dynrelro section for read-only dynamic symbols copied into executable
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelplt2;
455 asection *sstubs;
456
457 /* The master GOT information. */
458 struct mips_got_info *got_info;
459
460 /* The global symbol in the GOT with the lowest index in the dynamic
461 symbol table. */
462 struct elf_link_hash_entry *global_gotsym;
463
464 /* The size of the PLT header in bytes. */
465 bfd_vma plt_header_size;
466
467 /* The size of a standard PLT entry in bytes. */
468 bfd_vma plt_mips_entry_size;
469
470 /* The size of a compressed PLT entry in bytes. */
471 bfd_vma plt_comp_entry_size;
472
473 /* The offset of the next standard PLT entry to create. */
474 bfd_vma plt_mips_offset;
475
476 /* The offset of the next compressed PLT entry to create. */
477 bfd_vma plt_comp_offset;
478
479 /* The index of the next .got.plt entry to create. */
480 bfd_vma plt_got_index;
481
482 /* The number of functions that need a lazy-binding stub. */
483 bfd_vma lazy_stub_count;
484
485 /* The size of a function stub entry in bytes. */
486 bfd_vma function_stub_size;
487
488 /* The number of reserved entries at the beginning of the GOT. */
489 unsigned int reserved_gotno;
490
491 /* The section used for mips_elf_la25_stub trampolines.
492 See the comment above that structure for details. */
493 asection *strampoline;
494
495 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
496 pairs. */
497 htab_t la25_stubs;
498
499 /* A function FN (NAME, IS, OS) that creates a new input section
500 called NAME and links it to output section OS. If IS is nonnull,
501 the new section should go immediately before it, otherwise it
502 should go at the (current) beginning of OS.
503
504 The function returns the new section on success, otherwise it
505 returns null. */
506 asection *(*add_stub_section) (const char *, asection *, asection *);
507
508 /* Small local sym cache. */
509 struct sym_cache sym_cache;
510
511 /* Is the PLT header compressed? */
512 unsigned int plt_header_is_comp : 1;
513 };
514
515 /* Get the MIPS ELF linker hash table from a link_info structure. */
516
517 #define mips_elf_hash_table(p) \
518 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
519 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
520
521 /* A structure used to communicate with htab_traverse callbacks. */
522 struct mips_htab_traverse_info
523 {
524 /* The usual link-wide information. */
525 struct bfd_link_info *info;
526 bfd *output_bfd;
527
528 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
529 bfd_boolean error;
530 };
531
532 /* MIPS ELF private object data. */
533
534 struct mips_elf_obj_tdata
535 {
536 /* Generic ELF private object data. */
537 struct elf_obj_tdata root;
538
539 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
540 bfd *abi_fp_bfd;
541
542 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
543 bfd *abi_msa_bfd;
544
545 /* The abiflags for this object. */
546 Elf_Internal_ABIFlags_v0 abiflags;
547 bfd_boolean abiflags_valid;
548
549 /* The GOT requirements of input bfds. */
550 struct mips_got_info *got;
551
552 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
553 included directly in this one, but there's no point to wasting
554 the memory just for the infrequently called find_nearest_line. */
555 struct mips_elf_find_line *find_line_info;
556
557 /* An array of stub sections indexed by symbol number. */
558 asection **local_stubs;
559 asection **local_call_stubs;
560
561 /* The Irix 5 support uses two virtual sections, which represent
562 text/data symbols defined in dynamic objects. */
563 asymbol *elf_data_symbol;
564 asymbol *elf_text_symbol;
565 asection *elf_data_section;
566 asection *elf_text_section;
567 };
568
569 /* Get MIPS ELF private object data from BFD's tdata. */
570
571 #define mips_elf_tdata(bfd) \
572 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
573
574 #define TLS_RELOC_P(r_type) \
575 (r_type == R_MIPS_TLS_DTPMOD32 \
576 || r_type == R_MIPS_TLS_DTPMOD64 \
577 || r_type == R_MIPS_TLS_DTPREL32 \
578 || r_type == R_MIPS_TLS_DTPREL64 \
579 || r_type == R_MIPS_TLS_GD \
580 || r_type == R_MIPS_TLS_LDM \
581 || r_type == R_MIPS_TLS_DTPREL_HI16 \
582 || r_type == R_MIPS_TLS_DTPREL_LO16 \
583 || r_type == R_MIPS_TLS_GOTTPREL \
584 || r_type == R_MIPS_TLS_TPREL32 \
585 || r_type == R_MIPS_TLS_TPREL64 \
586 || r_type == R_MIPS_TLS_TPREL_HI16 \
587 || r_type == R_MIPS_TLS_TPREL_LO16 \
588 || r_type == R_MIPS16_TLS_GD \
589 || r_type == R_MIPS16_TLS_LDM \
590 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
591 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
592 || r_type == R_MIPS16_TLS_GOTTPREL \
593 || r_type == R_MIPS16_TLS_TPREL_HI16 \
594 || r_type == R_MIPS16_TLS_TPREL_LO16 \
595 || r_type == R_MICROMIPS_TLS_GD \
596 || r_type == R_MICROMIPS_TLS_LDM \
597 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
598 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
599 || r_type == R_MICROMIPS_TLS_GOTTPREL \
600 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
601 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
602
603 /* Structure used to pass information to mips_elf_output_extsym. */
604
605 struct extsym_info
606 {
607 bfd *abfd;
608 struct bfd_link_info *info;
609 struct ecoff_debug_info *debug;
610 const struct ecoff_debug_swap *swap;
611 bfd_boolean failed;
612 };
613
614 /* The names of the runtime procedure table symbols used on IRIX5. */
615
616 static const char * const mips_elf_dynsym_rtproc_names[] =
617 {
618 "_procedure_table",
619 "_procedure_string_table",
620 "_procedure_table_size",
621 NULL
622 };
623
624 /* These structures are used to generate the .compact_rel section on
625 IRIX5. */
626
627 typedef struct
628 {
629 unsigned long id1; /* Always one? */
630 unsigned long num; /* Number of compact relocation entries. */
631 unsigned long id2; /* Always two? */
632 unsigned long offset; /* The file offset of the first relocation. */
633 unsigned long reserved0; /* Zero? */
634 unsigned long reserved1; /* Zero? */
635 } Elf32_compact_rel;
636
637 typedef struct
638 {
639 bfd_byte id1[4];
640 bfd_byte num[4];
641 bfd_byte id2[4];
642 bfd_byte offset[4];
643 bfd_byte reserved0[4];
644 bfd_byte reserved1[4];
645 } Elf32_External_compact_rel;
646
647 typedef struct
648 {
649 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
650 unsigned int rtype : 4; /* Relocation types. See below. */
651 unsigned int dist2to : 8;
652 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
653 unsigned long konst; /* KONST field. See below. */
654 unsigned long vaddr; /* VADDR to be relocated. */
655 } Elf32_crinfo;
656
657 typedef struct
658 {
659 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
660 unsigned int rtype : 4; /* Relocation types. See below. */
661 unsigned int dist2to : 8;
662 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
663 unsigned long konst; /* KONST field. See below. */
664 } Elf32_crinfo2;
665
666 typedef struct
667 {
668 bfd_byte info[4];
669 bfd_byte konst[4];
670 bfd_byte vaddr[4];
671 } Elf32_External_crinfo;
672
673 typedef struct
674 {
675 bfd_byte info[4];
676 bfd_byte konst[4];
677 } Elf32_External_crinfo2;
678
679 /* These are the constants used to swap the bitfields in a crinfo. */
680
681 #define CRINFO_CTYPE (0x1)
682 #define CRINFO_CTYPE_SH (31)
683 #define CRINFO_RTYPE (0xf)
684 #define CRINFO_RTYPE_SH (27)
685 #define CRINFO_DIST2TO (0xff)
686 #define CRINFO_DIST2TO_SH (19)
687 #define CRINFO_RELVADDR (0x7ffff)
688 #define CRINFO_RELVADDR_SH (0)
689
690 /* A compact relocation info has long (3 words) or short (2 words)
691 formats. A short format doesn't have VADDR field and relvaddr
692 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
693 #define CRF_MIPS_LONG 1
694 #define CRF_MIPS_SHORT 0
695
696 /* There are 4 types of compact relocation at least. The value KONST
697 has different meaning for each type:
698
699 (type) (konst)
700 CT_MIPS_REL32 Address in data
701 CT_MIPS_WORD Address in word (XXX)
702 CT_MIPS_GPHI_LO GP - vaddr
703 CT_MIPS_JMPAD Address to jump
704 */
705
706 #define CRT_MIPS_REL32 0xa
707 #define CRT_MIPS_WORD 0xb
708 #define CRT_MIPS_GPHI_LO 0xc
709 #define CRT_MIPS_JMPAD 0xd
710
711 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
712 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
713 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
714 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
715 \f
716 /* The structure of the runtime procedure descriptor created by the
717 loader for use by the static exception system. */
718
719 typedef struct runtime_pdr {
720 bfd_vma adr; /* Memory address of start of procedure. */
721 long regmask; /* Save register mask. */
722 long regoffset; /* Save register offset. */
723 long fregmask; /* Save floating point register mask. */
724 long fregoffset; /* Save floating point register offset. */
725 long frameoffset; /* Frame size. */
726 short framereg; /* Frame pointer register. */
727 short pcreg; /* Offset or reg of return pc. */
728 long irpss; /* Index into the runtime string table. */
729 long reserved;
730 struct exception_info *exception_info;/* Pointer to exception array. */
731 } RPDR, *pRPDR;
732 #define cbRPDR sizeof (RPDR)
733 #define rpdNil ((pRPDR) 0)
734 \f
735 static struct mips_got_entry *mips_elf_create_local_got_entry
736 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
737 struct mips_elf_link_hash_entry *, int);
738 static bfd_boolean mips_elf_sort_hash_table_f
739 (struct mips_elf_link_hash_entry *, void *);
740 static bfd_vma mips_elf_high
741 (bfd_vma);
742 static bfd_boolean mips_elf_create_dynamic_relocation
743 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
744 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
745 bfd_vma *, asection *);
746 static bfd_vma mips_elf_adjust_gp
747 (bfd *, struct mips_got_info *, bfd *);
748
749 /* This will be used when we sort the dynamic relocation records. */
750 static bfd *reldyn_sorting_bfd;
751
752 /* True if ABFD is for CPUs with load interlocking that include
753 non-MIPS1 CPUs and R3900. */
754 #define LOAD_INTERLOCKS_P(abfd) \
755 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
756 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
757
758 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
759 This should be safe for all architectures. We enable this predicate
760 for RM9000 for now. */
761 #define JAL_TO_BAL_P(abfd) \
762 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
763
764 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
765 This should be safe for all architectures. We enable this predicate for
766 all CPUs. */
767 #define JALR_TO_BAL_P(abfd) 1
768
769 /* True if ABFD is for CPUs that are faster if JR is converted to B.
770 This should be safe for all architectures. We enable this predicate for
771 all CPUs. */
772 #define JR_TO_B_P(abfd) 1
773
774 /* True if ABFD is a PIC object. */
775 #define PIC_OBJECT_P(abfd) \
776 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
777
778 /* Nonzero if ABFD is using the O32 ABI. */
779 #define ABI_O32_P(abfd) \
780 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
781
782 /* Nonzero if ABFD is using the N32 ABI. */
783 #define ABI_N32_P(abfd) \
784 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
785
786 /* Nonzero if ABFD is using the N64 ABI. */
787 #define ABI_64_P(abfd) \
788 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
789
790 /* Nonzero if ABFD is using NewABI conventions. */
791 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
792
793 /* Nonzero if ABFD has microMIPS code. */
794 #define MICROMIPS_P(abfd) \
795 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
796
797 /* Nonzero if ABFD is MIPS R6. */
798 #define MIPSR6_P(abfd) \
799 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
800 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
801
802 /* The IRIX compatibility level we are striving for. */
803 #define IRIX_COMPAT(abfd) \
804 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
805
806 /* Whether we are trying to be compatible with IRIX at all. */
807 #define SGI_COMPAT(abfd) \
808 (IRIX_COMPAT (abfd) != ict_none)
809
810 /* The name of the options section. */
811 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
812 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
813
814 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
815 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
816 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
817 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
818
819 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
820 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
821 (strcmp (NAME, ".MIPS.abiflags") == 0)
822
823 /* Whether the section is readonly. */
824 #define MIPS_ELF_READONLY_SECTION(sec) \
825 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
826 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
827
828 /* The name of the stub section. */
829 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
830
831 /* The size of an external REL relocation. */
832 #define MIPS_ELF_REL_SIZE(abfd) \
833 (get_elf_backend_data (abfd)->s->sizeof_rel)
834
835 /* The size of an external RELA relocation. */
836 #define MIPS_ELF_RELA_SIZE(abfd) \
837 (get_elf_backend_data (abfd)->s->sizeof_rela)
838
839 /* The size of an external dynamic table entry. */
840 #define MIPS_ELF_DYN_SIZE(abfd) \
841 (get_elf_backend_data (abfd)->s->sizeof_dyn)
842
843 /* The size of a GOT entry. */
844 #define MIPS_ELF_GOT_SIZE(abfd) \
845 (get_elf_backend_data (abfd)->s->arch_size / 8)
846
847 /* The size of the .rld_map section. */
848 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
849 (get_elf_backend_data (abfd)->s->arch_size / 8)
850
851 /* The size of a symbol-table entry. */
852 #define MIPS_ELF_SYM_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_sym)
854
855 /* The default alignment for sections, as a power of two. */
856 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
857 (get_elf_backend_data (abfd)->s->log_file_align)
858
859 /* Get word-sized data. */
860 #define MIPS_ELF_GET_WORD(abfd, ptr) \
861 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
862
863 /* Put out word-sized data. */
864 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
865 (ABI_64_P (abfd) \
866 ? bfd_put_64 (abfd, val, ptr) \
867 : bfd_put_32 (abfd, val, ptr))
868
869 /* The opcode for word-sized loads (LW or LD). */
870 #define MIPS_ELF_LOAD_WORD(abfd) \
871 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
872
873 /* Add a dynamic symbol table-entry. */
874 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
875 _bfd_elf_add_dynamic_entry (info, tag, val)
876
877 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
878 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
879
880 /* The name of the dynamic relocation section. */
881 #define MIPS_ELF_REL_DYN_NAME(INFO) \
882 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
883
884 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
885 from smaller values. Start with zero, widen, *then* decrement. */
886 #define MINUS_ONE (((bfd_vma)0) - 1)
887 #define MINUS_TWO (((bfd_vma)0) - 2)
888
889 /* The value to write into got[1] for SVR4 targets, to identify it is
890 a GNU object. The dynamic linker can then use got[1] to store the
891 module pointer. */
892 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
893 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
894
895 /* The offset of $gp from the beginning of the .got section. */
896 #define ELF_MIPS_GP_OFFSET(INFO) \
897 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
898
899 /* The maximum size of the GOT for it to be addressable using 16-bit
900 offsets from $gp. */
901 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
902
903 /* Instructions which appear in a stub. */
904 #define STUB_LW(abfd) \
905 ((ABI_64_P (abfd) \
906 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
907 : 0x8f998010)) /* lw t9,0x8010(gp) */
908 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
909 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
910 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
911 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
912 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
913 #define STUB_LI16S(abfd, VAL) \
914 ((ABI_64_P (abfd) \
915 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
916 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
917
918 /* Likewise for the microMIPS ASE. */
919 #define STUB_LW_MICROMIPS(abfd) \
920 (ABI_64_P (abfd) \
921 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
922 : 0xff3c8010) /* lw t9,0x8010(gp) */
923 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
924 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
925 #define STUB_LUI_MICROMIPS(VAL) \
926 (0x41b80000 + (VAL)) /* lui t8,VAL */
927 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
928 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
929 #define STUB_ORI_MICROMIPS(VAL) \
930 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
931 #define STUB_LI16U_MICROMIPS(VAL) \
932 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
933 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
934 (ABI_64_P (abfd) \
935 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
936 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
937
938 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
939 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
940 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
941 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
942 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
943 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
944
945 /* The name of the dynamic interpreter. This is put in the .interp
946 section. */
947
948 #define ELF_DYNAMIC_INTERPRETER(abfd) \
949 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
950 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
951 : "/usr/lib/libc.so.1")
952
953 #ifdef BFD64
954 #define MNAME(bfd,pre,pos) \
955 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
956 #define ELF_R_SYM(bfd, i) \
957 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
958 #define ELF_R_TYPE(bfd, i) \
959 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
960 #define ELF_R_INFO(bfd, s, t) \
961 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
962 #else
963 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
964 #define ELF_R_SYM(bfd, i) \
965 (ELF32_R_SYM (i))
966 #define ELF_R_TYPE(bfd, i) \
967 (ELF32_R_TYPE (i))
968 #define ELF_R_INFO(bfd, s, t) \
969 (ELF32_R_INFO (s, t))
970 #endif
971 \f
972 /* The mips16 compiler uses a couple of special sections to handle
973 floating point arguments.
974
975 Section names that look like .mips16.fn.FNNAME contain stubs that
976 copy floating point arguments from the fp regs to the gp regs and
977 then jump to FNNAME. If any 32 bit function calls FNNAME, the
978 call should be redirected to the stub instead. If no 32 bit
979 function calls FNNAME, the stub should be discarded. We need to
980 consider any reference to the function, not just a call, because
981 if the address of the function is taken we will need the stub,
982 since the address might be passed to a 32 bit function.
983
984 Section names that look like .mips16.call.FNNAME contain stubs
985 that copy floating point arguments from the gp regs to the fp
986 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
987 then any 16 bit function that calls FNNAME should be redirected
988 to the stub instead. If FNNAME is not a 32 bit function, the
989 stub should be discarded.
990
991 .mips16.call.fp.FNNAME sections are similar, but contain stubs
992 which call FNNAME and then copy the return value from the fp regs
993 to the gp regs. These stubs store the return value in $18 while
994 calling FNNAME; any function which might call one of these stubs
995 must arrange to save $18 around the call. (This case is not
996 needed for 32 bit functions that call 16 bit functions, because
997 16 bit functions always return floating point values in both
998 $f0/$f1 and $2/$3.)
999
1000 Note that in all cases FNNAME might be defined statically.
1001 Therefore, FNNAME is not used literally. Instead, the relocation
1002 information will indicate which symbol the section is for.
1003
1004 We record any stubs that we find in the symbol table. */
1005
1006 #define FN_STUB ".mips16.fn."
1007 #define CALL_STUB ".mips16.call."
1008 #define CALL_FP_STUB ".mips16.call.fp."
1009
1010 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1011 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1012 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1013 \f
1014 /* The format of the first PLT entry in an O32 executable. */
1015 static const bfd_vma mips_o32_exec_plt0_entry[] =
1016 {
1017 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1018 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1019 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1020 0x031cc023, /* subu $24, $24, $28 */
1021 0x03e07825, /* or t7, ra, zero */
1022 0x0018c082, /* srl $24, $24, 2 */
1023 0x0320f809, /* jalr $25 */
1024 0x2718fffe /* subu $24, $24, 2 */
1025 };
1026
1027 /* The format of the first PLT entry in an N32 executable. Different
1028 because gp ($28) is not available; we use t2 ($14) instead. */
1029 static const bfd_vma mips_n32_exec_plt0_entry[] =
1030 {
1031 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1032 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1033 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1034 0x030ec023, /* subu $24, $24, $14 */
1035 0x03e07825, /* or t7, ra, zero */
1036 0x0018c082, /* srl $24, $24, 2 */
1037 0x0320f809, /* jalr $25 */
1038 0x2718fffe /* subu $24, $24, 2 */
1039 };
1040
1041 /* The format of the first PLT entry in an N64 executable. Different
1042 from N32 because of the increased size of GOT entries. */
1043 static const bfd_vma mips_n64_exec_plt0_entry[] =
1044 {
1045 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1046 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1047 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1048 0x030ec023, /* subu $24, $24, $14 */
1049 0x03e07825, /* or t7, ra, zero */
1050 0x0018c0c2, /* srl $24, $24, 3 */
1051 0x0320f809, /* jalr $25 */
1052 0x2718fffe /* subu $24, $24, 2 */
1053 };
1054
1055 /* The format of the microMIPS first PLT entry in an O32 executable.
1056 We rely on v0 ($2) rather than t8 ($24) to contain the address
1057 of the GOTPLT entry handled, so this stub may only be used when
1058 all the subsequent PLT entries are microMIPS code too.
1059
1060 The trailing NOP is for alignment and correct disassembly only. */
1061 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1062 {
1063 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1064 0xff23, 0x0000, /* lw $25, 0($3) */
1065 0x0535, /* subu $2, $2, $3 */
1066 0x2525, /* srl $2, $2, 2 */
1067 0x3302, 0xfffe, /* subu $24, $2, 2 */
1068 0x0dff, /* move $15, $31 */
1069 0x45f9, /* jalrs $25 */
1070 0x0f83, /* move $28, $3 */
1071 0x0c00 /* nop */
1072 };
1073
1074 /* The format of the microMIPS first PLT entry in an O32 executable
1075 in the insn32 mode. */
1076 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1077 {
1078 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1079 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1080 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1081 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1082 0x001f, 0x7a90, /* or $15, $31, zero */
1083 0x0318, 0x1040, /* srl $24, $24, 2 */
1084 0x03f9, 0x0f3c, /* jalr $25 */
1085 0x3318, 0xfffe /* subu $24, $24, 2 */
1086 };
1087
1088 /* The format of subsequent standard PLT entries. */
1089 static const bfd_vma mips_exec_plt_entry[] =
1090 {
1091 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1092 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1093 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1094 0x03200008 /* jr $25 */
1095 };
1096
1097 /* In the following PLT entry the JR and ADDIU instructions will
1098 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1099 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1100 static const bfd_vma mipsr6_exec_plt_entry[] =
1101 {
1102 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1103 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1104 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1105 0x03200009 /* jr $25 */
1106 };
1107
1108 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1109 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1110 directly addressable. */
1111 static const bfd_vma mips16_o32_exec_plt_entry[] =
1112 {
1113 0xb203, /* lw $2, 12($pc) */
1114 0x9a60, /* lw $3, 0($2) */
1115 0x651a, /* move $24, $2 */
1116 0xeb00, /* jr $3 */
1117 0x653b, /* move $25, $3 */
1118 0x6500, /* nop */
1119 0x0000, 0x0000 /* .word (.got.plt entry) */
1120 };
1121
1122 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1123 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1124 static const bfd_vma micromips_o32_exec_plt_entry[] =
1125 {
1126 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1127 0xff22, 0x0000, /* lw $25, 0($2) */
1128 0x4599, /* jr $25 */
1129 0x0f02 /* move $24, $2 */
1130 };
1131
1132 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1133 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1134 {
1135 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1136 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1137 0x0019, 0x0f3c, /* jr $25 */
1138 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1139 };
1140
1141 /* The format of the first PLT entry in a VxWorks executable. */
1142 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1143 {
1144 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1145 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1146 0x8f390008, /* lw t9, 8(t9) */
1147 0x00000000, /* nop */
1148 0x03200008, /* jr t9 */
1149 0x00000000 /* nop */
1150 };
1151
1152 /* The format of subsequent PLT entries. */
1153 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1154 {
1155 0x10000000, /* b .PLT_resolver */
1156 0x24180000, /* li t8, <pltindex> */
1157 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1158 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1159 0x8f390000, /* lw t9, 0(t9) */
1160 0x00000000, /* nop */
1161 0x03200008, /* jr t9 */
1162 0x00000000 /* nop */
1163 };
1164
1165 /* The format of the first PLT entry in a VxWorks shared object. */
1166 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1167 {
1168 0x8f990008, /* lw t9, 8(gp) */
1169 0x00000000, /* nop */
1170 0x03200008, /* jr t9 */
1171 0x00000000, /* nop */
1172 0x00000000, /* nop */
1173 0x00000000 /* nop */
1174 };
1175
1176 /* The format of subsequent PLT entries. */
1177 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1178 {
1179 0x10000000, /* b .PLT_resolver */
1180 0x24180000 /* li t8, <pltindex> */
1181 };
1182 \f
1183 /* microMIPS 32-bit opcode helper installer. */
1184
1185 static void
1186 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1187 {
1188 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1189 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1190 }
1191
1192 /* microMIPS 32-bit opcode helper retriever. */
1193
1194 static bfd_vma
1195 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1196 {
1197 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1198 }
1199 \f
1200 /* Look up an entry in a MIPS ELF linker hash table. */
1201
1202 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1203 ((struct mips_elf_link_hash_entry *) \
1204 elf_link_hash_lookup (&(table)->root, (string), (create), \
1205 (copy), (follow)))
1206
1207 /* Traverse a MIPS ELF linker hash table. */
1208
1209 #define mips_elf_link_hash_traverse(table, func, info) \
1210 (elf_link_hash_traverse \
1211 (&(table)->root, \
1212 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1213 (info)))
1214
1215 /* Find the base offsets for thread-local storage in this object,
1216 for GD/LD and IE/LE respectively. */
1217
1218 #define TP_OFFSET 0x7000
1219 #define DTP_OFFSET 0x8000
1220
1221 static bfd_vma
1222 dtprel_base (struct bfd_link_info *info)
1223 {
1224 /* If tls_sec is NULL, we should have signalled an error already. */
1225 if (elf_hash_table (info)->tls_sec == NULL)
1226 return 0;
1227 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1228 }
1229
1230 static bfd_vma
1231 tprel_base (struct bfd_link_info *info)
1232 {
1233 /* If tls_sec is NULL, we should have signalled an error already. */
1234 if (elf_hash_table (info)->tls_sec == NULL)
1235 return 0;
1236 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1237 }
1238
1239 /* Create an entry in a MIPS ELF linker hash table. */
1240
1241 static struct bfd_hash_entry *
1242 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1243 struct bfd_hash_table *table, const char *string)
1244 {
1245 struct mips_elf_link_hash_entry *ret =
1246 (struct mips_elf_link_hash_entry *) entry;
1247
1248 /* Allocate the structure if it has not already been allocated by a
1249 subclass. */
1250 if (ret == NULL)
1251 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1252 if (ret == NULL)
1253 return (struct bfd_hash_entry *) ret;
1254
1255 /* Call the allocation method of the superclass. */
1256 ret = ((struct mips_elf_link_hash_entry *)
1257 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1258 table, string));
1259 if (ret != NULL)
1260 {
1261 /* Set local fields. */
1262 memset (&ret->esym, 0, sizeof (EXTR));
1263 /* We use -2 as a marker to indicate that the information has
1264 not been set. -1 means there is no associated ifd. */
1265 ret->esym.ifd = -2;
1266 ret->la25_stub = 0;
1267 ret->possibly_dynamic_relocs = 0;
1268 ret->fn_stub = NULL;
1269 ret->call_stub = NULL;
1270 ret->call_fp_stub = NULL;
1271 ret->global_got_area = GGA_NONE;
1272 ret->got_only_for_calls = TRUE;
1273 ret->readonly_reloc = FALSE;
1274 ret->has_static_relocs = FALSE;
1275 ret->no_fn_stub = FALSE;
1276 ret->need_fn_stub = FALSE;
1277 ret->has_nonpic_branches = FALSE;
1278 ret->needs_lazy_stub = FALSE;
1279 ret->use_plt_entry = FALSE;
1280 }
1281
1282 return (struct bfd_hash_entry *) ret;
1283 }
1284
1285 /* Allocate MIPS ELF private object data. */
1286
1287 bfd_boolean
1288 _bfd_mips_elf_mkobject (bfd *abfd)
1289 {
1290 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1291 MIPS_ELF_DATA);
1292 }
1293
1294 bfd_boolean
1295 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1296 {
1297 if (!sec->used_by_bfd)
1298 {
1299 struct _mips_elf_section_data *sdata;
1300 bfd_size_type amt = sizeof (*sdata);
1301
1302 sdata = bfd_zalloc (abfd, amt);
1303 if (sdata == NULL)
1304 return FALSE;
1305 sec->used_by_bfd = sdata;
1306 }
1307
1308 return _bfd_elf_new_section_hook (abfd, sec);
1309 }
1310 \f
1311 /* Read ECOFF debugging information from a .mdebug section into a
1312 ecoff_debug_info structure. */
1313
1314 bfd_boolean
1315 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1316 struct ecoff_debug_info *debug)
1317 {
1318 HDRR *symhdr;
1319 const struct ecoff_debug_swap *swap;
1320 char *ext_hdr;
1321
1322 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1323 memset (debug, 0, sizeof (*debug));
1324
1325 ext_hdr = bfd_malloc (swap->external_hdr_size);
1326 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1327 goto error_return;
1328
1329 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1330 swap->external_hdr_size))
1331 goto error_return;
1332
1333 symhdr = &debug->symbolic_header;
1334 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1335
1336 /* The symbolic header contains absolute file offsets and sizes to
1337 read. */
1338 #define READ(ptr, offset, count, size, type) \
1339 if (symhdr->count == 0) \
1340 debug->ptr = NULL; \
1341 else \
1342 { \
1343 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1344 debug->ptr = bfd_malloc (amt); \
1345 if (debug->ptr == NULL) \
1346 goto error_return; \
1347 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1348 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1349 goto error_return; \
1350 }
1351
1352 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1353 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1354 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1355 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1356 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1357 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1358 union aux_ext *);
1359 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1360 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1361 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1362 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1363 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1364 #undef READ
1365
1366 debug->fdr = NULL;
1367
1368 return TRUE;
1369
1370 error_return:
1371 if (ext_hdr != NULL)
1372 free (ext_hdr);
1373 if (debug->line != NULL)
1374 free (debug->line);
1375 if (debug->external_dnr != NULL)
1376 free (debug->external_dnr);
1377 if (debug->external_pdr != NULL)
1378 free (debug->external_pdr);
1379 if (debug->external_sym != NULL)
1380 free (debug->external_sym);
1381 if (debug->external_opt != NULL)
1382 free (debug->external_opt);
1383 if (debug->external_aux != NULL)
1384 free (debug->external_aux);
1385 if (debug->ss != NULL)
1386 free (debug->ss);
1387 if (debug->ssext != NULL)
1388 free (debug->ssext);
1389 if (debug->external_fdr != NULL)
1390 free (debug->external_fdr);
1391 if (debug->external_rfd != NULL)
1392 free (debug->external_rfd);
1393 if (debug->external_ext != NULL)
1394 free (debug->external_ext);
1395 return FALSE;
1396 }
1397 \f
1398 /* Swap RPDR (runtime procedure table entry) for output. */
1399
1400 static void
1401 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1402 {
1403 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1404 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1405 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1406 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1407 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1408 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1409
1410 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1411 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1412
1413 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1414 }
1415
1416 /* Create a runtime procedure table from the .mdebug section. */
1417
1418 static bfd_boolean
1419 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1420 struct bfd_link_info *info, asection *s,
1421 struct ecoff_debug_info *debug)
1422 {
1423 const struct ecoff_debug_swap *swap;
1424 HDRR *hdr = &debug->symbolic_header;
1425 RPDR *rpdr, *rp;
1426 struct rpdr_ext *erp;
1427 void *rtproc;
1428 struct pdr_ext *epdr;
1429 struct sym_ext *esym;
1430 char *ss, **sv;
1431 char *str;
1432 bfd_size_type size;
1433 bfd_size_type count;
1434 unsigned long sindex;
1435 unsigned long i;
1436 PDR pdr;
1437 SYMR sym;
1438 const char *no_name_func = _("static procedure (no name)");
1439
1440 epdr = NULL;
1441 rpdr = NULL;
1442 esym = NULL;
1443 ss = NULL;
1444 sv = NULL;
1445
1446 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1447
1448 sindex = strlen (no_name_func) + 1;
1449 count = hdr->ipdMax;
1450 if (count > 0)
1451 {
1452 size = swap->external_pdr_size;
1453
1454 epdr = bfd_malloc (size * count);
1455 if (epdr == NULL)
1456 goto error_return;
1457
1458 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1459 goto error_return;
1460
1461 size = sizeof (RPDR);
1462 rp = rpdr = bfd_malloc (size * count);
1463 if (rpdr == NULL)
1464 goto error_return;
1465
1466 size = sizeof (char *);
1467 sv = bfd_malloc (size * count);
1468 if (sv == NULL)
1469 goto error_return;
1470
1471 count = hdr->isymMax;
1472 size = swap->external_sym_size;
1473 esym = bfd_malloc (size * count);
1474 if (esym == NULL)
1475 goto error_return;
1476
1477 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1478 goto error_return;
1479
1480 count = hdr->issMax;
1481 ss = bfd_malloc (count);
1482 if (ss == NULL)
1483 goto error_return;
1484 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1485 goto error_return;
1486
1487 count = hdr->ipdMax;
1488 for (i = 0; i < (unsigned long) count; i++, rp++)
1489 {
1490 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1491 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1492 rp->adr = sym.value;
1493 rp->regmask = pdr.regmask;
1494 rp->regoffset = pdr.regoffset;
1495 rp->fregmask = pdr.fregmask;
1496 rp->fregoffset = pdr.fregoffset;
1497 rp->frameoffset = pdr.frameoffset;
1498 rp->framereg = pdr.framereg;
1499 rp->pcreg = pdr.pcreg;
1500 rp->irpss = sindex;
1501 sv[i] = ss + sym.iss;
1502 sindex += strlen (sv[i]) + 1;
1503 }
1504 }
1505
1506 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1507 size = BFD_ALIGN (size, 16);
1508 rtproc = bfd_alloc (abfd, size);
1509 if (rtproc == NULL)
1510 {
1511 mips_elf_hash_table (info)->procedure_count = 0;
1512 goto error_return;
1513 }
1514
1515 mips_elf_hash_table (info)->procedure_count = count + 2;
1516
1517 erp = rtproc;
1518 memset (erp, 0, sizeof (struct rpdr_ext));
1519 erp++;
1520 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1521 strcpy (str, no_name_func);
1522 str += strlen (no_name_func) + 1;
1523 for (i = 0; i < count; i++)
1524 {
1525 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1526 strcpy (str, sv[i]);
1527 str += strlen (sv[i]) + 1;
1528 }
1529 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1530
1531 /* Set the size and contents of .rtproc section. */
1532 s->size = size;
1533 s->contents = rtproc;
1534
1535 /* Skip this section later on (I don't think this currently
1536 matters, but someday it might). */
1537 s->map_head.link_order = NULL;
1538
1539 if (epdr != NULL)
1540 free (epdr);
1541 if (rpdr != NULL)
1542 free (rpdr);
1543 if (esym != NULL)
1544 free (esym);
1545 if (ss != NULL)
1546 free (ss);
1547 if (sv != NULL)
1548 free (sv);
1549
1550 return TRUE;
1551
1552 error_return:
1553 if (epdr != NULL)
1554 free (epdr);
1555 if (rpdr != NULL)
1556 free (rpdr);
1557 if (esym != NULL)
1558 free (esym);
1559 if (ss != NULL)
1560 free (ss);
1561 if (sv != NULL)
1562 free (sv);
1563 return FALSE;
1564 }
1565 \f
1566 /* We're going to create a stub for H. Create a symbol for the stub's
1567 value and size, to help make the disassembly easier to read. */
1568
1569 static bfd_boolean
1570 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1571 struct mips_elf_link_hash_entry *h,
1572 const char *prefix, asection *s, bfd_vma value,
1573 bfd_vma size)
1574 {
1575 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1576 struct bfd_link_hash_entry *bh;
1577 struct elf_link_hash_entry *elfh;
1578 char *name;
1579 bfd_boolean res;
1580
1581 if (micromips_p)
1582 value |= 1;
1583
1584 /* Create a new symbol. */
1585 name = concat (prefix, h->root.root.root.string, NULL);
1586 bh = NULL;
1587 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1588 BSF_LOCAL, s, value, NULL,
1589 TRUE, FALSE, &bh);
1590 free (name);
1591 if (! res)
1592 return FALSE;
1593
1594 /* Make it a local function. */
1595 elfh = (struct elf_link_hash_entry *) bh;
1596 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1597 elfh->size = size;
1598 elfh->forced_local = 1;
1599 if (micromips_p)
1600 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1601 return TRUE;
1602 }
1603
1604 /* We're about to redefine H. Create a symbol to represent H's
1605 current value and size, to help make the disassembly easier
1606 to read. */
1607
1608 static bfd_boolean
1609 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1610 struct mips_elf_link_hash_entry *h,
1611 const char *prefix)
1612 {
1613 struct bfd_link_hash_entry *bh;
1614 struct elf_link_hash_entry *elfh;
1615 char *name;
1616 asection *s;
1617 bfd_vma value;
1618 bfd_boolean res;
1619
1620 /* Read the symbol's value. */
1621 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1622 || h->root.root.type == bfd_link_hash_defweak);
1623 s = h->root.root.u.def.section;
1624 value = h->root.root.u.def.value;
1625
1626 /* Create a new symbol. */
1627 name = concat (prefix, h->root.root.root.string, NULL);
1628 bh = NULL;
1629 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1630 BSF_LOCAL, s, value, NULL,
1631 TRUE, FALSE, &bh);
1632 free (name);
1633 if (! res)
1634 return FALSE;
1635
1636 /* Make it local and copy the other attributes from H. */
1637 elfh = (struct elf_link_hash_entry *) bh;
1638 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1639 elfh->other = h->root.other;
1640 elfh->size = h->root.size;
1641 elfh->forced_local = 1;
1642 return TRUE;
1643 }
1644
1645 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1646 function rather than to a hard-float stub. */
1647
1648 static bfd_boolean
1649 section_allows_mips16_refs_p (asection *section)
1650 {
1651 const char *name;
1652
1653 name = bfd_get_section_name (section->owner, section);
1654 return (FN_STUB_P (name)
1655 || CALL_STUB_P (name)
1656 || CALL_FP_STUB_P (name)
1657 || strcmp (name, ".pdr") == 0);
1658 }
1659
1660 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1661 stub section of some kind. Return the R_SYMNDX of the target
1662 function, or 0 if we can't decide which function that is. */
1663
1664 static unsigned long
1665 mips16_stub_symndx (const struct elf_backend_data *bed,
1666 asection *sec ATTRIBUTE_UNUSED,
1667 const Elf_Internal_Rela *relocs,
1668 const Elf_Internal_Rela *relend)
1669 {
1670 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1671 const Elf_Internal_Rela *rel;
1672
1673 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1674 one in a compound relocation. */
1675 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1676 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1677 return ELF_R_SYM (sec->owner, rel->r_info);
1678
1679 /* Otherwise trust the first relocation, whatever its kind. This is
1680 the traditional behavior. */
1681 if (relocs < relend)
1682 return ELF_R_SYM (sec->owner, relocs->r_info);
1683
1684 return 0;
1685 }
1686
1687 /* Check the mips16 stubs for a particular symbol, and see if we can
1688 discard them. */
1689
1690 static void
1691 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1692 struct mips_elf_link_hash_entry *h)
1693 {
1694 /* Dynamic symbols must use the standard call interface, in case other
1695 objects try to call them. */
1696 if (h->fn_stub != NULL
1697 && h->root.dynindx != -1)
1698 {
1699 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1700 h->need_fn_stub = TRUE;
1701 }
1702
1703 if (h->fn_stub != NULL
1704 && ! h->need_fn_stub)
1705 {
1706 /* We don't need the fn_stub; the only references to this symbol
1707 are 16 bit calls. Clobber the size to 0 to prevent it from
1708 being included in the link. */
1709 h->fn_stub->size = 0;
1710 h->fn_stub->flags &= ~SEC_RELOC;
1711 h->fn_stub->reloc_count = 0;
1712 h->fn_stub->flags |= SEC_EXCLUDE;
1713 h->fn_stub->output_section = bfd_abs_section_ptr;
1714 }
1715
1716 if (h->call_stub != NULL
1717 && ELF_ST_IS_MIPS16 (h->root.other))
1718 {
1719 /* We don't need the call_stub; this is a 16 bit function, so
1720 calls from other 16 bit functions are OK. Clobber the size
1721 to 0 to prevent it from being included in the link. */
1722 h->call_stub->size = 0;
1723 h->call_stub->flags &= ~SEC_RELOC;
1724 h->call_stub->reloc_count = 0;
1725 h->call_stub->flags |= SEC_EXCLUDE;
1726 h->call_stub->output_section = bfd_abs_section_ptr;
1727 }
1728
1729 if (h->call_fp_stub != NULL
1730 && ELF_ST_IS_MIPS16 (h->root.other))
1731 {
1732 /* We don't need the call_stub; this is a 16 bit function, so
1733 calls from other 16 bit functions are OK. Clobber the size
1734 to 0 to prevent it from being included in the link. */
1735 h->call_fp_stub->size = 0;
1736 h->call_fp_stub->flags &= ~SEC_RELOC;
1737 h->call_fp_stub->reloc_count = 0;
1738 h->call_fp_stub->flags |= SEC_EXCLUDE;
1739 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1740 }
1741 }
1742
1743 /* Hashtable callbacks for mips_elf_la25_stubs. */
1744
1745 static hashval_t
1746 mips_elf_la25_stub_hash (const void *entry_)
1747 {
1748 const struct mips_elf_la25_stub *entry;
1749
1750 entry = (struct mips_elf_la25_stub *) entry_;
1751 return entry->h->root.root.u.def.section->id
1752 + entry->h->root.root.u.def.value;
1753 }
1754
1755 static int
1756 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1757 {
1758 const struct mips_elf_la25_stub *entry1, *entry2;
1759
1760 entry1 = (struct mips_elf_la25_stub *) entry1_;
1761 entry2 = (struct mips_elf_la25_stub *) entry2_;
1762 return ((entry1->h->root.root.u.def.section
1763 == entry2->h->root.root.u.def.section)
1764 && (entry1->h->root.root.u.def.value
1765 == entry2->h->root.root.u.def.value));
1766 }
1767
1768 /* Called by the linker to set up the la25 stub-creation code. FN is
1769 the linker's implementation of add_stub_function. Return true on
1770 success. */
1771
1772 bfd_boolean
1773 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1774 asection *(*fn) (const char *, asection *,
1775 asection *))
1776 {
1777 struct mips_elf_link_hash_table *htab;
1778
1779 htab = mips_elf_hash_table (info);
1780 if (htab == NULL)
1781 return FALSE;
1782
1783 htab->add_stub_section = fn;
1784 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1785 mips_elf_la25_stub_eq, NULL);
1786 if (htab->la25_stubs == NULL)
1787 return FALSE;
1788
1789 return TRUE;
1790 }
1791
1792 /* Return true if H is a locally-defined PIC function, in the sense
1793 that it or its fn_stub might need $25 to be valid on entry.
1794 Note that MIPS16 functions set up $gp using PC-relative instructions,
1795 so they themselves never need $25 to be valid. Only non-MIPS16
1796 entry points are of interest here. */
1797
1798 static bfd_boolean
1799 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1800 {
1801 return ((h->root.root.type == bfd_link_hash_defined
1802 || h->root.root.type == bfd_link_hash_defweak)
1803 && h->root.def_regular
1804 && !bfd_is_abs_section (h->root.root.u.def.section)
1805 && !bfd_is_und_section (h->root.root.u.def.section)
1806 && (!ELF_ST_IS_MIPS16 (h->root.other)
1807 || (h->fn_stub && h->need_fn_stub))
1808 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1809 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1810 }
1811
1812 /* Set *SEC to the input section that contains the target of STUB.
1813 Return the offset of the target from the start of that section. */
1814
1815 static bfd_vma
1816 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1817 asection **sec)
1818 {
1819 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1820 {
1821 BFD_ASSERT (stub->h->need_fn_stub);
1822 *sec = stub->h->fn_stub;
1823 return 0;
1824 }
1825 else
1826 {
1827 *sec = stub->h->root.root.u.def.section;
1828 return stub->h->root.root.u.def.value;
1829 }
1830 }
1831
1832 /* STUB describes an la25 stub that we have decided to implement
1833 by inserting an LUI/ADDIU pair before the target function.
1834 Create the section and redirect the function symbol to it. */
1835
1836 static bfd_boolean
1837 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1838 struct bfd_link_info *info)
1839 {
1840 struct mips_elf_link_hash_table *htab;
1841 char *name;
1842 asection *s, *input_section;
1843 unsigned int align;
1844
1845 htab = mips_elf_hash_table (info);
1846 if (htab == NULL)
1847 return FALSE;
1848
1849 /* Create a unique name for the new section. */
1850 name = bfd_malloc (11 + sizeof (".text.stub."));
1851 if (name == NULL)
1852 return FALSE;
1853 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1854
1855 /* Create the section. */
1856 mips_elf_get_la25_target (stub, &input_section);
1857 s = htab->add_stub_section (name, input_section,
1858 input_section->output_section);
1859 if (s == NULL)
1860 return FALSE;
1861
1862 /* Make sure that any padding goes before the stub. */
1863 align = input_section->alignment_power;
1864 if (!bfd_set_section_alignment (s->owner, s, align))
1865 return FALSE;
1866 if (align > 3)
1867 s->size = (1 << align) - 8;
1868
1869 /* Create a symbol for the stub. */
1870 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1871 stub->stub_section = s;
1872 stub->offset = s->size;
1873
1874 /* Allocate room for it. */
1875 s->size += 8;
1876 return TRUE;
1877 }
1878
1879 /* STUB describes an la25 stub that we have decided to implement
1880 with a separate trampoline. Allocate room for it and redirect
1881 the function symbol to it. */
1882
1883 static bfd_boolean
1884 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1885 struct bfd_link_info *info)
1886 {
1887 struct mips_elf_link_hash_table *htab;
1888 asection *s;
1889
1890 htab = mips_elf_hash_table (info);
1891 if (htab == NULL)
1892 return FALSE;
1893
1894 /* Create a trampoline section, if we haven't already. */
1895 s = htab->strampoline;
1896 if (s == NULL)
1897 {
1898 asection *input_section = stub->h->root.root.u.def.section;
1899 s = htab->add_stub_section (".text", NULL,
1900 input_section->output_section);
1901 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1902 return FALSE;
1903 htab->strampoline = s;
1904 }
1905
1906 /* Create a symbol for the stub. */
1907 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1908 stub->stub_section = s;
1909 stub->offset = s->size;
1910
1911 /* Allocate room for it. */
1912 s->size += 16;
1913 return TRUE;
1914 }
1915
1916 /* H describes a symbol that needs an la25 stub. Make sure that an
1917 appropriate stub exists and point H at it. */
1918
1919 static bfd_boolean
1920 mips_elf_add_la25_stub (struct bfd_link_info *info,
1921 struct mips_elf_link_hash_entry *h)
1922 {
1923 struct mips_elf_link_hash_table *htab;
1924 struct mips_elf_la25_stub search, *stub;
1925 bfd_boolean use_trampoline_p;
1926 asection *s;
1927 bfd_vma value;
1928 void **slot;
1929
1930 /* Describe the stub we want. */
1931 search.stub_section = NULL;
1932 search.offset = 0;
1933 search.h = h;
1934
1935 /* See if we've already created an equivalent stub. */
1936 htab = mips_elf_hash_table (info);
1937 if (htab == NULL)
1938 return FALSE;
1939
1940 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1941 if (slot == NULL)
1942 return FALSE;
1943
1944 stub = (struct mips_elf_la25_stub *) *slot;
1945 if (stub != NULL)
1946 {
1947 /* We can reuse the existing stub. */
1948 h->la25_stub = stub;
1949 return TRUE;
1950 }
1951
1952 /* Create a permanent copy of ENTRY and add it to the hash table. */
1953 stub = bfd_malloc (sizeof (search));
1954 if (stub == NULL)
1955 return FALSE;
1956 *stub = search;
1957 *slot = stub;
1958
1959 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1960 of the section and if we would need no more than 2 nops. */
1961 value = mips_elf_get_la25_target (stub, &s);
1962 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1963 value &= ~1;
1964 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1965
1966 h->la25_stub = stub;
1967 return (use_trampoline_p
1968 ? mips_elf_add_la25_trampoline (stub, info)
1969 : mips_elf_add_la25_intro (stub, info));
1970 }
1971
1972 /* A mips_elf_link_hash_traverse callback that is called before sizing
1973 sections. DATA points to a mips_htab_traverse_info structure. */
1974
1975 static bfd_boolean
1976 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1977 {
1978 struct mips_htab_traverse_info *hti;
1979
1980 hti = (struct mips_htab_traverse_info *) data;
1981 if (!bfd_link_relocatable (hti->info))
1982 mips_elf_check_mips16_stubs (hti->info, h);
1983
1984 if (mips_elf_local_pic_function_p (h))
1985 {
1986 /* PR 12845: If H is in a section that has been garbage
1987 collected it will have its output section set to *ABS*. */
1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1989 return TRUE;
1990
1991 /* H is a function that might need $25 to be valid on entry.
1992 If we're creating a non-PIC relocatable object, mark H as
1993 being PIC. If we're creating a non-relocatable object with
1994 non-PIC branches and jumps to H, make sure that H has an la25
1995 stub. */
1996 if (bfd_link_relocatable (hti->info))
1997 {
1998 if (!PIC_OBJECT_P (hti->output_bfd))
1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2000 }
2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2002 {
2003 hti->error = TRUE;
2004 return FALSE;
2005 }
2006 }
2007 return TRUE;
2008 }
2009 \f
2010 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2011 Most mips16 instructions are 16 bits, but these instructions
2012 are 32 bits.
2013
2014 The format of these instructions is:
2015
2016 +--------------+--------------------------------+
2017 | JALX | X| Imm 20:16 | Imm 25:21 |
2018 +--------------+--------------------------------+
2019 | Immediate 15:0 |
2020 +-----------------------------------------------+
2021
2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2023 Note that the immediate value in the first word is swapped.
2024
2025 When producing a relocatable object file, R_MIPS16_26 is
2026 handled mostly like R_MIPS_26. In particular, the addend is
2027 stored as a straight 26-bit value in a 32-bit instruction.
2028 (gas makes life simpler for itself by never adjusting a
2029 R_MIPS16_26 reloc to be against a section, so the addend is
2030 always zero). However, the 32 bit instruction is stored as 2
2031 16-bit values, rather than a single 32-bit value. In a
2032 big-endian file, the result is the same; in a little-endian
2033 file, the two 16-bit halves of the 32 bit value are swapped.
2034 This is so that a disassembler can recognize the jal
2035 instruction.
2036
2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2038 instruction stored as two 16-bit values. The addend A is the
2039 contents of the targ26 field. The calculation is the same as
2040 R_MIPS_26. When storing the calculated value, reorder the
2041 immediate value as shown above, and don't forget to store the
2042 value as two 16-bit values.
2043
2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2045 defined as
2046
2047 big-endian:
2048 +--------+----------------------+
2049 | | |
2050 | | targ26-16 |
2051 |31 26|25 0|
2052 +--------+----------------------+
2053
2054 little-endian:
2055 +----------+------+-------------+
2056 | | | |
2057 | sub1 | | sub2 |
2058 |0 9|10 15|16 31|
2059 +----------+--------------------+
2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2061 ((sub1 << 16) | sub2)).
2062
2063 When producing a relocatable object file, the calculation is
2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2065 When producing a fully linked file, the calculation is
2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2068
2069 The table below lists the other MIPS16 instruction relocations.
2070 Each one is calculated in the same way as the non-MIPS16 relocation
2071 given on the right, but using the extended MIPS16 layout of 16-bit
2072 immediate fields:
2073
2074 R_MIPS16_GPREL R_MIPS_GPREL16
2075 R_MIPS16_GOT16 R_MIPS_GOT16
2076 R_MIPS16_CALL16 R_MIPS_CALL16
2077 R_MIPS16_HI16 R_MIPS_HI16
2078 R_MIPS16_LO16 R_MIPS_LO16
2079
2080 A typical instruction will have a format like this:
2081
2082 +--------------+--------------------------------+
2083 | EXTEND | Imm 10:5 | Imm 15:11 |
2084 +--------------+--------------------------------+
2085 | Major | rx | ry | Imm 4:0 |
2086 +--------------+--------------------------------+
2087
2088 EXTEND is the five bit value 11110. Major is the instruction
2089 opcode.
2090
2091 All we need to do here is shuffle the bits appropriately.
2092 As above, the two 16-bit halves must be swapped on a
2093 little-endian system.
2094
2095 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2096 relocatable field is shifted by 1 rather than 2 and the same bit
2097 shuffling is done as with the relocations above. */
2098
2099 static inline bfd_boolean
2100 mips16_reloc_p (int r_type)
2101 {
2102 switch (r_type)
2103 {
2104 case R_MIPS16_26:
2105 case R_MIPS16_GPREL:
2106 case R_MIPS16_GOT16:
2107 case R_MIPS16_CALL16:
2108 case R_MIPS16_HI16:
2109 case R_MIPS16_LO16:
2110 case R_MIPS16_TLS_GD:
2111 case R_MIPS16_TLS_LDM:
2112 case R_MIPS16_TLS_DTPREL_HI16:
2113 case R_MIPS16_TLS_DTPREL_LO16:
2114 case R_MIPS16_TLS_GOTTPREL:
2115 case R_MIPS16_TLS_TPREL_HI16:
2116 case R_MIPS16_TLS_TPREL_LO16:
2117 case R_MIPS16_PC16_S1:
2118 return TRUE;
2119
2120 default:
2121 return FALSE;
2122 }
2123 }
2124
2125 /* Check if a microMIPS reloc. */
2126
2127 static inline bfd_boolean
2128 micromips_reloc_p (unsigned int r_type)
2129 {
2130 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2131 }
2132
2133 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2134 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2135 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2136
2137 static inline bfd_boolean
2138 micromips_reloc_shuffle_p (unsigned int r_type)
2139 {
2140 return (micromips_reloc_p (r_type)
2141 && r_type != R_MICROMIPS_PC7_S1
2142 && r_type != R_MICROMIPS_PC10_S1);
2143 }
2144
2145 static inline bfd_boolean
2146 got16_reloc_p (int r_type)
2147 {
2148 return (r_type == R_MIPS_GOT16
2149 || r_type == R_MIPS16_GOT16
2150 || r_type == R_MICROMIPS_GOT16);
2151 }
2152
2153 static inline bfd_boolean
2154 call16_reloc_p (int r_type)
2155 {
2156 return (r_type == R_MIPS_CALL16
2157 || r_type == R_MIPS16_CALL16
2158 || r_type == R_MICROMIPS_CALL16);
2159 }
2160
2161 static inline bfd_boolean
2162 got_disp_reloc_p (unsigned int r_type)
2163 {
2164 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2165 }
2166
2167 static inline bfd_boolean
2168 got_page_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2171 }
2172
2173 static inline bfd_boolean
2174 got_lo16_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2177 }
2178
2179 static inline bfd_boolean
2180 call_hi16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_lo16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2189 }
2190
2191 static inline bfd_boolean
2192 hi16_reloc_p (int r_type)
2193 {
2194 return (r_type == R_MIPS_HI16
2195 || r_type == R_MIPS16_HI16
2196 || r_type == R_MICROMIPS_HI16
2197 || r_type == R_MIPS_PCHI16);
2198 }
2199
2200 static inline bfd_boolean
2201 lo16_reloc_p (int r_type)
2202 {
2203 return (r_type == R_MIPS_LO16
2204 || r_type == R_MIPS16_LO16
2205 || r_type == R_MICROMIPS_LO16
2206 || r_type == R_MIPS_PCLO16);
2207 }
2208
2209 static inline bfd_boolean
2210 mips16_call_reloc_p (int r_type)
2211 {
2212 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2213 }
2214
2215 static inline bfd_boolean
2216 jal_reloc_p (int r_type)
2217 {
2218 return (r_type == R_MIPS_26
2219 || r_type == R_MIPS16_26
2220 || r_type == R_MICROMIPS_26_S1);
2221 }
2222
2223 static inline bfd_boolean
2224 b_reloc_p (int r_type)
2225 {
2226 return (r_type == R_MIPS_PC26_S2
2227 || r_type == R_MIPS_PC21_S2
2228 || r_type == R_MIPS_PC16
2229 || r_type == R_MIPS_GNU_REL16_S2
2230 || r_type == R_MIPS16_PC16_S1
2231 || r_type == R_MICROMIPS_PC16_S1
2232 || r_type == R_MICROMIPS_PC10_S1
2233 || r_type == R_MICROMIPS_PC7_S1);
2234 }
2235
2236 static inline bfd_boolean
2237 aligned_pcrel_reloc_p (int r_type)
2238 {
2239 return (r_type == R_MIPS_PC18_S3
2240 || r_type == R_MIPS_PC19_S2);
2241 }
2242
2243 static inline bfd_boolean
2244 branch_reloc_p (int r_type)
2245 {
2246 return (r_type == R_MIPS_26
2247 || r_type == R_MIPS_PC26_S2
2248 || r_type == R_MIPS_PC21_S2
2249 || r_type == R_MIPS_PC16
2250 || r_type == R_MIPS_GNU_REL16_S2);
2251 }
2252
2253 static inline bfd_boolean
2254 mips16_branch_reloc_p (int r_type)
2255 {
2256 return (r_type == R_MIPS16_26
2257 || r_type == R_MIPS16_PC16_S1);
2258 }
2259
2260 static inline bfd_boolean
2261 micromips_branch_reloc_p (int r_type)
2262 {
2263 return (r_type == R_MICROMIPS_26_S1
2264 || r_type == R_MICROMIPS_PC16_S1
2265 || r_type == R_MICROMIPS_PC10_S1
2266 || r_type == R_MICROMIPS_PC7_S1);
2267 }
2268
2269 static inline bfd_boolean
2270 tls_gd_reloc_p (unsigned int r_type)
2271 {
2272 return (r_type == R_MIPS_TLS_GD
2273 || r_type == R_MIPS16_TLS_GD
2274 || r_type == R_MICROMIPS_TLS_GD);
2275 }
2276
2277 static inline bfd_boolean
2278 tls_ldm_reloc_p (unsigned int r_type)
2279 {
2280 return (r_type == R_MIPS_TLS_LDM
2281 || r_type == R_MIPS16_TLS_LDM
2282 || r_type == R_MICROMIPS_TLS_LDM);
2283 }
2284
2285 static inline bfd_boolean
2286 tls_gottprel_reloc_p (unsigned int r_type)
2287 {
2288 return (r_type == R_MIPS_TLS_GOTTPREL
2289 || r_type == R_MIPS16_TLS_GOTTPREL
2290 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2291 }
2292
2293 void
2294 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2295 bfd_boolean jal_shuffle, bfd_byte *data)
2296 {
2297 bfd_vma first, second, val;
2298
2299 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2300 return;
2301
2302 /* Pick up the first and second halfwords of the instruction. */
2303 first = bfd_get_16 (abfd, data);
2304 second = bfd_get_16 (abfd, data + 2);
2305 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2306 val = first << 16 | second;
2307 else if (r_type != R_MIPS16_26)
2308 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2309 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2310 else
2311 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2312 | ((first & 0x1f) << 21) | second);
2313 bfd_put_32 (abfd, val, data);
2314 }
2315
2316 void
2317 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2318 bfd_boolean jal_shuffle, bfd_byte *data)
2319 {
2320 bfd_vma first, second, val;
2321
2322 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2323 return;
2324
2325 val = bfd_get_32 (abfd, data);
2326 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2327 {
2328 second = val & 0xffff;
2329 first = val >> 16;
2330 }
2331 else if (r_type != R_MIPS16_26)
2332 {
2333 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2334 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2335 }
2336 else
2337 {
2338 second = val & 0xffff;
2339 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2340 | ((val >> 21) & 0x1f);
2341 }
2342 bfd_put_16 (abfd, second, data + 2);
2343 bfd_put_16 (abfd, first, data);
2344 }
2345
2346 bfd_reloc_status_type
2347 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2348 arelent *reloc_entry, asection *input_section,
2349 bfd_boolean relocatable, void *data, bfd_vma gp)
2350 {
2351 bfd_vma relocation;
2352 bfd_signed_vma val;
2353 bfd_reloc_status_type status;
2354
2355 if (bfd_is_com_section (symbol->section))
2356 relocation = 0;
2357 else
2358 relocation = symbol->value;
2359
2360 relocation += symbol->section->output_section->vma;
2361 relocation += symbol->section->output_offset;
2362
2363 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2364 return bfd_reloc_outofrange;
2365
2366 /* Set val to the offset into the section or symbol. */
2367 val = reloc_entry->addend;
2368
2369 _bfd_mips_elf_sign_extend (val, 16);
2370
2371 /* Adjust val for the final section location and GP value. If we
2372 are producing relocatable output, we don't want to do this for
2373 an external symbol. */
2374 if (! relocatable
2375 || (symbol->flags & BSF_SECTION_SYM) != 0)
2376 val += relocation - gp;
2377
2378 if (reloc_entry->howto->partial_inplace)
2379 {
2380 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2381 (bfd_byte *) data
2382 + reloc_entry->address);
2383 if (status != bfd_reloc_ok)
2384 return status;
2385 }
2386 else
2387 reloc_entry->addend = val;
2388
2389 if (relocatable)
2390 reloc_entry->address += input_section->output_offset;
2391
2392 return bfd_reloc_ok;
2393 }
2394
2395 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2396 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2397 that contains the relocation field and DATA points to the start of
2398 INPUT_SECTION. */
2399
2400 struct mips_hi16
2401 {
2402 struct mips_hi16 *next;
2403 bfd_byte *data;
2404 asection *input_section;
2405 arelent rel;
2406 };
2407
2408 /* FIXME: This should not be a static variable. */
2409
2410 static struct mips_hi16 *mips_hi16_list;
2411
2412 /* A howto special_function for REL *HI16 relocations. We can only
2413 calculate the correct value once we've seen the partnering
2414 *LO16 relocation, so just save the information for later.
2415
2416 The ABI requires that the *LO16 immediately follow the *HI16.
2417 However, as a GNU extension, we permit an arbitrary number of
2418 *HI16s to be associated with a single *LO16. This significantly
2419 simplies the relocation handling in gcc. */
2420
2421 bfd_reloc_status_type
2422 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2423 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2424 asection *input_section, bfd *output_bfd,
2425 char **error_message ATTRIBUTE_UNUSED)
2426 {
2427 struct mips_hi16 *n;
2428
2429 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2430 return bfd_reloc_outofrange;
2431
2432 n = bfd_malloc (sizeof *n);
2433 if (n == NULL)
2434 return bfd_reloc_outofrange;
2435
2436 n->next = mips_hi16_list;
2437 n->data = data;
2438 n->input_section = input_section;
2439 n->rel = *reloc_entry;
2440 mips_hi16_list = n;
2441
2442 if (output_bfd != NULL)
2443 reloc_entry->address += input_section->output_offset;
2444
2445 return bfd_reloc_ok;
2446 }
2447
2448 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2449 like any other 16-bit relocation when applied to global symbols, but is
2450 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2451
2452 bfd_reloc_status_type
2453 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2454 void *data, asection *input_section,
2455 bfd *output_bfd, char **error_message)
2456 {
2457 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2458 || bfd_is_und_section (bfd_get_section (symbol))
2459 || bfd_is_com_section (bfd_get_section (symbol)))
2460 /* The relocation is against a global symbol. */
2461 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2462 input_section, output_bfd,
2463 error_message);
2464
2465 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2466 input_section, output_bfd, error_message);
2467 }
2468
2469 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2470 is a straightforward 16 bit inplace relocation, but we must deal with
2471 any partnering high-part relocations as well. */
2472
2473 bfd_reloc_status_type
2474 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2475 void *data, asection *input_section,
2476 bfd *output_bfd, char **error_message)
2477 {
2478 bfd_vma vallo;
2479 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2480
2481 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2482 return bfd_reloc_outofrange;
2483
2484 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2485 location);
2486 vallo = bfd_get_32 (abfd, location);
2487 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2488 location);
2489
2490 while (mips_hi16_list != NULL)
2491 {
2492 bfd_reloc_status_type ret;
2493 struct mips_hi16 *hi;
2494
2495 hi = mips_hi16_list;
2496
2497 /* R_MIPS*_GOT16 relocations are something of a special case. We
2498 want to install the addend in the same way as for a R_MIPS*_HI16
2499 relocation (with a rightshift of 16). However, since GOT16
2500 relocations can also be used with global symbols, their howto
2501 has a rightshift of 0. */
2502 if (hi->rel.howto->type == R_MIPS_GOT16)
2503 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2504 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2505 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2506 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2507 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2508
2509 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2510 carry or borrow will induce a change of +1 or -1 in the high part. */
2511 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2512
2513 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2514 hi->input_section, output_bfd,
2515 error_message);
2516 if (ret != bfd_reloc_ok)
2517 return ret;
2518
2519 mips_hi16_list = hi->next;
2520 free (hi);
2521 }
2522
2523 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2524 input_section, output_bfd,
2525 error_message);
2526 }
2527
2528 /* A generic howto special_function. This calculates and installs the
2529 relocation itself, thus avoiding the oft-discussed problems in
2530 bfd_perform_relocation and bfd_install_relocation. */
2531
2532 bfd_reloc_status_type
2533 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2534 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2535 asection *input_section, bfd *output_bfd,
2536 char **error_message ATTRIBUTE_UNUSED)
2537 {
2538 bfd_signed_vma val;
2539 bfd_reloc_status_type status;
2540 bfd_boolean relocatable;
2541
2542 relocatable = (output_bfd != NULL);
2543
2544 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2545 return bfd_reloc_outofrange;
2546
2547 /* Build up the field adjustment in VAL. */
2548 val = 0;
2549 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2550 {
2551 /* Either we're calculating the final field value or we have a
2552 relocation against a section symbol. Add in the section's
2553 offset or address. */
2554 val += symbol->section->output_section->vma;
2555 val += symbol->section->output_offset;
2556 }
2557
2558 if (!relocatable)
2559 {
2560 /* We're calculating the final field value. Add in the symbol's value
2561 and, if pc-relative, subtract the address of the field itself. */
2562 val += symbol->value;
2563 if (reloc_entry->howto->pc_relative)
2564 {
2565 val -= input_section->output_section->vma;
2566 val -= input_section->output_offset;
2567 val -= reloc_entry->address;
2568 }
2569 }
2570
2571 /* VAL is now the final adjustment. If we're keeping this relocation
2572 in the output file, and if the relocation uses a separate addend,
2573 we just need to add VAL to that addend. Otherwise we need to add
2574 VAL to the relocation field itself. */
2575 if (relocatable && !reloc_entry->howto->partial_inplace)
2576 reloc_entry->addend += val;
2577 else
2578 {
2579 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2580
2581 /* Add in the separate addend, if any. */
2582 val += reloc_entry->addend;
2583
2584 /* Add VAL to the relocation field. */
2585 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2586 location);
2587 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2588 location);
2589 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2590 location);
2591
2592 if (status != bfd_reloc_ok)
2593 return status;
2594 }
2595
2596 if (relocatable)
2597 reloc_entry->address += input_section->output_offset;
2598
2599 return bfd_reloc_ok;
2600 }
2601 \f
2602 /* Swap an entry in a .gptab section. Note that these routines rely
2603 on the equivalence of the two elements of the union. */
2604
2605 static void
2606 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2607 Elf32_gptab *in)
2608 {
2609 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2610 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2611 }
2612
2613 static void
2614 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2615 Elf32_External_gptab *ex)
2616 {
2617 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2618 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2619 }
2620
2621 static void
2622 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2623 Elf32_External_compact_rel *ex)
2624 {
2625 H_PUT_32 (abfd, in->id1, ex->id1);
2626 H_PUT_32 (abfd, in->num, ex->num);
2627 H_PUT_32 (abfd, in->id2, ex->id2);
2628 H_PUT_32 (abfd, in->offset, ex->offset);
2629 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2630 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2631 }
2632
2633 static void
2634 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2635 Elf32_External_crinfo *ex)
2636 {
2637 unsigned long l;
2638
2639 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2640 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2641 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2642 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2643 H_PUT_32 (abfd, l, ex->info);
2644 H_PUT_32 (abfd, in->konst, ex->konst);
2645 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2646 }
2647 \f
2648 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2649 routines swap this structure in and out. They are used outside of
2650 BFD, so they are globally visible. */
2651
2652 void
2653 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2654 Elf32_RegInfo *in)
2655 {
2656 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2657 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2658 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2659 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2660 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2661 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2662 }
2663
2664 void
2665 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2666 Elf32_External_RegInfo *ex)
2667 {
2668 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2669 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2670 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2671 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2672 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2673 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2674 }
2675
2676 /* In the 64 bit ABI, the .MIPS.options section holds register
2677 information in an Elf64_Reginfo structure. These routines swap
2678 them in and out. They are globally visible because they are used
2679 outside of BFD. These routines are here so that gas can call them
2680 without worrying about whether the 64 bit ABI has been included. */
2681
2682 void
2683 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2684 Elf64_Internal_RegInfo *in)
2685 {
2686 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2687 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2688 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2689 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2690 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2691 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2692 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2693 }
2694
2695 void
2696 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2697 Elf64_External_RegInfo *ex)
2698 {
2699 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2700 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2701 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2702 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2703 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2704 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2705 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2706 }
2707
2708 /* Swap in an options header. */
2709
2710 void
2711 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2712 Elf_Internal_Options *in)
2713 {
2714 in->kind = H_GET_8 (abfd, ex->kind);
2715 in->size = H_GET_8 (abfd, ex->size);
2716 in->section = H_GET_16 (abfd, ex->section);
2717 in->info = H_GET_32 (abfd, ex->info);
2718 }
2719
2720 /* Swap out an options header. */
2721
2722 void
2723 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2724 Elf_External_Options *ex)
2725 {
2726 H_PUT_8 (abfd, in->kind, ex->kind);
2727 H_PUT_8 (abfd, in->size, ex->size);
2728 H_PUT_16 (abfd, in->section, ex->section);
2729 H_PUT_32 (abfd, in->info, ex->info);
2730 }
2731
2732 /* Swap in an abiflags structure. */
2733
2734 void
2735 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2736 const Elf_External_ABIFlags_v0 *ex,
2737 Elf_Internal_ABIFlags_v0 *in)
2738 {
2739 in->version = H_GET_16 (abfd, ex->version);
2740 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2741 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2742 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2743 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2744 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2745 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2746 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2747 in->ases = H_GET_32 (abfd, ex->ases);
2748 in->flags1 = H_GET_32 (abfd, ex->flags1);
2749 in->flags2 = H_GET_32 (abfd, ex->flags2);
2750 }
2751
2752 /* Swap out an abiflags structure. */
2753
2754 void
2755 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2756 const Elf_Internal_ABIFlags_v0 *in,
2757 Elf_External_ABIFlags_v0 *ex)
2758 {
2759 H_PUT_16 (abfd, in->version, ex->version);
2760 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2761 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2762 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2763 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2764 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2765 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2766 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2767 H_PUT_32 (abfd, in->ases, ex->ases);
2768 H_PUT_32 (abfd, in->flags1, ex->flags1);
2769 H_PUT_32 (abfd, in->flags2, ex->flags2);
2770 }
2771 \f
2772 /* This function is called via qsort() to sort the dynamic relocation
2773 entries by increasing r_symndx value. */
2774
2775 static int
2776 sort_dynamic_relocs (const void *arg1, const void *arg2)
2777 {
2778 Elf_Internal_Rela int_reloc1;
2779 Elf_Internal_Rela int_reloc2;
2780 int diff;
2781
2782 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2783 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2784
2785 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2786 if (diff != 0)
2787 return diff;
2788
2789 if (int_reloc1.r_offset < int_reloc2.r_offset)
2790 return -1;
2791 if (int_reloc1.r_offset > int_reloc2.r_offset)
2792 return 1;
2793 return 0;
2794 }
2795
2796 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2797
2798 static int
2799 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2800 const void *arg2 ATTRIBUTE_UNUSED)
2801 {
2802 #ifdef BFD64
2803 Elf_Internal_Rela int_reloc1[3];
2804 Elf_Internal_Rela int_reloc2[3];
2805
2806 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2807 (reldyn_sorting_bfd, arg1, int_reloc1);
2808 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2809 (reldyn_sorting_bfd, arg2, int_reloc2);
2810
2811 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2812 return -1;
2813 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2814 return 1;
2815
2816 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2817 return -1;
2818 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2819 return 1;
2820 return 0;
2821 #else
2822 abort ();
2823 #endif
2824 }
2825
2826
2827 /* This routine is used to write out ECOFF debugging external symbol
2828 information. It is called via mips_elf_link_hash_traverse. The
2829 ECOFF external symbol information must match the ELF external
2830 symbol information. Unfortunately, at this point we don't know
2831 whether a symbol is required by reloc information, so the two
2832 tables may wind up being different. We must sort out the external
2833 symbol information before we can set the final size of the .mdebug
2834 section, and we must set the size of the .mdebug section before we
2835 can relocate any sections, and we can't know which symbols are
2836 required by relocation until we relocate the sections.
2837 Fortunately, it is relatively unlikely that any symbol will be
2838 stripped but required by a reloc. In particular, it can not happen
2839 when generating a final executable. */
2840
2841 static bfd_boolean
2842 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2843 {
2844 struct extsym_info *einfo = data;
2845 bfd_boolean strip;
2846 asection *sec, *output_section;
2847
2848 if (h->root.indx == -2)
2849 strip = FALSE;
2850 else if ((h->root.def_dynamic
2851 || h->root.ref_dynamic
2852 || h->root.type == bfd_link_hash_new)
2853 && !h->root.def_regular
2854 && !h->root.ref_regular)
2855 strip = TRUE;
2856 else if (einfo->info->strip == strip_all
2857 || (einfo->info->strip == strip_some
2858 && bfd_hash_lookup (einfo->info->keep_hash,
2859 h->root.root.root.string,
2860 FALSE, FALSE) == NULL))
2861 strip = TRUE;
2862 else
2863 strip = FALSE;
2864
2865 if (strip)
2866 return TRUE;
2867
2868 if (h->esym.ifd == -2)
2869 {
2870 h->esym.jmptbl = 0;
2871 h->esym.cobol_main = 0;
2872 h->esym.weakext = 0;
2873 h->esym.reserved = 0;
2874 h->esym.ifd = ifdNil;
2875 h->esym.asym.value = 0;
2876 h->esym.asym.st = stGlobal;
2877
2878 if (h->root.root.type == bfd_link_hash_undefined
2879 || h->root.root.type == bfd_link_hash_undefweak)
2880 {
2881 const char *name;
2882
2883 /* Use undefined class. Also, set class and type for some
2884 special symbols. */
2885 name = h->root.root.root.string;
2886 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2887 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2888 {
2889 h->esym.asym.sc = scData;
2890 h->esym.asym.st = stLabel;
2891 h->esym.asym.value = 0;
2892 }
2893 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2894 {
2895 h->esym.asym.sc = scAbs;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value =
2898 mips_elf_hash_table (einfo->info)->procedure_count;
2899 }
2900 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2901 {
2902 h->esym.asym.sc = scAbs;
2903 h->esym.asym.st = stLabel;
2904 h->esym.asym.value = elf_gp (einfo->abfd);
2905 }
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
2972 else
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2978
2979 if (hd->needs_lazy_stub)
2980 {
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
3005 einfo->failed = TRUE;
3006 return FALSE;
3007 }
3008
3009 return TRUE;
3010 }
3011
3012 /* A comparison routine used to sort .gptab entries. */
3013
3014 static int
3015 gptab_compare (const void *p1, const void *p2)
3016 {
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021 }
3022 \f
3023 /* Functions to manage the got entry hash table. */
3024
3025 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028 static INLINE hashval_t
3029 mips_elf_hash_bfd_vma (bfd_vma addr)
3030 {
3031 #ifdef BFD64
3032 return addr + (addr >> 32);
3033 #else
3034 return addr;
3035 #endif
3036 }
3037
3038 static hashval_t
3039 mips_elf_got_entry_hash (const void *entry_)
3040 {
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
3043 return (entry->symndx
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
3050 }
3051
3052 static int
3053 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3054 {
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
3058 return (e1->symndx == e2->symndx
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
3065 }
3066
3067 static hashval_t
3068 mips_got_page_ref_hash (const void *ref_)
3069 {
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077 }
3078
3079 static int
3080 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081 {
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091 }
3092
3093 static hashval_t
3094 mips_got_page_entry_hash (const void *entry_)
3095 {
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
3099 return entry->sec->id;
3100 }
3101
3102 static int
3103 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104 {
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
3109 return entry1->sec == entry2->sec;
3110 }
3111 \f
3112 /* Create and return a new mips_got_info structure. */
3113
3114 static struct mips_got_info *
3115 mips_elf_create_got_info (bfd *abfd)
3116 {
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
3131 return NULL;
3132
3133 return g;
3134 }
3135
3136 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139 static struct mips_got_info *
3140 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141 {
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3149 tdata->got = mips_elf_create_got_info (abfd);
3150 return tdata->got;
3151 }
3152
3153 /* Record that ABFD should use output GOT G. */
3154
3155 static void
3156 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157 {
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
3170 }
3171 tdata->got = g;
3172 }
3173
3174 /* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
3177
3178 static asection *
3179 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3180 {
3181 const char *dname;
3182 asection *sreloc;
3183 bfd *dynobj;
3184
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3187 sreloc = bfd_get_linker_section (dynobj, dname);
3188 if (sreloc == NULL && create_p)
3189 {
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
3197 if (sreloc == NULL
3198 || ! bfd_set_section_alignment (dynobj, sreloc,
3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3200 return NULL;
3201 }
3202 return sreloc;
3203 }
3204
3205 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207 static int
3208 mips_elf_reloc_tls_type (unsigned int r_type)
3209 {
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
3219 return GOT_TLS_NONE;
3220 }
3221
3222 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224 static int
3225 mips_tls_got_entries (unsigned int type)
3226 {
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
3236 case GOT_TLS_NONE:
3237 return 0;
3238 }
3239 abort ();
3240 }
3241
3242 /* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246 static int
3247 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249 {
3250 int indx = 0;
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
3254 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3255 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3256 indx = h->dynindx;
3257
3258 if ((bfd_link_pic (info) || indx != 0)
3259 && (h == NULL
3260 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3261 || h->root.type != bfd_link_hash_undefweak))
3262 need_relocs = TRUE;
3263
3264 if (!need_relocs)
3265 return 0;
3266
3267 switch (tls_type)
3268 {
3269 case GOT_TLS_GD:
3270 return indx != 0 ? 2 : 1;
3271
3272 case GOT_TLS_IE:
3273 return 1;
3274
3275 case GOT_TLS_LDM:
3276 return bfd_link_pic (info) ? 1 : 0;
3277
3278 default:
3279 return 0;
3280 }
3281 }
3282
3283 /* Add the number of GOT entries and TLS relocations required by ENTRY
3284 to G. */
3285
3286 static void
3287 mips_elf_count_got_entry (struct bfd_link_info *info,
3288 struct mips_got_info *g,
3289 struct mips_got_entry *entry)
3290 {
3291 if (entry->tls_type)
3292 {
3293 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3294 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3295 entry->symndx < 0
3296 ? &entry->d.h->root : NULL);
3297 }
3298 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3299 g->local_gotno += 1;
3300 else
3301 g->global_gotno += 1;
3302 }
3303
3304 /* Output a simple dynamic relocation into SRELOC. */
3305
3306 static void
3307 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3308 asection *sreloc,
3309 unsigned long reloc_index,
3310 unsigned long indx,
3311 int r_type,
3312 bfd_vma offset)
3313 {
3314 Elf_Internal_Rela rel[3];
3315
3316 memset (rel, 0, sizeof (rel));
3317
3318 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3319 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3320
3321 if (ABI_64_P (output_bfd))
3322 {
3323 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3324 (output_bfd, &rel[0],
3325 (sreloc->contents
3326 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3327 }
3328 else
3329 bfd_elf32_swap_reloc_out
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf32_External_Rel)));
3333 }
3334
3335 /* Initialize a set of TLS GOT entries for one symbol. */
3336
3337 static void
3338 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3339 struct mips_got_entry *entry,
3340 struct mips_elf_link_hash_entry *h,
3341 bfd_vma value)
3342 {
3343 struct mips_elf_link_hash_table *htab;
3344 int indx;
3345 asection *sreloc, *sgot;
3346 bfd_vma got_offset, got_offset2;
3347 bfd_boolean need_relocs = FALSE;
3348
3349 htab = mips_elf_hash_table (info);
3350 if (htab == NULL)
3351 return;
3352
3353 sgot = htab->root.sgot;
3354
3355 indx = 0;
3356 if (h != NULL)
3357 {
3358 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3359
3360 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3361 &h->root)
3362 && (!bfd_link_pic (info)
3363 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3364 indx = h->root.dynindx;
3365 }
3366
3367 if (entry->tls_initialized)
3368 return;
3369
3370 if ((bfd_link_pic (info) || indx != 0)
3371 && (h == NULL
3372 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3373 || h->root.type != bfd_link_hash_undefweak))
3374 need_relocs = TRUE;
3375
3376 /* MINUS_ONE means the symbol is not defined in this object. It may not
3377 be defined at all; assume that the value doesn't matter in that
3378 case. Otherwise complain if we would use the value. */
3379 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3380 || h->root.root.type == bfd_link_hash_undefweak);
3381
3382 /* Emit necessary relocations. */
3383 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3384 got_offset = entry->gotidx;
3385
3386 switch (entry->tls_type)
3387 {
3388 case GOT_TLS_GD:
3389 /* General Dynamic. */
3390 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3391
3392 if (need_relocs)
3393 {
3394 mips_elf_output_dynamic_relocation
3395 (abfd, sreloc, sreloc->reloc_count++, indx,
3396 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3397 sgot->output_offset + sgot->output_section->vma + got_offset);
3398
3399 if (indx)
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset2);
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3406 sgot->contents + got_offset2);
3407 }
3408 else
3409 {
3410 MIPS_ELF_PUT_WORD (abfd, 1,
3411 sgot->contents + got_offset);
3412 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3413 sgot->contents + got_offset2);
3414 }
3415 break;
3416
3417 case GOT_TLS_IE:
3418 /* Initial Exec model. */
3419 if (need_relocs)
3420 {
3421 if (indx == 0)
3422 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3423 sgot->contents + got_offset);
3424 else
3425 MIPS_ELF_PUT_WORD (abfd, 0,
3426 sgot->contents + got_offset);
3427
3428 mips_elf_output_dynamic_relocation
3429 (abfd, sreloc, sreloc->reloc_count++, indx,
3430 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3431 sgot->output_offset + sgot->output_section->vma + got_offset);
3432 }
3433 else
3434 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3435 sgot->contents + got_offset);
3436 break;
3437
3438 case GOT_TLS_LDM:
3439 /* The initial offset is zero, and the LD offsets will include the
3440 bias by DTP_OFFSET. */
3441 MIPS_ELF_PUT_WORD (abfd, 0,
3442 sgot->contents + got_offset
3443 + MIPS_ELF_GOT_SIZE (abfd));
3444
3445 if (!bfd_link_pic (info))
3446 MIPS_ELF_PUT_WORD (abfd, 1,
3447 sgot->contents + got_offset);
3448 else
3449 mips_elf_output_dynamic_relocation
3450 (abfd, sreloc, sreloc->reloc_count++, indx,
3451 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3452 sgot->output_offset + sgot->output_section->vma + got_offset);
3453 break;
3454
3455 default:
3456 abort ();
3457 }
3458
3459 entry->tls_initialized = TRUE;
3460 }
3461
3462 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3463 for global symbol H. .got.plt comes before the GOT, so the offset
3464 will be negative. */
3465
3466 static bfd_vma
3467 mips_elf_gotplt_index (struct bfd_link_info *info,
3468 struct elf_link_hash_entry *h)
3469 {
3470 bfd_vma got_address, got_value;
3471 struct mips_elf_link_hash_table *htab;
3472
3473 htab = mips_elf_hash_table (info);
3474 BFD_ASSERT (htab != NULL);
3475
3476 BFD_ASSERT (h->plt.plist != NULL);
3477 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3478
3479 /* Calculate the address of the associated .got.plt entry. */
3480 got_address = (htab->root.sgotplt->output_section->vma
3481 + htab->root.sgotplt->output_offset
3482 + (h->plt.plist->gotplt_index
3483 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3484
3485 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3486 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3487 + htab->root.hgot->root.u.def.section->output_offset
3488 + htab->root.hgot->root.u.def.value);
3489
3490 return got_address - got_value;
3491 }
3492
3493 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3494 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3495 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3496 offset can be found. */
3497
3498 static bfd_vma
3499 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3500 bfd_vma value, unsigned long r_symndx,
3501 struct mips_elf_link_hash_entry *h, int r_type)
3502 {
3503 struct mips_elf_link_hash_table *htab;
3504 struct mips_got_entry *entry;
3505
3506 htab = mips_elf_hash_table (info);
3507 BFD_ASSERT (htab != NULL);
3508
3509 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3510 r_symndx, h, r_type);
3511 if (!entry)
3512 return MINUS_ONE;
3513
3514 if (entry->tls_type)
3515 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3516 return entry->gotidx;
3517 }
3518
3519 /* Return the GOT index of global symbol H in the primary GOT. */
3520
3521 static bfd_vma
3522 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3523 struct elf_link_hash_entry *h)
3524 {
3525 struct mips_elf_link_hash_table *htab;
3526 long global_got_dynindx;
3527 struct mips_got_info *g;
3528 bfd_vma got_index;
3529
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3532
3533 global_got_dynindx = 0;
3534 if (htab->global_gotsym != NULL)
3535 global_got_dynindx = htab->global_gotsym->dynindx;
3536
3537 /* Once we determine the global GOT entry with the lowest dynamic
3538 symbol table index, we must put all dynamic symbols with greater
3539 indices into the primary GOT. That makes it easy to calculate the
3540 GOT offset. */
3541 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3542 g = mips_elf_bfd_got (obfd, FALSE);
3543 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3544 * MIPS_ELF_GOT_SIZE (obfd));
3545 BFD_ASSERT (got_index < htab->root.sgot->size);
3546
3547 return got_index;
3548 }
3549
3550 /* Return the GOT index for the global symbol indicated by H, which is
3551 referenced by a relocation of type R_TYPE in IBFD. */
3552
3553 static bfd_vma
3554 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3555 struct elf_link_hash_entry *h, int r_type)
3556 {
3557 struct mips_elf_link_hash_table *htab;
3558 struct mips_got_info *g;
3559 struct mips_got_entry lookup, *entry;
3560 bfd_vma gotidx;
3561
3562 htab = mips_elf_hash_table (info);
3563 BFD_ASSERT (htab != NULL);
3564
3565 g = mips_elf_bfd_got (ibfd, FALSE);
3566 BFD_ASSERT (g);
3567
3568 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3569 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3570 return mips_elf_primary_global_got_index (obfd, info, h);
3571
3572 lookup.abfd = ibfd;
3573 lookup.symndx = -1;
3574 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3575 entry = htab_find (g->got_entries, &lookup);
3576 BFD_ASSERT (entry);
3577
3578 gotidx = entry->gotidx;
3579 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3580
3581 if (lookup.tls_type)
3582 {
3583 bfd_vma value = MINUS_ONE;
3584
3585 if ((h->root.type == bfd_link_hash_defined
3586 || h->root.type == bfd_link_hash_defweak)
3587 && h->root.u.def.section->output_section)
3588 value = (h->root.u.def.value
3589 + h->root.u.def.section->output_offset
3590 + h->root.u.def.section->output_section->vma);
3591
3592 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3593 }
3594 return gotidx;
3595 }
3596
3597 /* Find a GOT page entry that points to within 32KB of VALUE. These
3598 entries are supposed to be placed at small offsets in the GOT, i.e.,
3599 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3600 entry could be created. If OFFSETP is nonnull, use it to return the
3601 offset of the GOT entry from VALUE. */
3602
3603 static bfd_vma
3604 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3605 bfd_vma value, bfd_vma *offsetp)
3606 {
3607 bfd_vma page, got_index;
3608 struct mips_got_entry *entry;
3609
3610 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3612 NULL, R_MIPS_GOT_PAGE);
3613
3614 if (!entry)
3615 return MINUS_ONE;
3616
3617 got_index = entry->gotidx;
3618
3619 if (offsetp)
3620 *offsetp = value - entry->d.address;
3621
3622 return got_index;
3623 }
3624
3625 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3626 EXTERNAL is true if the relocation was originally against a global
3627 symbol that binds locally. */
3628
3629 static bfd_vma
3630 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3631 bfd_vma value, bfd_boolean external)
3632 {
3633 struct mips_got_entry *entry;
3634
3635 /* GOT16 relocations against local symbols are followed by a LO16
3636 relocation; those against global symbols are not. Thus if the
3637 symbol was originally local, the GOT16 relocation should load the
3638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3639 if (! external)
3640 value = mips_elf_high (value) << 16;
3641
3642 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3643 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3644 same in all cases. */
3645 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3646 NULL, R_MIPS_GOT16);
3647 if (entry)
3648 return entry->gotidx;
3649 else
3650 return MINUS_ONE;
3651 }
3652
3653 /* Returns the offset for the entry at the INDEXth position
3654 in the GOT. */
3655
3656 static bfd_vma
3657 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3658 bfd *input_bfd, bfd_vma got_index)
3659 {
3660 struct mips_elf_link_hash_table *htab;
3661 asection *sgot;
3662 bfd_vma gp;
3663
3664 htab = mips_elf_hash_table (info);
3665 BFD_ASSERT (htab != NULL);
3666
3667 sgot = htab->root.sgot;
3668 gp = _bfd_get_gp_value (output_bfd)
3669 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3670
3671 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3672 }
3673
3674 /* Create and return a local GOT entry for VALUE, which was calculated
3675 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3676 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3677 instead. */
3678
3679 static struct mips_got_entry *
3680 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3681 bfd *ibfd, bfd_vma value,
3682 unsigned long r_symndx,
3683 struct mips_elf_link_hash_entry *h,
3684 int r_type)
3685 {
3686 struct mips_got_entry lookup, *entry;
3687 void **loc;
3688 struct mips_got_info *g;
3689 struct mips_elf_link_hash_table *htab;
3690 bfd_vma gotidx;
3691
3692 htab = mips_elf_hash_table (info);
3693 BFD_ASSERT (htab != NULL);
3694
3695 g = mips_elf_bfd_got (ibfd, FALSE);
3696 if (g == NULL)
3697 {
3698 g = mips_elf_bfd_got (abfd, FALSE);
3699 BFD_ASSERT (g != NULL);
3700 }
3701
3702 /* This function shouldn't be called for symbols that live in the global
3703 area of the GOT. */
3704 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3705
3706 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3707 if (lookup.tls_type)
3708 {
3709 lookup.abfd = ibfd;
3710 if (tls_ldm_reloc_p (r_type))
3711 {
3712 lookup.symndx = 0;
3713 lookup.d.addend = 0;
3714 }
3715 else if (h == NULL)
3716 {
3717 lookup.symndx = r_symndx;
3718 lookup.d.addend = 0;
3719 }
3720 else
3721 {
3722 lookup.symndx = -1;
3723 lookup.d.h = h;
3724 }
3725
3726 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3727 BFD_ASSERT (entry);
3728
3729 gotidx = entry->gotidx;
3730 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3731
3732 return entry;
3733 }
3734
3735 lookup.abfd = NULL;
3736 lookup.symndx = -1;
3737 lookup.d.address = value;
3738 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3739 if (!loc)
3740 return NULL;
3741
3742 entry = (struct mips_got_entry *) *loc;
3743 if (entry)
3744 return entry;
3745
3746 if (g->assigned_low_gotno > g->assigned_high_gotno)
3747 {
3748 /* We didn't allocate enough space in the GOT. */
3749 _bfd_error_handler
3750 (_("not enough GOT space for local GOT entries"));
3751 bfd_set_error (bfd_error_bad_value);
3752 return NULL;
3753 }
3754
3755 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3756 if (!entry)
3757 return NULL;
3758
3759 if (got16_reloc_p (r_type)
3760 || call16_reloc_p (r_type)
3761 || got_page_reloc_p (r_type)
3762 || got_disp_reloc_p (r_type))
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3764 else
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3766
3767 *entry = lookup;
3768 *loc = entry;
3769
3770 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3771
3772 /* These GOT entries need a dynamic relocation on VxWorks. */
3773 if (htab->is_vxworks)
3774 {
3775 Elf_Internal_Rela outrel;
3776 asection *s;
3777 bfd_byte *rloc;
3778 bfd_vma got_address;
3779
3780 s = mips_elf_rel_dyn_section (info, FALSE);
3781 got_address = (htab->root.sgot->output_section->vma
3782 + htab->root.sgot->output_offset
3783 + entry->gotidx);
3784
3785 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3786 outrel.r_offset = got_address;
3787 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3788 outrel.r_addend = value;
3789 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3790 }
3791
3792 return entry;
3793 }
3794
3795 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3796 The number might be exact or a worst-case estimate, depending on how
3797 much information is available to elf_backend_omit_section_dynsym at
3798 the current linking stage. */
3799
3800 static bfd_size_type
3801 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3802 {
3803 bfd_size_type count;
3804
3805 count = 0;
3806 if (bfd_link_pic (info)
3807 || elf_hash_table (info)->is_relocatable_executable)
3808 {
3809 asection *p;
3810 const struct elf_backend_data *bed;
3811
3812 bed = get_elf_backend_data (output_bfd);
3813 for (p = output_bfd->sections; p ; p = p->next)
3814 if ((p->flags & SEC_EXCLUDE) == 0
3815 && (p->flags & SEC_ALLOC) != 0
3816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3817 ++count;
3818 }
3819 return count;
3820 }
3821
3822 /* Sort the dynamic symbol table so that symbols that need GOT entries
3823 appear towards the end. */
3824
3825 static bfd_boolean
3826 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3827 {
3828 struct mips_elf_link_hash_table *htab;
3829 struct mips_elf_hash_sort_data hsd;
3830 struct mips_got_info *g;
3831
3832 if (elf_hash_table (info)->dynsymcount == 0)
3833 return TRUE;
3834
3835 htab = mips_elf_hash_table (info);
3836 BFD_ASSERT (htab != NULL);
3837
3838 g = htab->got_info;
3839 if (g == NULL)
3840 return TRUE;
3841
3842 hsd.low = NULL;
3843 hsd.max_unref_got_dynindx
3844 = hsd.min_got_dynindx
3845 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3846 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3847 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3848 elf_hash_table (info)),
3849 mips_elf_sort_hash_table_f,
3850 &hsd);
3851
3852 /* There should have been enough room in the symbol table to
3853 accommodate both the GOT and non-GOT symbols. */
3854 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3855 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3856 == elf_hash_table (info)->dynsymcount);
3857 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3858 == g->global_gotno);
3859
3860 /* Now we know which dynamic symbol has the lowest dynamic symbol
3861 table index in the GOT. */
3862 htab->global_gotsym = hsd.low;
3863
3864 return TRUE;
3865 }
3866
3867 /* If H needs a GOT entry, assign it the highest available dynamic
3868 index. Otherwise, assign it the lowest available dynamic
3869 index. */
3870
3871 static bfd_boolean
3872 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3873 {
3874 struct mips_elf_hash_sort_data *hsd = data;
3875
3876 /* Symbols without dynamic symbol table entries aren't interesting
3877 at all. */
3878 if (h->root.dynindx == -1)
3879 return TRUE;
3880
3881 switch (h->global_got_area)
3882 {
3883 case GGA_NONE:
3884 h->root.dynindx = hsd->max_non_got_dynindx++;
3885 break;
3886
3887 case GGA_NORMAL:
3888 h->root.dynindx = --hsd->min_got_dynindx;
3889 hsd->low = (struct elf_link_hash_entry *) h;
3890 break;
3891
3892 case GGA_RELOC_ONLY:
3893 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3894 hsd->low = (struct elf_link_hash_entry *) h;
3895 h->root.dynindx = hsd->max_unref_got_dynindx++;
3896 break;
3897 }
3898
3899 return TRUE;
3900 }
3901
3902 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3903 (which is owned by the caller and shouldn't be added to the
3904 hash table directly). */
3905
3906 static bfd_boolean
3907 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3908 struct mips_got_entry *lookup)
3909 {
3910 struct mips_elf_link_hash_table *htab;
3911 struct mips_got_entry *entry;
3912 struct mips_got_info *g;
3913 void **loc, **bfd_loc;
3914
3915 /* Make sure there's a slot for this entry in the master GOT. */
3916 htab = mips_elf_hash_table (info);
3917 g = htab->got_info;
3918 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3919 if (!loc)
3920 return FALSE;
3921
3922 /* Populate the entry if it isn't already. */
3923 entry = (struct mips_got_entry *) *loc;
3924 if (!entry)
3925 {
3926 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3927 if (!entry)
3928 return FALSE;
3929
3930 lookup->tls_initialized = FALSE;
3931 lookup->gotidx = -1;
3932 *entry = *lookup;
3933 *loc = entry;
3934 }
3935
3936 /* Reuse the same GOT entry for the BFD's GOT. */
3937 g = mips_elf_bfd_got (abfd, TRUE);
3938 if (!g)
3939 return FALSE;
3940
3941 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3942 if (!bfd_loc)
3943 return FALSE;
3944
3945 if (!*bfd_loc)
3946 *bfd_loc = entry;
3947 return TRUE;
3948 }
3949
3950 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3951 entry for it. FOR_CALL is true if the caller is only interested in
3952 using the GOT entry for calls. */
3953
3954 static bfd_boolean
3955 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3956 bfd *abfd, struct bfd_link_info *info,
3957 bfd_boolean for_call, int r_type)
3958 {
3959 struct mips_elf_link_hash_table *htab;
3960 struct mips_elf_link_hash_entry *hmips;
3961 struct mips_got_entry entry;
3962 unsigned char tls_type;
3963
3964 htab = mips_elf_hash_table (info);
3965 BFD_ASSERT (htab != NULL);
3966
3967 hmips = (struct mips_elf_link_hash_entry *) h;
3968 if (!for_call)
3969 hmips->got_only_for_calls = FALSE;
3970
3971 /* A global symbol in the GOT must also be in the dynamic symbol
3972 table. */
3973 if (h->dynindx == -1)
3974 {
3975 switch (ELF_ST_VISIBILITY (h->other))
3976 {
3977 case STV_INTERNAL:
3978 case STV_HIDDEN:
3979 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3980 break;
3981 }
3982 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3983 return FALSE;
3984 }
3985
3986 tls_type = mips_elf_reloc_tls_type (r_type);
3987 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3988 hmips->global_got_area = GGA_NORMAL;
3989
3990 entry.abfd = abfd;
3991 entry.symndx = -1;
3992 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3993 entry.tls_type = tls_type;
3994 return mips_elf_record_got_entry (info, abfd, &entry);
3995 }
3996
3997 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3998 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3999
4000 static bfd_boolean
4001 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4002 struct bfd_link_info *info, int r_type)
4003 {
4004 struct mips_elf_link_hash_table *htab;
4005 struct mips_got_info *g;
4006 struct mips_got_entry entry;
4007
4008 htab = mips_elf_hash_table (info);
4009 BFD_ASSERT (htab != NULL);
4010
4011 g = htab->got_info;
4012 BFD_ASSERT (g != NULL);
4013
4014 entry.abfd = abfd;
4015 entry.symndx = symndx;
4016 entry.d.addend = addend;
4017 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4018 return mips_elf_record_got_entry (info, abfd, &entry);
4019 }
4020
4021 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4022 H is the symbol's hash table entry, or null if SYMNDX is local
4023 to ABFD. */
4024
4025 static bfd_boolean
4026 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4027 long symndx, struct elf_link_hash_entry *h,
4028 bfd_signed_vma addend)
4029 {
4030 struct mips_elf_link_hash_table *htab;
4031 struct mips_got_info *g1, *g2;
4032 struct mips_got_page_ref lookup, *entry;
4033 void **loc, **bfd_loc;
4034
4035 htab = mips_elf_hash_table (info);
4036 BFD_ASSERT (htab != NULL);
4037
4038 g1 = htab->got_info;
4039 BFD_ASSERT (g1 != NULL);
4040
4041 if (h)
4042 {
4043 lookup.symndx = -1;
4044 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4045 }
4046 else
4047 {
4048 lookup.symndx = symndx;
4049 lookup.u.abfd = abfd;
4050 }
4051 lookup.addend = addend;
4052 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4053 if (loc == NULL)
4054 return FALSE;
4055
4056 entry = (struct mips_got_page_ref *) *loc;
4057 if (!entry)
4058 {
4059 entry = bfd_alloc (abfd, sizeof (*entry));
4060 if (!entry)
4061 return FALSE;
4062
4063 *entry = lookup;
4064 *loc = entry;
4065 }
4066
4067 /* Add the same entry to the BFD's GOT. */
4068 g2 = mips_elf_bfd_got (abfd, TRUE);
4069 if (!g2)
4070 return FALSE;
4071
4072 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4073 if (!bfd_loc)
4074 return FALSE;
4075
4076 if (!*bfd_loc)
4077 *bfd_loc = entry;
4078
4079 return TRUE;
4080 }
4081
4082 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4083
4084 static void
4085 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4086 unsigned int n)
4087 {
4088 asection *s;
4089 struct mips_elf_link_hash_table *htab;
4090
4091 htab = mips_elf_hash_table (info);
4092 BFD_ASSERT (htab != NULL);
4093
4094 s = mips_elf_rel_dyn_section (info, FALSE);
4095 BFD_ASSERT (s != NULL);
4096
4097 if (htab->is_vxworks)
4098 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4099 else
4100 {
4101 if (s->size == 0)
4102 {
4103 /* Make room for a null element. */
4104 s->size += MIPS_ELF_REL_SIZE (abfd);
4105 ++s->reloc_count;
4106 }
4107 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4108 }
4109 }
4110 \f
4111 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4112 mips_elf_traverse_got_arg structure. Count the number of GOT
4113 entries and TLS relocs. Set DATA->value to true if we need
4114 to resolve indirect or warning symbols and then recreate the GOT. */
4115
4116 static int
4117 mips_elf_check_recreate_got (void **entryp, void *data)
4118 {
4119 struct mips_got_entry *entry;
4120 struct mips_elf_traverse_got_arg *arg;
4121
4122 entry = (struct mips_got_entry *) *entryp;
4123 arg = (struct mips_elf_traverse_got_arg *) data;
4124 if (entry->abfd != NULL && entry->symndx == -1)
4125 {
4126 struct mips_elf_link_hash_entry *h;
4127
4128 h = entry->d.h;
4129 if (h->root.root.type == bfd_link_hash_indirect
4130 || h->root.root.type == bfd_link_hash_warning)
4131 {
4132 arg->value = TRUE;
4133 return 0;
4134 }
4135 }
4136 mips_elf_count_got_entry (arg->info, arg->g, entry);
4137 return 1;
4138 }
4139
4140 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4141 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4142 converting entries for indirect and warning symbols into entries
4143 for the target symbol. Set DATA->g to null on error. */
4144
4145 static int
4146 mips_elf_recreate_got (void **entryp, void *data)
4147 {
4148 struct mips_got_entry new_entry, *entry;
4149 struct mips_elf_traverse_got_arg *arg;
4150 void **slot;
4151
4152 entry = (struct mips_got_entry *) *entryp;
4153 arg = (struct mips_elf_traverse_got_arg *) data;
4154 if (entry->abfd != NULL
4155 && entry->symndx == -1
4156 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4157 || entry->d.h->root.root.type == bfd_link_hash_warning))
4158 {
4159 struct mips_elf_link_hash_entry *h;
4160
4161 new_entry = *entry;
4162 entry = &new_entry;
4163 h = entry->d.h;
4164 do
4165 {
4166 BFD_ASSERT (h->global_got_area == GGA_NONE);
4167 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4168 }
4169 while (h->root.root.type == bfd_link_hash_indirect
4170 || h->root.root.type == bfd_link_hash_warning);
4171 entry->d.h = h;
4172 }
4173 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4174 if (slot == NULL)
4175 {
4176 arg->g = NULL;
4177 return 0;
4178 }
4179 if (*slot == NULL)
4180 {
4181 if (entry == &new_entry)
4182 {
4183 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4184 if (!entry)
4185 {
4186 arg->g = NULL;
4187 return 0;
4188 }
4189 *entry = new_entry;
4190 }
4191 *slot = entry;
4192 mips_elf_count_got_entry (arg->info, arg->g, entry);
4193 }
4194 return 1;
4195 }
4196
4197 /* Return the maximum number of GOT page entries required for RANGE. */
4198
4199 static bfd_vma
4200 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4201 {
4202 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4203 }
4204
4205 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4206
4207 static bfd_boolean
4208 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4209 asection *sec, bfd_signed_vma addend)
4210 {
4211 struct mips_got_info *g = arg->g;
4212 struct mips_got_page_entry lookup, *entry;
4213 struct mips_got_page_range **range_ptr, *range;
4214 bfd_vma old_pages, new_pages;
4215 void **loc;
4216
4217 /* Find the mips_got_page_entry hash table entry for this section. */
4218 lookup.sec = sec;
4219 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4220 if (loc == NULL)
4221 return FALSE;
4222
4223 /* Create a mips_got_page_entry if this is the first time we've
4224 seen the section. */
4225 entry = (struct mips_got_page_entry *) *loc;
4226 if (!entry)
4227 {
4228 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4229 if (!entry)
4230 return FALSE;
4231
4232 entry->sec = sec;
4233 *loc = entry;
4234 }
4235
4236 /* Skip over ranges whose maximum extent cannot share a page entry
4237 with ADDEND. */
4238 range_ptr = &entry->ranges;
4239 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4240 range_ptr = &(*range_ptr)->next;
4241
4242 /* If we scanned to the end of the list, or found a range whose
4243 minimum extent cannot share a page entry with ADDEND, create
4244 a new singleton range. */
4245 range = *range_ptr;
4246 if (!range || addend < range->min_addend - 0xffff)
4247 {
4248 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4249 if (!range)
4250 return FALSE;
4251
4252 range->next = *range_ptr;
4253 range->min_addend = addend;
4254 range->max_addend = addend;
4255
4256 *range_ptr = range;
4257 entry->num_pages++;
4258 g->page_gotno++;
4259 return TRUE;
4260 }
4261
4262 /* Remember how many pages the old range contributed. */
4263 old_pages = mips_elf_pages_for_range (range);
4264
4265 /* Update the ranges. */
4266 if (addend < range->min_addend)
4267 range->min_addend = addend;
4268 else if (addend > range->max_addend)
4269 {
4270 if (range->next && addend >= range->next->min_addend - 0xffff)
4271 {
4272 old_pages += mips_elf_pages_for_range (range->next);
4273 range->max_addend = range->next->max_addend;
4274 range->next = range->next->next;
4275 }
4276 else
4277 range->max_addend = addend;
4278 }
4279
4280 /* Record any change in the total estimate. */
4281 new_pages = mips_elf_pages_for_range (range);
4282 if (old_pages != new_pages)
4283 {
4284 entry->num_pages += new_pages - old_pages;
4285 g->page_gotno += new_pages - old_pages;
4286 }
4287
4288 return TRUE;
4289 }
4290
4291 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4292 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4293 whether the page reference described by *REFP needs a GOT page entry,
4294 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4295
4296 static bfd_boolean
4297 mips_elf_resolve_got_page_ref (void **refp, void *data)
4298 {
4299 struct mips_got_page_ref *ref;
4300 struct mips_elf_traverse_got_arg *arg;
4301 struct mips_elf_link_hash_table *htab;
4302 asection *sec;
4303 bfd_vma addend;
4304
4305 ref = (struct mips_got_page_ref *) *refp;
4306 arg = (struct mips_elf_traverse_got_arg *) data;
4307 htab = mips_elf_hash_table (arg->info);
4308
4309 if (ref->symndx < 0)
4310 {
4311 struct mips_elf_link_hash_entry *h;
4312
4313 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4314 h = ref->u.h;
4315 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4316 return 1;
4317
4318 /* Ignore undefined symbols; we'll issue an error later if
4319 appropriate. */
4320 if (!((h->root.root.type == bfd_link_hash_defined
4321 || h->root.root.type == bfd_link_hash_defweak)
4322 && h->root.root.u.def.section))
4323 return 1;
4324
4325 sec = h->root.root.u.def.section;
4326 addend = h->root.root.u.def.value + ref->addend;
4327 }
4328 else
4329 {
4330 Elf_Internal_Sym *isym;
4331
4332 /* Read in the symbol. */
4333 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4334 ref->symndx);
4335 if (isym == NULL)
4336 {
4337 arg->g = NULL;
4338 return 0;
4339 }
4340
4341 /* Get the associated input section. */
4342 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4343 if (sec == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* If this is a mergable section, work out the section and offset
4350 of the merged data. For section symbols, the addend specifies
4351 of the offset _of_ the first byte in the data, otherwise it
4352 specifies the offset _from_ the first byte. */
4353 if (sec->flags & SEC_MERGE)
4354 {
4355 void *secinfo;
4356
4357 secinfo = elf_section_data (sec)->sec_info;
4358 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4359 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4360 isym->st_value + ref->addend);
4361 else
4362 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4363 isym->st_value) + ref->addend;
4364 }
4365 else
4366 addend = isym->st_value + ref->addend;
4367 }
4368 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4369 {
4370 arg->g = NULL;
4371 return 0;
4372 }
4373 return 1;
4374 }
4375
4376 /* If any entries in G->got_entries are for indirect or warning symbols,
4377 replace them with entries for the target symbol. Convert g->got_page_refs
4378 into got_page_entry structures and estimate the number of page entries
4379 that they require. */
4380
4381 static bfd_boolean
4382 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4383 struct mips_got_info *g)
4384 {
4385 struct mips_elf_traverse_got_arg tga;
4386 struct mips_got_info oldg;
4387
4388 oldg = *g;
4389
4390 tga.info = info;
4391 tga.g = g;
4392 tga.value = FALSE;
4393 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4394 if (tga.value)
4395 {
4396 *g = oldg;
4397 g->got_entries = htab_create (htab_size (oldg.got_entries),
4398 mips_elf_got_entry_hash,
4399 mips_elf_got_entry_eq, NULL);
4400 if (!g->got_entries)
4401 return FALSE;
4402
4403 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4404 if (!tga.g)
4405 return FALSE;
4406
4407 htab_delete (oldg.got_entries);
4408 }
4409
4410 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4411 mips_got_page_entry_eq, NULL);
4412 if (g->got_page_entries == NULL)
4413 return FALSE;
4414
4415 tga.info = info;
4416 tga.g = g;
4417 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4418
4419 return TRUE;
4420 }
4421
4422 /* Return true if a GOT entry for H should live in the local rather than
4423 global GOT area. */
4424
4425 static bfd_boolean
4426 mips_use_local_got_p (struct bfd_link_info *info,
4427 struct mips_elf_link_hash_entry *h)
4428 {
4429 /* Symbols that aren't in the dynamic symbol table must live in the
4430 local GOT. This includes symbols that are completely undefined
4431 and which therefore don't bind locally. We'll report undefined
4432 symbols later if appropriate. */
4433 if (h->root.dynindx == -1)
4434 return TRUE;
4435
4436 /* Symbols that bind locally can (and in the case of forced-local
4437 symbols, must) live in the local GOT. */
4438 if (h->got_only_for_calls
4439 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4440 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4441 return TRUE;
4442
4443 /* If this is an executable that must provide a definition of the symbol,
4444 either though PLTs or copy relocations, then that address should go in
4445 the local rather than global GOT. */
4446 if (bfd_link_executable (info) && h->has_static_relocs)
4447 return TRUE;
4448
4449 return FALSE;
4450 }
4451
4452 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4453 link_info structure. Decide whether the hash entry needs an entry in
4454 the global part of the primary GOT, setting global_got_area accordingly.
4455 Count the number of global symbols that are in the primary GOT only
4456 because they have relocations against them (reloc_only_gotno). */
4457
4458 static int
4459 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4460 {
4461 struct bfd_link_info *info;
4462 struct mips_elf_link_hash_table *htab;
4463 struct mips_got_info *g;
4464
4465 info = (struct bfd_link_info *) data;
4466 htab = mips_elf_hash_table (info);
4467 g = htab->got_info;
4468 if (h->global_got_area != GGA_NONE)
4469 {
4470 /* Make a final decision about whether the symbol belongs in the
4471 local or global GOT. */
4472 if (mips_use_local_got_p (info, h))
4473 /* The symbol belongs in the local GOT. We no longer need this
4474 entry if it was only used for relocations; those relocations
4475 will be against the null or section symbol instead of H. */
4476 h->global_got_area = GGA_NONE;
4477 else if (htab->is_vxworks
4478 && h->got_only_for_calls
4479 && h->root.plt.plist->mips_offset != MINUS_ONE)
4480 /* On VxWorks, calls can refer directly to the .got.plt entry;
4481 they don't need entries in the regular GOT. .got.plt entries
4482 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4483 h->global_got_area = GGA_NONE;
4484 else if (h->global_got_area == GGA_RELOC_ONLY)
4485 {
4486 g->reloc_only_gotno++;
4487 g->global_gotno++;
4488 }
4489 }
4490 return 1;
4491 }
4492 \f
4493 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4494 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4495
4496 static int
4497 mips_elf_add_got_entry (void **entryp, void *data)
4498 {
4499 struct mips_got_entry *entry;
4500 struct mips_elf_traverse_got_arg *arg;
4501 void **slot;
4502
4503 entry = (struct mips_got_entry *) *entryp;
4504 arg = (struct mips_elf_traverse_got_arg *) data;
4505 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4506 if (!slot)
4507 {
4508 arg->g = NULL;
4509 return 0;
4510 }
4511 if (!*slot)
4512 {
4513 *slot = entry;
4514 mips_elf_count_got_entry (arg->info, arg->g, entry);
4515 }
4516 return 1;
4517 }
4518
4519 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4520 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4521
4522 static int
4523 mips_elf_add_got_page_entry (void **entryp, void *data)
4524 {
4525 struct mips_got_page_entry *entry;
4526 struct mips_elf_traverse_got_arg *arg;
4527 void **slot;
4528
4529 entry = (struct mips_got_page_entry *) *entryp;
4530 arg = (struct mips_elf_traverse_got_arg *) data;
4531 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4532 if (!slot)
4533 {
4534 arg->g = NULL;
4535 return 0;
4536 }
4537 if (!*slot)
4538 {
4539 *slot = entry;
4540 arg->g->page_gotno += entry->num_pages;
4541 }
4542 return 1;
4543 }
4544
4545 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4546 this would lead to overflow, 1 if they were merged successfully,
4547 and 0 if a merge failed due to lack of memory. (These values are chosen
4548 so that nonnegative return values can be returned by a htab_traverse
4549 callback.) */
4550
4551 static int
4552 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4553 struct mips_got_info *to,
4554 struct mips_elf_got_per_bfd_arg *arg)
4555 {
4556 struct mips_elf_traverse_got_arg tga;
4557 unsigned int estimate;
4558
4559 /* Work out how many page entries we would need for the combined GOT. */
4560 estimate = arg->max_pages;
4561 if (estimate >= from->page_gotno + to->page_gotno)
4562 estimate = from->page_gotno + to->page_gotno;
4563
4564 /* And conservatively estimate how many local and TLS entries
4565 would be needed. */
4566 estimate += from->local_gotno + to->local_gotno;
4567 estimate += from->tls_gotno + to->tls_gotno;
4568
4569 /* If we're merging with the primary got, any TLS relocations will
4570 come after the full set of global entries. Otherwise estimate those
4571 conservatively as well. */
4572 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4573 estimate += arg->global_count;
4574 else
4575 estimate += from->global_gotno + to->global_gotno;
4576
4577 /* Bail out if the combined GOT might be too big. */
4578 if (estimate > arg->max_count)
4579 return -1;
4580
4581 /* Transfer the bfd's got information from FROM to TO. */
4582 tga.info = arg->info;
4583 tga.g = to;
4584 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4585 if (!tga.g)
4586 return 0;
4587
4588 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4589 if (!tga.g)
4590 return 0;
4591
4592 mips_elf_replace_bfd_got (abfd, to);
4593 return 1;
4594 }
4595
4596 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4597 as possible of the primary got, since it doesn't require explicit
4598 dynamic relocations, but don't use bfds that would reference global
4599 symbols out of the addressable range. Failing the primary got,
4600 attempt to merge with the current got, or finish the current got
4601 and then make make the new got current. */
4602
4603 static bfd_boolean
4604 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4605 struct mips_elf_got_per_bfd_arg *arg)
4606 {
4607 unsigned int estimate;
4608 int result;
4609
4610 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4611 return FALSE;
4612
4613 /* Work out the number of page, local and TLS entries. */
4614 estimate = arg->max_pages;
4615 if (estimate > g->page_gotno)
4616 estimate = g->page_gotno;
4617 estimate += g->local_gotno + g->tls_gotno;
4618
4619 /* We place TLS GOT entries after both locals and globals. The globals
4620 for the primary GOT may overflow the normal GOT size limit, so be
4621 sure not to merge a GOT which requires TLS with the primary GOT in that
4622 case. This doesn't affect non-primary GOTs. */
4623 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4624
4625 if (estimate <= arg->max_count)
4626 {
4627 /* If we don't have a primary GOT, use it as
4628 a starting point for the primary GOT. */
4629 if (!arg->primary)
4630 {
4631 arg->primary = g;
4632 return TRUE;
4633 }
4634
4635 /* Try merging with the primary GOT. */
4636 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4637 if (result >= 0)
4638 return result;
4639 }
4640
4641 /* If we can merge with the last-created got, do it. */
4642 if (arg->current)
4643 {
4644 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4645 if (result >= 0)
4646 return result;
4647 }
4648
4649 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4650 fits; if it turns out that it doesn't, we'll get relocation
4651 overflows anyway. */
4652 g->next = arg->current;
4653 arg->current = g;
4654
4655 return TRUE;
4656 }
4657
4658 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4659 to GOTIDX, duplicating the entry if it has already been assigned
4660 an index in a different GOT. */
4661
4662 static bfd_boolean
4663 mips_elf_set_gotidx (void **entryp, long gotidx)
4664 {
4665 struct mips_got_entry *entry;
4666
4667 entry = (struct mips_got_entry *) *entryp;
4668 if (entry->gotidx > 0)
4669 {
4670 struct mips_got_entry *new_entry;
4671
4672 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4673 if (!new_entry)
4674 return FALSE;
4675
4676 *new_entry = *entry;
4677 *entryp = new_entry;
4678 entry = new_entry;
4679 }
4680 entry->gotidx = gotidx;
4681 return TRUE;
4682 }
4683
4684 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4685 mips_elf_traverse_got_arg in which DATA->value is the size of one
4686 GOT entry. Set DATA->g to null on failure. */
4687
4688 static int
4689 mips_elf_initialize_tls_index (void **entryp, void *data)
4690 {
4691 struct mips_got_entry *entry;
4692 struct mips_elf_traverse_got_arg *arg;
4693
4694 /* We're only interested in TLS symbols. */
4695 entry = (struct mips_got_entry *) *entryp;
4696 if (entry->tls_type == GOT_TLS_NONE)
4697 return 1;
4698
4699 arg = (struct mips_elf_traverse_got_arg *) data;
4700 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4701 {
4702 arg->g = NULL;
4703 return 0;
4704 }
4705
4706 /* Account for the entries we've just allocated. */
4707 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4708 return 1;
4709 }
4710
4711 /* A htab_traverse callback for GOT entries, where DATA points to a
4712 mips_elf_traverse_got_arg. Set the global_got_area of each global
4713 symbol to DATA->value. */
4714
4715 static int
4716 mips_elf_set_global_got_area (void **entryp, void *data)
4717 {
4718 struct mips_got_entry *entry;
4719 struct mips_elf_traverse_got_arg *arg;
4720
4721 entry = (struct mips_got_entry *) *entryp;
4722 arg = (struct mips_elf_traverse_got_arg *) data;
4723 if (entry->abfd != NULL
4724 && entry->symndx == -1
4725 && entry->d.h->global_got_area != GGA_NONE)
4726 entry->d.h->global_got_area = arg->value;
4727 return 1;
4728 }
4729
4730 /* A htab_traverse callback for secondary GOT entries, where DATA points
4731 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4732 and record the number of relocations they require. DATA->value is
4733 the size of one GOT entry. Set DATA->g to null on failure. */
4734
4735 static int
4736 mips_elf_set_global_gotidx (void **entryp, void *data)
4737 {
4738 struct mips_got_entry *entry;
4739 struct mips_elf_traverse_got_arg *arg;
4740
4741 entry = (struct mips_got_entry *) *entryp;
4742 arg = (struct mips_elf_traverse_got_arg *) data;
4743 if (entry->abfd != NULL
4744 && entry->symndx == -1
4745 && entry->d.h->global_got_area != GGA_NONE)
4746 {
4747 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4748 {
4749 arg->g = NULL;
4750 return 0;
4751 }
4752 arg->g->assigned_low_gotno += 1;
4753
4754 if (bfd_link_pic (arg->info)
4755 || (elf_hash_table (arg->info)->dynamic_sections_created
4756 && entry->d.h->root.def_dynamic
4757 && !entry->d.h->root.def_regular))
4758 arg->g->relocs += 1;
4759 }
4760
4761 return 1;
4762 }
4763
4764 /* A htab_traverse callback for GOT entries for which DATA is the
4765 bfd_link_info. Forbid any global symbols from having traditional
4766 lazy-binding stubs. */
4767
4768 static int
4769 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4770 {
4771 struct bfd_link_info *info;
4772 struct mips_elf_link_hash_table *htab;
4773 struct mips_got_entry *entry;
4774
4775 entry = (struct mips_got_entry *) *entryp;
4776 info = (struct bfd_link_info *) data;
4777 htab = mips_elf_hash_table (info);
4778 BFD_ASSERT (htab != NULL);
4779
4780 if (entry->abfd != NULL
4781 && entry->symndx == -1
4782 && entry->d.h->needs_lazy_stub)
4783 {
4784 entry->d.h->needs_lazy_stub = FALSE;
4785 htab->lazy_stub_count--;
4786 }
4787
4788 return 1;
4789 }
4790
4791 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4792 the primary GOT. */
4793 static bfd_vma
4794 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4795 {
4796 if (!g->next)
4797 return 0;
4798
4799 g = mips_elf_bfd_got (ibfd, FALSE);
4800 if (! g)
4801 return 0;
4802
4803 BFD_ASSERT (g->next);
4804
4805 g = g->next;
4806
4807 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4808 * MIPS_ELF_GOT_SIZE (abfd);
4809 }
4810
4811 /* Turn a single GOT that is too big for 16-bit addressing into
4812 a sequence of GOTs, each one 16-bit addressable. */
4813
4814 static bfd_boolean
4815 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4816 asection *got, bfd_size_type pages)
4817 {
4818 struct mips_elf_link_hash_table *htab;
4819 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4820 struct mips_elf_traverse_got_arg tga;
4821 struct mips_got_info *g, *gg;
4822 unsigned int assign, needed_relocs;
4823 bfd *dynobj, *ibfd;
4824
4825 dynobj = elf_hash_table (info)->dynobj;
4826 htab = mips_elf_hash_table (info);
4827 BFD_ASSERT (htab != NULL);
4828
4829 g = htab->got_info;
4830
4831 got_per_bfd_arg.obfd = abfd;
4832 got_per_bfd_arg.info = info;
4833 got_per_bfd_arg.current = NULL;
4834 got_per_bfd_arg.primary = NULL;
4835 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4836 / MIPS_ELF_GOT_SIZE (abfd))
4837 - htab->reserved_gotno);
4838 got_per_bfd_arg.max_pages = pages;
4839 /* The number of globals that will be included in the primary GOT.
4840 See the calls to mips_elf_set_global_got_area below for more
4841 information. */
4842 got_per_bfd_arg.global_count = g->global_gotno;
4843
4844 /* Try to merge the GOTs of input bfds together, as long as they
4845 don't seem to exceed the maximum GOT size, choosing one of them
4846 to be the primary GOT. */
4847 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4848 {
4849 gg = mips_elf_bfd_got (ibfd, FALSE);
4850 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4851 return FALSE;
4852 }
4853
4854 /* If we do not find any suitable primary GOT, create an empty one. */
4855 if (got_per_bfd_arg.primary == NULL)
4856 g->next = mips_elf_create_got_info (abfd);
4857 else
4858 g->next = got_per_bfd_arg.primary;
4859 g->next->next = got_per_bfd_arg.current;
4860
4861 /* GG is now the master GOT, and G is the primary GOT. */
4862 gg = g;
4863 g = g->next;
4864
4865 /* Map the output bfd to the primary got. That's what we're going
4866 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4867 didn't mark in check_relocs, and we want a quick way to find it.
4868 We can't just use gg->next because we're going to reverse the
4869 list. */
4870 mips_elf_replace_bfd_got (abfd, g);
4871
4872 /* Every symbol that is referenced in a dynamic relocation must be
4873 present in the primary GOT, so arrange for them to appear after
4874 those that are actually referenced. */
4875 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4876 g->global_gotno = gg->global_gotno;
4877
4878 tga.info = info;
4879 tga.value = GGA_RELOC_ONLY;
4880 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4881 tga.value = GGA_NORMAL;
4882 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4883
4884 /* Now go through the GOTs assigning them offset ranges.
4885 [assigned_low_gotno, local_gotno[ will be set to the range of local
4886 entries in each GOT. We can then compute the end of a GOT by
4887 adding local_gotno to global_gotno. We reverse the list and make
4888 it circular since then we'll be able to quickly compute the
4889 beginning of a GOT, by computing the end of its predecessor. To
4890 avoid special cases for the primary GOT, while still preserving
4891 assertions that are valid for both single- and multi-got links,
4892 we arrange for the main got struct to have the right number of
4893 global entries, but set its local_gotno such that the initial
4894 offset of the primary GOT is zero. Remember that the primary GOT
4895 will become the last item in the circular linked list, so it
4896 points back to the master GOT. */
4897 gg->local_gotno = -g->global_gotno;
4898 gg->global_gotno = g->global_gotno;
4899 gg->tls_gotno = 0;
4900 assign = 0;
4901 gg->next = gg;
4902
4903 do
4904 {
4905 struct mips_got_info *gn;
4906
4907 assign += htab->reserved_gotno;
4908 g->assigned_low_gotno = assign;
4909 g->local_gotno += assign;
4910 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4911 g->assigned_high_gotno = g->local_gotno - 1;
4912 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4913
4914 /* Take g out of the direct list, and push it onto the reversed
4915 list that gg points to. g->next is guaranteed to be nonnull after
4916 this operation, as required by mips_elf_initialize_tls_index. */
4917 gn = g->next;
4918 g->next = gg->next;
4919 gg->next = g;
4920
4921 /* Set up any TLS entries. We always place the TLS entries after
4922 all non-TLS entries. */
4923 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4924 tga.g = g;
4925 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4926 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4927 if (!tga.g)
4928 return FALSE;
4929 BFD_ASSERT (g->tls_assigned_gotno == assign);
4930
4931 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4932 g = gn;
4933
4934 /* Forbid global symbols in every non-primary GOT from having
4935 lazy-binding stubs. */
4936 if (g)
4937 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4938 }
4939 while (g);
4940
4941 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4942
4943 needed_relocs = 0;
4944 for (g = gg->next; g && g->next != gg; g = g->next)
4945 {
4946 unsigned int save_assign;
4947
4948 /* Assign offsets to global GOT entries and count how many
4949 relocations they need. */
4950 save_assign = g->assigned_low_gotno;
4951 g->assigned_low_gotno = g->local_gotno;
4952 tga.info = info;
4953 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4954 tga.g = g;
4955 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4956 if (!tga.g)
4957 return FALSE;
4958 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4959 g->assigned_low_gotno = save_assign;
4960
4961 if (bfd_link_pic (info))
4962 {
4963 g->relocs += g->local_gotno - g->assigned_low_gotno;
4964 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4965 + g->next->global_gotno
4966 + g->next->tls_gotno
4967 + htab->reserved_gotno);
4968 }
4969 needed_relocs += g->relocs;
4970 }
4971 needed_relocs += g->relocs;
4972
4973 if (needed_relocs)
4974 mips_elf_allocate_dynamic_relocations (dynobj, info,
4975 needed_relocs);
4976
4977 return TRUE;
4978 }
4979
4980 \f
4981 /* Returns the first relocation of type r_type found, beginning with
4982 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4983
4984 static const Elf_Internal_Rela *
4985 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4986 const Elf_Internal_Rela *relocation,
4987 const Elf_Internal_Rela *relend)
4988 {
4989 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4990
4991 while (relocation < relend)
4992 {
4993 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4994 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4995 return relocation;
4996
4997 ++relocation;
4998 }
4999
5000 /* We didn't find it. */
5001 return NULL;
5002 }
5003
5004 /* Return whether an input relocation is against a local symbol. */
5005
5006 static bfd_boolean
5007 mips_elf_local_relocation_p (bfd *input_bfd,
5008 const Elf_Internal_Rela *relocation,
5009 asection **local_sections)
5010 {
5011 unsigned long r_symndx;
5012 Elf_Internal_Shdr *symtab_hdr;
5013 size_t extsymoff;
5014
5015 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5016 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5017 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5018
5019 if (r_symndx < extsymoff)
5020 return TRUE;
5021 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5022 return TRUE;
5023
5024 return FALSE;
5025 }
5026 \f
5027 /* Sign-extend VALUE, which has the indicated number of BITS. */
5028
5029 bfd_vma
5030 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5031 {
5032 if (value & ((bfd_vma) 1 << (bits - 1)))
5033 /* VALUE is negative. */
5034 value |= ((bfd_vma) - 1) << bits;
5035
5036 return value;
5037 }
5038
5039 /* Return non-zero if the indicated VALUE has overflowed the maximum
5040 range expressible by a signed number with the indicated number of
5041 BITS. */
5042
5043 static bfd_boolean
5044 mips_elf_overflow_p (bfd_vma value, int bits)
5045 {
5046 bfd_signed_vma svalue = (bfd_signed_vma) value;
5047
5048 if (svalue > (1 << (bits - 1)) - 1)
5049 /* The value is too big. */
5050 return TRUE;
5051 else if (svalue < -(1 << (bits - 1)))
5052 /* The value is too small. */
5053 return TRUE;
5054
5055 /* All is well. */
5056 return FALSE;
5057 }
5058
5059 /* Calculate the %high function. */
5060
5061 static bfd_vma
5062 mips_elf_high (bfd_vma value)
5063 {
5064 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5065 }
5066
5067 /* Calculate the %higher function. */
5068
5069 static bfd_vma
5070 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5071 {
5072 #ifdef BFD64
5073 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5074 #else
5075 abort ();
5076 return MINUS_ONE;
5077 #endif
5078 }
5079
5080 /* Calculate the %highest function. */
5081
5082 static bfd_vma
5083 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5084 {
5085 #ifdef BFD64
5086 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5087 #else
5088 abort ();
5089 return MINUS_ONE;
5090 #endif
5091 }
5092 \f
5093 /* Create the .compact_rel section. */
5094
5095 static bfd_boolean
5096 mips_elf_create_compact_rel_section
5097 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5098 {
5099 flagword flags;
5100 register asection *s;
5101
5102 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5103 {
5104 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5105 | SEC_READONLY);
5106
5107 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5108 if (s == NULL
5109 || ! bfd_set_section_alignment (abfd, s,
5110 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5111 return FALSE;
5112
5113 s->size = sizeof (Elf32_External_compact_rel);
5114 }
5115
5116 return TRUE;
5117 }
5118
5119 /* Create the .got section to hold the global offset table. */
5120
5121 static bfd_boolean
5122 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5123 {
5124 flagword flags;
5125 register asection *s;
5126 struct elf_link_hash_entry *h;
5127 struct bfd_link_hash_entry *bh;
5128 struct mips_elf_link_hash_table *htab;
5129
5130 htab = mips_elf_hash_table (info);
5131 BFD_ASSERT (htab != NULL);
5132
5133 /* This function may be called more than once. */
5134 if (htab->root.sgot)
5135 return TRUE;
5136
5137 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5138 | SEC_LINKER_CREATED);
5139
5140 /* We have to use an alignment of 2**4 here because this is hardcoded
5141 in the function stub generation and in the linker script. */
5142 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5143 if (s == NULL
5144 || ! bfd_set_section_alignment (abfd, s, 4))
5145 return FALSE;
5146 htab->root.sgot = s;
5147
5148 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5149 linker script because we don't want to define the symbol if we
5150 are not creating a global offset table. */
5151 bh = NULL;
5152 if (! (_bfd_generic_link_add_one_symbol
5153 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5154 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5155 return FALSE;
5156
5157 h = (struct elf_link_hash_entry *) bh;
5158 h->non_elf = 0;
5159 h->def_regular = 1;
5160 h->type = STT_OBJECT;
5161 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5162 elf_hash_table (info)->hgot = h;
5163
5164 if (bfd_link_pic (info)
5165 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5166 return FALSE;
5167
5168 htab->got_info = mips_elf_create_got_info (abfd);
5169 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5170 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5171
5172 /* We also need a .got.plt section when generating PLTs. */
5173 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5174 SEC_ALLOC | SEC_LOAD
5175 | SEC_HAS_CONTENTS
5176 | SEC_IN_MEMORY
5177 | SEC_LINKER_CREATED);
5178 if (s == NULL)
5179 return FALSE;
5180 htab->root.sgotplt = s;
5181
5182 return TRUE;
5183 }
5184 \f
5185 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5186 __GOTT_INDEX__ symbols. These symbols are only special for
5187 shared objects; they are not used in executables. */
5188
5189 static bfd_boolean
5190 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5191 {
5192 return (mips_elf_hash_table (info)->is_vxworks
5193 && bfd_link_pic (info)
5194 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5195 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5196 }
5197
5198 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5199 require an la25 stub. See also mips_elf_local_pic_function_p,
5200 which determines whether the destination function ever requires a
5201 stub. */
5202
5203 static bfd_boolean
5204 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5205 bfd_boolean target_is_16_bit_code_p)
5206 {
5207 /* We specifically ignore branches and jumps from EF_PIC objects,
5208 where the onus is on the compiler or programmer to perform any
5209 necessary initialization of $25. Sometimes such initialization
5210 is unnecessary; for example, -mno-shared functions do not use
5211 the incoming value of $25, and may therefore be called directly. */
5212 if (PIC_OBJECT_P (input_bfd))
5213 return FALSE;
5214
5215 switch (r_type)
5216 {
5217 case R_MIPS_26:
5218 case R_MIPS_PC16:
5219 case R_MIPS_PC21_S2:
5220 case R_MIPS_PC26_S2:
5221 case R_MICROMIPS_26_S1:
5222 case R_MICROMIPS_PC7_S1:
5223 case R_MICROMIPS_PC10_S1:
5224 case R_MICROMIPS_PC16_S1:
5225 case R_MICROMIPS_PC23_S2:
5226 return TRUE;
5227
5228 case R_MIPS16_26:
5229 return !target_is_16_bit_code_p;
5230
5231 default:
5232 return FALSE;
5233 }
5234 }
5235 \f
5236 /* Calculate the value produced by the RELOCATION (which comes from
5237 the INPUT_BFD). The ADDEND is the addend to use for this
5238 RELOCATION; RELOCATION->R_ADDEND is ignored.
5239
5240 The result of the relocation calculation is stored in VALUEP.
5241 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5242 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5243
5244 This function returns bfd_reloc_continue if the caller need take no
5245 further action regarding this relocation, bfd_reloc_notsupported if
5246 something goes dramatically wrong, bfd_reloc_overflow if an
5247 overflow occurs, and bfd_reloc_ok to indicate success. */
5248
5249 static bfd_reloc_status_type
5250 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5251 asection *input_section,
5252 struct bfd_link_info *info,
5253 const Elf_Internal_Rela *relocation,
5254 bfd_vma addend, reloc_howto_type *howto,
5255 Elf_Internal_Sym *local_syms,
5256 asection **local_sections, bfd_vma *valuep,
5257 const char **namep,
5258 bfd_boolean *cross_mode_jump_p,
5259 bfd_boolean save_addend)
5260 {
5261 /* The eventual value we will return. */
5262 bfd_vma value;
5263 /* The address of the symbol against which the relocation is
5264 occurring. */
5265 bfd_vma symbol = 0;
5266 /* The final GP value to be used for the relocatable, executable, or
5267 shared object file being produced. */
5268 bfd_vma gp;
5269 /* The place (section offset or address) of the storage unit being
5270 relocated. */
5271 bfd_vma p;
5272 /* The value of GP used to create the relocatable object. */
5273 bfd_vma gp0;
5274 /* The offset into the global offset table at which the address of
5275 the relocation entry symbol, adjusted by the addend, resides
5276 during execution. */
5277 bfd_vma g = MINUS_ONE;
5278 /* The section in which the symbol referenced by the relocation is
5279 located. */
5280 asection *sec = NULL;
5281 struct mips_elf_link_hash_entry *h = NULL;
5282 /* TRUE if the symbol referred to by this relocation is a local
5283 symbol. */
5284 bfd_boolean local_p, was_local_p;
5285 /* TRUE if the symbol referred to by this relocation is a section
5286 symbol. */
5287 bfd_boolean section_p = FALSE;
5288 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5289 bfd_boolean gp_disp_p = FALSE;
5290 /* TRUE if the symbol referred to by this relocation is
5291 "__gnu_local_gp". */
5292 bfd_boolean gnu_local_gp_p = FALSE;
5293 Elf_Internal_Shdr *symtab_hdr;
5294 size_t extsymoff;
5295 unsigned long r_symndx;
5296 int r_type;
5297 /* TRUE if overflow occurred during the calculation of the
5298 relocation value. */
5299 bfd_boolean overflowed_p;
5300 /* TRUE if this relocation refers to a MIPS16 function. */
5301 bfd_boolean target_is_16_bit_code_p = FALSE;
5302 bfd_boolean target_is_micromips_code_p = FALSE;
5303 struct mips_elf_link_hash_table *htab;
5304 bfd *dynobj;
5305
5306 dynobj = elf_hash_table (info)->dynobj;
5307 htab = mips_elf_hash_table (info);
5308 BFD_ASSERT (htab != NULL);
5309
5310 /* Parse the relocation. */
5311 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5312 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5313 p = (input_section->output_section->vma
5314 + input_section->output_offset
5315 + relocation->r_offset);
5316
5317 /* Assume that there will be no overflow. */
5318 overflowed_p = FALSE;
5319
5320 /* Figure out whether or not the symbol is local, and get the offset
5321 used in the array of hash table entries. */
5322 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5323 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5324 local_sections);
5325 was_local_p = local_p;
5326 if (! elf_bad_symtab (input_bfd))
5327 extsymoff = symtab_hdr->sh_info;
5328 else
5329 {
5330 /* The symbol table does not follow the rule that local symbols
5331 must come before globals. */
5332 extsymoff = 0;
5333 }
5334
5335 /* Figure out the value of the symbol. */
5336 if (local_p)
5337 {
5338 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5339 Elf_Internal_Sym *sym;
5340
5341 sym = local_syms + r_symndx;
5342 sec = local_sections[r_symndx];
5343
5344 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5345
5346 symbol = sec->output_section->vma + sec->output_offset;
5347 if (!section_p || (sec->flags & SEC_MERGE))
5348 symbol += sym->st_value;
5349 if ((sec->flags & SEC_MERGE) && section_p)
5350 {
5351 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5352 addend -= symbol;
5353 addend += sec->output_section->vma + sec->output_offset;
5354 }
5355
5356 /* MIPS16/microMIPS text labels should be treated as odd. */
5357 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5358 ++symbol;
5359
5360 /* Record the name of this symbol, for our caller. */
5361 *namep = bfd_elf_string_from_elf_section (input_bfd,
5362 symtab_hdr->sh_link,
5363 sym->st_name);
5364 if (*namep == NULL || **namep == '\0')
5365 *namep = bfd_section_name (input_bfd, sec);
5366
5367 /* For relocations against a section symbol and ones against no
5368 symbol (absolute relocations) infer the ISA mode from the addend. */
5369 if (section_p || r_symndx == STN_UNDEF)
5370 {
5371 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5372 target_is_micromips_code_p = (addend & 1) && micromips_p;
5373 }
5374 /* For relocations against an absolute symbol infer the ISA mode
5375 from the value of the symbol plus addend. */
5376 else if (bfd_is_abs_section (sec))
5377 {
5378 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5379 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5380 }
5381 /* Otherwise just use the regular symbol annotation available. */
5382 else
5383 {
5384 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5385 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5386 }
5387 }
5388 else
5389 {
5390 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5391
5392 /* For global symbols we look up the symbol in the hash-table. */
5393 h = ((struct mips_elf_link_hash_entry *)
5394 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5395 /* Find the real hash-table entry for this symbol. */
5396 while (h->root.root.type == bfd_link_hash_indirect
5397 || h->root.root.type == bfd_link_hash_warning)
5398 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5399
5400 /* Record the name of this symbol, for our caller. */
5401 *namep = h->root.root.root.string;
5402
5403 /* See if this is the special _gp_disp symbol. Note that such a
5404 symbol must always be a global symbol. */
5405 if (strcmp (*namep, "_gp_disp") == 0
5406 && ! NEWABI_P (input_bfd))
5407 {
5408 /* Relocations against _gp_disp are permitted only with
5409 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5410 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5411 return bfd_reloc_notsupported;
5412
5413 gp_disp_p = TRUE;
5414 }
5415 /* See if this is the special _gp symbol. Note that such a
5416 symbol must always be a global symbol. */
5417 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5418 gnu_local_gp_p = TRUE;
5419
5420
5421 /* If this symbol is defined, calculate its address. Note that
5422 _gp_disp is a magic symbol, always implicitly defined by the
5423 linker, so it's inappropriate to check to see whether or not
5424 its defined. */
5425 else if ((h->root.root.type == bfd_link_hash_defined
5426 || h->root.root.type == bfd_link_hash_defweak)
5427 && h->root.root.u.def.section)
5428 {
5429 sec = h->root.root.u.def.section;
5430 if (sec->output_section)
5431 symbol = (h->root.root.u.def.value
5432 + sec->output_section->vma
5433 + sec->output_offset);
5434 else
5435 symbol = h->root.root.u.def.value;
5436 }
5437 else if (h->root.root.type == bfd_link_hash_undefweak)
5438 /* We allow relocations against undefined weak symbols, giving
5439 it the value zero, so that you can undefined weak functions
5440 and check to see if they exist by looking at their
5441 addresses. */
5442 symbol = 0;
5443 else if (info->unresolved_syms_in_objects == RM_IGNORE
5444 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5445 symbol = 0;
5446 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5447 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5448 {
5449 /* If this is a dynamic link, we should have created a
5450 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5451 in in _bfd_mips_elf_create_dynamic_sections.
5452 Otherwise, we should define the symbol with a value of 0.
5453 FIXME: It should probably get into the symbol table
5454 somehow as well. */
5455 BFD_ASSERT (! bfd_link_pic (info));
5456 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5457 symbol = 0;
5458 }
5459 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5460 {
5461 /* This is an optional symbol - an Irix specific extension to the
5462 ELF spec. Ignore it for now.
5463 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5464 than simply ignoring them, but we do not handle this for now.
5465 For information see the "64-bit ELF Object File Specification"
5466 which is available from here:
5467 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5468 symbol = 0;
5469 }
5470 else
5471 {
5472 (*info->callbacks->undefined_symbol)
5473 (info, h->root.root.root.string, input_bfd,
5474 input_section, relocation->r_offset,
5475 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5476 || ELF_ST_VISIBILITY (h->root.other));
5477 return bfd_reloc_undefined;
5478 }
5479
5480 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5481 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5482 }
5483
5484 /* If this is a reference to a 16-bit function with a stub, we need
5485 to redirect the relocation to the stub unless:
5486
5487 (a) the relocation is for a MIPS16 JAL;
5488
5489 (b) the relocation is for a MIPS16 PIC call, and there are no
5490 non-MIPS16 uses of the GOT slot; or
5491
5492 (c) the section allows direct references to MIPS16 functions. */
5493 if (r_type != R_MIPS16_26
5494 && !bfd_link_relocatable (info)
5495 && ((h != NULL
5496 && h->fn_stub != NULL
5497 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5498 || (local_p
5499 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5500 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5501 && !section_allows_mips16_refs_p (input_section))
5502 {
5503 /* This is a 32- or 64-bit call to a 16-bit function. We should
5504 have already noticed that we were going to need the
5505 stub. */
5506 if (local_p)
5507 {
5508 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5509 value = 0;
5510 }
5511 else
5512 {
5513 BFD_ASSERT (h->need_fn_stub);
5514 if (h->la25_stub)
5515 {
5516 /* If a LA25 header for the stub itself exists, point to the
5517 prepended LUI/ADDIU sequence. */
5518 sec = h->la25_stub->stub_section;
5519 value = h->la25_stub->offset;
5520 }
5521 else
5522 {
5523 sec = h->fn_stub;
5524 value = 0;
5525 }
5526 }
5527
5528 symbol = sec->output_section->vma + sec->output_offset + value;
5529 /* The target is 16-bit, but the stub isn't. */
5530 target_is_16_bit_code_p = FALSE;
5531 }
5532 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5533 to a standard MIPS function, we need to redirect the call to the stub.
5534 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5535 indirect calls should use an indirect stub instead. */
5536 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5537 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5538 || (local_p
5539 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5540 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5541 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5542 {
5543 if (local_p)
5544 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5545 else
5546 {
5547 /* If both call_stub and call_fp_stub are defined, we can figure
5548 out which one to use by checking which one appears in the input
5549 file. */
5550 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5551 {
5552 asection *o;
5553
5554 sec = NULL;
5555 for (o = input_bfd->sections; o != NULL; o = o->next)
5556 {
5557 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5558 {
5559 sec = h->call_fp_stub;
5560 break;
5561 }
5562 }
5563 if (sec == NULL)
5564 sec = h->call_stub;
5565 }
5566 else if (h->call_stub != NULL)
5567 sec = h->call_stub;
5568 else
5569 sec = h->call_fp_stub;
5570 }
5571
5572 BFD_ASSERT (sec->size > 0);
5573 symbol = sec->output_section->vma + sec->output_offset;
5574 }
5575 /* If this is a direct call to a PIC function, redirect to the
5576 non-PIC stub. */
5577 else if (h != NULL && h->la25_stub
5578 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5579 target_is_16_bit_code_p))
5580 {
5581 symbol = (h->la25_stub->stub_section->output_section->vma
5582 + h->la25_stub->stub_section->output_offset
5583 + h->la25_stub->offset);
5584 if (ELF_ST_IS_MICROMIPS (h->root.other))
5585 symbol |= 1;
5586 }
5587 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5588 entry is used if a standard PLT entry has also been made. In this
5589 case the symbol will have been set by mips_elf_set_plt_sym_value
5590 to point to the standard PLT entry, so redirect to the compressed
5591 one. */
5592 else if ((mips16_branch_reloc_p (r_type)
5593 || micromips_branch_reloc_p (r_type))
5594 && !bfd_link_relocatable (info)
5595 && h != NULL
5596 && h->use_plt_entry
5597 && h->root.plt.plist->comp_offset != MINUS_ONE
5598 && h->root.plt.plist->mips_offset != MINUS_ONE)
5599 {
5600 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5601
5602 sec = htab->root.splt;
5603 symbol = (sec->output_section->vma
5604 + sec->output_offset
5605 + htab->plt_header_size
5606 + htab->plt_mips_offset
5607 + h->root.plt.plist->comp_offset
5608 + 1);
5609
5610 target_is_16_bit_code_p = !micromips_p;
5611 target_is_micromips_code_p = micromips_p;
5612 }
5613
5614 /* Make sure MIPS16 and microMIPS are not used together. */
5615 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5616 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5617 {
5618 _bfd_error_handler
5619 (_("MIPS16 and microMIPS functions cannot call each other"));
5620 return bfd_reloc_notsupported;
5621 }
5622
5623 /* Calls from 16-bit code to 32-bit code and vice versa require the
5624 mode change. However, we can ignore calls to undefined weak symbols,
5625 which should never be executed at runtime. This exception is important
5626 because the assembly writer may have "known" that any definition of the
5627 symbol would be 16-bit code, and that direct jumps were therefore
5628 acceptable. */
5629 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5630 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5631 && ((mips16_branch_reloc_p (r_type)
5632 && !target_is_16_bit_code_p)
5633 || (micromips_branch_reloc_p (r_type)
5634 && !target_is_micromips_code_p)
5635 || ((branch_reloc_p (r_type)
5636 || r_type == R_MIPS_JALR)
5637 && (target_is_16_bit_code_p
5638 || target_is_micromips_code_p))));
5639
5640 local_p = (h == NULL || mips_use_local_got_p (info, h));
5641
5642 gp0 = _bfd_get_gp_value (input_bfd);
5643 gp = _bfd_get_gp_value (abfd);
5644 if (htab->got_info)
5645 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5646
5647 if (gnu_local_gp_p)
5648 symbol = gp;
5649
5650 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5651 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5652 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5653 if (got_page_reloc_p (r_type) && !local_p)
5654 {
5655 r_type = (micromips_reloc_p (r_type)
5656 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5657 addend = 0;
5658 }
5659
5660 /* If we haven't already determined the GOT offset, and we're going
5661 to need it, get it now. */
5662 switch (r_type)
5663 {
5664 case R_MIPS16_CALL16:
5665 case R_MIPS16_GOT16:
5666 case R_MIPS_CALL16:
5667 case R_MIPS_GOT16:
5668 case R_MIPS_GOT_DISP:
5669 case R_MIPS_GOT_HI16:
5670 case R_MIPS_CALL_HI16:
5671 case R_MIPS_GOT_LO16:
5672 case R_MIPS_CALL_LO16:
5673 case R_MICROMIPS_CALL16:
5674 case R_MICROMIPS_GOT16:
5675 case R_MICROMIPS_GOT_DISP:
5676 case R_MICROMIPS_GOT_HI16:
5677 case R_MICROMIPS_CALL_HI16:
5678 case R_MICROMIPS_GOT_LO16:
5679 case R_MICROMIPS_CALL_LO16:
5680 case R_MIPS_TLS_GD:
5681 case R_MIPS_TLS_GOTTPREL:
5682 case R_MIPS_TLS_LDM:
5683 case R_MIPS16_TLS_GD:
5684 case R_MIPS16_TLS_GOTTPREL:
5685 case R_MIPS16_TLS_LDM:
5686 case R_MICROMIPS_TLS_GD:
5687 case R_MICROMIPS_TLS_GOTTPREL:
5688 case R_MICROMIPS_TLS_LDM:
5689 /* Find the index into the GOT where this value is located. */
5690 if (tls_ldm_reloc_p (r_type))
5691 {
5692 g = mips_elf_local_got_index (abfd, input_bfd, info,
5693 0, 0, NULL, r_type);
5694 if (g == MINUS_ONE)
5695 return bfd_reloc_outofrange;
5696 }
5697 else if (!local_p)
5698 {
5699 /* On VxWorks, CALL relocations should refer to the .got.plt
5700 entry, which is initialized to point at the PLT stub. */
5701 if (htab->is_vxworks
5702 && (call_hi16_reloc_p (r_type)
5703 || call_lo16_reloc_p (r_type)
5704 || call16_reloc_p (r_type)))
5705 {
5706 BFD_ASSERT (addend == 0);
5707 BFD_ASSERT (h->root.needs_plt);
5708 g = mips_elf_gotplt_index (info, &h->root);
5709 }
5710 else
5711 {
5712 BFD_ASSERT (addend == 0);
5713 g = mips_elf_global_got_index (abfd, info, input_bfd,
5714 &h->root, r_type);
5715 if (!TLS_RELOC_P (r_type)
5716 && !elf_hash_table (info)->dynamic_sections_created)
5717 /* This is a static link. We must initialize the GOT entry. */
5718 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5719 }
5720 }
5721 else if (!htab->is_vxworks
5722 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5723 /* The calculation below does not involve "g". */
5724 break;
5725 else
5726 {
5727 g = mips_elf_local_got_index (abfd, input_bfd, info,
5728 symbol + addend, r_symndx, h, r_type);
5729 if (g == MINUS_ONE)
5730 return bfd_reloc_outofrange;
5731 }
5732
5733 /* Convert GOT indices to actual offsets. */
5734 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5735 break;
5736 }
5737
5738 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5739 symbols are resolved by the loader. Add them to .rela.dyn. */
5740 if (h != NULL && is_gott_symbol (info, &h->root))
5741 {
5742 Elf_Internal_Rela outrel;
5743 bfd_byte *loc;
5744 asection *s;
5745
5746 s = mips_elf_rel_dyn_section (info, FALSE);
5747 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5748
5749 outrel.r_offset = (input_section->output_section->vma
5750 + input_section->output_offset
5751 + relocation->r_offset);
5752 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5753 outrel.r_addend = addend;
5754 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5755
5756 /* If we've written this relocation for a readonly section,
5757 we need to set DF_TEXTREL again, so that we do not delete the
5758 DT_TEXTREL tag. */
5759 if (MIPS_ELF_READONLY_SECTION (input_section))
5760 info->flags |= DF_TEXTREL;
5761
5762 *valuep = 0;
5763 return bfd_reloc_ok;
5764 }
5765
5766 /* Figure out what kind of relocation is being performed. */
5767 switch (r_type)
5768 {
5769 case R_MIPS_NONE:
5770 return bfd_reloc_continue;
5771
5772 case R_MIPS_16:
5773 if (howto->partial_inplace)
5774 addend = _bfd_mips_elf_sign_extend (addend, 16);
5775 value = symbol + addend;
5776 overflowed_p = mips_elf_overflow_p (value, 16);
5777 break;
5778
5779 case R_MIPS_32:
5780 case R_MIPS_REL32:
5781 case R_MIPS_64:
5782 if ((bfd_link_pic (info)
5783 || (htab->root.dynamic_sections_created
5784 && h != NULL
5785 && h->root.def_dynamic
5786 && !h->root.def_regular
5787 && !h->has_static_relocs))
5788 && r_symndx != STN_UNDEF
5789 && (h == NULL
5790 || h->root.root.type != bfd_link_hash_undefweak
5791 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5792 && (input_section->flags & SEC_ALLOC) != 0)
5793 {
5794 /* If we're creating a shared library, then we can't know
5795 where the symbol will end up. So, we create a relocation
5796 record in the output, and leave the job up to the dynamic
5797 linker. We must do the same for executable references to
5798 shared library symbols, unless we've decided to use copy
5799 relocs or PLTs instead. */
5800 value = addend;
5801 if (!mips_elf_create_dynamic_relocation (abfd,
5802 info,
5803 relocation,
5804 h,
5805 sec,
5806 symbol,
5807 &value,
5808 input_section))
5809 return bfd_reloc_undefined;
5810 }
5811 else
5812 {
5813 if (r_type != R_MIPS_REL32)
5814 value = symbol + addend;
5815 else
5816 value = addend;
5817 }
5818 value &= howto->dst_mask;
5819 break;
5820
5821 case R_MIPS_PC32:
5822 value = symbol + addend - p;
5823 value &= howto->dst_mask;
5824 break;
5825
5826 case R_MIPS16_26:
5827 /* The calculation for R_MIPS16_26 is just the same as for an
5828 R_MIPS_26. It's only the storage of the relocated field into
5829 the output file that's different. That's handled in
5830 mips_elf_perform_relocation. So, we just fall through to the
5831 R_MIPS_26 case here. */
5832 case R_MIPS_26:
5833 case R_MICROMIPS_26_S1:
5834 {
5835 unsigned int shift;
5836
5837 /* Shift is 2, unusually, for microMIPS JALX. */
5838 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5839
5840 if (howto->partial_inplace && !section_p)
5841 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5842 else
5843 value = addend;
5844 value += symbol;
5845
5846 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5847 be the correct ISA mode selector except for weak undefined
5848 symbols. */
5849 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5850 && (*cross_mode_jump_p
5851 ? (value & 3) != (r_type == R_MIPS_26)
5852 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5853 return bfd_reloc_outofrange;
5854
5855 value >>= shift;
5856 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5857 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5858 value &= howto->dst_mask;
5859 }
5860 break;
5861
5862 case R_MIPS_TLS_DTPREL_HI16:
5863 case R_MIPS16_TLS_DTPREL_HI16:
5864 case R_MICROMIPS_TLS_DTPREL_HI16:
5865 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5866 & howto->dst_mask);
5867 break;
5868
5869 case R_MIPS_TLS_DTPREL_LO16:
5870 case R_MIPS_TLS_DTPREL32:
5871 case R_MIPS_TLS_DTPREL64:
5872 case R_MIPS16_TLS_DTPREL_LO16:
5873 case R_MICROMIPS_TLS_DTPREL_LO16:
5874 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5875 break;
5876
5877 case R_MIPS_TLS_TPREL_HI16:
5878 case R_MIPS16_TLS_TPREL_HI16:
5879 case R_MICROMIPS_TLS_TPREL_HI16:
5880 value = (mips_elf_high (addend + symbol - tprel_base (info))
5881 & howto->dst_mask);
5882 break;
5883
5884 case R_MIPS_TLS_TPREL_LO16:
5885 case R_MIPS_TLS_TPREL32:
5886 case R_MIPS_TLS_TPREL64:
5887 case R_MIPS16_TLS_TPREL_LO16:
5888 case R_MICROMIPS_TLS_TPREL_LO16:
5889 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5890 break;
5891
5892 case R_MIPS_HI16:
5893 case R_MIPS16_HI16:
5894 case R_MICROMIPS_HI16:
5895 if (!gp_disp_p)
5896 {
5897 value = mips_elf_high (addend + symbol);
5898 value &= howto->dst_mask;
5899 }
5900 else
5901 {
5902 /* For MIPS16 ABI code we generate this sequence
5903 0: li $v0,%hi(_gp_disp)
5904 4: addiupc $v1,%lo(_gp_disp)
5905 8: sll $v0,16
5906 12: addu $v0,$v1
5907 14: move $gp,$v0
5908 So the offsets of hi and lo relocs are the same, but the
5909 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5910 ADDIUPC clears the low two bits of the instruction address,
5911 so the base is ($t9 + 4) & ~3. */
5912 if (r_type == R_MIPS16_HI16)
5913 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5914 /* The microMIPS .cpload sequence uses the same assembly
5915 instructions as the traditional psABI version, but the
5916 incoming $t9 has the low bit set. */
5917 else if (r_type == R_MICROMIPS_HI16)
5918 value = mips_elf_high (addend + gp - p - 1);
5919 else
5920 value = mips_elf_high (addend + gp - p);
5921 }
5922 break;
5923
5924 case R_MIPS_LO16:
5925 case R_MIPS16_LO16:
5926 case R_MICROMIPS_LO16:
5927 case R_MICROMIPS_HI0_LO16:
5928 if (!gp_disp_p)
5929 value = (symbol + addend) & howto->dst_mask;
5930 else
5931 {
5932 /* See the comment for R_MIPS16_HI16 above for the reason
5933 for this conditional. */
5934 if (r_type == R_MIPS16_LO16)
5935 value = addend + gp - (p & ~(bfd_vma) 0x3);
5936 else if (r_type == R_MICROMIPS_LO16
5937 || r_type == R_MICROMIPS_HI0_LO16)
5938 value = addend + gp - p + 3;
5939 else
5940 value = addend + gp - p + 4;
5941 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5942 for overflow. But, on, say, IRIX5, relocations against
5943 _gp_disp are normally generated from the .cpload
5944 pseudo-op. It generates code that normally looks like
5945 this:
5946
5947 lui $gp,%hi(_gp_disp)
5948 addiu $gp,$gp,%lo(_gp_disp)
5949 addu $gp,$gp,$t9
5950
5951 Here $t9 holds the address of the function being called,
5952 as required by the MIPS ELF ABI. The R_MIPS_LO16
5953 relocation can easily overflow in this situation, but the
5954 R_MIPS_HI16 relocation will handle the overflow.
5955 Therefore, we consider this a bug in the MIPS ABI, and do
5956 not check for overflow here. */
5957 }
5958 break;
5959
5960 case R_MIPS_LITERAL:
5961 case R_MICROMIPS_LITERAL:
5962 /* Because we don't merge literal sections, we can handle this
5963 just like R_MIPS_GPREL16. In the long run, we should merge
5964 shared literals, and then we will need to additional work
5965 here. */
5966
5967 /* Fall through. */
5968
5969 case R_MIPS16_GPREL:
5970 /* The R_MIPS16_GPREL performs the same calculation as
5971 R_MIPS_GPREL16, but stores the relocated bits in a different
5972 order. We don't need to do anything special here; the
5973 differences are handled in mips_elf_perform_relocation. */
5974 case R_MIPS_GPREL16:
5975 case R_MICROMIPS_GPREL7_S2:
5976 case R_MICROMIPS_GPREL16:
5977 /* Only sign-extend the addend if it was extracted from the
5978 instruction. If the addend was separate, leave it alone,
5979 otherwise we may lose significant bits. */
5980 if (howto->partial_inplace)
5981 addend = _bfd_mips_elf_sign_extend (addend, 16);
5982 value = symbol + addend - gp;
5983 /* If the symbol was local, any earlier relocatable links will
5984 have adjusted its addend with the gp offset, so compensate
5985 for that now. Don't do it for symbols forced local in this
5986 link, though, since they won't have had the gp offset applied
5987 to them before. */
5988 if (was_local_p)
5989 value += gp0;
5990 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5991 overflowed_p = mips_elf_overflow_p (value, 16);
5992 break;
5993
5994 case R_MIPS16_GOT16:
5995 case R_MIPS16_CALL16:
5996 case R_MIPS_GOT16:
5997 case R_MIPS_CALL16:
5998 case R_MICROMIPS_GOT16:
5999 case R_MICROMIPS_CALL16:
6000 /* VxWorks does not have separate local and global semantics for
6001 R_MIPS*_GOT16; every relocation evaluates to "G". */
6002 if (!htab->is_vxworks && local_p)
6003 {
6004 value = mips_elf_got16_entry (abfd, input_bfd, info,
6005 symbol + addend, !was_local_p);
6006 if (value == MINUS_ONE)
6007 return bfd_reloc_outofrange;
6008 value
6009 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6010 overflowed_p = mips_elf_overflow_p (value, 16);
6011 break;
6012 }
6013
6014 /* Fall through. */
6015
6016 case R_MIPS_TLS_GD:
6017 case R_MIPS_TLS_GOTTPREL:
6018 case R_MIPS_TLS_LDM:
6019 case R_MIPS_GOT_DISP:
6020 case R_MIPS16_TLS_GD:
6021 case R_MIPS16_TLS_GOTTPREL:
6022 case R_MIPS16_TLS_LDM:
6023 case R_MICROMIPS_TLS_GD:
6024 case R_MICROMIPS_TLS_GOTTPREL:
6025 case R_MICROMIPS_TLS_LDM:
6026 case R_MICROMIPS_GOT_DISP:
6027 value = g;
6028 overflowed_p = mips_elf_overflow_p (value, 16);
6029 break;
6030
6031 case R_MIPS_GPREL32:
6032 value = (addend + symbol + gp0 - gp);
6033 if (!save_addend)
6034 value &= howto->dst_mask;
6035 break;
6036
6037 case R_MIPS_PC16:
6038 case R_MIPS_GNU_REL16_S2:
6039 if (howto->partial_inplace)
6040 addend = _bfd_mips_elf_sign_extend (addend, 18);
6041
6042 /* No need to exclude weak undefined symbols here as they resolve
6043 to 0 and never set `*cross_mode_jump_p', so this alignment check
6044 will never trigger for them. */
6045 if (*cross_mode_jump_p
6046 ? ((symbol + addend) & 3) != 1
6047 : ((symbol + addend) & 3) != 0)
6048 return bfd_reloc_outofrange;
6049
6050 value = symbol + addend - p;
6051 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6052 overflowed_p = mips_elf_overflow_p (value, 18);
6053 value >>= howto->rightshift;
6054 value &= howto->dst_mask;
6055 break;
6056
6057 case R_MIPS16_PC16_S1:
6058 if (howto->partial_inplace)
6059 addend = _bfd_mips_elf_sign_extend (addend, 17);
6060
6061 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6062 && (*cross_mode_jump_p
6063 ? ((symbol + addend) & 3) != 0
6064 : ((symbol + addend) & 1) == 0))
6065 return bfd_reloc_outofrange;
6066
6067 value = symbol + addend - p;
6068 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6069 overflowed_p = mips_elf_overflow_p (value, 17);
6070 value >>= howto->rightshift;
6071 value &= howto->dst_mask;
6072 break;
6073
6074 case R_MIPS_PC21_S2:
6075 if (howto->partial_inplace)
6076 addend = _bfd_mips_elf_sign_extend (addend, 23);
6077
6078 if ((symbol + addend) & 3)
6079 return bfd_reloc_outofrange;
6080
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 23);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6087
6088 case R_MIPS_PC26_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 28);
6091
6092 if ((symbol + addend) & 3)
6093 return bfd_reloc_outofrange;
6094
6095 value = symbol + addend - p;
6096 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6097 overflowed_p = mips_elf_overflow_p (value, 28);
6098 value >>= howto->rightshift;
6099 value &= howto->dst_mask;
6100 break;
6101
6102 case R_MIPS_PC18_S3:
6103 if (howto->partial_inplace)
6104 addend = _bfd_mips_elf_sign_extend (addend, 21);
6105
6106 if ((symbol + addend) & 7)
6107 return bfd_reloc_outofrange;
6108
6109 value = symbol + addend - ((p | 7) ^ 7);
6110 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6111 overflowed_p = mips_elf_overflow_p (value, 21);
6112 value >>= howto->rightshift;
6113 value &= howto->dst_mask;
6114 break;
6115
6116 case R_MIPS_PC19_S2:
6117 if (howto->partial_inplace)
6118 addend = _bfd_mips_elf_sign_extend (addend, 21);
6119
6120 if ((symbol + addend) & 3)
6121 return bfd_reloc_outofrange;
6122
6123 value = symbol + addend - p;
6124 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6125 overflowed_p = mips_elf_overflow_p (value, 21);
6126 value >>= howto->rightshift;
6127 value &= howto->dst_mask;
6128 break;
6129
6130 case R_MIPS_PCHI16:
6131 value = mips_elf_high (symbol + addend - p);
6132 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6133 overflowed_p = mips_elf_overflow_p (value, 16);
6134 value &= howto->dst_mask;
6135 break;
6136
6137 case R_MIPS_PCLO16:
6138 if (howto->partial_inplace)
6139 addend = _bfd_mips_elf_sign_extend (addend, 16);
6140 value = symbol + addend - p;
6141 value &= howto->dst_mask;
6142 break;
6143
6144 case R_MICROMIPS_PC7_S1:
6145 if (howto->partial_inplace)
6146 addend = _bfd_mips_elf_sign_extend (addend, 8);
6147
6148 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6149 && (*cross_mode_jump_p
6150 ? ((symbol + addend + 2) & 3) != 0
6151 : ((symbol + addend + 2) & 1) == 0))
6152 return bfd_reloc_outofrange;
6153
6154 value = symbol + addend - p;
6155 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6156 overflowed_p = mips_elf_overflow_p (value, 8);
6157 value >>= howto->rightshift;
6158 value &= howto->dst_mask;
6159 break;
6160
6161 case R_MICROMIPS_PC10_S1:
6162 if (howto->partial_inplace)
6163 addend = _bfd_mips_elf_sign_extend (addend, 11);
6164
6165 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6166 && (*cross_mode_jump_p
6167 ? ((symbol + addend + 2) & 3) != 0
6168 : ((symbol + addend + 2) & 1) == 0))
6169 return bfd_reloc_outofrange;
6170
6171 value = symbol + addend - p;
6172 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6173 overflowed_p = mips_elf_overflow_p (value, 11);
6174 value >>= howto->rightshift;
6175 value &= howto->dst_mask;
6176 break;
6177
6178 case R_MICROMIPS_PC16_S1:
6179 if (howto->partial_inplace)
6180 addend = _bfd_mips_elf_sign_extend (addend, 17);
6181
6182 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6183 && (*cross_mode_jump_p
6184 ? ((symbol + addend) & 3) != 0
6185 : ((symbol + addend) & 1) == 0))
6186 return bfd_reloc_outofrange;
6187
6188 value = symbol + addend - p;
6189 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6190 overflowed_p = mips_elf_overflow_p (value, 17);
6191 value >>= howto->rightshift;
6192 value &= howto->dst_mask;
6193 break;
6194
6195 case R_MICROMIPS_PC23_S2:
6196 if (howto->partial_inplace)
6197 addend = _bfd_mips_elf_sign_extend (addend, 25);
6198 value = symbol + addend - ((p | 3) ^ 3);
6199 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6200 overflowed_p = mips_elf_overflow_p (value, 25);
6201 value >>= howto->rightshift;
6202 value &= howto->dst_mask;
6203 break;
6204
6205 case R_MIPS_GOT_HI16:
6206 case R_MIPS_CALL_HI16:
6207 case R_MICROMIPS_GOT_HI16:
6208 case R_MICROMIPS_CALL_HI16:
6209 /* We're allowed to handle these two relocations identically.
6210 The dynamic linker is allowed to handle the CALL relocations
6211 differently by creating a lazy evaluation stub. */
6212 value = g;
6213 value = mips_elf_high (value);
6214 value &= howto->dst_mask;
6215 break;
6216
6217 case R_MIPS_GOT_LO16:
6218 case R_MIPS_CALL_LO16:
6219 case R_MICROMIPS_GOT_LO16:
6220 case R_MICROMIPS_CALL_LO16:
6221 value = g & howto->dst_mask;
6222 break;
6223
6224 case R_MIPS_GOT_PAGE:
6225 case R_MICROMIPS_GOT_PAGE:
6226 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6227 if (value == MINUS_ONE)
6228 return bfd_reloc_outofrange;
6229 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6230 overflowed_p = mips_elf_overflow_p (value, 16);
6231 break;
6232
6233 case R_MIPS_GOT_OFST:
6234 case R_MICROMIPS_GOT_OFST:
6235 if (local_p)
6236 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6237 else
6238 value = addend;
6239 overflowed_p = mips_elf_overflow_p (value, 16);
6240 break;
6241
6242 case R_MIPS_SUB:
6243 case R_MICROMIPS_SUB:
6244 value = symbol - addend;
6245 value &= howto->dst_mask;
6246 break;
6247
6248 case R_MIPS_HIGHER:
6249 case R_MICROMIPS_HIGHER:
6250 value = mips_elf_higher (addend + symbol);
6251 value &= howto->dst_mask;
6252 break;
6253
6254 case R_MIPS_HIGHEST:
6255 case R_MICROMIPS_HIGHEST:
6256 value = mips_elf_highest (addend + symbol);
6257 value &= howto->dst_mask;
6258 break;
6259
6260 case R_MIPS_SCN_DISP:
6261 case R_MICROMIPS_SCN_DISP:
6262 value = symbol + addend - sec->output_offset;
6263 value &= howto->dst_mask;
6264 break;
6265
6266 case R_MIPS_JALR:
6267 case R_MICROMIPS_JALR:
6268 /* This relocation is only a hint. In some cases, we optimize
6269 it into a bal instruction. But we don't try to optimize
6270 when the symbol does not resolve locally. */
6271 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6272 return bfd_reloc_continue;
6273 value = symbol + addend;
6274 break;
6275
6276 case R_MIPS_PJUMP:
6277 case R_MIPS_GNU_VTINHERIT:
6278 case R_MIPS_GNU_VTENTRY:
6279 /* We don't do anything with these at present. */
6280 return bfd_reloc_continue;
6281
6282 default:
6283 /* An unrecognized relocation type. */
6284 return bfd_reloc_notsupported;
6285 }
6286
6287 /* Store the VALUE for our caller. */
6288 *valuep = value;
6289 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6290 }
6291
6292 /* Obtain the field relocated by RELOCATION. */
6293
6294 static bfd_vma
6295 mips_elf_obtain_contents (reloc_howto_type *howto,
6296 const Elf_Internal_Rela *relocation,
6297 bfd *input_bfd, bfd_byte *contents)
6298 {
6299 bfd_vma x = 0;
6300 bfd_byte *location = contents + relocation->r_offset;
6301 unsigned int size = bfd_get_reloc_size (howto);
6302
6303 /* Obtain the bytes. */
6304 if (size != 0)
6305 x = bfd_get (8 * size, input_bfd, location);
6306
6307 return x;
6308 }
6309
6310 /* It has been determined that the result of the RELOCATION is the
6311 VALUE. Use HOWTO to place VALUE into the output file at the
6312 appropriate position. The SECTION is the section to which the
6313 relocation applies.
6314 CROSS_MODE_JUMP_P is true if the relocation field
6315 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6316
6317 Returns FALSE if anything goes wrong. */
6318
6319 static bfd_boolean
6320 mips_elf_perform_relocation (struct bfd_link_info *info,
6321 reloc_howto_type *howto,
6322 const Elf_Internal_Rela *relocation,
6323 bfd_vma value, bfd *input_bfd,
6324 asection *input_section, bfd_byte *contents,
6325 bfd_boolean cross_mode_jump_p)
6326 {
6327 bfd_vma x;
6328 bfd_byte *location;
6329 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6330 unsigned int size;
6331
6332 /* Figure out where the relocation is occurring. */
6333 location = contents + relocation->r_offset;
6334
6335 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6336
6337 /* Obtain the current value. */
6338 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6339
6340 /* Clear the field we are setting. */
6341 x &= ~howto->dst_mask;
6342
6343 /* Set the field. */
6344 x |= (value & howto->dst_mask);
6345
6346 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6347 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6348 {
6349 bfd_vma opcode = x >> 26;
6350
6351 if (r_type == R_MIPS16_26 ? opcode == 0x7
6352 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6353 : opcode == 0x1d)
6354 {
6355 info->callbacks->einfo
6356 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6357 input_bfd, input_section, relocation->r_offset);
6358 return TRUE;
6359 }
6360 }
6361 if (cross_mode_jump_p && jal_reloc_p (r_type))
6362 {
6363 bfd_boolean ok;
6364 bfd_vma opcode = x >> 26;
6365 bfd_vma jalx_opcode;
6366
6367 /* Check to see if the opcode is already JAL or JALX. */
6368 if (r_type == R_MIPS16_26)
6369 {
6370 ok = ((opcode == 0x6) || (opcode == 0x7));
6371 jalx_opcode = 0x7;
6372 }
6373 else if (r_type == R_MICROMIPS_26_S1)
6374 {
6375 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6376 jalx_opcode = 0x3c;
6377 }
6378 else
6379 {
6380 ok = ((opcode == 0x3) || (opcode == 0x1d));
6381 jalx_opcode = 0x1d;
6382 }
6383
6384 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6385 convert J or JALS to JALX. */
6386 if (!ok)
6387 {
6388 info->callbacks->einfo
6389 (_("%X%H: Unsupported jump between ISA modes; "
6390 "consider recompiling with interlinking enabled\n"),
6391 input_bfd, input_section, relocation->r_offset);
6392 return TRUE;
6393 }
6394
6395 /* Make this the JALX opcode. */
6396 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6397 }
6398 else if (cross_mode_jump_p && b_reloc_p (r_type))
6399 {
6400 bfd_boolean ok = FALSE;
6401 bfd_vma opcode = x >> 16;
6402 bfd_vma jalx_opcode = 0;
6403 bfd_vma addr;
6404 bfd_vma dest;
6405
6406 if (r_type == R_MICROMIPS_PC16_S1)
6407 {
6408 ok = opcode == 0x4060;
6409 jalx_opcode = 0x3c;
6410 value <<= 1;
6411 }
6412 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6413 {
6414 ok = opcode == 0x411;
6415 jalx_opcode = 0x1d;
6416 value <<= 2;
6417 }
6418
6419 if (bfd_link_pic (info) || !ok)
6420 {
6421 info->callbacks->einfo
6422 (_("%X%H: Unsupported branch between ISA modes\n"),
6423 input_bfd, input_section, relocation->r_offset);
6424 return TRUE;
6425 }
6426
6427 addr = (input_section->output_section->vma
6428 + input_section->output_offset
6429 + relocation->r_offset
6430 + 4);
6431 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6432
6433 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6434 {
6435 info->callbacks->einfo
6436 (_("%X%H: Cannot convert branch between ISA modes "
6437 "to JALX: relocation out of range\n"),
6438 input_bfd, input_section, relocation->r_offset);
6439 return TRUE;
6440 }
6441
6442 /* Make this the JALX opcode. */
6443 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6444 }
6445
6446 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6447 range. */
6448 if (!bfd_link_relocatable (info)
6449 && !cross_mode_jump_p
6450 && ((JAL_TO_BAL_P (input_bfd)
6451 && r_type == R_MIPS_26
6452 && (x >> 26) == 0x3) /* jal addr */
6453 || (JALR_TO_BAL_P (input_bfd)
6454 && r_type == R_MIPS_JALR
6455 && x == 0x0320f809) /* jalr t9 */
6456 || (JR_TO_B_P (input_bfd)
6457 && r_type == R_MIPS_JALR
6458 && x == 0x03200008))) /* jr t9 */
6459 {
6460 bfd_vma addr;
6461 bfd_vma dest;
6462 bfd_signed_vma off;
6463
6464 addr = (input_section->output_section->vma
6465 + input_section->output_offset
6466 + relocation->r_offset
6467 + 4);
6468 if (r_type == R_MIPS_26)
6469 dest = (value << 2) | ((addr >> 28) << 28);
6470 else
6471 dest = value;
6472 off = dest - addr;
6473 if (off <= 0x1ffff && off >= -0x20000)
6474 {
6475 if (x == 0x03200008) /* jr t9 */
6476 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6477 else
6478 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6479 }
6480 }
6481
6482 /* Put the value into the output. */
6483 size = bfd_get_reloc_size (howto);
6484 if (size != 0)
6485 bfd_put (8 * size, input_bfd, x, location);
6486
6487 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6488 location);
6489
6490 return TRUE;
6491 }
6492 \f
6493 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6494 is the original relocation, which is now being transformed into a
6495 dynamic relocation. The ADDENDP is adjusted if necessary; the
6496 caller should store the result in place of the original addend. */
6497
6498 static bfd_boolean
6499 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6500 struct bfd_link_info *info,
6501 const Elf_Internal_Rela *rel,
6502 struct mips_elf_link_hash_entry *h,
6503 asection *sec, bfd_vma symbol,
6504 bfd_vma *addendp, asection *input_section)
6505 {
6506 Elf_Internal_Rela outrel[3];
6507 asection *sreloc;
6508 bfd *dynobj;
6509 int r_type;
6510 long indx;
6511 bfd_boolean defined_p;
6512 struct mips_elf_link_hash_table *htab;
6513
6514 htab = mips_elf_hash_table (info);
6515 BFD_ASSERT (htab != NULL);
6516
6517 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6518 dynobj = elf_hash_table (info)->dynobj;
6519 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6520 BFD_ASSERT (sreloc != NULL);
6521 BFD_ASSERT (sreloc->contents != NULL);
6522 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6523 < sreloc->size);
6524
6525 outrel[0].r_offset =
6526 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6527 if (ABI_64_P (output_bfd))
6528 {
6529 outrel[1].r_offset =
6530 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6531 outrel[2].r_offset =
6532 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6533 }
6534
6535 if (outrel[0].r_offset == MINUS_ONE)
6536 /* The relocation field has been deleted. */
6537 return TRUE;
6538
6539 if (outrel[0].r_offset == MINUS_TWO)
6540 {
6541 /* The relocation field has been converted into a relative value of
6542 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6543 the field to be fully relocated, so add in the symbol's value. */
6544 *addendp += symbol;
6545 return TRUE;
6546 }
6547
6548 /* We must now calculate the dynamic symbol table index to use
6549 in the relocation. */
6550 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6551 {
6552 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6553 indx = h->root.dynindx;
6554 if (SGI_COMPAT (output_bfd))
6555 defined_p = h->root.def_regular;
6556 else
6557 /* ??? glibc's ld.so just adds the final GOT entry to the
6558 relocation field. It therefore treats relocs against
6559 defined symbols in the same way as relocs against
6560 undefined symbols. */
6561 defined_p = FALSE;
6562 }
6563 else
6564 {
6565 if (sec != NULL && bfd_is_abs_section (sec))
6566 indx = 0;
6567 else if (sec == NULL || sec->owner == NULL)
6568 {
6569 bfd_set_error (bfd_error_bad_value);
6570 return FALSE;
6571 }
6572 else
6573 {
6574 indx = elf_section_data (sec->output_section)->dynindx;
6575 if (indx == 0)
6576 {
6577 asection *osec = htab->root.text_index_section;
6578 indx = elf_section_data (osec)->dynindx;
6579 }
6580 if (indx == 0)
6581 abort ();
6582 }
6583
6584 /* Instead of generating a relocation using the section
6585 symbol, we may as well make it a fully relative
6586 relocation. We want to avoid generating relocations to
6587 local symbols because we used to generate them
6588 incorrectly, without adding the original symbol value,
6589 which is mandated by the ABI for section symbols. In
6590 order to give dynamic loaders and applications time to
6591 phase out the incorrect use, we refrain from emitting
6592 section-relative relocations. It's not like they're
6593 useful, after all. This should be a bit more efficient
6594 as well. */
6595 /* ??? Although this behavior is compatible with glibc's ld.so,
6596 the ABI says that relocations against STN_UNDEF should have
6597 a symbol value of 0. Irix rld honors this, so relocations
6598 against STN_UNDEF have no effect. */
6599 if (!SGI_COMPAT (output_bfd))
6600 indx = 0;
6601 defined_p = TRUE;
6602 }
6603
6604 /* If the relocation was previously an absolute relocation and
6605 this symbol will not be referred to by the relocation, we must
6606 adjust it by the value we give it in the dynamic symbol table.
6607 Otherwise leave the job up to the dynamic linker. */
6608 if (defined_p && r_type != R_MIPS_REL32)
6609 *addendp += symbol;
6610
6611 if (htab->is_vxworks)
6612 /* VxWorks uses non-relative relocations for this. */
6613 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6614 else
6615 /* The relocation is always an REL32 relocation because we don't
6616 know where the shared library will wind up at load-time. */
6617 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6618 R_MIPS_REL32);
6619
6620 /* For strict adherence to the ABI specification, we should
6621 generate a R_MIPS_64 relocation record by itself before the
6622 _REL32/_64 record as well, such that the addend is read in as
6623 a 64-bit value (REL32 is a 32-bit relocation, after all).
6624 However, since none of the existing ELF64 MIPS dynamic
6625 loaders seems to care, we don't waste space with these
6626 artificial relocations. If this turns out to not be true,
6627 mips_elf_allocate_dynamic_relocation() should be tweaked so
6628 as to make room for a pair of dynamic relocations per
6629 invocation if ABI_64_P, and here we should generate an
6630 additional relocation record with R_MIPS_64 by itself for a
6631 NULL symbol before this relocation record. */
6632 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6633 ABI_64_P (output_bfd)
6634 ? R_MIPS_64
6635 : R_MIPS_NONE);
6636 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6637
6638 /* Adjust the output offset of the relocation to reference the
6639 correct location in the output file. */
6640 outrel[0].r_offset += (input_section->output_section->vma
6641 + input_section->output_offset);
6642 outrel[1].r_offset += (input_section->output_section->vma
6643 + input_section->output_offset);
6644 outrel[2].r_offset += (input_section->output_section->vma
6645 + input_section->output_offset);
6646
6647 /* Put the relocation back out. We have to use the special
6648 relocation outputter in the 64-bit case since the 64-bit
6649 relocation format is non-standard. */
6650 if (ABI_64_P (output_bfd))
6651 {
6652 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6653 (output_bfd, &outrel[0],
6654 (sreloc->contents
6655 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6656 }
6657 else if (htab->is_vxworks)
6658 {
6659 /* VxWorks uses RELA rather than REL dynamic relocations. */
6660 outrel[0].r_addend = *addendp;
6661 bfd_elf32_swap_reloca_out
6662 (output_bfd, &outrel[0],
6663 (sreloc->contents
6664 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6665 }
6666 else
6667 bfd_elf32_swap_reloc_out
6668 (output_bfd, &outrel[0],
6669 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6670
6671 /* We've now added another relocation. */
6672 ++sreloc->reloc_count;
6673
6674 /* Make sure the output section is writable. The dynamic linker
6675 will be writing to it. */
6676 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6677 |= SHF_WRITE;
6678
6679 /* On IRIX5, make an entry of compact relocation info. */
6680 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6681 {
6682 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6683 bfd_byte *cr;
6684
6685 if (scpt)
6686 {
6687 Elf32_crinfo cptrel;
6688
6689 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6690 cptrel.vaddr = (rel->r_offset
6691 + input_section->output_section->vma
6692 + input_section->output_offset);
6693 if (r_type == R_MIPS_REL32)
6694 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6695 else
6696 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6697 mips_elf_set_cr_dist2to (cptrel, 0);
6698 cptrel.konst = *addendp;
6699
6700 cr = (scpt->contents
6701 + sizeof (Elf32_External_compact_rel));
6702 mips_elf_set_cr_relvaddr (cptrel, 0);
6703 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6704 ((Elf32_External_crinfo *) cr
6705 + scpt->reloc_count));
6706 ++scpt->reloc_count;
6707 }
6708 }
6709
6710 /* If we've written this relocation for a readonly section,
6711 we need to set DF_TEXTREL again, so that we do not delete the
6712 DT_TEXTREL tag. */
6713 if (MIPS_ELF_READONLY_SECTION (input_section))
6714 info->flags |= DF_TEXTREL;
6715
6716 return TRUE;
6717 }
6718 \f
6719 /* Return the MACH for a MIPS e_flags value. */
6720
6721 unsigned long
6722 _bfd_elf_mips_mach (flagword flags)
6723 {
6724 switch (flags & EF_MIPS_MACH)
6725 {
6726 case E_MIPS_MACH_3900:
6727 return bfd_mach_mips3900;
6728
6729 case E_MIPS_MACH_4010:
6730 return bfd_mach_mips4010;
6731
6732 case E_MIPS_MACH_4100:
6733 return bfd_mach_mips4100;
6734
6735 case E_MIPS_MACH_4111:
6736 return bfd_mach_mips4111;
6737
6738 case E_MIPS_MACH_4120:
6739 return bfd_mach_mips4120;
6740
6741 case E_MIPS_MACH_4650:
6742 return bfd_mach_mips4650;
6743
6744 case E_MIPS_MACH_5400:
6745 return bfd_mach_mips5400;
6746
6747 case E_MIPS_MACH_5500:
6748 return bfd_mach_mips5500;
6749
6750 case E_MIPS_MACH_5900:
6751 return bfd_mach_mips5900;
6752
6753 case E_MIPS_MACH_9000:
6754 return bfd_mach_mips9000;
6755
6756 case E_MIPS_MACH_SB1:
6757 return bfd_mach_mips_sb1;
6758
6759 case E_MIPS_MACH_LS2E:
6760 return bfd_mach_mips_loongson_2e;
6761
6762 case E_MIPS_MACH_LS2F:
6763 return bfd_mach_mips_loongson_2f;
6764
6765 case E_MIPS_MACH_LS3A:
6766 return bfd_mach_mips_loongson_3a;
6767
6768 case E_MIPS_MACH_OCTEON3:
6769 return bfd_mach_mips_octeon3;
6770
6771 case E_MIPS_MACH_OCTEON2:
6772 return bfd_mach_mips_octeon2;
6773
6774 case E_MIPS_MACH_OCTEON:
6775 return bfd_mach_mips_octeon;
6776
6777 case E_MIPS_MACH_XLR:
6778 return bfd_mach_mips_xlr;
6779
6780 default:
6781 switch (flags & EF_MIPS_ARCH)
6782 {
6783 default:
6784 case E_MIPS_ARCH_1:
6785 return bfd_mach_mips3000;
6786
6787 case E_MIPS_ARCH_2:
6788 return bfd_mach_mips6000;
6789
6790 case E_MIPS_ARCH_3:
6791 return bfd_mach_mips4000;
6792
6793 case E_MIPS_ARCH_4:
6794 return bfd_mach_mips8000;
6795
6796 case E_MIPS_ARCH_5:
6797 return bfd_mach_mips5;
6798
6799 case E_MIPS_ARCH_32:
6800 return bfd_mach_mipsisa32;
6801
6802 case E_MIPS_ARCH_64:
6803 return bfd_mach_mipsisa64;
6804
6805 case E_MIPS_ARCH_32R2:
6806 return bfd_mach_mipsisa32r2;
6807
6808 case E_MIPS_ARCH_64R2:
6809 return bfd_mach_mipsisa64r2;
6810
6811 case E_MIPS_ARCH_32R6:
6812 return bfd_mach_mipsisa32r6;
6813
6814 case E_MIPS_ARCH_64R6:
6815 return bfd_mach_mipsisa64r6;
6816 }
6817 }
6818
6819 return 0;
6820 }
6821
6822 /* Return printable name for ABI. */
6823
6824 static INLINE char *
6825 elf_mips_abi_name (bfd *abfd)
6826 {
6827 flagword flags;
6828
6829 flags = elf_elfheader (abfd)->e_flags;
6830 switch (flags & EF_MIPS_ABI)
6831 {
6832 case 0:
6833 if (ABI_N32_P (abfd))
6834 return "N32";
6835 else if (ABI_64_P (abfd))
6836 return "64";
6837 else
6838 return "none";
6839 case E_MIPS_ABI_O32:
6840 return "O32";
6841 case E_MIPS_ABI_O64:
6842 return "O64";
6843 case E_MIPS_ABI_EABI32:
6844 return "EABI32";
6845 case E_MIPS_ABI_EABI64:
6846 return "EABI64";
6847 default:
6848 return "unknown abi";
6849 }
6850 }
6851 \f
6852 /* MIPS ELF uses two common sections. One is the usual one, and the
6853 other is for small objects. All the small objects are kept
6854 together, and then referenced via the gp pointer, which yields
6855 faster assembler code. This is what we use for the small common
6856 section. This approach is copied from ecoff.c. */
6857 static asection mips_elf_scom_section;
6858 static asymbol mips_elf_scom_symbol;
6859 static asymbol *mips_elf_scom_symbol_ptr;
6860
6861 /* MIPS ELF also uses an acommon section, which represents an
6862 allocated common symbol which may be overridden by a
6863 definition in a shared library. */
6864 static asection mips_elf_acom_section;
6865 static asymbol mips_elf_acom_symbol;
6866 static asymbol *mips_elf_acom_symbol_ptr;
6867
6868 /* This is used for both the 32-bit and the 64-bit ABI. */
6869
6870 void
6871 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6872 {
6873 elf_symbol_type *elfsym;
6874
6875 /* Handle the special MIPS section numbers that a symbol may use. */
6876 elfsym = (elf_symbol_type *) asym;
6877 switch (elfsym->internal_elf_sym.st_shndx)
6878 {
6879 case SHN_MIPS_ACOMMON:
6880 /* This section is used in a dynamically linked executable file.
6881 It is an allocated common section. The dynamic linker can
6882 either resolve these symbols to something in a shared
6883 library, or it can just leave them here. For our purposes,
6884 we can consider these symbols to be in a new section. */
6885 if (mips_elf_acom_section.name == NULL)
6886 {
6887 /* Initialize the acommon section. */
6888 mips_elf_acom_section.name = ".acommon";
6889 mips_elf_acom_section.flags = SEC_ALLOC;
6890 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6891 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6892 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6893 mips_elf_acom_symbol.name = ".acommon";
6894 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6895 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6896 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6897 }
6898 asym->section = &mips_elf_acom_section;
6899 break;
6900
6901 case SHN_COMMON:
6902 /* Common symbols less than the GP size are automatically
6903 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6904 if (asym->value > elf_gp_size (abfd)
6905 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6906 || IRIX_COMPAT (abfd) == ict_irix6)
6907 break;
6908 /* Fall through. */
6909 case SHN_MIPS_SCOMMON:
6910 if (mips_elf_scom_section.name == NULL)
6911 {
6912 /* Initialize the small common section. */
6913 mips_elf_scom_section.name = ".scommon";
6914 mips_elf_scom_section.flags = SEC_IS_COMMON;
6915 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6916 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6917 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6918 mips_elf_scom_symbol.name = ".scommon";
6919 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6920 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6921 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6922 }
6923 asym->section = &mips_elf_scom_section;
6924 asym->value = elfsym->internal_elf_sym.st_size;
6925 break;
6926
6927 case SHN_MIPS_SUNDEFINED:
6928 asym->section = bfd_und_section_ptr;
6929 break;
6930
6931 case SHN_MIPS_TEXT:
6932 {
6933 asection *section = bfd_get_section_by_name (abfd, ".text");
6934
6935 if (section != NULL)
6936 {
6937 asym->section = section;
6938 /* MIPS_TEXT is a bit special, the address is not an offset
6939 to the base of the .text section. So substract the section
6940 base address to make it an offset. */
6941 asym->value -= section->vma;
6942 }
6943 }
6944 break;
6945
6946 case SHN_MIPS_DATA:
6947 {
6948 asection *section = bfd_get_section_by_name (abfd, ".data");
6949
6950 if (section != NULL)
6951 {
6952 asym->section = section;
6953 /* MIPS_DATA is a bit special, the address is not an offset
6954 to the base of the .data section. So substract the section
6955 base address to make it an offset. */
6956 asym->value -= section->vma;
6957 }
6958 }
6959 break;
6960 }
6961
6962 /* If this is an odd-valued function symbol, assume it's a MIPS16
6963 or microMIPS one. */
6964 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6965 && (asym->value & 1) != 0)
6966 {
6967 asym->value--;
6968 if (MICROMIPS_P (abfd))
6969 elfsym->internal_elf_sym.st_other
6970 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6971 else
6972 elfsym->internal_elf_sym.st_other
6973 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6974 }
6975 }
6976 \f
6977 /* Implement elf_backend_eh_frame_address_size. This differs from
6978 the default in the way it handles EABI64.
6979
6980 EABI64 was originally specified as an LP64 ABI, and that is what
6981 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6982 historically accepted the combination of -mabi=eabi and -mlong32,
6983 and this ILP32 variation has become semi-official over time.
6984 Both forms use elf32 and have pointer-sized FDE addresses.
6985
6986 If an EABI object was generated by GCC 4.0 or above, it will have
6987 an empty .gcc_compiled_longXX section, where XX is the size of longs
6988 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6989 have no special marking to distinguish them from LP64 objects.
6990
6991 We don't want users of the official LP64 ABI to be punished for the
6992 existence of the ILP32 variant, but at the same time, we don't want
6993 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6994 We therefore take the following approach:
6995
6996 - If ABFD contains a .gcc_compiled_longXX section, use it to
6997 determine the pointer size.
6998
6999 - Otherwise check the type of the first relocation. Assume that
7000 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7001
7002 - Otherwise punt.
7003
7004 The second check is enough to detect LP64 objects generated by pre-4.0
7005 compilers because, in the kind of output generated by those compilers,
7006 the first relocation will be associated with either a CIE personality
7007 routine or an FDE start address. Furthermore, the compilers never
7008 used a special (non-pointer) encoding for this ABI.
7009
7010 Checking the relocation type should also be safe because there is no
7011 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7012 did so. */
7013
7014 unsigned int
7015 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7016 {
7017 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7018 return 8;
7019 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7020 {
7021 bfd_boolean long32_p, long64_p;
7022
7023 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7024 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7025 if (long32_p && long64_p)
7026 return 0;
7027 if (long32_p)
7028 return 4;
7029 if (long64_p)
7030 return 8;
7031
7032 if (sec->reloc_count > 0
7033 && elf_section_data (sec)->relocs != NULL
7034 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7035 == R_MIPS_64))
7036 return 8;
7037
7038 return 0;
7039 }
7040 return 4;
7041 }
7042 \f
7043 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7044 relocations against two unnamed section symbols to resolve to the
7045 same address. For example, if we have code like:
7046
7047 lw $4,%got_disp(.data)($gp)
7048 lw $25,%got_disp(.text)($gp)
7049 jalr $25
7050
7051 then the linker will resolve both relocations to .data and the program
7052 will jump there rather than to .text.
7053
7054 We can work around this problem by giving names to local section symbols.
7055 This is also what the MIPSpro tools do. */
7056
7057 bfd_boolean
7058 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7059 {
7060 return SGI_COMPAT (abfd);
7061 }
7062 \f
7063 /* Work over a section just before writing it out. This routine is
7064 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7065 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7066 a better way. */
7067
7068 bfd_boolean
7069 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7070 {
7071 if (hdr->sh_type == SHT_MIPS_REGINFO
7072 && hdr->sh_size > 0)
7073 {
7074 bfd_byte buf[4];
7075
7076 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7077 BFD_ASSERT (hdr->contents == NULL);
7078
7079 if (bfd_seek (abfd,
7080 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7081 SEEK_SET) != 0)
7082 return FALSE;
7083 H_PUT_32 (abfd, elf_gp (abfd), buf);
7084 if (bfd_bwrite (buf, 4, abfd) != 4)
7085 return FALSE;
7086 }
7087
7088 if (hdr->sh_type == SHT_MIPS_OPTIONS
7089 && hdr->bfd_section != NULL
7090 && mips_elf_section_data (hdr->bfd_section) != NULL
7091 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7092 {
7093 bfd_byte *contents, *l, *lend;
7094
7095 /* We stored the section contents in the tdata field in the
7096 set_section_contents routine. We save the section contents
7097 so that we don't have to read them again.
7098 At this point we know that elf_gp is set, so we can look
7099 through the section contents to see if there is an
7100 ODK_REGINFO structure. */
7101
7102 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7103 l = contents;
7104 lend = contents + hdr->sh_size;
7105 while (l + sizeof (Elf_External_Options) <= lend)
7106 {
7107 Elf_Internal_Options intopt;
7108
7109 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7110 &intopt);
7111 if (intopt.size < sizeof (Elf_External_Options))
7112 {
7113 _bfd_error_handler
7114 /* xgettext:c-format */
7115 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7116 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7117 break;
7118 }
7119 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7120 {
7121 bfd_byte buf[8];
7122
7123 if (bfd_seek (abfd,
7124 (hdr->sh_offset
7125 + (l - contents)
7126 + sizeof (Elf_External_Options)
7127 + (sizeof (Elf64_External_RegInfo) - 8)),
7128 SEEK_SET) != 0)
7129 return FALSE;
7130 H_PUT_64 (abfd, elf_gp (abfd), buf);
7131 if (bfd_bwrite (buf, 8, abfd) != 8)
7132 return FALSE;
7133 }
7134 else if (intopt.kind == ODK_REGINFO)
7135 {
7136 bfd_byte buf[4];
7137
7138 if (bfd_seek (abfd,
7139 (hdr->sh_offset
7140 + (l - contents)
7141 + sizeof (Elf_External_Options)
7142 + (sizeof (Elf32_External_RegInfo) - 4)),
7143 SEEK_SET) != 0)
7144 return FALSE;
7145 H_PUT_32 (abfd, elf_gp (abfd), buf);
7146 if (bfd_bwrite (buf, 4, abfd) != 4)
7147 return FALSE;
7148 }
7149 l += intopt.size;
7150 }
7151 }
7152
7153 if (hdr->bfd_section != NULL)
7154 {
7155 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7156
7157 /* .sbss is not handled specially here because the GNU/Linux
7158 prelinker can convert .sbss from NOBITS to PROGBITS and
7159 changing it back to NOBITS breaks the binary. The entry in
7160 _bfd_mips_elf_special_sections will ensure the correct flags
7161 are set on .sbss if BFD creates it without reading it from an
7162 input file, and without special handling here the flags set
7163 on it in an input file will be followed. */
7164 if (strcmp (name, ".sdata") == 0
7165 || strcmp (name, ".lit8") == 0
7166 || strcmp (name, ".lit4") == 0)
7167 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7168 else if (strcmp (name, ".srdata") == 0)
7169 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7170 else if (strcmp (name, ".compact_rel") == 0)
7171 hdr->sh_flags = 0;
7172 else if (strcmp (name, ".rtproc") == 0)
7173 {
7174 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7175 {
7176 unsigned int adjust;
7177
7178 adjust = hdr->sh_size % hdr->sh_addralign;
7179 if (adjust != 0)
7180 hdr->sh_size += hdr->sh_addralign - adjust;
7181 }
7182 }
7183 }
7184
7185 return TRUE;
7186 }
7187
7188 /* Handle a MIPS specific section when reading an object file. This
7189 is called when elfcode.h finds a section with an unknown type.
7190 This routine supports both the 32-bit and 64-bit ELF ABI.
7191
7192 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7193 how to. */
7194
7195 bfd_boolean
7196 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7197 Elf_Internal_Shdr *hdr,
7198 const char *name,
7199 int shindex)
7200 {
7201 flagword flags = 0;
7202
7203 /* There ought to be a place to keep ELF backend specific flags, but
7204 at the moment there isn't one. We just keep track of the
7205 sections by their name, instead. Fortunately, the ABI gives
7206 suggested names for all the MIPS specific sections, so we will
7207 probably get away with this. */
7208 switch (hdr->sh_type)
7209 {
7210 case SHT_MIPS_LIBLIST:
7211 if (strcmp (name, ".liblist") != 0)
7212 return FALSE;
7213 break;
7214 case SHT_MIPS_MSYM:
7215 if (strcmp (name, ".msym") != 0)
7216 return FALSE;
7217 break;
7218 case SHT_MIPS_CONFLICT:
7219 if (strcmp (name, ".conflict") != 0)
7220 return FALSE;
7221 break;
7222 case SHT_MIPS_GPTAB:
7223 if (! CONST_STRNEQ (name, ".gptab."))
7224 return FALSE;
7225 break;
7226 case SHT_MIPS_UCODE:
7227 if (strcmp (name, ".ucode") != 0)
7228 return FALSE;
7229 break;
7230 case SHT_MIPS_DEBUG:
7231 if (strcmp (name, ".mdebug") != 0)
7232 return FALSE;
7233 flags = SEC_DEBUGGING;
7234 break;
7235 case SHT_MIPS_REGINFO:
7236 if (strcmp (name, ".reginfo") != 0
7237 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7238 return FALSE;
7239 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7240 break;
7241 case SHT_MIPS_IFACE:
7242 if (strcmp (name, ".MIPS.interfaces") != 0)
7243 return FALSE;
7244 break;
7245 case SHT_MIPS_CONTENT:
7246 if (! CONST_STRNEQ (name, ".MIPS.content"))
7247 return FALSE;
7248 break;
7249 case SHT_MIPS_OPTIONS:
7250 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7251 return FALSE;
7252 break;
7253 case SHT_MIPS_ABIFLAGS:
7254 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7255 return FALSE;
7256 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7257 break;
7258 case SHT_MIPS_DWARF:
7259 if (! CONST_STRNEQ (name, ".debug_")
7260 && ! CONST_STRNEQ (name, ".zdebug_"))
7261 return FALSE;
7262 break;
7263 case SHT_MIPS_SYMBOL_LIB:
7264 if (strcmp (name, ".MIPS.symlib") != 0)
7265 return FALSE;
7266 break;
7267 case SHT_MIPS_EVENTS:
7268 if (! CONST_STRNEQ (name, ".MIPS.events")
7269 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7270 return FALSE;
7271 break;
7272 default:
7273 break;
7274 }
7275
7276 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7277 return FALSE;
7278
7279 if (flags)
7280 {
7281 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7282 (bfd_get_section_flags (abfd,
7283 hdr->bfd_section)
7284 | flags)))
7285 return FALSE;
7286 }
7287
7288 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7289 {
7290 Elf_External_ABIFlags_v0 ext;
7291
7292 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7293 &ext, 0, sizeof ext))
7294 return FALSE;
7295 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7296 &mips_elf_tdata (abfd)->abiflags);
7297 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7298 return FALSE;
7299 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7300 }
7301
7302 /* FIXME: We should record sh_info for a .gptab section. */
7303
7304 /* For a .reginfo section, set the gp value in the tdata information
7305 from the contents of this section. We need the gp value while
7306 processing relocs, so we just get it now. The .reginfo section
7307 is not used in the 64-bit MIPS ELF ABI. */
7308 if (hdr->sh_type == SHT_MIPS_REGINFO)
7309 {
7310 Elf32_External_RegInfo ext;
7311 Elf32_RegInfo s;
7312
7313 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7314 &ext, 0, sizeof ext))
7315 return FALSE;
7316 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7317 elf_gp (abfd) = s.ri_gp_value;
7318 }
7319
7320 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7321 set the gp value based on what we find. We may see both
7322 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7323 they should agree. */
7324 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7325 {
7326 bfd_byte *contents, *l, *lend;
7327
7328 contents = bfd_malloc (hdr->sh_size);
7329 if (contents == NULL)
7330 return FALSE;
7331 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7332 0, hdr->sh_size))
7333 {
7334 free (contents);
7335 return FALSE;
7336 }
7337 l = contents;
7338 lend = contents + hdr->sh_size;
7339 while (l + sizeof (Elf_External_Options) <= lend)
7340 {
7341 Elf_Internal_Options intopt;
7342
7343 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7344 &intopt);
7345 if (intopt.size < sizeof (Elf_External_Options))
7346 {
7347 _bfd_error_handler
7348 /* xgettext:c-format */
7349 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7350 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7351 break;
7352 }
7353 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7354 {
7355 Elf64_Internal_RegInfo intreg;
7356
7357 bfd_mips_elf64_swap_reginfo_in
7358 (abfd,
7359 ((Elf64_External_RegInfo *)
7360 (l + sizeof (Elf_External_Options))),
7361 &intreg);
7362 elf_gp (abfd) = intreg.ri_gp_value;
7363 }
7364 else if (intopt.kind == ODK_REGINFO)
7365 {
7366 Elf32_RegInfo intreg;
7367
7368 bfd_mips_elf32_swap_reginfo_in
7369 (abfd,
7370 ((Elf32_External_RegInfo *)
7371 (l + sizeof (Elf_External_Options))),
7372 &intreg);
7373 elf_gp (abfd) = intreg.ri_gp_value;
7374 }
7375 l += intopt.size;
7376 }
7377 free (contents);
7378 }
7379
7380 return TRUE;
7381 }
7382
7383 /* Set the correct type for a MIPS ELF section. We do this by the
7384 section name, which is a hack, but ought to work. This routine is
7385 used by both the 32-bit and the 64-bit ABI. */
7386
7387 bfd_boolean
7388 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7389 {
7390 const char *name = bfd_get_section_name (abfd, sec);
7391
7392 if (strcmp (name, ".liblist") == 0)
7393 {
7394 hdr->sh_type = SHT_MIPS_LIBLIST;
7395 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7396 /* The sh_link field is set in final_write_processing. */
7397 }
7398 else if (strcmp (name, ".conflict") == 0)
7399 hdr->sh_type = SHT_MIPS_CONFLICT;
7400 else if (CONST_STRNEQ (name, ".gptab."))
7401 {
7402 hdr->sh_type = SHT_MIPS_GPTAB;
7403 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7404 /* The sh_info field is set in final_write_processing. */
7405 }
7406 else if (strcmp (name, ".ucode") == 0)
7407 hdr->sh_type = SHT_MIPS_UCODE;
7408 else if (strcmp (name, ".mdebug") == 0)
7409 {
7410 hdr->sh_type = SHT_MIPS_DEBUG;
7411 /* In a shared object on IRIX 5.3, the .mdebug section has an
7412 entsize of 0. FIXME: Does this matter? */
7413 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7414 hdr->sh_entsize = 0;
7415 else
7416 hdr->sh_entsize = 1;
7417 }
7418 else if (strcmp (name, ".reginfo") == 0)
7419 {
7420 hdr->sh_type = SHT_MIPS_REGINFO;
7421 /* In a shared object on IRIX 5.3, the .reginfo section has an
7422 entsize of 0x18. FIXME: Does this matter? */
7423 if (SGI_COMPAT (abfd))
7424 {
7425 if ((abfd->flags & DYNAMIC) != 0)
7426 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7427 else
7428 hdr->sh_entsize = 1;
7429 }
7430 else
7431 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7432 }
7433 else if (SGI_COMPAT (abfd)
7434 && (strcmp (name, ".hash") == 0
7435 || strcmp (name, ".dynamic") == 0
7436 || strcmp (name, ".dynstr") == 0))
7437 {
7438 if (SGI_COMPAT (abfd))
7439 hdr->sh_entsize = 0;
7440 #if 0
7441 /* This isn't how the IRIX6 linker behaves. */
7442 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7443 #endif
7444 }
7445 else if (strcmp (name, ".got") == 0
7446 || strcmp (name, ".srdata") == 0
7447 || strcmp (name, ".sdata") == 0
7448 || strcmp (name, ".sbss") == 0
7449 || strcmp (name, ".lit4") == 0
7450 || strcmp (name, ".lit8") == 0)
7451 hdr->sh_flags |= SHF_MIPS_GPREL;
7452 else if (strcmp (name, ".MIPS.interfaces") == 0)
7453 {
7454 hdr->sh_type = SHT_MIPS_IFACE;
7455 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7456 }
7457 else if (CONST_STRNEQ (name, ".MIPS.content"))
7458 {
7459 hdr->sh_type = SHT_MIPS_CONTENT;
7460 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7461 /* The sh_info field is set in final_write_processing. */
7462 }
7463 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7464 {
7465 hdr->sh_type = SHT_MIPS_OPTIONS;
7466 hdr->sh_entsize = 1;
7467 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7468 }
7469 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7470 {
7471 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7472 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7473 }
7474 else if (CONST_STRNEQ (name, ".debug_")
7475 || CONST_STRNEQ (name, ".zdebug_"))
7476 {
7477 hdr->sh_type = SHT_MIPS_DWARF;
7478
7479 /* Irix facilities such as libexc expect a single .debug_frame
7480 per executable, the system ones have NOSTRIP set and the linker
7481 doesn't merge sections with different flags so ... */
7482 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7483 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7484 }
7485 else if (strcmp (name, ".MIPS.symlib") == 0)
7486 {
7487 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7488 /* The sh_link and sh_info fields are set in
7489 final_write_processing. */
7490 }
7491 else if (CONST_STRNEQ (name, ".MIPS.events")
7492 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7493 {
7494 hdr->sh_type = SHT_MIPS_EVENTS;
7495 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7496 /* The sh_link field is set in final_write_processing. */
7497 }
7498 else if (strcmp (name, ".msym") == 0)
7499 {
7500 hdr->sh_type = SHT_MIPS_MSYM;
7501 hdr->sh_flags |= SHF_ALLOC;
7502 hdr->sh_entsize = 8;
7503 }
7504
7505 /* The generic elf_fake_sections will set up REL_HDR using the default
7506 kind of relocations. We used to set up a second header for the
7507 non-default kind of relocations here, but only NewABI would use
7508 these, and the IRIX ld doesn't like resulting empty RELA sections.
7509 Thus we create those header only on demand now. */
7510
7511 return TRUE;
7512 }
7513
7514 /* Given a BFD section, try to locate the corresponding ELF section
7515 index. This is used by both the 32-bit and the 64-bit ABI.
7516 Actually, it's not clear to me that the 64-bit ABI supports these,
7517 but for non-PIC objects we will certainly want support for at least
7518 the .scommon section. */
7519
7520 bfd_boolean
7521 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7522 asection *sec, int *retval)
7523 {
7524 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7525 {
7526 *retval = SHN_MIPS_SCOMMON;
7527 return TRUE;
7528 }
7529 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7530 {
7531 *retval = SHN_MIPS_ACOMMON;
7532 return TRUE;
7533 }
7534 return FALSE;
7535 }
7536 \f
7537 /* Hook called by the linker routine which adds symbols from an object
7538 file. We must handle the special MIPS section numbers here. */
7539
7540 bfd_boolean
7541 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7542 Elf_Internal_Sym *sym, const char **namep,
7543 flagword *flagsp ATTRIBUTE_UNUSED,
7544 asection **secp, bfd_vma *valp)
7545 {
7546 if (SGI_COMPAT (abfd)
7547 && (abfd->flags & DYNAMIC) != 0
7548 && strcmp (*namep, "_rld_new_interface") == 0)
7549 {
7550 /* Skip IRIX5 rld entry name. */
7551 *namep = NULL;
7552 return TRUE;
7553 }
7554
7555 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7556 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7557 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7558 a magic symbol resolved by the linker, we ignore this bogus definition
7559 of _gp_disp. New ABI objects do not suffer from this problem so this
7560 is not done for them. */
7561 if (!NEWABI_P(abfd)
7562 && (sym->st_shndx == SHN_ABS)
7563 && (strcmp (*namep, "_gp_disp") == 0))
7564 {
7565 *namep = NULL;
7566 return TRUE;
7567 }
7568
7569 switch (sym->st_shndx)
7570 {
7571 case SHN_COMMON:
7572 /* Common symbols less than the GP size are automatically
7573 treated as SHN_MIPS_SCOMMON symbols. */
7574 if (sym->st_size > elf_gp_size (abfd)
7575 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7576 || IRIX_COMPAT (abfd) == ict_irix6)
7577 break;
7578 /* Fall through. */
7579 case SHN_MIPS_SCOMMON:
7580 *secp = bfd_make_section_old_way (abfd, ".scommon");
7581 (*secp)->flags |= SEC_IS_COMMON;
7582 *valp = sym->st_size;
7583 break;
7584
7585 case SHN_MIPS_TEXT:
7586 /* This section is used in a shared object. */
7587 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7588 {
7589 asymbol *elf_text_symbol;
7590 asection *elf_text_section;
7591 bfd_size_type amt = sizeof (asection);
7592
7593 elf_text_section = bfd_zalloc (abfd, amt);
7594 if (elf_text_section == NULL)
7595 return FALSE;
7596
7597 amt = sizeof (asymbol);
7598 elf_text_symbol = bfd_zalloc (abfd, amt);
7599 if (elf_text_symbol == NULL)
7600 return FALSE;
7601
7602 /* Initialize the section. */
7603
7604 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7605 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7606
7607 elf_text_section->symbol = elf_text_symbol;
7608 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7609
7610 elf_text_section->name = ".text";
7611 elf_text_section->flags = SEC_NO_FLAGS;
7612 elf_text_section->output_section = NULL;
7613 elf_text_section->owner = abfd;
7614 elf_text_symbol->name = ".text";
7615 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7616 elf_text_symbol->section = elf_text_section;
7617 }
7618 /* This code used to do *secp = bfd_und_section_ptr if
7619 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7620 so I took it out. */
7621 *secp = mips_elf_tdata (abfd)->elf_text_section;
7622 break;
7623
7624 case SHN_MIPS_ACOMMON:
7625 /* Fall through. XXX Can we treat this as allocated data? */
7626 case SHN_MIPS_DATA:
7627 /* This section is used in a shared object. */
7628 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7629 {
7630 asymbol *elf_data_symbol;
7631 asection *elf_data_section;
7632 bfd_size_type amt = sizeof (asection);
7633
7634 elf_data_section = bfd_zalloc (abfd, amt);
7635 if (elf_data_section == NULL)
7636 return FALSE;
7637
7638 amt = sizeof (asymbol);
7639 elf_data_symbol = bfd_zalloc (abfd, amt);
7640 if (elf_data_symbol == NULL)
7641 return FALSE;
7642
7643 /* Initialize the section. */
7644
7645 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7646 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7647
7648 elf_data_section->symbol = elf_data_symbol;
7649 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7650
7651 elf_data_section->name = ".data";
7652 elf_data_section->flags = SEC_NO_FLAGS;
7653 elf_data_section->output_section = NULL;
7654 elf_data_section->owner = abfd;
7655 elf_data_symbol->name = ".data";
7656 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7657 elf_data_symbol->section = elf_data_section;
7658 }
7659 /* This code used to do *secp = bfd_und_section_ptr if
7660 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7661 so I took it out. */
7662 *secp = mips_elf_tdata (abfd)->elf_data_section;
7663 break;
7664
7665 case SHN_MIPS_SUNDEFINED:
7666 *secp = bfd_und_section_ptr;
7667 break;
7668 }
7669
7670 if (SGI_COMPAT (abfd)
7671 && ! bfd_link_pic (info)
7672 && info->output_bfd->xvec == abfd->xvec
7673 && strcmp (*namep, "__rld_obj_head") == 0)
7674 {
7675 struct elf_link_hash_entry *h;
7676 struct bfd_link_hash_entry *bh;
7677
7678 /* Mark __rld_obj_head as dynamic. */
7679 bh = NULL;
7680 if (! (_bfd_generic_link_add_one_symbol
7681 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7682 get_elf_backend_data (abfd)->collect, &bh)))
7683 return FALSE;
7684
7685 h = (struct elf_link_hash_entry *) bh;
7686 h->non_elf = 0;
7687 h->def_regular = 1;
7688 h->type = STT_OBJECT;
7689
7690 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7691 return FALSE;
7692
7693 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7694 mips_elf_hash_table (info)->rld_symbol = h;
7695 }
7696
7697 /* If this is a mips16 text symbol, add 1 to the value to make it
7698 odd. This will cause something like .word SYM to come up with
7699 the right value when it is loaded into the PC. */
7700 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7701 ++*valp;
7702
7703 return TRUE;
7704 }
7705
7706 /* This hook function is called before the linker writes out a global
7707 symbol. We mark symbols as small common if appropriate. This is
7708 also where we undo the increment of the value for a mips16 symbol. */
7709
7710 int
7711 _bfd_mips_elf_link_output_symbol_hook
7712 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7713 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7714 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7715 {
7716 /* If we see a common symbol, which implies a relocatable link, then
7717 if a symbol was small common in an input file, mark it as small
7718 common in the output file. */
7719 if (sym->st_shndx == SHN_COMMON
7720 && strcmp (input_sec->name, ".scommon") == 0)
7721 sym->st_shndx = SHN_MIPS_SCOMMON;
7722
7723 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7724 sym->st_value &= ~1;
7725
7726 return 1;
7727 }
7728 \f
7729 /* Functions for the dynamic linker. */
7730
7731 /* Create dynamic sections when linking against a dynamic object. */
7732
7733 bfd_boolean
7734 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7735 {
7736 struct elf_link_hash_entry *h;
7737 struct bfd_link_hash_entry *bh;
7738 flagword flags;
7739 register asection *s;
7740 const char * const *namep;
7741 struct mips_elf_link_hash_table *htab;
7742
7743 htab = mips_elf_hash_table (info);
7744 BFD_ASSERT (htab != NULL);
7745
7746 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7747 | SEC_LINKER_CREATED | SEC_READONLY);
7748
7749 /* The psABI requires a read-only .dynamic section, but the VxWorks
7750 EABI doesn't. */
7751 if (!htab->is_vxworks)
7752 {
7753 s = bfd_get_linker_section (abfd, ".dynamic");
7754 if (s != NULL)
7755 {
7756 if (! bfd_set_section_flags (abfd, s, flags))
7757 return FALSE;
7758 }
7759 }
7760
7761 /* We need to create .got section. */
7762 if (!mips_elf_create_got_section (abfd, info))
7763 return FALSE;
7764
7765 if (! mips_elf_rel_dyn_section (info, TRUE))
7766 return FALSE;
7767
7768 /* Create .stub section. */
7769 s = bfd_make_section_anyway_with_flags (abfd,
7770 MIPS_ELF_STUB_SECTION_NAME (abfd),
7771 flags | SEC_CODE);
7772 if (s == NULL
7773 || ! bfd_set_section_alignment (abfd, s,
7774 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7775 return FALSE;
7776 htab->sstubs = s;
7777
7778 if (!mips_elf_hash_table (info)->use_rld_obj_head
7779 && bfd_link_executable (info)
7780 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7781 {
7782 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7783 flags &~ (flagword) SEC_READONLY);
7784 if (s == NULL
7785 || ! bfd_set_section_alignment (abfd, s,
7786 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7787 return FALSE;
7788 }
7789
7790 /* On IRIX5, we adjust add some additional symbols and change the
7791 alignments of several sections. There is no ABI documentation
7792 indicating that this is necessary on IRIX6, nor any evidence that
7793 the linker takes such action. */
7794 if (IRIX_COMPAT (abfd) == ict_irix5)
7795 {
7796 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7797 {
7798 bh = NULL;
7799 if (! (_bfd_generic_link_add_one_symbol
7800 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7801 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7802 return FALSE;
7803
7804 h = (struct elf_link_hash_entry *) bh;
7805 h->non_elf = 0;
7806 h->def_regular = 1;
7807 h->type = STT_SECTION;
7808
7809 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7810 return FALSE;
7811 }
7812
7813 /* We need to create a .compact_rel section. */
7814 if (SGI_COMPAT (abfd))
7815 {
7816 if (!mips_elf_create_compact_rel_section (abfd, info))
7817 return FALSE;
7818 }
7819
7820 /* Change alignments of some sections. */
7821 s = bfd_get_linker_section (abfd, ".hash");
7822 if (s != NULL)
7823 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7824
7825 s = bfd_get_linker_section (abfd, ".dynsym");
7826 if (s != NULL)
7827 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7828
7829 s = bfd_get_linker_section (abfd, ".dynstr");
7830 if (s != NULL)
7831 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7832
7833 /* ??? */
7834 s = bfd_get_section_by_name (abfd, ".reginfo");
7835 if (s != NULL)
7836 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7837
7838 s = bfd_get_linker_section (abfd, ".dynamic");
7839 if (s != NULL)
7840 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7841 }
7842
7843 if (bfd_link_executable (info))
7844 {
7845 const char *name;
7846
7847 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7848 bh = NULL;
7849 if (!(_bfd_generic_link_add_one_symbol
7850 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7851 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7852 return FALSE;
7853
7854 h = (struct elf_link_hash_entry *) bh;
7855 h->non_elf = 0;
7856 h->def_regular = 1;
7857 h->type = STT_SECTION;
7858
7859 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7860 return FALSE;
7861
7862 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7863 {
7864 /* __rld_map is a four byte word located in the .data section
7865 and is filled in by the rtld to contain a pointer to
7866 the _r_debug structure. Its symbol value will be set in
7867 _bfd_mips_elf_finish_dynamic_symbol. */
7868 s = bfd_get_linker_section (abfd, ".rld_map");
7869 BFD_ASSERT (s != NULL);
7870
7871 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7872 bh = NULL;
7873 if (!(_bfd_generic_link_add_one_symbol
7874 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7875 get_elf_backend_data (abfd)->collect, &bh)))
7876 return FALSE;
7877
7878 h = (struct elf_link_hash_entry *) bh;
7879 h->non_elf = 0;
7880 h->def_regular = 1;
7881 h->type = STT_OBJECT;
7882
7883 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7884 return FALSE;
7885 mips_elf_hash_table (info)->rld_symbol = h;
7886 }
7887 }
7888
7889 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7890 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7891 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7892 return FALSE;
7893
7894 /* Do the usual VxWorks handling. */
7895 if (htab->is_vxworks
7896 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7897 return FALSE;
7898
7899 return TRUE;
7900 }
7901 \f
7902 /* Return true if relocation REL against section SEC is a REL rather than
7903 RELA relocation. RELOCS is the first relocation in the section and
7904 ABFD is the bfd that contains SEC. */
7905
7906 static bfd_boolean
7907 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7908 const Elf_Internal_Rela *relocs,
7909 const Elf_Internal_Rela *rel)
7910 {
7911 Elf_Internal_Shdr *rel_hdr;
7912 const struct elf_backend_data *bed;
7913
7914 /* To determine which flavor of relocation this is, we depend on the
7915 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7916 rel_hdr = elf_section_data (sec)->rel.hdr;
7917 if (rel_hdr == NULL)
7918 return FALSE;
7919 bed = get_elf_backend_data (abfd);
7920 return ((size_t) (rel - relocs)
7921 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7922 }
7923
7924 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7925 HOWTO is the relocation's howto and CONTENTS points to the contents
7926 of the section that REL is against. */
7927
7928 static bfd_vma
7929 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7930 reloc_howto_type *howto, bfd_byte *contents)
7931 {
7932 bfd_byte *location;
7933 unsigned int r_type;
7934 bfd_vma addend;
7935 bfd_vma bytes;
7936
7937 r_type = ELF_R_TYPE (abfd, rel->r_info);
7938 location = contents + rel->r_offset;
7939
7940 /* Get the addend, which is stored in the input file. */
7941 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7942 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7943 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7944
7945 addend = bytes & howto->src_mask;
7946
7947 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7948 accordingly. */
7949 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7950 addend <<= 1;
7951
7952 return addend;
7953 }
7954
7955 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7956 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7957 and update *ADDEND with the final addend. Return true on success
7958 or false if the LO16 could not be found. RELEND is the exclusive
7959 upper bound on the relocations for REL's section. */
7960
7961 static bfd_boolean
7962 mips_elf_add_lo16_rel_addend (bfd *abfd,
7963 const Elf_Internal_Rela *rel,
7964 const Elf_Internal_Rela *relend,
7965 bfd_byte *contents, bfd_vma *addend)
7966 {
7967 unsigned int r_type, lo16_type;
7968 const Elf_Internal_Rela *lo16_relocation;
7969 reloc_howto_type *lo16_howto;
7970 bfd_vma l;
7971
7972 r_type = ELF_R_TYPE (abfd, rel->r_info);
7973 if (mips16_reloc_p (r_type))
7974 lo16_type = R_MIPS16_LO16;
7975 else if (micromips_reloc_p (r_type))
7976 lo16_type = R_MICROMIPS_LO16;
7977 else if (r_type == R_MIPS_PCHI16)
7978 lo16_type = R_MIPS_PCLO16;
7979 else
7980 lo16_type = R_MIPS_LO16;
7981
7982 /* The combined value is the sum of the HI16 addend, left-shifted by
7983 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7984 code does a `lui' of the HI16 value, and then an `addiu' of the
7985 LO16 value.)
7986
7987 Scan ahead to find a matching LO16 relocation.
7988
7989 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7990 be immediately following. However, for the IRIX6 ABI, the next
7991 relocation may be a composed relocation consisting of several
7992 relocations for the same address. In that case, the R_MIPS_LO16
7993 relocation may occur as one of these. We permit a similar
7994 extension in general, as that is useful for GCC.
7995
7996 In some cases GCC dead code elimination removes the LO16 but keeps
7997 the corresponding HI16. This is strictly speaking a violation of
7998 the ABI but not immediately harmful. */
7999 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8000 if (lo16_relocation == NULL)
8001 return FALSE;
8002
8003 /* Obtain the addend kept there. */
8004 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8005 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8006
8007 l <<= lo16_howto->rightshift;
8008 l = _bfd_mips_elf_sign_extend (l, 16);
8009
8010 *addend <<= 16;
8011 *addend += l;
8012 return TRUE;
8013 }
8014
8015 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8016 store the contents in *CONTENTS on success. Assume that *CONTENTS
8017 already holds the contents if it is nonull on entry. */
8018
8019 static bfd_boolean
8020 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8021 {
8022 if (*contents)
8023 return TRUE;
8024
8025 /* Get cached copy if it exists. */
8026 if (elf_section_data (sec)->this_hdr.contents != NULL)
8027 {
8028 *contents = elf_section_data (sec)->this_hdr.contents;
8029 return TRUE;
8030 }
8031
8032 return bfd_malloc_and_get_section (abfd, sec, contents);
8033 }
8034
8035 /* Make a new PLT record to keep internal data. */
8036
8037 static struct plt_entry *
8038 mips_elf_make_plt_record (bfd *abfd)
8039 {
8040 struct plt_entry *entry;
8041
8042 entry = bfd_zalloc (abfd, sizeof (*entry));
8043 if (entry == NULL)
8044 return NULL;
8045
8046 entry->stub_offset = MINUS_ONE;
8047 entry->mips_offset = MINUS_ONE;
8048 entry->comp_offset = MINUS_ONE;
8049 entry->gotplt_index = MINUS_ONE;
8050 return entry;
8051 }
8052
8053 /* Look through the relocs for a section during the first phase, and
8054 allocate space in the global offset table and record the need for
8055 standard MIPS and compressed procedure linkage table entries. */
8056
8057 bfd_boolean
8058 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8059 asection *sec, const Elf_Internal_Rela *relocs)
8060 {
8061 const char *name;
8062 bfd *dynobj;
8063 Elf_Internal_Shdr *symtab_hdr;
8064 struct elf_link_hash_entry **sym_hashes;
8065 size_t extsymoff;
8066 const Elf_Internal_Rela *rel;
8067 const Elf_Internal_Rela *rel_end;
8068 asection *sreloc;
8069 const struct elf_backend_data *bed;
8070 struct mips_elf_link_hash_table *htab;
8071 bfd_byte *contents;
8072 bfd_vma addend;
8073 reloc_howto_type *howto;
8074
8075 if (bfd_link_relocatable (info))
8076 return TRUE;
8077
8078 htab = mips_elf_hash_table (info);
8079 BFD_ASSERT (htab != NULL);
8080
8081 dynobj = elf_hash_table (info)->dynobj;
8082 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8083 sym_hashes = elf_sym_hashes (abfd);
8084 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8085
8086 bed = get_elf_backend_data (abfd);
8087 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8088
8089 /* Check for the mips16 stub sections. */
8090
8091 name = bfd_get_section_name (abfd, sec);
8092 if (FN_STUB_P (name))
8093 {
8094 unsigned long r_symndx;
8095
8096 /* Look at the relocation information to figure out which symbol
8097 this is for. */
8098
8099 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8100 if (r_symndx == 0)
8101 {
8102 _bfd_error_handler
8103 /* xgettext:c-format */
8104 (_("%B: Warning: cannot determine the target function for"
8105 " stub section `%s'"),
8106 abfd, name);
8107 bfd_set_error (bfd_error_bad_value);
8108 return FALSE;
8109 }
8110
8111 if (r_symndx < extsymoff
8112 || sym_hashes[r_symndx - extsymoff] == NULL)
8113 {
8114 asection *o;
8115
8116 /* This stub is for a local symbol. This stub will only be
8117 needed if there is some relocation in this BFD, other
8118 than a 16 bit function call, which refers to this symbol. */
8119 for (o = abfd->sections; o != NULL; o = o->next)
8120 {
8121 Elf_Internal_Rela *sec_relocs;
8122 const Elf_Internal_Rela *r, *rend;
8123
8124 /* We can ignore stub sections when looking for relocs. */
8125 if ((o->flags & SEC_RELOC) == 0
8126 || o->reloc_count == 0
8127 || section_allows_mips16_refs_p (o))
8128 continue;
8129
8130 sec_relocs
8131 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8132 info->keep_memory);
8133 if (sec_relocs == NULL)
8134 return FALSE;
8135
8136 rend = sec_relocs + o->reloc_count;
8137 for (r = sec_relocs; r < rend; r++)
8138 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8139 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8140 break;
8141
8142 if (elf_section_data (o)->relocs != sec_relocs)
8143 free (sec_relocs);
8144
8145 if (r < rend)
8146 break;
8147 }
8148
8149 if (o == NULL)
8150 {
8151 /* There is no non-call reloc for this stub, so we do
8152 not need it. Since this function is called before
8153 the linker maps input sections to output sections, we
8154 can easily discard it by setting the SEC_EXCLUDE
8155 flag. */
8156 sec->flags |= SEC_EXCLUDE;
8157 return TRUE;
8158 }
8159
8160 /* Record this stub in an array of local symbol stubs for
8161 this BFD. */
8162 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8163 {
8164 unsigned long symcount;
8165 asection **n;
8166 bfd_size_type amt;
8167
8168 if (elf_bad_symtab (abfd))
8169 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8170 else
8171 symcount = symtab_hdr->sh_info;
8172 amt = symcount * sizeof (asection *);
8173 n = bfd_zalloc (abfd, amt);
8174 if (n == NULL)
8175 return FALSE;
8176 mips_elf_tdata (abfd)->local_stubs = n;
8177 }
8178
8179 sec->flags |= SEC_KEEP;
8180 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8181
8182 /* We don't need to set mips16_stubs_seen in this case.
8183 That flag is used to see whether we need to look through
8184 the global symbol table for stubs. We don't need to set
8185 it here, because we just have a local stub. */
8186 }
8187 else
8188 {
8189 struct mips_elf_link_hash_entry *h;
8190
8191 h = ((struct mips_elf_link_hash_entry *)
8192 sym_hashes[r_symndx - extsymoff]);
8193
8194 while (h->root.root.type == bfd_link_hash_indirect
8195 || h->root.root.type == bfd_link_hash_warning)
8196 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8197
8198 /* H is the symbol this stub is for. */
8199
8200 /* If we already have an appropriate stub for this function, we
8201 don't need another one, so we can discard this one. Since
8202 this function is called before the linker maps input sections
8203 to output sections, we can easily discard it by setting the
8204 SEC_EXCLUDE flag. */
8205 if (h->fn_stub != NULL)
8206 {
8207 sec->flags |= SEC_EXCLUDE;
8208 return TRUE;
8209 }
8210
8211 sec->flags |= SEC_KEEP;
8212 h->fn_stub = sec;
8213 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8214 }
8215 }
8216 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8217 {
8218 unsigned long r_symndx;
8219 struct mips_elf_link_hash_entry *h;
8220 asection **loc;
8221
8222 /* Look at the relocation information to figure out which symbol
8223 this is for. */
8224
8225 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8226 if (r_symndx == 0)
8227 {
8228 _bfd_error_handler
8229 /* xgettext:c-format */
8230 (_("%B: Warning: cannot determine the target function for"
8231 " stub section `%s'"),
8232 abfd, name);
8233 bfd_set_error (bfd_error_bad_value);
8234 return FALSE;
8235 }
8236
8237 if (r_symndx < extsymoff
8238 || sym_hashes[r_symndx - extsymoff] == NULL)
8239 {
8240 asection *o;
8241
8242 /* This stub is for a local symbol. This stub will only be
8243 needed if there is some relocation (R_MIPS16_26) in this BFD
8244 that refers to this symbol. */
8245 for (o = abfd->sections; o != NULL; o = o->next)
8246 {
8247 Elf_Internal_Rela *sec_relocs;
8248 const Elf_Internal_Rela *r, *rend;
8249
8250 /* We can ignore stub sections when looking for relocs. */
8251 if ((o->flags & SEC_RELOC) == 0
8252 || o->reloc_count == 0
8253 || section_allows_mips16_refs_p (o))
8254 continue;
8255
8256 sec_relocs
8257 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8258 info->keep_memory);
8259 if (sec_relocs == NULL)
8260 return FALSE;
8261
8262 rend = sec_relocs + o->reloc_count;
8263 for (r = sec_relocs; r < rend; r++)
8264 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8265 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8266 break;
8267
8268 if (elf_section_data (o)->relocs != sec_relocs)
8269 free (sec_relocs);
8270
8271 if (r < rend)
8272 break;
8273 }
8274
8275 if (o == NULL)
8276 {
8277 /* There is no non-call reloc for this stub, so we do
8278 not need it. Since this function is called before
8279 the linker maps input sections to output sections, we
8280 can easily discard it by setting the SEC_EXCLUDE
8281 flag. */
8282 sec->flags |= SEC_EXCLUDE;
8283 return TRUE;
8284 }
8285
8286 /* Record this stub in an array of local symbol call_stubs for
8287 this BFD. */
8288 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8289 {
8290 unsigned long symcount;
8291 asection **n;
8292 bfd_size_type amt;
8293
8294 if (elf_bad_symtab (abfd))
8295 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8296 else
8297 symcount = symtab_hdr->sh_info;
8298 amt = symcount * sizeof (asection *);
8299 n = bfd_zalloc (abfd, amt);
8300 if (n == NULL)
8301 return FALSE;
8302 mips_elf_tdata (abfd)->local_call_stubs = n;
8303 }
8304
8305 sec->flags |= SEC_KEEP;
8306 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8307
8308 /* We don't need to set mips16_stubs_seen in this case.
8309 That flag is used to see whether we need to look through
8310 the global symbol table for stubs. We don't need to set
8311 it here, because we just have a local stub. */
8312 }
8313 else
8314 {
8315 h = ((struct mips_elf_link_hash_entry *)
8316 sym_hashes[r_symndx - extsymoff]);
8317
8318 /* H is the symbol this stub is for. */
8319
8320 if (CALL_FP_STUB_P (name))
8321 loc = &h->call_fp_stub;
8322 else
8323 loc = &h->call_stub;
8324
8325 /* If we already have an appropriate stub for this function, we
8326 don't need another one, so we can discard this one. Since
8327 this function is called before the linker maps input sections
8328 to output sections, we can easily discard it by setting the
8329 SEC_EXCLUDE flag. */
8330 if (*loc != NULL)
8331 {
8332 sec->flags |= SEC_EXCLUDE;
8333 return TRUE;
8334 }
8335
8336 sec->flags |= SEC_KEEP;
8337 *loc = sec;
8338 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8339 }
8340 }
8341
8342 sreloc = NULL;
8343 contents = NULL;
8344 for (rel = relocs; rel < rel_end; ++rel)
8345 {
8346 unsigned long r_symndx;
8347 unsigned int r_type;
8348 struct elf_link_hash_entry *h;
8349 bfd_boolean can_make_dynamic_p;
8350 bfd_boolean call_reloc_p;
8351 bfd_boolean constrain_symbol_p;
8352
8353 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8354 r_type = ELF_R_TYPE (abfd, rel->r_info);
8355
8356 if (r_symndx < extsymoff)
8357 h = NULL;
8358 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8359 {
8360 _bfd_error_handler
8361 /* xgettext:c-format */
8362 (_("%B: Malformed reloc detected for section %s"),
8363 abfd, name);
8364 bfd_set_error (bfd_error_bad_value);
8365 return FALSE;
8366 }
8367 else
8368 {
8369 h = sym_hashes[r_symndx - extsymoff];
8370 if (h != NULL)
8371 {
8372 while (h->root.type == bfd_link_hash_indirect
8373 || h->root.type == bfd_link_hash_warning)
8374 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8375
8376 /* PR15323, ref flags aren't set for references in the
8377 same object. */
8378 h->root.non_ir_ref = 1;
8379 }
8380 }
8381
8382 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8383 relocation into a dynamic one. */
8384 can_make_dynamic_p = FALSE;
8385
8386 /* Set CALL_RELOC_P to true if the relocation is for a call,
8387 and if pointer equality therefore doesn't matter. */
8388 call_reloc_p = FALSE;
8389
8390 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8391 into account when deciding how to define the symbol.
8392 Relocations in nonallocatable sections such as .pdr and
8393 .debug* should have no effect. */
8394 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8395
8396 switch (r_type)
8397 {
8398 case R_MIPS_CALL16:
8399 case R_MIPS_CALL_HI16:
8400 case R_MIPS_CALL_LO16:
8401 case R_MIPS16_CALL16:
8402 case R_MICROMIPS_CALL16:
8403 case R_MICROMIPS_CALL_HI16:
8404 case R_MICROMIPS_CALL_LO16:
8405 call_reloc_p = TRUE;
8406 /* Fall through. */
8407
8408 case R_MIPS_GOT16:
8409 case R_MIPS_GOT_HI16:
8410 case R_MIPS_GOT_LO16:
8411 case R_MIPS_GOT_PAGE:
8412 case R_MIPS_GOT_OFST:
8413 case R_MIPS_GOT_DISP:
8414 case R_MIPS_TLS_GOTTPREL:
8415 case R_MIPS_TLS_GD:
8416 case R_MIPS_TLS_LDM:
8417 case R_MIPS16_GOT16:
8418 case R_MIPS16_TLS_GOTTPREL:
8419 case R_MIPS16_TLS_GD:
8420 case R_MIPS16_TLS_LDM:
8421 case R_MICROMIPS_GOT16:
8422 case R_MICROMIPS_GOT_HI16:
8423 case R_MICROMIPS_GOT_LO16:
8424 case R_MICROMIPS_GOT_PAGE:
8425 case R_MICROMIPS_GOT_OFST:
8426 case R_MICROMIPS_GOT_DISP:
8427 case R_MICROMIPS_TLS_GOTTPREL:
8428 case R_MICROMIPS_TLS_GD:
8429 case R_MICROMIPS_TLS_LDM:
8430 if (dynobj == NULL)
8431 elf_hash_table (info)->dynobj = dynobj = abfd;
8432 if (!mips_elf_create_got_section (dynobj, info))
8433 return FALSE;
8434 if (htab->is_vxworks && !bfd_link_pic (info))
8435 {
8436 _bfd_error_handler
8437 /* xgettext:c-format */
8438 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8439 abfd, (unsigned long) rel->r_offset);
8440 bfd_set_error (bfd_error_bad_value);
8441 return FALSE;
8442 }
8443 can_make_dynamic_p = TRUE;
8444 break;
8445
8446 case R_MIPS_NONE:
8447 case R_MIPS_JALR:
8448 case R_MICROMIPS_JALR:
8449 /* These relocations have empty fields and are purely there to
8450 provide link information. The symbol value doesn't matter. */
8451 constrain_symbol_p = FALSE;
8452 break;
8453
8454 case R_MIPS_GPREL16:
8455 case R_MIPS_GPREL32:
8456 case R_MIPS16_GPREL:
8457 case R_MICROMIPS_GPREL16:
8458 /* GP-relative relocations always resolve to a definition in a
8459 regular input file, ignoring the one-definition rule. This is
8460 important for the GP setup sequence in NewABI code, which
8461 always resolves to a local function even if other relocations
8462 against the symbol wouldn't. */
8463 constrain_symbol_p = FALSE;
8464 break;
8465
8466 case R_MIPS_32:
8467 case R_MIPS_REL32:
8468 case R_MIPS_64:
8469 /* In VxWorks executables, references to external symbols
8470 must be handled using copy relocs or PLT entries; it is not
8471 possible to convert this relocation into a dynamic one.
8472
8473 For executables that use PLTs and copy-relocs, we have a
8474 choice between converting the relocation into a dynamic
8475 one or using copy relocations or PLT entries. It is
8476 usually better to do the former, unless the relocation is
8477 against a read-only section. */
8478 if ((bfd_link_pic (info)
8479 || (h != NULL
8480 && !htab->is_vxworks
8481 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8482 && !(!info->nocopyreloc
8483 && !PIC_OBJECT_P (abfd)
8484 && MIPS_ELF_READONLY_SECTION (sec))))
8485 && (sec->flags & SEC_ALLOC) != 0)
8486 {
8487 can_make_dynamic_p = TRUE;
8488 if (dynobj == NULL)
8489 elf_hash_table (info)->dynobj = dynobj = abfd;
8490 }
8491 break;
8492
8493 case R_MIPS_26:
8494 case R_MIPS_PC16:
8495 case R_MIPS_PC21_S2:
8496 case R_MIPS_PC26_S2:
8497 case R_MIPS16_26:
8498 case R_MIPS16_PC16_S1:
8499 case R_MICROMIPS_26_S1:
8500 case R_MICROMIPS_PC7_S1:
8501 case R_MICROMIPS_PC10_S1:
8502 case R_MICROMIPS_PC16_S1:
8503 case R_MICROMIPS_PC23_S2:
8504 call_reloc_p = TRUE;
8505 break;
8506 }
8507
8508 if (h)
8509 {
8510 if (constrain_symbol_p)
8511 {
8512 if (!can_make_dynamic_p)
8513 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8514
8515 if (!call_reloc_p)
8516 h->pointer_equality_needed = 1;
8517
8518 /* We must not create a stub for a symbol that has
8519 relocations related to taking the function's address.
8520 This doesn't apply to VxWorks, where CALL relocs refer
8521 to a .got.plt entry instead of a normal .got entry. */
8522 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8523 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8524 }
8525
8526 /* Relocations against the special VxWorks __GOTT_BASE__ and
8527 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8528 room for them in .rela.dyn. */
8529 if (is_gott_symbol (info, h))
8530 {
8531 if (sreloc == NULL)
8532 {
8533 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8534 if (sreloc == NULL)
8535 return FALSE;
8536 }
8537 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8538 if (MIPS_ELF_READONLY_SECTION (sec))
8539 /* We tell the dynamic linker that there are
8540 relocations against the text segment. */
8541 info->flags |= DF_TEXTREL;
8542 }
8543 }
8544 else if (call_lo16_reloc_p (r_type)
8545 || got_lo16_reloc_p (r_type)
8546 || got_disp_reloc_p (r_type)
8547 || (got16_reloc_p (r_type) && htab->is_vxworks))
8548 {
8549 /* We may need a local GOT entry for this relocation. We
8550 don't count R_MIPS_GOT_PAGE because we can estimate the
8551 maximum number of pages needed by looking at the size of
8552 the segment. Similar comments apply to R_MIPS*_GOT16 and
8553 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8554 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8555 R_MIPS_CALL_HI16 because these are always followed by an
8556 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8557 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8558 rel->r_addend, info, r_type))
8559 return FALSE;
8560 }
8561
8562 if (h != NULL
8563 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8564 ELF_ST_IS_MIPS16 (h->other)))
8565 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8566
8567 switch (r_type)
8568 {
8569 case R_MIPS_CALL16:
8570 case R_MIPS16_CALL16:
8571 case R_MICROMIPS_CALL16:
8572 if (h == NULL)
8573 {
8574 _bfd_error_handler
8575 /* xgettext:c-format */
8576 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8577 abfd, (unsigned long) rel->r_offset);
8578 bfd_set_error (bfd_error_bad_value);
8579 return FALSE;
8580 }
8581 /* Fall through. */
8582
8583 case R_MIPS_CALL_HI16:
8584 case R_MIPS_CALL_LO16:
8585 case R_MICROMIPS_CALL_HI16:
8586 case R_MICROMIPS_CALL_LO16:
8587 if (h != NULL)
8588 {
8589 /* Make sure there is room in the regular GOT to hold the
8590 function's address. We may eliminate it in favour of
8591 a .got.plt entry later; see mips_elf_count_got_symbols. */
8592 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8593 r_type))
8594 return FALSE;
8595
8596 /* We need a stub, not a plt entry for the undefined
8597 function. But we record it as if it needs plt. See
8598 _bfd_elf_adjust_dynamic_symbol. */
8599 h->needs_plt = 1;
8600 h->type = STT_FUNC;
8601 }
8602 break;
8603
8604 case R_MIPS_GOT_PAGE:
8605 case R_MICROMIPS_GOT_PAGE:
8606 case R_MIPS16_GOT16:
8607 case R_MIPS_GOT16:
8608 case R_MIPS_GOT_HI16:
8609 case R_MIPS_GOT_LO16:
8610 case R_MICROMIPS_GOT16:
8611 case R_MICROMIPS_GOT_HI16:
8612 case R_MICROMIPS_GOT_LO16:
8613 if (!h || got_page_reloc_p (r_type))
8614 {
8615 /* This relocation needs (or may need, if h != NULL) a
8616 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8617 know for sure until we know whether the symbol is
8618 preemptible. */
8619 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8620 {
8621 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8622 return FALSE;
8623 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8624 addend = mips_elf_read_rel_addend (abfd, rel,
8625 howto, contents);
8626 if (got16_reloc_p (r_type))
8627 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8628 contents, &addend);
8629 else
8630 addend <<= howto->rightshift;
8631 }
8632 else
8633 addend = rel->r_addend;
8634 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8635 h, addend))
8636 return FALSE;
8637
8638 if (h)
8639 {
8640 struct mips_elf_link_hash_entry *hmips =
8641 (struct mips_elf_link_hash_entry *) h;
8642
8643 /* This symbol is definitely not overridable. */
8644 if (hmips->root.def_regular
8645 && ! (bfd_link_pic (info) && ! info->symbolic
8646 && ! hmips->root.forced_local))
8647 h = NULL;
8648 }
8649 }
8650 /* If this is a global, overridable symbol, GOT_PAGE will
8651 decay to GOT_DISP, so we'll need a GOT entry for it. */
8652 /* Fall through. */
8653
8654 case R_MIPS_GOT_DISP:
8655 case R_MICROMIPS_GOT_DISP:
8656 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8657 FALSE, r_type))
8658 return FALSE;
8659 break;
8660
8661 case R_MIPS_TLS_GOTTPREL:
8662 case R_MIPS16_TLS_GOTTPREL:
8663 case R_MICROMIPS_TLS_GOTTPREL:
8664 if (bfd_link_pic (info))
8665 info->flags |= DF_STATIC_TLS;
8666 /* Fall through */
8667
8668 case R_MIPS_TLS_LDM:
8669 case R_MIPS16_TLS_LDM:
8670 case R_MICROMIPS_TLS_LDM:
8671 if (tls_ldm_reloc_p (r_type))
8672 {
8673 r_symndx = STN_UNDEF;
8674 h = NULL;
8675 }
8676 /* Fall through */
8677
8678 case R_MIPS_TLS_GD:
8679 case R_MIPS16_TLS_GD:
8680 case R_MICROMIPS_TLS_GD:
8681 /* This symbol requires a global offset table entry, or two
8682 for TLS GD relocations. */
8683 if (h != NULL)
8684 {
8685 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8686 FALSE, r_type))
8687 return FALSE;
8688 }
8689 else
8690 {
8691 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8692 rel->r_addend,
8693 info, r_type))
8694 return FALSE;
8695 }
8696 break;
8697
8698 case R_MIPS_32:
8699 case R_MIPS_REL32:
8700 case R_MIPS_64:
8701 /* In VxWorks executables, references to external symbols
8702 are handled using copy relocs or PLT stubs, so there's
8703 no need to add a .rela.dyn entry for this relocation. */
8704 if (can_make_dynamic_p)
8705 {
8706 if (sreloc == NULL)
8707 {
8708 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8709 if (sreloc == NULL)
8710 return FALSE;
8711 }
8712 if (bfd_link_pic (info) && h == NULL)
8713 {
8714 /* When creating a shared object, we must copy these
8715 reloc types into the output file as R_MIPS_REL32
8716 relocs. Make room for this reloc in .rel(a).dyn. */
8717 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8718 if (MIPS_ELF_READONLY_SECTION (sec))
8719 /* We tell the dynamic linker that there are
8720 relocations against the text segment. */
8721 info->flags |= DF_TEXTREL;
8722 }
8723 else
8724 {
8725 struct mips_elf_link_hash_entry *hmips;
8726
8727 /* For a shared object, we must copy this relocation
8728 unless the symbol turns out to be undefined and
8729 weak with non-default visibility, in which case
8730 it will be left as zero.
8731
8732 We could elide R_MIPS_REL32 for locally binding symbols
8733 in shared libraries, but do not yet do so.
8734
8735 For an executable, we only need to copy this
8736 reloc if the symbol is defined in a dynamic
8737 object. */
8738 hmips = (struct mips_elf_link_hash_entry *) h;
8739 ++hmips->possibly_dynamic_relocs;
8740 if (MIPS_ELF_READONLY_SECTION (sec))
8741 /* We need it to tell the dynamic linker if there
8742 are relocations against the text segment. */
8743 hmips->readonly_reloc = TRUE;
8744 }
8745 }
8746
8747 if (SGI_COMPAT (abfd))
8748 mips_elf_hash_table (info)->compact_rel_size +=
8749 sizeof (Elf32_External_crinfo);
8750 break;
8751
8752 case R_MIPS_26:
8753 case R_MIPS_GPREL16:
8754 case R_MIPS_LITERAL:
8755 case R_MIPS_GPREL32:
8756 case R_MICROMIPS_26_S1:
8757 case R_MICROMIPS_GPREL16:
8758 case R_MICROMIPS_LITERAL:
8759 case R_MICROMIPS_GPREL7_S2:
8760 if (SGI_COMPAT (abfd))
8761 mips_elf_hash_table (info)->compact_rel_size +=
8762 sizeof (Elf32_External_crinfo);
8763 break;
8764
8765 /* This relocation describes the C++ object vtable hierarchy.
8766 Reconstruct it for later use during GC. */
8767 case R_MIPS_GNU_VTINHERIT:
8768 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8769 return FALSE;
8770 break;
8771
8772 /* This relocation describes which C++ vtable entries are actually
8773 used. Record for later use during GC. */
8774 case R_MIPS_GNU_VTENTRY:
8775 BFD_ASSERT (h != NULL);
8776 if (h != NULL
8777 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8778 return FALSE;
8779 break;
8780
8781 default:
8782 break;
8783 }
8784
8785 /* Record the need for a PLT entry. At this point we don't know
8786 yet if we are going to create a PLT in the first place, but
8787 we only record whether the relocation requires a standard MIPS
8788 or a compressed code entry anyway. If we don't make a PLT after
8789 all, then we'll just ignore these arrangements. Likewise if
8790 a PLT entry is not created because the symbol is satisfied
8791 locally. */
8792 if (h != NULL
8793 && (branch_reloc_p (r_type)
8794 || mips16_branch_reloc_p (r_type)
8795 || micromips_branch_reloc_p (r_type))
8796 && !SYMBOL_CALLS_LOCAL (info, h))
8797 {
8798 if (h->plt.plist == NULL)
8799 h->plt.plist = mips_elf_make_plt_record (abfd);
8800 if (h->plt.plist == NULL)
8801 return FALSE;
8802
8803 if (branch_reloc_p (r_type))
8804 h->plt.plist->need_mips = TRUE;
8805 else
8806 h->plt.plist->need_comp = TRUE;
8807 }
8808
8809 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8810 if there is one. We only need to handle global symbols here;
8811 we decide whether to keep or delete stubs for local symbols
8812 when processing the stub's relocations. */
8813 if (h != NULL
8814 && !mips16_call_reloc_p (r_type)
8815 && !section_allows_mips16_refs_p (sec))
8816 {
8817 struct mips_elf_link_hash_entry *mh;
8818
8819 mh = (struct mips_elf_link_hash_entry *) h;
8820 mh->need_fn_stub = TRUE;
8821 }
8822
8823 /* Refuse some position-dependent relocations when creating a
8824 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8825 not PIC, but we can create dynamic relocations and the result
8826 will be fine. Also do not refuse R_MIPS_LO16, which can be
8827 combined with R_MIPS_GOT16. */
8828 if (bfd_link_pic (info))
8829 {
8830 switch (r_type)
8831 {
8832 case R_MIPS16_HI16:
8833 case R_MIPS_HI16:
8834 case R_MIPS_HIGHER:
8835 case R_MIPS_HIGHEST:
8836 case R_MICROMIPS_HI16:
8837 case R_MICROMIPS_HIGHER:
8838 case R_MICROMIPS_HIGHEST:
8839 /* Don't refuse a high part relocation if it's against
8840 no symbol (e.g. part of a compound relocation). */
8841 if (r_symndx == STN_UNDEF)
8842 break;
8843
8844 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8845 and has a special meaning. */
8846 if (!NEWABI_P (abfd) && h != NULL
8847 && strcmp (h->root.root.string, "_gp_disp") == 0)
8848 break;
8849
8850 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8851 if (is_gott_symbol (info, h))
8852 break;
8853
8854 /* FALLTHROUGH */
8855
8856 case R_MIPS16_26:
8857 case R_MIPS_26:
8858 case R_MICROMIPS_26_S1:
8859 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8860 _bfd_error_handler
8861 /* xgettext:c-format */
8862 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8863 abfd, howto->name,
8864 (h) ? h->root.root.string : "a local symbol");
8865 bfd_set_error (bfd_error_bad_value);
8866 return FALSE;
8867 default:
8868 break;
8869 }
8870 }
8871 }
8872
8873 return TRUE;
8874 }
8875 \f
8876 bfd_boolean
8877 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8878 struct bfd_link_info *link_info,
8879 bfd_boolean *again)
8880 {
8881 Elf_Internal_Rela *internal_relocs;
8882 Elf_Internal_Rela *irel, *irelend;
8883 Elf_Internal_Shdr *symtab_hdr;
8884 bfd_byte *contents = NULL;
8885 size_t extsymoff;
8886 bfd_boolean changed_contents = FALSE;
8887 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8888 Elf_Internal_Sym *isymbuf = NULL;
8889
8890 /* We are not currently changing any sizes, so only one pass. */
8891 *again = FALSE;
8892
8893 if (bfd_link_relocatable (link_info))
8894 return TRUE;
8895
8896 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8897 link_info->keep_memory);
8898 if (internal_relocs == NULL)
8899 return TRUE;
8900
8901 irelend = internal_relocs + sec->reloc_count
8902 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8903 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8904 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8905
8906 for (irel = internal_relocs; irel < irelend; irel++)
8907 {
8908 bfd_vma symval;
8909 bfd_signed_vma sym_offset;
8910 unsigned int r_type;
8911 unsigned long r_symndx;
8912 asection *sym_sec;
8913 unsigned long instruction;
8914
8915 /* Turn jalr into bgezal, and jr into beq, if they're marked
8916 with a JALR relocation, that indicate where they jump to.
8917 This saves some pipeline bubbles. */
8918 r_type = ELF_R_TYPE (abfd, irel->r_info);
8919 if (r_type != R_MIPS_JALR)
8920 continue;
8921
8922 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8923 /* Compute the address of the jump target. */
8924 if (r_symndx >= extsymoff)
8925 {
8926 struct mips_elf_link_hash_entry *h
8927 = ((struct mips_elf_link_hash_entry *)
8928 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8929
8930 while (h->root.root.type == bfd_link_hash_indirect
8931 || h->root.root.type == bfd_link_hash_warning)
8932 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8933
8934 /* If a symbol is undefined, or if it may be overridden,
8935 skip it. */
8936 if (! ((h->root.root.type == bfd_link_hash_defined
8937 || h->root.root.type == bfd_link_hash_defweak)
8938 && h->root.root.u.def.section)
8939 || (bfd_link_pic (link_info) && ! link_info->symbolic
8940 && !h->root.forced_local))
8941 continue;
8942
8943 sym_sec = h->root.root.u.def.section;
8944 if (sym_sec->output_section)
8945 symval = (h->root.root.u.def.value
8946 + sym_sec->output_section->vma
8947 + sym_sec->output_offset);
8948 else
8949 symval = h->root.root.u.def.value;
8950 }
8951 else
8952 {
8953 Elf_Internal_Sym *isym;
8954
8955 /* Read this BFD's symbols if we haven't done so already. */
8956 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8957 {
8958 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8959 if (isymbuf == NULL)
8960 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8961 symtab_hdr->sh_info, 0,
8962 NULL, NULL, NULL);
8963 if (isymbuf == NULL)
8964 goto relax_return;
8965 }
8966
8967 isym = isymbuf + r_symndx;
8968 if (isym->st_shndx == SHN_UNDEF)
8969 continue;
8970 else if (isym->st_shndx == SHN_ABS)
8971 sym_sec = bfd_abs_section_ptr;
8972 else if (isym->st_shndx == SHN_COMMON)
8973 sym_sec = bfd_com_section_ptr;
8974 else
8975 sym_sec
8976 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8977 symval = isym->st_value
8978 + sym_sec->output_section->vma
8979 + sym_sec->output_offset;
8980 }
8981
8982 /* Compute branch offset, from delay slot of the jump to the
8983 branch target. */
8984 sym_offset = (symval + irel->r_addend)
8985 - (sec_start + irel->r_offset + 4);
8986
8987 /* Branch offset must be properly aligned. */
8988 if ((sym_offset & 3) != 0)
8989 continue;
8990
8991 sym_offset >>= 2;
8992
8993 /* Check that it's in range. */
8994 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8995 continue;
8996
8997 /* Get the section contents if we haven't done so already. */
8998 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8999 goto relax_return;
9000
9001 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9002
9003 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9004 if ((instruction & 0xfc1fffff) == 0x0000f809)
9005 instruction = 0x04110000;
9006 /* If it was jr <reg>, turn it into b <target>. */
9007 else if ((instruction & 0xfc1fffff) == 0x00000008)
9008 instruction = 0x10000000;
9009 else
9010 continue;
9011
9012 instruction |= (sym_offset & 0xffff);
9013 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9014 changed_contents = TRUE;
9015 }
9016
9017 if (contents != NULL
9018 && elf_section_data (sec)->this_hdr.contents != contents)
9019 {
9020 if (!changed_contents && !link_info->keep_memory)
9021 free (contents);
9022 else
9023 {
9024 /* Cache the section contents for elf_link_input_bfd. */
9025 elf_section_data (sec)->this_hdr.contents = contents;
9026 }
9027 }
9028 return TRUE;
9029
9030 relax_return:
9031 if (contents != NULL
9032 && elf_section_data (sec)->this_hdr.contents != contents)
9033 free (contents);
9034 return FALSE;
9035 }
9036 \f
9037 /* Allocate space for global sym dynamic relocs. */
9038
9039 static bfd_boolean
9040 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9041 {
9042 struct bfd_link_info *info = inf;
9043 bfd *dynobj;
9044 struct mips_elf_link_hash_entry *hmips;
9045 struct mips_elf_link_hash_table *htab;
9046
9047 htab = mips_elf_hash_table (info);
9048 BFD_ASSERT (htab != NULL);
9049
9050 dynobj = elf_hash_table (info)->dynobj;
9051 hmips = (struct mips_elf_link_hash_entry *) h;
9052
9053 /* VxWorks executables are handled elsewhere; we only need to
9054 allocate relocations in shared objects. */
9055 if (htab->is_vxworks && !bfd_link_pic (info))
9056 return TRUE;
9057
9058 /* Ignore indirect symbols. All relocations against such symbols
9059 will be redirected to the target symbol. */
9060 if (h->root.type == bfd_link_hash_indirect)
9061 return TRUE;
9062
9063 /* If this symbol is defined in a dynamic object, or we are creating
9064 a shared library, we will need to copy any R_MIPS_32 or
9065 R_MIPS_REL32 relocs against it into the output file. */
9066 if (! bfd_link_relocatable (info)
9067 && hmips->possibly_dynamic_relocs != 0
9068 && (h->root.type == bfd_link_hash_defweak
9069 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9070 || bfd_link_pic (info)))
9071 {
9072 bfd_boolean do_copy = TRUE;
9073
9074 if (h->root.type == bfd_link_hash_undefweak)
9075 {
9076 /* Do not copy relocations for undefined weak symbols with
9077 non-default visibility. */
9078 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9079 do_copy = FALSE;
9080
9081 /* Make sure undefined weak symbols are output as a dynamic
9082 symbol in PIEs. */
9083 else if (h->dynindx == -1 && !h->forced_local)
9084 {
9085 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9086 return FALSE;
9087 }
9088 }
9089
9090 if (do_copy)
9091 {
9092 /* Even though we don't directly need a GOT entry for this symbol,
9093 the SVR4 psABI requires it to have a dynamic symbol table
9094 index greater that DT_MIPS_GOTSYM if there are dynamic
9095 relocations against it.
9096
9097 VxWorks does not enforce the same mapping between the GOT
9098 and the symbol table, so the same requirement does not
9099 apply there. */
9100 if (!htab->is_vxworks)
9101 {
9102 if (hmips->global_got_area > GGA_RELOC_ONLY)
9103 hmips->global_got_area = GGA_RELOC_ONLY;
9104 hmips->got_only_for_calls = FALSE;
9105 }
9106
9107 mips_elf_allocate_dynamic_relocations
9108 (dynobj, info, hmips->possibly_dynamic_relocs);
9109 if (hmips->readonly_reloc)
9110 /* We tell the dynamic linker that there are relocations
9111 against the text segment. */
9112 info->flags |= DF_TEXTREL;
9113 }
9114 }
9115
9116 return TRUE;
9117 }
9118
9119 /* Adjust a symbol defined by a dynamic object and referenced by a
9120 regular object. The current definition is in some section of the
9121 dynamic object, but we're not including those sections. We have to
9122 change the definition to something the rest of the link can
9123 understand. */
9124
9125 bfd_boolean
9126 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9127 struct elf_link_hash_entry *h)
9128 {
9129 bfd *dynobj;
9130 struct mips_elf_link_hash_entry *hmips;
9131 struct mips_elf_link_hash_table *htab;
9132 asection *s, *srel;
9133
9134 htab = mips_elf_hash_table (info);
9135 BFD_ASSERT (htab != NULL);
9136
9137 dynobj = elf_hash_table (info)->dynobj;
9138 hmips = (struct mips_elf_link_hash_entry *) h;
9139
9140 /* Make sure we know what is going on here. */
9141 BFD_ASSERT (dynobj != NULL
9142 && (h->needs_plt
9143 || h->u.weakdef != NULL
9144 || (h->def_dynamic
9145 && h->ref_regular
9146 && !h->def_regular)));
9147
9148 hmips = (struct mips_elf_link_hash_entry *) h;
9149
9150 /* If there are call relocations against an externally-defined symbol,
9151 see whether we can create a MIPS lazy-binding stub for it. We can
9152 only do this if all references to the function are through call
9153 relocations, and in that case, the traditional lazy-binding stubs
9154 are much more efficient than PLT entries.
9155
9156 Traditional stubs are only available on SVR4 psABI-based systems;
9157 VxWorks always uses PLTs instead. */
9158 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9159 {
9160 if (! elf_hash_table (info)->dynamic_sections_created)
9161 return TRUE;
9162
9163 /* If this symbol is not defined in a regular file, then set
9164 the symbol to the stub location. This is required to make
9165 function pointers compare as equal between the normal
9166 executable and the shared library. */
9167 if (!h->def_regular)
9168 {
9169 hmips->needs_lazy_stub = TRUE;
9170 htab->lazy_stub_count++;
9171 return TRUE;
9172 }
9173 }
9174 /* As above, VxWorks requires PLT entries for externally-defined
9175 functions that are only accessed through call relocations.
9176
9177 Both VxWorks and non-VxWorks targets also need PLT entries if there
9178 are static-only relocations against an externally-defined function.
9179 This can technically occur for shared libraries if there are
9180 branches to the symbol, although it is unlikely that this will be
9181 used in practice due to the short ranges involved. It can occur
9182 for any relative or absolute relocation in executables; in that
9183 case, the PLT entry becomes the function's canonical address. */
9184 else if (((h->needs_plt && !hmips->no_fn_stub)
9185 || (h->type == STT_FUNC && hmips->has_static_relocs))
9186 && htab->use_plts_and_copy_relocs
9187 && !SYMBOL_CALLS_LOCAL (info, h)
9188 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9189 && h->root.type == bfd_link_hash_undefweak))
9190 {
9191 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9192 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9193
9194 /* If this is the first symbol to need a PLT entry, then make some
9195 basic setup. Also work out PLT entry sizes. We'll need them
9196 for PLT offset calculations. */
9197 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9198 {
9199 BFD_ASSERT (htab->root.sgotplt->size == 0);
9200 BFD_ASSERT (htab->plt_got_index == 0);
9201
9202 /* If we're using the PLT additions to the psABI, each PLT
9203 entry is 16 bytes and the PLT0 entry is 32 bytes.
9204 Encourage better cache usage by aligning. We do this
9205 lazily to avoid pessimizing traditional objects. */
9206 if (!htab->is_vxworks
9207 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9208 return FALSE;
9209
9210 /* Make sure that .got.plt is word-aligned. We do this lazily
9211 for the same reason as above. */
9212 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9213 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9214 return FALSE;
9215
9216 /* On non-VxWorks targets, the first two entries in .got.plt
9217 are reserved. */
9218 if (!htab->is_vxworks)
9219 htab->plt_got_index
9220 += (get_elf_backend_data (dynobj)->got_header_size
9221 / MIPS_ELF_GOT_SIZE (dynobj));
9222
9223 /* On VxWorks, also allocate room for the header's
9224 .rela.plt.unloaded entries. */
9225 if (htab->is_vxworks && !bfd_link_pic (info))
9226 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9227
9228 /* Now work out the sizes of individual PLT entries. */
9229 if (htab->is_vxworks && bfd_link_pic (info))
9230 htab->plt_mips_entry_size
9231 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9232 else if (htab->is_vxworks)
9233 htab->plt_mips_entry_size
9234 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9235 else if (newabi_p)
9236 htab->plt_mips_entry_size
9237 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9238 else if (!micromips_p)
9239 {
9240 htab->plt_mips_entry_size
9241 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9242 htab->plt_comp_entry_size
9243 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9244 }
9245 else if (htab->insn32)
9246 {
9247 htab->plt_mips_entry_size
9248 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9249 htab->plt_comp_entry_size
9250 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9251 }
9252 else
9253 {
9254 htab->plt_mips_entry_size
9255 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9256 htab->plt_comp_entry_size
9257 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9258 }
9259 }
9260
9261 if (h->plt.plist == NULL)
9262 h->plt.plist = mips_elf_make_plt_record (dynobj);
9263 if (h->plt.plist == NULL)
9264 return FALSE;
9265
9266 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9267 n32 or n64, so always use a standard entry there.
9268
9269 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9270 all MIPS16 calls will go via that stub, and there is no benefit
9271 to having a MIPS16 entry. And in the case of call_stub a
9272 standard entry actually has to be used as the stub ends with a J
9273 instruction. */
9274 if (newabi_p
9275 || htab->is_vxworks
9276 || hmips->call_stub
9277 || hmips->call_fp_stub)
9278 {
9279 h->plt.plist->need_mips = TRUE;
9280 h->plt.plist->need_comp = FALSE;
9281 }
9282
9283 /* Otherwise, if there are no direct calls to the function, we
9284 have a free choice of whether to use standard or compressed
9285 entries. Prefer microMIPS entries if the object is known to
9286 contain microMIPS code, so that it becomes possible to create
9287 pure microMIPS binaries. Prefer standard entries otherwise,
9288 because MIPS16 ones are no smaller and are usually slower. */
9289 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9290 {
9291 if (micromips_p)
9292 h->plt.plist->need_comp = TRUE;
9293 else
9294 h->plt.plist->need_mips = TRUE;
9295 }
9296
9297 if (h->plt.plist->need_mips)
9298 {
9299 h->plt.plist->mips_offset = htab->plt_mips_offset;
9300 htab->plt_mips_offset += htab->plt_mips_entry_size;
9301 }
9302 if (h->plt.plist->need_comp)
9303 {
9304 h->plt.plist->comp_offset = htab->plt_comp_offset;
9305 htab->plt_comp_offset += htab->plt_comp_entry_size;
9306 }
9307
9308 /* Reserve the corresponding .got.plt entry now too. */
9309 h->plt.plist->gotplt_index = htab->plt_got_index++;
9310
9311 /* If the output file has no definition of the symbol, set the
9312 symbol's value to the address of the stub. */
9313 if (!bfd_link_pic (info) && !h->def_regular)
9314 hmips->use_plt_entry = TRUE;
9315
9316 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9317 htab->root.srelplt->size += (htab->is_vxworks
9318 ? MIPS_ELF_RELA_SIZE (dynobj)
9319 : MIPS_ELF_REL_SIZE (dynobj));
9320
9321 /* Make room for the .rela.plt.unloaded relocations. */
9322 if (htab->is_vxworks && !bfd_link_pic (info))
9323 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9324
9325 /* All relocations against this symbol that could have been made
9326 dynamic will now refer to the PLT entry instead. */
9327 hmips->possibly_dynamic_relocs = 0;
9328
9329 return TRUE;
9330 }
9331
9332 /* If this is a weak symbol, and there is a real definition, the
9333 processor independent code will have arranged for us to see the
9334 real definition first, and we can just use the same value. */
9335 if (h->u.weakdef != NULL)
9336 {
9337 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9338 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9339 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9340 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9341 return TRUE;
9342 }
9343
9344 /* Otherwise, there is nothing further to do for symbols defined
9345 in regular objects. */
9346 if (h->def_regular)
9347 return TRUE;
9348
9349 /* There's also nothing more to do if we'll convert all relocations
9350 against this symbol into dynamic relocations. */
9351 if (!hmips->has_static_relocs)
9352 return TRUE;
9353
9354 /* We're now relying on copy relocations. Complain if we have
9355 some that we can't convert. */
9356 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9357 {
9358 _bfd_error_handler (_("non-dynamic relocations refer to "
9359 "dynamic symbol %s"),
9360 h->root.root.string);
9361 bfd_set_error (bfd_error_bad_value);
9362 return FALSE;
9363 }
9364
9365 /* We must allocate the symbol in our .dynbss section, which will
9366 become part of the .bss section of the executable. There will be
9367 an entry for this symbol in the .dynsym section. The dynamic
9368 object will contain position independent code, so all references
9369 from the dynamic object to this symbol will go through the global
9370 offset table. The dynamic linker will use the .dynsym entry to
9371 determine the address it must put in the global offset table, so
9372 both the dynamic object and the regular object will refer to the
9373 same memory location for the variable. */
9374
9375 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9376 {
9377 s = htab->root.sdynrelro;
9378 srel = htab->root.sreldynrelro;
9379 }
9380 else
9381 {
9382 s = htab->root.sdynbss;
9383 srel = htab->root.srelbss;
9384 }
9385 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9386 {
9387 if (htab->is_vxworks)
9388 srel->size += sizeof (Elf32_External_Rela);
9389 else
9390 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9391 h->needs_copy = 1;
9392 }
9393
9394 /* All relocations against this symbol that could have been made
9395 dynamic will now refer to the local copy instead. */
9396 hmips->possibly_dynamic_relocs = 0;
9397
9398 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9399 }
9400 \f
9401 /* This function is called after all the input files have been read,
9402 and the input sections have been assigned to output sections. We
9403 check for any mips16 stub sections that we can discard. */
9404
9405 bfd_boolean
9406 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9407 struct bfd_link_info *info)
9408 {
9409 asection *sect;
9410 struct mips_elf_link_hash_table *htab;
9411 struct mips_htab_traverse_info hti;
9412
9413 htab = mips_elf_hash_table (info);
9414 BFD_ASSERT (htab != NULL);
9415
9416 /* The .reginfo section has a fixed size. */
9417 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9418 if (sect != NULL)
9419 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9420
9421 /* The .MIPS.abiflags section has a fixed size. */
9422 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9423 if (sect != NULL)
9424 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9425
9426 hti.info = info;
9427 hti.output_bfd = output_bfd;
9428 hti.error = FALSE;
9429 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9430 mips_elf_check_symbols, &hti);
9431 if (hti.error)
9432 return FALSE;
9433
9434 return TRUE;
9435 }
9436
9437 /* If the link uses a GOT, lay it out and work out its size. */
9438
9439 static bfd_boolean
9440 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9441 {
9442 bfd *dynobj;
9443 asection *s;
9444 struct mips_got_info *g;
9445 bfd_size_type loadable_size = 0;
9446 bfd_size_type page_gotno;
9447 bfd *ibfd;
9448 struct mips_elf_traverse_got_arg tga;
9449 struct mips_elf_link_hash_table *htab;
9450
9451 htab = mips_elf_hash_table (info);
9452 BFD_ASSERT (htab != NULL);
9453
9454 s = htab->root.sgot;
9455 if (s == NULL)
9456 return TRUE;
9457
9458 dynobj = elf_hash_table (info)->dynobj;
9459 g = htab->got_info;
9460
9461 /* Allocate room for the reserved entries. VxWorks always reserves
9462 3 entries; other objects only reserve 2 entries. */
9463 BFD_ASSERT (g->assigned_low_gotno == 0);
9464 if (htab->is_vxworks)
9465 htab->reserved_gotno = 3;
9466 else
9467 htab->reserved_gotno = 2;
9468 g->local_gotno += htab->reserved_gotno;
9469 g->assigned_low_gotno = htab->reserved_gotno;
9470
9471 /* Decide which symbols need to go in the global part of the GOT and
9472 count the number of reloc-only GOT symbols. */
9473 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9474
9475 if (!mips_elf_resolve_final_got_entries (info, g))
9476 return FALSE;
9477
9478 /* Calculate the total loadable size of the output. That
9479 will give us the maximum number of GOT_PAGE entries
9480 required. */
9481 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9482 {
9483 asection *subsection;
9484
9485 for (subsection = ibfd->sections;
9486 subsection;
9487 subsection = subsection->next)
9488 {
9489 if ((subsection->flags & SEC_ALLOC) == 0)
9490 continue;
9491 loadable_size += ((subsection->size + 0xf)
9492 &~ (bfd_size_type) 0xf);
9493 }
9494 }
9495
9496 if (htab->is_vxworks)
9497 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9498 relocations against local symbols evaluate to "G", and the EABI does
9499 not include R_MIPS_GOT_PAGE. */
9500 page_gotno = 0;
9501 else
9502 /* Assume there are two loadable segments consisting of contiguous
9503 sections. Is 5 enough? */
9504 page_gotno = (loadable_size >> 16) + 5;
9505
9506 /* Choose the smaller of the two page estimates; both are intended to be
9507 conservative. */
9508 if (page_gotno > g->page_gotno)
9509 page_gotno = g->page_gotno;
9510
9511 g->local_gotno += page_gotno;
9512 g->assigned_high_gotno = g->local_gotno - 1;
9513
9514 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9515 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9516 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9517
9518 /* VxWorks does not support multiple GOTs. It initializes $gp to
9519 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9520 dynamic loader. */
9521 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9522 {
9523 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9524 return FALSE;
9525 }
9526 else
9527 {
9528 /* Record that all bfds use G. This also has the effect of freeing
9529 the per-bfd GOTs, which we no longer need. */
9530 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9531 if (mips_elf_bfd_got (ibfd, FALSE))
9532 mips_elf_replace_bfd_got (ibfd, g);
9533 mips_elf_replace_bfd_got (output_bfd, g);
9534
9535 /* Set up TLS entries. */
9536 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9537 tga.info = info;
9538 tga.g = g;
9539 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9540 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9541 if (!tga.g)
9542 return FALSE;
9543 BFD_ASSERT (g->tls_assigned_gotno
9544 == g->global_gotno + g->local_gotno + g->tls_gotno);
9545
9546 /* Each VxWorks GOT entry needs an explicit relocation. */
9547 if (htab->is_vxworks && bfd_link_pic (info))
9548 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9549
9550 /* Allocate room for the TLS relocations. */
9551 if (g->relocs)
9552 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9553 }
9554
9555 return TRUE;
9556 }
9557
9558 /* Estimate the size of the .MIPS.stubs section. */
9559
9560 static void
9561 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9562 {
9563 struct mips_elf_link_hash_table *htab;
9564 bfd_size_type dynsymcount;
9565
9566 htab = mips_elf_hash_table (info);
9567 BFD_ASSERT (htab != NULL);
9568
9569 if (htab->lazy_stub_count == 0)
9570 return;
9571
9572 /* IRIX rld assumes that a function stub isn't at the end of the .text
9573 section, so add a dummy entry to the end. */
9574 htab->lazy_stub_count++;
9575
9576 /* Get a worst-case estimate of the number of dynamic symbols needed.
9577 At this point, dynsymcount does not account for section symbols
9578 and count_section_dynsyms may overestimate the number that will
9579 be needed. */
9580 dynsymcount = (elf_hash_table (info)->dynsymcount
9581 + count_section_dynsyms (output_bfd, info));
9582
9583 /* Determine the size of one stub entry. There's no disadvantage
9584 from using microMIPS code here, so for the sake of pure-microMIPS
9585 binaries we prefer it whenever there's any microMIPS code in
9586 output produced at all. This has a benefit of stubs being
9587 shorter by 4 bytes each too, unless in the insn32 mode. */
9588 if (!MICROMIPS_P (output_bfd))
9589 htab->function_stub_size = (dynsymcount > 0x10000
9590 ? MIPS_FUNCTION_STUB_BIG_SIZE
9591 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9592 else if (htab->insn32)
9593 htab->function_stub_size = (dynsymcount > 0x10000
9594 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9595 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9596 else
9597 htab->function_stub_size = (dynsymcount > 0x10000
9598 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9599 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9600
9601 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9602 }
9603
9604 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9605 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9606 stub, allocate an entry in the stubs section. */
9607
9608 static bfd_boolean
9609 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9610 {
9611 struct mips_htab_traverse_info *hti = data;
9612 struct mips_elf_link_hash_table *htab;
9613 struct bfd_link_info *info;
9614 bfd *output_bfd;
9615
9616 info = hti->info;
9617 output_bfd = hti->output_bfd;
9618 htab = mips_elf_hash_table (info);
9619 BFD_ASSERT (htab != NULL);
9620
9621 if (h->needs_lazy_stub)
9622 {
9623 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9624 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9625 bfd_vma isa_bit = micromips_p;
9626
9627 BFD_ASSERT (htab->root.dynobj != NULL);
9628 if (h->root.plt.plist == NULL)
9629 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9630 if (h->root.plt.plist == NULL)
9631 {
9632 hti->error = TRUE;
9633 return FALSE;
9634 }
9635 h->root.root.u.def.section = htab->sstubs;
9636 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9637 h->root.plt.plist->stub_offset = htab->sstubs->size;
9638 h->root.other = other;
9639 htab->sstubs->size += htab->function_stub_size;
9640 }
9641 return TRUE;
9642 }
9643
9644 /* Allocate offsets in the stubs section to each symbol that needs one.
9645 Set the final size of the .MIPS.stub section. */
9646
9647 static bfd_boolean
9648 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9649 {
9650 bfd *output_bfd = info->output_bfd;
9651 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9652 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9653 bfd_vma isa_bit = micromips_p;
9654 struct mips_elf_link_hash_table *htab;
9655 struct mips_htab_traverse_info hti;
9656 struct elf_link_hash_entry *h;
9657 bfd *dynobj;
9658
9659 htab = mips_elf_hash_table (info);
9660 BFD_ASSERT (htab != NULL);
9661
9662 if (htab->lazy_stub_count == 0)
9663 return TRUE;
9664
9665 htab->sstubs->size = 0;
9666 hti.info = info;
9667 hti.output_bfd = output_bfd;
9668 hti.error = FALSE;
9669 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9670 if (hti.error)
9671 return FALSE;
9672 htab->sstubs->size += htab->function_stub_size;
9673 BFD_ASSERT (htab->sstubs->size
9674 == htab->lazy_stub_count * htab->function_stub_size);
9675
9676 dynobj = elf_hash_table (info)->dynobj;
9677 BFD_ASSERT (dynobj != NULL);
9678 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9679 if (h == NULL)
9680 return FALSE;
9681 h->root.u.def.value = isa_bit;
9682 h->other = other;
9683 h->type = STT_FUNC;
9684
9685 return TRUE;
9686 }
9687
9688 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9689 bfd_link_info. If H uses the address of a PLT entry as the value
9690 of the symbol, then set the entry in the symbol table now. Prefer
9691 a standard MIPS PLT entry. */
9692
9693 static bfd_boolean
9694 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9695 {
9696 struct bfd_link_info *info = data;
9697 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9698 struct mips_elf_link_hash_table *htab;
9699 unsigned int other;
9700 bfd_vma isa_bit;
9701 bfd_vma val;
9702
9703 htab = mips_elf_hash_table (info);
9704 BFD_ASSERT (htab != NULL);
9705
9706 if (h->use_plt_entry)
9707 {
9708 BFD_ASSERT (h->root.plt.plist != NULL);
9709 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9710 || h->root.plt.plist->comp_offset != MINUS_ONE);
9711
9712 val = htab->plt_header_size;
9713 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9714 {
9715 isa_bit = 0;
9716 val += h->root.plt.plist->mips_offset;
9717 other = 0;
9718 }
9719 else
9720 {
9721 isa_bit = 1;
9722 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9723 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9724 }
9725 val += isa_bit;
9726 /* For VxWorks, point at the PLT load stub rather than the lazy
9727 resolution stub; this stub will become the canonical function
9728 address. */
9729 if (htab->is_vxworks)
9730 val += 8;
9731
9732 h->root.root.u.def.section = htab->root.splt;
9733 h->root.root.u.def.value = val;
9734 h->root.other = other;
9735 }
9736
9737 return TRUE;
9738 }
9739
9740 /* Set the sizes of the dynamic sections. */
9741
9742 bfd_boolean
9743 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9744 struct bfd_link_info *info)
9745 {
9746 bfd *dynobj;
9747 asection *s, *sreldyn;
9748 bfd_boolean reltext;
9749 struct mips_elf_link_hash_table *htab;
9750
9751 htab = mips_elf_hash_table (info);
9752 BFD_ASSERT (htab != NULL);
9753 dynobj = elf_hash_table (info)->dynobj;
9754 BFD_ASSERT (dynobj != NULL);
9755
9756 if (elf_hash_table (info)->dynamic_sections_created)
9757 {
9758 /* Set the contents of the .interp section to the interpreter. */
9759 if (bfd_link_executable (info) && !info->nointerp)
9760 {
9761 s = bfd_get_linker_section (dynobj, ".interp");
9762 BFD_ASSERT (s != NULL);
9763 s->size
9764 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9765 s->contents
9766 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9767 }
9768
9769 /* Figure out the size of the PLT header if we know that we
9770 are using it. For the sake of cache alignment always use
9771 a standard header whenever any standard entries are present
9772 even if microMIPS entries are present as well. This also
9773 lets the microMIPS header rely on the value of $v0 only set
9774 by microMIPS entries, for a small size reduction.
9775
9776 Set symbol table entry values for symbols that use the
9777 address of their PLT entry now that we can calculate it.
9778
9779 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9780 haven't already in _bfd_elf_create_dynamic_sections. */
9781 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9782 {
9783 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9784 && !htab->plt_mips_offset);
9785 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9786 bfd_vma isa_bit = micromips_p;
9787 struct elf_link_hash_entry *h;
9788 bfd_vma size;
9789
9790 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9791 BFD_ASSERT (htab->root.sgotplt->size == 0);
9792 BFD_ASSERT (htab->root.splt->size == 0);
9793
9794 if (htab->is_vxworks && bfd_link_pic (info))
9795 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9796 else if (htab->is_vxworks)
9797 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9798 else if (ABI_64_P (output_bfd))
9799 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9800 else if (ABI_N32_P (output_bfd))
9801 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9802 else if (!micromips_p)
9803 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9804 else if (htab->insn32)
9805 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9806 else
9807 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9808
9809 htab->plt_header_is_comp = micromips_p;
9810 htab->plt_header_size = size;
9811 htab->root.splt->size = (size
9812 + htab->plt_mips_offset
9813 + htab->plt_comp_offset);
9814 htab->root.sgotplt->size = (htab->plt_got_index
9815 * MIPS_ELF_GOT_SIZE (dynobj));
9816
9817 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9818
9819 if (htab->root.hplt == NULL)
9820 {
9821 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9822 "_PROCEDURE_LINKAGE_TABLE_");
9823 htab->root.hplt = h;
9824 if (h == NULL)
9825 return FALSE;
9826 }
9827
9828 h = htab->root.hplt;
9829 h->root.u.def.value = isa_bit;
9830 h->other = other;
9831 h->type = STT_FUNC;
9832 }
9833 }
9834
9835 /* Allocate space for global sym dynamic relocs. */
9836 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9837
9838 mips_elf_estimate_stub_size (output_bfd, info);
9839
9840 if (!mips_elf_lay_out_got (output_bfd, info))
9841 return FALSE;
9842
9843 mips_elf_lay_out_lazy_stubs (info);
9844
9845 /* The check_relocs and adjust_dynamic_symbol entry points have
9846 determined the sizes of the various dynamic sections. Allocate
9847 memory for them. */
9848 reltext = FALSE;
9849 for (s = dynobj->sections; s != NULL; s = s->next)
9850 {
9851 const char *name;
9852
9853 /* It's OK to base decisions on the section name, because none
9854 of the dynobj section names depend upon the input files. */
9855 name = bfd_get_section_name (dynobj, s);
9856
9857 if ((s->flags & SEC_LINKER_CREATED) == 0)
9858 continue;
9859
9860 if (CONST_STRNEQ (name, ".rel"))
9861 {
9862 if (s->size != 0)
9863 {
9864 const char *outname;
9865 asection *target;
9866
9867 /* If this relocation section applies to a read only
9868 section, then we probably need a DT_TEXTREL entry.
9869 If the relocation section is .rel(a).dyn, we always
9870 assert a DT_TEXTREL entry rather than testing whether
9871 there exists a relocation to a read only section or
9872 not. */
9873 outname = bfd_get_section_name (output_bfd,
9874 s->output_section);
9875 target = bfd_get_section_by_name (output_bfd, outname + 4);
9876 if ((target != NULL
9877 && (target->flags & SEC_READONLY) != 0
9878 && (target->flags & SEC_ALLOC) != 0)
9879 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9880 reltext = TRUE;
9881
9882 /* We use the reloc_count field as a counter if we need
9883 to copy relocs into the output file. */
9884 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9885 s->reloc_count = 0;
9886
9887 /* If combreloc is enabled, elf_link_sort_relocs() will
9888 sort relocations, but in a different way than we do,
9889 and before we're done creating relocations. Also, it
9890 will move them around between input sections'
9891 relocation's contents, so our sorting would be
9892 broken, so don't let it run. */
9893 info->combreloc = 0;
9894 }
9895 }
9896 else if (bfd_link_executable (info)
9897 && ! mips_elf_hash_table (info)->use_rld_obj_head
9898 && CONST_STRNEQ (name, ".rld_map"))
9899 {
9900 /* We add a room for __rld_map. It will be filled in by the
9901 rtld to contain a pointer to the _r_debug structure. */
9902 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9903 }
9904 else if (SGI_COMPAT (output_bfd)
9905 && CONST_STRNEQ (name, ".compact_rel"))
9906 s->size += mips_elf_hash_table (info)->compact_rel_size;
9907 else if (s == htab->root.splt)
9908 {
9909 /* If the last PLT entry has a branch delay slot, allocate
9910 room for an extra nop to fill the delay slot. This is
9911 for CPUs without load interlocking. */
9912 if (! LOAD_INTERLOCKS_P (output_bfd)
9913 && ! htab->is_vxworks && s->size > 0)
9914 s->size += 4;
9915 }
9916 else if (! CONST_STRNEQ (name, ".init")
9917 && s != htab->root.sgot
9918 && s != htab->root.sgotplt
9919 && s != htab->sstubs
9920 && s != htab->root.sdynbss
9921 && s != htab->root.sdynrelro)
9922 {
9923 /* It's not one of our sections, so don't allocate space. */
9924 continue;
9925 }
9926
9927 if (s->size == 0)
9928 {
9929 s->flags |= SEC_EXCLUDE;
9930 continue;
9931 }
9932
9933 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9934 continue;
9935
9936 /* Allocate memory for the section contents. */
9937 s->contents = bfd_zalloc (dynobj, s->size);
9938 if (s->contents == NULL)
9939 {
9940 bfd_set_error (bfd_error_no_memory);
9941 return FALSE;
9942 }
9943 }
9944
9945 if (elf_hash_table (info)->dynamic_sections_created)
9946 {
9947 /* Add some entries to the .dynamic section. We fill in the
9948 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9949 must add the entries now so that we get the correct size for
9950 the .dynamic section. */
9951
9952 /* SGI object has the equivalence of DT_DEBUG in the
9953 DT_MIPS_RLD_MAP entry. This must come first because glibc
9954 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9955 may only look at the first one they see. */
9956 if (!bfd_link_pic (info)
9957 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9958 return FALSE;
9959
9960 if (bfd_link_executable (info)
9961 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9962 return FALSE;
9963
9964 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9965 used by the debugger. */
9966 if (bfd_link_executable (info)
9967 && !SGI_COMPAT (output_bfd)
9968 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9969 return FALSE;
9970
9971 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9972 info->flags |= DF_TEXTREL;
9973
9974 if ((info->flags & DF_TEXTREL) != 0)
9975 {
9976 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9977 return FALSE;
9978
9979 /* Clear the DF_TEXTREL flag. It will be set again if we
9980 write out an actual text relocation; we may not, because
9981 at this point we do not know whether e.g. any .eh_frame
9982 absolute relocations have been converted to PC-relative. */
9983 info->flags &= ~DF_TEXTREL;
9984 }
9985
9986 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9987 return FALSE;
9988
9989 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9990 if (htab->is_vxworks)
9991 {
9992 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9993 use any of the DT_MIPS_* tags. */
9994 if (sreldyn && sreldyn->size > 0)
9995 {
9996 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9997 return FALSE;
9998
9999 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10000 return FALSE;
10001
10002 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10003 return FALSE;
10004 }
10005 }
10006 else
10007 {
10008 if (sreldyn && sreldyn->size > 0)
10009 {
10010 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10011 return FALSE;
10012
10013 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10014 return FALSE;
10015
10016 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10017 return FALSE;
10018 }
10019
10020 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10021 return FALSE;
10022
10023 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10024 return FALSE;
10025
10026 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10027 return FALSE;
10028
10029 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10030 return FALSE;
10031
10032 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10033 return FALSE;
10034
10035 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10036 return FALSE;
10037
10038 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10039 return FALSE;
10040
10041 if (IRIX_COMPAT (dynobj) == ict_irix5
10042 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10043 return FALSE;
10044
10045 if (IRIX_COMPAT (dynobj) == ict_irix6
10046 && (bfd_get_section_by_name
10047 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10048 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10049 return FALSE;
10050 }
10051 if (htab->root.splt->size > 0)
10052 {
10053 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10054 return FALSE;
10055
10056 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10057 return FALSE;
10058
10059 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10060 return FALSE;
10061
10062 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10063 return FALSE;
10064 }
10065 if (htab->is_vxworks
10066 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10067 return FALSE;
10068 }
10069
10070 return TRUE;
10071 }
10072 \f
10073 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10074 Adjust its R_ADDEND field so that it is correct for the output file.
10075 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10076 and sections respectively; both use symbol indexes. */
10077
10078 static void
10079 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10080 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10081 asection **local_sections, Elf_Internal_Rela *rel)
10082 {
10083 unsigned int r_type, r_symndx;
10084 Elf_Internal_Sym *sym;
10085 asection *sec;
10086
10087 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10088 {
10089 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10090 if (gprel16_reloc_p (r_type)
10091 || r_type == R_MIPS_GPREL32
10092 || literal_reloc_p (r_type))
10093 {
10094 rel->r_addend += _bfd_get_gp_value (input_bfd);
10095 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10096 }
10097
10098 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10099 sym = local_syms + r_symndx;
10100
10101 /* Adjust REL's addend to account for section merging. */
10102 if (!bfd_link_relocatable (info))
10103 {
10104 sec = local_sections[r_symndx];
10105 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10106 }
10107
10108 /* This would normally be done by the rela_normal code in elflink.c. */
10109 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10110 rel->r_addend += local_sections[r_symndx]->output_offset;
10111 }
10112 }
10113
10114 /* Handle relocations against symbols from removed linkonce sections,
10115 or sections discarded by a linker script. We use this wrapper around
10116 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10117 on 64-bit ELF targets. In this case for any relocation handled, which
10118 always be the first in a triplet, the remaining two have to be processed
10119 together with the first, even if they are R_MIPS_NONE. It is the symbol
10120 index referred by the first reloc that applies to all the three and the
10121 remaining two never refer to an object symbol. And it is the final
10122 relocation (the last non-null one) that determines the output field of
10123 the whole relocation so retrieve the corresponding howto structure for
10124 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10125
10126 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10127 and therefore requires to be pasted in a loop. It also defines a block
10128 and does not protect any of its arguments, hence the extra brackets. */
10129
10130 static void
10131 mips_reloc_against_discarded_section (bfd *output_bfd,
10132 struct bfd_link_info *info,
10133 bfd *input_bfd, asection *input_section,
10134 Elf_Internal_Rela **rel,
10135 const Elf_Internal_Rela **relend,
10136 bfd_boolean rel_reloc,
10137 reloc_howto_type *howto,
10138 bfd_byte *contents)
10139 {
10140 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10141 int count = bed->s->int_rels_per_ext_rel;
10142 unsigned int r_type;
10143 int i;
10144
10145 for (i = count - 1; i > 0; i--)
10146 {
10147 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10148 if (r_type != R_MIPS_NONE)
10149 {
10150 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10151 break;
10152 }
10153 }
10154 do
10155 {
10156 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10157 (*rel), count, (*relend),
10158 howto, i, contents);
10159 }
10160 while (0);
10161 }
10162
10163 /* Relocate a MIPS ELF section. */
10164
10165 bfd_boolean
10166 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10167 bfd *input_bfd, asection *input_section,
10168 bfd_byte *contents, Elf_Internal_Rela *relocs,
10169 Elf_Internal_Sym *local_syms,
10170 asection **local_sections)
10171 {
10172 Elf_Internal_Rela *rel;
10173 const Elf_Internal_Rela *relend;
10174 bfd_vma addend = 0;
10175 bfd_boolean use_saved_addend_p = FALSE;
10176 const struct elf_backend_data *bed;
10177
10178 bed = get_elf_backend_data (output_bfd);
10179 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10180 for (rel = relocs; rel < relend; ++rel)
10181 {
10182 const char *name;
10183 bfd_vma value = 0;
10184 reloc_howto_type *howto;
10185 bfd_boolean cross_mode_jump_p = FALSE;
10186 /* TRUE if the relocation is a RELA relocation, rather than a
10187 REL relocation. */
10188 bfd_boolean rela_relocation_p = TRUE;
10189 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10190 const char *msg;
10191 unsigned long r_symndx;
10192 asection *sec;
10193 Elf_Internal_Shdr *symtab_hdr;
10194 struct elf_link_hash_entry *h;
10195 bfd_boolean rel_reloc;
10196
10197 rel_reloc = (NEWABI_P (input_bfd)
10198 && mips_elf_rel_relocation_p (input_bfd, input_section,
10199 relocs, rel));
10200 /* Find the relocation howto for this relocation. */
10201 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10202
10203 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10204 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10205 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10206 {
10207 sec = local_sections[r_symndx];
10208 h = NULL;
10209 }
10210 else
10211 {
10212 unsigned long extsymoff;
10213
10214 extsymoff = 0;
10215 if (!elf_bad_symtab (input_bfd))
10216 extsymoff = symtab_hdr->sh_info;
10217 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10218 while (h->root.type == bfd_link_hash_indirect
10219 || h->root.type == bfd_link_hash_warning)
10220 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10221
10222 sec = NULL;
10223 if (h->root.type == bfd_link_hash_defined
10224 || h->root.type == bfd_link_hash_defweak)
10225 sec = h->root.u.def.section;
10226 }
10227
10228 if (sec != NULL && discarded_section (sec))
10229 {
10230 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10231 input_section, &rel, &relend,
10232 rel_reloc, howto, contents);
10233 continue;
10234 }
10235
10236 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10237 {
10238 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10239 64-bit code, but make sure all their addresses are in the
10240 lowermost or uppermost 32-bit section of the 64-bit address
10241 space. Thus, when they use an R_MIPS_64 they mean what is
10242 usually meant by R_MIPS_32, with the exception that the
10243 stored value is sign-extended to 64 bits. */
10244 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10245
10246 /* On big-endian systems, we need to lie about the position
10247 of the reloc. */
10248 if (bfd_big_endian (input_bfd))
10249 rel->r_offset += 4;
10250 }
10251
10252 if (!use_saved_addend_p)
10253 {
10254 /* If these relocations were originally of the REL variety,
10255 we must pull the addend out of the field that will be
10256 relocated. Otherwise, we simply use the contents of the
10257 RELA relocation. */
10258 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10259 relocs, rel))
10260 {
10261 rela_relocation_p = FALSE;
10262 addend = mips_elf_read_rel_addend (input_bfd, rel,
10263 howto, contents);
10264 if (hi16_reloc_p (r_type)
10265 || (got16_reloc_p (r_type)
10266 && mips_elf_local_relocation_p (input_bfd, rel,
10267 local_sections)))
10268 {
10269 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10270 contents, &addend))
10271 {
10272 if (h)
10273 name = h->root.root.string;
10274 else
10275 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10276 local_syms + r_symndx,
10277 sec);
10278 _bfd_error_handler
10279 /* xgettext:c-format */
10280 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10281 input_bfd, input_section, name, howto->name,
10282 rel->r_offset);
10283 }
10284 }
10285 else
10286 addend <<= howto->rightshift;
10287 }
10288 else
10289 addend = rel->r_addend;
10290 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10291 local_syms, local_sections, rel);
10292 }
10293
10294 if (bfd_link_relocatable (info))
10295 {
10296 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10297 && bfd_big_endian (input_bfd))
10298 rel->r_offset -= 4;
10299
10300 if (!rela_relocation_p && rel->r_addend)
10301 {
10302 addend += rel->r_addend;
10303 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10304 addend = mips_elf_high (addend);
10305 else if (r_type == R_MIPS_HIGHER)
10306 addend = mips_elf_higher (addend);
10307 else if (r_type == R_MIPS_HIGHEST)
10308 addend = mips_elf_highest (addend);
10309 else
10310 addend >>= howto->rightshift;
10311
10312 /* We use the source mask, rather than the destination
10313 mask because the place to which we are writing will be
10314 source of the addend in the final link. */
10315 addend &= howto->src_mask;
10316
10317 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10318 /* See the comment above about using R_MIPS_64 in the 32-bit
10319 ABI. Here, we need to update the addend. It would be
10320 possible to get away with just using the R_MIPS_32 reloc
10321 but for endianness. */
10322 {
10323 bfd_vma sign_bits;
10324 bfd_vma low_bits;
10325 bfd_vma high_bits;
10326
10327 if (addend & ((bfd_vma) 1 << 31))
10328 #ifdef BFD64
10329 sign_bits = ((bfd_vma) 1 << 32) - 1;
10330 #else
10331 sign_bits = -1;
10332 #endif
10333 else
10334 sign_bits = 0;
10335
10336 /* If we don't know that we have a 64-bit type,
10337 do two separate stores. */
10338 if (bfd_big_endian (input_bfd))
10339 {
10340 /* Store the sign-bits (which are most significant)
10341 first. */
10342 low_bits = sign_bits;
10343 high_bits = addend;
10344 }
10345 else
10346 {
10347 low_bits = addend;
10348 high_bits = sign_bits;
10349 }
10350 bfd_put_32 (input_bfd, low_bits,
10351 contents + rel->r_offset);
10352 bfd_put_32 (input_bfd, high_bits,
10353 contents + rel->r_offset + 4);
10354 continue;
10355 }
10356
10357 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10358 input_bfd, input_section,
10359 contents, FALSE))
10360 return FALSE;
10361 }
10362
10363 /* Go on to the next relocation. */
10364 continue;
10365 }
10366
10367 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10368 relocations for the same offset. In that case we are
10369 supposed to treat the output of each relocation as the addend
10370 for the next. */
10371 if (rel + 1 < relend
10372 && rel->r_offset == rel[1].r_offset
10373 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10374 use_saved_addend_p = TRUE;
10375 else
10376 use_saved_addend_p = FALSE;
10377
10378 /* Figure out what value we are supposed to relocate. */
10379 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10380 input_section, info, rel,
10381 addend, howto, local_syms,
10382 local_sections, &value,
10383 &name, &cross_mode_jump_p,
10384 use_saved_addend_p))
10385 {
10386 case bfd_reloc_continue:
10387 /* There's nothing to do. */
10388 continue;
10389
10390 case bfd_reloc_undefined:
10391 /* mips_elf_calculate_relocation already called the
10392 undefined_symbol callback. There's no real point in
10393 trying to perform the relocation at this point, so we
10394 just skip ahead to the next relocation. */
10395 continue;
10396
10397 case bfd_reloc_notsupported:
10398 msg = _("internal error: unsupported relocation error");
10399 info->callbacks->warning
10400 (info, msg, name, input_bfd, input_section, rel->r_offset);
10401 return FALSE;
10402
10403 case bfd_reloc_overflow:
10404 if (use_saved_addend_p)
10405 /* Ignore overflow until we reach the last relocation for
10406 a given location. */
10407 ;
10408 else
10409 {
10410 struct mips_elf_link_hash_table *htab;
10411
10412 htab = mips_elf_hash_table (info);
10413 BFD_ASSERT (htab != NULL);
10414 BFD_ASSERT (name != NULL);
10415 if (!htab->small_data_overflow_reported
10416 && (gprel16_reloc_p (howto->type)
10417 || literal_reloc_p (howto->type)))
10418 {
10419 msg = _("small-data section exceeds 64KB;"
10420 " lower small-data size limit (see option -G)");
10421
10422 htab->small_data_overflow_reported = TRUE;
10423 (*info->callbacks->einfo) ("%P: %s\n", msg);
10424 }
10425 (*info->callbacks->reloc_overflow)
10426 (info, NULL, name, howto->name, (bfd_vma) 0,
10427 input_bfd, input_section, rel->r_offset);
10428 }
10429 break;
10430
10431 case bfd_reloc_ok:
10432 break;
10433
10434 case bfd_reloc_outofrange:
10435 msg = NULL;
10436 if (jal_reloc_p (howto->type))
10437 msg = (cross_mode_jump_p
10438 ? _("Cannot convert a jump to JALX "
10439 "for a non-word-aligned address")
10440 : (howto->type == R_MIPS16_26
10441 ? _("Jump to a non-word-aligned address")
10442 : _("Jump to a non-instruction-aligned address")));
10443 else if (b_reloc_p (howto->type))
10444 msg = (cross_mode_jump_p
10445 ? _("Cannot convert a branch to JALX "
10446 "for a non-word-aligned address")
10447 : _("Branch to a non-instruction-aligned address"));
10448 else if (aligned_pcrel_reloc_p (howto->type))
10449 msg = _("PC-relative load from unaligned address");
10450 if (msg)
10451 {
10452 info->callbacks->einfo
10453 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10454 break;
10455 }
10456 /* Fall through. */
10457
10458 default:
10459 abort ();
10460 break;
10461 }
10462
10463 /* If we've got another relocation for the address, keep going
10464 until we reach the last one. */
10465 if (use_saved_addend_p)
10466 {
10467 addend = value;
10468 continue;
10469 }
10470
10471 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10472 /* See the comment above about using R_MIPS_64 in the 32-bit
10473 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10474 that calculated the right value. Now, however, we
10475 sign-extend the 32-bit result to 64-bits, and store it as a
10476 64-bit value. We are especially generous here in that we
10477 go to extreme lengths to support this usage on systems with
10478 only a 32-bit VMA. */
10479 {
10480 bfd_vma sign_bits;
10481 bfd_vma low_bits;
10482 bfd_vma high_bits;
10483
10484 if (value & ((bfd_vma) 1 << 31))
10485 #ifdef BFD64
10486 sign_bits = ((bfd_vma) 1 << 32) - 1;
10487 #else
10488 sign_bits = -1;
10489 #endif
10490 else
10491 sign_bits = 0;
10492
10493 /* If we don't know that we have a 64-bit type,
10494 do two separate stores. */
10495 if (bfd_big_endian (input_bfd))
10496 {
10497 /* Undo what we did above. */
10498 rel->r_offset -= 4;
10499 /* Store the sign-bits (which are most significant)
10500 first. */
10501 low_bits = sign_bits;
10502 high_bits = value;
10503 }
10504 else
10505 {
10506 low_bits = value;
10507 high_bits = sign_bits;
10508 }
10509 bfd_put_32 (input_bfd, low_bits,
10510 contents + rel->r_offset);
10511 bfd_put_32 (input_bfd, high_bits,
10512 contents + rel->r_offset + 4);
10513 continue;
10514 }
10515
10516 /* Actually perform the relocation. */
10517 if (! mips_elf_perform_relocation (info, howto, rel, value,
10518 input_bfd, input_section,
10519 contents, cross_mode_jump_p))
10520 return FALSE;
10521 }
10522
10523 return TRUE;
10524 }
10525 \f
10526 /* A function that iterates over each entry in la25_stubs and fills
10527 in the code for each one. DATA points to a mips_htab_traverse_info. */
10528
10529 static int
10530 mips_elf_create_la25_stub (void **slot, void *data)
10531 {
10532 struct mips_htab_traverse_info *hti;
10533 struct mips_elf_link_hash_table *htab;
10534 struct mips_elf_la25_stub *stub;
10535 asection *s;
10536 bfd_byte *loc;
10537 bfd_vma offset, target, target_high, target_low;
10538
10539 stub = (struct mips_elf_la25_stub *) *slot;
10540 hti = (struct mips_htab_traverse_info *) data;
10541 htab = mips_elf_hash_table (hti->info);
10542 BFD_ASSERT (htab != NULL);
10543
10544 /* Create the section contents, if we haven't already. */
10545 s = stub->stub_section;
10546 loc = s->contents;
10547 if (loc == NULL)
10548 {
10549 loc = bfd_malloc (s->size);
10550 if (loc == NULL)
10551 {
10552 hti->error = TRUE;
10553 return FALSE;
10554 }
10555 s->contents = loc;
10556 }
10557
10558 /* Work out where in the section this stub should go. */
10559 offset = stub->offset;
10560
10561 /* Work out the target address. */
10562 target = mips_elf_get_la25_target (stub, &s);
10563 target += s->output_section->vma + s->output_offset;
10564
10565 target_high = ((target + 0x8000) >> 16) & 0xffff;
10566 target_low = (target & 0xffff);
10567
10568 if (stub->stub_section != htab->strampoline)
10569 {
10570 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10571 of the section and write the two instructions at the end. */
10572 memset (loc, 0, offset);
10573 loc += offset;
10574 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10575 {
10576 bfd_put_micromips_32 (hti->output_bfd,
10577 LA25_LUI_MICROMIPS (target_high),
10578 loc);
10579 bfd_put_micromips_32 (hti->output_bfd,
10580 LA25_ADDIU_MICROMIPS (target_low),
10581 loc + 4);
10582 }
10583 else
10584 {
10585 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10586 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10587 }
10588 }
10589 else
10590 {
10591 /* This is trampoline. */
10592 loc += offset;
10593 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10594 {
10595 bfd_put_micromips_32 (hti->output_bfd,
10596 LA25_LUI_MICROMIPS (target_high), loc);
10597 bfd_put_micromips_32 (hti->output_bfd,
10598 LA25_J_MICROMIPS (target), loc + 4);
10599 bfd_put_micromips_32 (hti->output_bfd,
10600 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10601 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10602 }
10603 else
10604 {
10605 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10606 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10607 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10608 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10609 }
10610 }
10611 return TRUE;
10612 }
10613
10614 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10615 adjust it appropriately now. */
10616
10617 static void
10618 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10619 const char *name, Elf_Internal_Sym *sym)
10620 {
10621 /* The linker script takes care of providing names and values for
10622 these, but we must place them into the right sections. */
10623 static const char* const text_section_symbols[] = {
10624 "_ftext",
10625 "_etext",
10626 "__dso_displacement",
10627 "__elf_header",
10628 "__program_header_table",
10629 NULL
10630 };
10631
10632 static const char* const data_section_symbols[] = {
10633 "_fdata",
10634 "_edata",
10635 "_end",
10636 "_fbss",
10637 NULL
10638 };
10639
10640 const char* const *p;
10641 int i;
10642
10643 for (i = 0; i < 2; ++i)
10644 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10645 *p;
10646 ++p)
10647 if (strcmp (*p, name) == 0)
10648 {
10649 /* All of these symbols are given type STT_SECTION by the
10650 IRIX6 linker. */
10651 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10652 sym->st_other = STO_PROTECTED;
10653
10654 /* The IRIX linker puts these symbols in special sections. */
10655 if (i == 0)
10656 sym->st_shndx = SHN_MIPS_TEXT;
10657 else
10658 sym->st_shndx = SHN_MIPS_DATA;
10659
10660 break;
10661 }
10662 }
10663
10664 /* Finish up dynamic symbol handling. We set the contents of various
10665 dynamic sections here. */
10666
10667 bfd_boolean
10668 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10669 struct bfd_link_info *info,
10670 struct elf_link_hash_entry *h,
10671 Elf_Internal_Sym *sym)
10672 {
10673 bfd *dynobj;
10674 asection *sgot;
10675 struct mips_got_info *g, *gg;
10676 const char *name;
10677 int idx;
10678 struct mips_elf_link_hash_table *htab;
10679 struct mips_elf_link_hash_entry *hmips;
10680
10681 htab = mips_elf_hash_table (info);
10682 BFD_ASSERT (htab != NULL);
10683 dynobj = elf_hash_table (info)->dynobj;
10684 hmips = (struct mips_elf_link_hash_entry *) h;
10685
10686 BFD_ASSERT (!htab->is_vxworks);
10687
10688 if (h->plt.plist != NULL
10689 && (h->plt.plist->mips_offset != MINUS_ONE
10690 || h->plt.plist->comp_offset != MINUS_ONE))
10691 {
10692 /* We've decided to create a PLT entry for this symbol. */
10693 bfd_byte *loc;
10694 bfd_vma header_address, got_address;
10695 bfd_vma got_address_high, got_address_low, load;
10696 bfd_vma got_index;
10697 bfd_vma isa_bit;
10698
10699 got_index = h->plt.plist->gotplt_index;
10700
10701 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10702 BFD_ASSERT (h->dynindx != -1);
10703 BFD_ASSERT (htab->root.splt != NULL);
10704 BFD_ASSERT (got_index != MINUS_ONE);
10705 BFD_ASSERT (!h->def_regular);
10706
10707 /* Calculate the address of the PLT header. */
10708 isa_bit = htab->plt_header_is_comp;
10709 header_address = (htab->root.splt->output_section->vma
10710 + htab->root.splt->output_offset + isa_bit);
10711
10712 /* Calculate the address of the .got.plt entry. */
10713 got_address = (htab->root.sgotplt->output_section->vma
10714 + htab->root.sgotplt->output_offset
10715 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10716
10717 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10718 got_address_low = got_address & 0xffff;
10719
10720 /* Initially point the .got.plt entry at the PLT header. */
10721 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10722 if (ABI_64_P (output_bfd))
10723 bfd_put_64 (output_bfd, header_address, loc);
10724 else
10725 bfd_put_32 (output_bfd, header_address, loc);
10726
10727 /* Now handle the PLT itself. First the standard entry (the order
10728 does not matter, we just have to pick one). */
10729 if (h->plt.plist->mips_offset != MINUS_ONE)
10730 {
10731 const bfd_vma *plt_entry;
10732 bfd_vma plt_offset;
10733
10734 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10735
10736 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10737
10738 /* Find out where the .plt entry should go. */
10739 loc = htab->root.splt->contents + plt_offset;
10740
10741 /* Pick the load opcode. */
10742 load = MIPS_ELF_LOAD_WORD (output_bfd);
10743
10744 /* Fill in the PLT entry itself. */
10745
10746 if (MIPSR6_P (output_bfd))
10747 plt_entry = mipsr6_exec_plt_entry;
10748 else
10749 plt_entry = mips_exec_plt_entry;
10750 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10751 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10752 loc + 4);
10753
10754 if (! LOAD_INTERLOCKS_P (output_bfd))
10755 {
10756 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10757 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10758 }
10759 else
10760 {
10761 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10762 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10763 loc + 12);
10764 }
10765 }
10766
10767 /* Now the compressed entry. They come after any standard ones. */
10768 if (h->plt.plist->comp_offset != MINUS_ONE)
10769 {
10770 bfd_vma plt_offset;
10771
10772 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10773 + h->plt.plist->comp_offset);
10774
10775 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10776
10777 /* Find out where the .plt entry should go. */
10778 loc = htab->root.splt->contents + plt_offset;
10779
10780 /* Fill in the PLT entry itself. */
10781 if (!MICROMIPS_P (output_bfd))
10782 {
10783 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10784
10785 bfd_put_16 (output_bfd, plt_entry[0], loc);
10786 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10787 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10788 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10789 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10790 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10791 bfd_put_32 (output_bfd, got_address, loc + 12);
10792 }
10793 else if (htab->insn32)
10794 {
10795 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10796
10797 bfd_put_16 (output_bfd, plt_entry[0], loc);
10798 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10799 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10800 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10801 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10802 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10803 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10804 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10805 }
10806 else
10807 {
10808 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10809 bfd_signed_vma gotpc_offset;
10810 bfd_vma loc_address;
10811
10812 BFD_ASSERT (got_address % 4 == 0);
10813
10814 loc_address = (htab->root.splt->output_section->vma
10815 + htab->root.splt->output_offset + plt_offset);
10816 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10817
10818 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10819 if (gotpc_offset + 0x1000000 >= 0x2000000)
10820 {
10821 _bfd_error_handler
10822 /* xgettext:c-format */
10823 (_("%B: `%A' offset of %ld from `%A' "
10824 "beyond the range of ADDIUPC"),
10825 output_bfd,
10826 htab->root.sgotplt->output_section,
10827 htab->root.splt->output_section,
10828 (long) gotpc_offset);
10829 bfd_set_error (bfd_error_no_error);
10830 return FALSE;
10831 }
10832 bfd_put_16 (output_bfd,
10833 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10834 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10835 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10836 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10837 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10838 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10839 }
10840 }
10841
10842 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10843 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10844 got_index - 2, h->dynindx,
10845 R_MIPS_JUMP_SLOT, got_address);
10846
10847 /* We distinguish between PLT entries and lazy-binding stubs by
10848 giving the former an st_other value of STO_MIPS_PLT. Set the
10849 flag and leave the value if there are any relocations in the
10850 binary where pointer equality matters. */
10851 sym->st_shndx = SHN_UNDEF;
10852 if (h->pointer_equality_needed)
10853 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10854 else
10855 {
10856 sym->st_value = 0;
10857 sym->st_other = 0;
10858 }
10859 }
10860
10861 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10862 {
10863 /* We've decided to create a lazy-binding stub. */
10864 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10865 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10866 bfd_vma stub_size = htab->function_stub_size;
10867 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10868 bfd_vma isa_bit = micromips_p;
10869 bfd_vma stub_big_size;
10870
10871 if (!micromips_p)
10872 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10873 else if (htab->insn32)
10874 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10875 else
10876 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10877
10878 /* This symbol has a stub. Set it up. */
10879
10880 BFD_ASSERT (h->dynindx != -1);
10881
10882 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10883
10884 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10885 sign extension at runtime in the stub, resulting in a negative
10886 index value. */
10887 if (h->dynindx & ~0x7fffffff)
10888 return FALSE;
10889
10890 /* Fill the stub. */
10891 if (micromips_p)
10892 {
10893 idx = 0;
10894 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10895 stub + idx);
10896 idx += 4;
10897 if (htab->insn32)
10898 {
10899 bfd_put_micromips_32 (output_bfd,
10900 STUB_MOVE32_MICROMIPS, stub + idx);
10901 idx += 4;
10902 }
10903 else
10904 {
10905 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10906 idx += 2;
10907 }
10908 if (stub_size == stub_big_size)
10909 {
10910 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10911
10912 bfd_put_micromips_32 (output_bfd,
10913 STUB_LUI_MICROMIPS (dynindx_hi),
10914 stub + idx);
10915 idx += 4;
10916 }
10917 if (htab->insn32)
10918 {
10919 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10920 stub + idx);
10921 idx += 4;
10922 }
10923 else
10924 {
10925 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10926 idx += 2;
10927 }
10928
10929 /* If a large stub is not required and sign extension is not a
10930 problem, then use legacy code in the stub. */
10931 if (stub_size == stub_big_size)
10932 bfd_put_micromips_32 (output_bfd,
10933 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10934 stub + idx);
10935 else if (h->dynindx & ~0x7fff)
10936 bfd_put_micromips_32 (output_bfd,
10937 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10938 stub + idx);
10939 else
10940 bfd_put_micromips_32 (output_bfd,
10941 STUB_LI16S_MICROMIPS (output_bfd,
10942 h->dynindx),
10943 stub + idx);
10944 }
10945 else
10946 {
10947 idx = 0;
10948 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10949 idx += 4;
10950 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10951 idx += 4;
10952 if (stub_size == stub_big_size)
10953 {
10954 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10955 stub + idx);
10956 idx += 4;
10957 }
10958 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10959 idx += 4;
10960
10961 /* If a large stub is not required and sign extension is not a
10962 problem, then use legacy code in the stub. */
10963 if (stub_size == stub_big_size)
10964 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10965 stub + idx);
10966 else if (h->dynindx & ~0x7fff)
10967 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10968 stub + idx);
10969 else
10970 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10971 stub + idx);
10972 }
10973
10974 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10975 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10976 stub, stub_size);
10977
10978 /* Mark the symbol as undefined. stub_offset != -1 occurs
10979 only for the referenced symbol. */
10980 sym->st_shndx = SHN_UNDEF;
10981
10982 /* The run-time linker uses the st_value field of the symbol
10983 to reset the global offset table entry for this external
10984 to its stub address when unlinking a shared object. */
10985 sym->st_value = (htab->sstubs->output_section->vma
10986 + htab->sstubs->output_offset
10987 + h->plt.plist->stub_offset
10988 + isa_bit);
10989 sym->st_other = other;
10990 }
10991
10992 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10993 refer to the stub, since only the stub uses the standard calling
10994 conventions. */
10995 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10996 {
10997 BFD_ASSERT (hmips->need_fn_stub);
10998 sym->st_value = (hmips->fn_stub->output_section->vma
10999 + hmips->fn_stub->output_offset);
11000 sym->st_size = hmips->fn_stub->size;
11001 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11002 }
11003
11004 BFD_ASSERT (h->dynindx != -1
11005 || h->forced_local);
11006
11007 sgot = htab->root.sgot;
11008 g = htab->got_info;
11009 BFD_ASSERT (g != NULL);
11010
11011 /* Run through the global symbol table, creating GOT entries for all
11012 the symbols that need them. */
11013 if (hmips->global_got_area != GGA_NONE)
11014 {
11015 bfd_vma offset;
11016 bfd_vma value;
11017
11018 value = sym->st_value;
11019 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11020 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11021 }
11022
11023 if (hmips->global_got_area != GGA_NONE && g->next)
11024 {
11025 struct mips_got_entry e, *p;
11026 bfd_vma entry;
11027 bfd_vma offset;
11028
11029 gg = g;
11030
11031 e.abfd = output_bfd;
11032 e.symndx = -1;
11033 e.d.h = hmips;
11034 e.tls_type = GOT_TLS_NONE;
11035
11036 for (g = g->next; g->next != gg; g = g->next)
11037 {
11038 if (g->got_entries
11039 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11040 &e)))
11041 {
11042 offset = p->gotidx;
11043 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11044 if (bfd_link_pic (info)
11045 || (elf_hash_table (info)->dynamic_sections_created
11046 && p->d.h != NULL
11047 && p->d.h->root.def_dynamic
11048 && !p->d.h->root.def_regular))
11049 {
11050 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11051 the various compatibility problems, it's easier to mock
11052 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11053 mips_elf_create_dynamic_relocation to calculate the
11054 appropriate addend. */
11055 Elf_Internal_Rela rel[3];
11056
11057 memset (rel, 0, sizeof (rel));
11058 if (ABI_64_P (output_bfd))
11059 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11060 else
11061 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11062 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11063
11064 entry = 0;
11065 if (! (mips_elf_create_dynamic_relocation
11066 (output_bfd, info, rel,
11067 e.d.h, NULL, sym->st_value, &entry, sgot)))
11068 return FALSE;
11069 }
11070 else
11071 entry = sym->st_value;
11072 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11073 }
11074 }
11075 }
11076
11077 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11078 name = h->root.root.string;
11079 if (h == elf_hash_table (info)->hdynamic
11080 || h == elf_hash_table (info)->hgot)
11081 sym->st_shndx = SHN_ABS;
11082 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11083 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11084 {
11085 sym->st_shndx = SHN_ABS;
11086 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11087 sym->st_value = 1;
11088 }
11089 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
11090 {
11091 sym->st_shndx = SHN_ABS;
11092 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11093 sym->st_value = elf_gp (output_bfd);
11094 }
11095 else if (SGI_COMPAT (output_bfd))
11096 {
11097 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11098 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11099 {
11100 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11101 sym->st_other = STO_PROTECTED;
11102 sym->st_value = 0;
11103 sym->st_shndx = SHN_MIPS_DATA;
11104 }
11105 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11106 {
11107 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11108 sym->st_other = STO_PROTECTED;
11109 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11110 sym->st_shndx = SHN_ABS;
11111 }
11112 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11113 {
11114 if (h->type == STT_FUNC)
11115 sym->st_shndx = SHN_MIPS_TEXT;
11116 else if (h->type == STT_OBJECT)
11117 sym->st_shndx = SHN_MIPS_DATA;
11118 }
11119 }
11120
11121 /* Emit a copy reloc, if needed. */
11122 if (h->needs_copy)
11123 {
11124 asection *s;
11125 bfd_vma symval;
11126
11127 BFD_ASSERT (h->dynindx != -1);
11128 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11129
11130 s = mips_elf_rel_dyn_section (info, FALSE);
11131 symval = (h->root.u.def.section->output_section->vma
11132 + h->root.u.def.section->output_offset
11133 + h->root.u.def.value);
11134 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11135 h->dynindx, R_MIPS_COPY, symval);
11136 }
11137
11138 /* Handle the IRIX6-specific symbols. */
11139 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11140 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11141
11142 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11143 to treat compressed symbols like any other. */
11144 if (ELF_ST_IS_MIPS16 (sym->st_other))
11145 {
11146 BFD_ASSERT (sym->st_value & 1);
11147 sym->st_other -= STO_MIPS16;
11148 }
11149 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11150 {
11151 BFD_ASSERT (sym->st_value & 1);
11152 sym->st_other -= STO_MICROMIPS;
11153 }
11154
11155 return TRUE;
11156 }
11157
11158 /* Likewise, for VxWorks. */
11159
11160 bfd_boolean
11161 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11162 struct bfd_link_info *info,
11163 struct elf_link_hash_entry *h,
11164 Elf_Internal_Sym *sym)
11165 {
11166 bfd *dynobj;
11167 asection *sgot;
11168 struct mips_got_info *g;
11169 struct mips_elf_link_hash_table *htab;
11170 struct mips_elf_link_hash_entry *hmips;
11171
11172 htab = mips_elf_hash_table (info);
11173 BFD_ASSERT (htab != NULL);
11174 dynobj = elf_hash_table (info)->dynobj;
11175 hmips = (struct mips_elf_link_hash_entry *) h;
11176
11177 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11178 {
11179 bfd_byte *loc;
11180 bfd_vma plt_address, got_address, got_offset, branch_offset;
11181 Elf_Internal_Rela rel;
11182 static const bfd_vma *plt_entry;
11183 bfd_vma gotplt_index;
11184 bfd_vma plt_offset;
11185
11186 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11187 gotplt_index = h->plt.plist->gotplt_index;
11188
11189 BFD_ASSERT (h->dynindx != -1);
11190 BFD_ASSERT (htab->root.splt != NULL);
11191 BFD_ASSERT (gotplt_index != MINUS_ONE);
11192 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11193
11194 /* Calculate the address of the .plt entry. */
11195 plt_address = (htab->root.splt->output_section->vma
11196 + htab->root.splt->output_offset
11197 + plt_offset);
11198
11199 /* Calculate the address of the .got.plt entry. */
11200 got_address = (htab->root.sgotplt->output_section->vma
11201 + htab->root.sgotplt->output_offset
11202 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11203
11204 /* Calculate the offset of the .got.plt entry from
11205 _GLOBAL_OFFSET_TABLE_. */
11206 got_offset = mips_elf_gotplt_index (info, h);
11207
11208 /* Calculate the offset for the branch at the start of the PLT
11209 entry. The branch jumps to the beginning of .plt. */
11210 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11211
11212 /* Fill in the initial value of the .got.plt entry. */
11213 bfd_put_32 (output_bfd, plt_address,
11214 (htab->root.sgotplt->contents
11215 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11216
11217 /* Find out where the .plt entry should go. */
11218 loc = htab->root.splt->contents + plt_offset;
11219
11220 if (bfd_link_pic (info))
11221 {
11222 plt_entry = mips_vxworks_shared_plt_entry;
11223 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11224 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11225 }
11226 else
11227 {
11228 bfd_vma got_address_high, got_address_low;
11229
11230 plt_entry = mips_vxworks_exec_plt_entry;
11231 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11232 got_address_low = got_address & 0xffff;
11233
11234 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11235 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11236 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11237 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11238 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11239 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11240 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11241 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11242
11243 loc = (htab->srelplt2->contents
11244 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11245
11246 /* Emit a relocation for the .got.plt entry. */
11247 rel.r_offset = got_address;
11248 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11249 rel.r_addend = plt_offset;
11250 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11251
11252 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11253 loc += sizeof (Elf32_External_Rela);
11254 rel.r_offset = plt_address + 8;
11255 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11256 rel.r_addend = got_offset;
11257 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11258
11259 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11260 loc += sizeof (Elf32_External_Rela);
11261 rel.r_offset += 4;
11262 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11263 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11264 }
11265
11266 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11267 loc = (htab->root.srelplt->contents
11268 + gotplt_index * sizeof (Elf32_External_Rela));
11269 rel.r_offset = got_address;
11270 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11271 rel.r_addend = 0;
11272 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11273
11274 if (!h->def_regular)
11275 sym->st_shndx = SHN_UNDEF;
11276 }
11277
11278 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11279
11280 sgot = htab->root.sgot;
11281 g = htab->got_info;
11282 BFD_ASSERT (g != NULL);
11283
11284 /* See if this symbol has an entry in the GOT. */
11285 if (hmips->global_got_area != GGA_NONE)
11286 {
11287 bfd_vma offset;
11288 Elf_Internal_Rela outrel;
11289 bfd_byte *loc;
11290 asection *s;
11291
11292 /* Install the symbol value in the GOT. */
11293 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11294 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11295
11296 /* Add a dynamic relocation for it. */
11297 s = mips_elf_rel_dyn_section (info, FALSE);
11298 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11299 outrel.r_offset = (sgot->output_section->vma
11300 + sgot->output_offset
11301 + offset);
11302 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11303 outrel.r_addend = 0;
11304 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11305 }
11306
11307 /* Emit a copy reloc, if needed. */
11308 if (h->needs_copy)
11309 {
11310 Elf_Internal_Rela rel;
11311 asection *srel;
11312 bfd_byte *loc;
11313
11314 BFD_ASSERT (h->dynindx != -1);
11315
11316 rel.r_offset = (h->root.u.def.section->output_section->vma
11317 + h->root.u.def.section->output_offset
11318 + h->root.u.def.value);
11319 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11320 rel.r_addend = 0;
11321 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
11322 srel = htab->root.sreldynrelro;
11323 else
11324 srel = htab->root.srelbss;
11325 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11326 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11327 ++srel->reloc_count;
11328 }
11329
11330 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11331 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11332 sym->st_value &= ~1;
11333
11334 return TRUE;
11335 }
11336
11337 /* Write out a plt0 entry to the beginning of .plt. */
11338
11339 static bfd_boolean
11340 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11341 {
11342 bfd_byte *loc;
11343 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11344 static const bfd_vma *plt_entry;
11345 struct mips_elf_link_hash_table *htab;
11346
11347 htab = mips_elf_hash_table (info);
11348 BFD_ASSERT (htab != NULL);
11349
11350 if (ABI_64_P (output_bfd))
11351 plt_entry = mips_n64_exec_plt0_entry;
11352 else if (ABI_N32_P (output_bfd))
11353 plt_entry = mips_n32_exec_plt0_entry;
11354 else if (!htab->plt_header_is_comp)
11355 plt_entry = mips_o32_exec_plt0_entry;
11356 else if (htab->insn32)
11357 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11358 else
11359 plt_entry = micromips_o32_exec_plt0_entry;
11360
11361 /* Calculate the value of .got.plt. */
11362 gotplt_value = (htab->root.sgotplt->output_section->vma
11363 + htab->root.sgotplt->output_offset);
11364 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11365 gotplt_value_low = gotplt_value & 0xffff;
11366
11367 /* The PLT sequence is not safe for N64 if .got.plt's address can
11368 not be loaded in two instructions. */
11369 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11370 || ~(gotplt_value | 0x7fffffff) == 0);
11371
11372 /* Install the PLT header. */
11373 loc = htab->root.splt->contents;
11374 if (plt_entry == micromips_o32_exec_plt0_entry)
11375 {
11376 bfd_vma gotpc_offset;
11377 bfd_vma loc_address;
11378 size_t i;
11379
11380 BFD_ASSERT (gotplt_value % 4 == 0);
11381
11382 loc_address = (htab->root.splt->output_section->vma
11383 + htab->root.splt->output_offset);
11384 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11385
11386 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11387 if (gotpc_offset + 0x1000000 >= 0x2000000)
11388 {
11389 _bfd_error_handler
11390 /* xgettext:c-format */
11391 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11392 output_bfd,
11393 htab->root.sgotplt->output_section,
11394 htab->root.splt->output_section,
11395 (long) gotpc_offset);
11396 bfd_set_error (bfd_error_no_error);
11397 return FALSE;
11398 }
11399 bfd_put_16 (output_bfd,
11400 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11401 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11402 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11403 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11404 }
11405 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11406 {
11407 size_t i;
11408
11409 bfd_put_16 (output_bfd, plt_entry[0], loc);
11410 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11411 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11412 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11413 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11414 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11415 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11416 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11417 }
11418 else
11419 {
11420 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11421 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11422 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11423 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11424 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11425 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11426 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11427 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11428 }
11429
11430 return TRUE;
11431 }
11432
11433 /* Install the PLT header for a VxWorks executable and finalize the
11434 contents of .rela.plt.unloaded. */
11435
11436 static void
11437 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11438 {
11439 Elf_Internal_Rela rela;
11440 bfd_byte *loc;
11441 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11442 static const bfd_vma *plt_entry;
11443 struct mips_elf_link_hash_table *htab;
11444
11445 htab = mips_elf_hash_table (info);
11446 BFD_ASSERT (htab != NULL);
11447
11448 plt_entry = mips_vxworks_exec_plt0_entry;
11449
11450 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11451 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11452 + htab->root.hgot->root.u.def.section->output_offset
11453 + htab->root.hgot->root.u.def.value);
11454
11455 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11456 got_value_low = got_value & 0xffff;
11457
11458 /* Calculate the address of the PLT header. */
11459 plt_address = (htab->root.splt->output_section->vma
11460 + htab->root.splt->output_offset);
11461
11462 /* Install the PLT header. */
11463 loc = htab->root.splt->contents;
11464 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11465 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11466 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11467 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11468 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11469 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11470
11471 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11472 loc = htab->srelplt2->contents;
11473 rela.r_offset = plt_address;
11474 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11475 rela.r_addend = 0;
11476 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11477 loc += sizeof (Elf32_External_Rela);
11478
11479 /* Output the relocation for the following addiu of
11480 %lo(_GLOBAL_OFFSET_TABLE_). */
11481 rela.r_offset += 4;
11482 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11483 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11484 loc += sizeof (Elf32_External_Rela);
11485
11486 /* Fix up the remaining relocations. They may have the wrong
11487 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11488 in which symbols were output. */
11489 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11490 {
11491 Elf_Internal_Rela rel;
11492
11493 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11494 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11495 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11496 loc += sizeof (Elf32_External_Rela);
11497
11498 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11499 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11500 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11501 loc += sizeof (Elf32_External_Rela);
11502
11503 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11504 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11505 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11506 loc += sizeof (Elf32_External_Rela);
11507 }
11508 }
11509
11510 /* Install the PLT header for a VxWorks shared library. */
11511
11512 static void
11513 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11514 {
11515 unsigned int i;
11516 struct mips_elf_link_hash_table *htab;
11517
11518 htab = mips_elf_hash_table (info);
11519 BFD_ASSERT (htab != NULL);
11520
11521 /* We just need to copy the entry byte-by-byte. */
11522 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11523 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11524 htab->root.splt->contents + i * 4);
11525 }
11526
11527 /* Finish up the dynamic sections. */
11528
11529 bfd_boolean
11530 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11531 struct bfd_link_info *info)
11532 {
11533 bfd *dynobj;
11534 asection *sdyn;
11535 asection *sgot;
11536 struct mips_got_info *gg, *g;
11537 struct mips_elf_link_hash_table *htab;
11538
11539 htab = mips_elf_hash_table (info);
11540 BFD_ASSERT (htab != NULL);
11541
11542 dynobj = elf_hash_table (info)->dynobj;
11543
11544 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11545
11546 sgot = htab->root.sgot;
11547 gg = htab->got_info;
11548
11549 if (elf_hash_table (info)->dynamic_sections_created)
11550 {
11551 bfd_byte *b;
11552 int dyn_to_skip = 0, dyn_skipped = 0;
11553
11554 BFD_ASSERT (sdyn != NULL);
11555 BFD_ASSERT (gg != NULL);
11556
11557 g = mips_elf_bfd_got (output_bfd, FALSE);
11558 BFD_ASSERT (g != NULL);
11559
11560 for (b = sdyn->contents;
11561 b < sdyn->contents + sdyn->size;
11562 b += MIPS_ELF_DYN_SIZE (dynobj))
11563 {
11564 Elf_Internal_Dyn dyn;
11565 const char *name;
11566 size_t elemsize;
11567 asection *s;
11568 bfd_boolean swap_out_p;
11569
11570 /* Read in the current dynamic entry. */
11571 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11572
11573 /* Assume that we're going to modify it and write it out. */
11574 swap_out_p = TRUE;
11575
11576 switch (dyn.d_tag)
11577 {
11578 case DT_RELENT:
11579 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11580 break;
11581
11582 case DT_RELAENT:
11583 BFD_ASSERT (htab->is_vxworks);
11584 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11585 break;
11586
11587 case DT_STRSZ:
11588 /* Rewrite DT_STRSZ. */
11589 dyn.d_un.d_val =
11590 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11591 break;
11592
11593 case DT_PLTGOT:
11594 s = htab->root.sgot;
11595 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11596 break;
11597
11598 case DT_MIPS_PLTGOT:
11599 s = htab->root.sgotplt;
11600 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11601 break;
11602
11603 case DT_MIPS_RLD_VERSION:
11604 dyn.d_un.d_val = 1; /* XXX */
11605 break;
11606
11607 case DT_MIPS_FLAGS:
11608 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11609 break;
11610
11611 case DT_MIPS_TIME_STAMP:
11612 {
11613 time_t t;
11614 time (&t);
11615 dyn.d_un.d_val = t;
11616 }
11617 break;
11618
11619 case DT_MIPS_ICHECKSUM:
11620 /* XXX FIXME: */
11621 swap_out_p = FALSE;
11622 break;
11623
11624 case DT_MIPS_IVERSION:
11625 /* XXX FIXME: */
11626 swap_out_p = FALSE;
11627 break;
11628
11629 case DT_MIPS_BASE_ADDRESS:
11630 s = output_bfd->sections;
11631 BFD_ASSERT (s != NULL);
11632 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11633 break;
11634
11635 case DT_MIPS_LOCAL_GOTNO:
11636 dyn.d_un.d_val = g->local_gotno;
11637 break;
11638
11639 case DT_MIPS_UNREFEXTNO:
11640 /* The index into the dynamic symbol table which is the
11641 entry of the first external symbol that is not
11642 referenced within the same object. */
11643 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11644 break;
11645
11646 case DT_MIPS_GOTSYM:
11647 if (htab->global_gotsym)
11648 {
11649 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11650 break;
11651 }
11652 /* In case if we don't have global got symbols we default
11653 to setting DT_MIPS_GOTSYM to the same value as
11654 DT_MIPS_SYMTABNO. */
11655 /* Fall through. */
11656
11657 case DT_MIPS_SYMTABNO:
11658 name = ".dynsym";
11659 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11660 s = bfd_get_linker_section (dynobj, name);
11661
11662 if (s != NULL)
11663 dyn.d_un.d_val = s->size / elemsize;
11664 else
11665 dyn.d_un.d_val = 0;
11666 break;
11667
11668 case DT_MIPS_HIPAGENO:
11669 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11670 break;
11671
11672 case DT_MIPS_RLD_MAP:
11673 {
11674 struct elf_link_hash_entry *h;
11675 h = mips_elf_hash_table (info)->rld_symbol;
11676 if (!h)
11677 {
11678 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11679 swap_out_p = FALSE;
11680 break;
11681 }
11682 s = h->root.u.def.section;
11683
11684 /* The MIPS_RLD_MAP tag stores the absolute address of the
11685 debug pointer. */
11686 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11687 + h->root.u.def.value);
11688 }
11689 break;
11690
11691 case DT_MIPS_RLD_MAP_REL:
11692 {
11693 struct elf_link_hash_entry *h;
11694 bfd_vma dt_addr, rld_addr;
11695 h = mips_elf_hash_table (info)->rld_symbol;
11696 if (!h)
11697 {
11698 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11699 swap_out_p = FALSE;
11700 break;
11701 }
11702 s = h->root.u.def.section;
11703
11704 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11705 pointer, relative to the address of the tag. */
11706 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11707 + (b - sdyn->contents));
11708 rld_addr = (s->output_section->vma + s->output_offset
11709 + h->root.u.def.value);
11710 dyn.d_un.d_ptr = rld_addr - dt_addr;
11711 }
11712 break;
11713
11714 case DT_MIPS_OPTIONS:
11715 s = (bfd_get_section_by_name
11716 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11717 dyn.d_un.d_ptr = s->vma;
11718 break;
11719
11720 case DT_PLTREL:
11721 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11722 if (htab->is_vxworks)
11723 dyn.d_un.d_val = DT_RELA;
11724 else
11725 dyn.d_un.d_val = DT_REL;
11726 break;
11727
11728 case DT_PLTRELSZ:
11729 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11730 dyn.d_un.d_val = htab->root.srelplt->size;
11731 break;
11732
11733 case DT_JMPREL:
11734 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11735 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11736 + htab->root.srelplt->output_offset);
11737 break;
11738
11739 case DT_TEXTREL:
11740 /* If we didn't need any text relocations after all, delete
11741 the dynamic tag. */
11742 if (!(info->flags & DF_TEXTREL))
11743 {
11744 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11745 swap_out_p = FALSE;
11746 }
11747 break;
11748
11749 case DT_FLAGS:
11750 /* If we didn't need any text relocations after all, clear
11751 DF_TEXTREL from DT_FLAGS. */
11752 if (!(info->flags & DF_TEXTREL))
11753 dyn.d_un.d_val &= ~DF_TEXTREL;
11754 else
11755 swap_out_p = FALSE;
11756 break;
11757
11758 default:
11759 swap_out_p = FALSE;
11760 if (htab->is_vxworks
11761 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11762 swap_out_p = TRUE;
11763 break;
11764 }
11765
11766 if (swap_out_p || dyn_skipped)
11767 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11768 (dynobj, &dyn, b - dyn_skipped);
11769
11770 if (dyn_to_skip)
11771 {
11772 dyn_skipped += dyn_to_skip;
11773 dyn_to_skip = 0;
11774 }
11775 }
11776
11777 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11778 if (dyn_skipped > 0)
11779 memset (b - dyn_skipped, 0, dyn_skipped);
11780 }
11781
11782 if (sgot != NULL && sgot->size > 0
11783 && !bfd_is_abs_section (sgot->output_section))
11784 {
11785 if (htab->is_vxworks)
11786 {
11787 /* The first entry of the global offset table points to the
11788 ".dynamic" section. The second is initialized by the
11789 loader and contains the shared library identifier.
11790 The third is also initialized by the loader and points
11791 to the lazy resolution stub. */
11792 MIPS_ELF_PUT_WORD (output_bfd,
11793 sdyn->output_offset + sdyn->output_section->vma,
11794 sgot->contents);
11795 MIPS_ELF_PUT_WORD (output_bfd, 0,
11796 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11797 MIPS_ELF_PUT_WORD (output_bfd, 0,
11798 sgot->contents
11799 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11800 }
11801 else
11802 {
11803 /* The first entry of the global offset table will be filled at
11804 runtime. The second entry will be used by some runtime loaders.
11805 This isn't the case of IRIX rld. */
11806 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11807 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11808 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11809 }
11810
11811 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11812 = MIPS_ELF_GOT_SIZE (output_bfd);
11813 }
11814
11815 /* Generate dynamic relocations for the non-primary gots. */
11816 if (gg != NULL && gg->next)
11817 {
11818 Elf_Internal_Rela rel[3];
11819 bfd_vma addend = 0;
11820
11821 memset (rel, 0, sizeof (rel));
11822 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11823
11824 for (g = gg->next; g->next != gg; g = g->next)
11825 {
11826 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11827 + g->next->tls_gotno;
11828
11829 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11830 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11831 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11832 sgot->contents
11833 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11834
11835 if (! bfd_link_pic (info))
11836 continue;
11837
11838 for (; got_index < g->local_gotno; got_index++)
11839 {
11840 if (got_index >= g->assigned_low_gotno
11841 && got_index <= g->assigned_high_gotno)
11842 continue;
11843
11844 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11845 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11846 if (!(mips_elf_create_dynamic_relocation
11847 (output_bfd, info, rel, NULL,
11848 bfd_abs_section_ptr,
11849 0, &addend, sgot)))
11850 return FALSE;
11851 BFD_ASSERT (addend == 0);
11852 }
11853 }
11854 }
11855
11856 /* The generation of dynamic relocations for the non-primary gots
11857 adds more dynamic relocations. We cannot count them until
11858 here. */
11859
11860 if (elf_hash_table (info)->dynamic_sections_created)
11861 {
11862 bfd_byte *b;
11863 bfd_boolean swap_out_p;
11864
11865 BFD_ASSERT (sdyn != NULL);
11866
11867 for (b = sdyn->contents;
11868 b < sdyn->contents + sdyn->size;
11869 b += MIPS_ELF_DYN_SIZE (dynobj))
11870 {
11871 Elf_Internal_Dyn dyn;
11872 asection *s;
11873
11874 /* Read in the current dynamic entry. */
11875 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11876
11877 /* Assume that we're going to modify it and write it out. */
11878 swap_out_p = TRUE;
11879
11880 switch (dyn.d_tag)
11881 {
11882 case DT_RELSZ:
11883 /* Reduce DT_RELSZ to account for any relocations we
11884 decided not to make. This is for the n64 irix rld,
11885 which doesn't seem to apply any relocations if there
11886 are trailing null entries. */
11887 s = mips_elf_rel_dyn_section (info, FALSE);
11888 dyn.d_un.d_val = (s->reloc_count
11889 * (ABI_64_P (output_bfd)
11890 ? sizeof (Elf64_Mips_External_Rel)
11891 : sizeof (Elf32_External_Rel)));
11892 /* Adjust the section size too. Tools like the prelinker
11893 can reasonably expect the values to the same. */
11894 elf_section_data (s->output_section)->this_hdr.sh_size
11895 = dyn.d_un.d_val;
11896 break;
11897
11898 default:
11899 swap_out_p = FALSE;
11900 break;
11901 }
11902
11903 if (swap_out_p)
11904 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11905 (dynobj, &dyn, b);
11906 }
11907 }
11908
11909 {
11910 asection *s;
11911 Elf32_compact_rel cpt;
11912
11913 if (SGI_COMPAT (output_bfd))
11914 {
11915 /* Write .compact_rel section out. */
11916 s = bfd_get_linker_section (dynobj, ".compact_rel");
11917 if (s != NULL)
11918 {
11919 cpt.id1 = 1;
11920 cpt.num = s->reloc_count;
11921 cpt.id2 = 2;
11922 cpt.offset = (s->output_section->filepos
11923 + sizeof (Elf32_External_compact_rel));
11924 cpt.reserved0 = 0;
11925 cpt.reserved1 = 0;
11926 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11927 ((Elf32_External_compact_rel *)
11928 s->contents));
11929
11930 /* Clean up a dummy stub function entry in .text. */
11931 if (htab->sstubs != NULL)
11932 {
11933 file_ptr dummy_offset;
11934
11935 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11936 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11937 memset (htab->sstubs->contents + dummy_offset, 0,
11938 htab->function_stub_size);
11939 }
11940 }
11941 }
11942
11943 /* The psABI says that the dynamic relocations must be sorted in
11944 increasing order of r_symndx. The VxWorks EABI doesn't require
11945 this, and because the code below handles REL rather than RELA
11946 relocations, using it for VxWorks would be outright harmful. */
11947 if (!htab->is_vxworks)
11948 {
11949 s = mips_elf_rel_dyn_section (info, FALSE);
11950 if (s != NULL
11951 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11952 {
11953 reldyn_sorting_bfd = output_bfd;
11954
11955 if (ABI_64_P (output_bfd))
11956 qsort ((Elf64_External_Rel *) s->contents + 1,
11957 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11958 sort_dynamic_relocs_64);
11959 else
11960 qsort ((Elf32_External_Rel *) s->contents + 1,
11961 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11962 sort_dynamic_relocs);
11963 }
11964 }
11965 }
11966
11967 if (htab->root.splt && htab->root.splt->size > 0)
11968 {
11969 if (htab->is_vxworks)
11970 {
11971 if (bfd_link_pic (info))
11972 mips_vxworks_finish_shared_plt (output_bfd, info);
11973 else
11974 mips_vxworks_finish_exec_plt (output_bfd, info);
11975 }
11976 else
11977 {
11978 BFD_ASSERT (!bfd_link_pic (info));
11979 if (!mips_finish_exec_plt (output_bfd, info))
11980 return FALSE;
11981 }
11982 }
11983 return TRUE;
11984 }
11985
11986
11987 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11988
11989 static void
11990 mips_set_isa_flags (bfd *abfd)
11991 {
11992 flagword val;
11993
11994 switch (bfd_get_mach (abfd))
11995 {
11996 default:
11997 case bfd_mach_mips3000:
11998 val = E_MIPS_ARCH_1;
11999 break;
12000
12001 case bfd_mach_mips3900:
12002 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12003 break;
12004
12005 case bfd_mach_mips6000:
12006 val = E_MIPS_ARCH_2;
12007 break;
12008
12009 case bfd_mach_mips4000:
12010 case bfd_mach_mips4300:
12011 case bfd_mach_mips4400:
12012 case bfd_mach_mips4600:
12013 val = E_MIPS_ARCH_3;
12014 break;
12015
12016 case bfd_mach_mips4010:
12017 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12018 break;
12019
12020 case bfd_mach_mips4100:
12021 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12022 break;
12023
12024 case bfd_mach_mips4111:
12025 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12026 break;
12027
12028 case bfd_mach_mips4120:
12029 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12030 break;
12031
12032 case bfd_mach_mips4650:
12033 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12034 break;
12035
12036 case bfd_mach_mips5400:
12037 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12038 break;
12039
12040 case bfd_mach_mips5500:
12041 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12042 break;
12043
12044 case bfd_mach_mips5900:
12045 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12046 break;
12047
12048 case bfd_mach_mips9000:
12049 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12050 break;
12051
12052 case bfd_mach_mips5000:
12053 case bfd_mach_mips7000:
12054 case bfd_mach_mips8000:
12055 case bfd_mach_mips10000:
12056 case bfd_mach_mips12000:
12057 case bfd_mach_mips14000:
12058 case bfd_mach_mips16000:
12059 val = E_MIPS_ARCH_4;
12060 break;
12061
12062 case bfd_mach_mips5:
12063 val = E_MIPS_ARCH_5;
12064 break;
12065
12066 case bfd_mach_mips_loongson_2e:
12067 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12068 break;
12069
12070 case bfd_mach_mips_loongson_2f:
12071 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12072 break;
12073
12074 case bfd_mach_mips_sb1:
12075 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12076 break;
12077
12078 case bfd_mach_mips_loongson_3a:
12079 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
12080 break;
12081
12082 case bfd_mach_mips_octeon:
12083 case bfd_mach_mips_octeonp:
12084 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12085 break;
12086
12087 case bfd_mach_mips_octeon3:
12088 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12089 break;
12090
12091 case bfd_mach_mips_xlr:
12092 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12093 break;
12094
12095 case bfd_mach_mips_octeon2:
12096 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12097 break;
12098
12099 case bfd_mach_mipsisa32:
12100 val = E_MIPS_ARCH_32;
12101 break;
12102
12103 case bfd_mach_mipsisa64:
12104 val = E_MIPS_ARCH_64;
12105 break;
12106
12107 case bfd_mach_mipsisa32r2:
12108 case bfd_mach_mipsisa32r3:
12109 case bfd_mach_mipsisa32r5:
12110 val = E_MIPS_ARCH_32R2;
12111 break;
12112
12113 case bfd_mach_mipsisa64r2:
12114 case bfd_mach_mipsisa64r3:
12115 case bfd_mach_mipsisa64r5:
12116 val = E_MIPS_ARCH_64R2;
12117 break;
12118
12119 case bfd_mach_mipsisa32r6:
12120 val = E_MIPS_ARCH_32R6;
12121 break;
12122
12123 case bfd_mach_mipsisa64r6:
12124 val = E_MIPS_ARCH_64R6;
12125 break;
12126 }
12127 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12128 elf_elfheader (abfd)->e_flags |= val;
12129
12130 }
12131
12132
12133 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12134 Don't do so for code sections. We want to keep ordering of HI16/LO16
12135 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12136 relocs to be sorted. */
12137
12138 bfd_boolean
12139 _bfd_mips_elf_sort_relocs_p (asection *sec)
12140 {
12141 return (sec->flags & SEC_CODE) == 0;
12142 }
12143
12144
12145 /* The final processing done just before writing out a MIPS ELF object
12146 file. This gets the MIPS architecture right based on the machine
12147 number. This is used by both the 32-bit and the 64-bit ABI. */
12148
12149 void
12150 _bfd_mips_elf_final_write_processing (bfd *abfd,
12151 bfd_boolean linker ATTRIBUTE_UNUSED)
12152 {
12153 unsigned int i;
12154 Elf_Internal_Shdr **hdrpp;
12155 const char *name;
12156 asection *sec;
12157
12158 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12159 is nonzero. This is for compatibility with old objects, which used
12160 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12161 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12162 mips_set_isa_flags (abfd);
12163
12164 /* Set the sh_info field for .gptab sections and other appropriate
12165 info for each special section. */
12166 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12167 i < elf_numsections (abfd);
12168 i++, hdrpp++)
12169 {
12170 switch ((*hdrpp)->sh_type)
12171 {
12172 case SHT_MIPS_MSYM:
12173 case SHT_MIPS_LIBLIST:
12174 sec = bfd_get_section_by_name (abfd, ".dynstr");
12175 if (sec != NULL)
12176 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12177 break;
12178
12179 case SHT_MIPS_GPTAB:
12180 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12181 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12182 BFD_ASSERT (name != NULL
12183 && CONST_STRNEQ (name, ".gptab."));
12184 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12185 BFD_ASSERT (sec != NULL);
12186 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12187 break;
12188
12189 case SHT_MIPS_CONTENT:
12190 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12191 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12192 BFD_ASSERT (name != NULL
12193 && CONST_STRNEQ (name, ".MIPS.content"));
12194 sec = bfd_get_section_by_name (abfd,
12195 name + sizeof ".MIPS.content" - 1);
12196 BFD_ASSERT (sec != NULL);
12197 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12198 break;
12199
12200 case SHT_MIPS_SYMBOL_LIB:
12201 sec = bfd_get_section_by_name (abfd, ".dynsym");
12202 if (sec != NULL)
12203 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12204 sec = bfd_get_section_by_name (abfd, ".liblist");
12205 if (sec != NULL)
12206 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12207 break;
12208
12209 case SHT_MIPS_EVENTS:
12210 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12211 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12212 BFD_ASSERT (name != NULL);
12213 if (CONST_STRNEQ (name, ".MIPS.events"))
12214 sec = bfd_get_section_by_name (abfd,
12215 name + sizeof ".MIPS.events" - 1);
12216 else
12217 {
12218 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12219 sec = bfd_get_section_by_name (abfd,
12220 (name
12221 + sizeof ".MIPS.post_rel" - 1));
12222 }
12223 BFD_ASSERT (sec != NULL);
12224 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12225 break;
12226
12227 }
12228 }
12229 }
12230 \f
12231 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12232 segments. */
12233
12234 int
12235 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12236 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12237 {
12238 asection *s;
12239 int ret = 0;
12240
12241 /* See if we need a PT_MIPS_REGINFO segment. */
12242 s = bfd_get_section_by_name (abfd, ".reginfo");
12243 if (s && (s->flags & SEC_LOAD))
12244 ++ret;
12245
12246 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12247 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12248 ++ret;
12249
12250 /* See if we need a PT_MIPS_OPTIONS segment. */
12251 if (IRIX_COMPAT (abfd) == ict_irix6
12252 && bfd_get_section_by_name (abfd,
12253 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12254 ++ret;
12255
12256 /* See if we need a PT_MIPS_RTPROC segment. */
12257 if (IRIX_COMPAT (abfd) == ict_irix5
12258 && bfd_get_section_by_name (abfd, ".dynamic")
12259 && bfd_get_section_by_name (abfd, ".mdebug"))
12260 ++ret;
12261
12262 /* Allocate a PT_NULL header in dynamic objects. See
12263 _bfd_mips_elf_modify_segment_map for details. */
12264 if (!SGI_COMPAT (abfd)
12265 && bfd_get_section_by_name (abfd, ".dynamic"))
12266 ++ret;
12267
12268 return ret;
12269 }
12270
12271 /* Modify the segment map for an IRIX5 executable. */
12272
12273 bfd_boolean
12274 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12275 struct bfd_link_info *info)
12276 {
12277 asection *s;
12278 struct elf_segment_map *m, **pm;
12279 bfd_size_type amt;
12280
12281 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12282 segment. */
12283 s = bfd_get_section_by_name (abfd, ".reginfo");
12284 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12285 {
12286 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12287 if (m->p_type == PT_MIPS_REGINFO)
12288 break;
12289 if (m == NULL)
12290 {
12291 amt = sizeof *m;
12292 m = bfd_zalloc (abfd, amt);
12293 if (m == NULL)
12294 return FALSE;
12295
12296 m->p_type = PT_MIPS_REGINFO;
12297 m->count = 1;
12298 m->sections[0] = s;
12299
12300 /* We want to put it after the PHDR and INTERP segments. */
12301 pm = &elf_seg_map (abfd);
12302 while (*pm != NULL
12303 && ((*pm)->p_type == PT_PHDR
12304 || (*pm)->p_type == PT_INTERP))
12305 pm = &(*pm)->next;
12306
12307 m->next = *pm;
12308 *pm = m;
12309 }
12310 }
12311
12312 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12313 segment. */
12314 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12315 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12316 {
12317 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12318 if (m->p_type == PT_MIPS_ABIFLAGS)
12319 break;
12320 if (m == NULL)
12321 {
12322 amt = sizeof *m;
12323 m = bfd_zalloc (abfd, amt);
12324 if (m == NULL)
12325 return FALSE;
12326
12327 m->p_type = PT_MIPS_ABIFLAGS;
12328 m->count = 1;
12329 m->sections[0] = s;
12330
12331 /* We want to put it after the PHDR and INTERP segments. */
12332 pm = &elf_seg_map (abfd);
12333 while (*pm != NULL
12334 && ((*pm)->p_type == PT_PHDR
12335 || (*pm)->p_type == PT_INTERP))
12336 pm = &(*pm)->next;
12337
12338 m->next = *pm;
12339 *pm = m;
12340 }
12341 }
12342
12343 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12344 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12345 PT_MIPS_OPTIONS segment immediately following the program header
12346 table. */
12347 if (NEWABI_P (abfd)
12348 /* On non-IRIX6 new abi, we'll have already created a segment
12349 for this section, so don't create another. I'm not sure this
12350 is not also the case for IRIX 6, but I can't test it right
12351 now. */
12352 && IRIX_COMPAT (abfd) == ict_irix6)
12353 {
12354 for (s = abfd->sections; s; s = s->next)
12355 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12356 break;
12357
12358 if (s)
12359 {
12360 struct elf_segment_map *options_segment;
12361
12362 pm = &elf_seg_map (abfd);
12363 while (*pm != NULL
12364 && ((*pm)->p_type == PT_PHDR
12365 || (*pm)->p_type == PT_INTERP))
12366 pm = &(*pm)->next;
12367
12368 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12369 {
12370 amt = sizeof (struct elf_segment_map);
12371 options_segment = bfd_zalloc (abfd, amt);
12372 options_segment->next = *pm;
12373 options_segment->p_type = PT_MIPS_OPTIONS;
12374 options_segment->p_flags = PF_R;
12375 options_segment->p_flags_valid = TRUE;
12376 options_segment->count = 1;
12377 options_segment->sections[0] = s;
12378 *pm = options_segment;
12379 }
12380 }
12381 }
12382 else
12383 {
12384 if (IRIX_COMPAT (abfd) == ict_irix5)
12385 {
12386 /* If there are .dynamic and .mdebug sections, we make a room
12387 for the RTPROC header. FIXME: Rewrite without section names. */
12388 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12389 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12390 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12391 {
12392 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12393 if (m->p_type == PT_MIPS_RTPROC)
12394 break;
12395 if (m == NULL)
12396 {
12397 amt = sizeof *m;
12398 m = bfd_zalloc (abfd, amt);
12399 if (m == NULL)
12400 return FALSE;
12401
12402 m->p_type = PT_MIPS_RTPROC;
12403
12404 s = bfd_get_section_by_name (abfd, ".rtproc");
12405 if (s == NULL)
12406 {
12407 m->count = 0;
12408 m->p_flags = 0;
12409 m->p_flags_valid = 1;
12410 }
12411 else
12412 {
12413 m->count = 1;
12414 m->sections[0] = s;
12415 }
12416
12417 /* We want to put it after the DYNAMIC segment. */
12418 pm = &elf_seg_map (abfd);
12419 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12420 pm = &(*pm)->next;
12421 if (*pm != NULL)
12422 pm = &(*pm)->next;
12423
12424 m->next = *pm;
12425 *pm = m;
12426 }
12427 }
12428 }
12429 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12430 .dynstr, .dynsym, and .hash sections, and everything in
12431 between. */
12432 for (pm = &elf_seg_map (abfd); *pm != NULL;
12433 pm = &(*pm)->next)
12434 if ((*pm)->p_type == PT_DYNAMIC)
12435 break;
12436 m = *pm;
12437 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12438 glibc's dynamic linker has traditionally derived the number of
12439 tags from the p_filesz field, and sometimes allocates stack
12440 arrays of that size. An overly-big PT_DYNAMIC segment can
12441 be actively harmful in such cases. Making PT_DYNAMIC contain
12442 other sections can also make life hard for the prelinker,
12443 which might move one of the other sections to a different
12444 PT_LOAD segment. */
12445 if (SGI_COMPAT (abfd)
12446 && m != NULL
12447 && m->count == 1
12448 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12449 {
12450 static const char *sec_names[] =
12451 {
12452 ".dynamic", ".dynstr", ".dynsym", ".hash"
12453 };
12454 bfd_vma low, high;
12455 unsigned int i, c;
12456 struct elf_segment_map *n;
12457
12458 low = ~(bfd_vma) 0;
12459 high = 0;
12460 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12461 {
12462 s = bfd_get_section_by_name (abfd, sec_names[i]);
12463 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12464 {
12465 bfd_size_type sz;
12466
12467 if (low > s->vma)
12468 low = s->vma;
12469 sz = s->size;
12470 if (high < s->vma + sz)
12471 high = s->vma + sz;
12472 }
12473 }
12474
12475 c = 0;
12476 for (s = abfd->sections; s != NULL; s = s->next)
12477 if ((s->flags & SEC_LOAD) != 0
12478 && s->vma >= low
12479 && s->vma + s->size <= high)
12480 ++c;
12481
12482 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12483 n = bfd_zalloc (abfd, amt);
12484 if (n == NULL)
12485 return FALSE;
12486 *n = *m;
12487 n->count = c;
12488
12489 i = 0;
12490 for (s = abfd->sections; s != NULL; s = s->next)
12491 {
12492 if ((s->flags & SEC_LOAD) != 0
12493 && s->vma >= low
12494 && s->vma + s->size <= high)
12495 {
12496 n->sections[i] = s;
12497 ++i;
12498 }
12499 }
12500
12501 *pm = n;
12502 }
12503 }
12504
12505 /* Allocate a spare program header in dynamic objects so that tools
12506 like the prelinker can add an extra PT_LOAD entry.
12507
12508 If the prelinker needs to make room for a new PT_LOAD entry, its
12509 standard procedure is to move the first (read-only) sections into
12510 the new (writable) segment. However, the MIPS ABI requires
12511 .dynamic to be in a read-only segment, and the section will often
12512 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12513
12514 Although the prelinker could in principle move .dynamic to a
12515 writable segment, it seems better to allocate a spare program
12516 header instead, and avoid the need to move any sections.
12517 There is a long tradition of allocating spare dynamic tags,
12518 so allocating a spare program header seems like a natural
12519 extension.
12520
12521 If INFO is NULL, we may be copying an already prelinked binary
12522 with objcopy or strip, so do not add this header. */
12523 if (info != NULL
12524 && !SGI_COMPAT (abfd)
12525 && bfd_get_section_by_name (abfd, ".dynamic"))
12526 {
12527 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12528 if ((*pm)->p_type == PT_NULL)
12529 break;
12530 if (*pm == NULL)
12531 {
12532 m = bfd_zalloc (abfd, sizeof (*m));
12533 if (m == NULL)
12534 return FALSE;
12535
12536 m->p_type = PT_NULL;
12537 *pm = m;
12538 }
12539 }
12540
12541 return TRUE;
12542 }
12543 \f
12544 /* Return the section that should be marked against GC for a given
12545 relocation. */
12546
12547 asection *
12548 _bfd_mips_elf_gc_mark_hook (asection *sec,
12549 struct bfd_link_info *info,
12550 Elf_Internal_Rela *rel,
12551 struct elf_link_hash_entry *h,
12552 Elf_Internal_Sym *sym)
12553 {
12554 /* ??? Do mips16 stub sections need to be handled special? */
12555
12556 if (h != NULL)
12557 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12558 {
12559 case R_MIPS_GNU_VTINHERIT:
12560 case R_MIPS_GNU_VTENTRY:
12561 return NULL;
12562 }
12563
12564 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12565 }
12566
12567 /* Update the got entry reference counts for the section being removed. */
12568
12569 bfd_boolean
12570 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12571 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12572 asection *sec ATTRIBUTE_UNUSED,
12573 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12574 {
12575 #if 0
12576 Elf_Internal_Shdr *symtab_hdr;
12577 struct elf_link_hash_entry **sym_hashes;
12578 bfd_signed_vma *local_got_refcounts;
12579 const Elf_Internal_Rela *rel, *relend;
12580 unsigned long r_symndx;
12581 struct elf_link_hash_entry *h;
12582
12583 if (bfd_link_relocatable (info))
12584 return TRUE;
12585
12586 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12587 sym_hashes = elf_sym_hashes (abfd);
12588 local_got_refcounts = elf_local_got_refcounts (abfd);
12589
12590 relend = relocs + sec->reloc_count;
12591 for (rel = relocs; rel < relend; rel++)
12592 switch (ELF_R_TYPE (abfd, rel->r_info))
12593 {
12594 case R_MIPS16_GOT16:
12595 case R_MIPS16_CALL16:
12596 case R_MIPS_GOT16:
12597 case R_MIPS_CALL16:
12598 case R_MIPS_CALL_HI16:
12599 case R_MIPS_CALL_LO16:
12600 case R_MIPS_GOT_HI16:
12601 case R_MIPS_GOT_LO16:
12602 case R_MIPS_GOT_DISP:
12603 case R_MIPS_GOT_PAGE:
12604 case R_MIPS_GOT_OFST:
12605 case R_MICROMIPS_GOT16:
12606 case R_MICROMIPS_CALL16:
12607 case R_MICROMIPS_CALL_HI16:
12608 case R_MICROMIPS_CALL_LO16:
12609 case R_MICROMIPS_GOT_HI16:
12610 case R_MICROMIPS_GOT_LO16:
12611 case R_MICROMIPS_GOT_DISP:
12612 case R_MICROMIPS_GOT_PAGE:
12613 case R_MICROMIPS_GOT_OFST:
12614 /* ??? It would seem that the existing MIPS code does no sort
12615 of reference counting or whatnot on its GOT and PLT entries,
12616 so it is not possible to garbage collect them at this time. */
12617 break;
12618
12619 default:
12620 break;
12621 }
12622 #endif
12623
12624 return TRUE;
12625 }
12626
12627 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12628
12629 bfd_boolean
12630 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12631 elf_gc_mark_hook_fn gc_mark_hook)
12632 {
12633 bfd *sub;
12634
12635 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12636
12637 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12638 {
12639 asection *o;
12640
12641 if (! is_mips_elf (sub))
12642 continue;
12643
12644 for (o = sub->sections; o != NULL; o = o->next)
12645 if (!o->gc_mark
12646 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12647 (bfd_get_section_name (sub, o)))
12648 {
12649 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12650 return FALSE;
12651 }
12652 }
12653
12654 return TRUE;
12655 }
12656 \f
12657 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12658 hiding the old indirect symbol. Process additional relocation
12659 information. Also called for weakdefs, in which case we just let
12660 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12661
12662 void
12663 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12664 struct elf_link_hash_entry *dir,
12665 struct elf_link_hash_entry *ind)
12666 {
12667 struct mips_elf_link_hash_entry *dirmips, *indmips;
12668
12669 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12670
12671 dirmips = (struct mips_elf_link_hash_entry *) dir;
12672 indmips = (struct mips_elf_link_hash_entry *) ind;
12673 /* Any absolute non-dynamic relocations against an indirect or weak
12674 definition will be against the target symbol. */
12675 if (indmips->has_static_relocs)
12676 dirmips->has_static_relocs = TRUE;
12677
12678 if (ind->root.type != bfd_link_hash_indirect)
12679 return;
12680
12681 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12682 if (indmips->readonly_reloc)
12683 dirmips->readonly_reloc = TRUE;
12684 if (indmips->no_fn_stub)
12685 dirmips->no_fn_stub = TRUE;
12686 if (indmips->fn_stub)
12687 {
12688 dirmips->fn_stub = indmips->fn_stub;
12689 indmips->fn_stub = NULL;
12690 }
12691 if (indmips->need_fn_stub)
12692 {
12693 dirmips->need_fn_stub = TRUE;
12694 indmips->need_fn_stub = FALSE;
12695 }
12696 if (indmips->call_stub)
12697 {
12698 dirmips->call_stub = indmips->call_stub;
12699 indmips->call_stub = NULL;
12700 }
12701 if (indmips->call_fp_stub)
12702 {
12703 dirmips->call_fp_stub = indmips->call_fp_stub;
12704 indmips->call_fp_stub = NULL;
12705 }
12706 if (indmips->global_got_area < dirmips->global_got_area)
12707 dirmips->global_got_area = indmips->global_got_area;
12708 if (indmips->global_got_area < GGA_NONE)
12709 indmips->global_got_area = GGA_NONE;
12710 if (indmips->has_nonpic_branches)
12711 dirmips->has_nonpic_branches = TRUE;
12712 }
12713 \f
12714 #define PDR_SIZE 32
12715
12716 bfd_boolean
12717 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12718 struct bfd_link_info *info)
12719 {
12720 asection *o;
12721 bfd_boolean ret = FALSE;
12722 unsigned char *tdata;
12723 size_t i, skip;
12724
12725 o = bfd_get_section_by_name (abfd, ".pdr");
12726 if (! o)
12727 return FALSE;
12728 if (o->size == 0)
12729 return FALSE;
12730 if (o->size % PDR_SIZE != 0)
12731 return FALSE;
12732 if (o->output_section != NULL
12733 && bfd_is_abs_section (o->output_section))
12734 return FALSE;
12735
12736 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12737 if (! tdata)
12738 return FALSE;
12739
12740 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12741 info->keep_memory);
12742 if (!cookie->rels)
12743 {
12744 free (tdata);
12745 return FALSE;
12746 }
12747
12748 cookie->rel = cookie->rels;
12749 cookie->relend = cookie->rels + o->reloc_count;
12750
12751 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12752 {
12753 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12754 {
12755 tdata[i] = 1;
12756 skip ++;
12757 }
12758 }
12759
12760 if (skip != 0)
12761 {
12762 mips_elf_section_data (o)->u.tdata = tdata;
12763 if (o->rawsize == 0)
12764 o->rawsize = o->size;
12765 o->size -= skip * PDR_SIZE;
12766 ret = TRUE;
12767 }
12768 else
12769 free (tdata);
12770
12771 if (! info->keep_memory)
12772 free (cookie->rels);
12773
12774 return ret;
12775 }
12776
12777 bfd_boolean
12778 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12779 {
12780 if (strcmp (sec->name, ".pdr") == 0)
12781 return TRUE;
12782 return FALSE;
12783 }
12784
12785 bfd_boolean
12786 _bfd_mips_elf_write_section (bfd *output_bfd,
12787 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12788 asection *sec, bfd_byte *contents)
12789 {
12790 bfd_byte *to, *from, *end;
12791 int i;
12792
12793 if (strcmp (sec->name, ".pdr") != 0)
12794 return FALSE;
12795
12796 if (mips_elf_section_data (sec)->u.tdata == NULL)
12797 return FALSE;
12798
12799 to = contents;
12800 end = contents + sec->size;
12801 for (from = contents, i = 0;
12802 from < end;
12803 from += PDR_SIZE, i++)
12804 {
12805 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12806 continue;
12807 if (to != from)
12808 memcpy (to, from, PDR_SIZE);
12809 to += PDR_SIZE;
12810 }
12811 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12812 sec->output_offset, sec->size);
12813 return TRUE;
12814 }
12815 \f
12816 /* microMIPS code retains local labels for linker relaxation. Omit them
12817 from output by default for clarity. */
12818
12819 bfd_boolean
12820 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12821 {
12822 return _bfd_elf_is_local_label_name (abfd, sym->name);
12823 }
12824
12825 /* MIPS ELF uses a special find_nearest_line routine in order the
12826 handle the ECOFF debugging information. */
12827
12828 struct mips_elf_find_line
12829 {
12830 struct ecoff_debug_info d;
12831 struct ecoff_find_line i;
12832 };
12833
12834 bfd_boolean
12835 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12836 asection *section, bfd_vma offset,
12837 const char **filename_ptr,
12838 const char **functionname_ptr,
12839 unsigned int *line_ptr,
12840 unsigned int *discriminator_ptr)
12841 {
12842 asection *msec;
12843
12844 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12845 filename_ptr, functionname_ptr,
12846 line_ptr, discriminator_ptr,
12847 dwarf_debug_sections,
12848 ABI_64_P (abfd) ? 8 : 0,
12849 &elf_tdata (abfd)->dwarf2_find_line_info))
12850 return TRUE;
12851
12852 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12853 filename_ptr, functionname_ptr,
12854 line_ptr))
12855 return TRUE;
12856
12857 msec = bfd_get_section_by_name (abfd, ".mdebug");
12858 if (msec != NULL)
12859 {
12860 flagword origflags;
12861 struct mips_elf_find_line *fi;
12862 const struct ecoff_debug_swap * const swap =
12863 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12864
12865 /* If we are called during a link, mips_elf_final_link may have
12866 cleared the SEC_HAS_CONTENTS field. We force it back on here
12867 if appropriate (which it normally will be). */
12868 origflags = msec->flags;
12869 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12870 msec->flags |= SEC_HAS_CONTENTS;
12871
12872 fi = mips_elf_tdata (abfd)->find_line_info;
12873 if (fi == NULL)
12874 {
12875 bfd_size_type external_fdr_size;
12876 char *fraw_src;
12877 char *fraw_end;
12878 struct fdr *fdr_ptr;
12879 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12880
12881 fi = bfd_zalloc (abfd, amt);
12882 if (fi == NULL)
12883 {
12884 msec->flags = origflags;
12885 return FALSE;
12886 }
12887
12888 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12889 {
12890 msec->flags = origflags;
12891 return FALSE;
12892 }
12893
12894 /* Swap in the FDR information. */
12895 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12896 fi->d.fdr = bfd_alloc (abfd, amt);
12897 if (fi->d.fdr == NULL)
12898 {
12899 msec->flags = origflags;
12900 return FALSE;
12901 }
12902 external_fdr_size = swap->external_fdr_size;
12903 fdr_ptr = fi->d.fdr;
12904 fraw_src = (char *) fi->d.external_fdr;
12905 fraw_end = (fraw_src
12906 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12907 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12908 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12909
12910 mips_elf_tdata (abfd)->find_line_info = fi;
12911
12912 /* Note that we don't bother to ever free this information.
12913 find_nearest_line is either called all the time, as in
12914 objdump -l, so the information should be saved, or it is
12915 rarely called, as in ld error messages, so the memory
12916 wasted is unimportant. Still, it would probably be a
12917 good idea for free_cached_info to throw it away. */
12918 }
12919
12920 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12921 &fi->i, filename_ptr, functionname_ptr,
12922 line_ptr))
12923 {
12924 msec->flags = origflags;
12925 return TRUE;
12926 }
12927
12928 msec->flags = origflags;
12929 }
12930
12931 /* Fall back on the generic ELF find_nearest_line routine. */
12932
12933 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12934 filename_ptr, functionname_ptr,
12935 line_ptr, discriminator_ptr);
12936 }
12937
12938 bfd_boolean
12939 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12940 const char **filename_ptr,
12941 const char **functionname_ptr,
12942 unsigned int *line_ptr)
12943 {
12944 bfd_boolean found;
12945 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12946 functionname_ptr, line_ptr,
12947 & elf_tdata (abfd)->dwarf2_find_line_info);
12948 return found;
12949 }
12950
12951 \f
12952 /* When are writing out the .options or .MIPS.options section,
12953 remember the bytes we are writing out, so that we can install the
12954 GP value in the section_processing routine. */
12955
12956 bfd_boolean
12957 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12958 const void *location,
12959 file_ptr offset, bfd_size_type count)
12960 {
12961 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12962 {
12963 bfd_byte *c;
12964
12965 if (elf_section_data (section) == NULL)
12966 {
12967 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12968 section->used_by_bfd = bfd_zalloc (abfd, amt);
12969 if (elf_section_data (section) == NULL)
12970 return FALSE;
12971 }
12972 c = mips_elf_section_data (section)->u.tdata;
12973 if (c == NULL)
12974 {
12975 c = bfd_zalloc (abfd, section->size);
12976 if (c == NULL)
12977 return FALSE;
12978 mips_elf_section_data (section)->u.tdata = c;
12979 }
12980
12981 memcpy (c + offset, location, count);
12982 }
12983
12984 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12985 count);
12986 }
12987
12988 /* This is almost identical to bfd_generic_get_... except that some
12989 MIPS relocations need to be handled specially. Sigh. */
12990
12991 bfd_byte *
12992 _bfd_elf_mips_get_relocated_section_contents
12993 (bfd *abfd,
12994 struct bfd_link_info *link_info,
12995 struct bfd_link_order *link_order,
12996 bfd_byte *data,
12997 bfd_boolean relocatable,
12998 asymbol **symbols)
12999 {
13000 /* Get enough memory to hold the stuff */
13001 bfd *input_bfd = link_order->u.indirect.section->owner;
13002 asection *input_section = link_order->u.indirect.section;
13003 bfd_size_type sz;
13004
13005 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13006 arelent **reloc_vector = NULL;
13007 long reloc_count;
13008
13009 if (reloc_size < 0)
13010 goto error_return;
13011
13012 reloc_vector = bfd_malloc (reloc_size);
13013 if (reloc_vector == NULL && reloc_size != 0)
13014 goto error_return;
13015
13016 /* read in the section */
13017 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13018 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13019 goto error_return;
13020
13021 reloc_count = bfd_canonicalize_reloc (input_bfd,
13022 input_section,
13023 reloc_vector,
13024 symbols);
13025 if (reloc_count < 0)
13026 goto error_return;
13027
13028 if (reloc_count > 0)
13029 {
13030 arelent **parent;
13031 /* for mips */
13032 int gp_found;
13033 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13034
13035 {
13036 struct bfd_hash_entry *h;
13037 struct bfd_link_hash_entry *lh;
13038 /* Skip all this stuff if we aren't mixing formats. */
13039 if (abfd && input_bfd
13040 && abfd->xvec == input_bfd->xvec)
13041 lh = 0;
13042 else
13043 {
13044 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13045 lh = (struct bfd_link_hash_entry *) h;
13046 }
13047 lookup:
13048 if (lh)
13049 {
13050 switch (lh->type)
13051 {
13052 case bfd_link_hash_undefined:
13053 case bfd_link_hash_undefweak:
13054 case bfd_link_hash_common:
13055 gp_found = 0;
13056 break;
13057 case bfd_link_hash_defined:
13058 case bfd_link_hash_defweak:
13059 gp_found = 1;
13060 gp = lh->u.def.value;
13061 break;
13062 case bfd_link_hash_indirect:
13063 case bfd_link_hash_warning:
13064 lh = lh->u.i.link;
13065 /* @@FIXME ignoring warning for now */
13066 goto lookup;
13067 case bfd_link_hash_new:
13068 default:
13069 abort ();
13070 }
13071 }
13072 else
13073 gp_found = 0;
13074 }
13075 /* end mips */
13076 for (parent = reloc_vector; *parent != NULL; parent++)
13077 {
13078 char *error_message = NULL;
13079 bfd_reloc_status_type r;
13080
13081 /* Specific to MIPS: Deal with relocation types that require
13082 knowing the gp of the output bfd. */
13083 asymbol *sym = *(*parent)->sym_ptr_ptr;
13084
13085 /* If we've managed to find the gp and have a special
13086 function for the relocation then go ahead, else default
13087 to the generic handling. */
13088 if (gp_found
13089 && (*parent)->howto->special_function
13090 == _bfd_mips_elf32_gprel16_reloc)
13091 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13092 input_section, relocatable,
13093 data, gp);
13094 else
13095 r = bfd_perform_relocation (input_bfd, *parent, data,
13096 input_section,
13097 relocatable ? abfd : NULL,
13098 &error_message);
13099
13100 if (relocatable)
13101 {
13102 asection *os = input_section->output_section;
13103
13104 /* A partial link, so keep the relocs */
13105 os->orelocation[os->reloc_count] = *parent;
13106 os->reloc_count++;
13107 }
13108
13109 if (r != bfd_reloc_ok)
13110 {
13111 switch (r)
13112 {
13113 case bfd_reloc_undefined:
13114 (*link_info->callbacks->undefined_symbol)
13115 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13116 input_bfd, input_section, (*parent)->address, TRUE);
13117 break;
13118 case bfd_reloc_dangerous:
13119 BFD_ASSERT (error_message != NULL);
13120 (*link_info->callbacks->reloc_dangerous)
13121 (link_info, error_message,
13122 input_bfd, input_section, (*parent)->address);
13123 break;
13124 case bfd_reloc_overflow:
13125 (*link_info->callbacks->reloc_overflow)
13126 (link_info, NULL,
13127 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13128 (*parent)->howto->name, (*parent)->addend,
13129 input_bfd, input_section, (*parent)->address);
13130 break;
13131 case bfd_reloc_outofrange:
13132 default:
13133 abort ();
13134 break;
13135 }
13136
13137 }
13138 }
13139 }
13140 if (reloc_vector != NULL)
13141 free (reloc_vector);
13142 return data;
13143
13144 error_return:
13145 if (reloc_vector != NULL)
13146 free (reloc_vector);
13147 return NULL;
13148 }
13149 \f
13150 static bfd_boolean
13151 mips_elf_relax_delete_bytes (bfd *abfd,
13152 asection *sec, bfd_vma addr, int count)
13153 {
13154 Elf_Internal_Shdr *symtab_hdr;
13155 unsigned int sec_shndx;
13156 bfd_byte *contents;
13157 Elf_Internal_Rela *irel, *irelend;
13158 Elf_Internal_Sym *isym;
13159 Elf_Internal_Sym *isymend;
13160 struct elf_link_hash_entry **sym_hashes;
13161 struct elf_link_hash_entry **end_hashes;
13162 struct elf_link_hash_entry **start_hashes;
13163 unsigned int symcount;
13164
13165 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13166 contents = elf_section_data (sec)->this_hdr.contents;
13167
13168 irel = elf_section_data (sec)->relocs;
13169 irelend = irel + sec->reloc_count;
13170
13171 /* Actually delete the bytes. */
13172 memmove (contents + addr, contents + addr + count,
13173 (size_t) (sec->size - addr - count));
13174 sec->size -= count;
13175
13176 /* Adjust all the relocs. */
13177 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13178 {
13179 /* Get the new reloc address. */
13180 if (irel->r_offset > addr)
13181 irel->r_offset -= count;
13182 }
13183
13184 BFD_ASSERT (addr % 2 == 0);
13185 BFD_ASSERT (count % 2 == 0);
13186
13187 /* Adjust the local symbols defined in this section. */
13188 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13189 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13190 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13191 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13192 isym->st_value -= count;
13193
13194 /* Now adjust the global symbols defined in this section. */
13195 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13196 - symtab_hdr->sh_info);
13197 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13198 end_hashes = sym_hashes + symcount;
13199
13200 for (; sym_hashes < end_hashes; sym_hashes++)
13201 {
13202 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13203
13204 if ((sym_hash->root.type == bfd_link_hash_defined
13205 || sym_hash->root.type == bfd_link_hash_defweak)
13206 && sym_hash->root.u.def.section == sec)
13207 {
13208 bfd_vma value = sym_hash->root.u.def.value;
13209
13210 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13211 value &= MINUS_TWO;
13212 if (value > addr)
13213 sym_hash->root.u.def.value -= count;
13214 }
13215 }
13216
13217 return TRUE;
13218 }
13219
13220
13221 /* Opcodes needed for microMIPS relaxation as found in
13222 opcodes/micromips-opc.c. */
13223
13224 struct opcode_descriptor {
13225 unsigned long match;
13226 unsigned long mask;
13227 };
13228
13229 /* The $ra register aka $31. */
13230
13231 #define RA 31
13232
13233 /* 32-bit instruction format register fields. */
13234
13235 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13236 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13237
13238 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13239
13240 #define OP16_VALID_REG(r) \
13241 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13242
13243
13244 /* 32-bit and 16-bit branches. */
13245
13246 static const struct opcode_descriptor b_insns_32[] = {
13247 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13248 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13249 { 0, 0 } /* End marker for find_match(). */
13250 };
13251
13252 static const struct opcode_descriptor bc_insn_32 =
13253 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13254
13255 static const struct opcode_descriptor bz_insn_32 =
13256 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13257
13258 static const struct opcode_descriptor bzal_insn_32 =
13259 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13260
13261 static const struct opcode_descriptor beq_insn_32 =
13262 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13263
13264 static const struct opcode_descriptor b_insn_16 =
13265 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13266
13267 static const struct opcode_descriptor bz_insn_16 =
13268 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13269
13270
13271 /* 32-bit and 16-bit branch EQ and NE zero. */
13272
13273 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13274 eq and second the ne. This convention is used when replacing a
13275 32-bit BEQ/BNE with the 16-bit version. */
13276
13277 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13278
13279 static const struct opcode_descriptor bz_rs_insns_32[] = {
13280 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13281 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13282 { 0, 0 } /* End marker for find_match(). */
13283 };
13284
13285 static const struct opcode_descriptor bz_rt_insns_32[] = {
13286 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13287 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13288 { 0, 0 } /* End marker for find_match(). */
13289 };
13290
13291 static const struct opcode_descriptor bzc_insns_32[] = {
13292 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13293 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13294 { 0, 0 } /* End marker for find_match(). */
13295 };
13296
13297 static const struct opcode_descriptor bz_insns_16[] = {
13298 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13299 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13300 { 0, 0 } /* End marker for find_match(). */
13301 };
13302
13303 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13304
13305 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13306 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13307
13308
13309 /* 32-bit instructions with a delay slot. */
13310
13311 static const struct opcode_descriptor jal_insn_32_bd16 =
13312 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13313
13314 static const struct opcode_descriptor jal_insn_32_bd32 =
13315 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13316
13317 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13318 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13319
13320 static const struct opcode_descriptor j_insn_32 =
13321 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13322
13323 static const struct opcode_descriptor jalr_insn_32 =
13324 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13325
13326 /* This table can be compacted, because no opcode replacement is made. */
13327
13328 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13329 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13330
13331 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13332 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13333
13334 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13335 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13336 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13337 { 0, 0 } /* End marker for find_match(). */
13338 };
13339
13340 /* This table can be compacted, because no opcode replacement is made. */
13341
13342 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13343 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13344
13345 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13346 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13347 { 0, 0 } /* End marker for find_match(). */
13348 };
13349
13350
13351 /* 16-bit instructions with a delay slot. */
13352
13353 static const struct opcode_descriptor jalr_insn_16_bd16 =
13354 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13355
13356 static const struct opcode_descriptor jalr_insn_16_bd32 =
13357 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13358
13359 static const struct opcode_descriptor jr_insn_16 =
13360 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13361
13362 #define JR16_REG(opcode) ((opcode) & 0x1f)
13363
13364 /* This table can be compacted, because no opcode replacement is made. */
13365
13366 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13367 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13368
13369 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13370 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13371 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13372 { 0, 0 } /* End marker for find_match(). */
13373 };
13374
13375
13376 /* LUI instruction. */
13377
13378 static const struct opcode_descriptor lui_insn =
13379 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13380
13381
13382 /* ADDIU instruction. */
13383
13384 static const struct opcode_descriptor addiu_insn =
13385 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13386
13387 static const struct opcode_descriptor addiupc_insn =
13388 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13389
13390 #define ADDIUPC_REG_FIELD(r) \
13391 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13392
13393
13394 /* Relaxable instructions in a JAL delay slot: MOVE. */
13395
13396 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13397 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13398 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13399 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13400
13401 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13402 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13403
13404 static const struct opcode_descriptor move_insns_32[] = {
13405 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13406 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13407 { 0, 0 } /* End marker for find_match(). */
13408 };
13409
13410 static const struct opcode_descriptor move_insn_16 =
13411 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13412
13413
13414 /* NOP instructions. */
13415
13416 static const struct opcode_descriptor nop_insn_32 =
13417 { /* "nop", "", */ 0x00000000, 0xffffffff };
13418
13419 static const struct opcode_descriptor nop_insn_16 =
13420 { /* "nop", "", */ 0x0c00, 0xffff };
13421
13422
13423 /* Instruction match support. */
13424
13425 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13426
13427 static int
13428 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13429 {
13430 unsigned long indx;
13431
13432 for (indx = 0; insn[indx].mask != 0; indx++)
13433 if (MATCH (opcode, insn[indx]))
13434 return indx;
13435
13436 return -1;
13437 }
13438
13439
13440 /* Branch and delay slot decoding support. */
13441
13442 /* If PTR points to what *might* be a 16-bit branch or jump, then
13443 return the minimum length of its delay slot, otherwise return 0.
13444 Non-zero results are not definitive as we might be checking against
13445 the second half of another instruction. */
13446
13447 static int
13448 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13449 {
13450 unsigned long opcode;
13451 int bdsize;
13452
13453 opcode = bfd_get_16 (abfd, ptr);
13454 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13455 /* 16-bit branch/jump with a 32-bit delay slot. */
13456 bdsize = 4;
13457 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13458 || find_match (opcode, ds_insns_16_bd16) >= 0)
13459 /* 16-bit branch/jump with a 16-bit delay slot. */
13460 bdsize = 2;
13461 else
13462 /* No delay slot. */
13463 bdsize = 0;
13464
13465 return bdsize;
13466 }
13467
13468 /* If PTR points to what *might* be a 32-bit branch or jump, then
13469 return the minimum length of its delay slot, otherwise return 0.
13470 Non-zero results are not definitive as we might be checking against
13471 the second half of another instruction. */
13472
13473 static int
13474 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13475 {
13476 unsigned long opcode;
13477 int bdsize;
13478
13479 opcode = bfd_get_micromips_32 (abfd, ptr);
13480 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13481 /* 32-bit branch/jump with a 32-bit delay slot. */
13482 bdsize = 4;
13483 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13484 /* 32-bit branch/jump with a 16-bit delay slot. */
13485 bdsize = 2;
13486 else
13487 /* No delay slot. */
13488 bdsize = 0;
13489
13490 return bdsize;
13491 }
13492
13493 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13494 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13495
13496 static bfd_boolean
13497 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13498 {
13499 unsigned long opcode;
13500
13501 opcode = bfd_get_16 (abfd, ptr);
13502 if (MATCH (opcode, b_insn_16)
13503 /* B16 */
13504 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13505 /* JR16 */
13506 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13507 /* BEQZ16, BNEZ16 */
13508 || (MATCH (opcode, jalr_insn_16_bd32)
13509 /* JALR16 */
13510 && reg != JR16_REG (opcode) && reg != RA))
13511 return TRUE;
13512
13513 return FALSE;
13514 }
13515
13516 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13517 then return TRUE, otherwise FALSE. */
13518
13519 static bfd_boolean
13520 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13521 {
13522 unsigned long opcode;
13523
13524 opcode = bfd_get_micromips_32 (abfd, ptr);
13525 if (MATCH (opcode, j_insn_32)
13526 /* J */
13527 || MATCH (opcode, bc_insn_32)
13528 /* BC1F, BC1T, BC2F, BC2T */
13529 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13530 /* JAL, JALX */
13531 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13532 /* BGEZ, BGTZ, BLEZ, BLTZ */
13533 || (MATCH (opcode, bzal_insn_32)
13534 /* BGEZAL, BLTZAL */
13535 && reg != OP32_SREG (opcode) && reg != RA)
13536 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13537 /* JALR, JALR.HB, BEQ, BNE */
13538 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13539 return TRUE;
13540
13541 return FALSE;
13542 }
13543
13544 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13545 IRELEND) at OFFSET indicate that there must be a compact branch there,
13546 then return TRUE, otherwise FALSE. */
13547
13548 static bfd_boolean
13549 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13550 const Elf_Internal_Rela *internal_relocs,
13551 const Elf_Internal_Rela *irelend)
13552 {
13553 const Elf_Internal_Rela *irel;
13554 unsigned long opcode;
13555
13556 opcode = bfd_get_micromips_32 (abfd, ptr);
13557 if (find_match (opcode, bzc_insns_32) < 0)
13558 return FALSE;
13559
13560 for (irel = internal_relocs; irel < irelend; irel++)
13561 if (irel->r_offset == offset
13562 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13563 return TRUE;
13564
13565 return FALSE;
13566 }
13567
13568 /* Bitsize checking. */
13569 #define IS_BITSIZE(val, N) \
13570 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13571 - (1ULL << ((N) - 1))) == (val))
13572
13573 \f
13574 bfd_boolean
13575 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13576 struct bfd_link_info *link_info,
13577 bfd_boolean *again)
13578 {
13579 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13580 Elf_Internal_Shdr *symtab_hdr;
13581 Elf_Internal_Rela *internal_relocs;
13582 Elf_Internal_Rela *irel, *irelend;
13583 bfd_byte *contents = NULL;
13584 Elf_Internal_Sym *isymbuf = NULL;
13585
13586 /* Assume nothing changes. */
13587 *again = FALSE;
13588
13589 /* We don't have to do anything for a relocatable link, if
13590 this section does not have relocs, or if this is not a
13591 code section. */
13592
13593 if (bfd_link_relocatable (link_info)
13594 || (sec->flags & SEC_RELOC) == 0
13595 || sec->reloc_count == 0
13596 || (sec->flags & SEC_CODE) == 0)
13597 return TRUE;
13598
13599 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13600
13601 /* Get a copy of the native relocations. */
13602 internal_relocs = (_bfd_elf_link_read_relocs
13603 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13604 link_info->keep_memory));
13605 if (internal_relocs == NULL)
13606 goto error_return;
13607
13608 /* Walk through them looking for relaxing opportunities. */
13609 irelend = internal_relocs + sec->reloc_count;
13610 for (irel = internal_relocs; irel < irelend; irel++)
13611 {
13612 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13613 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13614 bfd_boolean target_is_micromips_code_p;
13615 unsigned long opcode;
13616 bfd_vma symval;
13617 bfd_vma pcrval;
13618 bfd_byte *ptr;
13619 int fndopc;
13620
13621 /* The number of bytes to delete for relaxation and from where
13622 to delete these bytes starting at irel->r_offset. */
13623 int delcnt = 0;
13624 int deloff = 0;
13625
13626 /* If this isn't something that can be relaxed, then ignore
13627 this reloc. */
13628 if (r_type != R_MICROMIPS_HI16
13629 && r_type != R_MICROMIPS_PC16_S1
13630 && r_type != R_MICROMIPS_26_S1)
13631 continue;
13632
13633 /* Get the section contents if we haven't done so already. */
13634 if (contents == NULL)
13635 {
13636 /* Get cached copy if it exists. */
13637 if (elf_section_data (sec)->this_hdr.contents != NULL)
13638 contents = elf_section_data (sec)->this_hdr.contents;
13639 /* Go get them off disk. */
13640 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13641 goto error_return;
13642 }
13643 ptr = contents + irel->r_offset;
13644
13645 /* Read this BFD's local symbols if we haven't done so already. */
13646 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13647 {
13648 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13649 if (isymbuf == NULL)
13650 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13651 symtab_hdr->sh_info, 0,
13652 NULL, NULL, NULL);
13653 if (isymbuf == NULL)
13654 goto error_return;
13655 }
13656
13657 /* Get the value of the symbol referred to by the reloc. */
13658 if (r_symndx < symtab_hdr->sh_info)
13659 {
13660 /* A local symbol. */
13661 Elf_Internal_Sym *isym;
13662 asection *sym_sec;
13663
13664 isym = isymbuf + r_symndx;
13665 if (isym->st_shndx == SHN_UNDEF)
13666 sym_sec = bfd_und_section_ptr;
13667 else if (isym->st_shndx == SHN_ABS)
13668 sym_sec = bfd_abs_section_ptr;
13669 else if (isym->st_shndx == SHN_COMMON)
13670 sym_sec = bfd_com_section_ptr;
13671 else
13672 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13673 symval = (isym->st_value
13674 + sym_sec->output_section->vma
13675 + sym_sec->output_offset);
13676 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13677 }
13678 else
13679 {
13680 unsigned long indx;
13681 struct elf_link_hash_entry *h;
13682
13683 /* An external symbol. */
13684 indx = r_symndx - symtab_hdr->sh_info;
13685 h = elf_sym_hashes (abfd)[indx];
13686 BFD_ASSERT (h != NULL);
13687
13688 if (h->root.type != bfd_link_hash_defined
13689 && h->root.type != bfd_link_hash_defweak)
13690 /* This appears to be a reference to an undefined
13691 symbol. Just ignore it -- it will be caught by the
13692 regular reloc processing. */
13693 continue;
13694
13695 symval = (h->root.u.def.value
13696 + h->root.u.def.section->output_section->vma
13697 + h->root.u.def.section->output_offset);
13698 target_is_micromips_code_p = (!h->needs_plt
13699 && ELF_ST_IS_MICROMIPS (h->other));
13700 }
13701
13702
13703 /* For simplicity of coding, we are going to modify the
13704 section contents, the section relocs, and the BFD symbol
13705 table. We must tell the rest of the code not to free up this
13706 information. It would be possible to instead create a table
13707 of changes which have to be made, as is done in coff-mips.c;
13708 that would be more work, but would require less memory when
13709 the linker is run. */
13710
13711 /* Only 32-bit instructions relaxed. */
13712 if (irel->r_offset + 4 > sec->size)
13713 continue;
13714
13715 opcode = bfd_get_micromips_32 (abfd, ptr);
13716
13717 /* This is the pc-relative distance from the instruction the
13718 relocation is applied to, to the symbol referred. */
13719 pcrval = (symval
13720 - (sec->output_section->vma + sec->output_offset)
13721 - irel->r_offset);
13722
13723 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13724 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13725 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13726
13727 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13728
13729 where pcrval has first to be adjusted to apply against the LO16
13730 location (we make the adjustment later on, when we have figured
13731 out the offset). */
13732 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13733 {
13734 bfd_boolean bzc = FALSE;
13735 unsigned long nextopc;
13736 unsigned long reg;
13737 bfd_vma offset;
13738
13739 /* Give up if the previous reloc was a HI16 against this symbol
13740 too. */
13741 if (irel > internal_relocs
13742 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13743 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13744 continue;
13745
13746 /* Or if the next reloc is not a LO16 against this symbol. */
13747 if (irel + 1 >= irelend
13748 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13749 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13750 continue;
13751
13752 /* Or if the second next reloc is a LO16 against this symbol too. */
13753 if (irel + 2 >= irelend
13754 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13755 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13756 continue;
13757
13758 /* See if the LUI instruction *might* be in a branch delay slot.
13759 We check whether what looks like a 16-bit branch or jump is
13760 actually an immediate argument to a compact branch, and let
13761 it through if so. */
13762 if (irel->r_offset >= 2
13763 && check_br16_dslot (abfd, ptr - 2)
13764 && !(irel->r_offset >= 4
13765 && (bzc = check_relocated_bzc (abfd,
13766 ptr - 4, irel->r_offset - 4,
13767 internal_relocs, irelend))))
13768 continue;
13769 if (irel->r_offset >= 4
13770 && !bzc
13771 && check_br32_dslot (abfd, ptr - 4))
13772 continue;
13773
13774 reg = OP32_SREG (opcode);
13775
13776 /* We only relax adjacent instructions or ones separated with
13777 a branch or jump that has a delay slot. The branch or jump
13778 must not fiddle with the register used to hold the address.
13779 Subtract 4 for the LUI itself. */
13780 offset = irel[1].r_offset - irel[0].r_offset;
13781 switch (offset - 4)
13782 {
13783 case 0:
13784 break;
13785 case 2:
13786 if (check_br16 (abfd, ptr + 4, reg))
13787 break;
13788 continue;
13789 case 4:
13790 if (check_br32 (abfd, ptr + 4, reg))
13791 break;
13792 continue;
13793 default:
13794 continue;
13795 }
13796
13797 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13798
13799 /* Give up unless the same register is used with both
13800 relocations. */
13801 if (OP32_SREG (nextopc) != reg)
13802 continue;
13803
13804 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13805 and rounding up to take masking of the two LSBs into account. */
13806 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13807
13808 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13809 if (IS_BITSIZE (symval, 16))
13810 {
13811 /* Fix the relocation's type. */
13812 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13813
13814 /* Instructions using R_MICROMIPS_LO16 have the base or
13815 source register in bits 20:16. This register becomes $0
13816 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13817 nextopc &= ~0x001f0000;
13818 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13819 contents + irel[1].r_offset);
13820 }
13821
13822 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13823 We add 4 to take LUI deletion into account while checking
13824 the PC-relative distance. */
13825 else if (symval % 4 == 0
13826 && IS_BITSIZE (pcrval + 4, 25)
13827 && MATCH (nextopc, addiu_insn)
13828 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13829 && OP16_VALID_REG (OP32_TREG (nextopc)))
13830 {
13831 /* Fix the relocation's type. */
13832 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13833
13834 /* Replace ADDIU with the ADDIUPC version. */
13835 nextopc = (addiupc_insn.match
13836 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13837
13838 bfd_put_micromips_32 (abfd, nextopc,
13839 contents + irel[1].r_offset);
13840 }
13841
13842 /* Can't do anything, give up, sigh... */
13843 else
13844 continue;
13845
13846 /* Fix the relocation's type. */
13847 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13848
13849 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13850 delcnt = 4;
13851 deloff = 0;
13852 }
13853
13854 /* Compact branch relaxation -- due to the multitude of macros
13855 employed by the compiler/assembler, compact branches are not
13856 always generated. Obviously, this can/will be fixed elsewhere,
13857 but there is no drawback in double checking it here. */
13858 else if (r_type == R_MICROMIPS_PC16_S1
13859 && irel->r_offset + 5 < sec->size
13860 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13861 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13862 && ((!insn32
13863 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13864 nop_insn_16) ? 2 : 0))
13865 || (irel->r_offset + 7 < sec->size
13866 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13867 ptr + 4),
13868 nop_insn_32) ? 4 : 0))))
13869 {
13870 unsigned long reg;
13871
13872 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13873
13874 /* Replace BEQZ/BNEZ with the compact version. */
13875 opcode = (bzc_insns_32[fndopc].match
13876 | BZC32_REG_FIELD (reg)
13877 | (opcode & 0xffff)); /* Addend value. */
13878
13879 bfd_put_micromips_32 (abfd, opcode, ptr);
13880
13881 /* Delete the delay slot NOP: two or four bytes from
13882 irel->offset + 4; delcnt has already been set above. */
13883 deloff = 4;
13884 }
13885
13886 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13887 to check the distance from the next instruction, so subtract 2. */
13888 else if (!insn32
13889 && r_type == R_MICROMIPS_PC16_S1
13890 && IS_BITSIZE (pcrval - 2, 11)
13891 && find_match (opcode, b_insns_32) >= 0)
13892 {
13893 /* Fix the relocation's type. */
13894 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13895
13896 /* Replace the 32-bit opcode with a 16-bit opcode. */
13897 bfd_put_16 (abfd,
13898 (b_insn_16.match
13899 | (opcode & 0x3ff)), /* Addend value. */
13900 ptr);
13901
13902 /* Delete 2 bytes from irel->r_offset + 2. */
13903 delcnt = 2;
13904 deloff = 2;
13905 }
13906
13907 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13908 to check the distance from the next instruction, so subtract 2. */
13909 else if (!insn32
13910 && r_type == R_MICROMIPS_PC16_S1
13911 && IS_BITSIZE (pcrval - 2, 8)
13912 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13913 && OP16_VALID_REG (OP32_SREG (opcode)))
13914 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13915 && OP16_VALID_REG (OP32_TREG (opcode)))))
13916 {
13917 unsigned long reg;
13918
13919 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13920
13921 /* Fix the relocation's type. */
13922 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13923
13924 /* Replace the 32-bit opcode with a 16-bit opcode. */
13925 bfd_put_16 (abfd,
13926 (bz_insns_16[fndopc].match
13927 | BZ16_REG_FIELD (reg)
13928 | (opcode & 0x7f)), /* Addend value. */
13929 ptr);
13930
13931 /* Delete 2 bytes from irel->r_offset + 2. */
13932 delcnt = 2;
13933 deloff = 2;
13934 }
13935
13936 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13937 else if (!insn32
13938 && r_type == R_MICROMIPS_26_S1
13939 && target_is_micromips_code_p
13940 && irel->r_offset + 7 < sec->size
13941 && MATCH (opcode, jal_insn_32_bd32))
13942 {
13943 unsigned long n32opc;
13944 bfd_boolean relaxed = FALSE;
13945
13946 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13947
13948 if (MATCH (n32opc, nop_insn_32))
13949 {
13950 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13951 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13952
13953 relaxed = TRUE;
13954 }
13955 else if (find_match (n32opc, move_insns_32) >= 0)
13956 {
13957 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13958 bfd_put_16 (abfd,
13959 (move_insn_16.match
13960 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13961 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13962 ptr + 4);
13963
13964 relaxed = TRUE;
13965 }
13966 /* Other 32-bit instructions relaxable to 16-bit
13967 instructions will be handled here later. */
13968
13969 if (relaxed)
13970 {
13971 /* JAL with 32-bit delay slot that is changed to a JALS
13972 with 16-bit delay slot. */
13973 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13974
13975 /* Delete 2 bytes from irel->r_offset + 6. */
13976 delcnt = 2;
13977 deloff = 6;
13978 }
13979 }
13980
13981 if (delcnt != 0)
13982 {
13983 /* Note that we've changed the relocs, section contents, etc. */
13984 elf_section_data (sec)->relocs = internal_relocs;
13985 elf_section_data (sec)->this_hdr.contents = contents;
13986 symtab_hdr->contents = (unsigned char *) isymbuf;
13987
13988 /* Delete bytes depending on the delcnt and deloff. */
13989 if (!mips_elf_relax_delete_bytes (abfd, sec,
13990 irel->r_offset + deloff, delcnt))
13991 goto error_return;
13992
13993 /* That will change things, so we should relax again.
13994 Note that this is not required, and it may be slow. */
13995 *again = TRUE;
13996 }
13997 }
13998
13999 if (isymbuf != NULL
14000 && symtab_hdr->contents != (unsigned char *) isymbuf)
14001 {
14002 if (! link_info->keep_memory)
14003 free (isymbuf);
14004 else
14005 {
14006 /* Cache the symbols for elf_link_input_bfd. */
14007 symtab_hdr->contents = (unsigned char *) isymbuf;
14008 }
14009 }
14010
14011 if (contents != NULL
14012 && elf_section_data (sec)->this_hdr.contents != contents)
14013 {
14014 if (! link_info->keep_memory)
14015 free (contents);
14016 else
14017 {
14018 /* Cache the section contents for elf_link_input_bfd. */
14019 elf_section_data (sec)->this_hdr.contents = contents;
14020 }
14021 }
14022
14023 if (internal_relocs != NULL
14024 && elf_section_data (sec)->relocs != internal_relocs)
14025 free (internal_relocs);
14026
14027 return TRUE;
14028
14029 error_return:
14030 if (isymbuf != NULL
14031 && symtab_hdr->contents != (unsigned char *) isymbuf)
14032 free (isymbuf);
14033 if (contents != NULL
14034 && elf_section_data (sec)->this_hdr.contents != contents)
14035 free (contents);
14036 if (internal_relocs != NULL
14037 && elf_section_data (sec)->relocs != internal_relocs)
14038 free (internal_relocs);
14039
14040 return FALSE;
14041 }
14042 \f
14043 /* Create a MIPS ELF linker hash table. */
14044
14045 struct bfd_link_hash_table *
14046 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14047 {
14048 struct mips_elf_link_hash_table *ret;
14049 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14050
14051 ret = bfd_zmalloc (amt);
14052 if (ret == NULL)
14053 return NULL;
14054
14055 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14056 mips_elf_link_hash_newfunc,
14057 sizeof (struct mips_elf_link_hash_entry),
14058 MIPS_ELF_DATA))
14059 {
14060 free (ret);
14061 return NULL;
14062 }
14063 ret->root.init_plt_refcount.plist = NULL;
14064 ret->root.init_plt_offset.plist = NULL;
14065
14066 return &ret->root.root;
14067 }
14068
14069 /* Likewise, but indicate that the target is VxWorks. */
14070
14071 struct bfd_link_hash_table *
14072 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14073 {
14074 struct bfd_link_hash_table *ret;
14075
14076 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14077 if (ret)
14078 {
14079 struct mips_elf_link_hash_table *htab;
14080
14081 htab = (struct mips_elf_link_hash_table *) ret;
14082 htab->use_plts_and_copy_relocs = TRUE;
14083 htab->is_vxworks = TRUE;
14084 }
14085 return ret;
14086 }
14087
14088 /* A function that the linker calls if we are allowed to use PLTs
14089 and copy relocs. */
14090
14091 void
14092 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14093 {
14094 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14095 }
14096
14097 /* A function that the linker calls to select between all or only
14098 32-bit microMIPS instructions. */
14099
14100 void
14101 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
14102 {
14103 mips_elf_hash_table (info)->insn32 = on;
14104 }
14105 \f
14106 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14107
14108 struct mips_mach_extension
14109 {
14110 unsigned long extension, base;
14111 };
14112
14113
14114 /* An array describing how BFD machines relate to one another. The entries
14115 are ordered topologically with MIPS I extensions listed last. */
14116
14117 static const struct mips_mach_extension mips_mach_extensions[] =
14118 {
14119 /* MIPS64r2 extensions. */
14120 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14121 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14122 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14123 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14124 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14125
14126 /* MIPS64 extensions. */
14127 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14128 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14129 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14130
14131 /* MIPS V extensions. */
14132 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14133
14134 /* R10000 extensions. */
14135 { bfd_mach_mips12000, bfd_mach_mips10000 },
14136 { bfd_mach_mips14000, bfd_mach_mips10000 },
14137 { bfd_mach_mips16000, bfd_mach_mips10000 },
14138
14139 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14140 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14141 better to allow vr5400 and vr5500 code to be merged anyway, since
14142 many libraries will just use the core ISA. Perhaps we could add
14143 some sort of ASE flag if this ever proves a problem. */
14144 { bfd_mach_mips5500, bfd_mach_mips5400 },
14145 { bfd_mach_mips5400, bfd_mach_mips5000 },
14146
14147 /* MIPS IV extensions. */
14148 { bfd_mach_mips5, bfd_mach_mips8000 },
14149 { bfd_mach_mips10000, bfd_mach_mips8000 },
14150 { bfd_mach_mips5000, bfd_mach_mips8000 },
14151 { bfd_mach_mips7000, bfd_mach_mips8000 },
14152 { bfd_mach_mips9000, bfd_mach_mips8000 },
14153
14154 /* VR4100 extensions. */
14155 { bfd_mach_mips4120, bfd_mach_mips4100 },
14156 { bfd_mach_mips4111, bfd_mach_mips4100 },
14157
14158 /* MIPS III extensions. */
14159 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14160 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14161 { bfd_mach_mips8000, bfd_mach_mips4000 },
14162 { bfd_mach_mips4650, bfd_mach_mips4000 },
14163 { bfd_mach_mips4600, bfd_mach_mips4000 },
14164 { bfd_mach_mips4400, bfd_mach_mips4000 },
14165 { bfd_mach_mips4300, bfd_mach_mips4000 },
14166 { bfd_mach_mips4100, bfd_mach_mips4000 },
14167 { bfd_mach_mips4010, bfd_mach_mips4000 },
14168 { bfd_mach_mips5900, bfd_mach_mips4000 },
14169
14170 /* MIPS32 extensions. */
14171 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14172
14173 /* MIPS II extensions. */
14174 { bfd_mach_mips4000, bfd_mach_mips6000 },
14175 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14176
14177 /* MIPS I extensions. */
14178 { bfd_mach_mips6000, bfd_mach_mips3000 },
14179 { bfd_mach_mips3900, bfd_mach_mips3000 }
14180 };
14181
14182 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14183
14184 static bfd_boolean
14185 mips_mach_extends_p (unsigned long base, unsigned long extension)
14186 {
14187 size_t i;
14188
14189 if (extension == base)
14190 return TRUE;
14191
14192 if (base == bfd_mach_mipsisa32
14193 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14194 return TRUE;
14195
14196 if (base == bfd_mach_mipsisa32r2
14197 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14198 return TRUE;
14199
14200 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14201 if (extension == mips_mach_extensions[i].extension)
14202 {
14203 extension = mips_mach_extensions[i].base;
14204 if (extension == base)
14205 return TRUE;
14206 }
14207
14208 return FALSE;
14209 }
14210
14211 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14212
14213 static unsigned long
14214 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14215 {
14216 switch (isa_ext)
14217 {
14218 case AFL_EXT_3900: return bfd_mach_mips3900;
14219 case AFL_EXT_4010: return bfd_mach_mips4010;
14220 case AFL_EXT_4100: return bfd_mach_mips4100;
14221 case AFL_EXT_4111: return bfd_mach_mips4111;
14222 case AFL_EXT_4120: return bfd_mach_mips4120;
14223 case AFL_EXT_4650: return bfd_mach_mips4650;
14224 case AFL_EXT_5400: return bfd_mach_mips5400;
14225 case AFL_EXT_5500: return bfd_mach_mips5500;
14226 case AFL_EXT_5900: return bfd_mach_mips5900;
14227 case AFL_EXT_10000: return bfd_mach_mips10000;
14228 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14229 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14230 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14231 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14232 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14233 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14234 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14235 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14236 default: return bfd_mach_mips3000;
14237 }
14238 }
14239
14240 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14241
14242 unsigned int
14243 bfd_mips_isa_ext (bfd *abfd)
14244 {
14245 switch (bfd_get_mach (abfd))
14246 {
14247 case bfd_mach_mips3900: return AFL_EXT_3900;
14248 case bfd_mach_mips4010: return AFL_EXT_4010;
14249 case bfd_mach_mips4100: return AFL_EXT_4100;
14250 case bfd_mach_mips4111: return AFL_EXT_4111;
14251 case bfd_mach_mips4120: return AFL_EXT_4120;
14252 case bfd_mach_mips4650: return AFL_EXT_4650;
14253 case bfd_mach_mips5400: return AFL_EXT_5400;
14254 case bfd_mach_mips5500: return AFL_EXT_5500;
14255 case bfd_mach_mips5900: return AFL_EXT_5900;
14256 case bfd_mach_mips10000: return AFL_EXT_10000;
14257 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14258 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14259 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14260 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14261 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14262 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14263 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14264 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14265 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14266 default: return 0;
14267 }
14268 }
14269
14270 /* Encode ISA level and revision as a single value. */
14271 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14272
14273 /* Decode a single value into level and revision. */
14274 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14275 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14276
14277 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14278
14279 static void
14280 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14281 {
14282 int new_isa = 0;
14283 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14284 {
14285 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14286 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14287 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14288 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14289 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14290 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14291 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14292 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14293 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14294 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14295 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14296 default:
14297 _bfd_error_handler
14298 /* xgettext:c-format */
14299 (_("%B: Unknown architecture %s"),
14300 abfd, bfd_printable_name (abfd));
14301 }
14302
14303 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14304 {
14305 abiflags->isa_level = ISA_LEVEL (new_isa);
14306 abiflags->isa_rev = ISA_REV (new_isa);
14307 }
14308
14309 /* Update the isa_ext if ABFD describes a further extension. */
14310 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14311 bfd_get_mach (abfd)))
14312 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14313 }
14314
14315 /* Return true if the given ELF header flags describe a 32-bit binary. */
14316
14317 static bfd_boolean
14318 mips_32bit_flags_p (flagword flags)
14319 {
14320 return ((flags & EF_MIPS_32BITMODE) != 0
14321 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14322 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14323 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14324 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14325 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14326 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14327 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14328 }
14329
14330 /* Infer the content of the ABI flags based on the elf header. */
14331
14332 static void
14333 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14334 {
14335 obj_attribute *in_attr;
14336
14337 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14338 update_mips_abiflags_isa (abfd, abiflags);
14339
14340 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14341 abiflags->gpr_size = AFL_REG_32;
14342 else
14343 abiflags->gpr_size = AFL_REG_64;
14344
14345 abiflags->cpr1_size = AFL_REG_NONE;
14346
14347 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14348 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14349
14350 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14351 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14352 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14353 && abiflags->gpr_size == AFL_REG_32))
14354 abiflags->cpr1_size = AFL_REG_32;
14355 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14356 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14357 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14358 abiflags->cpr1_size = AFL_REG_64;
14359
14360 abiflags->cpr2_size = AFL_REG_NONE;
14361
14362 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14363 abiflags->ases |= AFL_ASE_MDMX;
14364 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14365 abiflags->ases |= AFL_ASE_MIPS16;
14366 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14367 abiflags->ases |= AFL_ASE_MICROMIPS;
14368
14369 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14370 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14371 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14372 && abiflags->isa_level >= 32
14373 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14374 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14375 }
14376
14377 /* We need to use a special link routine to handle the .reginfo and
14378 the .mdebug sections. We need to merge all instances of these
14379 sections together, not write them all out sequentially. */
14380
14381 bfd_boolean
14382 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14383 {
14384 asection *o;
14385 struct bfd_link_order *p;
14386 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14387 asection *rtproc_sec, *abiflags_sec;
14388 Elf32_RegInfo reginfo;
14389 struct ecoff_debug_info debug;
14390 struct mips_htab_traverse_info hti;
14391 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14392 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14393 HDRR *symhdr = &debug.symbolic_header;
14394 void *mdebug_handle = NULL;
14395 asection *s;
14396 EXTR esym;
14397 unsigned int i;
14398 bfd_size_type amt;
14399 struct mips_elf_link_hash_table *htab;
14400
14401 static const char * const secname[] =
14402 {
14403 ".text", ".init", ".fini", ".data",
14404 ".rodata", ".sdata", ".sbss", ".bss"
14405 };
14406 static const int sc[] =
14407 {
14408 scText, scInit, scFini, scData,
14409 scRData, scSData, scSBss, scBss
14410 };
14411
14412 /* Sort the dynamic symbols so that those with GOT entries come after
14413 those without. */
14414 htab = mips_elf_hash_table (info);
14415 BFD_ASSERT (htab != NULL);
14416
14417 if (!mips_elf_sort_hash_table (abfd, info))
14418 return FALSE;
14419
14420 /* Create any scheduled LA25 stubs. */
14421 hti.info = info;
14422 hti.output_bfd = abfd;
14423 hti.error = FALSE;
14424 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14425 if (hti.error)
14426 return FALSE;
14427
14428 /* Get a value for the GP register. */
14429 if (elf_gp (abfd) == 0)
14430 {
14431 struct bfd_link_hash_entry *h;
14432
14433 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14434 if (h != NULL && h->type == bfd_link_hash_defined)
14435 elf_gp (abfd) = (h->u.def.value
14436 + h->u.def.section->output_section->vma
14437 + h->u.def.section->output_offset);
14438 else if (htab->is_vxworks
14439 && (h = bfd_link_hash_lookup (info->hash,
14440 "_GLOBAL_OFFSET_TABLE_",
14441 FALSE, FALSE, TRUE))
14442 && h->type == bfd_link_hash_defined)
14443 elf_gp (abfd) = (h->u.def.section->output_section->vma
14444 + h->u.def.section->output_offset
14445 + h->u.def.value);
14446 else if (bfd_link_relocatable (info))
14447 {
14448 bfd_vma lo = MINUS_ONE;
14449
14450 /* Find the GP-relative section with the lowest offset. */
14451 for (o = abfd->sections; o != NULL; o = o->next)
14452 if (o->vma < lo
14453 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14454 lo = o->vma;
14455
14456 /* And calculate GP relative to that. */
14457 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14458 }
14459 else
14460 {
14461 /* If the relocate_section function needs to do a reloc
14462 involving the GP value, it should make a reloc_dangerous
14463 callback to warn that GP is not defined. */
14464 }
14465 }
14466
14467 /* Go through the sections and collect the .reginfo and .mdebug
14468 information. */
14469 abiflags_sec = NULL;
14470 reginfo_sec = NULL;
14471 mdebug_sec = NULL;
14472 gptab_data_sec = NULL;
14473 gptab_bss_sec = NULL;
14474 for (o = abfd->sections; o != NULL; o = o->next)
14475 {
14476 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14477 {
14478 /* We have found the .MIPS.abiflags section in the output file.
14479 Look through all the link_orders comprising it and remove them.
14480 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14481 for (p = o->map_head.link_order; p != NULL; p = p->next)
14482 {
14483 asection *input_section;
14484
14485 if (p->type != bfd_indirect_link_order)
14486 {
14487 if (p->type == bfd_data_link_order)
14488 continue;
14489 abort ();
14490 }
14491
14492 input_section = p->u.indirect.section;
14493
14494 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14495 elf_link_input_bfd ignores this section. */
14496 input_section->flags &= ~SEC_HAS_CONTENTS;
14497 }
14498
14499 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14500 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14501
14502 /* Skip this section later on (I don't think this currently
14503 matters, but someday it might). */
14504 o->map_head.link_order = NULL;
14505
14506 abiflags_sec = o;
14507 }
14508
14509 if (strcmp (o->name, ".reginfo") == 0)
14510 {
14511 memset (&reginfo, 0, sizeof reginfo);
14512
14513 /* We have found the .reginfo section in the output file.
14514 Look through all the link_orders comprising it and merge
14515 the information together. */
14516 for (p = o->map_head.link_order; p != NULL; p = p->next)
14517 {
14518 asection *input_section;
14519 bfd *input_bfd;
14520 Elf32_External_RegInfo ext;
14521 Elf32_RegInfo sub;
14522
14523 if (p->type != bfd_indirect_link_order)
14524 {
14525 if (p->type == bfd_data_link_order)
14526 continue;
14527 abort ();
14528 }
14529
14530 input_section = p->u.indirect.section;
14531 input_bfd = input_section->owner;
14532
14533 if (! bfd_get_section_contents (input_bfd, input_section,
14534 &ext, 0, sizeof ext))
14535 return FALSE;
14536
14537 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14538
14539 reginfo.ri_gprmask |= sub.ri_gprmask;
14540 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14541 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14542 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14543 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14544
14545 /* ri_gp_value is set by the function
14546 mips_elf32_section_processing when the section is
14547 finally written out. */
14548
14549 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14550 elf_link_input_bfd ignores this section. */
14551 input_section->flags &= ~SEC_HAS_CONTENTS;
14552 }
14553
14554 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14555 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14556
14557 /* Skip this section later on (I don't think this currently
14558 matters, but someday it might). */
14559 o->map_head.link_order = NULL;
14560
14561 reginfo_sec = o;
14562 }
14563
14564 if (strcmp (o->name, ".mdebug") == 0)
14565 {
14566 struct extsym_info einfo;
14567 bfd_vma last;
14568
14569 /* We have found the .mdebug section in the output file.
14570 Look through all the link_orders comprising it and merge
14571 the information together. */
14572 symhdr->magic = swap->sym_magic;
14573 /* FIXME: What should the version stamp be? */
14574 symhdr->vstamp = 0;
14575 symhdr->ilineMax = 0;
14576 symhdr->cbLine = 0;
14577 symhdr->idnMax = 0;
14578 symhdr->ipdMax = 0;
14579 symhdr->isymMax = 0;
14580 symhdr->ioptMax = 0;
14581 symhdr->iauxMax = 0;
14582 symhdr->issMax = 0;
14583 symhdr->issExtMax = 0;
14584 symhdr->ifdMax = 0;
14585 symhdr->crfd = 0;
14586 symhdr->iextMax = 0;
14587
14588 /* We accumulate the debugging information itself in the
14589 debug_info structure. */
14590 debug.line = NULL;
14591 debug.external_dnr = NULL;
14592 debug.external_pdr = NULL;
14593 debug.external_sym = NULL;
14594 debug.external_opt = NULL;
14595 debug.external_aux = NULL;
14596 debug.ss = NULL;
14597 debug.ssext = debug.ssext_end = NULL;
14598 debug.external_fdr = NULL;
14599 debug.external_rfd = NULL;
14600 debug.external_ext = debug.external_ext_end = NULL;
14601
14602 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14603 if (mdebug_handle == NULL)
14604 return FALSE;
14605
14606 esym.jmptbl = 0;
14607 esym.cobol_main = 0;
14608 esym.weakext = 0;
14609 esym.reserved = 0;
14610 esym.ifd = ifdNil;
14611 esym.asym.iss = issNil;
14612 esym.asym.st = stLocal;
14613 esym.asym.reserved = 0;
14614 esym.asym.index = indexNil;
14615 last = 0;
14616 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14617 {
14618 esym.asym.sc = sc[i];
14619 s = bfd_get_section_by_name (abfd, secname[i]);
14620 if (s != NULL)
14621 {
14622 esym.asym.value = s->vma;
14623 last = s->vma + s->size;
14624 }
14625 else
14626 esym.asym.value = last;
14627 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14628 secname[i], &esym))
14629 return FALSE;
14630 }
14631
14632 for (p = o->map_head.link_order; p != NULL; p = p->next)
14633 {
14634 asection *input_section;
14635 bfd *input_bfd;
14636 const struct ecoff_debug_swap *input_swap;
14637 struct ecoff_debug_info input_debug;
14638 char *eraw_src;
14639 char *eraw_end;
14640
14641 if (p->type != bfd_indirect_link_order)
14642 {
14643 if (p->type == bfd_data_link_order)
14644 continue;
14645 abort ();
14646 }
14647
14648 input_section = p->u.indirect.section;
14649 input_bfd = input_section->owner;
14650
14651 if (!is_mips_elf (input_bfd))
14652 {
14653 /* I don't know what a non MIPS ELF bfd would be
14654 doing with a .mdebug section, but I don't really
14655 want to deal with it. */
14656 continue;
14657 }
14658
14659 input_swap = (get_elf_backend_data (input_bfd)
14660 ->elf_backend_ecoff_debug_swap);
14661
14662 BFD_ASSERT (p->size == input_section->size);
14663
14664 /* The ECOFF linking code expects that we have already
14665 read in the debugging information and set up an
14666 ecoff_debug_info structure, so we do that now. */
14667 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14668 &input_debug))
14669 return FALSE;
14670
14671 if (! (bfd_ecoff_debug_accumulate
14672 (mdebug_handle, abfd, &debug, swap, input_bfd,
14673 &input_debug, input_swap, info)))
14674 return FALSE;
14675
14676 /* Loop through the external symbols. For each one with
14677 interesting information, try to find the symbol in
14678 the linker global hash table and save the information
14679 for the output external symbols. */
14680 eraw_src = input_debug.external_ext;
14681 eraw_end = (eraw_src
14682 + (input_debug.symbolic_header.iextMax
14683 * input_swap->external_ext_size));
14684 for (;
14685 eraw_src < eraw_end;
14686 eraw_src += input_swap->external_ext_size)
14687 {
14688 EXTR ext;
14689 const char *name;
14690 struct mips_elf_link_hash_entry *h;
14691
14692 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14693 if (ext.asym.sc == scNil
14694 || ext.asym.sc == scUndefined
14695 || ext.asym.sc == scSUndefined)
14696 continue;
14697
14698 name = input_debug.ssext + ext.asym.iss;
14699 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14700 name, FALSE, FALSE, TRUE);
14701 if (h == NULL || h->esym.ifd != -2)
14702 continue;
14703
14704 if (ext.ifd != -1)
14705 {
14706 BFD_ASSERT (ext.ifd
14707 < input_debug.symbolic_header.ifdMax);
14708 ext.ifd = input_debug.ifdmap[ext.ifd];
14709 }
14710
14711 h->esym = ext;
14712 }
14713
14714 /* Free up the information we just read. */
14715 free (input_debug.line);
14716 free (input_debug.external_dnr);
14717 free (input_debug.external_pdr);
14718 free (input_debug.external_sym);
14719 free (input_debug.external_opt);
14720 free (input_debug.external_aux);
14721 free (input_debug.ss);
14722 free (input_debug.ssext);
14723 free (input_debug.external_fdr);
14724 free (input_debug.external_rfd);
14725 free (input_debug.external_ext);
14726
14727 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14728 elf_link_input_bfd ignores this section. */
14729 input_section->flags &= ~SEC_HAS_CONTENTS;
14730 }
14731
14732 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14733 {
14734 /* Create .rtproc section. */
14735 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14736 if (rtproc_sec == NULL)
14737 {
14738 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14739 | SEC_LINKER_CREATED | SEC_READONLY);
14740
14741 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14742 ".rtproc",
14743 flags);
14744 if (rtproc_sec == NULL
14745 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14746 return FALSE;
14747 }
14748
14749 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14750 info, rtproc_sec,
14751 &debug))
14752 return FALSE;
14753 }
14754
14755 /* Build the external symbol information. */
14756 einfo.abfd = abfd;
14757 einfo.info = info;
14758 einfo.debug = &debug;
14759 einfo.swap = swap;
14760 einfo.failed = FALSE;
14761 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14762 mips_elf_output_extsym, &einfo);
14763 if (einfo.failed)
14764 return FALSE;
14765
14766 /* Set the size of the .mdebug section. */
14767 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14768
14769 /* Skip this section later on (I don't think this currently
14770 matters, but someday it might). */
14771 o->map_head.link_order = NULL;
14772
14773 mdebug_sec = o;
14774 }
14775
14776 if (CONST_STRNEQ (o->name, ".gptab."))
14777 {
14778 const char *subname;
14779 unsigned int c;
14780 Elf32_gptab *tab;
14781 Elf32_External_gptab *ext_tab;
14782 unsigned int j;
14783
14784 /* The .gptab.sdata and .gptab.sbss sections hold
14785 information describing how the small data area would
14786 change depending upon the -G switch. These sections
14787 not used in executables files. */
14788 if (! bfd_link_relocatable (info))
14789 {
14790 for (p = o->map_head.link_order; p != NULL; p = p->next)
14791 {
14792 asection *input_section;
14793
14794 if (p->type != bfd_indirect_link_order)
14795 {
14796 if (p->type == bfd_data_link_order)
14797 continue;
14798 abort ();
14799 }
14800
14801 input_section = p->u.indirect.section;
14802
14803 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14804 elf_link_input_bfd ignores this section. */
14805 input_section->flags &= ~SEC_HAS_CONTENTS;
14806 }
14807
14808 /* Skip this section later on (I don't think this
14809 currently matters, but someday it might). */
14810 o->map_head.link_order = NULL;
14811
14812 /* Really remove the section. */
14813 bfd_section_list_remove (abfd, o);
14814 --abfd->section_count;
14815
14816 continue;
14817 }
14818
14819 /* There is one gptab for initialized data, and one for
14820 uninitialized data. */
14821 if (strcmp (o->name, ".gptab.sdata") == 0)
14822 gptab_data_sec = o;
14823 else if (strcmp (o->name, ".gptab.sbss") == 0)
14824 gptab_bss_sec = o;
14825 else
14826 {
14827 _bfd_error_handler
14828 /* xgettext:c-format */
14829 (_("%s: illegal section name `%s'"),
14830 bfd_get_filename (abfd), o->name);
14831 bfd_set_error (bfd_error_nonrepresentable_section);
14832 return FALSE;
14833 }
14834
14835 /* The linker script always combines .gptab.data and
14836 .gptab.sdata into .gptab.sdata, and likewise for
14837 .gptab.bss and .gptab.sbss. It is possible that there is
14838 no .sdata or .sbss section in the output file, in which
14839 case we must change the name of the output section. */
14840 subname = o->name + sizeof ".gptab" - 1;
14841 if (bfd_get_section_by_name (abfd, subname) == NULL)
14842 {
14843 if (o == gptab_data_sec)
14844 o->name = ".gptab.data";
14845 else
14846 o->name = ".gptab.bss";
14847 subname = o->name + sizeof ".gptab" - 1;
14848 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14849 }
14850
14851 /* Set up the first entry. */
14852 c = 1;
14853 amt = c * sizeof (Elf32_gptab);
14854 tab = bfd_malloc (amt);
14855 if (tab == NULL)
14856 return FALSE;
14857 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14858 tab[0].gt_header.gt_unused = 0;
14859
14860 /* Combine the input sections. */
14861 for (p = o->map_head.link_order; p != NULL; p = p->next)
14862 {
14863 asection *input_section;
14864 bfd *input_bfd;
14865 bfd_size_type size;
14866 unsigned long last;
14867 bfd_size_type gpentry;
14868
14869 if (p->type != bfd_indirect_link_order)
14870 {
14871 if (p->type == bfd_data_link_order)
14872 continue;
14873 abort ();
14874 }
14875
14876 input_section = p->u.indirect.section;
14877 input_bfd = input_section->owner;
14878
14879 /* Combine the gptab entries for this input section one
14880 by one. We know that the input gptab entries are
14881 sorted by ascending -G value. */
14882 size = input_section->size;
14883 last = 0;
14884 for (gpentry = sizeof (Elf32_External_gptab);
14885 gpentry < size;
14886 gpentry += sizeof (Elf32_External_gptab))
14887 {
14888 Elf32_External_gptab ext_gptab;
14889 Elf32_gptab int_gptab;
14890 unsigned long val;
14891 unsigned long add;
14892 bfd_boolean exact;
14893 unsigned int look;
14894
14895 if (! (bfd_get_section_contents
14896 (input_bfd, input_section, &ext_gptab, gpentry,
14897 sizeof (Elf32_External_gptab))))
14898 {
14899 free (tab);
14900 return FALSE;
14901 }
14902
14903 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14904 &int_gptab);
14905 val = int_gptab.gt_entry.gt_g_value;
14906 add = int_gptab.gt_entry.gt_bytes - last;
14907
14908 exact = FALSE;
14909 for (look = 1; look < c; look++)
14910 {
14911 if (tab[look].gt_entry.gt_g_value >= val)
14912 tab[look].gt_entry.gt_bytes += add;
14913
14914 if (tab[look].gt_entry.gt_g_value == val)
14915 exact = TRUE;
14916 }
14917
14918 if (! exact)
14919 {
14920 Elf32_gptab *new_tab;
14921 unsigned int max;
14922
14923 /* We need a new table entry. */
14924 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14925 new_tab = bfd_realloc (tab, amt);
14926 if (new_tab == NULL)
14927 {
14928 free (tab);
14929 return FALSE;
14930 }
14931 tab = new_tab;
14932 tab[c].gt_entry.gt_g_value = val;
14933 tab[c].gt_entry.gt_bytes = add;
14934
14935 /* Merge in the size for the next smallest -G
14936 value, since that will be implied by this new
14937 value. */
14938 max = 0;
14939 for (look = 1; look < c; look++)
14940 {
14941 if (tab[look].gt_entry.gt_g_value < val
14942 && (max == 0
14943 || (tab[look].gt_entry.gt_g_value
14944 > tab[max].gt_entry.gt_g_value)))
14945 max = look;
14946 }
14947 if (max != 0)
14948 tab[c].gt_entry.gt_bytes +=
14949 tab[max].gt_entry.gt_bytes;
14950
14951 ++c;
14952 }
14953
14954 last = int_gptab.gt_entry.gt_bytes;
14955 }
14956
14957 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14958 elf_link_input_bfd ignores this section. */
14959 input_section->flags &= ~SEC_HAS_CONTENTS;
14960 }
14961
14962 /* The table must be sorted by -G value. */
14963 if (c > 2)
14964 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14965
14966 /* Swap out the table. */
14967 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14968 ext_tab = bfd_alloc (abfd, amt);
14969 if (ext_tab == NULL)
14970 {
14971 free (tab);
14972 return FALSE;
14973 }
14974
14975 for (j = 0; j < c; j++)
14976 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14977 free (tab);
14978
14979 o->size = c * sizeof (Elf32_External_gptab);
14980 o->contents = (bfd_byte *) ext_tab;
14981
14982 /* Skip this section later on (I don't think this currently
14983 matters, but someday it might). */
14984 o->map_head.link_order = NULL;
14985 }
14986 }
14987
14988 /* Invoke the regular ELF backend linker to do all the work. */
14989 if (!bfd_elf_final_link (abfd, info))
14990 return FALSE;
14991
14992 /* Now write out the computed sections. */
14993
14994 if (abiflags_sec != NULL)
14995 {
14996 Elf_External_ABIFlags_v0 ext;
14997 Elf_Internal_ABIFlags_v0 *abiflags;
14998
14999 abiflags = &mips_elf_tdata (abfd)->abiflags;
15000
15001 /* Set up the abiflags if no valid input sections were found. */
15002 if (!mips_elf_tdata (abfd)->abiflags_valid)
15003 {
15004 infer_mips_abiflags (abfd, abiflags);
15005 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15006 }
15007 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15008 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15009 return FALSE;
15010 }
15011
15012 if (reginfo_sec != NULL)
15013 {
15014 Elf32_External_RegInfo ext;
15015
15016 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15017 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15018 return FALSE;
15019 }
15020
15021 if (mdebug_sec != NULL)
15022 {
15023 BFD_ASSERT (abfd->output_has_begun);
15024 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15025 swap, info,
15026 mdebug_sec->filepos))
15027 return FALSE;
15028
15029 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15030 }
15031
15032 if (gptab_data_sec != NULL)
15033 {
15034 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15035 gptab_data_sec->contents,
15036 0, gptab_data_sec->size))
15037 return FALSE;
15038 }
15039
15040 if (gptab_bss_sec != NULL)
15041 {
15042 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15043 gptab_bss_sec->contents,
15044 0, gptab_bss_sec->size))
15045 return FALSE;
15046 }
15047
15048 if (SGI_COMPAT (abfd))
15049 {
15050 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15051 if (rtproc_sec != NULL)
15052 {
15053 if (! bfd_set_section_contents (abfd, rtproc_sec,
15054 rtproc_sec->contents,
15055 0, rtproc_sec->size))
15056 return FALSE;
15057 }
15058 }
15059
15060 return TRUE;
15061 }
15062 \f
15063 /* Merge object file header flags from IBFD into OBFD. Raise an error
15064 if there are conflicting settings. */
15065
15066 static bfd_boolean
15067 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15068 {
15069 bfd *obfd = info->output_bfd;
15070 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15071 flagword old_flags;
15072 flagword new_flags;
15073 bfd_boolean ok;
15074
15075 new_flags = elf_elfheader (ibfd)->e_flags;
15076 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15077 old_flags = elf_elfheader (obfd)->e_flags;
15078
15079 /* Check flag compatibility. */
15080
15081 new_flags &= ~EF_MIPS_NOREORDER;
15082 old_flags &= ~EF_MIPS_NOREORDER;
15083
15084 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15085 doesn't seem to matter. */
15086 new_flags &= ~EF_MIPS_XGOT;
15087 old_flags &= ~EF_MIPS_XGOT;
15088
15089 /* MIPSpro generates ucode info in n64 objects. Again, we should
15090 just be able to ignore this. */
15091 new_flags &= ~EF_MIPS_UCODE;
15092 old_flags &= ~EF_MIPS_UCODE;
15093
15094 /* DSOs should only be linked with CPIC code. */
15095 if ((ibfd->flags & DYNAMIC) != 0)
15096 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15097
15098 if (new_flags == old_flags)
15099 return TRUE;
15100
15101 ok = TRUE;
15102
15103 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15104 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15105 {
15106 _bfd_error_handler
15107 (_("%B: warning: linking abicalls files with non-abicalls files"),
15108 ibfd);
15109 ok = TRUE;
15110 }
15111
15112 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15113 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15114 if (! (new_flags & EF_MIPS_PIC))
15115 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15116
15117 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15118 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15119
15120 /* Compare the ISAs. */
15121 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15122 {
15123 _bfd_error_handler
15124 (_("%B: linking 32-bit code with 64-bit code"),
15125 ibfd);
15126 ok = FALSE;
15127 }
15128 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15129 {
15130 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15131 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15132 {
15133 /* Copy the architecture info from IBFD to OBFD. Also copy
15134 the 32-bit flag (if set) so that we continue to recognise
15135 OBFD as a 32-bit binary. */
15136 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15137 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15138 elf_elfheader (obfd)->e_flags
15139 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15140
15141 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15142 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15143
15144 /* Copy across the ABI flags if OBFD doesn't use them
15145 and if that was what caused us to treat IBFD as 32-bit. */
15146 if ((old_flags & EF_MIPS_ABI) == 0
15147 && mips_32bit_flags_p (new_flags)
15148 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15149 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15150 }
15151 else
15152 {
15153 /* The ISAs aren't compatible. */
15154 _bfd_error_handler
15155 /* xgettext:c-format */
15156 (_("%B: linking %s module with previous %s modules"),
15157 ibfd,
15158 bfd_printable_name (ibfd),
15159 bfd_printable_name (obfd));
15160 ok = FALSE;
15161 }
15162 }
15163
15164 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15165 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15166
15167 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15168 does set EI_CLASS differently from any 32-bit ABI. */
15169 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15170 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15171 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15172 {
15173 /* Only error if both are set (to different values). */
15174 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15175 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15176 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15177 {
15178 _bfd_error_handler
15179 /* xgettext:c-format */
15180 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15181 ibfd,
15182 elf_mips_abi_name (ibfd),
15183 elf_mips_abi_name (obfd));
15184 ok = FALSE;
15185 }
15186 new_flags &= ~EF_MIPS_ABI;
15187 old_flags &= ~EF_MIPS_ABI;
15188 }
15189
15190 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15191 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15192 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15193 {
15194 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15195 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15196 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15197 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15198 int micro_mis = old_m16 && new_micro;
15199 int m16_mis = old_micro && new_m16;
15200
15201 if (m16_mis || micro_mis)
15202 {
15203 _bfd_error_handler
15204 /* xgettext:c-format */
15205 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15206 ibfd,
15207 m16_mis ? "MIPS16" : "microMIPS",
15208 m16_mis ? "microMIPS" : "MIPS16");
15209 ok = FALSE;
15210 }
15211
15212 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15213
15214 new_flags &= ~ EF_MIPS_ARCH_ASE;
15215 old_flags &= ~ EF_MIPS_ARCH_ASE;
15216 }
15217
15218 /* Compare NaN encodings. */
15219 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15220 {
15221 /* xgettext:c-format */
15222 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15223 ibfd,
15224 (new_flags & EF_MIPS_NAN2008
15225 ? "-mnan=2008" : "-mnan=legacy"),
15226 (old_flags & EF_MIPS_NAN2008
15227 ? "-mnan=2008" : "-mnan=legacy"));
15228 ok = FALSE;
15229 new_flags &= ~EF_MIPS_NAN2008;
15230 old_flags &= ~EF_MIPS_NAN2008;
15231 }
15232
15233 /* Compare FP64 state. */
15234 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15235 {
15236 /* xgettext:c-format */
15237 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15238 ibfd,
15239 (new_flags & EF_MIPS_FP64
15240 ? "-mfp64" : "-mfp32"),
15241 (old_flags & EF_MIPS_FP64
15242 ? "-mfp64" : "-mfp32"));
15243 ok = FALSE;
15244 new_flags &= ~EF_MIPS_FP64;
15245 old_flags &= ~EF_MIPS_FP64;
15246 }
15247
15248 /* Warn about any other mismatches */
15249 if (new_flags != old_flags)
15250 {
15251 /* xgettext:c-format */
15252 _bfd_error_handler
15253 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15254 "(0x%lx)"),
15255 ibfd, (unsigned long) new_flags,
15256 (unsigned long) old_flags);
15257 ok = FALSE;
15258 }
15259
15260 return ok;
15261 }
15262
15263 /* Merge object attributes from IBFD into OBFD. Raise an error if
15264 there are conflicting attributes. */
15265 static bfd_boolean
15266 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15267 {
15268 bfd *obfd = info->output_bfd;
15269 obj_attribute *in_attr;
15270 obj_attribute *out_attr;
15271 bfd *abi_fp_bfd;
15272 bfd *abi_msa_bfd;
15273
15274 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15275 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15276 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15277 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15278
15279 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15280 if (!abi_msa_bfd
15281 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15282 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15283
15284 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15285 {
15286 /* This is the first object. Copy the attributes. */
15287 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15288
15289 /* Use the Tag_null value to indicate the attributes have been
15290 initialized. */
15291 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15292
15293 return TRUE;
15294 }
15295
15296 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15297 non-conflicting ones. */
15298 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15299 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15300 {
15301 int out_fp, in_fp;
15302
15303 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15304 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15305 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15306 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15307 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15308 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15309 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15310 || in_fp == Val_GNU_MIPS_ABI_FP_64
15311 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15312 {
15313 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15314 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15315 }
15316 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15317 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15318 || out_fp == Val_GNU_MIPS_ABI_FP_64
15319 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15320 /* Keep the current setting. */;
15321 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15322 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15323 {
15324 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15325 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15326 }
15327 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15328 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15329 /* Keep the current setting. */;
15330 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15331 {
15332 const char *out_string, *in_string;
15333
15334 out_string = _bfd_mips_fp_abi_string (out_fp);
15335 in_string = _bfd_mips_fp_abi_string (in_fp);
15336 /* First warn about cases involving unrecognised ABIs. */
15337 if (!out_string && !in_string)
15338 /* xgettext:c-format */
15339 _bfd_error_handler
15340 (_("Warning: %B uses unknown floating point ABI %d "
15341 "(set by %B), %B uses unknown floating point ABI %d"),
15342 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15343 else if (!out_string)
15344 _bfd_error_handler
15345 /* xgettext:c-format */
15346 (_("Warning: %B uses unknown floating point ABI %d "
15347 "(set by %B), %B uses %s"),
15348 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15349 else if (!in_string)
15350 _bfd_error_handler
15351 /* xgettext:c-format */
15352 (_("Warning: %B uses %s (set by %B), "
15353 "%B uses unknown floating point ABI %d"),
15354 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15355 else
15356 {
15357 /* If one of the bfds is soft-float, the other must be
15358 hard-float. The exact choice of hard-float ABI isn't
15359 really relevant to the error message. */
15360 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15361 out_string = "-mhard-float";
15362 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15363 in_string = "-mhard-float";
15364 _bfd_error_handler
15365 /* xgettext:c-format */
15366 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15367 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15368 }
15369 }
15370 }
15371
15372 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15373 non-conflicting ones. */
15374 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15375 {
15376 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15377 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15378 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15379 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15380 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15381 {
15382 case Val_GNU_MIPS_ABI_MSA_128:
15383 _bfd_error_handler
15384 /* xgettext:c-format */
15385 (_("Warning: %B uses %s (set by %B), "
15386 "%B uses unknown MSA ABI %d"),
15387 obfd, abi_msa_bfd, ibfd,
15388 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15389 break;
15390
15391 default:
15392 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15393 {
15394 case Val_GNU_MIPS_ABI_MSA_128:
15395 _bfd_error_handler
15396 /* xgettext:c-format */
15397 (_("Warning: %B uses unknown MSA ABI %d "
15398 "(set by %B), %B uses %s"),
15399 obfd, abi_msa_bfd, ibfd,
15400 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15401 break;
15402
15403 default:
15404 _bfd_error_handler
15405 /* xgettext:c-format */
15406 (_("Warning: %B uses unknown MSA ABI %d "
15407 "(set by %B), %B uses unknown MSA ABI %d"),
15408 obfd, abi_msa_bfd, ibfd,
15409 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15410 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15411 break;
15412 }
15413 }
15414 }
15415
15416 /* Merge Tag_compatibility attributes and any common GNU ones. */
15417 return _bfd_elf_merge_object_attributes (ibfd, info);
15418 }
15419
15420 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15421 there are conflicting settings. */
15422
15423 static bfd_boolean
15424 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15425 {
15426 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15427 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15428 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15429
15430 /* Update the output abiflags fp_abi using the computed fp_abi. */
15431 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15432
15433 #define max(a, b) ((a) > (b) ? (a) : (b))
15434 /* Merge abiflags. */
15435 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15436 in_tdata->abiflags.isa_level);
15437 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15438 in_tdata->abiflags.isa_rev);
15439 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15440 in_tdata->abiflags.gpr_size);
15441 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15442 in_tdata->abiflags.cpr1_size);
15443 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15444 in_tdata->abiflags.cpr2_size);
15445 #undef max
15446 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15447 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15448
15449 return TRUE;
15450 }
15451
15452 /* Merge backend specific data from an object file to the output
15453 object file when linking. */
15454
15455 bfd_boolean
15456 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15457 {
15458 bfd *obfd = info->output_bfd;
15459 struct mips_elf_obj_tdata *out_tdata;
15460 struct mips_elf_obj_tdata *in_tdata;
15461 bfd_boolean null_input_bfd = TRUE;
15462 asection *sec;
15463 bfd_boolean ok;
15464
15465 /* Check if we have the same endianness. */
15466 if (! _bfd_generic_verify_endian_match (ibfd, info))
15467 {
15468 _bfd_error_handler
15469 (_("%B: endianness incompatible with that of the selected emulation"),
15470 ibfd);
15471 return FALSE;
15472 }
15473
15474 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15475 return TRUE;
15476
15477 in_tdata = mips_elf_tdata (ibfd);
15478 out_tdata = mips_elf_tdata (obfd);
15479
15480 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15481 {
15482 _bfd_error_handler
15483 (_("%B: ABI is incompatible with that of the selected emulation"),
15484 ibfd);
15485 return FALSE;
15486 }
15487
15488 /* Check to see if the input BFD actually contains any sections. If not,
15489 then it has no attributes, and its flags may not have been initialized
15490 either, but it cannot actually cause any incompatibility. */
15491 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15492 {
15493 /* Ignore synthetic sections and empty .text, .data and .bss sections
15494 which are automatically generated by gas. Also ignore fake
15495 (s)common sections, since merely defining a common symbol does
15496 not affect compatibility. */
15497 if ((sec->flags & SEC_IS_COMMON) == 0
15498 && strcmp (sec->name, ".reginfo")
15499 && strcmp (sec->name, ".mdebug")
15500 && (sec->size != 0
15501 || (strcmp (sec->name, ".text")
15502 && strcmp (sec->name, ".data")
15503 && strcmp (sec->name, ".bss"))))
15504 {
15505 null_input_bfd = FALSE;
15506 break;
15507 }
15508 }
15509 if (null_input_bfd)
15510 return TRUE;
15511
15512 /* Populate abiflags using existing information. */
15513 if (in_tdata->abiflags_valid)
15514 {
15515 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15516 Elf_Internal_ABIFlags_v0 in_abiflags;
15517 Elf_Internal_ABIFlags_v0 abiflags;
15518
15519 /* Set up the FP ABI attribute from the abiflags if it is not already
15520 set. */
15521 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15522 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15523
15524 infer_mips_abiflags (ibfd, &abiflags);
15525 in_abiflags = in_tdata->abiflags;
15526
15527 /* It is not possible to infer the correct ISA revision
15528 for R3 or R5 so drop down to R2 for the checks. */
15529 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15530 in_abiflags.isa_rev = 2;
15531
15532 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15533 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15534 _bfd_error_handler
15535 (_("%B: warning: Inconsistent ISA between e_flags and "
15536 ".MIPS.abiflags"), ibfd);
15537 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15538 && in_abiflags.fp_abi != abiflags.fp_abi)
15539 _bfd_error_handler
15540 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15541 ".MIPS.abiflags"), ibfd);
15542 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15543 _bfd_error_handler
15544 (_("%B: warning: Inconsistent ASEs between e_flags and "
15545 ".MIPS.abiflags"), ibfd);
15546 /* The isa_ext is allowed to be an extension of what can be inferred
15547 from e_flags. */
15548 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15549 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15550 _bfd_error_handler
15551 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15552 ".MIPS.abiflags"), ibfd);
15553 if (in_abiflags.flags2 != 0)
15554 _bfd_error_handler
15555 (_("%B: warning: Unexpected flag in the flags2 field of "
15556 ".MIPS.abiflags (0x%lx)"), ibfd,
15557 (unsigned long) in_abiflags.flags2);
15558 }
15559 else
15560 {
15561 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15562 in_tdata->abiflags_valid = TRUE;
15563 }
15564
15565 if (!out_tdata->abiflags_valid)
15566 {
15567 /* Copy input abiflags if output abiflags are not already valid. */
15568 out_tdata->abiflags = in_tdata->abiflags;
15569 out_tdata->abiflags_valid = TRUE;
15570 }
15571
15572 if (! elf_flags_init (obfd))
15573 {
15574 elf_flags_init (obfd) = TRUE;
15575 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15576 elf_elfheader (obfd)->e_ident[EI_CLASS]
15577 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15578
15579 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15580 && (bfd_get_arch_info (obfd)->the_default
15581 || mips_mach_extends_p (bfd_get_mach (obfd),
15582 bfd_get_mach (ibfd))))
15583 {
15584 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15585 bfd_get_mach (ibfd)))
15586 return FALSE;
15587
15588 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15589 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15590 }
15591
15592 ok = TRUE;
15593 }
15594 else
15595 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15596
15597 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15598
15599 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15600
15601 if (!ok)
15602 {
15603 bfd_set_error (bfd_error_bad_value);
15604 return FALSE;
15605 }
15606
15607 return TRUE;
15608 }
15609
15610 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15611
15612 bfd_boolean
15613 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15614 {
15615 BFD_ASSERT (!elf_flags_init (abfd)
15616 || elf_elfheader (abfd)->e_flags == flags);
15617
15618 elf_elfheader (abfd)->e_flags = flags;
15619 elf_flags_init (abfd) = TRUE;
15620 return TRUE;
15621 }
15622
15623 char *
15624 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15625 {
15626 switch (dtag)
15627 {
15628 default: return "";
15629 case DT_MIPS_RLD_VERSION:
15630 return "MIPS_RLD_VERSION";
15631 case DT_MIPS_TIME_STAMP:
15632 return "MIPS_TIME_STAMP";
15633 case DT_MIPS_ICHECKSUM:
15634 return "MIPS_ICHECKSUM";
15635 case DT_MIPS_IVERSION:
15636 return "MIPS_IVERSION";
15637 case DT_MIPS_FLAGS:
15638 return "MIPS_FLAGS";
15639 case DT_MIPS_BASE_ADDRESS:
15640 return "MIPS_BASE_ADDRESS";
15641 case DT_MIPS_MSYM:
15642 return "MIPS_MSYM";
15643 case DT_MIPS_CONFLICT:
15644 return "MIPS_CONFLICT";
15645 case DT_MIPS_LIBLIST:
15646 return "MIPS_LIBLIST";
15647 case DT_MIPS_LOCAL_GOTNO:
15648 return "MIPS_LOCAL_GOTNO";
15649 case DT_MIPS_CONFLICTNO:
15650 return "MIPS_CONFLICTNO";
15651 case DT_MIPS_LIBLISTNO:
15652 return "MIPS_LIBLISTNO";
15653 case DT_MIPS_SYMTABNO:
15654 return "MIPS_SYMTABNO";
15655 case DT_MIPS_UNREFEXTNO:
15656 return "MIPS_UNREFEXTNO";
15657 case DT_MIPS_GOTSYM:
15658 return "MIPS_GOTSYM";
15659 case DT_MIPS_HIPAGENO:
15660 return "MIPS_HIPAGENO";
15661 case DT_MIPS_RLD_MAP:
15662 return "MIPS_RLD_MAP";
15663 case DT_MIPS_RLD_MAP_REL:
15664 return "MIPS_RLD_MAP_REL";
15665 case DT_MIPS_DELTA_CLASS:
15666 return "MIPS_DELTA_CLASS";
15667 case DT_MIPS_DELTA_CLASS_NO:
15668 return "MIPS_DELTA_CLASS_NO";
15669 case DT_MIPS_DELTA_INSTANCE:
15670 return "MIPS_DELTA_INSTANCE";
15671 case DT_MIPS_DELTA_INSTANCE_NO:
15672 return "MIPS_DELTA_INSTANCE_NO";
15673 case DT_MIPS_DELTA_RELOC:
15674 return "MIPS_DELTA_RELOC";
15675 case DT_MIPS_DELTA_RELOC_NO:
15676 return "MIPS_DELTA_RELOC_NO";
15677 case DT_MIPS_DELTA_SYM:
15678 return "MIPS_DELTA_SYM";
15679 case DT_MIPS_DELTA_SYM_NO:
15680 return "MIPS_DELTA_SYM_NO";
15681 case DT_MIPS_DELTA_CLASSSYM:
15682 return "MIPS_DELTA_CLASSSYM";
15683 case DT_MIPS_DELTA_CLASSSYM_NO:
15684 return "MIPS_DELTA_CLASSSYM_NO";
15685 case DT_MIPS_CXX_FLAGS:
15686 return "MIPS_CXX_FLAGS";
15687 case DT_MIPS_PIXIE_INIT:
15688 return "MIPS_PIXIE_INIT";
15689 case DT_MIPS_SYMBOL_LIB:
15690 return "MIPS_SYMBOL_LIB";
15691 case DT_MIPS_LOCALPAGE_GOTIDX:
15692 return "MIPS_LOCALPAGE_GOTIDX";
15693 case DT_MIPS_LOCAL_GOTIDX:
15694 return "MIPS_LOCAL_GOTIDX";
15695 case DT_MIPS_HIDDEN_GOTIDX:
15696 return "MIPS_HIDDEN_GOTIDX";
15697 case DT_MIPS_PROTECTED_GOTIDX:
15698 return "MIPS_PROTECTED_GOT_IDX";
15699 case DT_MIPS_OPTIONS:
15700 return "MIPS_OPTIONS";
15701 case DT_MIPS_INTERFACE:
15702 return "MIPS_INTERFACE";
15703 case DT_MIPS_DYNSTR_ALIGN:
15704 return "DT_MIPS_DYNSTR_ALIGN";
15705 case DT_MIPS_INTERFACE_SIZE:
15706 return "DT_MIPS_INTERFACE_SIZE";
15707 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15708 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15709 case DT_MIPS_PERF_SUFFIX:
15710 return "DT_MIPS_PERF_SUFFIX";
15711 case DT_MIPS_COMPACT_SIZE:
15712 return "DT_MIPS_COMPACT_SIZE";
15713 case DT_MIPS_GP_VALUE:
15714 return "DT_MIPS_GP_VALUE";
15715 case DT_MIPS_AUX_DYNAMIC:
15716 return "DT_MIPS_AUX_DYNAMIC";
15717 case DT_MIPS_PLTGOT:
15718 return "DT_MIPS_PLTGOT";
15719 case DT_MIPS_RWPLT:
15720 return "DT_MIPS_RWPLT";
15721 }
15722 }
15723
15724 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15725 not known. */
15726
15727 const char *
15728 _bfd_mips_fp_abi_string (int fp)
15729 {
15730 switch (fp)
15731 {
15732 /* These strings aren't translated because they're simply
15733 option lists. */
15734 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15735 return "-mdouble-float";
15736
15737 case Val_GNU_MIPS_ABI_FP_SINGLE:
15738 return "-msingle-float";
15739
15740 case Val_GNU_MIPS_ABI_FP_SOFT:
15741 return "-msoft-float";
15742
15743 case Val_GNU_MIPS_ABI_FP_OLD_64:
15744 return _("-mips32r2 -mfp64 (12 callee-saved)");
15745
15746 case Val_GNU_MIPS_ABI_FP_XX:
15747 return "-mfpxx";
15748
15749 case Val_GNU_MIPS_ABI_FP_64:
15750 return "-mgp32 -mfp64";
15751
15752 case Val_GNU_MIPS_ABI_FP_64A:
15753 return "-mgp32 -mfp64 -mno-odd-spreg";
15754
15755 default:
15756 return 0;
15757 }
15758 }
15759
15760 static void
15761 print_mips_ases (FILE *file, unsigned int mask)
15762 {
15763 if (mask & AFL_ASE_DSP)
15764 fputs ("\n\tDSP ASE", file);
15765 if (mask & AFL_ASE_DSPR2)
15766 fputs ("\n\tDSP R2 ASE", file);
15767 if (mask & AFL_ASE_DSPR3)
15768 fputs ("\n\tDSP R3 ASE", file);
15769 if (mask & AFL_ASE_EVA)
15770 fputs ("\n\tEnhanced VA Scheme", file);
15771 if (mask & AFL_ASE_MCU)
15772 fputs ("\n\tMCU (MicroController) ASE", file);
15773 if (mask & AFL_ASE_MDMX)
15774 fputs ("\n\tMDMX ASE", file);
15775 if (mask & AFL_ASE_MIPS3D)
15776 fputs ("\n\tMIPS-3D ASE", file);
15777 if (mask & AFL_ASE_MT)
15778 fputs ("\n\tMT ASE", file);
15779 if (mask & AFL_ASE_SMARTMIPS)
15780 fputs ("\n\tSmartMIPS ASE", file);
15781 if (mask & AFL_ASE_VIRT)
15782 fputs ("\n\tVZ ASE", file);
15783 if (mask & AFL_ASE_MSA)
15784 fputs ("\n\tMSA ASE", file);
15785 if (mask & AFL_ASE_MIPS16)
15786 fputs ("\n\tMIPS16 ASE", file);
15787 if (mask & AFL_ASE_MICROMIPS)
15788 fputs ("\n\tMICROMIPS ASE", file);
15789 if (mask & AFL_ASE_XPA)
15790 fputs ("\n\tXPA ASE", file);
15791 if (mask == 0)
15792 fprintf (file, "\n\t%s", _("None"));
15793 else if ((mask & ~AFL_ASE_MASK) != 0)
15794 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15795 }
15796
15797 static void
15798 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15799 {
15800 switch (isa_ext)
15801 {
15802 case 0:
15803 fputs (_("None"), file);
15804 break;
15805 case AFL_EXT_XLR:
15806 fputs ("RMI XLR", file);
15807 break;
15808 case AFL_EXT_OCTEON3:
15809 fputs ("Cavium Networks Octeon3", file);
15810 break;
15811 case AFL_EXT_OCTEON2:
15812 fputs ("Cavium Networks Octeon2", file);
15813 break;
15814 case AFL_EXT_OCTEONP:
15815 fputs ("Cavium Networks OcteonP", file);
15816 break;
15817 case AFL_EXT_LOONGSON_3A:
15818 fputs ("Loongson 3A", file);
15819 break;
15820 case AFL_EXT_OCTEON:
15821 fputs ("Cavium Networks Octeon", file);
15822 break;
15823 case AFL_EXT_5900:
15824 fputs ("Toshiba R5900", file);
15825 break;
15826 case AFL_EXT_4650:
15827 fputs ("MIPS R4650", file);
15828 break;
15829 case AFL_EXT_4010:
15830 fputs ("LSI R4010", file);
15831 break;
15832 case AFL_EXT_4100:
15833 fputs ("NEC VR4100", file);
15834 break;
15835 case AFL_EXT_3900:
15836 fputs ("Toshiba R3900", file);
15837 break;
15838 case AFL_EXT_10000:
15839 fputs ("MIPS R10000", file);
15840 break;
15841 case AFL_EXT_SB1:
15842 fputs ("Broadcom SB-1", file);
15843 break;
15844 case AFL_EXT_4111:
15845 fputs ("NEC VR4111/VR4181", file);
15846 break;
15847 case AFL_EXT_4120:
15848 fputs ("NEC VR4120", file);
15849 break;
15850 case AFL_EXT_5400:
15851 fputs ("NEC VR5400", file);
15852 break;
15853 case AFL_EXT_5500:
15854 fputs ("NEC VR5500", file);
15855 break;
15856 case AFL_EXT_LOONGSON_2E:
15857 fputs ("ST Microelectronics Loongson 2E", file);
15858 break;
15859 case AFL_EXT_LOONGSON_2F:
15860 fputs ("ST Microelectronics Loongson 2F", file);
15861 break;
15862 default:
15863 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15864 break;
15865 }
15866 }
15867
15868 static void
15869 print_mips_fp_abi_value (FILE *file, int val)
15870 {
15871 switch (val)
15872 {
15873 case Val_GNU_MIPS_ABI_FP_ANY:
15874 fprintf (file, _("Hard or soft float\n"));
15875 break;
15876 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15877 fprintf (file, _("Hard float (double precision)\n"));
15878 break;
15879 case Val_GNU_MIPS_ABI_FP_SINGLE:
15880 fprintf (file, _("Hard float (single precision)\n"));
15881 break;
15882 case Val_GNU_MIPS_ABI_FP_SOFT:
15883 fprintf (file, _("Soft float\n"));
15884 break;
15885 case Val_GNU_MIPS_ABI_FP_OLD_64:
15886 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15887 break;
15888 case Val_GNU_MIPS_ABI_FP_XX:
15889 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15890 break;
15891 case Val_GNU_MIPS_ABI_FP_64:
15892 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15893 break;
15894 case Val_GNU_MIPS_ABI_FP_64A:
15895 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15896 break;
15897 default:
15898 fprintf (file, "??? (%d)\n", val);
15899 break;
15900 }
15901 }
15902
15903 static int
15904 get_mips_reg_size (int reg_size)
15905 {
15906 return (reg_size == AFL_REG_NONE) ? 0
15907 : (reg_size == AFL_REG_32) ? 32
15908 : (reg_size == AFL_REG_64) ? 64
15909 : (reg_size == AFL_REG_128) ? 128
15910 : -1;
15911 }
15912
15913 bfd_boolean
15914 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15915 {
15916 FILE *file = ptr;
15917
15918 BFD_ASSERT (abfd != NULL && ptr != NULL);
15919
15920 /* Print normal ELF private data. */
15921 _bfd_elf_print_private_bfd_data (abfd, ptr);
15922
15923 /* xgettext:c-format */
15924 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15925
15926 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15927 fprintf (file, _(" [abi=O32]"));
15928 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15929 fprintf (file, _(" [abi=O64]"));
15930 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15931 fprintf (file, _(" [abi=EABI32]"));
15932 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15933 fprintf (file, _(" [abi=EABI64]"));
15934 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15935 fprintf (file, _(" [abi unknown]"));
15936 else if (ABI_N32_P (abfd))
15937 fprintf (file, _(" [abi=N32]"));
15938 else if (ABI_64_P (abfd))
15939 fprintf (file, _(" [abi=64]"));
15940 else
15941 fprintf (file, _(" [no abi set]"));
15942
15943 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15944 fprintf (file, " [mips1]");
15945 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15946 fprintf (file, " [mips2]");
15947 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15948 fprintf (file, " [mips3]");
15949 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15950 fprintf (file, " [mips4]");
15951 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15952 fprintf (file, " [mips5]");
15953 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15954 fprintf (file, " [mips32]");
15955 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15956 fprintf (file, " [mips64]");
15957 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15958 fprintf (file, " [mips32r2]");
15959 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15960 fprintf (file, " [mips64r2]");
15961 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15962 fprintf (file, " [mips32r6]");
15963 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15964 fprintf (file, " [mips64r6]");
15965 else
15966 fprintf (file, _(" [unknown ISA]"));
15967
15968 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15969 fprintf (file, " [mdmx]");
15970
15971 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15972 fprintf (file, " [mips16]");
15973
15974 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15975 fprintf (file, " [micromips]");
15976
15977 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15978 fprintf (file, " [nan2008]");
15979
15980 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15981 fprintf (file, " [old fp64]");
15982
15983 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15984 fprintf (file, " [32bitmode]");
15985 else
15986 fprintf (file, _(" [not 32bitmode]"));
15987
15988 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15989 fprintf (file, " [noreorder]");
15990
15991 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15992 fprintf (file, " [PIC]");
15993
15994 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15995 fprintf (file, " [CPIC]");
15996
15997 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15998 fprintf (file, " [XGOT]");
15999
16000 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16001 fprintf (file, " [UCODE]");
16002
16003 fputc ('\n', file);
16004
16005 if (mips_elf_tdata (abfd)->abiflags_valid)
16006 {
16007 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16008 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16009 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16010 if (abiflags->isa_rev > 1)
16011 fprintf (file, "r%d", abiflags->isa_rev);
16012 fprintf (file, "\nGPR size: %d",
16013 get_mips_reg_size (abiflags->gpr_size));
16014 fprintf (file, "\nCPR1 size: %d",
16015 get_mips_reg_size (abiflags->cpr1_size));
16016 fprintf (file, "\nCPR2 size: %d",
16017 get_mips_reg_size (abiflags->cpr2_size));
16018 fputs ("\nFP ABI: ", file);
16019 print_mips_fp_abi_value (file, abiflags->fp_abi);
16020 fputs ("ISA Extension: ", file);
16021 print_mips_isa_ext (file, abiflags->isa_ext);
16022 fputs ("\nASEs:", file);
16023 print_mips_ases (file, abiflags->ases);
16024 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16025 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16026 fputc ('\n', file);
16027 }
16028
16029 return TRUE;
16030 }
16031
16032 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16033 {
16034 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16035 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16036 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16037 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16038 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16039 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16040 { NULL, 0, 0, 0, 0 }
16041 };
16042
16043 /* Merge non visibility st_other attributes. Ensure that the
16044 STO_OPTIONAL flag is copied into h->other, even if this is not a
16045 definiton of the symbol. */
16046 void
16047 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16048 const Elf_Internal_Sym *isym,
16049 bfd_boolean definition,
16050 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16051 {
16052 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16053 {
16054 unsigned char other;
16055
16056 other = (definition ? isym->st_other : h->other);
16057 other &= ~ELF_ST_VISIBILITY (-1);
16058 h->other = other | ELF_ST_VISIBILITY (h->other);
16059 }
16060
16061 if (!definition
16062 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16063 h->other |= STO_OPTIONAL;
16064 }
16065
16066 /* Decide whether an undefined symbol is special and can be ignored.
16067 This is the case for OPTIONAL symbols on IRIX. */
16068 bfd_boolean
16069 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16070 {
16071 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16072 }
16073
16074 bfd_boolean
16075 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16076 {
16077 return (sym->st_shndx == SHN_COMMON
16078 || sym->st_shndx == SHN_MIPS_ACOMMON
16079 || sym->st_shndx == SHN_MIPS_SCOMMON);
16080 }
16081
16082 /* Return address for Ith PLT stub in section PLT, for relocation REL
16083 or (bfd_vma) -1 if it should not be included. */
16084
16085 bfd_vma
16086 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16087 const arelent *rel ATTRIBUTE_UNUSED)
16088 {
16089 return (plt->vma
16090 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16091 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16092 }
16093
16094 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16095 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16096 and .got.plt and also the slots may be of a different size each we walk
16097 the PLT manually fetching instructions and matching them against known
16098 patterns. To make things easier standard MIPS slots, if any, always come
16099 first. As we don't create proper ELF symbols we use the UDATA.I member
16100 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16101 with the ST_OTHER member of the ELF symbol. */
16102
16103 long
16104 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16105 long symcount ATTRIBUTE_UNUSED,
16106 asymbol **syms ATTRIBUTE_UNUSED,
16107 long dynsymcount, asymbol **dynsyms,
16108 asymbol **ret)
16109 {
16110 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16111 static const char microsuffix[] = "@micromipsplt";
16112 static const char m16suffix[] = "@mips16plt";
16113 static const char mipssuffix[] = "@plt";
16114
16115 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16116 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16117 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16118 Elf_Internal_Shdr *hdr;
16119 bfd_byte *plt_data;
16120 bfd_vma plt_offset;
16121 unsigned int other;
16122 bfd_vma entry_size;
16123 bfd_vma plt0_size;
16124 asection *relplt;
16125 bfd_vma opcode;
16126 asection *plt;
16127 asymbol *send;
16128 size_t size;
16129 char *names;
16130 long counti;
16131 arelent *p;
16132 asymbol *s;
16133 char *nend;
16134 long count;
16135 long pi;
16136 long i;
16137 long n;
16138
16139 *ret = NULL;
16140
16141 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16142 return 0;
16143
16144 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16145 if (relplt == NULL)
16146 return 0;
16147
16148 hdr = &elf_section_data (relplt)->this_hdr;
16149 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16150 return 0;
16151
16152 plt = bfd_get_section_by_name (abfd, ".plt");
16153 if (plt == NULL)
16154 return 0;
16155
16156 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16157 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16158 return -1;
16159 p = relplt->relocation;
16160
16161 /* Calculating the exact amount of space required for symbols would
16162 require two passes over the PLT, so just pessimise assuming two
16163 PLT slots per relocation. */
16164 count = relplt->size / hdr->sh_entsize;
16165 counti = count * bed->s->int_rels_per_ext_rel;
16166 size = 2 * count * sizeof (asymbol);
16167 size += count * (sizeof (mipssuffix) +
16168 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16169 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16170 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16171
16172 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16173 size += sizeof (asymbol) + sizeof (pltname);
16174
16175 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16176 return -1;
16177
16178 if (plt->size < 16)
16179 return -1;
16180
16181 s = *ret = bfd_malloc (size);
16182 if (s == NULL)
16183 return -1;
16184 send = s + 2 * count + 1;
16185
16186 names = (char *) send;
16187 nend = (char *) s + size;
16188 n = 0;
16189
16190 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16191 if (opcode == 0x3302fffe)
16192 {
16193 if (!micromips_p)
16194 return -1;
16195 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16196 other = STO_MICROMIPS;
16197 }
16198 else if (opcode == 0x0398c1d0)
16199 {
16200 if (!micromips_p)
16201 return -1;
16202 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16203 other = STO_MICROMIPS;
16204 }
16205 else
16206 {
16207 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16208 other = 0;
16209 }
16210
16211 s->the_bfd = abfd;
16212 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16213 s->section = plt;
16214 s->value = 0;
16215 s->name = names;
16216 s->udata.i = other;
16217 memcpy (names, pltname, sizeof (pltname));
16218 names += sizeof (pltname);
16219 ++s, ++n;
16220
16221 pi = 0;
16222 for (plt_offset = plt0_size;
16223 plt_offset + 8 <= plt->size && s < send;
16224 plt_offset += entry_size)
16225 {
16226 bfd_vma gotplt_addr;
16227 const char *suffix;
16228 bfd_vma gotplt_hi;
16229 bfd_vma gotplt_lo;
16230 size_t suffixlen;
16231
16232 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16233
16234 /* Check if the second word matches the expected MIPS16 instruction. */
16235 if (opcode == 0x651aeb00)
16236 {
16237 if (micromips_p)
16238 return -1;
16239 /* Truncated table??? */
16240 if (plt_offset + 16 > plt->size)
16241 break;
16242 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16243 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16244 suffixlen = sizeof (m16suffix);
16245 suffix = m16suffix;
16246 other = STO_MIPS16;
16247 }
16248 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16249 else if (opcode == 0xff220000)
16250 {
16251 if (!micromips_p)
16252 return -1;
16253 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16254 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16255 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16256 gotplt_lo <<= 2;
16257 gotplt_addr = gotplt_hi + gotplt_lo;
16258 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16259 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16260 suffixlen = sizeof (microsuffix);
16261 suffix = microsuffix;
16262 other = STO_MICROMIPS;
16263 }
16264 /* Likewise the expected microMIPS instruction (insn32 mode). */
16265 else if ((opcode & 0xffff0000) == 0xff2f0000)
16266 {
16267 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16268 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16269 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16270 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16271 gotplt_addr = gotplt_hi + gotplt_lo;
16272 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16273 suffixlen = sizeof (microsuffix);
16274 suffix = microsuffix;
16275 other = STO_MICROMIPS;
16276 }
16277 /* Otherwise assume standard MIPS code. */
16278 else
16279 {
16280 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16281 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16282 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16283 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16284 gotplt_addr = gotplt_hi + gotplt_lo;
16285 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16286 suffixlen = sizeof (mipssuffix);
16287 suffix = mipssuffix;
16288 other = 0;
16289 }
16290 /* Truncated table??? */
16291 if (plt_offset + entry_size > plt->size)
16292 break;
16293
16294 for (i = 0;
16295 i < count && p[pi].address != gotplt_addr;
16296 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16297
16298 if (i < count)
16299 {
16300 size_t namelen;
16301 size_t len;
16302
16303 *s = **p[pi].sym_ptr_ptr;
16304 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16305 we are defining a symbol, ensure one of them is set. */
16306 if ((s->flags & BSF_LOCAL) == 0)
16307 s->flags |= BSF_GLOBAL;
16308 s->flags |= BSF_SYNTHETIC;
16309 s->section = plt;
16310 s->value = plt_offset;
16311 s->name = names;
16312 s->udata.i = other;
16313
16314 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16315 namelen = len + suffixlen;
16316 if (names + namelen > nend)
16317 break;
16318
16319 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16320 names += len;
16321 memcpy (names, suffix, suffixlen);
16322 names += suffixlen;
16323
16324 ++s, ++n;
16325 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16326 }
16327 }
16328
16329 free (plt_data);
16330
16331 return n;
16332 }
16333
16334 /* Return the ABI flags associated with ABFD if available. */
16335
16336 Elf_Internal_ABIFlags_v0 *
16337 bfd_mips_elf_get_abiflags (bfd *abfd)
16338 {
16339 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16340
16341 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16342 }
16343
16344 void
16345 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16346 {
16347 struct mips_elf_link_hash_table *htab;
16348 Elf_Internal_Ehdr *i_ehdrp;
16349
16350 i_ehdrp = elf_elfheader (abfd);
16351 if (link_info)
16352 {
16353 htab = mips_elf_hash_table (link_info);
16354 BFD_ASSERT (htab != NULL);
16355
16356 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16357 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16358 }
16359
16360 _bfd_elf_post_process_headers (abfd, link_info);
16361
16362 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16363 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16364 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16365 }
16366
16367 int
16368 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16369 {
16370 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16371 }
16372
16373 /* Return the opcode for can't unwind. */
16374
16375 int
16376 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16377 {
16378 return COMPACT_EH_CANT_UNWIND_OPCODE;
16379 }
This page took 0.373787 seconds and 4 git commands to generate.