Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2021 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40 #include "dwarf2.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56 };
57
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
77 {
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
96
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
100
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
109 };
110
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
122 {
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130 };
131
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135 struct mips_got_page_range
136 {
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140 };
141
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
145 {
146 /* The section that these entries are based on. */
147 asection *sec;
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152 };
153
154 /* This structure is used to hold .got information when linking. */
155
156 struct mips_got_info
157 {
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno;
177 /* A hash table holding members of the got. */
178 struct htab *got_entries;
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab *got_page_refs;
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab *got_page_entries;
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info *next;
186 };
187
188 /* Structure passed when merging bfds' gots. */
189
190 struct mips_elf_got_per_bfd_arg
191 {
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
213 };
214
215 /* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
217
218 struct mips_elf_traverse_got_arg
219 {
220 struct bfd_link_info *info;
221 struct mips_got_info *g;
222 int value;
223 };
224
225 struct _mips_elf_section_data
226 {
227 struct bfd_elf_section_data elf;
228 union
229 {
230 bfd_byte *tdata;
231 } u;
232 };
233
234 #define mips_elf_section_data(sec) \
235 ((struct _mips_elf_section_data *) elf_section_data (sec))
236
237 #define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
240 && elf_object_id (bfd) == MIPS_ELF_DATA)
241
242 /* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
255
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259 #define GGA_NORMAL 0
260 #define GGA_RELOC_ONLY 1
261 #define GGA_NONE 2
262
263 /* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
265
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
268
269 immediately before a PIC function "func". The second is to add:
270
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
274
275 to a separate trampoline section.
276
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280 struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
283
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
286
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
290 };
291
292 /* Macros for populating a mips_elf_la25_stub. */
293
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
304
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
307
308 struct mips_elf_hash_sort_data
309 {
310 /* The symbol in the global GOT with the lowest dynamic symbol table
311 index. */
312 struct elf_link_hash_entry *low;
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
315 bfd_size_type min_got_dynindx;
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
318 with dynamic relocations pointing to it from non-primary GOTs). */
319 bfd_size_type max_unref_got_dynindx;
320 /* The greatest dynamic symbol table index corresponding to a local
321 symbol. */
322 bfd_size_type max_local_dynindx;
323 /* The greatest dynamic symbol table index corresponding to an external
324 symbol without a GOT entry. */
325 bfd_size_type max_non_got_dynindx;
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
327 bfd *output_bfd;
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
330 bfd_byte *mipsxhash;
331 };
332
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
336 processing. */
337
338 struct plt_entry
339 {
340 /* Traditional SVR4 stub offset, or -1 if none. */
341 bfd_vma stub_offset;
342
343 /* Standard PLT entry offset, or -1 if none. */
344 bfd_vma mips_offset;
345
346 /* Compressed PLT entry offset, or -1 if none. */
347 bfd_vma comp_offset;
348
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index;
351
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips : 1;
354
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp : 1;
357 };
358
359 /* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
361
362 struct mips_elf_link_hash_entry
363 {
364 struct elf_link_hash_entry root;
365
366 /* External symbol information. */
367 EXTR esym;
368
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub *la25_stub;
371
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373 this symbol. */
374 unsigned int possibly_dynamic_relocs;
375
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
378 asection *fn_stub;
379
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
382 asection *call_stub;
383
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection *call_fp_stub;
387
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc;
390
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area : 2;
393
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls : 1;
398
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc : 1;
402
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs : 1;
407
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub : 1;
413
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub : 1;
417
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches : 1;
422
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub : 1;
426
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry : 1;
429 };
430
431 /* MIPS ELF linker hash table. */
432
433 struct mips_elf_link_hash_table
434 {
435 struct elf_link_hash_table root;
436
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count;
439
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size;
442
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
445 bool use_rld_obj_head;
446
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry *rld_symbol;
449
450 /* This is set if we see any mips16 stub sections. */
451 bool mips16_stubs_seen;
452
453 /* True if we can generate copy relocs and PLTs. */
454 bool use_plts_and_copy_relocs;
455
456 /* True if we can only use 32-bit microMIPS instructions. */
457 bool insn32;
458
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bool ignore_branch_isa;
461
462 /* True if we are targetting R6 compact branches. */
463 bool compact_branches;
464
465 /* True if we already reported the small-data section overflow. */
466 bool small_data_overflow_reported;
467
468 /* True if we use the special `__gnu_absolute_zero' symbol. */
469 bool use_absolute_zero;
470
471 /* True if we have been configured for a GNU target. */
472 bool gnu_target;
473
474 /* Shortcuts to some dynamic sections, or NULL if they are not
475 being used. */
476 asection *srelplt2;
477 asection *sstubs;
478
479 /* The master GOT information. */
480 struct mips_got_info *got_info;
481
482 /* The global symbol in the GOT with the lowest index in the dynamic
483 symbol table. */
484 struct elf_link_hash_entry *global_gotsym;
485
486 /* The size of the PLT header in bytes. */
487 bfd_vma plt_header_size;
488
489 /* The size of a standard PLT entry in bytes. */
490 bfd_vma plt_mips_entry_size;
491
492 /* The size of a compressed PLT entry in bytes. */
493 bfd_vma plt_comp_entry_size;
494
495 /* The offset of the next standard PLT entry to create. */
496 bfd_vma plt_mips_offset;
497
498 /* The offset of the next compressed PLT entry to create. */
499 bfd_vma plt_comp_offset;
500
501 /* The index of the next .got.plt entry to create. */
502 bfd_vma plt_got_index;
503
504 /* The number of functions that need a lazy-binding stub. */
505 bfd_vma lazy_stub_count;
506
507 /* The size of a function stub entry in bytes. */
508 bfd_vma function_stub_size;
509
510 /* The number of reserved entries at the beginning of the GOT. */
511 unsigned int reserved_gotno;
512
513 /* The section used for mips_elf_la25_stub trampolines.
514 See the comment above that structure for details. */
515 asection *strampoline;
516
517 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
518 pairs. */
519 htab_t la25_stubs;
520
521 /* A function FN (NAME, IS, OS) that creates a new input section
522 called NAME and links it to output section OS. If IS is nonnull,
523 the new section should go immediately before it, otherwise it
524 should go at the (current) beginning of OS.
525
526 The function returns the new section on success, otherwise it
527 returns null. */
528 asection *(*add_stub_section) (const char *, asection *, asection *);
529
530 /* Is the PLT header compressed? */
531 unsigned int plt_header_is_comp : 1;
532 };
533
534 /* Get the MIPS ELF linker hash table from a link_info structure. */
535
536 #define mips_elf_hash_table(p) \
537 ((is_elf_hash_table ((p)->hash) \
538 && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA) \
539 ? (struct mips_elf_link_hash_table *) (p)->hash : NULL)
540
541 /* A structure used to communicate with htab_traverse callbacks. */
542 struct mips_htab_traverse_info
543 {
544 /* The usual link-wide information. */
545 struct bfd_link_info *info;
546 bfd *output_bfd;
547
548 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
549 bool error;
550 };
551
552 /* MIPS ELF private object data. */
553
554 struct mips_elf_obj_tdata
555 {
556 /* Generic ELF private object data. */
557 struct elf_obj_tdata root;
558
559 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
560 bfd *abi_fp_bfd;
561
562 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
563 bfd *abi_msa_bfd;
564
565 /* The abiflags for this object. */
566 Elf_Internal_ABIFlags_v0 abiflags;
567 bool abiflags_valid;
568
569 /* The GOT requirements of input bfds. */
570 struct mips_got_info *got;
571
572 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
573 included directly in this one, but there's no point to wasting
574 the memory just for the infrequently called find_nearest_line. */
575 struct mips_elf_find_line *find_line_info;
576
577 /* An array of stub sections indexed by symbol number. */
578 asection **local_stubs;
579 asection **local_call_stubs;
580
581 /* The Irix 5 support uses two virtual sections, which represent
582 text/data symbols defined in dynamic objects. */
583 asymbol *elf_data_symbol;
584 asymbol *elf_text_symbol;
585 asection *elf_data_section;
586 asection *elf_text_section;
587 };
588
589 /* Get MIPS ELF private object data from BFD's tdata. */
590
591 #define mips_elf_tdata(bfd) \
592 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
593
594 #define TLS_RELOC_P(r_type) \
595 (r_type == R_MIPS_TLS_DTPMOD32 \
596 || r_type == R_MIPS_TLS_DTPMOD64 \
597 || r_type == R_MIPS_TLS_DTPREL32 \
598 || r_type == R_MIPS_TLS_DTPREL64 \
599 || r_type == R_MIPS_TLS_GD \
600 || r_type == R_MIPS_TLS_LDM \
601 || r_type == R_MIPS_TLS_DTPREL_HI16 \
602 || r_type == R_MIPS_TLS_DTPREL_LO16 \
603 || r_type == R_MIPS_TLS_GOTTPREL \
604 || r_type == R_MIPS_TLS_TPREL32 \
605 || r_type == R_MIPS_TLS_TPREL64 \
606 || r_type == R_MIPS_TLS_TPREL_HI16 \
607 || r_type == R_MIPS_TLS_TPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GD \
609 || r_type == R_MIPS16_TLS_LDM \
610 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
611 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
612 || r_type == R_MIPS16_TLS_GOTTPREL \
613 || r_type == R_MIPS16_TLS_TPREL_HI16 \
614 || r_type == R_MIPS16_TLS_TPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GD \
616 || r_type == R_MICROMIPS_TLS_LDM \
617 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
618 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
619 || r_type == R_MICROMIPS_TLS_GOTTPREL \
620 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
621 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
622
623 /* Structure used to pass information to mips_elf_output_extsym. */
624
625 struct extsym_info
626 {
627 bfd *abfd;
628 struct bfd_link_info *info;
629 struct ecoff_debug_info *debug;
630 const struct ecoff_debug_swap *swap;
631 bool failed;
632 };
633
634 /* The names of the runtime procedure table symbols used on IRIX5. */
635
636 static const char * const mips_elf_dynsym_rtproc_names[] =
637 {
638 "_procedure_table",
639 "_procedure_string_table",
640 "_procedure_table_size",
641 NULL
642 };
643
644 /* These structures are used to generate the .compact_rel section on
645 IRIX5. */
646
647 typedef struct
648 {
649 unsigned long id1; /* Always one? */
650 unsigned long num; /* Number of compact relocation entries. */
651 unsigned long id2; /* Always two? */
652 unsigned long offset; /* The file offset of the first relocation. */
653 unsigned long reserved0; /* Zero? */
654 unsigned long reserved1; /* Zero? */
655 } Elf32_compact_rel;
656
657 typedef struct
658 {
659 bfd_byte id1[4];
660 bfd_byte num[4];
661 bfd_byte id2[4];
662 bfd_byte offset[4];
663 bfd_byte reserved0[4];
664 bfd_byte reserved1[4];
665 } Elf32_External_compact_rel;
666
667 typedef struct
668 {
669 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
670 unsigned int rtype : 4; /* Relocation types. See below. */
671 unsigned int dist2to : 8;
672 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
673 unsigned long konst; /* KONST field. See below. */
674 unsigned long vaddr; /* VADDR to be relocated. */
675 } Elf32_crinfo;
676
677 typedef struct
678 {
679 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
680 unsigned int rtype : 4; /* Relocation types. See below. */
681 unsigned int dist2to : 8;
682 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
683 unsigned long konst; /* KONST field. See below. */
684 } Elf32_crinfo2;
685
686 typedef struct
687 {
688 bfd_byte info[4];
689 bfd_byte konst[4];
690 bfd_byte vaddr[4];
691 } Elf32_External_crinfo;
692
693 typedef struct
694 {
695 bfd_byte info[4];
696 bfd_byte konst[4];
697 } Elf32_External_crinfo2;
698
699 /* These are the constants used to swap the bitfields in a crinfo. */
700
701 #define CRINFO_CTYPE (0x1U)
702 #define CRINFO_CTYPE_SH (31)
703 #define CRINFO_RTYPE (0xfU)
704 #define CRINFO_RTYPE_SH (27)
705 #define CRINFO_DIST2TO (0xffU)
706 #define CRINFO_DIST2TO_SH (19)
707 #define CRINFO_RELVADDR (0x7ffffU)
708 #define CRINFO_RELVADDR_SH (0)
709
710 /* A compact relocation info has long (3 words) or short (2 words)
711 formats. A short format doesn't have VADDR field and relvaddr
712 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
713 #define CRF_MIPS_LONG 1
714 #define CRF_MIPS_SHORT 0
715
716 /* There are 4 types of compact relocation at least. The value KONST
717 has different meaning for each type:
718
719 (type) (konst)
720 CT_MIPS_REL32 Address in data
721 CT_MIPS_WORD Address in word (XXX)
722 CT_MIPS_GPHI_LO GP - vaddr
723 CT_MIPS_JMPAD Address to jump
724 */
725
726 #define CRT_MIPS_REL32 0xa
727 #define CRT_MIPS_WORD 0xb
728 #define CRT_MIPS_GPHI_LO 0xc
729 #define CRT_MIPS_JMPAD 0xd
730
731 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
732 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
733 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
734 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
735 \f
736 /* The structure of the runtime procedure descriptor created by the
737 loader for use by the static exception system. */
738
739 typedef struct runtime_pdr {
740 bfd_vma adr; /* Memory address of start of procedure. */
741 long regmask; /* Save register mask. */
742 long regoffset; /* Save register offset. */
743 long fregmask; /* Save floating point register mask. */
744 long fregoffset; /* Save floating point register offset. */
745 long frameoffset; /* Frame size. */
746 short framereg; /* Frame pointer register. */
747 short pcreg; /* Offset or reg of return pc. */
748 long irpss; /* Index into the runtime string table. */
749 long reserved;
750 struct exception_info *exception_info;/* Pointer to exception array. */
751 } RPDR, *pRPDR;
752 #define cbRPDR sizeof (RPDR)
753 #define rpdNil ((pRPDR) 0)
754 \f
755 static struct mips_got_entry *mips_elf_create_local_got_entry
756 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
757 struct mips_elf_link_hash_entry *, int);
758 static bool mips_elf_sort_hash_table_f
759 (struct mips_elf_link_hash_entry *, void *);
760 static bfd_vma mips_elf_high
761 (bfd_vma);
762 static bool mips_elf_create_dynamic_relocation
763 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
764 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
765 bfd_vma *, asection *);
766 static bfd_vma mips_elf_adjust_gp
767 (bfd *, struct mips_got_info *, bfd *);
768
769 /* This will be used when we sort the dynamic relocation records. */
770 static bfd *reldyn_sorting_bfd;
771
772 /* True if ABFD is for CPUs with load interlocking that include
773 non-MIPS1 CPUs and R3900. */
774 #define LOAD_INTERLOCKS_P(abfd) \
775 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
776 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
777
778 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
779 This should be safe for all architectures. We enable this predicate
780 for RM9000 for now. */
781 #define JAL_TO_BAL_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
783
784 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
785 This should be safe for all architectures. We enable this predicate for
786 all CPUs. */
787 #define JALR_TO_BAL_P(abfd) 1
788
789 /* True if ABFD is for CPUs that are faster if JR is converted to B.
790 This should be safe for all architectures. We enable this predicate for
791 all CPUs. */
792 #define JR_TO_B_P(abfd) 1
793
794 /* True if ABFD is a PIC object. */
795 #define PIC_OBJECT_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
797
798 /* Nonzero if ABFD is using the O32 ABI. */
799 #define ABI_O32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
801
802 /* Nonzero if ABFD is using the N32 ABI. */
803 #define ABI_N32_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
805
806 /* Nonzero if ABFD is using the N64 ABI. */
807 #define ABI_64_P(abfd) \
808 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
809
810 /* Nonzero if ABFD is using NewABI conventions. */
811 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
812
813 /* Nonzero if ABFD has microMIPS code. */
814 #define MICROMIPS_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
816
817 /* Nonzero if ABFD is MIPS R6. */
818 #define MIPSR6_P(abfd) \
819 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
820 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
821
822 /* The IRIX compatibility level we are striving for. */
823 #define IRIX_COMPAT(abfd) \
824 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
825
826 /* Whether we are trying to be compatible with IRIX at all. */
827 #define SGI_COMPAT(abfd) \
828 (IRIX_COMPAT (abfd) != ict_none)
829
830 /* The name of the options section. */
831 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
832 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
833
834 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
835 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
838
839 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
840 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
841 (strcmp (NAME, ".MIPS.abiflags") == 0)
842
843 /* Whether the section is readonly. */
844 #define MIPS_ELF_READONLY_SECTION(sec) \
845 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
846 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
847
848 /* The name of the stub section. */
849 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
850
851 /* The size of an external REL relocation. */
852 #define MIPS_ELF_REL_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rel)
854
855 /* The size of an external RELA relocation. */
856 #define MIPS_ELF_RELA_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_rela)
858
859 /* The size of an external dynamic table entry. */
860 #define MIPS_ELF_DYN_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->sizeof_dyn)
862
863 /* The size of a GOT entry. */
864 #define MIPS_ELF_GOT_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
866
867 /* The size of the .rld_map section. */
868 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->arch_size / 8)
870
871 /* The size of a symbol-table entry. */
872 #define MIPS_ELF_SYM_SIZE(abfd) \
873 (get_elf_backend_data (abfd)->s->sizeof_sym)
874
875 /* The default alignment for sections, as a power of two. */
876 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
877 (get_elf_backend_data (abfd)->s->log_file_align)
878
879 /* Get word-sized data. */
880 #define MIPS_ELF_GET_WORD(abfd, ptr) \
881 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
882
883 /* Put out word-sized data. */
884 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
885 (ABI_64_P (abfd) \
886 ? bfd_put_64 (abfd, val, ptr) \
887 : bfd_put_32 (abfd, val, ptr))
888
889 /* The opcode for word-sized loads (LW or LD). */
890 #define MIPS_ELF_LOAD_WORD(abfd) \
891 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
892
893 /* Add a dynamic symbol table-entry. */
894 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
895 _bfd_elf_add_dynamic_entry (info, tag, val)
896
897 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
898 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
899
900 /* The name of the dynamic relocation section. */
901 #define MIPS_ELF_REL_DYN_NAME(INFO) \
902 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
903 ? ".rela.dyn" : ".rel.dyn")
904
905 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
906 from smaller values. Start with zero, widen, *then* decrement. */
907 #define MINUS_ONE (((bfd_vma)0) - 1)
908 #define MINUS_TWO (((bfd_vma)0) - 2)
909
910 /* The value to write into got[1] for SVR4 targets, to identify it is
911 a GNU object. The dynamic linker can then use got[1] to store the
912 module pointer. */
913 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
914 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
915
916 /* The offset of $gp from the beginning of the .got section. */
917 #define ELF_MIPS_GP_OFFSET(INFO) \
918 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
919 ? 0x0 : 0x7ff0)
920
921 /* The maximum size of the GOT for it to be addressable using 16-bit
922 offsets from $gp. */
923 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
924
925 /* Instructions which appear in a stub. */
926 #define STUB_LW(abfd) \
927 ((ABI_64_P (abfd) \
928 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
929 : 0x8f998010)) /* lw t9,0x8010(gp) */
930 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
931 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
932 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
933 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
934 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
935 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
936 #define STUB_LI16S(abfd, VAL) \
937 ((ABI_64_P (abfd) \
938 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
939 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
940
941 /* Likewise for the microMIPS ASE. */
942 #define STUB_LW_MICROMIPS(abfd) \
943 (ABI_64_P (abfd) \
944 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
945 : 0xff3c8010) /* lw t9,0x8010(gp) */
946 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
947 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
948 #define STUB_LUI_MICROMIPS(VAL) \
949 (0x41b80000 + (VAL)) /* lui t8,VAL */
950 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
951 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
952 #define STUB_ORI_MICROMIPS(VAL) \
953 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
954 #define STUB_LI16U_MICROMIPS(VAL) \
955 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
956 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
957 (ABI_64_P (abfd) \
958 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
959 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
960
961 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
962 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
963 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
964 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
965 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
966 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
967
968 /* The name of the dynamic interpreter. This is put in the .interp
969 section. */
970
971 #define ELF_DYNAMIC_INTERPRETER(abfd) \
972 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
973 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
974 : "/usr/lib/libc.so.1")
975
976 #ifdef BFD64
977 #define MNAME(bfd,pre,pos) \
978 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
979 #define ELF_R_SYM(bfd, i) \
980 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
981 #define ELF_R_TYPE(bfd, i) \
982 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
983 #define ELF_R_INFO(bfd, s, t) \
984 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
985 #else
986 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
987 #define ELF_R_SYM(bfd, i) \
988 (ELF32_R_SYM (i))
989 #define ELF_R_TYPE(bfd, i) \
990 (ELF32_R_TYPE (i))
991 #define ELF_R_INFO(bfd, s, t) \
992 (ELF32_R_INFO (s, t))
993 #endif
994 \f
995 /* The mips16 compiler uses a couple of special sections to handle
996 floating point arguments.
997
998 Section names that look like .mips16.fn.FNNAME contain stubs that
999 copy floating point arguments from the fp regs to the gp regs and
1000 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1001 call should be redirected to the stub instead. If no 32 bit
1002 function calls FNNAME, the stub should be discarded. We need to
1003 consider any reference to the function, not just a call, because
1004 if the address of the function is taken we will need the stub,
1005 since the address might be passed to a 32 bit function.
1006
1007 Section names that look like .mips16.call.FNNAME contain stubs
1008 that copy floating point arguments from the gp regs to the fp
1009 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1010 then any 16 bit function that calls FNNAME should be redirected
1011 to the stub instead. If FNNAME is not a 32 bit function, the
1012 stub should be discarded.
1013
1014 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1015 which call FNNAME and then copy the return value from the fp regs
1016 to the gp regs. These stubs store the return value in $18 while
1017 calling FNNAME; any function which might call one of these stubs
1018 must arrange to save $18 around the call. (This case is not
1019 needed for 32 bit functions that call 16 bit functions, because
1020 16 bit functions always return floating point values in both
1021 $f0/$f1 and $2/$3.)
1022
1023 Note that in all cases FNNAME might be defined statically.
1024 Therefore, FNNAME is not used literally. Instead, the relocation
1025 information will indicate which symbol the section is for.
1026
1027 We record any stubs that we find in the symbol table. */
1028
1029 #define FN_STUB ".mips16.fn."
1030 #define CALL_STUB ".mips16.call."
1031 #define CALL_FP_STUB ".mips16.call.fp."
1032
1033 #define FN_STUB_P(name) startswith (name, FN_STUB)
1034 #define CALL_STUB_P(name) startswith (name, CALL_STUB)
1035 #define CALL_FP_STUB_P(name) startswith (name, CALL_FP_STUB)
1036 \f
1037 /* The format of the first PLT entry in an O32 executable. */
1038 static const bfd_vma mips_o32_exec_plt0_entry[] =
1039 {
1040 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1041 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1042 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1043 0x031cc023, /* subu $24, $24, $28 */
1044 0x03e07825, /* or t7, ra, zero */
1045 0x0018c082, /* srl $24, $24, 2 */
1046 0x0320f809, /* jalr $25 */
1047 0x2718fffe /* subu $24, $24, 2 */
1048 };
1049
1050 /* The format of the first PLT entry in an O32 executable using compact
1051 jumps. */
1052 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1053 {
1054 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1055 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1056 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1057 0x031cc023, /* subu $24, $24, $28 */
1058 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1059 0x0018c082, /* srl $24, $24, 2 */
1060 0x2718fffe, /* subu $24, $24, 2 */
1061 0xf8190000 /* jalrc $25 */
1062 };
1063
1064 /* The format of the first PLT entry in an N32 executable. Different
1065 because gp ($28) is not available; we use t2 ($14) instead. */
1066 static const bfd_vma mips_n32_exec_plt0_entry[] =
1067 {
1068 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1069 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1070 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1071 0x030ec023, /* subu $24, $24, $14 */
1072 0x03e07825, /* or t7, ra, zero */
1073 0x0018c082, /* srl $24, $24, 2 */
1074 0x0320f809, /* jalr $25 */
1075 0x2718fffe /* subu $24, $24, 2 */
1076 };
1077
1078 /* The format of the first PLT entry in an N32 executable using compact
1079 jumps. Different because gp ($28) is not available; we use t2 ($14)
1080 instead. */
1081 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1082 {
1083 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1084 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1085 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1086 0x030ec023, /* subu $24, $24, $14 */
1087 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1088 0x0018c082, /* srl $24, $24, 2 */
1089 0x2718fffe, /* subu $24, $24, 2 */
1090 0xf8190000 /* jalrc $25 */
1091 };
1092
1093 /* The format of the first PLT entry in an N64 executable. Different
1094 from N32 because of the increased size of GOT entries. */
1095 static const bfd_vma mips_n64_exec_plt0_entry[] =
1096 {
1097 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1098 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1099 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1100 0x030ec023, /* subu $24, $24, $14 */
1101 0x03e07825, /* or t7, ra, zero */
1102 0x0018c0c2, /* srl $24, $24, 3 */
1103 0x0320f809, /* jalr $25 */
1104 0x2718fffe /* subu $24, $24, 2 */
1105 };
1106
1107 /* The format of the first PLT entry in an N64 executable using compact
1108 jumps. Different from N32 because of the increased size of GOT
1109 entries. */
1110 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1111 {
1112 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1113 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1114 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1115 0x030ec023, /* subu $24, $24, $14 */
1116 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1117 0x0018c0c2, /* srl $24, $24, 3 */
1118 0x2718fffe, /* subu $24, $24, 2 */
1119 0xf8190000 /* jalrc $25 */
1120 };
1121
1122
1123 /* The format of the microMIPS first PLT entry in an O32 executable.
1124 We rely on v0 ($2) rather than t8 ($24) to contain the address
1125 of the GOTPLT entry handled, so this stub may only be used when
1126 all the subsequent PLT entries are microMIPS code too.
1127
1128 The trailing NOP is for alignment and correct disassembly only. */
1129 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1130 {
1131 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1132 0xff23, 0x0000, /* lw $25, 0($3) */
1133 0x0535, /* subu $2, $2, $3 */
1134 0x2525, /* srl $2, $2, 2 */
1135 0x3302, 0xfffe, /* subu $24, $2, 2 */
1136 0x0dff, /* move $15, $31 */
1137 0x45f9, /* jalrs $25 */
1138 0x0f83, /* move $28, $3 */
1139 0x0c00 /* nop */
1140 };
1141
1142 /* The format of the microMIPS first PLT entry in an O32 executable
1143 in the insn32 mode. */
1144 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1145 {
1146 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1147 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1148 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1149 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1150 0x001f, 0x7a90, /* or $15, $31, zero */
1151 0x0318, 0x1040, /* srl $24, $24, 2 */
1152 0x03f9, 0x0f3c, /* jalr $25 */
1153 0x3318, 0xfffe /* subu $24, $24, 2 */
1154 };
1155
1156 /* The format of subsequent standard PLT entries. */
1157 static const bfd_vma mips_exec_plt_entry[] =
1158 {
1159 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1160 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1161 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1162 0x03200008 /* jr $25 */
1163 };
1164
1165 static const bfd_vma mipsr6_exec_plt_entry[] =
1166 {
1167 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1168 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1169 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1170 0x03200009 /* jr $25 */
1171 };
1172
1173 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1174 {
1175 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1176 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1177 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1178 0xd8190000 /* jic $25, 0 */
1179 };
1180
1181 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1182 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1183 directly addressable. */
1184 static const bfd_vma mips16_o32_exec_plt_entry[] =
1185 {
1186 0xb203, /* lw $2, 12($pc) */
1187 0x9a60, /* lw $3, 0($2) */
1188 0x651a, /* move $24, $2 */
1189 0xeb00, /* jr $3 */
1190 0x653b, /* move $25, $3 */
1191 0x6500, /* nop */
1192 0x0000, 0x0000 /* .word (.got.plt entry) */
1193 };
1194
1195 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1196 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1197 static const bfd_vma micromips_o32_exec_plt_entry[] =
1198 {
1199 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1200 0xff22, 0x0000, /* lw $25, 0($2) */
1201 0x4599, /* jr $25 */
1202 0x0f02 /* move $24, $2 */
1203 };
1204
1205 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1206 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1207 {
1208 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1209 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1210 0x0019, 0x0f3c, /* jr $25 */
1211 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1212 };
1213
1214 /* The format of the first PLT entry in a VxWorks executable. */
1215 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1216 {
1217 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1218 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1219 0x8f390008, /* lw t9, 8(t9) */
1220 0x00000000, /* nop */
1221 0x03200008, /* jr t9 */
1222 0x00000000 /* nop */
1223 };
1224
1225 /* The format of subsequent PLT entries. */
1226 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1227 {
1228 0x10000000, /* b .PLT_resolver */
1229 0x24180000, /* li t8, <pltindex> */
1230 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1231 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1232 0x8f390000, /* lw t9, 0(t9) */
1233 0x00000000, /* nop */
1234 0x03200008, /* jr t9 */
1235 0x00000000 /* nop */
1236 };
1237
1238 /* The format of the first PLT entry in a VxWorks shared object. */
1239 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1240 {
1241 0x8f990008, /* lw t9, 8(gp) */
1242 0x00000000, /* nop */
1243 0x03200008, /* jr t9 */
1244 0x00000000, /* nop */
1245 0x00000000, /* nop */
1246 0x00000000 /* nop */
1247 };
1248
1249 /* The format of subsequent PLT entries. */
1250 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1251 {
1252 0x10000000, /* b .PLT_resolver */
1253 0x24180000 /* li t8, <pltindex> */
1254 };
1255 \f
1256 /* microMIPS 32-bit opcode helper installer. */
1257
1258 static void
1259 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1260 {
1261 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1262 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1263 }
1264
1265 /* microMIPS 32-bit opcode helper retriever. */
1266
1267 static bfd_vma
1268 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1269 {
1270 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1271 }
1272 \f
1273 /* Look up an entry in a MIPS ELF linker hash table. */
1274
1275 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1276 ((struct mips_elf_link_hash_entry *) \
1277 elf_link_hash_lookup (&(table)->root, (string), (create), \
1278 (copy), (follow)))
1279
1280 /* Traverse a MIPS ELF linker hash table. */
1281
1282 #define mips_elf_link_hash_traverse(table, func, info) \
1283 (elf_link_hash_traverse \
1284 (&(table)->root, \
1285 (bool (*) (struct elf_link_hash_entry *, void *)) (func), \
1286 (info)))
1287
1288 /* Find the base offsets for thread-local storage in this object,
1289 for GD/LD and IE/LE respectively. */
1290
1291 #define TP_OFFSET 0x7000
1292 #define DTP_OFFSET 0x8000
1293
1294 static bfd_vma
1295 dtprel_base (struct bfd_link_info *info)
1296 {
1297 /* If tls_sec is NULL, we should have signalled an error already. */
1298 if (elf_hash_table (info)->tls_sec == NULL)
1299 return 0;
1300 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1301 }
1302
1303 static bfd_vma
1304 tprel_base (struct bfd_link_info *info)
1305 {
1306 /* If tls_sec is NULL, we should have signalled an error already. */
1307 if (elf_hash_table (info)->tls_sec == NULL)
1308 return 0;
1309 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1310 }
1311
1312 /* Create an entry in a MIPS ELF linker hash table. */
1313
1314 static struct bfd_hash_entry *
1315 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1316 struct bfd_hash_table *table, const char *string)
1317 {
1318 struct mips_elf_link_hash_entry *ret =
1319 (struct mips_elf_link_hash_entry *) entry;
1320
1321 /* Allocate the structure if it has not already been allocated by a
1322 subclass. */
1323 if (ret == NULL)
1324 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1325 if (ret == NULL)
1326 return (struct bfd_hash_entry *) ret;
1327
1328 /* Call the allocation method of the superclass. */
1329 ret = ((struct mips_elf_link_hash_entry *)
1330 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1331 table, string));
1332 if (ret != NULL)
1333 {
1334 /* Set local fields. */
1335 memset (&ret->esym, 0, sizeof (EXTR));
1336 /* We use -2 as a marker to indicate that the information has
1337 not been set. -1 means there is no associated ifd. */
1338 ret->esym.ifd = -2;
1339 ret->la25_stub = 0;
1340 ret->possibly_dynamic_relocs = 0;
1341 ret->fn_stub = NULL;
1342 ret->call_stub = NULL;
1343 ret->call_fp_stub = NULL;
1344 ret->mipsxhash_loc = 0;
1345 ret->global_got_area = GGA_NONE;
1346 ret->got_only_for_calls = true;
1347 ret->readonly_reloc = false;
1348 ret->has_static_relocs = false;
1349 ret->no_fn_stub = false;
1350 ret->need_fn_stub = false;
1351 ret->has_nonpic_branches = false;
1352 ret->needs_lazy_stub = false;
1353 ret->use_plt_entry = false;
1354 }
1355
1356 return (struct bfd_hash_entry *) ret;
1357 }
1358
1359 /* Allocate MIPS ELF private object data. */
1360
1361 bool
1362 _bfd_mips_elf_mkobject (bfd *abfd)
1363 {
1364 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1365 MIPS_ELF_DATA);
1366 }
1367
1368 bool
1369 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1370 {
1371 if (!sec->used_by_bfd)
1372 {
1373 struct _mips_elf_section_data *sdata;
1374 size_t amt = sizeof (*sdata);
1375
1376 sdata = bfd_zalloc (abfd, amt);
1377 if (sdata == NULL)
1378 return false;
1379 sec->used_by_bfd = sdata;
1380 }
1381
1382 return _bfd_elf_new_section_hook (abfd, sec);
1383 }
1384 \f
1385 /* Read ECOFF debugging information from a .mdebug section into a
1386 ecoff_debug_info structure. */
1387
1388 bool
1389 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1390 struct ecoff_debug_info *debug)
1391 {
1392 HDRR *symhdr;
1393 const struct ecoff_debug_swap *swap;
1394 char *ext_hdr;
1395
1396 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1397 memset (debug, 0, sizeof (*debug));
1398
1399 ext_hdr = bfd_malloc (swap->external_hdr_size);
1400 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1401 goto error_return;
1402
1403 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1404 swap->external_hdr_size))
1405 goto error_return;
1406
1407 symhdr = &debug->symbolic_header;
1408 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1409
1410 /* The symbolic header contains absolute file offsets and sizes to
1411 read. */
1412 #define READ(ptr, offset, count, size, type) \
1413 do \
1414 { \
1415 size_t amt; \
1416 debug->ptr = NULL; \
1417 if (symhdr->count == 0) \
1418 break; \
1419 if (_bfd_mul_overflow (size, symhdr->count, &amt)) \
1420 { \
1421 bfd_set_error (bfd_error_file_too_big); \
1422 goto error_return; \
1423 } \
1424 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \
1425 goto error_return; \
1426 debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt); \
1427 if (debug->ptr == NULL) \
1428 goto error_return; \
1429 } while (0)
1430
1431 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1432 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1433 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1434 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1435 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1436 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1437 union aux_ext *);
1438 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1439 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1440 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1441 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1442 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1443 #undef READ
1444
1445 debug->fdr = NULL;
1446
1447 return true;
1448
1449 error_return:
1450 free (ext_hdr);
1451 free (debug->line);
1452 free (debug->external_dnr);
1453 free (debug->external_pdr);
1454 free (debug->external_sym);
1455 free (debug->external_opt);
1456 free (debug->external_aux);
1457 free (debug->ss);
1458 free (debug->ssext);
1459 free (debug->external_fdr);
1460 free (debug->external_rfd);
1461 free (debug->external_ext);
1462 return false;
1463 }
1464 \f
1465 /* Swap RPDR (runtime procedure table entry) for output. */
1466
1467 static void
1468 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1469 {
1470 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1476
1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1479
1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1481 }
1482
1483 /* Create a runtime procedure table from the .mdebug section. */
1484
1485 static bool
1486 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 struct bfd_link_info *info, asection *s,
1488 struct ecoff_debug_info *debug)
1489 {
1490 const struct ecoff_debug_swap *swap;
1491 HDRR *hdr = &debug->symbolic_header;
1492 RPDR *rpdr, *rp;
1493 struct rpdr_ext *erp;
1494 void *rtproc;
1495 struct pdr_ext *epdr;
1496 struct sym_ext *esym;
1497 char *ss, **sv;
1498 char *str;
1499 bfd_size_type size;
1500 bfd_size_type count;
1501 unsigned long sindex;
1502 unsigned long i;
1503 PDR pdr;
1504 SYMR sym;
1505 const char *no_name_func = _("static procedure (no name)");
1506
1507 epdr = NULL;
1508 rpdr = NULL;
1509 esym = NULL;
1510 ss = NULL;
1511 sv = NULL;
1512
1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1514
1515 sindex = strlen (no_name_func) + 1;
1516 count = hdr->ipdMax;
1517 if (count > 0)
1518 {
1519 size = swap->external_pdr_size;
1520
1521 epdr = bfd_malloc (size * count);
1522 if (epdr == NULL)
1523 goto error_return;
1524
1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1526 goto error_return;
1527
1528 size = sizeof (RPDR);
1529 rp = rpdr = bfd_malloc (size * count);
1530 if (rpdr == NULL)
1531 goto error_return;
1532
1533 size = sizeof (char *);
1534 sv = bfd_malloc (size * count);
1535 if (sv == NULL)
1536 goto error_return;
1537
1538 count = hdr->isymMax;
1539 size = swap->external_sym_size;
1540 esym = bfd_malloc (size * count);
1541 if (esym == NULL)
1542 goto error_return;
1543
1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1545 goto error_return;
1546
1547 count = hdr->issMax;
1548 ss = bfd_malloc (count);
1549 if (ss == NULL)
1550 goto error_return;
1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1552 goto error_return;
1553
1554 count = hdr->ipdMax;
1555 for (i = 0; i < (unsigned long) count; i++, rp++)
1556 {
1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1559 rp->adr = sym.value;
1560 rp->regmask = pdr.regmask;
1561 rp->regoffset = pdr.regoffset;
1562 rp->fregmask = pdr.fregmask;
1563 rp->fregoffset = pdr.fregoffset;
1564 rp->frameoffset = pdr.frameoffset;
1565 rp->framereg = pdr.framereg;
1566 rp->pcreg = pdr.pcreg;
1567 rp->irpss = sindex;
1568 sv[i] = ss + sym.iss;
1569 sindex += strlen (sv[i]) + 1;
1570 }
1571 }
1572
1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574 size = BFD_ALIGN (size, 16);
1575 rtproc = bfd_alloc (abfd, size);
1576 if (rtproc == NULL)
1577 {
1578 mips_elf_hash_table (info)->procedure_count = 0;
1579 goto error_return;
1580 }
1581
1582 mips_elf_hash_table (info)->procedure_count = count + 2;
1583
1584 erp = rtproc;
1585 memset (erp, 0, sizeof (struct rpdr_ext));
1586 erp++;
1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588 strcpy (str, no_name_func);
1589 str += strlen (no_name_func) + 1;
1590 for (i = 0; i < count; i++)
1591 {
1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593 strcpy (str, sv[i]);
1594 str += strlen (sv[i]) + 1;
1595 }
1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1597
1598 /* Set the size and contents of .rtproc section. */
1599 s->size = size;
1600 s->contents = rtproc;
1601
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
1604 s->map_head.link_order = NULL;
1605
1606 free (epdr);
1607 free (rpdr);
1608 free (esym);
1609 free (ss);
1610 free (sv);
1611 return true;
1612
1613 error_return:
1614 free (epdr);
1615 free (rpdr);
1616 free (esym);
1617 free (ss);
1618 free (sv);
1619 return false;
1620 }
1621 \f
1622 /* We're going to create a stub for H. Create a symbol for the stub's
1623 value and size, to help make the disassembly easier to read. */
1624
1625 static bool
1626 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1627 struct mips_elf_link_hash_entry *h,
1628 const char *prefix, asection *s, bfd_vma value,
1629 bfd_vma size)
1630 {
1631 bool micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1632 struct bfd_link_hash_entry *bh;
1633 struct elf_link_hash_entry *elfh;
1634 char *name;
1635 bool res;
1636
1637 if (micromips_p)
1638 value |= 1;
1639
1640 /* Create a new symbol. */
1641 name = concat (prefix, h->root.root.root.string, NULL);
1642 bh = NULL;
1643 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1644 BSF_LOCAL, s, value, NULL,
1645 true, false, &bh);
1646 free (name);
1647 if (! res)
1648 return false;
1649
1650 /* Make it a local function. */
1651 elfh = (struct elf_link_hash_entry *) bh;
1652 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1653 elfh->size = size;
1654 elfh->forced_local = 1;
1655 if (micromips_p)
1656 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1657 return true;
1658 }
1659
1660 /* We're about to redefine H. Create a symbol to represent H's
1661 current value and size, to help make the disassembly easier
1662 to read. */
1663
1664 static bool
1665 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1666 struct mips_elf_link_hash_entry *h,
1667 const char *prefix)
1668 {
1669 struct bfd_link_hash_entry *bh;
1670 struct elf_link_hash_entry *elfh;
1671 char *name;
1672 asection *s;
1673 bfd_vma value;
1674 bool res;
1675
1676 /* Read the symbol's value. */
1677 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1678 || h->root.root.type == bfd_link_hash_defweak);
1679 s = h->root.root.u.def.section;
1680 value = h->root.root.u.def.value;
1681
1682 /* Create a new symbol. */
1683 name = concat (prefix, h->root.root.root.string, NULL);
1684 bh = NULL;
1685 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1686 BSF_LOCAL, s, value, NULL,
1687 true, false, &bh);
1688 free (name);
1689 if (! res)
1690 return false;
1691
1692 /* Make it local and copy the other attributes from H. */
1693 elfh = (struct elf_link_hash_entry *) bh;
1694 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1695 elfh->other = h->root.other;
1696 elfh->size = h->root.size;
1697 elfh->forced_local = 1;
1698 return true;
1699 }
1700
1701 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1702 function rather than to a hard-float stub. */
1703
1704 static bool
1705 section_allows_mips16_refs_p (asection *section)
1706 {
1707 const char *name;
1708
1709 name = bfd_section_name (section);
1710 return (FN_STUB_P (name)
1711 || CALL_STUB_P (name)
1712 || CALL_FP_STUB_P (name)
1713 || strcmp (name, ".pdr") == 0);
1714 }
1715
1716 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1717 stub section of some kind. Return the R_SYMNDX of the target
1718 function, or 0 if we can't decide which function that is. */
1719
1720 static unsigned long
1721 mips16_stub_symndx (const struct elf_backend_data *bed,
1722 asection *sec ATTRIBUTE_UNUSED,
1723 const Elf_Internal_Rela *relocs,
1724 const Elf_Internal_Rela *relend)
1725 {
1726 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1727 const Elf_Internal_Rela *rel;
1728
1729 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1730 one in a compound relocation. */
1731 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1732 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1733 return ELF_R_SYM (sec->owner, rel->r_info);
1734
1735 /* Otherwise trust the first relocation, whatever its kind. This is
1736 the traditional behavior. */
1737 if (relocs < relend)
1738 return ELF_R_SYM (sec->owner, relocs->r_info);
1739
1740 return 0;
1741 }
1742
1743 /* Check the mips16 stubs for a particular symbol, and see if we can
1744 discard them. */
1745
1746 static void
1747 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1748 struct mips_elf_link_hash_entry *h)
1749 {
1750 /* Dynamic symbols must use the standard call interface, in case other
1751 objects try to call them. */
1752 if (h->fn_stub != NULL
1753 && h->root.dynindx != -1)
1754 {
1755 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1756 h->need_fn_stub = true;
1757 }
1758
1759 if (h->fn_stub != NULL
1760 && ! h->need_fn_stub)
1761 {
1762 /* We don't need the fn_stub; the only references to this symbol
1763 are 16 bit calls. Clobber the size to 0 to prevent it from
1764 being included in the link. */
1765 h->fn_stub->size = 0;
1766 h->fn_stub->flags &= ~SEC_RELOC;
1767 h->fn_stub->reloc_count = 0;
1768 h->fn_stub->flags |= SEC_EXCLUDE;
1769 h->fn_stub->output_section = bfd_abs_section_ptr;
1770 }
1771
1772 if (h->call_stub != NULL
1773 && ELF_ST_IS_MIPS16 (h->root.other))
1774 {
1775 /* We don't need the call_stub; this is a 16 bit function, so
1776 calls from other 16 bit functions are OK. Clobber the size
1777 to 0 to prevent it from being included in the link. */
1778 h->call_stub->size = 0;
1779 h->call_stub->flags &= ~SEC_RELOC;
1780 h->call_stub->reloc_count = 0;
1781 h->call_stub->flags |= SEC_EXCLUDE;
1782 h->call_stub->output_section = bfd_abs_section_ptr;
1783 }
1784
1785 if (h->call_fp_stub != NULL
1786 && ELF_ST_IS_MIPS16 (h->root.other))
1787 {
1788 /* We don't need the call_stub; this is a 16 bit function, so
1789 calls from other 16 bit functions are OK. Clobber the size
1790 to 0 to prevent it from being included in the link. */
1791 h->call_fp_stub->size = 0;
1792 h->call_fp_stub->flags &= ~SEC_RELOC;
1793 h->call_fp_stub->reloc_count = 0;
1794 h->call_fp_stub->flags |= SEC_EXCLUDE;
1795 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1796 }
1797 }
1798
1799 /* Hashtable callbacks for mips_elf_la25_stubs. */
1800
1801 static hashval_t
1802 mips_elf_la25_stub_hash (const void *entry_)
1803 {
1804 const struct mips_elf_la25_stub *entry;
1805
1806 entry = (struct mips_elf_la25_stub *) entry_;
1807 return entry->h->root.root.u.def.section->id
1808 + entry->h->root.root.u.def.value;
1809 }
1810
1811 static int
1812 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1813 {
1814 const struct mips_elf_la25_stub *entry1, *entry2;
1815
1816 entry1 = (struct mips_elf_la25_stub *) entry1_;
1817 entry2 = (struct mips_elf_la25_stub *) entry2_;
1818 return ((entry1->h->root.root.u.def.section
1819 == entry2->h->root.root.u.def.section)
1820 && (entry1->h->root.root.u.def.value
1821 == entry2->h->root.root.u.def.value));
1822 }
1823
1824 /* Called by the linker to set up the la25 stub-creation code. FN is
1825 the linker's implementation of add_stub_function. Return true on
1826 success. */
1827
1828 bool
1829 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1830 asection *(*fn) (const char *, asection *,
1831 asection *))
1832 {
1833 struct mips_elf_link_hash_table *htab;
1834
1835 htab = mips_elf_hash_table (info);
1836 if (htab == NULL)
1837 return false;
1838
1839 htab->add_stub_section = fn;
1840 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1841 mips_elf_la25_stub_eq, NULL);
1842 if (htab->la25_stubs == NULL)
1843 return false;
1844
1845 return true;
1846 }
1847
1848 /* Return true if H is a locally-defined PIC function, in the sense
1849 that it or its fn_stub might need $25 to be valid on entry.
1850 Note that MIPS16 functions set up $gp using PC-relative instructions,
1851 so they themselves never need $25 to be valid. Only non-MIPS16
1852 entry points are of interest here. */
1853
1854 static bool
1855 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1856 {
1857 return ((h->root.root.type == bfd_link_hash_defined
1858 || h->root.root.type == bfd_link_hash_defweak)
1859 && h->root.def_regular
1860 && !bfd_is_abs_section (h->root.root.u.def.section)
1861 && !bfd_is_und_section (h->root.root.u.def.section)
1862 && (!ELF_ST_IS_MIPS16 (h->root.other)
1863 || (h->fn_stub && h->need_fn_stub))
1864 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1865 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1866 }
1867
1868 /* Set *SEC to the input section that contains the target of STUB.
1869 Return the offset of the target from the start of that section. */
1870
1871 static bfd_vma
1872 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1873 asection **sec)
1874 {
1875 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1876 {
1877 BFD_ASSERT (stub->h->need_fn_stub);
1878 *sec = stub->h->fn_stub;
1879 return 0;
1880 }
1881 else
1882 {
1883 *sec = stub->h->root.root.u.def.section;
1884 return stub->h->root.root.u.def.value;
1885 }
1886 }
1887
1888 /* STUB describes an la25 stub that we have decided to implement
1889 by inserting an LUI/ADDIU pair before the target function.
1890 Create the section and redirect the function symbol to it. */
1891
1892 static bool
1893 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1894 struct bfd_link_info *info)
1895 {
1896 struct mips_elf_link_hash_table *htab;
1897 char *name;
1898 asection *s, *input_section;
1899 unsigned int align;
1900
1901 htab = mips_elf_hash_table (info);
1902 if (htab == NULL)
1903 return false;
1904
1905 /* Create a unique name for the new section. */
1906 name = bfd_malloc (11 + sizeof (".text.stub."));
1907 if (name == NULL)
1908 return false;
1909 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1910
1911 /* Create the section. */
1912 mips_elf_get_la25_target (stub, &input_section);
1913 s = htab->add_stub_section (name, input_section,
1914 input_section->output_section);
1915 if (s == NULL)
1916 return false;
1917
1918 /* Make sure that any padding goes before the stub. */
1919 align = input_section->alignment_power;
1920 if (!bfd_set_section_alignment (s, align))
1921 return false;
1922 if (align > 3)
1923 s->size = (1 << align) - 8;
1924
1925 /* Create a symbol for the stub. */
1926 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1927 stub->stub_section = s;
1928 stub->offset = s->size;
1929
1930 /* Allocate room for it. */
1931 s->size += 8;
1932 return true;
1933 }
1934
1935 /* STUB describes an la25 stub that we have decided to implement
1936 with a separate trampoline. Allocate room for it and redirect
1937 the function symbol to it. */
1938
1939 static bool
1940 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1941 struct bfd_link_info *info)
1942 {
1943 struct mips_elf_link_hash_table *htab;
1944 asection *s;
1945
1946 htab = mips_elf_hash_table (info);
1947 if (htab == NULL)
1948 return false;
1949
1950 /* Create a trampoline section, if we haven't already. */
1951 s = htab->strampoline;
1952 if (s == NULL)
1953 {
1954 asection *input_section = stub->h->root.root.u.def.section;
1955 s = htab->add_stub_section (".text", NULL,
1956 input_section->output_section);
1957 if (s == NULL || !bfd_set_section_alignment (s, 4))
1958 return false;
1959 htab->strampoline = s;
1960 }
1961
1962 /* Create a symbol for the stub. */
1963 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1964 stub->stub_section = s;
1965 stub->offset = s->size;
1966
1967 /* Allocate room for it. */
1968 s->size += 16;
1969 return true;
1970 }
1971
1972 /* H describes a symbol that needs an la25 stub. Make sure that an
1973 appropriate stub exists and point H at it. */
1974
1975 static bool
1976 mips_elf_add_la25_stub (struct bfd_link_info *info,
1977 struct mips_elf_link_hash_entry *h)
1978 {
1979 struct mips_elf_link_hash_table *htab;
1980 struct mips_elf_la25_stub search, *stub;
1981 bool use_trampoline_p;
1982 asection *s;
1983 bfd_vma value;
1984 void **slot;
1985
1986 /* Describe the stub we want. */
1987 search.stub_section = NULL;
1988 search.offset = 0;
1989 search.h = h;
1990
1991 /* See if we've already created an equivalent stub. */
1992 htab = mips_elf_hash_table (info);
1993 if (htab == NULL)
1994 return false;
1995
1996 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1997 if (slot == NULL)
1998 return false;
1999
2000 stub = (struct mips_elf_la25_stub *) *slot;
2001 if (stub != NULL)
2002 {
2003 /* We can reuse the existing stub. */
2004 h->la25_stub = stub;
2005 return true;
2006 }
2007
2008 /* Create a permanent copy of ENTRY and add it to the hash table. */
2009 stub = bfd_malloc (sizeof (search));
2010 if (stub == NULL)
2011 return false;
2012 *stub = search;
2013 *slot = stub;
2014
2015 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2016 of the section and if we would need no more than 2 nops. */
2017 value = mips_elf_get_la25_target (stub, &s);
2018 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2019 value &= ~1;
2020 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2021
2022 h->la25_stub = stub;
2023 return (use_trampoline_p
2024 ? mips_elf_add_la25_trampoline (stub, info)
2025 : mips_elf_add_la25_intro (stub, info));
2026 }
2027
2028 /* A mips_elf_link_hash_traverse callback that is called before sizing
2029 sections. DATA points to a mips_htab_traverse_info structure. */
2030
2031 static bool
2032 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2033 {
2034 struct mips_htab_traverse_info *hti;
2035
2036 hti = (struct mips_htab_traverse_info *) data;
2037 if (!bfd_link_relocatable (hti->info))
2038 mips_elf_check_mips16_stubs (hti->info, h);
2039
2040 if (mips_elf_local_pic_function_p (h))
2041 {
2042 /* PR 12845: If H is in a section that has been garbage
2043 collected it will have its output section set to *ABS*. */
2044 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2045 return true;
2046
2047 /* H is a function that might need $25 to be valid on entry.
2048 If we're creating a non-PIC relocatable object, mark H as
2049 being PIC. If we're creating a non-relocatable object with
2050 non-PIC branches and jumps to H, make sure that H has an la25
2051 stub. */
2052 if (bfd_link_relocatable (hti->info))
2053 {
2054 if (!PIC_OBJECT_P (hti->output_bfd))
2055 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2056 }
2057 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2058 {
2059 hti->error = true;
2060 return false;
2061 }
2062 }
2063 return true;
2064 }
2065 \f
2066 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2067 Most mips16 instructions are 16 bits, but these instructions
2068 are 32 bits.
2069
2070 The format of these instructions is:
2071
2072 +--------------+--------------------------------+
2073 | JALX | X| Imm 20:16 | Imm 25:21 |
2074 +--------------+--------------------------------+
2075 | Immediate 15:0 |
2076 +-----------------------------------------------+
2077
2078 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2079 Note that the immediate value in the first word is swapped.
2080
2081 When producing a relocatable object file, R_MIPS16_26 is
2082 handled mostly like R_MIPS_26. In particular, the addend is
2083 stored as a straight 26-bit value in a 32-bit instruction.
2084 (gas makes life simpler for itself by never adjusting a
2085 R_MIPS16_26 reloc to be against a section, so the addend is
2086 always zero). However, the 32 bit instruction is stored as 2
2087 16-bit values, rather than a single 32-bit value. In a
2088 big-endian file, the result is the same; in a little-endian
2089 file, the two 16-bit halves of the 32 bit value are swapped.
2090 This is so that a disassembler can recognize the jal
2091 instruction.
2092
2093 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2094 instruction stored as two 16-bit values. The addend A is the
2095 contents of the targ26 field. The calculation is the same as
2096 R_MIPS_26. When storing the calculated value, reorder the
2097 immediate value as shown above, and don't forget to store the
2098 value as two 16-bit values.
2099
2100 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2101 defined as
2102
2103 big-endian:
2104 +--------+----------------------+
2105 | | |
2106 | | targ26-16 |
2107 |31 26|25 0|
2108 +--------+----------------------+
2109
2110 little-endian:
2111 +----------+------+-------------+
2112 | | | |
2113 | sub1 | | sub2 |
2114 |0 9|10 15|16 31|
2115 +----------+--------------------+
2116 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2117 ((sub1 << 16) | sub2)).
2118
2119 When producing a relocatable object file, the calculation is
2120 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2121 When producing a fully linked file, the calculation is
2122 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2123 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2124
2125 The table below lists the other MIPS16 instruction relocations.
2126 Each one is calculated in the same way as the non-MIPS16 relocation
2127 given on the right, but using the extended MIPS16 layout of 16-bit
2128 immediate fields:
2129
2130 R_MIPS16_GPREL R_MIPS_GPREL16
2131 R_MIPS16_GOT16 R_MIPS_GOT16
2132 R_MIPS16_CALL16 R_MIPS_CALL16
2133 R_MIPS16_HI16 R_MIPS_HI16
2134 R_MIPS16_LO16 R_MIPS_LO16
2135
2136 A typical instruction will have a format like this:
2137
2138 +--------------+--------------------------------+
2139 | EXTEND | Imm 10:5 | Imm 15:11 |
2140 +--------------+--------------------------------+
2141 | Major | rx | ry | Imm 4:0 |
2142 +--------------+--------------------------------+
2143
2144 EXTEND is the five bit value 11110. Major is the instruction
2145 opcode.
2146
2147 All we need to do here is shuffle the bits appropriately.
2148 As above, the two 16-bit halves must be swapped on a
2149 little-endian system.
2150
2151 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2152 relocatable field is shifted by 1 rather than 2 and the same bit
2153 shuffling is done as with the relocations above. */
2154
2155 static inline bool
2156 mips16_reloc_p (int r_type)
2157 {
2158 switch (r_type)
2159 {
2160 case R_MIPS16_26:
2161 case R_MIPS16_GPREL:
2162 case R_MIPS16_GOT16:
2163 case R_MIPS16_CALL16:
2164 case R_MIPS16_HI16:
2165 case R_MIPS16_LO16:
2166 case R_MIPS16_TLS_GD:
2167 case R_MIPS16_TLS_LDM:
2168 case R_MIPS16_TLS_DTPREL_HI16:
2169 case R_MIPS16_TLS_DTPREL_LO16:
2170 case R_MIPS16_TLS_GOTTPREL:
2171 case R_MIPS16_TLS_TPREL_HI16:
2172 case R_MIPS16_TLS_TPREL_LO16:
2173 case R_MIPS16_PC16_S1:
2174 return true;
2175
2176 default:
2177 return false;
2178 }
2179 }
2180
2181 /* Check if a microMIPS reloc. */
2182
2183 static inline bool
2184 micromips_reloc_p (unsigned int r_type)
2185 {
2186 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2187 }
2188
2189 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2190 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2191 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2192
2193 static inline bool
2194 micromips_reloc_shuffle_p (unsigned int r_type)
2195 {
2196 return (micromips_reloc_p (r_type)
2197 && r_type != R_MICROMIPS_PC7_S1
2198 && r_type != R_MICROMIPS_PC10_S1);
2199 }
2200
2201 static inline bool
2202 got16_reloc_p (int r_type)
2203 {
2204 return (r_type == R_MIPS_GOT16
2205 || r_type == R_MIPS16_GOT16
2206 || r_type == R_MICROMIPS_GOT16);
2207 }
2208
2209 static inline bool
2210 call16_reloc_p (int r_type)
2211 {
2212 return (r_type == R_MIPS_CALL16
2213 || r_type == R_MIPS16_CALL16
2214 || r_type == R_MICROMIPS_CALL16);
2215 }
2216
2217 static inline bool
2218 got_disp_reloc_p (unsigned int r_type)
2219 {
2220 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2221 }
2222
2223 static inline bool
2224 got_page_reloc_p (unsigned int r_type)
2225 {
2226 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2227 }
2228
2229 static inline bool
2230 got_lo16_reloc_p (unsigned int r_type)
2231 {
2232 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2233 }
2234
2235 static inline bool
2236 call_hi16_reloc_p (unsigned int r_type)
2237 {
2238 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2239 }
2240
2241 static inline bool
2242 call_lo16_reloc_p (unsigned int r_type)
2243 {
2244 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2245 }
2246
2247 static inline bool
2248 hi16_reloc_p (int r_type)
2249 {
2250 return (r_type == R_MIPS_HI16
2251 || r_type == R_MIPS16_HI16
2252 || r_type == R_MICROMIPS_HI16
2253 || r_type == R_MIPS_PCHI16);
2254 }
2255
2256 static inline bool
2257 lo16_reloc_p (int r_type)
2258 {
2259 return (r_type == R_MIPS_LO16
2260 || r_type == R_MIPS16_LO16
2261 || r_type == R_MICROMIPS_LO16
2262 || r_type == R_MIPS_PCLO16);
2263 }
2264
2265 static inline bool
2266 mips16_call_reloc_p (int r_type)
2267 {
2268 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2269 }
2270
2271 static inline bool
2272 jal_reloc_p (int r_type)
2273 {
2274 return (r_type == R_MIPS_26
2275 || r_type == R_MIPS16_26
2276 || r_type == R_MICROMIPS_26_S1);
2277 }
2278
2279 static inline bool
2280 b_reloc_p (int r_type)
2281 {
2282 return (r_type == R_MIPS_PC26_S2
2283 || r_type == R_MIPS_PC21_S2
2284 || r_type == R_MIPS_PC16
2285 || r_type == R_MIPS_GNU_REL16_S2
2286 || r_type == R_MIPS16_PC16_S1
2287 || r_type == R_MICROMIPS_PC16_S1
2288 || r_type == R_MICROMIPS_PC10_S1
2289 || r_type == R_MICROMIPS_PC7_S1);
2290 }
2291
2292 static inline bool
2293 aligned_pcrel_reloc_p (int r_type)
2294 {
2295 return (r_type == R_MIPS_PC18_S3
2296 || r_type == R_MIPS_PC19_S2);
2297 }
2298
2299 static inline bool
2300 branch_reloc_p (int r_type)
2301 {
2302 return (r_type == R_MIPS_26
2303 || r_type == R_MIPS_PC26_S2
2304 || r_type == R_MIPS_PC21_S2
2305 || r_type == R_MIPS_PC16
2306 || r_type == R_MIPS_GNU_REL16_S2);
2307 }
2308
2309 static inline bool
2310 mips16_branch_reloc_p (int r_type)
2311 {
2312 return (r_type == R_MIPS16_26
2313 || r_type == R_MIPS16_PC16_S1);
2314 }
2315
2316 static inline bool
2317 micromips_branch_reloc_p (int r_type)
2318 {
2319 return (r_type == R_MICROMIPS_26_S1
2320 || r_type == R_MICROMIPS_PC16_S1
2321 || r_type == R_MICROMIPS_PC10_S1
2322 || r_type == R_MICROMIPS_PC7_S1);
2323 }
2324
2325 static inline bool
2326 tls_gd_reloc_p (unsigned int r_type)
2327 {
2328 return (r_type == R_MIPS_TLS_GD
2329 || r_type == R_MIPS16_TLS_GD
2330 || r_type == R_MICROMIPS_TLS_GD);
2331 }
2332
2333 static inline bool
2334 tls_ldm_reloc_p (unsigned int r_type)
2335 {
2336 return (r_type == R_MIPS_TLS_LDM
2337 || r_type == R_MIPS16_TLS_LDM
2338 || r_type == R_MICROMIPS_TLS_LDM);
2339 }
2340
2341 static inline bool
2342 tls_gottprel_reloc_p (unsigned int r_type)
2343 {
2344 return (r_type == R_MIPS_TLS_GOTTPREL
2345 || r_type == R_MIPS16_TLS_GOTTPREL
2346 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2347 }
2348
2349 void
2350 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2351 bool jal_shuffle, bfd_byte *data)
2352 {
2353 bfd_vma first, second, val;
2354
2355 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2356 return;
2357
2358 /* Pick up the first and second halfwords of the instruction. */
2359 first = bfd_get_16 (abfd, data);
2360 second = bfd_get_16 (abfd, data + 2);
2361 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2362 val = first << 16 | second;
2363 else if (r_type != R_MIPS16_26)
2364 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2365 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2366 else
2367 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2368 | ((first & 0x1f) << 21) | second);
2369 bfd_put_32 (abfd, val, data);
2370 }
2371
2372 void
2373 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2374 bool jal_shuffle, bfd_byte *data)
2375 {
2376 bfd_vma first, second, val;
2377
2378 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2379 return;
2380
2381 val = bfd_get_32 (abfd, data);
2382 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2383 {
2384 second = val & 0xffff;
2385 first = val >> 16;
2386 }
2387 else if (r_type != R_MIPS16_26)
2388 {
2389 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2390 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2391 }
2392 else
2393 {
2394 second = val & 0xffff;
2395 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2396 | ((val >> 21) & 0x1f);
2397 }
2398 bfd_put_16 (abfd, second, data + 2);
2399 bfd_put_16 (abfd, first, data);
2400 }
2401
2402 bfd_reloc_status_type
2403 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2404 arelent *reloc_entry, asection *input_section,
2405 bool relocatable, void *data, bfd_vma gp)
2406 {
2407 bfd_vma relocation;
2408 bfd_signed_vma val;
2409 bfd_reloc_status_type status;
2410
2411 if (bfd_is_com_section (symbol->section))
2412 relocation = 0;
2413 else
2414 relocation = symbol->value;
2415
2416 relocation += symbol->section->output_section->vma;
2417 relocation += symbol->section->output_offset;
2418
2419 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2420 return bfd_reloc_outofrange;
2421
2422 /* Set val to the offset into the section or symbol. */
2423 val = reloc_entry->addend;
2424
2425 _bfd_mips_elf_sign_extend (val, 16);
2426
2427 /* Adjust val for the final section location and GP value. If we
2428 are producing relocatable output, we don't want to do this for
2429 an external symbol. */
2430 if (! relocatable
2431 || (symbol->flags & BSF_SECTION_SYM) != 0)
2432 val += relocation - gp;
2433
2434 if (reloc_entry->howto->partial_inplace)
2435 {
2436 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2437 (bfd_byte *) data
2438 + reloc_entry->address);
2439 if (status != bfd_reloc_ok)
2440 return status;
2441 }
2442 else
2443 reloc_entry->addend = val;
2444
2445 if (relocatable)
2446 reloc_entry->address += input_section->output_offset;
2447
2448 return bfd_reloc_ok;
2449 }
2450
2451 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2452 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2453 that contains the relocation field and DATA points to the start of
2454 INPUT_SECTION. */
2455
2456 struct mips_hi16
2457 {
2458 struct mips_hi16 *next;
2459 bfd_byte *data;
2460 asection *input_section;
2461 arelent rel;
2462 };
2463
2464 /* FIXME: This should not be a static variable. */
2465
2466 static struct mips_hi16 *mips_hi16_list;
2467
2468 /* A howto special_function for REL *HI16 relocations. We can only
2469 calculate the correct value once we've seen the partnering
2470 *LO16 relocation, so just save the information for later.
2471
2472 The ABI requires that the *LO16 immediately follow the *HI16.
2473 However, as a GNU extension, we permit an arbitrary number of
2474 *HI16s to be associated with a single *LO16. This significantly
2475 simplies the relocation handling in gcc. */
2476
2477 bfd_reloc_status_type
2478 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2479 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2480 asection *input_section, bfd *output_bfd,
2481 char **error_message ATTRIBUTE_UNUSED)
2482 {
2483 struct mips_hi16 *n;
2484
2485 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2486 return bfd_reloc_outofrange;
2487
2488 n = bfd_malloc (sizeof *n);
2489 if (n == NULL)
2490 return bfd_reloc_outofrange;
2491
2492 n->next = mips_hi16_list;
2493 n->data = data;
2494 n->input_section = input_section;
2495 n->rel = *reloc_entry;
2496 mips_hi16_list = n;
2497
2498 if (output_bfd != NULL)
2499 reloc_entry->address += input_section->output_offset;
2500
2501 return bfd_reloc_ok;
2502 }
2503
2504 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2505 like any other 16-bit relocation when applied to global symbols, but is
2506 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2507
2508 bfd_reloc_status_type
2509 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2512 {
2513 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2514 || bfd_is_und_section (bfd_asymbol_section (symbol))
2515 || bfd_is_com_section (bfd_asymbol_section (symbol)))
2516 /* The relocation is against a global symbol. */
2517 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2518 input_section, output_bfd,
2519 error_message);
2520
2521 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2522 input_section, output_bfd, error_message);
2523 }
2524
2525 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2526 is a straightforward 16 bit inplace relocation, but we must deal with
2527 any partnering high-part relocations as well. */
2528
2529 bfd_reloc_status_type
2530 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 bfd_vma vallo;
2535 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2536
2537 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2538 return bfd_reloc_outofrange;
2539
2540 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false,
2541 location);
2542 vallo = bfd_get_32 (abfd, location);
2543 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false,
2544 location);
2545
2546 while (mips_hi16_list != NULL)
2547 {
2548 bfd_reloc_status_type ret;
2549 struct mips_hi16 *hi;
2550
2551 hi = mips_hi16_list;
2552
2553 /* R_MIPS*_GOT16 relocations are something of a special case. We
2554 want to install the addend in the same way as for a R_MIPS*_HI16
2555 relocation (with a rightshift of 16). However, since GOT16
2556 relocations can also be used with global symbols, their howto
2557 has a rightshift of 0. */
2558 if (hi->rel.howto->type == R_MIPS_GOT16)
2559 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, false);
2560 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2561 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, false);
2562 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2563 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, false);
2564
2565 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2566 carry or borrow will induce a change of +1 or -1 in the high part. */
2567 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2568
2569 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2570 hi->input_section, output_bfd,
2571 error_message);
2572 if (ret != bfd_reloc_ok)
2573 return ret;
2574
2575 mips_hi16_list = hi->next;
2576 free (hi);
2577 }
2578
2579 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2580 input_section, output_bfd,
2581 error_message);
2582 }
2583
2584 /* A generic howto special_function. This calculates and installs the
2585 relocation itself, thus avoiding the oft-discussed problems in
2586 bfd_perform_relocation and bfd_install_relocation. */
2587
2588 bfd_reloc_status_type
2589 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2590 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2591 asection *input_section, bfd *output_bfd,
2592 char **error_message ATTRIBUTE_UNUSED)
2593 {
2594 bfd_signed_vma val;
2595 bfd_reloc_status_type status;
2596 bool relocatable;
2597
2598 relocatable = (output_bfd != NULL);
2599
2600 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2601 return bfd_reloc_outofrange;
2602
2603 /* Build up the field adjustment in VAL. */
2604 val = 0;
2605 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2606 {
2607 /* Either we're calculating the final field value or we have a
2608 relocation against a section symbol. Add in the section's
2609 offset or address. */
2610 val += symbol->section->output_section->vma;
2611 val += symbol->section->output_offset;
2612 }
2613
2614 if (!relocatable)
2615 {
2616 /* We're calculating the final field value. Add in the symbol's value
2617 and, if pc-relative, subtract the address of the field itself. */
2618 val += symbol->value;
2619 if (reloc_entry->howto->pc_relative)
2620 {
2621 val -= input_section->output_section->vma;
2622 val -= input_section->output_offset;
2623 val -= reloc_entry->address;
2624 }
2625 }
2626
2627 /* VAL is now the final adjustment. If we're keeping this relocation
2628 in the output file, and if the relocation uses a separate addend,
2629 we just need to add VAL to that addend. Otherwise we need to add
2630 VAL to the relocation field itself. */
2631 if (relocatable && !reloc_entry->howto->partial_inplace)
2632 reloc_entry->addend += val;
2633 else
2634 {
2635 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2636
2637 /* Add in the separate addend, if any. */
2638 val += reloc_entry->addend;
2639
2640 /* Add VAL to the relocation field. */
2641 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false,
2642 location);
2643 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2644 location);
2645 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false,
2646 location);
2647
2648 if (status != bfd_reloc_ok)
2649 return status;
2650 }
2651
2652 if (relocatable)
2653 reloc_entry->address += input_section->output_offset;
2654
2655 return bfd_reloc_ok;
2656 }
2657 \f
2658 /* Swap an entry in a .gptab section. Note that these routines rely
2659 on the equivalence of the two elements of the union. */
2660
2661 static void
2662 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2663 Elf32_gptab *in)
2664 {
2665 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2666 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2667 }
2668
2669 static void
2670 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2671 Elf32_External_gptab *ex)
2672 {
2673 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2674 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2675 }
2676
2677 static void
2678 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2679 Elf32_External_compact_rel *ex)
2680 {
2681 H_PUT_32 (abfd, in->id1, ex->id1);
2682 H_PUT_32 (abfd, in->num, ex->num);
2683 H_PUT_32 (abfd, in->id2, ex->id2);
2684 H_PUT_32 (abfd, in->offset, ex->offset);
2685 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2686 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2687 }
2688
2689 static void
2690 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2691 Elf32_External_crinfo *ex)
2692 {
2693 unsigned long l;
2694
2695 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2696 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2697 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2698 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2699 H_PUT_32 (abfd, l, ex->info);
2700 H_PUT_32 (abfd, in->konst, ex->konst);
2701 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2702 }
2703 \f
2704 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2705 routines swap this structure in and out. They are used outside of
2706 BFD, so they are globally visible. */
2707
2708 void
2709 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2710 Elf32_RegInfo *in)
2711 {
2712 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2713 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2714 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2715 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2716 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2717 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2718 }
2719
2720 void
2721 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2722 Elf32_External_RegInfo *ex)
2723 {
2724 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2725 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2726 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2727 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2728 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2729 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2730 }
2731
2732 /* In the 64 bit ABI, the .MIPS.options section holds register
2733 information in an Elf64_Reginfo structure. These routines swap
2734 them in and out. They are globally visible because they are used
2735 outside of BFD. These routines are here so that gas can call them
2736 without worrying about whether the 64 bit ABI has been included. */
2737
2738 void
2739 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2740 Elf64_Internal_RegInfo *in)
2741 {
2742 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2743 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2744 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2745 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2746 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2747 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2748 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2749 }
2750
2751 void
2752 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2753 Elf64_External_RegInfo *ex)
2754 {
2755 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2756 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2757 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2758 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2759 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2760 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2761 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2762 }
2763
2764 /* Swap in an options header. */
2765
2766 void
2767 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2768 Elf_Internal_Options *in)
2769 {
2770 in->kind = H_GET_8 (abfd, ex->kind);
2771 in->size = H_GET_8 (abfd, ex->size);
2772 in->section = H_GET_16 (abfd, ex->section);
2773 in->info = H_GET_32 (abfd, ex->info);
2774 }
2775
2776 /* Swap out an options header. */
2777
2778 void
2779 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2780 Elf_External_Options *ex)
2781 {
2782 H_PUT_8 (abfd, in->kind, ex->kind);
2783 H_PUT_8 (abfd, in->size, ex->size);
2784 H_PUT_16 (abfd, in->section, ex->section);
2785 H_PUT_32 (abfd, in->info, ex->info);
2786 }
2787
2788 /* Swap in an abiflags structure. */
2789
2790 void
2791 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2792 const Elf_External_ABIFlags_v0 *ex,
2793 Elf_Internal_ABIFlags_v0 *in)
2794 {
2795 in->version = H_GET_16 (abfd, ex->version);
2796 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2797 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2798 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2799 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2800 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2801 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2802 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2803 in->ases = H_GET_32 (abfd, ex->ases);
2804 in->flags1 = H_GET_32 (abfd, ex->flags1);
2805 in->flags2 = H_GET_32 (abfd, ex->flags2);
2806 }
2807
2808 /* Swap out an abiflags structure. */
2809
2810 void
2811 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2812 const Elf_Internal_ABIFlags_v0 *in,
2813 Elf_External_ABIFlags_v0 *ex)
2814 {
2815 H_PUT_16 (abfd, in->version, ex->version);
2816 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2817 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2818 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2819 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2820 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2821 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2822 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2823 H_PUT_32 (abfd, in->ases, ex->ases);
2824 H_PUT_32 (abfd, in->flags1, ex->flags1);
2825 H_PUT_32 (abfd, in->flags2, ex->flags2);
2826 }
2827 \f
2828 /* This function is called via qsort() to sort the dynamic relocation
2829 entries by increasing r_symndx value. */
2830
2831 static int
2832 sort_dynamic_relocs (const void *arg1, const void *arg2)
2833 {
2834 Elf_Internal_Rela int_reloc1;
2835 Elf_Internal_Rela int_reloc2;
2836 int diff;
2837
2838 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2839 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2840
2841 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2842 if (diff != 0)
2843 return diff;
2844
2845 if (int_reloc1.r_offset < int_reloc2.r_offset)
2846 return -1;
2847 if (int_reloc1.r_offset > int_reloc2.r_offset)
2848 return 1;
2849 return 0;
2850 }
2851
2852 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2853
2854 static int
2855 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2856 const void *arg2 ATTRIBUTE_UNUSED)
2857 {
2858 #ifdef BFD64
2859 Elf_Internal_Rela int_reloc1[3];
2860 Elf_Internal_Rela int_reloc2[3];
2861
2862 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2863 (reldyn_sorting_bfd, arg1, int_reloc1);
2864 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2865 (reldyn_sorting_bfd, arg2, int_reloc2);
2866
2867 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2868 return -1;
2869 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2870 return 1;
2871
2872 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2873 return -1;
2874 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2875 return 1;
2876 return 0;
2877 #else
2878 abort ();
2879 #endif
2880 }
2881
2882
2883 /* This routine is used to write out ECOFF debugging external symbol
2884 information. It is called via mips_elf_link_hash_traverse. The
2885 ECOFF external symbol information must match the ELF external
2886 symbol information. Unfortunately, at this point we don't know
2887 whether a symbol is required by reloc information, so the two
2888 tables may wind up being different. We must sort out the external
2889 symbol information before we can set the final size of the .mdebug
2890 section, and we must set the size of the .mdebug section before we
2891 can relocate any sections, and we can't know which symbols are
2892 required by relocation until we relocate the sections.
2893 Fortunately, it is relatively unlikely that any symbol will be
2894 stripped but required by a reloc. In particular, it can not happen
2895 when generating a final executable. */
2896
2897 static bool
2898 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2899 {
2900 struct extsym_info *einfo = data;
2901 bool strip;
2902 asection *sec, *output_section;
2903
2904 if (h->root.indx == -2)
2905 strip = false;
2906 else if ((h->root.def_dynamic
2907 || h->root.ref_dynamic
2908 || h->root.type == bfd_link_hash_new)
2909 && !h->root.def_regular
2910 && !h->root.ref_regular)
2911 strip = true;
2912 else if (einfo->info->strip == strip_all
2913 || (einfo->info->strip == strip_some
2914 && bfd_hash_lookup (einfo->info->keep_hash,
2915 h->root.root.root.string,
2916 false, false) == NULL))
2917 strip = true;
2918 else
2919 strip = false;
2920
2921 if (strip)
2922 return true;
2923
2924 if (h->esym.ifd == -2)
2925 {
2926 h->esym.jmptbl = 0;
2927 h->esym.cobol_main = 0;
2928 h->esym.weakext = 0;
2929 h->esym.reserved = 0;
2930 h->esym.ifd = ifdNil;
2931 h->esym.asym.value = 0;
2932 h->esym.asym.st = stGlobal;
2933
2934 if (h->root.root.type == bfd_link_hash_undefined
2935 || h->root.root.type == bfd_link_hash_undefweak)
2936 {
2937 const char *name;
2938
2939 /* Use undefined class. Also, set class and type for some
2940 special symbols. */
2941 name = h->root.root.root.string;
2942 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2943 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2944 {
2945 h->esym.asym.sc = scData;
2946 h->esym.asym.st = stLabel;
2947 h->esym.asym.value = 0;
2948 }
2949 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2950 {
2951 h->esym.asym.sc = scAbs;
2952 h->esym.asym.st = stLabel;
2953 h->esym.asym.value =
2954 mips_elf_hash_table (einfo->info)->procedure_count;
2955 }
2956 else
2957 h->esym.asym.sc = scUndefined;
2958 }
2959 else if (h->root.root.type != bfd_link_hash_defined
2960 && h->root.root.type != bfd_link_hash_defweak)
2961 h->esym.asym.sc = scAbs;
2962 else
2963 {
2964 const char *name;
2965
2966 sec = h->root.root.u.def.section;
2967 output_section = sec->output_section;
2968
2969 /* When making a shared library and symbol h is the one from
2970 the another shared library, OUTPUT_SECTION may be null. */
2971 if (output_section == NULL)
2972 h->esym.asym.sc = scUndefined;
2973 else
2974 {
2975 name = bfd_section_name (output_section);
2976
2977 if (strcmp (name, ".text") == 0)
2978 h->esym.asym.sc = scText;
2979 else if (strcmp (name, ".data") == 0)
2980 h->esym.asym.sc = scData;
2981 else if (strcmp (name, ".sdata") == 0)
2982 h->esym.asym.sc = scSData;
2983 else if (strcmp (name, ".rodata") == 0
2984 || strcmp (name, ".rdata") == 0)
2985 h->esym.asym.sc = scRData;
2986 else if (strcmp (name, ".bss") == 0)
2987 h->esym.asym.sc = scBss;
2988 else if (strcmp (name, ".sbss") == 0)
2989 h->esym.asym.sc = scSBss;
2990 else if (strcmp (name, ".init") == 0)
2991 h->esym.asym.sc = scInit;
2992 else if (strcmp (name, ".fini") == 0)
2993 h->esym.asym.sc = scFini;
2994 else
2995 h->esym.asym.sc = scAbs;
2996 }
2997 }
2998
2999 h->esym.asym.reserved = 0;
3000 h->esym.asym.index = indexNil;
3001 }
3002
3003 if (h->root.root.type == bfd_link_hash_common)
3004 h->esym.asym.value = h->root.root.u.c.size;
3005 else if (h->root.root.type == bfd_link_hash_defined
3006 || h->root.root.type == bfd_link_hash_defweak)
3007 {
3008 if (h->esym.asym.sc == scCommon)
3009 h->esym.asym.sc = scBss;
3010 else if (h->esym.asym.sc == scSCommon)
3011 h->esym.asym.sc = scSBss;
3012
3013 sec = h->root.root.u.def.section;
3014 output_section = sec->output_section;
3015 if (output_section != NULL)
3016 h->esym.asym.value = (h->root.root.u.def.value
3017 + sec->output_offset
3018 + output_section->vma);
3019 else
3020 h->esym.asym.value = 0;
3021 }
3022 else
3023 {
3024 struct mips_elf_link_hash_entry *hd = h;
3025
3026 while (hd->root.root.type == bfd_link_hash_indirect)
3027 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3028
3029 if (hd->needs_lazy_stub)
3030 {
3031 BFD_ASSERT (hd->root.plt.plist != NULL);
3032 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3033 /* Set type and value for a symbol with a function stub. */
3034 h->esym.asym.st = stProc;
3035 sec = hd->root.root.u.def.section;
3036 if (sec == NULL)
3037 h->esym.asym.value = 0;
3038 else
3039 {
3040 output_section = sec->output_section;
3041 if (output_section != NULL)
3042 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3043 + sec->output_offset
3044 + output_section->vma);
3045 else
3046 h->esym.asym.value = 0;
3047 }
3048 }
3049 }
3050
3051 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3052 h->root.root.root.string,
3053 &h->esym))
3054 {
3055 einfo->failed = true;
3056 return false;
3057 }
3058
3059 return true;
3060 }
3061
3062 /* A comparison routine used to sort .gptab entries. */
3063
3064 static int
3065 gptab_compare (const void *p1, const void *p2)
3066 {
3067 const Elf32_gptab *a1 = p1;
3068 const Elf32_gptab *a2 = p2;
3069
3070 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3071 }
3072 \f
3073 /* Functions to manage the got entry hash table. */
3074
3075 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3076 hash number. */
3077
3078 static INLINE hashval_t
3079 mips_elf_hash_bfd_vma (bfd_vma addr)
3080 {
3081 #ifdef BFD64
3082 return addr + (addr >> 32);
3083 #else
3084 return addr;
3085 #endif
3086 }
3087
3088 static hashval_t
3089 mips_elf_got_entry_hash (const void *entry_)
3090 {
3091 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3092
3093 return (entry->symndx
3094 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3095 + (entry->tls_type == GOT_TLS_LDM ? 0
3096 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3097 : entry->symndx >= 0 ? (entry->abfd->id
3098 + mips_elf_hash_bfd_vma (entry->d.addend))
3099 : entry->d.h->root.root.root.hash));
3100 }
3101
3102 static int
3103 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3104 {
3105 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3106 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3107
3108 return (e1->symndx == e2->symndx
3109 && e1->tls_type == e2->tls_type
3110 && (e1->tls_type == GOT_TLS_LDM ? true
3111 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3112 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3113 && e1->d.addend == e2->d.addend)
3114 : e2->abfd && e1->d.h == e2->d.h));
3115 }
3116
3117 static hashval_t
3118 mips_got_page_ref_hash (const void *ref_)
3119 {
3120 const struct mips_got_page_ref *ref;
3121
3122 ref = (const struct mips_got_page_ref *) ref_;
3123 return ((ref->symndx >= 0
3124 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3125 : ref->u.h->root.root.root.hash)
3126 + mips_elf_hash_bfd_vma (ref->addend));
3127 }
3128
3129 static int
3130 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3131 {
3132 const struct mips_got_page_ref *ref1, *ref2;
3133
3134 ref1 = (const struct mips_got_page_ref *) ref1_;
3135 ref2 = (const struct mips_got_page_ref *) ref2_;
3136 return (ref1->symndx == ref2->symndx
3137 && (ref1->symndx < 0
3138 ? ref1->u.h == ref2->u.h
3139 : ref1->u.abfd == ref2->u.abfd)
3140 && ref1->addend == ref2->addend);
3141 }
3142
3143 static hashval_t
3144 mips_got_page_entry_hash (const void *entry_)
3145 {
3146 const struct mips_got_page_entry *entry;
3147
3148 entry = (const struct mips_got_page_entry *) entry_;
3149 return entry->sec->id;
3150 }
3151
3152 static int
3153 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3154 {
3155 const struct mips_got_page_entry *entry1, *entry2;
3156
3157 entry1 = (const struct mips_got_page_entry *) entry1_;
3158 entry2 = (const struct mips_got_page_entry *) entry2_;
3159 return entry1->sec == entry2->sec;
3160 }
3161 \f
3162 /* Create and return a new mips_got_info structure. */
3163
3164 static struct mips_got_info *
3165 mips_elf_create_got_info (bfd *abfd)
3166 {
3167 struct mips_got_info *g;
3168
3169 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3170 if (g == NULL)
3171 return NULL;
3172
3173 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3174 mips_elf_got_entry_eq, NULL);
3175 if (g->got_entries == NULL)
3176 return NULL;
3177
3178 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3179 mips_got_page_ref_eq, NULL);
3180 if (g->got_page_refs == NULL)
3181 return NULL;
3182
3183 return g;
3184 }
3185
3186 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3187 CREATE_P and if ABFD doesn't already have a GOT. */
3188
3189 static struct mips_got_info *
3190 mips_elf_bfd_got (bfd *abfd, bool create_p)
3191 {
3192 struct mips_elf_obj_tdata *tdata;
3193
3194 if (!is_mips_elf (abfd))
3195 return NULL;
3196
3197 tdata = mips_elf_tdata (abfd);
3198 if (!tdata->got && create_p)
3199 tdata->got = mips_elf_create_got_info (abfd);
3200 return tdata->got;
3201 }
3202
3203 /* Record that ABFD should use output GOT G. */
3204
3205 static void
3206 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3207 {
3208 struct mips_elf_obj_tdata *tdata;
3209
3210 BFD_ASSERT (is_mips_elf (abfd));
3211 tdata = mips_elf_tdata (abfd);
3212 if (tdata->got)
3213 {
3214 /* The GOT structure itself and the hash table entries are
3215 allocated to a bfd, but the hash tables aren't. */
3216 htab_delete (tdata->got->got_entries);
3217 htab_delete (tdata->got->got_page_refs);
3218 if (tdata->got->got_page_entries)
3219 htab_delete (tdata->got->got_page_entries);
3220 }
3221 tdata->got = g;
3222 }
3223
3224 /* Return the dynamic relocation section. If it doesn't exist, try to
3225 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3226 if creation fails. */
3227
3228 static asection *
3229 mips_elf_rel_dyn_section (struct bfd_link_info *info, bool create_p)
3230 {
3231 const char *dname;
3232 asection *sreloc;
3233 bfd *dynobj;
3234
3235 dname = MIPS_ELF_REL_DYN_NAME (info);
3236 dynobj = elf_hash_table (info)->dynobj;
3237 sreloc = bfd_get_linker_section (dynobj, dname);
3238 if (sreloc == NULL && create_p)
3239 {
3240 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3241 (SEC_ALLOC
3242 | SEC_LOAD
3243 | SEC_HAS_CONTENTS
3244 | SEC_IN_MEMORY
3245 | SEC_LINKER_CREATED
3246 | SEC_READONLY));
3247 if (sreloc == NULL
3248 || !bfd_set_section_alignment (sreloc,
3249 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3250 return NULL;
3251 }
3252 return sreloc;
3253 }
3254
3255 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3256
3257 static int
3258 mips_elf_reloc_tls_type (unsigned int r_type)
3259 {
3260 if (tls_gd_reloc_p (r_type))
3261 return GOT_TLS_GD;
3262
3263 if (tls_ldm_reloc_p (r_type))
3264 return GOT_TLS_LDM;
3265
3266 if (tls_gottprel_reloc_p (r_type))
3267 return GOT_TLS_IE;
3268
3269 return GOT_TLS_NONE;
3270 }
3271
3272 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3273
3274 static int
3275 mips_tls_got_entries (unsigned int type)
3276 {
3277 switch (type)
3278 {
3279 case GOT_TLS_GD:
3280 case GOT_TLS_LDM:
3281 return 2;
3282
3283 case GOT_TLS_IE:
3284 return 1;
3285
3286 case GOT_TLS_NONE:
3287 return 0;
3288 }
3289 abort ();
3290 }
3291
3292 /* Count the number of relocations needed for a TLS GOT entry, with
3293 access types from TLS_TYPE, and symbol H (or a local symbol if H
3294 is NULL). */
3295
3296 static int
3297 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3298 struct elf_link_hash_entry *h)
3299 {
3300 int indx = 0;
3301 bool need_relocs = false;
3302 bool dyn = elf_hash_table (info)->dynamic_sections_created;
3303
3304 if (h != NULL
3305 && h->dynindx != -1
3306 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3307 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3308 indx = h->dynindx;
3309
3310 if ((bfd_link_dll (info) || indx != 0)
3311 && (h == NULL
3312 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3313 || h->root.type != bfd_link_hash_undefweak))
3314 need_relocs = true;
3315
3316 if (!need_relocs)
3317 return 0;
3318
3319 switch (tls_type)
3320 {
3321 case GOT_TLS_GD:
3322 return indx != 0 ? 2 : 1;
3323
3324 case GOT_TLS_IE:
3325 return 1;
3326
3327 case GOT_TLS_LDM:
3328 return bfd_link_dll (info) ? 1 : 0;
3329
3330 default:
3331 return 0;
3332 }
3333 }
3334
3335 /* Add the number of GOT entries and TLS relocations required by ENTRY
3336 to G. */
3337
3338 static void
3339 mips_elf_count_got_entry (struct bfd_link_info *info,
3340 struct mips_got_info *g,
3341 struct mips_got_entry *entry)
3342 {
3343 if (entry->tls_type)
3344 {
3345 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3346 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3347 entry->symndx < 0
3348 ? &entry->d.h->root : NULL);
3349 }
3350 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3351 g->local_gotno += 1;
3352 else
3353 g->global_gotno += 1;
3354 }
3355
3356 /* Output a simple dynamic relocation into SRELOC. */
3357
3358 static void
3359 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3360 asection *sreloc,
3361 unsigned long reloc_index,
3362 unsigned long indx,
3363 int r_type,
3364 bfd_vma offset)
3365 {
3366 Elf_Internal_Rela rel[3];
3367
3368 memset (rel, 0, sizeof (rel));
3369
3370 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3371 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3372
3373 if (ABI_64_P (output_bfd))
3374 {
3375 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3376 (output_bfd, &rel[0],
3377 (sreloc->contents
3378 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3379 }
3380 else
3381 bfd_elf32_swap_reloc_out
3382 (output_bfd, &rel[0],
3383 (sreloc->contents
3384 + reloc_index * sizeof (Elf32_External_Rel)));
3385 }
3386
3387 /* Initialize a set of TLS GOT entries for one symbol. */
3388
3389 static void
3390 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3391 struct mips_got_entry *entry,
3392 struct mips_elf_link_hash_entry *h,
3393 bfd_vma value)
3394 {
3395 bool dyn = elf_hash_table (info)->dynamic_sections_created;
3396 struct mips_elf_link_hash_table *htab;
3397 int indx;
3398 asection *sreloc, *sgot;
3399 bfd_vma got_offset, got_offset2;
3400 bool need_relocs = false;
3401
3402 htab = mips_elf_hash_table (info);
3403 if (htab == NULL)
3404 return;
3405
3406 sgot = htab->root.sgot;
3407
3408 indx = 0;
3409 if (h != NULL
3410 && h->root.dynindx != -1
3411 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3412 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3413 indx = h->root.dynindx;
3414
3415 if (entry->tls_initialized)
3416 return;
3417
3418 if ((bfd_link_dll (info) || indx != 0)
3419 && (h == NULL
3420 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3421 || h->root.type != bfd_link_hash_undefweak))
3422 need_relocs = true;
3423
3424 /* MINUS_ONE means the symbol is not defined in this object. It may not
3425 be defined at all; assume that the value doesn't matter in that
3426 case. Otherwise complain if we would use the value. */
3427 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3428 || h->root.root.type == bfd_link_hash_undefweak);
3429
3430 /* Emit necessary relocations. */
3431 sreloc = mips_elf_rel_dyn_section (info, false);
3432 got_offset = entry->gotidx;
3433
3434 switch (entry->tls_type)
3435 {
3436 case GOT_TLS_GD:
3437 /* General Dynamic. */
3438 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3439
3440 if (need_relocs)
3441 {
3442 mips_elf_output_dynamic_relocation
3443 (abfd, sreloc, sreloc->reloc_count++, indx,
3444 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3445 sgot->output_offset + sgot->output_section->vma + got_offset);
3446
3447 if (indx)
3448 mips_elf_output_dynamic_relocation
3449 (abfd, sreloc, sreloc->reloc_count++, indx,
3450 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3451 sgot->output_offset + sgot->output_section->vma + got_offset2);
3452 else
3453 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3454 sgot->contents + got_offset2);
3455 }
3456 else
3457 {
3458 MIPS_ELF_PUT_WORD (abfd, 1,
3459 sgot->contents + got_offset);
3460 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3461 sgot->contents + got_offset2);
3462 }
3463 break;
3464
3465 case GOT_TLS_IE:
3466 /* Initial Exec model. */
3467 if (need_relocs)
3468 {
3469 if (indx == 0)
3470 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3471 sgot->contents + got_offset);
3472 else
3473 MIPS_ELF_PUT_WORD (abfd, 0,
3474 sgot->contents + got_offset);
3475
3476 mips_elf_output_dynamic_relocation
3477 (abfd, sreloc, sreloc->reloc_count++, indx,
3478 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3479 sgot->output_offset + sgot->output_section->vma + got_offset);
3480 }
3481 else
3482 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3483 sgot->contents + got_offset);
3484 break;
3485
3486 case GOT_TLS_LDM:
3487 /* The initial offset is zero, and the LD offsets will include the
3488 bias by DTP_OFFSET. */
3489 MIPS_ELF_PUT_WORD (abfd, 0,
3490 sgot->contents + got_offset
3491 + MIPS_ELF_GOT_SIZE (abfd));
3492
3493 if (!bfd_link_dll (info))
3494 MIPS_ELF_PUT_WORD (abfd, 1,
3495 sgot->contents + got_offset);
3496 else
3497 mips_elf_output_dynamic_relocation
3498 (abfd, sreloc, sreloc->reloc_count++, indx,
3499 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3500 sgot->output_offset + sgot->output_section->vma + got_offset);
3501 break;
3502
3503 default:
3504 abort ();
3505 }
3506
3507 entry->tls_initialized = true;
3508 }
3509
3510 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3511 for global symbol H. .got.plt comes before the GOT, so the offset
3512 will be negative. */
3513
3514 static bfd_vma
3515 mips_elf_gotplt_index (struct bfd_link_info *info,
3516 struct elf_link_hash_entry *h)
3517 {
3518 bfd_vma got_address, got_value;
3519 struct mips_elf_link_hash_table *htab;
3520
3521 htab = mips_elf_hash_table (info);
3522 BFD_ASSERT (htab != NULL);
3523
3524 BFD_ASSERT (h->plt.plist != NULL);
3525 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3526
3527 /* Calculate the address of the associated .got.plt entry. */
3528 got_address = (htab->root.sgotplt->output_section->vma
3529 + htab->root.sgotplt->output_offset
3530 + (h->plt.plist->gotplt_index
3531 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3532
3533 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3534 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3535 + htab->root.hgot->root.u.def.section->output_offset
3536 + htab->root.hgot->root.u.def.value);
3537
3538 return got_address - got_value;
3539 }
3540
3541 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3542 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3543 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3544 offset can be found. */
3545
3546 static bfd_vma
3547 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3548 bfd_vma value, unsigned long r_symndx,
3549 struct mips_elf_link_hash_entry *h, int r_type)
3550 {
3551 struct mips_elf_link_hash_table *htab;
3552 struct mips_got_entry *entry;
3553
3554 htab = mips_elf_hash_table (info);
3555 BFD_ASSERT (htab != NULL);
3556
3557 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3558 r_symndx, h, r_type);
3559 if (!entry)
3560 return MINUS_ONE;
3561
3562 if (entry->tls_type)
3563 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3564 return entry->gotidx;
3565 }
3566
3567 /* Return the GOT index of global symbol H in the primary GOT. */
3568
3569 static bfd_vma
3570 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3571 struct elf_link_hash_entry *h)
3572 {
3573 struct mips_elf_link_hash_table *htab;
3574 long global_got_dynindx;
3575 struct mips_got_info *g;
3576 bfd_vma got_index;
3577
3578 htab = mips_elf_hash_table (info);
3579 BFD_ASSERT (htab != NULL);
3580
3581 global_got_dynindx = 0;
3582 if (htab->global_gotsym != NULL)
3583 global_got_dynindx = htab->global_gotsym->dynindx;
3584
3585 /* Once we determine the global GOT entry with the lowest dynamic
3586 symbol table index, we must put all dynamic symbols with greater
3587 indices into the primary GOT. That makes it easy to calculate the
3588 GOT offset. */
3589 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3590 g = mips_elf_bfd_got (obfd, false);
3591 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3592 * MIPS_ELF_GOT_SIZE (obfd));
3593 BFD_ASSERT (got_index < htab->root.sgot->size);
3594
3595 return got_index;
3596 }
3597
3598 /* Return the GOT index for the global symbol indicated by H, which is
3599 referenced by a relocation of type R_TYPE in IBFD. */
3600
3601 static bfd_vma
3602 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3603 struct elf_link_hash_entry *h, int r_type)
3604 {
3605 struct mips_elf_link_hash_table *htab;
3606 struct mips_got_info *g;
3607 struct mips_got_entry lookup, *entry;
3608 bfd_vma gotidx;
3609
3610 htab = mips_elf_hash_table (info);
3611 BFD_ASSERT (htab != NULL);
3612
3613 g = mips_elf_bfd_got (ibfd, false);
3614 BFD_ASSERT (g);
3615
3616 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3617 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, false))
3618 return mips_elf_primary_global_got_index (obfd, info, h);
3619
3620 lookup.abfd = ibfd;
3621 lookup.symndx = -1;
3622 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3623 entry = htab_find (g->got_entries, &lookup);
3624 BFD_ASSERT (entry);
3625
3626 gotidx = entry->gotidx;
3627 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3628
3629 if (lookup.tls_type)
3630 {
3631 bfd_vma value = MINUS_ONE;
3632
3633 if ((h->root.type == bfd_link_hash_defined
3634 || h->root.type == bfd_link_hash_defweak)
3635 && h->root.u.def.section->output_section)
3636 value = (h->root.u.def.value
3637 + h->root.u.def.section->output_offset
3638 + h->root.u.def.section->output_section->vma);
3639
3640 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3641 }
3642 return gotidx;
3643 }
3644
3645 /* Find a GOT page entry that points to within 32KB of VALUE. These
3646 entries are supposed to be placed at small offsets in the GOT, i.e.,
3647 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3648 entry could be created. If OFFSETP is nonnull, use it to return the
3649 offset of the GOT entry from VALUE. */
3650
3651 static bfd_vma
3652 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3653 bfd_vma value, bfd_vma *offsetp)
3654 {
3655 bfd_vma page, got_index;
3656 struct mips_got_entry *entry;
3657
3658 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3659 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3660 NULL, R_MIPS_GOT_PAGE);
3661
3662 if (!entry)
3663 return MINUS_ONE;
3664
3665 got_index = entry->gotidx;
3666
3667 if (offsetp)
3668 *offsetp = value - entry->d.address;
3669
3670 return got_index;
3671 }
3672
3673 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3674 EXTERNAL is true if the relocation was originally against a global
3675 symbol that binds locally. */
3676
3677 static bfd_vma
3678 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3679 bfd_vma value, bool external)
3680 {
3681 struct mips_got_entry *entry;
3682
3683 /* GOT16 relocations against local symbols are followed by a LO16
3684 relocation; those against global symbols are not. Thus if the
3685 symbol was originally local, the GOT16 relocation should load the
3686 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3687 if (! external)
3688 value = mips_elf_high (value) << 16;
3689
3690 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3691 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3692 same in all cases. */
3693 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3694 NULL, R_MIPS_GOT16);
3695 if (entry)
3696 return entry->gotidx;
3697 else
3698 return MINUS_ONE;
3699 }
3700
3701 /* Returns the offset for the entry at the INDEXth position
3702 in the GOT. */
3703
3704 static bfd_vma
3705 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3706 bfd *input_bfd, bfd_vma got_index)
3707 {
3708 struct mips_elf_link_hash_table *htab;
3709 asection *sgot;
3710 bfd_vma gp;
3711
3712 htab = mips_elf_hash_table (info);
3713 BFD_ASSERT (htab != NULL);
3714
3715 sgot = htab->root.sgot;
3716 gp = _bfd_get_gp_value (output_bfd)
3717 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3718
3719 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3720 }
3721
3722 /* Create and return a local GOT entry for VALUE, which was calculated
3723 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3724 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3725 instead. */
3726
3727 static struct mips_got_entry *
3728 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3729 bfd *ibfd, bfd_vma value,
3730 unsigned long r_symndx,
3731 struct mips_elf_link_hash_entry *h,
3732 int r_type)
3733 {
3734 struct mips_got_entry lookup, *entry;
3735 void **loc;
3736 struct mips_got_info *g;
3737 struct mips_elf_link_hash_table *htab;
3738 bfd_vma gotidx;
3739
3740 htab = mips_elf_hash_table (info);
3741 BFD_ASSERT (htab != NULL);
3742
3743 g = mips_elf_bfd_got (ibfd, false);
3744 if (g == NULL)
3745 {
3746 g = mips_elf_bfd_got (abfd, false);
3747 BFD_ASSERT (g != NULL);
3748 }
3749
3750 /* This function shouldn't be called for symbols that live in the global
3751 area of the GOT. */
3752 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3753
3754 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3755 if (lookup.tls_type)
3756 {
3757 lookup.abfd = ibfd;
3758 if (tls_ldm_reloc_p (r_type))
3759 {
3760 lookup.symndx = 0;
3761 lookup.d.addend = 0;
3762 }
3763 else if (h == NULL)
3764 {
3765 lookup.symndx = r_symndx;
3766 lookup.d.addend = 0;
3767 }
3768 else
3769 {
3770 lookup.symndx = -1;
3771 lookup.d.h = h;
3772 }
3773
3774 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3775 BFD_ASSERT (entry);
3776
3777 gotidx = entry->gotidx;
3778 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3779
3780 return entry;
3781 }
3782
3783 lookup.abfd = NULL;
3784 lookup.symndx = -1;
3785 lookup.d.address = value;
3786 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3787 if (!loc)
3788 return NULL;
3789
3790 entry = (struct mips_got_entry *) *loc;
3791 if (entry)
3792 return entry;
3793
3794 if (g->assigned_low_gotno > g->assigned_high_gotno)
3795 {
3796 /* We didn't allocate enough space in the GOT. */
3797 _bfd_error_handler
3798 (_("not enough GOT space for local GOT entries"));
3799 bfd_set_error (bfd_error_bad_value);
3800 return NULL;
3801 }
3802
3803 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3804 if (!entry)
3805 return NULL;
3806
3807 if (got16_reloc_p (r_type)
3808 || call16_reloc_p (r_type)
3809 || got_page_reloc_p (r_type)
3810 || got_disp_reloc_p (r_type))
3811 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3812 else
3813 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3814
3815 *entry = lookup;
3816 *loc = entry;
3817
3818 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3819
3820 /* These GOT entries need a dynamic relocation on VxWorks. */
3821 if (htab->root.target_os == is_vxworks)
3822 {
3823 Elf_Internal_Rela outrel;
3824 asection *s;
3825 bfd_byte *rloc;
3826 bfd_vma got_address;
3827
3828 s = mips_elf_rel_dyn_section (info, false);
3829 got_address = (htab->root.sgot->output_section->vma
3830 + htab->root.sgot->output_offset
3831 + entry->gotidx);
3832
3833 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3834 outrel.r_offset = got_address;
3835 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3836 outrel.r_addend = value;
3837 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3838 }
3839
3840 return entry;
3841 }
3842
3843 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3844 The number might be exact or a worst-case estimate, depending on how
3845 much information is available to elf_backend_omit_section_dynsym at
3846 the current linking stage. */
3847
3848 static bfd_size_type
3849 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3850 {
3851 bfd_size_type count;
3852
3853 count = 0;
3854 if (bfd_link_pic (info)
3855 || elf_hash_table (info)->is_relocatable_executable)
3856 {
3857 asection *p;
3858 const struct elf_backend_data *bed;
3859
3860 bed = get_elf_backend_data (output_bfd);
3861 for (p = output_bfd->sections; p ; p = p->next)
3862 if ((p->flags & SEC_EXCLUDE) == 0
3863 && (p->flags & SEC_ALLOC) != 0
3864 && elf_hash_table (info)->dynamic_relocs
3865 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3866 ++count;
3867 }
3868 return count;
3869 }
3870
3871 /* Sort the dynamic symbol table so that symbols that need GOT entries
3872 appear towards the end. */
3873
3874 static bool
3875 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3876 {
3877 struct mips_elf_link_hash_table *htab;
3878 struct mips_elf_hash_sort_data hsd;
3879 struct mips_got_info *g;
3880
3881 htab = mips_elf_hash_table (info);
3882 BFD_ASSERT (htab != NULL);
3883
3884 if (htab->root.dynsymcount == 0)
3885 return true;
3886
3887 g = htab->got_info;
3888 if (g == NULL)
3889 return true;
3890
3891 hsd.low = NULL;
3892 hsd.max_unref_got_dynindx
3893 = hsd.min_got_dynindx
3894 = (htab->root.dynsymcount - g->reloc_only_gotno);
3895 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3896 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3897 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3898 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3899 hsd.output_bfd = abfd;
3900 if (htab->root.dynobj != NULL
3901 && htab->root.dynamic_sections_created
3902 && info->emit_gnu_hash)
3903 {
3904 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3905 BFD_ASSERT (s != NULL);
3906 hsd.mipsxhash = s->contents;
3907 BFD_ASSERT (hsd.mipsxhash != NULL);
3908 }
3909 else
3910 hsd.mipsxhash = NULL;
3911 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3912
3913 /* There should have been enough room in the symbol table to
3914 accommodate both the GOT and non-GOT symbols. */
3915 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3916 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3917 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3918 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3919
3920 /* Now we know which dynamic symbol has the lowest dynamic symbol
3921 table index in the GOT. */
3922 htab->global_gotsym = hsd.low;
3923
3924 return true;
3925 }
3926
3927 /* If H needs a GOT entry, assign it the highest available dynamic
3928 index. Otherwise, assign it the lowest available dynamic
3929 index. */
3930
3931 static bool
3932 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3933 {
3934 struct mips_elf_hash_sort_data *hsd = data;
3935
3936 /* Symbols without dynamic symbol table entries aren't interesting
3937 at all. */
3938 if (h->root.dynindx == -1)
3939 return true;
3940
3941 switch (h->global_got_area)
3942 {
3943 case GGA_NONE:
3944 if (h->root.forced_local)
3945 h->root.dynindx = hsd->max_local_dynindx++;
3946 else
3947 h->root.dynindx = hsd->max_non_got_dynindx++;
3948 break;
3949
3950 case GGA_NORMAL:
3951 h->root.dynindx = --hsd->min_got_dynindx;
3952 hsd->low = (struct elf_link_hash_entry *) h;
3953 break;
3954
3955 case GGA_RELOC_ONLY:
3956 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3957 hsd->low = (struct elf_link_hash_entry *) h;
3958 h->root.dynindx = hsd->max_unref_got_dynindx++;
3959 break;
3960 }
3961
3962 /* Populate the .MIPS.xhash translation table entry with
3963 the symbol dynindx. */
3964 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3965 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3966 hsd->mipsxhash + h->mipsxhash_loc);
3967
3968 return true;
3969 }
3970
3971 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3972 (which is owned by the caller and shouldn't be added to the
3973 hash table directly). */
3974
3975 static bool
3976 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3977 struct mips_got_entry *lookup)
3978 {
3979 struct mips_elf_link_hash_table *htab;
3980 struct mips_got_entry *entry;
3981 struct mips_got_info *g;
3982 void **loc, **bfd_loc;
3983
3984 /* Make sure there's a slot for this entry in the master GOT. */
3985 htab = mips_elf_hash_table (info);
3986 g = htab->got_info;
3987 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3988 if (!loc)
3989 return false;
3990
3991 /* Populate the entry if it isn't already. */
3992 entry = (struct mips_got_entry *) *loc;
3993 if (!entry)
3994 {
3995 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3996 if (!entry)
3997 return false;
3998
3999 lookup->tls_initialized = false;
4000 lookup->gotidx = -1;
4001 *entry = *lookup;
4002 *loc = entry;
4003 }
4004
4005 /* Reuse the same GOT entry for the BFD's GOT. */
4006 g = mips_elf_bfd_got (abfd, true);
4007 if (!g)
4008 return false;
4009
4010 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4011 if (!bfd_loc)
4012 return false;
4013
4014 if (!*bfd_loc)
4015 *bfd_loc = entry;
4016 return true;
4017 }
4018
4019 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4020 entry for it. FOR_CALL is true if the caller is only interested in
4021 using the GOT entry for calls. */
4022
4023 static bool
4024 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4025 bfd *abfd, struct bfd_link_info *info,
4026 bool for_call, int r_type)
4027 {
4028 struct mips_elf_link_hash_table *htab;
4029 struct mips_elf_link_hash_entry *hmips;
4030 struct mips_got_entry entry;
4031 unsigned char tls_type;
4032
4033 htab = mips_elf_hash_table (info);
4034 BFD_ASSERT (htab != NULL);
4035
4036 hmips = (struct mips_elf_link_hash_entry *) h;
4037 if (!for_call)
4038 hmips->got_only_for_calls = false;
4039
4040 /* A global symbol in the GOT must also be in the dynamic symbol
4041 table. */
4042 if (h->dynindx == -1)
4043 {
4044 switch (ELF_ST_VISIBILITY (h->other))
4045 {
4046 case STV_INTERNAL:
4047 case STV_HIDDEN:
4048 _bfd_mips_elf_hide_symbol (info, h, true);
4049 break;
4050 }
4051 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4052 return false;
4053 }
4054
4055 tls_type = mips_elf_reloc_tls_type (r_type);
4056 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4057 hmips->global_got_area = GGA_NORMAL;
4058
4059 entry.abfd = abfd;
4060 entry.symndx = -1;
4061 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4062 entry.tls_type = tls_type;
4063 return mips_elf_record_got_entry (info, abfd, &entry);
4064 }
4065
4066 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4067 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4068
4069 static bool
4070 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4071 struct bfd_link_info *info, int r_type)
4072 {
4073 struct mips_elf_link_hash_table *htab;
4074 struct mips_got_info *g;
4075 struct mips_got_entry entry;
4076
4077 htab = mips_elf_hash_table (info);
4078 BFD_ASSERT (htab != NULL);
4079
4080 g = htab->got_info;
4081 BFD_ASSERT (g != NULL);
4082
4083 entry.abfd = abfd;
4084 entry.symndx = symndx;
4085 entry.d.addend = addend;
4086 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4087 return mips_elf_record_got_entry (info, abfd, &entry);
4088 }
4089
4090 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4091 H is the symbol's hash table entry, or null if SYMNDX is local
4092 to ABFD. */
4093
4094 static bool
4095 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4096 long symndx, struct elf_link_hash_entry *h,
4097 bfd_signed_vma addend)
4098 {
4099 struct mips_elf_link_hash_table *htab;
4100 struct mips_got_info *g1, *g2;
4101 struct mips_got_page_ref lookup, *entry;
4102 void **loc, **bfd_loc;
4103
4104 htab = mips_elf_hash_table (info);
4105 BFD_ASSERT (htab != NULL);
4106
4107 g1 = htab->got_info;
4108 BFD_ASSERT (g1 != NULL);
4109
4110 if (h)
4111 {
4112 lookup.symndx = -1;
4113 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4114 }
4115 else
4116 {
4117 lookup.symndx = symndx;
4118 lookup.u.abfd = abfd;
4119 }
4120 lookup.addend = addend;
4121 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4122 if (loc == NULL)
4123 return false;
4124
4125 entry = (struct mips_got_page_ref *) *loc;
4126 if (!entry)
4127 {
4128 entry = bfd_alloc (abfd, sizeof (*entry));
4129 if (!entry)
4130 return false;
4131
4132 *entry = lookup;
4133 *loc = entry;
4134 }
4135
4136 /* Add the same entry to the BFD's GOT. */
4137 g2 = mips_elf_bfd_got (abfd, true);
4138 if (!g2)
4139 return false;
4140
4141 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4142 if (!bfd_loc)
4143 return false;
4144
4145 if (!*bfd_loc)
4146 *bfd_loc = entry;
4147
4148 return true;
4149 }
4150
4151 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4152
4153 static void
4154 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4155 unsigned int n)
4156 {
4157 asection *s;
4158 struct mips_elf_link_hash_table *htab;
4159
4160 htab = mips_elf_hash_table (info);
4161 BFD_ASSERT (htab != NULL);
4162
4163 s = mips_elf_rel_dyn_section (info, false);
4164 BFD_ASSERT (s != NULL);
4165
4166 if (htab->root.target_os == is_vxworks)
4167 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4168 else
4169 {
4170 if (s->size == 0)
4171 {
4172 /* Make room for a null element. */
4173 s->size += MIPS_ELF_REL_SIZE (abfd);
4174 ++s->reloc_count;
4175 }
4176 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4177 }
4178 }
4179 \f
4180 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4181 mips_elf_traverse_got_arg structure. Count the number of GOT
4182 entries and TLS relocs. Set DATA->value to true if we need
4183 to resolve indirect or warning symbols and then recreate the GOT. */
4184
4185 static int
4186 mips_elf_check_recreate_got (void **entryp, void *data)
4187 {
4188 struct mips_got_entry *entry;
4189 struct mips_elf_traverse_got_arg *arg;
4190
4191 entry = (struct mips_got_entry *) *entryp;
4192 arg = (struct mips_elf_traverse_got_arg *) data;
4193 if (entry->abfd != NULL && entry->symndx == -1)
4194 {
4195 struct mips_elf_link_hash_entry *h;
4196
4197 h = entry->d.h;
4198 if (h->root.root.type == bfd_link_hash_indirect
4199 || h->root.root.type == bfd_link_hash_warning)
4200 {
4201 arg->value = true;
4202 return 0;
4203 }
4204 }
4205 mips_elf_count_got_entry (arg->info, arg->g, entry);
4206 return 1;
4207 }
4208
4209 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4210 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4211 converting entries for indirect and warning symbols into entries
4212 for the target symbol. Set DATA->g to null on error. */
4213
4214 static int
4215 mips_elf_recreate_got (void **entryp, void *data)
4216 {
4217 struct mips_got_entry new_entry, *entry;
4218 struct mips_elf_traverse_got_arg *arg;
4219 void **slot;
4220
4221 entry = (struct mips_got_entry *) *entryp;
4222 arg = (struct mips_elf_traverse_got_arg *) data;
4223 if (entry->abfd != NULL
4224 && entry->symndx == -1
4225 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4226 || entry->d.h->root.root.type == bfd_link_hash_warning))
4227 {
4228 struct mips_elf_link_hash_entry *h;
4229
4230 new_entry = *entry;
4231 entry = &new_entry;
4232 h = entry->d.h;
4233 do
4234 {
4235 BFD_ASSERT (h->global_got_area == GGA_NONE);
4236 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4237 }
4238 while (h->root.root.type == bfd_link_hash_indirect
4239 || h->root.root.type == bfd_link_hash_warning);
4240 entry->d.h = h;
4241 }
4242 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4243 if (slot == NULL)
4244 {
4245 arg->g = NULL;
4246 return 0;
4247 }
4248 if (*slot == NULL)
4249 {
4250 if (entry == &new_entry)
4251 {
4252 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4253 if (!entry)
4254 {
4255 arg->g = NULL;
4256 return 0;
4257 }
4258 *entry = new_entry;
4259 }
4260 *slot = entry;
4261 mips_elf_count_got_entry (arg->info, arg->g, entry);
4262 }
4263 return 1;
4264 }
4265
4266 /* Return the maximum number of GOT page entries required for RANGE. */
4267
4268 static bfd_vma
4269 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4270 {
4271 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4272 }
4273
4274 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4275
4276 static bool
4277 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4278 asection *sec, bfd_signed_vma addend)
4279 {
4280 struct mips_got_info *g = arg->g;
4281 struct mips_got_page_entry lookup, *entry;
4282 struct mips_got_page_range **range_ptr, *range;
4283 bfd_vma old_pages, new_pages;
4284 void **loc;
4285
4286 /* Find the mips_got_page_entry hash table entry for this section. */
4287 lookup.sec = sec;
4288 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4289 if (loc == NULL)
4290 return false;
4291
4292 /* Create a mips_got_page_entry if this is the first time we've
4293 seen the section. */
4294 entry = (struct mips_got_page_entry *) *loc;
4295 if (!entry)
4296 {
4297 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4298 if (!entry)
4299 return false;
4300
4301 entry->sec = sec;
4302 *loc = entry;
4303 }
4304
4305 /* Skip over ranges whose maximum extent cannot share a page entry
4306 with ADDEND. */
4307 range_ptr = &entry->ranges;
4308 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4309 range_ptr = &(*range_ptr)->next;
4310
4311 /* If we scanned to the end of the list, or found a range whose
4312 minimum extent cannot share a page entry with ADDEND, create
4313 a new singleton range. */
4314 range = *range_ptr;
4315 if (!range || addend < range->min_addend - 0xffff)
4316 {
4317 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4318 if (!range)
4319 return false;
4320
4321 range->next = *range_ptr;
4322 range->min_addend = addend;
4323 range->max_addend = addend;
4324
4325 *range_ptr = range;
4326 entry->num_pages++;
4327 g->page_gotno++;
4328 return true;
4329 }
4330
4331 /* Remember how many pages the old range contributed. */
4332 old_pages = mips_elf_pages_for_range (range);
4333
4334 /* Update the ranges. */
4335 if (addend < range->min_addend)
4336 range->min_addend = addend;
4337 else if (addend > range->max_addend)
4338 {
4339 if (range->next && addend >= range->next->min_addend - 0xffff)
4340 {
4341 old_pages += mips_elf_pages_for_range (range->next);
4342 range->max_addend = range->next->max_addend;
4343 range->next = range->next->next;
4344 }
4345 else
4346 range->max_addend = addend;
4347 }
4348
4349 /* Record any change in the total estimate. */
4350 new_pages = mips_elf_pages_for_range (range);
4351 if (old_pages != new_pages)
4352 {
4353 entry->num_pages += new_pages - old_pages;
4354 g->page_gotno += new_pages - old_pages;
4355 }
4356
4357 return true;
4358 }
4359
4360 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4361 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4362 whether the page reference described by *REFP needs a GOT page entry,
4363 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4364
4365 static int
4366 mips_elf_resolve_got_page_ref (void **refp, void *data)
4367 {
4368 struct mips_got_page_ref *ref;
4369 struct mips_elf_traverse_got_arg *arg;
4370 struct mips_elf_link_hash_table *htab;
4371 asection *sec;
4372 bfd_vma addend;
4373
4374 ref = (struct mips_got_page_ref *) *refp;
4375 arg = (struct mips_elf_traverse_got_arg *) data;
4376 htab = mips_elf_hash_table (arg->info);
4377
4378 if (ref->symndx < 0)
4379 {
4380 struct mips_elf_link_hash_entry *h;
4381
4382 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4383 h = ref->u.h;
4384 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4385 return 1;
4386
4387 /* Ignore undefined symbols; we'll issue an error later if
4388 appropriate. */
4389 if (!((h->root.root.type == bfd_link_hash_defined
4390 || h->root.root.type == bfd_link_hash_defweak)
4391 && h->root.root.u.def.section))
4392 return 1;
4393
4394 sec = h->root.root.u.def.section;
4395 addend = h->root.root.u.def.value + ref->addend;
4396 }
4397 else
4398 {
4399 Elf_Internal_Sym *isym;
4400
4401 /* Read in the symbol. */
4402 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ref->u.abfd,
4403 ref->symndx);
4404 if (isym == NULL)
4405 {
4406 arg->g = NULL;
4407 return 0;
4408 }
4409
4410 /* Get the associated input section. */
4411 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4412 if (sec == NULL)
4413 {
4414 arg->g = NULL;
4415 return 0;
4416 }
4417
4418 /* If this is a mergable section, work out the section and offset
4419 of the merged data. For section symbols, the addend specifies
4420 of the offset _of_ the first byte in the data, otherwise it
4421 specifies the offset _from_ the first byte. */
4422 if (sec->flags & SEC_MERGE)
4423 {
4424 void *secinfo;
4425
4426 secinfo = elf_section_data (sec)->sec_info;
4427 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4428 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4429 isym->st_value + ref->addend);
4430 else
4431 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4432 isym->st_value) + ref->addend;
4433 }
4434 else
4435 addend = isym->st_value + ref->addend;
4436 }
4437 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4438 {
4439 arg->g = NULL;
4440 return 0;
4441 }
4442 return 1;
4443 }
4444
4445 /* If any entries in G->got_entries are for indirect or warning symbols,
4446 replace them with entries for the target symbol. Convert g->got_page_refs
4447 into got_page_entry structures and estimate the number of page entries
4448 that they require. */
4449
4450 static bool
4451 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4452 struct mips_got_info *g)
4453 {
4454 struct mips_elf_traverse_got_arg tga;
4455 struct mips_got_info oldg;
4456
4457 oldg = *g;
4458
4459 tga.info = info;
4460 tga.g = g;
4461 tga.value = false;
4462 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4463 if (tga.value)
4464 {
4465 *g = oldg;
4466 g->got_entries = htab_create (htab_size (oldg.got_entries),
4467 mips_elf_got_entry_hash,
4468 mips_elf_got_entry_eq, NULL);
4469 if (!g->got_entries)
4470 return false;
4471
4472 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4473 if (!tga.g)
4474 return false;
4475
4476 htab_delete (oldg.got_entries);
4477 }
4478
4479 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4480 mips_got_page_entry_eq, NULL);
4481 if (g->got_page_entries == NULL)
4482 return false;
4483
4484 tga.info = info;
4485 tga.g = g;
4486 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4487
4488 return true;
4489 }
4490
4491 /* Return true if a GOT entry for H should live in the local rather than
4492 global GOT area. */
4493
4494 static bool
4495 mips_use_local_got_p (struct bfd_link_info *info,
4496 struct mips_elf_link_hash_entry *h)
4497 {
4498 /* Symbols that aren't in the dynamic symbol table must live in the
4499 local GOT. This includes symbols that are completely undefined
4500 and which therefore don't bind locally. We'll report undefined
4501 symbols later if appropriate. */
4502 if (h->root.dynindx == -1)
4503 return true;
4504
4505 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4506 to the local GOT, as they would be implicitly relocated by the
4507 base address by the dynamic loader. */
4508 if (bfd_is_abs_symbol (&h->root.root))
4509 return false;
4510
4511 /* Symbols that bind locally can (and in the case of forced-local
4512 symbols, must) live in the local GOT. */
4513 if (h->got_only_for_calls
4514 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4515 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4516 return true;
4517
4518 /* If this is an executable that must provide a definition of the symbol,
4519 either though PLTs or copy relocations, then that address should go in
4520 the local rather than global GOT. */
4521 if (bfd_link_executable (info) && h->has_static_relocs)
4522 return true;
4523
4524 return false;
4525 }
4526
4527 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4528 link_info structure. Decide whether the hash entry needs an entry in
4529 the global part of the primary GOT, setting global_got_area accordingly.
4530 Count the number of global symbols that are in the primary GOT only
4531 because they have relocations against them (reloc_only_gotno). */
4532
4533 static bool
4534 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4535 {
4536 struct bfd_link_info *info;
4537 struct mips_elf_link_hash_table *htab;
4538 struct mips_got_info *g;
4539
4540 info = (struct bfd_link_info *) data;
4541 htab = mips_elf_hash_table (info);
4542 g = htab->got_info;
4543 if (h->global_got_area != GGA_NONE)
4544 {
4545 /* Make a final decision about whether the symbol belongs in the
4546 local or global GOT. */
4547 if (mips_use_local_got_p (info, h))
4548 /* The symbol belongs in the local GOT. We no longer need this
4549 entry if it was only used for relocations; those relocations
4550 will be against the null or section symbol instead of H. */
4551 h->global_got_area = GGA_NONE;
4552 else if (htab->root.target_os == is_vxworks
4553 && h->got_only_for_calls
4554 && h->root.plt.plist->mips_offset != MINUS_ONE)
4555 /* On VxWorks, calls can refer directly to the .got.plt entry;
4556 they don't need entries in the regular GOT. .got.plt entries
4557 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4558 h->global_got_area = GGA_NONE;
4559 else if (h->global_got_area == GGA_RELOC_ONLY)
4560 {
4561 g->reloc_only_gotno++;
4562 g->global_gotno++;
4563 }
4564 }
4565 return 1;
4566 }
4567 \f
4568 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4569 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4570
4571 static int
4572 mips_elf_add_got_entry (void **entryp, void *data)
4573 {
4574 struct mips_got_entry *entry;
4575 struct mips_elf_traverse_got_arg *arg;
4576 void **slot;
4577
4578 entry = (struct mips_got_entry *) *entryp;
4579 arg = (struct mips_elf_traverse_got_arg *) data;
4580 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4581 if (!slot)
4582 {
4583 arg->g = NULL;
4584 return 0;
4585 }
4586 if (!*slot)
4587 {
4588 *slot = entry;
4589 mips_elf_count_got_entry (arg->info, arg->g, entry);
4590 }
4591 return 1;
4592 }
4593
4594 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4595 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4596
4597 static int
4598 mips_elf_add_got_page_entry (void **entryp, void *data)
4599 {
4600 struct mips_got_page_entry *entry;
4601 struct mips_elf_traverse_got_arg *arg;
4602 void **slot;
4603
4604 entry = (struct mips_got_page_entry *) *entryp;
4605 arg = (struct mips_elf_traverse_got_arg *) data;
4606 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4607 if (!slot)
4608 {
4609 arg->g = NULL;
4610 return 0;
4611 }
4612 if (!*slot)
4613 {
4614 *slot = entry;
4615 arg->g->page_gotno += entry->num_pages;
4616 }
4617 return 1;
4618 }
4619
4620 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4621 this would lead to overflow, 1 if they were merged successfully,
4622 and 0 if a merge failed due to lack of memory. (These values are chosen
4623 so that nonnegative return values can be returned by a htab_traverse
4624 callback.) */
4625
4626 static int
4627 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4628 struct mips_got_info *to,
4629 struct mips_elf_got_per_bfd_arg *arg)
4630 {
4631 struct mips_elf_traverse_got_arg tga;
4632 unsigned int estimate;
4633
4634 /* Work out how many page entries we would need for the combined GOT. */
4635 estimate = arg->max_pages;
4636 if (estimate >= from->page_gotno + to->page_gotno)
4637 estimate = from->page_gotno + to->page_gotno;
4638
4639 /* And conservatively estimate how many local and TLS entries
4640 would be needed. */
4641 estimate += from->local_gotno + to->local_gotno;
4642 estimate += from->tls_gotno + to->tls_gotno;
4643
4644 /* If we're merging with the primary got, any TLS relocations will
4645 come after the full set of global entries. Otherwise estimate those
4646 conservatively as well. */
4647 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4648 estimate += arg->global_count;
4649 else
4650 estimate += from->global_gotno + to->global_gotno;
4651
4652 /* Bail out if the combined GOT might be too big. */
4653 if (estimate > arg->max_count)
4654 return -1;
4655
4656 /* Transfer the bfd's got information from FROM to TO. */
4657 tga.info = arg->info;
4658 tga.g = to;
4659 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4660 if (!tga.g)
4661 return 0;
4662
4663 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4664 if (!tga.g)
4665 return 0;
4666
4667 mips_elf_replace_bfd_got (abfd, to);
4668 return 1;
4669 }
4670
4671 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4672 as possible of the primary got, since it doesn't require explicit
4673 dynamic relocations, but don't use bfds that would reference global
4674 symbols out of the addressable range. Failing the primary got,
4675 attempt to merge with the current got, or finish the current got
4676 and then make make the new got current. */
4677
4678 static bool
4679 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4680 struct mips_elf_got_per_bfd_arg *arg)
4681 {
4682 unsigned int estimate;
4683 int result;
4684
4685 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4686 return false;
4687
4688 /* Work out the number of page, local and TLS entries. */
4689 estimate = arg->max_pages;
4690 if (estimate > g->page_gotno)
4691 estimate = g->page_gotno;
4692 estimate += g->local_gotno + g->tls_gotno;
4693
4694 /* We place TLS GOT entries after both locals and globals. The globals
4695 for the primary GOT may overflow the normal GOT size limit, so be
4696 sure not to merge a GOT which requires TLS with the primary GOT in that
4697 case. This doesn't affect non-primary GOTs. */
4698 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4699
4700 if (estimate <= arg->max_count)
4701 {
4702 /* If we don't have a primary GOT, use it as
4703 a starting point for the primary GOT. */
4704 if (!arg->primary)
4705 {
4706 arg->primary = g;
4707 return true;
4708 }
4709
4710 /* Try merging with the primary GOT. */
4711 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4712 if (result >= 0)
4713 return result;
4714 }
4715
4716 /* If we can merge with the last-created got, do it. */
4717 if (arg->current)
4718 {
4719 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4720 if (result >= 0)
4721 return result;
4722 }
4723
4724 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4725 fits; if it turns out that it doesn't, we'll get relocation
4726 overflows anyway. */
4727 g->next = arg->current;
4728 arg->current = g;
4729
4730 return true;
4731 }
4732
4733 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4734 to GOTIDX, duplicating the entry if it has already been assigned
4735 an index in a different GOT. */
4736
4737 static bool
4738 mips_elf_set_gotidx (void **entryp, long gotidx)
4739 {
4740 struct mips_got_entry *entry;
4741
4742 entry = (struct mips_got_entry *) *entryp;
4743 if (entry->gotidx > 0)
4744 {
4745 struct mips_got_entry *new_entry;
4746
4747 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4748 if (!new_entry)
4749 return false;
4750
4751 *new_entry = *entry;
4752 *entryp = new_entry;
4753 entry = new_entry;
4754 }
4755 entry->gotidx = gotidx;
4756 return true;
4757 }
4758
4759 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4760 mips_elf_traverse_got_arg in which DATA->value is the size of one
4761 GOT entry. Set DATA->g to null on failure. */
4762
4763 static int
4764 mips_elf_initialize_tls_index (void **entryp, void *data)
4765 {
4766 struct mips_got_entry *entry;
4767 struct mips_elf_traverse_got_arg *arg;
4768
4769 /* We're only interested in TLS symbols. */
4770 entry = (struct mips_got_entry *) *entryp;
4771 if (entry->tls_type == GOT_TLS_NONE)
4772 return 1;
4773
4774 arg = (struct mips_elf_traverse_got_arg *) data;
4775 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4776 {
4777 arg->g = NULL;
4778 return 0;
4779 }
4780
4781 /* Account for the entries we've just allocated. */
4782 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4783 return 1;
4784 }
4785
4786 /* A htab_traverse callback for GOT entries, where DATA points to a
4787 mips_elf_traverse_got_arg. Set the global_got_area of each global
4788 symbol to DATA->value. */
4789
4790 static int
4791 mips_elf_set_global_got_area (void **entryp, void *data)
4792 {
4793 struct mips_got_entry *entry;
4794 struct mips_elf_traverse_got_arg *arg;
4795
4796 entry = (struct mips_got_entry *) *entryp;
4797 arg = (struct mips_elf_traverse_got_arg *) data;
4798 if (entry->abfd != NULL
4799 && entry->symndx == -1
4800 && entry->d.h->global_got_area != GGA_NONE)
4801 entry->d.h->global_got_area = arg->value;
4802 return 1;
4803 }
4804
4805 /* A htab_traverse callback for secondary GOT entries, where DATA points
4806 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4807 and record the number of relocations they require. DATA->value is
4808 the size of one GOT entry. Set DATA->g to null on failure. */
4809
4810 static int
4811 mips_elf_set_global_gotidx (void **entryp, void *data)
4812 {
4813 struct mips_got_entry *entry;
4814 struct mips_elf_traverse_got_arg *arg;
4815
4816 entry = (struct mips_got_entry *) *entryp;
4817 arg = (struct mips_elf_traverse_got_arg *) data;
4818 if (entry->abfd != NULL
4819 && entry->symndx == -1
4820 && entry->d.h->global_got_area != GGA_NONE)
4821 {
4822 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4823 {
4824 arg->g = NULL;
4825 return 0;
4826 }
4827 arg->g->assigned_low_gotno += 1;
4828
4829 if (bfd_link_pic (arg->info)
4830 || (elf_hash_table (arg->info)->dynamic_sections_created
4831 && entry->d.h->root.def_dynamic
4832 && !entry->d.h->root.def_regular))
4833 arg->g->relocs += 1;
4834 }
4835
4836 return 1;
4837 }
4838
4839 /* A htab_traverse callback for GOT entries for which DATA is the
4840 bfd_link_info. Forbid any global symbols from having traditional
4841 lazy-binding stubs. */
4842
4843 static int
4844 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4845 {
4846 struct bfd_link_info *info;
4847 struct mips_elf_link_hash_table *htab;
4848 struct mips_got_entry *entry;
4849
4850 entry = (struct mips_got_entry *) *entryp;
4851 info = (struct bfd_link_info *) data;
4852 htab = mips_elf_hash_table (info);
4853 BFD_ASSERT (htab != NULL);
4854
4855 if (entry->abfd != NULL
4856 && entry->symndx == -1
4857 && entry->d.h->needs_lazy_stub)
4858 {
4859 entry->d.h->needs_lazy_stub = false;
4860 htab->lazy_stub_count--;
4861 }
4862
4863 return 1;
4864 }
4865
4866 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4867 the primary GOT. */
4868 static bfd_vma
4869 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4870 {
4871 if (!g->next)
4872 return 0;
4873
4874 g = mips_elf_bfd_got (ibfd, false);
4875 if (! g)
4876 return 0;
4877
4878 BFD_ASSERT (g->next);
4879
4880 g = g->next;
4881
4882 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4883 * MIPS_ELF_GOT_SIZE (abfd);
4884 }
4885
4886 /* Turn a single GOT that is too big for 16-bit addressing into
4887 a sequence of GOTs, each one 16-bit addressable. */
4888
4889 static bool
4890 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4891 asection *got, bfd_size_type pages)
4892 {
4893 struct mips_elf_link_hash_table *htab;
4894 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4895 struct mips_elf_traverse_got_arg tga;
4896 struct mips_got_info *g, *gg;
4897 unsigned int assign, needed_relocs;
4898 bfd *dynobj, *ibfd;
4899
4900 dynobj = elf_hash_table (info)->dynobj;
4901 htab = mips_elf_hash_table (info);
4902 BFD_ASSERT (htab != NULL);
4903
4904 g = htab->got_info;
4905
4906 got_per_bfd_arg.obfd = abfd;
4907 got_per_bfd_arg.info = info;
4908 got_per_bfd_arg.current = NULL;
4909 got_per_bfd_arg.primary = NULL;
4910 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4911 / MIPS_ELF_GOT_SIZE (abfd))
4912 - htab->reserved_gotno);
4913 got_per_bfd_arg.max_pages = pages;
4914 /* The number of globals that will be included in the primary GOT.
4915 See the calls to mips_elf_set_global_got_area below for more
4916 information. */
4917 got_per_bfd_arg.global_count = g->global_gotno;
4918
4919 /* Try to merge the GOTs of input bfds together, as long as they
4920 don't seem to exceed the maximum GOT size, choosing one of them
4921 to be the primary GOT. */
4922 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4923 {
4924 gg = mips_elf_bfd_got (ibfd, false);
4925 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4926 return false;
4927 }
4928
4929 /* If we do not find any suitable primary GOT, create an empty one. */
4930 if (got_per_bfd_arg.primary == NULL)
4931 g->next = mips_elf_create_got_info (abfd);
4932 else
4933 g->next = got_per_bfd_arg.primary;
4934 g->next->next = got_per_bfd_arg.current;
4935
4936 /* GG is now the master GOT, and G is the primary GOT. */
4937 gg = g;
4938 g = g->next;
4939
4940 /* Map the output bfd to the primary got. That's what we're going
4941 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4942 didn't mark in check_relocs, and we want a quick way to find it.
4943 We can't just use gg->next because we're going to reverse the
4944 list. */
4945 mips_elf_replace_bfd_got (abfd, g);
4946
4947 /* Every symbol that is referenced in a dynamic relocation must be
4948 present in the primary GOT, so arrange for them to appear after
4949 those that are actually referenced. */
4950 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4951 g->global_gotno = gg->global_gotno;
4952
4953 tga.info = info;
4954 tga.value = GGA_RELOC_ONLY;
4955 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4956 tga.value = GGA_NORMAL;
4957 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4958
4959 /* Now go through the GOTs assigning them offset ranges.
4960 [assigned_low_gotno, local_gotno[ will be set to the range of local
4961 entries in each GOT. We can then compute the end of a GOT by
4962 adding local_gotno to global_gotno. We reverse the list and make
4963 it circular since then we'll be able to quickly compute the
4964 beginning of a GOT, by computing the end of its predecessor. To
4965 avoid special cases for the primary GOT, while still preserving
4966 assertions that are valid for both single- and multi-got links,
4967 we arrange for the main got struct to have the right number of
4968 global entries, but set its local_gotno such that the initial
4969 offset of the primary GOT is zero. Remember that the primary GOT
4970 will become the last item in the circular linked list, so it
4971 points back to the master GOT. */
4972 gg->local_gotno = -g->global_gotno;
4973 gg->global_gotno = g->global_gotno;
4974 gg->tls_gotno = 0;
4975 assign = 0;
4976 gg->next = gg;
4977
4978 do
4979 {
4980 struct mips_got_info *gn;
4981
4982 assign += htab->reserved_gotno;
4983 g->assigned_low_gotno = assign;
4984 g->local_gotno += assign;
4985 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4986 g->assigned_high_gotno = g->local_gotno - 1;
4987 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4988
4989 /* Take g out of the direct list, and push it onto the reversed
4990 list that gg points to. g->next is guaranteed to be nonnull after
4991 this operation, as required by mips_elf_initialize_tls_index. */
4992 gn = g->next;
4993 g->next = gg->next;
4994 gg->next = g;
4995
4996 /* Set up any TLS entries. We always place the TLS entries after
4997 all non-TLS entries. */
4998 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4999 tga.g = g;
5000 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5001 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5002 if (!tga.g)
5003 return false;
5004 BFD_ASSERT (g->tls_assigned_gotno == assign);
5005
5006 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5007 g = gn;
5008
5009 /* Forbid global symbols in every non-primary GOT from having
5010 lazy-binding stubs. */
5011 if (g)
5012 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5013 }
5014 while (g);
5015
5016 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5017
5018 needed_relocs = 0;
5019 for (g = gg->next; g && g->next != gg; g = g->next)
5020 {
5021 unsigned int save_assign;
5022
5023 /* Assign offsets to global GOT entries and count how many
5024 relocations they need. */
5025 save_assign = g->assigned_low_gotno;
5026 g->assigned_low_gotno = g->local_gotno;
5027 tga.info = info;
5028 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5029 tga.g = g;
5030 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5031 if (!tga.g)
5032 return false;
5033 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5034 g->assigned_low_gotno = save_assign;
5035
5036 if (bfd_link_pic (info))
5037 {
5038 g->relocs += g->local_gotno - g->assigned_low_gotno;
5039 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5040 + g->next->global_gotno
5041 + g->next->tls_gotno
5042 + htab->reserved_gotno);
5043 }
5044 needed_relocs += g->relocs;
5045 }
5046 needed_relocs += g->relocs;
5047
5048 if (needed_relocs)
5049 mips_elf_allocate_dynamic_relocations (dynobj, info,
5050 needed_relocs);
5051
5052 return true;
5053 }
5054
5055 \f
5056 /* Returns the first relocation of type r_type found, beginning with
5057 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5058
5059 static const Elf_Internal_Rela *
5060 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5061 const Elf_Internal_Rela *relocation,
5062 const Elf_Internal_Rela *relend)
5063 {
5064 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5065
5066 while (relocation < relend)
5067 {
5068 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5069 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5070 return relocation;
5071
5072 ++relocation;
5073 }
5074
5075 /* We didn't find it. */
5076 return NULL;
5077 }
5078
5079 /* Return whether an input relocation is against a local symbol. */
5080
5081 static bool
5082 mips_elf_local_relocation_p (bfd *input_bfd,
5083 const Elf_Internal_Rela *relocation,
5084 asection **local_sections)
5085 {
5086 unsigned long r_symndx;
5087 Elf_Internal_Shdr *symtab_hdr;
5088 size_t extsymoff;
5089
5090 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5091 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5092 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5093
5094 if (r_symndx < extsymoff)
5095 return true;
5096 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5097 return true;
5098
5099 return false;
5100 }
5101 \f
5102 /* Sign-extend VALUE, which has the indicated number of BITS. */
5103
5104 bfd_vma
5105 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5106 {
5107 if (value & ((bfd_vma) 1 << (bits - 1)))
5108 /* VALUE is negative. */
5109 value |= ((bfd_vma) - 1) << bits;
5110
5111 return value;
5112 }
5113
5114 /* Return non-zero if the indicated VALUE has overflowed the maximum
5115 range expressible by a signed number with the indicated number of
5116 BITS. */
5117
5118 static bool
5119 mips_elf_overflow_p (bfd_vma value, int bits)
5120 {
5121 bfd_signed_vma svalue = (bfd_signed_vma) value;
5122
5123 if (svalue > (1 << (bits - 1)) - 1)
5124 /* The value is too big. */
5125 return true;
5126 else if (svalue < -(1 << (bits - 1)))
5127 /* The value is too small. */
5128 return true;
5129
5130 /* All is well. */
5131 return false;
5132 }
5133
5134 /* Calculate the %high function. */
5135
5136 static bfd_vma
5137 mips_elf_high (bfd_vma value)
5138 {
5139 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5140 }
5141
5142 /* Calculate the %higher function. */
5143
5144 static bfd_vma
5145 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5146 {
5147 #ifdef BFD64
5148 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5149 #else
5150 abort ();
5151 return MINUS_ONE;
5152 #endif
5153 }
5154
5155 /* Calculate the %highest function. */
5156
5157 static bfd_vma
5158 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5159 {
5160 #ifdef BFD64
5161 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5162 #else
5163 abort ();
5164 return MINUS_ONE;
5165 #endif
5166 }
5167 \f
5168 /* Create the .compact_rel section. */
5169
5170 static bool
5171 mips_elf_create_compact_rel_section
5172 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5173 {
5174 flagword flags;
5175 register asection *s;
5176
5177 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5178 {
5179 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5180 | SEC_READONLY);
5181
5182 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5183 if (s == NULL
5184 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5185 return false;
5186
5187 s->size = sizeof (Elf32_External_compact_rel);
5188 }
5189
5190 return true;
5191 }
5192
5193 /* Create the .got section to hold the global offset table. */
5194
5195 static bool
5196 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5197 {
5198 flagword flags;
5199 register asection *s;
5200 struct elf_link_hash_entry *h;
5201 struct bfd_link_hash_entry *bh;
5202 struct mips_elf_link_hash_table *htab;
5203
5204 htab = mips_elf_hash_table (info);
5205 BFD_ASSERT (htab != NULL);
5206
5207 /* This function may be called more than once. */
5208 if (htab->root.sgot)
5209 return true;
5210
5211 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5212 | SEC_LINKER_CREATED);
5213
5214 /* We have to use an alignment of 2**4 here because this is hardcoded
5215 in the function stub generation and in the linker script. */
5216 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5217 if (s == NULL
5218 || !bfd_set_section_alignment (s, 4))
5219 return false;
5220 htab->root.sgot = s;
5221
5222 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5223 linker script because we don't want to define the symbol if we
5224 are not creating a global offset table. */
5225 bh = NULL;
5226 if (! (_bfd_generic_link_add_one_symbol
5227 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5228 0, NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
5229 return false;
5230
5231 h = (struct elf_link_hash_entry *) bh;
5232 h->non_elf = 0;
5233 h->def_regular = 1;
5234 h->type = STT_OBJECT;
5235 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5236 elf_hash_table (info)->hgot = h;
5237
5238 if (bfd_link_pic (info)
5239 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5240 return false;
5241
5242 htab->got_info = mips_elf_create_got_info (abfd);
5243 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5244 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5245
5246 /* We also need a .got.plt section when generating PLTs. */
5247 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5248 SEC_ALLOC | SEC_LOAD
5249 | SEC_HAS_CONTENTS
5250 | SEC_IN_MEMORY
5251 | SEC_LINKER_CREATED);
5252 if (s == NULL)
5253 return false;
5254 htab->root.sgotplt = s;
5255
5256 return true;
5257 }
5258 \f
5259 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5260 __GOTT_INDEX__ symbols. These symbols are only special for
5261 shared objects; they are not used in executables. */
5262
5263 static bool
5264 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5265 {
5266 return (mips_elf_hash_table (info)->root.target_os == is_vxworks
5267 && bfd_link_pic (info)
5268 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5269 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5270 }
5271
5272 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5273 require an la25 stub. See also mips_elf_local_pic_function_p,
5274 which determines whether the destination function ever requires a
5275 stub. */
5276
5277 static bool
5278 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5279 bool target_is_16_bit_code_p)
5280 {
5281 /* We specifically ignore branches and jumps from EF_PIC objects,
5282 where the onus is on the compiler or programmer to perform any
5283 necessary initialization of $25. Sometimes such initialization
5284 is unnecessary; for example, -mno-shared functions do not use
5285 the incoming value of $25, and may therefore be called directly. */
5286 if (PIC_OBJECT_P (input_bfd))
5287 return false;
5288
5289 switch (r_type)
5290 {
5291 case R_MIPS_26:
5292 case R_MIPS_PC16:
5293 case R_MIPS_PC21_S2:
5294 case R_MIPS_PC26_S2:
5295 case R_MICROMIPS_26_S1:
5296 case R_MICROMIPS_PC7_S1:
5297 case R_MICROMIPS_PC10_S1:
5298 case R_MICROMIPS_PC16_S1:
5299 case R_MICROMIPS_PC23_S2:
5300 return true;
5301
5302 case R_MIPS16_26:
5303 return !target_is_16_bit_code_p;
5304
5305 default:
5306 return false;
5307 }
5308 }
5309 \f
5310 /* Obtain the field relocated by RELOCATION. */
5311
5312 static bfd_vma
5313 mips_elf_obtain_contents (reloc_howto_type *howto,
5314 const Elf_Internal_Rela *relocation,
5315 bfd *input_bfd, bfd_byte *contents)
5316 {
5317 bfd_vma x = 0;
5318 bfd_byte *location = contents + relocation->r_offset;
5319 unsigned int size = bfd_get_reloc_size (howto);
5320
5321 /* Obtain the bytes. */
5322 if (size != 0)
5323 x = bfd_get (8 * size, input_bfd, location);
5324
5325 return x;
5326 }
5327
5328 /* Store the field relocated by RELOCATION. */
5329
5330 static void
5331 mips_elf_store_contents (reloc_howto_type *howto,
5332 const Elf_Internal_Rela *relocation,
5333 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5334 {
5335 bfd_byte *location = contents + relocation->r_offset;
5336 unsigned int size = bfd_get_reloc_size (howto);
5337
5338 /* Put the value into the output. */
5339 if (size != 0)
5340 bfd_put (8 * size, input_bfd, x, location);
5341 }
5342
5343 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5344 RELOCATION described by HOWTO, with a move of 0 to the load target
5345 register, returning TRUE if that is successful and FALSE otherwise.
5346 If DOIT is FALSE, then only determine it patching is possible and
5347 return status without actually changing CONTENTS.
5348 */
5349
5350 static bool
5351 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5352 const Elf_Internal_Rela *relocation,
5353 reloc_howto_type *howto, bool doit)
5354 {
5355 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5356 bfd_byte *location = contents + relocation->r_offset;
5357 bool nullified = true;
5358 bfd_vma x;
5359
5360 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location);
5361
5362 /* Obtain the current value. */
5363 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5364
5365 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5366 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5367 if (mips16_reloc_p (r_type)
5368 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5369 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5370 x = (0x3cdU << 22) | (x & (7 << 16)) << 3; /* LI */
5371 else if (micromips_reloc_p (r_type)
5372 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5373 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5374 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5375 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5376 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5377 else
5378 nullified = false;
5379
5380 /* Put the value into the output. */
5381 if (doit && nullified)
5382 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5383
5384 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, false, location);
5385
5386 return nullified;
5387 }
5388
5389 /* Calculate the value produced by the RELOCATION (which comes from
5390 the INPUT_BFD). The ADDEND is the addend to use for this
5391 RELOCATION; RELOCATION->R_ADDEND is ignored.
5392
5393 The result of the relocation calculation is stored in VALUEP.
5394 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5395 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5396
5397 This function returns bfd_reloc_continue if the caller need take no
5398 further action regarding this relocation, bfd_reloc_notsupported if
5399 something goes dramatically wrong, bfd_reloc_overflow if an
5400 overflow occurs, and bfd_reloc_ok to indicate success. */
5401
5402 static bfd_reloc_status_type
5403 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5404 asection *input_section, bfd_byte *contents,
5405 struct bfd_link_info *info,
5406 const Elf_Internal_Rela *relocation,
5407 bfd_vma addend, reloc_howto_type *howto,
5408 Elf_Internal_Sym *local_syms,
5409 asection **local_sections, bfd_vma *valuep,
5410 const char **namep,
5411 bool *cross_mode_jump_p,
5412 bool save_addend)
5413 {
5414 /* The eventual value we will return. */
5415 bfd_vma value;
5416 /* The address of the symbol against which the relocation is
5417 occurring. */
5418 bfd_vma symbol = 0;
5419 /* The final GP value to be used for the relocatable, executable, or
5420 shared object file being produced. */
5421 bfd_vma gp;
5422 /* The place (section offset or address) of the storage unit being
5423 relocated. */
5424 bfd_vma p;
5425 /* The value of GP used to create the relocatable object. */
5426 bfd_vma gp0;
5427 /* The offset into the global offset table at which the address of
5428 the relocation entry symbol, adjusted by the addend, resides
5429 during execution. */
5430 bfd_vma g = MINUS_ONE;
5431 /* The section in which the symbol referenced by the relocation is
5432 located. */
5433 asection *sec = NULL;
5434 struct mips_elf_link_hash_entry *h = NULL;
5435 /* TRUE if the symbol referred to by this relocation is a local
5436 symbol. */
5437 bool local_p, was_local_p;
5438 /* TRUE if the symbol referred to by this relocation is a section
5439 symbol. */
5440 bool section_p = false;
5441 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5442 bool gp_disp_p = false;
5443 /* TRUE if the symbol referred to by this relocation is
5444 "__gnu_local_gp". */
5445 bool gnu_local_gp_p = false;
5446 Elf_Internal_Shdr *symtab_hdr;
5447 size_t extsymoff;
5448 unsigned long r_symndx;
5449 int r_type;
5450 /* TRUE if overflow occurred during the calculation of the
5451 relocation value. */
5452 bool overflowed_p;
5453 /* TRUE if this relocation refers to a MIPS16 function. */
5454 bool target_is_16_bit_code_p = false;
5455 bool target_is_micromips_code_p = false;
5456 struct mips_elf_link_hash_table *htab;
5457 bfd *dynobj;
5458 bool resolved_to_zero;
5459
5460 dynobj = elf_hash_table (info)->dynobj;
5461 htab = mips_elf_hash_table (info);
5462 BFD_ASSERT (htab != NULL);
5463
5464 /* Parse the relocation. */
5465 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5466 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5467 p = (input_section->output_section->vma
5468 + input_section->output_offset
5469 + relocation->r_offset);
5470
5471 /* Assume that there will be no overflow. */
5472 overflowed_p = false;
5473
5474 /* Figure out whether or not the symbol is local, and get the offset
5475 used in the array of hash table entries. */
5476 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5477 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5478 local_sections);
5479 was_local_p = local_p;
5480 if (! elf_bad_symtab (input_bfd))
5481 extsymoff = symtab_hdr->sh_info;
5482 else
5483 {
5484 /* The symbol table does not follow the rule that local symbols
5485 must come before globals. */
5486 extsymoff = 0;
5487 }
5488
5489 /* Figure out the value of the symbol. */
5490 if (local_p)
5491 {
5492 bool micromips_p = MICROMIPS_P (abfd);
5493 Elf_Internal_Sym *sym;
5494
5495 sym = local_syms + r_symndx;
5496 sec = local_sections[r_symndx];
5497
5498 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5499
5500 symbol = sec->output_section->vma + sec->output_offset;
5501 if (!section_p || (sec->flags & SEC_MERGE))
5502 symbol += sym->st_value;
5503 if ((sec->flags & SEC_MERGE) && section_p)
5504 {
5505 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5506 addend -= symbol;
5507 addend += sec->output_section->vma + sec->output_offset;
5508 }
5509
5510 /* MIPS16/microMIPS text labels should be treated as odd. */
5511 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5512 ++symbol;
5513
5514 /* Record the name of this symbol, for our caller. */
5515 *namep = bfd_elf_string_from_elf_section (input_bfd,
5516 symtab_hdr->sh_link,
5517 sym->st_name);
5518 if (*namep == NULL || **namep == '\0')
5519 *namep = bfd_section_name (sec);
5520
5521 /* For relocations against a section symbol and ones against no
5522 symbol (absolute relocations) infer the ISA mode from the addend. */
5523 if (section_p || r_symndx == STN_UNDEF)
5524 {
5525 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5526 target_is_micromips_code_p = (addend & 1) && micromips_p;
5527 }
5528 /* For relocations against an absolute symbol infer the ISA mode
5529 from the value of the symbol plus addend. */
5530 else if (bfd_is_abs_section (sec))
5531 {
5532 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5533 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5534 }
5535 /* Otherwise just use the regular symbol annotation available. */
5536 else
5537 {
5538 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5539 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5540 }
5541 }
5542 else
5543 {
5544 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5545
5546 /* For global symbols we look up the symbol in the hash-table. */
5547 h = ((struct mips_elf_link_hash_entry *)
5548 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5549 /* Find the real hash-table entry for this symbol. */
5550 while (h->root.root.type == bfd_link_hash_indirect
5551 || h->root.root.type == bfd_link_hash_warning)
5552 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5553
5554 /* Record the name of this symbol, for our caller. */
5555 *namep = h->root.root.root.string;
5556
5557 /* See if this is the special _gp_disp symbol. Note that such a
5558 symbol must always be a global symbol. */
5559 if (strcmp (*namep, "_gp_disp") == 0
5560 && ! NEWABI_P (input_bfd))
5561 {
5562 /* Relocations against _gp_disp are permitted only with
5563 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5564 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5565 return bfd_reloc_notsupported;
5566
5567 gp_disp_p = true;
5568 }
5569 /* See if this is the special _gp symbol. Note that such a
5570 symbol must always be a global symbol. */
5571 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5572 gnu_local_gp_p = true;
5573
5574
5575 /* If this symbol is defined, calculate its address. Note that
5576 _gp_disp is a magic symbol, always implicitly defined by the
5577 linker, so it's inappropriate to check to see whether or not
5578 its defined. */
5579 else if ((h->root.root.type == bfd_link_hash_defined
5580 || h->root.root.type == bfd_link_hash_defweak)
5581 && h->root.root.u.def.section)
5582 {
5583 sec = h->root.root.u.def.section;
5584 if (sec->output_section)
5585 symbol = (h->root.root.u.def.value
5586 + sec->output_section->vma
5587 + sec->output_offset);
5588 else
5589 symbol = h->root.root.u.def.value;
5590 }
5591 else if (h->root.root.type == bfd_link_hash_undefweak)
5592 /* We allow relocations against undefined weak symbols, giving
5593 it the value zero, so that you can undefined weak functions
5594 and check to see if they exist by looking at their
5595 addresses. */
5596 symbol = 0;
5597 else if (info->unresolved_syms_in_objects == RM_IGNORE
5598 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5599 symbol = 0;
5600 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5601 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5602 {
5603 /* If this is a dynamic link, we should have created a
5604 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5605 in _bfd_mips_elf_create_dynamic_sections.
5606 Otherwise, we should define the symbol with a value of 0.
5607 FIXME: It should probably get into the symbol table
5608 somehow as well. */
5609 BFD_ASSERT (! bfd_link_pic (info));
5610 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5611 symbol = 0;
5612 }
5613 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5614 {
5615 /* This is an optional symbol - an Irix specific extension to the
5616 ELF spec. Ignore it for now.
5617 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5618 than simply ignoring them, but we do not handle this for now.
5619 For information see the "64-bit ELF Object File Specification"
5620 which is available from here:
5621 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5622 symbol = 0;
5623 }
5624 else
5625 {
5626 bool reject_undefined
5627 = ((info->unresolved_syms_in_objects == RM_DIAGNOSE
5628 && !info->warn_unresolved_syms)
5629 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5630
5631 info->callbacks->undefined_symbol
5632 (info, h->root.root.root.string, input_bfd,
5633 input_section, relocation->r_offset, reject_undefined);
5634
5635 if (reject_undefined)
5636 return bfd_reloc_undefined;
5637
5638 symbol = 0;
5639 }
5640
5641 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5642 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5643 }
5644
5645 /* If this is a reference to a 16-bit function with a stub, we need
5646 to redirect the relocation to the stub unless:
5647
5648 (a) the relocation is for a MIPS16 JAL;
5649
5650 (b) the relocation is for a MIPS16 PIC call, and there are no
5651 non-MIPS16 uses of the GOT slot; or
5652
5653 (c) the section allows direct references to MIPS16 functions. */
5654 if (r_type != R_MIPS16_26
5655 && !bfd_link_relocatable (info)
5656 && ((h != NULL
5657 && h->fn_stub != NULL
5658 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5659 || (local_p
5660 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5661 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5662 && !section_allows_mips16_refs_p (input_section))
5663 {
5664 /* This is a 32- or 64-bit call to a 16-bit function. We should
5665 have already noticed that we were going to need the
5666 stub. */
5667 if (local_p)
5668 {
5669 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5670 value = 0;
5671 }
5672 else
5673 {
5674 BFD_ASSERT (h->need_fn_stub);
5675 if (h->la25_stub)
5676 {
5677 /* If a LA25 header for the stub itself exists, point to the
5678 prepended LUI/ADDIU sequence. */
5679 sec = h->la25_stub->stub_section;
5680 value = h->la25_stub->offset;
5681 }
5682 else
5683 {
5684 sec = h->fn_stub;
5685 value = 0;
5686 }
5687 }
5688
5689 symbol = sec->output_section->vma + sec->output_offset + value;
5690 /* The target is 16-bit, but the stub isn't. */
5691 target_is_16_bit_code_p = false;
5692 }
5693 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5694 to a standard MIPS function, we need to redirect the call to the stub.
5695 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5696 indirect calls should use an indirect stub instead. */
5697 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5698 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5699 || (local_p
5700 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5701 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5702 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5703 {
5704 if (local_p)
5705 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5706 else
5707 {
5708 /* If both call_stub and call_fp_stub are defined, we can figure
5709 out which one to use by checking which one appears in the input
5710 file. */
5711 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5712 {
5713 asection *o;
5714
5715 sec = NULL;
5716 for (o = input_bfd->sections; o != NULL; o = o->next)
5717 {
5718 if (CALL_FP_STUB_P (bfd_section_name (o)))
5719 {
5720 sec = h->call_fp_stub;
5721 break;
5722 }
5723 }
5724 if (sec == NULL)
5725 sec = h->call_stub;
5726 }
5727 else if (h->call_stub != NULL)
5728 sec = h->call_stub;
5729 else
5730 sec = h->call_fp_stub;
5731 }
5732
5733 BFD_ASSERT (sec->size > 0);
5734 symbol = sec->output_section->vma + sec->output_offset;
5735 }
5736 /* If this is a direct call to a PIC function, redirect to the
5737 non-PIC stub. */
5738 else if (h != NULL && h->la25_stub
5739 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5740 target_is_16_bit_code_p))
5741 {
5742 symbol = (h->la25_stub->stub_section->output_section->vma
5743 + h->la25_stub->stub_section->output_offset
5744 + h->la25_stub->offset);
5745 if (ELF_ST_IS_MICROMIPS (h->root.other))
5746 symbol |= 1;
5747 }
5748 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5749 entry is used if a standard PLT entry has also been made. In this
5750 case the symbol will have been set by mips_elf_set_plt_sym_value
5751 to point to the standard PLT entry, so redirect to the compressed
5752 one. */
5753 else if ((mips16_branch_reloc_p (r_type)
5754 || micromips_branch_reloc_p (r_type))
5755 && !bfd_link_relocatable (info)
5756 && h != NULL
5757 && h->use_plt_entry
5758 && h->root.plt.plist->comp_offset != MINUS_ONE
5759 && h->root.plt.plist->mips_offset != MINUS_ONE)
5760 {
5761 bool micromips_p = MICROMIPS_P (abfd);
5762
5763 sec = htab->root.splt;
5764 symbol = (sec->output_section->vma
5765 + sec->output_offset
5766 + htab->plt_header_size
5767 + htab->plt_mips_offset
5768 + h->root.plt.plist->comp_offset
5769 + 1);
5770
5771 target_is_16_bit_code_p = !micromips_p;
5772 target_is_micromips_code_p = micromips_p;
5773 }
5774
5775 /* Make sure MIPS16 and microMIPS are not used together. */
5776 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5777 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5778 {
5779 _bfd_error_handler
5780 (_("MIPS16 and microMIPS functions cannot call each other"));
5781 return bfd_reloc_notsupported;
5782 }
5783
5784 /* Calls from 16-bit code to 32-bit code and vice versa require the
5785 mode change. However, we can ignore calls to undefined weak symbols,
5786 which should never be executed at runtime. This exception is important
5787 because the assembly writer may have "known" that any definition of the
5788 symbol would be 16-bit code, and that direct jumps were therefore
5789 acceptable. */
5790 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5791 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5792 && ((mips16_branch_reloc_p (r_type)
5793 && !target_is_16_bit_code_p)
5794 || (micromips_branch_reloc_p (r_type)
5795 && !target_is_micromips_code_p)
5796 || ((branch_reloc_p (r_type)
5797 || r_type == R_MIPS_JALR)
5798 && (target_is_16_bit_code_p
5799 || target_is_micromips_code_p))));
5800
5801 resolved_to_zero = (h != NULL
5802 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5803
5804 switch (r_type)
5805 {
5806 case R_MIPS16_CALL16:
5807 case R_MIPS16_GOT16:
5808 case R_MIPS_CALL16:
5809 case R_MIPS_GOT16:
5810 case R_MIPS_GOT_PAGE:
5811 case R_MIPS_GOT_DISP:
5812 case R_MIPS_GOT_LO16:
5813 case R_MIPS_CALL_LO16:
5814 case R_MICROMIPS_CALL16:
5815 case R_MICROMIPS_GOT16:
5816 case R_MICROMIPS_GOT_PAGE:
5817 case R_MICROMIPS_GOT_DISP:
5818 case R_MICROMIPS_GOT_LO16:
5819 case R_MICROMIPS_CALL_LO16:
5820 if (resolved_to_zero
5821 && !bfd_link_relocatable (info)
5822 && mips_elf_nullify_got_load (input_bfd, contents,
5823 relocation, howto, true))
5824 return bfd_reloc_continue;
5825
5826 /* Fall through. */
5827 case R_MIPS_GOT_HI16:
5828 case R_MIPS_CALL_HI16:
5829 case R_MICROMIPS_GOT_HI16:
5830 case R_MICROMIPS_CALL_HI16:
5831 if (resolved_to_zero
5832 && htab->use_absolute_zero
5833 && bfd_link_pic (info))
5834 {
5835 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5836 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5837 false, false, false);
5838 BFD_ASSERT (h != NULL);
5839 }
5840 break;
5841 }
5842
5843 local_p = (h == NULL || mips_use_local_got_p (info, h));
5844
5845 gp0 = _bfd_get_gp_value (input_bfd);
5846 gp = _bfd_get_gp_value (abfd);
5847 if (htab->got_info)
5848 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5849
5850 if (gnu_local_gp_p)
5851 symbol = gp;
5852
5853 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5854 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5855 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5856 if (got_page_reloc_p (r_type) && !local_p)
5857 {
5858 r_type = (micromips_reloc_p (r_type)
5859 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5860 addend = 0;
5861 }
5862
5863 /* If we haven't already determined the GOT offset, and we're going
5864 to need it, get it now. */
5865 switch (r_type)
5866 {
5867 case R_MIPS16_CALL16:
5868 case R_MIPS16_GOT16:
5869 case R_MIPS_CALL16:
5870 case R_MIPS_GOT16:
5871 case R_MIPS_GOT_DISP:
5872 case R_MIPS_GOT_HI16:
5873 case R_MIPS_CALL_HI16:
5874 case R_MIPS_GOT_LO16:
5875 case R_MIPS_CALL_LO16:
5876 case R_MICROMIPS_CALL16:
5877 case R_MICROMIPS_GOT16:
5878 case R_MICROMIPS_GOT_DISP:
5879 case R_MICROMIPS_GOT_HI16:
5880 case R_MICROMIPS_CALL_HI16:
5881 case R_MICROMIPS_GOT_LO16:
5882 case R_MICROMIPS_CALL_LO16:
5883 case R_MIPS_TLS_GD:
5884 case R_MIPS_TLS_GOTTPREL:
5885 case R_MIPS_TLS_LDM:
5886 case R_MIPS16_TLS_GD:
5887 case R_MIPS16_TLS_GOTTPREL:
5888 case R_MIPS16_TLS_LDM:
5889 case R_MICROMIPS_TLS_GD:
5890 case R_MICROMIPS_TLS_GOTTPREL:
5891 case R_MICROMIPS_TLS_LDM:
5892 /* Find the index into the GOT where this value is located. */
5893 if (tls_ldm_reloc_p (r_type))
5894 {
5895 g = mips_elf_local_got_index (abfd, input_bfd, info,
5896 0, 0, NULL, r_type);
5897 if (g == MINUS_ONE)
5898 return bfd_reloc_outofrange;
5899 }
5900 else if (!local_p)
5901 {
5902 /* On VxWorks, CALL relocations should refer to the .got.plt
5903 entry, which is initialized to point at the PLT stub. */
5904 if (htab->root.target_os == is_vxworks
5905 && (call_hi16_reloc_p (r_type)
5906 || call_lo16_reloc_p (r_type)
5907 || call16_reloc_p (r_type)))
5908 {
5909 BFD_ASSERT (addend == 0);
5910 BFD_ASSERT (h->root.needs_plt);
5911 g = mips_elf_gotplt_index (info, &h->root);
5912 }
5913 else
5914 {
5915 BFD_ASSERT (addend == 0);
5916 g = mips_elf_global_got_index (abfd, info, input_bfd,
5917 &h->root, r_type);
5918 if (!TLS_RELOC_P (r_type)
5919 && !elf_hash_table (info)->dynamic_sections_created)
5920 /* This is a static link. We must initialize the GOT entry. */
5921 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5922 }
5923 }
5924 else if (htab->root.target_os != is_vxworks
5925 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5926 /* The calculation below does not involve "g". */
5927 break;
5928 else
5929 {
5930 g = mips_elf_local_got_index (abfd, input_bfd, info,
5931 symbol + addend, r_symndx, h, r_type);
5932 if (g == MINUS_ONE)
5933 return bfd_reloc_outofrange;
5934 }
5935
5936 /* Convert GOT indices to actual offsets. */
5937 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5938 break;
5939 }
5940
5941 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5942 symbols are resolved by the loader. Add them to .rela.dyn. */
5943 if (h != NULL && is_gott_symbol (info, &h->root))
5944 {
5945 Elf_Internal_Rela outrel;
5946 bfd_byte *loc;
5947 asection *s;
5948
5949 s = mips_elf_rel_dyn_section (info, false);
5950 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5951
5952 outrel.r_offset = (input_section->output_section->vma
5953 + input_section->output_offset
5954 + relocation->r_offset);
5955 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5956 outrel.r_addend = addend;
5957 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5958
5959 /* If we've written this relocation for a readonly section,
5960 we need to set DF_TEXTREL again, so that we do not delete the
5961 DT_TEXTREL tag. */
5962 if (MIPS_ELF_READONLY_SECTION (input_section))
5963 info->flags |= DF_TEXTREL;
5964
5965 *valuep = 0;
5966 return bfd_reloc_ok;
5967 }
5968
5969 /* Figure out what kind of relocation is being performed. */
5970 switch (r_type)
5971 {
5972 case R_MIPS_NONE:
5973 return bfd_reloc_continue;
5974
5975 case R_MIPS_16:
5976 if (howto->partial_inplace)
5977 addend = _bfd_mips_elf_sign_extend (addend, 16);
5978 value = symbol + addend;
5979 overflowed_p = mips_elf_overflow_p (value, 16);
5980 break;
5981
5982 case R_MIPS_32:
5983 case R_MIPS_REL32:
5984 case R_MIPS_64:
5985 if ((bfd_link_pic (info)
5986 || (htab->root.dynamic_sections_created
5987 && h != NULL
5988 && h->root.def_dynamic
5989 && !h->root.def_regular
5990 && !h->has_static_relocs))
5991 && r_symndx != STN_UNDEF
5992 && (h == NULL
5993 || h->root.root.type != bfd_link_hash_undefweak
5994 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5995 && !resolved_to_zero))
5996 && (input_section->flags & SEC_ALLOC) != 0)
5997 {
5998 /* If we're creating a shared library, then we can't know
5999 where the symbol will end up. So, we create a relocation
6000 record in the output, and leave the job up to the dynamic
6001 linker. We must do the same for executable references to
6002 shared library symbols, unless we've decided to use copy
6003 relocs or PLTs instead. */
6004 value = addend;
6005 if (!mips_elf_create_dynamic_relocation (abfd,
6006 info,
6007 relocation,
6008 h,
6009 sec,
6010 symbol,
6011 &value,
6012 input_section))
6013 return bfd_reloc_undefined;
6014 }
6015 else
6016 {
6017 if (r_type != R_MIPS_REL32)
6018 value = symbol + addend;
6019 else
6020 value = addend;
6021 }
6022 value &= howto->dst_mask;
6023 break;
6024
6025 case R_MIPS_PC32:
6026 value = symbol + addend - p;
6027 value &= howto->dst_mask;
6028 break;
6029
6030 case R_MIPS16_26:
6031 /* The calculation for R_MIPS16_26 is just the same as for an
6032 R_MIPS_26. It's only the storage of the relocated field into
6033 the output file that's different. That's handled in
6034 mips_elf_perform_relocation. So, we just fall through to the
6035 R_MIPS_26 case here. */
6036 case R_MIPS_26:
6037 case R_MICROMIPS_26_S1:
6038 {
6039 unsigned int shift;
6040
6041 /* Shift is 2, unusually, for microMIPS JALX. */
6042 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6043
6044 if (howto->partial_inplace && !section_p)
6045 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6046 else
6047 value = addend;
6048 value += symbol;
6049
6050 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6051 be the correct ISA mode selector except for weak undefined
6052 symbols. */
6053 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 && (*cross_mode_jump_p
6055 ? (value & 3) != (r_type == R_MIPS_26)
6056 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6057 return bfd_reloc_outofrange;
6058
6059 value >>= shift;
6060 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6061 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6062 value &= howto->dst_mask;
6063 }
6064 break;
6065
6066 case R_MIPS_TLS_DTPREL_HI16:
6067 case R_MIPS16_TLS_DTPREL_HI16:
6068 case R_MICROMIPS_TLS_DTPREL_HI16:
6069 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6070 & howto->dst_mask);
6071 break;
6072
6073 case R_MIPS_TLS_DTPREL_LO16:
6074 case R_MIPS_TLS_DTPREL32:
6075 case R_MIPS_TLS_DTPREL64:
6076 case R_MIPS16_TLS_DTPREL_LO16:
6077 case R_MICROMIPS_TLS_DTPREL_LO16:
6078 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6079 break;
6080
6081 case R_MIPS_TLS_TPREL_HI16:
6082 case R_MIPS16_TLS_TPREL_HI16:
6083 case R_MICROMIPS_TLS_TPREL_HI16:
6084 value = (mips_elf_high (addend + symbol - tprel_base (info))
6085 & howto->dst_mask);
6086 break;
6087
6088 case R_MIPS_TLS_TPREL_LO16:
6089 case R_MIPS_TLS_TPREL32:
6090 case R_MIPS_TLS_TPREL64:
6091 case R_MIPS16_TLS_TPREL_LO16:
6092 case R_MICROMIPS_TLS_TPREL_LO16:
6093 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6094 break;
6095
6096 case R_MIPS_HI16:
6097 case R_MIPS16_HI16:
6098 case R_MICROMIPS_HI16:
6099 if (!gp_disp_p)
6100 {
6101 value = mips_elf_high (addend + symbol);
6102 value &= howto->dst_mask;
6103 }
6104 else
6105 {
6106 /* For MIPS16 ABI code we generate this sequence
6107 0: li $v0,%hi(_gp_disp)
6108 4: addiupc $v1,%lo(_gp_disp)
6109 8: sll $v0,16
6110 12: addu $v0,$v1
6111 14: move $gp,$v0
6112 So the offsets of hi and lo relocs are the same, but the
6113 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6114 ADDIUPC clears the low two bits of the instruction address,
6115 so the base is ($t9 + 4) & ~3. */
6116 if (r_type == R_MIPS16_HI16)
6117 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6118 /* The microMIPS .cpload sequence uses the same assembly
6119 instructions as the traditional psABI version, but the
6120 incoming $t9 has the low bit set. */
6121 else if (r_type == R_MICROMIPS_HI16)
6122 value = mips_elf_high (addend + gp - p - 1);
6123 else
6124 value = mips_elf_high (addend + gp - p);
6125 }
6126 break;
6127
6128 case R_MIPS_LO16:
6129 case R_MIPS16_LO16:
6130 case R_MICROMIPS_LO16:
6131 case R_MICROMIPS_HI0_LO16:
6132 if (!gp_disp_p)
6133 value = (symbol + addend) & howto->dst_mask;
6134 else
6135 {
6136 /* See the comment for R_MIPS16_HI16 above for the reason
6137 for this conditional. */
6138 if (r_type == R_MIPS16_LO16)
6139 value = addend + gp - (p & ~(bfd_vma) 0x3);
6140 else if (r_type == R_MICROMIPS_LO16
6141 || r_type == R_MICROMIPS_HI0_LO16)
6142 value = addend + gp - p + 3;
6143 else
6144 value = addend + gp - p + 4;
6145 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6146 for overflow. But, on, say, IRIX5, relocations against
6147 _gp_disp are normally generated from the .cpload
6148 pseudo-op. It generates code that normally looks like
6149 this:
6150
6151 lui $gp,%hi(_gp_disp)
6152 addiu $gp,$gp,%lo(_gp_disp)
6153 addu $gp,$gp,$t9
6154
6155 Here $t9 holds the address of the function being called,
6156 as required by the MIPS ELF ABI. The R_MIPS_LO16
6157 relocation can easily overflow in this situation, but the
6158 R_MIPS_HI16 relocation will handle the overflow.
6159 Therefore, we consider this a bug in the MIPS ABI, and do
6160 not check for overflow here. */
6161 }
6162 break;
6163
6164 case R_MIPS_LITERAL:
6165 case R_MICROMIPS_LITERAL:
6166 /* Because we don't merge literal sections, we can handle this
6167 just like R_MIPS_GPREL16. In the long run, we should merge
6168 shared literals, and then we will need to additional work
6169 here. */
6170
6171 /* Fall through. */
6172
6173 case R_MIPS16_GPREL:
6174 /* The R_MIPS16_GPREL performs the same calculation as
6175 R_MIPS_GPREL16, but stores the relocated bits in a different
6176 order. We don't need to do anything special here; the
6177 differences are handled in mips_elf_perform_relocation. */
6178 case R_MIPS_GPREL16:
6179 case R_MICROMIPS_GPREL7_S2:
6180 case R_MICROMIPS_GPREL16:
6181 /* Only sign-extend the addend if it was extracted from the
6182 instruction. If the addend was separate, leave it alone,
6183 otherwise we may lose significant bits. */
6184 if (howto->partial_inplace)
6185 addend = _bfd_mips_elf_sign_extend (addend, 16);
6186 value = symbol + addend - gp;
6187 /* If the symbol was local, any earlier relocatable links will
6188 have adjusted its addend with the gp offset, so compensate
6189 for that now. Don't do it for symbols forced local in this
6190 link, though, since they won't have had the gp offset applied
6191 to them before. */
6192 if (was_local_p)
6193 value += gp0;
6194 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6195 overflowed_p = mips_elf_overflow_p (value, 16);
6196 break;
6197
6198 case R_MIPS16_GOT16:
6199 case R_MIPS16_CALL16:
6200 case R_MIPS_GOT16:
6201 case R_MIPS_CALL16:
6202 case R_MICROMIPS_GOT16:
6203 case R_MICROMIPS_CALL16:
6204 /* VxWorks does not have separate local and global semantics for
6205 R_MIPS*_GOT16; every relocation evaluates to "G". */
6206 if (htab->root.target_os != is_vxworks && local_p)
6207 {
6208 value = mips_elf_got16_entry (abfd, input_bfd, info,
6209 symbol + addend, !was_local_p);
6210 if (value == MINUS_ONE)
6211 return bfd_reloc_outofrange;
6212 value
6213 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6214 overflowed_p = mips_elf_overflow_p (value, 16);
6215 break;
6216 }
6217
6218 /* Fall through. */
6219
6220 case R_MIPS_TLS_GD:
6221 case R_MIPS_TLS_GOTTPREL:
6222 case R_MIPS_TLS_LDM:
6223 case R_MIPS_GOT_DISP:
6224 case R_MIPS16_TLS_GD:
6225 case R_MIPS16_TLS_GOTTPREL:
6226 case R_MIPS16_TLS_LDM:
6227 case R_MICROMIPS_TLS_GD:
6228 case R_MICROMIPS_TLS_GOTTPREL:
6229 case R_MICROMIPS_TLS_LDM:
6230 case R_MICROMIPS_GOT_DISP:
6231 value = g;
6232 overflowed_p = mips_elf_overflow_p (value, 16);
6233 break;
6234
6235 case R_MIPS_GPREL32:
6236 value = (addend + symbol + gp0 - gp);
6237 if (!save_addend)
6238 value &= howto->dst_mask;
6239 break;
6240
6241 case R_MIPS_PC16:
6242 case R_MIPS_GNU_REL16_S2:
6243 if (howto->partial_inplace)
6244 addend = _bfd_mips_elf_sign_extend (addend, 18);
6245
6246 /* No need to exclude weak undefined symbols here as they resolve
6247 to 0 and never set `*cross_mode_jump_p', so this alignment check
6248 will never trigger for them. */
6249 if (*cross_mode_jump_p
6250 ? ((symbol + addend) & 3) != 1
6251 : ((symbol + addend) & 3) != 0)
6252 return bfd_reloc_outofrange;
6253
6254 value = symbol + addend - p;
6255 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6256 overflowed_p = mips_elf_overflow_p (value, 18);
6257 value >>= howto->rightshift;
6258 value &= howto->dst_mask;
6259 break;
6260
6261 case R_MIPS16_PC16_S1:
6262 if (howto->partial_inplace)
6263 addend = _bfd_mips_elf_sign_extend (addend, 17);
6264
6265 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 && (*cross_mode_jump_p
6267 ? ((symbol + addend) & 3) != 0
6268 : ((symbol + addend) & 1) == 0))
6269 return bfd_reloc_outofrange;
6270
6271 value = symbol + addend - p;
6272 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6273 overflowed_p = mips_elf_overflow_p (value, 17);
6274 value >>= howto->rightshift;
6275 value &= howto->dst_mask;
6276 break;
6277
6278 case R_MIPS_PC21_S2:
6279 if (howto->partial_inplace)
6280 addend = _bfd_mips_elf_sign_extend (addend, 23);
6281
6282 if ((symbol + addend) & 3)
6283 return bfd_reloc_outofrange;
6284
6285 value = symbol + addend - p;
6286 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6287 overflowed_p = mips_elf_overflow_p (value, 23);
6288 value >>= howto->rightshift;
6289 value &= howto->dst_mask;
6290 break;
6291
6292 case R_MIPS_PC26_S2:
6293 if (howto->partial_inplace)
6294 addend = _bfd_mips_elf_sign_extend (addend, 28);
6295
6296 if ((symbol + addend) & 3)
6297 return bfd_reloc_outofrange;
6298
6299 value = symbol + addend - p;
6300 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6301 overflowed_p = mips_elf_overflow_p (value, 28);
6302 value >>= howto->rightshift;
6303 value &= howto->dst_mask;
6304 break;
6305
6306 case R_MIPS_PC18_S3:
6307 if (howto->partial_inplace)
6308 addend = _bfd_mips_elf_sign_extend (addend, 21);
6309
6310 if ((symbol + addend) & 7)
6311 return bfd_reloc_outofrange;
6312
6313 value = symbol + addend - ((p | 7) ^ 7);
6314 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6315 overflowed_p = mips_elf_overflow_p (value, 21);
6316 value >>= howto->rightshift;
6317 value &= howto->dst_mask;
6318 break;
6319
6320 case R_MIPS_PC19_S2:
6321 if (howto->partial_inplace)
6322 addend = _bfd_mips_elf_sign_extend (addend, 21);
6323
6324 if ((symbol + addend) & 3)
6325 return bfd_reloc_outofrange;
6326
6327 value = symbol + addend - p;
6328 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6329 overflowed_p = mips_elf_overflow_p (value, 21);
6330 value >>= howto->rightshift;
6331 value &= howto->dst_mask;
6332 break;
6333
6334 case R_MIPS_PCHI16:
6335 value = mips_elf_high (symbol + addend - p);
6336 value &= howto->dst_mask;
6337 break;
6338
6339 case R_MIPS_PCLO16:
6340 if (howto->partial_inplace)
6341 addend = _bfd_mips_elf_sign_extend (addend, 16);
6342 value = symbol + addend - p;
6343 value &= howto->dst_mask;
6344 break;
6345
6346 case R_MICROMIPS_PC7_S1:
6347 if (howto->partial_inplace)
6348 addend = _bfd_mips_elf_sign_extend (addend, 8);
6349
6350 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6351 && (*cross_mode_jump_p
6352 ? ((symbol + addend + 2) & 3) != 0
6353 : ((symbol + addend + 2) & 1) == 0))
6354 return bfd_reloc_outofrange;
6355
6356 value = symbol + addend - p;
6357 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6358 overflowed_p = mips_elf_overflow_p (value, 8);
6359 value >>= howto->rightshift;
6360 value &= howto->dst_mask;
6361 break;
6362
6363 case R_MICROMIPS_PC10_S1:
6364 if (howto->partial_inplace)
6365 addend = _bfd_mips_elf_sign_extend (addend, 11);
6366
6367 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6368 && (*cross_mode_jump_p
6369 ? ((symbol + addend + 2) & 3) != 0
6370 : ((symbol + addend + 2) & 1) == 0))
6371 return bfd_reloc_outofrange;
6372
6373 value = symbol + addend - p;
6374 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6375 overflowed_p = mips_elf_overflow_p (value, 11);
6376 value >>= howto->rightshift;
6377 value &= howto->dst_mask;
6378 break;
6379
6380 case R_MICROMIPS_PC16_S1:
6381 if (howto->partial_inplace)
6382 addend = _bfd_mips_elf_sign_extend (addend, 17);
6383
6384 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6385 && (*cross_mode_jump_p
6386 ? ((symbol + addend) & 3) != 0
6387 : ((symbol + addend) & 1) == 0))
6388 return bfd_reloc_outofrange;
6389
6390 value = symbol + addend - p;
6391 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6392 overflowed_p = mips_elf_overflow_p (value, 17);
6393 value >>= howto->rightshift;
6394 value &= howto->dst_mask;
6395 break;
6396
6397 case R_MICROMIPS_PC23_S2:
6398 if (howto->partial_inplace)
6399 addend = _bfd_mips_elf_sign_extend (addend, 25);
6400 value = symbol + addend - ((p | 3) ^ 3);
6401 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6402 overflowed_p = mips_elf_overflow_p (value, 25);
6403 value >>= howto->rightshift;
6404 value &= howto->dst_mask;
6405 break;
6406
6407 case R_MIPS_GOT_HI16:
6408 case R_MIPS_CALL_HI16:
6409 case R_MICROMIPS_GOT_HI16:
6410 case R_MICROMIPS_CALL_HI16:
6411 /* We're allowed to handle these two relocations identically.
6412 The dynamic linker is allowed to handle the CALL relocations
6413 differently by creating a lazy evaluation stub. */
6414 value = g;
6415 value = mips_elf_high (value);
6416 value &= howto->dst_mask;
6417 break;
6418
6419 case R_MIPS_GOT_LO16:
6420 case R_MIPS_CALL_LO16:
6421 case R_MICROMIPS_GOT_LO16:
6422 case R_MICROMIPS_CALL_LO16:
6423 value = g & howto->dst_mask;
6424 break;
6425
6426 case R_MIPS_GOT_PAGE:
6427 case R_MICROMIPS_GOT_PAGE:
6428 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6429 if (value == MINUS_ONE)
6430 return bfd_reloc_outofrange;
6431 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6432 overflowed_p = mips_elf_overflow_p (value, 16);
6433 break;
6434
6435 case R_MIPS_GOT_OFST:
6436 case R_MICROMIPS_GOT_OFST:
6437 if (local_p)
6438 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6439 else
6440 value = addend;
6441 overflowed_p = mips_elf_overflow_p (value, 16);
6442 break;
6443
6444 case R_MIPS_SUB:
6445 case R_MICROMIPS_SUB:
6446 value = symbol - addend;
6447 value &= howto->dst_mask;
6448 break;
6449
6450 case R_MIPS_HIGHER:
6451 case R_MICROMIPS_HIGHER:
6452 value = mips_elf_higher (addend + symbol);
6453 value &= howto->dst_mask;
6454 break;
6455
6456 case R_MIPS_HIGHEST:
6457 case R_MICROMIPS_HIGHEST:
6458 value = mips_elf_highest (addend + symbol);
6459 value &= howto->dst_mask;
6460 break;
6461
6462 case R_MIPS_SCN_DISP:
6463 case R_MICROMIPS_SCN_DISP:
6464 value = symbol + addend - sec->output_offset;
6465 value &= howto->dst_mask;
6466 break;
6467
6468 case R_MIPS_JALR:
6469 case R_MICROMIPS_JALR:
6470 /* This relocation is only a hint. In some cases, we optimize
6471 it into a bal instruction. But we don't try to optimize
6472 when the symbol does not resolve locally. */
6473 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6474 return bfd_reloc_continue;
6475 /* We can't optimize cross-mode jumps either. */
6476 if (*cross_mode_jump_p)
6477 return bfd_reloc_continue;
6478 value = symbol + addend;
6479 /* Neither we can non-instruction-aligned targets. */
6480 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6481 return bfd_reloc_continue;
6482 break;
6483
6484 case R_MIPS_PJUMP:
6485 case R_MIPS_GNU_VTINHERIT:
6486 case R_MIPS_GNU_VTENTRY:
6487 /* We don't do anything with these at present. */
6488 return bfd_reloc_continue;
6489
6490 default:
6491 /* An unrecognized relocation type. */
6492 return bfd_reloc_notsupported;
6493 }
6494
6495 /* Store the VALUE for our caller. */
6496 *valuep = value;
6497 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6498 }
6499
6500 /* It has been determined that the result of the RELOCATION is the
6501 VALUE. Use HOWTO to place VALUE into the output file at the
6502 appropriate position. The SECTION is the section to which the
6503 relocation applies.
6504 CROSS_MODE_JUMP_P is true if the relocation field
6505 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6506
6507 Returns FALSE if anything goes wrong. */
6508
6509 static bool
6510 mips_elf_perform_relocation (struct bfd_link_info *info,
6511 reloc_howto_type *howto,
6512 const Elf_Internal_Rela *relocation,
6513 bfd_vma value, bfd *input_bfd,
6514 asection *input_section, bfd_byte *contents,
6515 bool cross_mode_jump_p)
6516 {
6517 bfd_vma x;
6518 bfd_byte *location;
6519 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6520
6521 /* Figure out where the relocation is occurring. */
6522 location = contents + relocation->r_offset;
6523
6524 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location);
6525
6526 /* Obtain the current value. */
6527 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6528
6529 /* Clear the field we are setting. */
6530 x &= ~howto->dst_mask;
6531
6532 /* Set the field. */
6533 x |= (value & howto->dst_mask);
6534
6535 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6536 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6537 {
6538 bfd_vma opcode = x >> 26;
6539
6540 if (r_type == R_MIPS16_26 ? opcode == 0x7
6541 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6542 : opcode == 0x1d)
6543 {
6544 info->callbacks->einfo
6545 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6546 input_bfd, input_section, relocation->r_offset);
6547 return true;
6548 }
6549 }
6550 if (cross_mode_jump_p && jal_reloc_p (r_type))
6551 {
6552 bool ok;
6553 bfd_vma opcode = x >> 26;
6554 bfd_vma jalx_opcode;
6555
6556 /* Check to see if the opcode is already JAL or JALX. */
6557 if (r_type == R_MIPS16_26)
6558 {
6559 ok = ((opcode == 0x6) || (opcode == 0x7));
6560 jalx_opcode = 0x7;
6561 }
6562 else if (r_type == R_MICROMIPS_26_S1)
6563 {
6564 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6565 jalx_opcode = 0x3c;
6566 }
6567 else
6568 {
6569 ok = ((opcode == 0x3) || (opcode == 0x1d));
6570 jalx_opcode = 0x1d;
6571 }
6572
6573 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6574 convert J or JALS to JALX. */
6575 if (!ok)
6576 {
6577 info->callbacks->einfo
6578 (_("%X%H: unsupported jump between ISA modes; "
6579 "consider recompiling with interlinking enabled\n"),
6580 input_bfd, input_section, relocation->r_offset);
6581 return true;
6582 }
6583
6584 /* Make this the JALX opcode. */
6585 x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26);
6586 }
6587 else if (cross_mode_jump_p && b_reloc_p (r_type))
6588 {
6589 bool ok = false;
6590 bfd_vma opcode = x >> 16;
6591 bfd_vma jalx_opcode = 0;
6592 bfd_vma sign_bit = 0;
6593 bfd_vma addr;
6594 bfd_vma dest;
6595
6596 if (r_type == R_MICROMIPS_PC16_S1)
6597 {
6598 ok = opcode == 0x4060;
6599 jalx_opcode = 0x3c;
6600 sign_bit = 0x10000;
6601 value <<= 1;
6602 }
6603 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6604 {
6605 ok = opcode == 0x411;
6606 jalx_opcode = 0x1d;
6607 sign_bit = 0x20000;
6608 value <<= 2;
6609 }
6610
6611 if (ok && !bfd_link_pic (info))
6612 {
6613 addr = (input_section->output_section->vma
6614 + input_section->output_offset
6615 + relocation->r_offset
6616 + 4);
6617 dest = (addr
6618 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6619
6620 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6621 {
6622 info->callbacks->einfo
6623 (_("%X%H: cannot convert branch between ISA modes "
6624 "to JALX: relocation out of range\n"),
6625 input_bfd, input_section, relocation->r_offset);
6626 return true;
6627 }
6628
6629 /* Make this the JALX opcode. */
6630 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6631 }
6632 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6633 {
6634 info->callbacks->einfo
6635 (_("%X%H: unsupported branch between ISA modes\n"),
6636 input_bfd, input_section, relocation->r_offset);
6637 return true;
6638 }
6639 }
6640
6641 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6642 range. */
6643 if (!bfd_link_relocatable (info)
6644 && !cross_mode_jump_p
6645 && ((JAL_TO_BAL_P (input_bfd)
6646 && r_type == R_MIPS_26
6647 && (x >> 26) == 0x3) /* jal addr */
6648 || (JALR_TO_BAL_P (input_bfd)
6649 && r_type == R_MIPS_JALR
6650 && x == 0x0320f809) /* jalr t9 */
6651 || (JR_TO_B_P (input_bfd)
6652 && r_type == R_MIPS_JALR
6653 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6654 {
6655 bfd_vma addr;
6656 bfd_vma dest;
6657 bfd_signed_vma off;
6658
6659 addr = (input_section->output_section->vma
6660 + input_section->output_offset
6661 + relocation->r_offset
6662 + 4);
6663 if (r_type == R_MIPS_26)
6664 dest = (value << 2) | ((addr >> 28) << 28);
6665 else
6666 dest = value;
6667 off = dest - addr;
6668 if (off <= 0x1ffff && off >= -0x20000)
6669 {
6670 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6671 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6672 else
6673 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6674 }
6675 }
6676
6677 /* Put the value into the output. */
6678 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6679
6680 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6681 location);
6682
6683 return true;
6684 }
6685 \f
6686 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6687 is the original relocation, which is now being transformed into a
6688 dynamic relocation. The ADDENDP is adjusted if necessary; the
6689 caller should store the result in place of the original addend. */
6690
6691 static bool
6692 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6693 struct bfd_link_info *info,
6694 const Elf_Internal_Rela *rel,
6695 struct mips_elf_link_hash_entry *h,
6696 asection *sec, bfd_vma symbol,
6697 bfd_vma *addendp, asection *input_section)
6698 {
6699 Elf_Internal_Rela outrel[3];
6700 asection *sreloc;
6701 bfd *dynobj;
6702 int r_type;
6703 long indx;
6704 bool defined_p;
6705 struct mips_elf_link_hash_table *htab;
6706
6707 htab = mips_elf_hash_table (info);
6708 BFD_ASSERT (htab != NULL);
6709
6710 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6711 dynobj = elf_hash_table (info)->dynobj;
6712 sreloc = mips_elf_rel_dyn_section (info, false);
6713 BFD_ASSERT (sreloc != NULL);
6714 BFD_ASSERT (sreloc->contents != NULL);
6715 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6716 < sreloc->size);
6717
6718 outrel[0].r_offset =
6719 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6720 if (ABI_64_P (output_bfd))
6721 {
6722 outrel[1].r_offset =
6723 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6724 outrel[2].r_offset =
6725 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6726 }
6727
6728 if (outrel[0].r_offset == MINUS_ONE)
6729 /* The relocation field has been deleted. */
6730 return true;
6731
6732 if (outrel[0].r_offset == MINUS_TWO)
6733 {
6734 /* The relocation field has been converted into a relative value of
6735 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6736 the field to be fully relocated, so add in the symbol's value. */
6737 *addendp += symbol;
6738 return true;
6739 }
6740
6741 /* We must now calculate the dynamic symbol table index to use
6742 in the relocation. */
6743 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6744 {
6745 BFD_ASSERT (htab->root.target_os == is_vxworks
6746 || h->global_got_area != GGA_NONE);
6747 indx = h->root.dynindx;
6748 if (SGI_COMPAT (output_bfd))
6749 defined_p = h->root.def_regular;
6750 else
6751 /* ??? glibc's ld.so just adds the final GOT entry to the
6752 relocation field. It therefore treats relocs against
6753 defined symbols in the same way as relocs against
6754 undefined symbols. */
6755 defined_p = false;
6756 }
6757 else
6758 {
6759 if (sec != NULL && bfd_is_abs_section (sec))
6760 indx = 0;
6761 else if (sec == NULL || sec->owner == NULL)
6762 {
6763 bfd_set_error (bfd_error_bad_value);
6764 return false;
6765 }
6766 else
6767 {
6768 indx = elf_section_data (sec->output_section)->dynindx;
6769 if (indx == 0)
6770 {
6771 asection *osec = htab->root.text_index_section;
6772 indx = elf_section_data (osec)->dynindx;
6773 }
6774 if (indx == 0)
6775 abort ();
6776 }
6777
6778 /* Instead of generating a relocation using the section
6779 symbol, we may as well make it a fully relative
6780 relocation. We want to avoid generating relocations to
6781 local symbols because we used to generate them
6782 incorrectly, without adding the original symbol value,
6783 which is mandated by the ABI for section symbols. In
6784 order to give dynamic loaders and applications time to
6785 phase out the incorrect use, we refrain from emitting
6786 section-relative relocations. It's not like they're
6787 useful, after all. This should be a bit more efficient
6788 as well. */
6789 /* ??? Although this behavior is compatible with glibc's ld.so,
6790 the ABI says that relocations against STN_UNDEF should have
6791 a symbol value of 0. Irix rld honors this, so relocations
6792 against STN_UNDEF have no effect. */
6793 if (!SGI_COMPAT (output_bfd))
6794 indx = 0;
6795 defined_p = true;
6796 }
6797
6798 /* If the relocation was previously an absolute relocation and
6799 this symbol will not be referred to by the relocation, we must
6800 adjust it by the value we give it in the dynamic symbol table.
6801 Otherwise leave the job up to the dynamic linker. */
6802 if (defined_p && r_type != R_MIPS_REL32)
6803 *addendp += symbol;
6804
6805 if (htab->root.target_os == is_vxworks)
6806 /* VxWorks uses non-relative relocations for this. */
6807 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6808 else
6809 /* The relocation is always an REL32 relocation because we don't
6810 know where the shared library will wind up at load-time. */
6811 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6812 R_MIPS_REL32);
6813
6814 /* For strict adherence to the ABI specification, we should
6815 generate a R_MIPS_64 relocation record by itself before the
6816 _REL32/_64 record as well, such that the addend is read in as
6817 a 64-bit value (REL32 is a 32-bit relocation, after all).
6818 However, since none of the existing ELF64 MIPS dynamic
6819 loaders seems to care, we don't waste space with these
6820 artificial relocations. If this turns out to not be true,
6821 mips_elf_allocate_dynamic_relocation() should be tweaked so
6822 as to make room for a pair of dynamic relocations per
6823 invocation if ABI_64_P, and here we should generate an
6824 additional relocation record with R_MIPS_64 by itself for a
6825 NULL symbol before this relocation record. */
6826 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6827 ABI_64_P (output_bfd)
6828 ? R_MIPS_64
6829 : R_MIPS_NONE);
6830 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6831
6832 /* Adjust the output offset of the relocation to reference the
6833 correct location in the output file. */
6834 outrel[0].r_offset += (input_section->output_section->vma
6835 + input_section->output_offset);
6836 outrel[1].r_offset += (input_section->output_section->vma
6837 + input_section->output_offset);
6838 outrel[2].r_offset += (input_section->output_section->vma
6839 + input_section->output_offset);
6840
6841 /* Put the relocation back out. We have to use the special
6842 relocation outputter in the 64-bit case since the 64-bit
6843 relocation format is non-standard. */
6844 if (ABI_64_P (output_bfd))
6845 {
6846 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6847 (output_bfd, &outrel[0],
6848 (sreloc->contents
6849 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6850 }
6851 else if (htab->root.target_os == is_vxworks)
6852 {
6853 /* VxWorks uses RELA rather than REL dynamic relocations. */
6854 outrel[0].r_addend = *addendp;
6855 bfd_elf32_swap_reloca_out
6856 (output_bfd, &outrel[0],
6857 (sreloc->contents
6858 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6859 }
6860 else
6861 bfd_elf32_swap_reloc_out
6862 (output_bfd, &outrel[0],
6863 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6864
6865 /* We've now added another relocation. */
6866 ++sreloc->reloc_count;
6867
6868 /* Make sure the output section is writable. The dynamic linker
6869 will be writing to it. */
6870 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6871 |= SHF_WRITE;
6872
6873 /* On IRIX5, make an entry of compact relocation info. */
6874 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6875 {
6876 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6877 bfd_byte *cr;
6878
6879 if (scpt)
6880 {
6881 Elf32_crinfo cptrel;
6882
6883 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6884 cptrel.vaddr = (rel->r_offset
6885 + input_section->output_section->vma
6886 + input_section->output_offset);
6887 if (r_type == R_MIPS_REL32)
6888 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6889 else
6890 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6891 mips_elf_set_cr_dist2to (cptrel, 0);
6892 cptrel.konst = *addendp;
6893
6894 cr = (scpt->contents
6895 + sizeof (Elf32_External_compact_rel));
6896 mips_elf_set_cr_relvaddr (cptrel, 0);
6897 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6898 ((Elf32_External_crinfo *) cr
6899 + scpt->reloc_count));
6900 ++scpt->reloc_count;
6901 }
6902 }
6903
6904 /* If we've written this relocation for a readonly section,
6905 we need to set DF_TEXTREL again, so that we do not delete the
6906 DT_TEXTREL tag. */
6907 if (MIPS_ELF_READONLY_SECTION (input_section))
6908 info->flags |= DF_TEXTREL;
6909
6910 return true;
6911 }
6912 \f
6913 /* Return the MACH for a MIPS e_flags value. */
6914
6915 unsigned long
6916 _bfd_elf_mips_mach (flagword flags)
6917 {
6918 switch (flags & EF_MIPS_MACH)
6919 {
6920 case E_MIPS_MACH_3900:
6921 return bfd_mach_mips3900;
6922
6923 case E_MIPS_MACH_4010:
6924 return bfd_mach_mips4010;
6925
6926 case E_MIPS_MACH_4100:
6927 return bfd_mach_mips4100;
6928
6929 case E_MIPS_MACH_4111:
6930 return bfd_mach_mips4111;
6931
6932 case E_MIPS_MACH_4120:
6933 return bfd_mach_mips4120;
6934
6935 case E_MIPS_MACH_4650:
6936 return bfd_mach_mips4650;
6937
6938 case E_MIPS_MACH_5400:
6939 return bfd_mach_mips5400;
6940
6941 case E_MIPS_MACH_5500:
6942 return bfd_mach_mips5500;
6943
6944 case E_MIPS_MACH_5900:
6945 return bfd_mach_mips5900;
6946
6947 case E_MIPS_MACH_9000:
6948 return bfd_mach_mips9000;
6949
6950 case E_MIPS_MACH_SB1:
6951 return bfd_mach_mips_sb1;
6952
6953 case E_MIPS_MACH_LS2E:
6954 return bfd_mach_mips_loongson_2e;
6955
6956 case E_MIPS_MACH_LS2F:
6957 return bfd_mach_mips_loongson_2f;
6958
6959 case E_MIPS_MACH_GS464:
6960 return bfd_mach_mips_gs464;
6961
6962 case E_MIPS_MACH_GS464E:
6963 return bfd_mach_mips_gs464e;
6964
6965 case E_MIPS_MACH_GS264E:
6966 return bfd_mach_mips_gs264e;
6967
6968 case E_MIPS_MACH_OCTEON3:
6969 return bfd_mach_mips_octeon3;
6970
6971 case E_MIPS_MACH_OCTEON2:
6972 return bfd_mach_mips_octeon2;
6973
6974 case E_MIPS_MACH_OCTEON:
6975 return bfd_mach_mips_octeon;
6976
6977 case E_MIPS_MACH_XLR:
6978 return bfd_mach_mips_xlr;
6979
6980 case E_MIPS_MACH_IAMR2:
6981 return bfd_mach_mips_interaptiv_mr2;
6982
6983 default:
6984 switch (flags & EF_MIPS_ARCH)
6985 {
6986 default:
6987 case E_MIPS_ARCH_1:
6988 return bfd_mach_mips3000;
6989
6990 case E_MIPS_ARCH_2:
6991 return bfd_mach_mips6000;
6992
6993 case E_MIPS_ARCH_3:
6994 return bfd_mach_mips4000;
6995
6996 case E_MIPS_ARCH_4:
6997 return bfd_mach_mips8000;
6998
6999 case E_MIPS_ARCH_5:
7000 return bfd_mach_mips5;
7001
7002 case E_MIPS_ARCH_32:
7003 return bfd_mach_mipsisa32;
7004
7005 case E_MIPS_ARCH_64:
7006 return bfd_mach_mipsisa64;
7007
7008 case E_MIPS_ARCH_32R2:
7009 return bfd_mach_mipsisa32r2;
7010
7011 case E_MIPS_ARCH_64R2:
7012 return bfd_mach_mipsisa64r2;
7013
7014 case E_MIPS_ARCH_32R6:
7015 return bfd_mach_mipsisa32r6;
7016
7017 case E_MIPS_ARCH_64R6:
7018 return bfd_mach_mipsisa64r6;
7019 }
7020 }
7021
7022 return 0;
7023 }
7024
7025 /* Return printable name for ABI. */
7026
7027 static INLINE char *
7028 elf_mips_abi_name (bfd *abfd)
7029 {
7030 flagword flags;
7031
7032 flags = elf_elfheader (abfd)->e_flags;
7033 switch (flags & EF_MIPS_ABI)
7034 {
7035 case 0:
7036 if (ABI_N32_P (abfd))
7037 return "N32";
7038 else if (ABI_64_P (abfd))
7039 return "64";
7040 else
7041 return "none";
7042 case E_MIPS_ABI_O32:
7043 return "O32";
7044 case E_MIPS_ABI_O64:
7045 return "O64";
7046 case E_MIPS_ABI_EABI32:
7047 return "EABI32";
7048 case E_MIPS_ABI_EABI64:
7049 return "EABI64";
7050 default:
7051 return "unknown abi";
7052 }
7053 }
7054 \f
7055 /* MIPS ELF uses two common sections. One is the usual one, and the
7056 other is for small objects. All the small objects are kept
7057 together, and then referenced via the gp pointer, which yields
7058 faster assembler code. This is what we use for the small common
7059 section. This approach is copied from ecoff.c. */
7060 static asection mips_elf_scom_section;
7061 static const asymbol mips_elf_scom_symbol =
7062 GLOBAL_SYM_INIT (".scommon", &mips_elf_scom_section);
7063 static asection mips_elf_scom_section =
7064 BFD_FAKE_SECTION (mips_elf_scom_section, &mips_elf_scom_symbol,
7065 ".scommon", 0, SEC_IS_COMMON | SEC_SMALL_DATA);
7066
7067 /* MIPS ELF also uses an acommon section, which represents an
7068 allocated common symbol which may be overridden by a
7069 definition in a shared library. */
7070 static asection mips_elf_acom_section;
7071 static const asymbol mips_elf_acom_symbol =
7072 GLOBAL_SYM_INIT (".acommon", &mips_elf_acom_section);
7073 static asection mips_elf_acom_section =
7074 BFD_FAKE_SECTION (mips_elf_acom_section, &mips_elf_acom_symbol,
7075 ".acommon", 0, SEC_ALLOC);
7076
7077 /* This is used for both the 32-bit and the 64-bit ABI. */
7078
7079 void
7080 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7081 {
7082 elf_symbol_type *elfsym;
7083
7084 /* Handle the special MIPS section numbers that a symbol may use. */
7085 elfsym = (elf_symbol_type *) asym;
7086 switch (elfsym->internal_elf_sym.st_shndx)
7087 {
7088 case SHN_MIPS_ACOMMON:
7089 /* This section is used in a dynamically linked executable file.
7090 It is an allocated common section. The dynamic linker can
7091 either resolve these symbols to something in a shared
7092 library, or it can just leave them here. For our purposes,
7093 we can consider these symbols to be in a new section. */
7094 asym->section = &mips_elf_acom_section;
7095 break;
7096
7097 case SHN_COMMON:
7098 /* Common symbols less than the GP size are automatically
7099 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7100 if (asym->value > elf_gp_size (abfd)
7101 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7102 || IRIX_COMPAT (abfd) == ict_irix6)
7103 break;
7104 /* Fall through. */
7105 case SHN_MIPS_SCOMMON:
7106 asym->section = &mips_elf_scom_section;
7107 asym->value = elfsym->internal_elf_sym.st_size;
7108 break;
7109
7110 case SHN_MIPS_SUNDEFINED:
7111 asym->section = bfd_und_section_ptr;
7112 break;
7113
7114 case SHN_MIPS_TEXT:
7115 {
7116 asection *section = bfd_get_section_by_name (abfd, ".text");
7117
7118 if (section != NULL)
7119 {
7120 asym->section = section;
7121 /* MIPS_TEXT is a bit special, the address is not an offset
7122 to the base of the .text section. So subtract the section
7123 base address to make it an offset. */
7124 asym->value -= section->vma;
7125 }
7126 }
7127 break;
7128
7129 case SHN_MIPS_DATA:
7130 {
7131 asection *section = bfd_get_section_by_name (abfd, ".data");
7132
7133 if (section != NULL)
7134 {
7135 asym->section = section;
7136 /* MIPS_DATA is a bit special, the address is not an offset
7137 to the base of the .data section. So subtract the section
7138 base address to make it an offset. */
7139 asym->value -= section->vma;
7140 }
7141 }
7142 break;
7143 }
7144
7145 /* If this is an odd-valued function symbol, assume it's a MIPS16
7146 or microMIPS one. */
7147 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7148 && (asym->value & 1) != 0)
7149 {
7150 asym->value--;
7151 if (MICROMIPS_P (abfd))
7152 elfsym->internal_elf_sym.st_other
7153 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7154 else
7155 elfsym->internal_elf_sym.st_other
7156 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7157 }
7158 }
7159 \f
7160 /* Implement elf_backend_eh_frame_address_size. This differs from
7161 the default in the way it handles EABI64.
7162
7163 EABI64 was originally specified as an LP64 ABI, and that is what
7164 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7165 historically accepted the combination of -mabi=eabi and -mlong32,
7166 and this ILP32 variation has become semi-official over time.
7167 Both forms use elf32 and have pointer-sized FDE addresses.
7168
7169 If an EABI object was generated by GCC 4.0 or above, it will have
7170 an empty .gcc_compiled_longXX section, where XX is the size of longs
7171 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7172 have no special marking to distinguish them from LP64 objects.
7173
7174 We don't want users of the official LP64 ABI to be punished for the
7175 existence of the ILP32 variant, but at the same time, we don't want
7176 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7177 We therefore take the following approach:
7178
7179 - If ABFD contains a .gcc_compiled_longXX section, use it to
7180 determine the pointer size.
7181
7182 - Otherwise check the type of the first relocation. Assume that
7183 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7184
7185 - Otherwise punt.
7186
7187 The second check is enough to detect LP64 objects generated by pre-4.0
7188 compilers because, in the kind of output generated by those compilers,
7189 the first relocation will be associated with either a CIE personality
7190 routine or an FDE start address. Furthermore, the compilers never
7191 used a special (non-pointer) encoding for this ABI.
7192
7193 Checking the relocation type should also be safe because there is no
7194 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7195 did so. */
7196
7197 unsigned int
7198 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7199 {
7200 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7201 return 8;
7202 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7203 {
7204 bool long32_p, long64_p;
7205
7206 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7207 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7208 if (long32_p && long64_p)
7209 return 0;
7210 if (long32_p)
7211 return 4;
7212 if (long64_p)
7213 return 8;
7214
7215 if (sec->reloc_count > 0
7216 && elf_section_data (sec)->relocs != NULL
7217 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7218 == R_MIPS_64))
7219 return 8;
7220
7221 return 0;
7222 }
7223 return 4;
7224 }
7225 \f
7226 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7227 relocations against two unnamed section symbols to resolve to the
7228 same address. For example, if we have code like:
7229
7230 lw $4,%got_disp(.data)($gp)
7231 lw $25,%got_disp(.text)($gp)
7232 jalr $25
7233
7234 then the linker will resolve both relocations to .data and the program
7235 will jump there rather than to .text.
7236
7237 We can work around this problem by giving names to local section symbols.
7238 This is also what the MIPSpro tools do. */
7239
7240 bool
7241 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7242 {
7243 return elf_elfheader (abfd)->e_type == ET_REL && SGI_COMPAT (abfd);
7244 }
7245 \f
7246 /* Work over a section just before writing it out. This routine is
7247 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7248 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7249 a better way. */
7250
7251 bool
7252 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7253 {
7254 if (hdr->sh_type == SHT_MIPS_REGINFO
7255 && hdr->sh_size > 0)
7256 {
7257 bfd_byte buf[4];
7258
7259 BFD_ASSERT (hdr->contents == NULL);
7260
7261 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7262 {
7263 _bfd_error_handler
7264 (_("%pB: incorrect `.reginfo' section size; "
7265 "expected %" PRIu64 ", got %" PRIu64),
7266 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7267 (uint64_t) hdr->sh_size);
7268 bfd_set_error (bfd_error_bad_value);
7269 return false;
7270 }
7271
7272 if (bfd_seek (abfd,
7273 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7274 SEEK_SET) != 0)
7275 return false;
7276 H_PUT_32 (abfd, elf_gp (abfd), buf);
7277 if (bfd_bwrite (buf, 4, abfd) != 4)
7278 return false;
7279 }
7280
7281 if (hdr->sh_type == SHT_MIPS_OPTIONS
7282 && hdr->bfd_section != NULL
7283 && mips_elf_section_data (hdr->bfd_section) != NULL
7284 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7285 {
7286 bfd_byte *contents, *l, *lend;
7287
7288 /* We stored the section contents in the tdata field in the
7289 set_section_contents routine. We save the section contents
7290 so that we don't have to read them again.
7291 At this point we know that elf_gp is set, so we can look
7292 through the section contents to see if there is an
7293 ODK_REGINFO structure. */
7294
7295 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7296 l = contents;
7297 lend = contents + hdr->sh_size;
7298 while (l + sizeof (Elf_External_Options) <= lend)
7299 {
7300 Elf_Internal_Options intopt;
7301
7302 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7303 &intopt);
7304 if (intopt.size < sizeof (Elf_External_Options))
7305 {
7306 _bfd_error_handler
7307 /* xgettext:c-format */
7308 (_("%pB: warning: bad `%s' option size %u smaller than"
7309 " its header"),
7310 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7311 break;
7312 }
7313 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7314 {
7315 bfd_byte buf[8];
7316
7317 if (bfd_seek (abfd,
7318 (hdr->sh_offset
7319 + (l - contents)
7320 + sizeof (Elf_External_Options)
7321 + (sizeof (Elf64_External_RegInfo) - 8)),
7322 SEEK_SET) != 0)
7323 return false;
7324 H_PUT_64 (abfd, elf_gp (abfd), buf);
7325 if (bfd_bwrite (buf, 8, abfd) != 8)
7326 return false;
7327 }
7328 else if (intopt.kind == ODK_REGINFO)
7329 {
7330 bfd_byte buf[4];
7331
7332 if (bfd_seek (abfd,
7333 (hdr->sh_offset
7334 + (l - contents)
7335 + sizeof (Elf_External_Options)
7336 + (sizeof (Elf32_External_RegInfo) - 4)),
7337 SEEK_SET) != 0)
7338 return false;
7339 H_PUT_32 (abfd, elf_gp (abfd), buf);
7340 if (bfd_bwrite (buf, 4, abfd) != 4)
7341 return false;
7342 }
7343 l += intopt.size;
7344 }
7345 }
7346
7347 if (hdr->bfd_section != NULL)
7348 {
7349 const char *name = bfd_section_name (hdr->bfd_section);
7350
7351 /* .sbss is not handled specially here because the GNU/Linux
7352 prelinker can convert .sbss from NOBITS to PROGBITS and
7353 changing it back to NOBITS breaks the binary. The entry in
7354 _bfd_mips_elf_special_sections will ensure the correct flags
7355 are set on .sbss if BFD creates it without reading it from an
7356 input file, and without special handling here the flags set
7357 on it in an input file will be followed. */
7358 if (strcmp (name, ".sdata") == 0
7359 || strcmp (name, ".lit8") == 0
7360 || strcmp (name, ".lit4") == 0)
7361 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7362 else if (strcmp (name, ".srdata") == 0)
7363 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7364 else if (strcmp (name, ".compact_rel") == 0)
7365 hdr->sh_flags = 0;
7366 else if (strcmp (name, ".rtproc") == 0)
7367 {
7368 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7369 {
7370 unsigned int adjust;
7371
7372 adjust = hdr->sh_size % hdr->sh_addralign;
7373 if (adjust != 0)
7374 hdr->sh_size += hdr->sh_addralign - adjust;
7375 }
7376 }
7377 }
7378
7379 return true;
7380 }
7381
7382 /* Handle a MIPS specific section when reading an object file. This
7383 is called when elfcode.h finds a section with an unknown type.
7384 This routine supports both the 32-bit and 64-bit ELF ABI. */
7385
7386 bool
7387 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7388 Elf_Internal_Shdr *hdr,
7389 const char *name,
7390 int shindex)
7391 {
7392 flagword flags = 0;
7393
7394 /* There ought to be a place to keep ELF backend specific flags, but
7395 at the moment there isn't one. We just keep track of the
7396 sections by their name, instead. Fortunately, the ABI gives
7397 suggested names for all the MIPS specific sections, so we will
7398 probably get away with this. */
7399 switch (hdr->sh_type)
7400 {
7401 case SHT_MIPS_LIBLIST:
7402 if (strcmp (name, ".liblist") != 0)
7403 return false;
7404 break;
7405 case SHT_MIPS_MSYM:
7406 if (strcmp (name, ".msym") != 0)
7407 return false;
7408 break;
7409 case SHT_MIPS_CONFLICT:
7410 if (strcmp (name, ".conflict") != 0)
7411 return false;
7412 break;
7413 case SHT_MIPS_GPTAB:
7414 if (! startswith (name, ".gptab."))
7415 return false;
7416 break;
7417 case SHT_MIPS_UCODE:
7418 if (strcmp (name, ".ucode") != 0)
7419 return false;
7420 break;
7421 case SHT_MIPS_DEBUG:
7422 if (strcmp (name, ".mdebug") != 0)
7423 return false;
7424 flags = SEC_DEBUGGING;
7425 break;
7426 case SHT_MIPS_REGINFO:
7427 if (strcmp (name, ".reginfo") != 0
7428 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7429 return false;
7430 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7431 break;
7432 case SHT_MIPS_IFACE:
7433 if (strcmp (name, ".MIPS.interfaces") != 0)
7434 return false;
7435 break;
7436 case SHT_MIPS_CONTENT:
7437 if (! startswith (name, ".MIPS.content"))
7438 return false;
7439 break;
7440 case SHT_MIPS_OPTIONS:
7441 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7442 return false;
7443 break;
7444 case SHT_MIPS_ABIFLAGS:
7445 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7446 return false;
7447 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7448 break;
7449 case SHT_MIPS_DWARF:
7450 if (! startswith (name, ".debug_")
7451 && ! startswith (name, ".gnu.debuglto_.debug_")
7452 && ! startswith (name, ".zdebug_")
7453 && ! startswith (name, ".gnu.debuglto_.zdebug_"))
7454 return false;
7455 break;
7456 case SHT_MIPS_SYMBOL_LIB:
7457 if (strcmp (name, ".MIPS.symlib") != 0)
7458 return false;
7459 break;
7460 case SHT_MIPS_EVENTS:
7461 if (! startswith (name, ".MIPS.events")
7462 && ! startswith (name, ".MIPS.post_rel"))
7463 return false;
7464 break;
7465 case SHT_MIPS_XHASH:
7466 if (strcmp (name, ".MIPS.xhash") != 0)
7467 return false;
7468 default:
7469 break;
7470 }
7471
7472 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7473 return false;
7474
7475 if (hdr->sh_flags & SHF_MIPS_GPREL)
7476 flags |= SEC_SMALL_DATA;
7477
7478 if (flags)
7479 {
7480 if (!bfd_set_section_flags (hdr->bfd_section,
7481 (bfd_section_flags (hdr->bfd_section)
7482 | flags)))
7483 return false;
7484 }
7485
7486 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7487 {
7488 Elf_External_ABIFlags_v0 ext;
7489
7490 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7491 &ext, 0, sizeof ext))
7492 return false;
7493 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7494 &mips_elf_tdata (abfd)->abiflags);
7495 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7496 return false;
7497 mips_elf_tdata (abfd)->abiflags_valid = true;
7498 }
7499
7500 /* FIXME: We should record sh_info for a .gptab section. */
7501
7502 /* For a .reginfo section, set the gp value in the tdata information
7503 from the contents of this section. We need the gp value while
7504 processing relocs, so we just get it now. The .reginfo section
7505 is not used in the 64-bit MIPS ELF ABI. */
7506 if (hdr->sh_type == SHT_MIPS_REGINFO)
7507 {
7508 Elf32_External_RegInfo ext;
7509 Elf32_RegInfo s;
7510
7511 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7512 &ext, 0, sizeof ext))
7513 return false;
7514 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7515 elf_gp (abfd) = s.ri_gp_value;
7516 }
7517
7518 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7519 set the gp value based on what we find. We may see both
7520 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7521 they should agree. */
7522 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7523 {
7524 bfd_byte *contents, *l, *lend;
7525
7526 contents = bfd_malloc (hdr->sh_size);
7527 if (contents == NULL)
7528 return false;
7529 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7530 0, hdr->sh_size))
7531 {
7532 free (contents);
7533 return false;
7534 }
7535 l = contents;
7536 lend = contents + hdr->sh_size;
7537 while (l + sizeof (Elf_External_Options) <= lend)
7538 {
7539 Elf_Internal_Options intopt;
7540
7541 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7542 &intopt);
7543 if (intopt.size < sizeof (Elf_External_Options))
7544 {
7545 _bfd_error_handler
7546 /* xgettext:c-format */
7547 (_("%pB: warning: bad `%s' option size %u smaller than"
7548 " its header"),
7549 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7550 break;
7551 }
7552 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7553 {
7554 Elf64_Internal_RegInfo intreg;
7555
7556 bfd_mips_elf64_swap_reginfo_in
7557 (abfd,
7558 ((Elf64_External_RegInfo *)
7559 (l + sizeof (Elf_External_Options))),
7560 &intreg);
7561 elf_gp (abfd) = intreg.ri_gp_value;
7562 }
7563 else if (intopt.kind == ODK_REGINFO)
7564 {
7565 Elf32_RegInfo intreg;
7566
7567 bfd_mips_elf32_swap_reginfo_in
7568 (abfd,
7569 ((Elf32_External_RegInfo *)
7570 (l + sizeof (Elf_External_Options))),
7571 &intreg);
7572 elf_gp (abfd) = intreg.ri_gp_value;
7573 }
7574 l += intopt.size;
7575 }
7576 free (contents);
7577 }
7578
7579 return true;
7580 }
7581
7582 /* Set the correct type for a MIPS ELF section. We do this by the
7583 section name, which is a hack, but ought to work. This routine is
7584 used by both the 32-bit and the 64-bit ABI. */
7585
7586 bool
7587 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7588 {
7589 const char *name = bfd_section_name (sec);
7590
7591 if (strcmp (name, ".liblist") == 0)
7592 {
7593 hdr->sh_type = SHT_MIPS_LIBLIST;
7594 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7595 /* The sh_link field is set in final_write_processing. */
7596 }
7597 else if (strcmp (name, ".conflict") == 0)
7598 hdr->sh_type = SHT_MIPS_CONFLICT;
7599 else if (startswith (name, ".gptab."))
7600 {
7601 hdr->sh_type = SHT_MIPS_GPTAB;
7602 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7603 /* The sh_info field is set in final_write_processing. */
7604 }
7605 else if (strcmp (name, ".ucode") == 0)
7606 hdr->sh_type = SHT_MIPS_UCODE;
7607 else if (strcmp (name, ".mdebug") == 0)
7608 {
7609 hdr->sh_type = SHT_MIPS_DEBUG;
7610 /* In a shared object on IRIX 5.3, the .mdebug section has an
7611 entsize of 0. FIXME: Does this matter? */
7612 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7613 hdr->sh_entsize = 0;
7614 else
7615 hdr->sh_entsize = 1;
7616 }
7617 else if (strcmp (name, ".reginfo") == 0)
7618 {
7619 hdr->sh_type = SHT_MIPS_REGINFO;
7620 /* In a shared object on IRIX 5.3, the .reginfo section has an
7621 entsize of 0x18. FIXME: Does this matter? */
7622 if (SGI_COMPAT (abfd))
7623 {
7624 if ((abfd->flags & DYNAMIC) != 0)
7625 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7626 else
7627 hdr->sh_entsize = 1;
7628 }
7629 else
7630 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7631 }
7632 else if (SGI_COMPAT (abfd)
7633 && (strcmp (name, ".hash") == 0
7634 || strcmp (name, ".dynamic") == 0
7635 || strcmp (name, ".dynstr") == 0))
7636 {
7637 if (SGI_COMPAT (abfd))
7638 hdr->sh_entsize = 0;
7639 #if 0
7640 /* This isn't how the IRIX6 linker behaves. */
7641 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7642 #endif
7643 }
7644 else if (strcmp (name, ".got") == 0
7645 || strcmp (name, ".srdata") == 0
7646 || strcmp (name, ".sdata") == 0
7647 || strcmp (name, ".sbss") == 0
7648 || strcmp (name, ".lit4") == 0
7649 || strcmp (name, ".lit8") == 0)
7650 hdr->sh_flags |= SHF_MIPS_GPREL;
7651 else if (strcmp (name, ".MIPS.interfaces") == 0)
7652 {
7653 hdr->sh_type = SHT_MIPS_IFACE;
7654 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7655 }
7656 else if (startswith (name, ".MIPS.content"))
7657 {
7658 hdr->sh_type = SHT_MIPS_CONTENT;
7659 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7660 /* The sh_info field is set in final_write_processing. */
7661 }
7662 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7663 {
7664 hdr->sh_type = SHT_MIPS_OPTIONS;
7665 hdr->sh_entsize = 1;
7666 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7667 }
7668 else if (startswith (name, ".MIPS.abiflags"))
7669 {
7670 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7671 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7672 }
7673 else if (startswith (name, ".debug_")
7674 || startswith (name, ".gnu.debuglto_.debug_")
7675 || startswith (name, ".zdebug_")
7676 || startswith (name, ".gnu.debuglto_.zdebug_"))
7677 {
7678 hdr->sh_type = SHT_MIPS_DWARF;
7679
7680 /* Irix facilities such as libexc expect a single .debug_frame
7681 per executable, the system ones have NOSTRIP set and the linker
7682 doesn't merge sections with different flags so ... */
7683 if (SGI_COMPAT (abfd) && startswith (name, ".debug_frame"))
7684 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7685 }
7686 else if (strcmp (name, ".MIPS.symlib") == 0)
7687 {
7688 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7689 /* The sh_link and sh_info fields are set in
7690 final_write_processing. */
7691 }
7692 else if (startswith (name, ".MIPS.events")
7693 || startswith (name, ".MIPS.post_rel"))
7694 {
7695 hdr->sh_type = SHT_MIPS_EVENTS;
7696 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7697 /* The sh_link field is set in final_write_processing. */
7698 }
7699 else if (strcmp (name, ".msym") == 0)
7700 {
7701 hdr->sh_type = SHT_MIPS_MSYM;
7702 hdr->sh_flags |= SHF_ALLOC;
7703 hdr->sh_entsize = 8;
7704 }
7705 else if (strcmp (name, ".MIPS.xhash") == 0)
7706 {
7707 hdr->sh_type = SHT_MIPS_XHASH;
7708 hdr->sh_flags |= SHF_ALLOC;
7709 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7710 }
7711
7712 /* The generic elf_fake_sections will set up REL_HDR using the default
7713 kind of relocations. We used to set up a second header for the
7714 non-default kind of relocations here, but only NewABI would use
7715 these, and the IRIX ld doesn't like resulting empty RELA sections.
7716 Thus we create those header only on demand now. */
7717
7718 return true;
7719 }
7720
7721 /* Given a BFD section, try to locate the corresponding ELF section
7722 index. This is used by both the 32-bit and the 64-bit ABI.
7723 Actually, it's not clear to me that the 64-bit ABI supports these,
7724 but for non-PIC objects we will certainly want support for at least
7725 the .scommon section. */
7726
7727 bool
7728 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7729 asection *sec, int *retval)
7730 {
7731 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
7732 {
7733 *retval = SHN_MIPS_SCOMMON;
7734 return true;
7735 }
7736 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
7737 {
7738 *retval = SHN_MIPS_ACOMMON;
7739 return true;
7740 }
7741 return false;
7742 }
7743 \f
7744 /* Hook called by the linker routine which adds symbols from an object
7745 file. We must handle the special MIPS section numbers here. */
7746
7747 bool
7748 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7749 Elf_Internal_Sym *sym, const char **namep,
7750 flagword *flagsp ATTRIBUTE_UNUSED,
7751 asection **secp, bfd_vma *valp)
7752 {
7753 if (SGI_COMPAT (abfd)
7754 && (abfd->flags & DYNAMIC) != 0
7755 && strcmp (*namep, "_rld_new_interface") == 0)
7756 {
7757 /* Skip IRIX5 rld entry name. */
7758 *namep = NULL;
7759 return true;
7760 }
7761
7762 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7763 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7764 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7765 a magic symbol resolved by the linker, we ignore this bogus definition
7766 of _gp_disp. New ABI objects do not suffer from this problem so this
7767 is not done for them. */
7768 if (!NEWABI_P(abfd)
7769 && (sym->st_shndx == SHN_ABS)
7770 && (strcmp (*namep, "_gp_disp") == 0))
7771 {
7772 *namep = NULL;
7773 return true;
7774 }
7775
7776 switch (sym->st_shndx)
7777 {
7778 case SHN_COMMON:
7779 /* Common symbols less than the GP size are automatically
7780 treated as SHN_MIPS_SCOMMON symbols. */
7781 if (sym->st_size > elf_gp_size (abfd)
7782 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7783 || IRIX_COMPAT (abfd) == ict_irix6)
7784 break;
7785 /* Fall through. */
7786 case SHN_MIPS_SCOMMON:
7787 *secp = bfd_make_section_old_way (abfd, ".scommon");
7788 (*secp)->flags |= SEC_IS_COMMON | SEC_SMALL_DATA;
7789 *valp = sym->st_size;
7790 break;
7791
7792 case SHN_MIPS_TEXT:
7793 /* This section is used in a shared object. */
7794 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7795 {
7796 asymbol *elf_text_symbol;
7797 asection *elf_text_section;
7798 size_t amt = sizeof (asection);
7799
7800 elf_text_section = bfd_zalloc (abfd, amt);
7801 if (elf_text_section == NULL)
7802 return false;
7803
7804 amt = sizeof (asymbol);
7805 elf_text_symbol = bfd_zalloc (abfd, amt);
7806 if (elf_text_symbol == NULL)
7807 return false;
7808
7809 /* Initialize the section. */
7810
7811 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7812 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7813
7814 elf_text_section->symbol = elf_text_symbol;
7815 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7816
7817 elf_text_section->name = ".text";
7818 elf_text_section->flags = SEC_NO_FLAGS;
7819 elf_text_section->output_section = NULL;
7820 elf_text_section->owner = abfd;
7821 elf_text_symbol->name = ".text";
7822 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7823 elf_text_symbol->section = elf_text_section;
7824 }
7825 /* This code used to do *secp = bfd_und_section_ptr if
7826 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7827 so I took it out. */
7828 *secp = mips_elf_tdata (abfd)->elf_text_section;
7829 break;
7830
7831 case SHN_MIPS_ACOMMON:
7832 /* Fall through. XXX Can we treat this as allocated data? */
7833 case SHN_MIPS_DATA:
7834 /* This section is used in a shared object. */
7835 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7836 {
7837 asymbol *elf_data_symbol;
7838 asection *elf_data_section;
7839 size_t amt = sizeof (asection);
7840
7841 elf_data_section = bfd_zalloc (abfd, amt);
7842 if (elf_data_section == NULL)
7843 return false;
7844
7845 amt = sizeof (asymbol);
7846 elf_data_symbol = bfd_zalloc (abfd, amt);
7847 if (elf_data_symbol == NULL)
7848 return false;
7849
7850 /* Initialize the section. */
7851
7852 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7853 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7854
7855 elf_data_section->symbol = elf_data_symbol;
7856 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7857
7858 elf_data_section->name = ".data";
7859 elf_data_section->flags = SEC_NO_FLAGS;
7860 elf_data_section->output_section = NULL;
7861 elf_data_section->owner = abfd;
7862 elf_data_symbol->name = ".data";
7863 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7864 elf_data_symbol->section = elf_data_section;
7865 }
7866 /* This code used to do *secp = bfd_und_section_ptr if
7867 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7868 so I took it out. */
7869 *secp = mips_elf_tdata (abfd)->elf_data_section;
7870 break;
7871
7872 case SHN_MIPS_SUNDEFINED:
7873 *secp = bfd_und_section_ptr;
7874 break;
7875 }
7876
7877 if (SGI_COMPAT (abfd)
7878 && ! bfd_link_pic (info)
7879 && info->output_bfd->xvec == abfd->xvec
7880 && strcmp (*namep, "__rld_obj_head") == 0)
7881 {
7882 struct elf_link_hash_entry *h;
7883 struct bfd_link_hash_entry *bh;
7884
7885 /* Mark __rld_obj_head as dynamic. */
7886 bh = NULL;
7887 if (! (_bfd_generic_link_add_one_symbol
7888 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, false,
7889 get_elf_backend_data (abfd)->collect, &bh)))
7890 return false;
7891
7892 h = (struct elf_link_hash_entry *) bh;
7893 h->non_elf = 0;
7894 h->def_regular = 1;
7895 h->type = STT_OBJECT;
7896
7897 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7898 return false;
7899
7900 mips_elf_hash_table (info)->use_rld_obj_head = true;
7901 mips_elf_hash_table (info)->rld_symbol = h;
7902 }
7903
7904 /* If this is a mips16 text symbol, add 1 to the value to make it
7905 odd. This will cause something like .word SYM to come up with
7906 the right value when it is loaded into the PC. */
7907 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7908 ++*valp;
7909
7910 return true;
7911 }
7912
7913 /* This hook function is called before the linker writes out a global
7914 symbol. We mark symbols as small common if appropriate. This is
7915 also where we undo the increment of the value for a mips16 symbol. */
7916
7917 int
7918 _bfd_mips_elf_link_output_symbol_hook
7919 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7920 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7921 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7922 {
7923 /* If we see a common symbol, which implies a relocatable link, then
7924 if a symbol was small common in an input file, mark it as small
7925 common in the output file. */
7926 if (sym->st_shndx == SHN_COMMON
7927 && strcmp (input_sec->name, ".scommon") == 0)
7928 sym->st_shndx = SHN_MIPS_SCOMMON;
7929
7930 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7931 sym->st_value &= ~1;
7932
7933 return 1;
7934 }
7935 \f
7936 /* Functions for the dynamic linker. */
7937
7938 /* Create dynamic sections when linking against a dynamic object. */
7939
7940 bool
7941 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7942 {
7943 struct elf_link_hash_entry *h;
7944 struct bfd_link_hash_entry *bh;
7945 flagword flags;
7946 register asection *s;
7947 const char * const *namep;
7948 struct mips_elf_link_hash_table *htab;
7949
7950 htab = mips_elf_hash_table (info);
7951 BFD_ASSERT (htab != NULL);
7952
7953 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7954 | SEC_LINKER_CREATED | SEC_READONLY);
7955
7956 /* The psABI requires a read-only .dynamic section, but the VxWorks
7957 EABI doesn't. */
7958 if (htab->root.target_os != is_vxworks)
7959 {
7960 s = bfd_get_linker_section (abfd, ".dynamic");
7961 if (s != NULL)
7962 {
7963 if (!bfd_set_section_flags (s, flags))
7964 return false;
7965 }
7966 }
7967
7968 /* We need to create .got section. */
7969 if (!mips_elf_create_got_section (abfd, info))
7970 return false;
7971
7972 if (! mips_elf_rel_dyn_section (info, true))
7973 return false;
7974
7975 /* Create .stub section. */
7976 s = bfd_make_section_anyway_with_flags (abfd,
7977 MIPS_ELF_STUB_SECTION_NAME (abfd),
7978 flags | SEC_CODE);
7979 if (s == NULL
7980 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7981 return false;
7982 htab->sstubs = s;
7983
7984 if (!mips_elf_hash_table (info)->use_rld_obj_head
7985 && bfd_link_executable (info)
7986 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7987 {
7988 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7989 flags &~ (flagword) SEC_READONLY);
7990 if (s == NULL
7991 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7992 return false;
7993 }
7994
7995 /* Create .MIPS.xhash section. */
7996 if (info->emit_gnu_hash)
7997 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
7998 flags | SEC_READONLY);
7999
8000 /* On IRIX5, we adjust add some additional symbols and change the
8001 alignments of several sections. There is no ABI documentation
8002 indicating that this is necessary on IRIX6, nor any evidence that
8003 the linker takes such action. */
8004 if (IRIX_COMPAT (abfd) == ict_irix5)
8005 {
8006 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8007 {
8008 bh = NULL;
8009 if (! (_bfd_generic_link_add_one_symbol
8010 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8011 NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
8012 return false;
8013
8014 h = (struct elf_link_hash_entry *) bh;
8015 h->mark = 1;
8016 h->non_elf = 0;
8017 h->def_regular = 1;
8018 h->type = STT_SECTION;
8019
8020 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8021 return false;
8022 }
8023
8024 /* We need to create a .compact_rel section. */
8025 if (SGI_COMPAT (abfd))
8026 {
8027 if (!mips_elf_create_compact_rel_section (abfd, info))
8028 return false;
8029 }
8030
8031 /* Change alignments of some sections. */
8032 s = bfd_get_linker_section (abfd, ".hash");
8033 if (s != NULL)
8034 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8035
8036 s = bfd_get_linker_section (abfd, ".dynsym");
8037 if (s != NULL)
8038 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8039
8040 s = bfd_get_linker_section (abfd, ".dynstr");
8041 if (s != NULL)
8042 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8043
8044 /* ??? */
8045 s = bfd_get_section_by_name (abfd, ".reginfo");
8046 if (s != NULL)
8047 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8048
8049 s = bfd_get_linker_section (abfd, ".dynamic");
8050 if (s != NULL)
8051 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8052 }
8053
8054 if (bfd_link_executable (info))
8055 {
8056 const char *name;
8057
8058 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8059 bh = NULL;
8060 if (!(_bfd_generic_link_add_one_symbol
8061 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8062 NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
8063 return false;
8064
8065 h = (struct elf_link_hash_entry *) bh;
8066 h->non_elf = 0;
8067 h->def_regular = 1;
8068 h->type = STT_SECTION;
8069
8070 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8071 return false;
8072
8073 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8074 {
8075 /* __rld_map is a four byte word located in the .data section
8076 and is filled in by the rtld to contain a pointer to
8077 the _r_debug structure. Its symbol value will be set in
8078 _bfd_mips_elf_finish_dynamic_symbol. */
8079 s = bfd_get_linker_section (abfd, ".rld_map");
8080 BFD_ASSERT (s != NULL);
8081
8082 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8083 bh = NULL;
8084 if (!(_bfd_generic_link_add_one_symbol
8085 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, false,
8086 get_elf_backend_data (abfd)->collect, &bh)))
8087 return false;
8088
8089 h = (struct elf_link_hash_entry *) bh;
8090 h->non_elf = 0;
8091 h->def_regular = 1;
8092 h->type = STT_OBJECT;
8093
8094 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8095 return false;
8096 mips_elf_hash_table (info)->rld_symbol = h;
8097 }
8098 }
8099
8100 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8101 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8102 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8103 return false;
8104
8105 /* Do the usual VxWorks handling. */
8106 if (htab->root.target_os == is_vxworks
8107 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8108 return false;
8109
8110 return true;
8111 }
8112 \f
8113 /* Return true if relocation REL against section SEC is a REL rather than
8114 RELA relocation. RELOCS is the first relocation in the section and
8115 ABFD is the bfd that contains SEC. */
8116
8117 static bool
8118 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8119 const Elf_Internal_Rela *relocs,
8120 const Elf_Internal_Rela *rel)
8121 {
8122 Elf_Internal_Shdr *rel_hdr;
8123 const struct elf_backend_data *bed;
8124
8125 /* To determine which flavor of relocation this is, we depend on the
8126 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8127 rel_hdr = elf_section_data (sec)->rel.hdr;
8128 if (rel_hdr == NULL)
8129 return false;
8130 bed = get_elf_backend_data (abfd);
8131 return ((size_t) (rel - relocs)
8132 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8133 }
8134
8135 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8136 HOWTO is the relocation's howto and CONTENTS points to the contents
8137 of the section that REL is against. */
8138
8139 static bfd_vma
8140 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8141 reloc_howto_type *howto, bfd_byte *contents)
8142 {
8143 bfd_byte *location;
8144 unsigned int r_type;
8145 bfd_vma addend;
8146 bfd_vma bytes;
8147
8148 r_type = ELF_R_TYPE (abfd, rel->r_info);
8149 location = contents + rel->r_offset;
8150
8151 /* Get the addend, which is stored in the input file. */
8152 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, false, location);
8153 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8154 _bfd_mips_elf_reloc_shuffle (abfd, r_type, false, location);
8155
8156 addend = bytes & howto->src_mask;
8157
8158 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8159 accordingly. */
8160 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8161 addend <<= 1;
8162
8163 return addend;
8164 }
8165
8166 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8167 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8168 and update *ADDEND with the final addend. Return true on success
8169 or false if the LO16 could not be found. RELEND is the exclusive
8170 upper bound on the relocations for REL's section. */
8171
8172 static bool
8173 mips_elf_add_lo16_rel_addend (bfd *abfd,
8174 const Elf_Internal_Rela *rel,
8175 const Elf_Internal_Rela *relend,
8176 bfd_byte *contents, bfd_vma *addend)
8177 {
8178 unsigned int r_type, lo16_type;
8179 const Elf_Internal_Rela *lo16_relocation;
8180 reloc_howto_type *lo16_howto;
8181 bfd_vma l;
8182
8183 r_type = ELF_R_TYPE (abfd, rel->r_info);
8184 if (mips16_reloc_p (r_type))
8185 lo16_type = R_MIPS16_LO16;
8186 else if (micromips_reloc_p (r_type))
8187 lo16_type = R_MICROMIPS_LO16;
8188 else if (r_type == R_MIPS_PCHI16)
8189 lo16_type = R_MIPS_PCLO16;
8190 else
8191 lo16_type = R_MIPS_LO16;
8192
8193 /* The combined value is the sum of the HI16 addend, left-shifted by
8194 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8195 code does a `lui' of the HI16 value, and then an `addiu' of the
8196 LO16 value.)
8197
8198 Scan ahead to find a matching LO16 relocation.
8199
8200 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8201 be immediately following. However, for the IRIX6 ABI, the next
8202 relocation may be a composed relocation consisting of several
8203 relocations for the same address. In that case, the R_MIPS_LO16
8204 relocation may occur as one of these. We permit a similar
8205 extension in general, as that is useful for GCC.
8206
8207 In some cases GCC dead code elimination removes the LO16 but keeps
8208 the corresponding HI16. This is strictly speaking a violation of
8209 the ABI but not immediately harmful. */
8210 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8211 if (lo16_relocation == NULL)
8212 return false;
8213
8214 /* Obtain the addend kept there. */
8215 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, false);
8216 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8217
8218 l <<= lo16_howto->rightshift;
8219 l = _bfd_mips_elf_sign_extend (l, 16);
8220
8221 *addend <<= 16;
8222 *addend += l;
8223 return true;
8224 }
8225
8226 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8227 store the contents in *CONTENTS on success. Assume that *CONTENTS
8228 already holds the contents if it is nonull on entry. */
8229
8230 static bool
8231 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8232 {
8233 if (*contents)
8234 return true;
8235
8236 /* Get cached copy if it exists. */
8237 if (elf_section_data (sec)->this_hdr.contents != NULL)
8238 {
8239 *contents = elf_section_data (sec)->this_hdr.contents;
8240 return true;
8241 }
8242
8243 return bfd_malloc_and_get_section (abfd, sec, contents);
8244 }
8245
8246 /* Make a new PLT record to keep internal data. */
8247
8248 static struct plt_entry *
8249 mips_elf_make_plt_record (bfd *abfd)
8250 {
8251 struct plt_entry *entry;
8252
8253 entry = bfd_zalloc (abfd, sizeof (*entry));
8254 if (entry == NULL)
8255 return NULL;
8256
8257 entry->stub_offset = MINUS_ONE;
8258 entry->mips_offset = MINUS_ONE;
8259 entry->comp_offset = MINUS_ONE;
8260 entry->gotplt_index = MINUS_ONE;
8261 return entry;
8262 }
8263
8264 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8265 for PIC code, as otherwise there is no load-time relocation involved
8266 and local GOT entries whose value is zero at static link time will
8267 retain their value at load time. */
8268
8269 static bool
8270 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8271 struct mips_elf_link_hash_table *htab,
8272 unsigned int r_type)
8273 {
8274 union
8275 {
8276 struct elf_link_hash_entry *eh;
8277 struct bfd_link_hash_entry *bh;
8278 }
8279 hzero;
8280
8281 BFD_ASSERT (!htab->use_absolute_zero);
8282 BFD_ASSERT (bfd_link_pic (info));
8283
8284 hzero.bh = NULL;
8285 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8286 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8287 NULL, false, false, &hzero.bh))
8288 return false;
8289
8290 BFD_ASSERT (hzero.bh != NULL);
8291 hzero.eh->size = 0;
8292 hzero.eh->type = STT_NOTYPE;
8293 hzero.eh->other = STV_PROTECTED;
8294 hzero.eh->def_regular = 1;
8295 hzero.eh->non_elf = 0;
8296
8297 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, true, r_type))
8298 return false;
8299
8300 htab->use_absolute_zero = true;
8301
8302 return true;
8303 }
8304
8305 /* Look through the relocs for a section during the first phase, and
8306 allocate space in the global offset table and record the need for
8307 standard MIPS and compressed procedure linkage table entries. */
8308
8309 bool
8310 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8311 asection *sec, const Elf_Internal_Rela *relocs)
8312 {
8313 const char *name;
8314 bfd *dynobj;
8315 Elf_Internal_Shdr *symtab_hdr;
8316 struct elf_link_hash_entry **sym_hashes;
8317 size_t extsymoff;
8318 const Elf_Internal_Rela *rel;
8319 const Elf_Internal_Rela *rel_end;
8320 asection *sreloc;
8321 const struct elf_backend_data *bed;
8322 struct mips_elf_link_hash_table *htab;
8323 bfd_byte *contents;
8324 bfd_vma addend;
8325 reloc_howto_type *howto;
8326
8327 if (bfd_link_relocatable (info))
8328 return true;
8329
8330 htab = mips_elf_hash_table (info);
8331 BFD_ASSERT (htab != NULL);
8332
8333 dynobj = elf_hash_table (info)->dynobj;
8334 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8335 sym_hashes = elf_sym_hashes (abfd);
8336 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8337
8338 bed = get_elf_backend_data (abfd);
8339 rel_end = relocs + sec->reloc_count;
8340
8341 /* Check for the mips16 stub sections. */
8342
8343 name = bfd_section_name (sec);
8344 if (FN_STUB_P (name))
8345 {
8346 unsigned long r_symndx;
8347
8348 /* Look at the relocation information to figure out which symbol
8349 this is for. */
8350
8351 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8352 if (r_symndx == 0)
8353 {
8354 _bfd_error_handler
8355 /* xgettext:c-format */
8356 (_("%pB: warning: cannot determine the target function for"
8357 " stub section `%s'"),
8358 abfd, name);
8359 bfd_set_error (bfd_error_bad_value);
8360 return false;
8361 }
8362
8363 if (r_symndx < extsymoff
8364 || sym_hashes[r_symndx - extsymoff] == NULL)
8365 {
8366 asection *o;
8367
8368 /* This stub is for a local symbol. This stub will only be
8369 needed if there is some relocation in this BFD, other
8370 than a 16 bit function call, which refers to this symbol. */
8371 for (o = abfd->sections; o != NULL; o = o->next)
8372 {
8373 Elf_Internal_Rela *sec_relocs;
8374 const Elf_Internal_Rela *r, *rend;
8375
8376 /* We can ignore stub sections when looking for relocs. */
8377 if ((o->flags & SEC_RELOC) == 0
8378 || o->reloc_count == 0
8379 || section_allows_mips16_refs_p (o))
8380 continue;
8381
8382 sec_relocs
8383 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8384 info->keep_memory);
8385 if (sec_relocs == NULL)
8386 return false;
8387
8388 rend = sec_relocs + o->reloc_count;
8389 for (r = sec_relocs; r < rend; r++)
8390 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8391 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8392 break;
8393
8394 if (elf_section_data (o)->relocs != sec_relocs)
8395 free (sec_relocs);
8396
8397 if (r < rend)
8398 break;
8399 }
8400
8401 if (o == NULL)
8402 {
8403 /* There is no non-call reloc for this stub, so we do
8404 not need it. Since this function is called before
8405 the linker maps input sections to output sections, we
8406 can easily discard it by setting the SEC_EXCLUDE
8407 flag. */
8408 sec->flags |= SEC_EXCLUDE;
8409 return true;
8410 }
8411
8412 /* Record this stub in an array of local symbol stubs for
8413 this BFD. */
8414 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8415 {
8416 unsigned long symcount;
8417 asection **n;
8418 bfd_size_type amt;
8419
8420 if (elf_bad_symtab (abfd))
8421 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8422 else
8423 symcount = symtab_hdr->sh_info;
8424 amt = symcount * sizeof (asection *);
8425 n = bfd_zalloc (abfd, amt);
8426 if (n == NULL)
8427 return false;
8428 mips_elf_tdata (abfd)->local_stubs = n;
8429 }
8430
8431 sec->flags |= SEC_KEEP;
8432 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8433
8434 /* We don't need to set mips16_stubs_seen in this case.
8435 That flag is used to see whether we need to look through
8436 the global symbol table for stubs. We don't need to set
8437 it here, because we just have a local stub. */
8438 }
8439 else
8440 {
8441 struct mips_elf_link_hash_entry *h;
8442
8443 h = ((struct mips_elf_link_hash_entry *)
8444 sym_hashes[r_symndx - extsymoff]);
8445
8446 while (h->root.root.type == bfd_link_hash_indirect
8447 || h->root.root.type == bfd_link_hash_warning)
8448 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8449
8450 /* H is the symbol this stub is for. */
8451
8452 /* If we already have an appropriate stub for this function, we
8453 don't need another one, so we can discard this one. Since
8454 this function is called before the linker maps input sections
8455 to output sections, we can easily discard it by setting the
8456 SEC_EXCLUDE flag. */
8457 if (h->fn_stub != NULL)
8458 {
8459 sec->flags |= SEC_EXCLUDE;
8460 return true;
8461 }
8462
8463 sec->flags |= SEC_KEEP;
8464 h->fn_stub = sec;
8465 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8466 }
8467 }
8468 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8469 {
8470 unsigned long r_symndx;
8471 struct mips_elf_link_hash_entry *h;
8472 asection **loc;
8473
8474 /* Look at the relocation information to figure out which symbol
8475 this is for. */
8476
8477 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8478 if (r_symndx == 0)
8479 {
8480 _bfd_error_handler
8481 /* xgettext:c-format */
8482 (_("%pB: warning: cannot determine the target function for"
8483 " stub section `%s'"),
8484 abfd, name);
8485 bfd_set_error (bfd_error_bad_value);
8486 return false;
8487 }
8488
8489 if (r_symndx < extsymoff
8490 || sym_hashes[r_symndx - extsymoff] == NULL)
8491 {
8492 asection *o;
8493
8494 /* This stub is for a local symbol. This stub will only be
8495 needed if there is some relocation (R_MIPS16_26) in this BFD
8496 that refers to this symbol. */
8497 for (o = abfd->sections; o != NULL; o = o->next)
8498 {
8499 Elf_Internal_Rela *sec_relocs;
8500 const Elf_Internal_Rela *r, *rend;
8501
8502 /* We can ignore stub sections when looking for relocs. */
8503 if ((o->flags & SEC_RELOC) == 0
8504 || o->reloc_count == 0
8505 || section_allows_mips16_refs_p (o))
8506 continue;
8507
8508 sec_relocs
8509 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8510 info->keep_memory);
8511 if (sec_relocs == NULL)
8512 return false;
8513
8514 rend = sec_relocs + o->reloc_count;
8515 for (r = sec_relocs; r < rend; r++)
8516 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8517 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8518 break;
8519
8520 if (elf_section_data (o)->relocs != sec_relocs)
8521 free (sec_relocs);
8522
8523 if (r < rend)
8524 break;
8525 }
8526
8527 if (o == NULL)
8528 {
8529 /* There is no non-call reloc for this stub, so we do
8530 not need it. Since this function is called before
8531 the linker maps input sections to output sections, we
8532 can easily discard it by setting the SEC_EXCLUDE
8533 flag. */
8534 sec->flags |= SEC_EXCLUDE;
8535 return true;
8536 }
8537
8538 /* Record this stub in an array of local symbol call_stubs for
8539 this BFD. */
8540 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8541 {
8542 unsigned long symcount;
8543 asection **n;
8544 bfd_size_type amt;
8545
8546 if (elf_bad_symtab (abfd))
8547 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8548 else
8549 symcount = symtab_hdr->sh_info;
8550 amt = symcount * sizeof (asection *);
8551 n = bfd_zalloc (abfd, amt);
8552 if (n == NULL)
8553 return false;
8554 mips_elf_tdata (abfd)->local_call_stubs = n;
8555 }
8556
8557 sec->flags |= SEC_KEEP;
8558 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8559
8560 /* We don't need to set mips16_stubs_seen in this case.
8561 That flag is used to see whether we need to look through
8562 the global symbol table for stubs. We don't need to set
8563 it here, because we just have a local stub. */
8564 }
8565 else
8566 {
8567 h = ((struct mips_elf_link_hash_entry *)
8568 sym_hashes[r_symndx - extsymoff]);
8569
8570 /* H is the symbol this stub is for. */
8571
8572 if (CALL_FP_STUB_P (name))
8573 loc = &h->call_fp_stub;
8574 else
8575 loc = &h->call_stub;
8576
8577 /* If we already have an appropriate stub for this function, we
8578 don't need another one, so we can discard this one. Since
8579 this function is called before the linker maps input sections
8580 to output sections, we can easily discard it by setting the
8581 SEC_EXCLUDE flag. */
8582 if (*loc != NULL)
8583 {
8584 sec->flags |= SEC_EXCLUDE;
8585 return true;
8586 }
8587
8588 sec->flags |= SEC_KEEP;
8589 *loc = sec;
8590 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8591 }
8592 }
8593
8594 sreloc = NULL;
8595 contents = NULL;
8596 for (rel = relocs; rel < rel_end; ++rel)
8597 {
8598 unsigned long r_symndx;
8599 unsigned int r_type;
8600 struct elf_link_hash_entry *h;
8601 bool can_make_dynamic_p;
8602 bool call_reloc_p;
8603 bool constrain_symbol_p;
8604
8605 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8606 r_type = ELF_R_TYPE (abfd, rel->r_info);
8607
8608 if (r_symndx < extsymoff)
8609 h = NULL;
8610 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8611 {
8612 _bfd_error_handler
8613 /* xgettext:c-format */
8614 (_("%pB: malformed reloc detected for section %s"),
8615 abfd, name);
8616 bfd_set_error (bfd_error_bad_value);
8617 return false;
8618 }
8619 else
8620 {
8621 h = sym_hashes[r_symndx - extsymoff];
8622 if (h != NULL)
8623 {
8624 while (h->root.type == bfd_link_hash_indirect
8625 || h->root.type == bfd_link_hash_warning)
8626 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8627 }
8628 }
8629
8630 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8631 relocation into a dynamic one. */
8632 can_make_dynamic_p = false;
8633
8634 /* Set CALL_RELOC_P to true if the relocation is for a call,
8635 and if pointer equality therefore doesn't matter. */
8636 call_reloc_p = false;
8637
8638 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8639 into account when deciding how to define the symbol. */
8640 constrain_symbol_p = true;
8641
8642 switch (r_type)
8643 {
8644 case R_MIPS_CALL16:
8645 case R_MIPS_CALL_HI16:
8646 case R_MIPS_CALL_LO16:
8647 case R_MIPS16_CALL16:
8648 case R_MICROMIPS_CALL16:
8649 case R_MICROMIPS_CALL_HI16:
8650 case R_MICROMIPS_CALL_LO16:
8651 call_reloc_p = true;
8652 /* Fall through. */
8653
8654 case R_MIPS_GOT16:
8655 case R_MIPS_GOT_LO16:
8656 case R_MIPS_GOT_PAGE:
8657 case R_MIPS_GOT_DISP:
8658 case R_MIPS16_GOT16:
8659 case R_MICROMIPS_GOT16:
8660 case R_MICROMIPS_GOT_LO16:
8661 case R_MICROMIPS_GOT_PAGE:
8662 case R_MICROMIPS_GOT_DISP:
8663 /* If we have a symbol that will resolve to zero at static link
8664 time and it is used by a GOT relocation applied to code we
8665 cannot relax to an immediate zero load, then we will be using
8666 the special `__gnu_absolute_zero' symbol whose value is zero
8667 at dynamic load time. We ignore HI16-type GOT relocations at
8668 this stage, because their handling will depend entirely on
8669 the corresponding LO16-type GOT relocation. */
8670 if (!call_hi16_reloc_p (r_type)
8671 && h != NULL
8672 && bfd_link_pic (info)
8673 && !htab->use_absolute_zero
8674 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8675 {
8676 bool rel_reloc;
8677
8678 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8679 return false;
8680
8681 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8682 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8683
8684 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8685 false))
8686 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8687 return false;
8688 }
8689
8690 /* Fall through. */
8691 case R_MIPS_GOT_HI16:
8692 case R_MIPS_GOT_OFST:
8693 case R_MIPS_TLS_GOTTPREL:
8694 case R_MIPS_TLS_GD:
8695 case R_MIPS_TLS_LDM:
8696 case R_MIPS16_TLS_GOTTPREL:
8697 case R_MIPS16_TLS_GD:
8698 case R_MIPS16_TLS_LDM:
8699 case R_MICROMIPS_GOT_HI16:
8700 case R_MICROMIPS_GOT_OFST:
8701 case R_MICROMIPS_TLS_GOTTPREL:
8702 case R_MICROMIPS_TLS_GD:
8703 case R_MICROMIPS_TLS_LDM:
8704 if (dynobj == NULL)
8705 elf_hash_table (info)->dynobj = dynobj = abfd;
8706 if (!mips_elf_create_got_section (dynobj, info))
8707 return false;
8708 if (htab->root.target_os == is_vxworks
8709 && !bfd_link_pic (info))
8710 {
8711 _bfd_error_handler
8712 /* xgettext:c-format */
8713 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8714 abfd, (uint64_t) rel->r_offset);
8715 bfd_set_error (bfd_error_bad_value);
8716 return false;
8717 }
8718 can_make_dynamic_p = true;
8719 break;
8720
8721 case R_MIPS_NONE:
8722 case R_MIPS_JALR:
8723 case R_MICROMIPS_JALR:
8724 /* These relocations have empty fields and are purely there to
8725 provide link information. The symbol value doesn't matter. */
8726 constrain_symbol_p = false;
8727 break;
8728
8729 case R_MIPS_GPREL16:
8730 case R_MIPS_GPREL32:
8731 case R_MIPS16_GPREL:
8732 case R_MICROMIPS_GPREL16:
8733 /* GP-relative relocations always resolve to a definition in a
8734 regular input file, ignoring the one-definition rule. This is
8735 important for the GP setup sequence in NewABI code, which
8736 always resolves to a local function even if other relocations
8737 against the symbol wouldn't. */
8738 constrain_symbol_p = false;
8739 break;
8740
8741 case R_MIPS_32:
8742 case R_MIPS_REL32:
8743 case R_MIPS_64:
8744 /* In VxWorks executables, references to external symbols
8745 must be handled using copy relocs or PLT entries; it is not
8746 possible to convert this relocation into a dynamic one.
8747
8748 For executables that use PLTs and copy-relocs, we have a
8749 choice between converting the relocation into a dynamic
8750 one or using copy relocations or PLT entries. It is
8751 usually better to do the former, unless the relocation is
8752 against a read-only section. */
8753 if ((bfd_link_pic (info)
8754 || (h != NULL
8755 && htab->root.target_os != is_vxworks
8756 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8757 && !(!info->nocopyreloc
8758 && !PIC_OBJECT_P (abfd)
8759 && MIPS_ELF_READONLY_SECTION (sec))))
8760 && (sec->flags & SEC_ALLOC) != 0)
8761 {
8762 can_make_dynamic_p = true;
8763 if (dynobj == NULL)
8764 elf_hash_table (info)->dynobj = dynobj = abfd;
8765 }
8766 break;
8767
8768 case R_MIPS_26:
8769 case R_MIPS_PC16:
8770 case R_MIPS_PC21_S2:
8771 case R_MIPS_PC26_S2:
8772 case R_MIPS16_26:
8773 case R_MIPS16_PC16_S1:
8774 case R_MICROMIPS_26_S1:
8775 case R_MICROMIPS_PC7_S1:
8776 case R_MICROMIPS_PC10_S1:
8777 case R_MICROMIPS_PC16_S1:
8778 case R_MICROMIPS_PC23_S2:
8779 call_reloc_p = true;
8780 break;
8781 }
8782
8783 if (h)
8784 {
8785 if (constrain_symbol_p)
8786 {
8787 if (!can_make_dynamic_p)
8788 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8789
8790 if (!call_reloc_p)
8791 h->pointer_equality_needed = 1;
8792
8793 /* We must not create a stub for a symbol that has
8794 relocations related to taking the function's address.
8795 This doesn't apply to VxWorks, where CALL relocs refer
8796 to a .got.plt entry instead of a normal .got entry. */
8797 if (htab->root.target_os != is_vxworks
8798 && (!can_make_dynamic_p || !call_reloc_p))
8799 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = true;
8800 }
8801
8802 /* Relocations against the special VxWorks __GOTT_BASE__ and
8803 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8804 room for them in .rela.dyn. */
8805 if (is_gott_symbol (info, h))
8806 {
8807 if (sreloc == NULL)
8808 {
8809 sreloc = mips_elf_rel_dyn_section (info, true);
8810 if (sreloc == NULL)
8811 return false;
8812 }
8813 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8814 if (MIPS_ELF_READONLY_SECTION (sec))
8815 /* We tell the dynamic linker that there are
8816 relocations against the text segment. */
8817 info->flags |= DF_TEXTREL;
8818 }
8819 }
8820 else if (call_lo16_reloc_p (r_type)
8821 || got_lo16_reloc_p (r_type)
8822 || got_disp_reloc_p (r_type)
8823 || (got16_reloc_p (r_type)
8824 && htab->root.target_os == is_vxworks))
8825 {
8826 /* We may need a local GOT entry for this relocation. We
8827 don't count R_MIPS_GOT_PAGE because we can estimate the
8828 maximum number of pages needed by looking at the size of
8829 the segment. Similar comments apply to R_MIPS*_GOT16 and
8830 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8831 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8832 R_MIPS_CALL_HI16 because these are always followed by an
8833 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8834 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8835 rel->r_addend, info, r_type))
8836 return false;
8837 }
8838
8839 if (h != NULL
8840 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8841 ELF_ST_IS_MIPS16 (h->other)))
8842 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = true;
8843
8844 switch (r_type)
8845 {
8846 case R_MIPS_CALL16:
8847 case R_MIPS16_CALL16:
8848 case R_MICROMIPS_CALL16:
8849 if (h == NULL)
8850 {
8851 _bfd_error_handler
8852 /* xgettext:c-format */
8853 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8854 abfd, (uint64_t) rel->r_offset);
8855 bfd_set_error (bfd_error_bad_value);
8856 return false;
8857 }
8858 /* Fall through. */
8859
8860 case R_MIPS_CALL_HI16:
8861 case R_MIPS_CALL_LO16:
8862 case R_MICROMIPS_CALL_HI16:
8863 case R_MICROMIPS_CALL_LO16:
8864 if (h != NULL)
8865 {
8866 /* Make sure there is room in the regular GOT to hold the
8867 function's address. We may eliminate it in favour of
8868 a .got.plt entry later; see mips_elf_count_got_symbols. */
8869 if (!mips_elf_record_global_got_symbol (h, abfd, info, true,
8870 r_type))
8871 return false;
8872
8873 /* We need a stub, not a plt entry for the undefined
8874 function. But we record it as if it needs plt. See
8875 _bfd_elf_adjust_dynamic_symbol. */
8876 h->needs_plt = 1;
8877 h->type = STT_FUNC;
8878 }
8879 break;
8880
8881 case R_MIPS_GOT_PAGE:
8882 case R_MICROMIPS_GOT_PAGE:
8883 case R_MIPS16_GOT16:
8884 case R_MIPS_GOT16:
8885 case R_MIPS_GOT_HI16:
8886 case R_MIPS_GOT_LO16:
8887 case R_MICROMIPS_GOT16:
8888 case R_MICROMIPS_GOT_HI16:
8889 case R_MICROMIPS_GOT_LO16:
8890 if (!h || got_page_reloc_p (r_type))
8891 {
8892 /* This relocation needs (or may need, if h != NULL) a
8893 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8894 know for sure until we know whether the symbol is
8895 preemptible. */
8896 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8897 {
8898 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8899 return false;
8900 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, false);
8901 addend = mips_elf_read_rel_addend (abfd, rel,
8902 howto, contents);
8903 if (got16_reloc_p (r_type))
8904 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8905 contents, &addend);
8906 else
8907 addend <<= howto->rightshift;
8908 }
8909 else
8910 addend = rel->r_addend;
8911 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8912 h, addend))
8913 return false;
8914
8915 if (h)
8916 {
8917 struct mips_elf_link_hash_entry *hmips =
8918 (struct mips_elf_link_hash_entry *) h;
8919
8920 /* This symbol is definitely not overridable. */
8921 if (hmips->root.def_regular
8922 && ! (bfd_link_pic (info) && ! info->symbolic
8923 && ! hmips->root.forced_local))
8924 h = NULL;
8925 }
8926 }
8927 /* If this is a global, overridable symbol, GOT_PAGE will
8928 decay to GOT_DISP, so we'll need a GOT entry for it. */
8929 /* Fall through. */
8930
8931 case R_MIPS_GOT_DISP:
8932 case R_MICROMIPS_GOT_DISP:
8933 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8934 false, r_type))
8935 return false;
8936 break;
8937
8938 case R_MIPS_TLS_GOTTPREL:
8939 case R_MIPS16_TLS_GOTTPREL:
8940 case R_MICROMIPS_TLS_GOTTPREL:
8941 if (bfd_link_pic (info))
8942 info->flags |= DF_STATIC_TLS;
8943 /* Fall through */
8944
8945 case R_MIPS_TLS_LDM:
8946 case R_MIPS16_TLS_LDM:
8947 case R_MICROMIPS_TLS_LDM:
8948 if (tls_ldm_reloc_p (r_type))
8949 {
8950 r_symndx = STN_UNDEF;
8951 h = NULL;
8952 }
8953 /* Fall through */
8954
8955 case R_MIPS_TLS_GD:
8956 case R_MIPS16_TLS_GD:
8957 case R_MICROMIPS_TLS_GD:
8958 /* This symbol requires a global offset table entry, or two
8959 for TLS GD relocations. */
8960 if (h != NULL)
8961 {
8962 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8963 false, r_type))
8964 return false;
8965 }
8966 else
8967 {
8968 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8969 rel->r_addend,
8970 info, r_type))
8971 return false;
8972 }
8973 break;
8974
8975 case R_MIPS_32:
8976 case R_MIPS_REL32:
8977 case R_MIPS_64:
8978 /* In VxWorks executables, references to external symbols
8979 are handled using copy relocs or PLT stubs, so there's
8980 no need to add a .rela.dyn entry for this relocation. */
8981 if (can_make_dynamic_p)
8982 {
8983 if (sreloc == NULL)
8984 {
8985 sreloc = mips_elf_rel_dyn_section (info, true);
8986 if (sreloc == NULL)
8987 return false;
8988 }
8989 if (bfd_link_pic (info) && h == NULL)
8990 {
8991 /* When creating a shared object, we must copy these
8992 reloc types into the output file as R_MIPS_REL32
8993 relocs. Make room for this reloc in .rel(a).dyn. */
8994 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8995 if (MIPS_ELF_READONLY_SECTION (sec))
8996 /* We tell the dynamic linker that there are
8997 relocations against the text segment. */
8998 info->flags |= DF_TEXTREL;
8999 }
9000 else
9001 {
9002 struct mips_elf_link_hash_entry *hmips;
9003
9004 /* For a shared object, we must copy this relocation
9005 unless the symbol turns out to be undefined and
9006 weak with non-default visibility, in which case
9007 it will be left as zero.
9008
9009 We could elide R_MIPS_REL32 for locally binding symbols
9010 in shared libraries, but do not yet do so.
9011
9012 For an executable, we only need to copy this
9013 reloc if the symbol is defined in a dynamic
9014 object. */
9015 hmips = (struct mips_elf_link_hash_entry *) h;
9016 ++hmips->possibly_dynamic_relocs;
9017 if (MIPS_ELF_READONLY_SECTION (sec))
9018 /* We need it to tell the dynamic linker if there
9019 are relocations against the text segment. */
9020 hmips->readonly_reloc = true;
9021 }
9022 }
9023
9024 if (SGI_COMPAT (abfd))
9025 mips_elf_hash_table (info)->compact_rel_size +=
9026 sizeof (Elf32_External_crinfo);
9027 break;
9028
9029 case R_MIPS_26:
9030 case R_MIPS_GPREL16:
9031 case R_MIPS_LITERAL:
9032 case R_MIPS_GPREL32:
9033 case R_MICROMIPS_26_S1:
9034 case R_MICROMIPS_GPREL16:
9035 case R_MICROMIPS_LITERAL:
9036 case R_MICROMIPS_GPREL7_S2:
9037 if (SGI_COMPAT (abfd))
9038 mips_elf_hash_table (info)->compact_rel_size +=
9039 sizeof (Elf32_External_crinfo);
9040 break;
9041
9042 /* This relocation describes the C++ object vtable hierarchy.
9043 Reconstruct it for later use during GC. */
9044 case R_MIPS_GNU_VTINHERIT:
9045 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9046 return false;
9047 break;
9048
9049 /* This relocation describes which C++ vtable entries are actually
9050 used. Record for later use during GC. */
9051 case R_MIPS_GNU_VTENTRY:
9052 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9053 return false;
9054 break;
9055
9056 default:
9057 break;
9058 }
9059
9060 /* Record the need for a PLT entry. At this point we don't know
9061 yet if we are going to create a PLT in the first place, but
9062 we only record whether the relocation requires a standard MIPS
9063 or a compressed code entry anyway. If we don't make a PLT after
9064 all, then we'll just ignore these arrangements. Likewise if
9065 a PLT entry is not created because the symbol is satisfied
9066 locally. */
9067 if (h != NULL
9068 && (branch_reloc_p (r_type)
9069 || mips16_branch_reloc_p (r_type)
9070 || micromips_branch_reloc_p (r_type))
9071 && !SYMBOL_CALLS_LOCAL (info, h))
9072 {
9073 if (h->plt.plist == NULL)
9074 h->plt.plist = mips_elf_make_plt_record (abfd);
9075 if (h->plt.plist == NULL)
9076 return false;
9077
9078 if (branch_reloc_p (r_type))
9079 h->plt.plist->need_mips = true;
9080 else
9081 h->plt.plist->need_comp = true;
9082 }
9083
9084 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9085 if there is one. We only need to handle global symbols here;
9086 we decide whether to keep or delete stubs for local symbols
9087 when processing the stub's relocations. */
9088 if (h != NULL
9089 && !mips16_call_reloc_p (r_type)
9090 && !section_allows_mips16_refs_p (sec))
9091 {
9092 struct mips_elf_link_hash_entry *mh;
9093
9094 mh = (struct mips_elf_link_hash_entry *) h;
9095 mh->need_fn_stub = true;
9096 }
9097
9098 /* Refuse some position-dependent relocations when creating a
9099 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9100 not PIC, but we can create dynamic relocations and the result
9101 will be fine. Also do not refuse R_MIPS_LO16, which can be
9102 combined with R_MIPS_GOT16. */
9103 if (bfd_link_pic (info))
9104 {
9105 switch (r_type)
9106 {
9107 case R_MIPS_TLS_TPREL_HI16:
9108 case R_MIPS16_TLS_TPREL_HI16:
9109 case R_MICROMIPS_TLS_TPREL_HI16:
9110 case R_MIPS_TLS_TPREL_LO16:
9111 case R_MIPS16_TLS_TPREL_LO16:
9112 case R_MICROMIPS_TLS_TPREL_LO16:
9113 /* These are okay in PIE, but not in a shared library. */
9114 if (bfd_link_executable (info))
9115 break;
9116
9117 /* FALLTHROUGH */
9118
9119 case R_MIPS16_HI16:
9120 case R_MIPS_HI16:
9121 case R_MIPS_HIGHER:
9122 case R_MIPS_HIGHEST:
9123 case R_MICROMIPS_HI16:
9124 case R_MICROMIPS_HIGHER:
9125 case R_MICROMIPS_HIGHEST:
9126 /* Don't refuse a high part relocation if it's against
9127 no symbol (e.g. part of a compound relocation). */
9128 if (r_symndx == STN_UNDEF)
9129 break;
9130
9131 /* Likewise an absolute symbol. */
9132 if (h != NULL && bfd_is_abs_symbol (&h->root))
9133 break;
9134
9135 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9136 and has a special meaning. */
9137 if (!NEWABI_P (abfd) && h != NULL
9138 && strcmp (h->root.root.string, "_gp_disp") == 0)
9139 break;
9140
9141 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9142 if (is_gott_symbol (info, h))
9143 break;
9144
9145 /* FALLTHROUGH */
9146
9147 case R_MIPS16_26:
9148 case R_MIPS_26:
9149 case R_MICROMIPS_26_S1:
9150 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9151 /* An error for unsupported relocations is raised as part
9152 of the above search, so we can skip the following. */
9153 if (howto != NULL)
9154 info->callbacks->einfo
9155 /* xgettext:c-format */
9156 (_("%X%H: relocation %s against `%s' cannot be used"
9157 " when making a shared object; recompile with -fPIC\n"),
9158 abfd, sec, rel->r_offset, howto->name,
9159 (h) ? h->root.root.string : "a local symbol");
9160 break;
9161 default:
9162 break;
9163 }
9164 }
9165 }
9166
9167 return true;
9168 }
9169 \f
9170 /* Allocate space for global sym dynamic relocs. */
9171
9172 static bool
9173 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9174 {
9175 struct bfd_link_info *info = inf;
9176 bfd *dynobj;
9177 struct mips_elf_link_hash_entry *hmips;
9178 struct mips_elf_link_hash_table *htab;
9179
9180 htab = mips_elf_hash_table (info);
9181 BFD_ASSERT (htab != NULL);
9182
9183 dynobj = elf_hash_table (info)->dynobj;
9184 hmips = (struct mips_elf_link_hash_entry *) h;
9185
9186 /* VxWorks executables are handled elsewhere; we only need to
9187 allocate relocations in shared objects. */
9188 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9189 return true;
9190
9191 /* Ignore indirect symbols. All relocations against such symbols
9192 will be redirected to the target symbol. */
9193 if (h->root.type == bfd_link_hash_indirect)
9194 return true;
9195
9196 /* If this symbol is defined in a dynamic object, or we are creating
9197 a shared library, we will need to copy any R_MIPS_32 or
9198 R_MIPS_REL32 relocs against it into the output file. */
9199 if (! bfd_link_relocatable (info)
9200 && hmips->possibly_dynamic_relocs != 0
9201 && (h->root.type == bfd_link_hash_defweak
9202 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9203 || bfd_link_pic (info)))
9204 {
9205 bool do_copy = true;
9206
9207 if (h->root.type == bfd_link_hash_undefweak)
9208 {
9209 /* Do not copy relocations for undefined weak symbols that
9210 we are not going to export. */
9211 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9212 do_copy = false;
9213
9214 /* Make sure undefined weak symbols are output as a dynamic
9215 symbol in PIEs. */
9216 else if (h->dynindx == -1 && !h->forced_local)
9217 {
9218 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9219 return false;
9220 }
9221 }
9222
9223 if (do_copy)
9224 {
9225 /* Even though we don't directly need a GOT entry for this symbol,
9226 the SVR4 psABI requires it to have a dynamic symbol table
9227 index greater that DT_MIPS_GOTSYM if there are dynamic
9228 relocations against it.
9229
9230 VxWorks does not enforce the same mapping between the GOT
9231 and the symbol table, so the same requirement does not
9232 apply there. */
9233 if (htab->root.target_os != is_vxworks)
9234 {
9235 if (hmips->global_got_area > GGA_RELOC_ONLY)
9236 hmips->global_got_area = GGA_RELOC_ONLY;
9237 hmips->got_only_for_calls = false;
9238 }
9239
9240 mips_elf_allocate_dynamic_relocations
9241 (dynobj, info, hmips->possibly_dynamic_relocs);
9242 if (hmips->readonly_reloc)
9243 /* We tell the dynamic linker that there are relocations
9244 against the text segment. */
9245 info->flags |= DF_TEXTREL;
9246 }
9247 }
9248
9249 return true;
9250 }
9251
9252 /* Adjust a symbol defined by a dynamic object and referenced by a
9253 regular object. The current definition is in some section of the
9254 dynamic object, but we're not including those sections. We have to
9255 change the definition to something the rest of the link can
9256 understand. */
9257
9258 bool
9259 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9260 struct elf_link_hash_entry *h)
9261 {
9262 bfd *dynobj;
9263 struct mips_elf_link_hash_entry *hmips;
9264 struct mips_elf_link_hash_table *htab;
9265 asection *s, *srel;
9266
9267 htab = mips_elf_hash_table (info);
9268 BFD_ASSERT (htab != NULL);
9269
9270 dynobj = elf_hash_table (info)->dynobj;
9271 hmips = (struct mips_elf_link_hash_entry *) h;
9272
9273 /* Make sure we know what is going on here. */
9274 if (dynobj == NULL
9275 || (! h->needs_plt
9276 && ! h->is_weakalias
9277 && (! h->def_dynamic
9278 || ! h->ref_regular
9279 || h->def_regular)))
9280 {
9281 if (h->type == STT_GNU_IFUNC)
9282 _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"),
9283 h->root.root.string);
9284 else
9285 _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"),
9286 h->root.root.string);
9287 return true;
9288 }
9289
9290 hmips = (struct mips_elf_link_hash_entry *) h;
9291
9292 /* If there are call relocations against an externally-defined symbol,
9293 see whether we can create a MIPS lazy-binding stub for it. We can
9294 only do this if all references to the function are through call
9295 relocations, and in that case, the traditional lazy-binding stubs
9296 are much more efficient than PLT entries.
9297
9298 Traditional stubs are only available on SVR4 psABI-based systems;
9299 VxWorks always uses PLTs instead. */
9300 if (htab->root.target_os != is_vxworks
9301 && h->needs_plt
9302 && !hmips->no_fn_stub)
9303 {
9304 if (! elf_hash_table (info)->dynamic_sections_created)
9305 return true;
9306
9307 /* If this symbol is not defined in a regular file, then set
9308 the symbol to the stub location. This is required to make
9309 function pointers compare as equal between the normal
9310 executable and the shared library. */
9311 if (!h->def_regular
9312 && !bfd_is_abs_section (htab->sstubs->output_section))
9313 {
9314 hmips->needs_lazy_stub = true;
9315 htab->lazy_stub_count++;
9316 return true;
9317 }
9318 }
9319 /* As above, VxWorks requires PLT entries for externally-defined
9320 functions that are only accessed through call relocations.
9321
9322 Both VxWorks and non-VxWorks targets also need PLT entries if there
9323 are static-only relocations against an externally-defined function.
9324 This can technically occur for shared libraries if there are
9325 branches to the symbol, although it is unlikely that this will be
9326 used in practice due to the short ranges involved. It can occur
9327 for any relative or absolute relocation in executables; in that
9328 case, the PLT entry becomes the function's canonical address. */
9329 else if (((h->needs_plt && !hmips->no_fn_stub)
9330 || (h->type == STT_FUNC && hmips->has_static_relocs))
9331 && htab->use_plts_and_copy_relocs
9332 && !SYMBOL_CALLS_LOCAL (info, h)
9333 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9334 && h->root.type == bfd_link_hash_undefweak))
9335 {
9336 bool micromips_p = MICROMIPS_P (info->output_bfd);
9337 bool newabi_p = NEWABI_P (info->output_bfd);
9338
9339 /* If this is the first symbol to need a PLT entry, then make some
9340 basic setup. Also work out PLT entry sizes. We'll need them
9341 for PLT offset calculations. */
9342 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9343 {
9344 BFD_ASSERT (htab->root.sgotplt->size == 0);
9345 BFD_ASSERT (htab->plt_got_index == 0);
9346
9347 /* If we're using the PLT additions to the psABI, each PLT
9348 entry is 16 bytes and the PLT0 entry is 32 bytes.
9349 Encourage better cache usage by aligning. We do this
9350 lazily to avoid pessimizing traditional objects. */
9351 if (htab->root.target_os != is_vxworks
9352 && !bfd_set_section_alignment (htab->root.splt, 5))
9353 return false;
9354
9355 /* Make sure that .got.plt is word-aligned. We do this lazily
9356 for the same reason as above. */
9357 if (!bfd_set_section_alignment (htab->root.sgotplt,
9358 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9359 return false;
9360
9361 /* On non-VxWorks targets, the first two entries in .got.plt
9362 are reserved. */
9363 if (htab->root.target_os != is_vxworks)
9364 htab->plt_got_index
9365 += (get_elf_backend_data (dynobj)->got_header_size
9366 / MIPS_ELF_GOT_SIZE (dynobj));
9367
9368 /* On VxWorks, also allocate room for the header's
9369 .rela.plt.unloaded entries. */
9370 if (htab->root.target_os == is_vxworks
9371 && !bfd_link_pic (info))
9372 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9373
9374 /* Now work out the sizes of individual PLT entries. */
9375 if (htab->root.target_os == is_vxworks
9376 && bfd_link_pic (info))
9377 htab->plt_mips_entry_size
9378 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9379 else if (htab->root.target_os == is_vxworks)
9380 htab->plt_mips_entry_size
9381 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9382 else if (newabi_p)
9383 htab->plt_mips_entry_size
9384 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9385 else if (!micromips_p)
9386 {
9387 htab->plt_mips_entry_size
9388 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9389 htab->plt_comp_entry_size
9390 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9391 }
9392 else if (htab->insn32)
9393 {
9394 htab->plt_mips_entry_size
9395 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9396 htab->plt_comp_entry_size
9397 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9398 }
9399 else
9400 {
9401 htab->plt_mips_entry_size
9402 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9403 htab->plt_comp_entry_size
9404 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9405 }
9406 }
9407
9408 if (h->plt.plist == NULL)
9409 h->plt.plist = mips_elf_make_plt_record (dynobj);
9410 if (h->plt.plist == NULL)
9411 return false;
9412
9413 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9414 n32 or n64, so always use a standard entry there.
9415
9416 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9417 all MIPS16 calls will go via that stub, and there is no benefit
9418 to having a MIPS16 entry. And in the case of call_stub a
9419 standard entry actually has to be used as the stub ends with a J
9420 instruction. */
9421 if (newabi_p
9422 || htab->root.target_os == is_vxworks
9423 || hmips->call_stub
9424 || hmips->call_fp_stub)
9425 {
9426 h->plt.plist->need_mips = true;
9427 h->plt.plist->need_comp = false;
9428 }
9429
9430 /* Otherwise, if there are no direct calls to the function, we
9431 have a free choice of whether to use standard or compressed
9432 entries. Prefer microMIPS entries if the object is known to
9433 contain microMIPS code, so that it becomes possible to create
9434 pure microMIPS binaries. Prefer standard entries otherwise,
9435 because MIPS16 ones are no smaller and are usually slower. */
9436 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9437 {
9438 if (micromips_p)
9439 h->plt.plist->need_comp = true;
9440 else
9441 h->plt.plist->need_mips = true;
9442 }
9443
9444 if (h->plt.plist->need_mips)
9445 {
9446 h->plt.plist->mips_offset = htab->plt_mips_offset;
9447 htab->plt_mips_offset += htab->plt_mips_entry_size;
9448 }
9449 if (h->plt.plist->need_comp)
9450 {
9451 h->plt.plist->comp_offset = htab->plt_comp_offset;
9452 htab->plt_comp_offset += htab->plt_comp_entry_size;
9453 }
9454
9455 /* Reserve the corresponding .got.plt entry now too. */
9456 h->plt.plist->gotplt_index = htab->plt_got_index++;
9457
9458 /* If the output file has no definition of the symbol, set the
9459 symbol's value to the address of the stub. */
9460 if (!bfd_link_pic (info) && !h->def_regular)
9461 hmips->use_plt_entry = true;
9462
9463 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9464 htab->root.srelplt->size += (htab->root.target_os == is_vxworks
9465 ? MIPS_ELF_RELA_SIZE (dynobj)
9466 : MIPS_ELF_REL_SIZE (dynobj));
9467
9468 /* Make room for the .rela.plt.unloaded relocations. */
9469 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9470 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9471
9472 /* All relocations against this symbol that could have been made
9473 dynamic will now refer to the PLT entry instead. */
9474 hmips->possibly_dynamic_relocs = 0;
9475
9476 return true;
9477 }
9478
9479 /* If this is a weak symbol, and there is a real definition, the
9480 processor independent code will have arranged for us to see the
9481 real definition first, and we can just use the same value. */
9482 if (h->is_weakalias)
9483 {
9484 struct elf_link_hash_entry *def = weakdef (h);
9485 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9486 h->root.u.def.section = def->root.u.def.section;
9487 h->root.u.def.value = def->root.u.def.value;
9488 return true;
9489 }
9490
9491 /* Otherwise, there is nothing further to do for symbols defined
9492 in regular objects. */
9493 if (h->def_regular)
9494 return true;
9495
9496 /* There's also nothing more to do if we'll convert all relocations
9497 against this symbol into dynamic relocations. */
9498 if (!hmips->has_static_relocs)
9499 return true;
9500
9501 /* We're now relying on copy relocations. Complain if we have
9502 some that we can't convert. */
9503 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9504 {
9505 _bfd_error_handler (_("non-dynamic relocations refer to "
9506 "dynamic symbol %s"),
9507 h->root.root.string);
9508 bfd_set_error (bfd_error_bad_value);
9509 return false;
9510 }
9511
9512 /* We must allocate the symbol in our .dynbss section, which will
9513 become part of the .bss section of the executable. There will be
9514 an entry for this symbol in the .dynsym section. The dynamic
9515 object will contain position independent code, so all references
9516 from the dynamic object to this symbol will go through the global
9517 offset table. The dynamic linker will use the .dynsym entry to
9518 determine the address it must put in the global offset table, so
9519 both the dynamic object and the regular object will refer to the
9520 same memory location for the variable. */
9521
9522 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9523 {
9524 s = htab->root.sdynrelro;
9525 srel = htab->root.sreldynrelro;
9526 }
9527 else
9528 {
9529 s = htab->root.sdynbss;
9530 srel = htab->root.srelbss;
9531 }
9532 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9533 {
9534 if (htab->root.target_os == is_vxworks)
9535 srel->size += sizeof (Elf32_External_Rela);
9536 else
9537 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9538 h->needs_copy = 1;
9539 }
9540
9541 /* All relocations against this symbol that could have been made
9542 dynamic will now refer to the local copy instead. */
9543 hmips->possibly_dynamic_relocs = 0;
9544
9545 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9546 }
9547 \f
9548 /* This function is called after all the input files have been read,
9549 and the input sections have been assigned to output sections. We
9550 check for any mips16 stub sections that we can discard. */
9551
9552 bool
9553 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9554 struct bfd_link_info *info)
9555 {
9556 asection *sect;
9557 struct mips_elf_link_hash_table *htab;
9558 struct mips_htab_traverse_info hti;
9559
9560 htab = mips_elf_hash_table (info);
9561 BFD_ASSERT (htab != NULL);
9562
9563 /* The .reginfo section has a fixed size. */
9564 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9565 if (sect != NULL)
9566 {
9567 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
9568 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9569 }
9570
9571 /* The .MIPS.abiflags section has a fixed size. */
9572 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9573 if (sect != NULL)
9574 {
9575 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
9576 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9577 }
9578
9579 hti.info = info;
9580 hti.output_bfd = output_bfd;
9581 hti.error = false;
9582 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9583 mips_elf_check_symbols, &hti);
9584 if (hti.error)
9585 return false;
9586
9587 return true;
9588 }
9589
9590 /* If the link uses a GOT, lay it out and work out its size. */
9591
9592 static bool
9593 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9594 {
9595 bfd *dynobj;
9596 asection *s;
9597 struct mips_got_info *g;
9598 bfd_size_type loadable_size = 0;
9599 bfd_size_type page_gotno;
9600 bfd *ibfd;
9601 struct mips_elf_traverse_got_arg tga;
9602 struct mips_elf_link_hash_table *htab;
9603
9604 htab = mips_elf_hash_table (info);
9605 BFD_ASSERT (htab != NULL);
9606
9607 s = htab->root.sgot;
9608 if (s == NULL)
9609 return true;
9610
9611 dynobj = elf_hash_table (info)->dynobj;
9612 g = htab->got_info;
9613
9614 /* Allocate room for the reserved entries. VxWorks always reserves
9615 3 entries; other objects only reserve 2 entries. */
9616 BFD_ASSERT (g->assigned_low_gotno == 0);
9617 if (htab->root.target_os == is_vxworks)
9618 htab->reserved_gotno = 3;
9619 else
9620 htab->reserved_gotno = 2;
9621 g->local_gotno += htab->reserved_gotno;
9622 g->assigned_low_gotno = htab->reserved_gotno;
9623
9624 /* Decide which symbols need to go in the global part of the GOT and
9625 count the number of reloc-only GOT symbols. */
9626 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9627
9628 if (!mips_elf_resolve_final_got_entries (info, g))
9629 return false;
9630
9631 /* Calculate the total loadable size of the output. That
9632 will give us the maximum number of GOT_PAGE entries
9633 required. */
9634 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9635 {
9636 asection *subsection;
9637
9638 for (subsection = ibfd->sections;
9639 subsection;
9640 subsection = subsection->next)
9641 {
9642 if ((subsection->flags & SEC_ALLOC) == 0)
9643 continue;
9644 loadable_size += ((subsection->size + 0xf)
9645 &~ (bfd_size_type) 0xf);
9646 }
9647 }
9648
9649 if (htab->root.target_os == is_vxworks)
9650 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9651 relocations against local symbols evaluate to "G", and the EABI does
9652 not include R_MIPS_GOT_PAGE. */
9653 page_gotno = 0;
9654 else
9655 /* Assume there are two loadable segments consisting of contiguous
9656 sections. Is 5 enough? */
9657 page_gotno = (loadable_size >> 16) + 5;
9658
9659 /* Choose the smaller of the two page estimates; both are intended to be
9660 conservative. */
9661 if (page_gotno > g->page_gotno)
9662 page_gotno = g->page_gotno;
9663
9664 g->local_gotno += page_gotno;
9665 g->assigned_high_gotno = g->local_gotno - 1;
9666
9667 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9668 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9669 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9670
9671 /* VxWorks does not support multiple GOTs. It initializes $gp to
9672 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9673 dynamic loader. */
9674 if (htab->root.target_os != is_vxworks
9675 && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9676 {
9677 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9678 return false;
9679 }
9680 else
9681 {
9682 /* Record that all bfds use G. This also has the effect of freeing
9683 the per-bfd GOTs, which we no longer need. */
9684 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9685 if (mips_elf_bfd_got (ibfd, false))
9686 mips_elf_replace_bfd_got (ibfd, g);
9687 mips_elf_replace_bfd_got (output_bfd, g);
9688
9689 /* Set up TLS entries. */
9690 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9691 tga.info = info;
9692 tga.g = g;
9693 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9694 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9695 if (!tga.g)
9696 return false;
9697 BFD_ASSERT (g->tls_assigned_gotno
9698 == g->global_gotno + g->local_gotno + g->tls_gotno);
9699
9700 /* Each VxWorks GOT entry needs an explicit relocation. */
9701 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9702 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9703
9704 /* Allocate room for the TLS relocations. */
9705 if (g->relocs)
9706 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9707 }
9708
9709 return true;
9710 }
9711
9712 /* Estimate the size of the .MIPS.stubs section. */
9713
9714 static void
9715 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9716 {
9717 struct mips_elf_link_hash_table *htab;
9718 bfd_size_type dynsymcount;
9719
9720 htab = mips_elf_hash_table (info);
9721 BFD_ASSERT (htab != NULL);
9722
9723 if (htab->lazy_stub_count == 0)
9724 return;
9725
9726 /* IRIX rld assumes that a function stub isn't at the end of the .text
9727 section, so add a dummy entry to the end. */
9728 htab->lazy_stub_count++;
9729
9730 /* Get a worst-case estimate of the number of dynamic symbols needed.
9731 At this point, dynsymcount does not account for section symbols
9732 and count_section_dynsyms may overestimate the number that will
9733 be needed. */
9734 dynsymcount = (elf_hash_table (info)->dynsymcount
9735 + count_section_dynsyms (output_bfd, info));
9736
9737 /* Determine the size of one stub entry. There's no disadvantage
9738 from using microMIPS code here, so for the sake of pure-microMIPS
9739 binaries we prefer it whenever there's any microMIPS code in
9740 output produced at all. This has a benefit of stubs being
9741 shorter by 4 bytes each too, unless in the insn32 mode. */
9742 if (!MICROMIPS_P (output_bfd))
9743 htab->function_stub_size = (dynsymcount > 0x10000
9744 ? MIPS_FUNCTION_STUB_BIG_SIZE
9745 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9746 else if (htab->insn32)
9747 htab->function_stub_size = (dynsymcount > 0x10000
9748 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9749 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9750 else
9751 htab->function_stub_size = (dynsymcount > 0x10000
9752 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9753 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9754
9755 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9756 }
9757
9758 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9759 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9760 stub, allocate an entry in the stubs section. */
9761
9762 static bool
9763 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9764 {
9765 struct mips_htab_traverse_info *hti = data;
9766 struct mips_elf_link_hash_table *htab;
9767 struct bfd_link_info *info;
9768 bfd *output_bfd;
9769
9770 info = hti->info;
9771 output_bfd = hti->output_bfd;
9772 htab = mips_elf_hash_table (info);
9773 BFD_ASSERT (htab != NULL);
9774
9775 if (h->needs_lazy_stub)
9776 {
9777 bool micromips_p = MICROMIPS_P (output_bfd);
9778 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9779 bfd_vma isa_bit = micromips_p;
9780
9781 BFD_ASSERT (htab->root.dynobj != NULL);
9782 if (h->root.plt.plist == NULL)
9783 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9784 if (h->root.plt.plist == NULL)
9785 {
9786 hti->error = true;
9787 return false;
9788 }
9789 h->root.root.u.def.section = htab->sstubs;
9790 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9791 h->root.plt.plist->stub_offset = htab->sstubs->size;
9792 h->root.other = other;
9793 htab->sstubs->size += htab->function_stub_size;
9794 }
9795 return true;
9796 }
9797
9798 /* Allocate offsets in the stubs section to each symbol that needs one.
9799 Set the final size of the .MIPS.stub section. */
9800
9801 static bool
9802 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9803 {
9804 bfd *output_bfd = info->output_bfd;
9805 bool micromips_p = MICROMIPS_P (output_bfd);
9806 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9807 bfd_vma isa_bit = micromips_p;
9808 struct mips_elf_link_hash_table *htab;
9809 struct mips_htab_traverse_info hti;
9810 struct elf_link_hash_entry *h;
9811 bfd *dynobj;
9812
9813 htab = mips_elf_hash_table (info);
9814 BFD_ASSERT (htab != NULL);
9815
9816 if (htab->lazy_stub_count == 0)
9817 return true;
9818
9819 htab->sstubs->size = 0;
9820 hti.info = info;
9821 hti.output_bfd = output_bfd;
9822 hti.error = false;
9823 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9824 if (hti.error)
9825 return false;
9826 htab->sstubs->size += htab->function_stub_size;
9827 BFD_ASSERT (htab->sstubs->size
9828 == htab->lazy_stub_count * htab->function_stub_size);
9829
9830 dynobj = elf_hash_table (info)->dynobj;
9831 BFD_ASSERT (dynobj != NULL);
9832 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9833 if (h == NULL)
9834 return false;
9835 h->root.u.def.value = isa_bit;
9836 h->other = other;
9837 h->type = STT_FUNC;
9838
9839 return true;
9840 }
9841
9842 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9843 bfd_link_info. If H uses the address of a PLT entry as the value
9844 of the symbol, then set the entry in the symbol table now. Prefer
9845 a standard MIPS PLT entry. */
9846
9847 static bool
9848 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9849 {
9850 struct bfd_link_info *info = data;
9851 bool micromips_p = MICROMIPS_P (info->output_bfd);
9852 struct mips_elf_link_hash_table *htab;
9853 unsigned int other;
9854 bfd_vma isa_bit;
9855 bfd_vma val;
9856
9857 htab = mips_elf_hash_table (info);
9858 BFD_ASSERT (htab != NULL);
9859
9860 if (h->use_plt_entry)
9861 {
9862 BFD_ASSERT (h->root.plt.plist != NULL);
9863 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9864 || h->root.plt.plist->comp_offset != MINUS_ONE);
9865
9866 val = htab->plt_header_size;
9867 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9868 {
9869 isa_bit = 0;
9870 val += h->root.plt.plist->mips_offset;
9871 other = 0;
9872 }
9873 else
9874 {
9875 isa_bit = 1;
9876 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9877 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9878 }
9879 val += isa_bit;
9880 /* For VxWorks, point at the PLT load stub rather than the lazy
9881 resolution stub; this stub will become the canonical function
9882 address. */
9883 if (htab->root.target_os == is_vxworks)
9884 val += 8;
9885
9886 h->root.root.u.def.section = htab->root.splt;
9887 h->root.root.u.def.value = val;
9888 h->root.other = other;
9889 }
9890
9891 return true;
9892 }
9893
9894 /* Set the sizes of the dynamic sections. */
9895
9896 bool
9897 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9898 struct bfd_link_info *info)
9899 {
9900 bfd *dynobj;
9901 asection *s, *sreldyn;
9902 bool reltext;
9903 struct mips_elf_link_hash_table *htab;
9904
9905 htab = mips_elf_hash_table (info);
9906 BFD_ASSERT (htab != NULL);
9907 dynobj = elf_hash_table (info)->dynobj;
9908 BFD_ASSERT (dynobj != NULL);
9909
9910 if (elf_hash_table (info)->dynamic_sections_created)
9911 {
9912 /* Set the contents of the .interp section to the interpreter. */
9913 if (bfd_link_executable (info) && !info->nointerp)
9914 {
9915 s = bfd_get_linker_section (dynobj, ".interp");
9916 BFD_ASSERT (s != NULL);
9917 s->size
9918 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9919 s->contents
9920 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9921 }
9922
9923 /* Figure out the size of the PLT header if we know that we
9924 are using it. For the sake of cache alignment always use
9925 a standard header whenever any standard entries are present
9926 even if microMIPS entries are present as well. This also
9927 lets the microMIPS header rely on the value of $v0 only set
9928 by microMIPS entries, for a small size reduction.
9929
9930 Set symbol table entry values for symbols that use the
9931 address of their PLT entry now that we can calculate it.
9932
9933 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9934 haven't already in _bfd_elf_create_dynamic_sections. */
9935 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9936 {
9937 bool micromips_p = (MICROMIPS_P (output_bfd)
9938 && !htab->plt_mips_offset);
9939 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9940 bfd_vma isa_bit = micromips_p;
9941 struct elf_link_hash_entry *h;
9942 bfd_vma size;
9943
9944 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9945 BFD_ASSERT (htab->root.sgotplt->size == 0);
9946 BFD_ASSERT (htab->root.splt->size == 0);
9947
9948 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9949 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9950 else if (htab->root.target_os == is_vxworks)
9951 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9952 else if (ABI_64_P (output_bfd))
9953 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9954 else if (ABI_N32_P (output_bfd))
9955 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9956 else if (!micromips_p)
9957 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9958 else if (htab->insn32)
9959 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9960 else
9961 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9962
9963 htab->plt_header_is_comp = micromips_p;
9964 htab->plt_header_size = size;
9965 htab->root.splt->size = (size
9966 + htab->plt_mips_offset
9967 + htab->plt_comp_offset);
9968 htab->root.sgotplt->size = (htab->plt_got_index
9969 * MIPS_ELF_GOT_SIZE (dynobj));
9970
9971 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9972
9973 if (htab->root.hplt == NULL)
9974 {
9975 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9976 "_PROCEDURE_LINKAGE_TABLE_");
9977 htab->root.hplt = h;
9978 if (h == NULL)
9979 return false;
9980 }
9981
9982 h = htab->root.hplt;
9983 h->root.u.def.value = isa_bit;
9984 h->other = other;
9985 h->type = STT_FUNC;
9986 }
9987 }
9988
9989 /* Allocate space for global sym dynamic relocs. */
9990 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9991
9992 mips_elf_estimate_stub_size (output_bfd, info);
9993
9994 if (!mips_elf_lay_out_got (output_bfd, info))
9995 return false;
9996
9997 mips_elf_lay_out_lazy_stubs (info);
9998
9999 /* The check_relocs and adjust_dynamic_symbol entry points have
10000 determined the sizes of the various dynamic sections. Allocate
10001 memory for them. */
10002 reltext = false;
10003 for (s = dynobj->sections; s != NULL; s = s->next)
10004 {
10005 const char *name;
10006
10007 /* It's OK to base decisions on the section name, because none
10008 of the dynobj section names depend upon the input files. */
10009 name = bfd_section_name (s);
10010
10011 if ((s->flags & SEC_LINKER_CREATED) == 0)
10012 continue;
10013
10014 if (startswith (name, ".rel"))
10015 {
10016 if (s->size != 0)
10017 {
10018 const char *outname;
10019 asection *target;
10020
10021 /* If this relocation section applies to a read only
10022 section, then we probably need a DT_TEXTREL entry.
10023 If the relocation section is .rel(a).dyn, we always
10024 assert a DT_TEXTREL entry rather than testing whether
10025 there exists a relocation to a read only section or
10026 not. */
10027 outname = bfd_section_name (s->output_section);
10028 target = bfd_get_section_by_name (output_bfd, outname + 4);
10029 if ((target != NULL
10030 && (target->flags & SEC_READONLY) != 0
10031 && (target->flags & SEC_ALLOC) != 0)
10032 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10033 reltext = true;
10034
10035 /* We use the reloc_count field as a counter if we need
10036 to copy relocs into the output file. */
10037 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10038 s->reloc_count = 0;
10039
10040 /* If combreloc is enabled, elf_link_sort_relocs() will
10041 sort relocations, but in a different way than we do,
10042 and before we're done creating relocations. Also, it
10043 will move them around between input sections'
10044 relocation's contents, so our sorting would be
10045 broken, so don't let it run. */
10046 info->combreloc = 0;
10047 }
10048 }
10049 else if (bfd_link_executable (info)
10050 && ! mips_elf_hash_table (info)->use_rld_obj_head
10051 && startswith (name, ".rld_map"))
10052 {
10053 /* We add a room for __rld_map. It will be filled in by the
10054 rtld to contain a pointer to the _r_debug structure. */
10055 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10056 }
10057 else if (SGI_COMPAT (output_bfd)
10058 && startswith (name, ".compact_rel"))
10059 s->size += mips_elf_hash_table (info)->compact_rel_size;
10060 else if (s == htab->root.splt)
10061 {
10062 /* If the last PLT entry has a branch delay slot, allocate
10063 room for an extra nop to fill the delay slot. This is
10064 for CPUs without load interlocking. */
10065 if (! LOAD_INTERLOCKS_P (output_bfd)
10066 && htab->root.target_os != is_vxworks
10067 && s->size > 0)
10068 s->size += 4;
10069 }
10070 else if (! startswith (name, ".init")
10071 && s != htab->root.sgot
10072 && s != htab->root.sgotplt
10073 && s != htab->sstubs
10074 && s != htab->root.sdynbss
10075 && s != htab->root.sdynrelro)
10076 {
10077 /* It's not one of our sections, so don't allocate space. */
10078 continue;
10079 }
10080
10081 if (s->size == 0)
10082 {
10083 s->flags |= SEC_EXCLUDE;
10084 continue;
10085 }
10086
10087 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10088 continue;
10089
10090 /* Allocate memory for the section contents. */
10091 s->contents = bfd_zalloc (dynobj, s->size);
10092 if (s->contents == NULL)
10093 {
10094 bfd_set_error (bfd_error_no_memory);
10095 return false;
10096 }
10097 }
10098
10099 if (elf_hash_table (info)->dynamic_sections_created)
10100 {
10101 /* Add some entries to the .dynamic section. We fill in the
10102 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10103 must add the entries now so that we get the correct size for
10104 the .dynamic section. */
10105
10106 /* SGI object has the equivalence of DT_DEBUG in the
10107 DT_MIPS_RLD_MAP entry. This must come first because glibc
10108 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10109 may only look at the first one they see. */
10110 if (!bfd_link_pic (info)
10111 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10112 return false;
10113
10114 if (bfd_link_executable (info)
10115 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10116 return false;
10117
10118 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10119 used by the debugger. */
10120 if (bfd_link_executable (info)
10121 && !SGI_COMPAT (output_bfd)
10122 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10123 return false;
10124
10125 if (reltext
10126 && (SGI_COMPAT (output_bfd)
10127 || htab->root.target_os == is_vxworks))
10128 info->flags |= DF_TEXTREL;
10129
10130 if ((info->flags & DF_TEXTREL) != 0)
10131 {
10132 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10133 return false;
10134
10135 /* Clear the DF_TEXTREL flag. It will be set again if we
10136 write out an actual text relocation; we may not, because
10137 at this point we do not know whether e.g. any .eh_frame
10138 absolute relocations have been converted to PC-relative. */
10139 info->flags &= ~DF_TEXTREL;
10140 }
10141
10142 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10143 return false;
10144
10145 sreldyn = mips_elf_rel_dyn_section (info, false);
10146 if (htab->root.target_os == is_vxworks)
10147 {
10148 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10149 use any of the DT_MIPS_* tags. */
10150 if (sreldyn && sreldyn->size > 0)
10151 {
10152 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10153 return false;
10154
10155 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10156 return false;
10157
10158 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10159 return false;
10160 }
10161 }
10162 else
10163 {
10164 if (sreldyn && sreldyn->size > 0
10165 && !bfd_is_abs_section (sreldyn->output_section))
10166 {
10167 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10168 return false;
10169
10170 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10171 return false;
10172
10173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10174 return false;
10175 }
10176
10177 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10178 return false;
10179
10180 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10181 return false;
10182
10183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10184 return false;
10185
10186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10187 return false;
10188
10189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10190 return false;
10191
10192 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10193 return false;
10194
10195 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10196 return false;
10197
10198 if (info->emit_gnu_hash
10199 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10200 return false;
10201
10202 if (IRIX_COMPAT (dynobj) == ict_irix5
10203 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10204 return false;
10205
10206 if (IRIX_COMPAT (dynobj) == ict_irix6
10207 && (bfd_get_section_by_name
10208 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10209 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10210 return false;
10211 }
10212 if (htab->root.splt->size > 0)
10213 {
10214 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10215 return false;
10216
10217 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10218 return false;
10219
10220 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10221 return false;
10222
10223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10224 return false;
10225 }
10226 if (htab->root.target_os == is_vxworks
10227 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10228 return false;
10229 }
10230
10231 return true;
10232 }
10233 \f
10234 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10235 Adjust its R_ADDEND field so that it is correct for the output file.
10236 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10237 and sections respectively; both use symbol indexes. */
10238
10239 static void
10240 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10241 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10242 asection **local_sections, Elf_Internal_Rela *rel)
10243 {
10244 unsigned int r_type, r_symndx;
10245 Elf_Internal_Sym *sym;
10246 asection *sec;
10247
10248 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10249 {
10250 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10251 if (gprel16_reloc_p (r_type)
10252 || r_type == R_MIPS_GPREL32
10253 || literal_reloc_p (r_type))
10254 {
10255 rel->r_addend += _bfd_get_gp_value (input_bfd);
10256 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10257 }
10258
10259 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10260 sym = local_syms + r_symndx;
10261
10262 /* Adjust REL's addend to account for section merging. */
10263 if (!bfd_link_relocatable (info))
10264 {
10265 sec = local_sections[r_symndx];
10266 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10267 }
10268
10269 /* This would normally be done by the rela_normal code in elflink.c. */
10270 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10271 rel->r_addend += local_sections[r_symndx]->output_offset;
10272 }
10273 }
10274
10275 /* Handle relocations against symbols from removed linkonce sections,
10276 or sections discarded by a linker script. We use this wrapper around
10277 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10278 on 64-bit ELF targets. In this case for any relocation handled, which
10279 always be the first in a triplet, the remaining two have to be processed
10280 together with the first, even if they are R_MIPS_NONE. It is the symbol
10281 index referred by the first reloc that applies to all the three and the
10282 remaining two never refer to an object symbol. And it is the final
10283 relocation (the last non-null one) that determines the output field of
10284 the whole relocation so retrieve the corresponding howto structure for
10285 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10286
10287 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10288 and therefore requires to be pasted in a loop. It also defines a block
10289 and does not protect any of its arguments, hence the extra brackets. */
10290
10291 static void
10292 mips_reloc_against_discarded_section (bfd *output_bfd,
10293 struct bfd_link_info *info,
10294 bfd *input_bfd, asection *input_section,
10295 Elf_Internal_Rela **rel,
10296 const Elf_Internal_Rela **relend,
10297 bool rel_reloc,
10298 reloc_howto_type *howto,
10299 bfd_byte *contents)
10300 {
10301 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10302 int count = bed->s->int_rels_per_ext_rel;
10303 unsigned int r_type;
10304 int i;
10305
10306 for (i = count - 1; i > 0; i--)
10307 {
10308 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10309 if (r_type != R_MIPS_NONE)
10310 {
10311 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10312 break;
10313 }
10314 }
10315 do
10316 {
10317 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10318 (*rel), count, (*relend),
10319 howto, i, contents);
10320 }
10321 while (0);
10322 }
10323
10324 /* Relocate a MIPS ELF section. */
10325
10326 int
10327 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10328 bfd *input_bfd, asection *input_section,
10329 bfd_byte *contents, Elf_Internal_Rela *relocs,
10330 Elf_Internal_Sym *local_syms,
10331 asection **local_sections)
10332 {
10333 Elf_Internal_Rela *rel;
10334 const Elf_Internal_Rela *relend;
10335 bfd_vma addend = 0;
10336 bool use_saved_addend_p = false;
10337
10338 relend = relocs + input_section->reloc_count;
10339 for (rel = relocs; rel < relend; ++rel)
10340 {
10341 const char *name;
10342 bfd_vma value = 0;
10343 reloc_howto_type *howto;
10344 bool cross_mode_jump_p = false;
10345 /* TRUE if the relocation is a RELA relocation, rather than a
10346 REL relocation. */
10347 bool rela_relocation_p = true;
10348 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10349 const char *msg;
10350 unsigned long r_symndx;
10351 asection *sec;
10352 Elf_Internal_Shdr *symtab_hdr;
10353 struct elf_link_hash_entry *h;
10354 bool rel_reloc;
10355
10356 rel_reloc = (NEWABI_P (input_bfd)
10357 && mips_elf_rel_relocation_p (input_bfd, input_section,
10358 relocs, rel));
10359 /* Find the relocation howto for this relocation. */
10360 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10361
10362 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10363 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10364 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10365 {
10366 sec = local_sections[r_symndx];
10367 h = NULL;
10368 }
10369 else
10370 {
10371 unsigned long extsymoff;
10372
10373 extsymoff = 0;
10374 if (!elf_bad_symtab (input_bfd))
10375 extsymoff = symtab_hdr->sh_info;
10376 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10377 while (h->root.type == bfd_link_hash_indirect
10378 || h->root.type == bfd_link_hash_warning)
10379 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10380
10381 sec = NULL;
10382 if (h->root.type == bfd_link_hash_defined
10383 || h->root.type == bfd_link_hash_defweak)
10384 sec = h->root.u.def.section;
10385 }
10386
10387 if (sec != NULL && discarded_section (sec))
10388 {
10389 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10390 input_section, &rel, &relend,
10391 rel_reloc, howto, contents);
10392 continue;
10393 }
10394
10395 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10396 {
10397 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10398 64-bit code, but make sure all their addresses are in the
10399 lowermost or uppermost 32-bit section of the 64-bit address
10400 space. Thus, when they use an R_MIPS_64 they mean what is
10401 usually meant by R_MIPS_32, with the exception that the
10402 stored value is sign-extended to 64 bits. */
10403 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, false);
10404
10405 /* On big-endian systems, we need to lie about the position
10406 of the reloc. */
10407 if (bfd_big_endian (input_bfd))
10408 rel->r_offset += 4;
10409 }
10410
10411 if (!use_saved_addend_p)
10412 {
10413 /* If these relocations were originally of the REL variety,
10414 we must pull the addend out of the field that will be
10415 relocated. Otherwise, we simply use the contents of the
10416 RELA relocation. */
10417 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10418 relocs, rel))
10419 {
10420 rela_relocation_p = false;
10421 addend = mips_elf_read_rel_addend (input_bfd, rel,
10422 howto, contents);
10423 if (hi16_reloc_p (r_type)
10424 || (got16_reloc_p (r_type)
10425 && mips_elf_local_relocation_p (input_bfd, rel,
10426 local_sections)))
10427 {
10428 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10429 contents, &addend))
10430 {
10431 if (h)
10432 name = h->root.root.string;
10433 else
10434 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10435 local_syms + r_symndx,
10436 sec);
10437 _bfd_error_handler
10438 /* xgettext:c-format */
10439 (_("%pB: can't find matching LO16 reloc against `%s'"
10440 " for %s at %#" PRIx64 " in section `%pA'"),
10441 input_bfd, name,
10442 howto->name, (uint64_t) rel->r_offset, input_section);
10443 }
10444 }
10445 else
10446 addend <<= howto->rightshift;
10447 }
10448 else
10449 addend = rel->r_addend;
10450 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10451 local_syms, local_sections, rel);
10452 }
10453
10454 if (bfd_link_relocatable (info))
10455 {
10456 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10457 && bfd_big_endian (input_bfd))
10458 rel->r_offset -= 4;
10459
10460 if (!rela_relocation_p && rel->r_addend)
10461 {
10462 addend += rel->r_addend;
10463 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10464 addend = mips_elf_high (addend);
10465 else if (r_type == R_MIPS_HIGHER)
10466 addend = mips_elf_higher (addend);
10467 else if (r_type == R_MIPS_HIGHEST)
10468 addend = mips_elf_highest (addend);
10469 else
10470 addend >>= howto->rightshift;
10471
10472 /* We use the source mask, rather than the destination
10473 mask because the place to which we are writing will be
10474 source of the addend in the final link. */
10475 addend &= howto->src_mask;
10476
10477 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10478 /* See the comment above about using R_MIPS_64 in the 32-bit
10479 ABI. Here, we need to update the addend. It would be
10480 possible to get away with just using the R_MIPS_32 reloc
10481 but for endianness. */
10482 {
10483 bfd_vma sign_bits;
10484 bfd_vma low_bits;
10485 bfd_vma high_bits;
10486
10487 if (addend & ((bfd_vma) 1 << 31))
10488 #ifdef BFD64
10489 sign_bits = ((bfd_vma) 1 << 32) - 1;
10490 #else
10491 sign_bits = -1;
10492 #endif
10493 else
10494 sign_bits = 0;
10495
10496 /* If we don't know that we have a 64-bit type,
10497 do two separate stores. */
10498 if (bfd_big_endian (input_bfd))
10499 {
10500 /* Store the sign-bits (which are most significant)
10501 first. */
10502 low_bits = sign_bits;
10503 high_bits = addend;
10504 }
10505 else
10506 {
10507 low_bits = addend;
10508 high_bits = sign_bits;
10509 }
10510 bfd_put_32 (input_bfd, low_bits,
10511 contents + rel->r_offset);
10512 bfd_put_32 (input_bfd, high_bits,
10513 contents + rel->r_offset + 4);
10514 continue;
10515 }
10516
10517 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10518 input_bfd, input_section,
10519 contents, false))
10520 return false;
10521 }
10522
10523 /* Go on to the next relocation. */
10524 continue;
10525 }
10526
10527 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10528 relocations for the same offset. In that case we are
10529 supposed to treat the output of each relocation as the addend
10530 for the next. */
10531 if (rel + 1 < relend
10532 && rel->r_offset == rel[1].r_offset
10533 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10534 use_saved_addend_p = true;
10535 else
10536 use_saved_addend_p = false;
10537
10538 /* Figure out what value we are supposed to relocate. */
10539 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10540 input_section, contents,
10541 info, rel, addend, howto,
10542 local_syms, local_sections,
10543 &value, &name, &cross_mode_jump_p,
10544 use_saved_addend_p))
10545 {
10546 case bfd_reloc_continue:
10547 /* There's nothing to do. */
10548 continue;
10549
10550 case bfd_reloc_undefined:
10551 /* mips_elf_calculate_relocation already called the
10552 undefined_symbol callback. There's no real point in
10553 trying to perform the relocation at this point, so we
10554 just skip ahead to the next relocation. */
10555 continue;
10556
10557 case bfd_reloc_notsupported:
10558 msg = _("internal error: unsupported relocation error");
10559 info->callbacks->warning
10560 (info, msg, name, input_bfd, input_section, rel->r_offset);
10561 return false;
10562
10563 case bfd_reloc_overflow:
10564 if (use_saved_addend_p)
10565 /* Ignore overflow until we reach the last relocation for
10566 a given location. */
10567 ;
10568 else
10569 {
10570 struct mips_elf_link_hash_table *htab;
10571
10572 htab = mips_elf_hash_table (info);
10573 BFD_ASSERT (htab != NULL);
10574 BFD_ASSERT (name != NULL);
10575 if (!htab->small_data_overflow_reported
10576 && (gprel16_reloc_p (howto->type)
10577 || literal_reloc_p (howto->type)))
10578 {
10579 msg = _("small-data section exceeds 64KB;"
10580 " lower small-data size limit (see option -G)");
10581
10582 htab->small_data_overflow_reported = true;
10583 (*info->callbacks->einfo) ("%P: %s\n", msg);
10584 }
10585 (*info->callbacks->reloc_overflow)
10586 (info, NULL, name, howto->name, (bfd_vma) 0,
10587 input_bfd, input_section, rel->r_offset);
10588 }
10589 break;
10590
10591 case bfd_reloc_ok:
10592 break;
10593
10594 case bfd_reloc_outofrange:
10595 msg = NULL;
10596 if (jal_reloc_p (howto->type))
10597 msg = (cross_mode_jump_p
10598 ? _("cannot convert a jump to JALX "
10599 "for a non-word-aligned address")
10600 : (howto->type == R_MIPS16_26
10601 ? _("jump to a non-word-aligned address")
10602 : _("jump to a non-instruction-aligned address")));
10603 else if (b_reloc_p (howto->type))
10604 msg = (cross_mode_jump_p
10605 ? _("cannot convert a branch to JALX "
10606 "for a non-word-aligned address")
10607 : _("branch to a non-instruction-aligned address"));
10608 else if (aligned_pcrel_reloc_p (howto->type))
10609 msg = _("PC-relative load from unaligned address");
10610 if (msg)
10611 {
10612 info->callbacks->einfo
10613 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10614 break;
10615 }
10616 /* Fall through. */
10617
10618 default:
10619 abort ();
10620 break;
10621 }
10622
10623 /* If we've got another relocation for the address, keep going
10624 until we reach the last one. */
10625 if (use_saved_addend_p)
10626 {
10627 addend = value;
10628 continue;
10629 }
10630
10631 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10632 /* See the comment above about using R_MIPS_64 in the 32-bit
10633 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10634 that calculated the right value. Now, however, we
10635 sign-extend the 32-bit result to 64-bits, and store it as a
10636 64-bit value. We are especially generous here in that we
10637 go to extreme lengths to support this usage on systems with
10638 only a 32-bit VMA. */
10639 {
10640 bfd_vma sign_bits;
10641 bfd_vma low_bits;
10642 bfd_vma high_bits;
10643
10644 if (value & ((bfd_vma) 1 << 31))
10645 #ifdef BFD64
10646 sign_bits = ((bfd_vma) 1 << 32) - 1;
10647 #else
10648 sign_bits = -1;
10649 #endif
10650 else
10651 sign_bits = 0;
10652
10653 /* If we don't know that we have a 64-bit type,
10654 do two separate stores. */
10655 if (bfd_big_endian (input_bfd))
10656 {
10657 /* Undo what we did above. */
10658 rel->r_offset -= 4;
10659 /* Store the sign-bits (which are most significant)
10660 first. */
10661 low_bits = sign_bits;
10662 high_bits = value;
10663 }
10664 else
10665 {
10666 low_bits = value;
10667 high_bits = sign_bits;
10668 }
10669 bfd_put_32 (input_bfd, low_bits,
10670 contents + rel->r_offset);
10671 bfd_put_32 (input_bfd, high_bits,
10672 contents + rel->r_offset + 4);
10673 continue;
10674 }
10675
10676 /* Actually perform the relocation. */
10677 if (! mips_elf_perform_relocation (info, howto, rel, value,
10678 input_bfd, input_section,
10679 contents, cross_mode_jump_p))
10680 return false;
10681 }
10682
10683 return true;
10684 }
10685 \f
10686 /* A function that iterates over each entry in la25_stubs and fills
10687 in the code for each one. DATA points to a mips_htab_traverse_info. */
10688
10689 static int
10690 mips_elf_create_la25_stub (void **slot, void *data)
10691 {
10692 struct mips_htab_traverse_info *hti;
10693 struct mips_elf_link_hash_table *htab;
10694 struct mips_elf_la25_stub *stub;
10695 asection *s;
10696 bfd_byte *loc;
10697 bfd_vma offset, target, target_high, target_low;
10698 bfd_vma branch_pc;
10699 bfd_signed_vma pcrel_offset = 0;
10700
10701 stub = (struct mips_elf_la25_stub *) *slot;
10702 hti = (struct mips_htab_traverse_info *) data;
10703 htab = mips_elf_hash_table (hti->info);
10704 BFD_ASSERT (htab != NULL);
10705
10706 /* Create the section contents, if we haven't already. */
10707 s = stub->stub_section;
10708 loc = s->contents;
10709 if (loc == NULL)
10710 {
10711 loc = bfd_malloc (s->size);
10712 if (loc == NULL)
10713 {
10714 hti->error = true;
10715 return false;
10716 }
10717 s->contents = loc;
10718 }
10719
10720 /* Work out where in the section this stub should go. */
10721 offset = stub->offset;
10722
10723 /* We add 8 here to account for the LUI/ADDIU instructions
10724 before the branch instruction. This cannot be moved down to
10725 where pcrel_offset is calculated as 's' is updated in
10726 mips_elf_get_la25_target. */
10727 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10728
10729 /* Work out the target address. */
10730 target = mips_elf_get_la25_target (stub, &s);
10731 target += s->output_section->vma + s->output_offset;
10732
10733 target_high = ((target + 0x8000) >> 16) & 0xffff;
10734 target_low = (target & 0xffff);
10735
10736 /* Calculate the PC of the compact branch instruction (for the case where
10737 compact branches are used for either microMIPSR6 or MIPSR6 with
10738 compact branches. Add 4-bytes to account for BC using the PC of the
10739 next instruction as the base. */
10740 pcrel_offset = target - (branch_pc + 4);
10741
10742 if (stub->stub_section != htab->strampoline)
10743 {
10744 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10745 of the section and write the two instructions at the end. */
10746 memset (loc, 0, offset);
10747 loc += offset;
10748 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10749 {
10750 bfd_put_micromips_32 (hti->output_bfd,
10751 LA25_LUI_MICROMIPS (target_high),
10752 loc);
10753 bfd_put_micromips_32 (hti->output_bfd,
10754 LA25_ADDIU_MICROMIPS (target_low),
10755 loc + 4);
10756 }
10757 else
10758 {
10759 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10760 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10761 }
10762 }
10763 else
10764 {
10765 /* This is trampoline. */
10766 loc += offset;
10767 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10768 {
10769 bfd_put_micromips_32 (hti->output_bfd,
10770 LA25_LUI_MICROMIPS (target_high), loc);
10771 bfd_put_micromips_32 (hti->output_bfd,
10772 LA25_J_MICROMIPS (target), loc + 4);
10773 bfd_put_micromips_32 (hti->output_bfd,
10774 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10775 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10776 }
10777 else
10778 {
10779 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10780 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10781 {
10782 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10783 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10784 }
10785 else
10786 {
10787 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10788 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10789 }
10790 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10791 }
10792 }
10793 return true;
10794 }
10795
10796 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10797 adjust it appropriately now. */
10798
10799 static void
10800 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10801 const char *name, Elf_Internal_Sym *sym)
10802 {
10803 /* The linker script takes care of providing names and values for
10804 these, but we must place them into the right sections. */
10805 static const char* const text_section_symbols[] = {
10806 "_ftext",
10807 "_etext",
10808 "__dso_displacement",
10809 "__elf_header",
10810 "__program_header_table",
10811 NULL
10812 };
10813
10814 static const char* const data_section_symbols[] = {
10815 "_fdata",
10816 "_edata",
10817 "_end",
10818 "_fbss",
10819 NULL
10820 };
10821
10822 const char* const *p;
10823 int i;
10824
10825 for (i = 0; i < 2; ++i)
10826 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10827 *p;
10828 ++p)
10829 if (strcmp (*p, name) == 0)
10830 {
10831 /* All of these symbols are given type STT_SECTION by the
10832 IRIX6 linker. */
10833 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10834 sym->st_other = STO_PROTECTED;
10835
10836 /* The IRIX linker puts these symbols in special sections. */
10837 if (i == 0)
10838 sym->st_shndx = SHN_MIPS_TEXT;
10839 else
10840 sym->st_shndx = SHN_MIPS_DATA;
10841
10842 break;
10843 }
10844 }
10845
10846 /* Finish up dynamic symbol handling. We set the contents of various
10847 dynamic sections here. */
10848
10849 bool
10850 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10851 struct bfd_link_info *info,
10852 struct elf_link_hash_entry *h,
10853 Elf_Internal_Sym *sym)
10854 {
10855 bfd *dynobj;
10856 asection *sgot;
10857 struct mips_got_info *g, *gg;
10858 const char *name;
10859 int idx;
10860 struct mips_elf_link_hash_table *htab;
10861 struct mips_elf_link_hash_entry *hmips;
10862
10863 htab = mips_elf_hash_table (info);
10864 BFD_ASSERT (htab != NULL);
10865 dynobj = elf_hash_table (info)->dynobj;
10866 hmips = (struct mips_elf_link_hash_entry *) h;
10867
10868 BFD_ASSERT (htab->root.target_os != is_vxworks);
10869
10870 if (h->plt.plist != NULL
10871 && (h->plt.plist->mips_offset != MINUS_ONE
10872 || h->plt.plist->comp_offset != MINUS_ONE))
10873 {
10874 /* We've decided to create a PLT entry for this symbol. */
10875 bfd_byte *loc;
10876 bfd_vma header_address, got_address;
10877 bfd_vma got_address_high, got_address_low, load;
10878 bfd_vma got_index;
10879 bfd_vma isa_bit;
10880
10881 got_index = h->plt.plist->gotplt_index;
10882
10883 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10884 BFD_ASSERT (h->dynindx != -1);
10885 BFD_ASSERT (htab->root.splt != NULL);
10886 BFD_ASSERT (got_index != MINUS_ONE);
10887 BFD_ASSERT (!h->def_regular);
10888
10889 /* Calculate the address of the PLT header. */
10890 isa_bit = htab->plt_header_is_comp;
10891 header_address = (htab->root.splt->output_section->vma
10892 + htab->root.splt->output_offset + isa_bit);
10893
10894 /* Calculate the address of the .got.plt entry. */
10895 got_address = (htab->root.sgotplt->output_section->vma
10896 + htab->root.sgotplt->output_offset
10897 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10898
10899 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10900 got_address_low = got_address & 0xffff;
10901
10902 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10903 cannot be loaded in two instructions. */
10904 if (ABI_64_P (output_bfd)
10905 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10906 {
10907 _bfd_error_handler
10908 /* xgettext:c-format */
10909 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10910 "supported; consider using `-Ttext-segment=...'"),
10911 output_bfd,
10912 htab->root.sgotplt->output_section,
10913 (int64_t) got_address);
10914 bfd_set_error (bfd_error_no_error);
10915 return false;
10916 }
10917
10918 /* Initially point the .got.plt entry at the PLT header. */
10919 loc = (htab->root.sgotplt->contents
10920 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10921 if (ABI_64_P (output_bfd))
10922 bfd_put_64 (output_bfd, header_address, loc);
10923 else
10924 bfd_put_32 (output_bfd, header_address, loc);
10925
10926 /* Now handle the PLT itself. First the standard entry (the order
10927 does not matter, we just have to pick one). */
10928 if (h->plt.plist->mips_offset != MINUS_ONE)
10929 {
10930 const bfd_vma *plt_entry;
10931 bfd_vma plt_offset;
10932
10933 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10934
10935 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10936
10937 /* Find out where the .plt entry should go. */
10938 loc = htab->root.splt->contents + plt_offset;
10939
10940 /* Pick the load opcode. */
10941 load = MIPS_ELF_LOAD_WORD (output_bfd);
10942
10943 /* Fill in the PLT entry itself. */
10944
10945 if (MIPSR6_P (output_bfd))
10946 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10947 : mipsr6_exec_plt_entry;
10948 else
10949 plt_entry = mips_exec_plt_entry;
10950 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10951 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10952 loc + 4);
10953
10954 if (! LOAD_INTERLOCKS_P (output_bfd)
10955 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10956 {
10957 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10958 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10959 }
10960 else
10961 {
10962 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10963 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10964 loc + 12);
10965 }
10966 }
10967
10968 /* Now the compressed entry. They come after any standard ones. */
10969 if (h->plt.plist->comp_offset != MINUS_ONE)
10970 {
10971 bfd_vma plt_offset;
10972
10973 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10974 + h->plt.plist->comp_offset);
10975
10976 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10977
10978 /* Find out where the .plt entry should go. */
10979 loc = htab->root.splt->contents + plt_offset;
10980
10981 /* Fill in the PLT entry itself. */
10982 if (!MICROMIPS_P (output_bfd))
10983 {
10984 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10985
10986 bfd_put_16 (output_bfd, plt_entry[0], loc);
10987 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10988 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10989 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10990 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10991 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10992 bfd_put_32 (output_bfd, got_address, loc + 12);
10993 }
10994 else if (htab->insn32)
10995 {
10996 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10997
10998 bfd_put_16 (output_bfd, plt_entry[0], loc);
10999 bfd_put_16 (output_bfd, got_address_high, loc + 2);
11000 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11001 bfd_put_16 (output_bfd, got_address_low, loc + 6);
11002 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11003 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11004 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11005 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11006 }
11007 else
11008 {
11009 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11010 bfd_signed_vma gotpc_offset;
11011 bfd_vma loc_address;
11012
11013 BFD_ASSERT (got_address % 4 == 0);
11014
11015 loc_address = (htab->root.splt->output_section->vma
11016 + htab->root.splt->output_offset + plt_offset);
11017 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11018
11019 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11020 if (gotpc_offset + 0x1000000 >= 0x2000000)
11021 {
11022 _bfd_error_handler
11023 /* xgettext:c-format */
11024 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11025 "beyond the range of ADDIUPC"),
11026 output_bfd,
11027 htab->root.sgotplt->output_section,
11028 (int64_t) gotpc_offset,
11029 htab->root.splt->output_section);
11030 bfd_set_error (bfd_error_no_error);
11031 return false;
11032 }
11033 bfd_put_16 (output_bfd,
11034 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11035 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11036 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11037 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11038 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11039 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11040 }
11041 }
11042
11043 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11044 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11045 got_index - 2, h->dynindx,
11046 R_MIPS_JUMP_SLOT, got_address);
11047
11048 /* We distinguish between PLT entries and lazy-binding stubs by
11049 giving the former an st_other value of STO_MIPS_PLT. Set the
11050 flag and leave the value if there are any relocations in the
11051 binary where pointer equality matters. */
11052 sym->st_shndx = SHN_UNDEF;
11053 if (h->pointer_equality_needed)
11054 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11055 else
11056 {
11057 sym->st_value = 0;
11058 sym->st_other = 0;
11059 }
11060 }
11061
11062 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11063 {
11064 /* We've decided to create a lazy-binding stub. */
11065 bool micromips_p = MICROMIPS_P (output_bfd);
11066 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11067 bfd_vma stub_size = htab->function_stub_size;
11068 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11069 bfd_vma isa_bit = micromips_p;
11070 bfd_vma stub_big_size;
11071
11072 if (!micromips_p)
11073 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11074 else if (htab->insn32)
11075 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11076 else
11077 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11078
11079 /* This symbol has a stub. Set it up. */
11080
11081 BFD_ASSERT (h->dynindx != -1);
11082
11083 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11084
11085 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11086 sign extension at runtime in the stub, resulting in a negative
11087 index value. */
11088 if (h->dynindx & ~0x7fffffff)
11089 return false;
11090
11091 /* Fill the stub. */
11092 if (micromips_p)
11093 {
11094 idx = 0;
11095 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11096 stub + idx);
11097 idx += 4;
11098 if (htab->insn32)
11099 {
11100 bfd_put_micromips_32 (output_bfd,
11101 STUB_MOVE32_MICROMIPS, stub + idx);
11102 idx += 4;
11103 }
11104 else
11105 {
11106 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11107 idx += 2;
11108 }
11109 if (stub_size == stub_big_size)
11110 {
11111 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11112
11113 bfd_put_micromips_32 (output_bfd,
11114 STUB_LUI_MICROMIPS (dynindx_hi),
11115 stub + idx);
11116 idx += 4;
11117 }
11118 if (htab->insn32)
11119 {
11120 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11121 stub + idx);
11122 idx += 4;
11123 }
11124 else
11125 {
11126 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11127 idx += 2;
11128 }
11129
11130 /* If a large stub is not required and sign extension is not a
11131 problem, then use legacy code in the stub. */
11132 if (stub_size == stub_big_size)
11133 bfd_put_micromips_32 (output_bfd,
11134 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11135 stub + idx);
11136 else if (h->dynindx & ~0x7fff)
11137 bfd_put_micromips_32 (output_bfd,
11138 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11139 stub + idx);
11140 else
11141 bfd_put_micromips_32 (output_bfd,
11142 STUB_LI16S_MICROMIPS (output_bfd,
11143 h->dynindx),
11144 stub + idx);
11145 }
11146 else
11147 {
11148 idx = 0;
11149 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11150 idx += 4;
11151 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11152 idx += 4;
11153 if (stub_size == stub_big_size)
11154 {
11155 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11156 stub + idx);
11157 idx += 4;
11158 }
11159
11160 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11161 {
11162 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11163 idx += 4;
11164 }
11165
11166 /* If a large stub is not required and sign extension is not a
11167 problem, then use legacy code in the stub. */
11168 if (stub_size == stub_big_size)
11169 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11170 stub + idx);
11171 else if (h->dynindx & ~0x7fff)
11172 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11173 stub + idx);
11174 else
11175 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11176 stub + idx);
11177 idx += 4;
11178
11179 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11180 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11181 }
11182
11183 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11184 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11185 stub, stub_size);
11186
11187 /* Mark the symbol as undefined. stub_offset != -1 occurs
11188 only for the referenced symbol. */
11189 sym->st_shndx = SHN_UNDEF;
11190
11191 /* The run-time linker uses the st_value field of the symbol
11192 to reset the global offset table entry for this external
11193 to its stub address when unlinking a shared object. */
11194 sym->st_value = (htab->sstubs->output_section->vma
11195 + htab->sstubs->output_offset
11196 + h->plt.plist->stub_offset
11197 + isa_bit);
11198 sym->st_other = other;
11199 }
11200
11201 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11202 refer to the stub, since only the stub uses the standard calling
11203 conventions. */
11204 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11205 {
11206 BFD_ASSERT (hmips->need_fn_stub);
11207 sym->st_value = (hmips->fn_stub->output_section->vma
11208 + hmips->fn_stub->output_offset);
11209 sym->st_size = hmips->fn_stub->size;
11210 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11211 }
11212
11213 BFD_ASSERT (h->dynindx != -1
11214 || h->forced_local);
11215
11216 sgot = htab->root.sgot;
11217 g = htab->got_info;
11218 BFD_ASSERT (g != NULL);
11219
11220 /* Run through the global symbol table, creating GOT entries for all
11221 the symbols that need them. */
11222 if (hmips->global_got_area != GGA_NONE)
11223 {
11224 bfd_vma offset;
11225 bfd_vma value;
11226
11227 value = sym->st_value;
11228 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11229 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11230 }
11231
11232 if (hmips->global_got_area != GGA_NONE && g->next)
11233 {
11234 struct mips_got_entry e, *p;
11235 bfd_vma entry;
11236 bfd_vma offset;
11237
11238 gg = g;
11239
11240 e.abfd = output_bfd;
11241 e.symndx = -1;
11242 e.d.h = hmips;
11243 e.tls_type = GOT_TLS_NONE;
11244
11245 for (g = g->next; g->next != gg; g = g->next)
11246 {
11247 if (g->got_entries
11248 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11249 &e)))
11250 {
11251 offset = p->gotidx;
11252 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11253 if (bfd_link_pic (info)
11254 || (elf_hash_table (info)->dynamic_sections_created
11255 && p->d.h != NULL
11256 && p->d.h->root.def_dynamic
11257 && !p->d.h->root.def_regular))
11258 {
11259 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11260 the various compatibility problems, it's easier to mock
11261 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11262 mips_elf_create_dynamic_relocation to calculate the
11263 appropriate addend. */
11264 Elf_Internal_Rela rel[3];
11265
11266 memset (rel, 0, sizeof (rel));
11267 if (ABI_64_P (output_bfd))
11268 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11269 else
11270 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11271 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11272
11273 entry = 0;
11274 if (! (mips_elf_create_dynamic_relocation
11275 (output_bfd, info, rel,
11276 e.d.h, NULL, sym->st_value, &entry, sgot)))
11277 return false;
11278 }
11279 else
11280 entry = sym->st_value;
11281 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11282 }
11283 }
11284 }
11285
11286 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11287 name = h->root.root.string;
11288 if (h == elf_hash_table (info)->hdynamic
11289 || h == elf_hash_table (info)->hgot)
11290 sym->st_shndx = SHN_ABS;
11291 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11292 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11293 {
11294 sym->st_shndx = SHN_ABS;
11295 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11296 sym->st_value = 1;
11297 }
11298 else if (SGI_COMPAT (output_bfd))
11299 {
11300 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11301 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11302 {
11303 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11304 sym->st_other = STO_PROTECTED;
11305 sym->st_value = 0;
11306 sym->st_shndx = SHN_MIPS_DATA;
11307 }
11308 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11309 {
11310 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11311 sym->st_other = STO_PROTECTED;
11312 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11313 sym->st_shndx = SHN_ABS;
11314 }
11315 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11316 {
11317 if (h->type == STT_FUNC)
11318 sym->st_shndx = SHN_MIPS_TEXT;
11319 else if (h->type == STT_OBJECT)
11320 sym->st_shndx = SHN_MIPS_DATA;
11321 }
11322 }
11323
11324 /* Emit a copy reloc, if needed. */
11325 if (h->needs_copy)
11326 {
11327 asection *s;
11328 bfd_vma symval;
11329
11330 BFD_ASSERT (h->dynindx != -1);
11331 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11332
11333 s = mips_elf_rel_dyn_section (info, false);
11334 symval = (h->root.u.def.section->output_section->vma
11335 + h->root.u.def.section->output_offset
11336 + h->root.u.def.value);
11337 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11338 h->dynindx, R_MIPS_COPY, symval);
11339 }
11340
11341 /* Handle the IRIX6-specific symbols. */
11342 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11343 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11344
11345 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11346 to treat compressed symbols like any other. */
11347 if (ELF_ST_IS_MIPS16 (sym->st_other))
11348 {
11349 BFD_ASSERT (sym->st_value & 1);
11350 sym->st_other -= STO_MIPS16;
11351 }
11352 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11353 {
11354 BFD_ASSERT (sym->st_value & 1);
11355 sym->st_other -= STO_MICROMIPS;
11356 }
11357
11358 return true;
11359 }
11360
11361 /* Likewise, for VxWorks. */
11362
11363 bool
11364 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11365 struct bfd_link_info *info,
11366 struct elf_link_hash_entry *h,
11367 Elf_Internal_Sym *sym)
11368 {
11369 bfd *dynobj;
11370 asection *sgot;
11371 struct mips_got_info *g;
11372 struct mips_elf_link_hash_table *htab;
11373 struct mips_elf_link_hash_entry *hmips;
11374
11375 htab = mips_elf_hash_table (info);
11376 BFD_ASSERT (htab != NULL);
11377 dynobj = elf_hash_table (info)->dynobj;
11378 hmips = (struct mips_elf_link_hash_entry *) h;
11379
11380 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11381 {
11382 bfd_byte *loc;
11383 bfd_vma plt_address, got_address, got_offset, branch_offset;
11384 Elf_Internal_Rela rel;
11385 static const bfd_vma *plt_entry;
11386 bfd_vma gotplt_index;
11387 bfd_vma plt_offset;
11388
11389 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11390 gotplt_index = h->plt.plist->gotplt_index;
11391
11392 BFD_ASSERT (h->dynindx != -1);
11393 BFD_ASSERT (htab->root.splt != NULL);
11394 BFD_ASSERT (gotplt_index != MINUS_ONE);
11395 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11396
11397 /* Calculate the address of the .plt entry. */
11398 plt_address = (htab->root.splt->output_section->vma
11399 + htab->root.splt->output_offset
11400 + plt_offset);
11401
11402 /* Calculate the address of the .got.plt entry. */
11403 got_address = (htab->root.sgotplt->output_section->vma
11404 + htab->root.sgotplt->output_offset
11405 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11406
11407 /* Calculate the offset of the .got.plt entry from
11408 _GLOBAL_OFFSET_TABLE_. */
11409 got_offset = mips_elf_gotplt_index (info, h);
11410
11411 /* Calculate the offset for the branch at the start of the PLT
11412 entry. The branch jumps to the beginning of .plt. */
11413 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11414
11415 /* Fill in the initial value of the .got.plt entry. */
11416 bfd_put_32 (output_bfd, plt_address,
11417 (htab->root.sgotplt->contents
11418 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11419
11420 /* Find out where the .plt entry should go. */
11421 loc = htab->root.splt->contents + plt_offset;
11422
11423 if (bfd_link_pic (info))
11424 {
11425 plt_entry = mips_vxworks_shared_plt_entry;
11426 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11427 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11428 }
11429 else
11430 {
11431 bfd_vma got_address_high, got_address_low;
11432
11433 plt_entry = mips_vxworks_exec_plt_entry;
11434 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11435 got_address_low = got_address & 0xffff;
11436
11437 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11438 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11439 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11440 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11441 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11442 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11443 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11444 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11445
11446 loc = (htab->srelplt2->contents
11447 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11448
11449 /* Emit a relocation for the .got.plt entry. */
11450 rel.r_offset = got_address;
11451 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11452 rel.r_addend = plt_offset;
11453 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11454
11455 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11456 loc += sizeof (Elf32_External_Rela);
11457 rel.r_offset = plt_address + 8;
11458 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11459 rel.r_addend = got_offset;
11460 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11461
11462 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11463 loc += sizeof (Elf32_External_Rela);
11464 rel.r_offset += 4;
11465 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11466 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11467 }
11468
11469 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11470 loc = (htab->root.srelplt->contents
11471 + gotplt_index * sizeof (Elf32_External_Rela));
11472 rel.r_offset = got_address;
11473 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11474 rel.r_addend = 0;
11475 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11476
11477 if (!h->def_regular)
11478 sym->st_shndx = SHN_UNDEF;
11479 }
11480
11481 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11482
11483 sgot = htab->root.sgot;
11484 g = htab->got_info;
11485 BFD_ASSERT (g != NULL);
11486
11487 /* See if this symbol has an entry in the GOT. */
11488 if (hmips->global_got_area != GGA_NONE)
11489 {
11490 bfd_vma offset;
11491 Elf_Internal_Rela outrel;
11492 bfd_byte *loc;
11493 asection *s;
11494
11495 /* Install the symbol value in the GOT. */
11496 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11497 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11498
11499 /* Add a dynamic relocation for it. */
11500 s = mips_elf_rel_dyn_section (info, false);
11501 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11502 outrel.r_offset = (sgot->output_section->vma
11503 + sgot->output_offset
11504 + offset);
11505 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11506 outrel.r_addend = 0;
11507 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11508 }
11509
11510 /* Emit a copy reloc, if needed. */
11511 if (h->needs_copy)
11512 {
11513 Elf_Internal_Rela rel;
11514 asection *srel;
11515 bfd_byte *loc;
11516
11517 BFD_ASSERT (h->dynindx != -1);
11518
11519 rel.r_offset = (h->root.u.def.section->output_section->vma
11520 + h->root.u.def.section->output_offset
11521 + h->root.u.def.value);
11522 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11523 rel.r_addend = 0;
11524 if (h->root.u.def.section == htab->root.sdynrelro)
11525 srel = htab->root.sreldynrelro;
11526 else
11527 srel = htab->root.srelbss;
11528 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11529 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11530 ++srel->reloc_count;
11531 }
11532
11533 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11534 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11535 sym->st_value &= ~1;
11536
11537 return true;
11538 }
11539
11540 /* Write out a plt0 entry to the beginning of .plt. */
11541
11542 static bool
11543 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11544 {
11545 bfd_byte *loc;
11546 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11547 static const bfd_vma *plt_entry;
11548 struct mips_elf_link_hash_table *htab;
11549
11550 htab = mips_elf_hash_table (info);
11551 BFD_ASSERT (htab != NULL);
11552
11553 if (ABI_64_P (output_bfd))
11554 plt_entry = (htab->compact_branches
11555 ? mipsr6_n64_exec_plt0_entry_compact
11556 : mips_n64_exec_plt0_entry);
11557 else if (ABI_N32_P (output_bfd))
11558 plt_entry = (htab->compact_branches
11559 ? mipsr6_n32_exec_plt0_entry_compact
11560 : mips_n32_exec_plt0_entry);
11561 else if (!htab->plt_header_is_comp)
11562 plt_entry = (htab->compact_branches
11563 ? mipsr6_o32_exec_plt0_entry_compact
11564 : mips_o32_exec_plt0_entry);
11565 else if (htab->insn32)
11566 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11567 else
11568 plt_entry = micromips_o32_exec_plt0_entry;
11569
11570 /* Calculate the value of .got.plt. */
11571 gotplt_value = (htab->root.sgotplt->output_section->vma
11572 + htab->root.sgotplt->output_offset);
11573 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11574 gotplt_value_low = gotplt_value & 0xffff;
11575
11576 /* The PLT sequence is not safe for N64 if .got.plt's address can
11577 not be loaded in two instructions. */
11578 if (ABI_64_P (output_bfd)
11579 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11580 {
11581 _bfd_error_handler
11582 /* xgettext:c-format */
11583 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11584 "supported; consider using `-Ttext-segment=...'"),
11585 output_bfd,
11586 htab->root.sgotplt->output_section,
11587 (int64_t) gotplt_value);
11588 bfd_set_error (bfd_error_no_error);
11589 return false;
11590 }
11591
11592 /* Install the PLT header. */
11593 loc = htab->root.splt->contents;
11594 if (plt_entry == micromips_o32_exec_plt0_entry)
11595 {
11596 bfd_vma gotpc_offset;
11597 bfd_vma loc_address;
11598 size_t i;
11599
11600 BFD_ASSERT (gotplt_value % 4 == 0);
11601
11602 loc_address = (htab->root.splt->output_section->vma
11603 + htab->root.splt->output_offset);
11604 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11605
11606 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11607 if (gotpc_offset + 0x1000000 >= 0x2000000)
11608 {
11609 _bfd_error_handler
11610 /* xgettext:c-format */
11611 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11612 "beyond the range of ADDIUPC"),
11613 output_bfd,
11614 htab->root.sgotplt->output_section,
11615 (int64_t) gotpc_offset,
11616 htab->root.splt->output_section);
11617 bfd_set_error (bfd_error_no_error);
11618 return false;
11619 }
11620 bfd_put_16 (output_bfd,
11621 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11622 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11623 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11624 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11625 }
11626 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11627 {
11628 size_t i;
11629
11630 bfd_put_16 (output_bfd, plt_entry[0], loc);
11631 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11632 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11633 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11634 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11635 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11636 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11637 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11638 }
11639 else
11640 {
11641 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11642 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11643 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11644 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11645 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11646 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11647 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11648 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11649 }
11650
11651 return true;
11652 }
11653
11654 /* Install the PLT header for a VxWorks executable and finalize the
11655 contents of .rela.plt.unloaded. */
11656
11657 static void
11658 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11659 {
11660 Elf_Internal_Rela rela;
11661 bfd_byte *loc;
11662 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11663 static const bfd_vma *plt_entry;
11664 struct mips_elf_link_hash_table *htab;
11665
11666 htab = mips_elf_hash_table (info);
11667 BFD_ASSERT (htab != NULL);
11668
11669 plt_entry = mips_vxworks_exec_plt0_entry;
11670
11671 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11672 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11673 + htab->root.hgot->root.u.def.section->output_offset
11674 + htab->root.hgot->root.u.def.value);
11675
11676 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11677 got_value_low = got_value & 0xffff;
11678
11679 /* Calculate the address of the PLT header. */
11680 plt_address = (htab->root.splt->output_section->vma
11681 + htab->root.splt->output_offset);
11682
11683 /* Install the PLT header. */
11684 loc = htab->root.splt->contents;
11685 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11686 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11687 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11688 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11689 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11690 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11691
11692 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11693 loc = htab->srelplt2->contents;
11694 rela.r_offset = plt_address;
11695 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11696 rela.r_addend = 0;
11697 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11698 loc += sizeof (Elf32_External_Rela);
11699
11700 /* Output the relocation for the following addiu of
11701 %lo(_GLOBAL_OFFSET_TABLE_). */
11702 rela.r_offset += 4;
11703 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11704 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11705 loc += sizeof (Elf32_External_Rela);
11706
11707 /* Fix up the remaining relocations. They may have the wrong
11708 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11709 in which symbols were output. */
11710 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11711 {
11712 Elf_Internal_Rela rel;
11713
11714 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11715 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11716 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11717 loc += sizeof (Elf32_External_Rela);
11718
11719 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11720 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11721 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11722 loc += sizeof (Elf32_External_Rela);
11723
11724 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11725 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11726 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11727 loc += sizeof (Elf32_External_Rela);
11728 }
11729 }
11730
11731 /* Install the PLT header for a VxWorks shared library. */
11732
11733 static void
11734 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11735 {
11736 unsigned int i;
11737 struct mips_elf_link_hash_table *htab;
11738
11739 htab = mips_elf_hash_table (info);
11740 BFD_ASSERT (htab != NULL);
11741
11742 /* We just need to copy the entry byte-by-byte. */
11743 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11744 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11745 htab->root.splt->contents + i * 4);
11746 }
11747
11748 /* Finish up the dynamic sections. */
11749
11750 bool
11751 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11752 struct bfd_link_info *info)
11753 {
11754 bfd *dynobj;
11755 asection *sdyn;
11756 asection *sgot;
11757 struct mips_got_info *gg, *g;
11758 struct mips_elf_link_hash_table *htab;
11759
11760 htab = mips_elf_hash_table (info);
11761 BFD_ASSERT (htab != NULL);
11762
11763 dynobj = elf_hash_table (info)->dynobj;
11764
11765 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11766
11767 sgot = htab->root.sgot;
11768 gg = htab->got_info;
11769
11770 if (elf_hash_table (info)->dynamic_sections_created)
11771 {
11772 bfd_byte *b;
11773 int dyn_to_skip = 0, dyn_skipped = 0;
11774
11775 BFD_ASSERT (sdyn != NULL);
11776 BFD_ASSERT (gg != NULL);
11777
11778 g = mips_elf_bfd_got (output_bfd, false);
11779 BFD_ASSERT (g != NULL);
11780
11781 for (b = sdyn->contents;
11782 b < sdyn->contents + sdyn->size;
11783 b += MIPS_ELF_DYN_SIZE (dynobj))
11784 {
11785 Elf_Internal_Dyn dyn;
11786 const char *name;
11787 size_t elemsize;
11788 asection *s;
11789 bool swap_out_p;
11790
11791 /* Read in the current dynamic entry. */
11792 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11793
11794 /* Assume that we're going to modify it and write it out. */
11795 swap_out_p = true;
11796
11797 switch (dyn.d_tag)
11798 {
11799 case DT_RELENT:
11800 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11801 break;
11802
11803 case DT_RELAENT:
11804 BFD_ASSERT (htab->root.target_os == is_vxworks);
11805 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11806 break;
11807
11808 case DT_STRSZ:
11809 /* Rewrite DT_STRSZ. */
11810 dyn.d_un.d_val =
11811 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11812 break;
11813
11814 case DT_PLTGOT:
11815 s = htab->root.sgot;
11816 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11817 break;
11818
11819 case DT_MIPS_PLTGOT:
11820 s = htab->root.sgotplt;
11821 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11822 break;
11823
11824 case DT_MIPS_RLD_VERSION:
11825 dyn.d_un.d_val = 1; /* XXX */
11826 break;
11827
11828 case DT_MIPS_FLAGS:
11829 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11830 break;
11831
11832 case DT_MIPS_TIME_STAMP:
11833 {
11834 time_t t;
11835 time (&t);
11836 dyn.d_un.d_val = t;
11837 }
11838 break;
11839
11840 case DT_MIPS_ICHECKSUM:
11841 /* XXX FIXME: */
11842 swap_out_p = false;
11843 break;
11844
11845 case DT_MIPS_IVERSION:
11846 /* XXX FIXME: */
11847 swap_out_p = false;
11848 break;
11849
11850 case DT_MIPS_BASE_ADDRESS:
11851 s = output_bfd->sections;
11852 BFD_ASSERT (s != NULL);
11853 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11854 break;
11855
11856 case DT_MIPS_LOCAL_GOTNO:
11857 dyn.d_un.d_val = g->local_gotno;
11858 break;
11859
11860 case DT_MIPS_UNREFEXTNO:
11861 /* The index into the dynamic symbol table which is the
11862 entry of the first external symbol that is not
11863 referenced within the same object. */
11864 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11865 break;
11866
11867 case DT_MIPS_GOTSYM:
11868 if (htab->global_gotsym)
11869 {
11870 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11871 break;
11872 }
11873 /* In case if we don't have global got symbols we default
11874 to setting DT_MIPS_GOTSYM to the same value as
11875 DT_MIPS_SYMTABNO. */
11876 /* Fall through. */
11877
11878 case DT_MIPS_SYMTABNO:
11879 name = ".dynsym";
11880 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11881 s = bfd_get_linker_section (dynobj, name);
11882
11883 if (s != NULL)
11884 dyn.d_un.d_val = s->size / elemsize;
11885 else
11886 dyn.d_un.d_val = 0;
11887 break;
11888
11889 case DT_MIPS_HIPAGENO:
11890 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11891 break;
11892
11893 case DT_MIPS_RLD_MAP:
11894 {
11895 struct elf_link_hash_entry *h;
11896 h = mips_elf_hash_table (info)->rld_symbol;
11897 if (!h)
11898 {
11899 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11900 swap_out_p = false;
11901 break;
11902 }
11903 s = h->root.u.def.section;
11904
11905 /* The MIPS_RLD_MAP tag stores the absolute address of the
11906 debug pointer. */
11907 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11908 + h->root.u.def.value);
11909 }
11910 break;
11911
11912 case DT_MIPS_RLD_MAP_REL:
11913 {
11914 struct elf_link_hash_entry *h;
11915 bfd_vma dt_addr, rld_addr;
11916 h = mips_elf_hash_table (info)->rld_symbol;
11917 if (!h)
11918 {
11919 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11920 swap_out_p = false;
11921 break;
11922 }
11923 s = h->root.u.def.section;
11924
11925 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11926 pointer, relative to the address of the tag. */
11927 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11928 + (b - sdyn->contents));
11929 rld_addr = (s->output_section->vma + s->output_offset
11930 + h->root.u.def.value);
11931 dyn.d_un.d_ptr = rld_addr - dt_addr;
11932 }
11933 break;
11934
11935 case DT_MIPS_OPTIONS:
11936 s = (bfd_get_section_by_name
11937 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11938 dyn.d_un.d_ptr = s->vma;
11939 break;
11940
11941 case DT_PLTREL:
11942 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11943 if (htab->root.target_os == is_vxworks)
11944 dyn.d_un.d_val = DT_RELA;
11945 else
11946 dyn.d_un.d_val = DT_REL;
11947 break;
11948
11949 case DT_PLTRELSZ:
11950 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11951 dyn.d_un.d_val = htab->root.srelplt->size;
11952 break;
11953
11954 case DT_JMPREL:
11955 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11956 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11957 + htab->root.srelplt->output_offset);
11958 break;
11959
11960 case DT_TEXTREL:
11961 /* If we didn't need any text relocations after all, delete
11962 the dynamic tag. */
11963 if (!(info->flags & DF_TEXTREL))
11964 {
11965 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11966 swap_out_p = false;
11967 }
11968 break;
11969
11970 case DT_FLAGS:
11971 /* If we didn't need any text relocations after all, clear
11972 DF_TEXTREL from DT_FLAGS. */
11973 if (!(info->flags & DF_TEXTREL))
11974 dyn.d_un.d_val &= ~DF_TEXTREL;
11975 else
11976 swap_out_p = false;
11977 break;
11978
11979 case DT_MIPS_XHASH:
11980 name = ".MIPS.xhash";
11981 s = bfd_get_linker_section (dynobj, name);
11982 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11983 break;
11984
11985 default:
11986 swap_out_p = false;
11987 if (htab->root.target_os == is_vxworks
11988 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11989 swap_out_p = true;
11990 break;
11991 }
11992
11993 if (swap_out_p || dyn_skipped)
11994 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11995 (dynobj, &dyn, b - dyn_skipped);
11996
11997 if (dyn_to_skip)
11998 {
11999 dyn_skipped += dyn_to_skip;
12000 dyn_to_skip = 0;
12001 }
12002 }
12003
12004 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12005 if (dyn_skipped > 0)
12006 memset (b - dyn_skipped, 0, dyn_skipped);
12007 }
12008
12009 if (sgot != NULL && sgot->size > 0
12010 && !bfd_is_abs_section (sgot->output_section))
12011 {
12012 if (htab->root.target_os == is_vxworks)
12013 {
12014 /* The first entry of the global offset table points to the
12015 ".dynamic" section. The second is initialized by the
12016 loader and contains the shared library identifier.
12017 The third is also initialized by the loader and points
12018 to the lazy resolution stub. */
12019 MIPS_ELF_PUT_WORD (output_bfd,
12020 sdyn->output_offset + sdyn->output_section->vma,
12021 sgot->contents);
12022 MIPS_ELF_PUT_WORD (output_bfd, 0,
12023 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12024 MIPS_ELF_PUT_WORD (output_bfd, 0,
12025 sgot->contents
12026 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12027 }
12028 else
12029 {
12030 /* The first entry of the global offset table will be filled at
12031 runtime. The second entry will be used by some runtime loaders.
12032 This isn't the case of IRIX rld. */
12033 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12034 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12035 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12036 }
12037
12038 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12039 = MIPS_ELF_GOT_SIZE (output_bfd);
12040 }
12041
12042 /* Generate dynamic relocations for the non-primary gots. */
12043 if (gg != NULL && gg->next)
12044 {
12045 Elf_Internal_Rela rel[3];
12046 bfd_vma addend = 0;
12047
12048 memset (rel, 0, sizeof (rel));
12049 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12050
12051 for (g = gg->next; g->next != gg; g = g->next)
12052 {
12053 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12054 + g->next->tls_gotno;
12055
12056 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12057 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12058 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12059 sgot->contents
12060 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12061
12062 if (! bfd_link_pic (info))
12063 continue;
12064
12065 for (; got_index < g->local_gotno; got_index++)
12066 {
12067 if (got_index >= g->assigned_low_gotno
12068 && got_index <= g->assigned_high_gotno)
12069 continue;
12070
12071 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12072 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12073 if (!(mips_elf_create_dynamic_relocation
12074 (output_bfd, info, rel, NULL,
12075 bfd_abs_section_ptr,
12076 0, &addend, sgot)))
12077 return false;
12078 BFD_ASSERT (addend == 0);
12079 }
12080 }
12081 }
12082
12083 /* The generation of dynamic relocations for the non-primary gots
12084 adds more dynamic relocations. We cannot count them until
12085 here. */
12086
12087 if (elf_hash_table (info)->dynamic_sections_created)
12088 {
12089 bfd_byte *b;
12090 bool swap_out_p;
12091
12092 BFD_ASSERT (sdyn != NULL);
12093
12094 for (b = sdyn->contents;
12095 b < sdyn->contents + sdyn->size;
12096 b += MIPS_ELF_DYN_SIZE (dynobj))
12097 {
12098 Elf_Internal_Dyn dyn;
12099 asection *s;
12100
12101 /* Read in the current dynamic entry. */
12102 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12103
12104 /* Assume that we're going to modify it and write it out. */
12105 swap_out_p = true;
12106
12107 switch (dyn.d_tag)
12108 {
12109 case DT_RELSZ:
12110 /* Reduce DT_RELSZ to account for any relocations we
12111 decided not to make. This is for the n64 irix rld,
12112 which doesn't seem to apply any relocations if there
12113 are trailing null entries. */
12114 s = mips_elf_rel_dyn_section (info, false);
12115 dyn.d_un.d_val = (s->reloc_count
12116 * (ABI_64_P (output_bfd)
12117 ? sizeof (Elf64_Mips_External_Rel)
12118 : sizeof (Elf32_External_Rel)));
12119 /* Adjust the section size too. Tools like the prelinker
12120 can reasonably expect the values to the same. */
12121 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12122 elf_section_data (s->output_section)->this_hdr.sh_size
12123 = dyn.d_un.d_val;
12124 break;
12125
12126 default:
12127 swap_out_p = false;
12128 break;
12129 }
12130
12131 if (swap_out_p)
12132 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12133 (dynobj, &dyn, b);
12134 }
12135 }
12136
12137 {
12138 asection *s;
12139 Elf32_compact_rel cpt;
12140
12141 if (SGI_COMPAT (output_bfd))
12142 {
12143 /* Write .compact_rel section out. */
12144 s = bfd_get_linker_section (dynobj, ".compact_rel");
12145 if (s != NULL)
12146 {
12147 cpt.id1 = 1;
12148 cpt.num = s->reloc_count;
12149 cpt.id2 = 2;
12150 cpt.offset = (s->output_section->filepos
12151 + sizeof (Elf32_External_compact_rel));
12152 cpt.reserved0 = 0;
12153 cpt.reserved1 = 0;
12154 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12155 ((Elf32_External_compact_rel *)
12156 s->contents));
12157
12158 /* Clean up a dummy stub function entry in .text. */
12159 if (htab->sstubs != NULL
12160 && htab->sstubs->contents != NULL)
12161 {
12162 file_ptr dummy_offset;
12163
12164 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12165 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12166 memset (htab->sstubs->contents + dummy_offset, 0,
12167 htab->function_stub_size);
12168 }
12169 }
12170 }
12171
12172 /* The psABI says that the dynamic relocations must be sorted in
12173 increasing order of r_symndx. The VxWorks EABI doesn't require
12174 this, and because the code below handles REL rather than RELA
12175 relocations, using it for VxWorks would be outright harmful. */
12176 if (htab->root.target_os != is_vxworks)
12177 {
12178 s = mips_elf_rel_dyn_section (info, false);
12179 if (s != NULL
12180 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12181 {
12182 reldyn_sorting_bfd = output_bfd;
12183
12184 if (ABI_64_P (output_bfd))
12185 qsort ((Elf64_External_Rel *) s->contents + 1,
12186 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12187 sort_dynamic_relocs_64);
12188 else
12189 qsort ((Elf32_External_Rel *) s->contents + 1,
12190 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12191 sort_dynamic_relocs);
12192 }
12193 }
12194 }
12195
12196 if (htab->root.splt && htab->root.splt->size > 0)
12197 {
12198 if (htab->root.target_os == is_vxworks)
12199 {
12200 if (bfd_link_pic (info))
12201 mips_vxworks_finish_shared_plt (output_bfd, info);
12202 else
12203 mips_vxworks_finish_exec_plt (output_bfd, info);
12204 }
12205 else
12206 {
12207 BFD_ASSERT (!bfd_link_pic (info));
12208 if (!mips_finish_exec_plt (output_bfd, info))
12209 return false;
12210 }
12211 }
12212 return true;
12213 }
12214
12215
12216 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12217
12218 static void
12219 mips_set_isa_flags (bfd *abfd)
12220 {
12221 flagword val;
12222
12223 switch (bfd_get_mach (abfd))
12224 {
12225 default:
12226 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12227 val = E_MIPS_ARCH_3;
12228 else
12229 val = E_MIPS_ARCH_1;
12230 break;
12231
12232 case bfd_mach_mips3000:
12233 val = E_MIPS_ARCH_1;
12234 break;
12235
12236 case bfd_mach_mips3900:
12237 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12238 break;
12239
12240 case bfd_mach_mips6000:
12241 val = E_MIPS_ARCH_2;
12242 break;
12243
12244 case bfd_mach_mips4010:
12245 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12246 break;
12247
12248 case bfd_mach_mips4000:
12249 case bfd_mach_mips4300:
12250 case bfd_mach_mips4400:
12251 case bfd_mach_mips4600:
12252 val = E_MIPS_ARCH_3;
12253 break;
12254
12255 case bfd_mach_mips4100:
12256 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12257 break;
12258
12259 case bfd_mach_mips4111:
12260 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12261 break;
12262
12263 case bfd_mach_mips4120:
12264 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12265 break;
12266
12267 case bfd_mach_mips4650:
12268 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12269 break;
12270
12271 case bfd_mach_mips5400:
12272 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12273 break;
12274
12275 case bfd_mach_mips5500:
12276 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12277 break;
12278
12279 case bfd_mach_mips5900:
12280 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12281 break;
12282
12283 case bfd_mach_mips9000:
12284 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12285 break;
12286
12287 case bfd_mach_mips5000:
12288 case bfd_mach_mips7000:
12289 case bfd_mach_mips8000:
12290 case bfd_mach_mips10000:
12291 case bfd_mach_mips12000:
12292 case bfd_mach_mips14000:
12293 case bfd_mach_mips16000:
12294 val = E_MIPS_ARCH_4;
12295 break;
12296
12297 case bfd_mach_mips5:
12298 val = E_MIPS_ARCH_5;
12299 break;
12300
12301 case bfd_mach_mips_loongson_2e:
12302 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12303 break;
12304
12305 case bfd_mach_mips_loongson_2f:
12306 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12307 break;
12308
12309 case bfd_mach_mips_sb1:
12310 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12311 break;
12312
12313 case bfd_mach_mips_gs464:
12314 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12315 break;
12316
12317 case bfd_mach_mips_gs464e:
12318 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12319 break;
12320
12321 case bfd_mach_mips_gs264e:
12322 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12323 break;
12324
12325 case bfd_mach_mips_octeon:
12326 case bfd_mach_mips_octeonp:
12327 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12328 break;
12329
12330 case bfd_mach_mips_octeon3:
12331 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12332 break;
12333
12334 case bfd_mach_mips_xlr:
12335 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12336 break;
12337
12338 case bfd_mach_mips_octeon2:
12339 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12340 break;
12341
12342 case bfd_mach_mipsisa32:
12343 val = E_MIPS_ARCH_32;
12344 break;
12345
12346 case bfd_mach_mipsisa64:
12347 val = E_MIPS_ARCH_64;
12348 break;
12349
12350 case bfd_mach_mipsisa32r2:
12351 case bfd_mach_mipsisa32r3:
12352 case bfd_mach_mipsisa32r5:
12353 val = E_MIPS_ARCH_32R2;
12354 break;
12355
12356 case bfd_mach_mips_interaptiv_mr2:
12357 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12358 break;
12359
12360 case bfd_mach_mipsisa64r2:
12361 case bfd_mach_mipsisa64r3:
12362 case bfd_mach_mipsisa64r5:
12363 val = E_MIPS_ARCH_64R2;
12364 break;
12365
12366 case bfd_mach_mipsisa32r6:
12367 val = E_MIPS_ARCH_32R6;
12368 break;
12369
12370 case bfd_mach_mipsisa64r6:
12371 val = E_MIPS_ARCH_64R6;
12372 break;
12373 }
12374 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12375 elf_elfheader (abfd)->e_flags |= val;
12376
12377 }
12378
12379
12380 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12381 Don't do so for code sections. We want to keep ordering of HI16/LO16
12382 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12383 relocs to be sorted. */
12384
12385 bool
12386 _bfd_mips_elf_sort_relocs_p (asection *sec)
12387 {
12388 return (sec->flags & SEC_CODE) == 0;
12389 }
12390
12391
12392 /* The final processing done just before writing out a MIPS ELF object
12393 file. This gets the MIPS architecture right based on the machine
12394 number. This is used by both the 32-bit and the 64-bit ABI. */
12395
12396 void
12397 _bfd_mips_final_write_processing (bfd *abfd)
12398 {
12399 unsigned int i;
12400 Elf_Internal_Shdr **hdrpp;
12401 const char *name;
12402 asection *sec;
12403
12404 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12405 is nonzero. This is for compatibility with old objects, which used
12406 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12407 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12408 mips_set_isa_flags (abfd);
12409
12410 /* Set the sh_info field for .gptab sections and other appropriate
12411 info for each special section. */
12412 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12413 i < elf_numsections (abfd);
12414 i++, hdrpp++)
12415 {
12416 switch ((*hdrpp)->sh_type)
12417 {
12418 case SHT_MIPS_MSYM:
12419 case SHT_MIPS_LIBLIST:
12420 sec = bfd_get_section_by_name (abfd, ".dynstr");
12421 if (sec != NULL)
12422 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12423 break;
12424
12425 case SHT_MIPS_GPTAB:
12426 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12427 name = bfd_section_name ((*hdrpp)->bfd_section);
12428 BFD_ASSERT (name != NULL
12429 && startswith (name, ".gptab."));
12430 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12431 BFD_ASSERT (sec != NULL);
12432 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12433 break;
12434
12435 case SHT_MIPS_CONTENT:
12436 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12437 name = bfd_section_name ((*hdrpp)->bfd_section);
12438 BFD_ASSERT (name != NULL
12439 && startswith (name, ".MIPS.content"));
12440 sec = bfd_get_section_by_name (abfd,
12441 name + sizeof ".MIPS.content" - 1);
12442 BFD_ASSERT (sec != NULL);
12443 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12444 break;
12445
12446 case SHT_MIPS_SYMBOL_LIB:
12447 sec = bfd_get_section_by_name (abfd, ".dynsym");
12448 if (sec != NULL)
12449 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12450 sec = bfd_get_section_by_name (abfd, ".liblist");
12451 if (sec != NULL)
12452 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12453 break;
12454
12455 case SHT_MIPS_EVENTS:
12456 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12457 name = bfd_section_name ((*hdrpp)->bfd_section);
12458 BFD_ASSERT (name != NULL);
12459 if (startswith (name, ".MIPS.events"))
12460 sec = bfd_get_section_by_name (abfd,
12461 name + sizeof ".MIPS.events" - 1);
12462 else
12463 {
12464 BFD_ASSERT (startswith (name, ".MIPS.post_rel"));
12465 sec = bfd_get_section_by_name (abfd,
12466 (name
12467 + sizeof ".MIPS.post_rel" - 1));
12468 }
12469 BFD_ASSERT (sec != NULL);
12470 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12471 break;
12472
12473 case SHT_MIPS_XHASH:
12474 sec = bfd_get_section_by_name (abfd, ".dynsym");
12475 if (sec != NULL)
12476 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12477 }
12478 }
12479 }
12480
12481 bool
12482 _bfd_mips_elf_final_write_processing (bfd *abfd)
12483 {
12484 _bfd_mips_final_write_processing (abfd);
12485 return _bfd_elf_final_write_processing (abfd);
12486 }
12487 \f
12488 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12489 segments. */
12490
12491 int
12492 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12493 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12494 {
12495 asection *s;
12496 int ret = 0;
12497
12498 /* See if we need a PT_MIPS_REGINFO segment. */
12499 s = bfd_get_section_by_name (abfd, ".reginfo");
12500 if (s && (s->flags & SEC_LOAD))
12501 ++ret;
12502
12503 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12504 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12505 ++ret;
12506
12507 /* See if we need a PT_MIPS_OPTIONS segment. */
12508 if (IRIX_COMPAT (abfd) == ict_irix6
12509 && bfd_get_section_by_name (abfd,
12510 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12511 ++ret;
12512
12513 /* See if we need a PT_MIPS_RTPROC segment. */
12514 if (IRIX_COMPAT (abfd) == ict_irix5
12515 && bfd_get_section_by_name (abfd, ".dynamic")
12516 && bfd_get_section_by_name (abfd, ".mdebug"))
12517 ++ret;
12518
12519 /* Allocate a PT_NULL header in dynamic objects. See
12520 _bfd_mips_elf_modify_segment_map for details. */
12521 if (!SGI_COMPAT (abfd)
12522 && bfd_get_section_by_name (abfd, ".dynamic"))
12523 ++ret;
12524
12525 return ret;
12526 }
12527
12528 /* Modify the segment map for an IRIX5 executable. */
12529
12530 bool
12531 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12532 struct bfd_link_info *info)
12533 {
12534 asection *s;
12535 struct elf_segment_map *m, **pm;
12536 size_t amt;
12537
12538 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12539 segment. */
12540 s = bfd_get_section_by_name (abfd, ".reginfo");
12541 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12542 {
12543 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12544 if (m->p_type == PT_MIPS_REGINFO)
12545 break;
12546 if (m == NULL)
12547 {
12548 amt = sizeof *m;
12549 m = bfd_zalloc (abfd, amt);
12550 if (m == NULL)
12551 return false;
12552
12553 m->p_type = PT_MIPS_REGINFO;
12554 m->count = 1;
12555 m->sections[0] = s;
12556
12557 /* We want to put it after the PHDR and INTERP segments. */
12558 pm = &elf_seg_map (abfd);
12559 while (*pm != NULL
12560 && ((*pm)->p_type == PT_PHDR
12561 || (*pm)->p_type == PT_INTERP))
12562 pm = &(*pm)->next;
12563
12564 m->next = *pm;
12565 *pm = m;
12566 }
12567 }
12568
12569 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12570 segment. */
12571 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12572 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12573 {
12574 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12575 if (m->p_type == PT_MIPS_ABIFLAGS)
12576 break;
12577 if (m == NULL)
12578 {
12579 amt = sizeof *m;
12580 m = bfd_zalloc (abfd, amt);
12581 if (m == NULL)
12582 return false;
12583
12584 m->p_type = PT_MIPS_ABIFLAGS;
12585 m->count = 1;
12586 m->sections[0] = s;
12587
12588 /* We want to put it after the PHDR and INTERP segments. */
12589 pm = &elf_seg_map (abfd);
12590 while (*pm != NULL
12591 && ((*pm)->p_type == PT_PHDR
12592 || (*pm)->p_type == PT_INTERP))
12593 pm = &(*pm)->next;
12594
12595 m->next = *pm;
12596 *pm = m;
12597 }
12598 }
12599
12600 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12601 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12602 PT_MIPS_OPTIONS segment immediately following the program header
12603 table. */
12604 if (NEWABI_P (abfd)
12605 /* On non-IRIX6 new abi, we'll have already created a segment
12606 for this section, so don't create another. I'm not sure this
12607 is not also the case for IRIX 6, but I can't test it right
12608 now. */
12609 && IRIX_COMPAT (abfd) == ict_irix6)
12610 {
12611 for (s = abfd->sections; s; s = s->next)
12612 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12613 break;
12614
12615 if (s)
12616 {
12617 struct elf_segment_map *options_segment;
12618
12619 pm = &elf_seg_map (abfd);
12620 while (*pm != NULL
12621 && ((*pm)->p_type == PT_PHDR
12622 || (*pm)->p_type == PT_INTERP))
12623 pm = &(*pm)->next;
12624
12625 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12626 {
12627 amt = sizeof (struct elf_segment_map);
12628 options_segment = bfd_zalloc (abfd, amt);
12629 options_segment->next = *pm;
12630 options_segment->p_type = PT_MIPS_OPTIONS;
12631 options_segment->p_flags = PF_R;
12632 options_segment->p_flags_valid = true;
12633 options_segment->count = 1;
12634 options_segment->sections[0] = s;
12635 *pm = options_segment;
12636 }
12637 }
12638 }
12639 else
12640 {
12641 if (IRIX_COMPAT (abfd) == ict_irix5)
12642 {
12643 /* If there are .dynamic and .mdebug sections, we make a room
12644 for the RTPROC header. FIXME: Rewrite without section names. */
12645 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12646 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12647 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12648 {
12649 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12650 if (m->p_type == PT_MIPS_RTPROC)
12651 break;
12652 if (m == NULL)
12653 {
12654 amt = sizeof *m;
12655 m = bfd_zalloc (abfd, amt);
12656 if (m == NULL)
12657 return false;
12658
12659 m->p_type = PT_MIPS_RTPROC;
12660
12661 s = bfd_get_section_by_name (abfd, ".rtproc");
12662 if (s == NULL)
12663 {
12664 m->count = 0;
12665 m->p_flags = 0;
12666 m->p_flags_valid = 1;
12667 }
12668 else
12669 {
12670 m->count = 1;
12671 m->sections[0] = s;
12672 }
12673
12674 /* We want to put it after the DYNAMIC segment. */
12675 pm = &elf_seg_map (abfd);
12676 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12677 pm = &(*pm)->next;
12678 if (*pm != NULL)
12679 pm = &(*pm)->next;
12680
12681 m->next = *pm;
12682 *pm = m;
12683 }
12684 }
12685 }
12686 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12687 .dynstr, .dynsym, and .hash sections, and everything in
12688 between. */
12689 for (pm = &elf_seg_map (abfd); *pm != NULL;
12690 pm = &(*pm)->next)
12691 if ((*pm)->p_type == PT_DYNAMIC)
12692 break;
12693 m = *pm;
12694 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12695 glibc's dynamic linker has traditionally derived the number of
12696 tags from the p_filesz field, and sometimes allocates stack
12697 arrays of that size. An overly-big PT_DYNAMIC segment can
12698 be actively harmful in such cases. Making PT_DYNAMIC contain
12699 other sections can also make life hard for the prelinker,
12700 which might move one of the other sections to a different
12701 PT_LOAD segment. */
12702 if (SGI_COMPAT (abfd)
12703 && m != NULL
12704 && m->count == 1
12705 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12706 {
12707 static const char *sec_names[] =
12708 {
12709 ".dynamic", ".dynstr", ".dynsym", ".hash"
12710 };
12711 bfd_vma low, high;
12712 unsigned int i, c;
12713 struct elf_segment_map *n;
12714
12715 low = ~(bfd_vma) 0;
12716 high = 0;
12717 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12718 {
12719 s = bfd_get_section_by_name (abfd, sec_names[i]);
12720 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12721 {
12722 bfd_size_type sz;
12723
12724 if (low > s->vma)
12725 low = s->vma;
12726 sz = s->size;
12727 if (high < s->vma + sz)
12728 high = s->vma + sz;
12729 }
12730 }
12731
12732 c = 0;
12733 for (s = abfd->sections; s != NULL; s = s->next)
12734 if ((s->flags & SEC_LOAD) != 0
12735 && s->vma >= low
12736 && s->vma + s->size <= high)
12737 ++c;
12738
12739 amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *);
12740 n = bfd_zalloc (abfd, amt);
12741 if (n == NULL)
12742 return false;
12743 *n = *m;
12744 n->count = c;
12745
12746 i = 0;
12747 for (s = abfd->sections; s != NULL; s = s->next)
12748 {
12749 if ((s->flags & SEC_LOAD) != 0
12750 && s->vma >= low
12751 && s->vma + s->size <= high)
12752 {
12753 n->sections[i] = s;
12754 ++i;
12755 }
12756 }
12757
12758 *pm = n;
12759 }
12760 }
12761
12762 /* Allocate a spare program header in dynamic objects so that tools
12763 like the prelinker can add an extra PT_LOAD entry.
12764
12765 If the prelinker needs to make room for a new PT_LOAD entry, its
12766 standard procedure is to move the first (read-only) sections into
12767 the new (writable) segment. However, the MIPS ABI requires
12768 .dynamic to be in a read-only segment, and the section will often
12769 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12770
12771 Although the prelinker could in principle move .dynamic to a
12772 writable segment, it seems better to allocate a spare program
12773 header instead, and avoid the need to move any sections.
12774 There is a long tradition of allocating spare dynamic tags,
12775 so allocating a spare program header seems like a natural
12776 extension.
12777
12778 If INFO is NULL, we may be copying an already prelinked binary
12779 with objcopy or strip, so do not add this header. */
12780 if (info != NULL
12781 && !SGI_COMPAT (abfd)
12782 && bfd_get_section_by_name (abfd, ".dynamic"))
12783 {
12784 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12785 if ((*pm)->p_type == PT_NULL)
12786 break;
12787 if (*pm == NULL)
12788 {
12789 m = bfd_zalloc (abfd, sizeof (*m));
12790 if (m == NULL)
12791 return false;
12792
12793 m->p_type = PT_NULL;
12794 *pm = m;
12795 }
12796 }
12797
12798 return true;
12799 }
12800 \f
12801 /* Return the section that should be marked against GC for a given
12802 relocation. */
12803
12804 asection *
12805 _bfd_mips_elf_gc_mark_hook (asection *sec,
12806 struct bfd_link_info *info,
12807 Elf_Internal_Rela *rel,
12808 struct elf_link_hash_entry *h,
12809 Elf_Internal_Sym *sym)
12810 {
12811 /* ??? Do mips16 stub sections need to be handled special? */
12812
12813 if (h != NULL)
12814 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12815 {
12816 case R_MIPS_GNU_VTINHERIT:
12817 case R_MIPS_GNU_VTENTRY:
12818 return NULL;
12819 }
12820
12821 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12822 }
12823
12824 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12825
12826 bool
12827 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12828 elf_gc_mark_hook_fn gc_mark_hook)
12829 {
12830 bfd *sub;
12831
12832 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12833
12834 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12835 {
12836 asection *o;
12837
12838 if (! is_mips_elf (sub))
12839 continue;
12840
12841 for (o = sub->sections; o != NULL; o = o->next)
12842 if (!o->gc_mark
12843 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
12844 {
12845 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12846 return false;
12847 }
12848 }
12849
12850 return true;
12851 }
12852 \f
12853 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12854 hiding the old indirect symbol. Process additional relocation
12855 information. Also called for weakdefs, in which case we just let
12856 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12857
12858 void
12859 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12860 struct elf_link_hash_entry *dir,
12861 struct elf_link_hash_entry *ind)
12862 {
12863 struct mips_elf_link_hash_entry *dirmips, *indmips;
12864
12865 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12866
12867 dirmips = (struct mips_elf_link_hash_entry *) dir;
12868 indmips = (struct mips_elf_link_hash_entry *) ind;
12869 /* Any absolute non-dynamic relocations against an indirect or weak
12870 definition will be against the target symbol. */
12871 if (indmips->has_static_relocs)
12872 dirmips->has_static_relocs = true;
12873
12874 if (ind->root.type != bfd_link_hash_indirect)
12875 return;
12876
12877 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12878 if (indmips->readonly_reloc)
12879 dirmips->readonly_reloc = true;
12880 if (indmips->no_fn_stub)
12881 dirmips->no_fn_stub = true;
12882 if (indmips->fn_stub)
12883 {
12884 dirmips->fn_stub = indmips->fn_stub;
12885 indmips->fn_stub = NULL;
12886 }
12887 if (indmips->need_fn_stub)
12888 {
12889 dirmips->need_fn_stub = true;
12890 indmips->need_fn_stub = false;
12891 }
12892 if (indmips->call_stub)
12893 {
12894 dirmips->call_stub = indmips->call_stub;
12895 indmips->call_stub = NULL;
12896 }
12897 if (indmips->call_fp_stub)
12898 {
12899 dirmips->call_fp_stub = indmips->call_fp_stub;
12900 indmips->call_fp_stub = NULL;
12901 }
12902 if (indmips->global_got_area < dirmips->global_got_area)
12903 dirmips->global_got_area = indmips->global_got_area;
12904 if (indmips->global_got_area < GGA_NONE)
12905 indmips->global_got_area = GGA_NONE;
12906 if (indmips->has_nonpic_branches)
12907 dirmips->has_nonpic_branches = true;
12908 }
12909
12910 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12911 to hide it. It has to remain global (it will also be protected) so as to
12912 be assigned a global GOT entry, which will then remain unchanged at load
12913 time. */
12914
12915 void
12916 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12917 struct elf_link_hash_entry *entry,
12918 bool force_local)
12919 {
12920 struct mips_elf_link_hash_table *htab;
12921
12922 htab = mips_elf_hash_table (info);
12923 BFD_ASSERT (htab != NULL);
12924 if (htab->use_absolute_zero
12925 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12926 return;
12927
12928 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12929 }
12930 \f
12931 #define PDR_SIZE 32
12932
12933 bool
12934 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12935 struct bfd_link_info *info)
12936 {
12937 asection *o;
12938 bool ret = false;
12939 unsigned char *tdata;
12940 size_t i, skip;
12941
12942 o = bfd_get_section_by_name (abfd, ".pdr");
12943 if (! o)
12944 return false;
12945 if (o->size == 0)
12946 return false;
12947 if (o->size % PDR_SIZE != 0)
12948 return false;
12949 if (o->output_section != NULL
12950 && bfd_is_abs_section (o->output_section))
12951 return false;
12952
12953 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12954 if (! tdata)
12955 return false;
12956
12957 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12958 info->keep_memory);
12959 if (!cookie->rels)
12960 {
12961 free (tdata);
12962 return false;
12963 }
12964
12965 cookie->rel = cookie->rels;
12966 cookie->relend = cookie->rels + o->reloc_count;
12967
12968 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12969 {
12970 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12971 {
12972 tdata[i] = 1;
12973 skip ++;
12974 }
12975 }
12976
12977 if (skip != 0)
12978 {
12979 mips_elf_section_data (o)->u.tdata = tdata;
12980 if (o->rawsize == 0)
12981 o->rawsize = o->size;
12982 o->size -= skip * PDR_SIZE;
12983 ret = true;
12984 }
12985 else
12986 free (tdata);
12987
12988 if (! info->keep_memory)
12989 free (cookie->rels);
12990
12991 return ret;
12992 }
12993
12994 bool
12995 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12996 {
12997 if (strcmp (sec->name, ".pdr") == 0)
12998 return true;
12999 return false;
13000 }
13001
13002 bool
13003 _bfd_mips_elf_write_section (bfd *output_bfd,
13004 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
13005 asection *sec, bfd_byte *contents)
13006 {
13007 bfd_byte *to, *from, *end;
13008 int i;
13009
13010 if (strcmp (sec->name, ".pdr") != 0)
13011 return false;
13012
13013 if (mips_elf_section_data (sec)->u.tdata == NULL)
13014 return false;
13015
13016 to = contents;
13017 end = contents + sec->size;
13018 for (from = contents, i = 0;
13019 from < end;
13020 from += PDR_SIZE, i++)
13021 {
13022 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
13023 continue;
13024 if (to != from)
13025 memcpy (to, from, PDR_SIZE);
13026 to += PDR_SIZE;
13027 }
13028 bfd_set_section_contents (output_bfd, sec->output_section, contents,
13029 sec->output_offset, sec->size);
13030 return true;
13031 }
13032 \f
13033 /* microMIPS code retains local labels for linker relaxation. Omit them
13034 from output by default for clarity. */
13035
13036 bool
13037 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13038 {
13039 return _bfd_elf_is_local_label_name (abfd, sym->name);
13040 }
13041
13042 /* MIPS ELF uses a special find_nearest_line routine in order the
13043 handle the ECOFF debugging information. */
13044
13045 struct mips_elf_find_line
13046 {
13047 struct ecoff_debug_info d;
13048 struct ecoff_find_line i;
13049 };
13050
13051 bool
13052 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13053 asection *section, bfd_vma offset,
13054 const char **filename_ptr,
13055 const char **functionname_ptr,
13056 unsigned int *line_ptr,
13057 unsigned int *discriminator_ptr)
13058 {
13059 asection *msec;
13060
13061 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13062 filename_ptr, functionname_ptr,
13063 line_ptr, discriminator_ptr,
13064 dwarf_debug_sections,
13065 &elf_tdata (abfd)->dwarf2_find_line_info)
13066 == 1)
13067 return true;
13068
13069 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13070 filename_ptr, functionname_ptr,
13071 line_ptr))
13072 {
13073 if (!*functionname_ptr)
13074 _bfd_elf_find_function (abfd, symbols, section, offset,
13075 *filename_ptr ? NULL : filename_ptr,
13076 functionname_ptr);
13077 return true;
13078 }
13079
13080 msec = bfd_get_section_by_name (abfd, ".mdebug");
13081 if (msec != NULL)
13082 {
13083 flagword origflags;
13084 struct mips_elf_find_line *fi;
13085 const struct ecoff_debug_swap * const swap =
13086 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13087
13088 /* If we are called during a link, mips_elf_final_link may have
13089 cleared the SEC_HAS_CONTENTS field. We force it back on here
13090 if appropriate (which it normally will be). */
13091 origflags = msec->flags;
13092 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13093 msec->flags |= SEC_HAS_CONTENTS;
13094
13095 fi = mips_elf_tdata (abfd)->find_line_info;
13096 if (fi == NULL)
13097 {
13098 bfd_size_type external_fdr_size;
13099 char *fraw_src;
13100 char *fraw_end;
13101 struct fdr *fdr_ptr;
13102 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13103
13104 fi = bfd_zalloc (abfd, amt);
13105 if (fi == NULL)
13106 {
13107 msec->flags = origflags;
13108 return false;
13109 }
13110
13111 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13112 {
13113 msec->flags = origflags;
13114 return false;
13115 }
13116
13117 /* Swap in the FDR information. */
13118 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13119 fi->d.fdr = bfd_alloc (abfd, amt);
13120 if (fi->d.fdr == NULL)
13121 {
13122 msec->flags = origflags;
13123 return false;
13124 }
13125 external_fdr_size = swap->external_fdr_size;
13126 fdr_ptr = fi->d.fdr;
13127 fraw_src = (char *) fi->d.external_fdr;
13128 fraw_end = (fraw_src
13129 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13130 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13131 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13132
13133 mips_elf_tdata (abfd)->find_line_info = fi;
13134
13135 /* Note that we don't bother to ever free this information.
13136 find_nearest_line is either called all the time, as in
13137 objdump -l, so the information should be saved, or it is
13138 rarely called, as in ld error messages, so the memory
13139 wasted is unimportant. Still, it would probably be a
13140 good idea for free_cached_info to throw it away. */
13141 }
13142
13143 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13144 &fi->i, filename_ptr, functionname_ptr,
13145 line_ptr))
13146 {
13147 msec->flags = origflags;
13148 return true;
13149 }
13150
13151 msec->flags = origflags;
13152 }
13153
13154 /* Fall back on the generic ELF find_nearest_line routine. */
13155
13156 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13157 filename_ptr, functionname_ptr,
13158 line_ptr, discriminator_ptr);
13159 }
13160
13161 bool
13162 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13163 const char **filename_ptr,
13164 const char **functionname_ptr,
13165 unsigned int *line_ptr)
13166 {
13167 bool found;
13168 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13169 functionname_ptr, line_ptr,
13170 & elf_tdata (abfd)->dwarf2_find_line_info);
13171 return found;
13172 }
13173
13174 \f
13175 /* When are writing out the .options or .MIPS.options section,
13176 remember the bytes we are writing out, so that we can install the
13177 GP value in the section_processing routine. */
13178
13179 bool
13180 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13181 const void *location,
13182 file_ptr offset, bfd_size_type count)
13183 {
13184 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13185 {
13186 bfd_byte *c;
13187
13188 if (elf_section_data (section) == NULL)
13189 {
13190 size_t amt = sizeof (struct bfd_elf_section_data);
13191 section->used_by_bfd = bfd_zalloc (abfd, amt);
13192 if (elf_section_data (section) == NULL)
13193 return false;
13194 }
13195 c = mips_elf_section_data (section)->u.tdata;
13196 if (c == NULL)
13197 {
13198 c = bfd_zalloc (abfd, section->size);
13199 if (c == NULL)
13200 return false;
13201 mips_elf_section_data (section)->u.tdata = c;
13202 }
13203
13204 memcpy (c + offset, location, count);
13205 }
13206
13207 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13208 count);
13209 }
13210
13211 /* This is almost identical to bfd_generic_get_... except that some
13212 MIPS relocations need to be handled specially. Sigh. */
13213
13214 bfd_byte *
13215 _bfd_elf_mips_get_relocated_section_contents
13216 (bfd *abfd,
13217 struct bfd_link_info *link_info,
13218 struct bfd_link_order *link_order,
13219 bfd_byte *data,
13220 bool relocatable,
13221 asymbol **symbols)
13222 {
13223 bfd *input_bfd = link_order->u.indirect.section->owner;
13224 asection *input_section = link_order->u.indirect.section;
13225 long reloc_size;
13226 arelent **reloc_vector;
13227 long reloc_count;
13228
13229 reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13230 if (reloc_size < 0)
13231 return NULL;
13232
13233 /* Read in the section. */
13234 if (!bfd_get_full_section_contents (input_bfd, input_section, &data))
13235 return NULL;
13236
13237 if (data == NULL)
13238 return NULL;
13239
13240 if (reloc_size == 0)
13241 return data;
13242
13243 reloc_vector = (arelent **) bfd_malloc (reloc_size);
13244 if (reloc_vector == NULL)
13245 return NULL;
13246
13247 reloc_count = bfd_canonicalize_reloc (input_bfd,
13248 input_section,
13249 reloc_vector,
13250 symbols);
13251 if (reloc_count < 0)
13252 goto error_return;
13253
13254 if (reloc_count > 0)
13255 {
13256 arelent **parent;
13257 /* for mips */
13258 int gp_found;
13259 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13260
13261 {
13262 struct bfd_hash_entry *h;
13263 struct bfd_link_hash_entry *lh;
13264 /* Skip all this stuff if we aren't mixing formats. */
13265 if (abfd && input_bfd
13266 && abfd->xvec == input_bfd->xvec)
13267 lh = 0;
13268 else
13269 {
13270 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
13271 lh = (struct bfd_link_hash_entry *) h;
13272 }
13273 lookup:
13274 if (lh)
13275 {
13276 switch (lh->type)
13277 {
13278 case bfd_link_hash_undefined:
13279 case bfd_link_hash_undefweak:
13280 case bfd_link_hash_common:
13281 gp_found = 0;
13282 break;
13283 case bfd_link_hash_defined:
13284 case bfd_link_hash_defweak:
13285 gp_found = 1;
13286 gp = lh->u.def.value;
13287 break;
13288 case bfd_link_hash_indirect:
13289 case bfd_link_hash_warning:
13290 lh = lh->u.i.link;
13291 /* @@FIXME ignoring warning for now */
13292 goto lookup;
13293 case bfd_link_hash_new:
13294 default:
13295 abort ();
13296 }
13297 }
13298 else
13299 gp_found = 0;
13300 }
13301 /* end mips */
13302
13303 for (parent = reloc_vector; *parent != NULL; parent++)
13304 {
13305 char *error_message = NULL;
13306 asymbol *symbol;
13307 bfd_reloc_status_type r;
13308
13309 symbol = *(*parent)->sym_ptr_ptr;
13310 /* PR ld/19628: A specially crafted input file
13311 can result in a NULL symbol pointer here. */
13312 if (symbol == NULL)
13313 {
13314 link_info->callbacks->einfo
13315 /* xgettext:c-format */
13316 (_("%X%P: %pB(%pA): error: relocation for offset %V has no value\n"),
13317 abfd, input_section, (* parent)->address);
13318 goto error_return;
13319 }
13320
13321 /* Zap reloc field when the symbol is from a discarded
13322 section, ignoring any addend. Do the same when called
13323 from bfd_simple_get_relocated_section_contents for
13324 undefined symbols in debug sections. This is to keep
13325 debug info reasonably sane, in particular so that
13326 DW_FORM_ref_addr to another file's .debug_info isn't
13327 confused with an offset into the current file's
13328 .debug_info. */
13329 if ((symbol->section != NULL && discarded_section (symbol->section))
13330 || (symbol->section == bfd_und_section_ptr
13331 && (input_section->flags & SEC_DEBUGGING) != 0
13332 && link_info->input_bfds == link_info->output_bfd))
13333 {
13334 bfd_vma off;
13335 static reloc_howto_type none_howto
13336 = HOWTO (0, 0, 0, 0, false, 0, complain_overflow_dont, NULL,
13337 "unused", false, 0, 0, false);
13338
13339 off = ((*parent)->address
13340 * bfd_octets_per_byte (input_bfd, input_section));
13341 _bfd_clear_contents ((*parent)->howto, input_bfd,
13342 input_section, data, off);
13343 (*parent)->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
13344 (*parent)->addend = 0;
13345 (*parent)->howto = &none_howto;
13346 r = bfd_reloc_ok;
13347 }
13348
13349 /* Specific to MIPS: Deal with relocation types that require
13350 knowing the gp of the output bfd. */
13351
13352 /* If we've managed to find the gp and have a special
13353 function for the relocation then go ahead, else default
13354 to the generic handling. */
13355 else if (gp_found
13356 && ((*parent)->howto->special_function
13357 == _bfd_mips_elf32_gprel16_reloc))
13358 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, symbol, *parent,
13359 input_section, relocatable,
13360 data, gp);
13361 else
13362 r = bfd_perform_relocation (input_bfd,
13363 *parent,
13364 data,
13365 input_section,
13366 relocatable ? abfd : NULL,
13367 &error_message);
13368
13369 if (relocatable)
13370 {
13371 asection *os = input_section->output_section;
13372
13373 /* A partial link, so keep the relocs. */
13374 os->orelocation[os->reloc_count] = *parent;
13375 os->reloc_count++;
13376 }
13377
13378 if (r != bfd_reloc_ok)
13379 {
13380 switch (r)
13381 {
13382 case bfd_reloc_undefined:
13383 (*link_info->callbacks->undefined_symbol)
13384 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13385 input_bfd, input_section, (*parent)->address, true);
13386 break;
13387 case bfd_reloc_dangerous:
13388 BFD_ASSERT (error_message != NULL);
13389 (*link_info->callbacks->reloc_dangerous)
13390 (link_info, error_message,
13391 input_bfd, input_section, (*parent)->address);
13392 break;
13393 case bfd_reloc_overflow:
13394 (*link_info->callbacks->reloc_overflow)
13395 (link_info, NULL,
13396 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13397 (*parent)->howto->name, (*parent)->addend,
13398 input_bfd, input_section, (*parent)->address);
13399 break;
13400 case bfd_reloc_outofrange:
13401 /* PR ld/13730:
13402 This error can result when processing some partially
13403 complete binaries. Do not abort, but issue an error
13404 message instead. */
13405 link_info->callbacks->einfo
13406 /* xgettext:c-format */
13407 (_("%X%P: %pB(%pA): relocation \"%pR\" goes out of range\n"),
13408 abfd, input_section, * parent);
13409 goto error_return;
13410
13411 case bfd_reloc_notsupported:
13412 /* PR ld/17512
13413 This error can result when processing a corrupt binary.
13414 Do not abort. Issue an error message instead. */
13415 link_info->callbacks->einfo
13416 /* xgettext:c-format */
13417 (_("%X%P: %pB(%pA): relocation \"%pR\" is not supported\n"),
13418 abfd, input_section, * parent);
13419 goto error_return;
13420
13421 default:
13422 /* PR 17512; file: 90c2a92e.
13423 Report unexpected results, without aborting. */
13424 link_info->callbacks->einfo
13425 /* xgettext:c-format */
13426 (_("%X%P: %pB(%pA): relocation \"%pR\" returns an unrecognized value %x\n"),
13427 abfd, input_section, * parent, r);
13428 break;
13429 }
13430
13431 }
13432 }
13433 }
13434
13435 free (reloc_vector);
13436 return data;
13437
13438 error_return:
13439 free (reloc_vector);
13440 return NULL;
13441 }
13442 \f
13443 static bool
13444 mips_elf_relax_delete_bytes (bfd *abfd,
13445 asection *sec, bfd_vma addr, int count)
13446 {
13447 Elf_Internal_Shdr *symtab_hdr;
13448 unsigned int sec_shndx;
13449 bfd_byte *contents;
13450 Elf_Internal_Rela *irel, *irelend;
13451 Elf_Internal_Sym *isym;
13452 Elf_Internal_Sym *isymend;
13453 struct elf_link_hash_entry **sym_hashes;
13454 struct elf_link_hash_entry **end_hashes;
13455 struct elf_link_hash_entry **start_hashes;
13456 unsigned int symcount;
13457
13458 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13459 contents = elf_section_data (sec)->this_hdr.contents;
13460
13461 irel = elf_section_data (sec)->relocs;
13462 irelend = irel + sec->reloc_count;
13463
13464 /* Actually delete the bytes. */
13465 memmove (contents + addr, contents + addr + count,
13466 (size_t) (sec->size - addr - count));
13467 sec->size -= count;
13468
13469 /* Adjust all the relocs. */
13470 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13471 {
13472 /* Get the new reloc address. */
13473 if (irel->r_offset > addr)
13474 irel->r_offset -= count;
13475 }
13476
13477 BFD_ASSERT (addr % 2 == 0);
13478 BFD_ASSERT (count % 2 == 0);
13479
13480 /* Adjust the local symbols defined in this section. */
13481 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13482 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13483 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13484 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13485 isym->st_value -= count;
13486
13487 /* Now adjust the global symbols defined in this section. */
13488 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13489 - symtab_hdr->sh_info);
13490 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13491 end_hashes = sym_hashes + symcount;
13492
13493 for (; sym_hashes < end_hashes; sym_hashes++)
13494 {
13495 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13496
13497 if ((sym_hash->root.type == bfd_link_hash_defined
13498 || sym_hash->root.type == bfd_link_hash_defweak)
13499 && sym_hash->root.u.def.section == sec)
13500 {
13501 bfd_vma value = sym_hash->root.u.def.value;
13502
13503 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13504 value &= MINUS_TWO;
13505 if (value > addr)
13506 sym_hash->root.u.def.value -= count;
13507 }
13508 }
13509
13510 return true;
13511 }
13512
13513
13514 /* Opcodes needed for microMIPS relaxation as found in
13515 opcodes/micromips-opc.c. */
13516
13517 struct opcode_descriptor {
13518 unsigned long match;
13519 unsigned long mask;
13520 };
13521
13522 /* The $ra register aka $31. */
13523
13524 #define RA 31
13525
13526 /* 32-bit instruction format register fields. */
13527
13528 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13529 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13530
13531 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13532
13533 #define OP16_VALID_REG(r) \
13534 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13535
13536
13537 /* 32-bit and 16-bit branches. */
13538
13539 static const struct opcode_descriptor b_insns_32[] = {
13540 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13541 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13542 { 0, 0 } /* End marker for find_match(). */
13543 };
13544
13545 static const struct opcode_descriptor bc_insn_32 =
13546 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13547
13548 static const struct opcode_descriptor bz_insn_32 =
13549 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13550
13551 static const struct opcode_descriptor bzal_insn_32 =
13552 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13553
13554 static const struct opcode_descriptor beq_insn_32 =
13555 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13556
13557 static const struct opcode_descriptor b_insn_16 =
13558 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13559
13560 static const struct opcode_descriptor bz_insn_16 =
13561 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13562
13563
13564 /* 32-bit and 16-bit branch EQ and NE zero. */
13565
13566 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13567 eq and second the ne. This convention is used when replacing a
13568 32-bit BEQ/BNE with the 16-bit version. */
13569
13570 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13571
13572 static const struct opcode_descriptor bz_rs_insns_32[] = {
13573 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13574 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13575 { 0, 0 } /* End marker for find_match(). */
13576 };
13577
13578 static const struct opcode_descriptor bz_rt_insns_32[] = {
13579 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13580 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13581 { 0, 0 } /* End marker for find_match(). */
13582 };
13583
13584 static const struct opcode_descriptor bzc_insns_32[] = {
13585 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13586 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13587 { 0, 0 } /* End marker for find_match(). */
13588 };
13589
13590 static const struct opcode_descriptor bz_insns_16[] = {
13591 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13592 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13593 { 0, 0 } /* End marker for find_match(). */
13594 };
13595
13596 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13597
13598 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13599 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13600
13601
13602 /* 32-bit instructions with a delay slot. */
13603
13604 static const struct opcode_descriptor jal_insn_32_bd16 =
13605 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13606
13607 static const struct opcode_descriptor jal_insn_32_bd32 =
13608 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13609
13610 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13611 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13612
13613 static const struct opcode_descriptor j_insn_32 =
13614 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13615
13616 static const struct opcode_descriptor jalr_insn_32 =
13617 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13618
13619 /* This table can be compacted, because no opcode replacement is made. */
13620
13621 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13622 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13623
13624 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13625 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13626
13627 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13628 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13629 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13630 { 0, 0 } /* End marker for find_match(). */
13631 };
13632
13633 /* This table can be compacted, because no opcode replacement is made. */
13634
13635 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13636 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13637
13638 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13639 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13640 { 0, 0 } /* End marker for find_match(). */
13641 };
13642
13643
13644 /* 16-bit instructions with a delay slot. */
13645
13646 static const struct opcode_descriptor jalr_insn_16_bd16 =
13647 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13648
13649 static const struct opcode_descriptor jalr_insn_16_bd32 =
13650 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13651
13652 static const struct opcode_descriptor jr_insn_16 =
13653 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13654
13655 #define JR16_REG(opcode) ((opcode) & 0x1f)
13656
13657 /* This table can be compacted, because no opcode replacement is made. */
13658
13659 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13660 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13661
13662 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13663 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13664 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13665 { 0, 0 } /* End marker for find_match(). */
13666 };
13667
13668
13669 /* LUI instruction. */
13670
13671 static const struct opcode_descriptor lui_insn =
13672 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13673
13674
13675 /* ADDIU instruction. */
13676
13677 static const struct opcode_descriptor addiu_insn =
13678 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13679
13680 static const struct opcode_descriptor addiupc_insn =
13681 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13682
13683 #define ADDIUPC_REG_FIELD(r) \
13684 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13685
13686
13687 /* Relaxable instructions in a JAL delay slot: MOVE. */
13688
13689 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13690 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13691 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13692 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13693
13694 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13695 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13696
13697 static const struct opcode_descriptor move_insns_32[] = {
13698 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13699 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13700 { 0, 0 } /* End marker for find_match(). */
13701 };
13702
13703 static const struct opcode_descriptor move_insn_16 =
13704 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13705
13706
13707 /* NOP instructions. */
13708
13709 static const struct opcode_descriptor nop_insn_32 =
13710 { /* "nop", "", */ 0x00000000, 0xffffffff };
13711
13712 static const struct opcode_descriptor nop_insn_16 =
13713 { /* "nop", "", */ 0x0c00, 0xffff };
13714
13715
13716 /* Instruction match support. */
13717
13718 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13719
13720 static int
13721 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13722 {
13723 unsigned long indx;
13724
13725 for (indx = 0; insn[indx].mask != 0; indx++)
13726 if (MATCH (opcode, insn[indx]))
13727 return indx;
13728
13729 return -1;
13730 }
13731
13732
13733 /* Branch and delay slot decoding support. */
13734
13735 /* If PTR points to what *might* be a 16-bit branch or jump, then
13736 return the minimum length of its delay slot, otherwise return 0.
13737 Non-zero results are not definitive as we might be checking against
13738 the second half of another instruction. */
13739
13740 static int
13741 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13742 {
13743 unsigned long opcode;
13744 int bdsize;
13745
13746 opcode = bfd_get_16 (abfd, ptr);
13747 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13748 /* 16-bit branch/jump with a 32-bit delay slot. */
13749 bdsize = 4;
13750 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13751 || find_match (opcode, ds_insns_16_bd16) >= 0)
13752 /* 16-bit branch/jump with a 16-bit delay slot. */
13753 bdsize = 2;
13754 else
13755 /* No delay slot. */
13756 bdsize = 0;
13757
13758 return bdsize;
13759 }
13760
13761 /* If PTR points to what *might* be a 32-bit branch or jump, then
13762 return the minimum length of its delay slot, otherwise return 0.
13763 Non-zero results are not definitive as we might be checking against
13764 the second half of another instruction. */
13765
13766 static int
13767 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13768 {
13769 unsigned long opcode;
13770 int bdsize;
13771
13772 opcode = bfd_get_micromips_32 (abfd, ptr);
13773 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13774 /* 32-bit branch/jump with a 32-bit delay slot. */
13775 bdsize = 4;
13776 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13777 /* 32-bit branch/jump with a 16-bit delay slot. */
13778 bdsize = 2;
13779 else
13780 /* No delay slot. */
13781 bdsize = 0;
13782
13783 return bdsize;
13784 }
13785
13786 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13787 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13788
13789 static bool
13790 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13791 {
13792 unsigned long opcode;
13793
13794 opcode = bfd_get_16 (abfd, ptr);
13795 if (MATCH (opcode, b_insn_16)
13796 /* B16 */
13797 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13798 /* JR16 */
13799 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13800 /* BEQZ16, BNEZ16 */
13801 || (MATCH (opcode, jalr_insn_16_bd32)
13802 /* JALR16 */
13803 && reg != JR16_REG (opcode) && reg != RA))
13804 return true;
13805
13806 return false;
13807 }
13808
13809 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13810 then return TRUE, otherwise FALSE. */
13811
13812 static bool
13813 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13814 {
13815 unsigned long opcode;
13816
13817 opcode = bfd_get_micromips_32 (abfd, ptr);
13818 if (MATCH (opcode, j_insn_32)
13819 /* J */
13820 || MATCH (opcode, bc_insn_32)
13821 /* BC1F, BC1T, BC2F, BC2T */
13822 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13823 /* JAL, JALX */
13824 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13825 /* BGEZ, BGTZ, BLEZ, BLTZ */
13826 || (MATCH (opcode, bzal_insn_32)
13827 /* BGEZAL, BLTZAL */
13828 && reg != OP32_SREG (opcode) && reg != RA)
13829 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13830 /* JALR, JALR.HB, BEQ, BNE */
13831 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13832 return true;
13833
13834 return false;
13835 }
13836
13837 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13838 IRELEND) at OFFSET indicate that there must be a compact branch there,
13839 then return TRUE, otherwise FALSE. */
13840
13841 static bool
13842 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13843 const Elf_Internal_Rela *internal_relocs,
13844 const Elf_Internal_Rela *irelend)
13845 {
13846 const Elf_Internal_Rela *irel;
13847 unsigned long opcode;
13848
13849 opcode = bfd_get_micromips_32 (abfd, ptr);
13850 if (find_match (opcode, bzc_insns_32) < 0)
13851 return false;
13852
13853 for (irel = internal_relocs; irel < irelend; irel++)
13854 if (irel->r_offset == offset
13855 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13856 return true;
13857
13858 return false;
13859 }
13860
13861 /* Bitsize checking. */
13862 #define IS_BITSIZE(val, N) \
13863 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13864 - (1ULL << ((N) - 1))) == (val))
13865
13866 \f
13867 bool
13868 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13869 struct bfd_link_info *link_info,
13870 bool *again)
13871 {
13872 bool insn32 = mips_elf_hash_table (link_info)->insn32;
13873 Elf_Internal_Shdr *symtab_hdr;
13874 Elf_Internal_Rela *internal_relocs;
13875 Elf_Internal_Rela *irel, *irelend;
13876 bfd_byte *contents = NULL;
13877 Elf_Internal_Sym *isymbuf = NULL;
13878
13879 /* Assume nothing changes. */
13880 *again = false;
13881
13882 /* We don't have to do anything for a relocatable link, if
13883 this section does not have relocs, or if this is not a
13884 code section. */
13885
13886 if (bfd_link_relocatable (link_info)
13887 || (sec->flags & SEC_RELOC) == 0
13888 || sec->reloc_count == 0
13889 || (sec->flags & SEC_CODE) == 0)
13890 return true;
13891
13892 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13893
13894 /* Get a copy of the native relocations. */
13895 internal_relocs = (_bfd_elf_link_read_relocs
13896 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13897 link_info->keep_memory));
13898 if (internal_relocs == NULL)
13899 goto error_return;
13900
13901 /* Walk through them looking for relaxing opportunities. */
13902 irelend = internal_relocs + sec->reloc_count;
13903 for (irel = internal_relocs; irel < irelend; irel++)
13904 {
13905 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13906 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13907 bool target_is_micromips_code_p;
13908 unsigned long opcode;
13909 bfd_vma symval;
13910 bfd_vma pcrval;
13911 bfd_byte *ptr;
13912 int fndopc;
13913
13914 /* The number of bytes to delete for relaxation and from where
13915 to delete these bytes starting at irel->r_offset. */
13916 int delcnt = 0;
13917 int deloff = 0;
13918
13919 /* If this isn't something that can be relaxed, then ignore
13920 this reloc. */
13921 if (r_type != R_MICROMIPS_HI16
13922 && r_type != R_MICROMIPS_PC16_S1
13923 && r_type != R_MICROMIPS_26_S1)
13924 continue;
13925
13926 /* Get the section contents if we haven't done so already. */
13927 if (contents == NULL)
13928 {
13929 /* Get cached copy if it exists. */
13930 if (elf_section_data (sec)->this_hdr.contents != NULL)
13931 contents = elf_section_data (sec)->this_hdr.contents;
13932 /* Go get them off disk. */
13933 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13934 goto error_return;
13935 }
13936 ptr = contents + irel->r_offset;
13937
13938 /* Read this BFD's local symbols if we haven't done so already. */
13939 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13940 {
13941 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13942 if (isymbuf == NULL)
13943 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13944 symtab_hdr->sh_info, 0,
13945 NULL, NULL, NULL);
13946 if (isymbuf == NULL)
13947 goto error_return;
13948 }
13949
13950 /* Get the value of the symbol referred to by the reloc. */
13951 if (r_symndx < symtab_hdr->sh_info)
13952 {
13953 /* A local symbol. */
13954 Elf_Internal_Sym *isym;
13955 asection *sym_sec;
13956
13957 isym = isymbuf + r_symndx;
13958 if (isym->st_shndx == SHN_UNDEF)
13959 sym_sec = bfd_und_section_ptr;
13960 else if (isym->st_shndx == SHN_ABS)
13961 sym_sec = bfd_abs_section_ptr;
13962 else if (isym->st_shndx == SHN_COMMON)
13963 sym_sec = bfd_com_section_ptr;
13964 else
13965 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13966 symval = (isym->st_value
13967 + sym_sec->output_section->vma
13968 + sym_sec->output_offset);
13969 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13970 }
13971 else
13972 {
13973 unsigned long indx;
13974 struct elf_link_hash_entry *h;
13975
13976 /* An external symbol. */
13977 indx = r_symndx - symtab_hdr->sh_info;
13978 h = elf_sym_hashes (abfd)[indx];
13979 BFD_ASSERT (h != NULL);
13980
13981 if (h->root.type != bfd_link_hash_defined
13982 && h->root.type != bfd_link_hash_defweak)
13983 /* This appears to be a reference to an undefined
13984 symbol. Just ignore it -- it will be caught by the
13985 regular reloc processing. */
13986 continue;
13987
13988 symval = (h->root.u.def.value
13989 + h->root.u.def.section->output_section->vma
13990 + h->root.u.def.section->output_offset);
13991 target_is_micromips_code_p = (!h->needs_plt
13992 && ELF_ST_IS_MICROMIPS (h->other));
13993 }
13994
13995
13996 /* For simplicity of coding, we are going to modify the
13997 section contents, the section relocs, and the BFD symbol
13998 table. We must tell the rest of the code not to free up this
13999 information. It would be possible to instead create a table
14000 of changes which have to be made, as is done in coff-mips.c;
14001 that would be more work, but would require less memory when
14002 the linker is run. */
14003
14004 /* Only 32-bit instructions relaxed. */
14005 if (irel->r_offset + 4 > sec->size)
14006 continue;
14007
14008 opcode = bfd_get_micromips_32 (abfd, ptr);
14009
14010 /* This is the pc-relative distance from the instruction the
14011 relocation is applied to, to the symbol referred. */
14012 pcrval = (symval
14013 - (sec->output_section->vma + sec->output_offset)
14014 - irel->r_offset);
14015
14016 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
14017 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
14018 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
14019
14020 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
14021
14022 where pcrval has first to be adjusted to apply against the LO16
14023 location (we make the adjustment later on, when we have figured
14024 out the offset). */
14025 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
14026 {
14027 bool bzc = false;
14028 unsigned long nextopc;
14029 unsigned long reg;
14030 bfd_vma offset;
14031
14032 /* Give up if the previous reloc was a HI16 against this symbol
14033 too. */
14034 if (irel > internal_relocs
14035 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
14036 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
14037 continue;
14038
14039 /* Or if the next reloc is not a LO16 against this symbol. */
14040 if (irel + 1 >= irelend
14041 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
14042 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
14043 continue;
14044
14045 /* Or if the second next reloc is a LO16 against this symbol too. */
14046 if (irel + 2 >= irelend
14047 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
14048 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
14049 continue;
14050
14051 /* See if the LUI instruction *might* be in a branch delay slot.
14052 We check whether what looks like a 16-bit branch or jump is
14053 actually an immediate argument to a compact branch, and let
14054 it through if so. */
14055 if (irel->r_offset >= 2
14056 && check_br16_dslot (abfd, ptr - 2)
14057 && !(irel->r_offset >= 4
14058 && (bzc = check_relocated_bzc (abfd,
14059 ptr - 4, irel->r_offset - 4,
14060 internal_relocs, irelend))))
14061 continue;
14062 if (irel->r_offset >= 4
14063 && !bzc
14064 && check_br32_dslot (abfd, ptr - 4))
14065 continue;
14066
14067 reg = OP32_SREG (opcode);
14068
14069 /* We only relax adjacent instructions or ones separated with
14070 a branch or jump that has a delay slot. The branch or jump
14071 must not fiddle with the register used to hold the address.
14072 Subtract 4 for the LUI itself. */
14073 offset = irel[1].r_offset - irel[0].r_offset;
14074 switch (offset - 4)
14075 {
14076 case 0:
14077 break;
14078 case 2:
14079 if (check_br16 (abfd, ptr + 4, reg))
14080 break;
14081 continue;
14082 case 4:
14083 if (check_br32 (abfd, ptr + 4, reg))
14084 break;
14085 continue;
14086 default:
14087 continue;
14088 }
14089
14090 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
14091
14092 /* Give up unless the same register is used with both
14093 relocations. */
14094 if (OP32_SREG (nextopc) != reg)
14095 continue;
14096
14097 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14098 and rounding up to take masking of the two LSBs into account. */
14099 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14100
14101 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14102 if (IS_BITSIZE (symval, 16))
14103 {
14104 /* Fix the relocation's type. */
14105 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14106
14107 /* Instructions using R_MICROMIPS_LO16 have the base or
14108 source register in bits 20:16. This register becomes $0
14109 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14110 nextopc &= ~0x001f0000;
14111 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14112 contents + irel[1].r_offset);
14113 }
14114
14115 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14116 We add 4 to take LUI deletion into account while checking
14117 the PC-relative distance. */
14118 else if (symval % 4 == 0
14119 && IS_BITSIZE (pcrval + 4, 25)
14120 && MATCH (nextopc, addiu_insn)
14121 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14122 && OP16_VALID_REG (OP32_TREG (nextopc)))
14123 {
14124 /* Fix the relocation's type. */
14125 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14126
14127 /* Replace ADDIU with the ADDIUPC version. */
14128 nextopc = (addiupc_insn.match
14129 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14130
14131 bfd_put_micromips_32 (abfd, nextopc,
14132 contents + irel[1].r_offset);
14133 }
14134
14135 /* Can't do anything, give up, sigh... */
14136 else
14137 continue;
14138
14139 /* Fix the relocation's type. */
14140 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14141
14142 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14143 delcnt = 4;
14144 deloff = 0;
14145 }
14146
14147 /* Compact branch relaxation -- due to the multitude of macros
14148 employed by the compiler/assembler, compact branches are not
14149 always generated. Obviously, this can/will be fixed elsewhere,
14150 but there is no drawback in double checking it here. */
14151 else if (r_type == R_MICROMIPS_PC16_S1
14152 && irel->r_offset + 5 < sec->size
14153 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14154 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14155 && ((!insn32
14156 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14157 nop_insn_16) ? 2 : 0))
14158 || (irel->r_offset + 7 < sec->size
14159 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14160 ptr + 4),
14161 nop_insn_32) ? 4 : 0))))
14162 {
14163 unsigned long reg;
14164
14165 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14166
14167 /* Replace BEQZ/BNEZ with the compact version. */
14168 opcode = (bzc_insns_32[fndopc].match
14169 | BZC32_REG_FIELD (reg)
14170 | (opcode & 0xffff)); /* Addend value. */
14171
14172 bfd_put_micromips_32 (abfd, opcode, ptr);
14173
14174 /* Delete the delay slot NOP: two or four bytes from
14175 irel->offset + 4; delcnt has already been set above. */
14176 deloff = 4;
14177 }
14178
14179 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14180 to check the distance from the next instruction, so subtract 2. */
14181 else if (!insn32
14182 && r_type == R_MICROMIPS_PC16_S1
14183 && IS_BITSIZE (pcrval - 2, 11)
14184 && find_match (opcode, b_insns_32) >= 0)
14185 {
14186 /* Fix the relocation's type. */
14187 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14188
14189 /* Replace the 32-bit opcode with a 16-bit opcode. */
14190 bfd_put_16 (abfd,
14191 (b_insn_16.match
14192 | (opcode & 0x3ff)), /* Addend value. */
14193 ptr);
14194
14195 /* Delete 2 bytes from irel->r_offset + 2. */
14196 delcnt = 2;
14197 deloff = 2;
14198 }
14199
14200 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14201 to check the distance from the next instruction, so subtract 2. */
14202 else if (!insn32
14203 && r_type == R_MICROMIPS_PC16_S1
14204 && IS_BITSIZE (pcrval - 2, 8)
14205 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14206 && OP16_VALID_REG (OP32_SREG (opcode)))
14207 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14208 && OP16_VALID_REG (OP32_TREG (opcode)))))
14209 {
14210 unsigned long reg;
14211
14212 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14213
14214 /* Fix the relocation's type. */
14215 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14216
14217 /* Replace the 32-bit opcode with a 16-bit opcode. */
14218 bfd_put_16 (abfd,
14219 (bz_insns_16[fndopc].match
14220 | BZ16_REG_FIELD (reg)
14221 | (opcode & 0x7f)), /* Addend value. */
14222 ptr);
14223
14224 /* Delete 2 bytes from irel->r_offset + 2. */
14225 delcnt = 2;
14226 deloff = 2;
14227 }
14228
14229 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14230 else if (!insn32
14231 && r_type == R_MICROMIPS_26_S1
14232 && target_is_micromips_code_p
14233 && irel->r_offset + 7 < sec->size
14234 && MATCH (opcode, jal_insn_32_bd32))
14235 {
14236 unsigned long n32opc;
14237 bool relaxed = false;
14238
14239 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14240
14241 if (MATCH (n32opc, nop_insn_32))
14242 {
14243 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14244 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14245
14246 relaxed = true;
14247 }
14248 else if (find_match (n32opc, move_insns_32) >= 0)
14249 {
14250 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14251 bfd_put_16 (abfd,
14252 (move_insn_16.match
14253 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14254 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14255 ptr + 4);
14256
14257 relaxed = true;
14258 }
14259 /* Other 32-bit instructions relaxable to 16-bit
14260 instructions will be handled here later. */
14261
14262 if (relaxed)
14263 {
14264 /* JAL with 32-bit delay slot that is changed to a JALS
14265 with 16-bit delay slot. */
14266 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14267
14268 /* Delete 2 bytes from irel->r_offset + 6. */
14269 delcnt = 2;
14270 deloff = 6;
14271 }
14272 }
14273
14274 if (delcnt != 0)
14275 {
14276 /* Note that we've changed the relocs, section contents, etc. */
14277 elf_section_data (sec)->relocs = internal_relocs;
14278 elf_section_data (sec)->this_hdr.contents = contents;
14279 symtab_hdr->contents = (unsigned char *) isymbuf;
14280
14281 /* Delete bytes depending on the delcnt and deloff. */
14282 if (!mips_elf_relax_delete_bytes (abfd, sec,
14283 irel->r_offset + deloff, delcnt))
14284 goto error_return;
14285
14286 /* That will change things, so we should relax again.
14287 Note that this is not required, and it may be slow. */
14288 *again = true;
14289 }
14290 }
14291
14292 if (isymbuf != NULL
14293 && symtab_hdr->contents != (unsigned char *) isymbuf)
14294 {
14295 if (! link_info->keep_memory)
14296 free (isymbuf);
14297 else
14298 {
14299 /* Cache the symbols for elf_link_input_bfd. */
14300 symtab_hdr->contents = (unsigned char *) isymbuf;
14301 }
14302 }
14303
14304 if (contents != NULL
14305 && elf_section_data (sec)->this_hdr.contents != contents)
14306 {
14307 if (! link_info->keep_memory)
14308 free (contents);
14309 else
14310 {
14311 /* Cache the section contents for elf_link_input_bfd. */
14312 elf_section_data (sec)->this_hdr.contents = contents;
14313 }
14314 }
14315
14316 if (elf_section_data (sec)->relocs != internal_relocs)
14317 free (internal_relocs);
14318
14319 return true;
14320
14321 error_return:
14322 if (symtab_hdr->contents != (unsigned char *) isymbuf)
14323 free (isymbuf);
14324 if (elf_section_data (sec)->this_hdr.contents != contents)
14325 free (contents);
14326 if (elf_section_data (sec)->relocs != internal_relocs)
14327 free (internal_relocs);
14328
14329 return false;
14330 }
14331 \f
14332 /* Create a MIPS ELF linker hash table. */
14333
14334 struct bfd_link_hash_table *
14335 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14336 {
14337 struct mips_elf_link_hash_table *ret;
14338 size_t amt = sizeof (struct mips_elf_link_hash_table);
14339
14340 ret = bfd_zmalloc (amt);
14341 if (ret == NULL)
14342 return NULL;
14343
14344 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14345 mips_elf_link_hash_newfunc,
14346 sizeof (struct mips_elf_link_hash_entry),
14347 MIPS_ELF_DATA))
14348 {
14349 free (ret);
14350 return NULL;
14351 }
14352 ret->root.init_plt_refcount.plist = NULL;
14353 ret->root.init_plt_offset.plist = NULL;
14354
14355 return &ret->root.root;
14356 }
14357
14358 /* Likewise, but indicate that the target is VxWorks. */
14359
14360 struct bfd_link_hash_table *
14361 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14362 {
14363 struct bfd_link_hash_table *ret;
14364
14365 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14366 if (ret)
14367 {
14368 struct mips_elf_link_hash_table *htab;
14369
14370 htab = (struct mips_elf_link_hash_table *) ret;
14371 htab->use_plts_and_copy_relocs = true;
14372 }
14373 return ret;
14374 }
14375
14376 /* A function that the linker calls if we are allowed to use PLTs
14377 and copy relocs. */
14378
14379 void
14380 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14381 {
14382 mips_elf_hash_table (info)->use_plts_and_copy_relocs = true;
14383 }
14384
14385 /* A function that the linker calls to select between all or only
14386 32-bit microMIPS instructions, and between making or ignoring
14387 branch relocation checks for invalid transitions between ISA modes.
14388 Also record whether we have been configured for a GNU target. */
14389
14390 void
14391 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bool insn32,
14392 bool ignore_branch_isa,
14393 bool gnu_target)
14394 {
14395 mips_elf_hash_table (info)->insn32 = insn32;
14396 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14397 mips_elf_hash_table (info)->gnu_target = gnu_target;
14398 }
14399
14400 /* A function that the linker calls to enable use of compact branches in
14401 linker generated code for MIPSR6. */
14402
14403 void
14404 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bool on)
14405 {
14406 mips_elf_hash_table (info)->compact_branches = on;
14407 }
14408
14409 \f
14410 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14411
14412 struct mips_mach_extension
14413 {
14414 unsigned long extension, base;
14415 };
14416
14417
14418 /* An array describing how BFD machines relate to one another. The entries
14419 are ordered topologically with MIPS I extensions listed last. */
14420
14421 static const struct mips_mach_extension mips_mach_extensions[] =
14422 {
14423 /* MIPS64r2 extensions. */
14424 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14425 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14426 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14427 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14428 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14429 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14430 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14431
14432 /* MIPS64 extensions. */
14433 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14434 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14435 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14436
14437 /* MIPS V extensions. */
14438 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14439
14440 /* R10000 extensions. */
14441 { bfd_mach_mips12000, bfd_mach_mips10000 },
14442 { bfd_mach_mips14000, bfd_mach_mips10000 },
14443 { bfd_mach_mips16000, bfd_mach_mips10000 },
14444
14445 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14446 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14447 better to allow vr5400 and vr5500 code to be merged anyway, since
14448 many libraries will just use the core ISA. Perhaps we could add
14449 some sort of ASE flag if this ever proves a problem. */
14450 { bfd_mach_mips5500, bfd_mach_mips5400 },
14451 { bfd_mach_mips5400, bfd_mach_mips5000 },
14452
14453 /* MIPS IV extensions. */
14454 { bfd_mach_mips5, bfd_mach_mips8000 },
14455 { bfd_mach_mips10000, bfd_mach_mips8000 },
14456 { bfd_mach_mips5000, bfd_mach_mips8000 },
14457 { bfd_mach_mips7000, bfd_mach_mips8000 },
14458 { bfd_mach_mips9000, bfd_mach_mips8000 },
14459
14460 /* VR4100 extensions. */
14461 { bfd_mach_mips4120, bfd_mach_mips4100 },
14462 { bfd_mach_mips4111, bfd_mach_mips4100 },
14463
14464 /* MIPS III extensions. */
14465 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14466 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14467 { bfd_mach_mips8000, bfd_mach_mips4000 },
14468 { bfd_mach_mips4650, bfd_mach_mips4000 },
14469 { bfd_mach_mips4600, bfd_mach_mips4000 },
14470 { bfd_mach_mips4400, bfd_mach_mips4000 },
14471 { bfd_mach_mips4300, bfd_mach_mips4000 },
14472 { bfd_mach_mips4100, bfd_mach_mips4000 },
14473 { bfd_mach_mips5900, bfd_mach_mips4000 },
14474
14475 /* MIPS32r3 extensions. */
14476 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14477
14478 /* MIPS32r2 extensions. */
14479 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14480
14481 /* MIPS32 extensions. */
14482 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14483
14484 /* MIPS II extensions. */
14485 { bfd_mach_mips4000, bfd_mach_mips6000 },
14486 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14487 { bfd_mach_mips4010, bfd_mach_mips6000 },
14488
14489 /* MIPS I extensions. */
14490 { bfd_mach_mips6000, bfd_mach_mips3000 },
14491 { bfd_mach_mips3900, bfd_mach_mips3000 }
14492 };
14493
14494 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14495
14496 static bool
14497 mips_mach_extends_p (unsigned long base, unsigned long extension)
14498 {
14499 size_t i;
14500
14501 if (extension == base)
14502 return true;
14503
14504 if (base == bfd_mach_mipsisa32
14505 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14506 return true;
14507
14508 if (base == bfd_mach_mipsisa32r2
14509 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14510 return true;
14511
14512 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14513 if (extension == mips_mach_extensions[i].extension)
14514 {
14515 extension = mips_mach_extensions[i].base;
14516 if (extension == base)
14517 return true;
14518 }
14519
14520 return false;
14521 }
14522
14523 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14524
14525 static unsigned long
14526 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14527 {
14528 switch (isa_ext)
14529 {
14530 case AFL_EXT_3900: return bfd_mach_mips3900;
14531 case AFL_EXT_4010: return bfd_mach_mips4010;
14532 case AFL_EXT_4100: return bfd_mach_mips4100;
14533 case AFL_EXT_4111: return bfd_mach_mips4111;
14534 case AFL_EXT_4120: return bfd_mach_mips4120;
14535 case AFL_EXT_4650: return bfd_mach_mips4650;
14536 case AFL_EXT_5400: return bfd_mach_mips5400;
14537 case AFL_EXT_5500: return bfd_mach_mips5500;
14538 case AFL_EXT_5900: return bfd_mach_mips5900;
14539 case AFL_EXT_10000: return bfd_mach_mips10000;
14540 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14541 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14542 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14543 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14544 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14545 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14546 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14547 default: return bfd_mach_mips3000;
14548 }
14549 }
14550
14551 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14552
14553 unsigned int
14554 bfd_mips_isa_ext (bfd *abfd)
14555 {
14556 switch (bfd_get_mach (abfd))
14557 {
14558 case bfd_mach_mips3900: return AFL_EXT_3900;
14559 case bfd_mach_mips4010: return AFL_EXT_4010;
14560 case bfd_mach_mips4100: return AFL_EXT_4100;
14561 case bfd_mach_mips4111: return AFL_EXT_4111;
14562 case bfd_mach_mips4120: return AFL_EXT_4120;
14563 case bfd_mach_mips4650: return AFL_EXT_4650;
14564 case bfd_mach_mips5400: return AFL_EXT_5400;
14565 case bfd_mach_mips5500: return AFL_EXT_5500;
14566 case bfd_mach_mips5900: return AFL_EXT_5900;
14567 case bfd_mach_mips10000: return AFL_EXT_10000;
14568 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14569 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14570 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14571 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14572 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14573 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14574 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14575 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14576 case bfd_mach_mips_interaptiv_mr2:
14577 return AFL_EXT_INTERAPTIV_MR2;
14578 default: return 0;
14579 }
14580 }
14581
14582 /* Encode ISA level and revision as a single value. */
14583 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14584
14585 /* Decode a single value into level and revision. */
14586 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14587 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14588
14589 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14590
14591 static void
14592 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14593 {
14594 int new_isa = 0;
14595 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14596 {
14597 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14598 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14599 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14600 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14601 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14602 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14603 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14604 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14605 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14606 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14607 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14608 default:
14609 _bfd_error_handler
14610 /* xgettext:c-format */
14611 (_("%pB: unknown architecture %s"),
14612 abfd, bfd_printable_name (abfd));
14613 }
14614
14615 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14616 {
14617 abiflags->isa_level = ISA_LEVEL (new_isa);
14618 abiflags->isa_rev = ISA_REV (new_isa);
14619 }
14620
14621 /* Update the isa_ext if ABFD describes a further extension. */
14622 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14623 bfd_get_mach (abfd)))
14624 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14625 }
14626
14627 /* Return true if the given ELF header flags describe a 32-bit binary. */
14628
14629 static bool
14630 mips_32bit_flags_p (flagword flags)
14631 {
14632 return ((flags & EF_MIPS_32BITMODE) != 0
14633 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14634 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14635 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14636 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14637 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14638 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14639 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14640 }
14641
14642 /* Infer the content of the ABI flags based on the elf header. */
14643
14644 static void
14645 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14646 {
14647 obj_attribute *in_attr;
14648
14649 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14650 update_mips_abiflags_isa (abfd, abiflags);
14651
14652 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14653 abiflags->gpr_size = AFL_REG_32;
14654 else
14655 abiflags->gpr_size = AFL_REG_64;
14656
14657 abiflags->cpr1_size = AFL_REG_NONE;
14658
14659 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14660 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14661
14662 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14663 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14664 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14665 && abiflags->gpr_size == AFL_REG_32))
14666 abiflags->cpr1_size = AFL_REG_32;
14667 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14668 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14669 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14670 abiflags->cpr1_size = AFL_REG_64;
14671
14672 abiflags->cpr2_size = AFL_REG_NONE;
14673
14674 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14675 abiflags->ases |= AFL_ASE_MDMX;
14676 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14677 abiflags->ases |= AFL_ASE_MIPS16;
14678 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14679 abiflags->ases |= AFL_ASE_MICROMIPS;
14680
14681 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14682 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14683 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14684 && abiflags->isa_level >= 32
14685 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14686 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14687 }
14688
14689 /* We need to use a special link routine to handle the .reginfo and
14690 the .mdebug sections. We need to merge all instances of these
14691 sections together, not write them all out sequentially. */
14692
14693 bool
14694 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14695 {
14696 asection *o;
14697 struct bfd_link_order *p;
14698 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14699 asection *rtproc_sec, *abiflags_sec;
14700 Elf32_RegInfo reginfo;
14701 struct ecoff_debug_info debug;
14702 struct mips_htab_traverse_info hti;
14703 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14704 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14705 HDRR *symhdr = &debug.symbolic_header;
14706 void *mdebug_handle = NULL;
14707 asection *s;
14708 EXTR esym;
14709 unsigned int i;
14710 bfd_size_type amt;
14711 struct mips_elf_link_hash_table *htab;
14712
14713 static const char * const secname[] =
14714 {
14715 ".text", ".init", ".fini", ".data",
14716 ".rodata", ".sdata", ".sbss", ".bss"
14717 };
14718 static const int sc[] =
14719 {
14720 scText, scInit, scFini, scData,
14721 scRData, scSData, scSBss, scBss
14722 };
14723
14724 htab = mips_elf_hash_table (info);
14725 BFD_ASSERT (htab != NULL);
14726
14727 /* Sort the dynamic symbols so that those with GOT entries come after
14728 those without. */
14729 if (!mips_elf_sort_hash_table (abfd, info))
14730 return false;
14731
14732 /* Create any scheduled LA25 stubs. */
14733 hti.info = info;
14734 hti.output_bfd = abfd;
14735 hti.error = false;
14736 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14737 if (hti.error)
14738 return false;
14739
14740 /* Get a value for the GP register. */
14741 if (elf_gp (abfd) == 0)
14742 {
14743 struct bfd_link_hash_entry *h;
14744
14745 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
14746 if (h != NULL && h->type == bfd_link_hash_defined)
14747 elf_gp (abfd) = (h->u.def.value
14748 + h->u.def.section->output_section->vma
14749 + h->u.def.section->output_offset);
14750 else if (htab->root.target_os == is_vxworks
14751 && (h = bfd_link_hash_lookup (info->hash,
14752 "_GLOBAL_OFFSET_TABLE_",
14753 false, false, true))
14754 && h->type == bfd_link_hash_defined)
14755 elf_gp (abfd) = (h->u.def.section->output_section->vma
14756 + h->u.def.section->output_offset
14757 + h->u.def.value);
14758 else if (bfd_link_relocatable (info))
14759 {
14760 bfd_vma lo = MINUS_ONE;
14761
14762 /* Find the GP-relative section with the lowest offset. */
14763 for (o = abfd->sections; o != NULL; o = o->next)
14764 if (o->vma < lo
14765 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14766 lo = o->vma;
14767
14768 /* And calculate GP relative to that. */
14769 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14770 }
14771 else
14772 {
14773 /* If the relocate_section function needs to do a reloc
14774 involving the GP value, it should make a reloc_dangerous
14775 callback to warn that GP is not defined. */
14776 }
14777 }
14778
14779 /* Go through the sections and collect the .reginfo and .mdebug
14780 information. */
14781 abiflags_sec = NULL;
14782 reginfo_sec = NULL;
14783 mdebug_sec = NULL;
14784 gptab_data_sec = NULL;
14785 gptab_bss_sec = NULL;
14786 for (o = abfd->sections; o != NULL; o = o->next)
14787 {
14788 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14789 {
14790 /* We have found the .MIPS.abiflags section in the output file.
14791 Look through all the link_orders comprising it and remove them.
14792 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14793 for (p = o->map_head.link_order; p != NULL; p = p->next)
14794 {
14795 asection *input_section;
14796
14797 if (p->type != bfd_indirect_link_order)
14798 {
14799 if (p->type == bfd_data_link_order)
14800 continue;
14801 abort ();
14802 }
14803
14804 input_section = p->u.indirect.section;
14805
14806 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14807 elf_link_input_bfd ignores this section. */
14808 input_section->flags &= ~SEC_HAS_CONTENTS;
14809 }
14810
14811 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14812 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14813
14814 /* Skip this section later on (I don't think this currently
14815 matters, but someday it might). */
14816 o->map_head.link_order = NULL;
14817
14818 abiflags_sec = o;
14819 }
14820
14821 if (strcmp (o->name, ".reginfo") == 0)
14822 {
14823 memset (&reginfo, 0, sizeof reginfo);
14824
14825 /* We have found the .reginfo section in the output file.
14826 Look through all the link_orders comprising it and merge
14827 the information together. */
14828 for (p = o->map_head.link_order; p != NULL; p = p->next)
14829 {
14830 asection *input_section;
14831 bfd *input_bfd;
14832 Elf32_External_RegInfo ext;
14833 Elf32_RegInfo sub;
14834 bfd_size_type sz;
14835
14836 if (p->type != bfd_indirect_link_order)
14837 {
14838 if (p->type == bfd_data_link_order)
14839 continue;
14840 abort ();
14841 }
14842
14843 input_section = p->u.indirect.section;
14844 input_bfd = input_section->owner;
14845
14846 sz = (input_section->size < sizeof (ext)
14847 ? input_section->size : sizeof (ext));
14848 memset (&ext, 0, sizeof (ext));
14849 if (! bfd_get_section_contents (input_bfd, input_section,
14850 &ext, 0, sz))
14851 return false;
14852
14853 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14854
14855 reginfo.ri_gprmask |= sub.ri_gprmask;
14856 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14857 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14858 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14859 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14860
14861 /* ri_gp_value is set by the function
14862 `_bfd_mips_elf_section_processing' when the section is
14863 finally written out. */
14864
14865 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14866 elf_link_input_bfd ignores this section. */
14867 input_section->flags &= ~SEC_HAS_CONTENTS;
14868 }
14869
14870 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14871 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14872
14873 /* Skip this section later on (I don't think this currently
14874 matters, but someday it might). */
14875 o->map_head.link_order = NULL;
14876
14877 reginfo_sec = o;
14878 }
14879
14880 if (strcmp (o->name, ".mdebug") == 0)
14881 {
14882 struct extsym_info einfo;
14883 bfd_vma last;
14884
14885 /* We have found the .mdebug section in the output file.
14886 Look through all the link_orders comprising it and merge
14887 the information together. */
14888 symhdr->magic = swap->sym_magic;
14889 /* FIXME: What should the version stamp be? */
14890 symhdr->vstamp = 0;
14891 symhdr->ilineMax = 0;
14892 symhdr->cbLine = 0;
14893 symhdr->idnMax = 0;
14894 symhdr->ipdMax = 0;
14895 symhdr->isymMax = 0;
14896 symhdr->ioptMax = 0;
14897 symhdr->iauxMax = 0;
14898 symhdr->issMax = 0;
14899 symhdr->issExtMax = 0;
14900 symhdr->ifdMax = 0;
14901 symhdr->crfd = 0;
14902 symhdr->iextMax = 0;
14903
14904 /* We accumulate the debugging information itself in the
14905 debug_info structure. */
14906 debug.line = NULL;
14907 debug.external_dnr = NULL;
14908 debug.external_pdr = NULL;
14909 debug.external_sym = NULL;
14910 debug.external_opt = NULL;
14911 debug.external_aux = NULL;
14912 debug.ss = NULL;
14913 debug.ssext = debug.ssext_end = NULL;
14914 debug.external_fdr = NULL;
14915 debug.external_rfd = NULL;
14916 debug.external_ext = debug.external_ext_end = NULL;
14917
14918 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14919 if (mdebug_handle == NULL)
14920 return false;
14921
14922 esym.jmptbl = 0;
14923 esym.cobol_main = 0;
14924 esym.weakext = 0;
14925 esym.reserved = 0;
14926 esym.ifd = ifdNil;
14927 esym.asym.iss = issNil;
14928 esym.asym.st = stLocal;
14929 esym.asym.reserved = 0;
14930 esym.asym.index = indexNil;
14931 last = 0;
14932 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14933 {
14934 esym.asym.sc = sc[i];
14935 s = bfd_get_section_by_name (abfd, secname[i]);
14936 if (s != NULL)
14937 {
14938 esym.asym.value = s->vma;
14939 last = s->vma + s->size;
14940 }
14941 else
14942 esym.asym.value = last;
14943 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14944 secname[i], &esym))
14945 return false;
14946 }
14947
14948 for (p = o->map_head.link_order; p != NULL; p = p->next)
14949 {
14950 asection *input_section;
14951 bfd *input_bfd;
14952 const struct ecoff_debug_swap *input_swap;
14953 struct ecoff_debug_info input_debug;
14954 char *eraw_src;
14955 char *eraw_end;
14956
14957 if (p->type != bfd_indirect_link_order)
14958 {
14959 if (p->type == bfd_data_link_order)
14960 continue;
14961 abort ();
14962 }
14963
14964 input_section = p->u.indirect.section;
14965 input_bfd = input_section->owner;
14966
14967 if (!is_mips_elf (input_bfd))
14968 {
14969 /* I don't know what a non MIPS ELF bfd would be
14970 doing with a .mdebug section, but I don't really
14971 want to deal with it. */
14972 continue;
14973 }
14974
14975 input_swap = (get_elf_backend_data (input_bfd)
14976 ->elf_backend_ecoff_debug_swap);
14977
14978 BFD_ASSERT (p->size == input_section->size);
14979
14980 /* The ECOFF linking code expects that we have already
14981 read in the debugging information and set up an
14982 ecoff_debug_info structure, so we do that now. */
14983 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14984 &input_debug))
14985 return false;
14986
14987 if (! (bfd_ecoff_debug_accumulate
14988 (mdebug_handle, abfd, &debug, swap, input_bfd,
14989 &input_debug, input_swap, info)))
14990 return false;
14991
14992 /* Loop through the external symbols. For each one with
14993 interesting information, try to find the symbol in
14994 the linker global hash table and save the information
14995 for the output external symbols. */
14996 eraw_src = input_debug.external_ext;
14997 eraw_end = (eraw_src
14998 + (input_debug.symbolic_header.iextMax
14999 * input_swap->external_ext_size));
15000 for (;
15001 eraw_src < eraw_end;
15002 eraw_src += input_swap->external_ext_size)
15003 {
15004 EXTR ext;
15005 const char *name;
15006 struct mips_elf_link_hash_entry *h;
15007
15008 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
15009 if (ext.asym.sc == scNil
15010 || ext.asym.sc == scUndefined
15011 || ext.asym.sc == scSUndefined)
15012 continue;
15013
15014 name = input_debug.ssext + ext.asym.iss;
15015 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
15016 name, false, false, true);
15017 if (h == NULL || h->esym.ifd != -2)
15018 continue;
15019
15020 if (ext.ifd != -1)
15021 {
15022 BFD_ASSERT (ext.ifd
15023 < input_debug.symbolic_header.ifdMax);
15024 ext.ifd = input_debug.ifdmap[ext.ifd];
15025 }
15026
15027 h->esym = ext;
15028 }
15029
15030 /* Free up the information we just read. */
15031 free (input_debug.line);
15032 free (input_debug.external_dnr);
15033 free (input_debug.external_pdr);
15034 free (input_debug.external_sym);
15035 free (input_debug.external_opt);
15036 free (input_debug.external_aux);
15037 free (input_debug.ss);
15038 free (input_debug.ssext);
15039 free (input_debug.external_fdr);
15040 free (input_debug.external_rfd);
15041 free (input_debug.external_ext);
15042
15043 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15044 elf_link_input_bfd ignores this section. */
15045 input_section->flags &= ~SEC_HAS_CONTENTS;
15046 }
15047
15048 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
15049 {
15050 /* Create .rtproc section. */
15051 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
15052 if (rtproc_sec == NULL)
15053 {
15054 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
15055 | SEC_LINKER_CREATED | SEC_READONLY);
15056
15057 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
15058 ".rtproc",
15059 flags);
15060 if (rtproc_sec == NULL
15061 || !bfd_set_section_alignment (rtproc_sec, 4))
15062 return false;
15063 }
15064
15065 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15066 info, rtproc_sec,
15067 &debug))
15068 return false;
15069 }
15070
15071 /* Build the external symbol information. */
15072 einfo.abfd = abfd;
15073 einfo.info = info;
15074 einfo.debug = &debug;
15075 einfo.swap = swap;
15076 einfo.failed = false;
15077 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
15078 mips_elf_output_extsym, &einfo);
15079 if (einfo.failed)
15080 return false;
15081
15082 /* Set the size of the .mdebug section. */
15083 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
15084
15085 /* Skip this section later on (I don't think this currently
15086 matters, but someday it might). */
15087 o->map_head.link_order = NULL;
15088
15089 mdebug_sec = o;
15090 }
15091
15092 if (startswith (o->name, ".gptab."))
15093 {
15094 const char *subname;
15095 unsigned int c;
15096 Elf32_gptab *tab;
15097 Elf32_External_gptab *ext_tab;
15098 unsigned int j;
15099
15100 /* The .gptab.sdata and .gptab.sbss sections hold
15101 information describing how the small data area would
15102 change depending upon the -G switch. These sections
15103 not used in executables files. */
15104 if (! bfd_link_relocatable (info))
15105 {
15106 for (p = o->map_head.link_order; p != NULL; p = p->next)
15107 {
15108 asection *input_section;
15109
15110 if (p->type != bfd_indirect_link_order)
15111 {
15112 if (p->type == bfd_data_link_order)
15113 continue;
15114 abort ();
15115 }
15116
15117 input_section = p->u.indirect.section;
15118
15119 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15120 elf_link_input_bfd ignores this section. */
15121 input_section->flags &= ~SEC_HAS_CONTENTS;
15122 }
15123
15124 /* Skip this section later on (I don't think this
15125 currently matters, but someday it might). */
15126 o->map_head.link_order = NULL;
15127
15128 /* Really remove the section. */
15129 bfd_section_list_remove (abfd, o);
15130 --abfd->section_count;
15131
15132 continue;
15133 }
15134
15135 /* There is one gptab for initialized data, and one for
15136 uninitialized data. */
15137 if (strcmp (o->name, ".gptab.sdata") == 0)
15138 gptab_data_sec = o;
15139 else if (strcmp (o->name, ".gptab.sbss") == 0)
15140 gptab_bss_sec = o;
15141 else
15142 {
15143 _bfd_error_handler
15144 /* xgettext:c-format */
15145 (_("%pB: illegal section name `%pA'"), abfd, o);
15146 bfd_set_error (bfd_error_nonrepresentable_section);
15147 return false;
15148 }
15149
15150 /* The linker script always combines .gptab.data and
15151 .gptab.sdata into .gptab.sdata, and likewise for
15152 .gptab.bss and .gptab.sbss. It is possible that there is
15153 no .sdata or .sbss section in the output file, in which
15154 case we must change the name of the output section. */
15155 subname = o->name + sizeof ".gptab" - 1;
15156 if (bfd_get_section_by_name (abfd, subname) == NULL)
15157 {
15158 if (o == gptab_data_sec)
15159 o->name = ".gptab.data";
15160 else
15161 o->name = ".gptab.bss";
15162 subname = o->name + sizeof ".gptab" - 1;
15163 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15164 }
15165
15166 /* Set up the first entry. */
15167 c = 1;
15168 amt = c * sizeof (Elf32_gptab);
15169 tab = bfd_malloc (amt);
15170 if (tab == NULL)
15171 return false;
15172 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15173 tab[0].gt_header.gt_unused = 0;
15174
15175 /* Combine the input sections. */
15176 for (p = o->map_head.link_order; p != NULL; p = p->next)
15177 {
15178 asection *input_section;
15179 bfd *input_bfd;
15180 bfd_size_type size;
15181 unsigned long last;
15182 bfd_size_type gpentry;
15183
15184 if (p->type != bfd_indirect_link_order)
15185 {
15186 if (p->type == bfd_data_link_order)
15187 continue;
15188 abort ();
15189 }
15190
15191 input_section = p->u.indirect.section;
15192 input_bfd = input_section->owner;
15193
15194 /* Combine the gptab entries for this input section one
15195 by one. We know that the input gptab entries are
15196 sorted by ascending -G value. */
15197 size = input_section->size;
15198 last = 0;
15199 for (gpentry = sizeof (Elf32_External_gptab);
15200 gpentry < size;
15201 gpentry += sizeof (Elf32_External_gptab))
15202 {
15203 Elf32_External_gptab ext_gptab;
15204 Elf32_gptab int_gptab;
15205 unsigned long val;
15206 unsigned long add;
15207 bool exact;
15208 unsigned int look;
15209
15210 if (! (bfd_get_section_contents
15211 (input_bfd, input_section, &ext_gptab, gpentry,
15212 sizeof (Elf32_External_gptab))))
15213 {
15214 free (tab);
15215 return false;
15216 }
15217
15218 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15219 &int_gptab);
15220 val = int_gptab.gt_entry.gt_g_value;
15221 add = int_gptab.gt_entry.gt_bytes - last;
15222
15223 exact = false;
15224 for (look = 1; look < c; look++)
15225 {
15226 if (tab[look].gt_entry.gt_g_value >= val)
15227 tab[look].gt_entry.gt_bytes += add;
15228
15229 if (tab[look].gt_entry.gt_g_value == val)
15230 exact = true;
15231 }
15232
15233 if (! exact)
15234 {
15235 Elf32_gptab *new_tab;
15236 unsigned int max;
15237
15238 /* We need a new table entry. */
15239 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15240 new_tab = bfd_realloc (tab, amt);
15241 if (new_tab == NULL)
15242 {
15243 free (tab);
15244 return false;
15245 }
15246 tab = new_tab;
15247 tab[c].gt_entry.gt_g_value = val;
15248 tab[c].gt_entry.gt_bytes = add;
15249
15250 /* Merge in the size for the next smallest -G
15251 value, since that will be implied by this new
15252 value. */
15253 max = 0;
15254 for (look = 1; look < c; look++)
15255 {
15256 if (tab[look].gt_entry.gt_g_value < val
15257 && (max == 0
15258 || (tab[look].gt_entry.gt_g_value
15259 > tab[max].gt_entry.gt_g_value)))
15260 max = look;
15261 }
15262 if (max != 0)
15263 tab[c].gt_entry.gt_bytes +=
15264 tab[max].gt_entry.gt_bytes;
15265
15266 ++c;
15267 }
15268
15269 last = int_gptab.gt_entry.gt_bytes;
15270 }
15271
15272 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15273 elf_link_input_bfd ignores this section. */
15274 input_section->flags &= ~SEC_HAS_CONTENTS;
15275 }
15276
15277 /* The table must be sorted by -G value. */
15278 if (c > 2)
15279 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15280
15281 /* Swap out the table. */
15282 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15283 ext_tab = bfd_alloc (abfd, amt);
15284 if (ext_tab == NULL)
15285 {
15286 free (tab);
15287 return false;
15288 }
15289
15290 for (j = 0; j < c; j++)
15291 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15292 free (tab);
15293
15294 o->size = c * sizeof (Elf32_External_gptab);
15295 o->contents = (bfd_byte *) ext_tab;
15296
15297 /* Skip this section later on (I don't think this currently
15298 matters, but someday it might). */
15299 o->map_head.link_order = NULL;
15300 }
15301 }
15302
15303 /* Invoke the regular ELF backend linker to do all the work. */
15304 if (!bfd_elf_final_link (abfd, info))
15305 return false;
15306
15307 /* Now write out the computed sections. */
15308
15309 if (abiflags_sec != NULL)
15310 {
15311 Elf_External_ABIFlags_v0 ext;
15312 Elf_Internal_ABIFlags_v0 *abiflags;
15313
15314 abiflags = &mips_elf_tdata (abfd)->abiflags;
15315
15316 /* Set up the abiflags if no valid input sections were found. */
15317 if (!mips_elf_tdata (abfd)->abiflags_valid)
15318 {
15319 infer_mips_abiflags (abfd, abiflags);
15320 mips_elf_tdata (abfd)->abiflags_valid = true;
15321 }
15322 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15323 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15324 return false;
15325 }
15326
15327 if (reginfo_sec != NULL)
15328 {
15329 Elf32_External_RegInfo ext;
15330
15331 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15332 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15333 return false;
15334 }
15335
15336 if (mdebug_sec != NULL)
15337 {
15338 BFD_ASSERT (abfd->output_has_begun);
15339 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15340 swap, info,
15341 mdebug_sec->filepos))
15342 return false;
15343
15344 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15345 }
15346
15347 if (gptab_data_sec != NULL)
15348 {
15349 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15350 gptab_data_sec->contents,
15351 0, gptab_data_sec->size))
15352 return false;
15353 }
15354
15355 if (gptab_bss_sec != NULL)
15356 {
15357 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15358 gptab_bss_sec->contents,
15359 0, gptab_bss_sec->size))
15360 return false;
15361 }
15362
15363 if (SGI_COMPAT (abfd))
15364 {
15365 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15366 if (rtproc_sec != NULL)
15367 {
15368 if (! bfd_set_section_contents (abfd, rtproc_sec,
15369 rtproc_sec->contents,
15370 0, rtproc_sec->size))
15371 return false;
15372 }
15373 }
15374
15375 return true;
15376 }
15377 \f
15378 /* Merge object file header flags from IBFD into OBFD. Raise an error
15379 if there are conflicting settings. */
15380
15381 static bool
15382 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15383 {
15384 bfd *obfd = info->output_bfd;
15385 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15386 flagword old_flags;
15387 flagword new_flags;
15388 bool ok;
15389
15390 new_flags = elf_elfheader (ibfd)->e_flags;
15391 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15392 old_flags = elf_elfheader (obfd)->e_flags;
15393
15394 /* Check flag compatibility. */
15395
15396 new_flags &= ~EF_MIPS_NOREORDER;
15397 old_flags &= ~EF_MIPS_NOREORDER;
15398
15399 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15400 doesn't seem to matter. */
15401 new_flags &= ~EF_MIPS_XGOT;
15402 old_flags &= ~EF_MIPS_XGOT;
15403
15404 /* MIPSpro generates ucode info in n64 objects. Again, we should
15405 just be able to ignore this. */
15406 new_flags &= ~EF_MIPS_UCODE;
15407 old_flags &= ~EF_MIPS_UCODE;
15408
15409 /* DSOs should only be linked with CPIC code. */
15410 if ((ibfd->flags & DYNAMIC) != 0)
15411 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15412
15413 if (new_flags == old_flags)
15414 return true;
15415
15416 ok = true;
15417
15418 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15419 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15420 {
15421 _bfd_error_handler
15422 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15423 ibfd);
15424 ok = true;
15425 }
15426
15427 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15428 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15429 if (! (new_flags & EF_MIPS_PIC))
15430 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15431
15432 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15433 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15434
15435 /* Compare the ISAs. */
15436 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15437 {
15438 _bfd_error_handler
15439 (_("%pB: linking 32-bit code with 64-bit code"),
15440 ibfd);
15441 ok = false;
15442 }
15443 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15444 {
15445 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15446 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15447 {
15448 /* Copy the architecture info from IBFD to OBFD. Also copy
15449 the 32-bit flag (if set) so that we continue to recognise
15450 OBFD as a 32-bit binary. */
15451 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15452 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15453 elf_elfheader (obfd)->e_flags
15454 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15455
15456 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15457 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15458
15459 /* Copy across the ABI flags if OBFD doesn't use them
15460 and if that was what caused us to treat IBFD as 32-bit. */
15461 if ((old_flags & EF_MIPS_ABI) == 0
15462 && mips_32bit_flags_p (new_flags)
15463 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15464 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15465 }
15466 else
15467 {
15468 /* The ISAs aren't compatible. */
15469 _bfd_error_handler
15470 /* xgettext:c-format */
15471 (_("%pB: linking %s module with previous %s modules"),
15472 ibfd,
15473 bfd_printable_name (ibfd),
15474 bfd_printable_name (obfd));
15475 ok = false;
15476 }
15477 }
15478
15479 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15480 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15481
15482 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15483 does set EI_CLASS differently from any 32-bit ABI. */
15484 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15485 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15486 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15487 {
15488 /* Only error if both are set (to different values). */
15489 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15490 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15491 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15492 {
15493 _bfd_error_handler
15494 /* xgettext:c-format */
15495 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15496 ibfd,
15497 elf_mips_abi_name (ibfd),
15498 elf_mips_abi_name (obfd));
15499 ok = false;
15500 }
15501 new_flags &= ~EF_MIPS_ABI;
15502 old_flags &= ~EF_MIPS_ABI;
15503 }
15504
15505 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15506 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15507 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15508 {
15509 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15510 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15511 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15512 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15513 int micro_mis = old_m16 && new_micro;
15514 int m16_mis = old_micro && new_m16;
15515
15516 if (m16_mis || micro_mis)
15517 {
15518 _bfd_error_handler
15519 /* xgettext:c-format */
15520 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15521 ibfd,
15522 m16_mis ? "MIPS16" : "microMIPS",
15523 m16_mis ? "microMIPS" : "MIPS16");
15524 ok = false;
15525 }
15526
15527 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15528
15529 new_flags &= ~ EF_MIPS_ARCH_ASE;
15530 old_flags &= ~ EF_MIPS_ARCH_ASE;
15531 }
15532
15533 /* Compare NaN encodings. */
15534 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15535 {
15536 /* xgettext:c-format */
15537 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15538 ibfd,
15539 (new_flags & EF_MIPS_NAN2008
15540 ? "-mnan=2008" : "-mnan=legacy"),
15541 (old_flags & EF_MIPS_NAN2008
15542 ? "-mnan=2008" : "-mnan=legacy"));
15543 ok = false;
15544 new_flags &= ~EF_MIPS_NAN2008;
15545 old_flags &= ~EF_MIPS_NAN2008;
15546 }
15547
15548 /* Compare FP64 state. */
15549 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15550 {
15551 /* xgettext:c-format */
15552 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15553 ibfd,
15554 (new_flags & EF_MIPS_FP64
15555 ? "-mfp64" : "-mfp32"),
15556 (old_flags & EF_MIPS_FP64
15557 ? "-mfp64" : "-mfp32"));
15558 ok = false;
15559 new_flags &= ~EF_MIPS_FP64;
15560 old_flags &= ~EF_MIPS_FP64;
15561 }
15562
15563 /* Warn about any other mismatches */
15564 if (new_flags != old_flags)
15565 {
15566 /* xgettext:c-format */
15567 _bfd_error_handler
15568 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15569 "(%#x)"),
15570 ibfd, new_flags, old_flags);
15571 ok = false;
15572 }
15573
15574 return ok;
15575 }
15576
15577 /* Merge object attributes from IBFD into OBFD. Raise an error if
15578 there are conflicting attributes. */
15579 static bool
15580 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15581 {
15582 bfd *obfd = info->output_bfd;
15583 obj_attribute *in_attr;
15584 obj_attribute *out_attr;
15585 bfd *abi_fp_bfd;
15586 bfd *abi_msa_bfd;
15587
15588 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15589 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15590 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15591 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15592
15593 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15594 if (!abi_msa_bfd
15595 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15596 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15597
15598 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15599 {
15600 /* This is the first object. Copy the attributes. */
15601 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15602
15603 /* Use the Tag_null value to indicate the attributes have been
15604 initialized. */
15605 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15606
15607 return true;
15608 }
15609
15610 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15611 non-conflicting ones. */
15612 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15613 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15614 {
15615 int out_fp, in_fp;
15616
15617 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15618 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15619 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15620 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15621 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15622 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15623 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15624 || in_fp == Val_GNU_MIPS_ABI_FP_64
15625 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15626 {
15627 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15628 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15629 }
15630 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15631 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15632 || out_fp == Val_GNU_MIPS_ABI_FP_64
15633 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15634 /* Keep the current setting. */;
15635 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15636 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15637 {
15638 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15639 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15640 }
15641 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15642 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15643 /* Keep the current setting. */;
15644 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15645 {
15646 const char *out_string, *in_string;
15647
15648 out_string = _bfd_mips_fp_abi_string (out_fp);
15649 in_string = _bfd_mips_fp_abi_string (in_fp);
15650 /* First warn about cases involving unrecognised ABIs. */
15651 if (!out_string && !in_string)
15652 /* xgettext:c-format */
15653 _bfd_error_handler
15654 (_("warning: %pB uses unknown floating point ABI %d "
15655 "(set by %pB), %pB uses unknown floating point ABI %d"),
15656 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15657 else if (!out_string)
15658 _bfd_error_handler
15659 /* xgettext:c-format */
15660 (_("warning: %pB uses unknown floating point ABI %d "
15661 "(set by %pB), %pB uses %s"),
15662 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15663 else if (!in_string)
15664 _bfd_error_handler
15665 /* xgettext:c-format */
15666 (_("warning: %pB uses %s (set by %pB), "
15667 "%pB uses unknown floating point ABI %d"),
15668 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15669 else
15670 {
15671 /* If one of the bfds is soft-float, the other must be
15672 hard-float. The exact choice of hard-float ABI isn't
15673 really relevant to the error message. */
15674 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15675 out_string = "-mhard-float";
15676 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15677 in_string = "-mhard-float";
15678 _bfd_error_handler
15679 /* xgettext:c-format */
15680 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15681 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15682 }
15683 }
15684 }
15685
15686 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15687 non-conflicting ones. */
15688 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15689 {
15690 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15691 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15692 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15693 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15694 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15695 {
15696 case Val_GNU_MIPS_ABI_MSA_128:
15697 _bfd_error_handler
15698 /* xgettext:c-format */
15699 (_("warning: %pB uses %s (set by %pB), "
15700 "%pB uses unknown MSA ABI %d"),
15701 obfd, "-mmsa", abi_msa_bfd,
15702 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15703 break;
15704
15705 default:
15706 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15707 {
15708 case Val_GNU_MIPS_ABI_MSA_128:
15709 _bfd_error_handler
15710 /* xgettext:c-format */
15711 (_("warning: %pB uses unknown MSA ABI %d "
15712 "(set by %pB), %pB uses %s"),
15713 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15714 abi_msa_bfd, ibfd, "-mmsa");
15715 break;
15716
15717 default:
15718 _bfd_error_handler
15719 /* xgettext:c-format */
15720 (_("warning: %pB uses unknown MSA ABI %d "
15721 "(set by %pB), %pB uses unknown MSA ABI %d"),
15722 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15723 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15724 break;
15725 }
15726 }
15727 }
15728
15729 /* Merge Tag_compatibility attributes and any common GNU ones. */
15730 return _bfd_elf_merge_object_attributes (ibfd, info);
15731 }
15732
15733 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15734 there are conflicting settings. */
15735
15736 static bool
15737 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15738 {
15739 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15740 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15741 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15742
15743 /* Update the output abiflags fp_abi using the computed fp_abi. */
15744 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15745
15746 #define max(a, b) ((a) > (b) ? (a) : (b))
15747 /* Merge abiflags. */
15748 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15749 in_tdata->abiflags.isa_level);
15750 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15751 in_tdata->abiflags.isa_rev);
15752 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15753 in_tdata->abiflags.gpr_size);
15754 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15755 in_tdata->abiflags.cpr1_size);
15756 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15757 in_tdata->abiflags.cpr2_size);
15758 #undef max
15759 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15760 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15761
15762 return true;
15763 }
15764
15765 /* Merge backend specific data from an object file to the output
15766 object file when linking. */
15767
15768 bool
15769 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15770 {
15771 bfd *obfd = info->output_bfd;
15772 struct mips_elf_obj_tdata *out_tdata;
15773 struct mips_elf_obj_tdata *in_tdata;
15774 bool null_input_bfd = true;
15775 asection *sec;
15776 bool ok;
15777
15778 /* Check if we have the same endianness. */
15779 if (! _bfd_generic_verify_endian_match (ibfd, info))
15780 {
15781 _bfd_error_handler
15782 (_("%pB: endianness incompatible with that of the selected emulation"),
15783 ibfd);
15784 return false;
15785 }
15786
15787 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15788 return true;
15789
15790 in_tdata = mips_elf_tdata (ibfd);
15791 out_tdata = mips_elf_tdata (obfd);
15792
15793 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15794 {
15795 _bfd_error_handler
15796 (_("%pB: ABI is incompatible with that of the selected emulation"),
15797 ibfd);
15798 return false;
15799 }
15800
15801 /* Check to see if the input BFD actually contains any sections. If not,
15802 then it has no attributes, and its flags may not have been initialized
15803 either, but it cannot actually cause any incompatibility. */
15804 /* FIXME: This excludes any input shared library from consideration. */
15805 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15806 {
15807 /* Ignore synthetic sections and empty .text, .data and .bss sections
15808 which are automatically generated by gas. Also ignore fake
15809 (s)common sections, since merely defining a common symbol does
15810 not affect compatibility. */
15811 if ((sec->flags & SEC_IS_COMMON) == 0
15812 && strcmp (sec->name, ".reginfo")
15813 && strcmp (sec->name, ".mdebug")
15814 && (sec->size != 0
15815 || (strcmp (sec->name, ".text")
15816 && strcmp (sec->name, ".data")
15817 && strcmp (sec->name, ".bss"))))
15818 {
15819 null_input_bfd = false;
15820 break;
15821 }
15822 }
15823 if (null_input_bfd)
15824 return true;
15825
15826 /* Populate abiflags using existing information. */
15827 if (in_tdata->abiflags_valid)
15828 {
15829 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15830 Elf_Internal_ABIFlags_v0 in_abiflags;
15831 Elf_Internal_ABIFlags_v0 abiflags;
15832
15833 /* Set up the FP ABI attribute from the abiflags if it is not already
15834 set. */
15835 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15836 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15837
15838 infer_mips_abiflags (ibfd, &abiflags);
15839 in_abiflags = in_tdata->abiflags;
15840
15841 /* It is not possible to infer the correct ISA revision
15842 for R3 or R5 so drop down to R2 for the checks. */
15843 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15844 in_abiflags.isa_rev = 2;
15845
15846 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15847 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15848 _bfd_error_handler
15849 (_("%pB: warning: inconsistent ISA between e_flags and "
15850 ".MIPS.abiflags"), ibfd);
15851 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15852 && in_abiflags.fp_abi != abiflags.fp_abi)
15853 _bfd_error_handler
15854 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15855 ".MIPS.abiflags"), ibfd);
15856 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15857 _bfd_error_handler
15858 (_("%pB: warning: inconsistent ASEs between e_flags and "
15859 ".MIPS.abiflags"), ibfd);
15860 /* The isa_ext is allowed to be an extension of what can be inferred
15861 from e_flags. */
15862 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15863 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15864 _bfd_error_handler
15865 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15866 ".MIPS.abiflags"), ibfd);
15867 if (in_abiflags.flags2 != 0)
15868 _bfd_error_handler
15869 (_("%pB: warning: unexpected flag in the flags2 field of "
15870 ".MIPS.abiflags (0x%lx)"), ibfd,
15871 in_abiflags.flags2);
15872 }
15873 else
15874 {
15875 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15876 in_tdata->abiflags_valid = true;
15877 }
15878
15879 if (!out_tdata->abiflags_valid)
15880 {
15881 /* Copy input abiflags if output abiflags are not already valid. */
15882 out_tdata->abiflags = in_tdata->abiflags;
15883 out_tdata->abiflags_valid = true;
15884 }
15885
15886 if (! elf_flags_init (obfd))
15887 {
15888 elf_flags_init (obfd) = true;
15889 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15890 elf_elfheader (obfd)->e_ident[EI_CLASS]
15891 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15892
15893 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15894 && (bfd_get_arch_info (obfd)->the_default
15895 || mips_mach_extends_p (bfd_get_mach (obfd),
15896 bfd_get_mach (ibfd))))
15897 {
15898 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15899 bfd_get_mach (ibfd)))
15900 return false;
15901
15902 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15903 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15904 }
15905
15906 ok = true;
15907 }
15908 else
15909 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15910
15911 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15912
15913 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15914
15915 if (!ok)
15916 {
15917 bfd_set_error (bfd_error_bad_value);
15918 return false;
15919 }
15920
15921 return true;
15922 }
15923
15924 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15925
15926 bool
15927 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15928 {
15929 BFD_ASSERT (!elf_flags_init (abfd)
15930 || elf_elfheader (abfd)->e_flags == flags);
15931
15932 elf_elfheader (abfd)->e_flags = flags;
15933 elf_flags_init (abfd) = true;
15934 return true;
15935 }
15936
15937 char *
15938 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15939 {
15940 switch (dtag)
15941 {
15942 default: return "";
15943 case DT_MIPS_RLD_VERSION:
15944 return "MIPS_RLD_VERSION";
15945 case DT_MIPS_TIME_STAMP:
15946 return "MIPS_TIME_STAMP";
15947 case DT_MIPS_ICHECKSUM:
15948 return "MIPS_ICHECKSUM";
15949 case DT_MIPS_IVERSION:
15950 return "MIPS_IVERSION";
15951 case DT_MIPS_FLAGS:
15952 return "MIPS_FLAGS";
15953 case DT_MIPS_BASE_ADDRESS:
15954 return "MIPS_BASE_ADDRESS";
15955 case DT_MIPS_MSYM:
15956 return "MIPS_MSYM";
15957 case DT_MIPS_CONFLICT:
15958 return "MIPS_CONFLICT";
15959 case DT_MIPS_LIBLIST:
15960 return "MIPS_LIBLIST";
15961 case DT_MIPS_LOCAL_GOTNO:
15962 return "MIPS_LOCAL_GOTNO";
15963 case DT_MIPS_CONFLICTNO:
15964 return "MIPS_CONFLICTNO";
15965 case DT_MIPS_LIBLISTNO:
15966 return "MIPS_LIBLISTNO";
15967 case DT_MIPS_SYMTABNO:
15968 return "MIPS_SYMTABNO";
15969 case DT_MIPS_UNREFEXTNO:
15970 return "MIPS_UNREFEXTNO";
15971 case DT_MIPS_GOTSYM:
15972 return "MIPS_GOTSYM";
15973 case DT_MIPS_HIPAGENO:
15974 return "MIPS_HIPAGENO";
15975 case DT_MIPS_RLD_MAP:
15976 return "MIPS_RLD_MAP";
15977 case DT_MIPS_RLD_MAP_REL:
15978 return "MIPS_RLD_MAP_REL";
15979 case DT_MIPS_DELTA_CLASS:
15980 return "MIPS_DELTA_CLASS";
15981 case DT_MIPS_DELTA_CLASS_NO:
15982 return "MIPS_DELTA_CLASS_NO";
15983 case DT_MIPS_DELTA_INSTANCE:
15984 return "MIPS_DELTA_INSTANCE";
15985 case DT_MIPS_DELTA_INSTANCE_NO:
15986 return "MIPS_DELTA_INSTANCE_NO";
15987 case DT_MIPS_DELTA_RELOC:
15988 return "MIPS_DELTA_RELOC";
15989 case DT_MIPS_DELTA_RELOC_NO:
15990 return "MIPS_DELTA_RELOC_NO";
15991 case DT_MIPS_DELTA_SYM:
15992 return "MIPS_DELTA_SYM";
15993 case DT_MIPS_DELTA_SYM_NO:
15994 return "MIPS_DELTA_SYM_NO";
15995 case DT_MIPS_DELTA_CLASSSYM:
15996 return "MIPS_DELTA_CLASSSYM";
15997 case DT_MIPS_DELTA_CLASSSYM_NO:
15998 return "MIPS_DELTA_CLASSSYM_NO";
15999 case DT_MIPS_CXX_FLAGS:
16000 return "MIPS_CXX_FLAGS";
16001 case DT_MIPS_PIXIE_INIT:
16002 return "MIPS_PIXIE_INIT";
16003 case DT_MIPS_SYMBOL_LIB:
16004 return "MIPS_SYMBOL_LIB";
16005 case DT_MIPS_LOCALPAGE_GOTIDX:
16006 return "MIPS_LOCALPAGE_GOTIDX";
16007 case DT_MIPS_LOCAL_GOTIDX:
16008 return "MIPS_LOCAL_GOTIDX";
16009 case DT_MIPS_HIDDEN_GOTIDX:
16010 return "MIPS_HIDDEN_GOTIDX";
16011 case DT_MIPS_PROTECTED_GOTIDX:
16012 return "MIPS_PROTECTED_GOT_IDX";
16013 case DT_MIPS_OPTIONS:
16014 return "MIPS_OPTIONS";
16015 case DT_MIPS_INTERFACE:
16016 return "MIPS_INTERFACE";
16017 case DT_MIPS_DYNSTR_ALIGN:
16018 return "DT_MIPS_DYNSTR_ALIGN";
16019 case DT_MIPS_INTERFACE_SIZE:
16020 return "DT_MIPS_INTERFACE_SIZE";
16021 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
16022 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
16023 case DT_MIPS_PERF_SUFFIX:
16024 return "DT_MIPS_PERF_SUFFIX";
16025 case DT_MIPS_COMPACT_SIZE:
16026 return "DT_MIPS_COMPACT_SIZE";
16027 case DT_MIPS_GP_VALUE:
16028 return "DT_MIPS_GP_VALUE";
16029 case DT_MIPS_AUX_DYNAMIC:
16030 return "DT_MIPS_AUX_DYNAMIC";
16031 case DT_MIPS_PLTGOT:
16032 return "DT_MIPS_PLTGOT";
16033 case DT_MIPS_RWPLT:
16034 return "DT_MIPS_RWPLT";
16035 case DT_MIPS_XHASH:
16036 return "DT_MIPS_XHASH";
16037 }
16038 }
16039
16040 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
16041 not known. */
16042
16043 const char *
16044 _bfd_mips_fp_abi_string (int fp)
16045 {
16046 switch (fp)
16047 {
16048 /* These strings aren't translated because they're simply
16049 option lists. */
16050 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16051 return "-mdouble-float";
16052
16053 case Val_GNU_MIPS_ABI_FP_SINGLE:
16054 return "-msingle-float";
16055
16056 case Val_GNU_MIPS_ABI_FP_SOFT:
16057 return "-msoft-float";
16058
16059 case Val_GNU_MIPS_ABI_FP_OLD_64:
16060 return _("-mips32r2 -mfp64 (12 callee-saved)");
16061
16062 case Val_GNU_MIPS_ABI_FP_XX:
16063 return "-mfpxx";
16064
16065 case Val_GNU_MIPS_ABI_FP_64:
16066 return "-mgp32 -mfp64";
16067
16068 case Val_GNU_MIPS_ABI_FP_64A:
16069 return "-mgp32 -mfp64 -mno-odd-spreg";
16070
16071 default:
16072 return 0;
16073 }
16074 }
16075
16076 static void
16077 print_mips_ases (FILE *file, unsigned int mask)
16078 {
16079 if (mask & AFL_ASE_DSP)
16080 fputs ("\n\tDSP ASE", file);
16081 if (mask & AFL_ASE_DSPR2)
16082 fputs ("\n\tDSP R2 ASE", file);
16083 if (mask & AFL_ASE_DSPR3)
16084 fputs ("\n\tDSP R3 ASE", file);
16085 if (mask & AFL_ASE_EVA)
16086 fputs ("\n\tEnhanced VA Scheme", file);
16087 if (mask & AFL_ASE_MCU)
16088 fputs ("\n\tMCU (MicroController) ASE", file);
16089 if (mask & AFL_ASE_MDMX)
16090 fputs ("\n\tMDMX ASE", file);
16091 if (mask & AFL_ASE_MIPS3D)
16092 fputs ("\n\tMIPS-3D ASE", file);
16093 if (mask & AFL_ASE_MT)
16094 fputs ("\n\tMT ASE", file);
16095 if (mask & AFL_ASE_SMARTMIPS)
16096 fputs ("\n\tSmartMIPS ASE", file);
16097 if (mask & AFL_ASE_VIRT)
16098 fputs ("\n\tVZ ASE", file);
16099 if (mask & AFL_ASE_MSA)
16100 fputs ("\n\tMSA ASE", file);
16101 if (mask & AFL_ASE_MIPS16)
16102 fputs ("\n\tMIPS16 ASE", file);
16103 if (mask & AFL_ASE_MICROMIPS)
16104 fputs ("\n\tMICROMIPS ASE", file);
16105 if (mask & AFL_ASE_XPA)
16106 fputs ("\n\tXPA ASE", file);
16107 if (mask & AFL_ASE_MIPS16E2)
16108 fputs ("\n\tMIPS16e2 ASE", file);
16109 if (mask & AFL_ASE_CRC)
16110 fputs ("\n\tCRC ASE", file);
16111 if (mask & AFL_ASE_GINV)
16112 fputs ("\n\tGINV ASE", file);
16113 if (mask & AFL_ASE_LOONGSON_MMI)
16114 fputs ("\n\tLoongson MMI ASE", file);
16115 if (mask & AFL_ASE_LOONGSON_CAM)
16116 fputs ("\n\tLoongson CAM ASE", file);
16117 if (mask & AFL_ASE_LOONGSON_EXT)
16118 fputs ("\n\tLoongson EXT ASE", file);
16119 if (mask & AFL_ASE_LOONGSON_EXT2)
16120 fputs ("\n\tLoongson EXT2 ASE", file);
16121 if (mask == 0)
16122 fprintf (file, "\n\t%s", _("None"));
16123 else if ((mask & ~AFL_ASE_MASK) != 0)
16124 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16125 }
16126
16127 static void
16128 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16129 {
16130 switch (isa_ext)
16131 {
16132 case 0:
16133 fputs (_("None"), file);
16134 break;
16135 case AFL_EXT_XLR:
16136 fputs ("RMI XLR", file);
16137 break;
16138 case AFL_EXT_OCTEON3:
16139 fputs ("Cavium Networks Octeon3", file);
16140 break;
16141 case AFL_EXT_OCTEON2:
16142 fputs ("Cavium Networks Octeon2", file);
16143 break;
16144 case AFL_EXT_OCTEONP:
16145 fputs ("Cavium Networks OcteonP", file);
16146 break;
16147 case AFL_EXT_OCTEON:
16148 fputs ("Cavium Networks Octeon", file);
16149 break;
16150 case AFL_EXT_5900:
16151 fputs ("Toshiba R5900", file);
16152 break;
16153 case AFL_EXT_4650:
16154 fputs ("MIPS R4650", file);
16155 break;
16156 case AFL_EXT_4010:
16157 fputs ("LSI R4010", file);
16158 break;
16159 case AFL_EXT_4100:
16160 fputs ("NEC VR4100", file);
16161 break;
16162 case AFL_EXT_3900:
16163 fputs ("Toshiba R3900", file);
16164 break;
16165 case AFL_EXT_10000:
16166 fputs ("MIPS R10000", file);
16167 break;
16168 case AFL_EXT_SB1:
16169 fputs ("Broadcom SB-1", file);
16170 break;
16171 case AFL_EXT_4111:
16172 fputs ("NEC VR4111/VR4181", file);
16173 break;
16174 case AFL_EXT_4120:
16175 fputs ("NEC VR4120", file);
16176 break;
16177 case AFL_EXT_5400:
16178 fputs ("NEC VR5400", file);
16179 break;
16180 case AFL_EXT_5500:
16181 fputs ("NEC VR5500", file);
16182 break;
16183 case AFL_EXT_LOONGSON_2E:
16184 fputs ("ST Microelectronics Loongson 2E", file);
16185 break;
16186 case AFL_EXT_LOONGSON_2F:
16187 fputs ("ST Microelectronics Loongson 2F", file);
16188 break;
16189 case AFL_EXT_INTERAPTIV_MR2:
16190 fputs ("Imagination interAptiv MR2", file);
16191 break;
16192 default:
16193 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16194 break;
16195 }
16196 }
16197
16198 static void
16199 print_mips_fp_abi_value (FILE *file, int val)
16200 {
16201 switch (val)
16202 {
16203 case Val_GNU_MIPS_ABI_FP_ANY:
16204 fprintf (file, _("Hard or soft float\n"));
16205 break;
16206 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16207 fprintf (file, _("Hard float (double precision)\n"));
16208 break;
16209 case Val_GNU_MIPS_ABI_FP_SINGLE:
16210 fprintf (file, _("Hard float (single precision)\n"));
16211 break;
16212 case Val_GNU_MIPS_ABI_FP_SOFT:
16213 fprintf (file, _("Soft float\n"));
16214 break;
16215 case Val_GNU_MIPS_ABI_FP_OLD_64:
16216 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16217 break;
16218 case Val_GNU_MIPS_ABI_FP_XX:
16219 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16220 break;
16221 case Val_GNU_MIPS_ABI_FP_64:
16222 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16223 break;
16224 case Val_GNU_MIPS_ABI_FP_64A:
16225 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16226 break;
16227 default:
16228 fprintf (file, "??? (%d)\n", val);
16229 break;
16230 }
16231 }
16232
16233 static int
16234 get_mips_reg_size (int reg_size)
16235 {
16236 return (reg_size == AFL_REG_NONE) ? 0
16237 : (reg_size == AFL_REG_32) ? 32
16238 : (reg_size == AFL_REG_64) ? 64
16239 : (reg_size == AFL_REG_128) ? 128
16240 : -1;
16241 }
16242
16243 bool
16244 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16245 {
16246 FILE *file = ptr;
16247
16248 BFD_ASSERT (abfd != NULL && ptr != NULL);
16249
16250 /* Print normal ELF private data. */
16251 _bfd_elf_print_private_bfd_data (abfd, ptr);
16252
16253 /* xgettext:c-format */
16254 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16255
16256 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16257 fprintf (file, _(" [abi=O32]"));
16258 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16259 fprintf (file, _(" [abi=O64]"));
16260 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16261 fprintf (file, _(" [abi=EABI32]"));
16262 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16263 fprintf (file, _(" [abi=EABI64]"));
16264 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16265 fprintf (file, _(" [abi unknown]"));
16266 else if (ABI_N32_P (abfd))
16267 fprintf (file, _(" [abi=N32]"));
16268 else if (ABI_64_P (abfd))
16269 fprintf (file, _(" [abi=64]"));
16270 else
16271 fprintf (file, _(" [no abi set]"));
16272
16273 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16274 fprintf (file, " [mips1]");
16275 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16276 fprintf (file, " [mips2]");
16277 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16278 fprintf (file, " [mips3]");
16279 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16280 fprintf (file, " [mips4]");
16281 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16282 fprintf (file, " [mips5]");
16283 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16284 fprintf (file, " [mips32]");
16285 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16286 fprintf (file, " [mips64]");
16287 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16288 fprintf (file, " [mips32r2]");
16289 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16290 fprintf (file, " [mips64r2]");
16291 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16292 fprintf (file, " [mips32r6]");
16293 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16294 fprintf (file, " [mips64r6]");
16295 else
16296 fprintf (file, _(" [unknown ISA]"));
16297
16298 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16299 fprintf (file, " [mdmx]");
16300
16301 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16302 fprintf (file, " [mips16]");
16303
16304 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16305 fprintf (file, " [micromips]");
16306
16307 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16308 fprintf (file, " [nan2008]");
16309
16310 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16311 fprintf (file, " [old fp64]");
16312
16313 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16314 fprintf (file, " [32bitmode]");
16315 else
16316 fprintf (file, _(" [not 32bitmode]"));
16317
16318 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16319 fprintf (file, " [noreorder]");
16320
16321 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16322 fprintf (file, " [PIC]");
16323
16324 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16325 fprintf (file, " [CPIC]");
16326
16327 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16328 fprintf (file, " [XGOT]");
16329
16330 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16331 fprintf (file, " [UCODE]");
16332
16333 fputc ('\n', file);
16334
16335 if (mips_elf_tdata (abfd)->abiflags_valid)
16336 {
16337 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16338 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16339 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16340 if (abiflags->isa_rev > 1)
16341 fprintf (file, "r%d", abiflags->isa_rev);
16342 fprintf (file, "\nGPR size: %d",
16343 get_mips_reg_size (abiflags->gpr_size));
16344 fprintf (file, "\nCPR1 size: %d",
16345 get_mips_reg_size (abiflags->cpr1_size));
16346 fprintf (file, "\nCPR2 size: %d",
16347 get_mips_reg_size (abiflags->cpr2_size));
16348 fputs ("\nFP ABI: ", file);
16349 print_mips_fp_abi_value (file, abiflags->fp_abi);
16350 fputs ("ISA Extension: ", file);
16351 print_mips_isa_ext (file, abiflags->isa_ext);
16352 fputs ("\nASEs:", file);
16353 print_mips_ases (file, abiflags->ases);
16354 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16355 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16356 fputc ('\n', file);
16357 }
16358
16359 return true;
16360 }
16361
16362 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16363 {
16364 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16365 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16366 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16367 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16368 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16369 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16370 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
16371 { NULL, 0, 0, 0, 0 }
16372 };
16373
16374 /* Merge non visibility st_other attributes. Ensure that the
16375 STO_OPTIONAL flag is copied into h->other, even if this is not a
16376 definiton of the symbol. */
16377 void
16378 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16379 unsigned int st_other,
16380 bool definition,
16381 bool dynamic ATTRIBUTE_UNUSED)
16382 {
16383 if ((st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16384 {
16385 unsigned char other;
16386
16387 other = (definition ? st_other : h->other);
16388 other &= ~ELF_ST_VISIBILITY (-1);
16389 h->other = other | ELF_ST_VISIBILITY (h->other);
16390 }
16391
16392 if (!definition
16393 && ELF_MIPS_IS_OPTIONAL (st_other))
16394 h->other |= STO_OPTIONAL;
16395 }
16396
16397 /* Decide whether an undefined symbol is special and can be ignored.
16398 This is the case for OPTIONAL symbols on IRIX. */
16399 bool
16400 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16401 {
16402 return ELF_MIPS_IS_OPTIONAL (h->other) != 0;
16403 }
16404
16405 bool
16406 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16407 {
16408 return (sym->st_shndx == SHN_COMMON
16409 || sym->st_shndx == SHN_MIPS_ACOMMON
16410 || sym->st_shndx == SHN_MIPS_SCOMMON);
16411 }
16412
16413 /* Return address for Ith PLT stub in section PLT, for relocation REL
16414 or (bfd_vma) -1 if it should not be included. */
16415
16416 bfd_vma
16417 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16418 const arelent *rel ATTRIBUTE_UNUSED)
16419 {
16420 return (plt->vma
16421 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16422 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16423 }
16424
16425 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16426 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16427 and .got.plt and also the slots may be of a different size each we walk
16428 the PLT manually fetching instructions and matching them against known
16429 patterns. To make things easier standard MIPS slots, if any, always come
16430 first. As we don't create proper ELF symbols we use the UDATA.I member
16431 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16432 with the ST_OTHER member of the ELF symbol. */
16433
16434 long
16435 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16436 long symcount ATTRIBUTE_UNUSED,
16437 asymbol **syms ATTRIBUTE_UNUSED,
16438 long dynsymcount, asymbol **dynsyms,
16439 asymbol **ret)
16440 {
16441 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16442 static const char microsuffix[] = "@micromipsplt";
16443 static const char m16suffix[] = "@mips16plt";
16444 static const char mipssuffix[] = "@plt";
16445
16446 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
16447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16448 bool micromips_p = MICROMIPS_P (abfd);
16449 Elf_Internal_Shdr *hdr;
16450 bfd_byte *plt_data;
16451 bfd_vma plt_offset;
16452 unsigned int other;
16453 bfd_vma entry_size;
16454 bfd_vma plt0_size;
16455 asection *relplt;
16456 bfd_vma opcode;
16457 asection *plt;
16458 asymbol *send;
16459 size_t size;
16460 char *names;
16461 long counti;
16462 arelent *p;
16463 asymbol *s;
16464 char *nend;
16465 long count;
16466 long pi;
16467 long i;
16468 long n;
16469
16470 *ret = NULL;
16471
16472 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16473 return 0;
16474
16475 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16476 if (relplt == NULL)
16477 return 0;
16478
16479 hdr = &elf_section_data (relplt)->this_hdr;
16480 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16481 return 0;
16482
16483 plt = bfd_get_section_by_name (abfd, ".plt");
16484 if (plt == NULL)
16485 return 0;
16486
16487 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16488 if (!(*slurp_relocs) (abfd, relplt, dynsyms, true))
16489 return -1;
16490 p = relplt->relocation;
16491
16492 /* Calculating the exact amount of space required for symbols would
16493 require two passes over the PLT, so just pessimise assuming two
16494 PLT slots per relocation. */
16495 count = relplt->size / hdr->sh_entsize;
16496 counti = count * bed->s->int_rels_per_ext_rel;
16497 size = 2 * count * sizeof (asymbol);
16498 size += count * (sizeof (mipssuffix) +
16499 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16500 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16501 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16502
16503 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16504 size += sizeof (asymbol) + sizeof (pltname);
16505
16506 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16507 return -1;
16508
16509 if (plt->size < 16)
16510 return -1;
16511
16512 s = *ret = bfd_malloc (size);
16513 if (s == NULL)
16514 return -1;
16515 send = s + 2 * count + 1;
16516
16517 names = (char *) send;
16518 nend = (char *) s + size;
16519 n = 0;
16520
16521 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16522 if (opcode == 0x3302fffe)
16523 {
16524 if (!micromips_p)
16525 return -1;
16526 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16527 other = STO_MICROMIPS;
16528 }
16529 else if (opcode == 0x0398c1d0)
16530 {
16531 if (!micromips_p)
16532 return -1;
16533 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16534 other = STO_MICROMIPS;
16535 }
16536 else
16537 {
16538 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16539 other = 0;
16540 }
16541
16542 s->the_bfd = abfd;
16543 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16544 s->section = plt;
16545 s->value = 0;
16546 s->name = names;
16547 s->udata.i = other;
16548 memcpy (names, pltname, sizeof (pltname));
16549 names += sizeof (pltname);
16550 ++s, ++n;
16551
16552 pi = 0;
16553 for (plt_offset = plt0_size;
16554 plt_offset + 8 <= plt->size && s < send;
16555 plt_offset += entry_size)
16556 {
16557 bfd_vma gotplt_addr;
16558 const char *suffix;
16559 bfd_vma gotplt_hi;
16560 bfd_vma gotplt_lo;
16561 size_t suffixlen;
16562
16563 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16564
16565 /* Check if the second word matches the expected MIPS16 instruction. */
16566 if (opcode == 0x651aeb00)
16567 {
16568 if (micromips_p)
16569 return -1;
16570 /* Truncated table??? */
16571 if (plt_offset + 16 > plt->size)
16572 break;
16573 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16574 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16575 suffixlen = sizeof (m16suffix);
16576 suffix = m16suffix;
16577 other = STO_MIPS16;
16578 }
16579 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16580 else if (opcode == 0xff220000)
16581 {
16582 if (!micromips_p)
16583 return -1;
16584 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16585 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16586 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16587 gotplt_lo <<= 2;
16588 gotplt_addr = gotplt_hi + gotplt_lo;
16589 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16590 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16591 suffixlen = sizeof (microsuffix);
16592 suffix = microsuffix;
16593 other = STO_MICROMIPS;
16594 }
16595 /* Likewise the expected microMIPS instruction (insn32 mode). */
16596 else if ((opcode & 0xffff0000) == 0xff2f0000)
16597 {
16598 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16599 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16600 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16601 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16602 gotplt_addr = gotplt_hi + gotplt_lo;
16603 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16604 suffixlen = sizeof (microsuffix);
16605 suffix = microsuffix;
16606 other = STO_MICROMIPS;
16607 }
16608 /* Otherwise assume standard MIPS code. */
16609 else
16610 {
16611 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16612 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16613 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16614 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16615 gotplt_addr = gotplt_hi + gotplt_lo;
16616 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16617 suffixlen = sizeof (mipssuffix);
16618 suffix = mipssuffix;
16619 other = 0;
16620 }
16621 /* Truncated table??? */
16622 if (plt_offset + entry_size > plt->size)
16623 break;
16624
16625 for (i = 0;
16626 i < count && p[pi].address != gotplt_addr;
16627 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16628
16629 if (i < count)
16630 {
16631 size_t namelen;
16632 size_t len;
16633
16634 *s = **p[pi].sym_ptr_ptr;
16635 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16636 we are defining a symbol, ensure one of them is set. */
16637 if ((s->flags & BSF_LOCAL) == 0)
16638 s->flags |= BSF_GLOBAL;
16639 s->flags |= BSF_SYNTHETIC;
16640 s->section = plt;
16641 s->value = plt_offset;
16642 s->name = names;
16643 s->udata.i = other;
16644
16645 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16646 namelen = len + suffixlen;
16647 if (names + namelen > nend)
16648 break;
16649
16650 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16651 names += len;
16652 memcpy (names, suffix, suffixlen);
16653 names += suffixlen;
16654
16655 ++s, ++n;
16656 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16657 }
16658 }
16659
16660 free (plt_data);
16661
16662 return n;
16663 }
16664
16665 /* Return the ABI flags associated with ABFD if available. */
16666
16667 Elf_Internal_ABIFlags_v0 *
16668 bfd_mips_elf_get_abiflags (bfd *abfd)
16669 {
16670 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16671
16672 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16673 }
16674
16675 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16676 field. Taken from `libc-abis.h' generated at GNU libc build time.
16677 Using a MIPS_ prefix as other libc targets use different values. */
16678 enum
16679 {
16680 MIPS_LIBC_ABI_DEFAULT = 0,
16681 MIPS_LIBC_ABI_MIPS_PLT,
16682 MIPS_LIBC_ABI_UNIQUE,
16683 MIPS_LIBC_ABI_MIPS_O32_FP64,
16684 MIPS_LIBC_ABI_ABSOLUTE,
16685 MIPS_LIBC_ABI_XHASH,
16686 MIPS_LIBC_ABI_MAX
16687 };
16688
16689 bool
16690 _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
16691 {
16692 struct mips_elf_link_hash_table *htab = NULL;
16693 Elf_Internal_Ehdr *i_ehdrp;
16694
16695 if (!_bfd_elf_init_file_header (abfd, link_info))
16696 return false;
16697
16698 i_ehdrp = elf_elfheader (abfd);
16699 if (link_info)
16700 {
16701 htab = mips_elf_hash_table (link_info);
16702 BFD_ASSERT (htab != NULL);
16703 }
16704
16705 if (htab != NULL
16706 && htab->use_plts_and_copy_relocs
16707 && htab->root.target_os != is_vxworks)
16708 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16709
16710 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16711 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16712 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16713
16714 /* Mark that we need support for absolute symbols in the dynamic loader. */
16715 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16716 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16717
16718 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16719 if it is the only hash section that will be created. */
16720 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16721 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
16722 return true;
16723 }
16724
16725 int
16726 _bfd_mips_elf_compact_eh_encoding
16727 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16728 {
16729 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16730 }
16731
16732 /* Return the opcode for can't unwind. */
16733
16734 int
16735 _bfd_mips_elf_cant_unwind_opcode
16736 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16737 {
16738 return COMPACT_EH_CANT_UNWIND_OPCODE;
16739 }
16740
16741 /* Record a position XLAT_LOC in the xlat translation table, associated with
16742 the hash entry H. The entry in the translation table will later be
16743 populated with the real symbol dynindx. */
16744
16745 void
16746 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16747 bfd_vma xlat_loc)
16748 {
16749 struct mips_elf_link_hash_entry *hmips;
16750
16751 hmips = (struct mips_elf_link_hash_entry *) h;
16752 hmips->mipsxhash_loc = xlat_loc;
16753 }
This page took 0.466859 seconds and 4 git commands to generate.