Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2020 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40 #include "dwarf2.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56 };
57
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
77 {
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
96
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
100
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
109 };
110
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
122 {
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130 };
131
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135 struct mips_got_page_range
136 {
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140 };
141
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
145 {
146 /* The section that these entries are based on. */
147 asection *sec;
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152 };
153
154 /* This structure is used to hold .got information when linking. */
155
156 struct mips_got_info
157 {
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno;
177 /* A hash table holding members of the got. */
178 struct htab *got_entries;
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab *got_page_refs;
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab *got_page_entries;
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info *next;
186 };
187
188 /* Structure passed when merging bfds' gots. */
189
190 struct mips_elf_got_per_bfd_arg
191 {
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
213 };
214
215 /* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
217
218 struct mips_elf_traverse_got_arg
219 {
220 struct bfd_link_info *info;
221 struct mips_got_info *g;
222 int value;
223 };
224
225 struct _mips_elf_section_data
226 {
227 struct bfd_elf_section_data elf;
228 union
229 {
230 bfd_byte *tdata;
231 } u;
232 };
233
234 #define mips_elf_section_data(sec) \
235 ((struct _mips_elf_section_data *) elf_section_data (sec))
236
237 #define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
240 && elf_object_id (bfd) == MIPS_ELF_DATA)
241
242 /* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
255
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259 #define GGA_NORMAL 0
260 #define GGA_RELOC_ONLY 1
261 #define GGA_NONE 2
262
263 /* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
265
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
268
269 immediately before a PIC function "func". The second is to add:
270
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
274
275 to a separate trampoline section.
276
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280 struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
283
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
286
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
290 };
291
292 /* Macros for populating a mips_elf_la25_stub. */
293
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
304
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
307
308 struct mips_elf_hash_sort_data
309 {
310 /* The symbol in the global GOT with the lowest dynamic symbol table
311 index. */
312 struct elf_link_hash_entry *low;
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
315 bfd_size_type min_got_dynindx;
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
318 with dynamic relocations pointing to it from non-primary GOTs). */
319 bfd_size_type max_unref_got_dynindx;
320 /* The greatest dynamic symbol table index corresponding to a local
321 symbol. */
322 bfd_size_type max_local_dynindx;
323 /* The greatest dynamic symbol table index corresponding to an external
324 symbol without a GOT entry. */
325 bfd_size_type max_non_got_dynindx;
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
327 bfd *output_bfd;
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
330 bfd_byte *mipsxhash;
331 };
332
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
336 processing. */
337
338 struct plt_entry
339 {
340 /* Traditional SVR4 stub offset, or -1 if none. */
341 bfd_vma stub_offset;
342
343 /* Standard PLT entry offset, or -1 if none. */
344 bfd_vma mips_offset;
345
346 /* Compressed PLT entry offset, or -1 if none. */
347 bfd_vma comp_offset;
348
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index;
351
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips : 1;
354
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp : 1;
357 };
358
359 /* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
361
362 struct mips_elf_link_hash_entry
363 {
364 struct elf_link_hash_entry root;
365
366 /* External symbol information. */
367 EXTR esym;
368
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub *la25_stub;
371
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373 this symbol. */
374 unsigned int possibly_dynamic_relocs;
375
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
378 asection *fn_stub;
379
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
382 asection *call_stub;
383
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection *call_fp_stub;
387
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc;
390
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area : 2;
393
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls : 1;
398
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc : 1;
402
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs : 1;
407
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub : 1;
413
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub : 1;
417
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches : 1;
422
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub : 1;
426
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry : 1;
429 };
430
431 /* MIPS ELF linker hash table. */
432
433 struct mips_elf_link_hash_table
434 {
435 struct elf_link_hash_table root;
436
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count;
439
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size;
442
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
445 bfd_boolean use_rld_obj_head;
446
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry *rld_symbol;
449
450 /* This is set if we see any mips16 stub sections. */
451 bfd_boolean mips16_stubs_seen;
452
453 /* True if we can generate copy relocs and PLTs. */
454 bfd_boolean use_plts_and_copy_relocs;
455
456 /* True if we can only use 32-bit microMIPS instructions. */
457 bfd_boolean insn32;
458
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bfd_boolean ignore_branch_isa;
461
462 /* True if we are targetting R6 compact branches. */
463 bfd_boolean compact_branches;
464
465 /* True if we're generating code for VxWorks. */
466 bfd_boolean is_vxworks;
467
468 /* True if we already reported the small-data section overflow. */
469 bfd_boolean small_data_overflow_reported;
470
471 /* True if we use the special `__gnu_absolute_zero' symbol. */
472 bfd_boolean use_absolute_zero;
473
474 /* True if we have been configured for a GNU target. */
475 bfd_boolean gnu_target;
476
477 /* Shortcuts to some dynamic sections, or NULL if they are not
478 being used. */
479 asection *srelplt2;
480 asection *sstubs;
481
482 /* The master GOT information. */
483 struct mips_got_info *got_info;
484
485 /* The global symbol in the GOT with the lowest index in the dynamic
486 symbol table. */
487 struct elf_link_hash_entry *global_gotsym;
488
489 /* The size of the PLT header in bytes. */
490 bfd_vma plt_header_size;
491
492 /* The size of a standard PLT entry in bytes. */
493 bfd_vma plt_mips_entry_size;
494
495 /* The size of a compressed PLT entry in bytes. */
496 bfd_vma plt_comp_entry_size;
497
498 /* The offset of the next standard PLT entry to create. */
499 bfd_vma plt_mips_offset;
500
501 /* The offset of the next compressed PLT entry to create. */
502 bfd_vma plt_comp_offset;
503
504 /* The index of the next .got.plt entry to create. */
505 bfd_vma plt_got_index;
506
507 /* The number of functions that need a lazy-binding stub. */
508 bfd_vma lazy_stub_count;
509
510 /* The size of a function stub entry in bytes. */
511 bfd_vma function_stub_size;
512
513 /* The number of reserved entries at the beginning of the GOT. */
514 unsigned int reserved_gotno;
515
516 /* The section used for mips_elf_la25_stub trampolines.
517 See the comment above that structure for details. */
518 asection *strampoline;
519
520 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
521 pairs. */
522 htab_t la25_stubs;
523
524 /* A function FN (NAME, IS, OS) that creates a new input section
525 called NAME and links it to output section OS. If IS is nonnull,
526 the new section should go immediately before it, otherwise it
527 should go at the (current) beginning of OS.
528
529 The function returns the new section on success, otherwise it
530 returns null. */
531 asection *(*add_stub_section) (const char *, asection *, asection *);
532
533 /* Small local sym cache. */
534 struct sym_cache sym_cache;
535
536 /* Is the PLT header compressed? */
537 unsigned int plt_header_is_comp : 1;
538 };
539
540 /* Get the MIPS ELF linker hash table from a link_info structure. */
541
542 #define mips_elf_hash_table(p) \
543 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
544 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
545
546 /* A structure used to communicate with htab_traverse callbacks. */
547 struct mips_htab_traverse_info
548 {
549 /* The usual link-wide information. */
550 struct bfd_link_info *info;
551 bfd *output_bfd;
552
553 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
554 bfd_boolean error;
555 };
556
557 /* MIPS ELF private object data. */
558
559 struct mips_elf_obj_tdata
560 {
561 /* Generic ELF private object data. */
562 struct elf_obj_tdata root;
563
564 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
565 bfd *abi_fp_bfd;
566
567 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
568 bfd *abi_msa_bfd;
569
570 /* The abiflags for this object. */
571 Elf_Internal_ABIFlags_v0 abiflags;
572 bfd_boolean abiflags_valid;
573
574 /* The GOT requirements of input bfds. */
575 struct mips_got_info *got;
576
577 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
578 included directly in this one, but there's no point to wasting
579 the memory just for the infrequently called find_nearest_line. */
580 struct mips_elf_find_line *find_line_info;
581
582 /* An array of stub sections indexed by symbol number. */
583 asection **local_stubs;
584 asection **local_call_stubs;
585
586 /* The Irix 5 support uses two virtual sections, which represent
587 text/data symbols defined in dynamic objects. */
588 asymbol *elf_data_symbol;
589 asymbol *elf_text_symbol;
590 asection *elf_data_section;
591 asection *elf_text_section;
592 };
593
594 /* Get MIPS ELF private object data from BFD's tdata. */
595
596 #define mips_elf_tdata(bfd) \
597 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
598
599 #define TLS_RELOC_P(r_type) \
600 (r_type == R_MIPS_TLS_DTPMOD32 \
601 || r_type == R_MIPS_TLS_DTPMOD64 \
602 || r_type == R_MIPS_TLS_DTPREL32 \
603 || r_type == R_MIPS_TLS_DTPREL64 \
604 || r_type == R_MIPS_TLS_GD \
605 || r_type == R_MIPS_TLS_LDM \
606 || r_type == R_MIPS_TLS_DTPREL_HI16 \
607 || r_type == R_MIPS_TLS_DTPREL_LO16 \
608 || r_type == R_MIPS_TLS_GOTTPREL \
609 || r_type == R_MIPS_TLS_TPREL32 \
610 || r_type == R_MIPS_TLS_TPREL64 \
611 || r_type == R_MIPS_TLS_TPREL_HI16 \
612 || r_type == R_MIPS_TLS_TPREL_LO16 \
613 || r_type == R_MIPS16_TLS_GD \
614 || r_type == R_MIPS16_TLS_LDM \
615 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
616 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
617 || r_type == R_MIPS16_TLS_GOTTPREL \
618 || r_type == R_MIPS16_TLS_TPREL_HI16 \
619 || r_type == R_MIPS16_TLS_TPREL_LO16 \
620 || r_type == R_MICROMIPS_TLS_GD \
621 || r_type == R_MICROMIPS_TLS_LDM \
622 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
623 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
624 || r_type == R_MICROMIPS_TLS_GOTTPREL \
625 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
626 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
627
628 /* Structure used to pass information to mips_elf_output_extsym. */
629
630 struct extsym_info
631 {
632 bfd *abfd;
633 struct bfd_link_info *info;
634 struct ecoff_debug_info *debug;
635 const struct ecoff_debug_swap *swap;
636 bfd_boolean failed;
637 };
638
639 /* The names of the runtime procedure table symbols used on IRIX5. */
640
641 static const char * const mips_elf_dynsym_rtproc_names[] =
642 {
643 "_procedure_table",
644 "_procedure_string_table",
645 "_procedure_table_size",
646 NULL
647 };
648
649 /* These structures are used to generate the .compact_rel section on
650 IRIX5. */
651
652 typedef struct
653 {
654 unsigned long id1; /* Always one? */
655 unsigned long num; /* Number of compact relocation entries. */
656 unsigned long id2; /* Always two? */
657 unsigned long offset; /* The file offset of the first relocation. */
658 unsigned long reserved0; /* Zero? */
659 unsigned long reserved1; /* Zero? */
660 } Elf32_compact_rel;
661
662 typedef struct
663 {
664 bfd_byte id1[4];
665 bfd_byte num[4];
666 bfd_byte id2[4];
667 bfd_byte offset[4];
668 bfd_byte reserved0[4];
669 bfd_byte reserved1[4];
670 } Elf32_External_compact_rel;
671
672 typedef struct
673 {
674 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
675 unsigned int rtype : 4; /* Relocation types. See below. */
676 unsigned int dist2to : 8;
677 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
678 unsigned long konst; /* KONST field. See below. */
679 unsigned long vaddr; /* VADDR to be relocated. */
680 } Elf32_crinfo;
681
682 typedef struct
683 {
684 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
685 unsigned int rtype : 4; /* Relocation types. See below. */
686 unsigned int dist2to : 8;
687 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
688 unsigned long konst; /* KONST field. See below. */
689 } Elf32_crinfo2;
690
691 typedef struct
692 {
693 bfd_byte info[4];
694 bfd_byte konst[4];
695 bfd_byte vaddr[4];
696 } Elf32_External_crinfo;
697
698 typedef struct
699 {
700 bfd_byte info[4];
701 bfd_byte konst[4];
702 } Elf32_External_crinfo2;
703
704 /* These are the constants used to swap the bitfields in a crinfo. */
705
706 #define CRINFO_CTYPE (0x1)
707 #define CRINFO_CTYPE_SH (31)
708 #define CRINFO_RTYPE (0xf)
709 #define CRINFO_RTYPE_SH (27)
710 #define CRINFO_DIST2TO (0xff)
711 #define CRINFO_DIST2TO_SH (19)
712 #define CRINFO_RELVADDR (0x7ffff)
713 #define CRINFO_RELVADDR_SH (0)
714
715 /* A compact relocation info has long (3 words) or short (2 words)
716 formats. A short format doesn't have VADDR field and relvaddr
717 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
718 #define CRF_MIPS_LONG 1
719 #define CRF_MIPS_SHORT 0
720
721 /* There are 4 types of compact relocation at least. The value KONST
722 has different meaning for each type:
723
724 (type) (konst)
725 CT_MIPS_REL32 Address in data
726 CT_MIPS_WORD Address in word (XXX)
727 CT_MIPS_GPHI_LO GP - vaddr
728 CT_MIPS_JMPAD Address to jump
729 */
730
731 #define CRT_MIPS_REL32 0xa
732 #define CRT_MIPS_WORD 0xb
733 #define CRT_MIPS_GPHI_LO 0xc
734 #define CRT_MIPS_JMPAD 0xd
735
736 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
737 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
738 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
739 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
740 \f
741 /* The structure of the runtime procedure descriptor created by the
742 loader for use by the static exception system. */
743
744 typedef struct runtime_pdr {
745 bfd_vma adr; /* Memory address of start of procedure. */
746 long regmask; /* Save register mask. */
747 long regoffset; /* Save register offset. */
748 long fregmask; /* Save floating point register mask. */
749 long fregoffset; /* Save floating point register offset. */
750 long frameoffset; /* Frame size. */
751 short framereg; /* Frame pointer register. */
752 short pcreg; /* Offset or reg of return pc. */
753 long irpss; /* Index into the runtime string table. */
754 long reserved;
755 struct exception_info *exception_info;/* Pointer to exception array. */
756 } RPDR, *pRPDR;
757 #define cbRPDR sizeof (RPDR)
758 #define rpdNil ((pRPDR) 0)
759 \f
760 static struct mips_got_entry *mips_elf_create_local_got_entry
761 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
762 struct mips_elf_link_hash_entry *, int);
763 static bfd_boolean mips_elf_sort_hash_table_f
764 (struct mips_elf_link_hash_entry *, void *);
765 static bfd_vma mips_elf_high
766 (bfd_vma);
767 static bfd_boolean mips_elf_create_dynamic_relocation
768 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
769 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
770 bfd_vma *, asection *);
771 static bfd_vma mips_elf_adjust_gp
772 (bfd *, struct mips_got_info *, bfd *);
773
774 /* This will be used when we sort the dynamic relocation records. */
775 static bfd *reldyn_sorting_bfd;
776
777 /* True if ABFD is for CPUs with load interlocking that include
778 non-MIPS1 CPUs and R3900. */
779 #define LOAD_INTERLOCKS_P(abfd) \
780 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
781 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
782
783 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
784 This should be safe for all architectures. We enable this predicate
785 for RM9000 for now. */
786 #define JAL_TO_BAL_P(abfd) \
787 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
788
789 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
790 This should be safe for all architectures. We enable this predicate for
791 all CPUs. */
792 #define JALR_TO_BAL_P(abfd) 1
793
794 /* True if ABFD is for CPUs that are faster if JR is converted to B.
795 This should be safe for all architectures. We enable this predicate for
796 all CPUs. */
797 #define JR_TO_B_P(abfd) 1
798
799 /* True if ABFD is a PIC object. */
800 #define PIC_OBJECT_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
802
803 /* Nonzero if ABFD is using the O32 ABI. */
804 #define ABI_O32_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
806
807 /* Nonzero if ABFD is using the N32 ABI. */
808 #define ABI_N32_P(abfd) \
809 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
810
811 /* Nonzero if ABFD is using the N64 ABI. */
812 #define ABI_64_P(abfd) \
813 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
814
815 /* Nonzero if ABFD is using NewABI conventions. */
816 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
817
818 /* Nonzero if ABFD has microMIPS code. */
819 #define MICROMIPS_P(abfd) \
820 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
821
822 /* Nonzero if ABFD is MIPS R6. */
823 #define MIPSR6_P(abfd) \
824 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
825 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
826
827 /* The IRIX compatibility level we are striving for. */
828 #define IRIX_COMPAT(abfd) \
829 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
830
831 /* Whether we are trying to be compatible with IRIX at all. */
832 #define SGI_COMPAT(abfd) \
833 (IRIX_COMPAT (abfd) != ict_none)
834
835 /* The name of the options section. */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
837 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
838
839 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
840 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
841 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
842 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
843
844 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
845 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
846 (strcmp (NAME, ".MIPS.abiflags") == 0)
847
848 /* Whether the section is readonly. */
849 #define MIPS_ELF_READONLY_SECTION(sec) \
850 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
851 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
852
853 /* The name of the stub section. */
854 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
855
856 /* The size of an external REL relocation. */
857 #define MIPS_ELF_REL_SIZE(abfd) \
858 (get_elf_backend_data (abfd)->s->sizeof_rel)
859
860 /* The size of an external RELA relocation. */
861 #define MIPS_ELF_RELA_SIZE(abfd) \
862 (get_elf_backend_data (abfd)->s->sizeof_rela)
863
864 /* The size of an external dynamic table entry. */
865 #define MIPS_ELF_DYN_SIZE(abfd) \
866 (get_elf_backend_data (abfd)->s->sizeof_dyn)
867
868 /* The size of a GOT entry. */
869 #define MIPS_ELF_GOT_SIZE(abfd) \
870 (get_elf_backend_data (abfd)->s->arch_size / 8)
871
872 /* The size of the .rld_map section. */
873 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
874 (get_elf_backend_data (abfd)->s->arch_size / 8)
875
876 /* The size of a symbol-table entry. */
877 #define MIPS_ELF_SYM_SIZE(abfd) \
878 (get_elf_backend_data (abfd)->s->sizeof_sym)
879
880 /* The default alignment for sections, as a power of two. */
881 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
882 (get_elf_backend_data (abfd)->s->log_file_align)
883
884 /* Get word-sized data. */
885 #define MIPS_ELF_GET_WORD(abfd, ptr) \
886 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
887
888 /* Put out word-sized data. */
889 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
890 (ABI_64_P (abfd) \
891 ? bfd_put_64 (abfd, val, ptr) \
892 : bfd_put_32 (abfd, val, ptr))
893
894 /* The opcode for word-sized loads (LW or LD). */
895 #define MIPS_ELF_LOAD_WORD(abfd) \
896 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
897
898 /* Add a dynamic symbol table-entry. */
899 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
900 _bfd_elf_add_dynamic_entry (info, tag, val)
901
902 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
903 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
904
905 /* The name of the dynamic relocation section. */
906 #define MIPS_ELF_REL_DYN_NAME(INFO) \
907 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
908
909 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
910 from smaller values. Start with zero, widen, *then* decrement. */
911 #define MINUS_ONE (((bfd_vma)0) - 1)
912 #define MINUS_TWO (((bfd_vma)0) - 2)
913
914 /* The value to write into got[1] for SVR4 targets, to identify it is
915 a GNU object. The dynamic linker can then use got[1] to store the
916 module pointer. */
917 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
918 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
919
920 /* The offset of $gp from the beginning of the .got section. */
921 #define ELF_MIPS_GP_OFFSET(INFO) \
922 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
923
924 /* The maximum size of the GOT for it to be addressable using 16-bit
925 offsets from $gp. */
926 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
927
928 /* Instructions which appear in a stub. */
929 #define STUB_LW(abfd) \
930 ((ABI_64_P (abfd) \
931 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
932 : 0x8f998010)) /* lw t9,0x8010(gp) */
933 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
934 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
935 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
936 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
937 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
938 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S(abfd, VAL) \
940 ((ABI_64_P (abfd) \
941 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
942 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
943
944 /* Likewise for the microMIPS ASE. */
945 #define STUB_LW_MICROMIPS(abfd) \
946 (ABI_64_P (abfd) \
947 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
948 : 0xff3c8010) /* lw t9,0x8010(gp) */
949 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
950 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
951 #define STUB_LUI_MICROMIPS(VAL) \
952 (0x41b80000 + (VAL)) /* lui t8,VAL */
953 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
954 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
955 #define STUB_ORI_MICROMIPS(VAL) \
956 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
957 #define STUB_LI16U_MICROMIPS(VAL) \
958 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
959 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
960 (ABI_64_P (abfd) \
961 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
962 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
963
964 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
965 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
966 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
967 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
968 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
969 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
970
971 /* The name of the dynamic interpreter. This is put in the .interp
972 section. */
973
974 #define ELF_DYNAMIC_INTERPRETER(abfd) \
975 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
976 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
977 : "/usr/lib/libc.so.1")
978
979 #ifdef BFD64
980 #define MNAME(bfd,pre,pos) \
981 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
982 #define ELF_R_SYM(bfd, i) \
983 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
984 #define ELF_R_TYPE(bfd, i) \
985 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
986 #define ELF_R_INFO(bfd, s, t) \
987 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
988 #else
989 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
990 #define ELF_R_SYM(bfd, i) \
991 (ELF32_R_SYM (i))
992 #define ELF_R_TYPE(bfd, i) \
993 (ELF32_R_TYPE (i))
994 #define ELF_R_INFO(bfd, s, t) \
995 (ELF32_R_INFO (s, t))
996 #endif
997 \f
998 /* The mips16 compiler uses a couple of special sections to handle
999 floating point arguments.
1000
1001 Section names that look like .mips16.fn.FNNAME contain stubs that
1002 copy floating point arguments from the fp regs to the gp regs and
1003 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1004 call should be redirected to the stub instead. If no 32 bit
1005 function calls FNNAME, the stub should be discarded. We need to
1006 consider any reference to the function, not just a call, because
1007 if the address of the function is taken we will need the stub,
1008 since the address might be passed to a 32 bit function.
1009
1010 Section names that look like .mips16.call.FNNAME contain stubs
1011 that copy floating point arguments from the gp regs to the fp
1012 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1013 then any 16 bit function that calls FNNAME should be redirected
1014 to the stub instead. If FNNAME is not a 32 bit function, the
1015 stub should be discarded.
1016
1017 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1018 which call FNNAME and then copy the return value from the fp regs
1019 to the gp regs. These stubs store the return value in $18 while
1020 calling FNNAME; any function which might call one of these stubs
1021 must arrange to save $18 around the call. (This case is not
1022 needed for 32 bit functions that call 16 bit functions, because
1023 16 bit functions always return floating point values in both
1024 $f0/$f1 and $2/$3.)
1025
1026 Note that in all cases FNNAME might be defined statically.
1027 Therefore, FNNAME is not used literally. Instead, the relocation
1028 information will indicate which symbol the section is for.
1029
1030 We record any stubs that we find in the symbol table. */
1031
1032 #define FN_STUB ".mips16.fn."
1033 #define CALL_STUB ".mips16.call."
1034 #define CALL_FP_STUB ".mips16.call.fp."
1035
1036 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1037 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1038 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1039 \f
1040 /* The format of the first PLT entry in an O32 executable. */
1041 static const bfd_vma mips_o32_exec_plt0_entry[] =
1042 {
1043 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1044 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1045 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1046 0x031cc023, /* subu $24, $24, $28 */
1047 0x03e07825, /* or t7, ra, zero */
1048 0x0018c082, /* srl $24, $24, 2 */
1049 0x0320f809, /* jalr $25 */
1050 0x2718fffe /* subu $24, $24, 2 */
1051 };
1052
1053 /* The format of the first PLT entry in an O32 executable using compact
1054 jumps. */
1055 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1056 {
1057 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1058 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1059 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1060 0x031cc023, /* subu $24, $24, $28 */
1061 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1062 0x0018c082, /* srl $24, $24, 2 */
1063 0x2718fffe, /* subu $24, $24, 2 */
1064 0xf8190000 /* jalrc $25 */
1065 };
1066
1067 /* The format of the first PLT entry in an N32 executable. Different
1068 because gp ($28) is not available; we use t2 ($14) instead. */
1069 static const bfd_vma mips_n32_exec_plt0_entry[] =
1070 {
1071 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1072 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1073 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1074 0x030ec023, /* subu $24, $24, $14 */
1075 0x03e07825, /* or t7, ra, zero */
1076 0x0018c082, /* srl $24, $24, 2 */
1077 0x0320f809, /* jalr $25 */
1078 0x2718fffe /* subu $24, $24, 2 */
1079 };
1080
1081 /* The format of the first PLT entry in an N32 executable using compact
1082 jumps. Different because gp ($28) is not available; we use t2 ($14)
1083 instead. */
1084 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1085 {
1086 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1087 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1088 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1089 0x030ec023, /* subu $24, $24, $14 */
1090 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1091 0x0018c082, /* srl $24, $24, 2 */
1092 0x2718fffe, /* subu $24, $24, 2 */
1093 0xf8190000 /* jalrc $25 */
1094 };
1095
1096 /* The format of the first PLT entry in an N64 executable. Different
1097 from N32 because of the increased size of GOT entries. */
1098 static const bfd_vma mips_n64_exec_plt0_entry[] =
1099 {
1100 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1101 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1102 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1103 0x030ec023, /* subu $24, $24, $14 */
1104 0x03e07825, /* or t7, ra, zero */
1105 0x0018c0c2, /* srl $24, $24, 3 */
1106 0x0320f809, /* jalr $25 */
1107 0x2718fffe /* subu $24, $24, 2 */
1108 };
1109
1110 /* The format of the first PLT entry in an N64 executable using compact
1111 jumps. Different from N32 because of the increased size of GOT
1112 entries. */
1113 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1114 {
1115 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1116 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1117 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1118 0x030ec023, /* subu $24, $24, $14 */
1119 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1120 0x0018c0c2, /* srl $24, $24, 3 */
1121 0x2718fffe, /* subu $24, $24, 2 */
1122 0xf8190000 /* jalrc $25 */
1123 };
1124
1125
1126 /* The format of the microMIPS first PLT entry in an O32 executable.
1127 We rely on v0 ($2) rather than t8 ($24) to contain the address
1128 of the GOTPLT entry handled, so this stub may only be used when
1129 all the subsequent PLT entries are microMIPS code too.
1130
1131 The trailing NOP is for alignment and correct disassembly only. */
1132 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1133 {
1134 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1135 0xff23, 0x0000, /* lw $25, 0($3) */
1136 0x0535, /* subu $2, $2, $3 */
1137 0x2525, /* srl $2, $2, 2 */
1138 0x3302, 0xfffe, /* subu $24, $2, 2 */
1139 0x0dff, /* move $15, $31 */
1140 0x45f9, /* jalrs $25 */
1141 0x0f83, /* move $28, $3 */
1142 0x0c00 /* nop */
1143 };
1144
1145 /* The format of the microMIPS first PLT entry in an O32 executable
1146 in the insn32 mode. */
1147 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1148 {
1149 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1150 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1151 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1152 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1153 0x001f, 0x7a90, /* or $15, $31, zero */
1154 0x0318, 0x1040, /* srl $24, $24, 2 */
1155 0x03f9, 0x0f3c, /* jalr $25 */
1156 0x3318, 0xfffe /* subu $24, $24, 2 */
1157 };
1158
1159 /* The format of subsequent standard PLT entries. */
1160 static const bfd_vma mips_exec_plt_entry[] =
1161 {
1162 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1163 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1164 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1165 0x03200008 /* jr $25 */
1166 };
1167
1168 static const bfd_vma mipsr6_exec_plt_entry[] =
1169 {
1170 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1171 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1172 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1173 0x03200009 /* jr $25 */
1174 };
1175
1176 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1177 {
1178 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1179 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1180 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1181 0xd8190000 /* jic $25, 0 */
1182 };
1183
1184 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1185 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1186 directly addressable. */
1187 static const bfd_vma mips16_o32_exec_plt_entry[] =
1188 {
1189 0xb203, /* lw $2, 12($pc) */
1190 0x9a60, /* lw $3, 0($2) */
1191 0x651a, /* move $24, $2 */
1192 0xeb00, /* jr $3 */
1193 0x653b, /* move $25, $3 */
1194 0x6500, /* nop */
1195 0x0000, 0x0000 /* .word (.got.plt entry) */
1196 };
1197
1198 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1199 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1200 static const bfd_vma micromips_o32_exec_plt_entry[] =
1201 {
1202 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1203 0xff22, 0x0000, /* lw $25, 0($2) */
1204 0x4599, /* jr $25 */
1205 0x0f02 /* move $24, $2 */
1206 };
1207
1208 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1209 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1210 {
1211 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1212 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1213 0x0019, 0x0f3c, /* jr $25 */
1214 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1215 };
1216
1217 /* The format of the first PLT entry in a VxWorks executable. */
1218 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1219 {
1220 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1221 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1222 0x8f390008, /* lw t9, 8(t9) */
1223 0x00000000, /* nop */
1224 0x03200008, /* jr t9 */
1225 0x00000000 /* nop */
1226 };
1227
1228 /* The format of subsequent PLT entries. */
1229 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1230 {
1231 0x10000000, /* b .PLT_resolver */
1232 0x24180000, /* li t8, <pltindex> */
1233 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1234 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1235 0x8f390000, /* lw t9, 0(t9) */
1236 0x00000000, /* nop */
1237 0x03200008, /* jr t9 */
1238 0x00000000 /* nop */
1239 };
1240
1241 /* The format of the first PLT entry in a VxWorks shared object. */
1242 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1243 {
1244 0x8f990008, /* lw t9, 8(gp) */
1245 0x00000000, /* nop */
1246 0x03200008, /* jr t9 */
1247 0x00000000, /* nop */
1248 0x00000000, /* nop */
1249 0x00000000 /* nop */
1250 };
1251
1252 /* The format of subsequent PLT entries. */
1253 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1254 {
1255 0x10000000, /* b .PLT_resolver */
1256 0x24180000 /* li t8, <pltindex> */
1257 };
1258 \f
1259 /* microMIPS 32-bit opcode helper installer. */
1260
1261 static void
1262 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1263 {
1264 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1265 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1266 }
1267
1268 /* microMIPS 32-bit opcode helper retriever. */
1269
1270 static bfd_vma
1271 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1272 {
1273 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1274 }
1275 \f
1276 /* Look up an entry in a MIPS ELF linker hash table. */
1277
1278 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1279 ((struct mips_elf_link_hash_entry *) \
1280 elf_link_hash_lookup (&(table)->root, (string), (create), \
1281 (copy), (follow)))
1282
1283 /* Traverse a MIPS ELF linker hash table. */
1284
1285 #define mips_elf_link_hash_traverse(table, func, info) \
1286 (elf_link_hash_traverse \
1287 (&(table)->root, \
1288 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1289 (info)))
1290
1291 /* Find the base offsets for thread-local storage in this object,
1292 for GD/LD and IE/LE respectively. */
1293
1294 #define TP_OFFSET 0x7000
1295 #define DTP_OFFSET 0x8000
1296
1297 static bfd_vma
1298 dtprel_base (struct bfd_link_info *info)
1299 {
1300 /* If tls_sec is NULL, we should have signalled an error already. */
1301 if (elf_hash_table (info)->tls_sec == NULL)
1302 return 0;
1303 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1304 }
1305
1306 static bfd_vma
1307 tprel_base (struct bfd_link_info *info)
1308 {
1309 /* If tls_sec is NULL, we should have signalled an error already. */
1310 if (elf_hash_table (info)->tls_sec == NULL)
1311 return 0;
1312 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1313 }
1314
1315 /* Create an entry in a MIPS ELF linker hash table. */
1316
1317 static struct bfd_hash_entry *
1318 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1319 struct bfd_hash_table *table, const char *string)
1320 {
1321 struct mips_elf_link_hash_entry *ret =
1322 (struct mips_elf_link_hash_entry *) entry;
1323
1324 /* Allocate the structure if it has not already been allocated by a
1325 subclass. */
1326 if (ret == NULL)
1327 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1328 if (ret == NULL)
1329 return (struct bfd_hash_entry *) ret;
1330
1331 /* Call the allocation method of the superclass. */
1332 ret = ((struct mips_elf_link_hash_entry *)
1333 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1334 table, string));
1335 if (ret != NULL)
1336 {
1337 /* Set local fields. */
1338 memset (&ret->esym, 0, sizeof (EXTR));
1339 /* We use -2 as a marker to indicate that the information has
1340 not been set. -1 means there is no associated ifd. */
1341 ret->esym.ifd = -2;
1342 ret->la25_stub = 0;
1343 ret->possibly_dynamic_relocs = 0;
1344 ret->fn_stub = NULL;
1345 ret->call_stub = NULL;
1346 ret->call_fp_stub = NULL;
1347 ret->mipsxhash_loc = 0;
1348 ret->global_got_area = GGA_NONE;
1349 ret->got_only_for_calls = TRUE;
1350 ret->readonly_reloc = FALSE;
1351 ret->has_static_relocs = FALSE;
1352 ret->no_fn_stub = FALSE;
1353 ret->need_fn_stub = FALSE;
1354 ret->has_nonpic_branches = FALSE;
1355 ret->needs_lazy_stub = FALSE;
1356 ret->use_plt_entry = FALSE;
1357 }
1358
1359 return (struct bfd_hash_entry *) ret;
1360 }
1361
1362 /* Allocate MIPS ELF private object data. */
1363
1364 bfd_boolean
1365 _bfd_mips_elf_mkobject (bfd *abfd)
1366 {
1367 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1368 MIPS_ELF_DATA);
1369 }
1370
1371 bfd_boolean
1372 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1373 {
1374 if (!sec->used_by_bfd)
1375 {
1376 struct _mips_elf_section_data *sdata;
1377 size_t amt = sizeof (*sdata);
1378
1379 sdata = bfd_zalloc (abfd, amt);
1380 if (sdata == NULL)
1381 return FALSE;
1382 sec->used_by_bfd = sdata;
1383 }
1384
1385 return _bfd_elf_new_section_hook (abfd, sec);
1386 }
1387 \f
1388 /* Read ECOFF debugging information from a .mdebug section into a
1389 ecoff_debug_info structure. */
1390
1391 bfd_boolean
1392 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1393 struct ecoff_debug_info *debug)
1394 {
1395 HDRR *symhdr;
1396 const struct ecoff_debug_swap *swap;
1397 char *ext_hdr;
1398
1399 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1400 memset (debug, 0, sizeof (*debug));
1401
1402 ext_hdr = bfd_malloc (swap->external_hdr_size);
1403 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1404 goto error_return;
1405
1406 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1407 swap->external_hdr_size))
1408 goto error_return;
1409
1410 symhdr = &debug->symbolic_header;
1411 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1412
1413 /* The symbolic header contains absolute file offsets and sizes to
1414 read. */
1415 #define READ(ptr, offset, count, size, type) \
1416 do \
1417 { \
1418 size_t amt; \
1419 debug->ptr = NULL; \
1420 if (symhdr->count == 0) \
1421 break; \
1422 if (_bfd_mul_overflow (size, symhdr->count, &amt)) \
1423 { \
1424 bfd_set_error (bfd_error_file_too_big); \
1425 goto error_return; \
1426 } \
1427 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \
1428 goto error_return; \
1429 debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt); \
1430 if (debug->ptr == NULL) \
1431 goto error_return; \
1432 } while (0)
1433
1434 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1435 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1436 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1437 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1438 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1439 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1440 union aux_ext *);
1441 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1442 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1443 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1444 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1445 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1446 #undef READ
1447
1448 debug->fdr = NULL;
1449
1450 return TRUE;
1451
1452 error_return:
1453 if (ext_hdr != NULL)
1454 free (ext_hdr);
1455 if (debug->line != NULL)
1456 free (debug->line);
1457 if (debug->external_dnr != NULL)
1458 free (debug->external_dnr);
1459 if (debug->external_pdr != NULL)
1460 free (debug->external_pdr);
1461 if (debug->external_sym != NULL)
1462 free (debug->external_sym);
1463 if (debug->external_opt != NULL)
1464 free (debug->external_opt);
1465 if (debug->external_aux != NULL)
1466 free (debug->external_aux);
1467 if (debug->ss != NULL)
1468 free (debug->ss);
1469 if (debug->ssext != NULL)
1470 free (debug->ssext);
1471 if (debug->external_fdr != NULL)
1472 free (debug->external_fdr);
1473 if (debug->external_rfd != NULL)
1474 free (debug->external_rfd);
1475 if (debug->external_ext != NULL)
1476 free (debug->external_ext);
1477 return FALSE;
1478 }
1479 \f
1480 /* Swap RPDR (runtime procedure table entry) for output. */
1481
1482 static void
1483 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1484 {
1485 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1486 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1487 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1488 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1489 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1490 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1491
1492 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1493 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1494
1495 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1496 }
1497
1498 /* Create a runtime procedure table from the .mdebug section. */
1499
1500 static bfd_boolean
1501 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1502 struct bfd_link_info *info, asection *s,
1503 struct ecoff_debug_info *debug)
1504 {
1505 const struct ecoff_debug_swap *swap;
1506 HDRR *hdr = &debug->symbolic_header;
1507 RPDR *rpdr, *rp;
1508 struct rpdr_ext *erp;
1509 void *rtproc;
1510 struct pdr_ext *epdr;
1511 struct sym_ext *esym;
1512 char *ss, **sv;
1513 char *str;
1514 bfd_size_type size;
1515 bfd_size_type count;
1516 unsigned long sindex;
1517 unsigned long i;
1518 PDR pdr;
1519 SYMR sym;
1520 const char *no_name_func = _("static procedure (no name)");
1521
1522 epdr = NULL;
1523 rpdr = NULL;
1524 esym = NULL;
1525 ss = NULL;
1526 sv = NULL;
1527
1528 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1529
1530 sindex = strlen (no_name_func) + 1;
1531 count = hdr->ipdMax;
1532 if (count > 0)
1533 {
1534 size = swap->external_pdr_size;
1535
1536 epdr = bfd_malloc (size * count);
1537 if (epdr == NULL)
1538 goto error_return;
1539
1540 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1541 goto error_return;
1542
1543 size = sizeof (RPDR);
1544 rp = rpdr = bfd_malloc (size * count);
1545 if (rpdr == NULL)
1546 goto error_return;
1547
1548 size = sizeof (char *);
1549 sv = bfd_malloc (size * count);
1550 if (sv == NULL)
1551 goto error_return;
1552
1553 count = hdr->isymMax;
1554 size = swap->external_sym_size;
1555 esym = bfd_malloc (size * count);
1556 if (esym == NULL)
1557 goto error_return;
1558
1559 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1560 goto error_return;
1561
1562 count = hdr->issMax;
1563 ss = bfd_malloc (count);
1564 if (ss == NULL)
1565 goto error_return;
1566 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1567 goto error_return;
1568
1569 count = hdr->ipdMax;
1570 for (i = 0; i < (unsigned long) count; i++, rp++)
1571 {
1572 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1573 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1574 rp->adr = sym.value;
1575 rp->regmask = pdr.regmask;
1576 rp->regoffset = pdr.regoffset;
1577 rp->fregmask = pdr.fregmask;
1578 rp->fregoffset = pdr.fregoffset;
1579 rp->frameoffset = pdr.frameoffset;
1580 rp->framereg = pdr.framereg;
1581 rp->pcreg = pdr.pcreg;
1582 rp->irpss = sindex;
1583 sv[i] = ss + sym.iss;
1584 sindex += strlen (sv[i]) + 1;
1585 }
1586 }
1587
1588 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1589 size = BFD_ALIGN (size, 16);
1590 rtproc = bfd_alloc (abfd, size);
1591 if (rtproc == NULL)
1592 {
1593 mips_elf_hash_table (info)->procedure_count = 0;
1594 goto error_return;
1595 }
1596
1597 mips_elf_hash_table (info)->procedure_count = count + 2;
1598
1599 erp = rtproc;
1600 memset (erp, 0, sizeof (struct rpdr_ext));
1601 erp++;
1602 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1603 strcpy (str, no_name_func);
1604 str += strlen (no_name_func) + 1;
1605 for (i = 0; i < count; i++)
1606 {
1607 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1608 strcpy (str, sv[i]);
1609 str += strlen (sv[i]) + 1;
1610 }
1611 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1612
1613 /* Set the size and contents of .rtproc section. */
1614 s->size = size;
1615 s->contents = rtproc;
1616
1617 /* Skip this section later on (I don't think this currently
1618 matters, but someday it might). */
1619 s->map_head.link_order = NULL;
1620
1621 if (epdr != NULL)
1622 free (epdr);
1623 if (rpdr != NULL)
1624 free (rpdr);
1625 if (esym != NULL)
1626 free (esym);
1627 if (ss != NULL)
1628 free (ss);
1629 if (sv != NULL)
1630 free (sv);
1631
1632 return TRUE;
1633
1634 error_return:
1635 if (epdr != NULL)
1636 free (epdr);
1637 if (rpdr != NULL)
1638 free (rpdr);
1639 if (esym != NULL)
1640 free (esym);
1641 if (ss != NULL)
1642 free (ss);
1643 if (sv != NULL)
1644 free (sv);
1645 return FALSE;
1646 }
1647 \f
1648 /* We're going to create a stub for H. Create a symbol for the stub's
1649 value and size, to help make the disassembly easier to read. */
1650
1651 static bfd_boolean
1652 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1653 struct mips_elf_link_hash_entry *h,
1654 const char *prefix, asection *s, bfd_vma value,
1655 bfd_vma size)
1656 {
1657 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1658 struct bfd_link_hash_entry *bh;
1659 struct elf_link_hash_entry *elfh;
1660 char *name;
1661 bfd_boolean res;
1662
1663 if (micromips_p)
1664 value |= 1;
1665
1666 /* Create a new symbol. */
1667 name = concat (prefix, h->root.root.root.string, NULL);
1668 bh = NULL;
1669 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1670 BSF_LOCAL, s, value, NULL,
1671 TRUE, FALSE, &bh);
1672 free (name);
1673 if (! res)
1674 return FALSE;
1675
1676 /* Make it a local function. */
1677 elfh = (struct elf_link_hash_entry *) bh;
1678 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1679 elfh->size = size;
1680 elfh->forced_local = 1;
1681 if (micromips_p)
1682 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1683 return TRUE;
1684 }
1685
1686 /* We're about to redefine H. Create a symbol to represent H's
1687 current value and size, to help make the disassembly easier
1688 to read. */
1689
1690 static bfd_boolean
1691 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1692 struct mips_elf_link_hash_entry *h,
1693 const char *prefix)
1694 {
1695 struct bfd_link_hash_entry *bh;
1696 struct elf_link_hash_entry *elfh;
1697 char *name;
1698 asection *s;
1699 bfd_vma value;
1700 bfd_boolean res;
1701
1702 /* Read the symbol's value. */
1703 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1704 || h->root.root.type == bfd_link_hash_defweak);
1705 s = h->root.root.u.def.section;
1706 value = h->root.root.u.def.value;
1707
1708 /* Create a new symbol. */
1709 name = concat (prefix, h->root.root.root.string, NULL);
1710 bh = NULL;
1711 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1712 BSF_LOCAL, s, value, NULL,
1713 TRUE, FALSE, &bh);
1714 free (name);
1715 if (! res)
1716 return FALSE;
1717
1718 /* Make it local and copy the other attributes from H. */
1719 elfh = (struct elf_link_hash_entry *) bh;
1720 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1721 elfh->other = h->root.other;
1722 elfh->size = h->root.size;
1723 elfh->forced_local = 1;
1724 return TRUE;
1725 }
1726
1727 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1728 function rather than to a hard-float stub. */
1729
1730 static bfd_boolean
1731 section_allows_mips16_refs_p (asection *section)
1732 {
1733 const char *name;
1734
1735 name = bfd_section_name (section);
1736 return (FN_STUB_P (name)
1737 || CALL_STUB_P (name)
1738 || CALL_FP_STUB_P (name)
1739 || strcmp (name, ".pdr") == 0);
1740 }
1741
1742 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1743 stub section of some kind. Return the R_SYMNDX of the target
1744 function, or 0 if we can't decide which function that is. */
1745
1746 static unsigned long
1747 mips16_stub_symndx (const struct elf_backend_data *bed,
1748 asection *sec ATTRIBUTE_UNUSED,
1749 const Elf_Internal_Rela *relocs,
1750 const Elf_Internal_Rela *relend)
1751 {
1752 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1753 const Elf_Internal_Rela *rel;
1754
1755 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1756 one in a compound relocation. */
1757 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1758 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1759 return ELF_R_SYM (sec->owner, rel->r_info);
1760
1761 /* Otherwise trust the first relocation, whatever its kind. This is
1762 the traditional behavior. */
1763 if (relocs < relend)
1764 return ELF_R_SYM (sec->owner, relocs->r_info);
1765
1766 return 0;
1767 }
1768
1769 /* Check the mips16 stubs for a particular symbol, and see if we can
1770 discard them. */
1771
1772 static void
1773 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1774 struct mips_elf_link_hash_entry *h)
1775 {
1776 /* Dynamic symbols must use the standard call interface, in case other
1777 objects try to call them. */
1778 if (h->fn_stub != NULL
1779 && h->root.dynindx != -1)
1780 {
1781 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1782 h->need_fn_stub = TRUE;
1783 }
1784
1785 if (h->fn_stub != NULL
1786 && ! h->need_fn_stub)
1787 {
1788 /* We don't need the fn_stub; the only references to this symbol
1789 are 16 bit calls. Clobber the size to 0 to prevent it from
1790 being included in the link. */
1791 h->fn_stub->size = 0;
1792 h->fn_stub->flags &= ~SEC_RELOC;
1793 h->fn_stub->reloc_count = 0;
1794 h->fn_stub->flags |= SEC_EXCLUDE;
1795 h->fn_stub->output_section = bfd_abs_section_ptr;
1796 }
1797
1798 if (h->call_stub != NULL
1799 && ELF_ST_IS_MIPS16 (h->root.other))
1800 {
1801 /* We don't need the call_stub; this is a 16 bit function, so
1802 calls from other 16 bit functions are OK. Clobber the size
1803 to 0 to prevent it from being included in the link. */
1804 h->call_stub->size = 0;
1805 h->call_stub->flags &= ~SEC_RELOC;
1806 h->call_stub->reloc_count = 0;
1807 h->call_stub->flags |= SEC_EXCLUDE;
1808 h->call_stub->output_section = bfd_abs_section_ptr;
1809 }
1810
1811 if (h->call_fp_stub != NULL
1812 && ELF_ST_IS_MIPS16 (h->root.other))
1813 {
1814 /* We don't need the call_stub; this is a 16 bit function, so
1815 calls from other 16 bit functions are OK. Clobber the size
1816 to 0 to prevent it from being included in the link. */
1817 h->call_fp_stub->size = 0;
1818 h->call_fp_stub->flags &= ~SEC_RELOC;
1819 h->call_fp_stub->reloc_count = 0;
1820 h->call_fp_stub->flags |= SEC_EXCLUDE;
1821 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1822 }
1823 }
1824
1825 /* Hashtable callbacks for mips_elf_la25_stubs. */
1826
1827 static hashval_t
1828 mips_elf_la25_stub_hash (const void *entry_)
1829 {
1830 const struct mips_elf_la25_stub *entry;
1831
1832 entry = (struct mips_elf_la25_stub *) entry_;
1833 return entry->h->root.root.u.def.section->id
1834 + entry->h->root.root.u.def.value;
1835 }
1836
1837 static int
1838 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1839 {
1840 const struct mips_elf_la25_stub *entry1, *entry2;
1841
1842 entry1 = (struct mips_elf_la25_stub *) entry1_;
1843 entry2 = (struct mips_elf_la25_stub *) entry2_;
1844 return ((entry1->h->root.root.u.def.section
1845 == entry2->h->root.root.u.def.section)
1846 && (entry1->h->root.root.u.def.value
1847 == entry2->h->root.root.u.def.value));
1848 }
1849
1850 /* Called by the linker to set up the la25 stub-creation code. FN is
1851 the linker's implementation of add_stub_function. Return true on
1852 success. */
1853
1854 bfd_boolean
1855 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1856 asection *(*fn) (const char *, asection *,
1857 asection *))
1858 {
1859 struct mips_elf_link_hash_table *htab;
1860
1861 htab = mips_elf_hash_table (info);
1862 if (htab == NULL)
1863 return FALSE;
1864
1865 htab->add_stub_section = fn;
1866 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1867 mips_elf_la25_stub_eq, NULL);
1868 if (htab->la25_stubs == NULL)
1869 return FALSE;
1870
1871 return TRUE;
1872 }
1873
1874 /* Return true if H is a locally-defined PIC function, in the sense
1875 that it or its fn_stub might need $25 to be valid on entry.
1876 Note that MIPS16 functions set up $gp using PC-relative instructions,
1877 so they themselves never need $25 to be valid. Only non-MIPS16
1878 entry points are of interest here. */
1879
1880 static bfd_boolean
1881 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1882 {
1883 return ((h->root.root.type == bfd_link_hash_defined
1884 || h->root.root.type == bfd_link_hash_defweak)
1885 && h->root.def_regular
1886 && !bfd_is_abs_section (h->root.root.u.def.section)
1887 && !bfd_is_und_section (h->root.root.u.def.section)
1888 && (!ELF_ST_IS_MIPS16 (h->root.other)
1889 || (h->fn_stub && h->need_fn_stub))
1890 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1891 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1892 }
1893
1894 /* Set *SEC to the input section that contains the target of STUB.
1895 Return the offset of the target from the start of that section. */
1896
1897 static bfd_vma
1898 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1899 asection **sec)
1900 {
1901 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1902 {
1903 BFD_ASSERT (stub->h->need_fn_stub);
1904 *sec = stub->h->fn_stub;
1905 return 0;
1906 }
1907 else
1908 {
1909 *sec = stub->h->root.root.u.def.section;
1910 return stub->h->root.root.u.def.value;
1911 }
1912 }
1913
1914 /* STUB describes an la25 stub that we have decided to implement
1915 by inserting an LUI/ADDIU pair before the target function.
1916 Create the section and redirect the function symbol to it. */
1917
1918 static bfd_boolean
1919 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1920 struct bfd_link_info *info)
1921 {
1922 struct mips_elf_link_hash_table *htab;
1923 char *name;
1924 asection *s, *input_section;
1925 unsigned int align;
1926
1927 htab = mips_elf_hash_table (info);
1928 if (htab == NULL)
1929 return FALSE;
1930
1931 /* Create a unique name for the new section. */
1932 name = bfd_malloc (11 + sizeof (".text.stub."));
1933 if (name == NULL)
1934 return FALSE;
1935 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1936
1937 /* Create the section. */
1938 mips_elf_get_la25_target (stub, &input_section);
1939 s = htab->add_stub_section (name, input_section,
1940 input_section->output_section);
1941 if (s == NULL)
1942 return FALSE;
1943
1944 /* Make sure that any padding goes before the stub. */
1945 align = input_section->alignment_power;
1946 if (!bfd_set_section_alignment (s, align))
1947 return FALSE;
1948 if (align > 3)
1949 s->size = (1 << align) - 8;
1950
1951 /* Create a symbol for the stub. */
1952 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1953 stub->stub_section = s;
1954 stub->offset = s->size;
1955
1956 /* Allocate room for it. */
1957 s->size += 8;
1958 return TRUE;
1959 }
1960
1961 /* STUB describes an la25 stub that we have decided to implement
1962 with a separate trampoline. Allocate room for it and redirect
1963 the function symbol to it. */
1964
1965 static bfd_boolean
1966 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1967 struct bfd_link_info *info)
1968 {
1969 struct mips_elf_link_hash_table *htab;
1970 asection *s;
1971
1972 htab = mips_elf_hash_table (info);
1973 if (htab == NULL)
1974 return FALSE;
1975
1976 /* Create a trampoline section, if we haven't already. */
1977 s = htab->strampoline;
1978 if (s == NULL)
1979 {
1980 asection *input_section = stub->h->root.root.u.def.section;
1981 s = htab->add_stub_section (".text", NULL,
1982 input_section->output_section);
1983 if (s == NULL || !bfd_set_section_alignment (s, 4))
1984 return FALSE;
1985 htab->strampoline = s;
1986 }
1987
1988 /* Create a symbol for the stub. */
1989 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1990 stub->stub_section = s;
1991 stub->offset = s->size;
1992
1993 /* Allocate room for it. */
1994 s->size += 16;
1995 return TRUE;
1996 }
1997
1998 /* H describes a symbol that needs an la25 stub. Make sure that an
1999 appropriate stub exists and point H at it. */
2000
2001 static bfd_boolean
2002 mips_elf_add_la25_stub (struct bfd_link_info *info,
2003 struct mips_elf_link_hash_entry *h)
2004 {
2005 struct mips_elf_link_hash_table *htab;
2006 struct mips_elf_la25_stub search, *stub;
2007 bfd_boolean use_trampoline_p;
2008 asection *s;
2009 bfd_vma value;
2010 void **slot;
2011
2012 /* Describe the stub we want. */
2013 search.stub_section = NULL;
2014 search.offset = 0;
2015 search.h = h;
2016
2017 /* See if we've already created an equivalent stub. */
2018 htab = mips_elf_hash_table (info);
2019 if (htab == NULL)
2020 return FALSE;
2021
2022 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
2023 if (slot == NULL)
2024 return FALSE;
2025
2026 stub = (struct mips_elf_la25_stub *) *slot;
2027 if (stub != NULL)
2028 {
2029 /* We can reuse the existing stub. */
2030 h->la25_stub = stub;
2031 return TRUE;
2032 }
2033
2034 /* Create a permanent copy of ENTRY and add it to the hash table. */
2035 stub = bfd_malloc (sizeof (search));
2036 if (stub == NULL)
2037 return FALSE;
2038 *stub = search;
2039 *slot = stub;
2040
2041 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2042 of the section and if we would need no more than 2 nops. */
2043 value = mips_elf_get_la25_target (stub, &s);
2044 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2045 value &= ~1;
2046 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2047
2048 h->la25_stub = stub;
2049 return (use_trampoline_p
2050 ? mips_elf_add_la25_trampoline (stub, info)
2051 : mips_elf_add_la25_intro (stub, info));
2052 }
2053
2054 /* A mips_elf_link_hash_traverse callback that is called before sizing
2055 sections. DATA points to a mips_htab_traverse_info structure. */
2056
2057 static bfd_boolean
2058 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2059 {
2060 struct mips_htab_traverse_info *hti;
2061
2062 hti = (struct mips_htab_traverse_info *) data;
2063 if (!bfd_link_relocatable (hti->info))
2064 mips_elf_check_mips16_stubs (hti->info, h);
2065
2066 if (mips_elf_local_pic_function_p (h))
2067 {
2068 /* PR 12845: If H is in a section that has been garbage
2069 collected it will have its output section set to *ABS*. */
2070 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2071 return TRUE;
2072
2073 /* H is a function that might need $25 to be valid on entry.
2074 If we're creating a non-PIC relocatable object, mark H as
2075 being PIC. If we're creating a non-relocatable object with
2076 non-PIC branches and jumps to H, make sure that H has an la25
2077 stub. */
2078 if (bfd_link_relocatable (hti->info))
2079 {
2080 if (!PIC_OBJECT_P (hti->output_bfd))
2081 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2082 }
2083 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2084 {
2085 hti->error = TRUE;
2086 return FALSE;
2087 }
2088 }
2089 return TRUE;
2090 }
2091 \f
2092 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2093 Most mips16 instructions are 16 bits, but these instructions
2094 are 32 bits.
2095
2096 The format of these instructions is:
2097
2098 +--------------+--------------------------------+
2099 | JALX | X| Imm 20:16 | Imm 25:21 |
2100 +--------------+--------------------------------+
2101 | Immediate 15:0 |
2102 +-----------------------------------------------+
2103
2104 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2105 Note that the immediate value in the first word is swapped.
2106
2107 When producing a relocatable object file, R_MIPS16_26 is
2108 handled mostly like R_MIPS_26. In particular, the addend is
2109 stored as a straight 26-bit value in a 32-bit instruction.
2110 (gas makes life simpler for itself by never adjusting a
2111 R_MIPS16_26 reloc to be against a section, so the addend is
2112 always zero). However, the 32 bit instruction is stored as 2
2113 16-bit values, rather than a single 32-bit value. In a
2114 big-endian file, the result is the same; in a little-endian
2115 file, the two 16-bit halves of the 32 bit value are swapped.
2116 This is so that a disassembler can recognize the jal
2117 instruction.
2118
2119 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2120 instruction stored as two 16-bit values. The addend A is the
2121 contents of the targ26 field. The calculation is the same as
2122 R_MIPS_26. When storing the calculated value, reorder the
2123 immediate value as shown above, and don't forget to store the
2124 value as two 16-bit values.
2125
2126 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2127 defined as
2128
2129 big-endian:
2130 +--------+----------------------+
2131 | | |
2132 | | targ26-16 |
2133 |31 26|25 0|
2134 +--------+----------------------+
2135
2136 little-endian:
2137 +----------+------+-------------+
2138 | | | |
2139 | sub1 | | sub2 |
2140 |0 9|10 15|16 31|
2141 +----------+--------------------+
2142 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2143 ((sub1 << 16) | sub2)).
2144
2145 When producing a relocatable object file, the calculation is
2146 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2147 When producing a fully linked file, the calculation is
2148 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2149 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2150
2151 The table below lists the other MIPS16 instruction relocations.
2152 Each one is calculated in the same way as the non-MIPS16 relocation
2153 given on the right, but using the extended MIPS16 layout of 16-bit
2154 immediate fields:
2155
2156 R_MIPS16_GPREL R_MIPS_GPREL16
2157 R_MIPS16_GOT16 R_MIPS_GOT16
2158 R_MIPS16_CALL16 R_MIPS_CALL16
2159 R_MIPS16_HI16 R_MIPS_HI16
2160 R_MIPS16_LO16 R_MIPS_LO16
2161
2162 A typical instruction will have a format like this:
2163
2164 +--------------+--------------------------------+
2165 | EXTEND | Imm 10:5 | Imm 15:11 |
2166 +--------------+--------------------------------+
2167 | Major | rx | ry | Imm 4:0 |
2168 +--------------+--------------------------------+
2169
2170 EXTEND is the five bit value 11110. Major is the instruction
2171 opcode.
2172
2173 All we need to do here is shuffle the bits appropriately.
2174 As above, the two 16-bit halves must be swapped on a
2175 little-endian system.
2176
2177 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2178 relocatable field is shifted by 1 rather than 2 and the same bit
2179 shuffling is done as with the relocations above. */
2180
2181 static inline bfd_boolean
2182 mips16_reloc_p (int r_type)
2183 {
2184 switch (r_type)
2185 {
2186 case R_MIPS16_26:
2187 case R_MIPS16_GPREL:
2188 case R_MIPS16_GOT16:
2189 case R_MIPS16_CALL16:
2190 case R_MIPS16_HI16:
2191 case R_MIPS16_LO16:
2192 case R_MIPS16_TLS_GD:
2193 case R_MIPS16_TLS_LDM:
2194 case R_MIPS16_TLS_DTPREL_HI16:
2195 case R_MIPS16_TLS_DTPREL_LO16:
2196 case R_MIPS16_TLS_GOTTPREL:
2197 case R_MIPS16_TLS_TPREL_HI16:
2198 case R_MIPS16_TLS_TPREL_LO16:
2199 case R_MIPS16_PC16_S1:
2200 return TRUE;
2201
2202 default:
2203 return FALSE;
2204 }
2205 }
2206
2207 /* Check if a microMIPS reloc. */
2208
2209 static inline bfd_boolean
2210 micromips_reloc_p (unsigned int r_type)
2211 {
2212 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2213 }
2214
2215 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2216 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2217 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2218
2219 static inline bfd_boolean
2220 micromips_reloc_shuffle_p (unsigned int r_type)
2221 {
2222 return (micromips_reloc_p (r_type)
2223 && r_type != R_MICROMIPS_PC7_S1
2224 && r_type != R_MICROMIPS_PC10_S1);
2225 }
2226
2227 static inline bfd_boolean
2228 got16_reloc_p (int r_type)
2229 {
2230 return (r_type == R_MIPS_GOT16
2231 || r_type == R_MIPS16_GOT16
2232 || r_type == R_MICROMIPS_GOT16);
2233 }
2234
2235 static inline bfd_boolean
2236 call16_reloc_p (int r_type)
2237 {
2238 return (r_type == R_MIPS_CALL16
2239 || r_type == R_MIPS16_CALL16
2240 || r_type == R_MICROMIPS_CALL16);
2241 }
2242
2243 static inline bfd_boolean
2244 got_disp_reloc_p (unsigned int r_type)
2245 {
2246 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2247 }
2248
2249 static inline bfd_boolean
2250 got_page_reloc_p (unsigned int r_type)
2251 {
2252 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2253 }
2254
2255 static inline bfd_boolean
2256 got_lo16_reloc_p (unsigned int r_type)
2257 {
2258 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2259 }
2260
2261 static inline bfd_boolean
2262 call_hi16_reloc_p (unsigned int r_type)
2263 {
2264 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2265 }
2266
2267 static inline bfd_boolean
2268 call_lo16_reloc_p (unsigned int r_type)
2269 {
2270 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2271 }
2272
2273 static inline bfd_boolean
2274 hi16_reloc_p (int r_type)
2275 {
2276 return (r_type == R_MIPS_HI16
2277 || r_type == R_MIPS16_HI16
2278 || r_type == R_MICROMIPS_HI16
2279 || r_type == R_MIPS_PCHI16);
2280 }
2281
2282 static inline bfd_boolean
2283 lo16_reloc_p (int r_type)
2284 {
2285 return (r_type == R_MIPS_LO16
2286 || r_type == R_MIPS16_LO16
2287 || r_type == R_MICROMIPS_LO16
2288 || r_type == R_MIPS_PCLO16);
2289 }
2290
2291 static inline bfd_boolean
2292 mips16_call_reloc_p (int r_type)
2293 {
2294 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2295 }
2296
2297 static inline bfd_boolean
2298 jal_reloc_p (int r_type)
2299 {
2300 return (r_type == R_MIPS_26
2301 || r_type == R_MIPS16_26
2302 || r_type == R_MICROMIPS_26_S1);
2303 }
2304
2305 static inline bfd_boolean
2306 b_reloc_p (int r_type)
2307 {
2308 return (r_type == R_MIPS_PC26_S2
2309 || r_type == R_MIPS_PC21_S2
2310 || r_type == R_MIPS_PC16
2311 || r_type == R_MIPS_GNU_REL16_S2
2312 || r_type == R_MIPS16_PC16_S1
2313 || r_type == R_MICROMIPS_PC16_S1
2314 || r_type == R_MICROMIPS_PC10_S1
2315 || r_type == R_MICROMIPS_PC7_S1);
2316 }
2317
2318 static inline bfd_boolean
2319 aligned_pcrel_reloc_p (int r_type)
2320 {
2321 return (r_type == R_MIPS_PC18_S3
2322 || r_type == R_MIPS_PC19_S2);
2323 }
2324
2325 static inline bfd_boolean
2326 branch_reloc_p (int r_type)
2327 {
2328 return (r_type == R_MIPS_26
2329 || r_type == R_MIPS_PC26_S2
2330 || r_type == R_MIPS_PC21_S2
2331 || r_type == R_MIPS_PC16
2332 || r_type == R_MIPS_GNU_REL16_S2);
2333 }
2334
2335 static inline bfd_boolean
2336 mips16_branch_reloc_p (int r_type)
2337 {
2338 return (r_type == R_MIPS16_26
2339 || r_type == R_MIPS16_PC16_S1);
2340 }
2341
2342 static inline bfd_boolean
2343 micromips_branch_reloc_p (int r_type)
2344 {
2345 return (r_type == R_MICROMIPS_26_S1
2346 || r_type == R_MICROMIPS_PC16_S1
2347 || r_type == R_MICROMIPS_PC10_S1
2348 || r_type == R_MICROMIPS_PC7_S1);
2349 }
2350
2351 static inline bfd_boolean
2352 tls_gd_reloc_p (unsigned int r_type)
2353 {
2354 return (r_type == R_MIPS_TLS_GD
2355 || r_type == R_MIPS16_TLS_GD
2356 || r_type == R_MICROMIPS_TLS_GD);
2357 }
2358
2359 static inline bfd_boolean
2360 tls_ldm_reloc_p (unsigned int r_type)
2361 {
2362 return (r_type == R_MIPS_TLS_LDM
2363 || r_type == R_MIPS16_TLS_LDM
2364 || r_type == R_MICROMIPS_TLS_LDM);
2365 }
2366
2367 static inline bfd_boolean
2368 tls_gottprel_reloc_p (unsigned int r_type)
2369 {
2370 return (r_type == R_MIPS_TLS_GOTTPREL
2371 || r_type == R_MIPS16_TLS_GOTTPREL
2372 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2373 }
2374
2375 void
2376 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2377 bfd_boolean jal_shuffle, bfd_byte *data)
2378 {
2379 bfd_vma first, second, val;
2380
2381 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2382 return;
2383
2384 /* Pick up the first and second halfwords of the instruction. */
2385 first = bfd_get_16 (abfd, data);
2386 second = bfd_get_16 (abfd, data + 2);
2387 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2388 val = first << 16 | second;
2389 else if (r_type != R_MIPS16_26)
2390 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2391 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2392 else
2393 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2394 | ((first & 0x1f) << 21) | second);
2395 bfd_put_32 (abfd, val, data);
2396 }
2397
2398 void
2399 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2400 bfd_boolean jal_shuffle, bfd_byte *data)
2401 {
2402 bfd_vma first, second, val;
2403
2404 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2405 return;
2406
2407 val = bfd_get_32 (abfd, data);
2408 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2409 {
2410 second = val & 0xffff;
2411 first = val >> 16;
2412 }
2413 else if (r_type != R_MIPS16_26)
2414 {
2415 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2416 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2417 }
2418 else
2419 {
2420 second = val & 0xffff;
2421 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2422 | ((val >> 21) & 0x1f);
2423 }
2424 bfd_put_16 (abfd, second, data + 2);
2425 bfd_put_16 (abfd, first, data);
2426 }
2427
2428 bfd_reloc_status_type
2429 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2430 arelent *reloc_entry, asection *input_section,
2431 bfd_boolean relocatable, void *data, bfd_vma gp)
2432 {
2433 bfd_vma relocation;
2434 bfd_signed_vma val;
2435 bfd_reloc_status_type status;
2436
2437 if (bfd_is_com_section (symbol->section))
2438 relocation = 0;
2439 else
2440 relocation = symbol->value;
2441
2442 relocation += symbol->section->output_section->vma;
2443 relocation += symbol->section->output_offset;
2444
2445 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2446 return bfd_reloc_outofrange;
2447
2448 /* Set val to the offset into the section or symbol. */
2449 val = reloc_entry->addend;
2450
2451 _bfd_mips_elf_sign_extend (val, 16);
2452
2453 /* Adjust val for the final section location and GP value. If we
2454 are producing relocatable output, we don't want to do this for
2455 an external symbol. */
2456 if (! relocatable
2457 || (symbol->flags & BSF_SECTION_SYM) != 0)
2458 val += relocation - gp;
2459
2460 if (reloc_entry->howto->partial_inplace)
2461 {
2462 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2463 (bfd_byte *) data
2464 + reloc_entry->address);
2465 if (status != bfd_reloc_ok)
2466 return status;
2467 }
2468 else
2469 reloc_entry->addend = val;
2470
2471 if (relocatable)
2472 reloc_entry->address += input_section->output_offset;
2473
2474 return bfd_reloc_ok;
2475 }
2476
2477 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2478 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2479 that contains the relocation field and DATA points to the start of
2480 INPUT_SECTION. */
2481
2482 struct mips_hi16
2483 {
2484 struct mips_hi16 *next;
2485 bfd_byte *data;
2486 asection *input_section;
2487 arelent rel;
2488 };
2489
2490 /* FIXME: This should not be a static variable. */
2491
2492 static struct mips_hi16 *mips_hi16_list;
2493
2494 /* A howto special_function for REL *HI16 relocations. We can only
2495 calculate the correct value once we've seen the partnering
2496 *LO16 relocation, so just save the information for later.
2497
2498 The ABI requires that the *LO16 immediately follow the *HI16.
2499 However, as a GNU extension, we permit an arbitrary number of
2500 *HI16s to be associated with a single *LO16. This significantly
2501 simplies the relocation handling in gcc. */
2502
2503 bfd_reloc_status_type
2504 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2505 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2506 asection *input_section, bfd *output_bfd,
2507 char **error_message ATTRIBUTE_UNUSED)
2508 {
2509 struct mips_hi16 *n;
2510
2511 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2512 return bfd_reloc_outofrange;
2513
2514 n = bfd_malloc (sizeof *n);
2515 if (n == NULL)
2516 return bfd_reloc_outofrange;
2517
2518 n->next = mips_hi16_list;
2519 n->data = data;
2520 n->input_section = input_section;
2521 n->rel = *reloc_entry;
2522 mips_hi16_list = n;
2523
2524 if (output_bfd != NULL)
2525 reloc_entry->address += input_section->output_offset;
2526
2527 return bfd_reloc_ok;
2528 }
2529
2530 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2531 like any other 16-bit relocation when applied to global symbols, but is
2532 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2533
2534 bfd_reloc_status_type
2535 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2536 void *data, asection *input_section,
2537 bfd *output_bfd, char **error_message)
2538 {
2539 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2540 || bfd_is_und_section (bfd_asymbol_section (symbol))
2541 || bfd_is_com_section (bfd_asymbol_section (symbol)))
2542 /* The relocation is against a global symbol. */
2543 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2544 input_section, output_bfd,
2545 error_message);
2546
2547 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2548 input_section, output_bfd, error_message);
2549 }
2550
2551 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2552 is a straightforward 16 bit inplace relocation, but we must deal with
2553 any partnering high-part relocations as well. */
2554
2555 bfd_reloc_status_type
2556 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2557 void *data, asection *input_section,
2558 bfd *output_bfd, char **error_message)
2559 {
2560 bfd_vma vallo;
2561 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2562
2563 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2564 return bfd_reloc_outofrange;
2565
2566 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2567 location);
2568 vallo = bfd_get_32 (abfd, location);
2569 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2570 location);
2571
2572 while (mips_hi16_list != NULL)
2573 {
2574 bfd_reloc_status_type ret;
2575 struct mips_hi16 *hi;
2576
2577 hi = mips_hi16_list;
2578
2579 /* R_MIPS*_GOT16 relocations are something of a special case. We
2580 want to install the addend in the same way as for a R_MIPS*_HI16
2581 relocation (with a rightshift of 16). However, since GOT16
2582 relocations can also be used with global symbols, their howto
2583 has a rightshift of 0. */
2584 if (hi->rel.howto->type == R_MIPS_GOT16)
2585 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2586 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2587 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2588 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2589 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2590
2591 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2592 carry or borrow will induce a change of +1 or -1 in the high part. */
2593 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2594
2595 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2596 hi->input_section, output_bfd,
2597 error_message);
2598 if (ret != bfd_reloc_ok)
2599 return ret;
2600
2601 mips_hi16_list = hi->next;
2602 free (hi);
2603 }
2604
2605 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2606 input_section, output_bfd,
2607 error_message);
2608 }
2609
2610 /* A generic howto special_function. This calculates and installs the
2611 relocation itself, thus avoiding the oft-discussed problems in
2612 bfd_perform_relocation and bfd_install_relocation. */
2613
2614 bfd_reloc_status_type
2615 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2616 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2617 asection *input_section, bfd *output_bfd,
2618 char **error_message ATTRIBUTE_UNUSED)
2619 {
2620 bfd_signed_vma val;
2621 bfd_reloc_status_type status;
2622 bfd_boolean relocatable;
2623
2624 relocatable = (output_bfd != NULL);
2625
2626 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2627 return bfd_reloc_outofrange;
2628
2629 /* Build up the field adjustment in VAL. */
2630 val = 0;
2631 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2632 {
2633 /* Either we're calculating the final field value or we have a
2634 relocation against a section symbol. Add in the section's
2635 offset or address. */
2636 val += symbol->section->output_section->vma;
2637 val += symbol->section->output_offset;
2638 }
2639
2640 if (!relocatable)
2641 {
2642 /* We're calculating the final field value. Add in the symbol's value
2643 and, if pc-relative, subtract the address of the field itself. */
2644 val += symbol->value;
2645 if (reloc_entry->howto->pc_relative)
2646 {
2647 val -= input_section->output_section->vma;
2648 val -= input_section->output_offset;
2649 val -= reloc_entry->address;
2650 }
2651 }
2652
2653 /* VAL is now the final adjustment. If we're keeping this relocation
2654 in the output file, and if the relocation uses a separate addend,
2655 we just need to add VAL to that addend. Otherwise we need to add
2656 VAL to the relocation field itself. */
2657 if (relocatable && !reloc_entry->howto->partial_inplace)
2658 reloc_entry->addend += val;
2659 else
2660 {
2661 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2662
2663 /* Add in the separate addend, if any. */
2664 val += reloc_entry->addend;
2665
2666 /* Add VAL to the relocation field. */
2667 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2668 location);
2669 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2670 location);
2671 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2672 location);
2673
2674 if (status != bfd_reloc_ok)
2675 return status;
2676 }
2677
2678 if (relocatable)
2679 reloc_entry->address += input_section->output_offset;
2680
2681 return bfd_reloc_ok;
2682 }
2683 \f
2684 /* Swap an entry in a .gptab section. Note that these routines rely
2685 on the equivalence of the two elements of the union. */
2686
2687 static void
2688 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2689 Elf32_gptab *in)
2690 {
2691 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2692 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2693 }
2694
2695 static void
2696 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2697 Elf32_External_gptab *ex)
2698 {
2699 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2700 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2701 }
2702
2703 static void
2704 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2705 Elf32_External_compact_rel *ex)
2706 {
2707 H_PUT_32 (abfd, in->id1, ex->id1);
2708 H_PUT_32 (abfd, in->num, ex->num);
2709 H_PUT_32 (abfd, in->id2, ex->id2);
2710 H_PUT_32 (abfd, in->offset, ex->offset);
2711 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2712 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2713 }
2714
2715 static void
2716 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2717 Elf32_External_crinfo *ex)
2718 {
2719 unsigned long l;
2720
2721 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2722 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2723 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2724 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2725 H_PUT_32 (abfd, l, ex->info);
2726 H_PUT_32 (abfd, in->konst, ex->konst);
2727 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2728 }
2729 \f
2730 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2731 routines swap this structure in and out. They are used outside of
2732 BFD, so they are globally visible. */
2733
2734 void
2735 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2736 Elf32_RegInfo *in)
2737 {
2738 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2739 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2740 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2741 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2742 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2743 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2744 }
2745
2746 void
2747 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2748 Elf32_External_RegInfo *ex)
2749 {
2750 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2751 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2752 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2753 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2754 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2755 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2756 }
2757
2758 /* In the 64 bit ABI, the .MIPS.options section holds register
2759 information in an Elf64_Reginfo structure. These routines swap
2760 them in and out. They are globally visible because they are used
2761 outside of BFD. These routines are here so that gas can call them
2762 without worrying about whether the 64 bit ABI has been included. */
2763
2764 void
2765 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2766 Elf64_Internal_RegInfo *in)
2767 {
2768 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2769 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2770 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2771 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2772 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2773 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2774 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2775 }
2776
2777 void
2778 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2779 Elf64_External_RegInfo *ex)
2780 {
2781 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2782 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2783 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2784 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2785 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2786 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2787 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2788 }
2789
2790 /* Swap in an options header. */
2791
2792 void
2793 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2794 Elf_Internal_Options *in)
2795 {
2796 in->kind = H_GET_8 (abfd, ex->kind);
2797 in->size = H_GET_8 (abfd, ex->size);
2798 in->section = H_GET_16 (abfd, ex->section);
2799 in->info = H_GET_32 (abfd, ex->info);
2800 }
2801
2802 /* Swap out an options header. */
2803
2804 void
2805 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2806 Elf_External_Options *ex)
2807 {
2808 H_PUT_8 (abfd, in->kind, ex->kind);
2809 H_PUT_8 (abfd, in->size, ex->size);
2810 H_PUT_16 (abfd, in->section, ex->section);
2811 H_PUT_32 (abfd, in->info, ex->info);
2812 }
2813
2814 /* Swap in an abiflags structure. */
2815
2816 void
2817 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2818 const Elf_External_ABIFlags_v0 *ex,
2819 Elf_Internal_ABIFlags_v0 *in)
2820 {
2821 in->version = H_GET_16 (abfd, ex->version);
2822 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2823 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2824 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2825 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2826 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2827 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2828 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2829 in->ases = H_GET_32 (abfd, ex->ases);
2830 in->flags1 = H_GET_32 (abfd, ex->flags1);
2831 in->flags2 = H_GET_32 (abfd, ex->flags2);
2832 }
2833
2834 /* Swap out an abiflags structure. */
2835
2836 void
2837 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2838 const Elf_Internal_ABIFlags_v0 *in,
2839 Elf_External_ABIFlags_v0 *ex)
2840 {
2841 H_PUT_16 (abfd, in->version, ex->version);
2842 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2843 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2844 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2845 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2846 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2847 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2848 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2849 H_PUT_32 (abfd, in->ases, ex->ases);
2850 H_PUT_32 (abfd, in->flags1, ex->flags1);
2851 H_PUT_32 (abfd, in->flags2, ex->flags2);
2852 }
2853 \f
2854 /* This function is called via qsort() to sort the dynamic relocation
2855 entries by increasing r_symndx value. */
2856
2857 static int
2858 sort_dynamic_relocs (const void *arg1, const void *arg2)
2859 {
2860 Elf_Internal_Rela int_reloc1;
2861 Elf_Internal_Rela int_reloc2;
2862 int diff;
2863
2864 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2865 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2866
2867 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2868 if (diff != 0)
2869 return diff;
2870
2871 if (int_reloc1.r_offset < int_reloc2.r_offset)
2872 return -1;
2873 if (int_reloc1.r_offset > int_reloc2.r_offset)
2874 return 1;
2875 return 0;
2876 }
2877
2878 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2879
2880 static int
2881 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2882 const void *arg2 ATTRIBUTE_UNUSED)
2883 {
2884 #ifdef BFD64
2885 Elf_Internal_Rela int_reloc1[3];
2886 Elf_Internal_Rela int_reloc2[3];
2887
2888 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2889 (reldyn_sorting_bfd, arg1, int_reloc1);
2890 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2891 (reldyn_sorting_bfd, arg2, int_reloc2);
2892
2893 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2894 return -1;
2895 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2896 return 1;
2897
2898 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2899 return -1;
2900 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2901 return 1;
2902 return 0;
2903 #else
2904 abort ();
2905 #endif
2906 }
2907
2908
2909 /* This routine is used to write out ECOFF debugging external symbol
2910 information. It is called via mips_elf_link_hash_traverse. The
2911 ECOFF external symbol information must match the ELF external
2912 symbol information. Unfortunately, at this point we don't know
2913 whether a symbol is required by reloc information, so the two
2914 tables may wind up being different. We must sort out the external
2915 symbol information before we can set the final size of the .mdebug
2916 section, and we must set the size of the .mdebug section before we
2917 can relocate any sections, and we can't know which symbols are
2918 required by relocation until we relocate the sections.
2919 Fortunately, it is relatively unlikely that any symbol will be
2920 stripped but required by a reloc. In particular, it can not happen
2921 when generating a final executable. */
2922
2923 static bfd_boolean
2924 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2925 {
2926 struct extsym_info *einfo = data;
2927 bfd_boolean strip;
2928 asection *sec, *output_section;
2929
2930 if (h->root.indx == -2)
2931 strip = FALSE;
2932 else if ((h->root.def_dynamic
2933 || h->root.ref_dynamic
2934 || h->root.type == bfd_link_hash_new)
2935 && !h->root.def_regular
2936 && !h->root.ref_regular)
2937 strip = TRUE;
2938 else if (einfo->info->strip == strip_all
2939 || (einfo->info->strip == strip_some
2940 && bfd_hash_lookup (einfo->info->keep_hash,
2941 h->root.root.root.string,
2942 FALSE, FALSE) == NULL))
2943 strip = TRUE;
2944 else
2945 strip = FALSE;
2946
2947 if (strip)
2948 return TRUE;
2949
2950 if (h->esym.ifd == -2)
2951 {
2952 h->esym.jmptbl = 0;
2953 h->esym.cobol_main = 0;
2954 h->esym.weakext = 0;
2955 h->esym.reserved = 0;
2956 h->esym.ifd = ifdNil;
2957 h->esym.asym.value = 0;
2958 h->esym.asym.st = stGlobal;
2959
2960 if (h->root.root.type == bfd_link_hash_undefined
2961 || h->root.root.type == bfd_link_hash_undefweak)
2962 {
2963 const char *name;
2964
2965 /* Use undefined class. Also, set class and type for some
2966 special symbols. */
2967 name = h->root.root.root.string;
2968 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2969 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2970 {
2971 h->esym.asym.sc = scData;
2972 h->esym.asym.st = stLabel;
2973 h->esym.asym.value = 0;
2974 }
2975 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2976 {
2977 h->esym.asym.sc = scAbs;
2978 h->esym.asym.st = stLabel;
2979 h->esym.asym.value =
2980 mips_elf_hash_table (einfo->info)->procedure_count;
2981 }
2982 else
2983 h->esym.asym.sc = scUndefined;
2984 }
2985 else if (h->root.root.type != bfd_link_hash_defined
2986 && h->root.root.type != bfd_link_hash_defweak)
2987 h->esym.asym.sc = scAbs;
2988 else
2989 {
2990 const char *name;
2991
2992 sec = h->root.root.u.def.section;
2993 output_section = sec->output_section;
2994
2995 /* When making a shared library and symbol h is the one from
2996 the another shared library, OUTPUT_SECTION may be null. */
2997 if (output_section == NULL)
2998 h->esym.asym.sc = scUndefined;
2999 else
3000 {
3001 name = bfd_section_name (output_section);
3002
3003 if (strcmp (name, ".text") == 0)
3004 h->esym.asym.sc = scText;
3005 else if (strcmp (name, ".data") == 0)
3006 h->esym.asym.sc = scData;
3007 else if (strcmp (name, ".sdata") == 0)
3008 h->esym.asym.sc = scSData;
3009 else if (strcmp (name, ".rodata") == 0
3010 || strcmp (name, ".rdata") == 0)
3011 h->esym.asym.sc = scRData;
3012 else if (strcmp (name, ".bss") == 0)
3013 h->esym.asym.sc = scBss;
3014 else if (strcmp (name, ".sbss") == 0)
3015 h->esym.asym.sc = scSBss;
3016 else if (strcmp (name, ".init") == 0)
3017 h->esym.asym.sc = scInit;
3018 else if (strcmp (name, ".fini") == 0)
3019 h->esym.asym.sc = scFini;
3020 else
3021 h->esym.asym.sc = scAbs;
3022 }
3023 }
3024
3025 h->esym.asym.reserved = 0;
3026 h->esym.asym.index = indexNil;
3027 }
3028
3029 if (h->root.root.type == bfd_link_hash_common)
3030 h->esym.asym.value = h->root.root.u.c.size;
3031 else if (h->root.root.type == bfd_link_hash_defined
3032 || h->root.root.type == bfd_link_hash_defweak)
3033 {
3034 if (h->esym.asym.sc == scCommon)
3035 h->esym.asym.sc = scBss;
3036 else if (h->esym.asym.sc == scSCommon)
3037 h->esym.asym.sc = scSBss;
3038
3039 sec = h->root.root.u.def.section;
3040 output_section = sec->output_section;
3041 if (output_section != NULL)
3042 h->esym.asym.value = (h->root.root.u.def.value
3043 + sec->output_offset
3044 + output_section->vma);
3045 else
3046 h->esym.asym.value = 0;
3047 }
3048 else
3049 {
3050 struct mips_elf_link_hash_entry *hd = h;
3051
3052 while (hd->root.root.type == bfd_link_hash_indirect)
3053 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3054
3055 if (hd->needs_lazy_stub)
3056 {
3057 BFD_ASSERT (hd->root.plt.plist != NULL);
3058 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3059 /* Set type and value for a symbol with a function stub. */
3060 h->esym.asym.st = stProc;
3061 sec = hd->root.root.u.def.section;
3062 if (sec == NULL)
3063 h->esym.asym.value = 0;
3064 else
3065 {
3066 output_section = sec->output_section;
3067 if (output_section != NULL)
3068 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3069 + sec->output_offset
3070 + output_section->vma);
3071 else
3072 h->esym.asym.value = 0;
3073 }
3074 }
3075 }
3076
3077 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3078 h->root.root.root.string,
3079 &h->esym))
3080 {
3081 einfo->failed = TRUE;
3082 return FALSE;
3083 }
3084
3085 return TRUE;
3086 }
3087
3088 /* A comparison routine used to sort .gptab entries. */
3089
3090 static int
3091 gptab_compare (const void *p1, const void *p2)
3092 {
3093 const Elf32_gptab *a1 = p1;
3094 const Elf32_gptab *a2 = p2;
3095
3096 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3097 }
3098 \f
3099 /* Functions to manage the got entry hash table. */
3100
3101 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3102 hash number. */
3103
3104 static INLINE hashval_t
3105 mips_elf_hash_bfd_vma (bfd_vma addr)
3106 {
3107 #ifdef BFD64
3108 return addr + (addr >> 32);
3109 #else
3110 return addr;
3111 #endif
3112 }
3113
3114 static hashval_t
3115 mips_elf_got_entry_hash (const void *entry_)
3116 {
3117 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3118
3119 return (entry->symndx
3120 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3121 + (entry->tls_type == GOT_TLS_LDM ? 0
3122 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3123 : entry->symndx >= 0 ? (entry->abfd->id
3124 + mips_elf_hash_bfd_vma (entry->d.addend))
3125 : entry->d.h->root.root.root.hash));
3126 }
3127
3128 static int
3129 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3130 {
3131 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3132 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3133
3134 return (e1->symndx == e2->symndx
3135 && e1->tls_type == e2->tls_type
3136 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3137 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3138 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3139 && e1->d.addend == e2->d.addend)
3140 : e2->abfd && e1->d.h == e2->d.h));
3141 }
3142
3143 static hashval_t
3144 mips_got_page_ref_hash (const void *ref_)
3145 {
3146 const struct mips_got_page_ref *ref;
3147
3148 ref = (const struct mips_got_page_ref *) ref_;
3149 return ((ref->symndx >= 0
3150 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3151 : ref->u.h->root.root.root.hash)
3152 + mips_elf_hash_bfd_vma (ref->addend));
3153 }
3154
3155 static int
3156 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3157 {
3158 const struct mips_got_page_ref *ref1, *ref2;
3159
3160 ref1 = (const struct mips_got_page_ref *) ref1_;
3161 ref2 = (const struct mips_got_page_ref *) ref2_;
3162 return (ref1->symndx == ref2->symndx
3163 && (ref1->symndx < 0
3164 ? ref1->u.h == ref2->u.h
3165 : ref1->u.abfd == ref2->u.abfd)
3166 && ref1->addend == ref2->addend);
3167 }
3168
3169 static hashval_t
3170 mips_got_page_entry_hash (const void *entry_)
3171 {
3172 const struct mips_got_page_entry *entry;
3173
3174 entry = (const struct mips_got_page_entry *) entry_;
3175 return entry->sec->id;
3176 }
3177
3178 static int
3179 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3180 {
3181 const struct mips_got_page_entry *entry1, *entry2;
3182
3183 entry1 = (const struct mips_got_page_entry *) entry1_;
3184 entry2 = (const struct mips_got_page_entry *) entry2_;
3185 return entry1->sec == entry2->sec;
3186 }
3187 \f
3188 /* Create and return a new mips_got_info structure. */
3189
3190 static struct mips_got_info *
3191 mips_elf_create_got_info (bfd *abfd)
3192 {
3193 struct mips_got_info *g;
3194
3195 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3196 if (g == NULL)
3197 return NULL;
3198
3199 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3200 mips_elf_got_entry_eq, NULL);
3201 if (g->got_entries == NULL)
3202 return NULL;
3203
3204 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3205 mips_got_page_ref_eq, NULL);
3206 if (g->got_page_refs == NULL)
3207 return NULL;
3208
3209 return g;
3210 }
3211
3212 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3213 CREATE_P and if ABFD doesn't already have a GOT. */
3214
3215 static struct mips_got_info *
3216 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3217 {
3218 struct mips_elf_obj_tdata *tdata;
3219
3220 if (!is_mips_elf (abfd))
3221 return NULL;
3222
3223 tdata = mips_elf_tdata (abfd);
3224 if (!tdata->got && create_p)
3225 tdata->got = mips_elf_create_got_info (abfd);
3226 return tdata->got;
3227 }
3228
3229 /* Record that ABFD should use output GOT G. */
3230
3231 static void
3232 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3233 {
3234 struct mips_elf_obj_tdata *tdata;
3235
3236 BFD_ASSERT (is_mips_elf (abfd));
3237 tdata = mips_elf_tdata (abfd);
3238 if (tdata->got)
3239 {
3240 /* The GOT structure itself and the hash table entries are
3241 allocated to a bfd, but the hash tables aren't. */
3242 htab_delete (tdata->got->got_entries);
3243 htab_delete (tdata->got->got_page_refs);
3244 if (tdata->got->got_page_entries)
3245 htab_delete (tdata->got->got_page_entries);
3246 }
3247 tdata->got = g;
3248 }
3249
3250 /* Return the dynamic relocation section. If it doesn't exist, try to
3251 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3252 if creation fails. */
3253
3254 static asection *
3255 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3256 {
3257 const char *dname;
3258 asection *sreloc;
3259 bfd *dynobj;
3260
3261 dname = MIPS_ELF_REL_DYN_NAME (info);
3262 dynobj = elf_hash_table (info)->dynobj;
3263 sreloc = bfd_get_linker_section (dynobj, dname);
3264 if (sreloc == NULL && create_p)
3265 {
3266 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3267 (SEC_ALLOC
3268 | SEC_LOAD
3269 | SEC_HAS_CONTENTS
3270 | SEC_IN_MEMORY
3271 | SEC_LINKER_CREATED
3272 | SEC_READONLY));
3273 if (sreloc == NULL
3274 || !bfd_set_section_alignment (sreloc,
3275 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3276 return NULL;
3277 }
3278 return sreloc;
3279 }
3280
3281 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3282
3283 static int
3284 mips_elf_reloc_tls_type (unsigned int r_type)
3285 {
3286 if (tls_gd_reloc_p (r_type))
3287 return GOT_TLS_GD;
3288
3289 if (tls_ldm_reloc_p (r_type))
3290 return GOT_TLS_LDM;
3291
3292 if (tls_gottprel_reloc_p (r_type))
3293 return GOT_TLS_IE;
3294
3295 return GOT_TLS_NONE;
3296 }
3297
3298 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3299
3300 static int
3301 mips_tls_got_entries (unsigned int type)
3302 {
3303 switch (type)
3304 {
3305 case GOT_TLS_GD:
3306 case GOT_TLS_LDM:
3307 return 2;
3308
3309 case GOT_TLS_IE:
3310 return 1;
3311
3312 case GOT_TLS_NONE:
3313 return 0;
3314 }
3315 abort ();
3316 }
3317
3318 /* Count the number of relocations needed for a TLS GOT entry, with
3319 access types from TLS_TYPE, and symbol H (or a local symbol if H
3320 is NULL). */
3321
3322 static int
3323 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3324 struct elf_link_hash_entry *h)
3325 {
3326 int indx = 0;
3327 bfd_boolean need_relocs = FALSE;
3328 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3329
3330 if (h != NULL
3331 && h->dynindx != -1
3332 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3333 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3334 indx = h->dynindx;
3335
3336 if ((bfd_link_dll (info) || indx != 0)
3337 && (h == NULL
3338 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3339 || h->root.type != bfd_link_hash_undefweak))
3340 need_relocs = TRUE;
3341
3342 if (!need_relocs)
3343 return 0;
3344
3345 switch (tls_type)
3346 {
3347 case GOT_TLS_GD:
3348 return indx != 0 ? 2 : 1;
3349
3350 case GOT_TLS_IE:
3351 return 1;
3352
3353 case GOT_TLS_LDM:
3354 return bfd_link_dll (info) ? 1 : 0;
3355
3356 default:
3357 return 0;
3358 }
3359 }
3360
3361 /* Add the number of GOT entries and TLS relocations required by ENTRY
3362 to G. */
3363
3364 static void
3365 mips_elf_count_got_entry (struct bfd_link_info *info,
3366 struct mips_got_info *g,
3367 struct mips_got_entry *entry)
3368 {
3369 if (entry->tls_type)
3370 {
3371 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3372 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3373 entry->symndx < 0
3374 ? &entry->d.h->root : NULL);
3375 }
3376 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3377 g->local_gotno += 1;
3378 else
3379 g->global_gotno += 1;
3380 }
3381
3382 /* Output a simple dynamic relocation into SRELOC. */
3383
3384 static void
3385 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3386 asection *sreloc,
3387 unsigned long reloc_index,
3388 unsigned long indx,
3389 int r_type,
3390 bfd_vma offset)
3391 {
3392 Elf_Internal_Rela rel[3];
3393
3394 memset (rel, 0, sizeof (rel));
3395
3396 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3397 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3398
3399 if (ABI_64_P (output_bfd))
3400 {
3401 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3402 (output_bfd, &rel[0],
3403 (sreloc->contents
3404 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3405 }
3406 else
3407 bfd_elf32_swap_reloc_out
3408 (output_bfd, &rel[0],
3409 (sreloc->contents
3410 + reloc_index * sizeof (Elf32_External_Rel)));
3411 }
3412
3413 /* Initialize a set of TLS GOT entries for one symbol. */
3414
3415 static void
3416 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3417 struct mips_got_entry *entry,
3418 struct mips_elf_link_hash_entry *h,
3419 bfd_vma value)
3420 {
3421 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3422 struct mips_elf_link_hash_table *htab;
3423 int indx;
3424 asection *sreloc, *sgot;
3425 bfd_vma got_offset, got_offset2;
3426 bfd_boolean need_relocs = FALSE;
3427
3428 htab = mips_elf_hash_table (info);
3429 if (htab == NULL)
3430 return;
3431
3432 sgot = htab->root.sgot;
3433
3434 indx = 0;
3435 if (h != NULL
3436 && h->root.dynindx != -1
3437 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3438 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3439 indx = h->root.dynindx;
3440
3441 if (entry->tls_initialized)
3442 return;
3443
3444 if ((bfd_link_dll (info) || indx != 0)
3445 && (h == NULL
3446 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3447 || h->root.type != bfd_link_hash_undefweak))
3448 need_relocs = TRUE;
3449
3450 /* MINUS_ONE means the symbol is not defined in this object. It may not
3451 be defined at all; assume that the value doesn't matter in that
3452 case. Otherwise complain if we would use the value. */
3453 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3454 || h->root.root.type == bfd_link_hash_undefweak);
3455
3456 /* Emit necessary relocations. */
3457 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3458 got_offset = entry->gotidx;
3459
3460 switch (entry->tls_type)
3461 {
3462 case GOT_TLS_GD:
3463 /* General Dynamic. */
3464 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3465
3466 if (need_relocs)
3467 {
3468 mips_elf_output_dynamic_relocation
3469 (abfd, sreloc, sreloc->reloc_count++, indx,
3470 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3471 sgot->output_offset + sgot->output_section->vma + got_offset);
3472
3473 if (indx)
3474 mips_elf_output_dynamic_relocation
3475 (abfd, sreloc, sreloc->reloc_count++, indx,
3476 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3477 sgot->output_offset + sgot->output_section->vma + got_offset2);
3478 else
3479 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3480 sgot->contents + got_offset2);
3481 }
3482 else
3483 {
3484 MIPS_ELF_PUT_WORD (abfd, 1,
3485 sgot->contents + got_offset);
3486 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3487 sgot->contents + got_offset2);
3488 }
3489 break;
3490
3491 case GOT_TLS_IE:
3492 /* Initial Exec model. */
3493 if (need_relocs)
3494 {
3495 if (indx == 0)
3496 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3497 sgot->contents + got_offset);
3498 else
3499 MIPS_ELF_PUT_WORD (abfd, 0,
3500 sgot->contents + got_offset);
3501
3502 mips_elf_output_dynamic_relocation
3503 (abfd, sreloc, sreloc->reloc_count++, indx,
3504 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3505 sgot->output_offset + sgot->output_section->vma + got_offset);
3506 }
3507 else
3508 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3509 sgot->contents + got_offset);
3510 break;
3511
3512 case GOT_TLS_LDM:
3513 /* The initial offset is zero, and the LD offsets will include the
3514 bias by DTP_OFFSET. */
3515 MIPS_ELF_PUT_WORD (abfd, 0,
3516 sgot->contents + got_offset
3517 + MIPS_ELF_GOT_SIZE (abfd));
3518
3519 if (!bfd_link_dll (info))
3520 MIPS_ELF_PUT_WORD (abfd, 1,
3521 sgot->contents + got_offset);
3522 else
3523 mips_elf_output_dynamic_relocation
3524 (abfd, sreloc, sreloc->reloc_count++, indx,
3525 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3526 sgot->output_offset + sgot->output_section->vma + got_offset);
3527 break;
3528
3529 default:
3530 abort ();
3531 }
3532
3533 entry->tls_initialized = TRUE;
3534 }
3535
3536 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3537 for global symbol H. .got.plt comes before the GOT, so the offset
3538 will be negative. */
3539
3540 static bfd_vma
3541 mips_elf_gotplt_index (struct bfd_link_info *info,
3542 struct elf_link_hash_entry *h)
3543 {
3544 bfd_vma got_address, got_value;
3545 struct mips_elf_link_hash_table *htab;
3546
3547 htab = mips_elf_hash_table (info);
3548 BFD_ASSERT (htab != NULL);
3549
3550 BFD_ASSERT (h->plt.plist != NULL);
3551 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3552
3553 /* Calculate the address of the associated .got.plt entry. */
3554 got_address = (htab->root.sgotplt->output_section->vma
3555 + htab->root.sgotplt->output_offset
3556 + (h->plt.plist->gotplt_index
3557 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3558
3559 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3560 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3561 + htab->root.hgot->root.u.def.section->output_offset
3562 + htab->root.hgot->root.u.def.value);
3563
3564 return got_address - got_value;
3565 }
3566
3567 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3568 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3569 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3570 offset can be found. */
3571
3572 static bfd_vma
3573 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3574 bfd_vma value, unsigned long r_symndx,
3575 struct mips_elf_link_hash_entry *h, int r_type)
3576 {
3577 struct mips_elf_link_hash_table *htab;
3578 struct mips_got_entry *entry;
3579
3580 htab = mips_elf_hash_table (info);
3581 BFD_ASSERT (htab != NULL);
3582
3583 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3584 r_symndx, h, r_type);
3585 if (!entry)
3586 return MINUS_ONE;
3587
3588 if (entry->tls_type)
3589 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3590 return entry->gotidx;
3591 }
3592
3593 /* Return the GOT index of global symbol H in the primary GOT. */
3594
3595 static bfd_vma
3596 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3597 struct elf_link_hash_entry *h)
3598 {
3599 struct mips_elf_link_hash_table *htab;
3600 long global_got_dynindx;
3601 struct mips_got_info *g;
3602 bfd_vma got_index;
3603
3604 htab = mips_elf_hash_table (info);
3605 BFD_ASSERT (htab != NULL);
3606
3607 global_got_dynindx = 0;
3608 if (htab->global_gotsym != NULL)
3609 global_got_dynindx = htab->global_gotsym->dynindx;
3610
3611 /* Once we determine the global GOT entry with the lowest dynamic
3612 symbol table index, we must put all dynamic symbols with greater
3613 indices into the primary GOT. That makes it easy to calculate the
3614 GOT offset. */
3615 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3616 g = mips_elf_bfd_got (obfd, FALSE);
3617 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3618 * MIPS_ELF_GOT_SIZE (obfd));
3619 BFD_ASSERT (got_index < htab->root.sgot->size);
3620
3621 return got_index;
3622 }
3623
3624 /* Return the GOT index for the global symbol indicated by H, which is
3625 referenced by a relocation of type R_TYPE in IBFD. */
3626
3627 static bfd_vma
3628 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3629 struct elf_link_hash_entry *h, int r_type)
3630 {
3631 struct mips_elf_link_hash_table *htab;
3632 struct mips_got_info *g;
3633 struct mips_got_entry lookup, *entry;
3634 bfd_vma gotidx;
3635
3636 htab = mips_elf_hash_table (info);
3637 BFD_ASSERT (htab != NULL);
3638
3639 g = mips_elf_bfd_got (ibfd, FALSE);
3640 BFD_ASSERT (g);
3641
3642 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3643 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3644 return mips_elf_primary_global_got_index (obfd, info, h);
3645
3646 lookup.abfd = ibfd;
3647 lookup.symndx = -1;
3648 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3649 entry = htab_find (g->got_entries, &lookup);
3650 BFD_ASSERT (entry);
3651
3652 gotidx = entry->gotidx;
3653 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3654
3655 if (lookup.tls_type)
3656 {
3657 bfd_vma value = MINUS_ONE;
3658
3659 if ((h->root.type == bfd_link_hash_defined
3660 || h->root.type == bfd_link_hash_defweak)
3661 && h->root.u.def.section->output_section)
3662 value = (h->root.u.def.value
3663 + h->root.u.def.section->output_offset
3664 + h->root.u.def.section->output_section->vma);
3665
3666 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3667 }
3668 return gotidx;
3669 }
3670
3671 /* Find a GOT page entry that points to within 32KB of VALUE. These
3672 entries are supposed to be placed at small offsets in the GOT, i.e.,
3673 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3674 entry could be created. If OFFSETP is nonnull, use it to return the
3675 offset of the GOT entry from VALUE. */
3676
3677 static bfd_vma
3678 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3679 bfd_vma value, bfd_vma *offsetp)
3680 {
3681 bfd_vma page, got_index;
3682 struct mips_got_entry *entry;
3683
3684 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3685 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3686 NULL, R_MIPS_GOT_PAGE);
3687
3688 if (!entry)
3689 return MINUS_ONE;
3690
3691 got_index = entry->gotidx;
3692
3693 if (offsetp)
3694 *offsetp = value - entry->d.address;
3695
3696 return got_index;
3697 }
3698
3699 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3700 EXTERNAL is true if the relocation was originally against a global
3701 symbol that binds locally. */
3702
3703 static bfd_vma
3704 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3705 bfd_vma value, bfd_boolean external)
3706 {
3707 struct mips_got_entry *entry;
3708
3709 /* GOT16 relocations against local symbols are followed by a LO16
3710 relocation; those against global symbols are not. Thus if the
3711 symbol was originally local, the GOT16 relocation should load the
3712 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3713 if (! external)
3714 value = mips_elf_high (value) << 16;
3715
3716 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3717 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3718 same in all cases. */
3719 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3720 NULL, R_MIPS_GOT16);
3721 if (entry)
3722 return entry->gotidx;
3723 else
3724 return MINUS_ONE;
3725 }
3726
3727 /* Returns the offset for the entry at the INDEXth position
3728 in the GOT. */
3729
3730 static bfd_vma
3731 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3732 bfd *input_bfd, bfd_vma got_index)
3733 {
3734 struct mips_elf_link_hash_table *htab;
3735 asection *sgot;
3736 bfd_vma gp;
3737
3738 htab = mips_elf_hash_table (info);
3739 BFD_ASSERT (htab != NULL);
3740
3741 sgot = htab->root.sgot;
3742 gp = _bfd_get_gp_value (output_bfd)
3743 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3744
3745 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3746 }
3747
3748 /* Create and return a local GOT entry for VALUE, which was calculated
3749 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3750 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3751 instead. */
3752
3753 static struct mips_got_entry *
3754 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3755 bfd *ibfd, bfd_vma value,
3756 unsigned long r_symndx,
3757 struct mips_elf_link_hash_entry *h,
3758 int r_type)
3759 {
3760 struct mips_got_entry lookup, *entry;
3761 void **loc;
3762 struct mips_got_info *g;
3763 struct mips_elf_link_hash_table *htab;
3764 bfd_vma gotidx;
3765
3766 htab = mips_elf_hash_table (info);
3767 BFD_ASSERT (htab != NULL);
3768
3769 g = mips_elf_bfd_got (ibfd, FALSE);
3770 if (g == NULL)
3771 {
3772 g = mips_elf_bfd_got (abfd, FALSE);
3773 BFD_ASSERT (g != NULL);
3774 }
3775
3776 /* This function shouldn't be called for symbols that live in the global
3777 area of the GOT. */
3778 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3779
3780 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3781 if (lookup.tls_type)
3782 {
3783 lookup.abfd = ibfd;
3784 if (tls_ldm_reloc_p (r_type))
3785 {
3786 lookup.symndx = 0;
3787 lookup.d.addend = 0;
3788 }
3789 else if (h == NULL)
3790 {
3791 lookup.symndx = r_symndx;
3792 lookup.d.addend = 0;
3793 }
3794 else
3795 {
3796 lookup.symndx = -1;
3797 lookup.d.h = h;
3798 }
3799
3800 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3801 BFD_ASSERT (entry);
3802
3803 gotidx = entry->gotidx;
3804 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3805
3806 return entry;
3807 }
3808
3809 lookup.abfd = NULL;
3810 lookup.symndx = -1;
3811 lookup.d.address = value;
3812 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3813 if (!loc)
3814 return NULL;
3815
3816 entry = (struct mips_got_entry *) *loc;
3817 if (entry)
3818 return entry;
3819
3820 if (g->assigned_low_gotno > g->assigned_high_gotno)
3821 {
3822 /* We didn't allocate enough space in the GOT. */
3823 _bfd_error_handler
3824 (_("not enough GOT space for local GOT entries"));
3825 bfd_set_error (bfd_error_bad_value);
3826 return NULL;
3827 }
3828
3829 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3830 if (!entry)
3831 return NULL;
3832
3833 if (got16_reloc_p (r_type)
3834 || call16_reloc_p (r_type)
3835 || got_page_reloc_p (r_type)
3836 || got_disp_reloc_p (r_type))
3837 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3838 else
3839 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3840
3841 *entry = lookup;
3842 *loc = entry;
3843
3844 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3845
3846 /* These GOT entries need a dynamic relocation on VxWorks. */
3847 if (htab->is_vxworks)
3848 {
3849 Elf_Internal_Rela outrel;
3850 asection *s;
3851 bfd_byte *rloc;
3852 bfd_vma got_address;
3853
3854 s = mips_elf_rel_dyn_section (info, FALSE);
3855 got_address = (htab->root.sgot->output_section->vma
3856 + htab->root.sgot->output_offset
3857 + entry->gotidx);
3858
3859 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3860 outrel.r_offset = got_address;
3861 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3862 outrel.r_addend = value;
3863 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3864 }
3865
3866 return entry;
3867 }
3868
3869 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3870 The number might be exact or a worst-case estimate, depending on how
3871 much information is available to elf_backend_omit_section_dynsym at
3872 the current linking stage. */
3873
3874 static bfd_size_type
3875 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3876 {
3877 bfd_size_type count;
3878
3879 count = 0;
3880 if (bfd_link_pic (info)
3881 || elf_hash_table (info)->is_relocatable_executable)
3882 {
3883 asection *p;
3884 const struct elf_backend_data *bed;
3885
3886 bed = get_elf_backend_data (output_bfd);
3887 for (p = output_bfd->sections; p ; p = p->next)
3888 if ((p->flags & SEC_EXCLUDE) == 0
3889 && (p->flags & SEC_ALLOC) != 0
3890 && elf_hash_table (info)->dynamic_relocs
3891 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3892 ++count;
3893 }
3894 return count;
3895 }
3896
3897 /* Sort the dynamic symbol table so that symbols that need GOT entries
3898 appear towards the end. */
3899
3900 static bfd_boolean
3901 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3902 {
3903 struct mips_elf_link_hash_table *htab;
3904 struct mips_elf_hash_sort_data hsd;
3905 struct mips_got_info *g;
3906
3907 htab = mips_elf_hash_table (info);
3908 BFD_ASSERT (htab != NULL);
3909
3910 if (htab->root.dynsymcount == 0)
3911 return TRUE;
3912
3913 g = htab->got_info;
3914 if (g == NULL)
3915 return TRUE;
3916
3917 hsd.low = NULL;
3918 hsd.max_unref_got_dynindx
3919 = hsd.min_got_dynindx
3920 = (htab->root.dynsymcount - g->reloc_only_gotno);
3921 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3922 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3923 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3924 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3925 hsd.output_bfd = abfd;
3926 if (htab->root.dynobj != NULL
3927 && htab->root.dynamic_sections_created
3928 && info->emit_gnu_hash)
3929 {
3930 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3931 BFD_ASSERT (s != NULL);
3932 hsd.mipsxhash = s->contents;
3933 BFD_ASSERT (hsd.mipsxhash != NULL);
3934 }
3935 else
3936 hsd.mipsxhash = NULL;
3937 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3938
3939 /* There should have been enough room in the symbol table to
3940 accommodate both the GOT and non-GOT symbols. */
3941 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3942 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3943 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3944 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3945
3946 /* Now we know which dynamic symbol has the lowest dynamic symbol
3947 table index in the GOT. */
3948 htab->global_gotsym = hsd.low;
3949
3950 return TRUE;
3951 }
3952
3953 /* If H needs a GOT entry, assign it the highest available dynamic
3954 index. Otherwise, assign it the lowest available dynamic
3955 index. */
3956
3957 static bfd_boolean
3958 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3959 {
3960 struct mips_elf_hash_sort_data *hsd = data;
3961
3962 /* Symbols without dynamic symbol table entries aren't interesting
3963 at all. */
3964 if (h->root.dynindx == -1)
3965 return TRUE;
3966
3967 switch (h->global_got_area)
3968 {
3969 case GGA_NONE:
3970 if (h->root.forced_local)
3971 h->root.dynindx = hsd->max_local_dynindx++;
3972 else
3973 h->root.dynindx = hsd->max_non_got_dynindx++;
3974 break;
3975
3976 case GGA_NORMAL:
3977 h->root.dynindx = --hsd->min_got_dynindx;
3978 hsd->low = (struct elf_link_hash_entry *) h;
3979 break;
3980
3981 case GGA_RELOC_ONLY:
3982 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3983 hsd->low = (struct elf_link_hash_entry *) h;
3984 h->root.dynindx = hsd->max_unref_got_dynindx++;
3985 break;
3986 }
3987
3988 /* Populate the .MIPS.xhash translation table entry with
3989 the symbol dynindx. */
3990 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3991 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3992 hsd->mipsxhash + h->mipsxhash_loc);
3993
3994 return TRUE;
3995 }
3996
3997 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3998 (which is owned by the caller and shouldn't be added to the
3999 hash table directly). */
4000
4001 static bfd_boolean
4002 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
4003 struct mips_got_entry *lookup)
4004 {
4005 struct mips_elf_link_hash_table *htab;
4006 struct mips_got_entry *entry;
4007 struct mips_got_info *g;
4008 void **loc, **bfd_loc;
4009
4010 /* Make sure there's a slot for this entry in the master GOT. */
4011 htab = mips_elf_hash_table (info);
4012 g = htab->got_info;
4013 loc = htab_find_slot (g->got_entries, lookup, INSERT);
4014 if (!loc)
4015 return FALSE;
4016
4017 /* Populate the entry if it isn't already. */
4018 entry = (struct mips_got_entry *) *loc;
4019 if (!entry)
4020 {
4021 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
4022 if (!entry)
4023 return FALSE;
4024
4025 lookup->tls_initialized = FALSE;
4026 lookup->gotidx = -1;
4027 *entry = *lookup;
4028 *loc = entry;
4029 }
4030
4031 /* Reuse the same GOT entry for the BFD's GOT. */
4032 g = mips_elf_bfd_got (abfd, TRUE);
4033 if (!g)
4034 return FALSE;
4035
4036 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4037 if (!bfd_loc)
4038 return FALSE;
4039
4040 if (!*bfd_loc)
4041 *bfd_loc = entry;
4042 return TRUE;
4043 }
4044
4045 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4046 entry for it. FOR_CALL is true if the caller is only interested in
4047 using the GOT entry for calls. */
4048
4049 static bfd_boolean
4050 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4051 bfd *abfd, struct bfd_link_info *info,
4052 bfd_boolean for_call, int r_type)
4053 {
4054 struct mips_elf_link_hash_table *htab;
4055 struct mips_elf_link_hash_entry *hmips;
4056 struct mips_got_entry entry;
4057 unsigned char tls_type;
4058
4059 htab = mips_elf_hash_table (info);
4060 BFD_ASSERT (htab != NULL);
4061
4062 hmips = (struct mips_elf_link_hash_entry *) h;
4063 if (!for_call)
4064 hmips->got_only_for_calls = FALSE;
4065
4066 /* A global symbol in the GOT must also be in the dynamic symbol
4067 table. */
4068 if (h->dynindx == -1)
4069 {
4070 switch (ELF_ST_VISIBILITY (h->other))
4071 {
4072 case STV_INTERNAL:
4073 case STV_HIDDEN:
4074 _bfd_mips_elf_hide_symbol (info, h, TRUE);
4075 break;
4076 }
4077 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4078 return FALSE;
4079 }
4080
4081 tls_type = mips_elf_reloc_tls_type (r_type);
4082 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4083 hmips->global_got_area = GGA_NORMAL;
4084
4085 entry.abfd = abfd;
4086 entry.symndx = -1;
4087 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4088 entry.tls_type = tls_type;
4089 return mips_elf_record_got_entry (info, abfd, &entry);
4090 }
4091
4092 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4093 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4094
4095 static bfd_boolean
4096 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4097 struct bfd_link_info *info, int r_type)
4098 {
4099 struct mips_elf_link_hash_table *htab;
4100 struct mips_got_info *g;
4101 struct mips_got_entry entry;
4102
4103 htab = mips_elf_hash_table (info);
4104 BFD_ASSERT (htab != NULL);
4105
4106 g = htab->got_info;
4107 BFD_ASSERT (g != NULL);
4108
4109 entry.abfd = abfd;
4110 entry.symndx = symndx;
4111 entry.d.addend = addend;
4112 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4113 return mips_elf_record_got_entry (info, abfd, &entry);
4114 }
4115
4116 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4117 H is the symbol's hash table entry, or null if SYMNDX is local
4118 to ABFD. */
4119
4120 static bfd_boolean
4121 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4122 long symndx, struct elf_link_hash_entry *h,
4123 bfd_signed_vma addend)
4124 {
4125 struct mips_elf_link_hash_table *htab;
4126 struct mips_got_info *g1, *g2;
4127 struct mips_got_page_ref lookup, *entry;
4128 void **loc, **bfd_loc;
4129
4130 htab = mips_elf_hash_table (info);
4131 BFD_ASSERT (htab != NULL);
4132
4133 g1 = htab->got_info;
4134 BFD_ASSERT (g1 != NULL);
4135
4136 if (h)
4137 {
4138 lookup.symndx = -1;
4139 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4140 }
4141 else
4142 {
4143 lookup.symndx = symndx;
4144 lookup.u.abfd = abfd;
4145 }
4146 lookup.addend = addend;
4147 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4148 if (loc == NULL)
4149 return FALSE;
4150
4151 entry = (struct mips_got_page_ref *) *loc;
4152 if (!entry)
4153 {
4154 entry = bfd_alloc (abfd, sizeof (*entry));
4155 if (!entry)
4156 return FALSE;
4157
4158 *entry = lookup;
4159 *loc = entry;
4160 }
4161
4162 /* Add the same entry to the BFD's GOT. */
4163 g2 = mips_elf_bfd_got (abfd, TRUE);
4164 if (!g2)
4165 return FALSE;
4166
4167 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4168 if (!bfd_loc)
4169 return FALSE;
4170
4171 if (!*bfd_loc)
4172 *bfd_loc = entry;
4173
4174 return TRUE;
4175 }
4176
4177 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4178
4179 static void
4180 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4181 unsigned int n)
4182 {
4183 asection *s;
4184 struct mips_elf_link_hash_table *htab;
4185
4186 htab = mips_elf_hash_table (info);
4187 BFD_ASSERT (htab != NULL);
4188
4189 s = mips_elf_rel_dyn_section (info, FALSE);
4190 BFD_ASSERT (s != NULL);
4191
4192 if (htab->is_vxworks)
4193 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4194 else
4195 {
4196 if (s->size == 0)
4197 {
4198 /* Make room for a null element. */
4199 s->size += MIPS_ELF_REL_SIZE (abfd);
4200 ++s->reloc_count;
4201 }
4202 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4203 }
4204 }
4205 \f
4206 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4207 mips_elf_traverse_got_arg structure. Count the number of GOT
4208 entries and TLS relocs. Set DATA->value to true if we need
4209 to resolve indirect or warning symbols and then recreate the GOT. */
4210
4211 static int
4212 mips_elf_check_recreate_got (void **entryp, void *data)
4213 {
4214 struct mips_got_entry *entry;
4215 struct mips_elf_traverse_got_arg *arg;
4216
4217 entry = (struct mips_got_entry *) *entryp;
4218 arg = (struct mips_elf_traverse_got_arg *) data;
4219 if (entry->abfd != NULL && entry->symndx == -1)
4220 {
4221 struct mips_elf_link_hash_entry *h;
4222
4223 h = entry->d.h;
4224 if (h->root.root.type == bfd_link_hash_indirect
4225 || h->root.root.type == bfd_link_hash_warning)
4226 {
4227 arg->value = TRUE;
4228 return 0;
4229 }
4230 }
4231 mips_elf_count_got_entry (arg->info, arg->g, entry);
4232 return 1;
4233 }
4234
4235 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4236 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4237 converting entries for indirect and warning symbols into entries
4238 for the target symbol. Set DATA->g to null on error. */
4239
4240 static int
4241 mips_elf_recreate_got (void **entryp, void *data)
4242 {
4243 struct mips_got_entry new_entry, *entry;
4244 struct mips_elf_traverse_got_arg *arg;
4245 void **slot;
4246
4247 entry = (struct mips_got_entry *) *entryp;
4248 arg = (struct mips_elf_traverse_got_arg *) data;
4249 if (entry->abfd != NULL
4250 && entry->symndx == -1
4251 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4252 || entry->d.h->root.root.type == bfd_link_hash_warning))
4253 {
4254 struct mips_elf_link_hash_entry *h;
4255
4256 new_entry = *entry;
4257 entry = &new_entry;
4258 h = entry->d.h;
4259 do
4260 {
4261 BFD_ASSERT (h->global_got_area == GGA_NONE);
4262 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4263 }
4264 while (h->root.root.type == bfd_link_hash_indirect
4265 || h->root.root.type == bfd_link_hash_warning);
4266 entry->d.h = h;
4267 }
4268 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4269 if (slot == NULL)
4270 {
4271 arg->g = NULL;
4272 return 0;
4273 }
4274 if (*slot == NULL)
4275 {
4276 if (entry == &new_entry)
4277 {
4278 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4279 if (!entry)
4280 {
4281 arg->g = NULL;
4282 return 0;
4283 }
4284 *entry = new_entry;
4285 }
4286 *slot = entry;
4287 mips_elf_count_got_entry (arg->info, arg->g, entry);
4288 }
4289 return 1;
4290 }
4291
4292 /* Return the maximum number of GOT page entries required for RANGE. */
4293
4294 static bfd_vma
4295 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4296 {
4297 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4298 }
4299
4300 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4301
4302 static bfd_boolean
4303 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4304 asection *sec, bfd_signed_vma addend)
4305 {
4306 struct mips_got_info *g = arg->g;
4307 struct mips_got_page_entry lookup, *entry;
4308 struct mips_got_page_range **range_ptr, *range;
4309 bfd_vma old_pages, new_pages;
4310 void **loc;
4311
4312 /* Find the mips_got_page_entry hash table entry for this section. */
4313 lookup.sec = sec;
4314 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4315 if (loc == NULL)
4316 return FALSE;
4317
4318 /* Create a mips_got_page_entry if this is the first time we've
4319 seen the section. */
4320 entry = (struct mips_got_page_entry *) *loc;
4321 if (!entry)
4322 {
4323 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4324 if (!entry)
4325 return FALSE;
4326
4327 entry->sec = sec;
4328 *loc = entry;
4329 }
4330
4331 /* Skip over ranges whose maximum extent cannot share a page entry
4332 with ADDEND. */
4333 range_ptr = &entry->ranges;
4334 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4335 range_ptr = &(*range_ptr)->next;
4336
4337 /* If we scanned to the end of the list, or found a range whose
4338 minimum extent cannot share a page entry with ADDEND, create
4339 a new singleton range. */
4340 range = *range_ptr;
4341 if (!range || addend < range->min_addend - 0xffff)
4342 {
4343 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4344 if (!range)
4345 return FALSE;
4346
4347 range->next = *range_ptr;
4348 range->min_addend = addend;
4349 range->max_addend = addend;
4350
4351 *range_ptr = range;
4352 entry->num_pages++;
4353 g->page_gotno++;
4354 return TRUE;
4355 }
4356
4357 /* Remember how many pages the old range contributed. */
4358 old_pages = mips_elf_pages_for_range (range);
4359
4360 /* Update the ranges. */
4361 if (addend < range->min_addend)
4362 range->min_addend = addend;
4363 else if (addend > range->max_addend)
4364 {
4365 if (range->next && addend >= range->next->min_addend - 0xffff)
4366 {
4367 old_pages += mips_elf_pages_for_range (range->next);
4368 range->max_addend = range->next->max_addend;
4369 range->next = range->next->next;
4370 }
4371 else
4372 range->max_addend = addend;
4373 }
4374
4375 /* Record any change in the total estimate. */
4376 new_pages = mips_elf_pages_for_range (range);
4377 if (old_pages != new_pages)
4378 {
4379 entry->num_pages += new_pages - old_pages;
4380 g->page_gotno += new_pages - old_pages;
4381 }
4382
4383 return TRUE;
4384 }
4385
4386 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4387 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4388 whether the page reference described by *REFP needs a GOT page entry,
4389 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4390
4391 static bfd_boolean
4392 mips_elf_resolve_got_page_ref (void **refp, void *data)
4393 {
4394 struct mips_got_page_ref *ref;
4395 struct mips_elf_traverse_got_arg *arg;
4396 struct mips_elf_link_hash_table *htab;
4397 asection *sec;
4398 bfd_vma addend;
4399
4400 ref = (struct mips_got_page_ref *) *refp;
4401 arg = (struct mips_elf_traverse_got_arg *) data;
4402 htab = mips_elf_hash_table (arg->info);
4403
4404 if (ref->symndx < 0)
4405 {
4406 struct mips_elf_link_hash_entry *h;
4407
4408 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4409 h = ref->u.h;
4410 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4411 return 1;
4412
4413 /* Ignore undefined symbols; we'll issue an error later if
4414 appropriate. */
4415 if (!((h->root.root.type == bfd_link_hash_defined
4416 || h->root.root.type == bfd_link_hash_defweak)
4417 && h->root.root.u.def.section))
4418 return 1;
4419
4420 sec = h->root.root.u.def.section;
4421 addend = h->root.root.u.def.value + ref->addend;
4422 }
4423 else
4424 {
4425 Elf_Internal_Sym *isym;
4426
4427 /* Read in the symbol. */
4428 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4429 ref->symndx);
4430 if (isym == NULL)
4431 {
4432 arg->g = NULL;
4433 return 0;
4434 }
4435
4436 /* Get the associated input section. */
4437 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4438 if (sec == NULL)
4439 {
4440 arg->g = NULL;
4441 return 0;
4442 }
4443
4444 /* If this is a mergable section, work out the section and offset
4445 of the merged data. For section symbols, the addend specifies
4446 of the offset _of_ the first byte in the data, otherwise it
4447 specifies the offset _from_ the first byte. */
4448 if (sec->flags & SEC_MERGE)
4449 {
4450 void *secinfo;
4451
4452 secinfo = elf_section_data (sec)->sec_info;
4453 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4454 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4455 isym->st_value + ref->addend);
4456 else
4457 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4458 isym->st_value) + ref->addend;
4459 }
4460 else
4461 addend = isym->st_value + ref->addend;
4462 }
4463 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4464 {
4465 arg->g = NULL;
4466 return 0;
4467 }
4468 return 1;
4469 }
4470
4471 /* If any entries in G->got_entries are for indirect or warning symbols,
4472 replace them with entries for the target symbol. Convert g->got_page_refs
4473 into got_page_entry structures and estimate the number of page entries
4474 that they require. */
4475
4476 static bfd_boolean
4477 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4478 struct mips_got_info *g)
4479 {
4480 struct mips_elf_traverse_got_arg tga;
4481 struct mips_got_info oldg;
4482
4483 oldg = *g;
4484
4485 tga.info = info;
4486 tga.g = g;
4487 tga.value = FALSE;
4488 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4489 if (tga.value)
4490 {
4491 *g = oldg;
4492 g->got_entries = htab_create (htab_size (oldg.got_entries),
4493 mips_elf_got_entry_hash,
4494 mips_elf_got_entry_eq, NULL);
4495 if (!g->got_entries)
4496 return FALSE;
4497
4498 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4499 if (!tga.g)
4500 return FALSE;
4501
4502 htab_delete (oldg.got_entries);
4503 }
4504
4505 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4506 mips_got_page_entry_eq, NULL);
4507 if (g->got_page_entries == NULL)
4508 return FALSE;
4509
4510 tga.info = info;
4511 tga.g = g;
4512 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4513
4514 return TRUE;
4515 }
4516
4517 /* Return true if a GOT entry for H should live in the local rather than
4518 global GOT area. */
4519
4520 static bfd_boolean
4521 mips_use_local_got_p (struct bfd_link_info *info,
4522 struct mips_elf_link_hash_entry *h)
4523 {
4524 /* Symbols that aren't in the dynamic symbol table must live in the
4525 local GOT. This includes symbols that are completely undefined
4526 and which therefore don't bind locally. We'll report undefined
4527 symbols later if appropriate. */
4528 if (h->root.dynindx == -1)
4529 return TRUE;
4530
4531 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4532 to the local GOT, as they would be implicitly relocated by the
4533 base address by the dynamic loader. */
4534 if (bfd_is_abs_symbol (&h->root.root))
4535 return FALSE;
4536
4537 /* Symbols that bind locally can (and in the case of forced-local
4538 symbols, must) live in the local GOT. */
4539 if (h->got_only_for_calls
4540 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4541 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4542 return TRUE;
4543
4544 /* If this is an executable that must provide a definition of the symbol,
4545 either though PLTs or copy relocations, then that address should go in
4546 the local rather than global GOT. */
4547 if (bfd_link_executable (info) && h->has_static_relocs)
4548 return TRUE;
4549
4550 return FALSE;
4551 }
4552
4553 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4554 link_info structure. Decide whether the hash entry needs an entry in
4555 the global part of the primary GOT, setting global_got_area accordingly.
4556 Count the number of global symbols that are in the primary GOT only
4557 because they have relocations against them (reloc_only_gotno). */
4558
4559 static int
4560 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4561 {
4562 struct bfd_link_info *info;
4563 struct mips_elf_link_hash_table *htab;
4564 struct mips_got_info *g;
4565
4566 info = (struct bfd_link_info *) data;
4567 htab = mips_elf_hash_table (info);
4568 g = htab->got_info;
4569 if (h->global_got_area != GGA_NONE)
4570 {
4571 /* Make a final decision about whether the symbol belongs in the
4572 local or global GOT. */
4573 if (mips_use_local_got_p (info, h))
4574 /* The symbol belongs in the local GOT. We no longer need this
4575 entry if it was only used for relocations; those relocations
4576 will be against the null or section symbol instead of H. */
4577 h->global_got_area = GGA_NONE;
4578 else if (htab->is_vxworks
4579 && h->got_only_for_calls
4580 && h->root.plt.plist->mips_offset != MINUS_ONE)
4581 /* On VxWorks, calls can refer directly to the .got.plt entry;
4582 they don't need entries in the regular GOT. .got.plt entries
4583 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4584 h->global_got_area = GGA_NONE;
4585 else if (h->global_got_area == GGA_RELOC_ONLY)
4586 {
4587 g->reloc_only_gotno++;
4588 g->global_gotno++;
4589 }
4590 }
4591 return 1;
4592 }
4593 \f
4594 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4595 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4596
4597 static int
4598 mips_elf_add_got_entry (void **entryp, void *data)
4599 {
4600 struct mips_got_entry *entry;
4601 struct mips_elf_traverse_got_arg *arg;
4602 void **slot;
4603
4604 entry = (struct mips_got_entry *) *entryp;
4605 arg = (struct mips_elf_traverse_got_arg *) data;
4606 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4607 if (!slot)
4608 {
4609 arg->g = NULL;
4610 return 0;
4611 }
4612 if (!*slot)
4613 {
4614 *slot = entry;
4615 mips_elf_count_got_entry (arg->info, arg->g, entry);
4616 }
4617 return 1;
4618 }
4619
4620 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4621 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4622
4623 static int
4624 mips_elf_add_got_page_entry (void **entryp, void *data)
4625 {
4626 struct mips_got_page_entry *entry;
4627 struct mips_elf_traverse_got_arg *arg;
4628 void **slot;
4629
4630 entry = (struct mips_got_page_entry *) *entryp;
4631 arg = (struct mips_elf_traverse_got_arg *) data;
4632 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4633 if (!slot)
4634 {
4635 arg->g = NULL;
4636 return 0;
4637 }
4638 if (!*slot)
4639 {
4640 *slot = entry;
4641 arg->g->page_gotno += entry->num_pages;
4642 }
4643 return 1;
4644 }
4645
4646 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4647 this would lead to overflow, 1 if they were merged successfully,
4648 and 0 if a merge failed due to lack of memory. (These values are chosen
4649 so that nonnegative return values can be returned by a htab_traverse
4650 callback.) */
4651
4652 static int
4653 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4654 struct mips_got_info *to,
4655 struct mips_elf_got_per_bfd_arg *arg)
4656 {
4657 struct mips_elf_traverse_got_arg tga;
4658 unsigned int estimate;
4659
4660 /* Work out how many page entries we would need for the combined GOT. */
4661 estimate = arg->max_pages;
4662 if (estimate >= from->page_gotno + to->page_gotno)
4663 estimate = from->page_gotno + to->page_gotno;
4664
4665 /* And conservatively estimate how many local and TLS entries
4666 would be needed. */
4667 estimate += from->local_gotno + to->local_gotno;
4668 estimate += from->tls_gotno + to->tls_gotno;
4669
4670 /* If we're merging with the primary got, any TLS relocations will
4671 come after the full set of global entries. Otherwise estimate those
4672 conservatively as well. */
4673 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4674 estimate += arg->global_count;
4675 else
4676 estimate += from->global_gotno + to->global_gotno;
4677
4678 /* Bail out if the combined GOT might be too big. */
4679 if (estimate > arg->max_count)
4680 return -1;
4681
4682 /* Transfer the bfd's got information from FROM to TO. */
4683 tga.info = arg->info;
4684 tga.g = to;
4685 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4686 if (!tga.g)
4687 return 0;
4688
4689 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4690 if (!tga.g)
4691 return 0;
4692
4693 mips_elf_replace_bfd_got (abfd, to);
4694 return 1;
4695 }
4696
4697 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4698 as possible of the primary got, since it doesn't require explicit
4699 dynamic relocations, but don't use bfds that would reference global
4700 symbols out of the addressable range. Failing the primary got,
4701 attempt to merge with the current got, or finish the current got
4702 and then make make the new got current. */
4703
4704 static bfd_boolean
4705 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4706 struct mips_elf_got_per_bfd_arg *arg)
4707 {
4708 unsigned int estimate;
4709 int result;
4710
4711 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4712 return FALSE;
4713
4714 /* Work out the number of page, local and TLS entries. */
4715 estimate = arg->max_pages;
4716 if (estimate > g->page_gotno)
4717 estimate = g->page_gotno;
4718 estimate += g->local_gotno + g->tls_gotno;
4719
4720 /* We place TLS GOT entries after both locals and globals. The globals
4721 for the primary GOT may overflow the normal GOT size limit, so be
4722 sure not to merge a GOT which requires TLS with the primary GOT in that
4723 case. This doesn't affect non-primary GOTs. */
4724 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4725
4726 if (estimate <= arg->max_count)
4727 {
4728 /* If we don't have a primary GOT, use it as
4729 a starting point for the primary GOT. */
4730 if (!arg->primary)
4731 {
4732 arg->primary = g;
4733 return TRUE;
4734 }
4735
4736 /* Try merging with the primary GOT. */
4737 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4738 if (result >= 0)
4739 return result;
4740 }
4741
4742 /* If we can merge with the last-created got, do it. */
4743 if (arg->current)
4744 {
4745 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4746 if (result >= 0)
4747 return result;
4748 }
4749
4750 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4751 fits; if it turns out that it doesn't, we'll get relocation
4752 overflows anyway. */
4753 g->next = arg->current;
4754 arg->current = g;
4755
4756 return TRUE;
4757 }
4758
4759 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4760 to GOTIDX, duplicating the entry if it has already been assigned
4761 an index in a different GOT. */
4762
4763 static bfd_boolean
4764 mips_elf_set_gotidx (void **entryp, long gotidx)
4765 {
4766 struct mips_got_entry *entry;
4767
4768 entry = (struct mips_got_entry *) *entryp;
4769 if (entry->gotidx > 0)
4770 {
4771 struct mips_got_entry *new_entry;
4772
4773 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4774 if (!new_entry)
4775 return FALSE;
4776
4777 *new_entry = *entry;
4778 *entryp = new_entry;
4779 entry = new_entry;
4780 }
4781 entry->gotidx = gotidx;
4782 return TRUE;
4783 }
4784
4785 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4786 mips_elf_traverse_got_arg in which DATA->value is the size of one
4787 GOT entry. Set DATA->g to null on failure. */
4788
4789 static int
4790 mips_elf_initialize_tls_index (void **entryp, void *data)
4791 {
4792 struct mips_got_entry *entry;
4793 struct mips_elf_traverse_got_arg *arg;
4794
4795 /* We're only interested in TLS symbols. */
4796 entry = (struct mips_got_entry *) *entryp;
4797 if (entry->tls_type == GOT_TLS_NONE)
4798 return 1;
4799
4800 arg = (struct mips_elf_traverse_got_arg *) data;
4801 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4802 {
4803 arg->g = NULL;
4804 return 0;
4805 }
4806
4807 /* Account for the entries we've just allocated. */
4808 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4809 return 1;
4810 }
4811
4812 /* A htab_traverse callback for GOT entries, where DATA points to a
4813 mips_elf_traverse_got_arg. Set the global_got_area of each global
4814 symbol to DATA->value. */
4815
4816 static int
4817 mips_elf_set_global_got_area (void **entryp, void *data)
4818 {
4819 struct mips_got_entry *entry;
4820 struct mips_elf_traverse_got_arg *arg;
4821
4822 entry = (struct mips_got_entry *) *entryp;
4823 arg = (struct mips_elf_traverse_got_arg *) data;
4824 if (entry->abfd != NULL
4825 && entry->symndx == -1
4826 && entry->d.h->global_got_area != GGA_NONE)
4827 entry->d.h->global_got_area = arg->value;
4828 return 1;
4829 }
4830
4831 /* A htab_traverse callback for secondary GOT entries, where DATA points
4832 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4833 and record the number of relocations they require. DATA->value is
4834 the size of one GOT entry. Set DATA->g to null on failure. */
4835
4836 static int
4837 mips_elf_set_global_gotidx (void **entryp, void *data)
4838 {
4839 struct mips_got_entry *entry;
4840 struct mips_elf_traverse_got_arg *arg;
4841
4842 entry = (struct mips_got_entry *) *entryp;
4843 arg = (struct mips_elf_traverse_got_arg *) data;
4844 if (entry->abfd != NULL
4845 && entry->symndx == -1
4846 && entry->d.h->global_got_area != GGA_NONE)
4847 {
4848 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4849 {
4850 arg->g = NULL;
4851 return 0;
4852 }
4853 arg->g->assigned_low_gotno += 1;
4854
4855 if (bfd_link_pic (arg->info)
4856 || (elf_hash_table (arg->info)->dynamic_sections_created
4857 && entry->d.h->root.def_dynamic
4858 && !entry->d.h->root.def_regular))
4859 arg->g->relocs += 1;
4860 }
4861
4862 return 1;
4863 }
4864
4865 /* A htab_traverse callback for GOT entries for which DATA is the
4866 bfd_link_info. Forbid any global symbols from having traditional
4867 lazy-binding stubs. */
4868
4869 static int
4870 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4871 {
4872 struct bfd_link_info *info;
4873 struct mips_elf_link_hash_table *htab;
4874 struct mips_got_entry *entry;
4875
4876 entry = (struct mips_got_entry *) *entryp;
4877 info = (struct bfd_link_info *) data;
4878 htab = mips_elf_hash_table (info);
4879 BFD_ASSERT (htab != NULL);
4880
4881 if (entry->abfd != NULL
4882 && entry->symndx == -1
4883 && entry->d.h->needs_lazy_stub)
4884 {
4885 entry->d.h->needs_lazy_stub = FALSE;
4886 htab->lazy_stub_count--;
4887 }
4888
4889 return 1;
4890 }
4891
4892 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4893 the primary GOT. */
4894 static bfd_vma
4895 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4896 {
4897 if (!g->next)
4898 return 0;
4899
4900 g = mips_elf_bfd_got (ibfd, FALSE);
4901 if (! g)
4902 return 0;
4903
4904 BFD_ASSERT (g->next);
4905
4906 g = g->next;
4907
4908 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4909 * MIPS_ELF_GOT_SIZE (abfd);
4910 }
4911
4912 /* Turn a single GOT that is too big for 16-bit addressing into
4913 a sequence of GOTs, each one 16-bit addressable. */
4914
4915 static bfd_boolean
4916 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4917 asection *got, bfd_size_type pages)
4918 {
4919 struct mips_elf_link_hash_table *htab;
4920 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4921 struct mips_elf_traverse_got_arg tga;
4922 struct mips_got_info *g, *gg;
4923 unsigned int assign, needed_relocs;
4924 bfd *dynobj, *ibfd;
4925
4926 dynobj = elf_hash_table (info)->dynobj;
4927 htab = mips_elf_hash_table (info);
4928 BFD_ASSERT (htab != NULL);
4929
4930 g = htab->got_info;
4931
4932 got_per_bfd_arg.obfd = abfd;
4933 got_per_bfd_arg.info = info;
4934 got_per_bfd_arg.current = NULL;
4935 got_per_bfd_arg.primary = NULL;
4936 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4937 / MIPS_ELF_GOT_SIZE (abfd))
4938 - htab->reserved_gotno);
4939 got_per_bfd_arg.max_pages = pages;
4940 /* The number of globals that will be included in the primary GOT.
4941 See the calls to mips_elf_set_global_got_area below for more
4942 information. */
4943 got_per_bfd_arg.global_count = g->global_gotno;
4944
4945 /* Try to merge the GOTs of input bfds together, as long as they
4946 don't seem to exceed the maximum GOT size, choosing one of them
4947 to be the primary GOT. */
4948 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4949 {
4950 gg = mips_elf_bfd_got (ibfd, FALSE);
4951 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4952 return FALSE;
4953 }
4954
4955 /* If we do not find any suitable primary GOT, create an empty one. */
4956 if (got_per_bfd_arg.primary == NULL)
4957 g->next = mips_elf_create_got_info (abfd);
4958 else
4959 g->next = got_per_bfd_arg.primary;
4960 g->next->next = got_per_bfd_arg.current;
4961
4962 /* GG is now the master GOT, and G is the primary GOT. */
4963 gg = g;
4964 g = g->next;
4965
4966 /* Map the output bfd to the primary got. That's what we're going
4967 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4968 didn't mark in check_relocs, and we want a quick way to find it.
4969 We can't just use gg->next because we're going to reverse the
4970 list. */
4971 mips_elf_replace_bfd_got (abfd, g);
4972
4973 /* Every symbol that is referenced in a dynamic relocation must be
4974 present in the primary GOT, so arrange for them to appear after
4975 those that are actually referenced. */
4976 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4977 g->global_gotno = gg->global_gotno;
4978
4979 tga.info = info;
4980 tga.value = GGA_RELOC_ONLY;
4981 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4982 tga.value = GGA_NORMAL;
4983 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4984
4985 /* Now go through the GOTs assigning them offset ranges.
4986 [assigned_low_gotno, local_gotno[ will be set to the range of local
4987 entries in each GOT. We can then compute the end of a GOT by
4988 adding local_gotno to global_gotno. We reverse the list and make
4989 it circular since then we'll be able to quickly compute the
4990 beginning of a GOT, by computing the end of its predecessor. To
4991 avoid special cases for the primary GOT, while still preserving
4992 assertions that are valid for both single- and multi-got links,
4993 we arrange for the main got struct to have the right number of
4994 global entries, but set its local_gotno such that the initial
4995 offset of the primary GOT is zero. Remember that the primary GOT
4996 will become the last item in the circular linked list, so it
4997 points back to the master GOT. */
4998 gg->local_gotno = -g->global_gotno;
4999 gg->global_gotno = g->global_gotno;
5000 gg->tls_gotno = 0;
5001 assign = 0;
5002 gg->next = gg;
5003
5004 do
5005 {
5006 struct mips_got_info *gn;
5007
5008 assign += htab->reserved_gotno;
5009 g->assigned_low_gotno = assign;
5010 g->local_gotno += assign;
5011 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
5012 g->assigned_high_gotno = g->local_gotno - 1;
5013 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
5014
5015 /* Take g out of the direct list, and push it onto the reversed
5016 list that gg points to. g->next is guaranteed to be nonnull after
5017 this operation, as required by mips_elf_initialize_tls_index. */
5018 gn = g->next;
5019 g->next = gg->next;
5020 gg->next = g;
5021
5022 /* Set up any TLS entries. We always place the TLS entries after
5023 all non-TLS entries. */
5024 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
5025 tga.g = g;
5026 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5027 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5028 if (!tga.g)
5029 return FALSE;
5030 BFD_ASSERT (g->tls_assigned_gotno == assign);
5031
5032 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5033 g = gn;
5034
5035 /* Forbid global symbols in every non-primary GOT from having
5036 lazy-binding stubs. */
5037 if (g)
5038 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5039 }
5040 while (g);
5041
5042 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5043
5044 needed_relocs = 0;
5045 for (g = gg->next; g && g->next != gg; g = g->next)
5046 {
5047 unsigned int save_assign;
5048
5049 /* Assign offsets to global GOT entries and count how many
5050 relocations they need. */
5051 save_assign = g->assigned_low_gotno;
5052 g->assigned_low_gotno = g->local_gotno;
5053 tga.info = info;
5054 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5055 tga.g = g;
5056 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5057 if (!tga.g)
5058 return FALSE;
5059 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5060 g->assigned_low_gotno = save_assign;
5061
5062 if (bfd_link_pic (info))
5063 {
5064 g->relocs += g->local_gotno - g->assigned_low_gotno;
5065 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5066 + g->next->global_gotno
5067 + g->next->tls_gotno
5068 + htab->reserved_gotno);
5069 }
5070 needed_relocs += g->relocs;
5071 }
5072 needed_relocs += g->relocs;
5073
5074 if (needed_relocs)
5075 mips_elf_allocate_dynamic_relocations (dynobj, info,
5076 needed_relocs);
5077
5078 return TRUE;
5079 }
5080
5081 \f
5082 /* Returns the first relocation of type r_type found, beginning with
5083 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5084
5085 static const Elf_Internal_Rela *
5086 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5087 const Elf_Internal_Rela *relocation,
5088 const Elf_Internal_Rela *relend)
5089 {
5090 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5091
5092 while (relocation < relend)
5093 {
5094 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5095 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5096 return relocation;
5097
5098 ++relocation;
5099 }
5100
5101 /* We didn't find it. */
5102 return NULL;
5103 }
5104
5105 /* Return whether an input relocation is against a local symbol. */
5106
5107 static bfd_boolean
5108 mips_elf_local_relocation_p (bfd *input_bfd,
5109 const Elf_Internal_Rela *relocation,
5110 asection **local_sections)
5111 {
5112 unsigned long r_symndx;
5113 Elf_Internal_Shdr *symtab_hdr;
5114 size_t extsymoff;
5115
5116 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5117 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5118 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5119
5120 if (r_symndx < extsymoff)
5121 return TRUE;
5122 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5123 return TRUE;
5124
5125 return FALSE;
5126 }
5127 \f
5128 /* Sign-extend VALUE, which has the indicated number of BITS. */
5129
5130 bfd_vma
5131 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5132 {
5133 if (value & ((bfd_vma) 1 << (bits - 1)))
5134 /* VALUE is negative. */
5135 value |= ((bfd_vma) - 1) << bits;
5136
5137 return value;
5138 }
5139
5140 /* Return non-zero if the indicated VALUE has overflowed the maximum
5141 range expressible by a signed number with the indicated number of
5142 BITS. */
5143
5144 static bfd_boolean
5145 mips_elf_overflow_p (bfd_vma value, int bits)
5146 {
5147 bfd_signed_vma svalue = (bfd_signed_vma) value;
5148
5149 if (svalue > (1 << (bits - 1)) - 1)
5150 /* The value is too big. */
5151 return TRUE;
5152 else if (svalue < -(1 << (bits - 1)))
5153 /* The value is too small. */
5154 return TRUE;
5155
5156 /* All is well. */
5157 return FALSE;
5158 }
5159
5160 /* Calculate the %high function. */
5161
5162 static bfd_vma
5163 mips_elf_high (bfd_vma value)
5164 {
5165 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5166 }
5167
5168 /* Calculate the %higher function. */
5169
5170 static bfd_vma
5171 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5172 {
5173 #ifdef BFD64
5174 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5175 #else
5176 abort ();
5177 return MINUS_ONE;
5178 #endif
5179 }
5180
5181 /* Calculate the %highest function. */
5182
5183 static bfd_vma
5184 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5185 {
5186 #ifdef BFD64
5187 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5188 #else
5189 abort ();
5190 return MINUS_ONE;
5191 #endif
5192 }
5193 \f
5194 /* Create the .compact_rel section. */
5195
5196 static bfd_boolean
5197 mips_elf_create_compact_rel_section
5198 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5199 {
5200 flagword flags;
5201 register asection *s;
5202
5203 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5204 {
5205 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5206 | SEC_READONLY);
5207
5208 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5209 if (s == NULL
5210 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5211 return FALSE;
5212
5213 s->size = sizeof (Elf32_External_compact_rel);
5214 }
5215
5216 return TRUE;
5217 }
5218
5219 /* Create the .got section to hold the global offset table. */
5220
5221 static bfd_boolean
5222 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5223 {
5224 flagword flags;
5225 register asection *s;
5226 struct elf_link_hash_entry *h;
5227 struct bfd_link_hash_entry *bh;
5228 struct mips_elf_link_hash_table *htab;
5229
5230 htab = mips_elf_hash_table (info);
5231 BFD_ASSERT (htab != NULL);
5232
5233 /* This function may be called more than once. */
5234 if (htab->root.sgot)
5235 return TRUE;
5236
5237 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5238 | SEC_LINKER_CREATED);
5239
5240 /* We have to use an alignment of 2**4 here because this is hardcoded
5241 in the function stub generation and in the linker script. */
5242 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5243 if (s == NULL
5244 || !bfd_set_section_alignment (s, 4))
5245 return FALSE;
5246 htab->root.sgot = s;
5247
5248 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5249 linker script because we don't want to define the symbol if we
5250 are not creating a global offset table. */
5251 bh = NULL;
5252 if (! (_bfd_generic_link_add_one_symbol
5253 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5254 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5255 return FALSE;
5256
5257 h = (struct elf_link_hash_entry *) bh;
5258 h->non_elf = 0;
5259 h->def_regular = 1;
5260 h->type = STT_OBJECT;
5261 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5262 elf_hash_table (info)->hgot = h;
5263
5264 if (bfd_link_pic (info)
5265 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5266 return FALSE;
5267
5268 htab->got_info = mips_elf_create_got_info (abfd);
5269 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5270 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5271
5272 /* We also need a .got.plt section when generating PLTs. */
5273 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5274 SEC_ALLOC | SEC_LOAD
5275 | SEC_HAS_CONTENTS
5276 | SEC_IN_MEMORY
5277 | SEC_LINKER_CREATED);
5278 if (s == NULL)
5279 return FALSE;
5280 htab->root.sgotplt = s;
5281
5282 return TRUE;
5283 }
5284 \f
5285 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5286 __GOTT_INDEX__ symbols. These symbols are only special for
5287 shared objects; they are not used in executables. */
5288
5289 static bfd_boolean
5290 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5291 {
5292 return (mips_elf_hash_table (info)->is_vxworks
5293 && bfd_link_pic (info)
5294 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5295 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5296 }
5297
5298 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5299 require an la25 stub. See also mips_elf_local_pic_function_p,
5300 which determines whether the destination function ever requires a
5301 stub. */
5302
5303 static bfd_boolean
5304 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5305 bfd_boolean target_is_16_bit_code_p)
5306 {
5307 /* We specifically ignore branches and jumps from EF_PIC objects,
5308 where the onus is on the compiler or programmer to perform any
5309 necessary initialization of $25. Sometimes such initialization
5310 is unnecessary; for example, -mno-shared functions do not use
5311 the incoming value of $25, and may therefore be called directly. */
5312 if (PIC_OBJECT_P (input_bfd))
5313 return FALSE;
5314
5315 switch (r_type)
5316 {
5317 case R_MIPS_26:
5318 case R_MIPS_PC16:
5319 case R_MIPS_PC21_S2:
5320 case R_MIPS_PC26_S2:
5321 case R_MICROMIPS_26_S1:
5322 case R_MICROMIPS_PC7_S1:
5323 case R_MICROMIPS_PC10_S1:
5324 case R_MICROMIPS_PC16_S1:
5325 case R_MICROMIPS_PC23_S2:
5326 return TRUE;
5327
5328 case R_MIPS16_26:
5329 return !target_is_16_bit_code_p;
5330
5331 default:
5332 return FALSE;
5333 }
5334 }
5335 \f
5336 /* Obtain the field relocated by RELOCATION. */
5337
5338 static bfd_vma
5339 mips_elf_obtain_contents (reloc_howto_type *howto,
5340 const Elf_Internal_Rela *relocation,
5341 bfd *input_bfd, bfd_byte *contents)
5342 {
5343 bfd_vma x = 0;
5344 bfd_byte *location = contents + relocation->r_offset;
5345 unsigned int size = bfd_get_reloc_size (howto);
5346
5347 /* Obtain the bytes. */
5348 if (size != 0)
5349 x = bfd_get (8 * size, input_bfd, location);
5350
5351 return x;
5352 }
5353
5354 /* Store the field relocated by RELOCATION. */
5355
5356 static void
5357 mips_elf_store_contents (reloc_howto_type *howto,
5358 const Elf_Internal_Rela *relocation,
5359 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5360 {
5361 bfd_byte *location = contents + relocation->r_offset;
5362 unsigned int size = bfd_get_reloc_size (howto);
5363
5364 /* Put the value into the output. */
5365 if (size != 0)
5366 bfd_put (8 * size, input_bfd, x, location);
5367 }
5368
5369 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5370 RELOCATION described by HOWTO, with a move of 0 to the load target
5371 register, returning TRUE if that is successful and FALSE otherwise.
5372 If DOIT is FALSE, then only determine it patching is possible and
5373 return status without actually changing CONTENTS.
5374 */
5375
5376 static bfd_boolean
5377 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5378 const Elf_Internal_Rela *relocation,
5379 reloc_howto_type *howto, bfd_boolean doit)
5380 {
5381 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5382 bfd_byte *location = contents + relocation->r_offset;
5383 bfd_boolean nullified = TRUE;
5384 bfd_vma x;
5385
5386 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5387
5388 /* Obtain the current value. */
5389 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5390
5391 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5392 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5393 if (mips16_reloc_p (r_type)
5394 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5395 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5396 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5397 else if (micromips_reloc_p (r_type)
5398 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5399 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5400 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5401 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5402 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5403 else
5404 nullified = FALSE;
5405
5406 /* Put the value into the output. */
5407 if (doit && nullified)
5408 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5409
5410 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5411
5412 return nullified;
5413 }
5414
5415 /* Calculate the value produced by the RELOCATION (which comes from
5416 the INPUT_BFD). The ADDEND is the addend to use for this
5417 RELOCATION; RELOCATION->R_ADDEND is ignored.
5418
5419 The result of the relocation calculation is stored in VALUEP.
5420 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5421 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5422
5423 This function returns bfd_reloc_continue if the caller need take no
5424 further action regarding this relocation, bfd_reloc_notsupported if
5425 something goes dramatically wrong, bfd_reloc_overflow if an
5426 overflow occurs, and bfd_reloc_ok to indicate success. */
5427
5428 static bfd_reloc_status_type
5429 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5430 asection *input_section, bfd_byte *contents,
5431 struct bfd_link_info *info,
5432 const Elf_Internal_Rela *relocation,
5433 bfd_vma addend, reloc_howto_type *howto,
5434 Elf_Internal_Sym *local_syms,
5435 asection **local_sections, bfd_vma *valuep,
5436 const char **namep,
5437 bfd_boolean *cross_mode_jump_p,
5438 bfd_boolean save_addend)
5439 {
5440 /* The eventual value we will return. */
5441 bfd_vma value;
5442 /* The address of the symbol against which the relocation is
5443 occurring. */
5444 bfd_vma symbol = 0;
5445 /* The final GP value to be used for the relocatable, executable, or
5446 shared object file being produced. */
5447 bfd_vma gp;
5448 /* The place (section offset or address) of the storage unit being
5449 relocated. */
5450 bfd_vma p;
5451 /* The value of GP used to create the relocatable object. */
5452 bfd_vma gp0;
5453 /* The offset into the global offset table at which the address of
5454 the relocation entry symbol, adjusted by the addend, resides
5455 during execution. */
5456 bfd_vma g = MINUS_ONE;
5457 /* The section in which the symbol referenced by the relocation is
5458 located. */
5459 asection *sec = NULL;
5460 struct mips_elf_link_hash_entry *h = NULL;
5461 /* TRUE if the symbol referred to by this relocation is a local
5462 symbol. */
5463 bfd_boolean local_p, was_local_p;
5464 /* TRUE if the symbol referred to by this relocation is a section
5465 symbol. */
5466 bfd_boolean section_p = FALSE;
5467 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5468 bfd_boolean gp_disp_p = FALSE;
5469 /* TRUE if the symbol referred to by this relocation is
5470 "__gnu_local_gp". */
5471 bfd_boolean gnu_local_gp_p = FALSE;
5472 Elf_Internal_Shdr *symtab_hdr;
5473 size_t extsymoff;
5474 unsigned long r_symndx;
5475 int r_type;
5476 /* TRUE if overflow occurred during the calculation of the
5477 relocation value. */
5478 bfd_boolean overflowed_p;
5479 /* TRUE if this relocation refers to a MIPS16 function. */
5480 bfd_boolean target_is_16_bit_code_p = FALSE;
5481 bfd_boolean target_is_micromips_code_p = FALSE;
5482 struct mips_elf_link_hash_table *htab;
5483 bfd *dynobj;
5484 bfd_boolean resolved_to_zero;
5485
5486 dynobj = elf_hash_table (info)->dynobj;
5487 htab = mips_elf_hash_table (info);
5488 BFD_ASSERT (htab != NULL);
5489
5490 /* Parse the relocation. */
5491 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5492 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5493 p = (input_section->output_section->vma
5494 + input_section->output_offset
5495 + relocation->r_offset);
5496
5497 /* Assume that there will be no overflow. */
5498 overflowed_p = FALSE;
5499
5500 /* Figure out whether or not the symbol is local, and get the offset
5501 used in the array of hash table entries. */
5502 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5503 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5504 local_sections);
5505 was_local_p = local_p;
5506 if (! elf_bad_symtab (input_bfd))
5507 extsymoff = symtab_hdr->sh_info;
5508 else
5509 {
5510 /* The symbol table does not follow the rule that local symbols
5511 must come before globals. */
5512 extsymoff = 0;
5513 }
5514
5515 /* Figure out the value of the symbol. */
5516 if (local_p)
5517 {
5518 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5519 Elf_Internal_Sym *sym;
5520
5521 sym = local_syms + r_symndx;
5522 sec = local_sections[r_symndx];
5523
5524 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5525
5526 symbol = sec->output_section->vma + sec->output_offset;
5527 if (!section_p || (sec->flags & SEC_MERGE))
5528 symbol += sym->st_value;
5529 if ((sec->flags & SEC_MERGE) && section_p)
5530 {
5531 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5532 addend -= symbol;
5533 addend += sec->output_section->vma + sec->output_offset;
5534 }
5535
5536 /* MIPS16/microMIPS text labels should be treated as odd. */
5537 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5538 ++symbol;
5539
5540 /* Record the name of this symbol, for our caller. */
5541 *namep = bfd_elf_string_from_elf_section (input_bfd,
5542 symtab_hdr->sh_link,
5543 sym->st_name);
5544 if (*namep == NULL || **namep == '\0')
5545 *namep = bfd_section_name (sec);
5546
5547 /* For relocations against a section symbol and ones against no
5548 symbol (absolute relocations) infer the ISA mode from the addend. */
5549 if (section_p || r_symndx == STN_UNDEF)
5550 {
5551 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5552 target_is_micromips_code_p = (addend & 1) && micromips_p;
5553 }
5554 /* For relocations against an absolute symbol infer the ISA mode
5555 from the value of the symbol plus addend. */
5556 else if (bfd_is_abs_section (sec))
5557 {
5558 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5559 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5560 }
5561 /* Otherwise just use the regular symbol annotation available. */
5562 else
5563 {
5564 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5565 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5566 }
5567 }
5568 else
5569 {
5570 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5571
5572 /* For global symbols we look up the symbol in the hash-table. */
5573 h = ((struct mips_elf_link_hash_entry *)
5574 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5575 /* Find the real hash-table entry for this symbol. */
5576 while (h->root.root.type == bfd_link_hash_indirect
5577 || h->root.root.type == bfd_link_hash_warning)
5578 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5579
5580 /* Record the name of this symbol, for our caller. */
5581 *namep = h->root.root.root.string;
5582
5583 /* See if this is the special _gp_disp symbol. Note that such a
5584 symbol must always be a global symbol. */
5585 if (strcmp (*namep, "_gp_disp") == 0
5586 && ! NEWABI_P (input_bfd))
5587 {
5588 /* Relocations against _gp_disp are permitted only with
5589 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5590 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5591 return bfd_reloc_notsupported;
5592
5593 gp_disp_p = TRUE;
5594 }
5595 /* See if this is the special _gp symbol. Note that such a
5596 symbol must always be a global symbol. */
5597 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5598 gnu_local_gp_p = TRUE;
5599
5600
5601 /* If this symbol is defined, calculate its address. Note that
5602 _gp_disp is a magic symbol, always implicitly defined by the
5603 linker, so it's inappropriate to check to see whether or not
5604 its defined. */
5605 else if ((h->root.root.type == bfd_link_hash_defined
5606 || h->root.root.type == bfd_link_hash_defweak)
5607 && h->root.root.u.def.section)
5608 {
5609 sec = h->root.root.u.def.section;
5610 if (sec->output_section)
5611 symbol = (h->root.root.u.def.value
5612 + sec->output_section->vma
5613 + sec->output_offset);
5614 else
5615 symbol = h->root.root.u.def.value;
5616 }
5617 else if (h->root.root.type == bfd_link_hash_undefweak)
5618 /* We allow relocations against undefined weak symbols, giving
5619 it the value zero, so that you can undefined weak functions
5620 and check to see if they exist by looking at their
5621 addresses. */
5622 symbol = 0;
5623 else if (info->unresolved_syms_in_objects == RM_IGNORE
5624 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5625 symbol = 0;
5626 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5627 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5628 {
5629 /* If this is a dynamic link, we should have created a
5630 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5631 in _bfd_mips_elf_create_dynamic_sections.
5632 Otherwise, we should define the symbol with a value of 0.
5633 FIXME: It should probably get into the symbol table
5634 somehow as well. */
5635 BFD_ASSERT (! bfd_link_pic (info));
5636 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5637 symbol = 0;
5638 }
5639 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5640 {
5641 /* This is an optional symbol - an Irix specific extension to the
5642 ELF spec. Ignore it for now.
5643 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5644 than simply ignoring them, but we do not handle this for now.
5645 For information see the "64-bit ELF Object File Specification"
5646 which is available from here:
5647 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5648 symbol = 0;
5649 }
5650 else
5651 {
5652 bfd_boolean reject_undefined
5653 = (info->unresolved_syms_in_objects == RM_DIAGNOSE
5654 && !info->warn_unresolved_syms)
5655 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT;
5656
5657 info->callbacks->undefined_symbol
5658 (info, h->root.root.root.string, input_bfd,
5659 input_section, relocation->r_offset, reject_undefined);
5660
5661 if (reject_undefined)
5662 return bfd_reloc_undefined;
5663
5664 symbol = 0;
5665 }
5666
5667 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5668 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5669 }
5670
5671 /* If this is a reference to a 16-bit function with a stub, we need
5672 to redirect the relocation to the stub unless:
5673
5674 (a) the relocation is for a MIPS16 JAL;
5675
5676 (b) the relocation is for a MIPS16 PIC call, and there are no
5677 non-MIPS16 uses of the GOT slot; or
5678
5679 (c) the section allows direct references to MIPS16 functions. */
5680 if (r_type != R_MIPS16_26
5681 && !bfd_link_relocatable (info)
5682 && ((h != NULL
5683 && h->fn_stub != NULL
5684 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5685 || (local_p
5686 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5687 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5688 && !section_allows_mips16_refs_p (input_section))
5689 {
5690 /* This is a 32- or 64-bit call to a 16-bit function. We should
5691 have already noticed that we were going to need the
5692 stub. */
5693 if (local_p)
5694 {
5695 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5696 value = 0;
5697 }
5698 else
5699 {
5700 BFD_ASSERT (h->need_fn_stub);
5701 if (h->la25_stub)
5702 {
5703 /* If a LA25 header for the stub itself exists, point to the
5704 prepended LUI/ADDIU sequence. */
5705 sec = h->la25_stub->stub_section;
5706 value = h->la25_stub->offset;
5707 }
5708 else
5709 {
5710 sec = h->fn_stub;
5711 value = 0;
5712 }
5713 }
5714
5715 symbol = sec->output_section->vma + sec->output_offset + value;
5716 /* The target is 16-bit, but the stub isn't. */
5717 target_is_16_bit_code_p = FALSE;
5718 }
5719 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5720 to a standard MIPS function, we need to redirect the call to the stub.
5721 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5722 indirect calls should use an indirect stub instead. */
5723 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5724 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5725 || (local_p
5726 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5727 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5728 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5729 {
5730 if (local_p)
5731 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5732 else
5733 {
5734 /* If both call_stub and call_fp_stub are defined, we can figure
5735 out which one to use by checking which one appears in the input
5736 file. */
5737 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5738 {
5739 asection *o;
5740
5741 sec = NULL;
5742 for (o = input_bfd->sections; o != NULL; o = o->next)
5743 {
5744 if (CALL_FP_STUB_P (bfd_section_name (o)))
5745 {
5746 sec = h->call_fp_stub;
5747 break;
5748 }
5749 }
5750 if (sec == NULL)
5751 sec = h->call_stub;
5752 }
5753 else if (h->call_stub != NULL)
5754 sec = h->call_stub;
5755 else
5756 sec = h->call_fp_stub;
5757 }
5758
5759 BFD_ASSERT (sec->size > 0);
5760 symbol = sec->output_section->vma + sec->output_offset;
5761 }
5762 /* If this is a direct call to a PIC function, redirect to the
5763 non-PIC stub. */
5764 else if (h != NULL && h->la25_stub
5765 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5766 target_is_16_bit_code_p))
5767 {
5768 symbol = (h->la25_stub->stub_section->output_section->vma
5769 + h->la25_stub->stub_section->output_offset
5770 + h->la25_stub->offset);
5771 if (ELF_ST_IS_MICROMIPS (h->root.other))
5772 symbol |= 1;
5773 }
5774 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5775 entry is used if a standard PLT entry has also been made. In this
5776 case the symbol will have been set by mips_elf_set_plt_sym_value
5777 to point to the standard PLT entry, so redirect to the compressed
5778 one. */
5779 else if ((mips16_branch_reloc_p (r_type)
5780 || micromips_branch_reloc_p (r_type))
5781 && !bfd_link_relocatable (info)
5782 && h != NULL
5783 && h->use_plt_entry
5784 && h->root.plt.plist->comp_offset != MINUS_ONE
5785 && h->root.plt.plist->mips_offset != MINUS_ONE)
5786 {
5787 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5788
5789 sec = htab->root.splt;
5790 symbol = (sec->output_section->vma
5791 + sec->output_offset
5792 + htab->plt_header_size
5793 + htab->plt_mips_offset
5794 + h->root.plt.plist->comp_offset
5795 + 1);
5796
5797 target_is_16_bit_code_p = !micromips_p;
5798 target_is_micromips_code_p = micromips_p;
5799 }
5800
5801 /* Make sure MIPS16 and microMIPS are not used together. */
5802 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5803 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5804 {
5805 _bfd_error_handler
5806 (_("MIPS16 and microMIPS functions cannot call each other"));
5807 return bfd_reloc_notsupported;
5808 }
5809
5810 /* Calls from 16-bit code to 32-bit code and vice versa require the
5811 mode change. However, we can ignore calls to undefined weak symbols,
5812 which should never be executed at runtime. This exception is important
5813 because the assembly writer may have "known" that any definition of the
5814 symbol would be 16-bit code, and that direct jumps were therefore
5815 acceptable. */
5816 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5817 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5818 && ((mips16_branch_reloc_p (r_type)
5819 && !target_is_16_bit_code_p)
5820 || (micromips_branch_reloc_p (r_type)
5821 && !target_is_micromips_code_p)
5822 || ((branch_reloc_p (r_type)
5823 || r_type == R_MIPS_JALR)
5824 && (target_is_16_bit_code_p
5825 || target_is_micromips_code_p))));
5826
5827 resolved_to_zero = (h != NULL
5828 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5829
5830 switch (r_type)
5831 {
5832 case R_MIPS16_CALL16:
5833 case R_MIPS16_GOT16:
5834 case R_MIPS_CALL16:
5835 case R_MIPS_GOT16:
5836 case R_MIPS_GOT_PAGE:
5837 case R_MIPS_GOT_DISP:
5838 case R_MIPS_GOT_LO16:
5839 case R_MIPS_CALL_LO16:
5840 case R_MICROMIPS_CALL16:
5841 case R_MICROMIPS_GOT16:
5842 case R_MICROMIPS_GOT_PAGE:
5843 case R_MICROMIPS_GOT_DISP:
5844 case R_MICROMIPS_GOT_LO16:
5845 case R_MICROMIPS_CALL_LO16:
5846 if (resolved_to_zero
5847 && !bfd_link_relocatable (info)
5848 && mips_elf_nullify_got_load (input_bfd, contents,
5849 relocation, howto, TRUE))
5850 return bfd_reloc_continue;
5851
5852 /* Fall through. */
5853 case R_MIPS_GOT_HI16:
5854 case R_MIPS_CALL_HI16:
5855 case R_MICROMIPS_GOT_HI16:
5856 case R_MICROMIPS_CALL_HI16:
5857 if (resolved_to_zero
5858 && htab->use_absolute_zero
5859 && bfd_link_pic (info))
5860 {
5861 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5862 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5863 FALSE, FALSE, FALSE);
5864 BFD_ASSERT (h != NULL);
5865 }
5866 break;
5867 }
5868
5869 local_p = (h == NULL || mips_use_local_got_p (info, h));
5870
5871 gp0 = _bfd_get_gp_value (input_bfd);
5872 gp = _bfd_get_gp_value (abfd);
5873 if (htab->got_info)
5874 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5875
5876 if (gnu_local_gp_p)
5877 symbol = gp;
5878
5879 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5880 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5881 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5882 if (got_page_reloc_p (r_type) && !local_p)
5883 {
5884 r_type = (micromips_reloc_p (r_type)
5885 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5886 addend = 0;
5887 }
5888
5889 /* If we haven't already determined the GOT offset, and we're going
5890 to need it, get it now. */
5891 switch (r_type)
5892 {
5893 case R_MIPS16_CALL16:
5894 case R_MIPS16_GOT16:
5895 case R_MIPS_CALL16:
5896 case R_MIPS_GOT16:
5897 case R_MIPS_GOT_DISP:
5898 case R_MIPS_GOT_HI16:
5899 case R_MIPS_CALL_HI16:
5900 case R_MIPS_GOT_LO16:
5901 case R_MIPS_CALL_LO16:
5902 case R_MICROMIPS_CALL16:
5903 case R_MICROMIPS_GOT16:
5904 case R_MICROMIPS_GOT_DISP:
5905 case R_MICROMIPS_GOT_HI16:
5906 case R_MICROMIPS_CALL_HI16:
5907 case R_MICROMIPS_GOT_LO16:
5908 case R_MICROMIPS_CALL_LO16:
5909 case R_MIPS_TLS_GD:
5910 case R_MIPS_TLS_GOTTPREL:
5911 case R_MIPS_TLS_LDM:
5912 case R_MIPS16_TLS_GD:
5913 case R_MIPS16_TLS_GOTTPREL:
5914 case R_MIPS16_TLS_LDM:
5915 case R_MICROMIPS_TLS_GD:
5916 case R_MICROMIPS_TLS_GOTTPREL:
5917 case R_MICROMIPS_TLS_LDM:
5918 /* Find the index into the GOT where this value is located. */
5919 if (tls_ldm_reloc_p (r_type))
5920 {
5921 g = mips_elf_local_got_index (abfd, input_bfd, info,
5922 0, 0, NULL, r_type);
5923 if (g == MINUS_ONE)
5924 return bfd_reloc_outofrange;
5925 }
5926 else if (!local_p)
5927 {
5928 /* On VxWorks, CALL relocations should refer to the .got.plt
5929 entry, which is initialized to point at the PLT stub. */
5930 if (htab->is_vxworks
5931 && (call_hi16_reloc_p (r_type)
5932 || call_lo16_reloc_p (r_type)
5933 || call16_reloc_p (r_type)))
5934 {
5935 BFD_ASSERT (addend == 0);
5936 BFD_ASSERT (h->root.needs_plt);
5937 g = mips_elf_gotplt_index (info, &h->root);
5938 }
5939 else
5940 {
5941 BFD_ASSERT (addend == 0);
5942 g = mips_elf_global_got_index (abfd, info, input_bfd,
5943 &h->root, r_type);
5944 if (!TLS_RELOC_P (r_type)
5945 && !elf_hash_table (info)->dynamic_sections_created)
5946 /* This is a static link. We must initialize the GOT entry. */
5947 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5948 }
5949 }
5950 else if (!htab->is_vxworks
5951 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5952 /* The calculation below does not involve "g". */
5953 break;
5954 else
5955 {
5956 g = mips_elf_local_got_index (abfd, input_bfd, info,
5957 symbol + addend, r_symndx, h, r_type);
5958 if (g == MINUS_ONE)
5959 return bfd_reloc_outofrange;
5960 }
5961
5962 /* Convert GOT indices to actual offsets. */
5963 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5964 break;
5965 }
5966
5967 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5968 symbols are resolved by the loader. Add them to .rela.dyn. */
5969 if (h != NULL && is_gott_symbol (info, &h->root))
5970 {
5971 Elf_Internal_Rela outrel;
5972 bfd_byte *loc;
5973 asection *s;
5974
5975 s = mips_elf_rel_dyn_section (info, FALSE);
5976 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5977
5978 outrel.r_offset = (input_section->output_section->vma
5979 + input_section->output_offset
5980 + relocation->r_offset);
5981 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5982 outrel.r_addend = addend;
5983 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5984
5985 /* If we've written this relocation for a readonly section,
5986 we need to set DF_TEXTREL again, so that we do not delete the
5987 DT_TEXTREL tag. */
5988 if (MIPS_ELF_READONLY_SECTION (input_section))
5989 info->flags |= DF_TEXTREL;
5990
5991 *valuep = 0;
5992 return bfd_reloc_ok;
5993 }
5994
5995 /* Figure out what kind of relocation is being performed. */
5996 switch (r_type)
5997 {
5998 case R_MIPS_NONE:
5999 return bfd_reloc_continue;
6000
6001 case R_MIPS_16:
6002 if (howto->partial_inplace)
6003 addend = _bfd_mips_elf_sign_extend (addend, 16);
6004 value = symbol + addend;
6005 overflowed_p = mips_elf_overflow_p (value, 16);
6006 break;
6007
6008 case R_MIPS_32:
6009 case R_MIPS_REL32:
6010 case R_MIPS_64:
6011 if ((bfd_link_pic (info)
6012 || (htab->root.dynamic_sections_created
6013 && h != NULL
6014 && h->root.def_dynamic
6015 && !h->root.def_regular
6016 && !h->has_static_relocs))
6017 && r_symndx != STN_UNDEF
6018 && (h == NULL
6019 || h->root.root.type != bfd_link_hash_undefweak
6020 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
6021 && !resolved_to_zero))
6022 && (input_section->flags & SEC_ALLOC) != 0)
6023 {
6024 /* If we're creating a shared library, then we can't know
6025 where the symbol will end up. So, we create a relocation
6026 record in the output, and leave the job up to the dynamic
6027 linker. We must do the same for executable references to
6028 shared library symbols, unless we've decided to use copy
6029 relocs or PLTs instead. */
6030 value = addend;
6031 if (!mips_elf_create_dynamic_relocation (abfd,
6032 info,
6033 relocation,
6034 h,
6035 sec,
6036 symbol,
6037 &value,
6038 input_section))
6039 return bfd_reloc_undefined;
6040 }
6041 else
6042 {
6043 if (r_type != R_MIPS_REL32)
6044 value = symbol + addend;
6045 else
6046 value = addend;
6047 }
6048 value &= howto->dst_mask;
6049 break;
6050
6051 case R_MIPS_PC32:
6052 value = symbol + addend - p;
6053 value &= howto->dst_mask;
6054 break;
6055
6056 case R_MIPS16_26:
6057 /* The calculation for R_MIPS16_26 is just the same as for an
6058 R_MIPS_26. It's only the storage of the relocated field into
6059 the output file that's different. That's handled in
6060 mips_elf_perform_relocation. So, we just fall through to the
6061 R_MIPS_26 case here. */
6062 case R_MIPS_26:
6063 case R_MICROMIPS_26_S1:
6064 {
6065 unsigned int shift;
6066
6067 /* Shift is 2, unusually, for microMIPS JALX. */
6068 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6069
6070 if (howto->partial_inplace && !section_p)
6071 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6072 else
6073 value = addend;
6074 value += symbol;
6075
6076 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6077 be the correct ISA mode selector except for weak undefined
6078 symbols. */
6079 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6080 && (*cross_mode_jump_p
6081 ? (value & 3) != (r_type == R_MIPS_26)
6082 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6083 return bfd_reloc_outofrange;
6084
6085 value >>= shift;
6086 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6087 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6088 value &= howto->dst_mask;
6089 }
6090 break;
6091
6092 case R_MIPS_TLS_DTPREL_HI16:
6093 case R_MIPS16_TLS_DTPREL_HI16:
6094 case R_MICROMIPS_TLS_DTPREL_HI16:
6095 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6096 & howto->dst_mask);
6097 break;
6098
6099 case R_MIPS_TLS_DTPREL_LO16:
6100 case R_MIPS_TLS_DTPREL32:
6101 case R_MIPS_TLS_DTPREL64:
6102 case R_MIPS16_TLS_DTPREL_LO16:
6103 case R_MICROMIPS_TLS_DTPREL_LO16:
6104 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6105 break;
6106
6107 case R_MIPS_TLS_TPREL_HI16:
6108 case R_MIPS16_TLS_TPREL_HI16:
6109 case R_MICROMIPS_TLS_TPREL_HI16:
6110 value = (mips_elf_high (addend + symbol - tprel_base (info))
6111 & howto->dst_mask);
6112 break;
6113
6114 case R_MIPS_TLS_TPREL_LO16:
6115 case R_MIPS_TLS_TPREL32:
6116 case R_MIPS_TLS_TPREL64:
6117 case R_MIPS16_TLS_TPREL_LO16:
6118 case R_MICROMIPS_TLS_TPREL_LO16:
6119 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6120 break;
6121
6122 case R_MIPS_HI16:
6123 case R_MIPS16_HI16:
6124 case R_MICROMIPS_HI16:
6125 if (!gp_disp_p)
6126 {
6127 value = mips_elf_high (addend + symbol);
6128 value &= howto->dst_mask;
6129 }
6130 else
6131 {
6132 /* For MIPS16 ABI code we generate this sequence
6133 0: li $v0,%hi(_gp_disp)
6134 4: addiupc $v1,%lo(_gp_disp)
6135 8: sll $v0,16
6136 12: addu $v0,$v1
6137 14: move $gp,$v0
6138 So the offsets of hi and lo relocs are the same, but the
6139 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6140 ADDIUPC clears the low two bits of the instruction address,
6141 so the base is ($t9 + 4) & ~3. */
6142 if (r_type == R_MIPS16_HI16)
6143 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6144 /* The microMIPS .cpload sequence uses the same assembly
6145 instructions as the traditional psABI version, but the
6146 incoming $t9 has the low bit set. */
6147 else if (r_type == R_MICROMIPS_HI16)
6148 value = mips_elf_high (addend + gp - p - 1);
6149 else
6150 value = mips_elf_high (addend + gp - p);
6151 }
6152 break;
6153
6154 case R_MIPS_LO16:
6155 case R_MIPS16_LO16:
6156 case R_MICROMIPS_LO16:
6157 case R_MICROMIPS_HI0_LO16:
6158 if (!gp_disp_p)
6159 value = (symbol + addend) & howto->dst_mask;
6160 else
6161 {
6162 /* See the comment for R_MIPS16_HI16 above for the reason
6163 for this conditional. */
6164 if (r_type == R_MIPS16_LO16)
6165 value = addend + gp - (p & ~(bfd_vma) 0x3);
6166 else if (r_type == R_MICROMIPS_LO16
6167 || r_type == R_MICROMIPS_HI0_LO16)
6168 value = addend + gp - p + 3;
6169 else
6170 value = addend + gp - p + 4;
6171 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6172 for overflow. But, on, say, IRIX5, relocations against
6173 _gp_disp are normally generated from the .cpload
6174 pseudo-op. It generates code that normally looks like
6175 this:
6176
6177 lui $gp,%hi(_gp_disp)
6178 addiu $gp,$gp,%lo(_gp_disp)
6179 addu $gp,$gp,$t9
6180
6181 Here $t9 holds the address of the function being called,
6182 as required by the MIPS ELF ABI. The R_MIPS_LO16
6183 relocation can easily overflow in this situation, but the
6184 R_MIPS_HI16 relocation will handle the overflow.
6185 Therefore, we consider this a bug in the MIPS ABI, and do
6186 not check for overflow here. */
6187 }
6188 break;
6189
6190 case R_MIPS_LITERAL:
6191 case R_MICROMIPS_LITERAL:
6192 /* Because we don't merge literal sections, we can handle this
6193 just like R_MIPS_GPREL16. In the long run, we should merge
6194 shared literals, and then we will need to additional work
6195 here. */
6196
6197 /* Fall through. */
6198
6199 case R_MIPS16_GPREL:
6200 /* The R_MIPS16_GPREL performs the same calculation as
6201 R_MIPS_GPREL16, but stores the relocated bits in a different
6202 order. We don't need to do anything special here; the
6203 differences are handled in mips_elf_perform_relocation. */
6204 case R_MIPS_GPREL16:
6205 case R_MICROMIPS_GPREL7_S2:
6206 case R_MICROMIPS_GPREL16:
6207 /* Only sign-extend the addend if it was extracted from the
6208 instruction. If the addend was separate, leave it alone,
6209 otherwise we may lose significant bits. */
6210 if (howto->partial_inplace)
6211 addend = _bfd_mips_elf_sign_extend (addend, 16);
6212 value = symbol + addend - gp;
6213 /* If the symbol was local, any earlier relocatable links will
6214 have adjusted its addend with the gp offset, so compensate
6215 for that now. Don't do it for symbols forced local in this
6216 link, though, since they won't have had the gp offset applied
6217 to them before. */
6218 if (was_local_p)
6219 value += gp0;
6220 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6221 overflowed_p = mips_elf_overflow_p (value, 16);
6222 break;
6223
6224 case R_MIPS16_GOT16:
6225 case R_MIPS16_CALL16:
6226 case R_MIPS_GOT16:
6227 case R_MIPS_CALL16:
6228 case R_MICROMIPS_GOT16:
6229 case R_MICROMIPS_CALL16:
6230 /* VxWorks does not have separate local and global semantics for
6231 R_MIPS*_GOT16; every relocation evaluates to "G". */
6232 if (!htab->is_vxworks && local_p)
6233 {
6234 value = mips_elf_got16_entry (abfd, input_bfd, info,
6235 symbol + addend, !was_local_p);
6236 if (value == MINUS_ONE)
6237 return bfd_reloc_outofrange;
6238 value
6239 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6240 overflowed_p = mips_elf_overflow_p (value, 16);
6241 break;
6242 }
6243
6244 /* Fall through. */
6245
6246 case R_MIPS_TLS_GD:
6247 case R_MIPS_TLS_GOTTPREL:
6248 case R_MIPS_TLS_LDM:
6249 case R_MIPS_GOT_DISP:
6250 case R_MIPS16_TLS_GD:
6251 case R_MIPS16_TLS_GOTTPREL:
6252 case R_MIPS16_TLS_LDM:
6253 case R_MICROMIPS_TLS_GD:
6254 case R_MICROMIPS_TLS_GOTTPREL:
6255 case R_MICROMIPS_TLS_LDM:
6256 case R_MICROMIPS_GOT_DISP:
6257 value = g;
6258 overflowed_p = mips_elf_overflow_p (value, 16);
6259 break;
6260
6261 case R_MIPS_GPREL32:
6262 value = (addend + symbol + gp0 - gp);
6263 if (!save_addend)
6264 value &= howto->dst_mask;
6265 break;
6266
6267 case R_MIPS_PC16:
6268 case R_MIPS_GNU_REL16_S2:
6269 if (howto->partial_inplace)
6270 addend = _bfd_mips_elf_sign_extend (addend, 18);
6271
6272 /* No need to exclude weak undefined symbols here as they resolve
6273 to 0 and never set `*cross_mode_jump_p', so this alignment check
6274 will never trigger for them. */
6275 if (*cross_mode_jump_p
6276 ? ((symbol + addend) & 3) != 1
6277 : ((symbol + addend) & 3) != 0)
6278 return bfd_reloc_outofrange;
6279
6280 value = symbol + addend - p;
6281 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6282 overflowed_p = mips_elf_overflow_p (value, 18);
6283 value >>= howto->rightshift;
6284 value &= howto->dst_mask;
6285 break;
6286
6287 case R_MIPS16_PC16_S1:
6288 if (howto->partial_inplace)
6289 addend = _bfd_mips_elf_sign_extend (addend, 17);
6290
6291 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6292 && (*cross_mode_jump_p
6293 ? ((symbol + addend) & 3) != 0
6294 : ((symbol + addend) & 1) == 0))
6295 return bfd_reloc_outofrange;
6296
6297 value = symbol + addend - p;
6298 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6299 overflowed_p = mips_elf_overflow_p (value, 17);
6300 value >>= howto->rightshift;
6301 value &= howto->dst_mask;
6302 break;
6303
6304 case R_MIPS_PC21_S2:
6305 if (howto->partial_inplace)
6306 addend = _bfd_mips_elf_sign_extend (addend, 23);
6307
6308 if ((symbol + addend) & 3)
6309 return bfd_reloc_outofrange;
6310
6311 value = symbol + addend - p;
6312 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6313 overflowed_p = mips_elf_overflow_p (value, 23);
6314 value >>= howto->rightshift;
6315 value &= howto->dst_mask;
6316 break;
6317
6318 case R_MIPS_PC26_S2:
6319 if (howto->partial_inplace)
6320 addend = _bfd_mips_elf_sign_extend (addend, 28);
6321
6322 if ((symbol + addend) & 3)
6323 return bfd_reloc_outofrange;
6324
6325 value = symbol + addend - p;
6326 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6327 overflowed_p = mips_elf_overflow_p (value, 28);
6328 value >>= howto->rightshift;
6329 value &= howto->dst_mask;
6330 break;
6331
6332 case R_MIPS_PC18_S3:
6333 if (howto->partial_inplace)
6334 addend = _bfd_mips_elf_sign_extend (addend, 21);
6335
6336 if ((symbol + addend) & 7)
6337 return bfd_reloc_outofrange;
6338
6339 value = symbol + addend - ((p | 7) ^ 7);
6340 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6341 overflowed_p = mips_elf_overflow_p (value, 21);
6342 value >>= howto->rightshift;
6343 value &= howto->dst_mask;
6344 break;
6345
6346 case R_MIPS_PC19_S2:
6347 if (howto->partial_inplace)
6348 addend = _bfd_mips_elf_sign_extend (addend, 21);
6349
6350 if ((symbol + addend) & 3)
6351 return bfd_reloc_outofrange;
6352
6353 value = symbol + addend - p;
6354 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6355 overflowed_p = mips_elf_overflow_p (value, 21);
6356 value >>= howto->rightshift;
6357 value &= howto->dst_mask;
6358 break;
6359
6360 case R_MIPS_PCHI16:
6361 value = mips_elf_high (symbol + addend - p);
6362 value &= howto->dst_mask;
6363 break;
6364
6365 case R_MIPS_PCLO16:
6366 if (howto->partial_inplace)
6367 addend = _bfd_mips_elf_sign_extend (addend, 16);
6368 value = symbol + addend - p;
6369 value &= howto->dst_mask;
6370 break;
6371
6372 case R_MICROMIPS_PC7_S1:
6373 if (howto->partial_inplace)
6374 addend = _bfd_mips_elf_sign_extend (addend, 8);
6375
6376 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6377 && (*cross_mode_jump_p
6378 ? ((symbol + addend + 2) & 3) != 0
6379 : ((symbol + addend + 2) & 1) == 0))
6380 return bfd_reloc_outofrange;
6381
6382 value = symbol + addend - p;
6383 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6384 overflowed_p = mips_elf_overflow_p (value, 8);
6385 value >>= howto->rightshift;
6386 value &= howto->dst_mask;
6387 break;
6388
6389 case R_MICROMIPS_PC10_S1:
6390 if (howto->partial_inplace)
6391 addend = _bfd_mips_elf_sign_extend (addend, 11);
6392
6393 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6394 && (*cross_mode_jump_p
6395 ? ((symbol + addend + 2) & 3) != 0
6396 : ((symbol + addend + 2) & 1) == 0))
6397 return bfd_reloc_outofrange;
6398
6399 value = symbol + addend - p;
6400 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6401 overflowed_p = mips_elf_overflow_p (value, 11);
6402 value >>= howto->rightshift;
6403 value &= howto->dst_mask;
6404 break;
6405
6406 case R_MICROMIPS_PC16_S1:
6407 if (howto->partial_inplace)
6408 addend = _bfd_mips_elf_sign_extend (addend, 17);
6409
6410 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6411 && (*cross_mode_jump_p
6412 ? ((symbol + addend) & 3) != 0
6413 : ((symbol + addend) & 1) == 0))
6414 return bfd_reloc_outofrange;
6415
6416 value = symbol + addend - p;
6417 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6418 overflowed_p = mips_elf_overflow_p (value, 17);
6419 value >>= howto->rightshift;
6420 value &= howto->dst_mask;
6421 break;
6422
6423 case R_MICROMIPS_PC23_S2:
6424 if (howto->partial_inplace)
6425 addend = _bfd_mips_elf_sign_extend (addend, 25);
6426 value = symbol + addend - ((p | 3) ^ 3);
6427 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6428 overflowed_p = mips_elf_overflow_p (value, 25);
6429 value >>= howto->rightshift;
6430 value &= howto->dst_mask;
6431 break;
6432
6433 case R_MIPS_GOT_HI16:
6434 case R_MIPS_CALL_HI16:
6435 case R_MICROMIPS_GOT_HI16:
6436 case R_MICROMIPS_CALL_HI16:
6437 /* We're allowed to handle these two relocations identically.
6438 The dynamic linker is allowed to handle the CALL relocations
6439 differently by creating a lazy evaluation stub. */
6440 value = g;
6441 value = mips_elf_high (value);
6442 value &= howto->dst_mask;
6443 break;
6444
6445 case R_MIPS_GOT_LO16:
6446 case R_MIPS_CALL_LO16:
6447 case R_MICROMIPS_GOT_LO16:
6448 case R_MICROMIPS_CALL_LO16:
6449 value = g & howto->dst_mask;
6450 break;
6451
6452 case R_MIPS_GOT_PAGE:
6453 case R_MICROMIPS_GOT_PAGE:
6454 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6455 if (value == MINUS_ONE)
6456 return bfd_reloc_outofrange;
6457 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6458 overflowed_p = mips_elf_overflow_p (value, 16);
6459 break;
6460
6461 case R_MIPS_GOT_OFST:
6462 case R_MICROMIPS_GOT_OFST:
6463 if (local_p)
6464 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6465 else
6466 value = addend;
6467 overflowed_p = mips_elf_overflow_p (value, 16);
6468 break;
6469
6470 case R_MIPS_SUB:
6471 case R_MICROMIPS_SUB:
6472 value = symbol - addend;
6473 value &= howto->dst_mask;
6474 break;
6475
6476 case R_MIPS_HIGHER:
6477 case R_MICROMIPS_HIGHER:
6478 value = mips_elf_higher (addend + symbol);
6479 value &= howto->dst_mask;
6480 break;
6481
6482 case R_MIPS_HIGHEST:
6483 case R_MICROMIPS_HIGHEST:
6484 value = mips_elf_highest (addend + symbol);
6485 value &= howto->dst_mask;
6486 break;
6487
6488 case R_MIPS_SCN_DISP:
6489 case R_MICROMIPS_SCN_DISP:
6490 value = symbol + addend - sec->output_offset;
6491 value &= howto->dst_mask;
6492 break;
6493
6494 case R_MIPS_JALR:
6495 case R_MICROMIPS_JALR:
6496 /* This relocation is only a hint. In some cases, we optimize
6497 it into a bal instruction. But we don't try to optimize
6498 when the symbol does not resolve locally. */
6499 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6500 return bfd_reloc_continue;
6501 /* We can't optimize cross-mode jumps either. */
6502 if (*cross_mode_jump_p)
6503 return bfd_reloc_continue;
6504 value = symbol + addend;
6505 /* Neither we can non-instruction-aligned targets. */
6506 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6507 return bfd_reloc_continue;
6508 break;
6509
6510 case R_MIPS_PJUMP:
6511 case R_MIPS_GNU_VTINHERIT:
6512 case R_MIPS_GNU_VTENTRY:
6513 /* We don't do anything with these at present. */
6514 return bfd_reloc_continue;
6515
6516 default:
6517 /* An unrecognized relocation type. */
6518 return bfd_reloc_notsupported;
6519 }
6520
6521 /* Store the VALUE for our caller. */
6522 *valuep = value;
6523 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6524 }
6525
6526 /* It has been determined that the result of the RELOCATION is the
6527 VALUE. Use HOWTO to place VALUE into the output file at the
6528 appropriate position. The SECTION is the section to which the
6529 relocation applies.
6530 CROSS_MODE_JUMP_P is true if the relocation field
6531 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6532
6533 Returns FALSE if anything goes wrong. */
6534
6535 static bfd_boolean
6536 mips_elf_perform_relocation (struct bfd_link_info *info,
6537 reloc_howto_type *howto,
6538 const Elf_Internal_Rela *relocation,
6539 bfd_vma value, bfd *input_bfd,
6540 asection *input_section, bfd_byte *contents,
6541 bfd_boolean cross_mode_jump_p)
6542 {
6543 bfd_vma x;
6544 bfd_byte *location;
6545 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6546
6547 /* Figure out where the relocation is occurring. */
6548 location = contents + relocation->r_offset;
6549
6550 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6551
6552 /* Obtain the current value. */
6553 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6554
6555 /* Clear the field we are setting. */
6556 x &= ~howto->dst_mask;
6557
6558 /* Set the field. */
6559 x |= (value & howto->dst_mask);
6560
6561 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6562 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6563 {
6564 bfd_vma opcode = x >> 26;
6565
6566 if (r_type == R_MIPS16_26 ? opcode == 0x7
6567 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6568 : opcode == 0x1d)
6569 {
6570 info->callbacks->einfo
6571 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6572 input_bfd, input_section, relocation->r_offset);
6573 return TRUE;
6574 }
6575 }
6576 if (cross_mode_jump_p && jal_reloc_p (r_type))
6577 {
6578 bfd_boolean ok;
6579 bfd_vma opcode = x >> 26;
6580 bfd_vma jalx_opcode;
6581
6582 /* Check to see if the opcode is already JAL or JALX. */
6583 if (r_type == R_MIPS16_26)
6584 {
6585 ok = ((opcode == 0x6) || (opcode == 0x7));
6586 jalx_opcode = 0x7;
6587 }
6588 else if (r_type == R_MICROMIPS_26_S1)
6589 {
6590 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6591 jalx_opcode = 0x3c;
6592 }
6593 else
6594 {
6595 ok = ((opcode == 0x3) || (opcode == 0x1d));
6596 jalx_opcode = 0x1d;
6597 }
6598
6599 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6600 convert J or JALS to JALX. */
6601 if (!ok)
6602 {
6603 info->callbacks->einfo
6604 (_("%X%H: unsupported jump between ISA modes; "
6605 "consider recompiling with interlinking enabled\n"),
6606 input_bfd, input_section, relocation->r_offset);
6607 return TRUE;
6608 }
6609
6610 /* Make this the JALX opcode. */
6611 x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26);
6612 }
6613 else if (cross_mode_jump_p && b_reloc_p (r_type))
6614 {
6615 bfd_boolean ok = FALSE;
6616 bfd_vma opcode = x >> 16;
6617 bfd_vma jalx_opcode = 0;
6618 bfd_vma sign_bit = 0;
6619 bfd_vma addr;
6620 bfd_vma dest;
6621
6622 if (r_type == R_MICROMIPS_PC16_S1)
6623 {
6624 ok = opcode == 0x4060;
6625 jalx_opcode = 0x3c;
6626 sign_bit = 0x10000;
6627 value <<= 1;
6628 }
6629 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6630 {
6631 ok = opcode == 0x411;
6632 jalx_opcode = 0x1d;
6633 sign_bit = 0x20000;
6634 value <<= 2;
6635 }
6636
6637 if (ok && !bfd_link_pic (info))
6638 {
6639 addr = (input_section->output_section->vma
6640 + input_section->output_offset
6641 + relocation->r_offset
6642 + 4);
6643 dest = (addr
6644 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6645
6646 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6647 {
6648 info->callbacks->einfo
6649 (_("%X%H: cannot convert branch between ISA modes "
6650 "to JALX: relocation out of range\n"),
6651 input_bfd, input_section, relocation->r_offset);
6652 return TRUE;
6653 }
6654
6655 /* Make this the JALX opcode. */
6656 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6657 }
6658 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6659 {
6660 info->callbacks->einfo
6661 (_("%X%H: unsupported branch between ISA modes\n"),
6662 input_bfd, input_section, relocation->r_offset);
6663 return TRUE;
6664 }
6665 }
6666
6667 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6668 range. */
6669 if (!bfd_link_relocatable (info)
6670 && !cross_mode_jump_p
6671 && ((JAL_TO_BAL_P (input_bfd)
6672 && r_type == R_MIPS_26
6673 && (x >> 26) == 0x3) /* jal addr */
6674 || (JALR_TO_BAL_P (input_bfd)
6675 && r_type == R_MIPS_JALR
6676 && x == 0x0320f809) /* jalr t9 */
6677 || (JR_TO_B_P (input_bfd)
6678 && r_type == R_MIPS_JALR
6679 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6680 {
6681 bfd_vma addr;
6682 bfd_vma dest;
6683 bfd_signed_vma off;
6684
6685 addr = (input_section->output_section->vma
6686 + input_section->output_offset
6687 + relocation->r_offset
6688 + 4);
6689 if (r_type == R_MIPS_26)
6690 dest = (value << 2) | ((addr >> 28) << 28);
6691 else
6692 dest = value;
6693 off = dest - addr;
6694 if (off <= 0x1ffff && off >= -0x20000)
6695 {
6696 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6697 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6698 else
6699 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6700 }
6701 }
6702
6703 /* Put the value into the output. */
6704 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6705
6706 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6707 location);
6708
6709 return TRUE;
6710 }
6711 \f
6712 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6713 is the original relocation, which is now being transformed into a
6714 dynamic relocation. The ADDENDP is adjusted if necessary; the
6715 caller should store the result in place of the original addend. */
6716
6717 static bfd_boolean
6718 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6719 struct bfd_link_info *info,
6720 const Elf_Internal_Rela *rel,
6721 struct mips_elf_link_hash_entry *h,
6722 asection *sec, bfd_vma symbol,
6723 bfd_vma *addendp, asection *input_section)
6724 {
6725 Elf_Internal_Rela outrel[3];
6726 asection *sreloc;
6727 bfd *dynobj;
6728 int r_type;
6729 long indx;
6730 bfd_boolean defined_p;
6731 struct mips_elf_link_hash_table *htab;
6732
6733 htab = mips_elf_hash_table (info);
6734 BFD_ASSERT (htab != NULL);
6735
6736 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6737 dynobj = elf_hash_table (info)->dynobj;
6738 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6739 BFD_ASSERT (sreloc != NULL);
6740 BFD_ASSERT (sreloc->contents != NULL);
6741 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6742 < sreloc->size);
6743
6744 outrel[0].r_offset =
6745 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6746 if (ABI_64_P (output_bfd))
6747 {
6748 outrel[1].r_offset =
6749 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6750 outrel[2].r_offset =
6751 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6752 }
6753
6754 if (outrel[0].r_offset == MINUS_ONE)
6755 /* The relocation field has been deleted. */
6756 return TRUE;
6757
6758 if (outrel[0].r_offset == MINUS_TWO)
6759 {
6760 /* The relocation field has been converted into a relative value of
6761 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6762 the field to be fully relocated, so add in the symbol's value. */
6763 *addendp += symbol;
6764 return TRUE;
6765 }
6766
6767 /* We must now calculate the dynamic symbol table index to use
6768 in the relocation. */
6769 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6770 {
6771 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6772 indx = h->root.dynindx;
6773 if (SGI_COMPAT (output_bfd))
6774 defined_p = h->root.def_regular;
6775 else
6776 /* ??? glibc's ld.so just adds the final GOT entry to the
6777 relocation field. It therefore treats relocs against
6778 defined symbols in the same way as relocs against
6779 undefined symbols. */
6780 defined_p = FALSE;
6781 }
6782 else
6783 {
6784 if (sec != NULL && bfd_is_abs_section (sec))
6785 indx = 0;
6786 else if (sec == NULL || sec->owner == NULL)
6787 {
6788 bfd_set_error (bfd_error_bad_value);
6789 return FALSE;
6790 }
6791 else
6792 {
6793 indx = elf_section_data (sec->output_section)->dynindx;
6794 if (indx == 0)
6795 {
6796 asection *osec = htab->root.text_index_section;
6797 indx = elf_section_data (osec)->dynindx;
6798 }
6799 if (indx == 0)
6800 abort ();
6801 }
6802
6803 /* Instead of generating a relocation using the section
6804 symbol, we may as well make it a fully relative
6805 relocation. We want to avoid generating relocations to
6806 local symbols because we used to generate them
6807 incorrectly, without adding the original symbol value,
6808 which is mandated by the ABI for section symbols. In
6809 order to give dynamic loaders and applications time to
6810 phase out the incorrect use, we refrain from emitting
6811 section-relative relocations. It's not like they're
6812 useful, after all. This should be a bit more efficient
6813 as well. */
6814 /* ??? Although this behavior is compatible with glibc's ld.so,
6815 the ABI says that relocations against STN_UNDEF should have
6816 a symbol value of 0. Irix rld honors this, so relocations
6817 against STN_UNDEF have no effect. */
6818 if (!SGI_COMPAT (output_bfd))
6819 indx = 0;
6820 defined_p = TRUE;
6821 }
6822
6823 /* If the relocation was previously an absolute relocation and
6824 this symbol will not be referred to by the relocation, we must
6825 adjust it by the value we give it in the dynamic symbol table.
6826 Otherwise leave the job up to the dynamic linker. */
6827 if (defined_p && r_type != R_MIPS_REL32)
6828 *addendp += symbol;
6829
6830 if (htab->is_vxworks)
6831 /* VxWorks uses non-relative relocations for this. */
6832 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6833 else
6834 /* The relocation is always an REL32 relocation because we don't
6835 know where the shared library will wind up at load-time. */
6836 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6837 R_MIPS_REL32);
6838
6839 /* For strict adherence to the ABI specification, we should
6840 generate a R_MIPS_64 relocation record by itself before the
6841 _REL32/_64 record as well, such that the addend is read in as
6842 a 64-bit value (REL32 is a 32-bit relocation, after all).
6843 However, since none of the existing ELF64 MIPS dynamic
6844 loaders seems to care, we don't waste space with these
6845 artificial relocations. If this turns out to not be true,
6846 mips_elf_allocate_dynamic_relocation() should be tweaked so
6847 as to make room for a pair of dynamic relocations per
6848 invocation if ABI_64_P, and here we should generate an
6849 additional relocation record with R_MIPS_64 by itself for a
6850 NULL symbol before this relocation record. */
6851 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6852 ABI_64_P (output_bfd)
6853 ? R_MIPS_64
6854 : R_MIPS_NONE);
6855 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6856
6857 /* Adjust the output offset of the relocation to reference the
6858 correct location in the output file. */
6859 outrel[0].r_offset += (input_section->output_section->vma
6860 + input_section->output_offset);
6861 outrel[1].r_offset += (input_section->output_section->vma
6862 + input_section->output_offset);
6863 outrel[2].r_offset += (input_section->output_section->vma
6864 + input_section->output_offset);
6865
6866 /* Put the relocation back out. We have to use the special
6867 relocation outputter in the 64-bit case since the 64-bit
6868 relocation format is non-standard. */
6869 if (ABI_64_P (output_bfd))
6870 {
6871 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6872 (output_bfd, &outrel[0],
6873 (sreloc->contents
6874 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6875 }
6876 else if (htab->is_vxworks)
6877 {
6878 /* VxWorks uses RELA rather than REL dynamic relocations. */
6879 outrel[0].r_addend = *addendp;
6880 bfd_elf32_swap_reloca_out
6881 (output_bfd, &outrel[0],
6882 (sreloc->contents
6883 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6884 }
6885 else
6886 bfd_elf32_swap_reloc_out
6887 (output_bfd, &outrel[0],
6888 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6889
6890 /* We've now added another relocation. */
6891 ++sreloc->reloc_count;
6892
6893 /* Make sure the output section is writable. The dynamic linker
6894 will be writing to it. */
6895 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6896 |= SHF_WRITE;
6897
6898 /* On IRIX5, make an entry of compact relocation info. */
6899 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6900 {
6901 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6902 bfd_byte *cr;
6903
6904 if (scpt)
6905 {
6906 Elf32_crinfo cptrel;
6907
6908 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6909 cptrel.vaddr = (rel->r_offset
6910 + input_section->output_section->vma
6911 + input_section->output_offset);
6912 if (r_type == R_MIPS_REL32)
6913 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6914 else
6915 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6916 mips_elf_set_cr_dist2to (cptrel, 0);
6917 cptrel.konst = *addendp;
6918
6919 cr = (scpt->contents
6920 + sizeof (Elf32_External_compact_rel));
6921 mips_elf_set_cr_relvaddr (cptrel, 0);
6922 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6923 ((Elf32_External_crinfo *) cr
6924 + scpt->reloc_count));
6925 ++scpt->reloc_count;
6926 }
6927 }
6928
6929 /* If we've written this relocation for a readonly section,
6930 we need to set DF_TEXTREL again, so that we do not delete the
6931 DT_TEXTREL tag. */
6932 if (MIPS_ELF_READONLY_SECTION (input_section))
6933 info->flags |= DF_TEXTREL;
6934
6935 return TRUE;
6936 }
6937 \f
6938 /* Return the MACH for a MIPS e_flags value. */
6939
6940 unsigned long
6941 _bfd_elf_mips_mach (flagword flags)
6942 {
6943 switch (flags & EF_MIPS_MACH)
6944 {
6945 case E_MIPS_MACH_3900:
6946 return bfd_mach_mips3900;
6947
6948 case E_MIPS_MACH_4010:
6949 return bfd_mach_mips4010;
6950
6951 case E_MIPS_MACH_4100:
6952 return bfd_mach_mips4100;
6953
6954 case E_MIPS_MACH_4111:
6955 return bfd_mach_mips4111;
6956
6957 case E_MIPS_MACH_4120:
6958 return bfd_mach_mips4120;
6959
6960 case E_MIPS_MACH_4650:
6961 return bfd_mach_mips4650;
6962
6963 case E_MIPS_MACH_5400:
6964 return bfd_mach_mips5400;
6965
6966 case E_MIPS_MACH_5500:
6967 return bfd_mach_mips5500;
6968
6969 case E_MIPS_MACH_5900:
6970 return bfd_mach_mips5900;
6971
6972 case E_MIPS_MACH_9000:
6973 return bfd_mach_mips9000;
6974
6975 case E_MIPS_MACH_SB1:
6976 return bfd_mach_mips_sb1;
6977
6978 case E_MIPS_MACH_LS2E:
6979 return bfd_mach_mips_loongson_2e;
6980
6981 case E_MIPS_MACH_LS2F:
6982 return bfd_mach_mips_loongson_2f;
6983
6984 case E_MIPS_MACH_GS464:
6985 return bfd_mach_mips_gs464;
6986
6987 case E_MIPS_MACH_GS464E:
6988 return bfd_mach_mips_gs464e;
6989
6990 case E_MIPS_MACH_GS264E:
6991 return bfd_mach_mips_gs264e;
6992
6993 case E_MIPS_MACH_OCTEON3:
6994 return bfd_mach_mips_octeon3;
6995
6996 case E_MIPS_MACH_OCTEON2:
6997 return bfd_mach_mips_octeon2;
6998
6999 case E_MIPS_MACH_OCTEON:
7000 return bfd_mach_mips_octeon;
7001
7002 case E_MIPS_MACH_XLR:
7003 return bfd_mach_mips_xlr;
7004
7005 case E_MIPS_MACH_IAMR2:
7006 return bfd_mach_mips_interaptiv_mr2;
7007
7008 default:
7009 switch (flags & EF_MIPS_ARCH)
7010 {
7011 default:
7012 case E_MIPS_ARCH_1:
7013 return bfd_mach_mips3000;
7014
7015 case E_MIPS_ARCH_2:
7016 return bfd_mach_mips6000;
7017
7018 case E_MIPS_ARCH_3:
7019 return bfd_mach_mips4000;
7020
7021 case E_MIPS_ARCH_4:
7022 return bfd_mach_mips8000;
7023
7024 case E_MIPS_ARCH_5:
7025 return bfd_mach_mips5;
7026
7027 case E_MIPS_ARCH_32:
7028 return bfd_mach_mipsisa32;
7029
7030 case E_MIPS_ARCH_64:
7031 return bfd_mach_mipsisa64;
7032
7033 case E_MIPS_ARCH_32R2:
7034 return bfd_mach_mipsisa32r2;
7035
7036 case E_MIPS_ARCH_64R2:
7037 return bfd_mach_mipsisa64r2;
7038
7039 case E_MIPS_ARCH_32R6:
7040 return bfd_mach_mipsisa32r6;
7041
7042 case E_MIPS_ARCH_64R6:
7043 return bfd_mach_mipsisa64r6;
7044 }
7045 }
7046
7047 return 0;
7048 }
7049
7050 /* Return printable name for ABI. */
7051
7052 static INLINE char *
7053 elf_mips_abi_name (bfd *abfd)
7054 {
7055 flagword flags;
7056
7057 flags = elf_elfheader (abfd)->e_flags;
7058 switch (flags & EF_MIPS_ABI)
7059 {
7060 case 0:
7061 if (ABI_N32_P (abfd))
7062 return "N32";
7063 else if (ABI_64_P (abfd))
7064 return "64";
7065 else
7066 return "none";
7067 case E_MIPS_ABI_O32:
7068 return "O32";
7069 case E_MIPS_ABI_O64:
7070 return "O64";
7071 case E_MIPS_ABI_EABI32:
7072 return "EABI32";
7073 case E_MIPS_ABI_EABI64:
7074 return "EABI64";
7075 default:
7076 return "unknown abi";
7077 }
7078 }
7079 \f
7080 /* MIPS ELF uses two common sections. One is the usual one, and the
7081 other is for small objects. All the small objects are kept
7082 together, and then referenced via the gp pointer, which yields
7083 faster assembler code. This is what we use for the small common
7084 section. This approach is copied from ecoff.c. */
7085 static asection mips_elf_scom_section;
7086 static asymbol mips_elf_scom_symbol;
7087 static asymbol *mips_elf_scom_symbol_ptr;
7088
7089 /* MIPS ELF also uses an acommon section, which represents an
7090 allocated common symbol which may be overridden by a
7091 definition in a shared library. */
7092 static asection mips_elf_acom_section;
7093 static asymbol mips_elf_acom_symbol;
7094 static asymbol *mips_elf_acom_symbol_ptr;
7095
7096 /* This is used for both the 32-bit and the 64-bit ABI. */
7097
7098 void
7099 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7100 {
7101 elf_symbol_type *elfsym;
7102
7103 /* Handle the special MIPS section numbers that a symbol may use. */
7104 elfsym = (elf_symbol_type *) asym;
7105 switch (elfsym->internal_elf_sym.st_shndx)
7106 {
7107 case SHN_MIPS_ACOMMON:
7108 /* This section is used in a dynamically linked executable file.
7109 It is an allocated common section. The dynamic linker can
7110 either resolve these symbols to something in a shared
7111 library, or it can just leave them here. For our purposes,
7112 we can consider these symbols to be in a new section. */
7113 if (mips_elf_acom_section.name == NULL)
7114 {
7115 /* Initialize the acommon section. */
7116 mips_elf_acom_section.name = ".acommon";
7117 mips_elf_acom_section.flags = SEC_ALLOC;
7118 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7119 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7120 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7121 mips_elf_acom_symbol.name = ".acommon";
7122 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7123 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7124 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7125 }
7126 asym->section = &mips_elf_acom_section;
7127 break;
7128
7129 case SHN_COMMON:
7130 /* Common symbols less than the GP size are automatically
7131 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7132 if (asym->value > elf_gp_size (abfd)
7133 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7134 || IRIX_COMPAT (abfd) == ict_irix6)
7135 break;
7136 /* Fall through. */
7137 case SHN_MIPS_SCOMMON:
7138 if (mips_elf_scom_section.name == NULL)
7139 {
7140 /* Initialize the small common section. */
7141 mips_elf_scom_section.name = ".scommon";
7142 mips_elf_scom_section.flags = SEC_IS_COMMON;
7143 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7144 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7145 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7146 mips_elf_scom_symbol.name = ".scommon";
7147 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7148 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7149 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7150 }
7151 asym->section = &mips_elf_scom_section;
7152 asym->value = elfsym->internal_elf_sym.st_size;
7153 break;
7154
7155 case SHN_MIPS_SUNDEFINED:
7156 asym->section = bfd_und_section_ptr;
7157 break;
7158
7159 case SHN_MIPS_TEXT:
7160 {
7161 asection *section = bfd_get_section_by_name (abfd, ".text");
7162
7163 if (section != NULL)
7164 {
7165 asym->section = section;
7166 /* MIPS_TEXT is a bit special, the address is not an offset
7167 to the base of the .text section. So subtract the section
7168 base address to make it an offset. */
7169 asym->value -= section->vma;
7170 }
7171 }
7172 break;
7173
7174 case SHN_MIPS_DATA:
7175 {
7176 asection *section = bfd_get_section_by_name (abfd, ".data");
7177
7178 if (section != NULL)
7179 {
7180 asym->section = section;
7181 /* MIPS_DATA is a bit special, the address is not an offset
7182 to the base of the .data section. So subtract the section
7183 base address to make it an offset. */
7184 asym->value -= section->vma;
7185 }
7186 }
7187 break;
7188 }
7189
7190 /* If this is an odd-valued function symbol, assume it's a MIPS16
7191 or microMIPS one. */
7192 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7193 && (asym->value & 1) != 0)
7194 {
7195 asym->value--;
7196 if (MICROMIPS_P (abfd))
7197 elfsym->internal_elf_sym.st_other
7198 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7199 else
7200 elfsym->internal_elf_sym.st_other
7201 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7202 }
7203 }
7204 \f
7205 /* Implement elf_backend_eh_frame_address_size. This differs from
7206 the default in the way it handles EABI64.
7207
7208 EABI64 was originally specified as an LP64 ABI, and that is what
7209 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7210 historically accepted the combination of -mabi=eabi and -mlong32,
7211 and this ILP32 variation has become semi-official over time.
7212 Both forms use elf32 and have pointer-sized FDE addresses.
7213
7214 If an EABI object was generated by GCC 4.0 or above, it will have
7215 an empty .gcc_compiled_longXX section, where XX is the size of longs
7216 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7217 have no special marking to distinguish them from LP64 objects.
7218
7219 We don't want users of the official LP64 ABI to be punished for the
7220 existence of the ILP32 variant, but at the same time, we don't want
7221 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7222 We therefore take the following approach:
7223
7224 - If ABFD contains a .gcc_compiled_longXX section, use it to
7225 determine the pointer size.
7226
7227 - Otherwise check the type of the first relocation. Assume that
7228 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7229
7230 - Otherwise punt.
7231
7232 The second check is enough to detect LP64 objects generated by pre-4.0
7233 compilers because, in the kind of output generated by those compilers,
7234 the first relocation will be associated with either a CIE personality
7235 routine or an FDE start address. Furthermore, the compilers never
7236 used a special (non-pointer) encoding for this ABI.
7237
7238 Checking the relocation type should also be safe because there is no
7239 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7240 did so. */
7241
7242 unsigned int
7243 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7244 {
7245 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7246 return 8;
7247 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7248 {
7249 bfd_boolean long32_p, long64_p;
7250
7251 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7252 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7253 if (long32_p && long64_p)
7254 return 0;
7255 if (long32_p)
7256 return 4;
7257 if (long64_p)
7258 return 8;
7259
7260 if (sec->reloc_count > 0
7261 && elf_section_data (sec)->relocs != NULL
7262 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7263 == R_MIPS_64))
7264 return 8;
7265
7266 return 0;
7267 }
7268 return 4;
7269 }
7270 \f
7271 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7272 relocations against two unnamed section symbols to resolve to the
7273 same address. For example, if we have code like:
7274
7275 lw $4,%got_disp(.data)($gp)
7276 lw $25,%got_disp(.text)($gp)
7277 jalr $25
7278
7279 then the linker will resolve both relocations to .data and the program
7280 will jump there rather than to .text.
7281
7282 We can work around this problem by giving names to local section symbols.
7283 This is also what the MIPSpro tools do. */
7284
7285 bfd_boolean
7286 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7287 {
7288 return SGI_COMPAT (abfd);
7289 }
7290 \f
7291 /* Work over a section just before writing it out. This routine is
7292 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7293 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7294 a better way. */
7295
7296 bfd_boolean
7297 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7298 {
7299 if (hdr->sh_type == SHT_MIPS_REGINFO
7300 && hdr->sh_size > 0)
7301 {
7302 bfd_byte buf[4];
7303
7304 BFD_ASSERT (hdr->contents == NULL);
7305
7306 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7307 {
7308 _bfd_error_handler
7309 (_("%pB: incorrect `.reginfo' section size; "
7310 "expected %" PRIu64 ", got %" PRIu64),
7311 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7312 (uint64_t) hdr->sh_size);
7313 bfd_set_error (bfd_error_bad_value);
7314 return FALSE;
7315 }
7316
7317 if (bfd_seek (abfd,
7318 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7319 SEEK_SET) != 0)
7320 return FALSE;
7321 H_PUT_32 (abfd, elf_gp (abfd), buf);
7322 if (bfd_bwrite (buf, 4, abfd) != 4)
7323 return FALSE;
7324 }
7325
7326 if (hdr->sh_type == SHT_MIPS_OPTIONS
7327 && hdr->bfd_section != NULL
7328 && mips_elf_section_data (hdr->bfd_section) != NULL
7329 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7330 {
7331 bfd_byte *contents, *l, *lend;
7332
7333 /* We stored the section contents in the tdata field in the
7334 set_section_contents routine. We save the section contents
7335 so that we don't have to read them again.
7336 At this point we know that elf_gp is set, so we can look
7337 through the section contents to see if there is an
7338 ODK_REGINFO structure. */
7339
7340 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7341 l = contents;
7342 lend = contents + hdr->sh_size;
7343 while (l + sizeof (Elf_External_Options) <= lend)
7344 {
7345 Elf_Internal_Options intopt;
7346
7347 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7348 &intopt);
7349 if (intopt.size < sizeof (Elf_External_Options))
7350 {
7351 _bfd_error_handler
7352 /* xgettext:c-format */
7353 (_("%pB: warning: bad `%s' option size %u smaller than"
7354 " its header"),
7355 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7356 break;
7357 }
7358 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7359 {
7360 bfd_byte buf[8];
7361
7362 if (bfd_seek (abfd,
7363 (hdr->sh_offset
7364 + (l - contents)
7365 + sizeof (Elf_External_Options)
7366 + (sizeof (Elf64_External_RegInfo) - 8)),
7367 SEEK_SET) != 0)
7368 return FALSE;
7369 H_PUT_64 (abfd, elf_gp (abfd), buf);
7370 if (bfd_bwrite (buf, 8, abfd) != 8)
7371 return FALSE;
7372 }
7373 else if (intopt.kind == ODK_REGINFO)
7374 {
7375 bfd_byte buf[4];
7376
7377 if (bfd_seek (abfd,
7378 (hdr->sh_offset
7379 + (l - contents)
7380 + sizeof (Elf_External_Options)
7381 + (sizeof (Elf32_External_RegInfo) - 4)),
7382 SEEK_SET) != 0)
7383 return FALSE;
7384 H_PUT_32 (abfd, elf_gp (abfd), buf);
7385 if (bfd_bwrite (buf, 4, abfd) != 4)
7386 return FALSE;
7387 }
7388 l += intopt.size;
7389 }
7390 }
7391
7392 if (hdr->bfd_section != NULL)
7393 {
7394 const char *name = bfd_section_name (hdr->bfd_section);
7395
7396 /* .sbss is not handled specially here because the GNU/Linux
7397 prelinker can convert .sbss from NOBITS to PROGBITS and
7398 changing it back to NOBITS breaks the binary. The entry in
7399 _bfd_mips_elf_special_sections will ensure the correct flags
7400 are set on .sbss if BFD creates it without reading it from an
7401 input file, and without special handling here the flags set
7402 on it in an input file will be followed. */
7403 if (strcmp (name, ".sdata") == 0
7404 || strcmp (name, ".lit8") == 0
7405 || strcmp (name, ".lit4") == 0)
7406 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7407 else if (strcmp (name, ".srdata") == 0)
7408 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7409 else if (strcmp (name, ".compact_rel") == 0)
7410 hdr->sh_flags = 0;
7411 else if (strcmp (name, ".rtproc") == 0)
7412 {
7413 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7414 {
7415 unsigned int adjust;
7416
7417 adjust = hdr->sh_size % hdr->sh_addralign;
7418 if (adjust != 0)
7419 hdr->sh_size += hdr->sh_addralign - adjust;
7420 }
7421 }
7422 }
7423
7424 return TRUE;
7425 }
7426
7427 /* Handle a MIPS specific section when reading an object file. This
7428 is called when elfcode.h finds a section with an unknown type.
7429 This routine supports both the 32-bit and 64-bit ELF ABI. */
7430
7431 bfd_boolean
7432 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7433 Elf_Internal_Shdr *hdr,
7434 const char *name,
7435 int shindex)
7436 {
7437 flagword flags = 0;
7438
7439 /* There ought to be a place to keep ELF backend specific flags, but
7440 at the moment there isn't one. We just keep track of the
7441 sections by their name, instead. Fortunately, the ABI gives
7442 suggested names for all the MIPS specific sections, so we will
7443 probably get away with this. */
7444 switch (hdr->sh_type)
7445 {
7446 case SHT_MIPS_LIBLIST:
7447 if (strcmp (name, ".liblist") != 0)
7448 return FALSE;
7449 break;
7450 case SHT_MIPS_MSYM:
7451 if (strcmp (name, ".msym") != 0)
7452 return FALSE;
7453 break;
7454 case SHT_MIPS_CONFLICT:
7455 if (strcmp (name, ".conflict") != 0)
7456 return FALSE;
7457 break;
7458 case SHT_MIPS_GPTAB:
7459 if (! CONST_STRNEQ (name, ".gptab."))
7460 return FALSE;
7461 break;
7462 case SHT_MIPS_UCODE:
7463 if (strcmp (name, ".ucode") != 0)
7464 return FALSE;
7465 break;
7466 case SHT_MIPS_DEBUG:
7467 if (strcmp (name, ".mdebug") != 0)
7468 return FALSE;
7469 flags = SEC_DEBUGGING;
7470 break;
7471 case SHT_MIPS_REGINFO:
7472 if (strcmp (name, ".reginfo") != 0
7473 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7474 return FALSE;
7475 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7476 break;
7477 case SHT_MIPS_IFACE:
7478 if (strcmp (name, ".MIPS.interfaces") != 0)
7479 return FALSE;
7480 break;
7481 case SHT_MIPS_CONTENT:
7482 if (! CONST_STRNEQ (name, ".MIPS.content"))
7483 return FALSE;
7484 break;
7485 case SHT_MIPS_OPTIONS:
7486 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7487 return FALSE;
7488 break;
7489 case SHT_MIPS_ABIFLAGS:
7490 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7491 return FALSE;
7492 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7493 break;
7494 case SHT_MIPS_DWARF:
7495 if (! CONST_STRNEQ (name, ".debug_")
7496 && ! CONST_STRNEQ (name, ".zdebug_"))
7497 return FALSE;
7498 break;
7499 case SHT_MIPS_SYMBOL_LIB:
7500 if (strcmp (name, ".MIPS.symlib") != 0)
7501 return FALSE;
7502 break;
7503 case SHT_MIPS_EVENTS:
7504 if (! CONST_STRNEQ (name, ".MIPS.events")
7505 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7506 return FALSE;
7507 break;
7508 case SHT_MIPS_XHASH:
7509 if (strcmp (name, ".MIPS.xhash") != 0)
7510 return FALSE;
7511 default:
7512 break;
7513 }
7514
7515 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7516 return FALSE;
7517
7518 if (hdr->sh_flags & SHF_MIPS_GPREL)
7519 flags |= SEC_SMALL_DATA;
7520
7521 if (flags)
7522 {
7523 if (!bfd_set_section_flags (hdr->bfd_section,
7524 (bfd_section_flags (hdr->bfd_section)
7525 | flags)))
7526 return FALSE;
7527 }
7528
7529 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7530 {
7531 Elf_External_ABIFlags_v0 ext;
7532
7533 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7534 &ext, 0, sizeof ext))
7535 return FALSE;
7536 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7537 &mips_elf_tdata (abfd)->abiflags);
7538 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7539 return FALSE;
7540 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7541 }
7542
7543 /* FIXME: We should record sh_info for a .gptab section. */
7544
7545 /* For a .reginfo section, set the gp value in the tdata information
7546 from the contents of this section. We need the gp value while
7547 processing relocs, so we just get it now. The .reginfo section
7548 is not used in the 64-bit MIPS ELF ABI. */
7549 if (hdr->sh_type == SHT_MIPS_REGINFO)
7550 {
7551 Elf32_External_RegInfo ext;
7552 Elf32_RegInfo s;
7553
7554 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7555 &ext, 0, sizeof ext))
7556 return FALSE;
7557 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7558 elf_gp (abfd) = s.ri_gp_value;
7559 }
7560
7561 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7562 set the gp value based on what we find. We may see both
7563 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7564 they should agree. */
7565 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7566 {
7567 bfd_byte *contents, *l, *lend;
7568
7569 contents = bfd_malloc (hdr->sh_size);
7570 if (contents == NULL)
7571 return FALSE;
7572 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7573 0, hdr->sh_size))
7574 {
7575 free (contents);
7576 return FALSE;
7577 }
7578 l = contents;
7579 lend = contents + hdr->sh_size;
7580 while (l + sizeof (Elf_External_Options) <= lend)
7581 {
7582 Elf_Internal_Options intopt;
7583
7584 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7585 &intopt);
7586 if (intopt.size < sizeof (Elf_External_Options))
7587 {
7588 _bfd_error_handler
7589 /* xgettext:c-format */
7590 (_("%pB: warning: bad `%s' option size %u smaller than"
7591 " its header"),
7592 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7593 break;
7594 }
7595 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7596 {
7597 Elf64_Internal_RegInfo intreg;
7598
7599 bfd_mips_elf64_swap_reginfo_in
7600 (abfd,
7601 ((Elf64_External_RegInfo *)
7602 (l + sizeof (Elf_External_Options))),
7603 &intreg);
7604 elf_gp (abfd) = intreg.ri_gp_value;
7605 }
7606 else if (intopt.kind == ODK_REGINFO)
7607 {
7608 Elf32_RegInfo intreg;
7609
7610 bfd_mips_elf32_swap_reginfo_in
7611 (abfd,
7612 ((Elf32_External_RegInfo *)
7613 (l + sizeof (Elf_External_Options))),
7614 &intreg);
7615 elf_gp (abfd) = intreg.ri_gp_value;
7616 }
7617 l += intopt.size;
7618 }
7619 free (contents);
7620 }
7621
7622 return TRUE;
7623 }
7624
7625 /* Set the correct type for a MIPS ELF section. We do this by the
7626 section name, which is a hack, but ought to work. This routine is
7627 used by both the 32-bit and the 64-bit ABI. */
7628
7629 bfd_boolean
7630 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7631 {
7632 const char *name = bfd_section_name (sec);
7633
7634 if (strcmp (name, ".liblist") == 0)
7635 {
7636 hdr->sh_type = SHT_MIPS_LIBLIST;
7637 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7638 /* The sh_link field is set in final_write_processing. */
7639 }
7640 else if (strcmp (name, ".conflict") == 0)
7641 hdr->sh_type = SHT_MIPS_CONFLICT;
7642 else if (CONST_STRNEQ (name, ".gptab."))
7643 {
7644 hdr->sh_type = SHT_MIPS_GPTAB;
7645 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7646 /* The sh_info field is set in final_write_processing. */
7647 }
7648 else if (strcmp (name, ".ucode") == 0)
7649 hdr->sh_type = SHT_MIPS_UCODE;
7650 else if (strcmp (name, ".mdebug") == 0)
7651 {
7652 hdr->sh_type = SHT_MIPS_DEBUG;
7653 /* In a shared object on IRIX 5.3, the .mdebug section has an
7654 entsize of 0. FIXME: Does this matter? */
7655 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7656 hdr->sh_entsize = 0;
7657 else
7658 hdr->sh_entsize = 1;
7659 }
7660 else if (strcmp (name, ".reginfo") == 0)
7661 {
7662 hdr->sh_type = SHT_MIPS_REGINFO;
7663 /* In a shared object on IRIX 5.3, the .reginfo section has an
7664 entsize of 0x18. FIXME: Does this matter? */
7665 if (SGI_COMPAT (abfd))
7666 {
7667 if ((abfd->flags & DYNAMIC) != 0)
7668 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7669 else
7670 hdr->sh_entsize = 1;
7671 }
7672 else
7673 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7674 }
7675 else if (SGI_COMPAT (abfd)
7676 && (strcmp (name, ".hash") == 0
7677 || strcmp (name, ".dynamic") == 0
7678 || strcmp (name, ".dynstr") == 0))
7679 {
7680 if (SGI_COMPAT (abfd))
7681 hdr->sh_entsize = 0;
7682 #if 0
7683 /* This isn't how the IRIX6 linker behaves. */
7684 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7685 #endif
7686 }
7687 else if (strcmp (name, ".got") == 0
7688 || strcmp (name, ".srdata") == 0
7689 || strcmp (name, ".sdata") == 0
7690 || strcmp (name, ".sbss") == 0
7691 || strcmp (name, ".lit4") == 0
7692 || strcmp (name, ".lit8") == 0)
7693 hdr->sh_flags |= SHF_MIPS_GPREL;
7694 else if (strcmp (name, ".MIPS.interfaces") == 0)
7695 {
7696 hdr->sh_type = SHT_MIPS_IFACE;
7697 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7698 }
7699 else if (CONST_STRNEQ (name, ".MIPS.content"))
7700 {
7701 hdr->sh_type = SHT_MIPS_CONTENT;
7702 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7703 /* The sh_info field is set in final_write_processing. */
7704 }
7705 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7706 {
7707 hdr->sh_type = SHT_MIPS_OPTIONS;
7708 hdr->sh_entsize = 1;
7709 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7710 }
7711 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7712 {
7713 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7714 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7715 }
7716 else if (CONST_STRNEQ (name, ".debug_")
7717 || CONST_STRNEQ (name, ".zdebug_"))
7718 {
7719 hdr->sh_type = SHT_MIPS_DWARF;
7720
7721 /* Irix facilities such as libexc expect a single .debug_frame
7722 per executable, the system ones have NOSTRIP set and the linker
7723 doesn't merge sections with different flags so ... */
7724 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7725 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7726 }
7727 else if (strcmp (name, ".MIPS.symlib") == 0)
7728 {
7729 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7730 /* The sh_link and sh_info fields are set in
7731 final_write_processing. */
7732 }
7733 else if (CONST_STRNEQ (name, ".MIPS.events")
7734 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7735 {
7736 hdr->sh_type = SHT_MIPS_EVENTS;
7737 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7738 /* The sh_link field is set in final_write_processing. */
7739 }
7740 else if (strcmp (name, ".msym") == 0)
7741 {
7742 hdr->sh_type = SHT_MIPS_MSYM;
7743 hdr->sh_flags |= SHF_ALLOC;
7744 hdr->sh_entsize = 8;
7745 }
7746 else if (strcmp (name, ".MIPS.xhash") == 0)
7747 {
7748 hdr->sh_type = SHT_MIPS_XHASH;
7749 hdr->sh_flags |= SHF_ALLOC;
7750 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7751 }
7752
7753 /* The generic elf_fake_sections will set up REL_HDR using the default
7754 kind of relocations. We used to set up a second header for the
7755 non-default kind of relocations here, but only NewABI would use
7756 these, and the IRIX ld doesn't like resulting empty RELA sections.
7757 Thus we create those header only on demand now. */
7758
7759 return TRUE;
7760 }
7761
7762 /* Given a BFD section, try to locate the corresponding ELF section
7763 index. This is used by both the 32-bit and the 64-bit ABI.
7764 Actually, it's not clear to me that the 64-bit ABI supports these,
7765 but for non-PIC objects we will certainly want support for at least
7766 the .scommon section. */
7767
7768 bfd_boolean
7769 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7770 asection *sec, int *retval)
7771 {
7772 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
7773 {
7774 *retval = SHN_MIPS_SCOMMON;
7775 return TRUE;
7776 }
7777 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
7778 {
7779 *retval = SHN_MIPS_ACOMMON;
7780 return TRUE;
7781 }
7782 return FALSE;
7783 }
7784 \f
7785 /* Hook called by the linker routine which adds symbols from an object
7786 file. We must handle the special MIPS section numbers here. */
7787
7788 bfd_boolean
7789 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7790 Elf_Internal_Sym *sym, const char **namep,
7791 flagword *flagsp ATTRIBUTE_UNUSED,
7792 asection **secp, bfd_vma *valp)
7793 {
7794 if (SGI_COMPAT (abfd)
7795 && (abfd->flags & DYNAMIC) != 0
7796 && strcmp (*namep, "_rld_new_interface") == 0)
7797 {
7798 /* Skip IRIX5 rld entry name. */
7799 *namep = NULL;
7800 return TRUE;
7801 }
7802
7803 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7804 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7805 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7806 a magic symbol resolved by the linker, we ignore this bogus definition
7807 of _gp_disp. New ABI objects do not suffer from this problem so this
7808 is not done for them. */
7809 if (!NEWABI_P(abfd)
7810 && (sym->st_shndx == SHN_ABS)
7811 && (strcmp (*namep, "_gp_disp") == 0))
7812 {
7813 *namep = NULL;
7814 return TRUE;
7815 }
7816
7817 switch (sym->st_shndx)
7818 {
7819 case SHN_COMMON:
7820 /* Common symbols less than the GP size are automatically
7821 treated as SHN_MIPS_SCOMMON symbols. */
7822 if (sym->st_size > elf_gp_size (abfd)
7823 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7824 || IRIX_COMPAT (abfd) == ict_irix6)
7825 break;
7826 /* Fall through. */
7827 case SHN_MIPS_SCOMMON:
7828 *secp = bfd_make_section_old_way (abfd, ".scommon");
7829 (*secp)->flags |= SEC_IS_COMMON;
7830 *valp = sym->st_size;
7831 break;
7832
7833 case SHN_MIPS_TEXT:
7834 /* This section is used in a shared object. */
7835 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7836 {
7837 asymbol *elf_text_symbol;
7838 asection *elf_text_section;
7839 size_t amt = sizeof (asection);
7840
7841 elf_text_section = bfd_zalloc (abfd, amt);
7842 if (elf_text_section == NULL)
7843 return FALSE;
7844
7845 amt = sizeof (asymbol);
7846 elf_text_symbol = bfd_zalloc (abfd, amt);
7847 if (elf_text_symbol == NULL)
7848 return FALSE;
7849
7850 /* Initialize the section. */
7851
7852 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7853 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7854
7855 elf_text_section->symbol = elf_text_symbol;
7856 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7857
7858 elf_text_section->name = ".text";
7859 elf_text_section->flags = SEC_NO_FLAGS;
7860 elf_text_section->output_section = NULL;
7861 elf_text_section->owner = abfd;
7862 elf_text_symbol->name = ".text";
7863 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7864 elf_text_symbol->section = elf_text_section;
7865 }
7866 /* This code used to do *secp = bfd_und_section_ptr if
7867 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7868 so I took it out. */
7869 *secp = mips_elf_tdata (abfd)->elf_text_section;
7870 break;
7871
7872 case SHN_MIPS_ACOMMON:
7873 /* Fall through. XXX Can we treat this as allocated data? */
7874 case SHN_MIPS_DATA:
7875 /* This section is used in a shared object. */
7876 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7877 {
7878 asymbol *elf_data_symbol;
7879 asection *elf_data_section;
7880 size_t amt = sizeof (asection);
7881
7882 elf_data_section = bfd_zalloc (abfd, amt);
7883 if (elf_data_section == NULL)
7884 return FALSE;
7885
7886 amt = sizeof (asymbol);
7887 elf_data_symbol = bfd_zalloc (abfd, amt);
7888 if (elf_data_symbol == NULL)
7889 return FALSE;
7890
7891 /* Initialize the section. */
7892
7893 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7894 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7895
7896 elf_data_section->symbol = elf_data_symbol;
7897 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7898
7899 elf_data_section->name = ".data";
7900 elf_data_section->flags = SEC_NO_FLAGS;
7901 elf_data_section->output_section = NULL;
7902 elf_data_section->owner = abfd;
7903 elf_data_symbol->name = ".data";
7904 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7905 elf_data_symbol->section = elf_data_section;
7906 }
7907 /* This code used to do *secp = bfd_und_section_ptr if
7908 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7909 so I took it out. */
7910 *secp = mips_elf_tdata (abfd)->elf_data_section;
7911 break;
7912
7913 case SHN_MIPS_SUNDEFINED:
7914 *secp = bfd_und_section_ptr;
7915 break;
7916 }
7917
7918 if (SGI_COMPAT (abfd)
7919 && ! bfd_link_pic (info)
7920 && info->output_bfd->xvec == abfd->xvec
7921 && strcmp (*namep, "__rld_obj_head") == 0)
7922 {
7923 struct elf_link_hash_entry *h;
7924 struct bfd_link_hash_entry *bh;
7925
7926 /* Mark __rld_obj_head as dynamic. */
7927 bh = NULL;
7928 if (! (_bfd_generic_link_add_one_symbol
7929 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7930 get_elf_backend_data (abfd)->collect, &bh)))
7931 return FALSE;
7932
7933 h = (struct elf_link_hash_entry *) bh;
7934 h->non_elf = 0;
7935 h->def_regular = 1;
7936 h->type = STT_OBJECT;
7937
7938 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7939 return FALSE;
7940
7941 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7942 mips_elf_hash_table (info)->rld_symbol = h;
7943 }
7944
7945 /* If this is a mips16 text symbol, add 1 to the value to make it
7946 odd. This will cause something like .word SYM to come up with
7947 the right value when it is loaded into the PC. */
7948 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7949 ++*valp;
7950
7951 return TRUE;
7952 }
7953
7954 /* This hook function is called before the linker writes out a global
7955 symbol. We mark symbols as small common if appropriate. This is
7956 also where we undo the increment of the value for a mips16 symbol. */
7957
7958 int
7959 _bfd_mips_elf_link_output_symbol_hook
7960 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7961 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7962 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7963 {
7964 /* If we see a common symbol, which implies a relocatable link, then
7965 if a symbol was small common in an input file, mark it as small
7966 common in the output file. */
7967 if (sym->st_shndx == SHN_COMMON
7968 && strcmp (input_sec->name, ".scommon") == 0)
7969 sym->st_shndx = SHN_MIPS_SCOMMON;
7970
7971 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7972 sym->st_value &= ~1;
7973
7974 return 1;
7975 }
7976 \f
7977 /* Functions for the dynamic linker. */
7978
7979 /* Create dynamic sections when linking against a dynamic object. */
7980
7981 bfd_boolean
7982 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7983 {
7984 struct elf_link_hash_entry *h;
7985 struct bfd_link_hash_entry *bh;
7986 flagword flags;
7987 register asection *s;
7988 const char * const *namep;
7989 struct mips_elf_link_hash_table *htab;
7990
7991 htab = mips_elf_hash_table (info);
7992 BFD_ASSERT (htab != NULL);
7993
7994 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7995 | SEC_LINKER_CREATED | SEC_READONLY);
7996
7997 /* The psABI requires a read-only .dynamic section, but the VxWorks
7998 EABI doesn't. */
7999 if (!htab->is_vxworks)
8000 {
8001 s = bfd_get_linker_section (abfd, ".dynamic");
8002 if (s != NULL)
8003 {
8004 if (!bfd_set_section_flags (s, flags))
8005 return FALSE;
8006 }
8007 }
8008
8009 /* We need to create .got section. */
8010 if (!mips_elf_create_got_section (abfd, info))
8011 return FALSE;
8012
8013 if (! mips_elf_rel_dyn_section (info, TRUE))
8014 return FALSE;
8015
8016 /* Create .stub section. */
8017 s = bfd_make_section_anyway_with_flags (abfd,
8018 MIPS_ELF_STUB_SECTION_NAME (abfd),
8019 flags | SEC_CODE);
8020 if (s == NULL
8021 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8022 return FALSE;
8023 htab->sstubs = s;
8024
8025 if (!mips_elf_hash_table (info)->use_rld_obj_head
8026 && bfd_link_executable (info)
8027 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
8028 {
8029 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
8030 flags &~ (flagword) SEC_READONLY);
8031 if (s == NULL
8032 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8033 return FALSE;
8034 }
8035
8036 /* Create .MIPS.xhash section. */
8037 if (info->emit_gnu_hash)
8038 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
8039 flags | SEC_READONLY);
8040
8041 /* On IRIX5, we adjust add some additional symbols and change the
8042 alignments of several sections. There is no ABI documentation
8043 indicating that this is necessary on IRIX6, nor any evidence that
8044 the linker takes such action. */
8045 if (IRIX_COMPAT (abfd) == ict_irix5)
8046 {
8047 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8048 {
8049 bh = NULL;
8050 if (! (_bfd_generic_link_add_one_symbol
8051 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8052 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8053 return FALSE;
8054
8055 h = (struct elf_link_hash_entry *) bh;
8056 h->mark = 1;
8057 h->non_elf = 0;
8058 h->def_regular = 1;
8059 h->type = STT_SECTION;
8060
8061 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8062 return FALSE;
8063 }
8064
8065 /* We need to create a .compact_rel section. */
8066 if (SGI_COMPAT (abfd))
8067 {
8068 if (!mips_elf_create_compact_rel_section (abfd, info))
8069 return FALSE;
8070 }
8071
8072 /* Change alignments of some sections. */
8073 s = bfd_get_linker_section (abfd, ".hash");
8074 if (s != NULL)
8075 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8076
8077 s = bfd_get_linker_section (abfd, ".dynsym");
8078 if (s != NULL)
8079 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8080
8081 s = bfd_get_linker_section (abfd, ".dynstr");
8082 if (s != NULL)
8083 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8084
8085 /* ??? */
8086 s = bfd_get_section_by_name (abfd, ".reginfo");
8087 if (s != NULL)
8088 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8089
8090 s = bfd_get_linker_section (abfd, ".dynamic");
8091 if (s != NULL)
8092 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8093 }
8094
8095 if (bfd_link_executable (info))
8096 {
8097 const char *name;
8098
8099 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8100 bh = NULL;
8101 if (!(_bfd_generic_link_add_one_symbol
8102 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8103 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8104 return FALSE;
8105
8106 h = (struct elf_link_hash_entry *) bh;
8107 h->non_elf = 0;
8108 h->def_regular = 1;
8109 h->type = STT_SECTION;
8110
8111 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8112 return FALSE;
8113
8114 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8115 {
8116 /* __rld_map is a four byte word located in the .data section
8117 and is filled in by the rtld to contain a pointer to
8118 the _r_debug structure. Its symbol value will be set in
8119 _bfd_mips_elf_finish_dynamic_symbol. */
8120 s = bfd_get_linker_section (abfd, ".rld_map");
8121 BFD_ASSERT (s != NULL);
8122
8123 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8124 bh = NULL;
8125 if (!(_bfd_generic_link_add_one_symbol
8126 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8127 get_elf_backend_data (abfd)->collect, &bh)))
8128 return FALSE;
8129
8130 h = (struct elf_link_hash_entry *) bh;
8131 h->non_elf = 0;
8132 h->def_regular = 1;
8133 h->type = STT_OBJECT;
8134
8135 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8136 return FALSE;
8137 mips_elf_hash_table (info)->rld_symbol = h;
8138 }
8139 }
8140
8141 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8142 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8143 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8144 return FALSE;
8145
8146 /* Do the usual VxWorks handling. */
8147 if (htab->is_vxworks
8148 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8149 return FALSE;
8150
8151 return TRUE;
8152 }
8153 \f
8154 /* Return true if relocation REL against section SEC is a REL rather than
8155 RELA relocation. RELOCS is the first relocation in the section and
8156 ABFD is the bfd that contains SEC. */
8157
8158 static bfd_boolean
8159 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8160 const Elf_Internal_Rela *relocs,
8161 const Elf_Internal_Rela *rel)
8162 {
8163 Elf_Internal_Shdr *rel_hdr;
8164 const struct elf_backend_data *bed;
8165
8166 /* To determine which flavor of relocation this is, we depend on the
8167 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8168 rel_hdr = elf_section_data (sec)->rel.hdr;
8169 if (rel_hdr == NULL)
8170 return FALSE;
8171 bed = get_elf_backend_data (abfd);
8172 return ((size_t) (rel - relocs)
8173 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8174 }
8175
8176 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8177 HOWTO is the relocation's howto and CONTENTS points to the contents
8178 of the section that REL is against. */
8179
8180 static bfd_vma
8181 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8182 reloc_howto_type *howto, bfd_byte *contents)
8183 {
8184 bfd_byte *location;
8185 unsigned int r_type;
8186 bfd_vma addend;
8187 bfd_vma bytes;
8188
8189 r_type = ELF_R_TYPE (abfd, rel->r_info);
8190 location = contents + rel->r_offset;
8191
8192 /* Get the addend, which is stored in the input file. */
8193 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8194 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8195 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8196
8197 addend = bytes & howto->src_mask;
8198
8199 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8200 accordingly. */
8201 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8202 addend <<= 1;
8203
8204 return addend;
8205 }
8206
8207 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8208 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8209 and update *ADDEND with the final addend. Return true on success
8210 or false if the LO16 could not be found. RELEND is the exclusive
8211 upper bound on the relocations for REL's section. */
8212
8213 static bfd_boolean
8214 mips_elf_add_lo16_rel_addend (bfd *abfd,
8215 const Elf_Internal_Rela *rel,
8216 const Elf_Internal_Rela *relend,
8217 bfd_byte *contents, bfd_vma *addend)
8218 {
8219 unsigned int r_type, lo16_type;
8220 const Elf_Internal_Rela *lo16_relocation;
8221 reloc_howto_type *lo16_howto;
8222 bfd_vma l;
8223
8224 r_type = ELF_R_TYPE (abfd, rel->r_info);
8225 if (mips16_reloc_p (r_type))
8226 lo16_type = R_MIPS16_LO16;
8227 else if (micromips_reloc_p (r_type))
8228 lo16_type = R_MICROMIPS_LO16;
8229 else if (r_type == R_MIPS_PCHI16)
8230 lo16_type = R_MIPS_PCLO16;
8231 else
8232 lo16_type = R_MIPS_LO16;
8233
8234 /* The combined value is the sum of the HI16 addend, left-shifted by
8235 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8236 code does a `lui' of the HI16 value, and then an `addiu' of the
8237 LO16 value.)
8238
8239 Scan ahead to find a matching LO16 relocation.
8240
8241 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8242 be immediately following. However, for the IRIX6 ABI, the next
8243 relocation may be a composed relocation consisting of several
8244 relocations for the same address. In that case, the R_MIPS_LO16
8245 relocation may occur as one of these. We permit a similar
8246 extension in general, as that is useful for GCC.
8247
8248 In some cases GCC dead code elimination removes the LO16 but keeps
8249 the corresponding HI16. This is strictly speaking a violation of
8250 the ABI but not immediately harmful. */
8251 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8252 if (lo16_relocation == NULL)
8253 return FALSE;
8254
8255 /* Obtain the addend kept there. */
8256 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8257 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8258
8259 l <<= lo16_howto->rightshift;
8260 l = _bfd_mips_elf_sign_extend (l, 16);
8261
8262 *addend <<= 16;
8263 *addend += l;
8264 return TRUE;
8265 }
8266
8267 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8268 store the contents in *CONTENTS on success. Assume that *CONTENTS
8269 already holds the contents if it is nonull on entry. */
8270
8271 static bfd_boolean
8272 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8273 {
8274 if (*contents)
8275 return TRUE;
8276
8277 /* Get cached copy if it exists. */
8278 if (elf_section_data (sec)->this_hdr.contents != NULL)
8279 {
8280 *contents = elf_section_data (sec)->this_hdr.contents;
8281 return TRUE;
8282 }
8283
8284 return bfd_malloc_and_get_section (abfd, sec, contents);
8285 }
8286
8287 /* Make a new PLT record to keep internal data. */
8288
8289 static struct plt_entry *
8290 mips_elf_make_plt_record (bfd *abfd)
8291 {
8292 struct plt_entry *entry;
8293
8294 entry = bfd_zalloc (abfd, sizeof (*entry));
8295 if (entry == NULL)
8296 return NULL;
8297
8298 entry->stub_offset = MINUS_ONE;
8299 entry->mips_offset = MINUS_ONE;
8300 entry->comp_offset = MINUS_ONE;
8301 entry->gotplt_index = MINUS_ONE;
8302 return entry;
8303 }
8304
8305 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8306 for PIC code, as otherwise there is no load-time relocation involved
8307 and local GOT entries whose value is zero at static link time will
8308 retain their value at load time. */
8309
8310 static bfd_boolean
8311 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8312 struct mips_elf_link_hash_table *htab,
8313 unsigned int r_type)
8314 {
8315 union
8316 {
8317 struct elf_link_hash_entry *eh;
8318 struct bfd_link_hash_entry *bh;
8319 }
8320 hzero;
8321
8322 BFD_ASSERT (!htab->use_absolute_zero);
8323 BFD_ASSERT (bfd_link_pic (info));
8324
8325 hzero.bh = NULL;
8326 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8327 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8328 NULL, FALSE, FALSE, &hzero.bh))
8329 return FALSE;
8330
8331 BFD_ASSERT (hzero.bh != NULL);
8332 hzero.eh->size = 0;
8333 hzero.eh->type = STT_NOTYPE;
8334 hzero.eh->other = STV_PROTECTED;
8335 hzero.eh->def_regular = 1;
8336 hzero.eh->non_elf = 0;
8337
8338 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8339 return FALSE;
8340
8341 htab->use_absolute_zero = TRUE;
8342
8343 return TRUE;
8344 }
8345
8346 /* Look through the relocs for a section during the first phase, and
8347 allocate space in the global offset table and record the need for
8348 standard MIPS and compressed procedure linkage table entries. */
8349
8350 bfd_boolean
8351 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8352 asection *sec, const Elf_Internal_Rela *relocs)
8353 {
8354 const char *name;
8355 bfd *dynobj;
8356 Elf_Internal_Shdr *symtab_hdr;
8357 struct elf_link_hash_entry **sym_hashes;
8358 size_t extsymoff;
8359 const Elf_Internal_Rela *rel;
8360 const Elf_Internal_Rela *rel_end;
8361 asection *sreloc;
8362 const struct elf_backend_data *bed;
8363 struct mips_elf_link_hash_table *htab;
8364 bfd_byte *contents;
8365 bfd_vma addend;
8366 reloc_howto_type *howto;
8367
8368 if (bfd_link_relocatable (info))
8369 return TRUE;
8370
8371 htab = mips_elf_hash_table (info);
8372 BFD_ASSERT (htab != NULL);
8373
8374 dynobj = elf_hash_table (info)->dynobj;
8375 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8376 sym_hashes = elf_sym_hashes (abfd);
8377 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8378
8379 bed = get_elf_backend_data (abfd);
8380 rel_end = relocs + sec->reloc_count;
8381
8382 /* Check for the mips16 stub sections. */
8383
8384 name = bfd_section_name (sec);
8385 if (FN_STUB_P (name))
8386 {
8387 unsigned long r_symndx;
8388
8389 /* Look at the relocation information to figure out which symbol
8390 this is for. */
8391
8392 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8393 if (r_symndx == 0)
8394 {
8395 _bfd_error_handler
8396 /* xgettext:c-format */
8397 (_("%pB: warning: cannot determine the target function for"
8398 " stub section `%s'"),
8399 abfd, name);
8400 bfd_set_error (bfd_error_bad_value);
8401 return FALSE;
8402 }
8403
8404 if (r_symndx < extsymoff
8405 || sym_hashes[r_symndx - extsymoff] == NULL)
8406 {
8407 asection *o;
8408
8409 /* This stub is for a local symbol. This stub will only be
8410 needed if there is some relocation in this BFD, other
8411 than a 16 bit function call, which refers to this symbol. */
8412 for (o = abfd->sections; o != NULL; o = o->next)
8413 {
8414 Elf_Internal_Rela *sec_relocs;
8415 const Elf_Internal_Rela *r, *rend;
8416
8417 /* We can ignore stub sections when looking for relocs. */
8418 if ((o->flags & SEC_RELOC) == 0
8419 || o->reloc_count == 0
8420 || section_allows_mips16_refs_p (o))
8421 continue;
8422
8423 sec_relocs
8424 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8425 info->keep_memory);
8426 if (sec_relocs == NULL)
8427 return FALSE;
8428
8429 rend = sec_relocs + o->reloc_count;
8430 for (r = sec_relocs; r < rend; r++)
8431 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8432 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8433 break;
8434
8435 if (elf_section_data (o)->relocs != sec_relocs)
8436 free (sec_relocs);
8437
8438 if (r < rend)
8439 break;
8440 }
8441
8442 if (o == NULL)
8443 {
8444 /* There is no non-call reloc for this stub, so we do
8445 not need it. Since this function is called before
8446 the linker maps input sections to output sections, we
8447 can easily discard it by setting the SEC_EXCLUDE
8448 flag. */
8449 sec->flags |= SEC_EXCLUDE;
8450 return TRUE;
8451 }
8452
8453 /* Record this stub in an array of local symbol stubs for
8454 this BFD. */
8455 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8456 {
8457 unsigned long symcount;
8458 asection **n;
8459 bfd_size_type amt;
8460
8461 if (elf_bad_symtab (abfd))
8462 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8463 else
8464 symcount = symtab_hdr->sh_info;
8465 amt = symcount * sizeof (asection *);
8466 n = bfd_zalloc (abfd, amt);
8467 if (n == NULL)
8468 return FALSE;
8469 mips_elf_tdata (abfd)->local_stubs = n;
8470 }
8471
8472 sec->flags |= SEC_KEEP;
8473 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8474
8475 /* We don't need to set mips16_stubs_seen in this case.
8476 That flag is used to see whether we need to look through
8477 the global symbol table for stubs. We don't need to set
8478 it here, because we just have a local stub. */
8479 }
8480 else
8481 {
8482 struct mips_elf_link_hash_entry *h;
8483
8484 h = ((struct mips_elf_link_hash_entry *)
8485 sym_hashes[r_symndx - extsymoff]);
8486
8487 while (h->root.root.type == bfd_link_hash_indirect
8488 || h->root.root.type == bfd_link_hash_warning)
8489 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8490
8491 /* H is the symbol this stub is for. */
8492
8493 /* If we already have an appropriate stub for this function, we
8494 don't need another one, so we can discard this one. Since
8495 this function is called before the linker maps input sections
8496 to output sections, we can easily discard it by setting the
8497 SEC_EXCLUDE flag. */
8498 if (h->fn_stub != NULL)
8499 {
8500 sec->flags |= SEC_EXCLUDE;
8501 return TRUE;
8502 }
8503
8504 sec->flags |= SEC_KEEP;
8505 h->fn_stub = sec;
8506 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8507 }
8508 }
8509 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8510 {
8511 unsigned long r_symndx;
8512 struct mips_elf_link_hash_entry *h;
8513 asection **loc;
8514
8515 /* Look at the relocation information to figure out which symbol
8516 this is for. */
8517
8518 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8519 if (r_symndx == 0)
8520 {
8521 _bfd_error_handler
8522 /* xgettext:c-format */
8523 (_("%pB: warning: cannot determine the target function for"
8524 " stub section `%s'"),
8525 abfd, name);
8526 bfd_set_error (bfd_error_bad_value);
8527 return FALSE;
8528 }
8529
8530 if (r_symndx < extsymoff
8531 || sym_hashes[r_symndx - extsymoff] == NULL)
8532 {
8533 asection *o;
8534
8535 /* This stub is for a local symbol. This stub will only be
8536 needed if there is some relocation (R_MIPS16_26) in this BFD
8537 that refers to this symbol. */
8538 for (o = abfd->sections; o != NULL; o = o->next)
8539 {
8540 Elf_Internal_Rela *sec_relocs;
8541 const Elf_Internal_Rela *r, *rend;
8542
8543 /* We can ignore stub sections when looking for relocs. */
8544 if ((o->flags & SEC_RELOC) == 0
8545 || o->reloc_count == 0
8546 || section_allows_mips16_refs_p (o))
8547 continue;
8548
8549 sec_relocs
8550 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8551 info->keep_memory);
8552 if (sec_relocs == NULL)
8553 return FALSE;
8554
8555 rend = sec_relocs + o->reloc_count;
8556 for (r = sec_relocs; r < rend; r++)
8557 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8558 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8559 break;
8560
8561 if (elf_section_data (o)->relocs != sec_relocs)
8562 free (sec_relocs);
8563
8564 if (r < rend)
8565 break;
8566 }
8567
8568 if (o == NULL)
8569 {
8570 /* There is no non-call reloc for this stub, so we do
8571 not need it. Since this function is called before
8572 the linker maps input sections to output sections, we
8573 can easily discard it by setting the SEC_EXCLUDE
8574 flag. */
8575 sec->flags |= SEC_EXCLUDE;
8576 return TRUE;
8577 }
8578
8579 /* Record this stub in an array of local symbol call_stubs for
8580 this BFD. */
8581 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8582 {
8583 unsigned long symcount;
8584 asection **n;
8585 bfd_size_type amt;
8586
8587 if (elf_bad_symtab (abfd))
8588 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8589 else
8590 symcount = symtab_hdr->sh_info;
8591 amt = symcount * sizeof (asection *);
8592 n = bfd_zalloc (abfd, amt);
8593 if (n == NULL)
8594 return FALSE;
8595 mips_elf_tdata (abfd)->local_call_stubs = n;
8596 }
8597
8598 sec->flags |= SEC_KEEP;
8599 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8600
8601 /* We don't need to set mips16_stubs_seen in this case.
8602 That flag is used to see whether we need to look through
8603 the global symbol table for stubs. We don't need to set
8604 it here, because we just have a local stub. */
8605 }
8606 else
8607 {
8608 h = ((struct mips_elf_link_hash_entry *)
8609 sym_hashes[r_symndx - extsymoff]);
8610
8611 /* H is the symbol this stub is for. */
8612
8613 if (CALL_FP_STUB_P (name))
8614 loc = &h->call_fp_stub;
8615 else
8616 loc = &h->call_stub;
8617
8618 /* If we already have an appropriate stub for this function, we
8619 don't need another one, so we can discard this one. Since
8620 this function is called before the linker maps input sections
8621 to output sections, we can easily discard it by setting the
8622 SEC_EXCLUDE flag. */
8623 if (*loc != NULL)
8624 {
8625 sec->flags |= SEC_EXCLUDE;
8626 return TRUE;
8627 }
8628
8629 sec->flags |= SEC_KEEP;
8630 *loc = sec;
8631 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8632 }
8633 }
8634
8635 sreloc = NULL;
8636 contents = NULL;
8637 for (rel = relocs; rel < rel_end; ++rel)
8638 {
8639 unsigned long r_symndx;
8640 unsigned int r_type;
8641 struct elf_link_hash_entry *h;
8642 bfd_boolean can_make_dynamic_p;
8643 bfd_boolean call_reloc_p;
8644 bfd_boolean constrain_symbol_p;
8645
8646 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8647 r_type = ELF_R_TYPE (abfd, rel->r_info);
8648
8649 if (r_symndx < extsymoff)
8650 h = NULL;
8651 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8652 {
8653 _bfd_error_handler
8654 /* xgettext:c-format */
8655 (_("%pB: malformed reloc detected for section %s"),
8656 abfd, name);
8657 bfd_set_error (bfd_error_bad_value);
8658 return FALSE;
8659 }
8660 else
8661 {
8662 h = sym_hashes[r_symndx - extsymoff];
8663 if (h != NULL)
8664 {
8665 while (h->root.type == bfd_link_hash_indirect
8666 || h->root.type == bfd_link_hash_warning)
8667 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8668 }
8669 }
8670
8671 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8672 relocation into a dynamic one. */
8673 can_make_dynamic_p = FALSE;
8674
8675 /* Set CALL_RELOC_P to true if the relocation is for a call,
8676 and if pointer equality therefore doesn't matter. */
8677 call_reloc_p = FALSE;
8678
8679 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8680 into account when deciding how to define the symbol.
8681 Relocations in nonallocatable sections such as .pdr and
8682 .debug* should have no effect. */
8683 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8684
8685 switch (r_type)
8686 {
8687 case R_MIPS_CALL16:
8688 case R_MIPS_CALL_HI16:
8689 case R_MIPS_CALL_LO16:
8690 case R_MIPS16_CALL16:
8691 case R_MICROMIPS_CALL16:
8692 case R_MICROMIPS_CALL_HI16:
8693 case R_MICROMIPS_CALL_LO16:
8694 call_reloc_p = TRUE;
8695 /* Fall through. */
8696
8697 case R_MIPS_GOT16:
8698 case R_MIPS_GOT_LO16:
8699 case R_MIPS_GOT_PAGE:
8700 case R_MIPS_GOT_DISP:
8701 case R_MIPS16_GOT16:
8702 case R_MICROMIPS_GOT16:
8703 case R_MICROMIPS_GOT_LO16:
8704 case R_MICROMIPS_GOT_PAGE:
8705 case R_MICROMIPS_GOT_DISP:
8706 /* If we have a symbol that will resolve to zero at static link
8707 time and it is used by a GOT relocation applied to code we
8708 cannot relax to an immediate zero load, then we will be using
8709 the special `__gnu_absolute_zero' symbol whose value is zero
8710 at dynamic load time. We ignore HI16-type GOT relocations at
8711 this stage, because their handling will depend entirely on
8712 the corresponding LO16-type GOT relocation. */
8713 if (!call_hi16_reloc_p (r_type)
8714 && h != NULL
8715 && bfd_link_pic (info)
8716 && !htab->use_absolute_zero
8717 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8718 {
8719 bfd_boolean rel_reloc;
8720
8721 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8722 return FALSE;
8723
8724 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8725 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8726
8727 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8728 FALSE))
8729 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8730 return FALSE;
8731 }
8732
8733 /* Fall through. */
8734 case R_MIPS_GOT_HI16:
8735 case R_MIPS_GOT_OFST:
8736 case R_MIPS_TLS_GOTTPREL:
8737 case R_MIPS_TLS_GD:
8738 case R_MIPS_TLS_LDM:
8739 case R_MIPS16_TLS_GOTTPREL:
8740 case R_MIPS16_TLS_GD:
8741 case R_MIPS16_TLS_LDM:
8742 case R_MICROMIPS_GOT_HI16:
8743 case R_MICROMIPS_GOT_OFST:
8744 case R_MICROMIPS_TLS_GOTTPREL:
8745 case R_MICROMIPS_TLS_GD:
8746 case R_MICROMIPS_TLS_LDM:
8747 if (dynobj == NULL)
8748 elf_hash_table (info)->dynobj = dynobj = abfd;
8749 if (!mips_elf_create_got_section (dynobj, info))
8750 return FALSE;
8751 if (htab->is_vxworks && !bfd_link_pic (info))
8752 {
8753 _bfd_error_handler
8754 /* xgettext:c-format */
8755 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8756 abfd, (uint64_t) rel->r_offset);
8757 bfd_set_error (bfd_error_bad_value);
8758 return FALSE;
8759 }
8760 can_make_dynamic_p = TRUE;
8761 break;
8762
8763 case R_MIPS_NONE:
8764 case R_MIPS_JALR:
8765 case R_MICROMIPS_JALR:
8766 /* These relocations have empty fields and are purely there to
8767 provide link information. The symbol value doesn't matter. */
8768 constrain_symbol_p = FALSE;
8769 break;
8770
8771 case R_MIPS_GPREL16:
8772 case R_MIPS_GPREL32:
8773 case R_MIPS16_GPREL:
8774 case R_MICROMIPS_GPREL16:
8775 /* GP-relative relocations always resolve to a definition in a
8776 regular input file, ignoring the one-definition rule. This is
8777 important for the GP setup sequence in NewABI code, which
8778 always resolves to a local function even if other relocations
8779 against the symbol wouldn't. */
8780 constrain_symbol_p = FALSE;
8781 break;
8782
8783 case R_MIPS_32:
8784 case R_MIPS_REL32:
8785 case R_MIPS_64:
8786 /* In VxWorks executables, references to external symbols
8787 must be handled using copy relocs or PLT entries; it is not
8788 possible to convert this relocation into a dynamic one.
8789
8790 For executables that use PLTs and copy-relocs, we have a
8791 choice between converting the relocation into a dynamic
8792 one or using copy relocations or PLT entries. It is
8793 usually better to do the former, unless the relocation is
8794 against a read-only section. */
8795 if ((bfd_link_pic (info)
8796 || (h != NULL
8797 && !htab->is_vxworks
8798 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8799 && !(!info->nocopyreloc
8800 && !PIC_OBJECT_P (abfd)
8801 && MIPS_ELF_READONLY_SECTION (sec))))
8802 && (sec->flags & SEC_ALLOC) != 0)
8803 {
8804 can_make_dynamic_p = TRUE;
8805 if (dynobj == NULL)
8806 elf_hash_table (info)->dynobj = dynobj = abfd;
8807 }
8808 break;
8809
8810 case R_MIPS_26:
8811 case R_MIPS_PC16:
8812 case R_MIPS_PC21_S2:
8813 case R_MIPS_PC26_S2:
8814 case R_MIPS16_26:
8815 case R_MIPS16_PC16_S1:
8816 case R_MICROMIPS_26_S1:
8817 case R_MICROMIPS_PC7_S1:
8818 case R_MICROMIPS_PC10_S1:
8819 case R_MICROMIPS_PC16_S1:
8820 case R_MICROMIPS_PC23_S2:
8821 call_reloc_p = TRUE;
8822 break;
8823 }
8824
8825 if (h)
8826 {
8827 if (constrain_symbol_p)
8828 {
8829 if (!can_make_dynamic_p)
8830 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8831
8832 if (!call_reloc_p)
8833 h->pointer_equality_needed = 1;
8834
8835 /* We must not create a stub for a symbol that has
8836 relocations related to taking the function's address.
8837 This doesn't apply to VxWorks, where CALL relocs refer
8838 to a .got.plt entry instead of a normal .got entry. */
8839 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8840 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8841 }
8842
8843 /* Relocations against the special VxWorks __GOTT_BASE__ and
8844 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8845 room for them in .rela.dyn. */
8846 if (is_gott_symbol (info, h))
8847 {
8848 if (sreloc == NULL)
8849 {
8850 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8851 if (sreloc == NULL)
8852 return FALSE;
8853 }
8854 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8855 if (MIPS_ELF_READONLY_SECTION (sec))
8856 /* We tell the dynamic linker that there are
8857 relocations against the text segment. */
8858 info->flags |= DF_TEXTREL;
8859 }
8860 }
8861 else if (call_lo16_reloc_p (r_type)
8862 || got_lo16_reloc_p (r_type)
8863 || got_disp_reloc_p (r_type)
8864 || (got16_reloc_p (r_type) && htab->is_vxworks))
8865 {
8866 /* We may need a local GOT entry for this relocation. We
8867 don't count R_MIPS_GOT_PAGE because we can estimate the
8868 maximum number of pages needed by looking at the size of
8869 the segment. Similar comments apply to R_MIPS*_GOT16 and
8870 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8871 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8872 R_MIPS_CALL_HI16 because these are always followed by an
8873 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8874 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8875 rel->r_addend, info, r_type))
8876 return FALSE;
8877 }
8878
8879 if (h != NULL
8880 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8881 ELF_ST_IS_MIPS16 (h->other)))
8882 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8883
8884 switch (r_type)
8885 {
8886 case R_MIPS_CALL16:
8887 case R_MIPS16_CALL16:
8888 case R_MICROMIPS_CALL16:
8889 if (h == NULL)
8890 {
8891 _bfd_error_handler
8892 /* xgettext:c-format */
8893 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8894 abfd, (uint64_t) rel->r_offset);
8895 bfd_set_error (bfd_error_bad_value);
8896 return FALSE;
8897 }
8898 /* Fall through. */
8899
8900 case R_MIPS_CALL_HI16:
8901 case R_MIPS_CALL_LO16:
8902 case R_MICROMIPS_CALL_HI16:
8903 case R_MICROMIPS_CALL_LO16:
8904 if (h != NULL)
8905 {
8906 /* Make sure there is room in the regular GOT to hold the
8907 function's address. We may eliminate it in favour of
8908 a .got.plt entry later; see mips_elf_count_got_symbols. */
8909 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8910 r_type))
8911 return FALSE;
8912
8913 /* We need a stub, not a plt entry for the undefined
8914 function. But we record it as if it needs plt. See
8915 _bfd_elf_adjust_dynamic_symbol. */
8916 h->needs_plt = 1;
8917 h->type = STT_FUNC;
8918 }
8919 break;
8920
8921 case R_MIPS_GOT_PAGE:
8922 case R_MICROMIPS_GOT_PAGE:
8923 case R_MIPS16_GOT16:
8924 case R_MIPS_GOT16:
8925 case R_MIPS_GOT_HI16:
8926 case R_MIPS_GOT_LO16:
8927 case R_MICROMIPS_GOT16:
8928 case R_MICROMIPS_GOT_HI16:
8929 case R_MICROMIPS_GOT_LO16:
8930 if (!h || got_page_reloc_p (r_type))
8931 {
8932 /* This relocation needs (or may need, if h != NULL) a
8933 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8934 know for sure until we know whether the symbol is
8935 preemptible. */
8936 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8937 {
8938 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8939 return FALSE;
8940 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8941 addend = mips_elf_read_rel_addend (abfd, rel,
8942 howto, contents);
8943 if (got16_reloc_p (r_type))
8944 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8945 contents, &addend);
8946 else
8947 addend <<= howto->rightshift;
8948 }
8949 else
8950 addend = rel->r_addend;
8951 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8952 h, addend))
8953 return FALSE;
8954
8955 if (h)
8956 {
8957 struct mips_elf_link_hash_entry *hmips =
8958 (struct mips_elf_link_hash_entry *) h;
8959
8960 /* This symbol is definitely not overridable. */
8961 if (hmips->root.def_regular
8962 && ! (bfd_link_pic (info) && ! info->symbolic
8963 && ! hmips->root.forced_local))
8964 h = NULL;
8965 }
8966 }
8967 /* If this is a global, overridable symbol, GOT_PAGE will
8968 decay to GOT_DISP, so we'll need a GOT entry for it. */
8969 /* Fall through. */
8970
8971 case R_MIPS_GOT_DISP:
8972 case R_MICROMIPS_GOT_DISP:
8973 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8974 FALSE, r_type))
8975 return FALSE;
8976 break;
8977
8978 case R_MIPS_TLS_GOTTPREL:
8979 case R_MIPS16_TLS_GOTTPREL:
8980 case R_MICROMIPS_TLS_GOTTPREL:
8981 if (bfd_link_pic (info))
8982 info->flags |= DF_STATIC_TLS;
8983 /* Fall through */
8984
8985 case R_MIPS_TLS_LDM:
8986 case R_MIPS16_TLS_LDM:
8987 case R_MICROMIPS_TLS_LDM:
8988 if (tls_ldm_reloc_p (r_type))
8989 {
8990 r_symndx = STN_UNDEF;
8991 h = NULL;
8992 }
8993 /* Fall through */
8994
8995 case R_MIPS_TLS_GD:
8996 case R_MIPS16_TLS_GD:
8997 case R_MICROMIPS_TLS_GD:
8998 /* This symbol requires a global offset table entry, or two
8999 for TLS GD relocations. */
9000 if (h != NULL)
9001 {
9002 if (!mips_elf_record_global_got_symbol (h, abfd, info,
9003 FALSE, r_type))
9004 return FALSE;
9005 }
9006 else
9007 {
9008 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
9009 rel->r_addend,
9010 info, r_type))
9011 return FALSE;
9012 }
9013 break;
9014
9015 case R_MIPS_32:
9016 case R_MIPS_REL32:
9017 case R_MIPS_64:
9018 /* In VxWorks executables, references to external symbols
9019 are handled using copy relocs or PLT stubs, so there's
9020 no need to add a .rela.dyn entry for this relocation. */
9021 if (can_make_dynamic_p)
9022 {
9023 if (sreloc == NULL)
9024 {
9025 sreloc = mips_elf_rel_dyn_section (info, TRUE);
9026 if (sreloc == NULL)
9027 return FALSE;
9028 }
9029 if (bfd_link_pic (info) && h == NULL)
9030 {
9031 /* When creating a shared object, we must copy these
9032 reloc types into the output file as R_MIPS_REL32
9033 relocs. Make room for this reloc in .rel(a).dyn. */
9034 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9035 if (MIPS_ELF_READONLY_SECTION (sec))
9036 /* We tell the dynamic linker that there are
9037 relocations against the text segment. */
9038 info->flags |= DF_TEXTREL;
9039 }
9040 else
9041 {
9042 struct mips_elf_link_hash_entry *hmips;
9043
9044 /* For a shared object, we must copy this relocation
9045 unless the symbol turns out to be undefined and
9046 weak with non-default visibility, in which case
9047 it will be left as zero.
9048
9049 We could elide R_MIPS_REL32 for locally binding symbols
9050 in shared libraries, but do not yet do so.
9051
9052 For an executable, we only need to copy this
9053 reloc if the symbol is defined in a dynamic
9054 object. */
9055 hmips = (struct mips_elf_link_hash_entry *) h;
9056 ++hmips->possibly_dynamic_relocs;
9057 if (MIPS_ELF_READONLY_SECTION (sec))
9058 /* We need it to tell the dynamic linker if there
9059 are relocations against the text segment. */
9060 hmips->readonly_reloc = TRUE;
9061 }
9062 }
9063
9064 if (SGI_COMPAT (abfd))
9065 mips_elf_hash_table (info)->compact_rel_size +=
9066 sizeof (Elf32_External_crinfo);
9067 break;
9068
9069 case R_MIPS_26:
9070 case R_MIPS_GPREL16:
9071 case R_MIPS_LITERAL:
9072 case R_MIPS_GPREL32:
9073 case R_MICROMIPS_26_S1:
9074 case R_MICROMIPS_GPREL16:
9075 case R_MICROMIPS_LITERAL:
9076 case R_MICROMIPS_GPREL7_S2:
9077 if (SGI_COMPAT (abfd))
9078 mips_elf_hash_table (info)->compact_rel_size +=
9079 sizeof (Elf32_External_crinfo);
9080 break;
9081
9082 /* This relocation describes the C++ object vtable hierarchy.
9083 Reconstruct it for later use during GC. */
9084 case R_MIPS_GNU_VTINHERIT:
9085 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9086 return FALSE;
9087 break;
9088
9089 /* This relocation describes which C++ vtable entries are actually
9090 used. Record for later use during GC. */
9091 case R_MIPS_GNU_VTENTRY:
9092 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9093 return FALSE;
9094 break;
9095
9096 default:
9097 break;
9098 }
9099
9100 /* Record the need for a PLT entry. At this point we don't know
9101 yet if we are going to create a PLT in the first place, but
9102 we only record whether the relocation requires a standard MIPS
9103 or a compressed code entry anyway. If we don't make a PLT after
9104 all, then we'll just ignore these arrangements. Likewise if
9105 a PLT entry is not created because the symbol is satisfied
9106 locally. */
9107 if (h != NULL
9108 && (branch_reloc_p (r_type)
9109 || mips16_branch_reloc_p (r_type)
9110 || micromips_branch_reloc_p (r_type))
9111 && !SYMBOL_CALLS_LOCAL (info, h))
9112 {
9113 if (h->plt.plist == NULL)
9114 h->plt.plist = mips_elf_make_plt_record (abfd);
9115 if (h->plt.plist == NULL)
9116 return FALSE;
9117
9118 if (branch_reloc_p (r_type))
9119 h->plt.plist->need_mips = TRUE;
9120 else
9121 h->plt.plist->need_comp = TRUE;
9122 }
9123
9124 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9125 if there is one. We only need to handle global symbols here;
9126 we decide whether to keep or delete stubs for local symbols
9127 when processing the stub's relocations. */
9128 if (h != NULL
9129 && !mips16_call_reloc_p (r_type)
9130 && !section_allows_mips16_refs_p (sec))
9131 {
9132 struct mips_elf_link_hash_entry *mh;
9133
9134 mh = (struct mips_elf_link_hash_entry *) h;
9135 mh->need_fn_stub = TRUE;
9136 }
9137
9138 /* Refuse some position-dependent relocations when creating a
9139 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9140 not PIC, but we can create dynamic relocations and the result
9141 will be fine. Also do not refuse R_MIPS_LO16, which can be
9142 combined with R_MIPS_GOT16. */
9143 if (bfd_link_pic (info))
9144 {
9145 switch (r_type)
9146 {
9147 case R_MIPS_TLS_TPREL_HI16:
9148 case R_MIPS16_TLS_TPREL_HI16:
9149 case R_MICROMIPS_TLS_TPREL_HI16:
9150 case R_MIPS_TLS_TPREL_LO16:
9151 case R_MIPS16_TLS_TPREL_LO16:
9152 case R_MICROMIPS_TLS_TPREL_LO16:
9153 /* These are okay in PIE, but not in a shared library. */
9154 if (bfd_link_executable (info))
9155 break;
9156
9157 /* FALLTHROUGH */
9158
9159 case R_MIPS16_HI16:
9160 case R_MIPS_HI16:
9161 case R_MIPS_HIGHER:
9162 case R_MIPS_HIGHEST:
9163 case R_MICROMIPS_HI16:
9164 case R_MICROMIPS_HIGHER:
9165 case R_MICROMIPS_HIGHEST:
9166 /* Don't refuse a high part relocation if it's against
9167 no symbol (e.g. part of a compound relocation). */
9168 if (r_symndx == STN_UNDEF)
9169 break;
9170
9171 /* Likewise an absolute symbol. */
9172 if (h != NULL && bfd_is_abs_symbol (&h->root))
9173 break;
9174
9175 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9176 and has a special meaning. */
9177 if (!NEWABI_P (abfd) && h != NULL
9178 && strcmp (h->root.root.string, "_gp_disp") == 0)
9179 break;
9180
9181 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9182 if (is_gott_symbol (info, h))
9183 break;
9184
9185 /* FALLTHROUGH */
9186
9187 case R_MIPS16_26:
9188 case R_MIPS_26:
9189 case R_MICROMIPS_26_S1:
9190 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9191 /* An error for unsupported relocations is raised as part
9192 of the above search, so we can skip the following. */
9193 if (howto != NULL)
9194 info->callbacks->einfo
9195 /* xgettext:c-format */
9196 (_("%X%H: relocation %s against `%s' cannot be used"
9197 " when making a shared object; recompile with -fPIC\n"),
9198 abfd, sec, rel->r_offset, howto->name,
9199 (h) ? h->root.root.string : "a local symbol");
9200 break;
9201 default:
9202 break;
9203 }
9204 }
9205 }
9206
9207 return TRUE;
9208 }
9209 \f
9210 /* Allocate space for global sym dynamic relocs. */
9211
9212 static bfd_boolean
9213 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9214 {
9215 struct bfd_link_info *info = inf;
9216 bfd *dynobj;
9217 struct mips_elf_link_hash_entry *hmips;
9218 struct mips_elf_link_hash_table *htab;
9219
9220 htab = mips_elf_hash_table (info);
9221 BFD_ASSERT (htab != NULL);
9222
9223 dynobj = elf_hash_table (info)->dynobj;
9224 hmips = (struct mips_elf_link_hash_entry *) h;
9225
9226 /* VxWorks executables are handled elsewhere; we only need to
9227 allocate relocations in shared objects. */
9228 if (htab->is_vxworks && !bfd_link_pic (info))
9229 return TRUE;
9230
9231 /* Ignore indirect symbols. All relocations against such symbols
9232 will be redirected to the target symbol. */
9233 if (h->root.type == bfd_link_hash_indirect)
9234 return TRUE;
9235
9236 /* If this symbol is defined in a dynamic object, or we are creating
9237 a shared library, we will need to copy any R_MIPS_32 or
9238 R_MIPS_REL32 relocs against it into the output file. */
9239 if (! bfd_link_relocatable (info)
9240 && hmips->possibly_dynamic_relocs != 0
9241 && (h->root.type == bfd_link_hash_defweak
9242 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9243 || bfd_link_pic (info)))
9244 {
9245 bfd_boolean do_copy = TRUE;
9246
9247 if (h->root.type == bfd_link_hash_undefweak)
9248 {
9249 /* Do not copy relocations for undefined weak symbols that
9250 we are not going to export. */
9251 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9252 do_copy = FALSE;
9253
9254 /* Make sure undefined weak symbols are output as a dynamic
9255 symbol in PIEs. */
9256 else if (h->dynindx == -1 && !h->forced_local)
9257 {
9258 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9259 return FALSE;
9260 }
9261 }
9262
9263 if (do_copy)
9264 {
9265 /* Even though we don't directly need a GOT entry for this symbol,
9266 the SVR4 psABI requires it to have a dynamic symbol table
9267 index greater that DT_MIPS_GOTSYM if there are dynamic
9268 relocations against it.
9269
9270 VxWorks does not enforce the same mapping between the GOT
9271 and the symbol table, so the same requirement does not
9272 apply there. */
9273 if (!htab->is_vxworks)
9274 {
9275 if (hmips->global_got_area > GGA_RELOC_ONLY)
9276 hmips->global_got_area = GGA_RELOC_ONLY;
9277 hmips->got_only_for_calls = FALSE;
9278 }
9279
9280 mips_elf_allocate_dynamic_relocations
9281 (dynobj, info, hmips->possibly_dynamic_relocs);
9282 if (hmips->readonly_reloc)
9283 /* We tell the dynamic linker that there are relocations
9284 against the text segment. */
9285 info->flags |= DF_TEXTREL;
9286 }
9287 }
9288
9289 return TRUE;
9290 }
9291
9292 /* Adjust a symbol defined by a dynamic object and referenced by a
9293 regular object. The current definition is in some section of the
9294 dynamic object, but we're not including those sections. We have to
9295 change the definition to something the rest of the link can
9296 understand. */
9297
9298 bfd_boolean
9299 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9300 struct elf_link_hash_entry *h)
9301 {
9302 bfd *dynobj;
9303 struct mips_elf_link_hash_entry *hmips;
9304 struct mips_elf_link_hash_table *htab;
9305 asection *s, *srel;
9306
9307 htab = mips_elf_hash_table (info);
9308 BFD_ASSERT (htab != NULL);
9309
9310 dynobj = elf_hash_table (info)->dynobj;
9311 hmips = (struct mips_elf_link_hash_entry *) h;
9312
9313 /* Make sure we know what is going on here. */
9314 if (dynobj == NULL
9315 || (! h->needs_plt
9316 && ! h->is_weakalias
9317 && (! h->def_dynamic
9318 || ! h->ref_regular
9319 || h->def_regular)))
9320 {
9321 if (h->type == STT_GNU_IFUNC)
9322 _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"),
9323 h->root.root.string);
9324 else
9325 _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"),
9326 h->root.root.string);
9327 return TRUE;
9328 }
9329
9330 hmips = (struct mips_elf_link_hash_entry *) h;
9331
9332 /* If there are call relocations against an externally-defined symbol,
9333 see whether we can create a MIPS lazy-binding stub for it. We can
9334 only do this if all references to the function are through call
9335 relocations, and in that case, the traditional lazy-binding stubs
9336 are much more efficient than PLT entries.
9337
9338 Traditional stubs are only available on SVR4 psABI-based systems;
9339 VxWorks always uses PLTs instead. */
9340 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9341 {
9342 if (! elf_hash_table (info)->dynamic_sections_created)
9343 return TRUE;
9344
9345 /* If this symbol is not defined in a regular file, then set
9346 the symbol to the stub location. This is required to make
9347 function pointers compare as equal between the normal
9348 executable and the shared library. */
9349 if (!h->def_regular
9350 && !bfd_is_abs_section (htab->sstubs->output_section))
9351 {
9352 hmips->needs_lazy_stub = TRUE;
9353 htab->lazy_stub_count++;
9354 return TRUE;
9355 }
9356 }
9357 /* As above, VxWorks requires PLT entries for externally-defined
9358 functions that are only accessed through call relocations.
9359
9360 Both VxWorks and non-VxWorks targets also need PLT entries if there
9361 are static-only relocations against an externally-defined function.
9362 This can technically occur for shared libraries if there are
9363 branches to the symbol, although it is unlikely that this will be
9364 used in practice due to the short ranges involved. It can occur
9365 for any relative or absolute relocation in executables; in that
9366 case, the PLT entry becomes the function's canonical address. */
9367 else if (((h->needs_plt && !hmips->no_fn_stub)
9368 || (h->type == STT_FUNC && hmips->has_static_relocs))
9369 && htab->use_plts_and_copy_relocs
9370 && !SYMBOL_CALLS_LOCAL (info, h)
9371 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9372 && h->root.type == bfd_link_hash_undefweak))
9373 {
9374 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9375 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9376
9377 /* If this is the first symbol to need a PLT entry, then make some
9378 basic setup. Also work out PLT entry sizes. We'll need them
9379 for PLT offset calculations. */
9380 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9381 {
9382 BFD_ASSERT (htab->root.sgotplt->size == 0);
9383 BFD_ASSERT (htab->plt_got_index == 0);
9384
9385 /* If we're using the PLT additions to the psABI, each PLT
9386 entry is 16 bytes and the PLT0 entry is 32 bytes.
9387 Encourage better cache usage by aligning. We do this
9388 lazily to avoid pessimizing traditional objects. */
9389 if (!htab->is_vxworks
9390 && !bfd_set_section_alignment (htab->root.splt, 5))
9391 return FALSE;
9392
9393 /* Make sure that .got.plt is word-aligned. We do this lazily
9394 for the same reason as above. */
9395 if (!bfd_set_section_alignment (htab->root.sgotplt,
9396 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9397 return FALSE;
9398
9399 /* On non-VxWorks targets, the first two entries in .got.plt
9400 are reserved. */
9401 if (!htab->is_vxworks)
9402 htab->plt_got_index
9403 += (get_elf_backend_data (dynobj)->got_header_size
9404 / MIPS_ELF_GOT_SIZE (dynobj));
9405
9406 /* On VxWorks, also allocate room for the header's
9407 .rela.plt.unloaded entries. */
9408 if (htab->is_vxworks && !bfd_link_pic (info))
9409 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9410
9411 /* Now work out the sizes of individual PLT entries. */
9412 if (htab->is_vxworks && bfd_link_pic (info))
9413 htab->plt_mips_entry_size
9414 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9415 else if (htab->is_vxworks)
9416 htab->plt_mips_entry_size
9417 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9418 else if (newabi_p)
9419 htab->plt_mips_entry_size
9420 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9421 else if (!micromips_p)
9422 {
9423 htab->plt_mips_entry_size
9424 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9425 htab->plt_comp_entry_size
9426 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9427 }
9428 else if (htab->insn32)
9429 {
9430 htab->plt_mips_entry_size
9431 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9432 htab->plt_comp_entry_size
9433 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9434 }
9435 else
9436 {
9437 htab->plt_mips_entry_size
9438 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9439 htab->plt_comp_entry_size
9440 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9441 }
9442 }
9443
9444 if (h->plt.plist == NULL)
9445 h->plt.plist = mips_elf_make_plt_record (dynobj);
9446 if (h->plt.plist == NULL)
9447 return FALSE;
9448
9449 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9450 n32 or n64, so always use a standard entry there.
9451
9452 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9453 all MIPS16 calls will go via that stub, and there is no benefit
9454 to having a MIPS16 entry. And in the case of call_stub a
9455 standard entry actually has to be used as the stub ends with a J
9456 instruction. */
9457 if (newabi_p
9458 || htab->is_vxworks
9459 || hmips->call_stub
9460 || hmips->call_fp_stub)
9461 {
9462 h->plt.plist->need_mips = TRUE;
9463 h->plt.plist->need_comp = FALSE;
9464 }
9465
9466 /* Otherwise, if there are no direct calls to the function, we
9467 have a free choice of whether to use standard or compressed
9468 entries. Prefer microMIPS entries if the object is known to
9469 contain microMIPS code, so that it becomes possible to create
9470 pure microMIPS binaries. Prefer standard entries otherwise,
9471 because MIPS16 ones are no smaller and are usually slower. */
9472 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9473 {
9474 if (micromips_p)
9475 h->plt.plist->need_comp = TRUE;
9476 else
9477 h->plt.plist->need_mips = TRUE;
9478 }
9479
9480 if (h->plt.plist->need_mips)
9481 {
9482 h->plt.plist->mips_offset = htab->plt_mips_offset;
9483 htab->plt_mips_offset += htab->plt_mips_entry_size;
9484 }
9485 if (h->plt.plist->need_comp)
9486 {
9487 h->plt.plist->comp_offset = htab->plt_comp_offset;
9488 htab->plt_comp_offset += htab->plt_comp_entry_size;
9489 }
9490
9491 /* Reserve the corresponding .got.plt entry now too. */
9492 h->plt.plist->gotplt_index = htab->plt_got_index++;
9493
9494 /* If the output file has no definition of the symbol, set the
9495 symbol's value to the address of the stub. */
9496 if (!bfd_link_pic (info) && !h->def_regular)
9497 hmips->use_plt_entry = TRUE;
9498
9499 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9500 htab->root.srelplt->size += (htab->is_vxworks
9501 ? MIPS_ELF_RELA_SIZE (dynobj)
9502 : MIPS_ELF_REL_SIZE (dynobj));
9503
9504 /* Make room for the .rela.plt.unloaded relocations. */
9505 if (htab->is_vxworks && !bfd_link_pic (info))
9506 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9507
9508 /* All relocations against this symbol that could have been made
9509 dynamic will now refer to the PLT entry instead. */
9510 hmips->possibly_dynamic_relocs = 0;
9511
9512 return TRUE;
9513 }
9514
9515 /* If this is a weak symbol, and there is a real definition, the
9516 processor independent code will have arranged for us to see the
9517 real definition first, and we can just use the same value. */
9518 if (h->is_weakalias)
9519 {
9520 struct elf_link_hash_entry *def = weakdef (h);
9521 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9522 h->root.u.def.section = def->root.u.def.section;
9523 h->root.u.def.value = def->root.u.def.value;
9524 return TRUE;
9525 }
9526
9527 /* Otherwise, there is nothing further to do for symbols defined
9528 in regular objects. */
9529 if (h->def_regular)
9530 return TRUE;
9531
9532 /* There's also nothing more to do if we'll convert all relocations
9533 against this symbol into dynamic relocations. */
9534 if (!hmips->has_static_relocs)
9535 return TRUE;
9536
9537 /* We're now relying on copy relocations. Complain if we have
9538 some that we can't convert. */
9539 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9540 {
9541 _bfd_error_handler (_("non-dynamic relocations refer to "
9542 "dynamic symbol %s"),
9543 h->root.root.string);
9544 bfd_set_error (bfd_error_bad_value);
9545 return FALSE;
9546 }
9547
9548 /* We must allocate the symbol in our .dynbss section, which will
9549 become part of the .bss section of the executable. There will be
9550 an entry for this symbol in the .dynsym section. The dynamic
9551 object will contain position independent code, so all references
9552 from the dynamic object to this symbol will go through the global
9553 offset table. The dynamic linker will use the .dynsym entry to
9554 determine the address it must put in the global offset table, so
9555 both the dynamic object and the regular object will refer to the
9556 same memory location for the variable. */
9557
9558 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9559 {
9560 s = htab->root.sdynrelro;
9561 srel = htab->root.sreldynrelro;
9562 }
9563 else
9564 {
9565 s = htab->root.sdynbss;
9566 srel = htab->root.srelbss;
9567 }
9568 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9569 {
9570 if (htab->is_vxworks)
9571 srel->size += sizeof (Elf32_External_Rela);
9572 else
9573 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9574 h->needs_copy = 1;
9575 }
9576
9577 /* All relocations against this symbol that could have been made
9578 dynamic will now refer to the local copy instead. */
9579 hmips->possibly_dynamic_relocs = 0;
9580
9581 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9582 }
9583 \f
9584 /* This function is called after all the input files have been read,
9585 and the input sections have been assigned to output sections. We
9586 check for any mips16 stub sections that we can discard. */
9587
9588 bfd_boolean
9589 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9590 struct bfd_link_info *info)
9591 {
9592 asection *sect;
9593 struct mips_elf_link_hash_table *htab;
9594 struct mips_htab_traverse_info hti;
9595
9596 htab = mips_elf_hash_table (info);
9597 BFD_ASSERT (htab != NULL);
9598
9599 /* The .reginfo section has a fixed size. */
9600 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9601 if (sect != NULL)
9602 {
9603 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
9604 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9605 }
9606
9607 /* The .MIPS.abiflags section has a fixed size. */
9608 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9609 if (sect != NULL)
9610 {
9611 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
9612 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9613 }
9614
9615 hti.info = info;
9616 hti.output_bfd = output_bfd;
9617 hti.error = FALSE;
9618 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9619 mips_elf_check_symbols, &hti);
9620 if (hti.error)
9621 return FALSE;
9622
9623 return TRUE;
9624 }
9625
9626 /* If the link uses a GOT, lay it out and work out its size. */
9627
9628 static bfd_boolean
9629 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9630 {
9631 bfd *dynobj;
9632 asection *s;
9633 struct mips_got_info *g;
9634 bfd_size_type loadable_size = 0;
9635 bfd_size_type page_gotno;
9636 bfd *ibfd;
9637 struct mips_elf_traverse_got_arg tga;
9638 struct mips_elf_link_hash_table *htab;
9639
9640 htab = mips_elf_hash_table (info);
9641 BFD_ASSERT (htab != NULL);
9642
9643 s = htab->root.sgot;
9644 if (s == NULL)
9645 return TRUE;
9646
9647 dynobj = elf_hash_table (info)->dynobj;
9648 g = htab->got_info;
9649
9650 /* Allocate room for the reserved entries. VxWorks always reserves
9651 3 entries; other objects only reserve 2 entries. */
9652 BFD_ASSERT (g->assigned_low_gotno == 0);
9653 if (htab->is_vxworks)
9654 htab->reserved_gotno = 3;
9655 else
9656 htab->reserved_gotno = 2;
9657 g->local_gotno += htab->reserved_gotno;
9658 g->assigned_low_gotno = htab->reserved_gotno;
9659
9660 /* Decide which symbols need to go in the global part of the GOT and
9661 count the number of reloc-only GOT symbols. */
9662 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9663
9664 if (!mips_elf_resolve_final_got_entries (info, g))
9665 return FALSE;
9666
9667 /* Calculate the total loadable size of the output. That
9668 will give us the maximum number of GOT_PAGE entries
9669 required. */
9670 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9671 {
9672 asection *subsection;
9673
9674 for (subsection = ibfd->sections;
9675 subsection;
9676 subsection = subsection->next)
9677 {
9678 if ((subsection->flags & SEC_ALLOC) == 0)
9679 continue;
9680 loadable_size += ((subsection->size + 0xf)
9681 &~ (bfd_size_type) 0xf);
9682 }
9683 }
9684
9685 if (htab->is_vxworks)
9686 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9687 relocations against local symbols evaluate to "G", and the EABI does
9688 not include R_MIPS_GOT_PAGE. */
9689 page_gotno = 0;
9690 else
9691 /* Assume there are two loadable segments consisting of contiguous
9692 sections. Is 5 enough? */
9693 page_gotno = (loadable_size >> 16) + 5;
9694
9695 /* Choose the smaller of the two page estimates; both are intended to be
9696 conservative. */
9697 if (page_gotno > g->page_gotno)
9698 page_gotno = g->page_gotno;
9699
9700 g->local_gotno += page_gotno;
9701 g->assigned_high_gotno = g->local_gotno - 1;
9702
9703 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9704 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9705 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9706
9707 /* VxWorks does not support multiple GOTs. It initializes $gp to
9708 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9709 dynamic loader. */
9710 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9711 {
9712 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9713 return FALSE;
9714 }
9715 else
9716 {
9717 /* Record that all bfds use G. This also has the effect of freeing
9718 the per-bfd GOTs, which we no longer need. */
9719 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9720 if (mips_elf_bfd_got (ibfd, FALSE))
9721 mips_elf_replace_bfd_got (ibfd, g);
9722 mips_elf_replace_bfd_got (output_bfd, g);
9723
9724 /* Set up TLS entries. */
9725 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9726 tga.info = info;
9727 tga.g = g;
9728 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9729 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9730 if (!tga.g)
9731 return FALSE;
9732 BFD_ASSERT (g->tls_assigned_gotno
9733 == g->global_gotno + g->local_gotno + g->tls_gotno);
9734
9735 /* Each VxWorks GOT entry needs an explicit relocation. */
9736 if (htab->is_vxworks && bfd_link_pic (info))
9737 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9738
9739 /* Allocate room for the TLS relocations. */
9740 if (g->relocs)
9741 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9742 }
9743
9744 return TRUE;
9745 }
9746
9747 /* Estimate the size of the .MIPS.stubs section. */
9748
9749 static void
9750 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9751 {
9752 struct mips_elf_link_hash_table *htab;
9753 bfd_size_type dynsymcount;
9754
9755 htab = mips_elf_hash_table (info);
9756 BFD_ASSERT (htab != NULL);
9757
9758 if (htab->lazy_stub_count == 0)
9759 return;
9760
9761 /* IRIX rld assumes that a function stub isn't at the end of the .text
9762 section, so add a dummy entry to the end. */
9763 htab->lazy_stub_count++;
9764
9765 /* Get a worst-case estimate of the number of dynamic symbols needed.
9766 At this point, dynsymcount does not account for section symbols
9767 and count_section_dynsyms may overestimate the number that will
9768 be needed. */
9769 dynsymcount = (elf_hash_table (info)->dynsymcount
9770 + count_section_dynsyms (output_bfd, info));
9771
9772 /* Determine the size of one stub entry. There's no disadvantage
9773 from using microMIPS code here, so for the sake of pure-microMIPS
9774 binaries we prefer it whenever there's any microMIPS code in
9775 output produced at all. This has a benefit of stubs being
9776 shorter by 4 bytes each too, unless in the insn32 mode. */
9777 if (!MICROMIPS_P (output_bfd))
9778 htab->function_stub_size = (dynsymcount > 0x10000
9779 ? MIPS_FUNCTION_STUB_BIG_SIZE
9780 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9781 else if (htab->insn32)
9782 htab->function_stub_size = (dynsymcount > 0x10000
9783 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9784 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9785 else
9786 htab->function_stub_size = (dynsymcount > 0x10000
9787 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9788 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9789
9790 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9791 }
9792
9793 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9794 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9795 stub, allocate an entry in the stubs section. */
9796
9797 static bfd_boolean
9798 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9799 {
9800 struct mips_htab_traverse_info *hti = data;
9801 struct mips_elf_link_hash_table *htab;
9802 struct bfd_link_info *info;
9803 bfd *output_bfd;
9804
9805 info = hti->info;
9806 output_bfd = hti->output_bfd;
9807 htab = mips_elf_hash_table (info);
9808 BFD_ASSERT (htab != NULL);
9809
9810 if (h->needs_lazy_stub)
9811 {
9812 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9813 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9814 bfd_vma isa_bit = micromips_p;
9815
9816 BFD_ASSERT (htab->root.dynobj != NULL);
9817 if (h->root.plt.plist == NULL)
9818 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9819 if (h->root.plt.plist == NULL)
9820 {
9821 hti->error = TRUE;
9822 return FALSE;
9823 }
9824 h->root.root.u.def.section = htab->sstubs;
9825 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9826 h->root.plt.plist->stub_offset = htab->sstubs->size;
9827 h->root.other = other;
9828 htab->sstubs->size += htab->function_stub_size;
9829 }
9830 return TRUE;
9831 }
9832
9833 /* Allocate offsets in the stubs section to each symbol that needs one.
9834 Set the final size of the .MIPS.stub section. */
9835
9836 static bfd_boolean
9837 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9838 {
9839 bfd *output_bfd = info->output_bfd;
9840 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9841 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9842 bfd_vma isa_bit = micromips_p;
9843 struct mips_elf_link_hash_table *htab;
9844 struct mips_htab_traverse_info hti;
9845 struct elf_link_hash_entry *h;
9846 bfd *dynobj;
9847
9848 htab = mips_elf_hash_table (info);
9849 BFD_ASSERT (htab != NULL);
9850
9851 if (htab->lazy_stub_count == 0)
9852 return TRUE;
9853
9854 htab->sstubs->size = 0;
9855 hti.info = info;
9856 hti.output_bfd = output_bfd;
9857 hti.error = FALSE;
9858 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9859 if (hti.error)
9860 return FALSE;
9861 htab->sstubs->size += htab->function_stub_size;
9862 BFD_ASSERT (htab->sstubs->size
9863 == htab->lazy_stub_count * htab->function_stub_size);
9864
9865 dynobj = elf_hash_table (info)->dynobj;
9866 BFD_ASSERT (dynobj != NULL);
9867 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9868 if (h == NULL)
9869 return FALSE;
9870 h->root.u.def.value = isa_bit;
9871 h->other = other;
9872 h->type = STT_FUNC;
9873
9874 return TRUE;
9875 }
9876
9877 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9878 bfd_link_info. If H uses the address of a PLT entry as the value
9879 of the symbol, then set the entry in the symbol table now. Prefer
9880 a standard MIPS PLT entry. */
9881
9882 static bfd_boolean
9883 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9884 {
9885 struct bfd_link_info *info = data;
9886 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9887 struct mips_elf_link_hash_table *htab;
9888 unsigned int other;
9889 bfd_vma isa_bit;
9890 bfd_vma val;
9891
9892 htab = mips_elf_hash_table (info);
9893 BFD_ASSERT (htab != NULL);
9894
9895 if (h->use_plt_entry)
9896 {
9897 BFD_ASSERT (h->root.plt.plist != NULL);
9898 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9899 || h->root.plt.plist->comp_offset != MINUS_ONE);
9900
9901 val = htab->plt_header_size;
9902 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9903 {
9904 isa_bit = 0;
9905 val += h->root.plt.plist->mips_offset;
9906 other = 0;
9907 }
9908 else
9909 {
9910 isa_bit = 1;
9911 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9912 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9913 }
9914 val += isa_bit;
9915 /* For VxWorks, point at the PLT load stub rather than the lazy
9916 resolution stub; this stub will become the canonical function
9917 address. */
9918 if (htab->is_vxworks)
9919 val += 8;
9920
9921 h->root.root.u.def.section = htab->root.splt;
9922 h->root.root.u.def.value = val;
9923 h->root.other = other;
9924 }
9925
9926 return TRUE;
9927 }
9928
9929 /* Set the sizes of the dynamic sections. */
9930
9931 bfd_boolean
9932 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9933 struct bfd_link_info *info)
9934 {
9935 bfd *dynobj;
9936 asection *s, *sreldyn;
9937 bfd_boolean reltext;
9938 struct mips_elf_link_hash_table *htab;
9939
9940 htab = mips_elf_hash_table (info);
9941 BFD_ASSERT (htab != NULL);
9942 dynobj = elf_hash_table (info)->dynobj;
9943 BFD_ASSERT (dynobj != NULL);
9944
9945 if (elf_hash_table (info)->dynamic_sections_created)
9946 {
9947 /* Set the contents of the .interp section to the interpreter. */
9948 if (bfd_link_executable (info) && !info->nointerp)
9949 {
9950 s = bfd_get_linker_section (dynobj, ".interp");
9951 BFD_ASSERT (s != NULL);
9952 s->size
9953 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9954 s->contents
9955 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9956 }
9957
9958 /* Figure out the size of the PLT header if we know that we
9959 are using it. For the sake of cache alignment always use
9960 a standard header whenever any standard entries are present
9961 even if microMIPS entries are present as well. This also
9962 lets the microMIPS header rely on the value of $v0 only set
9963 by microMIPS entries, for a small size reduction.
9964
9965 Set symbol table entry values for symbols that use the
9966 address of their PLT entry now that we can calculate it.
9967
9968 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9969 haven't already in _bfd_elf_create_dynamic_sections. */
9970 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9971 {
9972 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9973 && !htab->plt_mips_offset);
9974 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9975 bfd_vma isa_bit = micromips_p;
9976 struct elf_link_hash_entry *h;
9977 bfd_vma size;
9978
9979 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9980 BFD_ASSERT (htab->root.sgotplt->size == 0);
9981 BFD_ASSERT (htab->root.splt->size == 0);
9982
9983 if (htab->is_vxworks && bfd_link_pic (info))
9984 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9985 else if (htab->is_vxworks)
9986 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9987 else if (ABI_64_P (output_bfd))
9988 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9989 else if (ABI_N32_P (output_bfd))
9990 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9991 else if (!micromips_p)
9992 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9993 else if (htab->insn32)
9994 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9995 else
9996 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9997
9998 htab->plt_header_is_comp = micromips_p;
9999 htab->plt_header_size = size;
10000 htab->root.splt->size = (size
10001 + htab->plt_mips_offset
10002 + htab->plt_comp_offset);
10003 htab->root.sgotplt->size = (htab->plt_got_index
10004 * MIPS_ELF_GOT_SIZE (dynobj));
10005
10006 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
10007
10008 if (htab->root.hplt == NULL)
10009 {
10010 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
10011 "_PROCEDURE_LINKAGE_TABLE_");
10012 htab->root.hplt = h;
10013 if (h == NULL)
10014 return FALSE;
10015 }
10016
10017 h = htab->root.hplt;
10018 h->root.u.def.value = isa_bit;
10019 h->other = other;
10020 h->type = STT_FUNC;
10021 }
10022 }
10023
10024 /* Allocate space for global sym dynamic relocs. */
10025 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
10026
10027 mips_elf_estimate_stub_size (output_bfd, info);
10028
10029 if (!mips_elf_lay_out_got (output_bfd, info))
10030 return FALSE;
10031
10032 mips_elf_lay_out_lazy_stubs (info);
10033
10034 /* The check_relocs and adjust_dynamic_symbol entry points have
10035 determined the sizes of the various dynamic sections. Allocate
10036 memory for them. */
10037 reltext = FALSE;
10038 for (s = dynobj->sections; s != NULL; s = s->next)
10039 {
10040 const char *name;
10041
10042 /* It's OK to base decisions on the section name, because none
10043 of the dynobj section names depend upon the input files. */
10044 name = bfd_section_name (s);
10045
10046 if ((s->flags & SEC_LINKER_CREATED) == 0)
10047 continue;
10048
10049 if (CONST_STRNEQ (name, ".rel"))
10050 {
10051 if (s->size != 0)
10052 {
10053 const char *outname;
10054 asection *target;
10055
10056 /* If this relocation section applies to a read only
10057 section, then we probably need a DT_TEXTREL entry.
10058 If the relocation section is .rel(a).dyn, we always
10059 assert a DT_TEXTREL entry rather than testing whether
10060 there exists a relocation to a read only section or
10061 not. */
10062 outname = bfd_section_name (s->output_section);
10063 target = bfd_get_section_by_name (output_bfd, outname + 4);
10064 if ((target != NULL
10065 && (target->flags & SEC_READONLY) != 0
10066 && (target->flags & SEC_ALLOC) != 0)
10067 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10068 reltext = TRUE;
10069
10070 /* We use the reloc_count field as a counter if we need
10071 to copy relocs into the output file. */
10072 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10073 s->reloc_count = 0;
10074
10075 /* If combreloc is enabled, elf_link_sort_relocs() will
10076 sort relocations, but in a different way than we do,
10077 and before we're done creating relocations. Also, it
10078 will move them around between input sections'
10079 relocation's contents, so our sorting would be
10080 broken, so don't let it run. */
10081 info->combreloc = 0;
10082 }
10083 }
10084 else if (bfd_link_executable (info)
10085 && ! mips_elf_hash_table (info)->use_rld_obj_head
10086 && CONST_STRNEQ (name, ".rld_map"))
10087 {
10088 /* We add a room for __rld_map. It will be filled in by the
10089 rtld to contain a pointer to the _r_debug structure. */
10090 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10091 }
10092 else if (SGI_COMPAT (output_bfd)
10093 && CONST_STRNEQ (name, ".compact_rel"))
10094 s->size += mips_elf_hash_table (info)->compact_rel_size;
10095 else if (s == htab->root.splt)
10096 {
10097 /* If the last PLT entry has a branch delay slot, allocate
10098 room for an extra nop to fill the delay slot. This is
10099 for CPUs without load interlocking. */
10100 if (! LOAD_INTERLOCKS_P (output_bfd)
10101 && ! htab->is_vxworks && s->size > 0)
10102 s->size += 4;
10103 }
10104 else if (! CONST_STRNEQ (name, ".init")
10105 && s != htab->root.sgot
10106 && s != htab->root.sgotplt
10107 && s != htab->sstubs
10108 && s != htab->root.sdynbss
10109 && s != htab->root.sdynrelro)
10110 {
10111 /* It's not one of our sections, so don't allocate space. */
10112 continue;
10113 }
10114
10115 if (s->size == 0)
10116 {
10117 s->flags |= SEC_EXCLUDE;
10118 continue;
10119 }
10120
10121 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10122 continue;
10123
10124 /* Allocate memory for the section contents. */
10125 s->contents = bfd_zalloc (dynobj, s->size);
10126 if (s->contents == NULL)
10127 {
10128 bfd_set_error (bfd_error_no_memory);
10129 return FALSE;
10130 }
10131 }
10132
10133 if (elf_hash_table (info)->dynamic_sections_created)
10134 {
10135 /* Add some entries to the .dynamic section. We fill in the
10136 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10137 must add the entries now so that we get the correct size for
10138 the .dynamic section. */
10139
10140 /* SGI object has the equivalence of DT_DEBUG in the
10141 DT_MIPS_RLD_MAP entry. This must come first because glibc
10142 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10143 may only look at the first one they see. */
10144 if (!bfd_link_pic (info)
10145 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10146 return FALSE;
10147
10148 if (bfd_link_executable (info)
10149 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10150 return FALSE;
10151
10152 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10153 used by the debugger. */
10154 if (bfd_link_executable (info)
10155 && !SGI_COMPAT (output_bfd)
10156 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10157 return FALSE;
10158
10159 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
10160 info->flags |= DF_TEXTREL;
10161
10162 if ((info->flags & DF_TEXTREL) != 0)
10163 {
10164 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10165 return FALSE;
10166
10167 /* Clear the DF_TEXTREL flag. It will be set again if we
10168 write out an actual text relocation; we may not, because
10169 at this point we do not know whether e.g. any .eh_frame
10170 absolute relocations have been converted to PC-relative. */
10171 info->flags &= ~DF_TEXTREL;
10172 }
10173
10174 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10175 return FALSE;
10176
10177 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10178 if (htab->is_vxworks)
10179 {
10180 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10181 use any of the DT_MIPS_* tags. */
10182 if (sreldyn && sreldyn->size > 0)
10183 {
10184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10185 return FALSE;
10186
10187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10188 return FALSE;
10189
10190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10191 return FALSE;
10192 }
10193 }
10194 else
10195 {
10196 if (sreldyn && sreldyn->size > 0
10197 && !bfd_is_abs_section (sreldyn->output_section))
10198 {
10199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10200 return FALSE;
10201
10202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10203 return FALSE;
10204
10205 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10206 return FALSE;
10207 }
10208
10209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10210 return FALSE;
10211
10212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10213 return FALSE;
10214
10215 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10216 return FALSE;
10217
10218 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10219 return FALSE;
10220
10221 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10222 return FALSE;
10223
10224 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10225 return FALSE;
10226
10227 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10228 return FALSE;
10229
10230 if (info->emit_gnu_hash
10231 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10232 return FALSE;
10233
10234 if (IRIX_COMPAT (dynobj) == ict_irix5
10235 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10236 return FALSE;
10237
10238 if (IRIX_COMPAT (dynobj) == ict_irix6
10239 && (bfd_get_section_by_name
10240 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10241 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10242 return FALSE;
10243 }
10244 if (htab->root.splt->size > 0)
10245 {
10246 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10247 return FALSE;
10248
10249 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10250 return FALSE;
10251
10252 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10253 return FALSE;
10254
10255 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10256 return FALSE;
10257 }
10258 if (htab->is_vxworks
10259 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10260 return FALSE;
10261 }
10262
10263 return TRUE;
10264 }
10265 \f
10266 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10267 Adjust its R_ADDEND field so that it is correct for the output file.
10268 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10269 and sections respectively; both use symbol indexes. */
10270
10271 static void
10272 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10273 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10274 asection **local_sections, Elf_Internal_Rela *rel)
10275 {
10276 unsigned int r_type, r_symndx;
10277 Elf_Internal_Sym *sym;
10278 asection *sec;
10279
10280 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10281 {
10282 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10283 if (gprel16_reloc_p (r_type)
10284 || r_type == R_MIPS_GPREL32
10285 || literal_reloc_p (r_type))
10286 {
10287 rel->r_addend += _bfd_get_gp_value (input_bfd);
10288 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10289 }
10290
10291 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10292 sym = local_syms + r_symndx;
10293
10294 /* Adjust REL's addend to account for section merging. */
10295 if (!bfd_link_relocatable (info))
10296 {
10297 sec = local_sections[r_symndx];
10298 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10299 }
10300
10301 /* This would normally be done by the rela_normal code in elflink.c. */
10302 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10303 rel->r_addend += local_sections[r_symndx]->output_offset;
10304 }
10305 }
10306
10307 /* Handle relocations against symbols from removed linkonce sections,
10308 or sections discarded by a linker script. We use this wrapper around
10309 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10310 on 64-bit ELF targets. In this case for any relocation handled, which
10311 always be the first in a triplet, the remaining two have to be processed
10312 together with the first, even if they are R_MIPS_NONE. It is the symbol
10313 index referred by the first reloc that applies to all the three and the
10314 remaining two never refer to an object symbol. And it is the final
10315 relocation (the last non-null one) that determines the output field of
10316 the whole relocation so retrieve the corresponding howto structure for
10317 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10318
10319 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10320 and therefore requires to be pasted in a loop. It also defines a block
10321 and does not protect any of its arguments, hence the extra brackets. */
10322
10323 static void
10324 mips_reloc_against_discarded_section (bfd *output_bfd,
10325 struct bfd_link_info *info,
10326 bfd *input_bfd, asection *input_section,
10327 Elf_Internal_Rela **rel,
10328 const Elf_Internal_Rela **relend,
10329 bfd_boolean rel_reloc,
10330 reloc_howto_type *howto,
10331 bfd_byte *contents)
10332 {
10333 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10334 int count = bed->s->int_rels_per_ext_rel;
10335 unsigned int r_type;
10336 int i;
10337
10338 for (i = count - 1; i > 0; i--)
10339 {
10340 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10341 if (r_type != R_MIPS_NONE)
10342 {
10343 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10344 break;
10345 }
10346 }
10347 do
10348 {
10349 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10350 (*rel), count, (*relend),
10351 howto, i, contents);
10352 }
10353 while (0);
10354 }
10355
10356 /* Relocate a MIPS ELF section. */
10357
10358 bfd_boolean
10359 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10360 bfd *input_bfd, asection *input_section,
10361 bfd_byte *contents, Elf_Internal_Rela *relocs,
10362 Elf_Internal_Sym *local_syms,
10363 asection **local_sections)
10364 {
10365 Elf_Internal_Rela *rel;
10366 const Elf_Internal_Rela *relend;
10367 bfd_vma addend = 0;
10368 bfd_boolean use_saved_addend_p = FALSE;
10369
10370 relend = relocs + input_section->reloc_count;
10371 for (rel = relocs; rel < relend; ++rel)
10372 {
10373 const char *name;
10374 bfd_vma value = 0;
10375 reloc_howto_type *howto;
10376 bfd_boolean cross_mode_jump_p = FALSE;
10377 /* TRUE if the relocation is a RELA relocation, rather than a
10378 REL relocation. */
10379 bfd_boolean rela_relocation_p = TRUE;
10380 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10381 const char *msg;
10382 unsigned long r_symndx;
10383 asection *sec;
10384 Elf_Internal_Shdr *symtab_hdr;
10385 struct elf_link_hash_entry *h;
10386 bfd_boolean rel_reloc;
10387
10388 rel_reloc = (NEWABI_P (input_bfd)
10389 && mips_elf_rel_relocation_p (input_bfd, input_section,
10390 relocs, rel));
10391 /* Find the relocation howto for this relocation. */
10392 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10393
10394 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10395 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10396 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10397 {
10398 sec = local_sections[r_symndx];
10399 h = NULL;
10400 }
10401 else
10402 {
10403 unsigned long extsymoff;
10404
10405 extsymoff = 0;
10406 if (!elf_bad_symtab (input_bfd))
10407 extsymoff = symtab_hdr->sh_info;
10408 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10409 while (h->root.type == bfd_link_hash_indirect
10410 || h->root.type == bfd_link_hash_warning)
10411 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10412
10413 sec = NULL;
10414 if (h->root.type == bfd_link_hash_defined
10415 || h->root.type == bfd_link_hash_defweak)
10416 sec = h->root.u.def.section;
10417 }
10418
10419 if (sec != NULL && discarded_section (sec))
10420 {
10421 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10422 input_section, &rel, &relend,
10423 rel_reloc, howto, contents);
10424 continue;
10425 }
10426
10427 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10428 {
10429 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10430 64-bit code, but make sure all their addresses are in the
10431 lowermost or uppermost 32-bit section of the 64-bit address
10432 space. Thus, when they use an R_MIPS_64 they mean what is
10433 usually meant by R_MIPS_32, with the exception that the
10434 stored value is sign-extended to 64 bits. */
10435 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10436
10437 /* On big-endian systems, we need to lie about the position
10438 of the reloc. */
10439 if (bfd_big_endian (input_bfd))
10440 rel->r_offset += 4;
10441 }
10442
10443 if (!use_saved_addend_p)
10444 {
10445 /* If these relocations were originally of the REL variety,
10446 we must pull the addend out of the field that will be
10447 relocated. Otherwise, we simply use the contents of the
10448 RELA relocation. */
10449 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10450 relocs, rel))
10451 {
10452 rela_relocation_p = FALSE;
10453 addend = mips_elf_read_rel_addend (input_bfd, rel,
10454 howto, contents);
10455 if (hi16_reloc_p (r_type)
10456 || (got16_reloc_p (r_type)
10457 && mips_elf_local_relocation_p (input_bfd, rel,
10458 local_sections)))
10459 {
10460 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10461 contents, &addend))
10462 {
10463 if (h)
10464 name = h->root.root.string;
10465 else
10466 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10467 local_syms + r_symndx,
10468 sec);
10469 _bfd_error_handler
10470 /* xgettext:c-format */
10471 (_("%pB: can't find matching LO16 reloc against `%s'"
10472 " for %s at %#" PRIx64 " in section `%pA'"),
10473 input_bfd, name,
10474 howto->name, (uint64_t) rel->r_offset, input_section);
10475 }
10476 }
10477 else
10478 addend <<= howto->rightshift;
10479 }
10480 else
10481 addend = rel->r_addend;
10482 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10483 local_syms, local_sections, rel);
10484 }
10485
10486 if (bfd_link_relocatable (info))
10487 {
10488 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10489 && bfd_big_endian (input_bfd))
10490 rel->r_offset -= 4;
10491
10492 if (!rela_relocation_p && rel->r_addend)
10493 {
10494 addend += rel->r_addend;
10495 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10496 addend = mips_elf_high (addend);
10497 else if (r_type == R_MIPS_HIGHER)
10498 addend = mips_elf_higher (addend);
10499 else if (r_type == R_MIPS_HIGHEST)
10500 addend = mips_elf_highest (addend);
10501 else
10502 addend >>= howto->rightshift;
10503
10504 /* We use the source mask, rather than the destination
10505 mask because the place to which we are writing will be
10506 source of the addend in the final link. */
10507 addend &= howto->src_mask;
10508
10509 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10510 /* See the comment above about using R_MIPS_64 in the 32-bit
10511 ABI. Here, we need to update the addend. It would be
10512 possible to get away with just using the R_MIPS_32 reloc
10513 but for endianness. */
10514 {
10515 bfd_vma sign_bits;
10516 bfd_vma low_bits;
10517 bfd_vma high_bits;
10518
10519 if (addend & ((bfd_vma) 1 << 31))
10520 #ifdef BFD64
10521 sign_bits = ((bfd_vma) 1 << 32) - 1;
10522 #else
10523 sign_bits = -1;
10524 #endif
10525 else
10526 sign_bits = 0;
10527
10528 /* If we don't know that we have a 64-bit type,
10529 do two separate stores. */
10530 if (bfd_big_endian (input_bfd))
10531 {
10532 /* Store the sign-bits (which are most significant)
10533 first. */
10534 low_bits = sign_bits;
10535 high_bits = addend;
10536 }
10537 else
10538 {
10539 low_bits = addend;
10540 high_bits = sign_bits;
10541 }
10542 bfd_put_32 (input_bfd, low_bits,
10543 contents + rel->r_offset);
10544 bfd_put_32 (input_bfd, high_bits,
10545 contents + rel->r_offset + 4);
10546 continue;
10547 }
10548
10549 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10550 input_bfd, input_section,
10551 contents, FALSE))
10552 return FALSE;
10553 }
10554
10555 /* Go on to the next relocation. */
10556 continue;
10557 }
10558
10559 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10560 relocations for the same offset. In that case we are
10561 supposed to treat the output of each relocation as the addend
10562 for the next. */
10563 if (rel + 1 < relend
10564 && rel->r_offset == rel[1].r_offset
10565 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10566 use_saved_addend_p = TRUE;
10567 else
10568 use_saved_addend_p = FALSE;
10569
10570 /* Figure out what value we are supposed to relocate. */
10571 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10572 input_section, contents,
10573 info, rel, addend, howto,
10574 local_syms, local_sections,
10575 &value, &name, &cross_mode_jump_p,
10576 use_saved_addend_p))
10577 {
10578 case bfd_reloc_continue:
10579 /* There's nothing to do. */
10580 continue;
10581
10582 case bfd_reloc_undefined:
10583 /* mips_elf_calculate_relocation already called the
10584 undefined_symbol callback. There's no real point in
10585 trying to perform the relocation at this point, so we
10586 just skip ahead to the next relocation. */
10587 continue;
10588
10589 case bfd_reloc_notsupported:
10590 msg = _("internal error: unsupported relocation error");
10591 info->callbacks->warning
10592 (info, msg, name, input_bfd, input_section, rel->r_offset);
10593 return FALSE;
10594
10595 case bfd_reloc_overflow:
10596 if (use_saved_addend_p)
10597 /* Ignore overflow until we reach the last relocation for
10598 a given location. */
10599 ;
10600 else
10601 {
10602 struct mips_elf_link_hash_table *htab;
10603
10604 htab = mips_elf_hash_table (info);
10605 BFD_ASSERT (htab != NULL);
10606 BFD_ASSERT (name != NULL);
10607 if (!htab->small_data_overflow_reported
10608 && (gprel16_reloc_p (howto->type)
10609 || literal_reloc_p (howto->type)))
10610 {
10611 msg = _("small-data section exceeds 64KB;"
10612 " lower small-data size limit (see option -G)");
10613
10614 htab->small_data_overflow_reported = TRUE;
10615 (*info->callbacks->einfo) ("%P: %s\n", msg);
10616 }
10617 (*info->callbacks->reloc_overflow)
10618 (info, NULL, name, howto->name, (bfd_vma) 0,
10619 input_bfd, input_section, rel->r_offset);
10620 }
10621 break;
10622
10623 case bfd_reloc_ok:
10624 break;
10625
10626 case bfd_reloc_outofrange:
10627 msg = NULL;
10628 if (jal_reloc_p (howto->type))
10629 msg = (cross_mode_jump_p
10630 ? _("cannot convert a jump to JALX "
10631 "for a non-word-aligned address")
10632 : (howto->type == R_MIPS16_26
10633 ? _("jump to a non-word-aligned address")
10634 : _("jump to a non-instruction-aligned address")));
10635 else if (b_reloc_p (howto->type))
10636 msg = (cross_mode_jump_p
10637 ? _("cannot convert a branch to JALX "
10638 "for a non-word-aligned address")
10639 : _("branch to a non-instruction-aligned address"));
10640 else if (aligned_pcrel_reloc_p (howto->type))
10641 msg = _("PC-relative load from unaligned address");
10642 if (msg)
10643 {
10644 info->callbacks->einfo
10645 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10646 break;
10647 }
10648 /* Fall through. */
10649
10650 default:
10651 abort ();
10652 break;
10653 }
10654
10655 /* If we've got another relocation for the address, keep going
10656 until we reach the last one. */
10657 if (use_saved_addend_p)
10658 {
10659 addend = value;
10660 continue;
10661 }
10662
10663 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10664 /* See the comment above about using R_MIPS_64 in the 32-bit
10665 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10666 that calculated the right value. Now, however, we
10667 sign-extend the 32-bit result to 64-bits, and store it as a
10668 64-bit value. We are especially generous here in that we
10669 go to extreme lengths to support this usage on systems with
10670 only a 32-bit VMA. */
10671 {
10672 bfd_vma sign_bits;
10673 bfd_vma low_bits;
10674 bfd_vma high_bits;
10675
10676 if (value & ((bfd_vma) 1 << 31))
10677 #ifdef BFD64
10678 sign_bits = ((bfd_vma) 1 << 32) - 1;
10679 #else
10680 sign_bits = -1;
10681 #endif
10682 else
10683 sign_bits = 0;
10684
10685 /* If we don't know that we have a 64-bit type,
10686 do two separate stores. */
10687 if (bfd_big_endian (input_bfd))
10688 {
10689 /* Undo what we did above. */
10690 rel->r_offset -= 4;
10691 /* Store the sign-bits (which are most significant)
10692 first. */
10693 low_bits = sign_bits;
10694 high_bits = value;
10695 }
10696 else
10697 {
10698 low_bits = value;
10699 high_bits = sign_bits;
10700 }
10701 bfd_put_32 (input_bfd, low_bits,
10702 contents + rel->r_offset);
10703 bfd_put_32 (input_bfd, high_bits,
10704 contents + rel->r_offset + 4);
10705 continue;
10706 }
10707
10708 /* Actually perform the relocation. */
10709 if (! mips_elf_perform_relocation (info, howto, rel, value,
10710 input_bfd, input_section,
10711 contents, cross_mode_jump_p))
10712 return FALSE;
10713 }
10714
10715 return TRUE;
10716 }
10717 \f
10718 /* A function that iterates over each entry in la25_stubs and fills
10719 in the code for each one. DATA points to a mips_htab_traverse_info. */
10720
10721 static int
10722 mips_elf_create_la25_stub (void **slot, void *data)
10723 {
10724 struct mips_htab_traverse_info *hti;
10725 struct mips_elf_link_hash_table *htab;
10726 struct mips_elf_la25_stub *stub;
10727 asection *s;
10728 bfd_byte *loc;
10729 bfd_vma offset, target, target_high, target_low;
10730 bfd_vma branch_pc;
10731 bfd_signed_vma pcrel_offset = 0;
10732
10733 stub = (struct mips_elf_la25_stub *) *slot;
10734 hti = (struct mips_htab_traverse_info *) data;
10735 htab = mips_elf_hash_table (hti->info);
10736 BFD_ASSERT (htab != NULL);
10737
10738 /* Create the section contents, if we haven't already. */
10739 s = stub->stub_section;
10740 loc = s->contents;
10741 if (loc == NULL)
10742 {
10743 loc = bfd_malloc (s->size);
10744 if (loc == NULL)
10745 {
10746 hti->error = TRUE;
10747 return FALSE;
10748 }
10749 s->contents = loc;
10750 }
10751
10752 /* Work out where in the section this stub should go. */
10753 offset = stub->offset;
10754
10755 /* We add 8 here to account for the LUI/ADDIU instructions
10756 before the branch instruction. This cannot be moved down to
10757 where pcrel_offset is calculated as 's' is updated in
10758 mips_elf_get_la25_target. */
10759 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10760
10761 /* Work out the target address. */
10762 target = mips_elf_get_la25_target (stub, &s);
10763 target += s->output_section->vma + s->output_offset;
10764
10765 target_high = ((target + 0x8000) >> 16) & 0xffff;
10766 target_low = (target & 0xffff);
10767
10768 /* Calculate the PC of the compact branch instruction (for the case where
10769 compact branches are used for either microMIPSR6 or MIPSR6 with
10770 compact branches. Add 4-bytes to account for BC using the PC of the
10771 next instruction as the base. */
10772 pcrel_offset = target - (branch_pc + 4);
10773
10774 if (stub->stub_section != htab->strampoline)
10775 {
10776 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10777 of the section and write the two instructions at the end. */
10778 memset (loc, 0, offset);
10779 loc += offset;
10780 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10781 {
10782 bfd_put_micromips_32 (hti->output_bfd,
10783 LA25_LUI_MICROMIPS (target_high),
10784 loc);
10785 bfd_put_micromips_32 (hti->output_bfd,
10786 LA25_ADDIU_MICROMIPS (target_low),
10787 loc + 4);
10788 }
10789 else
10790 {
10791 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10792 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10793 }
10794 }
10795 else
10796 {
10797 /* This is trampoline. */
10798 loc += offset;
10799 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10800 {
10801 bfd_put_micromips_32 (hti->output_bfd,
10802 LA25_LUI_MICROMIPS (target_high), loc);
10803 bfd_put_micromips_32 (hti->output_bfd,
10804 LA25_J_MICROMIPS (target), loc + 4);
10805 bfd_put_micromips_32 (hti->output_bfd,
10806 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10807 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10808 }
10809 else
10810 {
10811 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10812 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10813 {
10814 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10815 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10816 }
10817 else
10818 {
10819 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10820 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10821 }
10822 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10823 }
10824 }
10825 return TRUE;
10826 }
10827
10828 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10829 adjust it appropriately now. */
10830
10831 static void
10832 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10833 const char *name, Elf_Internal_Sym *sym)
10834 {
10835 /* The linker script takes care of providing names and values for
10836 these, but we must place them into the right sections. */
10837 static const char* const text_section_symbols[] = {
10838 "_ftext",
10839 "_etext",
10840 "__dso_displacement",
10841 "__elf_header",
10842 "__program_header_table",
10843 NULL
10844 };
10845
10846 static const char* const data_section_symbols[] = {
10847 "_fdata",
10848 "_edata",
10849 "_end",
10850 "_fbss",
10851 NULL
10852 };
10853
10854 const char* const *p;
10855 int i;
10856
10857 for (i = 0; i < 2; ++i)
10858 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10859 *p;
10860 ++p)
10861 if (strcmp (*p, name) == 0)
10862 {
10863 /* All of these symbols are given type STT_SECTION by the
10864 IRIX6 linker. */
10865 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10866 sym->st_other = STO_PROTECTED;
10867
10868 /* The IRIX linker puts these symbols in special sections. */
10869 if (i == 0)
10870 sym->st_shndx = SHN_MIPS_TEXT;
10871 else
10872 sym->st_shndx = SHN_MIPS_DATA;
10873
10874 break;
10875 }
10876 }
10877
10878 /* Finish up dynamic symbol handling. We set the contents of various
10879 dynamic sections here. */
10880
10881 bfd_boolean
10882 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10883 struct bfd_link_info *info,
10884 struct elf_link_hash_entry *h,
10885 Elf_Internal_Sym *sym)
10886 {
10887 bfd *dynobj;
10888 asection *sgot;
10889 struct mips_got_info *g, *gg;
10890 const char *name;
10891 int idx;
10892 struct mips_elf_link_hash_table *htab;
10893 struct mips_elf_link_hash_entry *hmips;
10894
10895 htab = mips_elf_hash_table (info);
10896 BFD_ASSERT (htab != NULL);
10897 dynobj = elf_hash_table (info)->dynobj;
10898 hmips = (struct mips_elf_link_hash_entry *) h;
10899
10900 BFD_ASSERT (!htab->is_vxworks);
10901
10902 if (h->plt.plist != NULL
10903 && (h->plt.plist->mips_offset != MINUS_ONE
10904 || h->plt.plist->comp_offset != MINUS_ONE))
10905 {
10906 /* We've decided to create a PLT entry for this symbol. */
10907 bfd_byte *loc;
10908 bfd_vma header_address, got_address;
10909 bfd_vma got_address_high, got_address_low, load;
10910 bfd_vma got_index;
10911 bfd_vma isa_bit;
10912
10913 got_index = h->plt.plist->gotplt_index;
10914
10915 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10916 BFD_ASSERT (h->dynindx != -1);
10917 BFD_ASSERT (htab->root.splt != NULL);
10918 BFD_ASSERT (got_index != MINUS_ONE);
10919 BFD_ASSERT (!h->def_regular);
10920
10921 /* Calculate the address of the PLT header. */
10922 isa_bit = htab->plt_header_is_comp;
10923 header_address = (htab->root.splt->output_section->vma
10924 + htab->root.splt->output_offset + isa_bit);
10925
10926 /* Calculate the address of the .got.plt entry. */
10927 got_address = (htab->root.sgotplt->output_section->vma
10928 + htab->root.sgotplt->output_offset
10929 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10930
10931 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10932 got_address_low = got_address & 0xffff;
10933
10934 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10935 cannot be loaded in two instructions. */
10936 if (ABI_64_P (output_bfd)
10937 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10938 {
10939 _bfd_error_handler
10940 /* xgettext:c-format */
10941 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10942 "supported; consider using `-Ttext-segment=...'"),
10943 output_bfd,
10944 htab->root.sgotplt->output_section,
10945 (int64_t) got_address);
10946 bfd_set_error (bfd_error_no_error);
10947 return FALSE;
10948 }
10949
10950 /* Initially point the .got.plt entry at the PLT header. */
10951 loc = (htab->root.sgotplt->contents
10952 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10953 if (ABI_64_P (output_bfd))
10954 bfd_put_64 (output_bfd, header_address, loc);
10955 else
10956 bfd_put_32 (output_bfd, header_address, loc);
10957
10958 /* Now handle the PLT itself. First the standard entry (the order
10959 does not matter, we just have to pick one). */
10960 if (h->plt.plist->mips_offset != MINUS_ONE)
10961 {
10962 const bfd_vma *plt_entry;
10963 bfd_vma plt_offset;
10964
10965 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10966
10967 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10968
10969 /* Find out where the .plt entry should go. */
10970 loc = htab->root.splt->contents + plt_offset;
10971
10972 /* Pick the load opcode. */
10973 load = MIPS_ELF_LOAD_WORD (output_bfd);
10974
10975 /* Fill in the PLT entry itself. */
10976
10977 if (MIPSR6_P (output_bfd))
10978 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10979 : mipsr6_exec_plt_entry;
10980 else
10981 plt_entry = mips_exec_plt_entry;
10982 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10983 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10984 loc + 4);
10985
10986 if (! LOAD_INTERLOCKS_P (output_bfd)
10987 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10988 {
10989 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10990 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10991 }
10992 else
10993 {
10994 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10995 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10996 loc + 12);
10997 }
10998 }
10999
11000 /* Now the compressed entry. They come after any standard ones. */
11001 if (h->plt.plist->comp_offset != MINUS_ONE)
11002 {
11003 bfd_vma plt_offset;
11004
11005 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
11006 + h->plt.plist->comp_offset);
11007
11008 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11009
11010 /* Find out where the .plt entry should go. */
11011 loc = htab->root.splt->contents + plt_offset;
11012
11013 /* Fill in the PLT entry itself. */
11014 if (!MICROMIPS_P (output_bfd))
11015 {
11016 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
11017
11018 bfd_put_16 (output_bfd, plt_entry[0], loc);
11019 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
11020 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11021 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11022 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11023 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11024 bfd_put_32 (output_bfd, got_address, loc + 12);
11025 }
11026 else if (htab->insn32)
11027 {
11028 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
11029
11030 bfd_put_16 (output_bfd, plt_entry[0], loc);
11031 bfd_put_16 (output_bfd, got_address_high, loc + 2);
11032 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11033 bfd_put_16 (output_bfd, got_address_low, loc + 6);
11034 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11035 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11036 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11037 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11038 }
11039 else
11040 {
11041 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11042 bfd_signed_vma gotpc_offset;
11043 bfd_vma loc_address;
11044
11045 BFD_ASSERT (got_address % 4 == 0);
11046
11047 loc_address = (htab->root.splt->output_section->vma
11048 + htab->root.splt->output_offset + plt_offset);
11049 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11050
11051 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11052 if (gotpc_offset + 0x1000000 >= 0x2000000)
11053 {
11054 _bfd_error_handler
11055 /* xgettext:c-format */
11056 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11057 "beyond the range of ADDIUPC"),
11058 output_bfd,
11059 htab->root.sgotplt->output_section,
11060 (int64_t) gotpc_offset,
11061 htab->root.splt->output_section);
11062 bfd_set_error (bfd_error_no_error);
11063 return FALSE;
11064 }
11065 bfd_put_16 (output_bfd,
11066 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11067 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11068 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11069 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11070 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11071 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11072 }
11073 }
11074
11075 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11076 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11077 got_index - 2, h->dynindx,
11078 R_MIPS_JUMP_SLOT, got_address);
11079
11080 /* We distinguish between PLT entries and lazy-binding stubs by
11081 giving the former an st_other value of STO_MIPS_PLT. Set the
11082 flag and leave the value if there are any relocations in the
11083 binary where pointer equality matters. */
11084 sym->st_shndx = SHN_UNDEF;
11085 if (h->pointer_equality_needed)
11086 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11087 else
11088 {
11089 sym->st_value = 0;
11090 sym->st_other = 0;
11091 }
11092 }
11093
11094 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11095 {
11096 /* We've decided to create a lazy-binding stub. */
11097 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11098 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11099 bfd_vma stub_size = htab->function_stub_size;
11100 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11101 bfd_vma isa_bit = micromips_p;
11102 bfd_vma stub_big_size;
11103
11104 if (!micromips_p)
11105 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11106 else if (htab->insn32)
11107 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11108 else
11109 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11110
11111 /* This symbol has a stub. Set it up. */
11112
11113 BFD_ASSERT (h->dynindx != -1);
11114
11115 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11116
11117 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11118 sign extension at runtime in the stub, resulting in a negative
11119 index value. */
11120 if (h->dynindx & ~0x7fffffff)
11121 return FALSE;
11122
11123 /* Fill the stub. */
11124 if (micromips_p)
11125 {
11126 idx = 0;
11127 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11128 stub + idx);
11129 idx += 4;
11130 if (htab->insn32)
11131 {
11132 bfd_put_micromips_32 (output_bfd,
11133 STUB_MOVE32_MICROMIPS, stub + idx);
11134 idx += 4;
11135 }
11136 else
11137 {
11138 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11139 idx += 2;
11140 }
11141 if (stub_size == stub_big_size)
11142 {
11143 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11144
11145 bfd_put_micromips_32 (output_bfd,
11146 STUB_LUI_MICROMIPS (dynindx_hi),
11147 stub + idx);
11148 idx += 4;
11149 }
11150 if (htab->insn32)
11151 {
11152 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11153 stub + idx);
11154 idx += 4;
11155 }
11156 else
11157 {
11158 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11159 idx += 2;
11160 }
11161
11162 /* If a large stub is not required and sign extension is not a
11163 problem, then use legacy code in the stub. */
11164 if (stub_size == stub_big_size)
11165 bfd_put_micromips_32 (output_bfd,
11166 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11167 stub + idx);
11168 else if (h->dynindx & ~0x7fff)
11169 bfd_put_micromips_32 (output_bfd,
11170 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11171 stub + idx);
11172 else
11173 bfd_put_micromips_32 (output_bfd,
11174 STUB_LI16S_MICROMIPS (output_bfd,
11175 h->dynindx),
11176 stub + idx);
11177 }
11178 else
11179 {
11180 idx = 0;
11181 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11182 idx += 4;
11183 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11184 idx += 4;
11185 if (stub_size == stub_big_size)
11186 {
11187 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11188 stub + idx);
11189 idx += 4;
11190 }
11191
11192 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11193 {
11194 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11195 idx += 4;
11196 }
11197
11198 /* If a large stub is not required and sign extension is not a
11199 problem, then use legacy code in the stub. */
11200 if (stub_size == stub_big_size)
11201 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11202 stub + idx);
11203 else if (h->dynindx & ~0x7fff)
11204 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11205 stub + idx);
11206 else
11207 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11208 stub + idx);
11209 idx += 4;
11210
11211 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11212 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11213 }
11214
11215 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11216 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11217 stub, stub_size);
11218
11219 /* Mark the symbol as undefined. stub_offset != -1 occurs
11220 only for the referenced symbol. */
11221 sym->st_shndx = SHN_UNDEF;
11222
11223 /* The run-time linker uses the st_value field of the symbol
11224 to reset the global offset table entry for this external
11225 to its stub address when unlinking a shared object. */
11226 sym->st_value = (htab->sstubs->output_section->vma
11227 + htab->sstubs->output_offset
11228 + h->plt.plist->stub_offset
11229 + isa_bit);
11230 sym->st_other = other;
11231 }
11232
11233 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11234 refer to the stub, since only the stub uses the standard calling
11235 conventions. */
11236 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11237 {
11238 BFD_ASSERT (hmips->need_fn_stub);
11239 sym->st_value = (hmips->fn_stub->output_section->vma
11240 + hmips->fn_stub->output_offset);
11241 sym->st_size = hmips->fn_stub->size;
11242 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11243 }
11244
11245 BFD_ASSERT (h->dynindx != -1
11246 || h->forced_local);
11247
11248 sgot = htab->root.sgot;
11249 g = htab->got_info;
11250 BFD_ASSERT (g != NULL);
11251
11252 /* Run through the global symbol table, creating GOT entries for all
11253 the symbols that need them. */
11254 if (hmips->global_got_area != GGA_NONE)
11255 {
11256 bfd_vma offset;
11257 bfd_vma value;
11258
11259 value = sym->st_value;
11260 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11261 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11262 }
11263
11264 if (hmips->global_got_area != GGA_NONE && g->next)
11265 {
11266 struct mips_got_entry e, *p;
11267 bfd_vma entry;
11268 bfd_vma offset;
11269
11270 gg = g;
11271
11272 e.abfd = output_bfd;
11273 e.symndx = -1;
11274 e.d.h = hmips;
11275 e.tls_type = GOT_TLS_NONE;
11276
11277 for (g = g->next; g->next != gg; g = g->next)
11278 {
11279 if (g->got_entries
11280 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11281 &e)))
11282 {
11283 offset = p->gotidx;
11284 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11285 if (bfd_link_pic (info)
11286 || (elf_hash_table (info)->dynamic_sections_created
11287 && p->d.h != NULL
11288 && p->d.h->root.def_dynamic
11289 && !p->d.h->root.def_regular))
11290 {
11291 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11292 the various compatibility problems, it's easier to mock
11293 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11294 mips_elf_create_dynamic_relocation to calculate the
11295 appropriate addend. */
11296 Elf_Internal_Rela rel[3];
11297
11298 memset (rel, 0, sizeof (rel));
11299 if (ABI_64_P (output_bfd))
11300 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11301 else
11302 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11303 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11304
11305 entry = 0;
11306 if (! (mips_elf_create_dynamic_relocation
11307 (output_bfd, info, rel,
11308 e.d.h, NULL, sym->st_value, &entry, sgot)))
11309 return FALSE;
11310 }
11311 else
11312 entry = sym->st_value;
11313 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11314 }
11315 }
11316 }
11317
11318 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11319 name = h->root.root.string;
11320 if (h == elf_hash_table (info)->hdynamic
11321 || h == elf_hash_table (info)->hgot)
11322 sym->st_shndx = SHN_ABS;
11323 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11324 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11325 {
11326 sym->st_shndx = SHN_ABS;
11327 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11328 sym->st_value = 1;
11329 }
11330 else if (SGI_COMPAT (output_bfd))
11331 {
11332 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11333 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11334 {
11335 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11336 sym->st_other = STO_PROTECTED;
11337 sym->st_value = 0;
11338 sym->st_shndx = SHN_MIPS_DATA;
11339 }
11340 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11341 {
11342 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11343 sym->st_other = STO_PROTECTED;
11344 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11345 sym->st_shndx = SHN_ABS;
11346 }
11347 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11348 {
11349 if (h->type == STT_FUNC)
11350 sym->st_shndx = SHN_MIPS_TEXT;
11351 else if (h->type == STT_OBJECT)
11352 sym->st_shndx = SHN_MIPS_DATA;
11353 }
11354 }
11355
11356 /* Emit a copy reloc, if needed. */
11357 if (h->needs_copy)
11358 {
11359 asection *s;
11360 bfd_vma symval;
11361
11362 BFD_ASSERT (h->dynindx != -1);
11363 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11364
11365 s = mips_elf_rel_dyn_section (info, FALSE);
11366 symval = (h->root.u.def.section->output_section->vma
11367 + h->root.u.def.section->output_offset
11368 + h->root.u.def.value);
11369 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11370 h->dynindx, R_MIPS_COPY, symval);
11371 }
11372
11373 /* Handle the IRIX6-specific symbols. */
11374 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11375 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11376
11377 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11378 to treat compressed symbols like any other. */
11379 if (ELF_ST_IS_MIPS16 (sym->st_other))
11380 {
11381 BFD_ASSERT (sym->st_value & 1);
11382 sym->st_other -= STO_MIPS16;
11383 }
11384 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11385 {
11386 BFD_ASSERT (sym->st_value & 1);
11387 sym->st_other -= STO_MICROMIPS;
11388 }
11389
11390 return TRUE;
11391 }
11392
11393 /* Likewise, for VxWorks. */
11394
11395 bfd_boolean
11396 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11397 struct bfd_link_info *info,
11398 struct elf_link_hash_entry *h,
11399 Elf_Internal_Sym *sym)
11400 {
11401 bfd *dynobj;
11402 asection *sgot;
11403 struct mips_got_info *g;
11404 struct mips_elf_link_hash_table *htab;
11405 struct mips_elf_link_hash_entry *hmips;
11406
11407 htab = mips_elf_hash_table (info);
11408 BFD_ASSERT (htab != NULL);
11409 dynobj = elf_hash_table (info)->dynobj;
11410 hmips = (struct mips_elf_link_hash_entry *) h;
11411
11412 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11413 {
11414 bfd_byte *loc;
11415 bfd_vma plt_address, got_address, got_offset, branch_offset;
11416 Elf_Internal_Rela rel;
11417 static const bfd_vma *plt_entry;
11418 bfd_vma gotplt_index;
11419 bfd_vma plt_offset;
11420
11421 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11422 gotplt_index = h->plt.plist->gotplt_index;
11423
11424 BFD_ASSERT (h->dynindx != -1);
11425 BFD_ASSERT (htab->root.splt != NULL);
11426 BFD_ASSERT (gotplt_index != MINUS_ONE);
11427 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11428
11429 /* Calculate the address of the .plt entry. */
11430 plt_address = (htab->root.splt->output_section->vma
11431 + htab->root.splt->output_offset
11432 + plt_offset);
11433
11434 /* Calculate the address of the .got.plt entry. */
11435 got_address = (htab->root.sgotplt->output_section->vma
11436 + htab->root.sgotplt->output_offset
11437 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11438
11439 /* Calculate the offset of the .got.plt entry from
11440 _GLOBAL_OFFSET_TABLE_. */
11441 got_offset = mips_elf_gotplt_index (info, h);
11442
11443 /* Calculate the offset for the branch at the start of the PLT
11444 entry. The branch jumps to the beginning of .plt. */
11445 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11446
11447 /* Fill in the initial value of the .got.plt entry. */
11448 bfd_put_32 (output_bfd, plt_address,
11449 (htab->root.sgotplt->contents
11450 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11451
11452 /* Find out where the .plt entry should go. */
11453 loc = htab->root.splt->contents + plt_offset;
11454
11455 if (bfd_link_pic (info))
11456 {
11457 plt_entry = mips_vxworks_shared_plt_entry;
11458 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11459 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11460 }
11461 else
11462 {
11463 bfd_vma got_address_high, got_address_low;
11464
11465 plt_entry = mips_vxworks_exec_plt_entry;
11466 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11467 got_address_low = got_address & 0xffff;
11468
11469 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11470 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11471 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11472 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11473 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11474 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11475 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11476 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11477
11478 loc = (htab->srelplt2->contents
11479 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11480
11481 /* Emit a relocation for the .got.plt entry. */
11482 rel.r_offset = got_address;
11483 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11484 rel.r_addend = plt_offset;
11485 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11486
11487 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11488 loc += sizeof (Elf32_External_Rela);
11489 rel.r_offset = plt_address + 8;
11490 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11491 rel.r_addend = got_offset;
11492 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11493
11494 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11495 loc += sizeof (Elf32_External_Rela);
11496 rel.r_offset += 4;
11497 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11498 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11499 }
11500
11501 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11502 loc = (htab->root.srelplt->contents
11503 + gotplt_index * sizeof (Elf32_External_Rela));
11504 rel.r_offset = got_address;
11505 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11506 rel.r_addend = 0;
11507 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11508
11509 if (!h->def_regular)
11510 sym->st_shndx = SHN_UNDEF;
11511 }
11512
11513 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11514
11515 sgot = htab->root.sgot;
11516 g = htab->got_info;
11517 BFD_ASSERT (g != NULL);
11518
11519 /* See if this symbol has an entry in the GOT. */
11520 if (hmips->global_got_area != GGA_NONE)
11521 {
11522 bfd_vma offset;
11523 Elf_Internal_Rela outrel;
11524 bfd_byte *loc;
11525 asection *s;
11526
11527 /* Install the symbol value in the GOT. */
11528 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11529 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11530
11531 /* Add a dynamic relocation for it. */
11532 s = mips_elf_rel_dyn_section (info, FALSE);
11533 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11534 outrel.r_offset = (sgot->output_section->vma
11535 + sgot->output_offset
11536 + offset);
11537 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11538 outrel.r_addend = 0;
11539 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11540 }
11541
11542 /* Emit a copy reloc, if needed. */
11543 if (h->needs_copy)
11544 {
11545 Elf_Internal_Rela rel;
11546 asection *srel;
11547 bfd_byte *loc;
11548
11549 BFD_ASSERT (h->dynindx != -1);
11550
11551 rel.r_offset = (h->root.u.def.section->output_section->vma
11552 + h->root.u.def.section->output_offset
11553 + h->root.u.def.value);
11554 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11555 rel.r_addend = 0;
11556 if (h->root.u.def.section == htab->root.sdynrelro)
11557 srel = htab->root.sreldynrelro;
11558 else
11559 srel = htab->root.srelbss;
11560 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11561 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11562 ++srel->reloc_count;
11563 }
11564
11565 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11566 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11567 sym->st_value &= ~1;
11568
11569 return TRUE;
11570 }
11571
11572 /* Write out a plt0 entry to the beginning of .plt. */
11573
11574 static bfd_boolean
11575 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11576 {
11577 bfd_byte *loc;
11578 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11579 static const bfd_vma *plt_entry;
11580 struct mips_elf_link_hash_table *htab;
11581
11582 htab = mips_elf_hash_table (info);
11583 BFD_ASSERT (htab != NULL);
11584
11585 if (ABI_64_P (output_bfd))
11586 plt_entry = (htab->compact_branches
11587 ? mipsr6_n64_exec_plt0_entry_compact
11588 : mips_n64_exec_plt0_entry);
11589 else if (ABI_N32_P (output_bfd))
11590 plt_entry = (htab->compact_branches
11591 ? mipsr6_n32_exec_plt0_entry_compact
11592 : mips_n32_exec_plt0_entry);
11593 else if (!htab->plt_header_is_comp)
11594 plt_entry = (htab->compact_branches
11595 ? mipsr6_o32_exec_plt0_entry_compact
11596 : mips_o32_exec_plt0_entry);
11597 else if (htab->insn32)
11598 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11599 else
11600 plt_entry = micromips_o32_exec_plt0_entry;
11601
11602 /* Calculate the value of .got.plt. */
11603 gotplt_value = (htab->root.sgotplt->output_section->vma
11604 + htab->root.sgotplt->output_offset);
11605 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11606 gotplt_value_low = gotplt_value & 0xffff;
11607
11608 /* The PLT sequence is not safe for N64 if .got.plt's address can
11609 not be loaded in two instructions. */
11610 if (ABI_64_P (output_bfd)
11611 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11612 {
11613 _bfd_error_handler
11614 /* xgettext:c-format */
11615 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11616 "supported; consider using `-Ttext-segment=...'"),
11617 output_bfd,
11618 htab->root.sgotplt->output_section,
11619 (int64_t) gotplt_value);
11620 bfd_set_error (bfd_error_no_error);
11621 return FALSE;
11622 }
11623
11624 /* Install the PLT header. */
11625 loc = htab->root.splt->contents;
11626 if (plt_entry == micromips_o32_exec_plt0_entry)
11627 {
11628 bfd_vma gotpc_offset;
11629 bfd_vma loc_address;
11630 size_t i;
11631
11632 BFD_ASSERT (gotplt_value % 4 == 0);
11633
11634 loc_address = (htab->root.splt->output_section->vma
11635 + htab->root.splt->output_offset);
11636 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11637
11638 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11639 if (gotpc_offset + 0x1000000 >= 0x2000000)
11640 {
11641 _bfd_error_handler
11642 /* xgettext:c-format */
11643 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11644 "beyond the range of ADDIUPC"),
11645 output_bfd,
11646 htab->root.sgotplt->output_section,
11647 (int64_t) gotpc_offset,
11648 htab->root.splt->output_section);
11649 bfd_set_error (bfd_error_no_error);
11650 return FALSE;
11651 }
11652 bfd_put_16 (output_bfd,
11653 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11654 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11655 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11656 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11657 }
11658 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11659 {
11660 size_t i;
11661
11662 bfd_put_16 (output_bfd, plt_entry[0], loc);
11663 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11664 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11665 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11666 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11667 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11668 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11669 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11670 }
11671 else
11672 {
11673 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11674 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11675 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11676 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11677 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11678 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11679 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11680 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11681 }
11682
11683 return TRUE;
11684 }
11685
11686 /* Install the PLT header for a VxWorks executable and finalize the
11687 contents of .rela.plt.unloaded. */
11688
11689 static void
11690 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11691 {
11692 Elf_Internal_Rela rela;
11693 bfd_byte *loc;
11694 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11695 static const bfd_vma *plt_entry;
11696 struct mips_elf_link_hash_table *htab;
11697
11698 htab = mips_elf_hash_table (info);
11699 BFD_ASSERT (htab != NULL);
11700
11701 plt_entry = mips_vxworks_exec_plt0_entry;
11702
11703 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11704 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11705 + htab->root.hgot->root.u.def.section->output_offset
11706 + htab->root.hgot->root.u.def.value);
11707
11708 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11709 got_value_low = got_value & 0xffff;
11710
11711 /* Calculate the address of the PLT header. */
11712 plt_address = (htab->root.splt->output_section->vma
11713 + htab->root.splt->output_offset);
11714
11715 /* Install the PLT header. */
11716 loc = htab->root.splt->contents;
11717 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11718 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11719 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11720 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11721 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11722 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11723
11724 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11725 loc = htab->srelplt2->contents;
11726 rela.r_offset = plt_address;
11727 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11728 rela.r_addend = 0;
11729 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11730 loc += sizeof (Elf32_External_Rela);
11731
11732 /* Output the relocation for the following addiu of
11733 %lo(_GLOBAL_OFFSET_TABLE_). */
11734 rela.r_offset += 4;
11735 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11736 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11737 loc += sizeof (Elf32_External_Rela);
11738
11739 /* Fix up the remaining relocations. They may have the wrong
11740 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11741 in which symbols were output. */
11742 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11743 {
11744 Elf_Internal_Rela rel;
11745
11746 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11747 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11748 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11749 loc += sizeof (Elf32_External_Rela);
11750
11751 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11752 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11753 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11754 loc += sizeof (Elf32_External_Rela);
11755
11756 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11757 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11758 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11759 loc += sizeof (Elf32_External_Rela);
11760 }
11761 }
11762
11763 /* Install the PLT header for a VxWorks shared library. */
11764
11765 static void
11766 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11767 {
11768 unsigned int i;
11769 struct mips_elf_link_hash_table *htab;
11770
11771 htab = mips_elf_hash_table (info);
11772 BFD_ASSERT (htab != NULL);
11773
11774 /* We just need to copy the entry byte-by-byte. */
11775 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11776 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11777 htab->root.splt->contents + i * 4);
11778 }
11779
11780 /* Finish up the dynamic sections. */
11781
11782 bfd_boolean
11783 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11784 struct bfd_link_info *info)
11785 {
11786 bfd *dynobj;
11787 asection *sdyn;
11788 asection *sgot;
11789 struct mips_got_info *gg, *g;
11790 struct mips_elf_link_hash_table *htab;
11791
11792 htab = mips_elf_hash_table (info);
11793 BFD_ASSERT (htab != NULL);
11794
11795 dynobj = elf_hash_table (info)->dynobj;
11796
11797 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11798
11799 sgot = htab->root.sgot;
11800 gg = htab->got_info;
11801
11802 if (elf_hash_table (info)->dynamic_sections_created)
11803 {
11804 bfd_byte *b;
11805 int dyn_to_skip = 0, dyn_skipped = 0;
11806
11807 BFD_ASSERT (sdyn != NULL);
11808 BFD_ASSERT (gg != NULL);
11809
11810 g = mips_elf_bfd_got (output_bfd, FALSE);
11811 BFD_ASSERT (g != NULL);
11812
11813 for (b = sdyn->contents;
11814 b < sdyn->contents + sdyn->size;
11815 b += MIPS_ELF_DYN_SIZE (dynobj))
11816 {
11817 Elf_Internal_Dyn dyn;
11818 const char *name;
11819 size_t elemsize;
11820 asection *s;
11821 bfd_boolean swap_out_p;
11822
11823 /* Read in the current dynamic entry. */
11824 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11825
11826 /* Assume that we're going to modify it and write it out. */
11827 swap_out_p = TRUE;
11828
11829 switch (dyn.d_tag)
11830 {
11831 case DT_RELENT:
11832 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11833 break;
11834
11835 case DT_RELAENT:
11836 BFD_ASSERT (htab->is_vxworks);
11837 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11838 break;
11839
11840 case DT_STRSZ:
11841 /* Rewrite DT_STRSZ. */
11842 dyn.d_un.d_val =
11843 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11844 break;
11845
11846 case DT_PLTGOT:
11847 s = htab->root.sgot;
11848 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11849 break;
11850
11851 case DT_MIPS_PLTGOT:
11852 s = htab->root.sgotplt;
11853 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11854 break;
11855
11856 case DT_MIPS_RLD_VERSION:
11857 dyn.d_un.d_val = 1; /* XXX */
11858 break;
11859
11860 case DT_MIPS_FLAGS:
11861 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11862 break;
11863
11864 case DT_MIPS_TIME_STAMP:
11865 {
11866 time_t t;
11867 time (&t);
11868 dyn.d_un.d_val = t;
11869 }
11870 break;
11871
11872 case DT_MIPS_ICHECKSUM:
11873 /* XXX FIXME: */
11874 swap_out_p = FALSE;
11875 break;
11876
11877 case DT_MIPS_IVERSION:
11878 /* XXX FIXME: */
11879 swap_out_p = FALSE;
11880 break;
11881
11882 case DT_MIPS_BASE_ADDRESS:
11883 s = output_bfd->sections;
11884 BFD_ASSERT (s != NULL);
11885 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11886 break;
11887
11888 case DT_MIPS_LOCAL_GOTNO:
11889 dyn.d_un.d_val = g->local_gotno;
11890 break;
11891
11892 case DT_MIPS_UNREFEXTNO:
11893 /* The index into the dynamic symbol table which is the
11894 entry of the first external symbol that is not
11895 referenced within the same object. */
11896 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11897 break;
11898
11899 case DT_MIPS_GOTSYM:
11900 if (htab->global_gotsym)
11901 {
11902 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11903 break;
11904 }
11905 /* In case if we don't have global got symbols we default
11906 to setting DT_MIPS_GOTSYM to the same value as
11907 DT_MIPS_SYMTABNO. */
11908 /* Fall through. */
11909
11910 case DT_MIPS_SYMTABNO:
11911 name = ".dynsym";
11912 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11913 s = bfd_get_linker_section (dynobj, name);
11914
11915 if (s != NULL)
11916 dyn.d_un.d_val = s->size / elemsize;
11917 else
11918 dyn.d_un.d_val = 0;
11919 break;
11920
11921 case DT_MIPS_HIPAGENO:
11922 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11923 break;
11924
11925 case DT_MIPS_RLD_MAP:
11926 {
11927 struct elf_link_hash_entry *h;
11928 h = mips_elf_hash_table (info)->rld_symbol;
11929 if (!h)
11930 {
11931 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11932 swap_out_p = FALSE;
11933 break;
11934 }
11935 s = h->root.u.def.section;
11936
11937 /* The MIPS_RLD_MAP tag stores the absolute address of the
11938 debug pointer. */
11939 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11940 + h->root.u.def.value);
11941 }
11942 break;
11943
11944 case DT_MIPS_RLD_MAP_REL:
11945 {
11946 struct elf_link_hash_entry *h;
11947 bfd_vma dt_addr, rld_addr;
11948 h = mips_elf_hash_table (info)->rld_symbol;
11949 if (!h)
11950 {
11951 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11952 swap_out_p = FALSE;
11953 break;
11954 }
11955 s = h->root.u.def.section;
11956
11957 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11958 pointer, relative to the address of the tag. */
11959 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11960 + (b - sdyn->contents));
11961 rld_addr = (s->output_section->vma + s->output_offset
11962 + h->root.u.def.value);
11963 dyn.d_un.d_ptr = rld_addr - dt_addr;
11964 }
11965 break;
11966
11967 case DT_MIPS_OPTIONS:
11968 s = (bfd_get_section_by_name
11969 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11970 dyn.d_un.d_ptr = s->vma;
11971 break;
11972
11973 case DT_PLTREL:
11974 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11975 if (htab->is_vxworks)
11976 dyn.d_un.d_val = DT_RELA;
11977 else
11978 dyn.d_un.d_val = DT_REL;
11979 break;
11980
11981 case DT_PLTRELSZ:
11982 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11983 dyn.d_un.d_val = htab->root.srelplt->size;
11984 break;
11985
11986 case DT_JMPREL:
11987 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11988 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11989 + htab->root.srelplt->output_offset);
11990 break;
11991
11992 case DT_TEXTREL:
11993 /* If we didn't need any text relocations after all, delete
11994 the dynamic tag. */
11995 if (!(info->flags & DF_TEXTREL))
11996 {
11997 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11998 swap_out_p = FALSE;
11999 }
12000 break;
12001
12002 case DT_FLAGS:
12003 /* If we didn't need any text relocations after all, clear
12004 DF_TEXTREL from DT_FLAGS. */
12005 if (!(info->flags & DF_TEXTREL))
12006 dyn.d_un.d_val &= ~DF_TEXTREL;
12007 else
12008 swap_out_p = FALSE;
12009 break;
12010
12011 case DT_MIPS_XHASH:
12012 name = ".MIPS.xhash";
12013 s = bfd_get_linker_section (dynobj, name);
12014 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
12015 break;
12016
12017 default:
12018 swap_out_p = FALSE;
12019 if (htab->is_vxworks
12020 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12021 swap_out_p = TRUE;
12022 break;
12023 }
12024
12025 if (swap_out_p || dyn_skipped)
12026 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12027 (dynobj, &dyn, b - dyn_skipped);
12028
12029 if (dyn_to_skip)
12030 {
12031 dyn_skipped += dyn_to_skip;
12032 dyn_to_skip = 0;
12033 }
12034 }
12035
12036 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12037 if (dyn_skipped > 0)
12038 memset (b - dyn_skipped, 0, dyn_skipped);
12039 }
12040
12041 if (sgot != NULL && sgot->size > 0
12042 && !bfd_is_abs_section (sgot->output_section))
12043 {
12044 if (htab->is_vxworks)
12045 {
12046 /* The first entry of the global offset table points to the
12047 ".dynamic" section. The second is initialized by the
12048 loader and contains the shared library identifier.
12049 The third is also initialized by the loader and points
12050 to the lazy resolution stub. */
12051 MIPS_ELF_PUT_WORD (output_bfd,
12052 sdyn->output_offset + sdyn->output_section->vma,
12053 sgot->contents);
12054 MIPS_ELF_PUT_WORD (output_bfd, 0,
12055 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12056 MIPS_ELF_PUT_WORD (output_bfd, 0,
12057 sgot->contents
12058 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12059 }
12060 else
12061 {
12062 /* The first entry of the global offset table will be filled at
12063 runtime. The second entry will be used by some runtime loaders.
12064 This isn't the case of IRIX rld. */
12065 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12066 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12067 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12068 }
12069
12070 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12071 = MIPS_ELF_GOT_SIZE (output_bfd);
12072 }
12073
12074 /* Generate dynamic relocations for the non-primary gots. */
12075 if (gg != NULL && gg->next)
12076 {
12077 Elf_Internal_Rela rel[3];
12078 bfd_vma addend = 0;
12079
12080 memset (rel, 0, sizeof (rel));
12081 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12082
12083 for (g = gg->next; g->next != gg; g = g->next)
12084 {
12085 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12086 + g->next->tls_gotno;
12087
12088 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12089 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12090 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12091 sgot->contents
12092 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12093
12094 if (! bfd_link_pic (info))
12095 continue;
12096
12097 for (; got_index < g->local_gotno; got_index++)
12098 {
12099 if (got_index >= g->assigned_low_gotno
12100 && got_index <= g->assigned_high_gotno)
12101 continue;
12102
12103 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12104 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12105 if (!(mips_elf_create_dynamic_relocation
12106 (output_bfd, info, rel, NULL,
12107 bfd_abs_section_ptr,
12108 0, &addend, sgot)))
12109 return FALSE;
12110 BFD_ASSERT (addend == 0);
12111 }
12112 }
12113 }
12114
12115 /* The generation of dynamic relocations for the non-primary gots
12116 adds more dynamic relocations. We cannot count them until
12117 here. */
12118
12119 if (elf_hash_table (info)->dynamic_sections_created)
12120 {
12121 bfd_byte *b;
12122 bfd_boolean swap_out_p;
12123
12124 BFD_ASSERT (sdyn != NULL);
12125
12126 for (b = sdyn->contents;
12127 b < sdyn->contents + sdyn->size;
12128 b += MIPS_ELF_DYN_SIZE (dynobj))
12129 {
12130 Elf_Internal_Dyn dyn;
12131 asection *s;
12132
12133 /* Read in the current dynamic entry. */
12134 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12135
12136 /* Assume that we're going to modify it and write it out. */
12137 swap_out_p = TRUE;
12138
12139 switch (dyn.d_tag)
12140 {
12141 case DT_RELSZ:
12142 /* Reduce DT_RELSZ to account for any relocations we
12143 decided not to make. This is for the n64 irix rld,
12144 which doesn't seem to apply any relocations if there
12145 are trailing null entries. */
12146 s = mips_elf_rel_dyn_section (info, FALSE);
12147 dyn.d_un.d_val = (s->reloc_count
12148 * (ABI_64_P (output_bfd)
12149 ? sizeof (Elf64_Mips_External_Rel)
12150 : sizeof (Elf32_External_Rel)));
12151 /* Adjust the section size too. Tools like the prelinker
12152 can reasonably expect the values to the same. */
12153 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12154 elf_section_data (s->output_section)->this_hdr.sh_size
12155 = dyn.d_un.d_val;
12156 break;
12157
12158 default:
12159 swap_out_p = FALSE;
12160 break;
12161 }
12162
12163 if (swap_out_p)
12164 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12165 (dynobj, &dyn, b);
12166 }
12167 }
12168
12169 {
12170 asection *s;
12171 Elf32_compact_rel cpt;
12172
12173 if (SGI_COMPAT (output_bfd))
12174 {
12175 /* Write .compact_rel section out. */
12176 s = bfd_get_linker_section (dynobj, ".compact_rel");
12177 if (s != NULL)
12178 {
12179 cpt.id1 = 1;
12180 cpt.num = s->reloc_count;
12181 cpt.id2 = 2;
12182 cpt.offset = (s->output_section->filepos
12183 + sizeof (Elf32_External_compact_rel));
12184 cpt.reserved0 = 0;
12185 cpt.reserved1 = 0;
12186 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12187 ((Elf32_External_compact_rel *)
12188 s->contents));
12189
12190 /* Clean up a dummy stub function entry in .text. */
12191 if (htab->sstubs != NULL)
12192 {
12193 file_ptr dummy_offset;
12194
12195 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12196 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12197 memset (htab->sstubs->contents + dummy_offset, 0,
12198 htab->function_stub_size);
12199 }
12200 }
12201 }
12202
12203 /* The psABI says that the dynamic relocations must be sorted in
12204 increasing order of r_symndx. The VxWorks EABI doesn't require
12205 this, and because the code below handles REL rather than RELA
12206 relocations, using it for VxWorks would be outright harmful. */
12207 if (!htab->is_vxworks)
12208 {
12209 s = mips_elf_rel_dyn_section (info, FALSE);
12210 if (s != NULL
12211 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12212 {
12213 reldyn_sorting_bfd = output_bfd;
12214
12215 if (ABI_64_P (output_bfd))
12216 qsort ((Elf64_External_Rel *) s->contents + 1,
12217 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12218 sort_dynamic_relocs_64);
12219 else
12220 qsort ((Elf32_External_Rel *) s->contents + 1,
12221 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12222 sort_dynamic_relocs);
12223 }
12224 }
12225 }
12226
12227 if (htab->root.splt && htab->root.splt->size > 0)
12228 {
12229 if (htab->is_vxworks)
12230 {
12231 if (bfd_link_pic (info))
12232 mips_vxworks_finish_shared_plt (output_bfd, info);
12233 else
12234 mips_vxworks_finish_exec_plt (output_bfd, info);
12235 }
12236 else
12237 {
12238 BFD_ASSERT (!bfd_link_pic (info));
12239 if (!mips_finish_exec_plt (output_bfd, info))
12240 return FALSE;
12241 }
12242 }
12243 return TRUE;
12244 }
12245
12246
12247 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12248
12249 static void
12250 mips_set_isa_flags (bfd *abfd)
12251 {
12252 flagword val;
12253
12254 switch (bfd_get_mach (abfd))
12255 {
12256 default:
12257 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12258 val = E_MIPS_ARCH_3;
12259 else
12260 val = E_MIPS_ARCH_1;
12261 break;
12262
12263 case bfd_mach_mips3000:
12264 val = E_MIPS_ARCH_1;
12265 break;
12266
12267 case bfd_mach_mips3900:
12268 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12269 break;
12270
12271 case bfd_mach_mips6000:
12272 val = E_MIPS_ARCH_2;
12273 break;
12274
12275 case bfd_mach_mips4010:
12276 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12277 break;
12278
12279 case bfd_mach_mips4000:
12280 case bfd_mach_mips4300:
12281 case bfd_mach_mips4400:
12282 case bfd_mach_mips4600:
12283 val = E_MIPS_ARCH_3;
12284 break;
12285
12286 case bfd_mach_mips4100:
12287 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12288 break;
12289
12290 case bfd_mach_mips4111:
12291 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12292 break;
12293
12294 case bfd_mach_mips4120:
12295 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12296 break;
12297
12298 case bfd_mach_mips4650:
12299 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12300 break;
12301
12302 case bfd_mach_mips5400:
12303 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12304 break;
12305
12306 case bfd_mach_mips5500:
12307 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12308 break;
12309
12310 case bfd_mach_mips5900:
12311 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12312 break;
12313
12314 case bfd_mach_mips9000:
12315 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12316 break;
12317
12318 case bfd_mach_mips5000:
12319 case bfd_mach_mips7000:
12320 case bfd_mach_mips8000:
12321 case bfd_mach_mips10000:
12322 case bfd_mach_mips12000:
12323 case bfd_mach_mips14000:
12324 case bfd_mach_mips16000:
12325 val = E_MIPS_ARCH_4;
12326 break;
12327
12328 case bfd_mach_mips5:
12329 val = E_MIPS_ARCH_5;
12330 break;
12331
12332 case bfd_mach_mips_loongson_2e:
12333 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12334 break;
12335
12336 case bfd_mach_mips_loongson_2f:
12337 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12338 break;
12339
12340 case bfd_mach_mips_sb1:
12341 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12342 break;
12343
12344 case bfd_mach_mips_gs464:
12345 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12346 break;
12347
12348 case bfd_mach_mips_gs464e:
12349 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12350 break;
12351
12352 case bfd_mach_mips_gs264e:
12353 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12354 break;
12355
12356 case bfd_mach_mips_octeon:
12357 case bfd_mach_mips_octeonp:
12358 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12359 break;
12360
12361 case bfd_mach_mips_octeon3:
12362 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12363 break;
12364
12365 case bfd_mach_mips_xlr:
12366 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12367 break;
12368
12369 case bfd_mach_mips_octeon2:
12370 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12371 break;
12372
12373 case bfd_mach_mipsisa32:
12374 val = E_MIPS_ARCH_32;
12375 break;
12376
12377 case bfd_mach_mipsisa64:
12378 val = E_MIPS_ARCH_64;
12379 break;
12380
12381 case bfd_mach_mipsisa32r2:
12382 case bfd_mach_mipsisa32r3:
12383 case bfd_mach_mipsisa32r5:
12384 val = E_MIPS_ARCH_32R2;
12385 break;
12386
12387 case bfd_mach_mips_interaptiv_mr2:
12388 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12389 break;
12390
12391 case bfd_mach_mipsisa64r2:
12392 case bfd_mach_mipsisa64r3:
12393 case bfd_mach_mipsisa64r5:
12394 val = E_MIPS_ARCH_64R2;
12395 break;
12396
12397 case bfd_mach_mipsisa32r6:
12398 val = E_MIPS_ARCH_32R6;
12399 break;
12400
12401 case bfd_mach_mipsisa64r6:
12402 val = E_MIPS_ARCH_64R6;
12403 break;
12404 }
12405 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12406 elf_elfheader (abfd)->e_flags |= val;
12407
12408 }
12409
12410
12411 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12412 Don't do so for code sections. We want to keep ordering of HI16/LO16
12413 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12414 relocs to be sorted. */
12415
12416 bfd_boolean
12417 _bfd_mips_elf_sort_relocs_p (asection *sec)
12418 {
12419 return (sec->flags & SEC_CODE) == 0;
12420 }
12421
12422
12423 /* The final processing done just before writing out a MIPS ELF object
12424 file. This gets the MIPS architecture right based on the machine
12425 number. This is used by both the 32-bit and the 64-bit ABI. */
12426
12427 void
12428 _bfd_mips_final_write_processing (bfd *abfd)
12429 {
12430 unsigned int i;
12431 Elf_Internal_Shdr **hdrpp;
12432 const char *name;
12433 asection *sec;
12434
12435 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12436 is nonzero. This is for compatibility with old objects, which used
12437 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12438 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12439 mips_set_isa_flags (abfd);
12440
12441 /* Set the sh_info field for .gptab sections and other appropriate
12442 info for each special section. */
12443 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12444 i < elf_numsections (abfd);
12445 i++, hdrpp++)
12446 {
12447 switch ((*hdrpp)->sh_type)
12448 {
12449 case SHT_MIPS_MSYM:
12450 case SHT_MIPS_LIBLIST:
12451 sec = bfd_get_section_by_name (abfd, ".dynstr");
12452 if (sec != NULL)
12453 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12454 break;
12455
12456 case SHT_MIPS_GPTAB:
12457 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12458 name = bfd_section_name ((*hdrpp)->bfd_section);
12459 BFD_ASSERT (name != NULL
12460 && CONST_STRNEQ (name, ".gptab."));
12461 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12462 BFD_ASSERT (sec != NULL);
12463 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12464 break;
12465
12466 case SHT_MIPS_CONTENT:
12467 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12468 name = bfd_section_name ((*hdrpp)->bfd_section);
12469 BFD_ASSERT (name != NULL
12470 && CONST_STRNEQ (name, ".MIPS.content"));
12471 sec = bfd_get_section_by_name (abfd,
12472 name + sizeof ".MIPS.content" - 1);
12473 BFD_ASSERT (sec != NULL);
12474 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12475 break;
12476
12477 case SHT_MIPS_SYMBOL_LIB:
12478 sec = bfd_get_section_by_name (abfd, ".dynsym");
12479 if (sec != NULL)
12480 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12481 sec = bfd_get_section_by_name (abfd, ".liblist");
12482 if (sec != NULL)
12483 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12484 break;
12485
12486 case SHT_MIPS_EVENTS:
12487 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12488 name = bfd_section_name ((*hdrpp)->bfd_section);
12489 BFD_ASSERT (name != NULL);
12490 if (CONST_STRNEQ (name, ".MIPS.events"))
12491 sec = bfd_get_section_by_name (abfd,
12492 name + sizeof ".MIPS.events" - 1);
12493 else
12494 {
12495 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12496 sec = bfd_get_section_by_name (abfd,
12497 (name
12498 + sizeof ".MIPS.post_rel" - 1));
12499 }
12500 BFD_ASSERT (sec != NULL);
12501 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12502 break;
12503
12504 case SHT_MIPS_XHASH:
12505 sec = bfd_get_section_by_name (abfd, ".dynsym");
12506 if (sec != NULL)
12507 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12508 }
12509 }
12510 }
12511
12512 bfd_boolean
12513 _bfd_mips_elf_final_write_processing (bfd *abfd)
12514 {
12515 _bfd_mips_final_write_processing (abfd);
12516 return _bfd_elf_final_write_processing (abfd);
12517 }
12518 \f
12519 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12520 segments. */
12521
12522 int
12523 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12524 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12525 {
12526 asection *s;
12527 int ret = 0;
12528
12529 /* See if we need a PT_MIPS_REGINFO segment. */
12530 s = bfd_get_section_by_name (abfd, ".reginfo");
12531 if (s && (s->flags & SEC_LOAD))
12532 ++ret;
12533
12534 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12535 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12536 ++ret;
12537
12538 /* See if we need a PT_MIPS_OPTIONS segment. */
12539 if (IRIX_COMPAT (abfd) == ict_irix6
12540 && bfd_get_section_by_name (abfd,
12541 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12542 ++ret;
12543
12544 /* See if we need a PT_MIPS_RTPROC segment. */
12545 if (IRIX_COMPAT (abfd) == ict_irix5
12546 && bfd_get_section_by_name (abfd, ".dynamic")
12547 && bfd_get_section_by_name (abfd, ".mdebug"))
12548 ++ret;
12549
12550 /* Allocate a PT_NULL header in dynamic objects. See
12551 _bfd_mips_elf_modify_segment_map for details. */
12552 if (!SGI_COMPAT (abfd)
12553 && bfd_get_section_by_name (abfd, ".dynamic"))
12554 ++ret;
12555
12556 return ret;
12557 }
12558
12559 /* Modify the segment map for an IRIX5 executable. */
12560
12561 bfd_boolean
12562 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12563 struct bfd_link_info *info)
12564 {
12565 asection *s;
12566 struct elf_segment_map *m, **pm;
12567 size_t amt;
12568
12569 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12570 segment. */
12571 s = bfd_get_section_by_name (abfd, ".reginfo");
12572 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12573 {
12574 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12575 if (m->p_type == PT_MIPS_REGINFO)
12576 break;
12577 if (m == NULL)
12578 {
12579 amt = sizeof *m;
12580 m = bfd_zalloc (abfd, amt);
12581 if (m == NULL)
12582 return FALSE;
12583
12584 m->p_type = PT_MIPS_REGINFO;
12585 m->count = 1;
12586 m->sections[0] = s;
12587
12588 /* We want to put it after the PHDR and INTERP segments. */
12589 pm = &elf_seg_map (abfd);
12590 while (*pm != NULL
12591 && ((*pm)->p_type == PT_PHDR
12592 || (*pm)->p_type == PT_INTERP))
12593 pm = &(*pm)->next;
12594
12595 m->next = *pm;
12596 *pm = m;
12597 }
12598 }
12599
12600 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12601 segment. */
12602 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12603 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12604 {
12605 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12606 if (m->p_type == PT_MIPS_ABIFLAGS)
12607 break;
12608 if (m == NULL)
12609 {
12610 amt = sizeof *m;
12611 m = bfd_zalloc (abfd, amt);
12612 if (m == NULL)
12613 return FALSE;
12614
12615 m->p_type = PT_MIPS_ABIFLAGS;
12616 m->count = 1;
12617 m->sections[0] = s;
12618
12619 /* We want to put it after the PHDR and INTERP segments. */
12620 pm = &elf_seg_map (abfd);
12621 while (*pm != NULL
12622 && ((*pm)->p_type == PT_PHDR
12623 || (*pm)->p_type == PT_INTERP))
12624 pm = &(*pm)->next;
12625
12626 m->next = *pm;
12627 *pm = m;
12628 }
12629 }
12630
12631 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12632 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12633 PT_MIPS_OPTIONS segment immediately following the program header
12634 table. */
12635 if (NEWABI_P (abfd)
12636 /* On non-IRIX6 new abi, we'll have already created a segment
12637 for this section, so don't create another. I'm not sure this
12638 is not also the case for IRIX 6, but I can't test it right
12639 now. */
12640 && IRIX_COMPAT (abfd) == ict_irix6)
12641 {
12642 for (s = abfd->sections; s; s = s->next)
12643 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12644 break;
12645
12646 if (s)
12647 {
12648 struct elf_segment_map *options_segment;
12649
12650 pm = &elf_seg_map (abfd);
12651 while (*pm != NULL
12652 && ((*pm)->p_type == PT_PHDR
12653 || (*pm)->p_type == PT_INTERP))
12654 pm = &(*pm)->next;
12655
12656 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12657 {
12658 amt = sizeof (struct elf_segment_map);
12659 options_segment = bfd_zalloc (abfd, amt);
12660 options_segment->next = *pm;
12661 options_segment->p_type = PT_MIPS_OPTIONS;
12662 options_segment->p_flags = PF_R;
12663 options_segment->p_flags_valid = TRUE;
12664 options_segment->count = 1;
12665 options_segment->sections[0] = s;
12666 *pm = options_segment;
12667 }
12668 }
12669 }
12670 else
12671 {
12672 if (IRIX_COMPAT (abfd) == ict_irix5)
12673 {
12674 /* If there are .dynamic and .mdebug sections, we make a room
12675 for the RTPROC header. FIXME: Rewrite without section names. */
12676 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12677 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12678 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12679 {
12680 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12681 if (m->p_type == PT_MIPS_RTPROC)
12682 break;
12683 if (m == NULL)
12684 {
12685 amt = sizeof *m;
12686 m = bfd_zalloc (abfd, amt);
12687 if (m == NULL)
12688 return FALSE;
12689
12690 m->p_type = PT_MIPS_RTPROC;
12691
12692 s = bfd_get_section_by_name (abfd, ".rtproc");
12693 if (s == NULL)
12694 {
12695 m->count = 0;
12696 m->p_flags = 0;
12697 m->p_flags_valid = 1;
12698 }
12699 else
12700 {
12701 m->count = 1;
12702 m->sections[0] = s;
12703 }
12704
12705 /* We want to put it after the DYNAMIC segment. */
12706 pm = &elf_seg_map (abfd);
12707 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12708 pm = &(*pm)->next;
12709 if (*pm != NULL)
12710 pm = &(*pm)->next;
12711
12712 m->next = *pm;
12713 *pm = m;
12714 }
12715 }
12716 }
12717 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12718 .dynstr, .dynsym, and .hash sections, and everything in
12719 between. */
12720 for (pm = &elf_seg_map (abfd); *pm != NULL;
12721 pm = &(*pm)->next)
12722 if ((*pm)->p_type == PT_DYNAMIC)
12723 break;
12724 m = *pm;
12725 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12726 glibc's dynamic linker has traditionally derived the number of
12727 tags from the p_filesz field, and sometimes allocates stack
12728 arrays of that size. An overly-big PT_DYNAMIC segment can
12729 be actively harmful in such cases. Making PT_DYNAMIC contain
12730 other sections can also make life hard for the prelinker,
12731 which might move one of the other sections to a different
12732 PT_LOAD segment. */
12733 if (SGI_COMPAT (abfd)
12734 && m != NULL
12735 && m->count == 1
12736 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12737 {
12738 static const char *sec_names[] =
12739 {
12740 ".dynamic", ".dynstr", ".dynsym", ".hash"
12741 };
12742 bfd_vma low, high;
12743 unsigned int i, c;
12744 struct elf_segment_map *n;
12745
12746 low = ~(bfd_vma) 0;
12747 high = 0;
12748 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12749 {
12750 s = bfd_get_section_by_name (abfd, sec_names[i]);
12751 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12752 {
12753 bfd_size_type sz;
12754
12755 if (low > s->vma)
12756 low = s->vma;
12757 sz = s->size;
12758 if (high < s->vma + sz)
12759 high = s->vma + sz;
12760 }
12761 }
12762
12763 c = 0;
12764 for (s = abfd->sections; s != NULL; s = s->next)
12765 if ((s->flags & SEC_LOAD) != 0
12766 && s->vma >= low
12767 && s->vma + s->size <= high)
12768 ++c;
12769
12770 amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *);
12771 n = bfd_zalloc (abfd, amt);
12772 if (n == NULL)
12773 return FALSE;
12774 *n = *m;
12775 n->count = c;
12776
12777 i = 0;
12778 for (s = abfd->sections; s != NULL; s = s->next)
12779 {
12780 if ((s->flags & SEC_LOAD) != 0
12781 && s->vma >= low
12782 && s->vma + s->size <= high)
12783 {
12784 n->sections[i] = s;
12785 ++i;
12786 }
12787 }
12788
12789 *pm = n;
12790 }
12791 }
12792
12793 /* Allocate a spare program header in dynamic objects so that tools
12794 like the prelinker can add an extra PT_LOAD entry.
12795
12796 If the prelinker needs to make room for a new PT_LOAD entry, its
12797 standard procedure is to move the first (read-only) sections into
12798 the new (writable) segment. However, the MIPS ABI requires
12799 .dynamic to be in a read-only segment, and the section will often
12800 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12801
12802 Although the prelinker could in principle move .dynamic to a
12803 writable segment, it seems better to allocate a spare program
12804 header instead, and avoid the need to move any sections.
12805 There is a long tradition of allocating spare dynamic tags,
12806 so allocating a spare program header seems like a natural
12807 extension.
12808
12809 If INFO is NULL, we may be copying an already prelinked binary
12810 with objcopy or strip, so do not add this header. */
12811 if (info != NULL
12812 && !SGI_COMPAT (abfd)
12813 && bfd_get_section_by_name (abfd, ".dynamic"))
12814 {
12815 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12816 if ((*pm)->p_type == PT_NULL)
12817 break;
12818 if (*pm == NULL)
12819 {
12820 m = bfd_zalloc (abfd, sizeof (*m));
12821 if (m == NULL)
12822 return FALSE;
12823
12824 m->p_type = PT_NULL;
12825 *pm = m;
12826 }
12827 }
12828
12829 return TRUE;
12830 }
12831 \f
12832 /* Return the section that should be marked against GC for a given
12833 relocation. */
12834
12835 asection *
12836 _bfd_mips_elf_gc_mark_hook (asection *sec,
12837 struct bfd_link_info *info,
12838 Elf_Internal_Rela *rel,
12839 struct elf_link_hash_entry *h,
12840 Elf_Internal_Sym *sym)
12841 {
12842 /* ??? Do mips16 stub sections need to be handled special? */
12843
12844 if (h != NULL)
12845 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12846 {
12847 case R_MIPS_GNU_VTINHERIT:
12848 case R_MIPS_GNU_VTENTRY:
12849 return NULL;
12850 }
12851
12852 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12853 }
12854
12855 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12856
12857 bfd_boolean
12858 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12859 elf_gc_mark_hook_fn gc_mark_hook)
12860 {
12861 bfd *sub;
12862
12863 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12864
12865 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12866 {
12867 asection *o;
12868
12869 if (! is_mips_elf (sub))
12870 continue;
12871
12872 for (o = sub->sections; o != NULL; o = o->next)
12873 if (!o->gc_mark
12874 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
12875 {
12876 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12877 return FALSE;
12878 }
12879 }
12880
12881 return TRUE;
12882 }
12883 \f
12884 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12885 hiding the old indirect symbol. Process additional relocation
12886 information. Also called for weakdefs, in which case we just let
12887 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12888
12889 void
12890 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12891 struct elf_link_hash_entry *dir,
12892 struct elf_link_hash_entry *ind)
12893 {
12894 struct mips_elf_link_hash_entry *dirmips, *indmips;
12895
12896 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12897
12898 dirmips = (struct mips_elf_link_hash_entry *) dir;
12899 indmips = (struct mips_elf_link_hash_entry *) ind;
12900 /* Any absolute non-dynamic relocations against an indirect or weak
12901 definition will be against the target symbol. */
12902 if (indmips->has_static_relocs)
12903 dirmips->has_static_relocs = TRUE;
12904
12905 if (ind->root.type != bfd_link_hash_indirect)
12906 return;
12907
12908 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12909 if (indmips->readonly_reloc)
12910 dirmips->readonly_reloc = TRUE;
12911 if (indmips->no_fn_stub)
12912 dirmips->no_fn_stub = TRUE;
12913 if (indmips->fn_stub)
12914 {
12915 dirmips->fn_stub = indmips->fn_stub;
12916 indmips->fn_stub = NULL;
12917 }
12918 if (indmips->need_fn_stub)
12919 {
12920 dirmips->need_fn_stub = TRUE;
12921 indmips->need_fn_stub = FALSE;
12922 }
12923 if (indmips->call_stub)
12924 {
12925 dirmips->call_stub = indmips->call_stub;
12926 indmips->call_stub = NULL;
12927 }
12928 if (indmips->call_fp_stub)
12929 {
12930 dirmips->call_fp_stub = indmips->call_fp_stub;
12931 indmips->call_fp_stub = NULL;
12932 }
12933 if (indmips->global_got_area < dirmips->global_got_area)
12934 dirmips->global_got_area = indmips->global_got_area;
12935 if (indmips->global_got_area < GGA_NONE)
12936 indmips->global_got_area = GGA_NONE;
12937 if (indmips->has_nonpic_branches)
12938 dirmips->has_nonpic_branches = TRUE;
12939 }
12940
12941 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12942 to hide it. It has to remain global (it will also be protected) so as to
12943 be assigned a global GOT entry, which will then remain unchanged at load
12944 time. */
12945
12946 void
12947 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12948 struct elf_link_hash_entry *entry,
12949 bfd_boolean force_local)
12950 {
12951 struct mips_elf_link_hash_table *htab;
12952
12953 htab = mips_elf_hash_table (info);
12954 BFD_ASSERT (htab != NULL);
12955 if (htab->use_absolute_zero
12956 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12957 return;
12958
12959 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12960 }
12961 \f
12962 #define PDR_SIZE 32
12963
12964 bfd_boolean
12965 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12966 struct bfd_link_info *info)
12967 {
12968 asection *o;
12969 bfd_boolean ret = FALSE;
12970 unsigned char *tdata;
12971 size_t i, skip;
12972
12973 o = bfd_get_section_by_name (abfd, ".pdr");
12974 if (! o)
12975 return FALSE;
12976 if (o->size == 0)
12977 return FALSE;
12978 if (o->size % PDR_SIZE != 0)
12979 return FALSE;
12980 if (o->output_section != NULL
12981 && bfd_is_abs_section (o->output_section))
12982 return FALSE;
12983
12984 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12985 if (! tdata)
12986 return FALSE;
12987
12988 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12989 info->keep_memory);
12990 if (!cookie->rels)
12991 {
12992 free (tdata);
12993 return FALSE;
12994 }
12995
12996 cookie->rel = cookie->rels;
12997 cookie->relend = cookie->rels + o->reloc_count;
12998
12999 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
13000 {
13001 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
13002 {
13003 tdata[i] = 1;
13004 skip ++;
13005 }
13006 }
13007
13008 if (skip != 0)
13009 {
13010 mips_elf_section_data (o)->u.tdata = tdata;
13011 if (o->rawsize == 0)
13012 o->rawsize = o->size;
13013 o->size -= skip * PDR_SIZE;
13014 ret = TRUE;
13015 }
13016 else
13017 free (tdata);
13018
13019 if (! info->keep_memory)
13020 free (cookie->rels);
13021
13022 return ret;
13023 }
13024
13025 bfd_boolean
13026 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
13027 {
13028 if (strcmp (sec->name, ".pdr") == 0)
13029 return TRUE;
13030 return FALSE;
13031 }
13032
13033 bfd_boolean
13034 _bfd_mips_elf_write_section (bfd *output_bfd,
13035 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
13036 asection *sec, bfd_byte *contents)
13037 {
13038 bfd_byte *to, *from, *end;
13039 int i;
13040
13041 if (strcmp (sec->name, ".pdr") != 0)
13042 return FALSE;
13043
13044 if (mips_elf_section_data (sec)->u.tdata == NULL)
13045 return FALSE;
13046
13047 to = contents;
13048 end = contents + sec->size;
13049 for (from = contents, i = 0;
13050 from < end;
13051 from += PDR_SIZE, i++)
13052 {
13053 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
13054 continue;
13055 if (to != from)
13056 memcpy (to, from, PDR_SIZE);
13057 to += PDR_SIZE;
13058 }
13059 bfd_set_section_contents (output_bfd, sec->output_section, contents,
13060 sec->output_offset, sec->size);
13061 return TRUE;
13062 }
13063 \f
13064 /* microMIPS code retains local labels for linker relaxation. Omit them
13065 from output by default for clarity. */
13066
13067 bfd_boolean
13068 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13069 {
13070 return _bfd_elf_is_local_label_name (abfd, sym->name);
13071 }
13072
13073 /* MIPS ELF uses a special find_nearest_line routine in order the
13074 handle the ECOFF debugging information. */
13075
13076 struct mips_elf_find_line
13077 {
13078 struct ecoff_debug_info d;
13079 struct ecoff_find_line i;
13080 };
13081
13082 bfd_boolean
13083 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13084 asection *section, bfd_vma offset,
13085 const char **filename_ptr,
13086 const char **functionname_ptr,
13087 unsigned int *line_ptr,
13088 unsigned int *discriminator_ptr)
13089 {
13090 asection *msec;
13091
13092 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13093 filename_ptr, functionname_ptr,
13094 line_ptr, discriminator_ptr,
13095 dwarf_debug_sections,
13096 &elf_tdata (abfd)->dwarf2_find_line_info)
13097 == 1)
13098 return TRUE;
13099
13100 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13101 filename_ptr, functionname_ptr,
13102 line_ptr))
13103 {
13104 if (!*functionname_ptr)
13105 _bfd_elf_find_function (abfd, symbols, section, offset,
13106 *filename_ptr ? NULL : filename_ptr,
13107 functionname_ptr);
13108 return TRUE;
13109 }
13110
13111 msec = bfd_get_section_by_name (abfd, ".mdebug");
13112 if (msec != NULL)
13113 {
13114 flagword origflags;
13115 struct mips_elf_find_line *fi;
13116 const struct ecoff_debug_swap * const swap =
13117 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13118
13119 /* If we are called during a link, mips_elf_final_link may have
13120 cleared the SEC_HAS_CONTENTS field. We force it back on here
13121 if appropriate (which it normally will be). */
13122 origflags = msec->flags;
13123 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13124 msec->flags |= SEC_HAS_CONTENTS;
13125
13126 fi = mips_elf_tdata (abfd)->find_line_info;
13127 if (fi == NULL)
13128 {
13129 bfd_size_type external_fdr_size;
13130 char *fraw_src;
13131 char *fraw_end;
13132 struct fdr *fdr_ptr;
13133 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13134
13135 fi = bfd_zalloc (abfd, amt);
13136 if (fi == NULL)
13137 {
13138 msec->flags = origflags;
13139 return FALSE;
13140 }
13141
13142 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13143 {
13144 msec->flags = origflags;
13145 return FALSE;
13146 }
13147
13148 /* Swap in the FDR information. */
13149 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13150 fi->d.fdr = bfd_alloc (abfd, amt);
13151 if (fi->d.fdr == NULL)
13152 {
13153 msec->flags = origflags;
13154 return FALSE;
13155 }
13156 external_fdr_size = swap->external_fdr_size;
13157 fdr_ptr = fi->d.fdr;
13158 fraw_src = (char *) fi->d.external_fdr;
13159 fraw_end = (fraw_src
13160 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13161 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13162 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13163
13164 mips_elf_tdata (abfd)->find_line_info = fi;
13165
13166 /* Note that we don't bother to ever free this information.
13167 find_nearest_line is either called all the time, as in
13168 objdump -l, so the information should be saved, or it is
13169 rarely called, as in ld error messages, so the memory
13170 wasted is unimportant. Still, it would probably be a
13171 good idea for free_cached_info to throw it away. */
13172 }
13173
13174 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13175 &fi->i, filename_ptr, functionname_ptr,
13176 line_ptr))
13177 {
13178 msec->flags = origflags;
13179 return TRUE;
13180 }
13181
13182 msec->flags = origflags;
13183 }
13184
13185 /* Fall back on the generic ELF find_nearest_line routine. */
13186
13187 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13188 filename_ptr, functionname_ptr,
13189 line_ptr, discriminator_ptr);
13190 }
13191
13192 bfd_boolean
13193 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13194 const char **filename_ptr,
13195 const char **functionname_ptr,
13196 unsigned int *line_ptr)
13197 {
13198 bfd_boolean found;
13199 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13200 functionname_ptr, line_ptr,
13201 & elf_tdata (abfd)->dwarf2_find_line_info);
13202 return found;
13203 }
13204
13205 \f
13206 /* When are writing out the .options or .MIPS.options section,
13207 remember the bytes we are writing out, so that we can install the
13208 GP value in the section_processing routine. */
13209
13210 bfd_boolean
13211 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13212 const void *location,
13213 file_ptr offset, bfd_size_type count)
13214 {
13215 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13216 {
13217 bfd_byte *c;
13218
13219 if (elf_section_data (section) == NULL)
13220 {
13221 size_t amt = sizeof (struct bfd_elf_section_data);
13222 section->used_by_bfd = bfd_zalloc (abfd, amt);
13223 if (elf_section_data (section) == NULL)
13224 return FALSE;
13225 }
13226 c = mips_elf_section_data (section)->u.tdata;
13227 if (c == NULL)
13228 {
13229 c = bfd_zalloc (abfd, section->size);
13230 if (c == NULL)
13231 return FALSE;
13232 mips_elf_section_data (section)->u.tdata = c;
13233 }
13234
13235 memcpy (c + offset, location, count);
13236 }
13237
13238 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13239 count);
13240 }
13241
13242 /* This is almost identical to bfd_generic_get_... except that some
13243 MIPS relocations need to be handled specially. Sigh. */
13244
13245 bfd_byte *
13246 _bfd_elf_mips_get_relocated_section_contents
13247 (bfd *abfd,
13248 struct bfd_link_info *link_info,
13249 struct bfd_link_order *link_order,
13250 bfd_byte *data,
13251 bfd_boolean relocatable,
13252 asymbol **symbols)
13253 {
13254 /* Get enough memory to hold the stuff */
13255 bfd *input_bfd = link_order->u.indirect.section->owner;
13256 asection *input_section = link_order->u.indirect.section;
13257 bfd_size_type sz;
13258
13259 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13260 arelent **reloc_vector = NULL;
13261 long reloc_count;
13262
13263 if (reloc_size < 0)
13264 goto error_return;
13265
13266 reloc_vector = bfd_malloc (reloc_size);
13267 if (reloc_vector == NULL && reloc_size != 0)
13268 goto error_return;
13269
13270 /* read in the section */
13271 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13272 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13273 goto error_return;
13274
13275 reloc_count = bfd_canonicalize_reloc (input_bfd,
13276 input_section,
13277 reloc_vector,
13278 symbols);
13279 if (reloc_count < 0)
13280 goto error_return;
13281
13282 if (reloc_count > 0)
13283 {
13284 arelent **parent;
13285 /* for mips */
13286 int gp_found;
13287 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13288
13289 {
13290 struct bfd_hash_entry *h;
13291 struct bfd_link_hash_entry *lh;
13292 /* Skip all this stuff if we aren't mixing formats. */
13293 if (abfd && input_bfd
13294 && abfd->xvec == input_bfd->xvec)
13295 lh = 0;
13296 else
13297 {
13298 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13299 lh = (struct bfd_link_hash_entry *) h;
13300 }
13301 lookup:
13302 if (lh)
13303 {
13304 switch (lh->type)
13305 {
13306 case bfd_link_hash_undefined:
13307 case bfd_link_hash_undefweak:
13308 case bfd_link_hash_common:
13309 gp_found = 0;
13310 break;
13311 case bfd_link_hash_defined:
13312 case bfd_link_hash_defweak:
13313 gp_found = 1;
13314 gp = lh->u.def.value;
13315 break;
13316 case bfd_link_hash_indirect:
13317 case bfd_link_hash_warning:
13318 lh = lh->u.i.link;
13319 /* @@FIXME ignoring warning for now */
13320 goto lookup;
13321 case bfd_link_hash_new:
13322 default:
13323 abort ();
13324 }
13325 }
13326 else
13327 gp_found = 0;
13328 }
13329 /* end mips */
13330 for (parent = reloc_vector; *parent != NULL; parent++)
13331 {
13332 char *error_message = NULL;
13333 bfd_reloc_status_type r;
13334
13335 /* Specific to MIPS: Deal with relocation types that require
13336 knowing the gp of the output bfd. */
13337 asymbol *sym = *(*parent)->sym_ptr_ptr;
13338
13339 /* If we've managed to find the gp and have a special
13340 function for the relocation then go ahead, else default
13341 to the generic handling. */
13342 if (gp_found
13343 && (*parent)->howto->special_function
13344 == _bfd_mips_elf32_gprel16_reloc)
13345 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13346 input_section, relocatable,
13347 data, gp);
13348 else
13349 r = bfd_perform_relocation (input_bfd, *parent, data,
13350 input_section,
13351 relocatable ? abfd : NULL,
13352 &error_message);
13353
13354 if (relocatable)
13355 {
13356 asection *os = input_section->output_section;
13357
13358 /* A partial link, so keep the relocs */
13359 os->orelocation[os->reloc_count] = *parent;
13360 os->reloc_count++;
13361 }
13362
13363 if (r != bfd_reloc_ok)
13364 {
13365 switch (r)
13366 {
13367 case bfd_reloc_undefined:
13368 (*link_info->callbacks->undefined_symbol)
13369 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13370 input_bfd, input_section, (*parent)->address, TRUE);
13371 break;
13372 case bfd_reloc_dangerous:
13373 BFD_ASSERT (error_message != NULL);
13374 (*link_info->callbacks->reloc_dangerous)
13375 (link_info, error_message,
13376 input_bfd, input_section, (*parent)->address);
13377 break;
13378 case bfd_reloc_overflow:
13379 (*link_info->callbacks->reloc_overflow)
13380 (link_info, NULL,
13381 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13382 (*parent)->howto->name, (*parent)->addend,
13383 input_bfd, input_section, (*parent)->address);
13384 break;
13385 case bfd_reloc_outofrange:
13386 default:
13387 abort ();
13388 break;
13389 }
13390
13391 }
13392 }
13393 }
13394 if (reloc_vector != NULL)
13395 free (reloc_vector);
13396 return data;
13397
13398 error_return:
13399 if (reloc_vector != NULL)
13400 free (reloc_vector);
13401 return NULL;
13402 }
13403 \f
13404 static bfd_boolean
13405 mips_elf_relax_delete_bytes (bfd *abfd,
13406 asection *sec, bfd_vma addr, int count)
13407 {
13408 Elf_Internal_Shdr *symtab_hdr;
13409 unsigned int sec_shndx;
13410 bfd_byte *contents;
13411 Elf_Internal_Rela *irel, *irelend;
13412 Elf_Internal_Sym *isym;
13413 Elf_Internal_Sym *isymend;
13414 struct elf_link_hash_entry **sym_hashes;
13415 struct elf_link_hash_entry **end_hashes;
13416 struct elf_link_hash_entry **start_hashes;
13417 unsigned int symcount;
13418
13419 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13420 contents = elf_section_data (sec)->this_hdr.contents;
13421
13422 irel = elf_section_data (sec)->relocs;
13423 irelend = irel + sec->reloc_count;
13424
13425 /* Actually delete the bytes. */
13426 memmove (contents + addr, contents + addr + count,
13427 (size_t) (sec->size - addr - count));
13428 sec->size -= count;
13429
13430 /* Adjust all the relocs. */
13431 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13432 {
13433 /* Get the new reloc address. */
13434 if (irel->r_offset > addr)
13435 irel->r_offset -= count;
13436 }
13437
13438 BFD_ASSERT (addr % 2 == 0);
13439 BFD_ASSERT (count % 2 == 0);
13440
13441 /* Adjust the local symbols defined in this section. */
13442 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13443 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13444 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13445 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13446 isym->st_value -= count;
13447
13448 /* Now adjust the global symbols defined in this section. */
13449 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13450 - symtab_hdr->sh_info);
13451 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13452 end_hashes = sym_hashes + symcount;
13453
13454 for (; sym_hashes < end_hashes; sym_hashes++)
13455 {
13456 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13457
13458 if ((sym_hash->root.type == bfd_link_hash_defined
13459 || sym_hash->root.type == bfd_link_hash_defweak)
13460 && sym_hash->root.u.def.section == sec)
13461 {
13462 bfd_vma value = sym_hash->root.u.def.value;
13463
13464 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13465 value &= MINUS_TWO;
13466 if (value > addr)
13467 sym_hash->root.u.def.value -= count;
13468 }
13469 }
13470
13471 return TRUE;
13472 }
13473
13474
13475 /* Opcodes needed for microMIPS relaxation as found in
13476 opcodes/micromips-opc.c. */
13477
13478 struct opcode_descriptor {
13479 unsigned long match;
13480 unsigned long mask;
13481 };
13482
13483 /* The $ra register aka $31. */
13484
13485 #define RA 31
13486
13487 /* 32-bit instruction format register fields. */
13488
13489 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13490 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13491
13492 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13493
13494 #define OP16_VALID_REG(r) \
13495 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13496
13497
13498 /* 32-bit and 16-bit branches. */
13499
13500 static const struct opcode_descriptor b_insns_32[] = {
13501 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13502 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13503 { 0, 0 } /* End marker for find_match(). */
13504 };
13505
13506 static const struct opcode_descriptor bc_insn_32 =
13507 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13508
13509 static const struct opcode_descriptor bz_insn_32 =
13510 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13511
13512 static const struct opcode_descriptor bzal_insn_32 =
13513 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13514
13515 static const struct opcode_descriptor beq_insn_32 =
13516 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13517
13518 static const struct opcode_descriptor b_insn_16 =
13519 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13520
13521 static const struct opcode_descriptor bz_insn_16 =
13522 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13523
13524
13525 /* 32-bit and 16-bit branch EQ and NE zero. */
13526
13527 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13528 eq and second the ne. This convention is used when replacing a
13529 32-bit BEQ/BNE with the 16-bit version. */
13530
13531 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13532
13533 static const struct opcode_descriptor bz_rs_insns_32[] = {
13534 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13535 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13536 { 0, 0 } /* End marker for find_match(). */
13537 };
13538
13539 static const struct opcode_descriptor bz_rt_insns_32[] = {
13540 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13541 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13542 { 0, 0 } /* End marker for find_match(). */
13543 };
13544
13545 static const struct opcode_descriptor bzc_insns_32[] = {
13546 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13547 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13548 { 0, 0 } /* End marker for find_match(). */
13549 };
13550
13551 static const struct opcode_descriptor bz_insns_16[] = {
13552 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13553 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13554 { 0, 0 } /* End marker for find_match(). */
13555 };
13556
13557 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13558
13559 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13560 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13561
13562
13563 /* 32-bit instructions with a delay slot. */
13564
13565 static const struct opcode_descriptor jal_insn_32_bd16 =
13566 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13567
13568 static const struct opcode_descriptor jal_insn_32_bd32 =
13569 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13570
13571 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13572 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13573
13574 static const struct opcode_descriptor j_insn_32 =
13575 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13576
13577 static const struct opcode_descriptor jalr_insn_32 =
13578 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13579
13580 /* This table can be compacted, because no opcode replacement is made. */
13581
13582 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13583 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13584
13585 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13586 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13587
13588 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13589 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13590 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13591 { 0, 0 } /* End marker for find_match(). */
13592 };
13593
13594 /* This table can be compacted, because no opcode replacement is made. */
13595
13596 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13597 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13598
13599 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13600 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13601 { 0, 0 } /* End marker for find_match(). */
13602 };
13603
13604
13605 /* 16-bit instructions with a delay slot. */
13606
13607 static const struct opcode_descriptor jalr_insn_16_bd16 =
13608 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13609
13610 static const struct opcode_descriptor jalr_insn_16_bd32 =
13611 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13612
13613 static const struct opcode_descriptor jr_insn_16 =
13614 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13615
13616 #define JR16_REG(opcode) ((opcode) & 0x1f)
13617
13618 /* This table can be compacted, because no opcode replacement is made. */
13619
13620 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13621 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13622
13623 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13624 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13625 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13626 { 0, 0 } /* End marker for find_match(). */
13627 };
13628
13629
13630 /* LUI instruction. */
13631
13632 static const struct opcode_descriptor lui_insn =
13633 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13634
13635
13636 /* ADDIU instruction. */
13637
13638 static const struct opcode_descriptor addiu_insn =
13639 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13640
13641 static const struct opcode_descriptor addiupc_insn =
13642 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13643
13644 #define ADDIUPC_REG_FIELD(r) \
13645 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13646
13647
13648 /* Relaxable instructions in a JAL delay slot: MOVE. */
13649
13650 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13651 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13652 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13653 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13654
13655 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13656 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13657
13658 static const struct opcode_descriptor move_insns_32[] = {
13659 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13660 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13661 { 0, 0 } /* End marker for find_match(). */
13662 };
13663
13664 static const struct opcode_descriptor move_insn_16 =
13665 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13666
13667
13668 /* NOP instructions. */
13669
13670 static const struct opcode_descriptor nop_insn_32 =
13671 { /* "nop", "", */ 0x00000000, 0xffffffff };
13672
13673 static const struct opcode_descriptor nop_insn_16 =
13674 { /* "nop", "", */ 0x0c00, 0xffff };
13675
13676
13677 /* Instruction match support. */
13678
13679 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13680
13681 static int
13682 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13683 {
13684 unsigned long indx;
13685
13686 for (indx = 0; insn[indx].mask != 0; indx++)
13687 if (MATCH (opcode, insn[indx]))
13688 return indx;
13689
13690 return -1;
13691 }
13692
13693
13694 /* Branch and delay slot decoding support. */
13695
13696 /* If PTR points to what *might* be a 16-bit branch or jump, then
13697 return the minimum length of its delay slot, otherwise return 0.
13698 Non-zero results are not definitive as we might be checking against
13699 the second half of another instruction. */
13700
13701 static int
13702 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13703 {
13704 unsigned long opcode;
13705 int bdsize;
13706
13707 opcode = bfd_get_16 (abfd, ptr);
13708 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13709 /* 16-bit branch/jump with a 32-bit delay slot. */
13710 bdsize = 4;
13711 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13712 || find_match (opcode, ds_insns_16_bd16) >= 0)
13713 /* 16-bit branch/jump with a 16-bit delay slot. */
13714 bdsize = 2;
13715 else
13716 /* No delay slot. */
13717 bdsize = 0;
13718
13719 return bdsize;
13720 }
13721
13722 /* If PTR points to what *might* be a 32-bit branch or jump, then
13723 return the minimum length of its delay slot, otherwise return 0.
13724 Non-zero results are not definitive as we might be checking against
13725 the second half of another instruction. */
13726
13727 static int
13728 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13729 {
13730 unsigned long opcode;
13731 int bdsize;
13732
13733 opcode = bfd_get_micromips_32 (abfd, ptr);
13734 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13735 /* 32-bit branch/jump with a 32-bit delay slot. */
13736 bdsize = 4;
13737 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13738 /* 32-bit branch/jump with a 16-bit delay slot. */
13739 bdsize = 2;
13740 else
13741 /* No delay slot. */
13742 bdsize = 0;
13743
13744 return bdsize;
13745 }
13746
13747 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13748 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13749
13750 static bfd_boolean
13751 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13752 {
13753 unsigned long opcode;
13754
13755 opcode = bfd_get_16 (abfd, ptr);
13756 if (MATCH (opcode, b_insn_16)
13757 /* B16 */
13758 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13759 /* JR16 */
13760 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13761 /* BEQZ16, BNEZ16 */
13762 || (MATCH (opcode, jalr_insn_16_bd32)
13763 /* JALR16 */
13764 && reg != JR16_REG (opcode) && reg != RA))
13765 return TRUE;
13766
13767 return FALSE;
13768 }
13769
13770 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13771 then return TRUE, otherwise FALSE. */
13772
13773 static bfd_boolean
13774 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13775 {
13776 unsigned long opcode;
13777
13778 opcode = bfd_get_micromips_32 (abfd, ptr);
13779 if (MATCH (opcode, j_insn_32)
13780 /* J */
13781 || MATCH (opcode, bc_insn_32)
13782 /* BC1F, BC1T, BC2F, BC2T */
13783 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13784 /* JAL, JALX */
13785 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13786 /* BGEZ, BGTZ, BLEZ, BLTZ */
13787 || (MATCH (opcode, bzal_insn_32)
13788 /* BGEZAL, BLTZAL */
13789 && reg != OP32_SREG (opcode) && reg != RA)
13790 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13791 /* JALR, JALR.HB, BEQ, BNE */
13792 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13793 return TRUE;
13794
13795 return FALSE;
13796 }
13797
13798 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13799 IRELEND) at OFFSET indicate that there must be a compact branch there,
13800 then return TRUE, otherwise FALSE. */
13801
13802 static bfd_boolean
13803 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13804 const Elf_Internal_Rela *internal_relocs,
13805 const Elf_Internal_Rela *irelend)
13806 {
13807 const Elf_Internal_Rela *irel;
13808 unsigned long opcode;
13809
13810 opcode = bfd_get_micromips_32 (abfd, ptr);
13811 if (find_match (opcode, bzc_insns_32) < 0)
13812 return FALSE;
13813
13814 for (irel = internal_relocs; irel < irelend; irel++)
13815 if (irel->r_offset == offset
13816 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13817 return TRUE;
13818
13819 return FALSE;
13820 }
13821
13822 /* Bitsize checking. */
13823 #define IS_BITSIZE(val, N) \
13824 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13825 - (1ULL << ((N) - 1))) == (val))
13826
13827 \f
13828 bfd_boolean
13829 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13830 struct bfd_link_info *link_info,
13831 bfd_boolean *again)
13832 {
13833 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13834 Elf_Internal_Shdr *symtab_hdr;
13835 Elf_Internal_Rela *internal_relocs;
13836 Elf_Internal_Rela *irel, *irelend;
13837 bfd_byte *contents = NULL;
13838 Elf_Internal_Sym *isymbuf = NULL;
13839
13840 /* Assume nothing changes. */
13841 *again = FALSE;
13842
13843 /* We don't have to do anything for a relocatable link, if
13844 this section does not have relocs, or if this is not a
13845 code section. */
13846
13847 if (bfd_link_relocatable (link_info)
13848 || (sec->flags & SEC_RELOC) == 0
13849 || sec->reloc_count == 0
13850 || (sec->flags & SEC_CODE) == 0)
13851 return TRUE;
13852
13853 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13854
13855 /* Get a copy of the native relocations. */
13856 internal_relocs = (_bfd_elf_link_read_relocs
13857 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13858 link_info->keep_memory));
13859 if (internal_relocs == NULL)
13860 goto error_return;
13861
13862 /* Walk through them looking for relaxing opportunities. */
13863 irelend = internal_relocs + sec->reloc_count;
13864 for (irel = internal_relocs; irel < irelend; irel++)
13865 {
13866 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13867 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13868 bfd_boolean target_is_micromips_code_p;
13869 unsigned long opcode;
13870 bfd_vma symval;
13871 bfd_vma pcrval;
13872 bfd_byte *ptr;
13873 int fndopc;
13874
13875 /* The number of bytes to delete for relaxation and from where
13876 to delete these bytes starting at irel->r_offset. */
13877 int delcnt = 0;
13878 int deloff = 0;
13879
13880 /* If this isn't something that can be relaxed, then ignore
13881 this reloc. */
13882 if (r_type != R_MICROMIPS_HI16
13883 && r_type != R_MICROMIPS_PC16_S1
13884 && r_type != R_MICROMIPS_26_S1)
13885 continue;
13886
13887 /* Get the section contents if we haven't done so already. */
13888 if (contents == NULL)
13889 {
13890 /* Get cached copy if it exists. */
13891 if (elf_section_data (sec)->this_hdr.contents != NULL)
13892 contents = elf_section_data (sec)->this_hdr.contents;
13893 /* Go get them off disk. */
13894 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13895 goto error_return;
13896 }
13897 ptr = contents + irel->r_offset;
13898
13899 /* Read this BFD's local symbols if we haven't done so already. */
13900 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13901 {
13902 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13903 if (isymbuf == NULL)
13904 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13905 symtab_hdr->sh_info, 0,
13906 NULL, NULL, NULL);
13907 if (isymbuf == NULL)
13908 goto error_return;
13909 }
13910
13911 /* Get the value of the symbol referred to by the reloc. */
13912 if (r_symndx < symtab_hdr->sh_info)
13913 {
13914 /* A local symbol. */
13915 Elf_Internal_Sym *isym;
13916 asection *sym_sec;
13917
13918 isym = isymbuf + r_symndx;
13919 if (isym->st_shndx == SHN_UNDEF)
13920 sym_sec = bfd_und_section_ptr;
13921 else if (isym->st_shndx == SHN_ABS)
13922 sym_sec = bfd_abs_section_ptr;
13923 else if (isym->st_shndx == SHN_COMMON)
13924 sym_sec = bfd_com_section_ptr;
13925 else
13926 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13927 symval = (isym->st_value
13928 + sym_sec->output_section->vma
13929 + sym_sec->output_offset);
13930 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13931 }
13932 else
13933 {
13934 unsigned long indx;
13935 struct elf_link_hash_entry *h;
13936
13937 /* An external symbol. */
13938 indx = r_symndx - symtab_hdr->sh_info;
13939 h = elf_sym_hashes (abfd)[indx];
13940 BFD_ASSERT (h != NULL);
13941
13942 if (h->root.type != bfd_link_hash_defined
13943 && h->root.type != bfd_link_hash_defweak)
13944 /* This appears to be a reference to an undefined
13945 symbol. Just ignore it -- it will be caught by the
13946 regular reloc processing. */
13947 continue;
13948
13949 symval = (h->root.u.def.value
13950 + h->root.u.def.section->output_section->vma
13951 + h->root.u.def.section->output_offset);
13952 target_is_micromips_code_p = (!h->needs_plt
13953 && ELF_ST_IS_MICROMIPS (h->other));
13954 }
13955
13956
13957 /* For simplicity of coding, we are going to modify the
13958 section contents, the section relocs, and the BFD symbol
13959 table. We must tell the rest of the code not to free up this
13960 information. It would be possible to instead create a table
13961 of changes which have to be made, as is done in coff-mips.c;
13962 that would be more work, but would require less memory when
13963 the linker is run. */
13964
13965 /* Only 32-bit instructions relaxed. */
13966 if (irel->r_offset + 4 > sec->size)
13967 continue;
13968
13969 opcode = bfd_get_micromips_32 (abfd, ptr);
13970
13971 /* This is the pc-relative distance from the instruction the
13972 relocation is applied to, to the symbol referred. */
13973 pcrval = (symval
13974 - (sec->output_section->vma + sec->output_offset)
13975 - irel->r_offset);
13976
13977 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13978 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13979 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13980
13981 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13982
13983 where pcrval has first to be adjusted to apply against the LO16
13984 location (we make the adjustment later on, when we have figured
13985 out the offset). */
13986 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13987 {
13988 bfd_boolean bzc = FALSE;
13989 unsigned long nextopc;
13990 unsigned long reg;
13991 bfd_vma offset;
13992
13993 /* Give up if the previous reloc was a HI16 against this symbol
13994 too. */
13995 if (irel > internal_relocs
13996 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13997 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13998 continue;
13999
14000 /* Or if the next reloc is not a LO16 against this symbol. */
14001 if (irel + 1 >= irelend
14002 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
14003 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
14004 continue;
14005
14006 /* Or if the second next reloc is a LO16 against this symbol too. */
14007 if (irel + 2 >= irelend
14008 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
14009 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
14010 continue;
14011
14012 /* See if the LUI instruction *might* be in a branch delay slot.
14013 We check whether what looks like a 16-bit branch or jump is
14014 actually an immediate argument to a compact branch, and let
14015 it through if so. */
14016 if (irel->r_offset >= 2
14017 && check_br16_dslot (abfd, ptr - 2)
14018 && !(irel->r_offset >= 4
14019 && (bzc = check_relocated_bzc (abfd,
14020 ptr - 4, irel->r_offset - 4,
14021 internal_relocs, irelend))))
14022 continue;
14023 if (irel->r_offset >= 4
14024 && !bzc
14025 && check_br32_dslot (abfd, ptr - 4))
14026 continue;
14027
14028 reg = OP32_SREG (opcode);
14029
14030 /* We only relax adjacent instructions or ones separated with
14031 a branch or jump that has a delay slot. The branch or jump
14032 must not fiddle with the register used to hold the address.
14033 Subtract 4 for the LUI itself. */
14034 offset = irel[1].r_offset - irel[0].r_offset;
14035 switch (offset - 4)
14036 {
14037 case 0:
14038 break;
14039 case 2:
14040 if (check_br16 (abfd, ptr + 4, reg))
14041 break;
14042 continue;
14043 case 4:
14044 if (check_br32 (abfd, ptr + 4, reg))
14045 break;
14046 continue;
14047 default:
14048 continue;
14049 }
14050
14051 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
14052
14053 /* Give up unless the same register is used with both
14054 relocations. */
14055 if (OP32_SREG (nextopc) != reg)
14056 continue;
14057
14058 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14059 and rounding up to take masking of the two LSBs into account. */
14060 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14061
14062 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14063 if (IS_BITSIZE (symval, 16))
14064 {
14065 /* Fix the relocation's type. */
14066 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14067
14068 /* Instructions using R_MICROMIPS_LO16 have the base or
14069 source register in bits 20:16. This register becomes $0
14070 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14071 nextopc &= ~0x001f0000;
14072 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14073 contents + irel[1].r_offset);
14074 }
14075
14076 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14077 We add 4 to take LUI deletion into account while checking
14078 the PC-relative distance. */
14079 else if (symval % 4 == 0
14080 && IS_BITSIZE (pcrval + 4, 25)
14081 && MATCH (nextopc, addiu_insn)
14082 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14083 && OP16_VALID_REG (OP32_TREG (nextopc)))
14084 {
14085 /* Fix the relocation's type. */
14086 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14087
14088 /* Replace ADDIU with the ADDIUPC version. */
14089 nextopc = (addiupc_insn.match
14090 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14091
14092 bfd_put_micromips_32 (abfd, nextopc,
14093 contents + irel[1].r_offset);
14094 }
14095
14096 /* Can't do anything, give up, sigh... */
14097 else
14098 continue;
14099
14100 /* Fix the relocation's type. */
14101 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14102
14103 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14104 delcnt = 4;
14105 deloff = 0;
14106 }
14107
14108 /* Compact branch relaxation -- due to the multitude of macros
14109 employed by the compiler/assembler, compact branches are not
14110 always generated. Obviously, this can/will be fixed elsewhere,
14111 but there is no drawback in double checking it here. */
14112 else if (r_type == R_MICROMIPS_PC16_S1
14113 && irel->r_offset + 5 < sec->size
14114 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14115 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14116 && ((!insn32
14117 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14118 nop_insn_16) ? 2 : 0))
14119 || (irel->r_offset + 7 < sec->size
14120 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14121 ptr + 4),
14122 nop_insn_32) ? 4 : 0))))
14123 {
14124 unsigned long reg;
14125
14126 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14127
14128 /* Replace BEQZ/BNEZ with the compact version. */
14129 opcode = (bzc_insns_32[fndopc].match
14130 | BZC32_REG_FIELD (reg)
14131 | (opcode & 0xffff)); /* Addend value. */
14132
14133 bfd_put_micromips_32 (abfd, opcode, ptr);
14134
14135 /* Delete the delay slot NOP: two or four bytes from
14136 irel->offset + 4; delcnt has already been set above. */
14137 deloff = 4;
14138 }
14139
14140 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14141 to check the distance from the next instruction, so subtract 2. */
14142 else if (!insn32
14143 && r_type == R_MICROMIPS_PC16_S1
14144 && IS_BITSIZE (pcrval - 2, 11)
14145 && find_match (opcode, b_insns_32) >= 0)
14146 {
14147 /* Fix the relocation's type. */
14148 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14149
14150 /* Replace the 32-bit opcode with a 16-bit opcode. */
14151 bfd_put_16 (abfd,
14152 (b_insn_16.match
14153 | (opcode & 0x3ff)), /* Addend value. */
14154 ptr);
14155
14156 /* Delete 2 bytes from irel->r_offset + 2. */
14157 delcnt = 2;
14158 deloff = 2;
14159 }
14160
14161 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14162 to check the distance from the next instruction, so subtract 2. */
14163 else if (!insn32
14164 && r_type == R_MICROMIPS_PC16_S1
14165 && IS_BITSIZE (pcrval - 2, 8)
14166 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14167 && OP16_VALID_REG (OP32_SREG (opcode)))
14168 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14169 && OP16_VALID_REG (OP32_TREG (opcode)))))
14170 {
14171 unsigned long reg;
14172
14173 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14174
14175 /* Fix the relocation's type. */
14176 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14177
14178 /* Replace the 32-bit opcode with a 16-bit opcode. */
14179 bfd_put_16 (abfd,
14180 (bz_insns_16[fndopc].match
14181 | BZ16_REG_FIELD (reg)
14182 | (opcode & 0x7f)), /* Addend value. */
14183 ptr);
14184
14185 /* Delete 2 bytes from irel->r_offset + 2. */
14186 delcnt = 2;
14187 deloff = 2;
14188 }
14189
14190 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14191 else if (!insn32
14192 && r_type == R_MICROMIPS_26_S1
14193 && target_is_micromips_code_p
14194 && irel->r_offset + 7 < sec->size
14195 && MATCH (opcode, jal_insn_32_bd32))
14196 {
14197 unsigned long n32opc;
14198 bfd_boolean relaxed = FALSE;
14199
14200 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14201
14202 if (MATCH (n32opc, nop_insn_32))
14203 {
14204 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14205 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14206
14207 relaxed = TRUE;
14208 }
14209 else if (find_match (n32opc, move_insns_32) >= 0)
14210 {
14211 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14212 bfd_put_16 (abfd,
14213 (move_insn_16.match
14214 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14215 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14216 ptr + 4);
14217
14218 relaxed = TRUE;
14219 }
14220 /* Other 32-bit instructions relaxable to 16-bit
14221 instructions will be handled here later. */
14222
14223 if (relaxed)
14224 {
14225 /* JAL with 32-bit delay slot that is changed to a JALS
14226 with 16-bit delay slot. */
14227 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14228
14229 /* Delete 2 bytes from irel->r_offset + 6. */
14230 delcnt = 2;
14231 deloff = 6;
14232 }
14233 }
14234
14235 if (delcnt != 0)
14236 {
14237 /* Note that we've changed the relocs, section contents, etc. */
14238 elf_section_data (sec)->relocs = internal_relocs;
14239 elf_section_data (sec)->this_hdr.contents = contents;
14240 symtab_hdr->contents = (unsigned char *) isymbuf;
14241
14242 /* Delete bytes depending on the delcnt and deloff. */
14243 if (!mips_elf_relax_delete_bytes (abfd, sec,
14244 irel->r_offset + deloff, delcnt))
14245 goto error_return;
14246
14247 /* That will change things, so we should relax again.
14248 Note that this is not required, and it may be slow. */
14249 *again = TRUE;
14250 }
14251 }
14252
14253 if (isymbuf != NULL
14254 && symtab_hdr->contents != (unsigned char *) isymbuf)
14255 {
14256 if (! link_info->keep_memory)
14257 free (isymbuf);
14258 else
14259 {
14260 /* Cache the symbols for elf_link_input_bfd. */
14261 symtab_hdr->contents = (unsigned char *) isymbuf;
14262 }
14263 }
14264
14265 if (contents != NULL
14266 && elf_section_data (sec)->this_hdr.contents != contents)
14267 {
14268 if (! link_info->keep_memory)
14269 free (contents);
14270 else
14271 {
14272 /* Cache the section contents for elf_link_input_bfd. */
14273 elf_section_data (sec)->this_hdr.contents = contents;
14274 }
14275 }
14276
14277 if (internal_relocs != NULL
14278 && elf_section_data (sec)->relocs != internal_relocs)
14279 free (internal_relocs);
14280
14281 return TRUE;
14282
14283 error_return:
14284 if (isymbuf != NULL
14285 && symtab_hdr->contents != (unsigned char *) isymbuf)
14286 free (isymbuf);
14287 if (contents != NULL
14288 && elf_section_data (sec)->this_hdr.contents != contents)
14289 free (contents);
14290 if (internal_relocs != NULL
14291 && elf_section_data (sec)->relocs != internal_relocs)
14292 free (internal_relocs);
14293
14294 return FALSE;
14295 }
14296 \f
14297 /* Create a MIPS ELF linker hash table. */
14298
14299 struct bfd_link_hash_table *
14300 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14301 {
14302 struct mips_elf_link_hash_table *ret;
14303 size_t amt = sizeof (struct mips_elf_link_hash_table);
14304
14305 ret = bfd_zmalloc (amt);
14306 if (ret == NULL)
14307 return NULL;
14308
14309 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14310 mips_elf_link_hash_newfunc,
14311 sizeof (struct mips_elf_link_hash_entry),
14312 MIPS_ELF_DATA))
14313 {
14314 free (ret);
14315 return NULL;
14316 }
14317 ret->root.init_plt_refcount.plist = NULL;
14318 ret->root.init_plt_offset.plist = NULL;
14319
14320 return &ret->root.root;
14321 }
14322
14323 /* Likewise, but indicate that the target is VxWorks. */
14324
14325 struct bfd_link_hash_table *
14326 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14327 {
14328 struct bfd_link_hash_table *ret;
14329
14330 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14331 if (ret)
14332 {
14333 struct mips_elf_link_hash_table *htab;
14334
14335 htab = (struct mips_elf_link_hash_table *) ret;
14336 htab->use_plts_and_copy_relocs = TRUE;
14337 htab->is_vxworks = TRUE;
14338 }
14339 return ret;
14340 }
14341
14342 /* A function that the linker calls if we are allowed to use PLTs
14343 and copy relocs. */
14344
14345 void
14346 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14347 {
14348 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14349 }
14350
14351 /* A function that the linker calls to select between all or only
14352 32-bit microMIPS instructions, and between making or ignoring
14353 branch relocation checks for invalid transitions between ISA modes.
14354 Also record whether we have been configured for a GNU target. */
14355
14356 void
14357 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14358 bfd_boolean ignore_branch_isa,
14359 bfd_boolean gnu_target)
14360 {
14361 mips_elf_hash_table (info)->insn32 = insn32;
14362 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14363 mips_elf_hash_table (info)->gnu_target = gnu_target;
14364 }
14365
14366 /* A function that the linker calls to enable use of compact branches in
14367 linker generated code for MIPSR6. */
14368
14369 void
14370 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14371 {
14372 mips_elf_hash_table (info)->compact_branches = on;
14373 }
14374
14375 \f
14376 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14377
14378 struct mips_mach_extension
14379 {
14380 unsigned long extension, base;
14381 };
14382
14383
14384 /* An array describing how BFD machines relate to one another. The entries
14385 are ordered topologically with MIPS I extensions listed last. */
14386
14387 static const struct mips_mach_extension mips_mach_extensions[] =
14388 {
14389 /* MIPS64r2 extensions. */
14390 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14391 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14392 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14393 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14394 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14395 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14396 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14397
14398 /* MIPS64 extensions. */
14399 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14400 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14401 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14402
14403 /* MIPS V extensions. */
14404 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14405
14406 /* R10000 extensions. */
14407 { bfd_mach_mips12000, bfd_mach_mips10000 },
14408 { bfd_mach_mips14000, bfd_mach_mips10000 },
14409 { bfd_mach_mips16000, bfd_mach_mips10000 },
14410
14411 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14412 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14413 better to allow vr5400 and vr5500 code to be merged anyway, since
14414 many libraries will just use the core ISA. Perhaps we could add
14415 some sort of ASE flag if this ever proves a problem. */
14416 { bfd_mach_mips5500, bfd_mach_mips5400 },
14417 { bfd_mach_mips5400, bfd_mach_mips5000 },
14418
14419 /* MIPS IV extensions. */
14420 { bfd_mach_mips5, bfd_mach_mips8000 },
14421 { bfd_mach_mips10000, bfd_mach_mips8000 },
14422 { bfd_mach_mips5000, bfd_mach_mips8000 },
14423 { bfd_mach_mips7000, bfd_mach_mips8000 },
14424 { bfd_mach_mips9000, bfd_mach_mips8000 },
14425
14426 /* VR4100 extensions. */
14427 { bfd_mach_mips4120, bfd_mach_mips4100 },
14428 { bfd_mach_mips4111, bfd_mach_mips4100 },
14429
14430 /* MIPS III extensions. */
14431 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14432 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14433 { bfd_mach_mips8000, bfd_mach_mips4000 },
14434 { bfd_mach_mips4650, bfd_mach_mips4000 },
14435 { bfd_mach_mips4600, bfd_mach_mips4000 },
14436 { bfd_mach_mips4400, bfd_mach_mips4000 },
14437 { bfd_mach_mips4300, bfd_mach_mips4000 },
14438 { bfd_mach_mips4100, bfd_mach_mips4000 },
14439 { bfd_mach_mips5900, bfd_mach_mips4000 },
14440
14441 /* MIPS32r3 extensions. */
14442 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14443
14444 /* MIPS32r2 extensions. */
14445 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14446
14447 /* MIPS32 extensions. */
14448 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14449
14450 /* MIPS II extensions. */
14451 { bfd_mach_mips4000, bfd_mach_mips6000 },
14452 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14453 { bfd_mach_mips4010, bfd_mach_mips6000 },
14454
14455 /* MIPS I extensions. */
14456 { bfd_mach_mips6000, bfd_mach_mips3000 },
14457 { bfd_mach_mips3900, bfd_mach_mips3000 }
14458 };
14459
14460 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14461
14462 static bfd_boolean
14463 mips_mach_extends_p (unsigned long base, unsigned long extension)
14464 {
14465 size_t i;
14466
14467 if (extension == base)
14468 return TRUE;
14469
14470 if (base == bfd_mach_mipsisa32
14471 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14472 return TRUE;
14473
14474 if (base == bfd_mach_mipsisa32r2
14475 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14476 return TRUE;
14477
14478 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14479 if (extension == mips_mach_extensions[i].extension)
14480 {
14481 extension = mips_mach_extensions[i].base;
14482 if (extension == base)
14483 return TRUE;
14484 }
14485
14486 return FALSE;
14487 }
14488
14489 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14490
14491 static unsigned long
14492 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14493 {
14494 switch (isa_ext)
14495 {
14496 case AFL_EXT_3900: return bfd_mach_mips3900;
14497 case AFL_EXT_4010: return bfd_mach_mips4010;
14498 case AFL_EXT_4100: return bfd_mach_mips4100;
14499 case AFL_EXT_4111: return bfd_mach_mips4111;
14500 case AFL_EXT_4120: return bfd_mach_mips4120;
14501 case AFL_EXT_4650: return bfd_mach_mips4650;
14502 case AFL_EXT_5400: return bfd_mach_mips5400;
14503 case AFL_EXT_5500: return bfd_mach_mips5500;
14504 case AFL_EXT_5900: return bfd_mach_mips5900;
14505 case AFL_EXT_10000: return bfd_mach_mips10000;
14506 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14507 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14508 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14509 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14510 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14511 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14512 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14513 default: return bfd_mach_mips3000;
14514 }
14515 }
14516
14517 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14518
14519 unsigned int
14520 bfd_mips_isa_ext (bfd *abfd)
14521 {
14522 switch (bfd_get_mach (abfd))
14523 {
14524 case bfd_mach_mips3900: return AFL_EXT_3900;
14525 case bfd_mach_mips4010: return AFL_EXT_4010;
14526 case bfd_mach_mips4100: return AFL_EXT_4100;
14527 case bfd_mach_mips4111: return AFL_EXT_4111;
14528 case bfd_mach_mips4120: return AFL_EXT_4120;
14529 case bfd_mach_mips4650: return AFL_EXT_4650;
14530 case bfd_mach_mips5400: return AFL_EXT_5400;
14531 case bfd_mach_mips5500: return AFL_EXT_5500;
14532 case bfd_mach_mips5900: return AFL_EXT_5900;
14533 case bfd_mach_mips10000: return AFL_EXT_10000;
14534 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14535 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14536 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14537 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14538 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14539 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14540 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14541 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14542 case bfd_mach_mips_interaptiv_mr2:
14543 return AFL_EXT_INTERAPTIV_MR2;
14544 default: return 0;
14545 }
14546 }
14547
14548 /* Encode ISA level and revision as a single value. */
14549 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14550
14551 /* Decode a single value into level and revision. */
14552 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14553 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14554
14555 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14556
14557 static void
14558 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14559 {
14560 int new_isa = 0;
14561 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14562 {
14563 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14564 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14565 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14566 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14567 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14568 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14569 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14570 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14571 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14572 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14573 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14574 default:
14575 _bfd_error_handler
14576 /* xgettext:c-format */
14577 (_("%pB: unknown architecture %s"),
14578 abfd, bfd_printable_name (abfd));
14579 }
14580
14581 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14582 {
14583 abiflags->isa_level = ISA_LEVEL (new_isa);
14584 abiflags->isa_rev = ISA_REV (new_isa);
14585 }
14586
14587 /* Update the isa_ext if ABFD describes a further extension. */
14588 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14589 bfd_get_mach (abfd)))
14590 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14591 }
14592
14593 /* Return true if the given ELF header flags describe a 32-bit binary. */
14594
14595 static bfd_boolean
14596 mips_32bit_flags_p (flagword flags)
14597 {
14598 return ((flags & EF_MIPS_32BITMODE) != 0
14599 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14600 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14601 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14602 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14603 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14604 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14605 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14606 }
14607
14608 /* Infer the content of the ABI flags based on the elf header. */
14609
14610 static void
14611 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14612 {
14613 obj_attribute *in_attr;
14614
14615 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14616 update_mips_abiflags_isa (abfd, abiflags);
14617
14618 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14619 abiflags->gpr_size = AFL_REG_32;
14620 else
14621 abiflags->gpr_size = AFL_REG_64;
14622
14623 abiflags->cpr1_size = AFL_REG_NONE;
14624
14625 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14626 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14627
14628 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14629 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14630 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14631 && abiflags->gpr_size == AFL_REG_32))
14632 abiflags->cpr1_size = AFL_REG_32;
14633 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14634 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14635 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14636 abiflags->cpr1_size = AFL_REG_64;
14637
14638 abiflags->cpr2_size = AFL_REG_NONE;
14639
14640 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14641 abiflags->ases |= AFL_ASE_MDMX;
14642 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14643 abiflags->ases |= AFL_ASE_MIPS16;
14644 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14645 abiflags->ases |= AFL_ASE_MICROMIPS;
14646
14647 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14648 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14649 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14650 && abiflags->isa_level >= 32
14651 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14652 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14653 }
14654
14655 /* We need to use a special link routine to handle the .reginfo and
14656 the .mdebug sections. We need to merge all instances of these
14657 sections together, not write them all out sequentially. */
14658
14659 bfd_boolean
14660 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14661 {
14662 asection *o;
14663 struct bfd_link_order *p;
14664 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14665 asection *rtproc_sec, *abiflags_sec;
14666 Elf32_RegInfo reginfo;
14667 struct ecoff_debug_info debug;
14668 struct mips_htab_traverse_info hti;
14669 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14670 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14671 HDRR *symhdr = &debug.symbolic_header;
14672 void *mdebug_handle = NULL;
14673 asection *s;
14674 EXTR esym;
14675 unsigned int i;
14676 bfd_size_type amt;
14677 struct mips_elf_link_hash_table *htab;
14678
14679 static const char * const secname[] =
14680 {
14681 ".text", ".init", ".fini", ".data",
14682 ".rodata", ".sdata", ".sbss", ".bss"
14683 };
14684 static const int sc[] =
14685 {
14686 scText, scInit, scFini, scData,
14687 scRData, scSData, scSBss, scBss
14688 };
14689
14690 htab = mips_elf_hash_table (info);
14691 BFD_ASSERT (htab != NULL);
14692
14693 /* Sort the dynamic symbols so that those with GOT entries come after
14694 those without. */
14695 if (!mips_elf_sort_hash_table (abfd, info))
14696 return FALSE;
14697
14698 /* Create any scheduled LA25 stubs. */
14699 hti.info = info;
14700 hti.output_bfd = abfd;
14701 hti.error = FALSE;
14702 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14703 if (hti.error)
14704 return FALSE;
14705
14706 /* Get a value for the GP register. */
14707 if (elf_gp (abfd) == 0)
14708 {
14709 struct bfd_link_hash_entry *h;
14710
14711 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14712 if (h != NULL && h->type == bfd_link_hash_defined)
14713 elf_gp (abfd) = (h->u.def.value
14714 + h->u.def.section->output_section->vma
14715 + h->u.def.section->output_offset);
14716 else if (htab->is_vxworks
14717 && (h = bfd_link_hash_lookup (info->hash,
14718 "_GLOBAL_OFFSET_TABLE_",
14719 FALSE, FALSE, TRUE))
14720 && h->type == bfd_link_hash_defined)
14721 elf_gp (abfd) = (h->u.def.section->output_section->vma
14722 + h->u.def.section->output_offset
14723 + h->u.def.value);
14724 else if (bfd_link_relocatable (info))
14725 {
14726 bfd_vma lo = MINUS_ONE;
14727
14728 /* Find the GP-relative section with the lowest offset. */
14729 for (o = abfd->sections; o != NULL; o = o->next)
14730 if (o->vma < lo
14731 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14732 lo = o->vma;
14733
14734 /* And calculate GP relative to that. */
14735 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14736 }
14737 else
14738 {
14739 /* If the relocate_section function needs to do a reloc
14740 involving the GP value, it should make a reloc_dangerous
14741 callback to warn that GP is not defined. */
14742 }
14743 }
14744
14745 /* Go through the sections and collect the .reginfo and .mdebug
14746 information. */
14747 abiflags_sec = NULL;
14748 reginfo_sec = NULL;
14749 mdebug_sec = NULL;
14750 gptab_data_sec = NULL;
14751 gptab_bss_sec = NULL;
14752 for (o = abfd->sections; o != NULL; o = o->next)
14753 {
14754 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14755 {
14756 /* We have found the .MIPS.abiflags section in the output file.
14757 Look through all the link_orders comprising it and remove them.
14758 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14759 for (p = o->map_head.link_order; p != NULL; p = p->next)
14760 {
14761 asection *input_section;
14762
14763 if (p->type != bfd_indirect_link_order)
14764 {
14765 if (p->type == bfd_data_link_order)
14766 continue;
14767 abort ();
14768 }
14769
14770 input_section = p->u.indirect.section;
14771
14772 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14773 elf_link_input_bfd ignores this section. */
14774 input_section->flags &= ~SEC_HAS_CONTENTS;
14775 }
14776
14777 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14778 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14779
14780 /* Skip this section later on (I don't think this currently
14781 matters, but someday it might). */
14782 o->map_head.link_order = NULL;
14783
14784 abiflags_sec = o;
14785 }
14786
14787 if (strcmp (o->name, ".reginfo") == 0)
14788 {
14789 memset (&reginfo, 0, sizeof reginfo);
14790
14791 /* We have found the .reginfo section in the output file.
14792 Look through all the link_orders comprising it and merge
14793 the information together. */
14794 for (p = o->map_head.link_order; p != NULL; p = p->next)
14795 {
14796 asection *input_section;
14797 bfd *input_bfd;
14798 Elf32_External_RegInfo ext;
14799 Elf32_RegInfo sub;
14800 bfd_size_type sz;
14801
14802 if (p->type != bfd_indirect_link_order)
14803 {
14804 if (p->type == bfd_data_link_order)
14805 continue;
14806 abort ();
14807 }
14808
14809 input_section = p->u.indirect.section;
14810 input_bfd = input_section->owner;
14811
14812 sz = (input_section->size < sizeof (ext)
14813 ? input_section->size : sizeof (ext));
14814 memset (&ext, 0, sizeof (ext));
14815 if (! bfd_get_section_contents (input_bfd, input_section,
14816 &ext, 0, sz))
14817 return FALSE;
14818
14819 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14820
14821 reginfo.ri_gprmask |= sub.ri_gprmask;
14822 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14823 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14824 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14825 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14826
14827 /* ri_gp_value is set by the function
14828 `_bfd_mips_elf_section_processing' when the section is
14829 finally written out. */
14830
14831 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14832 elf_link_input_bfd ignores this section. */
14833 input_section->flags &= ~SEC_HAS_CONTENTS;
14834 }
14835
14836 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14837 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14838
14839 /* Skip this section later on (I don't think this currently
14840 matters, but someday it might). */
14841 o->map_head.link_order = NULL;
14842
14843 reginfo_sec = o;
14844 }
14845
14846 if (strcmp (o->name, ".mdebug") == 0)
14847 {
14848 struct extsym_info einfo;
14849 bfd_vma last;
14850
14851 /* We have found the .mdebug section in the output file.
14852 Look through all the link_orders comprising it and merge
14853 the information together. */
14854 symhdr->magic = swap->sym_magic;
14855 /* FIXME: What should the version stamp be? */
14856 symhdr->vstamp = 0;
14857 symhdr->ilineMax = 0;
14858 symhdr->cbLine = 0;
14859 symhdr->idnMax = 0;
14860 symhdr->ipdMax = 0;
14861 symhdr->isymMax = 0;
14862 symhdr->ioptMax = 0;
14863 symhdr->iauxMax = 0;
14864 symhdr->issMax = 0;
14865 symhdr->issExtMax = 0;
14866 symhdr->ifdMax = 0;
14867 symhdr->crfd = 0;
14868 symhdr->iextMax = 0;
14869
14870 /* We accumulate the debugging information itself in the
14871 debug_info structure. */
14872 debug.line = NULL;
14873 debug.external_dnr = NULL;
14874 debug.external_pdr = NULL;
14875 debug.external_sym = NULL;
14876 debug.external_opt = NULL;
14877 debug.external_aux = NULL;
14878 debug.ss = NULL;
14879 debug.ssext = debug.ssext_end = NULL;
14880 debug.external_fdr = NULL;
14881 debug.external_rfd = NULL;
14882 debug.external_ext = debug.external_ext_end = NULL;
14883
14884 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14885 if (mdebug_handle == NULL)
14886 return FALSE;
14887
14888 esym.jmptbl = 0;
14889 esym.cobol_main = 0;
14890 esym.weakext = 0;
14891 esym.reserved = 0;
14892 esym.ifd = ifdNil;
14893 esym.asym.iss = issNil;
14894 esym.asym.st = stLocal;
14895 esym.asym.reserved = 0;
14896 esym.asym.index = indexNil;
14897 last = 0;
14898 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14899 {
14900 esym.asym.sc = sc[i];
14901 s = bfd_get_section_by_name (abfd, secname[i]);
14902 if (s != NULL)
14903 {
14904 esym.asym.value = s->vma;
14905 last = s->vma + s->size;
14906 }
14907 else
14908 esym.asym.value = last;
14909 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14910 secname[i], &esym))
14911 return FALSE;
14912 }
14913
14914 for (p = o->map_head.link_order; p != NULL; p = p->next)
14915 {
14916 asection *input_section;
14917 bfd *input_bfd;
14918 const struct ecoff_debug_swap *input_swap;
14919 struct ecoff_debug_info input_debug;
14920 char *eraw_src;
14921 char *eraw_end;
14922
14923 if (p->type != bfd_indirect_link_order)
14924 {
14925 if (p->type == bfd_data_link_order)
14926 continue;
14927 abort ();
14928 }
14929
14930 input_section = p->u.indirect.section;
14931 input_bfd = input_section->owner;
14932
14933 if (!is_mips_elf (input_bfd))
14934 {
14935 /* I don't know what a non MIPS ELF bfd would be
14936 doing with a .mdebug section, but I don't really
14937 want to deal with it. */
14938 continue;
14939 }
14940
14941 input_swap = (get_elf_backend_data (input_bfd)
14942 ->elf_backend_ecoff_debug_swap);
14943
14944 BFD_ASSERT (p->size == input_section->size);
14945
14946 /* The ECOFF linking code expects that we have already
14947 read in the debugging information and set up an
14948 ecoff_debug_info structure, so we do that now. */
14949 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14950 &input_debug))
14951 return FALSE;
14952
14953 if (! (bfd_ecoff_debug_accumulate
14954 (mdebug_handle, abfd, &debug, swap, input_bfd,
14955 &input_debug, input_swap, info)))
14956 return FALSE;
14957
14958 /* Loop through the external symbols. For each one with
14959 interesting information, try to find the symbol in
14960 the linker global hash table and save the information
14961 for the output external symbols. */
14962 eraw_src = input_debug.external_ext;
14963 eraw_end = (eraw_src
14964 + (input_debug.symbolic_header.iextMax
14965 * input_swap->external_ext_size));
14966 for (;
14967 eraw_src < eraw_end;
14968 eraw_src += input_swap->external_ext_size)
14969 {
14970 EXTR ext;
14971 const char *name;
14972 struct mips_elf_link_hash_entry *h;
14973
14974 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14975 if (ext.asym.sc == scNil
14976 || ext.asym.sc == scUndefined
14977 || ext.asym.sc == scSUndefined)
14978 continue;
14979
14980 name = input_debug.ssext + ext.asym.iss;
14981 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14982 name, FALSE, FALSE, TRUE);
14983 if (h == NULL || h->esym.ifd != -2)
14984 continue;
14985
14986 if (ext.ifd != -1)
14987 {
14988 BFD_ASSERT (ext.ifd
14989 < input_debug.symbolic_header.ifdMax);
14990 ext.ifd = input_debug.ifdmap[ext.ifd];
14991 }
14992
14993 h->esym = ext;
14994 }
14995
14996 /* Free up the information we just read. */
14997 free (input_debug.line);
14998 free (input_debug.external_dnr);
14999 free (input_debug.external_pdr);
15000 free (input_debug.external_sym);
15001 free (input_debug.external_opt);
15002 free (input_debug.external_aux);
15003 free (input_debug.ss);
15004 free (input_debug.ssext);
15005 free (input_debug.external_fdr);
15006 free (input_debug.external_rfd);
15007 free (input_debug.external_ext);
15008
15009 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15010 elf_link_input_bfd ignores this section. */
15011 input_section->flags &= ~SEC_HAS_CONTENTS;
15012 }
15013
15014 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
15015 {
15016 /* Create .rtproc section. */
15017 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
15018 if (rtproc_sec == NULL)
15019 {
15020 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
15021 | SEC_LINKER_CREATED | SEC_READONLY);
15022
15023 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
15024 ".rtproc",
15025 flags);
15026 if (rtproc_sec == NULL
15027 || !bfd_set_section_alignment (rtproc_sec, 4))
15028 return FALSE;
15029 }
15030
15031 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15032 info, rtproc_sec,
15033 &debug))
15034 return FALSE;
15035 }
15036
15037 /* Build the external symbol information. */
15038 einfo.abfd = abfd;
15039 einfo.info = info;
15040 einfo.debug = &debug;
15041 einfo.swap = swap;
15042 einfo.failed = FALSE;
15043 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
15044 mips_elf_output_extsym, &einfo);
15045 if (einfo.failed)
15046 return FALSE;
15047
15048 /* Set the size of the .mdebug section. */
15049 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
15050
15051 /* Skip this section later on (I don't think this currently
15052 matters, but someday it might). */
15053 o->map_head.link_order = NULL;
15054
15055 mdebug_sec = o;
15056 }
15057
15058 if (CONST_STRNEQ (o->name, ".gptab."))
15059 {
15060 const char *subname;
15061 unsigned int c;
15062 Elf32_gptab *tab;
15063 Elf32_External_gptab *ext_tab;
15064 unsigned int j;
15065
15066 /* The .gptab.sdata and .gptab.sbss sections hold
15067 information describing how the small data area would
15068 change depending upon the -G switch. These sections
15069 not used in executables files. */
15070 if (! bfd_link_relocatable (info))
15071 {
15072 for (p = o->map_head.link_order; p != NULL; p = p->next)
15073 {
15074 asection *input_section;
15075
15076 if (p->type != bfd_indirect_link_order)
15077 {
15078 if (p->type == bfd_data_link_order)
15079 continue;
15080 abort ();
15081 }
15082
15083 input_section = p->u.indirect.section;
15084
15085 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15086 elf_link_input_bfd ignores this section. */
15087 input_section->flags &= ~SEC_HAS_CONTENTS;
15088 }
15089
15090 /* Skip this section later on (I don't think this
15091 currently matters, but someday it might). */
15092 o->map_head.link_order = NULL;
15093
15094 /* Really remove the section. */
15095 bfd_section_list_remove (abfd, o);
15096 --abfd->section_count;
15097
15098 continue;
15099 }
15100
15101 /* There is one gptab for initialized data, and one for
15102 uninitialized data. */
15103 if (strcmp (o->name, ".gptab.sdata") == 0)
15104 gptab_data_sec = o;
15105 else if (strcmp (o->name, ".gptab.sbss") == 0)
15106 gptab_bss_sec = o;
15107 else
15108 {
15109 _bfd_error_handler
15110 /* xgettext:c-format */
15111 (_("%pB: illegal section name `%pA'"), abfd, o);
15112 bfd_set_error (bfd_error_nonrepresentable_section);
15113 return FALSE;
15114 }
15115
15116 /* The linker script always combines .gptab.data and
15117 .gptab.sdata into .gptab.sdata, and likewise for
15118 .gptab.bss and .gptab.sbss. It is possible that there is
15119 no .sdata or .sbss section in the output file, in which
15120 case we must change the name of the output section. */
15121 subname = o->name + sizeof ".gptab" - 1;
15122 if (bfd_get_section_by_name (abfd, subname) == NULL)
15123 {
15124 if (o == gptab_data_sec)
15125 o->name = ".gptab.data";
15126 else
15127 o->name = ".gptab.bss";
15128 subname = o->name + sizeof ".gptab" - 1;
15129 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15130 }
15131
15132 /* Set up the first entry. */
15133 c = 1;
15134 amt = c * sizeof (Elf32_gptab);
15135 tab = bfd_malloc (amt);
15136 if (tab == NULL)
15137 return FALSE;
15138 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15139 tab[0].gt_header.gt_unused = 0;
15140
15141 /* Combine the input sections. */
15142 for (p = o->map_head.link_order; p != NULL; p = p->next)
15143 {
15144 asection *input_section;
15145 bfd *input_bfd;
15146 bfd_size_type size;
15147 unsigned long last;
15148 bfd_size_type gpentry;
15149
15150 if (p->type != bfd_indirect_link_order)
15151 {
15152 if (p->type == bfd_data_link_order)
15153 continue;
15154 abort ();
15155 }
15156
15157 input_section = p->u.indirect.section;
15158 input_bfd = input_section->owner;
15159
15160 /* Combine the gptab entries for this input section one
15161 by one. We know that the input gptab entries are
15162 sorted by ascending -G value. */
15163 size = input_section->size;
15164 last = 0;
15165 for (gpentry = sizeof (Elf32_External_gptab);
15166 gpentry < size;
15167 gpentry += sizeof (Elf32_External_gptab))
15168 {
15169 Elf32_External_gptab ext_gptab;
15170 Elf32_gptab int_gptab;
15171 unsigned long val;
15172 unsigned long add;
15173 bfd_boolean exact;
15174 unsigned int look;
15175
15176 if (! (bfd_get_section_contents
15177 (input_bfd, input_section, &ext_gptab, gpentry,
15178 sizeof (Elf32_External_gptab))))
15179 {
15180 free (tab);
15181 return FALSE;
15182 }
15183
15184 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15185 &int_gptab);
15186 val = int_gptab.gt_entry.gt_g_value;
15187 add = int_gptab.gt_entry.gt_bytes - last;
15188
15189 exact = FALSE;
15190 for (look = 1; look < c; look++)
15191 {
15192 if (tab[look].gt_entry.gt_g_value >= val)
15193 tab[look].gt_entry.gt_bytes += add;
15194
15195 if (tab[look].gt_entry.gt_g_value == val)
15196 exact = TRUE;
15197 }
15198
15199 if (! exact)
15200 {
15201 Elf32_gptab *new_tab;
15202 unsigned int max;
15203
15204 /* We need a new table entry. */
15205 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15206 new_tab = bfd_realloc (tab, amt);
15207 if (new_tab == NULL)
15208 {
15209 free (tab);
15210 return FALSE;
15211 }
15212 tab = new_tab;
15213 tab[c].gt_entry.gt_g_value = val;
15214 tab[c].gt_entry.gt_bytes = add;
15215
15216 /* Merge in the size for the next smallest -G
15217 value, since that will be implied by this new
15218 value. */
15219 max = 0;
15220 for (look = 1; look < c; look++)
15221 {
15222 if (tab[look].gt_entry.gt_g_value < val
15223 && (max == 0
15224 || (tab[look].gt_entry.gt_g_value
15225 > tab[max].gt_entry.gt_g_value)))
15226 max = look;
15227 }
15228 if (max != 0)
15229 tab[c].gt_entry.gt_bytes +=
15230 tab[max].gt_entry.gt_bytes;
15231
15232 ++c;
15233 }
15234
15235 last = int_gptab.gt_entry.gt_bytes;
15236 }
15237
15238 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15239 elf_link_input_bfd ignores this section. */
15240 input_section->flags &= ~SEC_HAS_CONTENTS;
15241 }
15242
15243 /* The table must be sorted by -G value. */
15244 if (c > 2)
15245 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15246
15247 /* Swap out the table. */
15248 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15249 ext_tab = bfd_alloc (abfd, amt);
15250 if (ext_tab == NULL)
15251 {
15252 free (tab);
15253 return FALSE;
15254 }
15255
15256 for (j = 0; j < c; j++)
15257 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15258 free (tab);
15259
15260 o->size = c * sizeof (Elf32_External_gptab);
15261 o->contents = (bfd_byte *) ext_tab;
15262
15263 /* Skip this section later on (I don't think this currently
15264 matters, but someday it might). */
15265 o->map_head.link_order = NULL;
15266 }
15267 }
15268
15269 /* Invoke the regular ELF backend linker to do all the work. */
15270 if (!bfd_elf_final_link (abfd, info))
15271 return FALSE;
15272
15273 /* Now write out the computed sections. */
15274
15275 if (abiflags_sec != NULL)
15276 {
15277 Elf_External_ABIFlags_v0 ext;
15278 Elf_Internal_ABIFlags_v0 *abiflags;
15279
15280 abiflags = &mips_elf_tdata (abfd)->abiflags;
15281
15282 /* Set up the abiflags if no valid input sections were found. */
15283 if (!mips_elf_tdata (abfd)->abiflags_valid)
15284 {
15285 infer_mips_abiflags (abfd, abiflags);
15286 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15287 }
15288 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15289 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15290 return FALSE;
15291 }
15292
15293 if (reginfo_sec != NULL)
15294 {
15295 Elf32_External_RegInfo ext;
15296
15297 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15298 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15299 return FALSE;
15300 }
15301
15302 if (mdebug_sec != NULL)
15303 {
15304 BFD_ASSERT (abfd->output_has_begun);
15305 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15306 swap, info,
15307 mdebug_sec->filepos))
15308 return FALSE;
15309
15310 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15311 }
15312
15313 if (gptab_data_sec != NULL)
15314 {
15315 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15316 gptab_data_sec->contents,
15317 0, gptab_data_sec->size))
15318 return FALSE;
15319 }
15320
15321 if (gptab_bss_sec != NULL)
15322 {
15323 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15324 gptab_bss_sec->contents,
15325 0, gptab_bss_sec->size))
15326 return FALSE;
15327 }
15328
15329 if (SGI_COMPAT (abfd))
15330 {
15331 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15332 if (rtproc_sec != NULL)
15333 {
15334 if (! bfd_set_section_contents (abfd, rtproc_sec,
15335 rtproc_sec->contents,
15336 0, rtproc_sec->size))
15337 return FALSE;
15338 }
15339 }
15340
15341 return TRUE;
15342 }
15343 \f
15344 /* Merge object file header flags from IBFD into OBFD. Raise an error
15345 if there are conflicting settings. */
15346
15347 static bfd_boolean
15348 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15349 {
15350 bfd *obfd = info->output_bfd;
15351 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15352 flagword old_flags;
15353 flagword new_flags;
15354 bfd_boolean ok;
15355
15356 new_flags = elf_elfheader (ibfd)->e_flags;
15357 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15358 old_flags = elf_elfheader (obfd)->e_flags;
15359
15360 /* Check flag compatibility. */
15361
15362 new_flags &= ~EF_MIPS_NOREORDER;
15363 old_flags &= ~EF_MIPS_NOREORDER;
15364
15365 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15366 doesn't seem to matter. */
15367 new_flags &= ~EF_MIPS_XGOT;
15368 old_flags &= ~EF_MIPS_XGOT;
15369
15370 /* MIPSpro generates ucode info in n64 objects. Again, we should
15371 just be able to ignore this. */
15372 new_flags &= ~EF_MIPS_UCODE;
15373 old_flags &= ~EF_MIPS_UCODE;
15374
15375 /* DSOs should only be linked with CPIC code. */
15376 if ((ibfd->flags & DYNAMIC) != 0)
15377 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15378
15379 if (new_flags == old_flags)
15380 return TRUE;
15381
15382 ok = TRUE;
15383
15384 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15385 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15386 {
15387 _bfd_error_handler
15388 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15389 ibfd);
15390 ok = TRUE;
15391 }
15392
15393 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15394 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15395 if (! (new_flags & EF_MIPS_PIC))
15396 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15397
15398 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15399 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15400
15401 /* Compare the ISAs. */
15402 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15403 {
15404 _bfd_error_handler
15405 (_("%pB: linking 32-bit code with 64-bit code"),
15406 ibfd);
15407 ok = FALSE;
15408 }
15409 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15410 {
15411 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15412 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15413 {
15414 /* Copy the architecture info from IBFD to OBFD. Also copy
15415 the 32-bit flag (if set) so that we continue to recognise
15416 OBFD as a 32-bit binary. */
15417 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15418 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15419 elf_elfheader (obfd)->e_flags
15420 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15421
15422 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15423 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15424
15425 /* Copy across the ABI flags if OBFD doesn't use them
15426 and if that was what caused us to treat IBFD as 32-bit. */
15427 if ((old_flags & EF_MIPS_ABI) == 0
15428 && mips_32bit_flags_p (new_flags)
15429 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15430 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15431 }
15432 else
15433 {
15434 /* The ISAs aren't compatible. */
15435 _bfd_error_handler
15436 /* xgettext:c-format */
15437 (_("%pB: linking %s module with previous %s modules"),
15438 ibfd,
15439 bfd_printable_name (ibfd),
15440 bfd_printable_name (obfd));
15441 ok = FALSE;
15442 }
15443 }
15444
15445 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15446 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15447
15448 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15449 does set EI_CLASS differently from any 32-bit ABI. */
15450 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15451 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15452 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15453 {
15454 /* Only error if both are set (to different values). */
15455 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15456 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15457 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15458 {
15459 _bfd_error_handler
15460 /* xgettext:c-format */
15461 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15462 ibfd,
15463 elf_mips_abi_name (ibfd),
15464 elf_mips_abi_name (obfd));
15465 ok = FALSE;
15466 }
15467 new_flags &= ~EF_MIPS_ABI;
15468 old_flags &= ~EF_MIPS_ABI;
15469 }
15470
15471 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15472 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15473 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15474 {
15475 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15476 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15477 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15478 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15479 int micro_mis = old_m16 && new_micro;
15480 int m16_mis = old_micro && new_m16;
15481
15482 if (m16_mis || micro_mis)
15483 {
15484 _bfd_error_handler
15485 /* xgettext:c-format */
15486 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15487 ibfd,
15488 m16_mis ? "MIPS16" : "microMIPS",
15489 m16_mis ? "microMIPS" : "MIPS16");
15490 ok = FALSE;
15491 }
15492
15493 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15494
15495 new_flags &= ~ EF_MIPS_ARCH_ASE;
15496 old_flags &= ~ EF_MIPS_ARCH_ASE;
15497 }
15498
15499 /* Compare NaN encodings. */
15500 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15501 {
15502 /* xgettext:c-format */
15503 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15504 ibfd,
15505 (new_flags & EF_MIPS_NAN2008
15506 ? "-mnan=2008" : "-mnan=legacy"),
15507 (old_flags & EF_MIPS_NAN2008
15508 ? "-mnan=2008" : "-mnan=legacy"));
15509 ok = FALSE;
15510 new_flags &= ~EF_MIPS_NAN2008;
15511 old_flags &= ~EF_MIPS_NAN2008;
15512 }
15513
15514 /* Compare FP64 state. */
15515 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15516 {
15517 /* xgettext:c-format */
15518 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15519 ibfd,
15520 (new_flags & EF_MIPS_FP64
15521 ? "-mfp64" : "-mfp32"),
15522 (old_flags & EF_MIPS_FP64
15523 ? "-mfp64" : "-mfp32"));
15524 ok = FALSE;
15525 new_flags &= ~EF_MIPS_FP64;
15526 old_flags &= ~EF_MIPS_FP64;
15527 }
15528
15529 /* Warn about any other mismatches */
15530 if (new_flags != old_flags)
15531 {
15532 /* xgettext:c-format */
15533 _bfd_error_handler
15534 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15535 "(%#x)"),
15536 ibfd, new_flags, old_flags);
15537 ok = FALSE;
15538 }
15539
15540 return ok;
15541 }
15542
15543 /* Merge object attributes from IBFD into OBFD. Raise an error if
15544 there are conflicting attributes. */
15545 static bfd_boolean
15546 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15547 {
15548 bfd *obfd = info->output_bfd;
15549 obj_attribute *in_attr;
15550 obj_attribute *out_attr;
15551 bfd *abi_fp_bfd;
15552 bfd *abi_msa_bfd;
15553
15554 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15555 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15556 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15557 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15558
15559 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15560 if (!abi_msa_bfd
15561 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15562 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15563
15564 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15565 {
15566 /* This is the first object. Copy the attributes. */
15567 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15568
15569 /* Use the Tag_null value to indicate the attributes have been
15570 initialized. */
15571 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15572
15573 return TRUE;
15574 }
15575
15576 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15577 non-conflicting ones. */
15578 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15579 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15580 {
15581 int out_fp, in_fp;
15582
15583 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15584 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15585 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15586 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15587 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15588 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15589 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15590 || in_fp == Val_GNU_MIPS_ABI_FP_64
15591 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15592 {
15593 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15594 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15595 }
15596 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15597 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15598 || out_fp == Val_GNU_MIPS_ABI_FP_64
15599 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15600 /* Keep the current setting. */;
15601 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15602 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15603 {
15604 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15605 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15606 }
15607 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15608 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15609 /* Keep the current setting. */;
15610 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15611 {
15612 const char *out_string, *in_string;
15613
15614 out_string = _bfd_mips_fp_abi_string (out_fp);
15615 in_string = _bfd_mips_fp_abi_string (in_fp);
15616 /* First warn about cases involving unrecognised ABIs. */
15617 if (!out_string && !in_string)
15618 /* xgettext:c-format */
15619 _bfd_error_handler
15620 (_("warning: %pB uses unknown floating point ABI %d "
15621 "(set by %pB), %pB uses unknown floating point ABI %d"),
15622 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15623 else if (!out_string)
15624 _bfd_error_handler
15625 /* xgettext:c-format */
15626 (_("warning: %pB uses unknown floating point ABI %d "
15627 "(set by %pB), %pB uses %s"),
15628 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15629 else if (!in_string)
15630 _bfd_error_handler
15631 /* xgettext:c-format */
15632 (_("warning: %pB uses %s (set by %pB), "
15633 "%pB uses unknown floating point ABI %d"),
15634 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15635 else
15636 {
15637 /* If one of the bfds is soft-float, the other must be
15638 hard-float. The exact choice of hard-float ABI isn't
15639 really relevant to the error message. */
15640 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15641 out_string = "-mhard-float";
15642 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15643 in_string = "-mhard-float";
15644 _bfd_error_handler
15645 /* xgettext:c-format */
15646 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15647 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15648 }
15649 }
15650 }
15651
15652 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15653 non-conflicting ones. */
15654 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15655 {
15656 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15657 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15658 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15659 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15660 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15661 {
15662 case Val_GNU_MIPS_ABI_MSA_128:
15663 _bfd_error_handler
15664 /* xgettext:c-format */
15665 (_("warning: %pB uses %s (set by %pB), "
15666 "%pB uses unknown MSA ABI %d"),
15667 obfd, "-mmsa", abi_msa_bfd,
15668 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15669 break;
15670
15671 default:
15672 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15673 {
15674 case Val_GNU_MIPS_ABI_MSA_128:
15675 _bfd_error_handler
15676 /* xgettext:c-format */
15677 (_("warning: %pB uses unknown MSA ABI %d "
15678 "(set by %pB), %pB uses %s"),
15679 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15680 abi_msa_bfd, ibfd, "-mmsa");
15681 break;
15682
15683 default:
15684 _bfd_error_handler
15685 /* xgettext:c-format */
15686 (_("warning: %pB uses unknown MSA ABI %d "
15687 "(set by %pB), %pB uses unknown MSA ABI %d"),
15688 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15689 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15690 break;
15691 }
15692 }
15693 }
15694
15695 /* Merge Tag_compatibility attributes and any common GNU ones. */
15696 return _bfd_elf_merge_object_attributes (ibfd, info);
15697 }
15698
15699 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15700 there are conflicting settings. */
15701
15702 static bfd_boolean
15703 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15704 {
15705 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15706 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15707 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15708
15709 /* Update the output abiflags fp_abi using the computed fp_abi. */
15710 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15711
15712 #define max(a, b) ((a) > (b) ? (a) : (b))
15713 /* Merge abiflags. */
15714 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15715 in_tdata->abiflags.isa_level);
15716 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15717 in_tdata->abiflags.isa_rev);
15718 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15719 in_tdata->abiflags.gpr_size);
15720 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15721 in_tdata->abiflags.cpr1_size);
15722 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15723 in_tdata->abiflags.cpr2_size);
15724 #undef max
15725 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15726 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15727
15728 return TRUE;
15729 }
15730
15731 /* Merge backend specific data from an object file to the output
15732 object file when linking. */
15733
15734 bfd_boolean
15735 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15736 {
15737 bfd *obfd = info->output_bfd;
15738 struct mips_elf_obj_tdata *out_tdata;
15739 struct mips_elf_obj_tdata *in_tdata;
15740 bfd_boolean null_input_bfd = TRUE;
15741 asection *sec;
15742 bfd_boolean ok;
15743
15744 /* Check if we have the same endianness. */
15745 if (! _bfd_generic_verify_endian_match (ibfd, info))
15746 {
15747 _bfd_error_handler
15748 (_("%pB: endianness incompatible with that of the selected emulation"),
15749 ibfd);
15750 return FALSE;
15751 }
15752
15753 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15754 return TRUE;
15755
15756 in_tdata = mips_elf_tdata (ibfd);
15757 out_tdata = mips_elf_tdata (obfd);
15758
15759 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15760 {
15761 _bfd_error_handler
15762 (_("%pB: ABI is incompatible with that of the selected emulation"),
15763 ibfd);
15764 return FALSE;
15765 }
15766
15767 /* Check to see if the input BFD actually contains any sections. If not,
15768 then it has no attributes, and its flags may not have been initialized
15769 either, but it cannot actually cause any incompatibility. */
15770 /* FIXME: This excludes any input shared library from consideration. */
15771 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15772 {
15773 /* Ignore synthetic sections and empty .text, .data and .bss sections
15774 which are automatically generated by gas. Also ignore fake
15775 (s)common sections, since merely defining a common symbol does
15776 not affect compatibility. */
15777 if ((sec->flags & SEC_IS_COMMON) == 0
15778 && strcmp (sec->name, ".reginfo")
15779 && strcmp (sec->name, ".mdebug")
15780 && (sec->size != 0
15781 || (strcmp (sec->name, ".text")
15782 && strcmp (sec->name, ".data")
15783 && strcmp (sec->name, ".bss"))))
15784 {
15785 null_input_bfd = FALSE;
15786 break;
15787 }
15788 }
15789 if (null_input_bfd)
15790 return TRUE;
15791
15792 /* Populate abiflags using existing information. */
15793 if (in_tdata->abiflags_valid)
15794 {
15795 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15796 Elf_Internal_ABIFlags_v0 in_abiflags;
15797 Elf_Internal_ABIFlags_v0 abiflags;
15798
15799 /* Set up the FP ABI attribute from the abiflags if it is not already
15800 set. */
15801 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15802 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15803
15804 infer_mips_abiflags (ibfd, &abiflags);
15805 in_abiflags = in_tdata->abiflags;
15806
15807 /* It is not possible to infer the correct ISA revision
15808 for R3 or R5 so drop down to R2 for the checks. */
15809 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15810 in_abiflags.isa_rev = 2;
15811
15812 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15813 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15814 _bfd_error_handler
15815 (_("%pB: warning: inconsistent ISA between e_flags and "
15816 ".MIPS.abiflags"), ibfd);
15817 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15818 && in_abiflags.fp_abi != abiflags.fp_abi)
15819 _bfd_error_handler
15820 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15821 ".MIPS.abiflags"), ibfd);
15822 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15823 _bfd_error_handler
15824 (_("%pB: warning: inconsistent ASEs between e_flags and "
15825 ".MIPS.abiflags"), ibfd);
15826 /* The isa_ext is allowed to be an extension of what can be inferred
15827 from e_flags. */
15828 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15829 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15830 _bfd_error_handler
15831 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15832 ".MIPS.abiflags"), ibfd);
15833 if (in_abiflags.flags2 != 0)
15834 _bfd_error_handler
15835 (_("%pB: warning: unexpected flag in the flags2 field of "
15836 ".MIPS.abiflags (0x%lx)"), ibfd,
15837 in_abiflags.flags2);
15838 }
15839 else
15840 {
15841 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15842 in_tdata->abiflags_valid = TRUE;
15843 }
15844
15845 if (!out_tdata->abiflags_valid)
15846 {
15847 /* Copy input abiflags if output abiflags are not already valid. */
15848 out_tdata->abiflags = in_tdata->abiflags;
15849 out_tdata->abiflags_valid = TRUE;
15850 }
15851
15852 if (! elf_flags_init (obfd))
15853 {
15854 elf_flags_init (obfd) = TRUE;
15855 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15856 elf_elfheader (obfd)->e_ident[EI_CLASS]
15857 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15858
15859 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15860 && (bfd_get_arch_info (obfd)->the_default
15861 || mips_mach_extends_p (bfd_get_mach (obfd),
15862 bfd_get_mach (ibfd))))
15863 {
15864 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15865 bfd_get_mach (ibfd)))
15866 return FALSE;
15867
15868 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15869 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15870 }
15871
15872 ok = TRUE;
15873 }
15874 else
15875 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15876
15877 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15878
15879 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15880
15881 if (!ok)
15882 {
15883 bfd_set_error (bfd_error_bad_value);
15884 return FALSE;
15885 }
15886
15887 return TRUE;
15888 }
15889
15890 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15891
15892 bfd_boolean
15893 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15894 {
15895 BFD_ASSERT (!elf_flags_init (abfd)
15896 || elf_elfheader (abfd)->e_flags == flags);
15897
15898 elf_elfheader (abfd)->e_flags = flags;
15899 elf_flags_init (abfd) = TRUE;
15900 return TRUE;
15901 }
15902
15903 char *
15904 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15905 {
15906 switch (dtag)
15907 {
15908 default: return "";
15909 case DT_MIPS_RLD_VERSION:
15910 return "MIPS_RLD_VERSION";
15911 case DT_MIPS_TIME_STAMP:
15912 return "MIPS_TIME_STAMP";
15913 case DT_MIPS_ICHECKSUM:
15914 return "MIPS_ICHECKSUM";
15915 case DT_MIPS_IVERSION:
15916 return "MIPS_IVERSION";
15917 case DT_MIPS_FLAGS:
15918 return "MIPS_FLAGS";
15919 case DT_MIPS_BASE_ADDRESS:
15920 return "MIPS_BASE_ADDRESS";
15921 case DT_MIPS_MSYM:
15922 return "MIPS_MSYM";
15923 case DT_MIPS_CONFLICT:
15924 return "MIPS_CONFLICT";
15925 case DT_MIPS_LIBLIST:
15926 return "MIPS_LIBLIST";
15927 case DT_MIPS_LOCAL_GOTNO:
15928 return "MIPS_LOCAL_GOTNO";
15929 case DT_MIPS_CONFLICTNO:
15930 return "MIPS_CONFLICTNO";
15931 case DT_MIPS_LIBLISTNO:
15932 return "MIPS_LIBLISTNO";
15933 case DT_MIPS_SYMTABNO:
15934 return "MIPS_SYMTABNO";
15935 case DT_MIPS_UNREFEXTNO:
15936 return "MIPS_UNREFEXTNO";
15937 case DT_MIPS_GOTSYM:
15938 return "MIPS_GOTSYM";
15939 case DT_MIPS_HIPAGENO:
15940 return "MIPS_HIPAGENO";
15941 case DT_MIPS_RLD_MAP:
15942 return "MIPS_RLD_MAP";
15943 case DT_MIPS_RLD_MAP_REL:
15944 return "MIPS_RLD_MAP_REL";
15945 case DT_MIPS_DELTA_CLASS:
15946 return "MIPS_DELTA_CLASS";
15947 case DT_MIPS_DELTA_CLASS_NO:
15948 return "MIPS_DELTA_CLASS_NO";
15949 case DT_MIPS_DELTA_INSTANCE:
15950 return "MIPS_DELTA_INSTANCE";
15951 case DT_MIPS_DELTA_INSTANCE_NO:
15952 return "MIPS_DELTA_INSTANCE_NO";
15953 case DT_MIPS_DELTA_RELOC:
15954 return "MIPS_DELTA_RELOC";
15955 case DT_MIPS_DELTA_RELOC_NO:
15956 return "MIPS_DELTA_RELOC_NO";
15957 case DT_MIPS_DELTA_SYM:
15958 return "MIPS_DELTA_SYM";
15959 case DT_MIPS_DELTA_SYM_NO:
15960 return "MIPS_DELTA_SYM_NO";
15961 case DT_MIPS_DELTA_CLASSSYM:
15962 return "MIPS_DELTA_CLASSSYM";
15963 case DT_MIPS_DELTA_CLASSSYM_NO:
15964 return "MIPS_DELTA_CLASSSYM_NO";
15965 case DT_MIPS_CXX_FLAGS:
15966 return "MIPS_CXX_FLAGS";
15967 case DT_MIPS_PIXIE_INIT:
15968 return "MIPS_PIXIE_INIT";
15969 case DT_MIPS_SYMBOL_LIB:
15970 return "MIPS_SYMBOL_LIB";
15971 case DT_MIPS_LOCALPAGE_GOTIDX:
15972 return "MIPS_LOCALPAGE_GOTIDX";
15973 case DT_MIPS_LOCAL_GOTIDX:
15974 return "MIPS_LOCAL_GOTIDX";
15975 case DT_MIPS_HIDDEN_GOTIDX:
15976 return "MIPS_HIDDEN_GOTIDX";
15977 case DT_MIPS_PROTECTED_GOTIDX:
15978 return "MIPS_PROTECTED_GOT_IDX";
15979 case DT_MIPS_OPTIONS:
15980 return "MIPS_OPTIONS";
15981 case DT_MIPS_INTERFACE:
15982 return "MIPS_INTERFACE";
15983 case DT_MIPS_DYNSTR_ALIGN:
15984 return "DT_MIPS_DYNSTR_ALIGN";
15985 case DT_MIPS_INTERFACE_SIZE:
15986 return "DT_MIPS_INTERFACE_SIZE";
15987 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15988 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15989 case DT_MIPS_PERF_SUFFIX:
15990 return "DT_MIPS_PERF_SUFFIX";
15991 case DT_MIPS_COMPACT_SIZE:
15992 return "DT_MIPS_COMPACT_SIZE";
15993 case DT_MIPS_GP_VALUE:
15994 return "DT_MIPS_GP_VALUE";
15995 case DT_MIPS_AUX_DYNAMIC:
15996 return "DT_MIPS_AUX_DYNAMIC";
15997 case DT_MIPS_PLTGOT:
15998 return "DT_MIPS_PLTGOT";
15999 case DT_MIPS_RWPLT:
16000 return "DT_MIPS_RWPLT";
16001 case DT_MIPS_XHASH:
16002 return "DT_MIPS_XHASH";
16003 }
16004 }
16005
16006 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
16007 not known. */
16008
16009 const char *
16010 _bfd_mips_fp_abi_string (int fp)
16011 {
16012 switch (fp)
16013 {
16014 /* These strings aren't translated because they're simply
16015 option lists. */
16016 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16017 return "-mdouble-float";
16018
16019 case Val_GNU_MIPS_ABI_FP_SINGLE:
16020 return "-msingle-float";
16021
16022 case Val_GNU_MIPS_ABI_FP_SOFT:
16023 return "-msoft-float";
16024
16025 case Val_GNU_MIPS_ABI_FP_OLD_64:
16026 return _("-mips32r2 -mfp64 (12 callee-saved)");
16027
16028 case Val_GNU_MIPS_ABI_FP_XX:
16029 return "-mfpxx";
16030
16031 case Val_GNU_MIPS_ABI_FP_64:
16032 return "-mgp32 -mfp64";
16033
16034 case Val_GNU_MIPS_ABI_FP_64A:
16035 return "-mgp32 -mfp64 -mno-odd-spreg";
16036
16037 default:
16038 return 0;
16039 }
16040 }
16041
16042 static void
16043 print_mips_ases (FILE *file, unsigned int mask)
16044 {
16045 if (mask & AFL_ASE_DSP)
16046 fputs ("\n\tDSP ASE", file);
16047 if (mask & AFL_ASE_DSPR2)
16048 fputs ("\n\tDSP R2 ASE", file);
16049 if (mask & AFL_ASE_DSPR3)
16050 fputs ("\n\tDSP R3 ASE", file);
16051 if (mask & AFL_ASE_EVA)
16052 fputs ("\n\tEnhanced VA Scheme", file);
16053 if (mask & AFL_ASE_MCU)
16054 fputs ("\n\tMCU (MicroController) ASE", file);
16055 if (mask & AFL_ASE_MDMX)
16056 fputs ("\n\tMDMX ASE", file);
16057 if (mask & AFL_ASE_MIPS3D)
16058 fputs ("\n\tMIPS-3D ASE", file);
16059 if (mask & AFL_ASE_MT)
16060 fputs ("\n\tMT ASE", file);
16061 if (mask & AFL_ASE_SMARTMIPS)
16062 fputs ("\n\tSmartMIPS ASE", file);
16063 if (mask & AFL_ASE_VIRT)
16064 fputs ("\n\tVZ ASE", file);
16065 if (mask & AFL_ASE_MSA)
16066 fputs ("\n\tMSA ASE", file);
16067 if (mask & AFL_ASE_MIPS16)
16068 fputs ("\n\tMIPS16 ASE", file);
16069 if (mask & AFL_ASE_MICROMIPS)
16070 fputs ("\n\tMICROMIPS ASE", file);
16071 if (mask & AFL_ASE_XPA)
16072 fputs ("\n\tXPA ASE", file);
16073 if (mask & AFL_ASE_MIPS16E2)
16074 fputs ("\n\tMIPS16e2 ASE", file);
16075 if (mask & AFL_ASE_CRC)
16076 fputs ("\n\tCRC ASE", file);
16077 if (mask & AFL_ASE_GINV)
16078 fputs ("\n\tGINV ASE", file);
16079 if (mask & AFL_ASE_LOONGSON_MMI)
16080 fputs ("\n\tLoongson MMI ASE", file);
16081 if (mask & AFL_ASE_LOONGSON_CAM)
16082 fputs ("\n\tLoongson CAM ASE", file);
16083 if (mask & AFL_ASE_LOONGSON_EXT)
16084 fputs ("\n\tLoongson EXT ASE", file);
16085 if (mask & AFL_ASE_LOONGSON_EXT2)
16086 fputs ("\n\tLoongson EXT2 ASE", file);
16087 if (mask == 0)
16088 fprintf (file, "\n\t%s", _("None"));
16089 else if ((mask & ~AFL_ASE_MASK) != 0)
16090 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16091 }
16092
16093 static void
16094 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16095 {
16096 switch (isa_ext)
16097 {
16098 case 0:
16099 fputs (_("None"), file);
16100 break;
16101 case AFL_EXT_XLR:
16102 fputs ("RMI XLR", file);
16103 break;
16104 case AFL_EXT_OCTEON3:
16105 fputs ("Cavium Networks Octeon3", file);
16106 break;
16107 case AFL_EXT_OCTEON2:
16108 fputs ("Cavium Networks Octeon2", file);
16109 break;
16110 case AFL_EXT_OCTEONP:
16111 fputs ("Cavium Networks OcteonP", file);
16112 break;
16113 case AFL_EXT_OCTEON:
16114 fputs ("Cavium Networks Octeon", file);
16115 break;
16116 case AFL_EXT_5900:
16117 fputs ("Toshiba R5900", file);
16118 break;
16119 case AFL_EXT_4650:
16120 fputs ("MIPS R4650", file);
16121 break;
16122 case AFL_EXT_4010:
16123 fputs ("LSI R4010", file);
16124 break;
16125 case AFL_EXT_4100:
16126 fputs ("NEC VR4100", file);
16127 break;
16128 case AFL_EXT_3900:
16129 fputs ("Toshiba R3900", file);
16130 break;
16131 case AFL_EXT_10000:
16132 fputs ("MIPS R10000", file);
16133 break;
16134 case AFL_EXT_SB1:
16135 fputs ("Broadcom SB-1", file);
16136 break;
16137 case AFL_EXT_4111:
16138 fputs ("NEC VR4111/VR4181", file);
16139 break;
16140 case AFL_EXT_4120:
16141 fputs ("NEC VR4120", file);
16142 break;
16143 case AFL_EXT_5400:
16144 fputs ("NEC VR5400", file);
16145 break;
16146 case AFL_EXT_5500:
16147 fputs ("NEC VR5500", file);
16148 break;
16149 case AFL_EXT_LOONGSON_2E:
16150 fputs ("ST Microelectronics Loongson 2E", file);
16151 break;
16152 case AFL_EXT_LOONGSON_2F:
16153 fputs ("ST Microelectronics Loongson 2F", file);
16154 break;
16155 case AFL_EXT_INTERAPTIV_MR2:
16156 fputs ("Imagination interAptiv MR2", file);
16157 break;
16158 default:
16159 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16160 break;
16161 }
16162 }
16163
16164 static void
16165 print_mips_fp_abi_value (FILE *file, int val)
16166 {
16167 switch (val)
16168 {
16169 case Val_GNU_MIPS_ABI_FP_ANY:
16170 fprintf (file, _("Hard or soft float\n"));
16171 break;
16172 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16173 fprintf (file, _("Hard float (double precision)\n"));
16174 break;
16175 case Val_GNU_MIPS_ABI_FP_SINGLE:
16176 fprintf (file, _("Hard float (single precision)\n"));
16177 break;
16178 case Val_GNU_MIPS_ABI_FP_SOFT:
16179 fprintf (file, _("Soft float\n"));
16180 break;
16181 case Val_GNU_MIPS_ABI_FP_OLD_64:
16182 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16183 break;
16184 case Val_GNU_MIPS_ABI_FP_XX:
16185 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16186 break;
16187 case Val_GNU_MIPS_ABI_FP_64:
16188 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16189 break;
16190 case Val_GNU_MIPS_ABI_FP_64A:
16191 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16192 break;
16193 default:
16194 fprintf (file, "??? (%d)\n", val);
16195 break;
16196 }
16197 }
16198
16199 static int
16200 get_mips_reg_size (int reg_size)
16201 {
16202 return (reg_size == AFL_REG_NONE) ? 0
16203 : (reg_size == AFL_REG_32) ? 32
16204 : (reg_size == AFL_REG_64) ? 64
16205 : (reg_size == AFL_REG_128) ? 128
16206 : -1;
16207 }
16208
16209 bfd_boolean
16210 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16211 {
16212 FILE *file = ptr;
16213
16214 BFD_ASSERT (abfd != NULL && ptr != NULL);
16215
16216 /* Print normal ELF private data. */
16217 _bfd_elf_print_private_bfd_data (abfd, ptr);
16218
16219 /* xgettext:c-format */
16220 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16221
16222 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16223 fprintf (file, _(" [abi=O32]"));
16224 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16225 fprintf (file, _(" [abi=O64]"));
16226 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16227 fprintf (file, _(" [abi=EABI32]"));
16228 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16229 fprintf (file, _(" [abi=EABI64]"));
16230 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16231 fprintf (file, _(" [abi unknown]"));
16232 else if (ABI_N32_P (abfd))
16233 fprintf (file, _(" [abi=N32]"));
16234 else if (ABI_64_P (abfd))
16235 fprintf (file, _(" [abi=64]"));
16236 else
16237 fprintf (file, _(" [no abi set]"));
16238
16239 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16240 fprintf (file, " [mips1]");
16241 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16242 fprintf (file, " [mips2]");
16243 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16244 fprintf (file, " [mips3]");
16245 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16246 fprintf (file, " [mips4]");
16247 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16248 fprintf (file, " [mips5]");
16249 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16250 fprintf (file, " [mips32]");
16251 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16252 fprintf (file, " [mips64]");
16253 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16254 fprintf (file, " [mips32r2]");
16255 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16256 fprintf (file, " [mips64r2]");
16257 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16258 fprintf (file, " [mips32r6]");
16259 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16260 fprintf (file, " [mips64r6]");
16261 else
16262 fprintf (file, _(" [unknown ISA]"));
16263
16264 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16265 fprintf (file, " [mdmx]");
16266
16267 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16268 fprintf (file, " [mips16]");
16269
16270 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16271 fprintf (file, " [micromips]");
16272
16273 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16274 fprintf (file, " [nan2008]");
16275
16276 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16277 fprintf (file, " [old fp64]");
16278
16279 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16280 fprintf (file, " [32bitmode]");
16281 else
16282 fprintf (file, _(" [not 32bitmode]"));
16283
16284 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16285 fprintf (file, " [noreorder]");
16286
16287 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16288 fprintf (file, " [PIC]");
16289
16290 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16291 fprintf (file, " [CPIC]");
16292
16293 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16294 fprintf (file, " [XGOT]");
16295
16296 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16297 fprintf (file, " [UCODE]");
16298
16299 fputc ('\n', file);
16300
16301 if (mips_elf_tdata (abfd)->abiflags_valid)
16302 {
16303 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16304 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16305 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16306 if (abiflags->isa_rev > 1)
16307 fprintf (file, "r%d", abiflags->isa_rev);
16308 fprintf (file, "\nGPR size: %d",
16309 get_mips_reg_size (abiflags->gpr_size));
16310 fprintf (file, "\nCPR1 size: %d",
16311 get_mips_reg_size (abiflags->cpr1_size));
16312 fprintf (file, "\nCPR2 size: %d",
16313 get_mips_reg_size (abiflags->cpr2_size));
16314 fputs ("\nFP ABI: ", file);
16315 print_mips_fp_abi_value (file, abiflags->fp_abi);
16316 fputs ("ISA Extension: ", file);
16317 print_mips_isa_ext (file, abiflags->isa_ext);
16318 fputs ("\nASEs:", file);
16319 print_mips_ases (file, abiflags->ases);
16320 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16321 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16322 fputc ('\n', file);
16323 }
16324
16325 return TRUE;
16326 }
16327
16328 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16329 {
16330 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16331 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16332 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16333 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16334 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16335 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16336 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
16337 { NULL, 0, 0, 0, 0 }
16338 };
16339
16340 /* Merge non visibility st_other attributes. Ensure that the
16341 STO_OPTIONAL flag is copied into h->other, even if this is not a
16342 definiton of the symbol. */
16343 void
16344 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16345 const Elf_Internal_Sym *isym,
16346 bfd_boolean definition,
16347 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16348 {
16349 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16350 {
16351 unsigned char other;
16352
16353 other = (definition ? isym->st_other : h->other);
16354 other &= ~ELF_ST_VISIBILITY (-1);
16355 h->other = other | ELF_ST_VISIBILITY (h->other);
16356 }
16357
16358 if (!definition
16359 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16360 h->other |= STO_OPTIONAL;
16361 }
16362
16363 /* Decide whether an undefined symbol is special and can be ignored.
16364 This is the case for OPTIONAL symbols on IRIX. */
16365 bfd_boolean
16366 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16367 {
16368 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16369 }
16370
16371 bfd_boolean
16372 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16373 {
16374 return (sym->st_shndx == SHN_COMMON
16375 || sym->st_shndx == SHN_MIPS_ACOMMON
16376 || sym->st_shndx == SHN_MIPS_SCOMMON);
16377 }
16378
16379 /* Return address for Ith PLT stub in section PLT, for relocation REL
16380 or (bfd_vma) -1 if it should not be included. */
16381
16382 bfd_vma
16383 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16384 const arelent *rel ATTRIBUTE_UNUSED)
16385 {
16386 return (plt->vma
16387 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16388 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16389 }
16390
16391 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16392 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16393 and .got.plt and also the slots may be of a different size each we walk
16394 the PLT manually fetching instructions and matching them against known
16395 patterns. To make things easier standard MIPS slots, if any, always come
16396 first. As we don't create proper ELF symbols we use the UDATA.I member
16397 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16398 with the ST_OTHER member of the ELF symbol. */
16399
16400 long
16401 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16402 long symcount ATTRIBUTE_UNUSED,
16403 asymbol **syms ATTRIBUTE_UNUSED,
16404 long dynsymcount, asymbol **dynsyms,
16405 asymbol **ret)
16406 {
16407 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16408 static const char microsuffix[] = "@micromipsplt";
16409 static const char m16suffix[] = "@mips16plt";
16410 static const char mipssuffix[] = "@plt";
16411
16412 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16413 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16414 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16415 Elf_Internal_Shdr *hdr;
16416 bfd_byte *plt_data;
16417 bfd_vma plt_offset;
16418 unsigned int other;
16419 bfd_vma entry_size;
16420 bfd_vma plt0_size;
16421 asection *relplt;
16422 bfd_vma opcode;
16423 asection *plt;
16424 asymbol *send;
16425 size_t size;
16426 char *names;
16427 long counti;
16428 arelent *p;
16429 asymbol *s;
16430 char *nend;
16431 long count;
16432 long pi;
16433 long i;
16434 long n;
16435
16436 *ret = NULL;
16437
16438 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16439 return 0;
16440
16441 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16442 if (relplt == NULL)
16443 return 0;
16444
16445 hdr = &elf_section_data (relplt)->this_hdr;
16446 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16447 return 0;
16448
16449 plt = bfd_get_section_by_name (abfd, ".plt");
16450 if (plt == NULL)
16451 return 0;
16452
16453 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16454 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16455 return -1;
16456 p = relplt->relocation;
16457
16458 /* Calculating the exact amount of space required for symbols would
16459 require two passes over the PLT, so just pessimise assuming two
16460 PLT slots per relocation. */
16461 count = relplt->size / hdr->sh_entsize;
16462 counti = count * bed->s->int_rels_per_ext_rel;
16463 size = 2 * count * sizeof (asymbol);
16464 size += count * (sizeof (mipssuffix) +
16465 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16466 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16467 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16468
16469 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16470 size += sizeof (asymbol) + sizeof (pltname);
16471
16472 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16473 return -1;
16474
16475 if (plt->size < 16)
16476 return -1;
16477
16478 s = *ret = bfd_malloc (size);
16479 if (s == NULL)
16480 return -1;
16481 send = s + 2 * count + 1;
16482
16483 names = (char *) send;
16484 nend = (char *) s + size;
16485 n = 0;
16486
16487 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16488 if (opcode == 0x3302fffe)
16489 {
16490 if (!micromips_p)
16491 return -1;
16492 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16493 other = STO_MICROMIPS;
16494 }
16495 else if (opcode == 0x0398c1d0)
16496 {
16497 if (!micromips_p)
16498 return -1;
16499 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16500 other = STO_MICROMIPS;
16501 }
16502 else
16503 {
16504 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16505 other = 0;
16506 }
16507
16508 s->the_bfd = abfd;
16509 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16510 s->section = plt;
16511 s->value = 0;
16512 s->name = names;
16513 s->udata.i = other;
16514 memcpy (names, pltname, sizeof (pltname));
16515 names += sizeof (pltname);
16516 ++s, ++n;
16517
16518 pi = 0;
16519 for (plt_offset = plt0_size;
16520 plt_offset + 8 <= plt->size && s < send;
16521 plt_offset += entry_size)
16522 {
16523 bfd_vma gotplt_addr;
16524 const char *suffix;
16525 bfd_vma gotplt_hi;
16526 bfd_vma gotplt_lo;
16527 size_t suffixlen;
16528
16529 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16530
16531 /* Check if the second word matches the expected MIPS16 instruction. */
16532 if (opcode == 0x651aeb00)
16533 {
16534 if (micromips_p)
16535 return -1;
16536 /* Truncated table??? */
16537 if (plt_offset + 16 > plt->size)
16538 break;
16539 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16540 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16541 suffixlen = sizeof (m16suffix);
16542 suffix = m16suffix;
16543 other = STO_MIPS16;
16544 }
16545 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16546 else if (opcode == 0xff220000)
16547 {
16548 if (!micromips_p)
16549 return -1;
16550 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16551 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16552 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16553 gotplt_lo <<= 2;
16554 gotplt_addr = gotplt_hi + gotplt_lo;
16555 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16556 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16557 suffixlen = sizeof (microsuffix);
16558 suffix = microsuffix;
16559 other = STO_MICROMIPS;
16560 }
16561 /* Likewise the expected microMIPS instruction (insn32 mode). */
16562 else if ((opcode & 0xffff0000) == 0xff2f0000)
16563 {
16564 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16565 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16566 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16567 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16568 gotplt_addr = gotplt_hi + gotplt_lo;
16569 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16570 suffixlen = sizeof (microsuffix);
16571 suffix = microsuffix;
16572 other = STO_MICROMIPS;
16573 }
16574 /* Otherwise assume standard MIPS code. */
16575 else
16576 {
16577 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16578 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16579 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16580 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16581 gotplt_addr = gotplt_hi + gotplt_lo;
16582 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16583 suffixlen = sizeof (mipssuffix);
16584 suffix = mipssuffix;
16585 other = 0;
16586 }
16587 /* Truncated table??? */
16588 if (plt_offset + entry_size > plt->size)
16589 break;
16590
16591 for (i = 0;
16592 i < count && p[pi].address != gotplt_addr;
16593 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16594
16595 if (i < count)
16596 {
16597 size_t namelen;
16598 size_t len;
16599
16600 *s = **p[pi].sym_ptr_ptr;
16601 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16602 we are defining a symbol, ensure one of them is set. */
16603 if ((s->flags & BSF_LOCAL) == 0)
16604 s->flags |= BSF_GLOBAL;
16605 s->flags |= BSF_SYNTHETIC;
16606 s->section = plt;
16607 s->value = plt_offset;
16608 s->name = names;
16609 s->udata.i = other;
16610
16611 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16612 namelen = len + suffixlen;
16613 if (names + namelen > nend)
16614 break;
16615
16616 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16617 names += len;
16618 memcpy (names, suffix, suffixlen);
16619 names += suffixlen;
16620
16621 ++s, ++n;
16622 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16623 }
16624 }
16625
16626 free (plt_data);
16627
16628 return n;
16629 }
16630
16631 /* Return the ABI flags associated with ABFD if available. */
16632
16633 Elf_Internal_ABIFlags_v0 *
16634 bfd_mips_elf_get_abiflags (bfd *abfd)
16635 {
16636 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16637
16638 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16639 }
16640
16641 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16642 field. Taken from `libc-abis.h' generated at GNU libc build time.
16643 Using a MIPS_ prefix as other libc targets use different values. */
16644 enum
16645 {
16646 MIPS_LIBC_ABI_DEFAULT = 0,
16647 MIPS_LIBC_ABI_MIPS_PLT,
16648 MIPS_LIBC_ABI_UNIQUE,
16649 MIPS_LIBC_ABI_MIPS_O32_FP64,
16650 MIPS_LIBC_ABI_ABSOLUTE,
16651 MIPS_LIBC_ABI_XHASH,
16652 MIPS_LIBC_ABI_MAX
16653 };
16654
16655 bfd_boolean
16656 _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
16657 {
16658 struct mips_elf_link_hash_table *htab = NULL;
16659 Elf_Internal_Ehdr *i_ehdrp;
16660
16661 if (!_bfd_elf_init_file_header (abfd, link_info))
16662 return FALSE;
16663
16664 i_ehdrp = elf_elfheader (abfd);
16665 if (link_info)
16666 {
16667 htab = mips_elf_hash_table (link_info);
16668 BFD_ASSERT (htab != NULL);
16669 }
16670
16671 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16672 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16673
16674 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16675 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16676 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16677
16678 /* Mark that we need support for absolute symbols in the dynamic loader. */
16679 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16680 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16681
16682 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16683 if it is the only hash section that will be created. */
16684 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16685 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
16686 return TRUE;
16687 }
16688
16689 int
16690 _bfd_mips_elf_compact_eh_encoding
16691 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16692 {
16693 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16694 }
16695
16696 /* Return the opcode for can't unwind. */
16697
16698 int
16699 _bfd_mips_elf_cant_unwind_opcode
16700 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16701 {
16702 return COMPACT_EH_CANT_UNWIND_OPCODE;
16703 }
16704
16705 /* Record a position XLAT_LOC in the xlat translation table, associated with
16706 the hash entry H. The entry in the translation table will later be
16707 populated with the real symbol dynindx. */
16708
16709 void
16710 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16711 bfd_vma xlat_loc)
16712 {
16713 struct mips_elf_link_hash_entry *hmips;
16714
16715 hmips = (struct mips_elf_link_hash_entry *) h;
16716 hmips->mipsxhash_loc = xlat_loc;
16717 }
This page took 0.405451 seconds and 4 git commands to generate.