd, o);
14932 bfd_set_error (bfd_error_nonrepresentable_section);
14933 return FALSE;
14934 }
14935
14936 /* The linker script always combines .gptab.data and
14937 .gptab.sdata into .gptab.sdata, and likewise for
14938 .gptab.bss and .gptab.sbss. It is possible that there is
14939 no .sdata or .sbss section in the output file, in which
14940 case we must change the name of the output section. */
14941 subname = o->name + sizeof ".gptab" - 1;
14942 if (bfd_get_section_by_name (abfd, subname) == NULL)
14943 {
14944 if (o == gptab_data_sec)
14945 o->name = ".gptab.data";
14946 else
14947 o->name = ".gptab.bss";
14948 subname = o->name + sizeof ".gptab" - 1;
14949 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14950 }
14951
14952 /* Set up the first entry. */
14953 c = 1;
14954 amt = c * sizeof (Elf32_gptab);
14955 tab = bfd_malloc (amt);
14956 if (tab == NULL)
14957 return FALSE;
14958 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14959 tab[0].gt_header.gt_unused = 0;
14960
14961 /* Combine the input sections. */
14962 for (p = o->map_head.link_order; p != NULL; p = p->next)
14963 {
14964 asection *input_section;
14965 bfd *input_bfd;
14966 bfd_size_type size;
14967 unsigned long last;
14968 bfd_size_type gpentry;
14969
14970 if (p->type != bfd_indirect_link_order)
14971 {
14972 if (p->type == bfd_data_link_order)
14973 continue;
14974 abort ();
14975 }
14976
14977 input_section = p->u.indirect.section;
14978 input_bfd = input_section->owner;
14979
14980 /* Combine the gptab entries for this input section one
14981 by one. We know that the input gptab entries are
14982 sorted by ascending -G value. */
14983 size = input_section->size;
14984 last = 0;
14985 for (gpentry = sizeof (Elf32_External_gptab);
14986 gpentry < size;
14987 gpentry += sizeof (Elf32_External_gptab))
14988 {
14989 Elf32_External_gptab ext_gptab;
14990 Elf32_gptab int_gptab;
14991 unsigned long val;
14992 unsigned long add;
14993 bfd_boolean exact;
14994 unsigned int look;
14995
14996 if (! (bfd_get_section_contents
14997 (input_bfd, input_section, &ext_gptab, gpentry,
14998 sizeof (Elf32_External_gptab))))
14999 {
15000 free (tab);
15001 return FALSE;
15002 }
15003
15004 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15005 &int_gptab);
15006 val = int_gptab.gt_entry.gt_g_value;
15007 add = int_gptab.gt_entry.gt_bytes - last;
15008
15009 exact = FALSE;
15010 for (look = 1; look < c; look++)
15011 {
15012 if (tab[look].gt_entry.gt_g_value >= val)
15013 tab[look].gt_entry.gt_bytes += add;
15014
15015 if (tab[look].gt_entry.gt_g_value == val)
15016 exact = TRUE;
15017 }
15018
15019 if (! exact)
15020 {
15021 Elf32_gptab *new_tab;
15022 unsigned int max;
15023
15024 /* We need a new table entry. */
15025 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15026 new_tab = bfd_realloc (tab, amt);
15027 if (new_tab == NULL)
15028 {
15029 free (tab);
15030 return FALSE;
15031 }
15032 tab = new_tab;
15033 tab[c].gt_entry.gt_g_value = val;
15034 tab[c].gt_entry.gt_bytes = add;
15035
15036 /* Merge in the size for the next smallest -G
15037 value, since that will be implied by this new
15038 value. */
15039 max = 0;
15040 for (look = 1; look < c; look++)
15041 {
15042 if (tab[look].gt_entry.gt_g_value < val
15043 && (max == 0
15044 || (tab[look].gt_entry.gt_g_value
15045 > tab[max].gt_entry.gt_g_value)))
15046 max = look;
15047 }
15048 if (max != 0)
15049 tab[c].gt_entry.gt_bytes +=
15050 tab[max].gt_entry.gt_bytes;
15051
15052 ++c;
15053 }
15054
15055 last = int_gptab.gt_entry.gt_bytes;
15056 }
15057
15058 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15059 elf_link_input_bfd ignores this section. */
15060 input_section->flags &= ~SEC_HAS_CONTENTS;
15061 }
15062
15063 /* The table must be sorted by -G value. */
15064 if (c > 2)
15065 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15066
15067 /* Swap out the table. */
15068 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15069 ext_tab = bfd_alloc (abfd, amt);
15070 if (ext_tab == NULL)
15071 {
15072 free (tab);
15073 return FALSE;
15074 }
15075
15076 for (j = 0; j < c; j++)
15077 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15078 free (tab);
15079
15080 o->size = c * sizeof (Elf32_External_gptab);
15081 o->contents = (bfd_byte *) ext_tab;
15082
15083 /* Skip this section later on (I don't think this currently
15084 matters, but someday it might). */
15085 o->map_head.link_order = NULL;
15086 }
15087 }
15088
15089 /* Invoke the regular ELF backend linker to do all the work. */
15090 if (!bfd_elf_final_link (abfd, info))
15091 return FALSE;
15092
15093 /* Now write out the computed sections. */
15094
15095 if (abiflags_sec != NULL)
15096 {
15097 Elf_External_ABIFlags_v0 ext;
15098 Elf_Internal_ABIFlags_v0 *abiflags;
15099
15100 abiflags = &mips_elf_tdata (abfd)->abiflags;
15101
15102 /* Set up the abiflags if no valid input sections were found. */
15103 if (!mips_elf_tdata (abfd)->abiflags_valid)
15104 {
15105 infer_mips_abiflags (abfd, abiflags);
15106 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15107 }
15108 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15109 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15110 return FALSE;
15111 }
15112
15113 if (reginfo_sec != NULL)
15114 {
15115 Elf32_External_RegInfo ext;
15116
15117 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15118 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15119 return FALSE;
15120 }
15121
15122 if (mdebug_sec != NULL)
15123 {
15124 BFD_ASSERT (abfd->output_has_begun);
15125 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15126 swap, info,
15127 mdebug_sec->filepos))
15128 return FALSE;
15129
15130 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15131 }
15132
15133 if (gptab_data_sec != NULL)
15134 {
15135 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15136 gptab_data_sec->contents,
15137 0, gptab_data_sec->size))
15138 return FALSE;
15139 }
15140
15141 if (gptab_bss_sec != NULL)
15142 {
15143 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15144 gptab_bss_sec->contents,
15145 0, gptab_bss_sec->size))
15146 return FALSE;
15147 }
15148
15149 if (SGI_COMPAT (abfd))
15150 {
15151 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15152 if (rtproc_sec != NULL)
15153 {
15154 if (! bfd_set_section_contents (abfd, rtproc_sec,
15155 rtproc_sec->contents,
15156 0, rtproc_sec->size))
15157 return FALSE;
15158 }
15159 }
15160
15161 return TRUE;
15162 }
15163 \f
15164 /* Merge object file header flags from IBFD into OBFD. Raise an error
15165 if there are conflicting settings. */
15166
15167 static bfd_boolean
15168 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15169 {
15170 bfd *obfd = info->output_bfd;
15171 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15172 flagword old_flags;
15173 flagword new_flags;
15174 bfd_boolean ok;
15175
15176 new_flags = elf_elfheader (ibfd)->e_flags;
15177 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15178 old_flags = elf_elfheader (obfd)->e_flags;
15179
15180 /* Check flag compatibility. */
15181
15182 new_flags &= ~EF_MIPS_NOREORDER;
15183 old_flags &= ~EF_MIPS_NOREORDER;
15184
15185 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15186 doesn't seem to matter. */
15187 new_flags &= ~EF_MIPS_XGOT;
15188 old_flags &= ~EF_MIPS_XGOT;
15189
15190 /* MIPSpro generates ucode info in n64 objects. Again, we should
15191 just be able to ignore this. */
15192 new_flags &= ~EF_MIPS_UCODE;
15193 old_flags &= ~EF_MIPS_UCODE;
15194
15195 /* DSOs should only be linked with CPIC code. */
15196 if ((ibfd->flags & DYNAMIC) != 0)
15197 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15198
15199 if (new_flags == old_flags)
15200 return TRUE;
15201
15202 ok = TRUE;
15203
15204 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15205 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15206 {
15207 _bfd_error_handler
15208 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15209 ibfd);
15210 ok = TRUE;
15211 }
15212
15213 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15214 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15215 if (! (new_flags & EF_MIPS_PIC))
15216 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15217
15218 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15219 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15220
15221 /* Compare the ISAs. */
15222 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15223 {
15224 _bfd_error_handler
15225 (_("%pB: linking 32-bit code with 64-bit code"),
15226 ibfd);
15227 ok = FALSE;
15228 }
15229 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15230 {
15231 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15232 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15233 {
15234 /* Copy the architecture info from IBFD to OBFD. Also copy
15235 the 32-bit flag (if set) so that we continue to recognise
15236 OBFD as a 32-bit binary. */
15237 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15238 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15239 elf_elfheader (obfd)->e_flags
15240 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15241
15242 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15243 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15244
15245 /* Copy across the ABI flags if OBFD doesn't use them
15246 and if that was what caused us to treat IBFD as 32-bit. */
15247 if ((old_flags & EF_MIPS_ABI) == 0
15248 && mips_32bit_flags_p (new_flags)
15249 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15250 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15251 }
15252 else
15253 {
15254 /* The ISAs aren't compatible. */
15255 _bfd_error_handler
15256 /* xgettext:c-format */
15257 (_("%pB: linking %s module with previous %s modules"),
15258 ibfd,
15259 bfd_printable_name (ibfd),
15260 bfd_printable_name (obfd));
15261 ok = FALSE;
15262 }
15263 }
15264
15265 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15266 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15267
15268 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15269 does set EI_CLASS differently from any 32-bit ABI. */
15270 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15271 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15272 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15273 {
15274 /* Only error if both are set (to different values). */
15275 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15276 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15277 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15278 {
15279 _bfd_error_handler
15280 /* xgettext:c-format */
15281 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15282 ibfd,
15283 elf_mips_abi_name (ibfd),
15284 elf_mips_abi_name (obfd));
15285 ok = FALSE;
15286 }
15287 new_flags &= ~EF_MIPS_ABI;
15288 old_flags &= ~EF_MIPS_ABI;
15289 }
15290
15291 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15292 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15293 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15294 {
15295 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15296 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15297 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15298 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15299 int micro_mis = old_m16 && new_micro;
15300 int m16_mis = old_micro && new_m16;
15301
15302 if (m16_mis || micro_mis)
15303 {
15304 _bfd_error_handler
15305 /* xgettext:c-format */
15306 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15307 ibfd,
15308 m16_mis ? "MIPS16" : "microMIPS",
15309 m16_mis ? "microMIPS" : "MIPS16");
15310 ok = FALSE;
15311 }
15312
15313 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15314
15315 new_flags &= ~ EF_MIPS_ARCH_ASE;
15316 old_flags &= ~ EF_MIPS_ARCH_ASE;
15317 }
15318
15319 /* Compare NaN encodings. */
15320 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15321 {
15322 /* xgettext:c-format */
15323 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15324 ibfd,
15325 (new_flags & EF_MIPS_NAN2008
15326 ? "-mnan=2008" : "-mnan=legacy"),
15327 (old_flags & EF_MIPS_NAN2008
15328 ? "-mnan=2008" : "-mnan=legacy"));
15329 ok = FALSE;
15330 new_flags &= ~EF_MIPS_NAN2008;
15331 old_flags &= ~EF_MIPS_NAN2008;
15332 }
15333
15334 /* Compare FP64 state. */
15335 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15336 {
15337 /* xgettext:c-format */
15338 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15339 ibfd,
15340 (new_flags & EF_MIPS_FP64
15341 ? "-mfp64" : "-mfp32"),
15342 (old_flags & EF_MIPS_FP64
15343 ? "-mfp64" : "-mfp32"));
15344 ok = FALSE;
15345 new_flags &= ~EF_MIPS_FP64;
15346 old_flags &= ~EF_MIPS_FP64;
15347 }
15348
15349 /* Warn about any other mismatches */
15350 if (new_flags != old_flags)
15351 {
15352 /* xgettext:c-format */
15353 _bfd_error_handler
15354 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15355 "(%#x)"),
15356 ibfd, new_flags, old_flags);
15357 ok = FALSE;
15358 }
15359
15360 return ok;
15361 }
15362
15363 /* Merge object attributes from IBFD into OBFD. Raise an error if
15364 there are conflicting attributes. */
15365 static bfd_boolean
15366 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15367 {
15368 bfd *obfd = info->output_bfd;
15369 obj_attribute *in_attr;
15370 obj_attribute *out_attr;
15371 bfd *abi_fp_bfd;
15372 bfd *abi_msa_bfd;
15373
15374 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15375 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15376 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15377 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15378
15379 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15380 if (!abi_msa_bfd
15381 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15382 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15383
15384 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15385 {
15386 /* This is the first object. Copy the attributes. */
15387 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15388
15389 /* Use the Tag_null value to indicate the attributes have been
15390 initialized. */
15391 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15392
15393 return TRUE;
15394 }
15395
15396 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15397 non-conflicting ones. */
15398 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15399 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15400 {
15401 int out_fp, in_fp;
15402
15403 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15404 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15405 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15406 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15407 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15408 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15409 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15410 || in_fp == Val_GNU_MIPS_ABI_FP_64
15411 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15412 {
15413 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15414 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15415 }
15416 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15417 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15418 || out_fp == Val_GNU_MIPS_ABI_FP_64
15419 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15420 /* Keep the current setting. */;
15421 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15422 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15423 {
15424 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15425 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15426 }
15427 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15428 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15429 /* Keep the current setting. */;
15430 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15431 {
15432 const char *out_string, *in_string;
15433
15434 out_string = _bfd_mips_fp_abi_string (out_fp);
15435 in_string = _bfd_mips_fp_abi_string (in_fp);
15436 /* First warn about cases involving unrecognised ABIs. */
15437 if (!out_string && !in_string)
15438 /* xgettext:c-format */
15439 _bfd_error_handler
15440 (_("warning: %pB uses unknown floating point ABI %d "
15441 "(set by %pB), %pB uses unknown floating point ABI %d"),
15442 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15443 else if (!out_string)
15444 _bfd_error_handler
15445 /* xgettext:c-format */
15446 (_("warning: %pB uses unknown floating point ABI %d "
15447 "(set by %pB), %pB uses %s"),
15448 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15449 else if (!in_string)
15450 _bfd_error_handler
15451 /* xgettext:c-format */
15452 (_("warning: %pB uses %s (set by %pB), "
15453 "%pB uses unknown floating point ABI %d"),
15454 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15455 else
15456 {
15457 /* If one of the bfds is soft-float, the other must be
15458 hard-float. The exact choice of hard-float ABI isn't
15459 really relevant to the error message. */
15460 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15461 out_string = "-mhard-float";
15462 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15463 in_string = "-mhard-float";
15464 _bfd_error_handler
15465 /* xgettext:c-format */
15466 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15467 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15468 }
15469 }
15470 }
15471
15472 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15473 non-conflicting ones. */
15474 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15475 {
15476 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15477 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15478 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15479 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15480 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15481 {
15482 case Val_GNU_MIPS_ABI_MSA_128:
15483 _bfd_error_handler
15484 /* xgettext:c-format */
15485 (_("warning: %pB uses %s (set by %pB), "
15486 "%pB uses unknown MSA ABI %d"),
15487 obfd, "-mmsa", abi_msa_bfd,
15488 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15489 break;
15490
15491 default:
15492 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15493 {
15494 case Val_GNU_MIPS_ABI_MSA_128:
15495 _bfd_error_handler
15496 /* xgettext:c-format */
15497 (_("warning: %pB uses unknown MSA ABI %d "
15498 "(set by %pB), %pB uses %s"),
15499 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15500 abi_msa_bfd, ibfd, "-mmsa");
15501 break;
15502
15503 default:
15504 _bfd_error_handler
15505 /* xgettext:c-format */
15506 (_("warning: %pB uses unknown MSA ABI %d "
15507 "(set by %pB), %pB uses unknown MSA ABI %d"),
15508 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15509 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15510 break;
15511 }
15512 }
15513 }
15514
15515 /* Merge Tag_compatibility attributes and any common GNU ones. */
15516 return _bfd_elf_merge_object_attributes (ibfd, info);
15517 }
15518
15519 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15520 there are conflicting settings. */
15521
15522 static bfd_boolean
15523 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15524 {
15525 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15526 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15527 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15528
15529 /* Update the output abiflags fp_abi using the computed fp_abi. */
15530 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15531
15532 #define max(a, b) ((a) > (b) ? (a) : (b))
15533 /* Merge abiflags. */
15534 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15535 in_tdata->abiflags.isa_level);
15536 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15537 in_tdata->abiflags.isa_rev);
15538 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15539 in_tdata->abiflags.gpr_size);
15540 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15541 in_tdata->abiflags.cpr1_size);
15542 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15543 in_tdata->abiflags.cpr2_size);
15544 #undef max
15545 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15546 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15547
15548 return TRUE;
15549 }
15550
15551 /* Merge backend specific data from an object file to the output
15552 object file when linking. */
15553
15554 bfd_boolean
15555 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15556 {
15557 bfd *obfd = info->output_bfd;
15558 struct mips_elf_obj_tdata *out_tdata;
15559 struct mips_elf_obj_tdata *in_tdata;
15560 bfd_boolean null_input_bfd = TRUE;
15561 asection *sec;
15562 bfd_boolean ok;
15563
15564 /* Check if we have the same endianness. */
15565 if (! _bfd_generic_verify_endian_match (ibfd, info))
15566 {
15567 _bfd_error_handler
15568 (_("%pB: endianness incompatible with that of the selected emulation"),
15569 ibfd);
15570 return FALSE;
15571 }
15572
15573 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15574 return TRUE;
15575
15576 in_tdata = mips_elf_tdata (ibfd);
15577 out_tdata = mips_elf_tdata (obfd);
15578
15579 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15580 {
15581 _bfd_error_handler
15582 (_("%pB: ABI is incompatible with that of the selected emulation"),
15583 ibfd);
15584 return FALSE;
15585 }
15586
15587 /* Check to see if the input BFD actually contains any sections. If not,
15588 then it has no attributes, and its flags may not have been initialized
15589 either, but it cannot actually cause any incompatibility. */
15590 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15591 {
15592 /* Ignore synthetic sections and empty .text, .data and .bss sections
15593 which are automatically generated by gas. Also ignore fake
15594 (s)common sections, since merely defining a common symbol does
15595 not affect compatibility. */
15596 if ((sec->flags & SEC_IS_COMMON) == 0
15597 && strcmp (sec->name, ".reginfo")
15598 && strcmp (sec->name, ".mdebug")
15599 && (sec->size != 0
15600 || (strcmp (sec->name, ".text")
15601 && strcmp (sec->name, ".data")
15602 && strcmp (sec->name, ".bss"))))
15603 {
15604 null_input_bfd = FALSE;
15605 break;
15606 }
15607 }
15608 if (null_input_bfd)
15609 return TRUE;
15610
15611 /* Populate abiflags using existing information. */
15612 if (in_tdata->abiflags_valid)
15613 {
15614 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15615 Elf_Internal_ABIFlags_v0 in_abiflags;
15616 Elf_Internal_ABIFlags_v0 abiflags;
15617
15618 /* Set up the FP ABI attribute from the abiflags if it is not already
15619 set. */
15620 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15621 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15622
15623 infer_mips_abiflags (ibfd, &abiflags);
15624 in_abiflags = in_tdata->abiflags;
15625
15626 /* It is not possible to infer the correct ISA revision
15627 for R3 or R5 so drop down to R2 for the checks. */
15628 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15629 in_abiflags.isa_rev = 2;
15630
15631 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15632 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15633 _bfd_error_handler
15634 (_("%pB: warning: inconsistent ISA between e_flags and "
15635 ".MIPS.abiflags"), ibfd);
15636 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15637 && in_abiflags.fp_abi != abiflags.fp_abi)
15638 _bfd_error_handler
15639 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15640 ".MIPS.abiflags"), ibfd);
15641 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15642 _bfd_error_handler
15643 (_("%pB: warning: inconsistent ASEs between e_flags and "
15644 ".MIPS.abiflags"), ibfd);
15645 /* The isa_ext is allowed to be an extension of what can be inferred
15646 from e_flags. */
15647 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15648 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15649 _bfd_error_handler
15650 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15651 ".MIPS.abiflags"), ibfd);
15652 if (in_abiflags.flags2 != 0)
15653 _bfd_error_handler
15654 (_("%pB: warning: unexpected flag in the flags2 field of "
15655 ".MIPS.abiflags (0x%lx)"), ibfd,
15656 in_abiflags.flags2);
15657 }
15658 else
15659 {
15660 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15661 in_tdata->abiflags_valid = TRUE;
15662 }
15663
15664 if (!out_tdata->abiflags_valid)
15665 {
15666 /* Copy input abiflags if output abiflags are not already valid. */
15667 out_tdata->abiflags = in_tdata->abiflags;
15668 out_tdata->abiflags_valid = TRUE;
15669 }
15670
15671 if (! elf_flags_init (obfd))
15672 {
15673 elf_flags_init (obfd) = TRUE;
15674 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15675 elf_elfheader (obfd)->e_ident[EI_CLASS]
15676 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15677
15678 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15679 && (bfd_get_arch_info (obfd)->the_default
15680 || mips_mach_extends_p (bfd_get_mach (obfd),
15681 bfd_get_mach (ibfd))))
15682 {
15683 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15684 bfd_get_mach (ibfd)))
15685 return FALSE;
15686
15687 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15688 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15689 }
15690
15691 ok = TRUE;
15692 }
15693 else
15694 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15695
15696 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15697
15698 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15699
15700 if (!ok)
15701 {
15702 bfd_set_error (bfd_error_bad_value);
15703 return FALSE;
15704 }
15705
15706 return TRUE;
15707 }
15708
15709 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15710
15711 bfd_boolean
15712 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15713 {
15714 BFD_ASSERT (!elf_flags_init (abfd)
15715 || elf_elfheader (abfd)->e_flags == flags);
15716
15717 elf_elfheader (abfd)->e_flags = flags;
15718 elf_flags_init (abfd) = TRUE;
15719 return TRUE;
15720 }
15721
15722 char *
15723 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15724 {
15725 switch (dtag)
15726 {
15727 default: return "";
15728 case DT_MIPS_RLD_VERSION:
15729 return "MIPS_RLD_VERSION";
15730 case DT_MIPS_TIME_STAMP:
15731 return "MIPS_TIME_STAMP";
15732 case DT_MIPS_ICHECKSUM:
15733 return "MIPS_ICHECKSUM";
15734 case DT_MIPS_IVERSION:
15735 return "MIPS_IVERSION";
15736 case DT_MIPS_FLAGS:
15737 return "MIPS_FLAGS";
15738 case DT_MIPS_BASE_ADDRESS:
15739 return "MIPS_BASE_ADDRESS";
15740 case DT_MIPS_MSYM:
15741 return "MIPS_MSYM";
15742 case DT_MIPS_CONFLICT:
15743 return "MIPS_CONFLICT";
15744 case DT_MIPS_LIBLIST:
15745 return "MIPS_LIBLIST";
15746 case DT_MIPS_LOCAL_GOTNO:
15747 return "MIPS_LOCAL_GOTNO";
15748 case DT_MIPS_CONFLICTNO:
15749 return "MIPS_CONFLICTNO";
15750 case DT_MIPS_LIBLISTNO:
15751 return "MIPS_LIBLISTNO";
15752 case DT_MIPS_SYMTABNO:
15753 return "MIPS_SYMTABNO";
15754 case DT_MIPS_UNREFEXTNO:
15755 return "MIPS_UNREFEXTNO";
15756 case DT_MIPS_GOTSYM:
15757 return "MIPS_GOTSYM";
15758 case DT_MIPS_HIPAGENO:
15759 return "MIPS_HIPAGENO";
15760 case DT_MIPS_RLD_MAP:
15761 return "MIPS_RLD_MAP";
15762 case DT_MIPS_RLD_MAP_REL:
15763 return "MIPS_RLD_MAP_REL";
15764 case DT_MIPS_DELTA_CLASS:
15765 return "MIPS_DELTA_CLASS";
15766 case DT_MIPS_DELTA_CLASS_NO:
15767 return "MIPS_DELTA_CLASS_NO";
15768 case DT_MIPS_DELTA_INSTANCE:
15769 return "MIPS_DELTA_INSTANCE";
15770 case DT_MIPS_DELTA_INSTANCE_NO:
15771 return "MIPS_DELTA_INSTANCE_NO";
15772 case DT_MIPS_DELTA_RELOC:
15773 return "MIPS_DELTA_RELOC";
15774 case DT_MIPS_DELTA_RELOC_NO:
15775 return "MIPS_DELTA_RELOC_NO";
15776 case DT_MIPS_DELTA_SYM:
15777 return "MIPS_DELTA_SYM";
15778 case DT_MIPS_DELTA_SYM_NO:
15779 return "MIPS_DELTA_SYM_NO";
15780 case DT_MIPS_DELTA_CLASSSYM:
15781 return "MIPS_DELTA_CLASSSYM";
15782 case DT_MIPS_DELTA_CLASSSYM_NO:
15783 return "MIPS_DELTA_CLASSSYM_NO";
15784 case DT_MIPS_CXX_FLAGS:
15785 return "MIPS_CXX_FLAGS";
15786 case DT_MIPS_PIXIE_INIT:
15787 return "MIPS_PIXIE_INIT";
15788 case DT_MIPS_SYMBOL_LIB:
15789 return "MIPS_SYMBOL_LIB";
15790 case DT_MIPS_LOCALPAGE_GOTIDX:
15791 return "MIPS_LOCALPAGE_GOTIDX";
15792 case DT_MIPS_LOCAL_GOTIDX:
15793 return "MIPS_LOCAL_GOTIDX";
15794 case DT_MIPS_HIDDEN_GOTIDX:
15795 return "MIPS_HIDDEN_GOTIDX";
15796 case DT_MIPS_PROTECTED_GOTIDX:
15797 return "MIPS_PROTECTED_GOT_IDX";
15798 case DT_MIPS_OPTIONS:
15799 return "MIPS_OPTIONS";
15800 case DT_MIPS_INTERFACE:
15801 return "MIPS_INTERFACE";
15802 case DT_MIPS_DYNSTR_ALIGN:
15803 return "DT_MIPS_DYNSTR_ALIGN";
15804 case DT_MIPS_INTERFACE_SIZE:
15805 return "DT_MIPS_INTERFACE_SIZE";
15806 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15807 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15808 case DT_MIPS_PERF_SUFFIX:
15809 return "DT_MIPS_PERF_SUFFIX";
15810 case DT_MIPS_COMPACT_SIZE:
15811 return "DT_MIPS_COMPACT_SIZE";
15812 case DT_MIPS_GP_VALUE:
15813 return "DT_MIPS_GP_VALUE";
15814 case DT_MIPS_AUX_DYNAMIC:
15815 return "DT_MIPS_AUX_DYNAMIC";
15816 case DT_MIPS_PLTGOT:
15817 return "DT_MIPS_PLTGOT";
15818 case DT_MIPS_RWPLT:
15819 return "DT_MIPS_RWPLT";
15820 }
15821 }
15822
15823 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15824 not known. */
15825
15826 const char *
15827 _bfd_mips_fp_abi_string (int fp)
15828 {
15829 switch (fp)
15830 {
15831 /* These strings aren't translated because they're simply
15832 option lists. */
15833 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15834 return "-mdouble-float";
15835
15836 case Val_GNU_MIPS_ABI_FP_SINGLE:
15837 return "-msingle-float";
15838
15839 case Val_GNU_MIPS_ABI_FP_SOFT:
15840 return "-msoft-float";
15841
15842 case Val_GNU_MIPS_ABI_FP_OLD_64:
15843 return _("-mips32r2 -mfp64 (12 callee-saved)");
15844
15845 case Val_GNU_MIPS_ABI_FP_XX:
15846 return "-mfpxx";
15847
15848 case Val_GNU_MIPS_ABI_FP_64:
15849 return "-mgp32 -mfp64";
15850
15851 case Val_GNU_MIPS_ABI_FP_64A:
15852 return "-mgp32 -mfp64 -mno-odd-spreg";
15853
15854 default:
15855 return 0;
15856 }
15857 }
15858
15859 static void
15860 print_mips_ases (FILE *file, unsigned int mask)
15861 {
15862 if (mask & AFL_ASE_DSP)
15863 fputs ("\n\tDSP ASE", file);
15864 if (mask & AFL_ASE_DSPR2)
15865 fputs ("\n\tDSP R2 ASE", file);
15866 if (mask & AFL_ASE_DSPR3)
15867 fputs ("\n\tDSP R3 ASE", file);
15868 if (mask & AFL_ASE_EVA)
15869 fputs ("\n\tEnhanced VA Scheme", file);
15870 if (mask & AFL_ASE_MCU)
15871 fputs ("\n\tMCU (MicroController) ASE", file);
15872 if (mask & AFL_ASE_MDMX)
15873 fputs ("\n\tMDMX ASE", file);
15874 if (mask & AFL_ASE_MIPS3D)
15875 fputs ("\n\tMIPS-3D ASE", file);
15876 if (mask & AFL_ASE_MT)
15877 fputs ("\n\tMT ASE", file);
15878 if (mask & AFL_ASE_SMARTMIPS)
15879 fputs ("\n\tSmartMIPS ASE", file);
15880 if (mask & AFL_ASE_VIRT)
15881 fputs ("\n\tVZ ASE", file);
15882 if (mask & AFL_ASE_MSA)
15883 fputs ("\n\tMSA ASE", file);
15884 if (mask & AFL_ASE_MIPS16)
15885 fputs ("\n\tMIPS16 ASE", file);
15886 if (mask & AFL_ASE_MICROMIPS)
15887 fputs ("\n\tMICROMIPS ASE", file);
15888 if (mask & AFL_ASE_XPA)
15889 fputs ("\n\tXPA ASE", file);
15890 if (mask & AFL_ASE_MIPS16E2)
15891 fputs ("\n\tMIPS16e2 ASE", file);
15892 if (mask & AFL_ASE_CRC)
15893 fputs ("\n\tCRC ASE", file);
15894 if (mask & AFL_ASE_GINV)
15895 fputs ("\n\tGINV ASE", file);
15896 if (mask & AFL_ASE_LOONGSON_MMI)
15897 fputs ("\n\tLoongson MMI ASE", file);
15898 if (mask & AFL_ASE_LOONGSON_CAM)
15899 fputs ("\n\tLoongson CAM ASE", file);
15900 if (mask & AFL_ASE_LOONGSON_EXT)
15901 fputs ("\n\tLoongson EXT ASE", file);
15902 if (mask & AFL_ASE_LOONGSON_EXT2)
15903 fputs ("\n\tLoongson EXT2 ASE", file);
15904 if (mask == 0)
15905 fprintf (file, "\n\t%s", _("None"));
15906 else if ((mask & ~AFL_ASE_MASK) != 0)
15907 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15908 }
15909
15910 static void
15911 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15912 {
15913 switch (isa_ext)
15914 {
15915 case 0:
15916 fputs (_("None"), file);
15917 break;
15918 case AFL_EXT_XLR:
15919 fputs ("RMI XLR", file);
15920 break;
15921 case AFL_EXT_OCTEON3:
15922 fputs ("Cavium Networks Octeon3", file);
15923 break;
15924 case AFL_EXT_OCTEON2:
15925 fputs ("Cavium Networks Octeon2", file);
15926 break;
15927 case AFL_EXT_OCTEONP:
15928 fputs ("Cavium Networks OcteonP", file);
15929 break;
15930 case AFL_EXT_OCTEON:
15931 fputs ("Cavium Networks Octeon", file);
15932 break;
15933 case AFL_EXT_5900:
15934 fputs ("Toshiba R5900", file);
15935 break;
15936 case AFL_EXT_4650:
15937 fputs ("MIPS R4650", file);
15938 break;
15939 case AFL_EXT_4010:
15940 fputs ("LSI R4010", file);
15941 break;
15942 case AFL_EXT_4100:
15943 fputs ("NEC VR4100", file);
15944 break;
15945 case AFL_EXT_3900:
15946 fputs ("Toshiba R3900", file);
15947 break;
15948 case AFL_EXT_10000:
15949 fputs ("MIPS R10000", file);
15950 break;
15951 case AFL_EXT_SB1:
15952 fputs ("Broadcom SB-1", file);
15953 break;
15954 case AFL_EXT_4111:
15955 fputs ("NEC VR4111/VR4181", file);
15956 break;
15957 case AFL_EXT_4120:
15958 fputs ("NEC VR4120", file);
15959 break;
15960 case AFL_EXT_5400:
15961 fputs ("NEC VR5400", file);
15962 break;
15963 case AFL_EXT_5500:
15964 fputs ("NEC VR5500", file);
15965 break;
15966 case AFL_EXT_LOONGSON_2E:
15967 fputs ("ST Microelectronics Loongson 2E", file);
15968 break;
15969 case AFL_EXT_LOONGSON_2F:
15970 fputs ("ST Microelectronics Loongson 2F", file);
15971 break;
15972 case AFL_EXT_INTERAPTIV_MR2:
15973 fputs ("Imagination interAptiv MR2", file);
15974 break;
15975 default:
15976 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15977 break;
15978 }
15979 }
15980
15981 static void
15982 print_mips_fp_abi_value (FILE *file, int val)
15983 {
15984 switch (val)
15985 {
15986 case Val_GNU_MIPS_ABI_FP_ANY:
15987 fprintf (file, _("Hard or soft float\n"));
15988 break;
15989 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15990 fprintf (file, _("Hard float (double precision)\n"));
15991 break;
15992 case Val_GNU_MIPS_ABI_FP_SINGLE:
15993 fprintf (file, _("Hard float (single precision)\n"));
15994 break;
15995 case Val_GNU_MIPS_ABI_FP_SOFT:
15996 fprintf (file, _("Soft float\n"));
15997 break;
15998 case Val_GNU_MIPS_ABI_FP_OLD_64:
15999 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16000 break;
16001 case Val_GNU_MIPS_ABI_FP_XX:
16002 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16003 break;
16004 case Val_GNU_MIPS_ABI_FP_64:
16005 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16006 break;
16007 case Val_GNU_MIPS_ABI_FP_64A:
16008 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16009 break;
16010 default:
16011 fprintf (file, "??? (%d)\n", val);
16012 break;
16013 }
16014 }
16015
16016 static int
16017 get_mips_reg_size (int reg_size)
16018 {
16019 return (reg_size == AFL_REG_NONE) ? 0
16020 : (reg_size == AFL_REG_32) ? 32
16021 : (reg_size == AFL_REG_64) ? 64
16022 : (reg_size == AFL_REG_128) ? 128
16023 : -1;
16024 }
16025
16026 bfd_boolean
16027 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16028 {
16029 FILE *file = ptr;
16030
16031 BFD_ASSERT (abfd != NULL && ptr != NULL);
16032
16033 /* Print normal ELF private data. */
16034 _bfd_elf_print_private_bfd_data (abfd, ptr);
16035
16036 /* xgettext:c-format */
16037 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16038
16039 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16040 fprintf (file, _(" [abi=O32]"));
16041 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16042 fprintf (file, _(" [abi=O64]"));
16043 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16044 fprintf (file, _(" [abi=EABI32]"));
16045 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16046 fprintf (file, _(" [abi=EABI64]"));
16047 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16048 fprintf (file, _(" [abi unknown]"));
16049 else if (ABI_N32_P (abfd))
16050 fprintf (file, _(" [abi=N32]"));
16051 else if (ABI_64_P (abfd))
16052 fprintf (file, _(" [abi=64]"));
16053 else
16054 fprintf (file, _(" [no abi set]"));
16055
16056 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16057 fprintf (file, " [mips1]");
16058 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16059 fprintf (file, " [mips2]");
16060 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16061 fprintf (file, " [mips3]");
16062 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16063 fprintf (file, " [mips4]");
16064 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16065 fprintf (file, " [mips5]");
16066 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16067 fprintf (file, " [mips32]");
16068 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16069 fprintf (file, " [mips64]");
16070 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16071 fprintf (file, " [mips32r2]");
16072 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16073 fprintf (file, " [mips64r2]");
16074 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16075 fprintf (file, " [mips32r6]");
16076 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16077 fprintf (file, " [mips64r6]");
16078 else
16079 fprintf (file, _(" [unknown ISA]"));
16080
16081 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16082 fprintf (file, " [mdmx]");
16083
16084 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16085 fprintf (file, " [mips16]");
16086
16087 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16088 fprintf (file, " [micromips]");
16089
16090 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16091 fprintf (file, " [nan2008]");
16092
16093 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16094 fprintf (file, " [old fp64]");
16095
16096 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16097 fprintf (file, " [32bitmode]");
16098 else
16099 fprintf (file, _(" [not 32bitmode]"));
16100
16101 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16102 fprintf (file, " [noreorder]");
16103
16104 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16105 fprintf (file, " [PIC]");
16106
16107 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16108 fprintf (file, " [CPIC]");
16109
16110 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16111 fprintf (file, " [XGOT]");
16112
16113 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16114 fprintf (file, " [UCODE]");
16115
16116 fputc ('\n', file);
16117
16118 if (mips_elf_tdata (abfd)->abiflags_valid)
16119 {
16120 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16121 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16122 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16123 if (abiflags->isa_rev > 1)
16124 fprintf (file, "r%d", abiflags->isa_rev);
16125 fprintf (file, "\nGPR size: %d",
16126 get_mips_reg_size (abiflags->gpr_size));
16127 fprintf (file, "\nCPR1 size: %d",
16128 get_mips_reg_size (abiflags->cpr1_size));
16129 fprintf (file, "\nCPR2 size: %d",
16130 get_mips_reg_size (abiflags->cpr2_size));
16131 fputs ("\nFP ABI: ", file);
16132 print_mips_fp_abi_value (file, abiflags->fp_abi);
16133 fputs ("ISA Extension: ", file);
16134 print_mips_isa_ext (file, abiflags->isa_ext);
16135 fputs ("\nASEs:", file);
16136 print_mips_ases (file, abiflags->ases);
16137 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16138 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16139 fputc ('\n', file);
16140 }
16141
16142 return TRUE;
16143 }
16144
16145 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16146 {
16147 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16148 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16149 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16150 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16151 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16152 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16153 { NULL, 0, 0, 0, 0 }
16154 };
16155
16156 /* Merge non visibility st_other attributes. Ensure that the
16157 STO_OPTIONAL flag is copied into h->other, even if this is not a
16158 definiton of the symbol. */
16159 void
16160 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16161 const Elf_Internal_Sym *isym,
16162 bfd_boolean definition,
16163 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16164 {
16165 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16166 {
16167 unsigned char other;
16168
16169 other = (definition ? isym->st_other : h->other);
16170 other &= ~ELF_ST_VISIBILITY (-1);
16171 h->other = other | ELF_ST_VISIBILITY (h->other);
16172 }
16173
16174 if (!definition
16175 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16176 h->other |= STO_OPTIONAL;
16177 }
16178
16179 /* Decide whether an undefined symbol is special and can be ignored.
16180 This is the case for OPTIONAL symbols on IRIX. */
16181 bfd_boolean
16182 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16183 {
16184 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16185 }
16186
16187 bfd_boolean
16188 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16189 {
16190 return (sym->st_shndx == SHN_COMMON
16191 || sym->st_shndx == SHN_MIPS_ACOMMON
16192 || sym->st_shndx == SHN_MIPS_SCOMMON);
16193 }
16194
16195 /* Return address for Ith PLT stub in section PLT, for relocation REL
16196 or (bfd_vma) -1 if it should not be included. */
16197
16198 bfd_vma
16199 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16200 const arelent *rel ATTRIBUTE_UNUSED)
16201 {
16202 return (plt->vma
16203 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16204 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16205 }
16206
16207 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16208 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16209 and .got.plt and also the slots may be of a different size each we walk
16210 the PLT manually fetching instructions and matching them against known
16211 patterns. To make things easier standard MIPS slots, if any, always come
16212 first. As we don't create proper ELF symbols we use the UDATA.I member
16213 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16214 with the ST_OTHER member of the ELF symbol. */
16215
16216 long
16217 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16218 long symcount ATTRIBUTE_UNUSED,
16219 asymbol **syms ATTRIBUTE_UNUSED,
16220 long dynsymcount, asymbol **dynsyms,
16221 asymbol **ret)
16222 {
16223 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16224 static const char microsuffix[] = "@micromipsplt";
16225 static const char m16suffix[] = "@mips16plt";
16226 static const char mipssuffix[] = "@plt";
16227
16228 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16229 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16230 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16231 Elf_Internal_Shdr *hdr;
16232 bfd_byte *plt_data;
16233 bfd_vma plt_offset;
16234 unsigned int other;
16235 bfd_vma entry_size;
16236 bfd_vma plt0_size;
16237 asection *relplt;
16238 bfd_vma opcode;
16239 asection *plt;
16240 asymbol *send;
16241 size_t size;
16242 char *names;
16243 long counti;
16244 arelent *p;
16245 asymbol *s;
16246 char *nend;
16247 long count;
16248 long pi;
16249 long i;
16250 long n;
16251
16252 *ret = NULL;
16253
16254 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16255 return 0;
16256
16257 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16258 if (relplt == NULL)
16259 return 0;
16260
16261 hdr = &elf_section_data (relplt)->this_hdr;
16262 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16263 return 0;
16264
16265 plt = bfd_get_section_by_name (abfd, ".plt");
16266 if (plt == NULL)
16267 return 0;
16268
16269 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16270 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16271 return -1;
16272 p = relplt->relocation;
16273
16274 /* Calculating the exact amount of space required for symbols would
16275 require two passes over the PLT, so just pessimise assuming two
16276 PLT slots per relocation. */
16277 count = relplt->size / hdr->sh_entsize;
16278 counti = count * bed->s->int_rels_per_ext_rel;
16279 size = 2 * count * sizeof (asymbol);
16280 size += count * (sizeof (mipssuffix) +
16281 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16282 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16283 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16284
16285 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16286 size += sizeof (asymbol) + sizeof (pltname);
16287
16288 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16289 return -1;
16290
16291 if (plt->size < 16)
16292 return -1;
16293
16294 s = *ret = bfd_malloc (size);
16295 if (s == NULL)
16296 return -1;
16297 send = s + 2 * count + 1;
16298
16299 names = (char *) send;
16300 nend = (char *) s + size;
16301 n = 0;
16302
16303 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16304 if (opcode == 0x3302fffe)
16305 {
16306 if (!micromips_p)
16307 return -1;
16308 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16309 other = STO_MICROMIPS;
16310 }
16311 else if (opcode == 0x0398c1d0)
16312 {
16313 if (!micromips_p)
16314 return -1;
16315 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16316 other = STO_MICROMIPS;
16317 }
16318 else
16319 {
16320 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16321 other = 0;
16322 }
16323
16324 s->the_bfd = abfd;
16325 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16326 s->section = plt;
16327 s->value = 0;
16328 s->name = names;
16329 s->udata.i = other;
16330 memcpy (names, pltname, sizeof (pltname));
16331 names += sizeof (pltname);
16332 ++s, ++n;
16333
16334 pi = 0;
16335 for (plt_offset = plt0_size;
16336 plt_offset + 8 <= plt->size && s < send;
16337 plt_offset += entry_size)
16338 {
16339 bfd_vma gotplt_addr;
16340 const char *suffix;
16341 bfd_vma gotplt_hi;
16342 bfd_vma gotplt_lo;
16343 size_t suffixlen;
16344
16345 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16346
16347 /* Check if the second word matches the expected MIPS16 instruction. */
16348 if (opcode == 0x651aeb00)
16349 {
16350 if (micromips_p)
16351 return -1;
16352 /* Truncated table??? */
16353 if (plt_offset + 16 > plt->size)
16354 break;
16355 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16356 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16357 suffixlen = sizeof (m16suffix);
16358 suffix = m16suffix;
16359 other = STO_MIPS16;
16360 }
16361 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16362 else if (opcode == 0xff220000)
16363 {
16364 if (!micromips_p)
16365 return -1;
16366 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16367 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16368 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16369 gotplt_lo <<= 2;
16370 gotplt_addr = gotplt_hi + gotplt_lo;
16371 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16372 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16373 suffixlen = sizeof (microsuffix);
16374 suffix = microsuffix;
16375 other = STO_MICROMIPS;
16376 }
16377 /* Likewise the expected microMIPS instruction (insn32 mode). */
16378 else if ((opcode & 0xffff0000) == 0xff2f0000)
16379 {
16380 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16381 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16382 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16383 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16384 gotplt_addr = gotplt_hi + gotplt_lo;
16385 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16386 suffixlen = sizeof (microsuffix);
16387 suffix = microsuffix;
16388 other = STO_MICROMIPS;
16389 }
16390 /* Otherwise assume standard MIPS code. */
16391 else
16392 {
16393 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16394 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16395 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16396 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16397 gotplt_addr = gotplt_hi + gotplt_lo;
16398 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16399 suffixlen = sizeof (mipssuffix);
16400 suffix = mipssuffix;
16401 other = 0;
16402 }
16403 /* Truncated table??? */
16404 if (plt_offset + entry_size > plt->size)
16405 break;
16406
16407 for (i = 0;
16408 i < count && p[pi].address != gotplt_addr;
16409 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16410
16411 if (i < count)
16412 {
16413 size_t namelen;
16414 size_t len;
16415
16416 *s = **p[pi].sym_ptr_ptr;
16417 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16418 we are defining a symbol, ensure one of them is set. */
16419 if ((s->flags & BSF_LOCAL) == 0)
16420 s->flags |= BSF_GLOBAL;
16421 s->flags |= BSF_SYNTHETIC;
16422 s->section = plt;
16423 s->value = plt_offset;
16424 s->name = names;
16425 s->udata.i = other;
16426
16427 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16428 namelen = len + suffixlen;
16429 if (names + namelen > nend)
16430 break;
16431
16432 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16433 names += len;
16434 memcpy (names, suffix, suffixlen);
16435 names += suffixlen;
16436
16437 ++s, ++n;
16438 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16439 }
16440 }
16441
16442 free (plt_data);
16443
16444 return n;
16445 }
16446
16447 /* Return the ABI flags associated with ABFD if available. */
16448
16449 Elf_Internal_ABIFlags_v0 *
16450 bfd_mips_elf_get_abiflags (bfd *abfd)
16451 {
16452 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16453
16454 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16455 }
16456
16457 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16458 field. Taken from `libc-abis.h' generated at GNU libc build time.
16459 Using a MIPS_ prefix as other libc targets use different values. */
16460 enum
16461 {
16462 MIPS_LIBC_ABI_DEFAULT = 0,
16463 MIPS_LIBC_ABI_MIPS_PLT,
16464 MIPS_LIBC_ABI_UNIQUE,
16465 MIPS_LIBC_ABI_MIPS_O32_FP64,
16466 MIPS_LIBC_ABI_ABSOLUTE,
16467 MIPS_LIBC_ABI_MAX
16468 };
16469
16470 void
16471 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16472 {
16473 struct mips_elf_link_hash_table *htab = NULL;
16474 Elf_Internal_Ehdr *i_ehdrp;
16475
16476 i_ehdrp = elf_elfheader (abfd);
16477 if (link_info)
16478 {
16479 htab = mips_elf_hash_table (link_info);
16480 BFD_ASSERT (htab != NULL);
16481 }
16482
16483 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16484 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16485
16486 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16487 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16488 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16489
16490 /* Mark that we need support for absolute symbols in the dynamic loader. */
16491 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16492 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16493
16494 _bfd_elf_post_process_headers (abfd, link_info);
16495 }
16496
16497 int
16498 _bfd_mips_elf_compact_eh_encoding
16499 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16500 {
16501 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16502 }
16503
16504 /* Return the opcode for can't unwind. */
16505
16506 int
16507 _bfd_mips_elf_cant_unwind_opcode
16508 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16509 {
16510 return COMPACT_EH_CANT_UNWIND_OPCODE;
16511 }
This page took 0.505827 seconds and 4 git commands to generate.