bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56 };
57
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
77 {
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
96
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
100
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
109 };
110
111 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
112 The structures form a non-overlapping list that is sorted by increasing
113 MIN_ADDEND. */
114 struct mips_got_page_range
115 {
116 struct mips_got_page_range *next;
117 bfd_signed_vma min_addend;
118 bfd_signed_vma max_addend;
119 };
120
121 /* This structure describes the range of addends that are applied to page
122 relocations against a given symbol. */
123 struct mips_got_page_entry
124 {
125 /* The input bfd in which the symbol is defined. */
126 bfd *abfd;
127 /* The index of the symbol, as stored in the relocation r_info. */
128 long symndx;
129 /* The ranges for this page entry. */
130 struct mips_got_page_range *ranges;
131 /* The maximum number of page entries needed for RANGES. */
132 bfd_vma num_pages;
133 };
134
135 /* This structure is used to hold .got information when linking. */
136
137 struct mips_got_info
138 {
139 /* The number of global .got entries. */
140 unsigned int global_gotno;
141 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
142 unsigned int reloc_only_gotno;
143 /* The number of .got slots used for TLS. */
144 unsigned int tls_gotno;
145 /* The first unused TLS .got entry. Used only during
146 mips_elf_initialize_tls_index. */
147 unsigned int tls_assigned_gotno;
148 /* The number of local .got entries, eventually including page entries. */
149 unsigned int local_gotno;
150 /* The maximum number of page entries needed. */
151 unsigned int page_gotno;
152 /* The number of relocations needed for the GOT entries. */
153 unsigned int relocs;
154 /* The number of local .got entries we have used. */
155 unsigned int assigned_gotno;
156 /* A hash table holding members of the got. */
157 struct htab *got_entries;
158 /* A hash table of mips_got_page_entry structures. */
159 struct htab *got_page_entries;
160 /* In multi-got links, a pointer to the next got (err, rather, most
161 of the time, it points to the previous got). */
162 struct mips_got_info *next;
163 };
164
165 /* Structure passed when merging bfds' gots. */
166
167 struct mips_elf_got_per_bfd_arg
168 {
169 /* The output bfd. */
170 bfd *obfd;
171 /* The link information. */
172 struct bfd_link_info *info;
173 /* A pointer to the primary got, i.e., the one that's going to get
174 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
175 DT_MIPS_GOTSYM. */
176 struct mips_got_info *primary;
177 /* A non-primary got we're trying to merge with other input bfd's
178 gots. */
179 struct mips_got_info *current;
180 /* The maximum number of got entries that can be addressed with a
181 16-bit offset. */
182 unsigned int max_count;
183 /* The maximum number of page entries needed by each got. */
184 unsigned int max_pages;
185 /* The total number of global entries which will live in the
186 primary got and be automatically relocated. This includes
187 those not referenced by the primary GOT but included in
188 the "master" GOT. */
189 unsigned int global_count;
190 };
191
192 /* A structure used to pass information to htab_traverse callbacks
193 when laying out the GOT. */
194
195 struct mips_elf_traverse_got_arg
196 {
197 struct bfd_link_info *info;
198 struct mips_got_info *g;
199 int value;
200 };
201
202 struct _mips_elf_section_data
203 {
204 struct bfd_elf_section_data elf;
205 union
206 {
207 bfd_byte *tdata;
208 } u;
209 };
210
211 #define mips_elf_section_data(sec) \
212 ((struct _mips_elf_section_data *) elf_section_data (sec))
213
214 #define is_mips_elf(bfd) \
215 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
216 && elf_tdata (bfd) != NULL \
217 && elf_object_id (bfd) == MIPS_ELF_DATA)
218
219 /* The ABI says that every symbol used by dynamic relocations must have
220 a global GOT entry. Among other things, this provides the dynamic
221 linker with a free, directly-indexed cache. The GOT can therefore
222 contain symbols that are not referenced by GOT relocations themselves
223 (in other words, it may have symbols that are not referenced by things
224 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
225
226 GOT relocations are less likely to overflow if we put the associated
227 GOT entries towards the beginning. We therefore divide the global
228 GOT entries into two areas: "normal" and "reloc-only". Entries in
229 the first area can be used for both dynamic relocations and GP-relative
230 accesses, while those in the "reloc-only" area are for dynamic
231 relocations only.
232
233 These GGA_* ("Global GOT Area") values are organised so that lower
234 values are more general than higher values. Also, non-GGA_NONE
235 values are ordered by the position of the area in the GOT. */
236 #define GGA_NORMAL 0
237 #define GGA_RELOC_ONLY 1
238 #define GGA_NONE 2
239
240 /* Information about a non-PIC interface to a PIC function. There are
241 two ways of creating these interfaces. The first is to add:
242
243 lui $25,%hi(func)
244 addiu $25,$25,%lo(func)
245
246 immediately before a PIC function "func". The second is to add:
247
248 lui $25,%hi(func)
249 j func
250 addiu $25,$25,%lo(func)
251
252 to a separate trampoline section.
253
254 Stubs of the first kind go in a new section immediately before the
255 target function. Stubs of the second kind go in a single section
256 pointed to by the hash table's "strampoline" field. */
257 struct mips_elf_la25_stub {
258 /* The generated section that contains this stub. */
259 asection *stub_section;
260
261 /* The offset of the stub from the start of STUB_SECTION. */
262 bfd_vma offset;
263
264 /* One symbol for the original function. Its location is available
265 in H->root.root.u.def. */
266 struct mips_elf_link_hash_entry *h;
267 };
268
269 /* Macros for populating a mips_elf_la25_stub. */
270
271 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
272 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
273 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
274 #define LA25_LUI_MICROMIPS(VAL) \
275 (0x41b90000 | (VAL)) /* lui t9,VAL */
276 #define LA25_J_MICROMIPS(VAL) \
277 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
278 #define LA25_ADDIU_MICROMIPS(VAL) \
279 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
280
281 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
282 the dynamic symbols. */
283
284 struct mips_elf_hash_sort_data
285 {
286 /* The symbol in the global GOT with the lowest dynamic symbol table
287 index. */
288 struct elf_link_hash_entry *low;
289 /* The least dynamic symbol table index corresponding to a non-TLS
290 symbol with a GOT entry. */
291 long min_got_dynindx;
292 /* The greatest dynamic symbol table index corresponding to a symbol
293 with a GOT entry that is not referenced (e.g., a dynamic symbol
294 with dynamic relocations pointing to it from non-primary GOTs). */
295 long max_unref_got_dynindx;
296 /* The greatest dynamic symbol table index not corresponding to a
297 symbol without a GOT entry. */
298 long max_non_got_dynindx;
299 };
300
301 /* The MIPS ELF linker needs additional information for each symbol in
302 the global hash table. */
303
304 struct mips_elf_link_hash_entry
305 {
306 struct elf_link_hash_entry root;
307
308 /* External symbol information. */
309 EXTR esym;
310
311 /* The la25 stub we have created for ths symbol, if any. */
312 struct mips_elf_la25_stub *la25_stub;
313
314 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
315 this symbol. */
316 unsigned int possibly_dynamic_relocs;
317
318 /* If there is a stub that 32 bit functions should use to call this
319 16 bit function, this points to the section containing the stub. */
320 asection *fn_stub;
321
322 /* If there is a stub that 16 bit functions should use to call this
323 32 bit function, this points to the section containing the stub. */
324 asection *call_stub;
325
326 /* This is like the call_stub field, but it is used if the function
327 being called returns a floating point value. */
328 asection *call_fp_stub;
329
330 /* The highest GGA_* value that satisfies all references to this symbol. */
331 unsigned int global_got_area : 2;
332
333 /* True if all GOT relocations against this symbol are for calls. This is
334 a looser condition than no_fn_stub below, because there may be other
335 non-call non-GOT relocations against the symbol. */
336 unsigned int got_only_for_calls : 1;
337
338 /* True if one of the relocations described by possibly_dynamic_relocs
339 is against a readonly section. */
340 unsigned int readonly_reloc : 1;
341
342 /* True if there is a relocation against this symbol that must be
343 resolved by the static linker (in other words, if the relocation
344 cannot possibly be made dynamic). */
345 unsigned int has_static_relocs : 1;
346
347 /* True if we must not create a .MIPS.stubs entry for this symbol.
348 This is set, for example, if there are relocations related to
349 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
350 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
351 unsigned int no_fn_stub : 1;
352
353 /* Whether we need the fn_stub; this is true if this symbol appears
354 in any relocs other than a 16 bit call. */
355 unsigned int need_fn_stub : 1;
356
357 /* True if this symbol is referenced by branch relocations from
358 any non-PIC input file. This is used to determine whether an
359 la25 stub is required. */
360 unsigned int has_nonpic_branches : 1;
361
362 /* Does this symbol need a traditional MIPS lazy-binding stub
363 (as opposed to a PLT entry)? */
364 unsigned int needs_lazy_stub : 1;
365 };
366
367 /* MIPS ELF linker hash table. */
368
369 struct mips_elf_link_hash_table
370 {
371 struct elf_link_hash_table root;
372
373 /* The number of .rtproc entries. */
374 bfd_size_type procedure_count;
375
376 /* The size of the .compact_rel section (if SGI_COMPAT). */
377 bfd_size_type compact_rel_size;
378
379 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
380 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
381 bfd_boolean use_rld_obj_head;
382
383 /* The __rld_map or __rld_obj_head symbol. */
384 struct elf_link_hash_entry *rld_symbol;
385
386 /* This is set if we see any mips16 stub sections. */
387 bfd_boolean mips16_stubs_seen;
388
389 /* True if we can generate copy relocs and PLTs. */
390 bfd_boolean use_plts_and_copy_relocs;
391
392 /* True if we're generating code for VxWorks. */
393 bfd_boolean is_vxworks;
394
395 /* True if we already reported the small-data section overflow. */
396 bfd_boolean small_data_overflow_reported;
397
398 /* Shortcuts to some dynamic sections, or NULL if they are not
399 being used. */
400 asection *srelbss;
401 asection *sdynbss;
402 asection *srelplt;
403 asection *srelplt2;
404 asection *sgotplt;
405 asection *splt;
406 asection *sstubs;
407 asection *sgot;
408
409 /* The master GOT information. */
410 struct mips_got_info *got_info;
411
412 /* The global symbol in the GOT with the lowest index in the dynamic
413 symbol table. */
414 struct elf_link_hash_entry *global_gotsym;
415
416 /* The size of the PLT header in bytes. */
417 bfd_vma plt_header_size;
418
419 /* The size of a PLT entry in bytes. */
420 bfd_vma plt_entry_size;
421
422 /* The number of functions that need a lazy-binding stub. */
423 bfd_vma lazy_stub_count;
424
425 /* The size of a function stub entry in bytes. */
426 bfd_vma function_stub_size;
427
428 /* The number of reserved entries at the beginning of the GOT. */
429 unsigned int reserved_gotno;
430
431 /* The section used for mips_elf_la25_stub trampolines.
432 See the comment above that structure for details. */
433 asection *strampoline;
434
435 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
436 pairs. */
437 htab_t la25_stubs;
438
439 /* A function FN (NAME, IS, OS) that creates a new input section
440 called NAME and links it to output section OS. If IS is nonnull,
441 the new section should go immediately before it, otherwise it
442 should go at the (current) beginning of OS.
443
444 The function returns the new section on success, otherwise it
445 returns null. */
446 asection *(*add_stub_section) (const char *, asection *, asection *);
447 };
448
449 /* Get the MIPS ELF linker hash table from a link_info structure. */
450
451 #define mips_elf_hash_table(p) \
452 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
453 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
454
455 /* A structure used to communicate with htab_traverse callbacks. */
456 struct mips_htab_traverse_info
457 {
458 /* The usual link-wide information. */
459 struct bfd_link_info *info;
460 bfd *output_bfd;
461
462 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
463 bfd_boolean error;
464 };
465
466 /* MIPS ELF private object data. */
467
468 struct mips_elf_obj_tdata
469 {
470 /* Generic ELF private object data. */
471 struct elf_obj_tdata root;
472
473 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
474 bfd *abi_fp_bfd;
475
476 /* The GOT requirements of input bfds. */
477 struct mips_got_info *got;
478 };
479
480 /* Get MIPS ELF private object data from BFD's tdata. */
481
482 #define mips_elf_tdata(bfd) \
483 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
484
485 #define TLS_RELOC_P(r_type) \
486 (r_type == R_MIPS_TLS_DTPMOD32 \
487 || r_type == R_MIPS_TLS_DTPMOD64 \
488 || r_type == R_MIPS_TLS_DTPREL32 \
489 || r_type == R_MIPS_TLS_DTPREL64 \
490 || r_type == R_MIPS_TLS_GD \
491 || r_type == R_MIPS_TLS_LDM \
492 || r_type == R_MIPS_TLS_DTPREL_HI16 \
493 || r_type == R_MIPS_TLS_DTPREL_LO16 \
494 || r_type == R_MIPS_TLS_GOTTPREL \
495 || r_type == R_MIPS_TLS_TPREL32 \
496 || r_type == R_MIPS_TLS_TPREL64 \
497 || r_type == R_MIPS_TLS_TPREL_HI16 \
498 || r_type == R_MIPS_TLS_TPREL_LO16 \
499 || r_type == R_MIPS16_TLS_GD \
500 || r_type == R_MIPS16_TLS_LDM \
501 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
502 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
503 || r_type == R_MIPS16_TLS_GOTTPREL \
504 || r_type == R_MIPS16_TLS_TPREL_HI16 \
505 || r_type == R_MIPS16_TLS_TPREL_LO16 \
506 || r_type == R_MICROMIPS_TLS_GD \
507 || r_type == R_MICROMIPS_TLS_LDM \
508 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
509 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
510 || r_type == R_MICROMIPS_TLS_GOTTPREL \
511 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
512 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
513
514 /* Structure used to pass information to mips_elf_output_extsym. */
515
516 struct extsym_info
517 {
518 bfd *abfd;
519 struct bfd_link_info *info;
520 struct ecoff_debug_info *debug;
521 const struct ecoff_debug_swap *swap;
522 bfd_boolean failed;
523 };
524
525 /* The names of the runtime procedure table symbols used on IRIX5. */
526
527 static const char * const mips_elf_dynsym_rtproc_names[] =
528 {
529 "_procedure_table",
530 "_procedure_string_table",
531 "_procedure_table_size",
532 NULL
533 };
534
535 /* These structures are used to generate the .compact_rel section on
536 IRIX5. */
537
538 typedef struct
539 {
540 unsigned long id1; /* Always one? */
541 unsigned long num; /* Number of compact relocation entries. */
542 unsigned long id2; /* Always two? */
543 unsigned long offset; /* The file offset of the first relocation. */
544 unsigned long reserved0; /* Zero? */
545 unsigned long reserved1; /* Zero? */
546 } Elf32_compact_rel;
547
548 typedef struct
549 {
550 bfd_byte id1[4];
551 bfd_byte num[4];
552 bfd_byte id2[4];
553 bfd_byte offset[4];
554 bfd_byte reserved0[4];
555 bfd_byte reserved1[4];
556 } Elf32_External_compact_rel;
557
558 typedef struct
559 {
560 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
561 unsigned int rtype : 4; /* Relocation types. See below. */
562 unsigned int dist2to : 8;
563 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
564 unsigned long konst; /* KONST field. See below. */
565 unsigned long vaddr; /* VADDR to be relocated. */
566 } Elf32_crinfo;
567
568 typedef struct
569 {
570 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
571 unsigned int rtype : 4; /* Relocation types. See below. */
572 unsigned int dist2to : 8;
573 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
574 unsigned long konst; /* KONST field. See below. */
575 } Elf32_crinfo2;
576
577 typedef struct
578 {
579 bfd_byte info[4];
580 bfd_byte konst[4];
581 bfd_byte vaddr[4];
582 } Elf32_External_crinfo;
583
584 typedef struct
585 {
586 bfd_byte info[4];
587 bfd_byte konst[4];
588 } Elf32_External_crinfo2;
589
590 /* These are the constants used to swap the bitfields in a crinfo. */
591
592 #define CRINFO_CTYPE (0x1)
593 #define CRINFO_CTYPE_SH (31)
594 #define CRINFO_RTYPE (0xf)
595 #define CRINFO_RTYPE_SH (27)
596 #define CRINFO_DIST2TO (0xff)
597 #define CRINFO_DIST2TO_SH (19)
598 #define CRINFO_RELVADDR (0x7ffff)
599 #define CRINFO_RELVADDR_SH (0)
600
601 /* A compact relocation info has long (3 words) or short (2 words)
602 formats. A short format doesn't have VADDR field and relvaddr
603 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
604 #define CRF_MIPS_LONG 1
605 #define CRF_MIPS_SHORT 0
606
607 /* There are 4 types of compact relocation at least. The value KONST
608 has different meaning for each type:
609
610 (type) (konst)
611 CT_MIPS_REL32 Address in data
612 CT_MIPS_WORD Address in word (XXX)
613 CT_MIPS_GPHI_LO GP - vaddr
614 CT_MIPS_JMPAD Address to jump
615 */
616
617 #define CRT_MIPS_REL32 0xa
618 #define CRT_MIPS_WORD 0xb
619 #define CRT_MIPS_GPHI_LO 0xc
620 #define CRT_MIPS_JMPAD 0xd
621
622 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
623 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
624 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
625 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
626 \f
627 /* The structure of the runtime procedure descriptor created by the
628 loader for use by the static exception system. */
629
630 typedef struct runtime_pdr {
631 bfd_vma adr; /* Memory address of start of procedure. */
632 long regmask; /* Save register mask. */
633 long regoffset; /* Save register offset. */
634 long fregmask; /* Save floating point register mask. */
635 long fregoffset; /* Save floating point register offset. */
636 long frameoffset; /* Frame size. */
637 short framereg; /* Frame pointer register. */
638 short pcreg; /* Offset or reg of return pc. */
639 long irpss; /* Index into the runtime string table. */
640 long reserved;
641 struct exception_info *exception_info;/* Pointer to exception array. */
642 } RPDR, *pRPDR;
643 #define cbRPDR sizeof (RPDR)
644 #define rpdNil ((pRPDR) 0)
645 \f
646 static struct mips_got_entry *mips_elf_create_local_got_entry
647 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
648 struct mips_elf_link_hash_entry *, int);
649 static bfd_boolean mips_elf_sort_hash_table_f
650 (struct mips_elf_link_hash_entry *, void *);
651 static bfd_vma mips_elf_high
652 (bfd_vma);
653 static bfd_boolean mips_elf_create_dynamic_relocation
654 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
655 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
656 bfd_vma *, asection *);
657 static bfd_vma mips_elf_adjust_gp
658 (bfd *, struct mips_got_info *, bfd *);
659
660 /* This will be used when we sort the dynamic relocation records. */
661 static bfd *reldyn_sorting_bfd;
662
663 /* True if ABFD is for CPUs with load interlocking that include
664 non-MIPS1 CPUs and R3900. */
665 #define LOAD_INTERLOCKS_P(abfd) \
666 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
667 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
668
669 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
670 This should be safe for all architectures. We enable this predicate
671 for RM9000 for now. */
672 #define JAL_TO_BAL_P(abfd) \
673 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
674
675 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
676 This should be safe for all architectures. We enable this predicate for
677 all CPUs. */
678 #define JALR_TO_BAL_P(abfd) 1
679
680 /* True if ABFD is for CPUs that are faster if JR is converted to B.
681 This should be safe for all architectures. We enable this predicate for
682 all CPUs. */
683 #define JR_TO_B_P(abfd) 1
684
685 /* True if ABFD is a PIC object. */
686 #define PIC_OBJECT_P(abfd) \
687 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
688
689 /* Nonzero if ABFD is using the N32 ABI. */
690 #define ABI_N32_P(abfd) \
691 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
692
693 /* Nonzero if ABFD is using the N64 ABI. */
694 #define ABI_64_P(abfd) \
695 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
696
697 /* Nonzero if ABFD is using NewABI conventions. */
698 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
699
700 /* The IRIX compatibility level we are striving for. */
701 #define IRIX_COMPAT(abfd) \
702 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
703
704 /* Whether we are trying to be compatible with IRIX at all. */
705 #define SGI_COMPAT(abfd) \
706 (IRIX_COMPAT (abfd) != ict_none)
707
708 /* The name of the options section. */
709 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
710 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
711
712 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
713 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
714 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
715 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
716
717 /* Whether the section is readonly. */
718 #define MIPS_ELF_READONLY_SECTION(sec) \
719 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
720 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
721
722 /* The name of the stub section. */
723 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
724
725 /* The size of an external REL relocation. */
726 #define MIPS_ELF_REL_SIZE(abfd) \
727 (get_elf_backend_data (abfd)->s->sizeof_rel)
728
729 /* The size of an external RELA relocation. */
730 #define MIPS_ELF_RELA_SIZE(abfd) \
731 (get_elf_backend_data (abfd)->s->sizeof_rela)
732
733 /* The size of an external dynamic table entry. */
734 #define MIPS_ELF_DYN_SIZE(abfd) \
735 (get_elf_backend_data (abfd)->s->sizeof_dyn)
736
737 /* The size of a GOT entry. */
738 #define MIPS_ELF_GOT_SIZE(abfd) \
739 (get_elf_backend_data (abfd)->s->arch_size / 8)
740
741 /* The size of the .rld_map section. */
742 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
743 (get_elf_backend_data (abfd)->s->arch_size / 8)
744
745 /* The size of a symbol-table entry. */
746 #define MIPS_ELF_SYM_SIZE(abfd) \
747 (get_elf_backend_data (abfd)->s->sizeof_sym)
748
749 /* The default alignment for sections, as a power of two. */
750 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
751 (get_elf_backend_data (abfd)->s->log_file_align)
752
753 /* Get word-sized data. */
754 #define MIPS_ELF_GET_WORD(abfd, ptr) \
755 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
756
757 /* Put out word-sized data. */
758 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
759 (ABI_64_P (abfd) \
760 ? bfd_put_64 (abfd, val, ptr) \
761 : bfd_put_32 (abfd, val, ptr))
762
763 /* The opcode for word-sized loads (LW or LD). */
764 #define MIPS_ELF_LOAD_WORD(abfd) \
765 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
766
767 /* Add a dynamic symbol table-entry. */
768 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
769 _bfd_elf_add_dynamic_entry (info, tag, val)
770
771 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
772 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
773
774 /* The name of the dynamic relocation section. */
775 #define MIPS_ELF_REL_DYN_NAME(INFO) \
776 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
777
778 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
779 from smaller values. Start with zero, widen, *then* decrement. */
780 #define MINUS_ONE (((bfd_vma)0) - 1)
781 #define MINUS_TWO (((bfd_vma)0) - 2)
782
783 /* The value to write into got[1] for SVR4 targets, to identify it is
784 a GNU object. The dynamic linker can then use got[1] to store the
785 module pointer. */
786 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
787 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
788
789 /* The offset of $gp from the beginning of the .got section. */
790 #define ELF_MIPS_GP_OFFSET(INFO) \
791 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
792
793 /* The maximum size of the GOT for it to be addressable using 16-bit
794 offsets from $gp. */
795 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
796
797 /* Instructions which appear in a stub. */
798 #define STUB_LW(abfd) \
799 ((ABI_64_P (abfd) \
800 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
801 : 0x8f998010)) /* lw t9,0x8010(gp) */
802 #define STUB_MOVE(abfd) \
803 ((ABI_64_P (abfd) \
804 ? 0x03e0782d /* daddu t7,ra */ \
805 : 0x03e07821)) /* addu t7,ra */
806 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
807 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
808 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
809 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
810 #define STUB_LI16S(abfd, VAL) \
811 ((ABI_64_P (abfd) \
812 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
813 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
814
815 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
816 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
817
818 /* The name of the dynamic interpreter. This is put in the .interp
819 section. */
820
821 #define ELF_DYNAMIC_INTERPRETER(abfd) \
822 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
823 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
824 : "/usr/lib/libc.so.1")
825
826 #ifdef BFD64
827 #define MNAME(bfd,pre,pos) \
828 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
829 #define ELF_R_SYM(bfd, i) \
830 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
831 #define ELF_R_TYPE(bfd, i) \
832 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
833 #define ELF_R_INFO(bfd, s, t) \
834 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
835 #else
836 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
837 #define ELF_R_SYM(bfd, i) \
838 (ELF32_R_SYM (i))
839 #define ELF_R_TYPE(bfd, i) \
840 (ELF32_R_TYPE (i))
841 #define ELF_R_INFO(bfd, s, t) \
842 (ELF32_R_INFO (s, t))
843 #endif
844 \f
845 /* The mips16 compiler uses a couple of special sections to handle
846 floating point arguments.
847
848 Section names that look like .mips16.fn.FNNAME contain stubs that
849 copy floating point arguments from the fp regs to the gp regs and
850 then jump to FNNAME. If any 32 bit function calls FNNAME, the
851 call should be redirected to the stub instead. If no 32 bit
852 function calls FNNAME, the stub should be discarded. We need to
853 consider any reference to the function, not just a call, because
854 if the address of the function is taken we will need the stub,
855 since the address might be passed to a 32 bit function.
856
857 Section names that look like .mips16.call.FNNAME contain stubs
858 that copy floating point arguments from the gp regs to the fp
859 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
860 then any 16 bit function that calls FNNAME should be redirected
861 to the stub instead. If FNNAME is not a 32 bit function, the
862 stub should be discarded.
863
864 .mips16.call.fp.FNNAME sections are similar, but contain stubs
865 which call FNNAME and then copy the return value from the fp regs
866 to the gp regs. These stubs store the return value in $18 while
867 calling FNNAME; any function which might call one of these stubs
868 must arrange to save $18 around the call. (This case is not
869 needed for 32 bit functions that call 16 bit functions, because
870 16 bit functions always return floating point values in both
871 $f0/$f1 and $2/$3.)
872
873 Note that in all cases FNNAME might be defined statically.
874 Therefore, FNNAME is not used literally. Instead, the relocation
875 information will indicate which symbol the section is for.
876
877 We record any stubs that we find in the symbol table. */
878
879 #define FN_STUB ".mips16.fn."
880 #define CALL_STUB ".mips16.call."
881 #define CALL_FP_STUB ".mips16.call.fp."
882
883 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
884 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
885 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
886 \f
887 /* The format of the first PLT entry in an O32 executable. */
888 static const bfd_vma mips_o32_exec_plt0_entry[] =
889 {
890 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
891 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
892 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
893 0x031cc023, /* subu $24, $24, $28 */
894 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
895 0x0018c082, /* srl $24, $24, 2 */
896 0x0320f809, /* jalr $25 */
897 0x2718fffe /* subu $24, $24, 2 */
898 };
899
900 /* The format of the first PLT entry in an N32 executable. Different
901 because gp ($28) is not available; we use t2 ($14) instead. */
902 static const bfd_vma mips_n32_exec_plt0_entry[] =
903 {
904 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
905 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
906 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
907 0x030ec023, /* subu $24, $24, $14 */
908 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
909 0x0018c082, /* srl $24, $24, 2 */
910 0x0320f809, /* jalr $25 */
911 0x2718fffe /* subu $24, $24, 2 */
912 };
913
914 /* The format of the first PLT entry in an N64 executable. Different
915 from N32 because of the increased size of GOT entries. */
916 static const bfd_vma mips_n64_exec_plt0_entry[] =
917 {
918 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
919 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
920 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
921 0x030ec023, /* subu $24, $24, $14 */
922 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
923 0x0018c0c2, /* srl $24, $24, 3 */
924 0x0320f809, /* jalr $25 */
925 0x2718fffe /* subu $24, $24, 2 */
926 };
927
928 /* The format of subsequent PLT entries. */
929 static const bfd_vma mips_exec_plt_entry[] =
930 {
931 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
932 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
933 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
934 0x03200008 /* jr $25 */
935 };
936
937 /* The format of the first PLT entry in a VxWorks executable. */
938 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
939 {
940 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
941 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
942 0x8f390008, /* lw t9, 8(t9) */
943 0x00000000, /* nop */
944 0x03200008, /* jr t9 */
945 0x00000000 /* nop */
946 };
947
948 /* The format of subsequent PLT entries. */
949 static const bfd_vma mips_vxworks_exec_plt_entry[] =
950 {
951 0x10000000, /* b .PLT_resolver */
952 0x24180000, /* li t8, <pltindex> */
953 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
954 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
955 0x8f390000, /* lw t9, 0(t9) */
956 0x00000000, /* nop */
957 0x03200008, /* jr t9 */
958 0x00000000 /* nop */
959 };
960
961 /* The format of the first PLT entry in a VxWorks shared object. */
962 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
963 {
964 0x8f990008, /* lw t9, 8(gp) */
965 0x00000000, /* nop */
966 0x03200008, /* jr t9 */
967 0x00000000, /* nop */
968 0x00000000, /* nop */
969 0x00000000 /* nop */
970 };
971
972 /* The format of subsequent PLT entries. */
973 static const bfd_vma mips_vxworks_shared_plt_entry[] =
974 {
975 0x10000000, /* b .PLT_resolver */
976 0x24180000 /* li t8, <pltindex> */
977 };
978 \f
979 /* microMIPS 32-bit opcode helper installer. */
980
981 static void
982 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
983 {
984 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
985 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
986 }
987
988 /* microMIPS 32-bit opcode helper retriever. */
989
990 static bfd_vma
991 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
992 {
993 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
994 }
995 \f
996 /* Look up an entry in a MIPS ELF linker hash table. */
997
998 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
999 ((struct mips_elf_link_hash_entry *) \
1000 elf_link_hash_lookup (&(table)->root, (string), (create), \
1001 (copy), (follow)))
1002
1003 /* Traverse a MIPS ELF linker hash table. */
1004
1005 #define mips_elf_link_hash_traverse(table, func, info) \
1006 (elf_link_hash_traverse \
1007 (&(table)->root, \
1008 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1009 (info)))
1010
1011 /* Find the base offsets for thread-local storage in this object,
1012 for GD/LD and IE/LE respectively. */
1013
1014 #define TP_OFFSET 0x7000
1015 #define DTP_OFFSET 0x8000
1016
1017 static bfd_vma
1018 dtprel_base (struct bfd_link_info *info)
1019 {
1020 /* If tls_sec is NULL, we should have signalled an error already. */
1021 if (elf_hash_table (info)->tls_sec == NULL)
1022 return 0;
1023 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1024 }
1025
1026 static bfd_vma
1027 tprel_base (struct bfd_link_info *info)
1028 {
1029 /* If tls_sec is NULL, we should have signalled an error already. */
1030 if (elf_hash_table (info)->tls_sec == NULL)
1031 return 0;
1032 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1033 }
1034
1035 /* Create an entry in a MIPS ELF linker hash table. */
1036
1037 static struct bfd_hash_entry *
1038 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1039 struct bfd_hash_table *table, const char *string)
1040 {
1041 struct mips_elf_link_hash_entry *ret =
1042 (struct mips_elf_link_hash_entry *) entry;
1043
1044 /* Allocate the structure if it has not already been allocated by a
1045 subclass. */
1046 if (ret == NULL)
1047 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1048 if (ret == NULL)
1049 return (struct bfd_hash_entry *) ret;
1050
1051 /* Call the allocation method of the superclass. */
1052 ret = ((struct mips_elf_link_hash_entry *)
1053 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1054 table, string));
1055 if (ret != NULL)
1056 {
1057 /* Set local fields. */
1058 memset (&ret->esym, 0, sizeof (EXTR));
1059 /* We use -2 as a marker to indicate that the information has
1060 not been set. -1 means there is no associated ifd. */
1061 ret->esym.ifd = -2;
1062 ret->la25_stub = 0;
1063 ret->possibly_dynamic_relocs = 0;
1064 ret->fn_stub = NULL;
1065 ret->call_stub = NULL;
1066 ret->call_fp_stub = NULL;
1067 ret->global_got_area = GGA_NONE;
1068 ret->got_only_for_calls = TRUE;
1069 ret->readonly_reloc = FALSE;
1070 ret->has_static_relocs = FALSE;
1071 ret->no_fn_stub = FALSE;
1072 ret->need_fn_stub = FALSE;
1073 ret->has_nonpic_branches = FALSE;
1074 ret->needs_lazy_stub = FALSE;
1075 }
1076
1077 return (struct bfd_hash_entry *) ret;
1078 }
1079
1080 /* Allocate MIPS ELF private object data. */
1081
1082 bfd_boolean
1083 _bfd_mips_elf_mkobject (bfd *abfd)
1084 {
1085 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1086 MIPS_ELF_DATA);
1087 }
1088
1089 bfd_boolean
1090 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1091 {
1092 if (!sec->used_by_bfd)
1093 {
1094 struct _mips_elf_section_data *sdata;
1095 bfd_size_type amt = sizeof (*sdata);
1096
1097 sdata = bfd_zalloc (abfd, amt);
1098 if (sdata == NULL)
1099 return FALSE;
1100 sec->used_by_bfd = sdata;
1101 }
1102
1103 return _bfd_elf_new_section_hook (abfd, sec);
1104 }
1105 \f
1106 /* Read ECOFF debugging information from a .mdebug section into a
1107 ecoff_debug_info structure. */
1108
1109 bfd_boolean
1110 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1111 struct ecoff_debug_info *debug)
1112 {
1113 HDRR *symhdr;
1114 const struct ecoff_debug_swap *swap;
1115 char *ext_hdr;
1116
1117 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1118 memset (debug, 0, sizeof (*debug));
1119
1120 ext_hdr = bfd_malloc (swap->external_hdr_size);
1121 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1122 goto error_return;
1123
1124 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1125 swap->external_hdr_size))
1126 goto error_return;
1127
1128 symhdr = &debug->symbolic_header;
1129 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1130
1131 /* The symbolic header contains absolute file offsets and sizes to
1132 read. */
1133 #define READ(ptr, offset, count, size, type) \
1134 if (symhdr->count == 0) \
1135 debug->ptr = NULL; \
1136 else \
1137 { \
1138 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1139 debug->ptr = bfd_malloc (amt); \
1140 if (debug->ptr == NULL) \
1141 goto error_return; \
1142 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1143 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1144 goto error_return; \
1145 }
1146
1147 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1148 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1149 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1150 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1151 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1152 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1153 union aux_ext *);
1154 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1155 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1156 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1157 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1158 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1159 #undef READ
1160
1161 debug->fdr = NULL;
1162
1163 return TRUE;
1164
1165 error_return:
1166 if (ext_hdr != NULL)
1167 free (ext_hdr);
1168 if (debug->line != NULL)
1169 free (debug->line);
1170 if (debug->external_dnr != NULL)
1171 free (debug->external_dnr);
1172 if (debug->external_pdr != NULL)
1173 free (debug->external_pdr);
1174 if (debug->external_sym != NULL)
1175 free (debug->external_sym);
1176 if (debug->external_opt != NULL)
1177 free (debug->external_opt);
1178 if (debug->external_aux != NULL)
1179 free (debug->external_aux);
1180 if (debug->ss != NULL)
1181 free (debug->ss);
1182 if (debug->ssext != NULL)
1183 free (debug->ssext);
1184 if (debug->external_fdr != NULL)
1185 free (debug->external_fdr);
1186 if (debug->external_rfd != NULL)
1187 free (debug->external_rfd);
1188 if (debug->external_ext != NULL)
1189 free (debug->external_ext);
1190 return FALSE;
1191 }
1192 \f
1193 /* Swap RPDR (runtime procedure table entry) for output. */
1194
1195 static void
1196 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1197 {
1198 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1199 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1200 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1201 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1202 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1203 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1204
1205 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1206 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1207
1208 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1209 }
1210
1211 /* Create a runtime procedure table from the .mdebug section. */
1212
1213 static bfd_boolean
1214 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1215 struct bfd_link_info *info, asection *s,
1216 struct ecoff_debug_info *debug)
1217 {
1218 const struct ecoff_debug_swap *swap;
1219 HDRR *hdr = &debug->symbolic_header;
1220 RPDR *rpdr, *rp;
1221 struct rpdr_ext *erp;
1222 void *rtproc;
1223 struct pdr_ext *epdr;
1224 struct sym_ext *esym;
1225 char *ss, **sv;
1226 char *str;
1227 bfd_size_type size;
1228 bfd_size_type count;
1229 unsigned long sindex;
1230 unsigned long i;
1231 PDR pdr;
1232 SYMR sym;
1233 const char *no_name_func = _("static procedure (no name)");
1234
1235 epdr = NULL;
1236 rpdr = NULL;
1237 esym = NULL;
1238 ss = NULL;
1239 sv = NULL;
1240
1241 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1242
1243 sindex = strlen (no_name_func) + 1;
1244 count = hdr->ipdMax;
1245 if (count > 0)
1246 {
1247 size = swap->external_pdr_size;
1248
1249 epdr = bfd_malloc (size * count);
1250 if (epdr == NULL)
1251 goto error_return;
1252
1253 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1254 goto error_return;
1255
1256 size = sizeof (RPDR);
1257 rp = rpdr = bfd_malloc (size * count);
1258 if (rpdr == NULL)
1259 goto error_return;
1260
1261 size = sizeof (char *);
1262 sv = bfd_malloc (size * count);
1263 if (sv == NULL)
1264 goto error_return;
1265
1266 count = hdr->isymMax;
1267 size = swap->external_sym_size;
1268 esym = bfd_malloc (size * count);
1269 if (esym == NULL)
1270 goto error_return;
1271
1272 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1273 goto error_return;
1274
1275 count = hdr->issMax;
1276 ss = bfd_malloc (count);
1277 if (ss == NULL)
1278 goto error_return;
1279 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1280 goto error_return;
1281
1282 count = hdr->ipdMax;
1283 for (i = 0; i < (unsigned long) count; i++, rp++)
1284 {
1285 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1286 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1287 rp->adr = sym.value;
1288 rp->regmask = pdr.regmask;
1289 rp->regoffset = pdr.regoffset;
1290 rp->fregmask = pdr.fregmask;
1291 rp->fregoffset = pdr.fregoffset;
1292 rp->frameoffset = pdr.frameoffset;
1293 rp->framereg = pdr.framereg;
1294 rp->pcreg = pdr.pcreg;
1295 rp->irpss = sindex;
1296 sv[i] = ss + sym.iss;
1297 sindex += strlen (sv[i]) + 1;
1298 }
1299 }
1300
1301 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1302 size = BFD_ALIGN (size, 16);
1303 rtproc = bfd_alloc (abfd, size);
1304 if (rtproc == NULL)
1305 {
1306 mips_elf_hash_table (info)->procedure_count = 0;
1307 goto error_return;
1308 }
1309
1310 mips_elf_hash_table (info)->procedure_count = count + 2;
1311
1312 erp = rtproc;
1313 memset (erp, 0, sizeof (struct rpdr_ext));
1314 erp++;
1315 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1316 strcpy (str, no_name_func);
1317 str += strlen (no_name_func) + 1;
1318 for (i = 0; i < count; i++)
1319 {
1320 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1321 strcpy (str, sv[i]);
1322 str += strlen (sv[i]) + 1;
1323 }
1324 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1325
1326 /* Set the size and contents of .rtproc section. */
1327 s->size = size;
1328 s->contents = rtproc;
1329
1330 /* Skip this section later on (I don't think this currently
1331 matters, but someday it might). */
1332 s->map_head.link_order = NULL;
1333
1334 if (epdr != NULL)
1335 free (epdr);
1336 if (rpdr != NULL)
1337 free (rpdr);
1338 if (esym != NULL)
1339 free (esym);
1340 if (ss != NULL)
1341 free (ss);
1342 if (sv != NULL)
1343 free (sv);
1344
1345 return TRUE;
1346
1347 error_return:
1348 if (epdr != NULL)
1349 free (epdr);
1350 if (rpdr != NULL)
1351 free (rpdr);
1352 if (esym != NULL)
1353 free (esym);
1354 if (ss != NULL)
1355 free (ss);
1356 if (sv != NULL)
1357 free (sv);
1358 return FALSE;
1359 }
1360 \f
1361 /* We're going to create a stub for H. Create a symbol for the stub's
1362 value and size, to help make the disassembly easier to read. */
1363
1364 static bfd_boolean
1365 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1366 struct mips_elf_link_hash_entry *h,
1367 const char *prefix, asection *s, bfd_vma value,
1368 bfd_vma size)
1369 {
1370 struct bfd_link_hash_entry *bh;
1371 struct elf_link_hash_entry *elfh;
1372 const char *name;
1373
1374 if (ELF_ST_IS_MICROMIPS (h->root.other))
1375 value |= 1;
1376
1377 /* Create a new symbol. */
1378 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1379 bh = NULL;
1380 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1381 BSF_LOCAL, s, value, NULL,
1382 TRUE, FALSE, &bh))
1383 return FALSE;
1384
1385 /* Make it a local function. */
1386 elfh = (struct elf_link_hash_entry *) bh;
1387 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1388 elfh->size = size;
1389 elfh->forced_local = 1;
1390 return TRUE;
1391 }
1392
1393 /* We're about to redefine H. Create a symbol to represent H's
1394 current value and size, to help make the disassembly easier
1395 to read. */
1396
1397 static bfd_boolean
1398 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1399 struct mips_elf_link_hash_entry *h,
1400 const char *prefix)
1401 {
1402 struct bfd_link_hash_entry *bh;
1403 struct elf_link_hash_entry *elfh;
1404 const char *name;
1405 asection *s;
1406 bfd_vma value;
1407
1408 /* Read the symbol's value. */
1409 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1410 || h->root.root.type == bfd_link_hash_defweak);
1411 s = h->root.root.u.def.section;
1412 value = h->root.root.u.def.value;
1413
1414 /* Create a new symbol. */
1415 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1416 bh = NULL;
1417 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1418 BSF_LOCAL, s, value, NULL,
1419 TRUE, FALSE, &bh))
1420 return FALSE;
1421
1422 /* Make it local and copy the other attributes from H. */
1423 elfh = (struct elf_link_hash_entry *) bh;
1424 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1425 elfh->other = h->root.other;
1426 elfh->size = h->root.size;
1427 elfh->forced_local = 1;
1428 return TRUE;
1429 }
1430
1431 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1432 function rather than to a hard-float stub. */
1433
1434 static bfd_boolean
1435 section_allows_mips16_refs_p (asection *section)
1436 {
1437 const char *name;
1438
1439 name = bfd_get_section_name (section->owner, section);
1440 return (FN_STUB_P (name)
1441 || CALL_STUB_P (name)
1442 || CALL_FP_STUB_P (name)
1443 || strcmp (name, ".pdr") == 0);
1444 }
1445
1446 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1447 stub section of some kind. Return the R_SYMNDX of the target
1448 function, or 0 if we can't decide which function that is. */
1449
1450 static unsigned long
1451 mips16_stub_symndx (const struct elf_backend_data *bed,
1452 asection *sec ATTRIBUTE_UNUSED,
1453 const Elf_Internal_Rela *relocs,
1454 const Elf_Internal_Rela *relend)
1455 {
1456 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1457 const Elf_Internal_Rela *rel;
1458
1459 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1460 one in a compound relocation. */
1461 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1462 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1463 return ELF_R_SYM (sec->owner, rel->r_info);
1464
1465 /* Otherwise trust the first relocation, whatever its kind. This is
1466 the traditional behavior. */
1467 if (relocs < relend)
1468 return ELF_R_SYM (sec->owner, relocs->r_info);
1469
1470 return 0;
1471 }
1472
1473 /* Check the mips16 stubs for a particular symbol, and see if we can
1474 discard them. */
1475
1476 static void
1477 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1478 struct mips_elf_link_hash_entry *h)
1479 {
1480 /* Dynamic symbols must use the standard call interface, in case other
1481 objects try to call them. */
1482 if (h->fn_stub != NULL
1483 && h->root.dynindx != -1)
1484 {
1485 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1486 h->need_fn_stub = TRUE;
1487 }
1488
1489 if (h->fn_stub != NULL
1490 && ! h->need_fn_stub)
1491 {
1492 /* We don't need the fn_stub; the only references to this symbol
1493 are 16 bit calls. Clobber the size to 0 to prevent it from
1494 being included in the link. */
1495 h->fn_stub->size = 0;
1496 h->fn_stub->flags &= ~SEC_RELOC;
1497 h->fn_stub->reloc_count = 0;
1498 h->fn_stub->flags |= SEC_EXCLUDE;
1499 }
1500
1501 if (h->call_stub != NULL
1502 && ELF_ST_IS_MIPS16 (h->root.other))
1503 {
1504 /* We don't need the call_stub; this is a 16 bit function, so
1505 calls from other 16 bit functions are OK. Clobber the size
1506 to 0 to prevent it from being included in the link. */
1507 h->call_stub->size = 0;
1508 h->call_stub->flags &= ~SEC_RELOC;
1509 h->call_stub->reloc_count = 0;
1510 h->call_stub->flags |= SEC_EXCLUDE;
1511 }
1512
1513 if (h->call_fp_stub != NULL
1514 && ELF_ST_IS_MIPS16 (h->root.other))
1515 {
1516 /* We don't need the call_stub; this is a 16 bit function, so
1517 calls from other 16 bit functions are OK. Clobber the size
1518 to 0 to prevent it from being included in the link. */
1519 h->call_fp_stub->size = 0;
1520 h->call_fp_stub->flags &= ~SEC_RELOC;
1521 h->call_fp_stub->reloc_count = 0;
1522 h->call_fp_stub->flags |= SEC_EXCLUDE;
1523 }
1524 }
1525
1526 /* Hashtable callbacks for mips_elf_la25_stubs. */
1527
1528 static hashval_t
1529 mips_elf_la25_stub_hash (const void *entry_)
1530 {
1531 const struct mips_elf_la25_stub *entry;
1532
1533 entry = (struct mips_elf_la25_stub *) entry_;
1534 return entry->h->root.root.u.def.section->id
1535 + entry->h->root.root.u.def.value;
1536 }
1537
1538 static int
1539 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1540 {
1541 const struct mips_elf_la25_stub *entry1, *entry2;
1542
1543 entry1 = (struct mips_elf_la25_stub *) entry1_;
1544 entry2 = (struct mips_elf_la25_stub *) entry2_;
1545 return ((entry1->h->root.root.u.def.section
1546 == entry2->h->root.root.u.def.section)
1547 && (entry1->h->root.root.u.def.value
1548 == entry2->h->root.root.u.def.value));
1549 }
1550
1551 /* Called by the linker to set up the la25 stub-creation code. FN is
1552 the linker's implementation of add_stub_function. Return true on
1553 success. */
1554
1555 bfd_boolean
1556 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1557 asection *(*fn) (const char *, asection *,
1558 asection *))
1559 {
1560 struct mips_elf_link_hash_table *htab;
1561
1562 htab = mips_elf_hash_table (info);
1563 if (htab == NULL)
1564 return FALSE;
1565
1566 htab->add_stub_section = fn;
1567 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1568 mips_elf_la25_stub_eq, NULL);
1569 if (htab->la25_stubs == NULL)
1570 return FALSE;
1571
1572 return TRUE;
1573 }
1574
1575 /* Return true if H is a locally-defined PIC function, in the sense
1576 that it or its fn_stub might need $25 to be valid on entry.
1577 Note that MIPS16 functions set up $gp using PC-relative instructions,
1578 so they themselves never need $25 to be valid. Only non-MIPS16
1579 entry points are of interest here. */
1580
1581 static bfd_boolean
1582 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1583 {
1584 return ((h->root.root.type == bfd_link_hash_defined
1585 || h->root.root.type == bfd_link_hash_defweak)
1586 && h->root.def_regular
1587 && !bfd_is_abs_section (h->root.root.u.def.section)
1588 && (!ELF_ST_IS_MIPS16 (h->root.other)
1589 || (h->fn_stub && h->need_fn_stub))
1590 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1591 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1592 }
1593
1594 /* Set *SEC to the input section that contains the target of STUB.
1595 Return the offset of the target from the start of that section. */
1596
1597 static bfd_vma
1598 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1599 asection **sec)
1600 {
1601 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1602 {
1603 BFD_ASSERT (stub->h->need_fn_stub);
1604 *sec = stub->h->fn_stub;
1605 return 0;
1606 }
1607 else
1608 {
1609 *sec = stub->h->root.root.u.def.section;
1610 return stub->h->root.root.u.def.value;
1611 }
1612 }
1613
1614 /* STUB describes an la25 stub that we have decided to implement
1615 by inserting an LUI/ADDIU pair before the target function.
1616 Create the section and redirect the function symbol to it. */
1617
1618 static bfd_boolean
1619 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1620 struct bfd_link_info *info)
1621 {
1622 struct mips_elf_link_hash_table *htab;
1623 char *name;
1624 asection *s, *input_section;
1625 unsigned int align;
1626
1627 htab = mips_elf_hash_table (info);
1628 if (htab == NULL)
1629 return FALSE;
1630
1631 /* Create a unique name for the new section. */
1632 name = bfd_malloc (11 + sizeof (".text.stub."));
1633 if (name == NULL)
1634 return FALSE;
1635 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1636
1637 /* Create the section. */
1638 mips_elf_get_la25_target (stub, &input_section);
1639 s = htab->add_stub_section (name, input_section,
1640 input_section->output_section);
1641 if (s == NULL)
1642 return FALSE;
1643
1644 /* Make sure that any padding goes before the stub. */
1645 align = input_section->alignment_power;
1646 if (!bfd_set_section_alignment (s->owner, s, align))
1647 return FALSE;
1648 if (align > 3)
1649 s->size = (1 << align) - 8;
1650
1651 /* Create a symbol for the stub. */
1652 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1653 stub->stub_section = s;
1654 stub->offset = s->size;
1655
1656 /* Allocate room for it. */
1657 s->size += 8;
1658 return TRUE;
1659 }
1660
1661 /* STUB describes an la25 stub that we have decided to implement
1662 with a separate trampoline. Allocate room for it and redirect
1663 the function symbol to it. */
1664
1665 static bfd_boolean
1666 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1667 struct bfd_link_info *info)
1668 {
1669 struct mips_elf_link_hash_table *htab;
1670 asection *s;
1671
1672 htab = mips_elf_hash_table (info);
1673 if (htab == NULL)
1674 return FALSE;
1675
1676 /* Create a trampoline section, if we haven't already. */
1677 s = htab->strampoline;
1678 if (s == NULL)
1679 {
1680 asection *input_section = stub->h->root.root.u.def.section;
1681 s = htab->add_stub_section (".text", NULL,
1682 input_section->output_section);
1683 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1684 return FALSE;
1685 htab->strampoline = s;
1686 }
1687
1688 /* Create a symbol for the stub. */
1689 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1690 stub->stub_section = s;
1691 stub->offset = s->size;
1692
1693 /* Allocate room for it. */
1694 s->size += 16;
1695 return TRUE;
1696 }
1697
1698 /* H describes a symbol that needs an la25 stub. Make sure that an
1699 appropriate stub exists and point H at it. */
1700
1701 static bfd_boolean
1702 mips_elf_add_la25_stub (struct bfd_link_info *info,
1703 struct mips_elf_link_hash_entry *h)
1704 {
1705 struct mips_elf_link_hash_table *htab;
1706 struct mips_elf_la25_stub search, *stub;
1707 bfd_boolean use_trampoline_p;
1708 asection *s;
1709 bfd_vma value;
1710 void **slot;
1711
1712 /* Describe the stub we want. */
1713 search.stub_section = NULL;
1714 search.offset = 0;
1715 search.h = h;
1716
1717 /* See if we've already created an equivalent stub. */
1718 htab = mips_elf_hash_table (info);
1719 if (htab == NULL)
1720 return FALSE;
1721
1722 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1723 if (slot == NULL)
1724 return FALSE;
1725
1726 stub = (struct mips_elf_la25_stub *) *slot;
1727 if (stub != NULL)
1728 {
1729 /* We can reuse the existing stub. */
1730 h->la25_stub = stub;
1731 return TRUE;
1732 }
1733
1734 /* Create a permanent copy of ENTRY and add it to the hash table. */
1735 stub = bfd_malloc (sizeof (search));
1736 if (stub == NULL)
1737 return FALSE;
1738 *stub = search;
1739 *slot = stub;
1740
1741 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1742 of the section and if we would need no more than 2 nops. */
1743 value = mips_elf_get_la25_target (stub, &s);
1744 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1745
1746 h->la25_stub = stub;
1747 return (use_trampoline_p
1748 ? mips_elf_add_la25_trampoline (stub, info)
1749 : mips_elf_add_la25_intro (stub, info));
1750 }
1751
1752 /* A mips_elf_link_hash_traverse callback that is called before sizing
1753 sections. DATA points to a mips_htab_traverse_info structure. */
1754
1755 static bfd_boolean
1756 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1757 {
1758 struct mips_htab_traverse_info *hti;
1759
1760 hti = (struct mips_htab_traverse_info *) data;
1761 if (!hti->info->relocatable)
1762 mips_elf_check_mips16_stubs (hti->info, h);
1763
1764 if (mips_elf_local_pic_function_p (h))
1765 {
1766 /* PR 12845: If H is in a section that has been garbage
1767 collected it will have its output section set to *ABS*. */
1768 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1769 return TRUE;
1770
1771 /* H is a function that might need $25 to be valid on entry.
1772 If we're creating a non-PIC relocatable object, mark H as
1773 being PIC. If we're creating a non-relocatable object with
1774 non-PIC branches and jumps to H, make sure that H has an la25
1775 stub. */
1776 if (hti->info->relocatable)
1777 {
1778 if (!PIC_OBJECT_P (hti->output_bfd))
1779 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1780 }
1781 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1782 {
1783 hti->error = TRUE;
1784 return FALSE;
1785 }
1786 }
1787 return TRUE;
1788 }
1789 \f
1790 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1791 Most mips16 instructions are 16 bits, but these instructions
1792 are 32 bits.
1793
1794 The format of these instructions is:
1795
1796 +--------------+--------------------------------+
1797 | JALX | X| Imm 20:16 | Imm 25:21 |
1798 +--------------+--------------------------------+
1799 | Immediate 15:0 |
1800 +-----------------------------------------------+
1801
1802 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1803 Note that the immediate value in the first word is swapped.
1804
1805 When producing a relocatable object file, R_MIPS16_26 is
1806 handled mostly like R_MIPS_26. In particular, the addend is
1807 stored as a straight 26-bit value in a 32-bit instruction.
1808 (gas makes life simpler for itself by never adjusting a
1809 R_MIPS16_26 reloc to be against a section, so the addend is
1810 always zero). However, the 32 bit instruction is stored as 2
1811 16-bit values, rather than a single 32-bit value. In a
1812 big-endian file, the result is the same; in a little-endian
1813 file, the two 16-bit halves of the 32 bit value are swapped.
1814 This is so that a disassembler can recognize the jal
1815 instruction.
1816
1817 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1818 instruction stored as two 16-bit values. The addend A is the
1819 contents of the targ26 field. The calculation is the same as
1820 R_MIPS_26. When storing the calculated value, reorder the
1821 immediate value as shown above, and don't forget to store the
1822 value as two 16-bit values.
1823
1824 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1825 defined as
1826
1827 big-endian:
1828 +--------+----------------------+
1829 | | |
1830 | | targ26-16 |
1831 |31 26|25 0|
1832 +--------+----------------------+
1833
1834 little-endian:
1835 +----------+------+-------------+
1836 | | | |
1837 | sub1 | | sub2 |
1838 |0 9|10 15|16 31|
1839 +----------+--------------------+
1840 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1841 ((sub1 << 16) | sub2)).
1842
1843 When producing a relocatable object file, the calculation is
1844 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1845 When producing a fully linked file, the calculation is
1846 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1847 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1848
1849 The table below lists the other MIPS16 instruction relocations.
1850 Each one is calculated in the same way as the non-MIPS16 relocation
1851 given on the right, but using the extended MIPS16 layout of 16-bit
1852 immediate fields:
1853
1854 R_MIPS16_GPREL R_MIPS_GPREL16
1855 R_MIPS16_GOT16 R_MIPS_GOT16
1856 R_MIPS16_CALL16 R_MIPS_CALL16
1857 R_MIPS16_HI16 R_MIPS_HI16
1858 R_MIPS16_LO16 R_MIPS_LO16
1859
1860 A typical instruction will have a format like this:
1861
1862 +--------------+--------------------------------+
1863 | EXTEND | Imm 10:5 | Imm 15:11 |
1864 +--------------+--------------------------------+
1865 | Major | rx | ry | Imm 4:0 |
1866 +--------------+--------------------------------+
1867
1868 EXTEND is the five bit value 11110. Major is the instruction
1869 opcode.
1870
1871 All we need to do here is shuffle the bits appropriately.
1872 As above, the two 16-bit halves must be swapped on a
1873 little-endian system. */
1874
1875 static inline bfd_boolean
1876 mips16_reloc_p (int r_type)
1877 {
1878 switch (r_type)
1879 {
1880 case R_MIPS16_26:
1881 case R_MIPS16_GPREL:
1882 case R_MIPS16_GOT16:
1883 case R_MIPS16_CALL16:
1884 case R_MIPS16_HI16:
1885 case R_MIPS16_LO16:
1886 case R_MIPS16_TLS_GD:
1887 case R_MIPS16_TLS_LDM:
1888 case R_MIPS16_TLS_DTPREL_HI16:
1889 case R_MIPS16_TLS_DTPREL_LO16:
1890 case R_MIPS16_TLS_GOTTPREL:
1891 case R_MIPS16_TLS_TPREL_HI16:
1892 case R_MIPS16_TLS_TPREL_LO16:
1893 return TRUE;
1894
1895 default:
1896 return FALSE;
1897 }
1898 }
1899
1900 /* Check if a microMIPS reloc. */
1901
1902 static inline bfd_boolean
1903 micromips_reloc_p (unsigned int r_type)
1904 {
1905 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1906 }
1907
1908 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1909 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1910 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1911
1912 static inline bfd_boolean
1913 micromips_reloc_shuffle_p (unsigned int r_type)
1914 {
1915 return (micromips_reloc_p (r_type)
1916 && r_type != R_MICROMIPS_PC7_S1
1917 && r_type != R_MICROMIPS_PC10_S1);
1918 }
1919
1920 static inline bfd_boolean
1921 got16_reloc_p (int r_type)
1922 {
1923 return (r_type == R_MIPS_GOT16
1924 || r_type == R_MIPS16_GOT16
1925 || r_type == R_MICROMIPS_GOT16);
1926 }
1927
1928 static inline bfd_boolean
1929 call16_reloc_p (int r_type)
1930 {
1931 return (r_type == R_MIPS_CALL16
1932 || r_type == R_MIPS16_CALL16
1933 || r_type == R_MICROMIPS_CALL16);
1934 }
1935
1936 static inline bfd_boolean
1937 got_disp_reloc_p (unsigned int r_type)
1938 {
1939 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1940 }
1941
1942 static inline bfd_boolean
1943 got_page_reloc_p (unsigned int r_type)
1944 {
1945 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1946 }
1947
1948 static inline bfd_boolean
1949 got_ofst_reloc_p (unsigned int r_type)
1950 {
1951 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1952 }
1953
1954 static inline bfd_boolean
1955 got_hi16_reloc_p (unsigned int r_type)
1956 {
1957 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1958 }
1959
1960 static inline bfd_boolean
1961 got_lo16_reloc_p (unsigned int r_type)
1962 {
1963 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1964 }
1965
1966 static inline bfd_boolean
1967 call_hi16_reloc_p (unsigned int r_type)
1968 {
1969 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1970 }
1971
1972 static inline bfd_boolean
1973 call_lo16_reloc_p (unsigned int r_type)
1974 {
1975 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1976 }
1977
1978 static inline bfd_boolean
1979 hi16_reloc_p (int r_type)
1980 {
1981 return (r_type == R_MIPS_HI16
1982 || r_type == R_MIPS16_HI16
1983 || r_type == R_MICROMIPS_HI16);
1984 }
1985
1986 static inline bfd_boolean
1987 lo16_reloc_p (int r_type)
1988 {
1989 return (r_type == R_MIPS_LO16
1990 || r_type == R_MIPS16_LO16
1991 || r_type == R_MICROMIPS_LO16);
1992 }
1993
1994 static inline bfd_boolean
1995 mips16_call_reloc_p (int r_type)
1996 {
1997 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1998 }
1999
2000 static inline bfd_boolean
2001 jal_reloc_p (int r_type)
2002 {
2003 return (r_type == R_MIPS_26
2004 || r_type == R_MIPS16_26
2005 || r_type == R_MICROMIPS_26_S1);
2006 }
2007
2008 static inline bfd_boolean
2009 micromips_branch_reloc_p (int r_type)
2010 {
2011 return (r_type == R_MICROMIPS_26_S1
2012 || r_type == R_MICROMIPS_PC16_S1
2013 || r_type == R_MICROMIPS_PC10_S1
2014 || r_type == R_MICROMIPS_PC7_S1);
2015 }
2016
2017 static inline bfd_boolean
2018 tls_gd_reloc_p (unsigned int r_type)
2019 {
2020 return (r_type == R_MIPS_TLS_GD
2021 || r_type == R_MIPS16_TLS_GD
2022 || r_type == R_MICROMIPS_TLS_GD);
2023 }
2024
2025 static inline bfd_boolean
2026 tls_ldm_reloc_p (unsigned int r_type)
2027 {
2028 return (r_type == R_MIPS_TLS_LDM
2029 || r_type == R_MIPS16_TLS_LDM
2030 || r_type == R_MICROMIPS_TLS_LDM);
2031 }
2032
2033 static inline bfd_boolean
2034 tls_gottprel_reloc_p (unsigned int r_type)
2035 {
2036 return (r_type == R_MIPS_TLS_GOTTPREL
2037 || r_type == R_MIPS16_TLS_GOTTPREL
2038 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2039 }
2040
2041 void
2042 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2043 bfd_boolean jal_shuffle, bfd_byte *data)
2044 {
2045 bfd_vma first, second, val;
2046
2047 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2048 return;
2049
2050 /* Pick up the first and second halfwords of the instruction. */
2051 first = bfd_get_16 (abfd, data);
2052 second = bfd_get_16 (abfd, data + 2);
2053 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2054 val = first << 16 | second;
2055 else if (r_type != R_MIPS16_26)
2056 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2057 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2058 else
2059 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2060 | ((first & 0x1f) << 21) | second);
2061 bfd_put_32 (abfd, val, data);
2062 }
2063
2064 void
2065 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2066 bfd_boolean jal_shuffle, bfd_byte *data)
2067 {
2068 bfd_vma first, second, val;
2069
2070 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2071 return;
2072
2073 val = bfd_get_32 (abfd, data);
2074 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2075 {
2076 second = val & 0xffff;
2077 first = val >> 16;
2078 }
2079 else if (r_type != R_MIPS16_26)
2080 {
2081 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2082 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2083 }
2084 else
2085 {
2086 second = val & 0xffff;
2087 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2088 | ((val >> 21) & 0x1f);
2089 }
2090 bfd_put_16 (abfd, second, data + 2);
2091 bfd_put_16 (abfd, first, data);
2092 }
2093
2094 bfd_reloc_status_type
2095 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2096 arelent *reloc_entry, asection *input_section,
2097 bfd_boolean relocatable, void *data, bfd_vma gp)
2098 {
2099 bfd_vma relocation;
2100 bfd_signed_vma val;
2101 bfd_reloc_status_type status;
2102
2103 if (bfd_is_com_section (symbol->section))
2104 relocation = 0;
2105 else
2106 relocation = symbol->value;
2107
2108 relocation += symbol->section->output_section->vma;
2109 relocation += symbol->section->output_offset;
2110
2111 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2112 return bfd_reloc_outofrange;
2113
2114 /* Set val to the offset into the section or symbol. */
2115 val = reloc_entry->addend;
2116
2117 _bfd_mips_elf_sign_extend (val, 16);
2118
2119 /* Adjust val for the final section location and GP value. If we
2120 are producing relocatable output, we don't want to do this for
2121 an external symbol. */
2122 if (! relocatable
2123 || (symbol->flags & BSF_SECTION_SYM) != 0)
2124 val += relocation - gp;
2125
2126 if (reloc_entry->howto->partial_inplace)
2127 {
2128 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2129 (bfd_byte *) data
2130 + reloc_entry->address);
2131 if (status != bfd_reloc_ok)
2132 return status;
2133 }
2134 else
2135 reloc_entry->addend = val;
2136
2137 if (relocatable)
2138 reloc_entry->address += input_section->output_offset;
2139
2140 return bfd_reloc_ok;
2141 }
2142
2143 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2144 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2145 that contains the relocation field and DATA points to the start of
2146 INPUT_SECTION. */
2147
2148 struct mips_hi16
2149 {
2150 struct mips_hi16 *next;
2151 bfd_byte *data;
2152 asection *input_section;
2153 arelent rel;
2154 };
2155
2156 /* FIXME: This should not be a static variable. */
2157
2158 static struct mips_hi16 *mips_hi16_list;
2159
2160 /* A howto special_function for REL *HI16 relocations. We can only
2161 calculate the correct value once we've seen the partnering
2162 *LO16 relocation, so just save the information for later.
2163
2164 The ABI requires that the *LO16 immediately follow the *HI16.
2165 However, as a GNU extension, we permit an arbitrary number of
2166 *HI16s to be associated with a single *LO16. This significantly
2167 simplies the relocation handling in gcc. */
2168
2169 bfd_reloc_status_type
2170 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2171 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2172 asection *input_section, bfd *output_bfd,
2173 char **error_message ATTRIBUTE_UNUSED)
2174 {
2175 struct mips_hi16 *n;
2176
2177 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2178 return bfd_reloc_outofrange;
2179
2180 n = bfd_malloc (sizeof *n);
2181 if (n == NULL)
2182 return bfd_reloc_outofrange;
2183
2184 n->next = mips_hi16_list;
2185 n->data = data;
2186 n->input_section = input_section;
2187 n->rel = *reloc_entry;
2188 mips_hi16_list = n;
2189
2190 if (output_bfd != NULL)
2191 reloc_entry->address += input_section->output_offset;
2192
2193 return bfd_reloc_ok;
2194 }
2195
2196 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2197 like any other 16-bit relocation when applied to global symbols, but is
2198 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2199
2200 bfd_reloc_status_type
2201 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2202 void *data, asection *input_section,
2203 bfd *output_bfd, char **error_message)
2204 {
2205 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2206 || bfd_is_und_section (bfd_get_section (symbol))
2207 || bfd_is_com_section (bfd_get_section (symbol)))
2208 /* The relocation is against a global symbol. */
2209 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2210 input_section, output_bfd,
2211 error_message);
2212
2213 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2214 input_section, output_bfd, error_message);
2215 }
2216
2217 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2218 is a straightforward 16 bit inplace relocation, but we must deal with
2219 any partnering high-part relocations as well. */
2220
2221 bfd_reloc_status_type
2222 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2223 void *data, asection *input_section,
2224 bfd *output_bfd, char **error_message)
2225 {
2226 bfd_vma vallo;
2227 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2228
2229 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2230 return bfd_reloc_outofrange;
2231
2232 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2233 location);
2234 vallo = bfd_get_32 (abfd, location);
2235 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2236 location);
2237
2238 while (mips_hi16_list != NULL)
2239 {
2240 bfd_reloc_status_type ret;
2241 struct mips_hi16 *hi;
2242
2243 hi = mips_hi16_list;
2244
2245 /* R_MIPS*_GOT16 relocations are something of a special case. We
2246 want to install the addend in the same way as for a R_MIPS*_HI16
2247 relocation (with a rightshift of 16). However, since GOT16
2248 relocations can also be used with global symbols, their howto
2249 has a rightshift of 0. */
2250 if (hi->rel.howto->type == R_MIPS_GOT16)
2251 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2252 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2253 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2254 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2255 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2256
2257 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2258 carry or borrow will induce a change of +1 or -1 in the high part. */
2259 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2260
2261 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2262 hi->input_section, output_bfd,
2263 error_message);
2264 if (ret != bfd_reloc_ok)
2265 return ret;
2266
2267 mips_hi16_list = hi->next;
2268 free (hi);
2269 }
2270
2271 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2272 input_section, output_bfd,
2273 error_message);
2274 }
2275
2276 /* A generic howto special_function. This calculates and installs the
2277 relocation itself, thus avoiding the oft-discussed problems in
2278 bfd_perform_relocation and bfd_install_relocation. */
2279
2280 bfd_reloc_status_type
2281 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2282 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2283 asection *input_section, bfd *output_bfd,
2284 char **error_message ATTRIBUTE_UNUSED)
2285 {
2286 bfd_signed_vma val;
2287 bfd_reloc_status_type status;
2288 bfd_boolean relocatable;
2289
2290 relocatable = (output_bfd != NULL);
2291
2292 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2293 return bfd_reloc_outofrange;
2294
2295 /* Build up the field adjustment in VAL. */
2296 val = 0;
2297 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2298 {
2299 /* Either we're calculating the final field value or we have a
2300 relocation against a section symbol. Add in the section's
2301 offset or address. */
2302 val += symbol->section->output_section->vma;
2303 val += symbol->section->output_offset;
2304 }
2305
2306 if (!relocatable)
2307 {
2308 /* We're calculating the final field value. Add in the symbol's value
2309 and, if pc-relative, subtract the address of the field itself. */
2310 val += symbol->value;
2311 if (reloc_entry->howto->pc_relative)
2312 {
2313 val -= input_section->output_section->vma;
2314 val -= input_section->output_offset;
2315 val -= reloc_entry->address;
2316 }
2317 }
2318
2319 /* VAL is now the final adjustment. If we're keeping this relocation
2320 in the output file, and if the relocation uses a separate addend,
2321 we just need to add VAL to that addend. Otherwise we need to add
2322 VAL to the relocation field itself. */
2323 if (relocatable && !reloc_entry->howto->partial_inplace)
2324 reloc_entry->addend += val;
2325 else
2326 {
2327 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2328
2329 /* Add in the separate addend, if any. */
2330 val += reloc_entry->addend;
2331
2332 /* Add VAL to the relocation field. */
2333 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2334 location);
2335 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2336 location);
2337 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2338 location);
2339
2340 if (status != bfd_reloc_ok)
2341 return status;
2342 }
2343
2344 if (relocatable)
2345 reloc_entry->address += input_section->output_offset;
2346
2347 return bfd_reloc_ok;
2348 }
2349 \f
2350 /* Swap an entry in a .gptab section. Note that these routines rely
2351 on the equivalence of the two elements of the union. */
2352
2353 static void
2354 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2355 Elf32_gptab *in)
2356 {
2357 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2358 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2359 }
2360
2361 static void
2362 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2363 Elf32_External_gptab *ex)
2364 {
2365 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2366 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2367 }
2368
2369 static void
2370 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2371 Elf32_External_compact_rel *ex)
2372 {
2373 H_PUT_32 (abfd, in->id1, ex->id1);
2374 H_PUT_32 (abfd, in->num, ex->num);
2375 H_PUT_32 (abfd, in->id2, ex->id2);
2376 H_PUT_32 (abfd, in->offset, ex->offset);
2377 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2378 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2379 }
2380
2381 static void
2382 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2383 Elf32_External_crinfo *ex)
2384 {
2385 unsigned long l;
2386
2387 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2388 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2389 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2390 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2391 H_PUT_32 (abfd, l, ex->info);
2392 H_PUT_32 (abfd, in->konst, ex->konst);
2393 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2394 }
2395 \f
2396 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2397 routines swap this structure in and out. They are used outside of
2398 BFD, so they are globally visible. */
2399
2400 void
2401 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2402 Elf32_RegInfo *in)
2403 {
2404 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2405 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2406 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2407 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2408 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2409 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2410 }
2411
2412 void
2413 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2414 Elf32_External_RegInfo *ex)
2415 {
2416 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2417 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2418 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2419 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2420 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2421 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2422 }
2423
2424 /* In the 64 bit ABI, the .MIPS.options section holds register
2425 information in an Elf64_Reginfo structure. These routines swap
2426 them in and out. They are globally visible because they are used
2427 outside of BFD. These routines are here so that gas can call them
2428 without worrying about whether the 64 bit ABI has been included. */
2429
2430 void
2431 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2432 Elf64_Internal_RegInfo *in)
2433 {
2434 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2435 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2436 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2437 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2438 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2439 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2440 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2441 }
2442
2443 void
2444 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2445 Elf64_External_RegInfo *ex)
2446 {
2447 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2448 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2449 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2450 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2451 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2452 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2453 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2454 }
2455
2456 /* Swap in an options header. */
2457
2458 void
2459 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2460 Elf_Internal_Options *in)
2461 {
2462 in->kind = H_GET_8 (abfd, ex->kind);
2463 in->size = H_GET_8 (abfd, ex->size);
2464 in->section = H_GET_16 (abfd, ex->section);
2465 in->info = H_GET_32 (abfd, ex->info);
2466 }
2467
2468 /* Swap out an options header. */
2469
2470 void
2471 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2472 Elf_External_Options *ex)
2473 {
2474 H_PUT_8 (abfd, in->kind, ex->kind);
2475 H_PUT_8 (abfd, in->size, ex->size);
2476 H_PUT_16 (abfd, in->section, ex->section);
2477 H_PUT_32 (abfd, in->info, ex->info);
2478 }
2479 \f
2480 /* This function is called via qsort() to sort the dynamic relocation
2481 entries by increasing r_symndx value. */
2482
2483 static int
2484 sort_dynamic_relocs (const void *arg1, const void *arg2)
2485 {
2486 Elf_Internal_Rela int_reloc1;
2487 Elf_Internal_Rela int_reloc2;
2488 int diff;
2489
2490 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2491 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2492
2493 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2494 if (diff != 0)
2495 return diff;
2496
2497 if (int_reloc1.r_offset < int_reloc2.r_offset)
2498 return -1;
2499 if (int_reloc1.r_offset > int_reloc2.r_offset)
2500 return 1;
2501 return 0;
2502 }
2503
2504 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2505
2506 static int
2507 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2508 const void *arg2 ATTRIBUTE_UNUSED)
2509 {
2510 #ifdef BFD64
2511 Elf_Internal_Rela int_reloc1[3];
2512 Elf_Internal_Rela int_reloc2[3];
2513
2514 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2515 (reldyn_sorting_bfd, arg1, int_reloc1);
2516 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2517 (reldyn_sorting_bfd, arg2, int_reloc2);
2518
2519 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2520 return -1;
2521 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2522 return 1;
2523
2524 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2525 return -1;
2526 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2527 return 1;
2528 return 0;
2529 #else
2530 abort ();
2531 #endif
2532 }
2533
2534
2535 /* This routine is used to write out ECOFF debugging external symbol
2536 information. It is called via mips_elf_link_hash_traverse. The
2537 ECOFF external symbol information must match the ELF external
2538 symbol information. Unfortunately, at this point we don't know
2539 whether a symbol is required by reloc information, so the two
2540 tables may wind up being different. We must sort out the external
2541 symbol information before we can set the final size of the .mdebug
2542 section, and we must set the size of the .mdebug section before we
2543 can relocate any sections, and we can't know which symbols are
2544 required by relocation until we relocate the sections.
2545 Fortunately, it is relatively unlikely that any symbol will be
2546 stripped but required by a reloc. In particular, it can not happen
2547 when generating a final executable. */
2548
2549 static bfd_boolean
2550 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2551 {
2552 struct extsym_info *einfo = data;
2553 bfd_boolean strip;
2554 asection *sec, *output_section;
2555
2556 if (h->root.indx == -2)
2557 strip = FALSE;
2558 else if ((h->root.def_dynamic
2559 || h->root.ref_dynamic
2560 || h->root.type == bfd_link_hash_new)
2561 && !h->root.def_regular
2562 && !h->root.ref_regular)
2563 strip = TRUE;
2564 else if (einfo->info->strip == strip_all
2565 || (einfo->info->strip == strip_some
2566 && bfd_hash_lookup (einfo->info->keep_hash,
2567 h->root.root.root.string,
2568 FALSE, FALSE) == NULL))
2569 strip = TRUE;
2570 else
2571 strip = FALSE;
2572
2573 if (strip)
2574 return TRUE;
2575
2576 if (h->esym.ifd == -2)
2577 {
2578 h->esym.jmptbl = 0;
2579 h->esym.cobol_main = 0;
2580 h->esym.weakext = 0;
2581 h->esym.reserved = 0;
2582 h->esym.ifd = ifdNil;
2583 h->esym.asym.value = 0;
2584 h->esym.asym.st = stGlobal;
2585
2586 if (h->root.root.type == bfd_link_hash_undefined
2587 || h->root.root.type == bfd_link_hash_undefweak)
2588 {
2589 const char *name;
2590
2591 /* Use undefined class. Also, set class and type for some
2592 special symbols. */
2593 name = h->root.root.root.string;
2594 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2595 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2596 {
2597 h->esym.asym.sc = scData;
2598 h->esym.asym.st = stLabel;
2599 h->esym.asym.value = 0;
2600 }
2601 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2602 {
2603 h->esym.asym.sc = scAbs;
2604 h->esym.asym.st = stLabel;
2605 h->esym.asym.value =
2606 mips_elf_hash_table (einfo->info)->procedure_count;
2607 }
2608 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2609 {
2610 h->esym.asym.sc = scAbs;
2611 h->esym.asym.st = stLabel;
2612 h->esym.asym.value = elf_gp (einfo->abfd);
2613 }
2614 else
2615 h->esym.asym.sc = scUndefined;
2616 }
2617 else if (h->root.root.type != bfd_link_hash_defined
2618 && h->root.root.type != bfd_link_hash_defweak)
2619 h->esym.asym.sc = scAbs;
2620 else
2621 {
2622 const char *name;
2623
2624 sec = h->root.root.u.def.section;
2625 output_section = sec->output_section;
2626
2627 /* When making a shared library and symbol h is the one from
2628 the another shared library, OUTPUT_SECTION may be null. */
2629 if (output_section == NULL)
2630 h->esym.asym.sc = scUndefined;
2631 else
2632 {
2633 name = bfd_section_name (output_section->owner, output_section);
2634
2635 if (strcmp (name, ".text") == 0)
2636 h->esym.asym.sc = scText;
2637 else if (strcmp (name, ".data") == 0)
2638 h->esym.asym.sc = scData;
2639 else if (strcmp (name, ".sdata") == 0)
2640 h->esym.asym.sc = scSData;
2641 else if (strcmp (name, ".rodata") == 0
2642 || strcmp (name, ".rdata") == 0)
2643 h->esym.asym.sc = scRData;
2644 else if (strcmp (name, ".bss") == 0)
2645 h->esym.asym.sc = scBss;
2646 else if (strcmp (name, ".sbss") == 0)
2647 h->esym.asym.sc = scSBss;
2648 else if (strcmp (name, ".init") == 0)
2649 h->esym.asym.sc = scInit;
2650 else if (strcmp (name, ".fini") == 0)
2651 h->esym.asym.sc = scFini;
2652 else
2653 h->esym.asym.sc = scAbs;
2654 }
2655 }
2656
2657 h->esym.asym.reserved = 0;
2658 h->esym.asym.index = indexNil;
2659 }
2660
2661 if (h->root.root.type == bfd_link_hash_common)
2662 h->esym.asym.value = h->root.root.u.c.size;
2663 else if (h->root.root.type == bfd_link_hash_defined
2664 || h->root.root.type == bfd_link_hash_defweak)
2665 {
2666 if (h->esym.asym.sc == scCommon)
2667 h->esym.asym.sc = scBss;
2668 else if (h->esym.asym.sc == scSCommon)
2669 h->esym.asym.sc = scSBss;
2670
2671 sec = h->root.root.u.def.section;
2672 output_section = sec->output_section;
2673 if (output_section != NULL)
2674 h->esym.asym.value = (h->root.root.u.def.value
2675 + sec->output_offset
2676 + output_section->vma);
2677 else
2678 h->esym.asym.value = 0;
2679 }
2680 else
2681 {
2682 struct mips_elf_link_hash_entry *hd = h;
2683
2684 while (hd->root.root.type == bfd_link_hash_indirect)
2685 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2686
2687 if (hd->needs_lazy_stub)
2688 {
2689 /* Set type and value for a symbol with a function stub. */
2690 h->esym.asym.st = stProc;
2691 sec = hd->root.root.u.def.section;
2692 if (sec == NULL)
2693 h->esym.asym.value = 0;
2694 else
2695 {
2696 output_section = sec->output_section;
2697 if (output_section != NULL)
2698 h->esym.asym.value = (hd->root.plt.offset
2699 + sec->output_offset
2700 + output_section->vma);
2701 else
2702 h->esym.asym.value = 0;
2703 }
2704 }
2705 }
2706
2707 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2708 h->root.root.root.string,
2709 &h->esym))
2710 {
2711 einfo->failed = TRUE;
2712 return FALSE;
2713 }
2714
2715 return TRUE;
2716 }
2717
2718 /* A comparison routine used to sort .gptab entries. */
2719
2720 static int
2721 gptab_compare (const void *p1, const void *p2)
2722 {
2723 const Elf32_gptab *a1 = p1;
2724 const Elf32_gptab *a2 = p2;
2725
2726 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2727 }
2728 \f
2729 /* Functions to manage the got entry hash table. */
2730
2731 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2732 hash number. */
2733
2734 static INLINE hashval_t
2735 mips_elf_hash_bfd_vma (bfd_vma addr)
2736 {
2737 #ifdef BFD64
2738 return addr + (addr >> 32);
2739 #else
2740 return addr;
2741 #endif
2742 }
2743
2744 static hashval_t
2745 mips_elf_got_entry_hash (const void *entry_)
2746 {
2747 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2748
2749 return (entry->symndx
2750 + ((entry->tls_type == GOT_TLS_LDM) << 18)
2751 + (entry->tls_type == GOT_TLS_LDM ? 0
2752 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2753 : entry->symndx >= 0 ? (entry->abfd->id
2754 + mips_elf_hash_bfd_vma (entry->d.addend))
2755 : entry->d.h->root.root.root.hash));
2756 }
2757
2758 static int
2759 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2760 {
2761 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2762 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2763
2764 return (e1->symndx == e2->symndx
2765 && e1->tls_type == e2->tls_type
2766 && (e1->tls_type == GOT_TLS_LDM ? TRUE
2767 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2768 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2769 && e1->d.addend == e2->d.addend)
2770 : e2->abfd && e1->d.h == e2->d.h));
2771 }
2772
2773 static hashval_t
2774 mips_got_page_entry_hash (const void *entry_)
2775 {
2776 const struct mips_got_page_entry *entry;
2777
2778 entry = (const struct mips_got_page_entry *) entry_;
2779 return entry->abfd->id + entry->symndx;
2780 }
2781
2782 static int
2783 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2784 {
2785 const struct mips_got_page_entry *entry1, *entry2;
2786
2787 entry1 = (const struct mips_got_page_entry *) entry1_;
2788 entry2 = (const struct mips_got_page_entry *) entry2_;
2789 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2790 }
2791 \f
2792 /* Create and return a new mips_got_info structure. */
2793
2794 static struct mips_got_info *
2795 mips_elf_create_got_info (bfd *abfd)
2796 {
2797 struct mips_got_info *g;
2798
2799 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
2800 if (g == NULL)
2801 return NULL;
2802
2803 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2804 mips_elf_got_entry_eq, NULL);
2805 if (g->got_entries == NULL)
2806 return NULL;
2807
2808 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
2809 mips_got_page_entry_eq, NULL);
2810 if (g->got_page_entries == NULL)
2811 return NULL;
2812
2813 return g;
2814 }
2815
2816 /* Return the GOT info for input bfd ABFD, trying to create a new one if
2817 CREATE_P and if ABFD doesn't already have a GOT. */
2818
2819 static struct mips_got_info *
2820 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
2821 {
2822 struct mips_elf_obj_tdata *tdata;
2823
2824 if (!is_mips_elf (abfd))
2825 return NULL;
2826
2827 tdata = mips_elf_tdata (abfd);
2828 if (!tdata->got && create_p)
2829 tdata->got = mips_elf_create_got_info (abfd);
2830 return tdata->got;
2831 }
2832
2833 /* Record that ABFD should use output GOT G. */
2834
2835 static void
2836 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
2837 {
2838 struct mips_elf_obj_tdata *tdata;
2839
2840 BFD_ASSERT (is_mips_elf (abfd));
2841 tdata = mips_elf_tdata (abfd);
2842 if (tdata->got)
2843 {
2844 /* The GOT structure itself and the hash table entries are
2845 allocated to a bfd, but the hash tables aren't. */
2846 htab_delete (tdata->got->got_entries);
2847 htab_delete (tdata->got->got_page_entries);
2848 }
2849 tdata->got = g;
2850 }
2851
2852 /* Return the dynamic relocation section. If it doesn't exist, try to
2853 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2854 if creation fails. */
2855
2856 static asection *
2857 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2858 {
2859 const char *dname;
2860 asection *sreloc;
2861 bfd *dynobj;
2862
2863 dname = MIPS_ELF_REL_DYN_NAME (info);
2864 dynobj = elf_hash_table (info)->dynobj;
2865 sreloc = bfd_get_linker_section (dynobj, dname);
2866 if (sreloc == NULL && create_p)
2867 {
2868 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2869 (SEC_ALLOC
2870 | SEC_LOAD
2871 | SEC_HAS_CONTENTS
2872 | SEC_IN_MEMORY
2873 | SEC_LINKER_CREATED
2874 | SEC_READONLY));
2875 if (sreloc == NULL
2876 || ! bfd_set_section_alignment (dynobj, sreloc,
2877 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2878 return NULL;
2879 }
2880 return sreloc;
2881 }
2882
2883 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
2884
2885 static int
2886 mips_elf_reloc_tls_type (unsigned int r_type)
2887 {
2888 if (tls_gd_reloc_p (r_type))
2889 return GOT_TLS_GD;
2890
2891 if (tls_ldm_reloc_p (r_type))
2892 return GOT_TLS_LDM;
2893
2894 if (tls_gottprel_reloc_p (r_type))
2895 return GOT_TLS_IE;
2896
2897 return GOT_TLS_NONE;
2898 }
2899
2900 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
2901
2902 static int
2903 mips_tls_got_entries (unsigned int type)
2904 {
2905 switch (type)
2906 {
2907 case GOT_TLS_GD:
2908 case GOT_TLS_LDM:
2909 return 2;
2910
2911 case GOT_TLS_IE:
2912 return 1;
2913
2914 case GOT_TLS_NONE:
2915 return 0;
2916 }
2917 abort ();
2918 }
2919
2920 /* Count the number of relocations needed for a TLS GOT entry, with
2921 access types from TLS_TYPE, and symbol H (or a local symbol if H
2922 is NULL). */
2923
2924 static int
2925 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2926 struct elf_link_hash_entry *h)
2927 {
2928 int indx = 0;
2929 bfd_boolean need_relocs = FALSE;
2930 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2931
2932 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2933 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2934 indx = h->dynindx;
2935
2936 if ((info->shared || indx != 0)
2937 && (h == NULL
2938 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2939 || h->root.type != bfd_link_hash_undefweak))
2940 need_relocs = TRUE;
2941
2942 if (!need_relocs)
2943 return 0;
2944
2945 switch (tls_type)
2946 {
2947 case GOT_TLS_GD:
2948 return indx != 0 ? 2 : 1;
2949
2950 case GOT_TLS_IE:
2951 return 1;
2952
2953 case GOT_TLS_LDM:
2954 return info->shared ? 1 : 0;
2955
2956 default:
2957 return 0;
2958 }
2959 }
2960
2961 /* Add the number of GOT entries and TLS relocations required by ENTRY
2962 to G. */
2963
2964 static void
2965 mips_elf_count_got_entry (struct bfd_link_info *info,
2966 struct mips_got_info *g,
2967 struct mips_got_entry *entry)
2968 {
2969 if (entry->tls_type)
2970 {
2971 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
2972 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
2973 entry->symndx < 0
2974 ? &entry->d.h->root : NULL);
2975 }
2976 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
2977 g->local_gotno += 1;
2978 else
2979 g->global_gotno += 1;
2980 }
2981
2982 /* A htab_traverse callback. Count the number of GOT entries and
2983 TLS relocations required for the GOT entry in *ENTRYP. DATA points
2984 to a mips_elf_traverse_got_arg structure. */
2985
2986 static int
2987 mips_elf_count_got_entries (void **entryp, void *data)
2988 {
2989 struct mips_got_entry *entry;
2990 struct mips_elf_traverse_got_arg *arg;
2991
2992 entry = (struct mips_got_entry *) *entryp;
2993 arg = (struct mips_elf_traverse_got_arg *) data;
2994 mips_elf_count_got_entry (arg->info, arg->g, entry);
2995
2996 return 1;
2997 }
2998
2999 /* Output a simple dynamic relocation into SRELOC. */
3000
3001 static void
3002 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3003 asection *sreloc,
3004 unsigned long reloc_index,
3005 unsigned long indx,
3006 int r_type,
3007 bfd_vma offset)
3008 {
3009 Elf_Internal_Rela rel[3];
3010
3011 memset (rel, 0, sizeof (rel));
3012
3013 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3014 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3015
3016 if (ABI_64_P (output_bfd))
3017 {
3018 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3019 (output_bfd, &rel[0],
3020 (sreloc->contents
3021 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3022 }
3023 else
3024 bfd_elf32_swap_reloc_out
3025 (output_bfd, &rel[0],
3026 (sreloc->contents
3027 + reloc_index * sizeof (Elf32_External_Rel)));
3028 }
3029
3030 /* Initialize a set of TLS GOT entries for one symbol. */
3031
3032 static void
3033 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3034 struct mips_got_entry *entry,
3035 struct mips_elf_link_hash_entry *h,
3036 bfd_vma value)
3037 {
3038 struct mips_elf_link_hash_table *htab;
3039 int indx;
3040 asection *sreloc, *sgot;
3041 bfd_vma got_offset, got_offset2;
3042 bfd_boolean need_relocs = FALSE;
3043
3044 htab = mips_elf_hash_table (info);
3045 if (htab == NULL)
3046 return;
3047
3048 sgot = htab->sgot;
3049
3050 indx = 0;
3051 if (h != NULL)
3052 {
3053 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3054
3055 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3056 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3057 indx = h->root.dynindx;
3058 }
3059
3060 if (entry->tls_initialized)
3061 return;
3062
3063 if ((info->shared || indx != 0)
3064 && (h == NULL
3065 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3066 || h->root.type != bfd_link_hash_undefweak))
3067 need_relocs = TRUE;
3068
3069 /* MINUS_ONE means the symbol is not defined in this object. It may not
3070 be defined at all; assume that the value doesn't matter in that
3071 case. Otherwise complain if we would use the value. */
3072 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3073 || h->root.root.type == bfd_link_hash_undefweak);
3074
3075 /* Emit necessary relocations. */
3076 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3077 got_offset = entry->gotidx;
3078
3079 switch (entry->tls_type)
3080 {
3081 case GOT_TLS_GD:
3082 /* General Dynamic. */
3083 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3084
3085 if (need_relocs)
3086 {
3087 mips_elf_output_dynamic_relocation
3088 (abfd, sreloc, sreloc->reloc_count++, indx,
3089 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3090 sgot->output_offset + sgot->output_section->vma + got_offset);
3091
3092 if (indx)
3093 mips_elf_output_dynamic_relocation
3094 (abfd, sreloc, sreloc->reloc_count++, indx,
3095 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3096 sgot->output_offset + sgot->output_section->vma + got_offset2);
3097 else
3098 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3099 sgot->contents + got_offset2);
3100 }
3101 else
3102 {
3103 MIPS_ELF_PUT_WORD (abfd, 1,
3104 sgot->contents + got_offset);
3105 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3106 sgot->contents + got_offset2);
3107 }
3108 break;
3109
3110 case GOT_TLS_IE:
3111 /* Initial Exec model. */
3112 if (need_relocs)
3113 {
3114 if (indx == 0)
3115 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3116 sgot->contents + got_offset);
3117 else
3118 MIPS_ELF_PUT_WORD (abfd, 0,
3119 sgot->contents + got_offset);
3120
3121 mips_elf_output_dynamic_relocation
3122 (abfd, sreloc, sreloc->reloc_count++, indx,
3123 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3124 sgot->output_offset + sgot->output_section->vma + got_offset);
3125 }
3126 else
3127 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3128 sgot->contents + got_offset);
3129 break;
3130
3131 case GOT_TLS_LDM:
3132 /* The initial offset is zero, and the LD offsets will include the
3133 bias by DTP_OFFSET. */
3134 MIPS_ELF_PUT_WORD (abfd, 0,
3135 sgot->contents + got_offset
3136 + MIPS_ELF_GOT_SIZE (abfd));
3137
3138 if (!info->shared)
3139 MIPS_ELF_PUT_WORD (abfd, 1,
3140 sgot->contents + got_offset);
3141 else
3142 mips_elf_output_dynamic_relocation
3143 (abfd, sreloc, sreloc->reloc_count++, indx,
3144 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3145 sgot->output_offset + sgot->output_section->vma + got_offset);
3146 break;
3147
3148 default:
3149 abort ();
3150 }
3151
3152 entry->tls_initialized = TRUE;
3153 }
3154
3155 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3156 for global symbol H. .got.plt comes before the GOT, so the offset
3157 will be negative. */
3158
3159 static bfd_vma
3160 mips_elf_gotplt_index (struct bfd_link_info *info,
3161 struct elf_link_hash_entry *h)
3162 {
3163 bfd_vma plt_index, got_address, got_value;
3164 struct mips_elf_link_hash_table *htab;
3165
3166 htab = mips_elf_hash_table (info);
3167 BFD_ASSERT (htab != NULL);
3168
3169 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3170
3171 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3172 section starts with reserved entries. */
3173 BFD_ASSERT (htab->is_vxworks);
3174
3175 /* Calculate the index of the symbol's PLT entry. */
3176 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3177
3178 /* Calculate the address of the associated .got.plt entry. */
3179 got_address = (htab->sgotplt->output_section->vma
3180 + htab->sgotplt->output_offset
3181 + plt_index * 4);
3182
3183 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3184 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3185 + htab->root.hgot->root.u.def.section->output_offset
3186 + htab->root.hgot->root.u.def.value);
3187
3188 return got_address - got_value;
3189 }
3190
3191 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3192 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3193 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3194 offset can be found. */
3195
3196 static bfd_vma
3197 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3198 bfd_vma value, unsigned long r_symndx,
3199 struct mips_elf_link_hash_entry *h, int r_type)
3200 {
3201 struct mips_elf_link_hash_table *htab;
3202 struct mips_got_entry *entry;
3203
3204 htab = mips_elf_hash_table (info);
3205 BFD_ASSERT (htab != NULL);
3206
3207 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3208 r_symndx, h, r_type);
3209 if (!entry)
3210 return MINUS_ONE;
3211
3212 if (entry->tls_type)
3213 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3214 return entry->gotidx;
3215 }
3216
3217 /* Return the GOT index of global symbol H in the primary GOT. */
3218
3219 static bfd_vma
3220 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3221 struct elf_link_hash_entry *h)
3222 {
3223 struct mips_elf_link_hash_table *htab;
3224 long global_got_dynindx;
3225 struct mips_got_info *g;
3226 bfd_vma got_index;
3227
3228 htab = mips_elf_hash_table (info);
3229 BFD_ASSERT (htab != NULL);
3230
3231 global_got_dynindx = 0;
3232 if (htab->global_gotsym != NULL)
3233 global_got_dynindx = htab->global_gotsym->dynindx;
3234
3235 /* Once we determine the global GOT entry with the lowest dynamic
3236 symbol table index, we must put all dynamic symbols with greater
3237 indices into the primary GOT. That makes it easy to calculate the
3238 GOT offset. */
3239 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3240 g = mips_elf_bfd_got (obfd, FALSE);
3241 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3242 * MIPS_ELF_GOT_SIZE (obfd));
3243 BFD_ASSERT (got_index < htab->sgot->size);
3244
3245 return got_index;
3246 }
3247
3248 /* Return the GOT index for the global symbol indicated by H, which is
3249 referenced by a relocation of type R_TYPE in IBFD. */
3250
3251 static bfd_vma
3252 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3253 struct elf_link_hash_entry *h, int r_type)
3254 {
3255 struct mips_elf_link_hash_table *htab;
3256 struct mips_got_info *g;
3257 struct mips_got_entry lookup, *entry;
3258 bfd_vma gotidx;
3259
3260 htab = mips_elf_hash_table (info);
3261 BFD_ASSERT (htab != NULL);
3262
3263 g = mips_elf_bfd_got (ibfd, FALSE);
3264 BFD_ASSERT (g);
3265
3266 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3267 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3268 return mips_elf_primary_global_got_index (obfd, info, h);
3269
3270 lookup.abfd = ibfd;
3271 lookup.symndx = -1;
3272 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3273 entry = htab_find (g->got_entries, &lookup);
3274 BFD_ASSERT (entry);
3275
3276 gotidx = entry->gotidx;
3277 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3278
3279 if (lookup.tls_type)
3280 {
3281 bfd_vma value = MINUS_ONE;
3282
3283 if ((h->root.type == bfd_link_hash_defined
3284 || h->root.type == bfd_link_hash_defweak)
3285 && h->root.u.def.section->output_section)
3286 value = (h->root.u.def.value
3287 + h->root.u.def.section->output_offset
3288 + h->root.u.def.section->output_section->vma);
3289
3290 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3291 }
3292 return gotidx;
3293 }
3294
3295 /* Find a GOT page entry that points to within 32KB of VALUE. These
3296 entries are supposed to be placed at small offsets in the GOT, i.e.,
3297 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3298 entry could be created. If OFFSETP is nonnull, use it to return the
3299 offset of the GOT entry from VALUE. */
3300
3301 static bfd_vma
3302 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3303 bfd_vma value, bfd_vma *offsetp)
3304 {
3305 bfd_vma page, got_index;
3306 struct mips_got_entry *entry;
3307
3308 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3309 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3310 NULL, R_MIPS_GOT_PAGE);
3311
3312 if (!entry)
3313 return MINUS_ONE;
3314
3315 got_index = entry->gotidx;
3316
3317 if (offsetp)
3318 *offsetp = value - entry->d.address;
3319
3320 return got_index;
3321 }
3322
3323 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3324 EXTERNAL is true if the relocation was originally against a global
3325 symbol that binds locally. */
3326
3327 static bfd_vma
3328 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3329 bfd_vma value, bfd_boolean external)
3330 {
3331 struct mips_got_entry *entry;
3332
3333 /* GOT16 relocations against local symbols are followed by a LO16
3334 relocation; those against global symbols are not. Thus if the
3335 symbol was originally local, the GOT16 relocation should load the
3336 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3337 if (! external)
3338 value = mips_elf_high (value) << 16;
3339
3340 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3341 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3342 same in all cases. */
3343 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3344 NULL, R_MIPS_GOT16);
3345 if (entry)
3346 return entry->gotidx;
3347 else
3348 return MINUS_ONE;
3349 }
3350
3351 /* Returns the offset for the entry at the INDEXth position
3352 in the GOT. */
3353
3354 static bfd_vma
3355 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3356 bfd *input_bfd, bfd_vma got_index)
3357 {
3358 struct mips_elf_link_hash_table *htab;
3359 asection *sgot;
3360 bfd_vma gp;
3361
3362 htab = mips_elf_hash_table (info);
3363 BFD_ASSERT (htab != NULL);
3364
3365 sgot = htab->sgot;
3366 gp = _bfd_get_gp_value (output_bfd)
3367 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3368
3369 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3370 }
3371
3372 /* Create and return a local GOT entry for VALUE, which was calculated
3373 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3374 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3375 instead. */
3376
3377 static struct mips_got_entry *
3378 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3379 bfd *ibfd, bfd_vma value,
3380 unsigned long r_symndx,
3381 struct mips_elf_link_hash_entry *h,
3382 int r_type)
3383 {
3384 struct mips_got_entry lookup, *entry;
3385 void **loc;
3386 struct mips_got_info *g;
3387 struct mips_elf_link_hash_table *htab;
3388 bfd_vma gotidx;
3389
3390 htab = mips_elf_hash_table (info);
3391 BFD_ASSERT (htab != NULL);
3392
3393 g = mips_elf_bfd_got (ibfd, FALSE);
3394 if (g == NULL)
3395 {
3396 g = mips_elf_bfd_got (abfd, FALSE);
3397 BFD_ASSERT (g != NULL);
3398 }
3399
3400 /* This function shouldn't be called for symbols that live in the global
3401 area of the GOT. */
3402 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3403
3404 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3405 if (lookup.tls_type)
3406 {
3407 lookup.abfd = ibfd;
3408 if (tls_ldm_reloc_p (r_type))
3409 {
3410 lookup.symndx = 0;
3411 lookup.d.addend = 0;
3412 }
3413 else if (h == NULL)
3414 {
3415 lookup.symndx = r_symndx;
3416 lookup.d.addend = 0;
3417 }
3418 else
3419 {
3420 lookup.symndx = -1;
3421 lookup.d.h = h;
3422 }
3423
3424 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3425 BFD_ASSERT (entry);
3426
3427 gotidx = entry->gotidx;
3428 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3429
3430 return entry;
3431 }
3432
3433 lookup.abfd = NULL;
3434 lookup.symndx = -1;
3435 lookup.d.address = value;
3436 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3437 if (!loc)
3438 return NULL;
3439
3440 entry = (struct mips_got_entry *) *loc;
3441 if (entry)
3442 return entry;
3443
3444 if (g->assigned_gotno >= g->local_gotno)
3445 {
3446 /* We didn't allocate enough space in the GOT. */
3447 (*_bfd_error_handler)
3448 (_("not enough GOT space for local GOT entries"));
3449 bfd_set_error (bfd_error_bad_value);
3450 return NULL;
3451 }
3452
3453 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3454 if (!entry)
3455 return NULL;
3456
3457 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3458 *entry = lookup;
3459 *loc = entry;
3460
3461 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3462
3463 /* These GOT entries need a dynamic relocation on VxWorks. */
3464 if (htab->is_vxworks)
3465 {
3466 Elf_Internal_Rela outrel;
3467 asection *s;
3468 bfd_byte *rloc;
3469 bfd_vma got_address;
3470
3471 s = mips_elf_rel_dyn_section (info, FALSE);
3472 got_address = (htab->sgot->output_section->vma
3473 + htab->sgot->output_offset
3474 + entry->gotidx);
3475
3476 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3477 outrel.r_offset = got_address;
3478 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3479 outrel.r_addend = value;
3480 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3481 }
3482
3483 return entry;
3484 }
3485
3486 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3487 The number might be exact or a worst-case estimate, depending on how
3488 much information is available to elf_backend_omit_section_dynsym at
3489 the current linking stage. */
3490
3491 static bfd_size_type
3492 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3493 {
3494 bfd_size_type count;
3495
3496 count = 0;
3497 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3498 {
3499 asection *p;
3500 const struct elf_backend_data *bed;
3501
3502 bed = get_elf_backend_data (output_bfd);
3503 for (p = output_bfd->sections; p ; p = p->next)
3504 if ((p->flags & SEC_EXCLUDE) == 0
3505 && (p->flags & SEC_ALLOC) != 0
3506 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3507 ++count;
3508 }
3509 return count;
3510 }
3511
3512 /* Sort the dynamic symbol table so that symbols that need GOT entries
3513 appear towards the end. */
3514
3515 static bfd_boolean
3516 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3517 {
3518 struct mips_elf_link_hash_table *htab;
3519 struct mips_elf_hash_sort_data hsd;
3520 struct mips_got_info *g;
3521
3522 if (elf_hash_table (info)->dynsymcount == 0)
3523 return TRUE;
3524
3525 htab = mips_elf_hash_table (info);
3526 BFD_ASSERT (htab != NULL);
3527
3528 g = htab->got_info;
3529 if (g == NULL)
3530 return TRUE;
3531
3532 hsd.low = NULL;
3533 hsd.max_unref_got_dynindx
3534 = hsd.min_got_dynindx
3535 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3536 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3537 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3538 elf_hash_table (info)),
3539 mips_elf_sort_hash_table_f,
3540 &hsd);
3541
3542 /* There should have been enough room in the symbol table to
3543 accommodate both the GOT and non-GOT symbols. */
3544 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3545 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3546 == elf_hash_table (info)->dynsymcount);
3547 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3548 == g->global_gotno);
3549
3550 /* Now we know which dynamic symbol has the lowest dynamic symbol
3551 table index in the GOT. */
3552 htab->global_gotsym = hsd.low;
3553
3554 return TRUE;
3555 }
3556
3557 /* If H needs a GOT entry, assign it the highest available dynamic
3558 index. Otherwise, assign it the lowest available dynamic
3559 index. */
3560
3561 static bfd_boolean
3562 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3563 {
3564 struct mips_elf_hash_sort_data *hsd = data;
3565
3566 /* Symbols without dynamic symbol table entries aren't interesting
3567 at all. */
3568 if (h->root.dynindx == -1)
3569 return TRUE;
3570
3571 switch (h->global_got_area)
3572 {
3573 case GGA_NONE:
3574 h->root.dynindx = hsd->max_non_got_dynindx++;
3575 break;
3576
3577 case GGA_NORMAL:
3578 h->root.dynindx = --hsd->min_got_dynindx;
3579 hsd->low = (struct elf_link_hash_entry *) h;
3580 break;
3581
3582 case GGA_RELOC_ONLY:
3583 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3584 hsd->low = (struct elf_link_hash_entry *) h;
3585 h->root.dynindx = hsd->max_unref_got_dynindx++;
3586 break;
3587 }
3588
3589 return TRUE;
3590 }
3591
3592 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3593 (which is owned by the caller and shouldn't be added to the
3594 hash table directly). */
3595
3596 static bfd_boolean
3597 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3598 struct mips_got_entry *lookup)
3599 {
3600 struct mips_elf_link_hash_table *htab;
3601 struct mips_got_entry *entry;
3602 struct mips_got_info *g;
3603 void **loc, **bfd_loc;
3604
3605 /* Make sure there's a slot for this entry in the master GOT. */
3606 htab = mips_elf_hash_table (info);
3607 g = htab->got_info;
3608 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3609 if (!loc)
3610 return FALSE;
3611
3612 /* Populate the entry if it isn't already. */
3613 entry = (struct mips_got_entry *) *loc;
3614 if (!entry)
3615 {
3616 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3617 if (!entry)
3618 return FALSE;
3619
3620 lookup->tls_initialized = FALSE;
3621 lookup->gotidx = -1;
3622 *entry = *lookup;
3623 *loc = entry;
3624 }
3625
3626 /* Reuse the same GOT entry for the BFD's GOT. */
3627 g = mips_elf_bfd_got (abfd, TRUE);
3628 if (!g)
3629 return FALSE;
3630
3631 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3632 if (!bfd_loc)
3633 return FALSE;
3634
3635 if (!*bfd_loc)
3636 *bfd_loc = entry;
3637 return TRUE;
3638 }
3639
3640 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3641 entry for it. FOR_CALL is true if the caller is only interested in
3642 using the GOT entry for calls. */
3643
3644 static bfd_boolean
3645 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3646 bfd *abfd, struct bfd_link_info *info,
3647 bfd_boolean for_call, int r_type)
3648 {
3649 struct mips_elf_link_hash_table *htab;
3650 struct mips_elf_link_hash_entry *hmips;
3651 struct mips_got_entry entry;
3652 unsigned char tls_type;
3653
3654 htab = mips_elf_hash_table (info);
3655 BFD_ASSERT (htab != NULL);
3656
3657 hmips = (struct mips_elf_link_hash_entry *) h;
3658 if (!for_call)
3659 hmips->got_only_for_calls = FALSE;
3660
3661 /* A global symbol in the GOT must also be in the dynamic symbol
3662 table. */
3663 if (h->dynindx == -1)
3664 {
3665 switch (ELF_ST_VISIBILITY (h->other))
3666 {
3667 case STV_INTERNAL:
3668 case STV_HIDDEN:
3669 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3670 break;
3671 }
3672 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3673 return FALSE;
3674 }
3675
3676 tls_type = mips_elf_reloc_tls_type (r_type);
3677 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3678 hmips->global_got_area = GGA_NORMAL;
3679
3680 entry.abfd = abfd;
3681 entry.symndx = -1;
3682 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3683 entry.tls_type = tls_type;
3684 return mips_elf_record_got_entry (info, abfd, &entry);
3685 }
3686
3687 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3688 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3689
3690 static bfd_boolean
3691 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3692 struct bfd_link_info *info, int r_type)
3693 {
3694 struct mips_elf_link_hash_table *htab;
3695 struct mips_got_info *g;
3696 struct mips_got_entry entry;
3697
3698 htab = mips_elf_hash_table (info);
3699 BFD_ASSERT (htab != NULL);
3700
3701 g = htab->got_info;
3702 BFD_ASSERT (g != NULL);
3703
3704 entry.abfd = abfd;
3705 entry.symndx = symndx;
3706 entry.d.addend = addend;
3707 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3708 return mips_elf_record_got_entry (info, abfd, &entry);
3709 }
3710
3711 /* Return the maximum number of GOT page entries required for RANGE. */
3712
3713 static bfd_vma
3714 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3715 {
3716 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3717 }
3718
3719 /* Record that ABFD has a page relocation against symbol SYMNDX and
3720 that ADDEND is the addend for that relocation.
3721
3722 This function creates an upper bound on the number of GOT slots
3723 required; no attempt is made to combine references to non-overridable
3724 global symbols across multiple input files. */
3725
3726 static bfd_boolean
3727 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3728 long symndx, bfd_signed_vma addend)
3729 {
3730 struct mips_elf_link_hash_table *htab;
3731 struct mips_got_info *g1, *g2;
3732 struct mips_got_page_entry lookup, *entry;
3733 struct mips_got_page_range **range_ptr, *range;
3734 bfd_vma old_pages, new_pages;
3735 void **loc, **bfd_loc;
3736
3737 htab = mips_elf_hash_table (info);
3738 BFD_ASSERT (htab != NULL);
3739
3740 g1 = htab->got_info;
3741 BFD_ASSERT (g1 != NULL);
3742
3743 /* Find the mips_got_page_entry hash table entry for this symbol. */
3744 lookup.abfd = abfd;
3745 lookup.symndx = symndx;
3746 loc = htab_find_slot (g1->got_page_entries, &lookup, INSERT);
3747 if (loc == NULL)
3748 return FALSE;
3749
3750 /* Create a mips_got_page_entry if this is the first time we've
3751 seen the symbol. */
3752 entry = (struct mips_got_page_entry *) *loc;
3753 if (!entry)
3754 {
3755 entry = bfd_alloc (abfd, sizeof (*entry));
3756 if (!entry)
3757 return FALSE;
3758
3759 entry->abfd = abfd;
3760 entry->symndx = symndx;
3761 entry->ranges = NULL;
3762 entry->num_pages = 0;
3763 *loc = entry;
3764 }
3765
3766 /* Add the same entry to the BFD's GOT. */
3767 g2 = mips_elf_bfd_got (abfd, TRUE);
3768 if (!g2)
3769 return FALSE;
3770
3771 bfd_loc = htab_find_slot (g2->got_page_entries, &lookup, INSERT);
3772 if (!bfd_loc)
3773 return FALSE;
3774
3775 if (!*bfd_loc)
3776 *bfd_loc = entry;
3777
3778 /* Skip over ranges whose maximum extent cannot share a page entry
3779 with ADDEND. */
3780 range_ptr = &entry->ranges;
3781 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3782 range_ptr = &(*range_ptr)->next;
3783
3784 /* If we scanned to the end of the list, or found a range whose
3785 minimum extent cannot share a page entry with ADDEND, create
3786 a new singleton range. */
3787 range = *range_ptr;
3788 if (!range || addend < range->min_addend - 0xffff)
3789 {
3790 range = bfd_alloc (abfd, sizeof (*range));
3791 if (!range)
3792 return FALSE;
3793
3794 range->next = *range_ptr;
3795 range->min_addend = addend;
3796 range->max_addend = addend;
3797
3798 *range_ptr = range;
3799 entry->num_pages++;
3800 g1->page_gotno++;
3801 g2->page_gotno++;
3802 return TRUE;
3803 }
3804
3805 /* Remember how many pages the old range contributed. */
3806 old_pages = mips_elf_pages_for_range (range);
3807
3808 /* Update the ranges. */
3809 if (addend < range->min_addend)
3810 range->min_addend = addend;
3811 else if (addend > range->max_addend)
3812 {
3813 if (range->next && addend >= range->next->min_addend - 0xffff)
3814 {
3815 old_pages += mips_elf_pages_for_range (range->next);
3816 range->max_addend = range->next->max_addend;
3817 range->next = range->next->next;
3818 }
3819 else
3820 range->max_addend = addend;
3821 }
3822
3823 /* Record any change in the total estimate. */
3824 new_pages = mips_elf_pages_for_range (range);
3825 if (old_pages != new_pages)
3826 {
3827 entry->num_pages += new_pages - old_pages;
3828 g1->page_gotno += new_pages - old_pages;
3829 g2->page_gotno += new_pages - old_pages;
3830 }
3831
3832 return TRUE;
3833 }
3834
3835 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3836
3837 static void
3838 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3839 unsigned int n)
3840 {
3841 asection *s;
3842 struct mips_elf_link_hash_table *htab;
3843
3844 htab = mips_elf_hash_table (info);
3845 BFD_ASSERT (htab != NULL);
3846
3847 s = mips_elf_rel_dyn_section (info, FALSE);
3848 BFD_ASSERT (s != NULL);
3849
3850 if (htab->is_vxworks)
3851 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3852 else
3853 {
3854 if (s->size == 0)
3855 {
3856 /* Make room for a null element. */
3857 s->size += MIPS_ELF_REL_SIZE (abfd);
3858 ++s->reloc_count;
3859 }
3860 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3861 }
3862 }
3863 \f
3864 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3865 if the GOT entry is for an indirect or warning symbol. */
3866
3867 static int
3868 mips_elf_check_recreate_got (void **entryp, void *data)
3869 {
3870 struct mips_got_entry *entry;
3871 bfd_boolean *must_recreate;
3872
3873 entry = (struct mips_got_entry *) *entryp;
3874 must_recreate = (bfd_boolean *) data;
3875 if (entry->abfd != NULL && entry->symndx == -1)
3876 {
3877 struct mips_elf_link_hash_entry *h;
3878
3879 h = entry->d.h;
3880 if (h->root.root.type == bfd_link_hash_indirect
3881 || h->root.root.type == bfd_link_hash_warning)
3882 {
3883 *must_recreate = TRUE;
3884 return 0;
3885 }
3886 }
3887 return 1;
3888 }
3889
3890 /* A htab_traverse callback for GOT entries. Add all entries to
3891 hash table *DATA, converting entries for indirect and warning
3892 symbols into entries for the target symbol. Set *DATA to null
3893 on error. */
3894
3895 static int
3896 mips_elf_recreate_got (void **entryp, void *data)
3897 {
3898 htab_t *new_got;
3899 struct mips_got_entry new_entry, *entry;
3900 void **slot;
3901
3902 new_got = (htab_t *) data;
3903 entry = (struct mips_got_entry *) *entryp;
3904 if (entry->abfd != NULL
3905 && entry->symndx == -1
3906 && (entry->d.h->root.root.type == bfd_link_hash_indirect
3907 || entry->d.h->root.root.type == bfd_link_hash_warning))
3908 {
3909 struct mips_elf_link_hash_entry *h;
3910
3911 new_entry = *entry;
3912 entry = &new_entry;
3913 h = entry->d.h;
3914 do
3915 {
3916 BFD_ASSERT (h->global_got_area == GGA_NONE);
3917 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3918 }
3919 while (h->root.root.type == bfd_link_hash_indirect
3920 || h->root.root.type == bfd_link_hash_warning);
3921 entry->d.h = h;
3922 }
3923 slot = htab_find_slot (*new_got, entry, INSERT);
3924 if (slot == NULL)
3925 {
3926 *new_got = NULL;
3927 return 0;
3928 }
3929 if (*slot == NULL)
3930 {
3931 if (entry == &new_entry)
3932 {
3933 entry = bfd_alloc (entry->abfd, sizeof (*entry));
3934 if (!entry)
3935 {
3936 *new_got = NULL;
3937 return 0;
3938 }
3939 *entry = new_entry;
3940 }
3941 *slot = entry;
3942 }
3943 return 1;
3944 }
3945
3946 /* If any entries in G->got_entries are for indirect or warning symbols,
3947 replace them with entries for the target symbol. */
3948
3949 static bfd_boolean
3950 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3951 {
3952 bfd_boolean must_recreate;
3953 htab_t new_got;
3954
3955 must_recreate = FALSE;
3956 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3957 if (must_recreate)
3958 {
3959 new_got = htab_create (htab_size (g->got_entries),
3960 mips_elf_got_entry_hash,
3961 mips_elf_got_entry_eq, NULL);
3962 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3963 if (new_got == NULL)
3964 return FALSE;
3965
3966 htab_delete (g->got_entries);
3967 g->got_entries = new_got;
3968 }
3969 return TRUE;
3970 }
3971
3972 /* A mips_elf_link_hash_traverse callback for which DATA points to the
3973 link_info structure. Decide whether the hash entry needs an entry in
3974 the global part of the primary GOT, setting global_got_area accordingly.
3975 Count the number of global symbols that are in the primary GOT only
3976 because they have relocations against them (reloc_only_gotno). */
3977
3978 static int
3979 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3980 {
3981 struct bfd_link_info *info;
3982 struct mips_elf_link_hash_table *htab;
3983 struct mips_got_info *g;
3984
3985 info = (struct bfd_link_info *) data;
3986 htab = mips_elf_hash_table (info);
3987 g = htab->got_info;
3988 if (h->global_got_area != GGA_NONE)
3989 {
3990 /* Make a final decision about whether the symbol belongs in the
3991 local or global GOT. Symbols that bind locally can (and in the
3992 case of forced-local symbols, must) live in the local GOT.
3993 Those that are aren't in the dynamic symbol table must also
3994 live in the local GOT.
3995
3996 Note that the former condition does not always imply the
3997 latter: symbols do not bind locally if they are completely
3998 undefined. We'll report undefined symbols later if appropriate. */
3999 if (h->root.dynindx == -1
4000 || (h->got_only_for_calls
4001 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4002 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4003 /* The symbol belongs in the local GOT. We no longer need this
4004 entry if it was only used for relocations; those relocations
4005 will be against the null or section symbol instead of H. */
4006 h->global_got_area = GGA_NONE;
4007 else if (htab->is_vxworks
4008 && h->got_only_for_calls
4009 && h->root.plt.offset != MINUS_ONE)
4010 /* On VxWorks, calls can refer directly to the .got.plt entry;
4011 they don't need entries in the regular GOT. .got.plt entries
4012 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4013 h->global_got_area = GGA_NONE;
4014 else if (h->global_got_area == GGA_RELOC_ONLY)
4015 {
4016 g->reloc_only_gotno++;
4017 g->global_gotno++;
4018 }
4019 }
4020 return 1;
4021 }
4022 \f
4023 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4024 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4025
4026 static int
4027 mips_elf_add_got_entry (void **entryp, void *data)
4028 {
4029 struct mips_got_entry *entry;
4030 struct mips_elf_traverse_got_arg *arg;
4031 void **slot;
4032
4033 entry = (struct mips_got_entry *) *entryp;
4034 arg = (struct mips_elf_traverse_got_arg *) data;
4035 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4036 if (!slot)
4037 {
4038 arg->g = NULL;
4039 return 0;
4040 }
4041 if (!*slot)
4042 {
4043 *slot = entry;
4044 mips_elf_count_got_entry (arg->info, arg->g, entry);
4045 }
4046 return 1;
4047 }
4048
4049 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4050 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4051
4052 static int
4053 mips_elf_add_got_page_entry (void **entryp, void *data)
4054 {
4055 struct mips_got_page_entry *entry;
4056 struct mips_elf_traverse_got_arg *arg;
4057 void **slot;
4058
4059 entry = (struct mips_got_page_entry *) *entryp;
4060 arg = (struct mips_elf_traverse_got_arg *) data;
4061 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4062 if (!slot)
4063 {
4064 arg->g = NULL;
4065 return 0;
4066 }
4067 if (!*slot)
4068 {
4069 *slot = entry;
4070 arg->g->page_gotno += entry->num_pages;
4071 }
4072 return 1;
4073 }
4074
4075 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4076 this would lead to overflow, 1 if they were merged successfully,
4077 and 0 if a merge failed due to lack of memory. (These values are chosen
4078 so that nonnegative return values can be returned by a htab_traverse
4079 callback.) */
4080
4081 static int
4082 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4083 struct mips_got_info *to,
4084 struct mips_elf_got_per_bfd_arg *arg)
4085 {
4086 struct mips_elf_traverse_got_arg tga;
4087 unsigned int estimate;
4088
4089 /* Work out how many page entries we would need for the combined GOT. */
4090 estimate = arg->max_pages;
4091 if (estimate >= from->page_gotno + to->page_gotno)
4092 estimate = from->page_gotno + to->page_gotno;
4093
4094 /* And conservatively estimate how many local and TLS entries
4095 would be needed. */
4096 estimate += from->local_gotno + to->local_gotno;
4097 estimate += from->tls_gotno + to->tls_gotno;
4098
4099 /* If we're merging with the primary got, any TLS relocations will
4100 come after the full set of global entries. Otherwise estimate those
4101 conservatively as well. */
4102 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4103 estimate += arg->global_count;
4104 else
4105 estimate += from->global_gotno + to->global_gotno;
4106
4107 /* Bail out if the combined GOT might be too big. */
4108 if (estimate > arg->max_count)
4109 return -1;
4110
4111 /* Transfer the bfd's got information from FROM to TO. */
4112 tga.info = arg->info;
4113 tga.g = to;
4114 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4115 if (!tga.g)
4116 return 0;
4117
4118 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4119 if (!tga.g)
4120 return 0;
4121
4122 mips_elf_replace_bfd_got (abfd, to);
4123 return 1;
4124 }
4125
4126 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4127 as possible of the primary got, since it doesn't require explicit
4128 dynamic relocations, but don't use bfds that would reference global
4129 symbols out of the addressable range. Failing the primary got,
4130 attempt to merge with the current got, or finish the current got
4131 and then make make the new got current. */
4132
4133 static bfd_boolean
4134 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4135 struct mips_elf_got_per_bfd_arg *arg)
4136 {
4137 struct mips_elf_traverse_got_arg tga;
4138 unsigned int estimate;
4139 int result;
4140
4141 if (!mips_elf_resolve_final_got_entries (g))
4142 return FALSE;
4143
4144 tga.info = arg->info;
4145 tga.g = g;
4146 htab_traverse (g->got_entries, mips_elf_count_got_entries, &tga);
4147
4148 /* Work out the number of page, local and TLS entries. */
4149 estimate = arg->max_pages;
4150 if (estimate > g->page_gotno)
4151 estimate = g->page_gotno;
4152 estimate += g->local_gotno + g->tls_gotno;
4153
4154 /* We place TLS GOT entries after both locals and globals. The globals
4155 for the primary GOT may overflow the normal GOT size limit, so be
4156 sure not to merge a GOT which requires TLS with the primary GOT in that
4157 case. This doesn't affect non-primary GOTs. */
4158 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4159
4160 if (estimate <= arg->max_count)
4161 {
4162 /* If we don't have a primary GOT, use it as
4163 a starting point for the primary GOT. */
4164 if (!arg->primary)
4165 {
4166 arg->primary = g;
4167 return TRUE;
4168 }
4169
4170 /* Try merging with the primary GOT. */
4171 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4172 if (result >= 0)
4173 return result;
4174 }
4175
4176 /* If we can merge with the last-created got, do it. */
4177 if (arg->current)
4178 {
4179 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4180 if (result >= 0)
4181 return result;
4182 }
4183
4184 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4185 fits; if it turns out that it doesn't, we'll get relocation
4186 overflows anyway. */
4187 g->next = arg->current;
4188 arg->current = g;
4189
4190 return TRUE;
4191 }
4192
4193 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4194 to GOTIDX, duplicating the entry if it has already been assigned
4195 an index in a different GOT. */
4196
4197 static bfd_boolean
4198 mips_elf_set_gotidx (void **entryp, long gotidx)
4199 {
4200 struct mips_got_entry *entry;
4201
4202 entry = (struct mips_got_entry *) *entryp;
4203 if (entry->gotidx > 0)
4204 {
4205 struct mips_got_entry *new_entry;
4206
4207 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4208 if (!new_entry)
4209 return FALSE;
4210
4211 *new_entry = *entry;
4212 *entryp = new_entry;
4213 entry = new_entry;
4214 }
4215 entry->gotidx = gotidx;
4216 return TRUE;
4217 }
4218
4219 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4220 mips_elf_traverse_got_arg in which DATA->value is the size of one
4221 GOT entry. Set DATA->g to null on failure. */
4222
4223 static int
4224 mips_elf_initialize_tls_index (void **entryp, void *data)
4225 {
4226 struct mips_got_entry *entry;
4227 struct mips_elf_traverse_got_arg *arg;
4228
4229 /* We're only interested in TLS symbols. */
4230 entry = (struct mips_got_entry *) *entryp;
4231 if (entry->tls_type == GOT_TLS_NONE)
4232 return 1;
4233
4234 arg = (struct mips_elf_traverse_got_arg *) data;
4235 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4236 {
4237 arg->g = NULL;
4238 return 0;
4239 }
4240
4241 /* Account for the entries we've just allocated. */
4242 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4243 return 1;
4244 }
4245
4246 /* A htab_traverse callback for GOT entries, where DATA points to a
4247 mips_elf_traverse_got_arg. Set the global_got_area of each global
4248 symbol to DATA->value. */
4249
4250 static int
4251 mips_elf_set_global_got_area (void **entryp, void *data)
4252 {
4253 struct mips_got_entry *entry;
4254 struct mips_elf_traverse_got_arg *arg;
4255
4256 entry = (struct mips_got_entry *) *entryp;
4257 arg = (struct mips_elf_traverse_got_arg *) data;
4258 if (entry->abfd != NULL
4259 && entry->symndx == -1
4260 && entry->d.h->global_got_area != GGA_NONE)
4261 entry->d.h->global_got_area = arg->value;
4262 return 1;
4263 }
4264
4265 /* A htab_traverse callback for secondary GOT entries, where DATA points
4266 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4267 and record the number of relocations they require. DATA->value is
4268 the size of one GOT entry. Set DATA->g to null on failure. */
4269
4270 static int
4271 mips_elf_set_global_gotidx (void **entryp, void *data)
4272 {
4273 struct mips_got_entry *entry;
4274 struct mips_elf_traverse_got_arg *arg;
4275
4276 entry = (struct mips_got_entry *) *entryp;
4277 arg = (struct mips_elf_traverse_got_arg *) data;
4278 if (entry->abfd != NULL
4279 && entry->symndx == -1
4280 && entry->d.h->global_got_area != GGA_NONE)
4281 {
4282 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno))
4283 {
4284 arg->g = NULL;
4285 return 0;
4286 }
4287 arg->g->assigned_gotno += 1;
4288
4289 if (arg->info->shared
4290 || (elf_hash_table (arg->info)->dynamic_sections_created
4291 && entry->d.h->root.def_dynamic
4292 && !entry->d.h->root.def_regular))
4293 arg->g->relocs += 1;
4294 }
4295
4296 return 1;
4297 }
4298
4299 /* A htab_traverse callback for GOT entries for which DATA is the
4300 bfd_link_info. Forbid any global symbols from having traditional
4301 lazy-binding stubs. */
4302
4303 static int
4304 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4305 {
4306 struct bfd_link_info *info;
4307 struct mips_elf_link_hash_table *htab;
4308 struct mips_got_entry *entry;
4309
4310 entry = (struct mips_got_entry *) *entryp;
4311 info = (struct bfd_link_info *) data;
4312 htab = mips_elf_hash_table (info);
4313 BFD_ASSERT (htab != NULL);
4314
4315 if (entry->abfd != NULL
4316 && entry->symndx == -1
4317 && entry->d.h->needs_lazy_stub)
4318 {
4319 entry->d.h->needs_lazy_stub = FALSE;
4320 htab->lazy_stub_count--;
4321 }
4322
4323 return 1;
4324 }
4325
4326 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4327 the primary GOT. */
4328 static bfd_vma
4329 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4330 {
4331 if (!g->next)
4332 return 0;
4333
4334 g = mips_elf_bfd_got (ibfd, FALSE);
4335 if (! g)
4336 return 0;
4337
4338 BFD_ASSERT (g->next);
4339
4340 g = g->next;
4341
4342 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4343 * MIPS_ELF_GOT_SIZE (abfd);
4344 }
4345
4346 /* Turn a single GOT that is too big for 16-bit addressing into
4347 a sequence of GOTs, each one 16-bit addressable. */
4348
4349 static bfd_boolean
4350 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4351 asection *got, bfd_size_type pages)
4352 {
4353 struct mips_elf_link_hash_table *htab;
4354 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4355 struct mips_elf_traverse_got_arg tga;
4356 struct mips_got_info *g, *gg;
4357 unsigned int assign, needed_relocs;
4358 bfd *dynobj, *ibfd;
4359
4360 dynobj = elf_hash_table (info)->dynobj;
4361 htab = mips_elf_hash_table (info);
4362 BFD_ASSERT (htab != NULL);
4363
4364 g = htab->got_info;
4365
4366 got_per_bfd_arg.obfd = abfd;
4367 got_per_bfd_arg.info = info;
4368 got_per_bfd_arg.current = NULL;
4369 got_per_bfd_arg.primary = NULL;
4370 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4371 / MIPS_ELF_GOT_SIZE (abfd))
4372 - htab->reserved_gotno);
4373 got_per_bfd_arg.max_pages = pages;
4374 /* The number of globals that will be included in the primary GOT.
4375 See the calls to mips_elf_set_global_got_area below for more
4376 information. */
4377 got_per_bfd_arg.global_count = g->global_gotno;
4378
4379 /* Try to merge the GOTs of input bfds together, as long as they
4380 don't seem to exceed the maximum GOT size, choosing one of them
4381 to be the primary GOT. */
4382 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
4383 {
4384 gg = mips_elf_bfd_got (ibfd, FALSE);
4385 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4386 return FALSE;
4387 }
4388
4389 /* If we do not find any suitable primary GOT, create an empty one. */
4390 if (got_per_bfd_arg.primary == NULL)
4391 g->next = mips_elf_create_got_info (abfd);
4392 else
4393 g->next = got_per_bfd_arg.primary;
4394 g->next->next = got_per_bfd_arg.current;
4395
4396 /* GG is now the master GOT, and G is the primary GOT. */
4397 gg = g;
4398 g = g->next;
4399
4400 /* Map the output bfd to the primary got. That's what we're going
4401 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4402 didn't mark in check_relocs, and we want a quick way to find it.
4403 We can't just use gg->next because we're going to reverse the
4404 list. */
4405 mips_elf_replace_bfd_got (abfd, g);
4406
4407 /* Every symbol that is referenced in a dynamic relocation must be
4408 present in the primary GOT, so arrange for them to appear after
4409 those that are actually referenced. */
4410 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4411 g->global_gotno = gg->global_gotno;
4412
4413 tga.info = info;
4414 tga.value = GGA_RELOC_ONLY;
4415 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4416 tga.value = GGA_NORMAL;
4417 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4418
4419 /* Now go through the GOTs assigning them offset ranges.
4420 [assigned_gotno, local_gotno[ will be set to the range of local
4421 entries in each GOT. We can then compute the end of a GOT by
4422 adding local_gotno to global_gotno. We reverse the list and make
4423 it circular since then we'll be able to quickly compute the
4424 beginning of a GOT, by computing the end of its predecessor. To
4425 avoid special cases for the primary GOT, while still preserving
4426 assertions that are valid for both single- and multi-got links,
4427 we arrange for the main got struct to have the right number of
4428 global entries, but set its local_gotno such that the initial
4429 offset of the primary GOT is zero. Remember that the primary GOT
4430 will become the last item in the circular linked list, so it
4431 points back to the master GOT. */
4432 gg->local_gotno = -g->global_gotno;
4433 gg->global_gotno = g->global_gotno;
4434 gg->tls_gotno = 0;
4435 assign = 0;
4436 gg->next = gg;
4437
4438 do
4439 {
4440 struct mips_got_info *gn;
4441
4442 assign += htab->reserved_gotno;
4443 g->assigned_gotno = assign;
4444 g->local_gotno += assign;
4445 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4446 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4447
4448 /* Take g out of the direct list, and push it onto the reversed
4449 list that gg points to. g->next is guaranteed to be nonnull after
4450 this operation, as required by mips_elf_initialize_tls_index. */
4451 gn = g->next;
4452 g->next = gg->next;
4453 gg->next = g;
4454
4455 /* Set up any TLS entries. We always place the TLS entries after
4456 all non-TLS entries. */
4457 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4458 tga.g = g;
4459 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4460 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4461 if (!tga.g)
4462 return FALSE;
4463 BFD_ASSERT (g->tls_assigned_gotno == assign);
4464
4465 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4466 g = gn;
4467
4468 /* Forbid global symbols in every non-primary GOT from having
4469 lazy-binding stubs. */
4470 if (g)
4471 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4472 }
4473 while (g);
4474
4475 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4476
4477 needed_relocs = 0;
4478 for (g = gg->next; g && g->next != gg; g = g->next)
4479 {
4480 unsigned int save_assign;
4481
4482 /* Assign offsets to global GOT entries and count how many
4483 relocations they need. */
4484 save_assign = g->assigned_gotno;
4485 g->assigned_gotno = g->local_gotno;
4486 tga.info = info;
4487 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4488 tga.g = g;
4489 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4490 if (!tga.g)
4491 return FALSE;
4492 BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno);
4493 g->assigned_gotno = save_assign;
4494
4495 if (info->shared)
4496 {
4497 g->relocs += g->local_gotno - g->assigned_gotno;
4498 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4499 + g->next->global_gotno
4500 + g->next->tls_gotno
4501 + htab->reserved_gotno);
4502 }
4503 needed_relocs += g->relocs;
4504 }
4505 needed_relocs += g->relocs;
4506
4507 if (needed_relocs)
4508 mips_elf_allocate_dynamic_relocations (dynobj, info,
4509 needed_relocs);
4510
4511 return TRUE;
4512 }
4513
4514 \f
4515 /* Returns the first relocation of type r_type found, beginning with
4516 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4517
4518 static const Elf_Internal_Rela *
4519 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4520 const Elf_Internal_Rela *relocation,
4521 const Elf_Internal_Rela *relend)
4522 {
4523 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4524
4525 while (relocation < relend)
4526 {
4527 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4528 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4529 return relocation;
4530
4531 ++relocation;
4532 }
4533
4534 /* We didn't find it. */
4535 return NULL;
4536 }
4537
4538 /* Return whether an input relocation is against a local symbol. */
4539
4540 static bfd_boolean
4541 mips_elf_local_relocation_p (bfd *input_bfd,
4542 const Elf_Internal_Rela *relocation,
4543 asection **local_sections)
4544 {
4545 unsigned long r_symndx;
4546 Elf_Internal_Shdr *symtab_hdr;
4547 size_t extsymoff;
4548
4549 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4550 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4551 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4552
4553 if (r_symndx < extsymoff)
4554 return TRUE;
4555 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4556 return TRUE;
4557
4558 return FALSE;
4559 }
4560 \f
4561 /* Sign-extend VALUE, which has the indicated number of BITS. */
4562
4563 bfd_vma
4564 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4565 {
4566 if (value & ((bfd_vma) 1 << (bits - 1)))
4567 /* VALUE is negative. */
4568 value |= ((bfd_vma) - 1) << bits;
4569
4570 return value;
4571 }
4572
4573 /* Return non-zero if the indicated VALUE has overflowed the maximum
4574 range expressible by a signed number with the indicated number of
4575 BITS. */
4576
4577 static bfd_boolean
4578 mips_elf_overflow_p (bfd_vma value, int bits)
4579 {
4580 bfd_signed_vma svalue = (bfd_signed_vma) value;
4581
4582 if (svalue > (1 << (bits - 1)) - 1)
4583 /* The value is too big. */
4584 return TRUE;
4585 else if (svalue < -(1 << (bits - 1)))
4586 /* The value is too small. */
4587 return TRUE;
4588
4589 /* All is well. */
4590 return FALSE;
4591 }
4592
4593 /* Calculate the %high function. */
4594
4595 static bfd_vma
4596 mips_elf_high (bfd_vma value)
4597 {
4598 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4599 }
4600
4601 /* Calculate the %higher function. */
4602
4603 static bfd_vma
4604 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4605 {
4606 #ifdef BFD64
4607 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4608 #else
4609 abort ();
4610 return MINUS_ONE;
4611 #endif
4612 }
4613
4614 /* Calculate the %highest function. */
4615
4616 static bfd_vma
4617 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4618 {
4619 #ifdef BFD64
4620 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4621 #else
4622 abort ();
4623 return MINUS_ONE;
4624 #endif
4625 }
4626 \f
4627 /* Create the .compact_rel section. */
4628
4629 static bfd_boolean
4630 mips_elf_create_compact_rel_section
4631 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4632 {
4633 flagword flags;
4634 register asection *s;
4635
4636 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4637 {
4638 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4639 | SEC_READONLY);
4640
4641 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4642 if (s == NULL
4643 || ! bfd_set_section_alignment (abfd, s,
4644 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4645 return FALSE;
4646
4647 s->size = sizeof (Elf32_External_compact_rel);
4648 }
4649
4650 return TRUE;
4651 }
4652
4653 /* Create the .got section to hold the global offset table. */
4654
4655 static bfd_boolean
4656 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4657 {
4658 flagword flags;
4659 register asection *s;
4660 struct elf_link_hash_entry *h;
4661 struct bfd_link_hash_entry *bh;
4662 struct mips_elf_link_hash_table *htab;
4663
4664 htab = mips_elf_hash_table (info);
4665 BFD_ASSERT (htab != NULL);
4666
4667 /* This function may be called more than once. */
4668 if (htab->sgot)
4669 return TRUE;
4670
4671 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4672 | SEC_LINKER_CREATED);
4673
4674 /* We have to use an alignment of 2**4 here because this is hardcoded
4675 in the function stub generation and in the linker script. */
4676 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4677 if (s == NULL
4678 || ! bfd_set_section_alignment (abfd, s, 4))
4679 return FALSE;
4680 htab->sgot = s;
4681
4682 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4683 linker script because we don't want to define the symbol if we
4684 are not creating a global offset table. */
4685 bh = NULL;
4686 if (! (_bfd_generic_link_add_one_symbol
4687 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4688 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4689 return FALSE;
4690
4691 h = (struct elf_link_hash_entry *) bh;
4692 h->non_elf = 0;
4693 h->def_regular = 1;
4694 h->type = STT_OBJECT;
4695 elf_hash_table (info)->hgot = h;
4696
4697 if (info->shared
4698 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4699 return FALSE;
4700
4701 htab->got_info = mips_elf_create_got_info (abfd);
4702 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4703 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4704
4705 /* We also need a .got.plt section when generating PLTs. */
4706 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4707 SEC_ALLOC | SEC_LOAD
4708 | SEC_HAS_CONTENTS
4709 | SEC_IN_MEMORY
4710 | SEC_LINKER_CREATED);
4711 if (s == NULL)
4712 return FALSE;
4713 htab->sgotplt = s;
4714
4715 return TRUE;
4716 }
4717 \f
4718 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4719 __GOTT_INDEX__ symbols. These symbols are only special for
4720 shared objects; they are not used in executables. */
4721
4722 static bfd_boolean
4723 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4724 {
4725 return (mips_elf_hash_table (info)->is_vxworks
4726 && info->shared
4727 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4728 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4729 }
4730
4731 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4732 require an la25 stub. See also mips_elf_local_pic_function_p,
4733 which determines whether the destination function ever requires a
4734 stub. */
4735
4736 static bfd_boolean
4737 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4738 bfd_boolean target_is_16_bit_code_p)
4739 {
4740 /* We specifically ignore branches and jumps from EF_PIC objects,
4741 where the onus is on the compiler or programmer to perform any
4742 necessary initialization of $25. Sometimes such initialization
4743 is unnecessary; for example, -mno-shared functions do not use
4744 the incoming value of $25, and may therefore be called directly. */
4745 if (PIC_OBJECT_P (input_bfd))
4746 return FALSE;
4747
4748 switch (r_type)
4749 {
4750 case R_MIPS_26:
4751 case R_MIPS_PC16:
4752 case R_MICROMIPS_26_S1:
4753 case R_MICROMIPS_PC7_S1:
4754 case R_MICROMIPS_PC10_S1:
4755 case R_MICROMIPS_PC16_S1:
4756 case R_MICROMIPS_PC23_S2:
4757 return TRUE;
4758
4759 case R_MIPS16_26:
4760 return !target_is_16_bit_code_p;
4761
4762 default:
4763 return FALSE;
4764 }
4765 }
4766 \f
4767 /* Calculate the value produced by the RELOCATION (which comes from
4768 the INPUT_BFD). The ADDEND is the addend to use for this
4769 RELOCATION; RELOCATION->R_ADDEND is ignored.
4770
4771 The result of the relocation calculation is stored in VALUEP.
4772 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4773 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4774
4775 This function returns bfd_reloc_continue if the caller need take no
4776 further action regarding this relocation, bfd_reloc_notsupported if
4777 something goes dramatically wrong, bfd_reloc_overflow if an
4778 overflow occurs, and bfd_reloc_ok to indicate success. */
4779
4780 static bfd_reloc_status_type
4781 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4782 asection *input_section,
4783 struct bfd_link_info *info,
4784 const Elf_Internal_Rela *relocation,
4785 bfd_vma addend, reloc_howto_type *howto,
4786 Elf_Internal_Sym *local_syms,
4787 asection **local_sections, bfd_vma *valuep,
4788 const char **namep,
4789 bfd_boolean *cross_mode_jump_p,
4790 bfd_boolean save_addend)
4791 {
4792 /* The eventual value we will return. */
4793 bfd_vma value;
4794 /* The address of the symbol against which the relocation is
4795 occurring. */
4796 bfd_vma symbol = 0;
4797 /* The final GP value to be used for the relocatable, executable, or
4798 shared object file being produced. */
4799 bfd_vma gp;
4800 /* The place (section offset or address) of the storage unit being
4801 relocated. */
4802 bfd_vma p;
4803 /* The value of GP used to create the relocatable object. */
4804 bfd_vma gp0;
4805 /* The offset into the global offset table at which the address of
4806 the relocation entry symbol, adjusted by the addend, resides
4807 during execution. */
4808 bfd_vma g = MINUS_ONE;
4809 /* The section in which the symbol referenced by the relocation is
4810 located. */
4811 asection *sec = NULL;
4812 struct mips_elf_link_hash_entry *h = NULL;
4813 /* TRUE if the symbol referred to by this relocation is a local
4814 symbol. */
4815 bfd_boolean local_p, was_local_p;
4816 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4817 bfd_boolean gp_disp_p = FALSE;
4818 /* TRUE if the symbol referred to by this relocation is
4819 "__gnu_local_gp". */
4820 bfd_boolean gnu_local_gp_p = FALSE;
4821 Elf_Internal_Shdr *symtab_hdr;
4822 size_t extsymoff;
4823 unsigned long r_symndx;
4824 int r_type;
4825 /* TRUE if overflow occurred during the calculation of the
4826 relocation value. */
4827 bfd_boolean overflowed_p;
4828 /* TRUE if this relocation refers to a MIPS16 function. */
4829 bfd_boolean target_is_16_bit_code_p = FALSE;
4830 bfd_boolean target_is_micromips_code_p = FALSE;
4831 struct mips_elf_link_hash_table *htab;
4832 bfd *dynobj;
4833
4834 dynobj = elf_hash_table (info)->dynobj;
4835 htab = mips_elf_hash_table (info);
4836 BFD_ASSERT (htab != NULL);
4837
4838 /* Parse the relocation. */
4839 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4840 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4841 p = (input_section->output_section->vma
4842 + input_section->output_offset
4843 + relocation->r_offset);
4844
4845 /* Assume that there will be no overflow. */
4846 overflowed_p = FALSE;
4847
4848 /* Figure out whether or not the symbol is local, and get the offset
4849 used in the array of hash table entries. */
4850 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4851 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4852 local_sections);
4853 was_local_p = local_p;
4854 if (! elf_bad_symtab (input_bfd))
4855 extsymoff = symtab_hdr->sh_info;
4856 else
4857 {
4858 /* The symbol table does not follow the rule that local symbols
4859 must come before globals. */
4860 extsymoff = 0;
4861 }
4862
4863 /* Figure out the value of the symbol. */
4864 if (local_p)
4865 {
4866 Elf_Internal_Sym *sym;
4867
4868 sym = local_syms + r_symndx;
4869 sec = local_sections[r_symndx];
4870
4871 symbol = sec->output_section->vma + sec->output_offset;
4872 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4873 || (sec->flags & SEC_MERGE))
4874 symbol += sym->st_value;
4875 if ((sec->flags & SEC_MERGE)
4876 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4877 {
4878 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4879 addend -= symbol;
4880 addend += sec->output_section->vma + sec->output_offset;
4881 }
4882
4883 /* MIPS16/microMIPS text labels should be treated as odd. */
4884 if (ELF_ST_IS_COMPRESSED (sym->st_other))
4885 ++symbol;
4886
4887 /* Record the name of this symbol, for our caller. */
4888 *namep = bfd_elf_string_from_elf_section (input_bfd,
4889 symtab_hdr->sh_link,
4890 sym->st_name);
4891 if (*namep == '\0')
4892 *namep = bfd_section_name (input_bfd, sec);
4893
4894 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4895 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
4896 }
4897 else
4898 {
4899 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4900
4901 /* For global symbols we look up the symbol in the hash-table. */
4902 h = ((struct mips_elf_link_hash_entry *)
4903 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4904 /* Find the real hash-table entry for this symbol. */
4905 while (h->root.root.type == bfd_link_hash_indirect
4906 || h->root.root.type == bfd_link_hash_warning)
4907 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4908
4909 /* Record the name of this symbol, for our caller. */
4910 *namep = h->root.root.root.string;
4911
4912 /* See if this is the special _gp_disp symbol. Note that such a
4913 symbol must always be a global symbol. */
4914 if (strcmp (*namep, "_gp_disp") == 0
4915 && ! NEWABI_P (input_bfd))
4916 {
4917 /* Relocations against _gp_disp are permitted only with
4918 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4919 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4920 return bfd_reloc_notsupported;
4921
4922 gp_disp_p = TRUE;
4923 }
4924 /* See if this is the special _gp symbol. Note that such a
4925 symbol must always be a global symbol. */
4926 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4927 gnu_local_gp_p = TRUE;
4928
4929
4930 /* If this symbol is defined, calculate its address. Note that
4931 _gp_disp is a magic symbol, always implicitly defined by the
4932 linker, so it's inappropriate to check to see whether or not
4933 its defined. */
4934 else if ((h->root.root.type == bfd_link_hash_defined
4935 || h->root.root.type == bfd_link_hash_defweak)
4936 && h->root.root.u.def.section)
4937 {
4938 sec = h->root.root.u.def.section;
4939 if (sec->output_section)
4940 symbol = (h->root.root.u.def.value
4941 + sec->output_section->vma
4942 + sec->output_offset);
4943 else
4944 symbol = h->root.root.u.def.value;
4945 }
4946 else if (h->root.root.type == bfd_link_hash_undefweak)
4947 /* We allow relocations against undefined weak symbols, giving
4948 it the value zero, so that you can undefined weak functions
4949 and check to see if they exist by looking at their
4950 addresses. */
4951 symbol = 0;
4952 else if (info->unresolved_syms_in_objects == RM_IGNORE
4953 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4954 symbol = 0;
4955 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4956 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4957 {
4958 /* If this is a dynamic link, we should have created a
4959 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4960 in in _bfd_mips_elf_create_dynamic_sections.
4961 Otherwise, we should define the symbol with a value of 0.
4962 FIXME: It should probably get into the symbol table
4963 somehow as well. */
4964 BFD_ASSERT (! info->shared);
4965 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4966 symbol = 0;
4967 }
4968 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4969 {
4970 /* This is an optional symbol - an Irix specific extension to the
4971 ELF spec. Ignore it for now.
4972 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4973 than simply ignoring them, but we do not handle this for now.
4974 For information see the "64-bit ELF Object File Specification"
4975 which is available from here:
4976 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4977 symbol = 0;
4978 }
4979 else if ((*info->callbacks->undefined_symbol)
4980 (info, h->root.root.root.string, input_bfd,
4981 input_section, relocation->r_offset,
4982 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4983 || ELF_ST_VISIBILITY (h->root.other)))
4984 {
4985 return bfd_reloc_undefined;
4986 }
4987 else
4988 {
4989 return bfd_reloc_notsupported;
4990 }
4991
4992 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
4993 /* If the output section is the PLT section,
4994 then the target is not microMIPS. */
4995 target_is_micromips_code_p = (htab->splt != sec
4996 && ELF_ST_IS_MICROMIPS (h->root.other));
4997 }
4998
4999 /* If this is a reference to a 16-bit function with a stub, we need
5000 to redirect the relocation to the stub unless:
5001
5002 (a) the relocation is for a MIPS16 JAL;
5003
5004 (b) the relocation is for a MIPS16 PIC call, and there are no
5005 non-MIPS16 uses of the GOT slot; or
5006
5007 (c) the section allows direct references to MIPS16 functions. */
5008 if (r_type != R_MIPS16_26
5009 && !info->relocatable
5010 && ((h != NULL
5011 && h->fn_stub != NULL
5012 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5013 || (local_p
5014 && elf_tdata (input_bfd)->local_stubs != NULL
5015 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5016 && !section_allows_mips16_refs_p (input_section))
5017 {
5018 /* This is a 32- or 64-bit call to a 16-bit function. We should
5019 have already noticed that we were going to need the
5020 stub. */
5021 if (local_p)
5022 {
5023 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5024 value = 0;
5025 }
5026 else
5027 {
5028 BFD_ASSERT (h->need_fn_stub);
5029 if (h->la25_stub)
5030 {
5031 /* If a LA25 header for the stub itself exists, point to the
5032 prepended LUI/ADDIU sequence. */
5033 sec = h->la25_stub->stub_section;
5034 value = h->la25_stub->offset;
5035 }
5036 else
5037 {
5038 sec = h->fn_stub;
5039 value = 0;
5040 }
5041 }
5042
5043 symbol = sec->output_section->vma + sec->output_offset + value;
5044 /* The target is 16-bit, but the stub isn't. */
5045 target_is_16_bit_code_p = FALSE;
5046 }
5047 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5048 need to redirect the call to the stub. Note that we specifically
5049 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5050 use an indirect stub instead. */
5051 else if (r_type == R_MIPS16_26 && !info->relocatable
5052 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5053 || (local_p
5054 && elf_tdata (input_bfd)->local_call_stubs != NULL
5055 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5056 && !target_is_16_bit_code_p)
5057 {
5058 if (local_p)
5059 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5060 else
5061 {
5062 /* If both call_stub and call_fp_stub are defined, we can figure
5063 out which one to use by checking which one appears in the input
5064 file. */
5065 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5066 {
5067 asection *o;
5068
5069 sec = NULL;
5070 for (o = input_bfd->sections; o != NULL; o = o->next)
5071 {
5072 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5073 {
5074 sec = h->call_fp_stub;
5075 break;
5076 }
5077 }
5078 if (sec == NULL)
5079 sec = h->call_stub;
5080 }
5081 else if (h->call_stub != NULL)
5082 sec = h->call_stub;
5083 else
5084 sec = h->call_fp_stub;
5085 }
5086
5087 BFD_ASSERT (sec->size > 0);
5088 symbol = sec->output_section->vma + sec->output_offset;
5089 }
5090 /* If this is a direct call to a PIC function, redirect to the
5091 non-PIC stub. */
5092 else if (h != NULL && h->la25_stub
5093 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5094 target_is_16_bit_code_p))
5095 symbol = (h->la25_stub->stub_section->output_section->vma
5096 + h->la25_stub->stub_section->output_offset
5097 + h->la25_stub->offset);
5098
5099 /* Make sure MIPS16 and microMIPS are not used together. */
5100 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5101 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5102 {
5103 (*_bfd_error_handler)
5104 (_("MIPS16 and microMIPS functions cannot call each other"));
5105 return bfd_reloc_notsupported;
5106 }
5107
5108 /* Calls from 16-bit code to 32-bit code and vice versa require the
5109 mode change. However, we can ignore calls to undefined weak symbols,
5110 which should never be executed at runtime. This exception is important
5111 because the assembly writer may have "known" that any definition of the
5112 symbol would be 16-bit code, and that direct jumps were therefore
5113 acceptable. */
5114 *cross_mode_jump_p = (!info->relocatable
5115 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5116 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5117 || (r_type == R_MICROMIPS_26_S1
5118 && !target_is_micromips_code_p)
5119 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5120 && (target_is_16_bit_code_p
5121 || target_is_micromips_code_p))));
5122
5123 local_p = (h == NULL
5124 || (h->got_only_for_calls
5125 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5126 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5127
5128 gp0 = _bfd_get_gp_value (input_bfd);
5129 gp = _bfd_get_gp_value (abfd);
5130 if (htab->got_info)
5131 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5132
5133 if (gnu_local_gp_p)
5134 symbol = gp;
5135
5136 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5137 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5138 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5139 if (got_page_reloc_p (r_type) && !local_p)
5140 {
5141 r_type = (micromips_reloc_p (r_type)
5142 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5143 addend = 0;
5144 }
5145
5146 /* If we haven't already determined the GOT offset, and we're going
5147 to need it, get it now. */
5148 switch (r_type)
5149 {
5150 case R_MIPS16_CALL16:
5151 case R_MIPS16_GOT16:
5152 case R_MIPS_CALL16:
5153 case R_MIPS_GOT16:
5154 case R_MIPS_GOT_DISP:
5155 case R_MIPS_GOT_HI16:
5156 case R_MIPS_CALL_HI16:
5157 case R_MIPS_GOT_LO16:
5158 case R_MIPS_CALL_LO16:
5159 case R_MICROMIPS_CALL16:
5160 case R_MICROMIPS_GOT16:
5161 case R_MICROMIPS_GOT_DISP:
5162 case R_MICROMIPS_GOT_HI16:
5163 case R_MICROMIPS_CALL_HI16:
5164 case R_MICROMIPS_GOT_LO16:
5165 case R_MICROMIPS_CALL_LO16:
5166 case R_MIPS_TLS_GD:
5167 case R_MIPS_TLS_GOTTPREL:
5168 case R_MIPS_TLS_LDM:
5169 case R_MIPS16_TLS_GD:
5170 case R_MIPS16_TLS_GOTTPREL:
5171 case R_MIPS16_TLS_LDM:
5172 case R_MICROMIPS_TLS_GD:
5173 case R_MICROMIPS_TLS_GOTTPREL:
5174 case R_MICROMIPS_TLS_LDM:
5175 /* Find the index into the GOT where this value is located. */
5176 if (tls_ldm_reloc_p (r_type))
5177 {
5178 g = mips_elf_local_got_index (abfd, input_bfd, info,
5179 0, 0, NULL, r_type);
5180 if (g == MINUS_ONE)
5181 return bfd_reloc_outofrange;
5182 }
5183 else if (!local_p)
5184 {
5185 /* On VxWorks, CALL relocations should refer to the .got.plt
5186 entry, which is initialized to point at the PLT stub. */
5187 if (htab->is_vxworks
5188 && (call_hi16_reloc_p (r_type)
5189 || call_lo16_reloc_p (r_type)
5190 || call16_reloc_p (r_type)))
5191 {
5192 BFD_ASSERT (addend == 0);
5193 BFD_ASSERT (h->root.needs_plt);
5194 g = mips_elf_gotplt_index (info, &h->root);
5195 }
5196 else
5197 {
5198 BFD_ASSERT (addend == 0);
5199 g = mips_elf_global_got_index (abfd, info, input_bfd,
5200 &h->root, r_type);
5201 if (!TLS_RELOC_P (r_type)
5202 && !elf_hash_table (info)->dynamic_sections_created)
5203 /* This is a static link. We must initialize the GOT entry. */
5204 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5205 }
5206 }
5207 else if (!htab->is_vxworks
5208 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5209 /* The calculation below does not involve "g". */
5210 break;
5211 else
5212 {
5213 g = mips_elf_local_got_index (abfd, input_bfd, info,
5214 symbol + addend, r_symndx, h, r_type);
5215 if (g == MINUS_ONE)
5216 return bfd_reloc_outofrange;
5217 }
5218
5219 /* Convert GOT indices to actual offsets. */
5220 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5221 break;
5222 }
5223
5224 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5225 symbols are resolved by the loader. Add them to .rela.dyn. */
5226 if (h != NULL && is_gott_symbol (info, &h->root))
5227 {
5228 Elf_Internal_Rela outrel;
5229 bfd_byte *loc;
5230 asection *s;
5231
5232 s = mips_elf_rel_dyn_section (info, FALSE);
5233 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5234
5235 outrel.r_offset = (input_section->output_section->vma
5236 + input_section->output_offset
5237 + relocation->r_offset);
5238 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5239 outrel.r_addend = addend;
5240 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5241
5242 /* If we've written this relocation for a readonly section,
5243 we need to set DF_TEXTREL again, so that we do not delete the
5244 DT_TEXTREL tag. */
5245 if (MIPS_ELF_READONLY_SECTION (input_section))
5246 info->flags |= DF_TEXTREL;
5247
5248 *valuep = 0;
5249 return bfd_reloc_ok;
5250 }
5251
5252 /* Figure out what kind of relocation is being performed. */
5253 switch (r_type)
5254 {
5255 case R_MIPS_NONE:
5256 return bfd_reloc_continue;
5257
5258 case R_MIPS_16:
5259 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5260 overflowed_p = mips_elf_overflow_p (value, 16);
5261 break;
5262
5263 case R_MIPS_32:
5264 case R_MIPS_REL32:
5265 case R_MIPS_64:
5266 if ((info->shared
5267 || (htab->root.dynamic_sections_created
5268 && h != NULL
5269 && h->root.def_dynamic
5270 && !h->root.def_regular
5271 && !h->has_static_relocs))
5272 && r_symndx != STN_UNDEF
5273 && (h == NULL
5274 || h->root.root.type != bfd_link_hash_undefweak
5275 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5276 && (input_section->flags & SEC_ALLOC) != 0)
5277 {
5278 /* If we're creating a shared library, then we can't know
5279 where the symbol will end up. So, we create a relocation
5280 record in the output, and leave the job up to the dynamic
5281 linker. We must do the same for executable references to
5282 shared library symbols, unless we've decided to use copy
5283 relocs or PLTs instead. */
5284 value = addend;
5285 if (!mips_elf_create_dynamic_relocation (abfd,
5286 info,
5287 relocation,
5288 h,
5289 sec,
5290 symbol,
5291 &value,
5292 input_section))
5293 return bfd_reloc_undefined;
5294 }
5295 else
5296 {
5297 if (r_type != R_MIPS_REL32)
5298 value = symbol + addend;
5299 else
5300 value = addend;
5301 }
5302 value &= howto->dst_mask;
5303 break;
5304
5305 case R_MIPS_PC32:
5306 value = symbol + addend - p;
5307 value &= howto->dst_mask;
5308 break;
5309
5310 case R_MIPS16_26:
5311 /* The calculation for R_MIPS16_26 is just the same as for an
5312 R_MIPS_26. It's only the storage of the relocated field into
5313 the output file that's different. That's handled in
5314 mips_elf_perform_relocation. So, we just fall through to the
5315 R_MIPS_26 case here. */
5316 case R_MIPS_26:
5317 case R_MICROMIPS_26_S1:
5318 {
5319 unsigned int shift;
5320
5321 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5322 the correct ISA mode selector and bit 1 must be 0. */
5323 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5324 return bfd_reloc_outofrange;
5325
5326 /* Shift is 2, unusually, for microMIPS JALX. */
5327 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5328
5329 if (was_local_p)
5330 value = addend | ((p + 4) & (0xfc000000 << shift));
5331 else
5332 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5333 value = (value + symbol) >> shift;
5334 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5335 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5336 value &= howto->dst_mask;
5337 }
5338 break;
5339
5340 case R_MIPS_TLS_DTPREL_HI16:
5341 case R_MIPS16_TLS_DTPREL_HI16:
5342 case R_MICROMIPS_TLS_DTPREL_HI16:
5343 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5344 & howto->dst_mask);
5345 break;
5346
5347 case R_MIPS_TLS_DTPREL_LO16:
5348 case R_MIPS_TLS_DTPREL32:
5349 case R_MIPS_TLS_DTPREL64:
5350 case R_MIPS16_TLS_DTPREL_LO16:
5351 case R_MICROMIPS_TLS_DTPREL_LO16:
5352 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5353 break;
5354
5355 case R_MIPS_TLS_TPREL_HI16:
5356 case R_MIPS16_TLS_TPREL_HI16:
5357 case R_MICROMIPS_TLS_TPREL_HI16:
5358 value = (mips_elf_high (addend + symbol - tprel_base (info))
5359 & howto->dst_mask);
5360 break;
5361
5362 case R_MIPS_TLS_TPREL_LO16:
5363 case R_MIPS_TLS_TPREL32:
5364 case R_MIPS_TLS_TPREL64:
5365 case R_MIPS16_TLS_TPREL_LO16:
5366 case R_MICROMIPS_TLS_TPREL_LO16:
5367 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5368 break;
5369
5370 case R_MIPS_HI16:
5371 case R_MIPS16_HI16:
5372 case R_MICROMIPS_HI16:
5373 if (!gp_disp_p)
5374 {
5375 value = mips_elf_high (addend + symbol);
5376 value &= howto->dst_mask;
5377 }
5378 else
5379 {
5380 /* For MIPS16 ABI code we generate this sequence
5381 0: li $v0,%hi(_gp_disp)
5382 4: addiupc $v1,%lo(_gp_disp)
5383 8: sll $v0,16
5384 12: addu $v0,$v1
5385 14: move $gp,$v0
5386 So the offsets of hi and lo relocs are the same, but the
5387 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5388 ADDIUPC clears the low two bits of the instruction address,
5389 so the base is ($t9 + 4) & ~3. */
5390 if (r_type == R_MIPS16_HI16)
5391 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5392 /* The microMIPS .cpload sequence uses the same assembly
5393 instructions as the traditional psABI version, but the
5394 incoming $t9 has the low bit set. */
5395 else if (r_type == R_MICROMIPS_HI16)
5396 value = mips_elf_high (addend + gp - p - 1);
5397 else
5398 value = mips_elf_high (addend + gp - p);
5399 overflowed_p = mips_elf_overflow_p (value, 16);
5400 }
5401 break;
5402
5403 case R_MIPS_LO16:
5404 case R_MIPS16_LO16:
5405 case R_MICROMIPS_LO16:
5406 case R_MICROMIPS_HI0_LO16:
5407 if (!gp_disp_p)
5408 value = (symbol + addend) & howto->dst_mask;
5409 else
5410 {
5411 /* See the comment for R_MIPS16_HI16 above for the reason
5412 for this conditional. */
5413 if (r_type == R_MIPS16_LO16)
5414 value = addend + gp - (p & ~(bfd_vma) 0x3);
5415 else if (r_type == R_MICROMIPS_LO16
5416 || r_type == R_MICROMIPS_HI0_LO16)
5417 value = addend + gp - p + 3;
5418 else
5419 value = addend + gp - p + 4;
5420 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5421 for overflow. But, on, say, IRIX5, relocations against
5422 _gp_disp are normally generated from the .cpload
5423 pseudo-op. It generates code that normally looks like
5424 this:
5425
5426 lui $gp,%hi(_gp_disp)
5427 addiu $gp,$gp,%lo(_gp_disp)
5428 addu $gp,$gp,$t9
5429
5430 Here $t9 holds the address of the function being called,
5431 as required by the MIPS ELF ABI. The R_MIPS_LO16
5432 relocation can easily overflow in this situation, but the
5433 R_MIPS_HI16 relocation will handle the overflow.
5434 Therefore, we consider this a bug in the MIPS ABI, and do
5435 not check for overflow here. */
5436 }
5437 break;
5438
5439 case R_MIPS_LITERAL:
5440 case R_MICROMIPS_LITERAL:
5441 /* Because we don't merge literal sections, we can handle this
5442 just like R_MIPS_GPREL16. In the long run, we should merge
5443 shared literals, and then we will need to additional work
5444 here. */
5445
5446 /* Fall through. */
5447
5448 case R_MIPS16_GPREL:
5449 /* The R_MIPS16_GPREL performs the same calculation as
5450 R_MIPS_GPREL16, but stores the relocated bits in a different
5451 order. We don't need to do anything special here; the
5452 differences are handled in mips_elf_perform_relocation. */
5453 case R_MIPS_GPREL16:
5454 case R_MICROMIPS_GPREL7_S2:
5455 case R_MICROMIPS_GPREL16:
5456 /* Only sign-extend the addend if it was extracted from the
5457 instruction. If the addend was separate, leave it alone,
5458 otherwise we may lose significant bits. */
5459 if (howto->partial_inplace)
5460 addend = _bfd_mips_elf_sign_extend (addend, 16);
5461 value = symbol + addend - gp;
5462 /* If the symbol was local, any earlier relocatable links will
5463 have adjusted its addend with the gp offset, so compensate
5464 for that now. Don't do it for symbols forced local in this
5465 link, though, since they won't have had the gp offset applied
5466 to them before. */
5467 if (was_local_p)
5468 value += gp0;
5469 overflowed_p = mips_elf_overflow_p (value, 16);
5470 break;
5471
5472 case R_MIPS16_GOT16:
5473 case R_MIPS16_CALL16:
5474 case R_MIPS_GOT16:
5475 case R_MIPS_CALL16:
5476 case R_MICROMIPS_GOT16:
5477 case R_MICROMIPS_CALL16:
5478 /* VxWorks does not have separate local and global semantics for
5479 R_MIPS*_GOT16; every relocation evaluates to "G". */
5480 if (!htab->is_vxworks && local_p)
5481 {
5482 value = mips_elf_got16_entry (abfd, input_bfd, info,
5483 symbol + addend, !was_local_p);
5484 if (value == MINUS_ONE)
5485 return bfd_reloc_outofrange;
5486 value
5487 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5488 overflowed_p = mips_elf_overflow_p (value, 16);
5489 break;
5490 }
5491
5492 /* Fall through. */
5493
5494 case R_MIPS_TLS_GD:
5495 case R_MIPS_TLS_GOTTPREL:
5496 case R_MIPS_TLS_LDM:
5497 case R_MIPS_GOT_DISP:
5498 case R_MIPS16_TLS_GD:
5499 case R_MIPS16_TLS_GOTTPREL:
5500 case R_MIPS16_TLS_LDM:
5501 case R_MICROMIPS_TLS_GD:
5502 case R_MICROMIPS_TLS_GOTTPREL:
5503 case R_MICROMIPS_TLS_LDM:
5504 case R_MICROMIPS_GOT_DISP:
5505 value = g;
5506 overflowed_p = mips_elf_overflow_p (value, 16);
5507 break;
5508
5509 case R_MIPS_GPREL32:
5510 value = (addend + symbol + gp0 - gp);
5511 if (!save_addend)
5512 value &= howto->dst_mask;
5513 break;
5514
5515 case R_MIPS_PC16:
5516 case R_MIPS_GNU_REL16_S2:
5517 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5518 overflowed_p = mips_elf_overflow_p (value, 18);
5519 value >>= howto->rightshift;
5520 value &= howto->dst_mask;
5521 break;
5522
5523 case R_MICROMIPS_PC7_S1:
5524 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5525 overflowed_p = mips_elf_overflow_p (value, 8);
5526 value >>= howto->rightshift;
5527 value &= howto->dst_mask;
5528 break;
5529
5530 case R_MICROMIPS_PC10_S1:
5531 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5532 overflowed_p = mips_elf_overflow_p (value, 11);
5533 value >>= howto->rightshift;
5534 value &= howto->dst_mask;
5535 break;
5536
5537 case R_MICROMIPS_PC16_S1:
5538 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5539 overflowed_p = mips_elf_overflow_p (value, 17);
5540 value >>= howto->rightshift;
5541 value &= howto->dst_mask;
5542 break;
5543
5544 case R_MICROMIPS_PC23_S2:
5545 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5546 overflowed_p = mips_elf_overflow_p (value, 25);
5547 value >>= howto->rightshift;
5548 value &= howto->dst_mask;
5549 break;
5550
5551 case R_MIPS_GOT_HI16:
5552 case R_MIPS_CALL_HI16:
5553 case R_MICROMIPS_GOT_HI16:
5554 case R_MICROMIPS_CALL_HI16:
5555 /* We're allowed to handle these two relocations identically.
5556 The dynamic linker is allowed to handle the CALL relocations
5557 differently by creating a lazy evaluation stub. */
5558 value = g;
5559 value = mips_elf_high (value);
5560 value &= howto->dst_mask;
5561 break;
5562
5563 case R_MIPS_GOT_LO16:
5564 case R_MIPS_CALL_LO16:
5565 case R_MICROMIPS_GOT_LO16:
5566 case R_MICROMIPS_CALL_LO16:
5567 value = g & howto->dst_mask;
5568 break;
5569
5570 case R_MIPS_GOT_PAGE:
5571 case R_MICROMIPS_GOT_PAGE:
5572 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5573 if (value == MINUS_ONE)
5574 return bfd_reloc_outofrange;
5575 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5576 overflowed_p = mips_elf_overflow_p (value, 16);
5577 break;
5578
5579 case R_MIPS_GOT_OFST:
5580 case R_MICROMIPS_GOT_OFST:
5581 if (local_p)
5582 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5583 else
5584 value = addend;
5585 overflowed_p = mips_elf_overflow_p (value, 16);
5586 break;
5587
5588 case R_MIPS_SUB:
5589 case R_MICROMIPS_SUB:
5590 value = symbol - addend;
5591 value &= howto->dst_mask;
5592 break;
5593
5594 case R_MIPS_HIGHER:
5595 case R_MICROMIPS_HIGHER:
5596 value = mips_elf_higher (addend + symbol);
5597 value &= howto->dst_mask;
5598 break;
5599
5600 case R_MIPS_HIGHEST:
5601 case R_MICROMIPS_HIGHEST:
5602 value = mips_elf_highest (addend + symbol);
5603 value &= howto->dst_mask;
5604 break;
5605
5606 case R_MIPS_SCN_DISP:
5607 case R_MICROMIPS_SCN_DISP:
5608 value = symbol + addend - sec->output_offset;
5609 value &= howto->dst_mask;
5610 break;
5611
5612 case R_MIPS_JALR:
5613 case R_MICROMIPS_JALR:
5614 /* This relocation is only a hint. In some cases, we optimize
5615 it into a bal instruction. But we don't try to optimize
5616 when the symbol does not resolve locally. */
5617 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5618 return bfd_reloc_continue;
5619 value = symbol + addend;
5620 break;
5621
5622 case R_MIPS_PJUMP:
5623 case R_MIPS_GNU_VTINHERIT:
5624 case R_MIPS_GNU_VTENTRY:
5625 /* We don't do anything with these at present. */
5626 return bfd_reloc_continue;
5627
5628 default:
5629 /* An unrecognized relocation type. */
5630 return bfd_reloc_notsupported;
5631 }
5632
5633 /* Store the VALUE for our caller. */
5634 *valuep = value;
5635 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5636 }
5637
5638 /* Obtain the field relocated by RELOCATION. */
5639
5640 static bfd_vma
5641 mips_elf_obtain_contents (reloc_howto_type *howto,
5642 const Elf_Internal_Rela *relocation,
5643 bfd *input_bfd, bfd_byte *contents)
5644 {
5645 bfd_vma x;
5646 bfd_byte *location = contents + relocation->r_offset;
5647
5648 /* Obtain the bytes. */
5649 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5650
5651 return x;
5652 }
5653
5654 /* It has been determined that the result of the RELOCATION is the
5655 VALUE. Use HOWTO to place VALUE into the output file at the
5656 appropriate position. The SECTION is the section to which the
5657 relocation applies.
5658 CROSS_MODE_JUMP_P is true if the relocation field
5659 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5660
5661 Returns FALSE if anything goes wrong. */
5662
5663 static bfd_boolean
5664 mips_elf_perform_relocation (struct bfd_link_info *info,
5665 reloc_howto_type *howto,
5666 const Elf_Internal_Rela *relocation,
5667 bfd_vma value, bfd *input_bfd,
5668 asection *input_section, bfd_byte *contents,
5669 bfd_boolean cross_mode_jump_p)
5670 {
5671 bfd_vma x;
5672 bfd_byte *location;
5673 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5674
5675 /* Figure out where the relocation is occurring. */
5676 location = contents + relocation->r_offset;
5677
5678 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5679
5680 /* Obtain the current value. */
5681 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5682
5683 /* Clear the field we are setting. */
5684 x &= ~howto->dst_mask;
5685
5686 /* Set the field. */
5687 x |= (value & howto->dst_mask);
5688
5689 /* If required, turn JAL into JALX. */
5690 if (cross_mode_jump_p && jal_reloc_p (r_type))
5691 {
5692 bfd_boolean ok;
5693 bfd_vma opcode = x >> 26;
5694 bfd_vma jalx_opcode;
5695
5696 /* Check to see if the opcode is already JAL or JALX. */
5697 if (r_type == R_MIPS16_26)
5698 {
5699 ok = ((opcode == 0x6) || (opcode == 0x7));
5700 jalx_opcode = 0x7;
5701 }
5702 else if (r_type == R_MICROMIPS_26_S1)
5703 {
5704 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5705 jalx_opcode = 0x3c;
5706 }
5707 else
5708 {
5709 ok = ((opcode == 0x3) || (opcode == 0x1d));
5710 jalx_opcode = 0x1d;
5711 }
5712
5713 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5714 convert J or JALS to JALX. */
5715 if (!ok)
5716 {
5717 (*_bfd_error_handler)
5718 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5719 input_bfd,
5720 input_section,
5721 (unsigned long) relocation->r_offset);
5722 bfd_set_error (bfd_error_bad_value);
5723 return FALSE;
5724 }
5725
5726 /* Make this the JALX opcode. */
5727 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5728 }
5729
5730 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5731 range. */
5732 if (!info->relocatable
5733 && !cross_mode_jump_p
5734 && ((JAL_TO_BAL_P (input_bfd)
5735 && r_type == R_MIPS_26
5736 && (x >> 26) == 0x3) /* jal addr */
5737 || (JALR_TO_BAL_P (input_bfd)
5738 && r_type == R_MIPS_JALR
5739 && x == 0x0320f809) /* jalr t9 */
5740 || (JR_TO_B_P (input_bfd)
5741 && r_type == R_MIPS_JALR
5742 && x == 0x03200008))) /* jr t9 */
5743 {
5744 bfd_vma addr;
5745 bfd_vma dest;
5746 bfd_signed_vma off;
5747
5748 addr = (input_section->output_section->vma
5749 + input_section->output_offset
5750 + relocation->r_offset
5751 + 4);
5752 if (r_type == R_MIPS_26)
5753 dest = (value << 2) | ((addr >> 28) << 28);
5754 else
5755 dest = value;
5756 off = dest - addr;
5757 if (off <= 0x1ffff && off >= -0x20000)
5758 {
5759 if (x == 0x03200008) /* jr t9 */
5760 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5761 else
5762 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5763 }
5764 }
5765
5766 /* Put the value into the output. */
5767 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5768
5769 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5770 location);
5771
5772 return TRUE;
5773 }
5774 \f
5775 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5776 is the original relocation, which is now being transformed into a
5777 dynamic relocation. The ADDENDP is adjusted if necessary; the
5778 caller should store the result in place of the original addend. */
5779
5780 static bfd_boolean
5781 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5782 struct bfd_link_info *info,
5783 const Elf_Internal_Rela *rel,
5784 struct mips_elf_link_hash_entry *h,
5785 asection *sec, bfd_vma symbol,
5786 bfd_vma *addendp, asection *input_section)
5787 {
5788 Elf_Internal_Rela outrel[3];
5789 asection *sreloc;
5790 bfd *dynobj;
5791 int r_type;
5792 long indx;
5793 bfd_boolean defined_p;
5794 struct mips_elf_link_hash_table *htab;
5795
5796 htab = mips_elf_hash_table (info);
5797 BFD_ASSERT (htab != NULL);
5798
5799 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5800 dynobj = elf_hash_table (info)->dynobj;
5801 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5802 BFD_ASSERT (sreloc != NULL);
5803 BFD_ASSERT (sreloc->contents != NULL);
5804 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5805 < sreloc->size);
5806
5807 outrel[0].r_offset =
5808 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5809 if (ABI_64_P (output_bfd))
5810 {
5811 outrel[1].r_offset =
5812 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5813 outrel[2].r_offset =
5814 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5815 }
5816
5817 if (outrel[0].r_offset == MINUS_ONE)
5818 /* The relocation field has been deleted. */
5819 return TRUE;
5820
5821 if (outrel[0].r_offset == MINUS_TWO)
5822 {
5823 /* The relocation field has been converted into a relative value of
5824 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5825 the field to be fully relocated, so add in the symbol's value. */
5826 *addendp += symbol;
5827 return TRUE;
5828 }
5829
5830 /* We must now calculate the dynamic symbol table index to use
5831 in the relocation. */
5832 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5833 {
5834 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5835 indx = h->root.dynindx;
5836 if (SGI_COMPAT (output_bfd))
5837 defined_p = h->root.def_regular;
5838 else
5839 /* ??? glibc's ld.so just adds the final GOT entry to the
5840 relocation field. It therefore treats relocs against
5841 defined symbols in the same way as relocs against
5842 undefined symbols. */
5843 defined_p = FALSE;
5844 }
5845 else
5846 {
5847 if (sec != NULL && bfd_is_abs_section (sec))
5848 indx = 0;
5849 else if (sec == NULL || sec->owner == NULL)
5850 {
5851 bfd_set_error (bfd_error_bad_value);
5852 return FALSE;
5853 }
5854 else
5855 {
5856 indx = elf_section_data (sec->output_section)->dynindx;
5857 if (indx == 0)
5858 {
5859 asection *osec = htab->root.text_index_section;
5860 indx = elf_section_data (osec)->dynindx;
5861 }
5862 if (indx == 0)
5863 abort ();
5864 }
5865
5866 /* Instead of generating a relocation using the section
5867 symbol, we may as well make it a fully relative
5868 relocation. We want to avoid generating relocations to
5869 local symbols because we used to generate them
5870 incorrectly, without adding the original symbol value,
5871 which is mandated by the ABI for section symbols. In
5872 order to give dynamic loaders and applications time to
5873 phase out the incorrect use, we refrain from emitting
5874 section-relative relocations. It's not like they're
5875 useful, after all. This should be a bit more efficient
5876 as well. */
5877 /* ??? Although this behavior is compatible with glibc's ld.so,
5878 the ABI says that relocations against STN_UNDEF should have
5879 a symbol value of 0. Irix rld honors this, so relocations
5880 against STN_UNDEF have no effect. */
5881 if (!SGI_COMPAT (output_bfd))
5882 indx = 0;
5883 defined_p = TRUE;
5884 }
5885
5886 /* If the relocation was previously an absolute relocation and
5887 this symbol will not be referred to by the relocation, we must
5888 adjust it by the value we give it in the dynamic symbol table.
5889 Otherwise leave the job up to the dynamic linker. */
5890 if (defined_p && r_type != R_MIPS_REL32)
5891 *addendp += symbol;
5892
5893 if (htab->is_vxworks)
5894 /* VxWorks uses non-relative relocations for this. */
5895 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5896 else
5897 /* The relocation is always an REL32 relocation because we don't
5898 know where the shared library will wind up at load-time. */
5899 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5900 R_MIPS_REL32);
5901
5902 /* For strict adherence to the ABI specification, we should
5903 generate a R_MIPS_64 relocation record by itself before the
5904 _REL32/_64 record as well, such that the addend is read in as
5905 a 64-bit value (REL32 is a 32-bit relocation, after all).
5906 However, since none of the existing ELF64 MIPS dynamic
5907 loaders seems to care, we don't waste space with these
5908 artificial relocations. If this turns out to not be true,
5909 mips_elf_allocate_dynamic_relocation() should be tweaked so
5910 as to make room for a pair of dynamic relocations per
5911 invocation if ABI_64_P, and here we should generate an
5912 additional relocation record with R_MIPS_64 by itself for a
5913 NULL symbol before this relocation record. */
5914 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5915 ABI_64_P (output_bfd)
5916 ? R_MIPS_64
5917 : R_MIPS_NONE);
5918 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5919
5920 /* Adjust the output offset of the relocation to reference the
5921 correct location in the output file. */
5922 outrel[0].r_offset += (input_section->output_section->vma
5923 + input_section->output_offset);
5924 outrel[1].r_offset += (input_section->output_section->vma
5925 + input_section->output_offset);
5926 outrel[2].r_offset += (input_section->output_section->vma
5927 + input_section->output_offset);
5928
5929 /* Put the relocation back out. We have to use the special
5930 relocation outputter in the 64-bit case since the 64-bit
5931 relocation format is non-standard. */
5932 if (ABI_64_P (output_bfd))
5933 {
5934 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5935 (output_bfd, &outrel[0],
5936 (sreloc->contents
5937 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5938 }
5939 else if (htab->is_vxworks)
5940 {
5941 /* VxWorks uses RELA rather than REL dynamic relocations. */
5942 outrel[0].r_addend = *addendp;
5943 bfd_elf32_swap_reloca_out
5944 (output_bfd, &outrel[0],
5945 (sreloc->contents
5946 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5947 }
5948 else
5949 bfd_elf32_swap_reloc_out
5950 (output_bfd, &outrel[0],
5951 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5952
5953 /* We've now added another relocation. */
5954 ++sreloc->reloc_count;
5955
5956 /* Make sure the output section is writable. The dynamic linker
5957 will be writing to it. */
5958 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5959 |= SHF_WRITE;
5960
5961 /* On IRIX5, make an entry of compact relocation info. */
5962 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5963 {
5964 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
5965 bfd_byte *cr;
5966
5967 if (scpt)
5968 {
5969 Elf32_crinfo cptrel;
5970
5971 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5972 cptrel.vaddr = (rel->r_offset
5973 + input_section->output_section->vma
5974 + input_section->output_offset);
5975 if (r_type == R_MIPS_REL32)
5976 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5977 else
5978 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5979 mips_elf_set_cr_dist2to (cptrel, 0);
5980 cptrel.konst = *addendp;
5981
5982 cr = (scpt->contents
5983 + sizeof (Elf32_External_compact_rel));
5984 mips_elf_set_cr_relvaddr (cptrel, 0);
5985 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5986 ((Elf32_External_crinfo *) cr
5987 + scpt->reloc_count));
5988 ++scpt->reloc_count;
5989 }
5990 }
5991
5992 /* If we've written this relocation for a readonly section,
5993 we need to set DF_TEXTREL again, so that we do not delete the
5994 DT_TEXTREL tag. */
5995 if (MIPS_ELF_READONLY_SECTION (input_section))
5996 info->flags |= DF_TEXTREL;
5997
5998 return TRUE;
5999 }
6000 \f
6001 /* Return the MACH for a MIPS e_flags value. */
6002
6003 unsigned long
6004 _bfd_elf_mips_mach (flagword flags)
6005 {
6006 switch (flags & EF_MIPS_MACH)
6007 {
6008 case E_MIPS_MACH_3900:
6009 return bfd_mach_mips3900;
6010
6011 case E_MIPS_MACH_4010:
6012 return bfd_mach_mips4010;
6013
6014 case E_MIPS_MACH_4100:
6015 return bfd_mach_mips4100;
6016
6017 case E_MIPS_MACH_4111:
6018 return bfd_mach_mips4111;
6019
6020 case E_MIPS_MACH_4120:
6021 return bfd_mach_mips4120;
6022
6023 case E_MIPS_MACH_4650:
6024 return bfd_mach_mips4650;
6025
6026 case E_MIPS_MACH_5400:
6027 return bfd_mach_mips5400;
6028
6029 case E_MIPS_MACH_5500:
6030 return bfd_mach_mips5500;
6031
6032 case E_MIPS_MACH_5900:
6033 return bfd_mach_mips5900;
6034
6035 case E_MIPS_MACH_9000:
6036 return bfd_mach_mips9000;
6037
6038 case E_MIPS_MACH_SB1:
6039 return bfd_mach_mips_sb1;
6040
6041 case E_MIPS_MACH_LS2E:
6042 return bfd_mach_mips_loongson_2e;
6043
6044 case E_MIPS_MACH_LS2F:
6045 return bfd_mach_mips_loongson_2f;
6046
6047 case E_MIPS_MACH_LS3A:
6048 return bfd_mach_mips_loongson_3a;
6049
6050 case E_MIPS_MACH_OCTEON2:
6051 return bfd_mach_mips_octeon2;
6052
6053 case E_MIPS_MACH_OCTEON:
6054 return bfd_mach_mips_octeon;
6055
6056 case E_MIPS_MACH_XLR:
6057 return bfd_mach_mips_xlr;
6058
6059 default:
6060 switch (flags & EF_MIPS_ARCH)
6061 {
6062 default:
6063 case E_MIPS_ARCH_1:
6064 return bfd_mach_mips3000;
6065
6066 case E_MIPS_ARCH_2:
6067 return bfd_mach_mips6000;
6068
6069 case E_MIPS_ARCH_3:
6070 return bfd_mach_mips4000;
6071
6072 case E_MIPS_ARCH_4:
6073 return bfd_mach_mips8000;
6074
6075 case E_MIPS_ARCH_5:
6076 return bfd_mach_mips5;
6077
6078 case E_MIPS_ARCH_32:
6079 return bfd_mach_mipsisa32;
6080
6081 case E_MIPS_ARCH_64:
6082 return bfd_mach_mipsisa64;
6083
6084 case E_MIPS_ARCH_32R2:
6085 return bfd_mach_mipsisa32r2;
6086
6087 case E_MIPS_ARCH_64R2:
6088 return bfd_mach_mipsisa64r2;
6089 }
6090 }
6091
6092 return 0;
6093 }
6094
6095 /* Return printable name for ABI. */
6096
6097 static INLINE char *
6098 elf_mips_abi_name (bfd *abfd)
6099 {
6100 flagword flags;
6101
6102 flags = elf_elfheader (abfd)->e_flags;
6103 switch (flags & EF_MIPS_ABI)
6104 {
6105 case 0:
6106 if (ABI_N32_P (abfd))
6107 return "N32";
6108 else if (ABI_64_P (abfd))
6109 return "64";
6110 else
6111 return "none";
6112 case E_MIPS_ABI_O32:
6113 return "O32";
6114 case E_MIPS_ABI_O64:
6115 return "O64";
6116 case E_MIPS_ABI_EABI32:
6117 return "EABI32";
6118 case E_MIPS_ABI_EABI64:
6119 return "EABI64";
6120 default:
6121 return "unknown abi";
6122 }
6123 }
6124 \f
6125 /* MIPS ELF uses two common sections. One is the usual one, and the
6126 other is for small objects. All the small objects are kept
6127 together, and then referenced via the gp pointer, which yields
6128 faster assembler code. This is what we use for the small common
6129 section. This approach is copied from ecoff.c. */
6130 static asection mips_elf_scom_section;
6131 static asymbol mips_elf_scom_symbol;
6132 static asymbol *mips_elf_scom_symbol_ptr;
6133
6134 /* MIPS ELF also uses an acommon section, which represents an
6135 allocated common symbol which may be overridden by a
6136 definition in a shared library. */
6137 static asection mips_elf_acom_section;
6138 static asymbol mips_elf_acom_symbol;
6139 static asymbol *mips_elf_acom_symbol_ptr;
6140
6141 /* This is used for both the 32-bit and the 64-bit ABI. */
6142
6143 void
6144 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6145 {
6146 elf_symbol_type *elfsym;
6147
6148 /* Handle the special MIPS section numbers that a symbol may use. */
6149 elfsym = (elf_symbol_type *) asym;
6150 switch (elfsym->internal_elf_sym.st_shndx)
6151 {
6152 case SHN_MIPS_ACOMMON:
6153 /* This section is used in a dynamically linked executable file.
6154 It is an allocated common section. The dynamic linker can
6155 either resolve these symbols to something in a shared
6156 library, or it can just leave them here. For our purposes,
6157 we can consider these symbols to be in a new section. */
6158 if (mips_elf_acom_section.name == NULL)
6159 {
6160 /* Initialize the acommon section. */
6161 mips_elf_acom_section.name = ".acommon";
6162 mips_elf_acom_section.flags = SEC_ALLOC;
6163 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6164 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6165 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6166 mips_elf_acom_symbol.name = ".acommon";
6167 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6168 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6169 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6170 }
6171 asym->section = &mips_elf_acom_section;
6172 break;
6173
6174 case SHN_COMMON:
6175 /* Common symbols less than the GP size are automatically
6176 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6177 if (asym->value > elf_gp_size (abfd)
6178 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6179 || IRIX_COMPAT (abfd) == ict_irix6)
6180 break;
6181 /* Fall through. */
6182 case SHN_MIPS_SCOMMON:
6183 if (mips_elf_scom_section.name == NULL)
6184 {
6185 /* Initialize the small common section. */
6186 mips_elf_scom_section.name = ".scommon";
6187 mips_elf_scom_section.flags = SEC_IS_COMMON;
6188 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6189 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6190 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6191 mips_elf_scom_symbol.name = ".scommon";
6192 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6193 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6194 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6195 }
6196 asym->section = &mips_elf_scom_section;
6197 asym->value = elfsym->internal_elf_sym.st_size;
6198 break;
6199
6200 case SHN_MIPS_SUNDEFINED:
6201 asym->section = bfd_und_section_ptr;
6202 break;
6203
6204 case SHN_MIPS_TEXT:
6205 {
6206 asection *section = bfd_get_section_by_name (abfd, ".text");
6207
6208 if (section != NULL)
6209 {
6210 asym->section = section;
6211 /* MIPS_TEXT is a bit special, the address is not an offset
6212 to the base of the .text section. So substract the section
6213 base address to make it an offset. */
6214 asym->value -= section->vma;
6215 }
6216 }
6217 break;
6218
6219 case SHN_MIPS_DATA:
6220 {
6221 asection *section = bfd_get_section_by_name (abfd, ".data");
6222
6223 if (section != NULL)
6224 {
6225 asym->section = section;
6226 /* MIPS_DATA is a bit special, the address is not an offset
6227 to the base of the .data section. So substract the section
6228 base address to make it an offset. */
6229 asym->value -= section->vma;
6230 }
6231 }
6232 break;
6233 }
6234
6235 /* If this is an odd-valued function symbol, assume it's a MIPS16
6236 or microMIPS one. */
6237 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6238 && (asym->value & 1) != 0)
6239 {
6240 asym->value--;
6241 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6242 elfsym->internal_elf_sym.st_other
6243 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6244 else
6245 elfsym->internal_elf_sym.st_other
6246 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6247 }
6248 }
6249 \f
6250 /* Implement elf_backend_eh_frame_address_size. This differs from
6251 the default in the way it handles EABI64.
6252
6253 EABI64 was originally specified as an LP64 ABI, and that is what
6254 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6255 historically accepted the combination of -mabi=eabi and -mlong32,
6256 and this ILP32 variation has become semi-official over time.
6257 Both forms use elf32 and have pointer-sized FDE addresses.
6258
6259 If an EABI object was generated by GCC 4.0 or above, it will have
6260 an empty .gcc_compiled_longXX section, where XX is the size of longs
6261 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6262 have no special marking to distinguish them from LP64 objects.
6263
6264 We don't want users of the official LP64 ABI to be punished for the
6265 existence of the ILP32 variant, but at the same time, we don't want
6266 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6267 We therefore take the following approach:
6268
6269 - If ABFD contains a .gcc_compiled_longXX section, use it to
6270 determine the pointer size.
6271
6272 - Otherwise check the type of the first relocation. Assume that
6273 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6274
6275 - Otherwise punt.
6276
6277 The second check is enough to detect LP64 objects generated by pre-4.0
6278 compilers because, in the kind of output generated by those compilers,
6279 the first relocation will be associated with either a CIE personality
6280 routine or an FDE start address. Furthermore, the compilers never
6281 used a special (non-pointer) encoding for this ABI.
6282
6283 Checking the relocation type should also be safe because there is no
6284 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6285 did so. */
6286
6287 unsigned int
6288 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6289 {
6290 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6291 return 8;
6292 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6293 {
6294 bfd_boolean long32_p, long64_p;
6295
6296 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6297 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6298 if (long32_p && long64_p)
6299 return 0;
6300 if (long32_p)
6301 return 4;
6302 if (long64_p)
6303 return 8;
6304
6305 if (sec->reloc_count > 0
6306 && elf_section_data (sec)->relocs != NULL
6307 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6308 == R_MIPS_64))
6309 return 8;
6310
6311 return 0;
6312 }
6313 return 4;
6314 }
6315 \f
6316 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6317 relocations against two unnamed section symbols to resolve to the
6318 same address. For example, if we have code like:
6319
6320 lw $4,%got_disp(.data)($gp)
6321 lw $25,%got_disp(.text)($gp)
6322 jalr $25
6323
6324 then the linker will resolve both relocations to .data and the program
6325 will jump there rather than to .text.
6326
6327 We can work around this problem by giving names to local section symbols.
6328 This is also what the MIPSpro tools do. */
6329
6330 bfd_boolean
6331 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6332 {
6333 return SGI_COMPAT (abfd);
6334 }
6335 \f
6336 /* Work over a section just before writing it out. This routine is
6337 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6338 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6339 a better way. */
6340
6341 bfd_boolean
6342 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6343 {
6344 if (hdr->sh_type == SHT_MIPS_REGINFO
6345 && hdr->sh_size > 0)
6346 {
6347 bfd_byte buf[4];
6348
6349 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6350 BFD_ASSERT (hdr->contents == NULL);
6351
6352 if (bfd_seek (abfd,
6353 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6354 SEEK_SET) != 0)
6355 return FALSE;
6356 H_PUT_32 (abfd, elf_gp (abfd), buf);
6357 if (bfd_bwrite (buf, 4, abfd) != 4)
6358 return FALSE;
6359 }
6360
6361 if (hdr->sh_type == SHT_MIPS_OPTIONS
6362 && hdr->bfd_section != NULL
6363 && mips_elf_section_data (hdr->bfd_section) != NULL
6364 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6365 {
6366 bfd_byte *contents, *l, *lend;
6367
6368 /* We stored the section contents in the tdata field in the
6369 set_section_contents routine. We save the section contents
6370 so that we don't have to read them again.
6371 At this point we know that elf_gp is set, so we can look
6372 through the section contents to see if there is an
6373 ODK_REGINFO structure. */
6374
6375 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6376 l = contents;
6377 lend = contents + hdr->sh_size;
6378 while (l + sizeof (Elf_External_Options) <= lend)
6379 {
6380 Elf_Internal_Options intopt;
6381
6382 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6383 &intopt);
6384 if (intopt.size < sizeof (Elf_External_Options))
6385 {
6386 (*_bfd_error_handler)
6387 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6388 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6389 break;
6390 }
6391 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6392 {
6393 bfd_byte buf[8];
6394
6395 if (bfd_seek (abfd,
6396 (hdr->sh_offset
6397 + (l - contents)
6398 + sizeof (Elf_External_Options)
6399 + (sizeof (Elf64_External_RegInfo) - 8)),
6400 SEEK_SET) != 0)
6401 return FALSE;
6402 H_PUT_64 (abfd, elf_gp (abfd), buf);
6403 if (bfd_bwrite (buf, 8, abfd) != 8)
6404 return FALSE;
6405 }
6406 else if (intopt.kind == ODK_REGINFO)
6407 {
6408 bfd_byte buf[4];
6409
6410 if (bfd_seek (abfd,
6411 (hdr->sh_offset
6412 + (l - contents)
6413 + sizeof (Elf_External_Options)
6414 + (sizeof (Elf32_External_RegInfo) - 4)),
6415 SEEK_SET) != 0)
6416 return FALSE;
6417 H_PUT_32 (abfd, elf_gp (abfd), buf);
6418 if (bfd_bwrite (buf, 4, abfd) != 4)
6419 return FALSE;
6420 }
6421 l += intopt.size;
6422 }
6423 }
6424
6425 if (hdr->bfd_section != NULL)
6426 {
6427 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6428
6429 /* .sbss is not handled specially here because the GNU/Linux
6430 prelinker can convert .sbss from NOBITS to PROGBITS and
6431 changing it back to NOBITS breaks the binary. The entry in
6432 _bfd_mips_elf_special_sections will ensure the correct flags
6433 are set on .sbss if BFD creates it without reading it from an
6434 input file, and without special handling here the flags set
6435 on it in an input file will be followed. */
6436 if (strcmp (name, ".sdata") == 0
6437 || strcmp (name, ".lit8") == 0
6438 || strcmp (name, ".lit4") == 0)
6439 {
6440 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6441 hdr->sh_type = SHT_PROGBITS;
6442 }
6443 else if (strcmp (name, ".srdata") == 0)
6444 {
6445 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6446 hdr->sh_type = SHT_PROGBITS;
6447 }
6448 else if (strcmp (name, ".compact_rel") == 0)
6449 {
6450 hdr->sh_flags = 0;
6451 hdr->sh_type = SHT_PROGBITS;
6452 }
6453 else if (strcmp (name, ".rtproc") == 0)
6454 {
6455 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6456 {
6457 unsigned int adjust;
6458
6459 adjust = hdr->sh_size % hdr->sh_addralign;
6460 if (adjust != 0)
6461 hdr->sh_size += hdr->sh_addralign - adjust;
6462 }
6463 }
6464 }
6465
6466 return TRUE;
6467 }
6468
6469 /* Handle a MIPS specific section when reading an object file. This
6470 is called when elfcode.h finds a section with an unknown type.
6471 This routine supports both the 32-bit and 64-bit ELF ABI.
6472
6473 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6474 how to. */
6475
6476 bfd_boolean
6477 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6478 Elf_Internal_Shdr *hdr,
6479 const char *name,
6480 int shindex)
6481 {
6482 flagword flags = 0;
6483
6484 /* There ought to be a place to keep ELF backend specific flags, but
6485 at the moment there isn't one. We just keep track of the
6486 sections by their name, instead. Fortunately, the ABI gives
6487 suggested names for all the MIPS specific sections, so we will
6488 probably get away with this. */
6489 switch (hdr->sh_type)
6490 {
6491 case SHT_MIPS_LIBLIST:
6492 if (strcmp (name, ".liblist") != 0)
6493 return FALSE;
6494 break;
6495 case SHT_MIPS_MSYM:
6496 if (strcmp (name, ".msym") != 0)
6497 return FALSE;
6498 break;
6499 case SHT_MIPS_CONFLICT:
6500 if (strcmp (name, ".conflict") != 0)
6501 return FALSE;
6502 break;
6503 case SHT_MIPS_GPTAB:
6504 if (! CONST_STRNEQ (name, ".gptab."))
6505 return FALSE;
6506 break;
6507 case SHT_MIPS_UCODE:
6508 if (strcmp (name, ".ucode") != 0)
6509 return FALSE;
6510 break;
6511 case SHT_MIPS_DEBUG:
6512 if (strcmp (name, ".mdebug") != 0)
6513 return FALSE;
6514 flags = SEC_DEBUGGING;
6515 break;
6516 case SHT_MIPS_REGINFO:
6517 if (strcmp (name, ".reginfo") != 0
6518 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6519 return FALSE;
6520 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6521 break;
6522 case SHT_MIPS_IFACE:
6523 if (strcmp (name, ".MIPS.interfaces") != 0)
6524 return FALSE;
6525 break;
6526 case SHT_MIPS_CONTENT:
6527 if (! CONST_STRNEQ (name, ".MIPS.content"))
6528 return FALSE;
6529 break;
6530 case SHT_MIPS_OPTIONS:
6531 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6532 return FALSE;
6533 break;
6534 case SHT_MIPS_DWARF:
6535 if (! CONST_STRNEQ (name, ".debug_")
6536 && ! CONST_STRNEQ (name, ".zdebug_"))
6537 return FALSE;
6538 break;
6539 case SHT_MIPS_SYMBOL_LIB:
6540 if (strcmp (name, ".MIPS.symlib") != 0)
6541 return FALSE;
6542 break;
6543 case SHT_MIPS_EVENTS:
6544 if (! CONST_STRNEQ (name, ".MIPS.events")
6545 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6546 return FALSE;
6547 break;
6548 default:
6549 break;
6550 }
6551
6552 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6553 return FALSE;
6554
6555 if (flags)
6556 {
6557 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6558 (bfd_get_section_flags (abfd,
6559 hdr->bfd_section)
6560 | flags)))
6561 return FALSE;
6562 }
6563
6564 /* FIXME: We should record sh_info for a .gptab section. */
6565
6566 /* For a .reginfo section, set the gp value in the tdata information
6567 from the contents of this section. We need the gp value while
6568 processing relocs, so we just get it now. The .reginfo section
6569 is not used in the 64-bit MIPS ELF ABI. */
6570 if (hdr->sh_type == SHT_MIPS_REGINFO)
6571 {
6572 Elf32_External_RegInfo ext;
6573 Elf32_RegInfo s;
6574
6575 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6576 &ext, 0, sizeof ext))
6577 return FALSE;
6578 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6579 elf_gp (abfd) = s.ri_gp_value;
6580 }
6581
6582 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6583 set the gp value based on what we find. We may see both
6584 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6585 they should agree. */
6586 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6587 {
6588 bfd_byte *contents, *l, *lend;
6589
6590 contents = bfd_malloc (hdr->sh_size);
6591 if (contents == NULL)
6592 return FALSE;
6593 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6594 0, hdr->sh_size))
6595 {
6596 free (contents);
6597 return FALSE;
6598 }
6599 l = contents;
6600 lend = contents + hdr->sh_size;
6601 while (l + sizeof (Elf_External_Options) <= lend)
6602 {
6603 Elf_Internal_Options intopt;
6604
6605 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6606 &intopt);
6607 if (intopt.size < sizeof (Elf_External_Options))
6608 {
6609 (*_bfd_error_handler)
6610 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6611 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6612 break;
6613 }
6614 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6615 {
6616 Elf64_Internal_RegInfo intreg;
6617
6618 bfd_mips_elf64_swap_reginfo_in
6619 (abfd,
6620 ((Elf64_External_RegInfo *)
6621 (l + sizeof (Elf_External_Options))),
6622 &intreg);
6623 elf_gp (abfd) = intreg.ri_gp_value;
6624 }
6625 else if (intopt.kind == ODK_REGINFO)
6626 {
6627 Elf32_RegInfo intreg;
6628
6629 bfd_mips_elf32_swap_reginfo_in
6630 (abfd,
6631 ((Elf32_External_RegInfo *)
6632 (l + sizeof (Elf_External_Options))),
6633 &intreg);
6634 elf_gp (abfd) = intreg.ri_gp_value;
6635 }
6636 l += intopt.size;
6637 }
6638 free (contents);
6639 }
6640
6641 return TRUE;
6642 }
6643
6644 /* Set the correct type for a MIPS ELF section. We do this by the
6645 section name, which is a hack, but ought to work. This routine is
6646 used by both the 32-bit and the 64-bit ABI. */
6647
6648 bfd_boolean
6649 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6650 {
6651 const char *name = bfd_get_section_name (abfd, sec);
6652
6653 if (strcmp (name, ".liblist") == 0)
6654 {
6655 hdr->sh_type = SHT_MIPS_LIBLIST;
6656 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6657 /* The sh_link field is set in final_write_processing. */
6658 }
6659 else if (strcmp (name, ".conflict") == 0)
6660 hdr->sh_type = SHT_MIPS_CONFLICT;
6661 else if (CONST_STRNEQ (name, ".gptab."))
6662 {
6663 hdr->sh_type = SHT_MIPS_GPTAB;
6664 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6665 /* The sh_info field is set in final_write_processing. */
6666 }
6667 else if (strcmp (name, ".ucode") == 0)
6668 hdr->sh_type = SHT_MIPS_UCODE;
6669 else if (strcmp (name, ".mdebug") == 0)
6670 {
6671 hdr->sh_type = SHT_MIPS_DEBUG;
6672 /* In a shared object on IRIX 5.3, the .mdebug section has an
6673 entsize of 0. FIXME: Does this matter? */
6674 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6675 hdr->sh_entsize = 0;
6676 else
6677 hdr->sh_entsize = 1;
6678 }
6679 else if (strcmp (name, ".reginfo") == 0)
6680 {
6681 hdr->sh_type = SHT_MIPS_REGINFO;
6682 /* In a shared object on IRIX 5.3, the .reginfo section has an
6683 entsize of 0x18. FIXME: Does this matter? */
6684 if (SGI_COMPAT (abfd))
6685 {
6686 if ((abfd->flags & DYNAMIC) != 0)
6687 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6688 else
6689 hdr->sh_entsize = 1;
6690 }
6691 else
6692 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6693 }
6694 else if (SGI_COMPAT (abfd)
6695 && (strcmp (name, ".hash") == 0
6696 || strcmp (name, ".dynamic") == 0
6697 || strcmp (name, ".dynstr") == 0))
6698 {
6699 if (SGI_COMPAT (abfd))
6700 hdr->sh_entsize = 0;
6701 #if 0
6702 /* This isn't how the IRIX6 linker behaves. */
6703 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6704 #endif
6705 }
6706 else if (strcmp (name, ".got") == 0
6707 || strcmp (name, ".srdata") == 0
6708 || strcmp (name, ".sdata") == 0
6709 || strcmp (name, ".sbss") == 0
6710 || strcmp (name, ".lit4") == 0
6711 || strcmp (name, ".lit8") == 0)
6712 hdr->sh_flags |= SHF_MIPS_GPREL;
6713 else if (strcmp (name, ".MIPS.interfaces") == 0)
6714 {
6715 hdr->sh_type = SHT_MIPS_IFACE;
6716 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6717 }
6718 else if (CONST_STRNEQ (name, ".MIPS.content"))
6719 {
6720 hdr->sh_type = SHT_MIPS_CONTENT;
6721 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6722 /* The sh_info field is set in final_write_processing. */
6723 }
6724 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6725 {
6726 hdr->sh_type = SHT_MIPS_OPTIONS;
6727 hdr->sh_entsize = 1;
6728 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6729 }
6730 else if (CONST_STRNEQ (name, ".debug_")
6731 || CONST_STRNEQ (name, ".zdebug_"))
6732 {
6733 hdr->sh_type = SHT_MIPS_DWARF;
6734
6735 /* Irix facilities such as libexc expect a single .debug_frame
6736 per executable, the system ones have NOSTRIP set and the linker
6737 doesn't merge sections with different flags so ... */
6738 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6739 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6740 }
6741 else if (strcmp (name, ".MIPS.symlib") == 0)
6742 {
6743 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6744 /* The sh_link and sh_info fields are set in
6745 final_write_processing. */
6746 }
6747 else if (CONST_STRNEQ (name, ".MIPS.events")
6748 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6749 {
6750 hdr->sh_type = SHT_MIPS_EVENTS;
6751 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6752 /* The sh_link field is set in final_write_processing. */
6753 }
6754 else if (strcmp (name, ".msym") == 0)
6755 {
6756 hdr->sh_type = SHT_MIPS_MSYM;
6757 hdr->sh_flags |= SHF_ALLOC;
6758 hdr->sh_entsize = 8;
6759 }
6760
6761 /* The generic elf_fake_sections will set up REL_HDR using the default
6762 kind of relocations. We used to set up a second header for the
6763 non-default kind of relocations here, but only NewABI would use
6764 these, and the IRIX ld doesn't like resulting empty RELA sections.
6765 Thus we create those header only on demand now. */
6766
6767 return TRUE;
6768 }
6769
6770 /* Given a BFD section, try to locate the corresponding ELF section
6771 index. This is used by both the 32-bit and the 64-bit ABI.
6772 Actually, it's not clear to me that the 64-bit ABI supports these,
6773 but for non-PIC objects we will certainly want support for at least
6774 the .scommon section. */
6775
6776 bfd_boolean
6777 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6778 asection *sec, int *retval)
6779 {
6780 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6781 {
6782 *retval = SHN_MIPS_SCOMMON;
6783 return TRUE;
6784 }
6785 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6786 {
6787 *retval = SHN_MIPS_ACOMMON;
6788 return TRUE;
6789 }
6790 return FALSE;
6791 }
6792 \f
6793 /* Hook called by the linker routine which adds symbols from an object
6794 file. We must handle the special MIPS section numbers here. */
6795
6796 bfd_boolean
6797 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6798 Elf_Internal_Sym *sym, const char **namep,
6799 flagword *flagsp ATTRIBUTE_UNUSED,
6800 asection **secp, bfd_vma *valp)
6801 {
6802 if (SGI_COMPAT (abfd)
6803 && (abfd->flags & DYNAMIC) != 0
6804 && strcmp (*namep, "_rld_new_interface") == 0)
6805 {
6806 /* Skip IRIX5 rld entry name. */
6807 *namep = NULL;
6808 return TRUE;
6809 }
6810
6811 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6812 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6813 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6814 a magic symbol resolved by the linker, we ignore this bogus definition
6815 of _gp_disp. New ABI objects do not suffer from this problem so this
6816 is not done for them. */
6817 if (!NEWABI_P(abfd)
6818 && (sym->st_shndx == SHN_ABS)
6819 && (strcmp (*namep, "_gp_disp") == 0))
6820 {
6821 *namep = NULL;
6822 return TRUE;
6823 }
6824
6825 switch (sym->st_shndx)
6826 {
6827 case SHN_COMMON:
6828 /* Common symbols less than the GP size are automatically
6829 treated as SHN_MIPS_SCOMMON symbols. */
6830 if (sym->st_size > elf_gp_size (abfd)
6831 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6832 || IRIX_COMPAT (abfd) == ict_irix6)
6833 break;
6834 /* Fall through. */
6835 case SHN_MIPS_SCOMMON:
6836 *secp = bfd_make_section_old_way (abfd, ".scommon");
6837 (*secp)->flags |= SEC_IS_COMMON;
6838 *valp = sym->st_size;
6839 break;
6840
6841 case SHN_MIPS_TEXT:
6842 /* This section is used in a shared object. */
6843 if (elf_tdata (abfd)->elf_text_section == NULL)
6844 {
6845 asymbol *elf_text_symbol;
6846 asection *elf_text_section;
6847 bfd_size_type amt = sizeof (asection);
6848
6849 elf_text_section = bfd_zalloc (abfd, amt);
6850 if (elf_text_section == NULL)
6851 return FALSE;
6852
6853 amt = sizeof (asymbol);
6854 elf_text_symbol = bfd_zalloc (abfd, amt);
6855 if (elf_text_symbol == NULL)
6856 return FALSE;
6857
6858 /* Initialize the section. */
6859
6860 elf_tdata (abfd)->elf_text_section = elf_text_section;
6861 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6862
6863 elf_text_section->symbol = elf_text_symbol;
6864 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6865
6866 elf_text_section->name = ".text";
6867 elf_text_section->flags = SEC_NO_FLAGS;
6868 elf_text_section->output_section = NULL;
6869 elf_text_section->owner = abfd;
6870 elf_text_symbol->name = ".text";
6871 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6872 elf_text_symbol->section = elf_text_section;
6873 }
6874 /* This code used to do *secp = bfd_und_section_ptr if
6875 info->shared. I don't know why, and that doesn't make sense,
6876 so I took it out. */
6877 *secp = elf_tdata (abfd)->elf_text_section;
6878 break;
6879
6880 case SHN_MIPS_ACOMMON:
6881 /* Fall through. XXX Can we treat this as allocated data? */
6882 case SHN_MIPS_DATA:
6883 /* This section is used in a shared object. */
6884 if (elf_tdata (abfd)->elf_data_section == NULL)
6885 {
6886 asymbol *elf_data_symbol;
6887 asection *elf_data_section;
6888 bfd_size_type amt = sizeof (asection);
6889
6890 elf_data_section = bfd_zalloc (abfd, amt);
6891 if (elf_data_section == NULL)
6892 return FALSE;
6893
6894 amt = sizeof (asymbol);
6895 elf_data_symbol = bfd_zalloc (abfd, amt);
6896 if (elf_data_symbol == NULL)
6897 return FALSE;
6898
6899 /* Initialize the section. */
6900
6901 elf_tdata (abfd)->elf_data_section = elf_data_section;
6902 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6903
6904 elf_data_section->symbol = elf_data_symbol;
6905 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6906
6907 elf_data_section->name = ".data";
6908 elf_data_section->flags = SEC_NO_FLAGS;
6909 elf_data_section->output_section = NULL;
6910 elf_data_section->owner = abfd;
6911 elf_data_symbol->name = ".data";
6912 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6913 elf_data_symbol->section = elf_data_section;
6914 }
6915 /* This code used to do *secp = bfd_und_section_ptr if
6916 info->shared. I don't know why, and that doesn't make sense,
6917 so I took it out. */
6918 *secp = elf_tdata (abfd)->elf_data_section;
6919 break;
6920
6921 case SHN_MIPS_SUNDEFINED:
6922 *secp = bfd_und_section_ptr;
6923 break;
6924 }
6925
6926 if (SGI_COMPAT (abfd)
6927 && ! info->shared
6928 && info->output_bfd->xvec == abfd->xvec
6929 && strcmp (*namep, "__rld_obj_head") == 0)
6930 {
6931 struct elf_link_hash_entry *h;
6932 struct bfd_link_hash_entry *bh;
6933
6934 /* Mark __rld_obj_head as dynamic. */
6935 bh = NULL;
6936 if (! (_bfd_generic_link_add_one_symbol
6937 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6938 get_elf_backend_data (abfd)->collect, &bh)))
6939 return FALSE;
6940
6941 h = (struct elf_link_hash_entry *) bh;
6942 h->non_elf = 0;
6943 h->def_regular = 1;
6944 h->type = STT_OBJECT;
6945
6946 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6947 return FALSE;
6948
6949 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6950 mips_elf_hash_table (info)->rld_symbol = h;
6951 }
6952
6953 /* If this is a mips16 text symbol, add 1 to the value to make it
6954 odd. This will cause something like .word SYM to come up with
6955 the right value when it is loaded into the PC. */
6956 if (ELF_ST_IS_COMPRESSED (sym->st_other))
6957 ++*valp;
6958
6959 return TRUE;
6960 }
6961
6962 /* This hook function is called before the linker writes out a global
6963 symbol. We mark symbols as small common if appropriate. This is
6964 also where we undo the increment of the value for a mips16 symbol. */
6965
6966 int
6967 _bfd_mips_elf_link_output_symbol_hook
6968 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6969 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6970 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6971 {
6972 /* If we see a common symbol, which implies a relocatable link, then
6973 if a symbol was small common in an input file, mark it as small
6974 common in the output file. */
6975 if (sym->st_shndx == SHN_COMMON
6976 && strcmp (input_sec->name, ".scommon") == 0)
6977 sym->st_shndx = SHN_MIPS_SCOMMON;
6978
6979 if (ELF_ST_IS_COMPRESSED (sym->st_other))
6980 sym->st_value &= ~1;
6981
6982 return 1;
6983 }
6984 \f
6985 /* Functions for the dynamic linker. */
6986
6987 /* Create dynamic sections when linking against a dynamic object. */
6988
6989 bfd_boolean
6990 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6991 {
6992 struct elf_link_hash_entry *h;
6993 struct bfd_link_hash_entry *bh;
6994 flagword flags;
6995 register asection *s;
6996 const char * const *namep;
6997 struct mips_elf_link_hash_table *htab;
6998
6999 htab = mips_elf_hash_table (info);
7000 BFD_ASSERT (htab != NULL);
7001
7002 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7003 | SEC_LINKER_CREATED | SEC_READONLY);
7004
7005 /* The psABI requires a read-only .dynamic section, but the VxWorks
7006 EABI doesn't. */
7007 if (!htab->is_vxworks)
7008 {
7009 s = bfd_get_linker_section (abfd, ".dynamic");
7010 if (s != NULL)
7011 {
7012 if (! bfd_set_section_flags (abfd, s, flags))
7013 return FALSE;
7014 }
7015 }
7016
7017 /* We need to create .got section. */
7018 if (!mips_elf_create_got_section (abfd, info))
7019 return FALSE;
7020
7021 if (! mips_elf_rel_dyn_section (info, TRUE))
7022 return FALSE;
7023
7024 /* Create .stub section. */
7025 s = bfd_make_section_anyway_with_flags (abfd,
7026 MIPS_ELF_STUB_SECTION_NAME (abfd),
7027 flags | SEC_CODE);
7028 if (s == NULL
7029 || ! bfd_set_section_alignment (abfd, s,
7030 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7031 return FALSE;
7032 htab->sstubs = s;
7033
7034 if (!mips_elf_hash_table (info)->use_rld_obj_head
7035 && !info->shared
7036 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7037 {
7038 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7039 flags &~ (flagword) SEC_READONLY);
7040 if (s == NULL
7041 || ! bfd_set_section_alignment (abfd, s,
7042 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7043 return FALSE;
7044 }
7045
7046 /* On IRIX5, we adjust add some additional symbols and change the
7047 alignments of several sections. There is no ABI documentation
7048 indicating that this is necessary on IRIX6, nor any evidence that
7049 the linker takes such action. */
7050 if (IRIX_COMPAT (abfd) == ict_irix5)
7051 {
7052 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7053 {
7054 bh = NULL;
7055 if (! (_bfd_generic_link_add_one_symbol
7056 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7057 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7058 return FALSE;
7059
7060 h = (struct elf_link_hash_entry *) bh;
7061 h->non_elf = 0;
7062 h->def_regular = 1;
7063 h->type = STT_SECTION;
7064
7065 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7066 return FALSE;
7067 }
7068
7069 /* We need to create a .compact_rel section. */
7070 if (SGI_COMPAT (abfd))
7071 {
7072 if (!mips_elf_create_compact_rel_section (abfd, info))
7073 return FALSE;
7074 }
7075
7076 /* Change alignments of some sections. */
7077 s = bfd_get_linker_section (abfd, ".hash");
7078 if (s != NULL)
7079 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7080 s = bfd_get_linker_section (abfd, ".dynsym");
7081 if (s != NULL)
7082 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7083 s = bfd_get_linker_section (abfd, ".dynstr");
7084 if (s != NULL)
7085 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7086 /* ??? */
7087 s = bfd_get_section_by_name (abfd, ".reginfo");
7088 if (s != NULL)
7089 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7090 s = bfd_get_linker_section (abfd, ".dynamic");
7091 if (s != NULL)
7092 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7093 }
7094
7095 if (!info->shared)
7096 {
7097 const char *name;
7098
7099 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7100 bh = NULL;
7101 if (!(_bfd_generic_link_add_one_symbol
7102 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7103 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7104 return FALSE;
7105
7106 h = (struct elf_link_hash_entry *) bh;
7107 h->non_elf = 0;
7108 h->def_regular = 1;
7109 h->type = STT_SECTION;
7110
7111 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7112 return FALSE;
7113
7114 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7115 {
7116 /* __rld_map is a four byte word located in the .data section
7117 and is filled in by the rtld to contain a pointer to
7118 the _r_debug structure. Its symbol value will be set in
7119 _bfd_mips_elf_finish_dynamic_symbol. */
7120 s = bfd_get_linker_section (abfd, ".rld_map");
7121 BFD_ASSERT (s != NULL);
7122
7123 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7124 bh = NULL;
7125 if (!(_bfd_generic_link_add_one_symbol
7126 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7127 get_elf_backend_data (abfd)->collect, &bh)))
7128 return FALSE;
7129
7130 h = (struct elf_link_hash_entry *) bh;
7131 h->non_elf = 0;
7132 h->def_regular = 1;
7133 h->type = STT_OBJECT;
7134
7135 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7136 return FALSE;
7137 mips_elf_hash_table (info)->rld_symbol = h;
7138 }
7139 }
7140
7141 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7142 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7143 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7144 return FALSE;
7145
7146 /* Cache the sections created above. */
7147 htab->splt = bfd_get_linker_section (abfd, ".plt");
7148 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7149 if (htab->is_vxworks)
7150 {
7151 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7152 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7153 }
7154 else
7155 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7156 if (!htab->sdynbss
7157 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7158 || !htab->srelplt
7159 || !htab->splt)
7160 abort ();
7161
7162 if (htab->is_vxworks)
7163 {
7164 /* Do the usual VxWorks handling. */
7165 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7166 return FALSE;
7167
7168 /* Work out the PLT sizes. */
7169 if (info->shared)
7170 {
7171 htab->plt_header_size
7172 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7173 htab->plt_entry_size
7174 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7175 }
7176 else
7177 {
7178 htab->plt_header_size
7179 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7180 htab->plt_entry_size
7181 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7182 }
7183 }
7184 else if (!info->shared)
7185 {
7186 /* All variants of the plt0 entry are the same size. */
7187 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7188 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7189 }
7190
7191 return TRUE;
7192 }
7193 \f
7194 /* Return true if relocation REL against section SEC is a REL rather than
7195 RELA relocation. RELOCS is the first relocation in the section and
7196 ABFD is the bfd that contains SEC. */
7197
7198 static bfd_boolean
7199 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7200 const Elf_Internal_Rela *relocs,
7201 const Elf_Internal_Rela *rel)
7202 {
7203 Elf_Internal_Shdr *rel_hdr;
7204 const struct elf_backend_data *bed;
7205
7206 /* To determine which flavor of relocation this is, we depend on the
7207 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7208 rel_hdr = elf_section_data (sec)->rel.hdr;
7209 if (rel_hdr == NULL)
7210 return FALSE;
7211 bed = get_elf_backend_data (abfd);
7212 return ((size_t) (rel - relocs)
7213 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7214 }
7215
7216 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7217 HOWTO is the relocation's howto and CONTENTS points to the contents
7218 of the section that REL is against. */
7219
7220 static bfd_vma
7221 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7222 reloc_howto_type *howto, bfd_byte *contents)
7223 {
7224 bfd_byte *location;
7225 unsigned int r_type;
7226 bfd_vma addend;
7227
7228 r_type = ELF_R_TYPE (abfd, rel->r_info);
7229 location = contents + rel->r_offset;
7230
7231 /* Get the addend, which is stored in the input file. */
7232 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7233 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7234 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7235
7236 return addend & howto->src_mask;
7237 }
7238
7239 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7240 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7241 and update *ADDEND with the final addend. Return true on success
7242 or false if the LO16 could not be found. RELEND is the exclusive
7243 upper bound on the relocations for REL's section. */
7244
7245 static bfd_boolean
7246 mips_elf_add_lo16_rel_addend (bfd *abfd,
7247 const Elf_Internal_Rela *rel,
7248 const Elf_Internal_Rela *relend,
7249 bfd_byte *contents, bfd_vma *addend)
7250 {
7251 unsigned int r_type, lo16_type;
7252 const Elf_Internal_Rela *lo16_relocation;
7253 reloc_howto_type *lo16_howto;
7254 bfd_vma l;
7255
7256 r_type = ELF_R_TYPE (abfd, rel->r_info);
7257 if (mips16_reloc_p (r_type))
7258 lo16_type = R_MIPS16_LO16;
7259 else if (micromips_reloc_p (r_type))
7260 lo16_type = R_MICROMIPS_LO16;
7261 else
7262 lo16_type = R_MIPS_LO16;
7263
7264 /* The combined value is the sum of the HI16 addend, left-shifted by
7265 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7266 code does a `lui' of the HI16 value, and then an `addiu' of the
7267 LO16 value.)
7268
7269 Scan ahead to find a matching LO16 relocation.
7270
7271 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7272 be immediately following. However, for the IRIX6 ABI, the next
7273 relocation may be a composed relocation consisting of several
7274 relocations for the same address. In that case, the R_MIPS_LO16
7275 relocation may occur as one of these. We permit a similar
7276 extension in general, as that is useful for GCC.
7277
7278 In some cases GCC dead code elimination removes the LO16 but keeps
7279 the corresponding HI16. This is strictly speaking a violation of
7280 the ABI but not immediately harmful. */
7281 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7282 if (lo16_relocation == NULL)
7283 return FALSE;
7284
7285 /* Obtain the addend kept there. */
7286 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7287 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7288
7289 l <<= lo16_howto->rightshift;
7290 l = _bfd_mips_elf_sign_extend (l, 16);
7291
7292 *addend <<= 16;
7293 *addend += l;
7294 return TRUE;
7295 }
7296
7297 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7298 store the contents in *CONTENTS on success. Assume that *CONTENTS
7299 already holds the contents if it is nonull on entry. */
7300
7301 static bfd_boolean
7302 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7303 {
7304 if (*contents)
7305 return TRUE;
7306
7307 /* Get cached copy if it exists. */
7308 if (elf_section_data (sec)->this_hdr.contents != NULL)
7309 {
7310 *contents = elf_section_data (sec)->this_hdr.contents;
7311 return TRUE;
7312 }
7313
7314 return bfd_malloc_and_get_section (abfd, sec, contents);
7315 }
7316
7317 /* Look through the relocs for a section during the first phase, and
7318 allocate space in the global offset table. */
7319
7320 bfd_boolean
7321 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7322 asection *sec, const Elf_Internal_Rela *relocs)
7323 {
7324 const char *name;
7325 bfd *dynobj;
7326 Elf_Internal_Shdr *symtab_hdr;
7327 struct elf_link_hash_entry **sym_hashes;
7328 size_t extsymoff;
7329 const Elf_Internal_Rela *rel;
7330 const Elf_Internal_Rela *rel_end;
7331 asection *sreloc;
7332 const struct elf_backend_data *bed;
7333 struct mips_elf_link_hash_table *htab;
7334 bfd_byte *contents;
7335 bfd_vma addend;
7336 reloc_howto_type *howto;
7337
7338 if (info->relocatable)
7339 return TRUE;
7340
7341 htab = mips_elf_hash_table (info);
7342 BFD_ASSERT (htab != NULL);
7343
7344 dynobj = elf_hash_table (info)->dynobj;
7345 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7346 sym_hashes = elf_sym_hashes (abfd);
7347 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7348
7349 bed = get_elf_backend_data (abfd);
7350 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7351
7352 /* Check for the mips16 stub sections. */
7353
7354 name = bfd_get_section_name (abfd, sec);
7355 if (FN_STUB_P (name))
7356 {
7357 unsigned long r_symndx;
7358
7359 /* Look at the relocation information to figure out which symbol
7360 this is for. */
7361
7362 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7363 if (r_symndx == 0)
7364 {
7365 (*_bfd_error_handler)
7366 (_("%B: Warning: cannot determine the target function for"
7367 " stub section `%s'"),
7368 abfd, name);
7369 bfd_set_error (bfd_error_bad_value);
7370 return FALSE;
7371 }
7372
7373 if (r_symndx < extsymoff
7374 || sym_hashes[r_symndx - extsymoff] == NULL)
7375 {
7376 asection *o;
7377
7378 /* This stub is for a local symbol. This stub will only be
7379 needed if there is some relocation in this BFD, other
7380 than a 16 bit function call, which refers to this symbol. */
7381 for (o = abfd->sections; o != NULL; o = o->next)
7382 {
7383 Elf_Internal_Rela *sec_relocs;
7384 const Elf_Internal_Rela *r, *rend;
7385
7386 /* We can ignore stub sections when looking for relocs. */
7387 if ((o->flags & SEC_RELOC) == 0
7388 || o->reloc_count == 0
7389 || section_allows_mips16_refs_p (o))
7390 continue;
7391
7392 sec_relocs
7393 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7394 info->keep_memory);
7395 if (sec_relocs == NULL)
7396 return FALSE;
7397
7398 rend = sec_relocs + o->reloc_count;
7399 for (r = sec_relocs; r < rend; r++)
7400 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7401 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7402 break;
7403
7404 if (elf_section_data (o)->relocs != sec_relocs)
7405 free (sec_relocs);
7406
7407 if (r < rend)
7408 break;
7409 }
7410
7411 if (o == NULL)
7412 {
7413 /* There is no non-call reloc for this stub, so we do
7414 not need it. Since this function is called before
7415 the linker maps input sections to output sections, we
7416 can easily discard it by setting the SEC_EXCLUDE
7417 flag. */
7418 sec->flags |= SEC_EXCLUDE;
7419 return TRUE;
7420 }
7421
7422 /* Record this stub in an array of local symbol stubs for
7423 this BFD. */
7424 if (elf_tdata (abfd)->local_stubs == NULL)
7425 {
7426 unsigned long symcount;
7427 asection **n;
7428 bfd_size_type amt;
7429
7430 if (elf_bad_symtab (abfd))
7431 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7432 else
7433 symcount = symtab_hdr->sh_info;
7434 amt = symcount * sizeof (asection *);
7435 n = bfd_zalloc (abfd, amt);
7436 if (n == NULL)
7437 return FALSE;
7438 elf_tdata (abfd)->local_stubs = n;
7439 }
7440
7441 sec->flags |= SEC_KEEP;
7442 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7443
7444 /* We don't need to set mips16_stubs_seen in this case.
7445 That flag is used to see whether we need to look through
7446 the global symbol table for stubs. We don't need to set
7447 it here, because we just have a local stub. */
7448 }
7449 else
7450 {
7451 struct mips_elf_link_hash_entry *h;
7452
7453 h = ((struct mips_elf_link_hash_entry *)
7454 sym_hashes[r_symndx - extsymoff]);
7455
7456 while (h->root.root.type == bfd_link_hash_indirect
7457 || h->root.root.type == bfd_link_hash_warning)
7458 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7459
7460 /* H is the symbol this stub is for. */
7461
7462 /* If we already have an appropriate stub for this function, we
7463 don't need another one, so we can discard this one. Since
7464 this function is called before the linker maps input sections
7465 to output sections, we can easily discard it by setting the
7466 SEC_EXCLUDE flag. */
7467 if (h->fn_stub != NULL)
7468 {
7469 sec->flags |= SEC_EXCLUDE;
7470 return TRUE;
7471 }
7472
7473 sec->flags |= SEC_KEEP;
7474 h->fn_stub = sec;
7475 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7476 }
7477 }
7478 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7479 {
7480 unsigned long r_symndx;
7481 struct mips_elf_link_hash_entry *h;
7482 asection **loc;
7483
7484 /* Look at the relocation information to figure out which symbol
7485 this is for. */
7486
7487 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7488 if (r_symndx == 0)
7489 {
7490 (*_bfd_error_handler)
7491 (_("%B: Warning: cannot determine the target function for"
7492 " stub section `%s'"),
7493 abfd, name);
7494 bfd_set_error (bfd_error_bad_value);
7495 return FALSE;
7496 }
7497
7498 if (r_symndx < extsymoff
7499 || sym_hashes[r_symndx - extsymoff] == NULL)
7500 {
7501 asection *o;
7502
7503 /* This stub is for a local symbol. This stub will only be
7504 needed if there is some relocation (R_MIPS16_26) in this BFD
7505 that refers to this symbol. */
7506 for (o = abfd->sections; o != NULL; o = o->next)
7507 {
7508 Elf_Internal_Rela *sec_relocs;
7509 const Elf_Internal_Rela *r, *rend;
7510
7511 /* We can ignore stub sections when looking for relocs. */
7512 if ((o->flags & SEC_RELOC) == 0
7513 || o->reloc_count == 0
7514 || section_allows_mips16_refs_p (o))
7515 continue;
7516
7517 sec_relocs
7518 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7519 info->keep_memory);
7520 if (sec_relocs == NULL)
7521 return FALSE;
7522
7523 rend = sec_relocs + o->reloc_count;
7524 for (r = sec_relocs; r < rend; r++)
7525 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7526 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7527 break;
7528
7529 if (elf_section_data (o)->relocs != sec_relocs)
7530 free (sec_relocs);
7531
7532 if (r < rend)
7533 break;
7534 }
7535
7536 if (o == NULL)
7537 {
7538 /* There is no non-call reloc for this stub, so we do
7539 not need it. Since this function is called before
7540 the linker maps input sections to output sections, we
7541 can easily discard it by setting the SEC_EXCLUDE
7542 flag. */
7543 sec->flags |= SEC_EXCLUDE;
7544 return TRUE;
7545 }
7546
7547 /* Record this stub in an array of local symbol call_stubs for
7548 this BFD. */
7549 if (elf_tdata (abfd)->local_call_stubs == NULL)
7550 {
7551 unsigned long symcount;
7552 asection **n;
7553 bfd_size_type amt;
7554
7555 if (elf_bad_symtab (abfd))
7556 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7557 else
7558 symcount = symtab_hdr->sh_info;
7559 amt = symcount * sizeof (asection *);
7560 n = bfd_zalloc (abfd, amt);
7561 if (n == NULL)
7562 return FALSE;
7563 elf_tdata (abfd)->local_call_stubs = n;
7564 }
7565
7566 sec->flags |= SEC_KEEP;
7567 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7568
7569 /* We don't need to set mips16_stubs_seen in this case.
7570 That flag is used to see whether we need to look through
7571 the global symbol table for stubs. We don't need to set
7572 it here, because we just have a local stub. */
7573 }
7574 else
7575 {
7576 h = ((struct mips_elf_link_hash_entry *)
7577 sym_hashes[r_symndx - extsymoff]);
7578
7579 /* H is the symbol this stub is for. */
7580
7581 if (CALL_FP_STUB_P (name))
7582 loc = &h->call_fp_stub;
7583 else
7584 loc = &h->call_stub;
7585
7586 /* If we already have an appropriate stub for this function, we
7587 don't need another one, so we can discard this one. Since
7588 this function is called before the linker maps input sections
7589 to output sections, we can easily discard it by setting the
7590 SEC_EXCLUDE flag. */
7591 if (*loc != NULL)
7592 {
7593 sec->flags |= SEC_EXCLUDE;
7594 return TRUE;
7595 }
7596
7597 sec->flags |= SEC_KEEP;
7598 *loc = sec;
7599 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7600 }
7601 }
7602
7603 sreloc = NULL;
7604 contents = NULL;
7605 for (rel = relocs; rel < rel_end; ++rel)
7606 {
7607 unsigned long r_symndx;
7608 unsigned int r_type;
7609 struct elf_link_hash_entry *h;
7610 bfd_boolean can_make_dynamic_p;
7611
7612 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7613 r_type = ELF_R_TYPE (abfd, rel->r_info);
7614
7615 if (r_symndx < extsymoff)
7616 h = NULL;
7617 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7618 {
7619 (*_bfd_error_handler)
7620 (_("%B: Malformed reloc detected for section %s"),
7621 abfd, name);
7622 bfd_set_error (bfd_error_bad_value);
7623 return FALSE;
7624 }
7625 else
7626 {
7627 h = sym_hashes[r_symndx - extsymoff];
7628 while (h != NULL
7629 && (h->root.type == bfd_link_hash_indirect
7630 || h->root.type == bfd_link_hash_warning))
7631 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7632 }
7633
7634 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7635 relocation into a dynamic one. */
7636 can_make_dynamic_p = FALSE;
7637 switch (r_type)
7638 {
7639 case R_MIPS_GOT16:
7640 case R_MIPS_CALL16:
7641 case R_MIPS_CALL_HI16:
7642 case R_MIPS_CALL_LO16:
7643 case R_MIPS_GOT_HI16:
7644 case R_MIPS_GOT_LO16:
7645 case R_MIPS_GOT_PAGE:
7646 case R_MIPS_GOT_OFST:
7647 case R_MIPS_GOT_DISP:
7648 case R_MIPS_TLS_GOTTPREL:
7649 case R_MIPS_TLS_GD:
7650 case R_MIPS_TLS_LDM:
7651 case R_MIPS16_GOT16:
7652 case R_MIPS16_CALL16:
7653 case R_MIPS16_TLS_GOTTPREL:
7654 case R_MIPS16_TLS_GD:
7655 case R_MIPS16_TLS_LDM:
7656 case R_MICROMIPS_GOT16:
7657 case R_MICROMIPS_CALL16:
7658 case R_MICROMIPS_CALL_HI16:
7659 case R_MICROMIPS_CALL_LO16:
7660 case R_MICROMIPS_GOT_HI16:
7661 case R_MICROMIPS_GOT_LO16:
7662 case R_MICROMIPS_GOT_PAGE:
7663 case R_MICROMIPS_GOT_OFST:
7664 case R_MICROMIPS_GOT_DISP:
7665 case R_MICROMIPS_TLS_GOTTPREL:
7666 case R_MICROMIPS_TLS_GD:
7667 case R_MICROMIPS_TLS_LDM:
7668 if (dynobj == NULL)
7669 elf_hash_table (info)->dynobj = dynobj = abfd;
7670 if (!mips_elf_create_got_section (dynobj, info))
7671 return FALSE;
7672 if (htab->is_vxworks && !info->shared)
7673 {
7674 (*_bfd_error_handler)
7675 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7676 abfd, (unsigned long) rel->r_offset);
7677 bfd_set_error (bfd_error_bad_value);
7678 return FALSE;
7679 }
7680 break;
7681
7682 /* This is just a hint; it can safely be ignored. Don't set
7683 has_static_relocs for the corresponding symbol. */
7684 case R_MIPS_JALR:
7685 case R_MICROMIPS_JALR:
7686 break;
7687
7688 case R_MIPS_32:
7689 case R_MIPS_REL32:
7690 case R_MIPS_64:
7691 /* In VxWorks executables, references to external symbols
7692 must be handled using copy relocs or PLT entries; it is not
7693 possible to convert this relocation into a dynamic one.
7694
7695 For executables that use PLTs and copy-relocs, we have a
7696 choice between converting the relocation into a dynamic
7697 one or using copy relocations or PLT entries. It is
7698 usually better to do the former, unless the relocation is
7699 against a read-only section. */
7700 if ((info->shared
7701 || (h != NULL
7702 && !htab->is_vxworks
7703 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7704 && !(!info->nocopyreloc
7705 && !PIC_OBJECT_P (abfd)
7706 && MIPS_ELF_READONLY_SECTION (sec))))
7707 && (sec->flags & SEC_ALLOC) != 0)
7708 {
7709 can_make_dynamic_p = TRUE;
7710 if (dynobj == NULL)
7711 elf_hash_table (info)->dynobj = dynobj = abfd;
7712 break;
7713 }
7714 /* For sections that are not SEC_ALLOC a copy reloc would be
7715 output if possible (implying questionable semantics for
7716 read-only data objects) or otherwise the final link would
7717 fail as ld.so will not process them and could not therefore
7718 handle any outstanding dynamic relocations.
7719
7720 For such sections that are also SEC_DEBUGGING, we can avoid
7721 these problems by simply ignoring any relocs as these
7722 sections have a predefined use and we know it is safe to do
7723 so.
7724
7725 This is needed in cases such as a global symbol definition
7726 in a shared library causing a common symbol from an object
7727 file to be converted to an undefined reference. If that
7728 happens, then all the relocations against this symbol from
7729 SEC_DEBUGGING sections in the object file will resolve to
7730 nil. */
7731 if ((sec->flags & SEC_DEBUGGING) != 0)
7732 break;
7733 /* Fall through. */
7734
7735 default:
7736 /* Most static relocations require pointer equality, except
7737 for branches. */
7738 if (h)
7739 h->pointer_equality_needed = TRUE;
7740 /* Fall through. */
7741
7742 case R_MIPS_26:
7743 case R_MIPS_PC16:
7744 case R_MIPS16_26:
7745 case R_MICROMIPS_26_S1:
7746 case R_MICROMIPS_PC7_S1:
7747 case R_MICROMIPS_PC10_S1:
7748 case R_MICROMIPS_PC16_S1:
7749 case R_MICROMIPS_PC23_S2:
7750 if (h)
7751 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7752 break;
7753 }
7754
7755 if (h)
7756 {
7757 /* Relocations against the special VxWorks __GOTT_BASE__ and
7758 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7759 room for them in .rela.dyn. */
7760 if (is_gott_symbol (info, h))
7761 {
7762 if (sreloc == NULL)
7763 {
7764 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7765 if (sreloc == NULL)
7766 return FALSE;
7767 }
7768 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7769 if (MIPS_ELF_READONLY_SECTION (sec))
7770 /* We tell the dynamic linker that there are
7771 relocations against the text segment. */
7772 info->flags |= DF_TEXTREL;
7773 }
7774 }
7775 else if (call_lo16_reloc_p (r_type)
7776 || got_lo16_reloc_p (r_type)
7777 || got_disp_reloc_p (r_type)
7778 || (got16_reloc_p (r_type) && htab->is_vxworks))
7779 {
7780 /* We may need a local GOT entry for this relocation. We
7781 don't count R_MIPS_GOT_PAGE because we can estimate the
7782 maximum number of pages needed by looking at the size of
7783 the segment. Similar comments apply to R_MIPS*_GOT16 and
7784 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7785 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7786 R_MIPS_CALL_HI16 because these are always followed by an
7787 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7788 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7789 rel->r_addend, info, r_type))
7790 return FALSE;
7791 }
7792
7793 if (h != NULL
7794 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
7795 ELF_ST_IS_MIPS16 (h->other)))
7796 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7797
7798 switch (r_type)
7799 {
7800 case R_MIPS_CALL16:
7801 case R_MIPS16_CALL16:
7802 case R_MICROMIPS_CALL16:
7803 if (h == NULL)
7804 {
7805 (*_bfd_error_handler)
7806 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7807 abfd, (unsigned long) rel->r_offset);
7808 bfd_set_error (bfd_error_bad_value);
7809 return FALSE;
7810 }
7811 /* Fall through. */
7812
7813 case R_MIPS_CALL_HI16:
7814 case R_MIPS_CALL_LO16:
7815 case R_MICROMIPS_CALL_HI16:
7816 case R_MICROMIPS_CALL_LO16:
7817 if (h != NULL)
7818 {
7819 /* Make sure there is room in the regular GOT to hold the
7820 function's address. We may eliminate it in favour of
7821 a .got.plt entry later; see mips_elf_count_got_symbols. */
7822 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
7823 r_type))
7824 return FALSE;
7825
7826 /* We need a stub, not a plt entry for the undefined
7827 function. But we record it as if it needs plt. See
7828 _bfd_elf_adjust_dynamic_symbol. */
7829 h->needs_plt = 1;
7830 h->type = STT_FUNC;
7831 }
7832 break;
7833
7834 case R_MIPS_GOT_PAGE:
7835 case R_MICROMIPS_GOT_PAGE:
7836 /* If this is a global, overridable symbol, GOT_PAGE will
7837 decay to GOT_DISP, so we'll need a GOT entry for it. */
7838 if (h)
7839 {
7840 struct mips_elf_link_hash_entry *hmips =
7841 (struct mips_elf_link_hash_entry *) h;
7842
7843 /* This symbol is definitely not overridable. */
7844 if (hmips->root.def_regular
7845 && ! (info->shared && ! info->symbolic
7846 && ! hmips->root.forced_local))
7847 h = NULL;
7848 }
7849 /* Fall through. */
7850
7851 case R_MIPS16_GOT16:
7852 case R_MIPS_GOT16:
7853 case R_MIPS_GOT_HI16:
7854 case R_MIPS_GOT_LO16:
7855 case R_MICROMIPS_GOT16:
7856 case R_MICROMIPS_GOT_HI16:
7857 case R_MICROMIPS_GOT_LO16:
7858 if (!h || got_page_reloc_p (r_type))
7859 {
7860 /* This relocation needs (or may need, if h != NULL) a
7861 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7862 know for sure until we know whether the symbol is
7863 preemptible. */
7864 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7865 {
7866 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7867 return FALSE;
7868 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7869 addend = mips_elf_read_rel_addend (abfd, rel,
7870 howto, contents);
7871 if (got16_reloc_p (r_type))
7872 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7873 contents, &addend);
7874 else
7875 addend <<= howto->rightshift;
7876 }
7877 else
7878 addend = rel->r_addend;
7879 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7880 addend))
7881 return FALSE;
7882 }
7883 /* Fall through. */
7884
7885 case R_MIPS_GOT_DISP:
7886 case R_MICROMIPS_GOT_DISP:
7887 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7888 FALSE, r_type))
7889 return FALSE;
7890 break;
7891
7892 case R_MIPS_TLS_GOTTPREL:
7893 case R_MIPS16_TLS_GOTTPREL:
7894 case R_MICROMIPS_TLS_GOTTPREL:
7895 if (info->shared)
7896 info->flags |= DF_STATIC_TLS;
7897 /* Fall through */
7898
7899 case R_MIPS_TLS_LDM:
7900 case R_MIPS16_TLS_LDM:
7901 case R_MICROMIPS_TLS_LDM:
7902 if (tls_ldm_reloc_p (r_type))
7903 {
7904 r_symndx = STN_UNDEF;
7905 h = NULL;
7906 }
7907 /* Fall through */
7908
7909 case R_MIPS_TLS_GD:
7910 case R_MIPS16_TLS_GD:
7911 case R_MICROMIPS_TLS_GD:
7912 /* This symbol requires a global offset table entry, or two
7913 for TLS GD relocations. */
7914 if (h != NULL)
7915 {
7916 if (!mips_elf_record_global_got_symbol (h, abfd, info,
7917 FALSE, r_type))
7918 return FALSE;
7919 }
7920 else
7921 {
7922 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7923 rel->r_addend,
7924 info, r_type))
7925 return FALSE;
7926 }
7927 break;
7928
7929 case R_MIPS_32:
7930 case R_MIPS_REL32:
7931 case R_MIPS_64:
7932 /* In VxWorks executables, references to external symbols
7933 are handled using copy relocs or PLT stubs, so there's
7934 no need to add a .rela.dyn entry for this relocation. */
7935 if (can_make_dynamic_p)
7936 {
7937 if (sreloc == NULL)
7938 {
7939 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7940 if (sreloc == NULL)
7941 return FALSE;
7942 }
7943 if (info->shared && h == NULL)
7944 {
7945 /* When creating a shared object, we must copy these
7946 reloc types into the output file as R_MIPS_REL32
7947 relocs. Make room for this reloc in .rel(a).dyn. */
7948 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7949 if (MIPS_ELF_READONLY_SECTION (sec))
7950 /* We tell the dynamic linker that there are
7951 relocations against the text segment. */
7952 info->flags |= DF_TEXTREL;
7953 }
7954 else
7955 {
7956 struct mips_elf_link_hash_entry *hmips;
7957
7958 /* For a shared object, we must copy this relocation
7959 unless the symbol turns out to be undefined and
7960 weak with non-default visibility, in which case
7961 it will be left as zero.
7962
7963 We could elide R_MIPS_REL32 for locally binding symbols
7964 in shared libraries, but do not yet do so.
7965
7966 For an executable, we only need to copy this
7967 reloc if the symbol is defined in a dynamic
7968 object. */
7969 hmips = (struct mips_elf_link_hash_entry *) h;
7970 ++hmips->possibly_dynamic_relocs;
7971 if (MIPS_ELF_READONLY_SECTION (sec))
7972 /* We need it to tell the dynamic linker if there
7973 are relocations against the text segment. */
7974 hmips->readonly_reloc = TRUE;
7975 }
7976 }
7977
7978 if (SGI_COMPAT (abfd))
7979 mips_elf_hash_table (info)->compact_rel_size +=
7980 sizeof (Elf32_External_crinfo);
7981 break;
7982
7983 case R_MIPS_26:
7984 case R_MIPS_GPREL16:
7985 case R_MIPS_LITERAL:
7986 case R_MIPS_GPREL32:
7987 case R_MICROMIPS_26_S1:
7988 case R_MICROMIPS_GPREL16:
7989 case R_MICROMIPS_LITERAL:
7990 case R_MICROMIPS_GPREL7_S2:
7991 if (SGI_COMPAT (abfd))
7992 mips_elf_hash_table (info)->compact_rel_size +=
7993 sizeof (Elf32_External_crinfo);
7994 break;
7995
7996 /* This relocation describes the C++ object vtable hierarchy.
7997 Reconstruct it for later use during GC. */
7998 case R_MIPS_GNU_VTINHERIT:
7999 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8000 return FALSE;
8001 break;
8002
8003 /* This relocation describes which C++ vtable entries are actually
8004 used. Record for later use during GC. */
8005 case R_MIPS_GNU_VTENTRY:
8006 BFD_ASSERT (h != NULL);
8007 if (h != NULL
8008 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8009 return FALSE;
8010 break;
8011
8012 default:
8013 break;
8014 }
8015
8016 /* We must not create a stub for a symbol that has relocations
8017 related to taking the function's address. This doesn't apply to
8018 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8019 a normal .got entry. */
8020 if (!htab->is_vxworks && h != NULL)
8021 switch (r_type)
8022 {
8023 default:
8024 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8025 break;
8026 case R_MIPS16_CALL16:
8027 case R_MIPS_CALL16:
8028 case R_MIPS_CALL_HI16:
8029 case R_MIPS_CALL_LO16:
8030 case R_MIPS_JALR:
8031 case R_MICROMIPS_CALL16:
8032 case R_MICROMIPS_CALL_HI16:
8033 case R_MICROMIPS_CALL_LO16:
8034 case R_MICROMIPS_JALR:
8035 break;
8036 }
8037
8038 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8039 if there is one. We only need to handle global symbols here;
8040 we decide whether to keep or delete stubs for local symbols
8041 when processing the stub's relocations. */
8042 if (h != NULL
8043 && !mips16_call_reloc_p (r_type)
8044 && !section_allows_mips16_refs_p (sec))
8045 {
8046 struct mips_elf_link_hash_entry *mh;
8047
8048 mh = (struct mips_elf_link_hash_entry *) h;
8049 mh->need_fn_stub = TRUE;
8050 }
8051
8052 /* Refuse some position-dependent relocations when creating a
8053 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8054 not PIC, but we can create dynamic relocations and the result
8055 will be fine. Also do not refuse R_MIPS_LO16, which can be
8056 combined with R_MIPS_GOT16. */
8057 if (info->shared)
8058 {
8059 switch (r_type)
8060 {
8061 case R_MIPS16_HI16:
8062 case R_MIPS_HI16:
8063 case R_MIPS_HIGHER:
8064 case R_MIPS_HIGHEST:
8065 case R_MICROMIPS_HI16:
8066 case R_MICROMIPS_HIGHER:
8067 case R_MICROMIPS_HIGHEST:
8068 /* Don't refuse a high part relocation if it's against
8069 no symbol (e.g. part of a compound relocation). */
8070 if (r_symndx == STN_UNDEF)
8071 break;
8072
8073 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8074 and has a special meaning. */
8075 if (!NEWABI_P (abfd) && h != NULL
8076 && strcmp (h->root.root.string, "_gp_disp") == 0)
8077 break;
8078
8079 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8080 if (is_gott_symbol (info, h))
8081 break;
8082
8083 /* FALLTHROUGH */
8084
8085 case R_MIPS16_26:
8086 case R_MIPS_26:
8087 case R_MICROMIPS_26_S1:
8088 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8089 (*_bfd_error_handler)
8090 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8091 abfd, howto->name,
8092 (h) ? h->root.root.string : "a local symbol");
8093 bfd_set_error (bfd_error_bad_value);
8094 return FALSE;
8095 default:
8096 break;
8097 }
8098 }
8099 }
8100
8101 return TRUE;
8102 }
8103 \f
8104 bfd_boolean
8105 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8106 struct bfd_link_info *link_info,
8107 bfd_boolean *again)
8108 {
8109 Elf_Internal_Rela *internal_relocs;
8110 Elf_Internal_Rela *irel, *irelend;
8111 Elf_Internal_Shdr *symtab_hdr;
8112 bfd_byte *contents = NULL;
8113 size_t extsymoff;
8114 bfd_boolean changed_contents = FALSE;
8115 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8116 Elf_Internal_Sym *isymbuf = NULL;
8117
8118 /* We are not currently changing any sizes, so only one pass. */
8119 *again = FALSE;
8120
8121 if (link_info->relocatable)
8122 return TRUE;
8123
8124 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8125 link_info->keep_memory);
8126 if (internal_relocs == NULL)
8127 return TRUE;
8128
8129 irelend = internal_relocs + sec->reloc_count
8130 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8131 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8132 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8133
8134 for (irel = internal_relocs; irel < irelend; irel++)
8135 {
8136 bfd_vma symval;
8137 bfd_signed_vma sym_offset;
8138 unsigned int r_type;
8139 unsigned long r_symndx;
8140 asection *sym_sec;
8141 unsigned long instruction;
8142
8143 /* Turn jalr into bgezal, and jr into beq, if they're marked
8144 with a JALR relocation, that indicate where they jump to.
8145 This saves some pipeline bubbles. */
8146 r_type = ELF_R_TYPE (abfd, irel->r_info);
8147 if (r_type != R_MIPS_JALR)
8148 continue;
8149
8150 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8151 /* Compute the address of the jump target. */
8152 if (r_symndx >= extsymoff)
8153 {
8154 struct mips_elf_link_hash_entry *h
8155 = ((struct mips_elf_link_hash_entry *)
8156 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8157
8158 while (h->root.root.type == bfd_link_hash_indirect
8159 || h->root.root.type == bfd_link_hash_warning)
8160 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8161
8162 /* If a symbol is undefined, or if it may be overridden,
8163 skip it. */
8164 if (! ((h->root.root.type == bfd_link_hash_defined
8165 || h->root.root.type == bfd_link_hash_defweak)
8166 && h->root.root.u.def.section)
8167 || (link_info->shared && ! link_info->symbolic
8168 && !h->root.forced_local))
8169 continue;
8170
8171 sym_sec = h->root.root.u.def.section;
8172 if (sym_sec->output_section)
8173 symval = (h->root.root.u.def.value
8174 + sym_sec->output_section->vma
8175 + sym_sec->output_offset);
8176 else
8177 symval = h->root.root.u.def.value;
8178 }
8179 else
8180 {
8181 Elf_Internal_Sym *isym;
8182
8183 /* Read this BFD's symbols if we haven't done so already. */
8184 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8185 {
8186 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8187 if (isymbuf == NULL)
8188 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8189 symtab_hdr->sh_info, 0,
8190 NULL, NULL, NULL);
8191 if (isymbuf == NULL)
8192 goto relax_return;
8193 }
8194
8195 isym = isymbuf + r_symndx;
8196 if (isym->st_shndx == SHN_UNDEF)
8197 continue;
8198 else if (isym->st_shndx == SHN_ABS)
8199 sym_sec = bfd_abs_section_ptr;
8200 else if (isym->st_shndx == SHN_COMMON)
8201 sym_sec = bfd_com_section_ptr;
8202 else
8203 sym_sec
8204 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8205 symval = isym->st_value
8206 + sym_sec->output_section->vma
8207 + sym_sec->output_offset;
8208 }
8209
8210 /* Compute branch offset, from delay slot of the jump to the
8211 branch target. */
8212 sym_offset = (symval + irel->r_addend)
8213 - (sec_start + irel->r_offset + 4);
8214
8215 /* Branch offset must be properly aligned. */
8216 if ((sym_offset & 3) != 0)
8217 continue;
8218
8219 sym_offset >>= 2;
8220
8221 /* Check that it's in range. */
8222 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8223 continue;
8224
8225 /* Get the section contents if we haven't done so already. */
8226 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8227 goto relax_return;
8228
8229 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8230
8231 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8232 if ((instruction & 0xfc1fffff) == 0x0000f809)
8233 instruction = 0x04110000;
8234 /* If it was jr <reg>, turn it into b <target>. */
8235 else if ((instruction & 0xfc1fffff) == 0x00000008)
8236 instruction = 0x10000000;
8237 else
8238 continue;
8239
8240 instruction |= (sym_offset & 0xffff);
8241 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8242 changed_contents = TRUE;
8243 }
8244
8245 if (contents != NULL
8246 && elf_section_data (sec)->this_hdr.contents != contents)
8247 {
8248 if (!changed_contents && !link_info->keep_memory)
8249 free (contents);
8250 else
8251 {
8252 /* Cache the section contents for elf_link_input_bfd. */
8253 elf_section_data (sec)->this_hdr.contents = contents;
8254 }
8255 }
8256 return TRUE;
8257
8258 relax_return:
8259 if (contents != NULL
8260 && elf_section_data (sec)->this_hdr.contents != contents)
8261 free (contents);
8262 return FALSE;
8263 }
8264 \f
8265 /* Allocate space for global sym dynamic relocs. */
8266
8267 static bfd_boolean
8268 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8269 {
8270 struct bfd_link_info *info = inf;
8271 bfd *dynobj;
8272 struct mips_elf_link_hash_entry *hmips;
8273 struct mips_elf_link_hash_table *htab;
8274
8275 htab = mips_elf_hash_table (info);
8276 BFD_ASSERT (htab != NULL);
8277
8278 dynobj = elf_hash_table (info)->dynobj;
8279 hmips = (struct mips_elf_link_hash_entry *) h;
8280
8281 /* VxWorks executables are handled elsewhere; we only need to
8282 allocate relocations in shared objects. */
8283 if (htab->is_vxworks && !info->shared)
8284 return TRUE;
8285
8286 /* Ignore indirect symbols. All relocations against such symbols
8287 will be redirected to the target symbol. */
8288 if (h->root.type == bfd_link_hash_indirect)
8289 return TRUE;
8290
8291 /* If this symbol is defined in a dynamic object, or we are creating
8292 a shared library, we will need to copy any R_MIPS_32 or
8293 R_MIPS_REL32 relocs against it into the output file. */
8294 if (! info->relocatable
8295 && hmips->possibly_dynamic_relocs != 0
8296 && (h->root.type == bfd_link_hash_defweak
8297 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8298 || info->shared))
8299 {
8300 bfd_boolean do_copy = TRUE;
8301
8302 if (h->root.type == bfd_link_hash_undefweak)
8303 {
8304 /* Do not copy relocations for undefined weak symbols with
8305 non-default visibility. */
8306 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8307 do_copy = FALSE;
8308
8309 /* Make sure undefined weak symbols are output as a dynamic
8310 symbol in PIEs. */
8311 else if (h->dynindx == -1 && !h->forced_local)
8312 {
8313 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8314 return FALSE;
8315 }
8316 }
8317
8318 if (do_copy)
8319 {
8320 /* Even though we don't directly need a GOT entry for this symbol,
8321 the SVR4 psABI requires it to have a dynamic symbol table
8322 index greater that DT_MIPS_GOTSYM if there are dynamic
8323 relocations against it.
8324
8325 VxWorks does not enforce the same mapping between the GOT
8326 and the symbol table, so the same requirement does not
8327 apply there. */
8328 if (!htab->is_vxworks)
8329 {
8330 if (hmips->global_got_area > GGA_RELOC_ONLY)
8331 hmips->global_got_area = GGA_RELOC_ONLY;
8332 hmips->got_only_for_calls = FALSE;
8333 }
8334
8335 mips_elf_allocate_dynamic_relocations
8336 (dynobj, info, hmips->possibly_dynamic_relocs);
8337 if (hmips->readonly_reloc)
8338 /* We tell the dynamic linker that there are relocations
8339 against the text segment. */
8340 info->flags |= DF_TEXTREL;
8341 }
8342 }
8343
8344 return TRUE;
8345 }
8346
8347 /* Adjust a symbol defined by a dynamic object and referenced by a
8348 regular object. The current definition is in some section of the
8349 dynamic object, but we're not including those sections. We have to
8350 change the definition to something the rest of the link can
8351 understand. */
8352
8353 bfd_boolean
8354 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8355 struct elf_link_hash_entry *h)
8356 {
8357 bfd *dynobj;
8358 struct mips_elf_link_hash_entry *hmips;
8359 struct mips_elf_link_hash_table *htab;
8360
8361 htab = mips_elf_hash_table (info);
8362 BFD_ASSERT (htab != NULL);
8363
8364 dynobj = elf_hash_table (info)->dynobj;
8365 hmips = (struct mips_elf_link_hash_entry *) h;
8366
8367 /* Make sure we know what is going on here. */
8368 BFD_ASSERT (dynobj != NULL
8369 && (h->needs_plt
8370 || h->u.weakdef != NULL
8371 || (h->def_dynamic
8372 && h->ref_regular
8373 && !h->def_regular)));
8374
8375 hmips = (struct mips_elf_link_hash_entry *) h;
8376
8377 /* If there are call relocations against an externally-defined symbol,
8378 see whether we can create a MIPS lazy-binding stub for it. We can
8379 only do this if all references to the function are through call
8380 relocations, and in that case, the traditional lazy-binding stubs
8381 are much more efficient than PLT entries.
8382
8383 Traditional stubs are only available on SVR4 psABI-based systems;
8384 VxWorks always uses PLTs instead. */
8385 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8386 {
8387 if (! elf_hash_table (info)->dynamic_sections_created)
8388 return TRUE;
8389
8390 /* If this symbol is not defined in a regular file, then set
8391 the symbol to the stub location. This is required to make
8392 function pointers compare as equal between the normal
8393 executable and the shared library. */
8394 if (!h->def_regular)
8395 {
8396 hmips->needs_lazy_stub = TRUE;
8397 htab->lazy_stub_count++;
8398 return TRUE;
8399 }
8400 }
8401 /* As above, VxWorks requires PLT entries for externally-defined
8402 functions that are only accessed through call relocations.
8403
8404 Both VxWorks and non-VxWorks targets also need PLT entries if there
8405 are static-only relocations against an externally-defined function.
8406 This can technically occur for shared libraries if there are
8407 branches to the symbol, although it is unlikely that this will be
8408 used in practice due to the short ranges involved. It can occur
8409 for any relative or absolute relocation in executables; in that
8410 case, the PLT entry becomes the function's canonical address. */
8411 else if (((h->needs_plt && !hmips->no_fn_stub)
8412 || (h->type == STT_FUNC && hmips->has_static_relocs))
8413 && htab->use_plts_and_copy_relocs
8414 && !SYMBOL_CALLS_LOCAL (info, h)
8415 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8416 && h->root.type == bfd_link_hash_undefweak))
8417 {
8418 /* If this is the first symbol to need a PLT entry, allocate room
8419 for the header. */
8420 if (htab->splt->size == 0)
8421 {
8422 BFD_ASSERT (htab->sgotplt->size == 0);
8423
8424 /* If we're using the PLT additions to the psABI, each PLT
8425 entry is 16 bytes and the PLT0 entry is 32 bytes.
8426 Encourage better cache usage by aligning. We do this
8427 lazily to avoid pessimizing traditional objects. */
8428 if (!htab->is_vxworks
8429 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8430 return FALSE;
8431
8432 /* Make sure that .got.plt is word-aligned. We do this lazily
8433 for the same reason as above. */
8434 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8435 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8436 return FALSE;
8437
8438 htab->splt->size += htab->plt_header_size;
8439
8440 /* On non-VxWorks targets, the first two entries in .got.plt
8441 are reserved. */
8442 if (!htab->is_vxworks)
8443 htab->sgotplt->size
8444 += get_elf_backend_data (dynobj)->got_header_size;
8445
8446 /* On VxWorks, also allocate room for the header's
8447 .rela.plt.unloaded entries. */
8448 if (htab->is_vxworks && !info->shared)
8449 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8450 }
8451
8452 /* Assign the next .plt entry to this symbol. */
8453 h->plt.offset = htab->splt->size;
8454 htab->splt->size += htab->plt_entry_size;
8455
8456 /* If the output file has no definition of the symbol, set the
8457 symbol's value to the address of the stub. */
8458 if (!info->shared && !h->def_regular)
8459 {
8460 h->root.u.def.section = htab->splt;
8461 h->root.u.def.value = h->plt.offset;
8462 /* For VxWorks, point at the PLT load stub rather than the
8463 lazy resolution stub; this stub will become the canonical
8464 function address. */
8465 if (htab->is_vxworks)
8466 h->root.u.def.value += 8;
8467 }
8468
8469 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8470 relocation. */
8471 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8472 htab->srelplt->size += (htab->is_vxworks
8473 ? MIPS_ELF_RELA_SIZE (dynobj)
8474 : MIPS_ELF_REL_SIZE (dynobj));
8475
8476 /* Make room for the .rela.plt.unloaded relocations. */
8477 if (htab->is_vxworks && !info->shared)
8478 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8479
8480 /* All relocations against this symbol that could have been made
8481 dynamic will now refer to the PLT entry instead. */
8482 hmips->possibly_dynamic_relocs = 0;
8483
8484 return TRUE;
8485 }
8486
8487 /* If this is a weak symbol, and there is a real definition, the
8488 processor independent code will have arranged for us to see the
8489 real definition first, and we can just use the same value. */
8490 if (h->u.weakdef != NULL)
8491 {
8492 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8493 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8494 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8495 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8496 return TRUE;
8497 }
8498
8499 /* Otherwise, there is nothing further to do for symbols defined
8500 in regular objects. */
8501 if (h->def_regular)
8502 return TRUE;
8503
8504 /* There's also nothing more to do if we'll convert all relocations
8505 against this symbol into dynamic relocations. */
8506 if (!hmips->has_static_relocs)
8507 return TRUE;
8508
8509 /* We're now relying on copy relocations. Complain if we have
8510 some that we can't convert. */
8511 if (!htab->use_plts_and_copy_relocs || info->shared)
8512 {
8513 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8514 "dynamic symbol %s"),
8515 h->root.root.string);
8516 bfd_set_error (bfd_error_bad_value);
8517 return FALSE;
8518 }
8519
8520 /* We must allocate the symbol in our .dynbss section, which will
8521 become part of the .bss section of the executable. There will be
8522 an entry for this symbol in the .dynsym section. The dynamic
8523 object will contain position independent code, so all references
8524 from the dynamic object to this symbol will go through the global
8525 offset table. The dynamic linker will use the .dynsym entry to
8526 determine the address it must put in the global offset table, so
8527 both the dynamic object and the regular object will refer to the
8528 same memory location for the variable. */
8529
8530 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8531 {
8532 if (htab->is_vxworks)
8533 htab->srelbss->size += sizeof (Elf32_External_Rela);
8534 else
8535 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8536 h->needs_copy = 1;
8537 }
8538
8539 /* All relocations against this symbol that could have been made
8540 dynamic will now refer to the local copy instead. */
8541 hmips->possibly_dynamic_relocs = 0;
8542
8543 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8544 }
8545 \f
8546 /* This function is called after all the input files have been read,
8547 and the input sections have been assigned to output sections. We
8548 check for any mips16 stub sections that we can discard. */
8549
8550 bfd_boolean
8551 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8552 struct bfd_link_info *info)
8553 {
8554 asection *ri;
8555 struct mips_elf_link_hash_table *htab;
8556 struct mips_htab_traverse_info hti;
8557
8558 htab = mips_elf_hash_table (info);
8559 BFD_ASSERT (htab != NULL);
8560
8561 /* The .reginfo section has a fixed size. */
8562 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8563 if (ri != NULL)
8564 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8565
8566 hti.info = info;
8567 hti.output_bfd = output_bfd;
8568 hti.error = FALSE;
8569 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8570 mips_elf_check_symbols, &hti);
8571 if (hti.error)
8572 return FALSE;
8573
8574 return TRUE;
8575 }
8576
8577 /* If the link uses a GOT, lay it out and work out its size. */
8578
8579 static bfd_boolean
8580 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8581 {
8582 bfd *dynobj;
8583 asection *s;
8584 struct mips_got_info *g;
8585 bfd_size_type loadable_size = 0;
8586 bfd_size_type page_gotno;
8587 bfd *ibfd;
8588 struct mips_elf_traverse_got_arg tga;
8589 struct mips_elf_link_hash_table *htab;
8590
8591 htab = mips_elf_hash_table (info);
8592 BFD_ASSERT (htab != NULL);
8593
8594 s = htab->sgot;
8595 if (s == NULL)
8596 return TRUE;
8597
8598 dynobj = elf_hash_table (info)->dynobj;
8599 g = htab->got_info;
8600
8601 /* Allocate room for the reserved entries. VxWorks always reserves
8602 3 entries; other objects only reserve 2 entries. */
8603 BFD_ASSERT (g->assigned_gotno == 0);
8604 if (htab->is_vxworks)
8605 htab->reserved_gotno = 3;
8606 else
8607 htab->reserved_gotno = 2;
8608 g->local_gotno += htab->reserved_gotno;
8609 g->assigned_gotno = htab->reserved_gotno;
8610
8611 /* Replace entries for indirect and warning symbols with entries for
8612 the target symbol. */
8613 if (!mips_elf_resolve_final_got_entries (g))
8614 return FALSE;
8615
8616 /* Decide which symbols need to go in the global part of the GOT and
8617 count the number of reloc-only GOT symbols. */
8618 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8619
8620 /* Calculate the total loadable size of the output. That
8621 will give us the maximum number of GOT_PAGE entries
8622 required. */
8623 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8624 {
8625 asection *subsection;
8626
8627 for (subsection = ibfd->sections;
8628 subsection;
8629 subsection = subsection->next)
8630 {
8631 if ((subsection->flags & SEC_ALLOC) == 0)
8632 continue;
8633 loadable_size += ((subsection->size + 0xf)
8634 &~ (bfd_size_type) 0xf);
8635 }
8636 }
8637
8638 if (htab->is_vxworks)
8639 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8640 relocations against local symbols evaluate to "G", and the EABI does
8641 not include R_MIPS_GOT_PAGE. */
8642 page_gotno = 0;
8643 else
8644 /* Assume there are two loadable segments consisting of contiguous
8645 sections. Is 5 enough? */
8646 page_gotno = (loadable_size >> 16) + 5;
8647
8648 /* Choose the smaller of the two estimates; both are intended to be
8649 conservative. */
8650 if (page_gotno > g->page_gotno)
8651 page_gotno = g->page_gotno;
8652
8653 g->local_gotno += page_gotno;
8654
8655 /* Count the number of GOT entries and TLS relocs. */
8656 tga.info = info;
8657 tga.g = g;
8658 htab_traverse (g->got_entries, mips_elf_count_got_entries, &tga);
8659
8660 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8661 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8662 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8663
8664 /* VxWorks does not support multiple GOTs. It initializes $gp to
8665 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8666 dynamic loader. */
8667 if (htab->is_vxworks)
8668 {
8669 /* VxWorks executables do not need a GOT. */
8670 if (info->shared)
8671 {
8672 /* Each VxWorks GOT entry needs an explicit relocation. */
8673 unsigned int count;
8674
8675 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8676 if (count)
8677 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8678 }
8679 }
8680 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8681 {
8682 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8683 return FALSE;
8684 }
8685 else
8686 {
8687 /* Record that all bfds use G. This also has the effect of freeing
8688 the per-bfd GOTs, which we no longer need. */
8689 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8690 if (mips_elf_bfd_got (ibfd, FALSE))
8691 mips_elf_replace_bfd_got (ibfd, g);
8692 mips_elf_replace_bfd_got (output_bfd, g);
8693
8694 /* Set up TLS entries. */
8695 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8696 tga.info = info;
8697 tga.g = g;
8698 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
8699 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
8700 if (!tga.g)
8701 return FALSE;
8702 BFD_ASSERT (g->tls_assigned_gotno
8703 == g->global_gotno + g->local_gotno + g->tls_gotno);
8704
8705 /* Allocate room for the TLS relocations. */
8706 if (g->relocs)
8707 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
8708 }
8709
8710 return TRUE;
8711 }
8712
8713 /* Estimate the size of the .MIPS.stubs section. */
8714
8715 static void
8716 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8717 {
8718 struct mips_elf_link_hash_table *htab;
8719 bfd_size_type dynsymcount;
8720
8721 htab = mips_elf_hash_table (info);
8722 BFD_ASSERT (htab != NULL);
8723
8724 if (htab->lazy_stub_count == 0)
8725 return;
8726
8727 /* IRIX rld assumes that a function stub isn't at the end of the .text
8728 section, so add a dummy entry to the end. */
8729 htab->lazy_stub_count++;
8730
8731 /* Get a worst-case estimate of the number of dynamic symbols needed.
8732 At this point, dynsymcount does not account for section symbols
8733 and count_section_dynsyms may overestimate the number that will
8734 be needed. */
8735 dynsymcount = (elf_hash_table (info)->dynsymcount
8736 + count_section_dynsyms (output_bfd, info));
8737
8738 /* Determine the size of one stub entry. */
8739 htab->function_stub_size = (dynsymcount > 0x10000
8740 ? MIPS_FUNCTION_STUB_BIG_SIZE
8741 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8742
8743 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8744 }
8745
8746 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8747 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8748 allocate an entry in the stubs section. */
8749
8750 static bfd_boolean
8751 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8752 {
8753 struct mips_elf_link_hash_table *htab;
8754
8755 htab = (struct mips_elf_link_hash_table *) data;
8756 if (h->needs_lazy_stub)
8757 {
8758 h->root.root.u.def.section = htab->sstubs;
8759 h->root.root.u.def.value = htab->sstubs->size;
8760 h->root.plt.offset = htab->sstubs->size;
8761 htab->sstubs->size += htab->function_stub_size;
8762 }
8763 return TRUE;
8764 }
8765
8766 /* Allocate offsets in the stubs section to each symbol that needs one.
8767 Set the final size of the .MIPS.stub section. */
8768
8769 static void
8770 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8771 {
8772 struct mips_elf_link_hash_table *htab;
8773
8774 htab = mips_elf_hash_table (info);
8775 BFD_ASSERT (htab != NULL);
8776
8777 if (htab->lazy_stub_count == 0)
8778 return;
8779
8780 htab->sstubs->size = 0;
8781 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8782 htab->sstubs->size += htab->function_stub_size;
8783 BFD_ASSERT (htab->sstubs->size
8784 == htab->lazy_stub_count * htab->function_stub_size);
8785 }
8786
8787 /* Set the sizes of the dynamic sections. */
8788
8789 bfd_boolean
8790 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8791 struct bfd_link_info *info)
8792 {
8793 bfd *dynobj;
8794 asection *s, *sreldyn;
8795 bfd_boolean reltext;
8796 struct mips_elf_link_hash_table *htab;
8797
8798 htab = mips_elf_hash_table (info);
8799 BFD_ASSERT (htab != NULL);
8800 dynobj = elf_hash_table (info)->dynobj;
8801 BFD_ASSERT (dynobj != NULL);
8802
8803 if (elf_hash_table (info)->dynamic_sections_created)
8804 {
8805 /* Set the contents of the .interp section to the interpreter. */
8806 if (info->executable)
8807 {
8808 s = bfd_get_linker_section (dynobj, ".interp");
8809 BFD_ASSERT (s != NULL);
8810 s->size
8811 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8812 s->contents
8813 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8814 }
8815
8816 /* Create a symbol for the PLT, if we know that we are using it. */
8817 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8818 {
8819 struct elf_link_hash_entry *h;
8820
8821 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8822
8823 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8824 "_PROCEDURE_LINKAGE_TABLE_");
8825 htab->root.hplt = h;
8826 if (h == NULL)
8827 return FALSE;
8828 h->type = STT_FUNC;
8829 }
8830 }
8831
8832 /* Allocate space for global sym dynamic relocs. */
8833 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
8834
8835 mips_elf_estimate_stub_size (output_bfd, info);
8836
8837 if (!mips_elf_lay_out_got (output_bfd, info))
8838 return FALSE;
8839
8840 mips_elf_lay_out_lazy_stubs (info);
8841
8842 /* The check_relocs and adjust_dynamic_symbol entry points have
8843 determined the sizes of the various dynamic sections. Allocate
8844 memory for them. */
8845 reltext = FALSE;
8846 for (s = dynobj->sections; s != NULL; s = s->next)
8847 {
8848 const char *name;
8849
8850 /* It's OK to base decisions on the section name, because none
8851 of the dynobj section names depend upon the input files. */
8852 name = bfd_get_section_name (dynobj, s);
8853
8854 if ((s->flags & SEC_LINKER_CREATED) == 0)
8855 continue;
8856
8857 if (CONST_STRNEQ (name, ".rel"))
8858 {
8859 if (s->size != 0)
8860 {
8861 const char *outname;
8862 asection *target;
8863
8864 /* If this relocation section applies to a read only
8865 section, then we probably need a DT_TEXTREL entry.
8866 If the relocation section is .rel(a).dyn, we always
8867 assert a DT_TEXTREL entry rather than testing whether
8868 there exists a relocation to a read only section or
8869 not. */
8870 outname = bfd_get_section_name (output_bfd,
8871 s->output_section);
8872 target = bfd_get_section_by_name (output_bfd, outname + 4);
8873 if ((target != NULL
8874 && (target->flags & SEC_READONLY) != 0
8875 && (target->flags & SEC_ALLOC) != 0)
8876 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8877 reltext = TRUE;
8878
8879 /* We use the reloc_count field as a counter if we need
8880 to copy relocs into the output file. */
8881 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8882 s->reloc_count = 0;
8883
8884 /* If combreloc is enabled, elf_link_sort_relocs() will
8885 sort relocations, but in a different way than we do,
8886 and before we're done creating relocations. Also, it
8887 will move them around between input sections'
8888 relocation's contents, so our sorting would be
8889 broken, so don't let it run. */
8890 info->combreloc = 0;
8891 }
8892 }
8893 else if (! info->shared
8894 && ! mips_elf_hash_table (info)->use_rld_obj_head
8895 && CONST_STRNEQ (name, ".rld_map"))
8896 {
8897 /* We add a room for __rld_map. It will be filled in by the
8898 rtld to contain a pointer to the _r_debug structure. */
8899 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
8900 }
8901 else if (SGI_COMPAT (output_bfd)
8902 && CONST_STRNEQ (name, ".compact_rel"))
8903 s->size += mips_elf_hash_table (info)->compact_rel_size;
8904 else if (s == htab->splt)
8905 {
8906 /* If the last PLT entry has a branch delay slot, allocate
8907 room for an extra nop to fill the delay slot. This is
8908 for CPUs without load interlocking. */
8909 if (! LOAD_INTERLOCKS_P (output_bfd)
8910 && ! htab->is_vxworks && s->size > 0)
8911 s->size += 4;
8912 }
8913 else if (! CONST_STRNEQ (name, ".init")
8914 && s != htab->sgot
8915 && s != htab->sgotplt
8916 && s != htab->sstubs
8917 && s != htab->sdynbss)
8918 {
8919 /* It's not one of our sections, so don't allocate space. */
8920 continue;
8921 }
8922
8923 if (s->size == 0)
8924 {
8925 s->flags |= SEC_EXCLUDE;
8926 continue;
8927 }
8928
8929 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8930 continue;
8931
8932 /* Allocate memory for the section contents. */
8933 s->contents = bfd_zalloc (dynobj, s->size);
8934 if (s->contents == NULL)
8935 {
8936 bfd_set_error (bfd_error_no_memory);
8937 return FALSE;
8938 }
8939 }
8940
8941 if (elf_hash_table (info)->dynamic_sections_created)
8942 {
8943 /* Add some entries to the .dynamic section. We fill in the
8944 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8945 must add the entries now so that we get the correct size for
8946 the .dynamic section. */
8947
8948 /* SGI object has the equivalence of DT_DEBUG in the
8949 DT_MIPS_RLD_MAP entry. This must come first because glibc
8950 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
8951 may only look at the first one they see. */
8952 if (!info->shared
8953 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8954 return FALSE;
8955
8956 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8957 used by the debugger. */
8958 if (info->executable
8959 && !SGI_COMPAT (output_bfd)
8960 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8961 return FALSE;
8962
8963 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8964 info->flags |= DF_TEXTREL;
8965
8966 if ((info->flags & DF_TEXTREL) != 0)
8967 {
8968 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8969 return FALSE;
8970
8971 /* Clear the DF_TEXTREL flag. It will be set again if we
8972 write out an actual text relocation; we may not, because
8973 at this point we do not know whether e.g. any .eh_frame
8974 absolute relocations have been converted to PC-relative. */
8975 info->flags &= ~DF_TEXTREL;
8976 }
8977
8978 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8979 return FALSE;
8980
8981 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
8982 if (htab->is_vxworks)
8983 {
8984 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8985 use any of the DT_MIPS_* tags. */
8986 if (sreldyn && sreldyn->size > 0)
8987 {
8988 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8989 return FALSE;
8990
8991 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8992 return FALSE;
8993
8994 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8995 return FALSE;
8996 }
8997 }
8998 else
8999 {
9000 if (sreldyn && sreldyn->size > 0)
9001 {
9002 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9003 return FALSE;
9004
9005 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9006 return FALSE;
9007
9008 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9009 return FALSE;
9010 }
9011
9012 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9013 return FALSE;
9014
9015 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9016 return FALSE;
9017
9018 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9019 return FALSE;
9020
9021 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9022 return FALSE;
9023
9024 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9025 return FALSE;
9026
9027 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9028 return FALSE;
9029
9030 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9031 return FALSE;
9032
9033 if (IRIX_COMPAT (dynobj) == ict_irix5
9034 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9035 return FALSE;
9036
9037 if (IRIX_COMPAT (dynobj) == ict_irix6
9038 && (bfd_get_section_by_name
9039 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9040 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9041 return FALSE;
9042 }
9043 if (htab->splt->size > 0)
9044 {
9045 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9046 return FALSE;
9047
9048 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9049 return FALSE;
9050
9051 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9052 return FALSE;
9053
9054 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9055 return FALSE;
9056 }
9057 if (htab->is_vxworks
9058 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9059 return FALSE;
9060 }
9061
9062 return TRUE;
9063 }
9064 \f
9065 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9066 Adjust its R_ADDEND field so that it is correct for the output file.
9067 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9068 and sections respectively; both use symbol indexes. */
9069
9070 static void
9071 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9072 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9073 asection **local_sections, Elf_Internal_Rela *rel)
9074 {
9075 unsigned int r_type, r_symndx;
9076 Elf_Internal_Sym *sym;
9077 asection *sec;
9078
9079 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9080 {
9081 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9082 if (gprel16_reloc_p (r_type)
9083 || r_type == R_MIPS_GPREL32
9084 || literal_reloc_p (r_type))
9085 {
9086 rel->r_addend += _bfd_get_gp_value (input_bfd);
9087 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9088 }
9089
9090 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9091 sym = local_syms + r_symndx;
9092
9093 /* Adjust REL's addend to account for section merging. */
9094 if (!info->relocatable)
9095 {
9096 sec = local_sections[r_symndx];
9097 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9098 }
9099
9100 /* This would normally be done by the rela_normal code in elflink.c. */
9101 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9102 rel->r_addend += local_sections[r_symndx]->output_offset;
9103 }
9104 }
9105
9106 /* Handle relocations against symbols from removed linkonce sections,
9107 or sections discarded by a linker script. We use this wrapper around
9108 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9109 on 64-bit ELF targets. In this case for any relocation handled, which
9110 always be the first in a triplet, the remaining two have to be processed
9111 together with the first, even if they are R_MIPS_NONE. It is the symbol
9112 index referred by the first reloc that applies to all the three and the
9113 remaining two never refer to an object symbol. And it is the final
9114 relocation (the last non-null one) that determines the output field of
9115 the whole relocation so retrieve the corresponding howto structure for
9116 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9117
9118 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9119 and therefore requires to be pasted in a loop. It also defines a block
9120 and does not protect any of its arguments, hence the extra brackets. */
9121
9122 static void
9123 mips_reloc_against_discarded_section (bfd *output_bfd,
9124 struct bfd_link_info *info,
9125 bfd *input_bfd, asection *input_section,
9126 Elf_Internal_Rela **rel,
9127 const Elf_Internal_Rela **relend,
9128 bfd_boolean rel_reloc,
9129 reloc_howto_type *howto,
9130 bfd_byte *contents)
9131 {
9132 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9133 int count = bed->s->int_rels_per_ext_rel;
9134 unsigned int r_type;
9135 int i;
9136
9137 for (i = count - 1; i > 0; i--)
9138 {
9139 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9140 if (r_type != R_MIPS_NONE)
9141 {
9142 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9143 break;
9144 }
9145 }
9146 do
9147 {
9148 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9149 (*rel), count, (*relend),
9150 howto, i, contents);
9151 }
9152 while (0);
9153 }
9154
9155 /* Relocate a MIPS ELF section. */
9156
9157 bfd_boolean
9158 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9159 bfd *input_bfd, asection *input_section,
9160 bfd_byte *contents, Elf_Internal_Rela *relocs,
9161 Elf_Internal_Sym *local_syms,
9162 asection **local_sections)
9163 {
9164 Elf_Internal_Rela *rel;
9165 const Elf_Internal_Rela *relend;
9166 bfd_vma addend = 0;
9167 bfd_boolean use_saved_addend_p = FALSE;
9168 const struct elf_backend_data *bed;
9169
9170 bed = get_elf_backend_data (output_bfd);
9171 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9172 for (rel = relocs; rel < relend; ++rel)
9173 {
9174 const char *name;
9175 bfd_vma value = 0;
9176 reloc_howto_type *howto;
9177 bfd_boolean cross_mode_jump_p;
9178 /* TRUE if the relocation is a RELA relocation, rather than a
9179 REL relocation. */
9180 bfd_boolean rela_relocation_p = TRUE;
9181 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9182 const char *msg;
9183 unsigned long r_symndx;
9184 asection *sec;
9185 Elf_Internal_Shdr *symtab_hdr;
9186 struct elf_link_hash_entry *h;
9187 bfd_boolean rel_reloc;
9188
9189 rel_reloc = (NEWABI_P (input_bfd)
9190 && mips_elf_rel_relocation_p (input_bfd, input_section,
9191 relocs, rel));
9192 /* Find the relocation howto for this relocation. */
9193 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9194
9195 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9196 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9197 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9198 {
9199 sec = local_sections[r_symndx];
9200 h = NULL;
9201 }
9202 else
9203 {
9204 unsigned long extsymoff;
9205
9206 extsymoff = 0;
9207 if (!elf_bad_symtab (input_bfd))
9208 extsymoff = symtab_hdr->sh_info;
9209 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9210 while (h->root.type == bfd_link_hash_indirect
9211 || h->root.type == bfd_link_hash_warning)
9212 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9213
9214 sec = NULL;
9215 if (h->root.type == bfd_link_hash_defined
9216 || h->root.type == bfd_link_hash_defweak)
9217 sec = h->root.u.def.section;
9218 }
9219
9220 if (sec != NULL && discarded_section (sec))
9221 {
9222 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9223 input_section, &rel, &relend,
9224 rel_reloc, howto, contents);
9225 continue;
9226 }
9227
9228 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9229 {
9230 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9231 64-bit code, but make sure all their addresses are in the
9232 lowermost or uppermost 32-bit section of the 64-bit address
9233 space. Thus, when they use an R_MIPS_64 they mean what is
9234 usually meant by R_MIPS_32, with the exception that the
9235 stored value is sign-extended to 64 bits. */
9236 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9237
9238 /* On big-endian systems, we need to lie about the position
9239 of the reloc. */
9240 if (bfd_big_endian (input_bfd))
9241 rel->r_offset += 4;
9242 }
9243
9244 if (!use_saved_addend_p)
9245 {
9246 /* If these relocations were originally of the REL variety,
9247 we must pull the addend out of the field that will be
9248 relocated. Otherwise, we simply use the contents of the
9249 RELA relocation. */
9250 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9251 relocs, rel))
9252 {
9253 rela_relocation_p = FALSE;
9254 addend = mips_elf_read_rel_addend (input_bfd, rel,
9255 howto, contents);
9256 if (hi16_reloc_p (r_type)
9257 || (got16_reloc_p (r_type)
9258 && mips_elf_local_relocation_p (input_bfd, rel,
9259 local_sections)))
9260 {
9261 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9262 contents, &addend))
9263 {
9264 if (h)
9265 name = h->root.root.string;
9266 else
9267 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9268 local_syms + r_symndx,
9269 sec);
9270 (*_bfd_error_handler)
9271 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9272 input_bfd, input_section, name, howto->name,
9273 rel->r_offset);
9274 }
9275 }
9276 else
9277 addend <<= howto->rightshift;
9278 }
9279 else
9280 addend = rel->r_addend;
9281 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9282 local_syms, local_sections, rel);
9283 }
9284
9285 if (info->relocatable)
9286 {
9287 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9288 && bfd_big_endian (input_bfd))
9289 rel->r_offset -= 4;
9290
9291 if (!rela_relocation_p && rel->r_addend)
9292 {
9293 addend += rel->r_addend;
9294 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9295 addend = mips_elf_high (addend);
9296 else if (r_type == R_MIPS_HIGHER)
9297 addend = mips_elf_higher (addend);
9298 else if (r_type == R_MIPS_HIGHEST)
9299 addend = mips_elf_highest (addend);
9300 else
9301 addend >>= howto->rightshift;
9302
9303 /* We use the source mask, rather than the destination
9304 mask because the place to which we are writing will be
9305 source of the addend in the final link. */
9306 addend &= howto->src_mask;
9307
9308 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9309 /* See the comment above about using R_MIPS_64 in the 32-bit
9310 ABI. Here, we need to update the addend. It would be
9311 possible to get away with just using the R_MIPS_32 reloc
9312 but for endianness. */
9313 {
9314 bfd_vma sign_bits;
9315 bfd_vma low_bits;
9316 bfd_vma high_bits;
9317
9318 if (addend & ((bfd_vma) 1 << 31))
9319 #ifdef BFD64
9320 sign_bits = ((bfd_vma) 1 << 32) - 1;
9321 #else
9322 sign_bits = -1;
9323 #endif
9324 else
9325 sign_bits = 0;
9326
9327 /* If we don't know that we have a 64-bit type,
9328 do two separate stores. */
9329 if (bfd_big_endian (input_bfd))
9330 {
9331 /* Store the sign-bits (which are most significant)
9332 first. */
9333 low_bits = sign_bits;
9334 high_bits = addend;
9335 }
9336 else
9337 {
9338 low_bits = addend;
9339 high_bits = sign_bits;
9340 }
9341 bfd_put_32 (input_bfd, low_bits,
9342 contents + rel->r_offset);
9343 bfd_put_32 (input_bfd, high_bits,
9344 contents + rel->r_offset + 4);
9345 continue;
9346 }
9347
9348 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9349 input_bfd, input_section,
9350 contents, FALSE))
9351 return FALSE;
9352 }
9353
9354 /* Go on to the next relocation. */
9355 continue;
9356 }
9357
9358 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9359 relocations for the same offset. In that case we are
9360 supposed to treat the output of each relocation as the addend
9361 for the next. */
9362 if (rel + 1 < relend
9363 && rel->r_offset == rel[1].r_offset
9364 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9365 use_saved_addend_p = TRUE;
9366 else
9367 use_saved_addend_p = FALSE;
9368
9369 /* Figure out what value we are supposed to relocate. */
9370 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9371 input_section, info, rel,
9372 addend, howto, local_syms,
9373 local_sections, &value,
9374 &name, &cross_mode_jump_p,
9375 use_saved_addend_p))
9376 {
9377 case bfd_reloc_continue:
9378 /* There's nothing to do. */
9379 continue;
9380
9381 case bfd_reloc_undefined:
9382 /* mips_elf_calculate_relocation already called the
9383 undefined_symbol callback. There's no real point in
9384 trying to perform the relocation at this point, so we
9385 just skip ahead to the next relocation. */
9386 continue;
9387
9388 case bfd_reloc_notsupported:
9389 msg = _("internal error: unsupported relocation error");
9390 info->callbacks->warning
9391 (info, msg, name, input_bfd, input_section, rel->r_offset);
9392 return FALSE;
9393
9394 case bfd_reloc_overflow:
9395 if (use_saved_addend_p)
9396 /* Ignore overflow until we reach the last relocation for
9397 a given location. */
9398 ;
9399 else
9400 {
9401 struct mips_elf_link_hash_table *htab;
9402
9403 htab = mips_elf_hash_table (info);
9404 BFD_ASSERT (htab != NULL);
9405 BFD_ASSERT (name != NULL);
9406 if (!htab->small_data_overflow_reported
9407 && (gprel16_reloc_p (howto->type)
9408 || literal_reloc_p (howto->type)))
9409 {
9410 msg = _("small-data section exceeds 64KB;"
9411 " lower small-data size limit (see option -G)");
9412
9413 htab->small_data_overflow_reported = TRUE;
9414 (*info->callbacks->einfo) ("%P: %s\n", msg);
9415 }
9416 if (! ((*info->callbacks->reloc_overflow)
9417 (info, NULL, name, howto->name, (bfd_vma) 0,
9418 input_bfd, input_section, rel->r_offset)))
9419 return FALSE;
9420 }
9421 break;
9422
9423 case bfd_reloc_ok:
9424 break;
9425
9426 case bfd_reloc_outofrange:
9427 if (jal_reloc_p (howto->type))
9428 {
9429 msg = _("JALX to a non-word-aligned address");
9430 info->callbacks->warning
9431 (info, msg, name, input_bfd, input_section, rel->r_offset);
9432 return FALSE;
9433 }
9434 /* Fall through. */
9435
9436 default:
9437 abort ();
9438 break;
9439 }
9440
9441 /* If we've got another relocation for the address, keep going
9442 until we reach the last one. */
9443 if (use_saved_addend_p)
9444 {
9445 addend = value;
9446 continue;
9447 }
9448
9449 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9450 /* See the comment above about using R_MIPS_64 in the 32-bit
9451 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9452 that calculated the right value. Now, however, we
9453 sign-extend the 32-bit result to 64-bits, and store it as a
9454 64-bit value. We are especially generous here in that we
9455 go to extreme lengths to support this usage on systems with
9456 only a 32-bit VMA. */
9457 {
9458 bfd_vma sign_bits;
9459 bfd_vma low_bits;
9460 bfd_vma high_bits;
9461
9462 if (value & ((bfd_vma) 1 << 31))
9463 #ifdef BFD64
9464 sign_bits = ((bfd_vma) 1 << 32) - 1;
9465 #else
9466 sign_bits = -1;
9467 #endif
9468 else
9469 sign_bits = 0;
9470
9471 /* If we don't know that we have a 64-bit type,
9472 do two separate stores. */
9473 if (bfd_big_endian (input_bfd))
9474 {
9475 /* Undo what we did above. */
9476 rel->r_offset -= 4;
9477 /* Store the sign-bits (which are most significant)
9478 first. */
9479 low_bits = sign_bits;
9480 high_bits = value;
9481 }
9482 else
9483 {
9484 low_bits = value;
9485 high_bits = sign_bits;
9486 }
9487 bfd_put_32 (input_bfd, low_bits,
9488 contents + rel->r_offset);
9489 bfd_put_32 (input_bfd, high_bits,
9490 contents + rel->r_offset + 4);
9491 continue;
9492 }
9493
9494 /* Actually perform the relocation. */
9495 if (! mips_elf_perform_relocation (info, howto, rel, value,
9496 input_bfd, input_section,
9497 contents, cross_mode_jump_p))
9498 return FALSE;
9499 }
9500
9501 return TRUE;
9502 }
9503 \f
9504 /* A function that iterates over each entry in la25_stubs and fills
9505 in the code for each one. DATA points to a mips_htab_traverse_info. */
9506
9507 static int
9508 mips_elf_create_la25_stub (void **slot, void *data)
9509 {
9510 struct mips_htab_traverse_info *hti;
9511 struct mips_elf_link_hash_table *htab;
9512 struct mips_elf_la25_stub *stub;
9513 asection *s;
9514 bfd_byte *loc;
9515 bfd_vma offset, target, target_high, target_low;
9516
9517 stub = (struct mips_elf_la25_stub *) *slot;
9518 hti = (struct mips_htab_traverse_info *) data;
9519 htab = mips_elf_hash_table (hti->info);
9520 BFD_ASSERT (htab != NULL);
9521
9522 /* Create the section contents, if we haven't already. */
9523 s = stub->stub_section;
9524 loc = s->contents;
9525 if (loc == NULL)
9526 {
9527 loc = bfd_malloc (s->size);
9528 if (loc == NULL)
9529 {
9530 hti->error = TRUE;
9531 return FALSE;
9532 }
9533 s->contents = loc;
9534 }
9535
9536 /* Work out where in the section this stub should go. */
9537 offset = stub->offset;
9538
9539 /* Work out the target address. */
9540 target = mips_elf_get_la25_target (stub, &s);
9541 target += s->output_section->vma + s->output_offset;
9542
9543 target_high = ((target + 0x8000) >> 16) & 0xffff;
9544 target_low = (target & 0xffff);
9545
9546 if (stub->stub_section != htab->strampoline)
9547 {
9548 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9549 of the section and write the two instructions at the end. */
9550 memset (loc, 0, offset);
9551 loc += offset;
9552 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9553 {
9554 bfd_put_micromips_32 (hti->output_bfd,
9555 LA25_LUI_MICROMIPS (target_high),
9556 loc);
9557 bfd_put_micromips_32 (hti->output_bfd,
9558 LA25_ADDIU_MICROMIPS (target_low),
9559 loc + 4);
9560 }
9561 else
9562 {
9563 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9564 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9565 }
9566 }
9567 else
9568 {
9569 /* This is trampoline. */
9570 loc += offset;
9571 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9572 {
9573 bfd_put_micromips_32 (hti->output_bfd,
9574 LA25_LUI_MICROMIPS (target_high), loc);
9575 bfd_put_micromips_32 (hti->output_bfd,
9576 LA25_J_MICROMIPS (target), loc + 4);
9577 bfd_put_micromips_32 (hti->output_bfd,
9578 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9579 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9580 }
9581 else
9582 {
9583 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9584 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9585 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9586 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9587 }
9588 }
9589 return TRUE;
9590 }
9591
9592 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9593 adjust it appropriately now. */
9594
9595 static void
9596 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9597 const char *name, Elf_Internal_Sym *sym)
9598 {
9599 /* The linker script takes care of providing names and values for
9600 these, but we must place them into the right sections. */
9601 static const char* const text_section_symbols[] = {
9602 "_ftext",
9603 "_etext",
9604 "__dso_displacement",
9605 "__elf_header",
9606 "__program_header_table",
9607 NULL
9608 };
9609
9610 static const char* const data_section_symbols[] = {
9611 "_fdata",
9612 "_edata",
9613 "_end",
9614 "_fbss",
9615 NULL
9616 };
9617
9618 const char* const *p;
9619 int i;
9620
9621 for (i = 0; i < 2; ++i)
9622 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9623 *p;
9624 ++p)
9625 if (strcmp (*p, name) == 0)
9626 {
9627 /* All of these symbols are given type STT_SECTION by the
9628 IRIX6 linker. */
9629 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9630 sym->st_other = STO_PROTECTED;
9631
9632 /* The IRIX linker puts these symbols in special sections. */
9633 if (i == 0)
9634 sym->st_shndx = SHN_MIPS_TEXT;
9635 else
9636 sym->st_shndx = SHN_MIPS_DATA;
9637
9638 break;
9639 }
9640 }
9641
9642 /* Finish up dynamic symbol handling. We set the contents of various
9643 dynamic sections here. */
9644
9645 bfd_boolean
9646 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9647 struct bfd_link_info *info,
9648 struct elf_link_hash_entry *h,
9649 Elf_Internal_Sym *sym)
9650 {
9651 bfd *dynobj;
9652 asection *sgot;
9653 struct mips_got_info *g, *gg;
9654 const char *name;
9655 int idx;
9656 struct mips_elf_link_hash_table *htab;
9657 struct mips_elf_link_hash_entry *hmips;
9658
9659 htab = mips_elf_hash_table (info);
9660 BFD_ASSERT (htab != NULL);
9661 dynobj = elf_hash_table (info)->dynobj;
9662 hmips = (struct mips_elf_link_hash_entry *) h;
9663
9664 BFD_ASSERT (!htab->is_vxworks);
9665
9666 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9667 {
9668 /* We've decided to create a PLT entry for this symbol. */
9669 bfd_byte *loc;
9670 bfd_vma header_address, plt_index, got_address;
9671 bfd_vma got_address_high, got_address_low, load;
9672 const bfd_vma *plt_entry;
9673
9674 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9675 BFD_ASSERT (h->dynindx != -1);
9676 BFD_ASSERT (htab->splt != NULL);
9677 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9678 BFD_ASSERT (!h->def_regular);
9679
9680 /* Calculate the address of the PLT header. */
9681 header_address = (htab->splt->output_section->vma
9682 + htab->splt->output_offset);
9683
9684 /* Calculate the index of the entry. */
9685 plt_index = ((h->plt.offset - htab->plt_header_size)
9686 / htab->plt_entry_size);
9687
9688 /* Calculate the address of the .got.plt entry. */
9689 got_address = (htab->sgotplt->output_section->vma
9690 + htab->sgotplt->output_offset
9691 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9692 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9693 got_address_low = got_address & 0xffff;
9694
9695 /* Initially point the .got.plt entry at the PLT header. */
9696 loc = (htab->sgotplt->contents
9697 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9698 if (ABI_64_P (output_bfd))
9699 bfd_put_64 (output_bfd, header_address, loc);
9700 else
9701 bfd_put_32 (output_bfd, header_address, loc);
9702
9703 /* Find out where the .plt entry should go. */
9704 loc = htab->splt->contents + h->plt.offset;
9705
9706 /* Pick the load opcode. */
9707 load = MIPS_ELF_LOAD_WORD (output_bfd);
9708
9709 /* Fill in the PLT entry itself. */
9710 plt_entry = mips_exec_plt_entry;
9711 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9712 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9713
9714 if (! LOAD_INTERLOCKS_P (output_bfd))
9715 {
9716 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9717 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9718 }
9719 else
9720 {
9721 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9722 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9723 }
9724
9725 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9726 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9727 plt_index, h->dynindx,
9728 R_MIPS_JUMP_SLOT, got_address);
9729
9730 /* We distinguish between PLT entries and lazy-binding stubs by
9731 giving the former an st_other value of STO_MIPS_PLT. Set the
9732 flag and leave the value if there are any relocations in the
9733 binary where pointer equality matters. */
9734 sym->st_shndx = SHN_UNDEF;
9735 if (h->pointer_equality_needed)
9736 sym->st_other = STO_MIPS_PLT;
9737 else
9738 sym->st_value = 0;
9739 }
9740 else if (h->plt.offset != MINUS_ONE)
9741 {
9742 /* We've decided to create a lazy-binding stub. */
9743 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9744
9745 /* This symbol has a stub. Set it up. */
9746
9747 BFD_ASSERT (h->dynindx != -1);
9748
9749 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9750 || (h->dynindx <= 0xffff));
9751
9752 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9753 sign extension at runtime in the stub, resulting in a negative
9754 index value. */
9755 if (h->dynindx & ~0x7fffffff)
9756 return FALSE;
9757
9758 /* Fill the stub. */
9759 idx = 0;
9760 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9761 idx += 4;
9762 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9763 idx += 4;
9764 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9765 {
9766 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9767 stub + idx);
9768 idx += 4;
9769 }
9770 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9771 idx += 4;
9772
9773 /* If a large stub is not required and sign extension is not a
9774 problem, then use legacy code in the stub. */
9775 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9776 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9777 else if (h->dynindx & ~0x7fff)
9778 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9779 else
9780 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9781 stub + idx);
9782
9783 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9784 memcpy (htab->sstubs->contents + h->plt.offset,
9785 stub, htab->function_stub_size);
9786
9787 /* Mark the symbol as undefined. plt.offset != -1 occurs
9788 only for the referenced symbol. */
9789 sym->st_shndx = SHN_UNDEF;
9790
9791 /* The run-time linker uses the st_value field of the symbol
9792 to reset the global offset table entry for this external
9793 to its stub address when unlinking a shared object. */
9794 sym->st_value = (htab->sstubs->output_section->vma
9795 + htab->sstubs->output_offset
9796 + h->plt.offset);
9797 }
9798
9799 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9800 refer to the stub, since only the stub uses the standard calling
9801 conventions. */
9802 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9803 {
9804 BFD_ASSERT (hmips->need_fn_stub);
9805 sym->st_value = (hmips->fn_stub->output_section->vma
9806 + hmips->fn_stub->output_offset);
9807 sym->st_size = hmips->fn_stub->size;
9808 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9809 }
9810
9811 BFD_ASSERT (h->dynindx != -1
9812 || h->forced_local);
9813
9814 sgot = htab->sgot;
9815 g = htab->got_info;
9816 BFD_ASSERT (g != NULL);
9817
9818 /* Run through the global symbol table, creating GOT entries for all
9819 the symbols that need them. */
9820 if (hmips->global_got_area != GGA_NONE)
9821 {
9822 bfd_vma offset;
9823 bfd_vma value;
9824
9825 value = sym->st_value;
9826 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
9827 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9828 }
9829
9830 if (hmips->global_got_area != GGA_NONE && g->next)
9831 {
9832 struct mips_got_entry e, *p;
9833 bfd_vma entry;
9834 bfd_vma offset;
9835
9836 gg = g;
9837
9838 e.abfd = output_bfd;
9839 e.symndx = -1;
9840 e.d.h = hmips;
9841 e.tls_type = GOT_TLS_NONE;
9842
9843 for (g = g->next; g->next != gg; g = g->next)
9844 {
9845 if (g->got_entries
9846 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9847 &e)))
9848 {
9849 offset = p->gotidx;
9850 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
9851 if (info->shared
9852 || (elf_hash_table (info)->dynamic_sections_created
9853 && p->d.h != NULL
9854 && p->d.h->root.def_dynamic
9855 && !p->d.h->root.def_regular))
9856 {
9857 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9858 the various compatibility problems, it's easier to mock
9859 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9860 mips_elf_create_dynamic_relocation to calculate the
9861 appropriate addend. */
9862 Elf_Internal_Rela rel[3];
9863
9864 memset (rel, 0, sizeof (rel));
9865 if (ABI_64_P (output_bfd))
9866 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9867 else
9868 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9869 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9870
9871 entry = 0;
9872 if (! (mips_elf_create_dynamic_relocation
9873 (output_bfd, info, rel,
9874 e.d.h, NULL, sym->st_value, &entry, sgot)))
9875 return FALSE;
9876 }
9877 else
9878 entry = sym->st_value;
9879 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9880 }
9881 }
9882 }
9883
9884 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9885 name = h->root.root.string;
9886 if (h == elf_hash_table (info)->hdynamic
9887 || h == elf_hash_table (info)->hgot)
9888 sym->st_shndx = SHN_ABS;
9889 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9890 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9891 {
9892 sym->st_shndx = SHN_ABS;
9893 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9894 sym->st_value = 1;
9895 }
9896 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9897 {
9898 sym->st_shndx = SHN_ABS;
9899 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9900 sym->st_value = elf_gp (output_bfd);
9901 }
9902 else if (SGI_COMPAT (output_bfd))
9903 {
9904 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9905 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9906 {
9907 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9908 sym->st_other = STO_PROTECTED;
9909 sym->st_value = 0;
9910 sym->st_shndx = SHN_MIPS_DATA;
9911 }
9912 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9913 {
9914 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9915 sym->st_other = STO_PROTECTED;
9916 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9917 sym->st_shndx = SHN_ABS;
9918 }
9919 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9920 {
9921 if (h->type == STT_FUNC)
9922 sym->st_shndx = SHN_MIPS_TEXT;
9923 else if (h->type == STT_OBJECT)
9924 sym->st_shndx = SHN_MIPS_DATA;
9925 }
9926 }
9927
9928 /* Emit a copy reloc, if needed. */
9929 if (h->needs_copy)
9930 {
9931 asection *s;
9932 bfd_vma symval;
9933
9934 BFD_ASSERT (h->dynindx != -1);
9935 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9936
9937 s = mips_elf_rel_dyn_section (info, FALSE);
9938 symval = (h->root.u.def.section->output_section->vma
9939 + h->root.u.def.section->output_offset
9940 + h->root.u.def.value);
9941 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9942 h->dynindx, R_MIPS_COPY, symval);
9943 }
9944
9945 /* Handle the IRIX6-specific symbols. */
9946 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9947 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9948
9949 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9950 treat MIPS16 symbols like any other. */
9951 if (ELF_ST_IS_MIPS16 (sym->st_other))
9952 {
9953 BFD_ASSERT (sym->st_value & 1);
9954 sym->st_other -= STO_MIPS16;
9955 }
9956
9957 return TRUE;
9958 }
9959
9960 /* Likewise, for VxWorks. */
9961
9962 bfd_boolean
9963 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9964 struct bfd_link_info *info,
9965 struct elf_link_hash_entry *h,
9966 Elf_Internal_Sym *sym)
9967 {
9968 bfd *dynobj;
9969 asection *sgot;
9970 struct mips_got_info *g;
9971 struct mips_elf_link_hash_table *htab;
9972 struct mips_elf_link_hash_entry *hmips;
9973
9974 htab = mips_elf_hash_table (info);
9975 BFD_ASSERT (htab != NULL);
9976 dynobj = elf_hash_table (info)->dynobj;
9977 hmips = (struct mips_elf_link_hash_entry *) h;
9978
9979 if (h->plt.offset != (bfd_vma) -1)
9980 {
9981 bfd_byte *loc;
9982 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9983 Elf_Internal_Rela rel;
9984 static const bfd_vma *plt_entry;
9985
9986 BFD_ASSERT (h->dynindx != -1);
9987 BFD_ASSERT (htab->splt != NULL);
9988 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9989
9990 /* Calculate the address of the .plt entry. */
9991 plt_address = (htab->splt->output_section->vma
9992 + htab->splt->output_offset
9993 + h->plt.offset);
9994
9995 /* Calculate the index of the entry. */
9996 plt_index = ((h->plt.offset - htab->plt_header_size)
9997 / htab->plt_entry_size);
9998
9999 /* Calculate the address of the .got.plt entry. */
10000 got_address = (htab->sgotplt->output_section->vma
10001 + htab->sgotplt->output_offset
10002 + plt_index * 4);
10003
10004 /* Calculate the offset of the .got.plt entry from
10005 _GLOBAL_OFFSET_TABLE_. */
10006 got_offset = mips_elf_gotplt_index (info, h);
10007
10008 /* Calculate the offset for the branch at the start of the PLT
10009 entry. The branch jumps to the beginning of .plt. */
10010 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10011
10012 /* Fill in the initial value of the .got.plt entry. */
10013 bfd_put_32 (output_bfd, plt_address,
10014 htab->sgotplt->contents + plt_index * 4);
10015
10016 /* Find out where the .plt entry should go. */
10017 loc = htab->splt->contents + h->plt.offset;
10018
10019 if (info->shared)
10020 {
10021 plt_entry = mips_vxworks_shared_plt_entry;
10022 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10023 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10024 }
10025 else
10026 {
10027 bfd_vma got_address_high, got_address_low;
10028
10029 plt_entry = mips_vxworks_exec_plt_entry;
10030 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10031 got_address_low = got_address & 0xffff;
10032
10033 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10034 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10035 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10036 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10037 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10038 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10039 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10040 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10041
10042 loc = (htab->srelplt2->contents
10043 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10044
10045 /* Emit a relocation for the .got.plt entry. */
10046 rel.r_offset = got_address;
10047 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10048 rel.r_addend = h->plt.offset;
10049 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10050
10051 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10052 loc += sizeof (Elf32_External_Rela);
10053 rel.r_offset = plt_address + 8;
10054 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10055 rel.r_addend = got_offset;
10056 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10057
10058 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10059 loc += sizeof (Elf32_External_Rela);
10060 rel.r_offset += 4;
10061 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10062 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10063 }
10064
10065 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10066 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10067 rel.r_offset = got_address;
10068 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10069 rel.r_addend = 0;
10070 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10071
10072 if (!h->def_regular)
10073 sym->st_shndx = SHN_UNDEF;
10074 }
10075
10076 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10077
10078 sgot = htab->sgot;
10079 g = htab->got_info;
10080 BFD_ASSERT (g != NULL);
10081
10082 /* See if this symbol has an entry in the GOT. */
10083 if (hmips->global_got_area != GGA_NONE)
10084 {
10085 bfd_vma offset;
10086 Elf_Internal_Rela outrel;
10087 bfd_byte *loc;
10088 asection *s;
10089
10090 /* Install the symbol value in the GOT. */
10091 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10092 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10093
10094 /* Add a dynamic relocation for it. */
10095 s = mips_elf_rel_dyn_section (info, FALSE);
10096 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10097 outrel.r_offset = (sgot->output_section->vma
10098 + sgot->output_offset
10099 + offset);
10100 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10101 outrel.r_addend = 0;
10102 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10103 }
10104
10105 /* Emit a copy reloc, if needed. */
10106 if (h->needs_copy)
10107 {
10108 Elf_Internal_Rela rel;
10109
10110 BFD_ASSERT (h->dynindx != -1);
10111
10112 rel.r_offset = (h->root.u.def.section->output_section->vma
10113 + h->root.u.def.section->output_offset
10114 + h->root.u.def.value);
10115 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10116 rel.r_addend = 0;
10117 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10118 htab->srelbss->contents
10119 + (htab->srelbss->reloc_count
10120 * sizeof (Elf32_External_Rela)));
10121 ++htab->srelbss->reloc_count;
10122 }
10123
10124 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10125 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10126 sym->st_value &= ~1;
10127
10128 return TRUE;
10129 }
10130
10131 /* Write out a plt0 entry to the beginning of .plt. */
10132
10133 static void
10134 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10135 {
10136 bfd_byte *loc;
10137 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10138 static const bfd_vma *plt_entry;
10139 struct mips_elf_link_hash_table *htab;
10140
10141 htab = mips_elf_hash_table (info);
10142 BFD_ASSERT (htab != NULL);
10143
10144 if (ABI_64_P (output_bfd))
10145 plt_entry = mips_n64_exec_plt0_entry;
10146 else if (ABI_N32_P (output_bfd))
10147 plt_entry = mips_n32_exec_plt0_entry;
10148 else
10149 plt_entry = mips_o32_exec_plt0_entry;
10150
10151 /* Calculate the value of .got.plt. */
10152 gotplt_value = (htab->sgotplt->output_section->vma
10153 + htab->sgotplt->output_offset);
10154 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10155 gotplt_value_low = gotplt_value & 0xffff;
10156
10157 /* The PLT sequence is not safe for N64 if .got.plt's address can
10158 not be loaded in two instructions. */
10159 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10160 || ~(gotplt_value | 0x7fffffff) == 0);
10161
10162 /* Install the PLT header. */
10163 loc = htab->splt->contents;
10164 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10165 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10166 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10167 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10168 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10169 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10170 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10171 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10172 }
10173
10174 /* Install the PLT header for a VxWorks executable and finalize the
10175 contents of .rela.plt.unloaded. */
10176
10177 static void
10178 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10179 {
10180 Elf_Internal_Rela rela;
10181 bfd_byte *loc;
10182 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10183 static const bfd_vma *plt_entry;
10184 struct mips_elf_link_hash_table *htab;
10185
10186 htab = mips_elf_hash_table (info);
10187 BFD_ASSERT (htab != NULL);
10188
10189 plt_entry = mips_vxworks_exec_plt0_entry;
10190
10191 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10192 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10193 + htab->root.hgot->root.u.def.section->output_offset
10194 + htab->root.hgot->root.u.def.value);
10195
10196 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10197 got_value_low = got_value & 0xffff;
10198
10199 /* Calculate the address of the PLT header. */
10200 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10201
10202 /* Install the PLT header. */
10203 loc = htab->splt->contents;
10204 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10205 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10206 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10207 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10208 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10209 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10210
10211 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10212 loc = htab->srelplt2->contents;
10213 rela.r_offset = plt_address;
10214 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10215 rela.r_addend = 0;
10216 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10217 loc += sizeof (Elf32_External_Rela);
10218
10219 /* Output the relocation for the following addiu of
10220 %lo(_GLOBAL_OFFSET_TABLE_). */
10221 rela.r_offset += 4;
10222 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10223 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10224 loc += sizeof (Elf32_External_Rela);
10225
10226 /* Fix up the remaining relocations. They may have the wrong
10227 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10228 in which symbols were output. */
10229 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10230 {
10231 Elf_Internal_Rela rel;
10232
10233 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10234 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10235 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10236 loc += sizeof (Elf32_External_Rela);
10237
10238 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10239 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10240 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10241 loc += sizeof (Elf32_External_Rela);
10242
10243 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10244 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10245 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10246 loc += sizeof (Elf32_External_Rela);
10247 }
10248 }
10249
10250 /* Install the PLT header for a VxWorks shared library. */
10251
10252 static void
10253 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10254 {
10255 unsigned int i;
10256 struct mips_elf_link_hash_table *htab;
10257
10258 htab = mips_elf_hash_table (info);
10259 BFD_ASSERT (htab != NULL);
10260
10261 /* We just need to copy the entry byte-by-byte. */
10262 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10263 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10264 htab->splt->contents + i * 4);
10265 }
10266
10267 /* Finish up the dynamic sections. */
10268
10269 bfd_boolean
10270 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10271 struct bfd_link_info *info)
10272 {
10273 bfd *dynobj;
10274 asection *sdyn;
10275 asection *sgot;
10276 struct mips_got_info *gg, *g;
10277 struct mips_elf_link_hash_table *htab;
10278
10279 htab = mips_elf_hash_table (info);
10280 BFD_ASSERT (htab != NULL);
10281
10282 dynobj = elf_hash_table (info)->dynobj;
10283
10284 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10285
10286 sgot = htab->sgot;
10287 gg = htab->got_info;
10288
10289 if (elf_hash_table (info)->dynamic_sections_created)
10290 {
10291 bfd_byte *b;
10292 int dyn_to_skip = 0, dyn_skipped = 0;
10293
10294 BFD_ASSERT (sdyn != NULL);
10295 BFD_ASSERT (gg != NULL);
10296
10297 g = mips_elf_bfd_got (output_bfd, FALSE);
10298 BFD_ASSERT (g != NULL);
10299
10300 for (b = sdyn->contents;
10301 b < sdyn->contents + sdyn->size;
10302 b += MIPS_ELF_DYN_SIZE (dynobj))
10303 {
10304 Elf_Internal_Dyn dyn;
10305 const char *name;
10306 size_t elemsize;
10307 asection *s;
10308 bfd_boolean swap_out_p;
10309
10310 /* Read in the current dynamic entry. */
10311 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10312
10313 /* Assume that we're going to modify it and write it out. */
10314 swap_out_p = TRUE;
10315
10316 switch (dyn.d_tag)
10317 {
10318 case DT_RELENT:
10319 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10320 break;
10321
10322 case DT_RELAENT:
10323 BFD_ASSERT (htab->is_vxworks);
10324 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10325 break;
10326
10327 case DT_STRSZ:
10328 /* Rewrite DT_STRSZ. */
10329 dyn.d_un.d_val =
10330 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10331 break;
10332
10333 case DT_PLTGOT:
10334 s = htab->sgot;
10335 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10336 break;
10337
10338 case DT_MIPS_PLTGOT:
10339 s = htab->sgotplt;
10340 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10341 break;
10342
10343 case DT_MIPS_RLD_VERSION:
10344 dyn.d_un.d_val = 1; /* XXX */
10345 break;
10346
10347 case DT_MIPS_FLAGS:
10348 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10349 break;
10350
10351 case DT_MIPS_TIME_STAMP:
10352 {
10353 time_t t;
10354 time (&t);
10355 dyn.d_un.d_val = t;
10356 }
10357 break;
10358
10359 case DT_MIPS_ICHECKSUM:
10360 /* XXX FIXME: */
10361 swap_out_p = FALSE;
10362 break;
10363
10364 case DT_MIPS_IVERSION:
10365 /* XXX FIXME: */
10366 swap_out_p = FALSE;
10367 break;
10368
10369 case DT_MIPS_BASE_ADDRESS:
10370 s = output_bfd->sections;
10371 BFD_ASSERT (s != NULL);
10372 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10373 break;
10374
10375 case DT_MIPS_LOCAL_GOTNO:
10376 dyn.d_un.d_val = g->local_gotno;
10377 break;
10378
10379 case DT_MIPS_UNREFEXTNO:
10380 /* The index into the dynamic symbol table which is the
10381 entry of the first external symbol that is not
10382 referenced within the same object. */
10383 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10384 break;
10385
10386 case DT_MIPS_GOTSYM:
10387 if (htab->global_gotsym)
10388 {
10389 dyn.d_un.d_val = htab->global_gotsym->dynindx;
10390 break;
10391 }
10392 /* In case if we don't have global got symbols we default
10393 to setting DT_MIPS_GOTSYM to the same value as
10394 DT_MIPS_SYMTABNO, so we just fall through. */
10395
10396 case DT_MIPS_SYMTABNO:
10397 name = ".dynsym";
10398 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10399 s = bfd_get_section_by_name (output_bfd, name);
10400 BFD_ASSERT (s != NULL);
10401
10402 dyn.d_un.d_val = s->size / elemsize;
10403 break;
10404
10405 case DT_MIPS_HIPAGENO:
10406 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10407 break;
10408
10409 case DT_MIPS_RLD_MAP:
10410 {
10411 struct elf_link_hash_entry *h;
10412 h = mips_elf_hash_table (info)->rld_symbol;
10413 if (!h)
10414 {
10415 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10416 swap_out_p = FALSE;
10417 break;
10418 }
10419 s = h->root.u.def.section;
10420 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10421 + h->root.u.def.value);
10422 }
10423 break;
10424
10425 case DT_MIPS_OPTIONS:
10426 s = (bfd_get_section_by_name
10427 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10428 dyn.d_un.d_ptr = s->vma;
10429 break;
10430
10431 case DT_RELASZ:
10432 BFD_ASSERT (htab->is_vxworks);
10433 /* The count does not include the JUMP_SLOT relocations. */
10434 if (htab->srelplt)
10435 dyn.d_un.d_val -= htab->srelplt->size;
10436 break;
10437
10438 case DT_PLTREL:
10439 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10440 if (htab->is_vxworks)
10441 dyn.d_un.d_val = DT_RELA;
10442 else
10443 dyn.d_un.d_val = DT_REL;
10444 break;
10445
10446 case DT_PLTRELSZ:
10447 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10448 dyn.d_un.d_val = htab->srelplt->size;
10449 break;
10450
10451 case DT_JMPREL:
10452 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10453 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10454 + htab->srelplt->output_offset);
10455 break;
10456
10457 case DT_TEXTREL:
10458 /* If we didn't need any text relocations after all, delete
10459 the dynamic tag. */
10460 if (!(info->flags & DF_TEXTREL))
10461 {
10462 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10463 swap_out_p = FALSE;
10464 }
10465 break;
10466
10467 case DT_FLAGS:
10468 /* If we didn't need any text relocations after all, clear
10469 DF_TEXTREL from DT_FLAGS. */
10470 if (!(info->flags & DF_TEXTREL))
10471 dyn.d_un.d_val &= ~DF_TEXTREL;
10472 else
10473 swap_out_p = FALSE;
10474 break;
10475
10476 default:
10477 swap_out_p = FALSE;
10478 if (htab->is_vxworks
10479 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10480 swap_out_p = TRUE;
10481 break;
10482 }
10483
10484 if (swap_out_p || dyn_skipped)
10485 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10486 (dynobj, &dyn, b - dyn_skipped);
10487
10488 if (dyn_to_skip)
10489 {
10490 dyn_skipped += dyn_to_skip;
10491 dyn_to_skip = 0;
10492 }
10493 }
10494
10495 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10496 if (dyn_skipped > 0)
10497 memset (b - dyn_skipped, 0, dyn_skipped);
10498 }
10499
10500 if (sgot != NULL && sgot->size > 0
10501 && !bfd_is_abs_section (sgot->output_section))
10502 {
10503 if (htab->is_vxworks)
10504 {
10505 /* The first entry of the global offset table points to the
10506 ".dynamic" section. The second is initialized by the
10507 loader and contains the shared library identifier.
10508 The third is also initialized by the loader and points
10509 to the lazy resolution stub. */
10510 MIPS_ELF_PUT_WORD (output_bfd,
10511 sdyn->output_offset + sdyn->output_section->vma,
10512 sgot->contents);
10513 MIPS_ELF_PUT_WORD (output_bfd, 0,
10514 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10515 MIPS_ELF_PUT_WORD (output_bfd, 0,
10516 sgot->contents
10517 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10518 }
10519 else
10520 {
10521 /* The first entry of the global offset table will be filled at
10522 runtime. The second entry will be used by some runtime loaders.
10523 This isn't the case of IRIX rld. */
10524 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10525 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10526 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10527 }
10528
10529 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10530 = MIPS_ELF_GOT_SIZE (output_bfd);
10531 }
10532
10533 /* Generate dynamic relocations for the non-primary gots. */
10534 if (gg != NULL && gg->next)
10535 {
10536 Elf_Internal_Rela rel[3];
10537 bfd_vma addend = 0;
10538
10539 memset (rel, 0, sizeof (rel));
10540 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10541
10542 for (g = gg->next; g->next != gg; g = g->next)
10543 {
10544 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10545 + g->next->tls_gotno;
10546
10547 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10548 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10549 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10550 sgot->contents
10551 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10552
10553 if (! info->shared)
10554 continue;
10555
10556 while (got_index < g->assigned_gotno)
10557 {
10558 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10559 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10560 if (!(mips_elf_create_dynamic_relocation
10561 (output_bfd, info, rel, NULL,
10562 bfd_abs_section_ptr,
10563 0, &addend, sgot)))
10564 return FALSE;
10565 BFD_ASSERT (addend == 0);
10566 }
10567 }
10568 }
10569
10570 /* The generation of dynamic relocations for the non-primary gots
10571 adds more dynamic relocations. We cannot count them until
10572 here. */
10573
10574 if (elf_hash_table (info)->dynamic_sections_created)
10575 {
10576 bfd_byte *b;
10577 bfd_boolean swap_out_p;
10578
10579 BFD_ASSERT (sdyn != NULL);
10580
10581 for (b = sdyn->contents;
10582 b < sdyn->contents + sdyn->size;
10583 b += MIPS_ELF_DYN_SIZE (dynobj))
10584 {
10585 Elf_Internal_Dyn dyn;
10586 asection *s;
10587
10588 /* Read in the current dynamic entry. */
10589 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10590
10591 /* Assume that we're going to modify it and write it out. */
10592 swap_out_p = TRUE;
10593
10594 switch (dyn.d_tag)
10595 {
10596 case DT_RELSZ:
10597 /* Reduce DT_RELSZ to account for any relocations we
10598 decided not to make. This is for the n64 irix rld,
10599 which doesn't seem to apply any relocations if there
10600 are trailing null entries. */
10601 s = mips_elf_rel_dyn_section (info, FALSE);
10602 dyn.d_un.d_val = (s->reloc_count
10603 * (ABI_64_P (output_bfd)
10604 ? sizeof (Elf64_Mips_External_Rel)
10605 : sizeof (Elf32_External_Rel)));
10606 /* Adjust the section size too. Tools like the prelinker
10607 can reasonably expect the values to the same. */
10608 elf_section_data (s->output_section)->this_hdr.sh_size
10609 = dyn.d_un.d_val;
10610 break;
10611
10612 default:
10613 swap_out_p = FALSE;
10614 break;
10615 }
10616
10617 if (swap_out_p)
10618 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10619 (dynobj, &dyn, b);
10620 }
10621 }
10622
10623 {
10624 asection *s;
10625 Elf32_compact_rel cpt;
10626
10627 if (SGI_COMPAT (output_bfd))
10628 {
10629 /* Write .compact_rel section out. */
10630 s = bfd_get_linker_section (dynobj, ".compact_rel");
10631 if (s != NULL)
10632 {
10633 cpt.id1 = 1;
10634 cpt.num = s->reloc_count;
10635 cpt.id2 = 2;
10636 cpt.offset = (s->output_section->filepos
10637 + sizeof (Elf32_External_compact_rel));
10638 cpt.reserved0 = 0;
10639 cpt.reserved1 = 0;
10640 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10641 ((Elf32_External_compact_rel *)
10642 s->contents));
10643
10644 /* Clean up a dummy stub function entry in .text. */
10645 if (htab->sstubs != NULL)
10646 {
10647 file_ptr dummy_offset;
10648
10649 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10650 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10651 memset (htab->sstubs->contents + dummy_offset, 0,
10652 htab->function_stub_size);
10653 }
10654 }
10655 }
10656
10657 /* The psABI says that the dynamic relocations must be sorted in
10658 increasing order of r_symndx. The VxWorks EABI doesn't require
10659 this, and because the code below handles REL rather than RELA
10660 relocations, using it for VxWorks would be outright harmful. */
10661 if (!htab->is_vxworks)
10662 {
10663 s = mips_elf_rel_dyn_section (info, FALSE);
10664 if (s != NULL
10665 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10666 {
10667 reldyn_sorting_bfd = output_bfd;
10668
10669 if (ABI_64_P (output_bfd))
10670 qsort ((Elf64_External_Rel *) s->contents + 1,
10671 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10672 sort_dynamic_relocs_64);
10673 else
10674 qsort ((Elf32_External_Rel *) s->contents + 1,
10675 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10676 sort_dynamic_relocs);
10677 }
10678 }
10679 }
10680
10681 if (htab->splt && htab->splt->size > 0)
10682 {
10683 if (htab->is_vxworks)
10684 {
10685 if (info->shared)
10686 mips_vxworks_finish_shared_plt (output_bfd, info);
10687 else
10688 mips_vxworks_finish_exec_plt (output_bfd, info);
10689 }
10690 else
10691 {
10692 BFD_ASSERT (!info->shared);
10693 mips_finish_exec_plt (output_bfd, info);
10694 }
10695 }
10696 return TRUE;
10697 }
10698
10699
10700 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10701
10702 static void
10703 mips_set_isa_flags (bfd *abfd)
10704 {
10705 flagword val;
10706
10707 switch (bfd_get_mach (abfd))
10708 {
10709 default:
10710 case bfd_mach_mips3000:
10711 val = E_MIPS_ARCH_1;
10712 break;
10713
10714 case bfd_mach_mips3900:
10715 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10716 break;
10717
10718 case bfd_mach_mips6000:
10719 val = E_MIPS_ARCH_2;
10720 break;
10721
10722 case bfd_mach_mips4000:
10723 case bfd_mach_mips4300:
10724 case bfd_mach_mips4400:
10725 case bfd_mach_mips4600:
10726 val = E_MIPS_ARCH_3;
10727 break;
10728
10729 case bfd_mach_mips4010:
10730 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10731 break;
10732
10733 case bfd_mach_mips4100:
10734 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10735 break;
10736
10737 case bfd_mach_mips4111:
10738 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10739 break;
10740
10741 case bfd_mach_mips4120:
10742 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10743 break;
10744
10745 case bfd_mach_mips4650:
10746 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10747 break;
10748
10749 case bfd_mach_mips5400:
10750 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10751 break;
10752
10753 case bfd_mach_mips5500:
10754 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10755 break;
10756
10757 case bfd_mach_mips5900:
10758 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
10759 break;
10760
10761 case bfd_mach_mips9000:
10762 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10763 break;
10764
10765 case bfd_mach_mips5000:
10766 case bfd_mach_mips7000:
10767 case bfd_mach_mips8000:
10768 case bfd_mach_mips10000:
10769 case bfd_mach_mips12000:
10770 case bfd_mach_mips14000:
10771 case bfd_mach_mips16000:
10772 val = E_MIPS_ARCH_4;
10773 break;
10774
10775 case bfd_mach_mips5:
10776 val = E_MIPS_ARCH_5;
10777 break;
10778
10779 case bfd_mach_mips_loongson_2e:
10780 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10781 break;
10782
10783 case bfd_mach_mips_loongson_2f:
10784 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10785 break;
10786
10787 case bfd_mach_mips_sb1:
10788 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10789 break;
10790
10791 case bfd_mach_mips_loongson_3a:
10792 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10793 break;
10794
10795 case bfd_mach_mips_octeon:
10796 case bfd_mach_mips_octeonp:
10797 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10798 break;
10799
10800 case bfd_mach_mips_xlr:
10801 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10802 break;
10803
10804 case bfd_mach_mips_octeon2:
10805 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10806 break;
10807
10808 case bfd_mach_mipsisa32:
10809 val = E_MIPS_ARCH_32;
10810 break;
10811
10812 case bfd_mach_mipsisa64:
10813 val = E_MIPS_ARCH_64;
10814 break;
10815
10816 case bfd_mach_mipsisa32r2:
10817 val = E_MIPS_ARCH_32R2;
10818 break;
10819
10820 case bfd_mach_mipsisa64r2:
10821 val = E_MIPS_ARCH_64R2;
10822 break;
10823 }
10824 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10825 elf_elfheader (abfd)->e_flags |= val;
10826
10827 }
10828
10829
10830 /* The final processing done just before writing out a MIPS ELF object
10831 file. This gets the MIPS architecture right based on the machine
10832 number. This is used by both the 32-bit and the 64-bit ABI. */
10833
10834 void
10835 _bfd_mips_elf_final_write_processing (bfd *abfd,
10836 bfd_boolean linker ATTRIBUTE_UNUSED)
10837 {
10838 unsigned int i;
10839 Elf_Internal_Shdr **hdrpp;
10840 const char *name;
10841 asection *sec;
10842
10843 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10844 is nonzero. This is for compatibility with old objects, which used
10845 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10846 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10847 mips_set_isa_flags (abfd);
10848
10849 /* Set the sh_info field for .gptab sections and other appropriate
10850 info for each special section. */
10851 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10852 i < elf_numsections (abfd);
10853 i++, hdrpp++)
10854 {
10855 switch ((*hdrpp)->sh_type)
10856 {
10857 case SHT_MIPS_MSYM:
10858 case SHT_MIPS_LIBLIST:
10859 sec = bfd_get_section_by_name (abfd, ".dynstr");
10860 if (sec != NULL)
10861 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10862 break;
10863
10864 case SHT_MIPS_GPTAB:
10865 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10866 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10867 BFD_ASSERT (name != NULL
10868 && CONST_STRNEQ (name, ".gptab."));
10869 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10870 BFD_ASSERT (sec != NULL);
10871 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10872 break;
10873
10874 case SHT_MIPS_CONTENT:
10875 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10876 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10877 BFD_ASSERT (name != NULL
10878 && CONST_STRNEQ (name, ".MIPS.content"));
10879 sec = bfd_get_section_by_name (abfd,
10880 name + sizeof ".MIPS.content" - 1);
10881 BFD_ASSERT (sec != NULL);
10882 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10883 break;
10884
10885 case SHT_MIPS_SYMBOL_LIB:
10886 sec = bfd_get_section_by_name (abfd, ".dynsym");
10887 if (sec != NULL)
10888 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10889 sec = bfd_get_section_by_name (abfd, ".liblist");
10890 if (sec != NULL)
10891 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10892 break;
10893
10894 case SHT_MIPS_EVENTS:
10895 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10896 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10897 BFD_ASSERT (name != NULL);
10898 if (CONST_STRNEQ (name, ".MIPS.events"))
10899 sec = bfd_get_section_by_name (abfd,
10900 name + sizeof ".MIPS.events" - 1);
10901 else
10902 {
10903 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10904 sec = bfd_get_section_by_name (abfd,
10905 (name
10906 + sizeof ".MIPS.post_rel" - 1));
10907 }
10908 BFD_ASSERT (sec != NULL);
10909 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10910 break;
10911
10912 }
10913 }
10914 }
10915 \f
10916 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10917 segments. */
10918
10919 int
10920 _bfd_mips_elf_additional_program_headers (bfd *abfd,
10921 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10922 {
10923 asection *s;
10924 int ret = 0;
10925
10926 /* See if we need a PT_MIPS_REGINFO segment. */
10927 s = bfd_get_section_by_name (abfd, ".reginfo");
10928 if (s && (s->flags & SEC_LOAD))
10929 ++ret;
10930
10931 /* See if we need a PT_MIPS_OPTIONS segment. */
10932 if (IRIX_COMPAT (abfd) == ict_irix6
10933 && bfd_get_section_by_name (abfd,
10934 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10935 ++ret;
10936
10937 /* See if we need a PT_MIPS_RTPROC segment. */
10938 if (IRIX_COMPAT (abfd) == ict_irix5
10939 && bfd_get_section_by_name (abfd, ".dynamic")
10940 && bfd_get_section_by_name (abfd, ".mdebug"))
10941 ++ret;
10942
10943 /* Allocate a PT_NULL header in dynamic objects. See
10944 _bfd_mips_elf_modify_segment_map for details. */
10945 if (!SGI_COMPAT (abfd)
10946 && bfd_get_section_by_name (abfd, ".dynamic"))
10947 ++ret;
10948
10949 return ret;
10950 }
10951
10952 /* Modify the segment map for an IRIX5 executable. */
10953
10954 bfd_boolean
10955 _bfd_mips_elf_modify_segment_map (bfd *abfd,
10956 struct bfd_link_info *info)
10957 {
10958 asection *s;
10959 struct elf_segment_map *m, **pm;
10960 bfd_size_type amt;
10961
10962 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10963 segment. */
10964 s = bfd_get_section_by_name (abfd, ".reginfo");
10965 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10966 {
10967 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10968 if (m->p_type == PT_MIPS_REGINFO)
10969 break;
10970 if (m == NULL)
10971 {
10972 amt = sizeof *m;
10973 m = bfd_zalloc (abfd, amt);
10974 if (m == NULL)
10975 return FALSE;
10976
10977 m->p_type = PT_MIPS_REGINFO;
10978 m->count = 1;
10979 m->sections[0] = s;
10980
10981 /* We want to put it after the PHDR and INTERP segments. */
10982 pm = &elf_tdata (abfd)->segment_map;
10983 while (*pm != NULL
10984 && ((*pm)->p_type == PT_PHDR
10985 || (*pm)->p_type == PT_INTERP))
10986 pm = &(*pm)->next;
10987
10988 m->next = *pm;
10989 *pm = m;
10990 }
10991 }
10992
10993 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10994 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10995 PT_MIPS_OPTIONS segment immediately following the program header
10996 table. */
10997 if (NEWABI_P (abfd)
10998 /* On non-IRIX6 new abi, we'll have already created a segment
10999 for this section, so don't create another. I'm not sure this
11000 is not also the case for IRIX 6, but I can't test it right
11001 now. */
11002 && IRIX_COMPAT (abfd) == ict_irix6)
11003 {
11004 for (s = abfd->sections; s; s = s->next)
11005 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11006 break;
11007
11008 if (s)
11009 {
11010 struct elf_segment_map *options_segment;
11011
11012 pm = &elf_tdata (abfd)->segment_map;
11013 while (*pm != NULL
11014 && ((*pm)->p_type == PT_PHDR
11015 || (*pm)->p_type == PT_INTERP))
11016 pm = &(*pm)->next;
11017
11018 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11019 {
11020 amt = sizeof (struct elf_segment_map);
11021 options_segment = bfd_zalloc (abfd, amt);
11022 options_segment->next = *pm;
11023 options_segment->p_type = PT_MIPS_OPTIONS;
11024 options_segment->p_flags = PF_R;
11025 options_segment->p_flags_valid = TRUE;
11026 options_segment->count = 1;
11027 options_segment->sections[0] = s;
11028 *pm = options_segment;
11029 }
11030 }
11031 }
11032 else
11033 {
11034 if (IRIX_COMPAT (abfd) == ict_irix5)
11035 {
11036 /* If there are .dynamic and .mdebug sections, we make a room
11037 for the RTPROC header. FIXME: Rewrite without section names. */
11038 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11039 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11040 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11041 {
11042 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11043 if (m->p_type == PT_MIPS_RTPROC)
11044 break;
11045 if (m == NULL)
11046 {
11047 amt = sizeof *m;
11048 m = bfd_zalloc (abfd, amt);
11049 if (m == NULL)
11050 return FALSE;
11051
11052 m->p_type = PT_MIPS_RTPROC;
11053
11054 s = bfd_get_section_by_name (abfd, ".rtproc");
11055 if (s == NULL)
11056 {
11057 m->count = 0;
11058 m->p_flags = 0;
11059 m->p_flags_valid = 1;
11060 }
11061 else
11062 {
11063 m->count = 1;
11064 m->sections[0] = s;
11065 }
11066
11067 /* We want to put it after the DYNAMIC segment. */
11068 pm = &elf_tdata (abfd)->segment_map;
11069 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11070 pm = &(*pm)->next;
11071 if (*pm != NULL)
11072 pm = &(*pm)->next;
11073
11074 m->next = *pm;
11075 *pm = m;
11076 }
11077 }
11078 }
11079 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11080 .dynstr, .dynsym, and .hash sections, and everything in
11081 between. */
11082 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11083 pm = &(*pm)->next)
11084 if ((*pm)->p_type == PT_DYNAMIC)
11085 break;
11086 m = *pm;
11087 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11088 {
11089 /* For a normal mips executable the permissions for the PT_DYNAMIC
11090 segment are read, write and execute. We do that here since
11091 the code in elf.c sets only the read permission. This matters
11092 sometimes for the dynamic linker. */
11093 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11094 {
11095 m->p_flags = PF_R | PF_W | PF_X;
11096 m->p_flags_valid = 1;
11097 }
11098 }
11099 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11100 glibc's dynamic linker has traditionally derived the number of
11101 tags from the p_filesz field, and sometimes allocates stack
11102 arrays of that size. An overly-big PT_DYNAMIC segment can
11103 be actively harmful in such cases. Making PT_DYNAMIC contain
11104 other sections can also make life hard for the prelinker,
11105 which might move one of the other sections to a different
11106 PT_LOAD segment. */
11107 if (SGI_COMPAT (abfd)
11108 && m != NULL
11109 && m->count == 1
11110 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11111 {
11112 static const char *sec_names[] =
11113 {
11114 ".dynamic", ".dynstr", ".dynsym", ".hash"
11115 };
11116 bfd_vma low, high;
11117 unsigned int i, c;
11118 struct elf_segment_map *n;
11119
11120 low = ~(bfd_vma) 0;
11121 high = 0;
11122 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11123 {
11124 s = bfd_get_section_by_name (abfd, sec_names[i]);
11125 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11126 {
11127 bfd_size_type sz;
11128
11129 if (low > s->vma)
11130 low = s->vma;
11131 sz = s->size;
11132 if (high < s->vma + sz)
11133 high = s->vma + sz;
11134 }
11135 }
11136
11137 c = 0;
11138 for (s = abfd->sections; s != NULL; s = s->next)
11139 if ((s->flags & SEC_LOAD) != 0
11140 && s->vma >= low
11141 && s->vma + s->size <= high)
11142 ++c;
11143
11144 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11145 n = bfd_zalloc (abfd, amt);
11146 if (n == NULL)
11147 return FALSE;
11148 *n = *m;
11149 n->count = c;
11150
11151 i = 0;
11152 for (s = abfd->sections; s != NULL; s = s->next)
11153 {
11154 if ((s->flags & SEC_LOAD) != 0
11155 && s->vma >= low
11156 && s->vma + s->size <= high)
11157 {
11158 n->sections[i] = s;
11159 ++i;
11160 }
11161 }
11162
11163 *pm = n;
11164 }
11165 }
11166
11167 /* Allocate a spare program header in dynamic objects so that tools
11168 like the prelinker can add an extra PT_LOAD entry.
11169
11170 If the prelinker needs to make room for a new PT_LOAD entry, its
11171 standard procedure is to move the first (read-only) sections into
11172 the new (writable) segment. However, the MIPS ABI requires
11173 .dynamic to be in a read-only segment, and the section will often
11174 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11175
11176 Although the prelinker could in principle move .dynamic to a
11177 writable segment, it seems better to allocate a spare program
11178 header instead, and avoid the need to move any sections.
11179 There is a long tradition of allocating spare dynamic tags,
11180 so allocating a spare program header seems like a natural
11181 extension.
11182
11183 If INFO is NULL, we may be copying an already prelinked binary
11184 with objcopy or strip, so do not add this header. */
11185 if (info != NULL
11186 && !SGI_COMPAT (abfd)
11187 && bfd_get_section_by_name (abfd, ".dynamic"))
11188 {
11189 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11190 if ((*pm)->p_type == PT_NULL)
11191 break;
11192 if (*pm == NULL)
11193 {
11194 m = bfd_zalloc (abfd, sizeof (*m));
11195 if (m == NULL)
11196 return FALSE;
11197
11198 m->p_type = PT_NULL;
11199 *pm = m;
11200 }
11201 }
11202
11203 return TRUE;
11204 }
11205 \f
11206 /* Return the section that should be marked against GC for a given
11207 relocation. */
11208
11209 asection *
11210 _bfd_mips_elf_gc_mark_hook (asection *sec,
11211 struct bfd_link_info *info,
11212 Elf_Internal_Rela *rel,
11213 struct elf_link_hash_entry *h,
11214 Elf_Internal_Sym *sym)
11215 {
11216 /* ??? Do mips16 stub sections need to be handled special? */
11217
11218 if (h != NULL)
11219 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11220 {
11221 case R_MIPS_GNU_VTINHERIT:
11222 case R_MIPS_GNU_VTENTRY:
11223 return NULL;
11224 }
11225
11226 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11227 }
11228
11229 /* Update the got entry reference counts for the section being removed. */
11230
11231 bfd_boolean
11232 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11233 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11234 asection *sec ATTRIBUTE_UNUSED,
11235 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11236 {
11237 #if 0
11238 Elf_Internal_Shdr *symtab_hdr;
11239 struct elf_link_hash_entry **sym_hashes;
11240 bfd_signed_vma *local_got_refcounts;
11241 const Elf_Internal_Rela *rel, *relend;
11242 unsigned long r_symndx;
11243 struct elf_link_hash_entry *h;
11244
11245 if (info->relocatable)
11246 return TRUE;
11247
11248 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11249 sym_hashes = elf_sym_hashes (abfd);
11250 local_got_refcounts = elf_local_got_refcounts (abfd);
11251
11252 relend = relocs + sec->reloc_count;
11253 for (rel = relocs; rel < relend; rel++)
11254 switch (ELF_R_TYPE (abfd, rel->r_info))
11255 {
11256 case R_MIPS16_GOT16:
11257 case R_MIPS16_CALL16:
11258 case R_MIPS_GOT16:
11259 case R_MIPS_CALL16:
11260 case R_MIPS_CALL_HI16:
11261 case R_MIPS_CALL_LO16:
11262 case R_MIPS_GOT_HI16:
11263 case R_MIPS_GOT_LO16:
11264 case R_MIPS_GOT_DISP:
11265 case R_MIPS_GOT_PAGE:
11266 case R_MIPS_GOT_OFST:
11267 case R_MICROMIPS_GOT16:
11268 case R_MICROMIPS_CALL16:
11269 case R_MICROMIPS_CALL_HI16:
11270 case R_MICROMIPS_CALL_LO16:
11271 case R_MICROMIPS_GOT_HI16:
11272 case R_MICROMIPS_GOT_LO16:
11273 case R_MICROMIPS_GOT_DISP:
11274 case R_MICROMIPS_GOT_PAGE:
11275 case R_MICROMIPS_GOT_OFST:
11276 /* ??? It would seem that the existing MIPS code does no sort
11277 of reference counting or whatnot on its GOT and PLT entries,
11278 so it is not possible to garbage collect them at this time. */
11279 break;
11280
11281 default:
11282 break;
11283 }
11284 #endif
11285
11286 return TRUE;
11287 }
11288 \f
11289 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11290 hiding the old indirect symbol. Process additional relocation
11291 information. Also called for weakdefs, in which case we just let
11292 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11293
11294 void
11295 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11296 struct elf_link_hash_entry *dir,
11297 struct elf_link_hash_entry *ind)
11298 {
11299 struct mips_elf_link_hash_entry *dirmips, *indmips;
11300
11301 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11302
11303 dirmips = (struct mips_elf_link_hash_entry *) dir;
11304 indmips = (struct mips_elf_link_hash_entry *) ind;
11305 /* Any absolute non-dynamic relocations against an indirect or weak
11306 definition will be against the target symbol. */
11307 if (indmips->has_static_relocs)
11308 dirmips->has_static_relocs = TRUE;
11309
11310 if (ind->root.type != bfd_link_hash_indirect)
11311 return;
11312
11313 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11314 if (indmips->readonly_reloc)
11315 dirmips->readonly_reloc = TRUE;
11316 if (indmips->no_fn_stub)
11317 dirmips->no_fn_stub = TRUE;
11318 if (indmips->fn_stub)
11319 {
11320 dirmips->fn_stub = indmips->fn_stub;
11321 indmips->fn_stub = NULL;
11322 }
11323 if (indmips->need_fn_stub)
11324 {
11325 dirmips->need_fn_stub = TRUE;
11326 indmips->need_fn_stub = FALSE;
11327 }
11328 if (indmips->call_stub)
11329 {
11330 dirmips->call_stub = indmips->call_stub;
11331 indmips->call_stub = NULL;
11332 }
11333 if (indmips->call_fp_stub)
11334 {
11335 dirmips->call_fp_stub = indmips->call_fp_stub;
11336 indmips->call_fp_stub = NULL;
11337 }
11338 if (indmips->global_got_area < dirmips->global_got_area)
11339 dirmips->global_got_area = indmips->global_got_area;
11340 if (indmips->global_got_area < GGA_NONE)
11341 indmips->global_got_area = GGA_NONE;
11342 if (indmips->has_nonpic_branches)
11343 dirmips->has_nonpic_branches = TRUE;
11344 }
11345 \f
11346 #define PDR_SIZE 32
11347
11348 bfd_boolean
11349 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11350 struct bfd_link_info *info)
11351 {
11352 asection *o;
11353 bfd_boolean ret = FALSE;
11354 unsigned char *tdata;
11355 size_t i, skip;
11356
11357 o = bfd_get_section_by_name (abfd, ".pdr");
11358 if (! o)
11359 return FALSE;
11360 if (o->size == 0)
11361 return FALSE;
11362 if (o->size % PDR_SIZE != 0)
11363 return FALSE;
11364 if (o->output_section != NULL
11365 && bfd_is_abs_section (o->output_section))
11366 return FALSE;
11367
11368 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11369 if (! tdata)
11370 return FALSE;
11371
11372 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11373 info->keep_memory);
11374 if (!cookie->rels)
11375 {
11376 free (tdata);
11377 return FALSE;
11378 }
11379
11380 cookie->rel = cookie->rels;
11381 cookie->relend = cookie->rels + o->reloc_count;
11382
11383 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11384 {
11385 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11386 {
11387 tdata[i] = 1;
11388 skip ++;
11389 }
11390 }
11391
11392 if (skip != 0)
11393 {
11394 mips_elf_section_data (o)->u.tdata = tdata;
11395 o->size -= skip * PDR_SIZE;
11396 ret = TRUE;
11397 }
11398 else
11399 free (tdata);
11400
11401 if (! info->keep_memory)
11402 free (cookie->rels);
11403
11404 return ret;
11405 }
11406
11407 bfd_boolean
11408 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11409 {
11410 if (strcmp (sec->name, ".pdr") == 0)
11411 return TRUE;
11412 return FALSE;
11413 }
11414
11415 bfd_boolean
11416 _bfd_mips_elf_write_section (bfd *output_bfd,
11417 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11418 asection *sec, bfd_byte *contents)
11419 {
11420 bfd_byte *to, *from, *end;
11421 int i;
11422
11423 if (strcmp (sec->name, ".pdr") != 0)
11424 return FALSE;
11425
11426 if (mips_elf_section_data (sec)->u.tdata == NULL)
11427 return FALSE;
11428
11429 to = contents;
11430 end = contents + sec->size;
11431 for (from = contents, i = 0;
11432 from < end;
11433 from += PDR_SIZE, i++)
11434 {
11435 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11436 continue;
11437 if (to != from)
11438 memcpy (to, from, PDR_SIZE);
11439 to += PDR_SIZE;
11440 }
11441 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11442 sec->output_offset, sec->size);
11443 return TRUE;
11444 }
11445 \f
11446 /* microMIPS code retains local labels for linker relaxation. Omit them
11447 from output by default for clarity. */
11448
11449 bfd_boolean
11450 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11451 {
11452 return _bfd_elf_is_local_label_name (abfd, sym->name);
11453 }
11454
11455 /* MIPS ELF uses a special find_nearest_line routine in order the
11456 handle the ECOFF debugging information. */
11457
11458 struct mips_elf_find_line
11459 {
11460 struct ecoff_debug_info d;
11461 struct ecoff_find_line i;
11462 };
11463
11464 bfd_boolean
11465 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11466 asymbol **symbols, bfd_vma offset,
11467 const char **filename_ptr,
11468 const char **functionname_ptr,
11469 unsigned int *line_ptr)
11470 {
11471 asection *msec;
11472
11473 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11474 filename_ptr, functionname_ptr,
11475 line_ptr))
11476 return TRUE;
11477
11478 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11479 section, symbols, offset,
11480 filename_ptr, functionname_ptr,
11481 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11482 &elf_tdata (abfd)->dwarf2_find_line_info))
11483 return TRUE;
11484
11485 msec = bfd_get_section_by_name (abfd, ".mdebug");
11486 if (msec != NULL)
11487 {
11488 flagword origflags;
11489 struct mips_elf_find_line *fi;
11490 const struct ecoff_debug_swap * const swap =
11491 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11492
11493 /* If we are called during a link, mips_elf_final_link may have
11494 cleared the SEC_HAS_CONTENTS field. We force it back on here
11495 if appropriate (which it normally will be). */
11496 origflags = msec->flags;
11497 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11498 msec->flags |= SEC_HAS_CONTENTS;
11499
11500 fi = elf_tdata (abfd)->find_line_info;
11501 if (fi == NULL)
11502 {
11503 bfd_size_type external_fdr_size;
11504 char *fraw_src;
11505 char *fraw_end;
11506 struct fdr *fdr_ptr;
11507 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11508
11509 fi = bfd_zalloc (abfd, amt);
11510 if (fi == NULL)
11511 {
11512 msec->flags = origflags;
11513 return FALSE;
11514 }
11515
11516 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11517 {
11518 msec->flags = origflags;
11519 return FALSE;
11520 }
11521
11522 /* Swap in the FDR information. */
11523 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11524 fi->d.fdr = bfd_alloc (abfd, amt);
11525 if (fi->d.fdr == NULL)
11526 {
11527 msec->flags = origflags;
11528 return FALSE;
11529 }
11530 external_fdr_size = swap->external_fdr_size;
11531 fdr_ptr = fi->d.fdr;
11532 fraw_src = (char *) fi->d.external_fdr;
11533 fraw_end = (fraw_src
11534 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11535 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11536 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11537
11538 elf_tdata (abfd)->find_line_info = fi;
11539
11540 /* Note that we don't bother to ever free this information.
11541 find_nearest_line is either called all the time, as in
11542 objdump -l, so the information should be saved, or it is
11543 rarely called, as in ld error messages, so the memory
11544 wasted is unimportant. Still, it would probably be a
11545 good idea for free_cached_info to throw it away. */
11546 }
11547
11548 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11549 &fi->i, filename_ptr, functionname_ptr,
11550 line_ptr))
11551 {
11552 msec->flags = origflags;
11553 return TRUE;
11554 }
11555
11556 msec->flags = origflags;
11557 }
11558
11559 /* Fall back on the generic ELF find_nearest_line routine. */
11560
11561 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11562 filename_ptr, functionname_ptr,
11563 line_ptr);
11564 }
11565
11566 bfd_boolean
11567 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11568 const char **filename_ptr,
11569 const char **functionname_ptr,
11570 unsigned int *line_ptr)
11571 {
11572 bfd_boolean found;
11573 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11574 functionname_ptr, line_ptr,
11575 & elf_tdata (abfd)->dwarf2_find_line_info);
11576 return found;
11577 }
11578
11579 \f
11580 /* When are writing out the .options or .MIPS.options section,
11581 remember the bytes we are writing out, so that we can install the
11582 GP value in the section_processing routine. */
11583
11584 bfd_boolean
11585 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11586 const void *location,
11587 file_ptr offset, bfd_size_type count)
11588 {
11589 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11590 {
11591 bfd_byte *c;
11592
11593 if (elf_section_data (section) == NULL)
11594 {
11595 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11596 section->used_by_bfd = bfd_zalloc (abfd, amt);
11597 if (elf_section_data (section) == NULL)
11598 return FALSE;
11599 }
11600 c = mips_elf_section_data (section)->u.tdata;
11601 if (c == NULL)
11602 {
11603 c = bfd_zalloc (abfd, section->size);
11604 if (c == NULL)
11605 return FALSE;
11606 mips_elf_section_data (section)->u.tdata = c;
11607 }
11608
11609 memcpy (c + offset, location, count);
11610 }
11611
11612 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11613 count);
11614 }
11615
11616 /* This is almost identical to bfd_generic_get_... except that some
11617 MIPS relocations need to be handled specially. Sigh. */
11618
11619 bfd_byte *
11620 _bfd_elf_mips_get_relocated_section_contents
11621 (bfd *abfd,
11622 struct bfd_link_info *link_info,
11623 struct bfd_link_order *link_order,
11624 bfd_byte *data,
11625 bfd_boolean relocatable,
11626 asymbol **symbols)
11627 {
11628 /* Get enough memory to hold the stuff */
11629 bfd *input_bfd = link_order->u.indirect.section->owner;
11630 asection *input_section = link_order->u.indirect.section;
11631 bfd_size_type sz;
11632
11633 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11634 arelent **reloc_vector = NULL;
11635 long reloc_count;
11636
11637 if (reloc_size < 0)
11638 goto error_return;
11639
11640 reloc_vector = bfd_malloc (reloc_size);
11641 if (reloc_vector == NULL && reloc_size != 0)
11642 goto error_return;
11643
11644 /* read in the section */
11645 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11646 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11647 goto error_return;
11648
11649 reloc_count = bfd_canonicalize_reloc (input_bfd,
11650 input_section,
11651 reloc_vector,
11652 symbols);
11653 if (reloc_count < 0)
11654 goto error_return;
11655
11656 if (reloc_count > 0)
11657 {
11658 arelent **parent;
11659 /* for mips */
11660 int gp_found;
11661 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11662
11663 {
11664 struct bfd_hash_entry *h;
11665 struct bfd_link_hash_entry *lh;
11666 /* Skip all this stuff if we aren't mixing formats. */
11667 if (abfd && input_bfd
11668 && abfd->xvec == input_bfd->xvec)
11669 lh = 0;
11670 else
11671 {
11672 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11673 lh = (struct bfd_link_hash_entry *) h;
11674 }
11675 lookup:
11676 if (lh)
11677 {
11678 switch (lh->type)
11679 {
11680 case bfd_link_hash_undefined:
11681 case bfd_link_hash_undefweak:
11682 case bfd_link_hash_common:
11683 gp_found = 0;
11684 break;
11685 case bfd_link_hash_defined:
11686 case bfd_link_hash_defweak:
11687 gp_found = 1;
11688 gp = lh->u.def.value;
11689 break;
11690 case bfd_link_hash_indirect:
11691 case bfd_link_hash_warning:
11692 lh = lh->u.i.link;
11693 /* @@FIXME ignoring warning for now */
11694 goto lookup;
11695 case bfd_link_hash_new:
11696 default:
11697 abort ();
11698 }
11699 }
11700 else
11701 gp_found = 0;
11702 }
11703 /* end mips */
11704 for (parent = reloc_vector; *parent != NULL; parent++)
11705 {
11706 char *error_message = NULL;
11707 bfd_reloc_status_type r;
11708
11709 /* Specific to MIPS: Deal with relocation types that require
11710 knowing the gp of the output bfd. */
11711 asymbol *sym = *(*parent)->sym_ptr_ptr;
11712
11713 /* If we've managed to find the gp and have a special
11714 function for the relocation then go ahead, else default
11715 to the generic handling. */
11716 if (gp_found
11717 && (*parent)->howto->special_function
11718 == _bfd_mips_elf32_gprel16_reloc)
11719 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11720 input_section, relocatable,
11721 data, gp);
11722 else
11723 r = bfd_perform_relocation (input_bfd, *parent, data,
11724 input_section,
11725 relocatable ? abfd : NULL,
11726 &error_message);
11727
11728 if (relocatable)
11729 {
11730 asection *os = input_section->output_section;
11731
11732 /* A partial link, so keep the relocs */
11733 os->orelocation[os->reloc_count] = *parent;
11734 os->reloc_count++;
11735 }
11736
11737 if (r != bfd_reloc_ok)
11738 {
11739 switch (r)
11740 {
11741 case bfd_reloc_undefined:
11742 if (!((*link_info->callbacks->undefined_symbol)
11743 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11744 input_bfd, input_section, (*parent)->address, TRUE)))
11745 goto error_return;
11746 break;
11747 case bfd_reloc_dangerous:
11748 BFD_ASSERT (error_message != NULL);
11749 if (!((*link_info->callbacks->reloc_dangerous)
11750 (link_info, error_message, input_bfd, input_section,
11751 (*parent)->address)))
11752 goto error_return;
11753 break;
11754 case bfd_reloc_overflow:
11755 if (!((*link_info->callbacks->reloc_overflow)
11756 (link_info, NULL,
11757 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11758 (*parent)->howto->name, (*parent)->addend,
11759 input_bfd, input_section, (*parent)->address)))
11760 goto error_return;
11761 break;
11762 case bfd_reloc_outofrange:
11763 default:
11764 abort ();
11765 break;
11766 }
11767
11768 }
11769 }
11770 }
11771 if (reloc_vector != NULL)
11772 free (reloc_vector);
11773 return data;
11774
11775 error_return:
11776 if (reloc_vector != NULL)
11777 free (reloc_vector);
11778 return NULL;
11779 }
11780 \f
11781 static bfd_boolean
11782 mips_elf_relax_delete_bytes (bfd *abfd,
11783 asection *sec, bfd_vma addr, int count)
11784 {
11785 Elf_Internal_Shdr *symtab_hdr;
11786 unsigned int sec_shndx;
11787 bfd_byte *contents;
11788 Elf_Internal_Rela *irel, *irelend;
11789 Elf_Internal_Sym *isym;
11790 Elf_Internal_Sym *isymend;
11791 struct elf_link_hash_entry **sym_hashes;
11792 struct elf_link_hash_entry **end_hashes;
11793 struct elf_link_hash_entry **start_hashes;
11794 unsigned int symcount;
11795
11796 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11797 contents = elf_section_data (sec)->this_hdr.contents;
11798
11799 irel = elf_section_data (sec)->relocs;
11800 irelend = irel + sec->reloc_count;
11801
11802 /* Actually delete the bytes. */
11803 memmove (contents + addr, contents + addr + count,
11804 (size_t) (sec->size - addr - count));
11805 sec->size -= count;
11806
11807 /* Adjust all the relocs. */
11808 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11809 {
11810 /* Get the new reloc address. */
11811 if (irel->r_offset > addr)
11812 irel->r_offset -= count;
11813 }
11814
11815 BFD_ASSERT (addr % 2 == 0);
11816 BFD_ASSERT (count % 2 == 0);
11817
11818 /* Adjust the local symbols defined in this section. */
11819 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11820 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11821 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11822 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
11823 isym->st_value -= count;
11824
11825 /* Now adjust the global symbols defined in this section. */
11826 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
11827 - symtab_hdr->sh_info);
11828 sym_hashes = start_hashes = elf_sym_hashes (abfd);
11829 end_hashes = sym_hashes + symcount;
11830
11831 for (; sym_hashes < end_hashes; sym_hashes++)
11832 {
11833 struct elf_link_hash_entry *sym_hash = *sym_hashes;
11834
11835 if ((sym_hash->root.type == bfd_link_hash_defined
11836 || sym_hash->root.type == bfd_link_hash_defweak)
11837 && sym_hash->root.u.def.section == sec)
11838 {
11839 bfd_vma value = sym_hash->root.u.def.value;
11840
11841 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
11842 value &= MINUS_TWO;
11843 if (value > addr)
11844 sym_hash->root.u.def.value -= count;
11845 }
11846 }
11847
11848 return TRUE;
11849 }
11850
11851
11852 /* Opcodes needed for microMIPS relaxation as found in
11853 opcodes/micromips-opc.c. */
11854
11855 struct opcode_descriptor {
11856 unsigned long match;
11857 unsigned long mask;
11858 };
11859
11860 /* The $ra register aka $31. */
11861
11862 #define RA 31
11863
11864 /* 32-bit instruction format register fields. */
11865
11866 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
11867 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
11868
11869 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
11870
11871 #define OP16_VALID_REG(r) \
11872 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
11873
11874
11875 /* 32-bit and 16-bit branches. */
11876
11877 static const struct opcode_descriptor b_insns_32[] = {
11878 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
11879 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
11880 { 0, 0 } /* End marker for find_match(). */
11881 };
11882
11883 static const struct opcode_descriptor bc_insn_32 =
11884 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
11885
11886 static const struct opcode_descriptor bz_insn_32 =
11887 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
11888
11889 static const struct opcode_descriptor bzal_insn_32 =
11890 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
11891
11892 static const struct opcode_descriptor beq_insn_32 =
11893 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
11894
11895 static const struct opcode_descriptor b_insn_16 =
11896 { /* "b", "mD", */ 0xcc00, 0xfc00 };
11897
11898 static const struct opcode_descriptor bz_insn_16 =
11899 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
11900
11901
11902 /* 32-bit and 16-bit branch EQ and NE zero. */
11903
11904 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
11905 eq and second the ne. This convention is used when replacing a
11906 32-bit BEQ/BNE with the 16-bit version. */
11907
11908 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
11909
11910 static const struct opcode_descriptor bz_rs_insns_32[] = {
11911 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
11912 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
11913 { 0, 0 } /* End marker for find_match(). */
11914 };
11915
11916 static const struct opcode_descriptor bz_rt_insns_32[] = {
11917 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
11918 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
11919 { 0, 0 } /* End marker for find_match(). */
11920 };
11921
11922 static const struct opcode_descriptor bzc_insns_32[] = {
11923 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
11924 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
11925 { 0, 0 } /* End marker for find_match(). */
11926 };
11927
11928 static const struct opcode_descriptor bz_insns_16[] = {
11929 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
11930 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
11931 { 0, 0 } /* End marker for find_match(). */
11932 };
11933
11934 /* Switch between a 5-bit register index and its 3-bit shorthand. */
11935
11936 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
11937 #define BZ16_REG_FIELD(r) \
11938 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
11939
11940
11941 /* 32-bit instructions with a delay slot. */
11942
11943 static const struct opcode_descriptor jal_insn_32_bd16 =
11944 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
11945
11946 static const struct opcode_descriptor jal_insn_32_bd32 =
11947 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
11948
11949 static const struct opcode_descriptor jal_x_insn_32_bd32 =
11950 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
11951
11952 static const struct opcode_descriptor j_insn_32 =
11953 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
11954
11955 static const struct opcode_descriptor jalr_insn_32 =
11956 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
11957
11958 /* This table can be compacted, because no opcode replacement is made. */
11959
11960 static const struct opcode_descriptor ds_insns_32_bd16[] = {
11961 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
11962
11963 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
11964 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
11965
11966 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
11967 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
11968 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
11969 { 0, 0 } /* End marker for find_match(). */
11970 };
11971
11972 /* This table can be compacted, because no opcode replacement is made. */
11973
11974 static const struct opcode_descriptor ds_insns_32_bd32[] = {
11975 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
11976
11977 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
11978 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
11979 { 0, 0 } /* End marker for find_match(). */
11980 };
11981
11982
11983 /* 16-bit instructions with a delay slot. */
11984
11985 static const struct opcode_descriptor jalr_insn_16_bd16 =
11986 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
11987
11988 static const struct opcode_descriptor jalr_insn_16_bd32 =
11989 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
11990
11991 static const struct opcode_descriptor jr_insn_16 =
11992 { /* "jr", "mj", */ 0x4580, 0xffe0 };
11993
11994 #define JR16_REG(opcode) ((opcode) & 0x1f)
11995
11996 /* This table can be compacted, because no opcode replacement is made. */
11997
11998 static const struct opcode_descriptor ds_insns_16_bd16[] = {
11999 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12000
12001 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12002 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12003 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12004 { 0, 0 } /* End marker for find_match(). */
12005 };
12006
12007
12008 /* LUI instruction. */
12009
12010 static const struct opcode_descriptor lui_insn =
12011 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12012
12013
12014 /* ADDIU instruction. */
12015
12016 static const struct opcode_descriptor addiu_insn =
12017 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12018
12019 static const struct opcode_descriptor addiupc_insn =
12020 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12021
12022 #define ADDIUPC_REG_FIELD(r) \
12023 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12024
12025
12026 /* Relaxable instructions in a JAL delay slot: MOVE. */
12027
12028 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12029 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12030 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12031 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12032
12033 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12034 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12035
12036 static const struct opcode_descriptor move_insns_32[] = {
12037 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12038 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12039 { 0, 0 } /* End marker for find_match(). */
12040 };
12041
12042 static const struct opcode_descriptor move_insn_16 =
12043 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12044
12045
12046 /* NOP instructions. */
12047
12048 static const struct opcode_descriptor nop_insn_32 =
12049 { /* "nop", "", */ 0x00000000, 0xffffffff };
12050
12051 static const struct opcode_descriptor nop_insn_16 =
12052 { /* "nop", "", */ 0x0c00, 0xffff };
12053
12054
12055 /* Instruction match support. */
12056
12057 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12058
12059 static int
12060 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12061 {
12062 unsigned long indx;
12063
12064 for (indx = 0; insn[indx].mask != 0; indx++)
12065 if (MATCH (opcode, insn[indx]))
12066 return indx;
12067
12068 return -1;
12069 }
12070
12071
12072 /* Branch and delay slot decoding support. */
12073
12074 /* If PTR points to what *might* be a 16-bit branch or jump, then
12075 return the minimum length of its delay slot, otherwise return 0.
12076 Non-zero results are not definitive as we might be checking against
12077 the second half of another instruction. */
12078
12079 static int
12080 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12081 {
12082 unsigned long opcode;
12083 int bdsize;
12084
12085 opcode = bfd_get_16 (abfd, ptr);
12086 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12087 /* 16-bit branch/jump with a 32-bit delay slot. */
12088 bdsize = 4;
12089 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12090 || find_match (opcode, ds_insns_16_bd16) >= 0)
12091 /* 16-bit branch/jump with a 16-bit delay slot. */
12092 bdsize = 2;
12093 else
12094 /* No delay slot. */
12095 bdsize = 0;
12096
12097 return bdsize;
12098 }
12099
12100 /* If PTR points to what *might* be a 32-bit branch or jump, then
12101 return the minimum length of its delay slot, otherwise return 0.
12102 Non-zero results are not definitive as we might be checking against
12103 the second half of another instruction. */
12104
12105 static int
12106 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12107 {
12108 unsigned long opcode;
12109 int bdsize;
12110
12111 opcode = bfd_get_micromips_32 (abfd, ptr);
12112 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12113 /* 32-bit branch/jump with a 32-bit delay slot. */
12114 bdsize = 4;
12115 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12116 /* 32-bit branch/jump with a 16-bit delay slot. */
12117 bdsize = 2;
12118 else
12119 /* No delay slot. */
12120 bdsize = 0;
12121
12122 return bdsize;
12123 }
12124
12125 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12126 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12127
12128 static bfd_boolean
12129 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12130 {
12131 unsigned long opcode;
12132
12133 opcode = bfd_get_16 (abfd, ptr);
12134 if (MATCH (opcode, b_insn_16)
12135 /* B16 */
12136 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12137 /* JR16 */
12138 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12139 /* BEQZ16, BNEZ16 */
12140 || (MATCH (opcode, jalr_insn_16_bd32)
12141 /* JALR16 */
12142 && reg != JR16_REG (opcode) && reg != RA))
12143 return TRUE;
12144
12145 return FALSE;
12146 }
12147
12148 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12149 then return TRUE, otherwise FALSE. */
12150
12151 static bfd_boolean
12152 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12153 {
12154 unsigned long opcode;
12155
12156 opcode = bfd_get_micromips_32 (abfd, ptr);
12157 if (MATCH (opcode, j_insn_32)
12158 /* J */
12159 || MATCH (opcode, bc_insn_32)
12160 /* BC1F, BC1T, BC2F, BC2T */
12161 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12162 /* JAL, JALX */
12163 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12164 /* BGEZ, BGTZ, BLEZ, BLTZ */
12165 || (MATCH (opcode, bzal_insn_32)
12166 /* BGEZAL, BLTZAL */
12167 && reg != OP32_SREG (opcode) && reg != RA)
12168 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12169 /* JALR, JALR.HB, BEQ, BNE */
12170 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12171 return TRUE;
12172
12173 return FALSE;
12174 }
12175
12176 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12177 IRELEND) at OFFSET indicate that there must be a compact branch there,
12178 then return TRUE, otherwise FALSE. */
12179
12180 static bfd_boolean
12181 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12182 const Elf_Internal_Rela *internal_relocs,
12183 const Elf_Internal_Rela *irelend)
12184 {
12185 const Elf_Internal_Rela *irel;
12186 unsigned long opcode;
12187
12188 opcode = bfd_get_micromips_32 (abfd, ptr);
12189 if (find_match (opcode, bzc_insns_32) < 0)
12190 return FALSE;
12191
12192 for (irel = internal_relocs; irel < irelend; irel++)
12193 if (irel->r_offset == offset
12194 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12195 return TRUE;
12196
12197 return FALSE;
12198 }
12199
12200 /* Bitsize checking. */
12201 #define IS_BITSIZE(val, N) \
12202 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12203 - (1ULL << ((N) - 1))) == (val))
12204
12205 \f
12206 bfd_boolean
12207 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12208 struct bfd_link_info *link_info,
12209 bfd_boolean *again)
12210 {
12211 Elf_Internal_Shdr *symtab_hdr;
12212 Elf_Internal_Rela *internal_relocs;
12213 Elf_Internal_Rela *irel, *irelend;
12214 bfd_byte *contents = NULL;
12215 Elf_Internal_Sym *isymbuf = NULL;
12216
12217 /* Assume nothing changes. */
12218 *again = FALSE;
12219
12220 /* We don't have to do anything for a relocatable link, if
12221 this section does not have relocs, or if this is not a
12222 code section. */
12223
12224 if (link_info->relocatable
12225 || (sec->flags & SEC_RELOC) == 0
12226 || sec->reloc_count == 0
12227 || (sec->flags & SEC_CODE) == 0)
12228 return TRUE;
12229
12230 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12231
12232 /* Get a copy of the native relocations. */
12233 internal_relocs = (_bfd_elf_link_read_relocs
12234 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12235 link_info->keep_memory));
12236 if (internal_relocs == NULL)
12237 goto error_return;
12238
12239 /* Walk through them looking for relaxing opportunities. */
12240 irelend = internal_relocs + sec->reloc_count;
12241 for (irel = internal_relocs; irel < irelend; irel++)
12242 {
12243 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12244 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12245 bfd_boolean target_is_micromips_code_p;
12246 unsigned long opcode;
12247 bfd_vma symval;
12248 bfd_vma pcrval;
12249 bfd_byte *ptr;
12250 int fndopc;
12251
12252 /* The number of bytes to delete for relaxation and from where
12253 to delete these bytes starting at irel->r_offset. */
12254 int delcnt = 0;
12255 int deloff = 0;
12256
12257 /* If this isn't something that can be relaxed, then ignore
12258 this reloc. */
12259 if (r_type != R_MICROMIPS_HI16
12260 && r_type != R_MICROMIPS_PC16_S1
12261 && r_type != R_MICROMIPS_26_S1)
12262 continue;
12263
12264 /* Get the section contents if we haven't done so already. */
12265 if (contents == NULL)
12266 {
12267 /* Get cached copy if it exists. */
12268 if (elf_section_data (sec)->this_hdr.contents != NULL)
12269 contents = elf_section_data (sec)->this_hdr.contents;
12270 /* Go get them off disk. */
12271 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12272 goto error_return;
12273 }
12274 ptr = contents + irel->r_offset;
12275
12276 /* Read this BFD's local symbols if we haven't done so already. */
12277 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12278 {
12279 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12280 if (isymbuf == NULL)
12281 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12282 symtab_hdr->sh_info, 0,
12283 NULL, NULL, NULL);
12284 if (isymbuf == NULL)
12285 goto error_return;
12286 }
12287
12288 /* Get the value of the symbol referred to by the reloc. */
12289 if (r_symndx < symtab_hdr->sh_info)
12290 {
12291 /* A local symbol. */
12292 Elf_Internal_Sym *isym;
12293 asection *sym_sec;
12294
12295 isym = isymbuf + r_symndx;
12296 if (isym->st_shndx == SHN_UNDEF)
12297 sym_sec = bfd_und_section_ptr;
12298 else if (isym->st_shndx == SHN_ABS)
12299 sym_sec = bfd_abs_section_ptr;
12300 else if (isym->st_shndx == SHN_COMMON)
12301 sym_sec = bfd_com_section_ptr;
12302 else
12303 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12304 symval = (isym->st_value
12305 + sym_sec->output_section->vma
12306 + sym_sec->output_offset);
12307 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12308 }
12309 else
12310 {
12311 unsigned long indx;
12312 struct elf_link_hash_entry *h;
12313
12314 /* An external symbol. */
12315 indx = r_symndx - symtab_hdr->sh_info;
12316 h = elf_sym_hashes (abfd)[indx];
12317 BFD_ASSERT (h != NULL);
12318
12319 if (h->root.type != bfd_link_hash_defined
12320 && h->root.type != bfd_link_hash_defweak)
12321 /* This appears to be a reference to an undefined
12322 symbol. Just ignore it -- it will be caught by the
12323 regular reloc processing. */
12324 continue;
12325
12326 symval = (h->root.u.def.value
12327 + h->root.u.def.section->output_section->vma
12328 + h->root.u.def.section->output_offset);
12329 target_is_micromips_code_p = (!h->needs_plt
12330 && ELF_ST_IS_MICROMIPS (h->other));
12331 }
12332
12333
12334 /* For simplicity of coding, we are going to modify the
12335 section contents, the section relocs, and the BFD symbol
12336 table. We must tell the rest of the code not to free up this
12337 information. It would be possible to instead create a table
12338 of changes which have to be made, as is done in coff-mips.c;
12339 that would be more work, but would require less memory when
12340 the linker is run. */
12341
12342 /* Only 32-bit instructions relaxed. */
12343 if (irel->r_offset + 4 > sec->size)
12344 continue;
12345
12346 opcode = bfd_get_micromips_32 (abfd, ptr);
12347
12348 /* This is the pc-relative distance from the instruction the
12349 relocation is applied to, to the symbol referred. */
12350 pcrval = (symval
12351 - (sec->output_section->vma + sec->output_offset)
12352 - irel->r_offset);
12353
12354 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12355 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12356 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12357
12358 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12359
12360 where pcrval has first to be adjusted to apply against the LO16
12361 location (we make the adjustment later on, when we have figured
12362 out the offset). */
12363 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12364 {
12365 bfd_boolean bzc = FALSE;
12366 unsigned long nextopc;
12367 unsigned long reg;
12368 bfd_vma offset;
12369
12370 /* Give up if the previous reloc was a HI16 against this symbol
12371 too. */
12372 if (irel > internal_relocs
12373 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12374 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12375 continue;
12376
12377 /* Or if the next reloc is not a LO16 against this symbol. */
12378 if (irel + 1 >= irelend
12379 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12380 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12381 continue;
12382
12383 /* Or if the second next reloc is a LO16 against this symbol too. */
12384 if (irel + 2 >= irelend
12385 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12386 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12387 continue;
12388
12389 /* See if the LUI instruction *might* be in a branch delay slot.
12390 We check whether what looks like a 16-bit branch or jump is
12391 actually an immediate argument to a compact branch, and let
12392 it through if so. */
12393 if (irel->r_offset >= 2
12394 && check_br16_dslot (abfd, ptr - 2)
12395 && !(irel->r_offset >= 4
12396 && (bzc = check_relocated_bzc (abfd,
12397 ptr - 4, irel->r_offset - 4,
12398 internal_relocs, irelend))))
12399 continue;
12400 if (irel->r_offset >= 4
12401 && !bzc
12402 && check_br32_dslot (abfd, ptr - 4))
12403 continue;
12404
12405 reg = OP32_SREG (opcode);
12406
12407 /* We only relax adjacent instructions or ones separated with
12408 a branch or jump that has a delay slot. The branch or jump
12409 must not fiddle with the register used to hold the address.
12410 Subtract 4 for the LUI itself. */
12411 offset = irel[1].r_offset - irel[0].r_offset;
12412 switch (offset - 4)
12413 {
12414 case 0:
12415 break;
12416 case 2:
12417 if (check_br16 (abfd, ptr + 4, reg))
12418 break;
12419 continue;
12420 case 4:
12421 if (check_br32 (abfd, ptr + 4, reg))
12422 break;
12423 continue;
12424 default:
12425 continue;
12426 }
12427
12428 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12429
12430 /* Give up unless the same register is used with both
12431 relocations. */
12432 if (OP32_SREG (nextopc) != reg)
12433 continue;
12434
12435 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12436 and rounding up to take masking of the two LSBs into account. */
12437 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12438
12439 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12440 if (IS_BITSIZE (symval, 16))
12441 {
12442 /* Fix the relocation's type. */
12443 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12444
12445 /* Instructions using R_MICROMIPS_LO16 have the base or
12446 source register in bits 20:16. This register becomes $0
12447 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12448 nextopc &= ~0x001f0000;
12449 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12450 contents + irel[1].r_offset);
12451 }
12452
12453 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12454 We add 4 to take LUI deletion into account while checking
12455 the PC-relative distance. */
12456 else if (symval % 4 == 0
12457 && IS_BITSIZE (pcrval + 4, 25)
12458 && MATCH (nextopc, addiu_insn)
12459 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12460 && OP16_VALID_REG (OP32_TREG (nextopc)))
12461 {
12462 /* Fix the relocation's type. */
12463 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12464
12465 /* Replace ADDIU with the ADDIUPC version. */
12466 nextopc = (addiupc_insn.match
12467 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12468
12469 bfd_put_micromips_32 (abfd, nextopc,
12470 contents + irel[1].r_offset);
12471 }
12472
12473 /* Can't do anything, give up, sigh... */
12474 else
12475 continue;
12476
12477 /* Fix the relocation's type. */
12478 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12479
12480 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12481 delcnt = 4;
12482 deloff = 0;
12483 }
12484
12485 /* Compact branch relaxation -- due to the multitude of macros
12486 employed by the compiler/assembler, compact branches are not
12487 always generated. Obviously, this can/will be fixed elsewhere,
12488 but there is no drawback in double checking it here. */
12489 else if (r_type == R_MICROMIPS_PC16_S1
12490 && irel->r_offset + 5 < sec->size
12491 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12492 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12493 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12494 {
12495 unsigned long reg;
12496
12497 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12498
12499 /* Replace BEQZ/BNEZ with the compact version. */
12500 opcode = (bzc_insns_32[fndopc].match
12501 | BZC32_REG_FIELD (reg)
12502 | (opcode & 0xffff)); /* Addend value. */
12503
12504 bfd_put_micromips_32 (abfd, opcode, ptr);
12505
12506 /* Delete the 16-bit delay slot NOP: two bytes from
12507 irel->offset + 4. */
12508 delcnt = 2;
12509 deloff = 4;
12510 }
12511
12512 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12513 to check the distance from the next instruction, so subtract 2. */
12514 else if (r_type == R_MICROMIPS_PC16_S1
12515 && IS_BITSIZE (pcrval - 2, 11)
12516 && find_match (opcode, b_insns_32) >= 0)
12517 {
12518 /* Fix the relocation's type. */
12519 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12520
12521 /* Replace the 32-bit opcode with a 16-bit opcode. */
12522 bfd_put_16 (abfd,
12523 (b_insn_16.match
12524 | (opcode & 0x3ff)), /* Addend value. */
12525 ptr);
12526
12527 /* Delete 2 bytes from irel->r_offset + 2. */
12528 delcnt = 2;
12529 deloff = 2;
12530 }
12531
12532 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12533 to check the distance from the next instruction, so subtract 2. */
12534 else if (r_type == R_MICROMIPS_PC16_S1
12535 && IS_BITSIZE (pcrval - 2, 8)
12536 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12537 && OP16_VALID_REG (OP32_SREG (opcode)))
12538 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12539 && OP16_VALID_REG (OP32_TREG (opcode)))))
12540 {
12541 unsigned long reg;
12542
12543 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12544
12545 /* Fix the relocation's type. */
12546 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12547
12548 /* Replace the 32-bit opcode with a 16-bit opcode. */
12549 bfd_put_16 (abfd,
12550 (bz_insns_16[fndopc].match
12551 | BZ16_REG_FIELD (reg)
12552 | (opcode & 0x7f)), /* Addend value. */
12553 ptr);
12554
12555 /* Delete 2 bytes from irel->r_offset + 2. */
12556 delcnt = 2;
12557 deloff = 2;
12558 }
12559
12560 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12561 else if (r_type == R_MICROMIPS_26_S1
12562 && target_is_micromips_code_p
12563 && irel->r_offset + 7 < sec->size
12564 && MATCH (opcode, jal_insn_32_bd32))
12565 {
12566 unsigned long n32opc;
12567 bfd_boolean relaxed = FALSE;
12568
12569 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12570
12571 if (MATCH (n32opc, nop_insn_32))
12572 {
12573 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12574 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12575
12576 relaxed = TRUE;
12577 }
12578 else if (find_match (n32opc, move_insns_32) >= 0)
12579 {
12580 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12581 bfd_put_16 (abfd,
12582 (move_insn_16.match
12583 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12584 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12585 ptr + 4);
12586
12587 relaxed = TRUE;
12588 }
12589 /* Other 32-bit instructions relaxable to 16-bit
12590 instructions will be handled here later. */
12591
12592 if (relaxed)
12593 {
12594 /* JAL with 32-bit delay slot that is changed to a JALS
12595 with 16-bit delay slot. */
12596 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12597
12598 /* Delete 2 bytes from irel->r_offset + 6. */
12599 delcnt = 2;
12600 deloff = 6;
12601 }
12602 }
12603
12604 if (delcnt != 0)
12605 {
12606 /* Note that we've changed the relocs, section contents, etc. */
12607 elf_section_data (sec)->relocs = internal_relocs;
12608 elf_section_data (sec)->this_hdr.contents = contents;
12609 symtab_hdr->contents = (unsigned char *) isymbuf;
12610
12611 /* Delete bytes depending on the delcnt and deloff. */
12612 if (!mips_elf_relax_delete_bytes (abfd, sec,
12613 irel->r_offset + deloff, delcnt))
12614 goto error_return;
12615
12616 /* That will change things, so we should relax again.
12617 Note that this is not required, and it may be slow. */
12618 *again = TRUE;
12619 }
12620 }
12621
12622 if (isymbuf != NULL
12623 && symtab_hdr->contents != (unsigned char *) isymbuf)
12624 {
12625 if (! link_info->keep_memory)
12626 free (isymbuf);
12627 else
12628 {
12629 /* Cache the symbols for elf_link_input_bfd. */
12630 symtab_hdr->contents = (unsigned char *) isymbuf;
12631 }
12632 }
12633
12634 if (contents != NULL
12635 && elf_section_data (sec)->this_hdr.contents != contents)
12636 {
12637 if (! link_info->keep_memory)
12638 free (contents);
12639 else
12640 {
12641 /* Cache the section contents for elf_link_input_bfd. */
12642 elf_section_data (sec)->this_hdr.contents = contents;
12643 }
12644 }
12645
12646 if (internal_relocs != NULL
12647 && elf_section_data (sec)->relocs != internal_relocs)
12648 free (internal_relocs);
12649
12650 return TRUE;
12651
12652 error_return:
12653 if (isymbuf != NULL
12654 && symtab_hdr->contents != (unsigned char *) isymbuf)
12655 free (isymbuf);
12656 if (contents != NULL
12657 && elf_section_data (sec)->this_hdr.contents != contents)
12658 free (contents);
12659 if (internal_relocs != NULL
12660 && elf_section_data (sec)->relocs != internal_relocs)
12661 free (internal_relocs);
12662
12663 return FALSE;
12664 }
12665 \f
12666 /* Create a MIPS ELF linker hash table. */
12667
12668 struct bfd_link_hash_table *
12669 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12670 {
12671 struct mips_elf_link_hash_table *ret;
12672 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12673
12674 ret = bfd_zmalloc (amt);
12675 if (ret == NULL)
12676 return NULL;
12677
12678 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12679 mips_elf_link_hash_newfunc,
12680 sizeof (struct mips_elf_link_hash_entry),
12681 MIPS_ELF_DATA))
12682 {
12683 free (ret);
12684 return NULL;
12685 }
12686
12687 return &ret->root.root;
12688 }
12689
12690 /* Likewise, but indicate that the target is VxWorks. */
12691
12692 struct bfd_link_hash_table *
12693 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12694 {
12695 struct bfd_link_hash_table *ret;
12696
12697 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12698 if (ret)
12699 {
12700 struct mips_elf_link_hash_table *htab;
12701
12702 htab = (struct mips_elf_link_hash_table *) ret;
12703 htab->use_plts_and_copy_relocs = TRUE;
12704 htab->is_vxworks = TRUE;
12705 }
12706 return ret;
12707 }
12708
12709 /* A function that the linker calls if we are allowed to use PLTs
12710 and copy relocs. */
12711
12712 void
12713 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12714 {
12715 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12716 }
12717 \f
12718 /* We need to use a special link routine to handle the .reginfo and
12719 the .mdebug sections. We need to merge all instances of these
12720 sections together, not write them all out sequentially. */
12721
12722 bfd_boolean
12723 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12724 {
12725 asection *o;
12726 struct bfd_link_order *p;
12727 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12728 asection *rtproc_sec;
12729 Elf32_RegInfo reginfo;
12730 struct ecoff_debug_info debug;
12731 struct mips_htab_traverse_info hti;
12732 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12733 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12734 HDRR *symhdr = &debug.symbolic_header;
12735 void *mdebug_handle = NULL;
12736 asection *s;
12737 EXTR esym;
12738 unsigned int i;
12739 bfd_size_type amt;
12740 struct mips_elf_link_hash_table *htab;
12741
12742 static const char * const secname[] =
12743 {
12744 ".text", ".init", ".fini", ".data",
12745 ".rodata", ".sdata", ".sbss", ".bss"
12746 };
12747 static const int sc[] =
12748 {
12749 scText, scInit, scFini, scData,
12750 scRData, scSData, scSBss, scBss
12751 };
12752
12753 /* Sort the dynamic symbols so that those with GOT entries come after
12754 those without. */
12755 htab = mips_elf_hash_table (info);
12756 BFD_ASSERT (htab != NULL);
12757
12758 if (!mips_elf_sort_hash_table (abfd, info))
12759 return FALSE;
12760
12761 /* Create any scheduled LA25 stubs. */
12762 hti.info = info;
12763 hti.output_bfd = abfd;
12764 hti.error = FALSE;
12765 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12766 if (hti.error)
12767 return FALSE;
12768
12769 /* Get a value for the GP register. */
12770 if (elf_gp (abfd) == 0)
12771 {
12772 struct bfd_link_hash_entry *h;
12773
12774 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12775 if (h != NULL && h->type == bfd_link_hash_defined)
12776 elf_gp (abfd) = (h->u.def.value
12777 + h->u.def.section->output_section->vma
12778 + h->u.def.section->output_offset);
12779 else if (htab->is_vxworks
12780 && (h = bfd_link_hash_lookup (info->hash,
12781 "_GLOBAL_OFFSET_TABLE_",
12782 FALSE, FALSE, TRUE))
12783 && h->type == bfd_link_hash_defined)
12784 elf_gp (abfd) = (h->u.def.section->output_section->vma
12785 + h->u.def.section->output_offset
12786 + h->u.def.value);
12787 else if (info->relocatable)
12788 {
12789 bfd_vma lo = MINUS_ONE;
12790
12791 /* Find the GP-relative section with the lowest offset. */
12792 for (o = abfd->sections; o != NULL; o = o->next)
12793 if (o->vma < lo
12794 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12795 lo = o->vma;
12796
12797 /* And calculate GP relative to that. */
12798 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12799 }
12800 else
12801 {
12802 /* If the relocate_section function needs to do a reloc
12803 involving the GP value, it should make a reloc_dangerous
12804 callback to warn that GP is not defined. */
12805 }
12806 }
12807
12808 /* Go through the sections and collect the .reginfo and .mdebug
12809 information. */
12810 reginfo_sec = NULL;
12811 mdebug_sec = NULL;
12812 gptab_data_sec = NULL;
12813 gptab_bss_sec = NULL;
12814 for (o = abfd->sections; o != NULL; o = o->next)
12815 {
12816 if (strcmp (o->name, ".reginfo") == 0)
12817 {
12818 memset (&reginfo, 0, sizeof reginfo);
12819
12820 /* We have found the .reginfo section in the output file.
12821 Look through all the link_orders comprising it and merge
12822 the information together. */
12823 for (p = o->map_head.link_order; p != NULL; p = p->next)
12824 {
12825 asection *input_section;
12826 bfd *input_bfd;
12827 Elf32_External_RegInfo ext;
12828 Elf32_RegInfo sub;
12829
12830 if (p->type != bfd_indirect_link_order)
12831 {
12832 if (p->type == bfd_data_link_order)
12833 continue;
12834 abort ();
12835 }
12836
12837 input_section = p->u.indirect.section;
12838 input_bfd = input_section->owner;
12839
12840 if (! bfd_get_section_contents (input_bfd, input_section,
12841 &ext, 0, sizeof ext))
12842 return FALSE;
12843
12844 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
12845
12846 reginfo.ri_gprmask |= sub.ri_gprmask;
12847 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
12848 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
12849 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
12850 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
12851
12852 /* ri_gp_value is set by the function
12853 mips_elf32_section_processing when the section is
12854 finally written out. */
12855
12856 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12857 elf_link_input_bfd ignores this section. */
12858 input_section->flags &= ~SEC_HAS_CONTENTS;
12859 }
12860
12861 /* Size has been set in _bfd_mips_elf_always_size_sections. */
12862 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
12863
12864 /* Skip this section later on (I don't think this currently
12865 matters, but someday it might). */
12866 o->map_head.link_order = NULL;
12867
12868 reginfo_sec = o;
12869 }
12870
12871 if (strcmp (o->name, ".mdebug") == 0)
12872 {
12873 struct extsym_info einfo;
12874 bfd_vma last;
12875
12876 /* We have found the .mdebug section in the output file.
12877 Look through all the link_orders comprising it and merge
12878 the information together. */
12879 symhdr->magic = swap->sym_magic;
12880 /* FIXME: What should the version stamp be? */
12881 symhdr->vstamp = 0;
12882 symhdr->ilineMax = 0;
12883 symhdr->cbLine = 0;
12884 symhdr->idnMax = 0;
12885 symhdr->ipdMax = 0;
12886 symhdr->isymMax = 0;
12887 symhdr->ioptMax = 0;
12888 symhdr->iauxMax = 0;
12889 symhdr->issMax = 0;
12890 symhdr->issExtMax = 0;
12891 symhdr->ifdMax = 0;
12892 symhdr->crfd = 0;
12893 symhdr->iextMax = 0;
12894
12895 /* We accumulate the debugging information itself in the
12896 debug_info structure. */
12897 debug.line = NULL;
12898 debug.external_dnr = NULL;
12899 debug.external_pdr = NULL;
12900 debug.external_sym = NULL;
12901 debug.external_opt = NULL;
12902 debug.external_aux = NULL;
12903 debug.ss = NULL;
12904 debug.ssext = debug.ssext_end = NULL;
12905 debug.external_fdr = NULL;
12906 debug.external_rfd = NULL;
12907 debug.external_ext = debug.external_ext_end = NULL;
12908
12909 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
12910 if (mdebug_handle == NULL)
12911 return FALSE;
12912
12913 esym.jmptbl = 0;
12914 esym.cobol_main = 0;
12915 esym.weakext = 0;
12916 esym.reserved = 0;
12917 esym.ifd = ifdNil;
12918 esym.asym.iss = issNil;
12919 esym.asym.st = stLocal;
12920 esym.asym.reserved = 0;
12921 esym.asym.index = indexNil;
12922 last = 0;
12923 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
12924 {
12925 esym.asym.sc = sc[i];
12926 s = bfd_get_section_by_name (abfd, secname[i]);
12927 if (s != NULL)
12928 {
12929 esym.asym.value = s->vma;
12930 last = s->vma + s->size;
12931 }
12932 else
12933 esym.asym.value = last;
12934 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
12935 secname[i], &esym))
12936 return FALSE;
12937 }
12938
12939 for (p = o->map_head.link_order; p != NULL; p = p->next)
12940 {
12941 asection *input_section;
12942 bfd *input_bfd;
12943 const struct ecoff_debug_swap *input_swap;
12944 struct ecoff_debug_info input_debug;
12945 char *eraw_src;
12946 char *eraw_end;
12947
12948 if (p->type != bfd_indirect_link_order)
12949 {
12950 if (p->type == bfd_data_link_order)
12951 continue;
12952 abort ();
12953 }
12954
12955 input_section = p->u.indirect.section;
12956 input_bfd = input_section->owner;
12957
12958 if (!is_mips_elf (input_bfd))
12959 {
12960 /* I don't know what a non MIPS ELF bfd would be
12961 doing with a .mdebug section, but I don't really
12962 want to deal with it. */
12963 continue;
12964 }
12965
12966 input_swap = (get_elf_backend_data (input_bfd)
12967 ->elf_backend_ecoff_debug_swap);
12968
12969 BFD_ASSERT (p->size == input_section->size);
12970
12971 /* The ECOFF linking code expects that we have already
12972 read in the debugging information and set up an
12973 ecoff_debug_info structure, so we do that now. */
12974 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
12975 &input_debug))
12976 return FALSE;
12977
12978 if (! (bfd_ecoff_debug_accumulate
12979 (mdebug_handle, abfd, &debug, swap, input_bfd,
12980 &input_debug, input_swap, info)))
12981 return FALSE;
12982
12983 /* Loop through the external symbols. For each one with
12984 interesting information, try to find the symbol in
12985 the linker global hash table and save the information
12986 for the output external symbols. */
12987 eraw_src = input_debug.external_ext;
12988 eraw_end = (eraw_src
12989 + (input_debug.symbolic_header.iextMax
12990 * input_swap->external_ext_size));
12991 for (;
12992 eraw_src < eraw_end;
12993 eraw_src += input_swap->external_ext_size)
12994 {
12995 EXTR ext;
12996 const char *name;
12997 struct mips_elf_link_hash_entry *h;
12998
12999 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13000 if (ext.asym.sc == scNil
13001 || ext.asym.sc == scUndefined
13002 || ext.asym.sc == scSUndefined)
13003 continue;
13004
13005 name = input_debug.ssext + ext.asym.iss;
13006 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13007 name, FALSE, FALSE, TRUE);
13008 if (h == NULL || h->esym.ifd != -2)
13009 continue;
13010
13011 if (ext.ifd != -1)
13012 {
13013 BFD_ASSERT (ext.ifd
13014 < input_debug.symbolic_header.ifdMax);
13015 ext.ifd = input_debug.ifdmap[ext.ifd];
13016 }
13017
13018 h->esym = ext;
13019 }
13020
13021 /* Free up the information we just read. */
13022 free (input_debug.line);
13023 free (input_debug.external_dnr);
13024 free (input_debug.external_pdr);
13025 free (input_debug.external_sym);
13026 free (input_debug.external_opt);
13027 free (input_debug.external_aux);
13028 free (input_debug.ss);
13029 free (input_debug.ssext);
13030 free (input_debug.external_fdr);
13031 free (input_debug.external_rfd);
13032 free (input_debug.external_ext);
13033
13034 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13035 elf_link_input_bfd ignores this section. */
13036 input_section->flags &= ~SEC_HAS_CONTENTS;
13037 }
13038
13039 if (SGI_COMPAT (abfd) && info->shared)
13040 {
13041 /* Create .rtproc section. */
13042 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13043 if (rtproc_sec == NULL)
13044 {
13045 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13046 | SEC_LINKER_CREATED | SEC_READONLY);
13047
13048 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13049 ".rtproc",
13050 flags);
13051 if (rtproc_sec == NULL
13052 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13053 return FALSE;
13054 }
13055
13056 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13057 info, rtproc_sec,
13058 &debug))
13059 return FALSE;
13060 }
13061
13062 /* Build the external symbol information. */
13063 einfo.abfd = abfd;
13064 einfo.info = info;
13065 einfo.debug = &debug;
13066 einfo.swap = swap;
13067 einfo.failed = FALSE;
13068 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13069 mips_elf_output_extsym, &einfo);
13070 if (einfo.failed)
13071 return FALSE;
13072
13073 /* Set the size of the .mdebug section. */
13074 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13075
13076 /* Skip this section later on (I don't think this currently
13077 matters, but someday it might). */
13078 o->map_head.link_order = NULL;
13079
13080 mdebug_sec = o;
13081 }
13082
13083 if (CONST_STRNEQ (o->name, ".gptab."))
13084 {
13085 const char *subname;
13086 unsigned int c;
13087 Elf32_gptab *tab;
13088 Elf32_External_gptab *ext_tab;
13089 unsigned int j;
13090
13091 /* The .gptab.sdata and .gptab.sbss sections hold
13092 information describing how the small data area would
13093 change depending upon the -G switch. These sections
13094 not used in executables files. */
13095 if (! info->relocatable)
13096 {
13097 for (p = o->map_head.link_order; p != NULL; p = p->next)
13098 {
13099 asection *input_section;
13100
13101 if (p->type != bfd_indirect_link_order)
13102 {
13103 if (p->type == bfd_data_link_order)
13104 continue;
13105 abort ();
13106 }
13107
13108 input_section = p->u.indirect.section;
13109
13110 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13111 elf_link_input_bfd ignores this section. */
13112 input_section->flags &= ~SEC_HAS_CONTENTS;
13113 }
13114
13115 /* Skip this section later on (I don't think this
13116 currently matters, but someday it might). */
13117 o->map_head.link_order = NULL;
13118
13119 /* Really remove the section. */
13120 bfd_section_list_remove (abfd, o);
13121 --abfd->section_count;
13122
13123 continue;
13124 }
13125
13126 /* There is one gptab for initialized data, and one for
13127 uninitialized data. */
13128 if (strcmp (o->name, ".gptab.sdata") == 0)
13129 gptab_data_sec = o;
13130 else if (strcmp (o->name, ".gptab.sbss") == 0)
13131 gptab_bss_sec = o;
13132 else
13133 {
13134 (*_bfd_error_handler)
13135 (_("%s: illegal section name `%s'"),
13136 bfd_get_filename (abfd), o->name);
13137 bfd_set_error (bfd_error_nonrepresentable_section);
13138 return FALSE;
13139 }
13140
13141 /* The linker script always combines .gptab.data and
13142 .gptab.sdata into .gptab.sdata, and likewise for
13143 .gptab.bss and .gptab.sbss. It is possible that there is
13144 no .sdata or .sbss section in the output file, in which
13145 case we must change the name of the output section. */
13146 subname = o->name + sizeof ".gptab" - 1;
13147 if (bfd_get_section_by_name (abfd, subname) == NULL)
13148 {
13149 if (o == gptab_data_sec)
13150 o->name = ".gptab.data";
13151 else
13152 o->name = ".gptab.bss";
13153 subname = o->name + sizeof ".gptab" - 1;
13154 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13155 }
13156
13157 /* Set up the first entry. */
13158 c = 1;
13159 amt = c * sizeof (Elf32_gptab);
13160 tab = bfd_malloc (amt);
13161 if (tab == NULL)
13162 return FALSE;
13163 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13164 tab[0].gt_header.gt_unused = 0;
13165
13166 /* Combine the input sections. */
13167 for (p = o->map_head.link_order; p != NULL; p = p->next)
13168 {
13169 asection *input_section;
13170 bfd *input_bfd;
13171 bfd_size_type size;
13172 unsigned long last;
13173 bfd_size_type gpentry;
13174
13175 if (p->type != bfd_indirect_link_order)
13176 {
13177 if (p->type == bfd_data_link_order)
13178 continue;
13179 abort ();
13180 }
13181
13182 input_section = p->u.indirect.section;
13183 input_bfd = input_section->owner;
13184
13185 /* Combine the gptab entries for this input section one
13186 by one. We know that the input gptab entries are
13187 sorted by ascending -G value. */
13188 size = input_section->size;
13189 last = 0;
13190 for (gpentry = sizeof (Elf32_External_gptab);
13191 gpentry < size;
13192 gpentry += sizeof (Elf32_External_gptab))
13193 {
13194 Elf32_External_gptab ext_gptab;
13195 Elf32_gptab int_gptab;
13196 unsigned long val;
13197 unsigned long add;
13198 bfd_boolean exact;
13199 unsigned int look;
13200
13201 if (! (bfd_get_section_contents
13202 (input_bfd, input_section, &ext_gptab, gpentry,
13203 sizeof (Elf32_External_gptab))))
13204 {
13205 free (tab);
13206 return FALSE;
13207 }
13208
13209 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13210 &int_gptab);
13211 val = int_gptab.gt_entry.gt_g_value;
13212 add = int_gptab.gt_entry.gt_bytes - last;
13213
13214 exact = FALSE;
13215 for (look = 1; look < c; look++)
13216 {
13217 if (tab[look].gt_entry.gt_g_value >= val)
13218 tab[look].gt_entry.gt_bytes += add;
13219
13220 if (tab[look].gt_entry.gt_g_value == val)
13221 exact = TRUE;
13222 }
13223
13224 if (! exact)
13225 {
13226 Elf32_gptab *new_tab;
13227 unsigned int max;
13228
13229 /* We need a new table entry. */
13230 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13231 new_tab = bfd_realloc (tab, amt);
13232 if (new_tab == NULL)
13233 {
13234 free (tab);
13235 return FALSE;
13236 }
13237 tab = new_tab;
13238 tab[c].gt_entry.gt_g_value = val;
13239 tab[c].gt_entry.gt_bytes = add;
13240
13241 /* Merge in the size for the next smallest -G
13242 value, since that will be implied by this new
13243 value. */
13244 max = 0;
13245 for (look = 1; look < c; look++)
13246 {
13247 if (tab[look].gt_entry.gt_g_value < val
13248 && (max == 0
13249 || (tab[look].gt_entry.gt_g_value
13250 > tab[max].gt_entry.gt_g_value)))
13251 max = look;
13252 }
13253 if (max != 0)
13254 tab[c].gt_entry.gt_bytes +=
13255 tab[max].gt_entry.gt_bytes;
13256
13257 ++c;
13258 }
13259
13260 last = int_gptab.gt_entry.gt_bytes;
13261 }
13262
13263 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13264 elf_link_input_bfd ignores this section. */
13265 input_section->flags &= ~SEC_HAS_CONTENTS;
13266 }
13267
13268 /* The table must be sorted by -G value. */
13269 if (c > 2)
13270 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13271
13272 /* Swap out the table. */
13273 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13274 ext_tab = bfd_alloc (abfd, amt);
13275 if (ext_tab == NULL)
13276 {
13277 free (tab);
13278 return FALSE;
13279 }
13280
13281 for (j = 0; j < c; j++)
13282 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13283 free (tab);
13284
13285 o->size = c * sizeof (Elf32_External_gptab);
13286 o->contents = (bfd_byte *) ext_tab;
13287
13288 /* Skip this section later on (I don't think this currently
13289 matters, but someday it might). */
13290 o->map_head.link_order = NULL;
13291 }
13292 }
13293
13294 /* Invoke the regular ELF backend linker to do all the work. */
13295 if (!bfd_elf_final_link (abfd, info))
13296 return FALSE;
13297
13298 /* Now write out the computed sections. */
13299
13300 if (reginfo_sec != NULL)
13301 {
13302 Elf32_External_RegInfo ext;
13303
13304 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13305 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13306 return FALSE;
13307 }
13308
13309 if (mdebug_sec != NULL)
13310 {
13311 BFD_ASSERT (abfd->output_has_begun);
13312 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13313 swap, info,
13314 mdebug_sec->filepos))
13315 return FALSE;
13316
13317 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13318 }
13319
13320 if (gptab_data_sec != NULL)
13321 {
13322 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13323 gptab_data_sec->contents,
13324 0, gptab_data_sec->size))
13325 return FALSE;
13326 }
13327
13328 if (gptab_bss_sec != NULL)
13329 {
13330 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13331 gptab_bss_sec->contents,
13332 0, gptab_bss_sec->size))
13333 return FALSE;
13334 }
13335
13336 if (SGI_COMPAT (abfd))
13337 {
13338 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13339 if (rtproc_sec != NULL)
13340 {
13341 if (! bfd_set_section_contents (abfd, rtproc_sec,
13342 rtproc_sec->contents,
13343 0, rtproc_sec->size))
13344 return FALSE;
13345 }
13346 }
13347
13348 return TRUE;
13349 }
13350 \f
13351 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13352
13353 struct mips_mach_extension {
13354 unsigned long extension, base;
13355 };
13356
13357
13358 /* An array describing how BFD machines relate to one another. The entries
13359 are ordered topologically with MIPS I extensions listed last. */
13360
13361 static const struct mips_mach_extension mips_mach_extensions[] = {
13362 /* MIPS64r2 extensions. */
13363 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13364 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13365 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13366
13367 /* MIPS64 extensions. */
13368 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13369 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13370 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13371 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13372
13373 /* MIPS V extensions. */
13374 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13375
13376 /* R10000 extensions. */
13377 { bfd_mach_mips12000, bfd_mach_mips10000 },
13378 { bfd_mach_mips14000, bfd_mach_mips10000 },
13379 { bfd_mach_mips16000, bfd_mach_mips10000 },
13380
13381 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13382 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13383 better to allow vr5400 and vr5500 code to be merged anyway, since
13384 many libraries will just use the core ISA. Perhaps we could add
13385 some sort of ASE flag if this ever proves a problem. */
13386 { bfd_mach_mips5500, bfd_mach_mips5400 },
13387 { bfd_mach_mips5400, bfd_mach_mips5000 },
13388
13389 /* MIPS IV extensions. */
13390 { bfd_mach_mips5, bfd_mach_mips8000 },
13391 { bfd_mach_mips10000, bfd_mach_mips8000 },
13392 { bfd_mach_mips5000, bfd_mach_mips8000 },
13393 { bfd_mach_mips7000, bfd_mach_mips8000 },
13394 { bfd_mach_mips9000, bfd_mach_mips8000 },
13395
13396 /* VR4100 extensions. */
13397 { bfd_mach_mips4120, bfd_mach_mips4100 },
13398 { bfd_mach_mips4111, bfd_mach_mips4100 },
13399
13400 /* MIPS III extensions. */
13401 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13402 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13403 { bfd_mach_mips8000, bfd_mach_mips4000 },
13404 { bfd_mach_mips4650, bfd_mach_mips4000 },
13405 { bfd_mach_mips4600, bfd_mach_mips4000 },
13406 { bfd_mach_mips4400, bfd_mach_mips4000 },
13407 { bfd_mach_mips4300, bfd_mach_mips4000 },
13408 { bfd_mach_mips4100, bfd_mach_mips4000 },
13409 { bfd_mach_mips4010, bfd_mach_mips4000 },
13410 { bfd_mach_mips5900, bfd_mach_mips4000 },
13411
13412 /* MIPS32 extensions. */
13413 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13414
13415 /* MIPS II extensions. */
13416 { bfd_mach_mips4000, bfd_mach_mips6000 },
13417 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13418
13419 /* MIPS I extensions. */
13420 { bfd_mach_mips6000, bfd_mach_mips3000 },
13421 { bfd_mach_mips3900, bfd_mach_mips3000 }
13422 };
13423
13424
13425 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13426
13427 static bfd_boolean
13428 mips_mach_extends_p (unsigned long base, unsigned long extension)
13429 {
13430 size_t i;
13431
13432 if (extension == base)
13433 return TRUE;
13434
13435 if (base == bfd_mach_mipsisa32
13436 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13437 return TRUE;
13438
13439 if (base == bfd_mach_mipsisa32r2
13440 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13441 return TRUE;
13442
13443 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13444 if (extension == mips_mach_extensions[i].extension)
13445 {
13446 extension = mips_mach_extensions[i].base;
13447 if (extension == base)
13448 return TRUE;
13449 }
13450
13451 return FALSE;
13452 }
13453
13454
13455 /* Return true if the given ELF header flags describe a 32-bit binary. */
13456
13457 static bfd_boolean
13458 mips_32bit_flags_p (flagword flags)
13459 {
13460 return ((flags & EF_MIPS_32BITMODE) != 0
13461 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13462 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13463 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13464 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13465 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13466 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13467 }
13468
13469
13470 /* Merge object attributes from IBFD into OBFD. Raise an error if
13471 there are conflicting attributes. */
13472 static bfd_boolean
13473 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13474 {
13475 obj_attribute *in_attr;
13476 obj_attribute *out_attr;
13477 bfd *abi_fp_bfd;
13478
13479 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13480 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13481 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13482 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
13483
13484 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13485 {
13486 /* This is the first object. Copy the attributes. */
13487 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13488
13489 /* Use the Tag_null value to indicate the attributes have been
13490 initialized. */
13491 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13492
13493 return TRUE;
13494 }
13495
13496 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13497 non-conflicting ones. */
13498 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13499 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13500 {
13501 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13502 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13503 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13504 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13505 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13506 {
13507 case 1:
13508 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13509 {
13510 case 2:
13511 _bfd_error_handler
13512 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13513 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
13514 break;
13515
13516 case 3:
13517 _bfd_error_handler
13518 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13519 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13520 break;
13521
13522 case 4:
13523 _bfd_error_handler
13524 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13525 obfd, abi_fp_bfd, ibfd,
13526 "-mdouble-float", "-mips32r2 -mfp64");
13527 break;
13528
13529 default:
13530 _bfd_error_handler
13531 (_("Warning: %B uses %s (set by %B), "
13532 "%B uses unknown floating point ABI %d"),
13533 obfd, abi_fp_bfd, ibfd,
13534 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13535 break;
13536 }
13537 break;
13538
13539 case 2:
13540 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13541 {
13542 case 1:
13543 _bfd_error_handler
13544 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13545 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
13546 break;
13547
13548 case 3:
13549 _bfd_error_handler
13550 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13551 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13552 break;
13553
13554 case 4:
13555 _bfd_error_handler
13556 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13557 obfd, abi_fp_bfd, ibfd,
13558 "-msingle-float", "-mips32r2 -mfp64");
13559 break;
13560
13561 default:
13562 _bfd_error_handler
13563 (_("Warning: %B uses %s (set by %B), "
13564 "%B uses unknown floating point ABI %d"),
13565 obfd, abi_fp_bfd, ibfd,
13566 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13567 break;
13568 }
13569 break;
13570
13571 case 3:
13572 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13573 {
13574 case 1:
13575 case 2:
13576 case 4:
13577 _bfd_error_handler
13578 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13579 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
13580 break;
13581
13582 default:
13583 _bfd_error_handler
13584 (_("Warning: %B uses %s (set by %B), "
13585 "%B uses unknown floating point ABI %d"),
13586 obfd, abi_fp_bfd, ibfd,
13587 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13588 break;
13589 }
13590 break;
13591
13592 case 4:
13593 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13594 {
13595 case 1:
13596 _bfd_error_handler
13597 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13598 obfd, abi_fp_bfd, ibfd,
13599 "-mips32r2 -mfp64", "-mdouble-float");
13600 break;
13601
13602 case 2:
13603 _bfd_error_handler
13604 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13605 obfd, abi_fp_bfd, ibfd,
13606 "-mips32r2 -mfp64", "-msingle-float");
13607 break;
13608
13609 case 3:
13610 _bfd_error_handler
13611 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13612 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13613 break;
13614
13615 default:
13616 _bfd_error_handler
13617 (_("Warning: %B uses %s (set by %B), "
13618 "%B uses unknown floating point ABI %d"),
13619 obfd, abi_fp_bfd, ibfd,
13620 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13621 break;
13622 }
13623 break;
13624
13625 default:
13626 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13627 {
13628 case 1:
13629 _bfd_error_handler
13630 (_("Warning: %B uses unknown floating point ABI %d "
13631 "(set by %B), %B uses %s"),
13632 obfd, abi_fp_bfd, ibfd,
13633 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13634 break;
13635
13636 case 2:
13637 _bfd_error_handler
13638 (_("Warning: %B uses unknown floating point ABI %d "
13639 "(set by %B), %B uses %s"),
13640 obfd, abi_fp_bfd, ibfd,
13641 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13642 break;
13643
13644 case 3:
13645 _bfd_error_handler
13646 (_("Warning: %B uses unknown floating point ABI %d "
13647 "(set by %B), %B uses %s"),
13648 obfd, abi_fp_bfd, ibfd,
13649 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13650 break;
13651
13652 case 4:
13653 _bfd_error_handler
13654 (_("Warning: %B uses unknown floating point ABI %d "
13655 "(set by %B), %B uses %s"),
13656 obfd, abi_fp_bfd, ibfd,
13657 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13658 break;
13659
13660 default:
13661 _bfd_error_handler
13662 (_("Warning: %B uses unknown floating point ABI %d "
13663 "(set by %B), %B uses unknown floating point ABI %d"),
13664 obfd, abi_fp_bfd, ibfd,
13665 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13666 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13667 break;
13668 }
13669 break;
13670 }
13671 }
13672
13673 /* Merge Tag_compatibility attributes and any common GNU ones. */
13674 _bfd_elf_merge_object_attributes (ibfd, obfd);
13675
13676 return TRUE;
13677 }
13678
13679 /* Merge backend specific data from an object file to the output
13680 object file when linking. */
13681
13682 bfd_boolean
13683 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13684 {
13685 flagword old_flags;
13686 flagword new_flags;
13687 bfd_boolean ok;
13688 bfd_boolean null_input_bfd = TRUE;
13689 asection *sec;
13690
13691 /* Check if we have the same endianness. */
13692 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13693 {
13694 (*_bfd_error_handler)
13695 (_("%B: endianness incompatible with that of the selected emulation"),
13696 ibfd);
13697 return FALSE;
13698 }
13699
13700 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13701 return TRUE;
13702
13703 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13704 {
13705 (*_bfd_error_handler)
13706 (_("%B: ABI is incompatible with that of the selected emulation"),
13707 ibfd);
13708 return FALSE;
13709 }
13710
13711 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13712 return FALSE;
13713
13714 new_flags = elf_elfheader (ibfd)->e_flags;
13715 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13716 old_flags = elf_elfheader (obfd)->e_flags;
13717
13718 if (! elf_flags_init (obfd))
13719 {
13720 elf_flags_init (obfd) = TRUE;
13721 elf_elfheader (obfd)->e_flags = new_flags;
13722 elf_elfheader (obfd)->e_ident[EI_CLASS]
13723 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13724
13725 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13726 && (bfd_get_arch_info (obfd)->the_default
13727 || mips_mach_extends_p (bfd_get_mach (obfd),
13728 bfd_get_mach (ibfd))))
13729 {
13730 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13731 bfd_get_mach (ibfd)))
13732 return FALSE;
13733 }
13734
13735 return TRUE;
13736 }
13737
13738 /* Check flag compatibility. */
13739
13740 new_flags &= ~EF_MIPS_NOREORDER;
13741 old_flags &= ~EF_MIPS_NOREORDER;
13742
13743 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13744 doesn't seem to matter. */
13745 new_flags &= ~EF_MIPS_XGOT;
13746 old_flags &= ~EF_MIPS_XGOT;
13747
13748 /* MIPSpro generates ucode info in n64 objects. Again, we should
13749 just be able to ignore this. */
13750 new_flags &= ~EF_MIPS_UCODE;
13751 old_flags &= ~EF_MIPS_UCODE;
13752
13753 /* DSOs should only be linked with CPIC code. */
13754 if ((ibfd->flags & DYNAMIC) != 0)
13755 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13756
13757 if (new_flags == old_flags)
13758 return TRUE;
13759
13760 /* Check to see if the input BFD actually contains any sections.
13761 If not, its flags may not have been initialised either, but it cannot
13762 actually cause any incompatibility. */
13763 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13764 {
13765 /* Ignore synthetic sections and empty .text, .data and .bss sections
13766 which are automatically generated by gas. Also ignore fake
13767 (s)common sections, since merely defining a common symbol does
13768 not affect compatibility. */
13769 if ((sec->flags & SEC_IS_COMMON) == 0
13770 && strcmp (sec->name, ".reginfo")
13771 && strcmp (sec->name, ".mdebug")
13772 && (sec->size != 0
13773 || (strcmp (sec->name, ".text")
13774 && strcmp (sec->name, ".data")
13775 && strcmp (sec->name, ".bss"))))
13776 {
13777 null_input_bfd = FALSE;
13778 break;
13779 }
13780 }
13781 if (null_input_bfd)
13782 return TRUE;
13783
13784 ok = TRUE;
13785
13786 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13787 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13788 {
13789 (*_bfd_error_handler)
13790 (_("%B: warning: linking abicalls files with non-abicalls files"),
13791 ibfd);
13792 ok = TRUE;
13793 }
13794
13795 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13796 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13797 if (! (new_flags & EF_MIPS_PIC))
13798 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13799
13800 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13801 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13802
13803 /* Compare the ISAs. */
13804 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13805 {
13806 (*_bfd_error_handler)
13807 (_("%B: linking 32-bit code with 64-bit code"),
13808 ibfd);
13809 ok = FALSE;
13810 }
13811 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13812 {
13813 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13814 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13815 {
13816 /* Copy the architecture info from IBFD to OBFD. Also copy
13817 the 32-bit flag (if set) so that we continue to recognise
13818 OBFD as a 32-bit binary. */
13819 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13820 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13821 elf_elfheader (obfd)->e_flags
13822 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13823
13824 /* Copy across the ABI flags if OBFD doesn't use them
13825 and if that was what caused us to treat IBFD as 32-bit. */
13826 if ((old_flags & EF_MIPS_ABI) == 0
13827 && mips_32bit_flags_p (new_flags)
13828 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
13829 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
13830 }
13831 else
13832 {
13833 /* The ISAs aren't compatible. */
13834 (*_bfd_error_handler)
13835 (_("%B: linking %s module with previous %s modules"),
13836 ibfd,
13837 bfd_printable_name (ibfd),
13838 bfd_printable_name (obfd));
13839 ok = FALSE;
13840 }
13841 }
13842
13843 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13844 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13845
13846 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
13847 does set EI_CLASS differently from any 32-bit ABI. */
13848 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
13849 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13850 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13851 {
13852 /* Only error if both are set (to different values). */
13853 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
13854 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13855 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13856 {
13857 (*_bfd_error_handler)
13858 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
13859 ibfd,
13860 elf_mips_abi_name (ibfd),
13861 elf_mips_abi_name (obfd));
13862 ok = FALSE;
13863 }
13864 new_flags &= ~EF_MIPS_ABI;
13865 old_flags &= ~EF_MIPS_ABI;
13866 }
13867
13868 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
13869 and allow arbitrary mixing of the remaining ASEs (retain the union). */
13870 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
13871 {
13872 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13873 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13874 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
13875 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
13876 int micro_mis = old_m16 && new_micro;
13877 int m16_mis = old_micro && new_m16;
13878
13879 if (m16_mis || micro_mis)
13880 {
13881 (*_bfd_error_handler)
13882 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
13883 ibfd,
13884 m16_mis ? "MIPS16" : "microMIPS",
13885 m16_mis ? "microMIPS" : "MIPS16");
13886 ok = FALSE;
13887 }
13888
13889 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
13890
13891 new_flags &= ~ EF_MIPS_ARCH_ASE;
13892 old_flags &= ~ EF_MIPS_ARCH_ASE;
13893 }
13894
13895 /* Warn about any other mismatches */
13896 if (new_flags != old_flags)
13897 {
13898 (*_bfd_error_handler)
13899 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
13900 ibfd, (unsigned long) new_flags,
13901 (unsigned long) old_flags);
13902 ok = FALSE;
13903 }
13904
13905 if (! ok)
13906 {
13907 bfd_set_error (bfd_error_bad_value);
13908 return FALSE;
13909 }
13910
13911 return TRUE;
13912 }
13913
13914 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
13915
13916 bfd_boolean
13917 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
13918 {
13919 BFD_ASSERT (!elf_flags_init (abfd)
13920 || elf_elfheader (abfd)->e_flags == flags);
13921
13922 elf_elfheader (abfd)->e_flags = flags;
13923 elf_flags_init (abfd) = TRUE;
13924 return TRUE;
13925 }
13926
13927 char *
13928 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
13929 {
13930 switch (dtag)
13931 {
13932 default: return "";
13933 case DT_MIPS_RLD_VERSION:
13934 return "MIPS_RLD_VERSION";
13935 case DT_MIPS_TIME_STAMP:
13936 return "MIPS_TIME_STAMP";
13937 case DT_MIPS_ICHECKSUM:
13938 return "MIPS_ICHECKSUM";
13939 case DT_MIPS_IVERSION:
13940 return "MIPS_IVERSION";
13941 case DT_MIPS_FLAGS:
13942 return "MIPS_FLAGS";
13943 case DT_MIPS_BASE_ADDRESS:
13944 return "MIPS_BASE_ADDRESS";
13945 case DT_MIPS_MSYM:
13946 return "MIPS_MSYM";
13947 case DT_MIPS_CONFLICT:
13948 return "MIPS_CONFLICT";
13949 case DT_MIPS_LIBLIST:
13950 return "MIPS_LIBLIST";
13951 case DT_MIPS_LOCAL_GOTNO:
13952 return "MIPS_LOCAL_GOTNO";
13953 case DT_MIPS_CONFLICTNO:
13954 return "MIPS_CONFLICTNO";
13955 case DT_MIPS_LIBLISTNO:
13956 return "MIPS_LIBLISTNO";
13957 case DT_MIPS_SYMTABNO:
13958 return "MIPS_SYMTABNO";
13959 case DT_MIPS_UNREFEXTNO:
13960 return "MIPS_UNREFEXTNO";
13961 case DT_MIPS_GOTSYM:
13962 return "MIPS_GOTSYM";
13963 case DT_MIPS_HIPAGENO:
13964 return "MIPS_HIPAGENO";
13965 case DT_MIPS_RLD_MAP:
13966 return "MIPS_RLD_MAP";
13967 case DT_MIPS_DELTA_CLASS:
13968 return "MIPS_DELTA_CLASS";
13969 case DT_MIPS_DELTA_CLASS_NO:
13970 return "MIPS_DELTA_CLASS_NO";
13971 case DT_MIPS_DELTA_INSTANCE:
13972 return "MIPS_DELTA_INSTANCE";
13973 case DT_MIPS_DELTA_INSTANCE_NO:
13974 return "MIPS_DELTA_INSTANCE_NO";
13975 case DT_MIPS_DELTA_RELOC:
13976 return "MIPS_DELTA_RELOC";
13977 case DT_MIPS_DELTA_RELOC_NO:
13978 return "MIPS_DELTA_RELOC_NO";
13979 case DT_MIPS_DELTA_SYM:
13980 return "MIPS_DELTA_SYM";
13981 case DT_MIPS_DELTA_SYM_NO:
13982 return "MIPS_DELTA_SYM_NO";
13983 case DT_MIPS_DELTA_CLASSSYM:
13984 return "MIPS_DELTA_CLASSSYM";
13985 case DT_MIPS_DELTA_CLASSSYM_NO:
13986 return "MIPS_DELTA_CLASSSYM_NO";
13987 case DT_MIPS_CXX_FLAGS:
13988 return "MIPS_CXX_FLAGS";
13989 case DT_MIPS_PIXIE_INIT:
13990 return "MIPS_PIXIE_INIT";
13991 case DT_MIPS_SYMBOL_LIB:
13992 return "MIPS_SYMBOL_LIB";
13993 case DT_MIPS_LOCALPAGE_GOTIDX:
13994 return "MIPS_LOCALPAGE_GOTIDX";
13995 case DT_MIPS_LOCAL_GOTIDX:
13996 return "MIPS_LOCAL_GOTIDX";
13997 case DT_MIPS_HIDDEN_GOTIDX:
13998 return "MIPS_HIDDEN_GOTIDX";
13999 case DT_MIPS_PROTECTED_GOTIDX:
14000 return "MIPS_PROTECTED_GOT_IDX";
14001 case DT_MIPS_OPTIONS:
14002 return "MIPS_OPTIONS";
14003 case DT_MIPS_INTERFACE:
14004 return "MIPS_INTERFACE";
14005 case DT_MIPS_DYNSTR_ALIGN:
14006 return "DT_MIPS_DYNSTR_ALIGN";
14007 case DT_MIPS_INTERFACE_SIZE:
14008 return "DT_MIPS_INTERFACE_SIZE";
14009 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14010 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14011 case DT_MIPS_PERF_SUFFIX:
14012 return "DT_MIPS_PERF_SUFFIX";
14013 case DT_MIPS_COMPACT_SIZE:
14014 return "DT_MIPS_COMPACT_SIZE";
14015 case DT_MIPS_GP_VALUE:
14016 return "DT_MIPS_GP_VALUE";
14017 case DT_MIPS_AUX_DYNAMIC:
14018 return "DT_MIPS_AUX_DYNAMIC";
14019 case DT_MIPS_PLTGOT:
14020 return "DT_MIPS_PLTGOT";
14021 case DT_MIPS_RWPLT:
14022 return "DT_MIPS_RWPLT";
14023 }
14024 }
14025
14026 bfd_boolean
14027 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14028 {
14029 FILE *file = ptr;
14030
14031 BFD_ASSERT (abfd != NULL && ptr != NULL);
14032
14033 /* Print normal ELF private data. */
14034 _bfd_elf_print_private_bfd_data (abfd, ptr);
14035
14036 /* xgettext:c-format */
14037 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14038
14039 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14040 fprintf (file, _(" [abi=O32]"));
14041 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14042 fprintf (file, _(" [abi=O64]"));
14043 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14044 fprintf (file, _(" [abi=EABI32]"));
14045 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14046 fprintf (file, _(" [abi=EABI64]"));
14047 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14048 fprintf (file, _(" [abi unknown]"));
14049 else if (ABI_N32_P (abfd))
14050 fprintf (file, _(" [abi=N32]"));
14051 else if (ABI_64_P (abfd))
14052 fprintf (file, _(" [abi=64]"));
14053 else
14054 fprintf (file, _(" [no abi set]"));
14055
14056 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14057 fprintf (file, " [mips1]");
14058 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14059 fprintf (file, " [mips2]");
14060 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14061 fprintf (file, " [mips3]");
14062 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14063 fprintf (file, " [mips4]");
14064 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14065 fprintf (file, " [mips5]");
14066 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14067 fprintf (file, " [mips32]");
14068 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14069 fprintf (file, " [mips64]");
14070 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14071 fprintf (file, " [mips32r2]");
14072 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14073 fprintf (file, " [mips64r2]");
14074 else
14075 fprintf (file, _(" [unknown ISA]"));
14076
14077 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14078 fprintf (file, " [mdmx]");
14079
14080 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14081 fprintf (file, " [mips16]");
14082
14083 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14084 fprintf (file, " [micromips]");
14085
14086 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14087 fprintf (file, " [32bitmode]");
14088 else
14089 fprintf (file, _(" [not 32bitmode]"));
14090
14091 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14092 fprintf (file, " [noreorder]");
14093
14094 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14095 fprintf (file, " [PIC]");
14096
14097 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14098 fprintf (file, " [CPIC]");
14099
14100 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14101 fprintf (file, " [XGOT]");
14102
14103 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14104 fprintf (file, " [UCODE]");
14105
14106 fputc ('\n', file);
14107
14108 return TRUE;
14109 }
14110
14111 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14112 {
14113 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14114 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14115 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14116 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14117 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14118 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14119 { NULL, 0, 0, 0, 0 }
14120 };
14121
14122 /* Merge non visibility st_other attributes. Ensure that the
14123 STO_OPTIONAL flag is copied into h->other, even if this is not a
14124 definiton of the symbol. */
14125 void
14126 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14127 const Elf_Internal_Sym *isym,
14128 bfd_boolean definition,
14129 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14130 {
14131 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14132 {
14133 unsigned char other;
14134
14135 other = (definition ? isym->st_other : h->other);
14136 other &= ~ELF_ST_VISIBILITY (-1);
14137 h->other = other | ELF_ST_VISIBILITY (h->other);
14138 }
14139
14140 if (!definition
14141 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14142 h->other |= STO_OPTIONAL;
14143 }
14144
14145 /* Decide whether an undefined symbol is special and can be ignored.
14146 This is the case for OPTIONAL symbols on IRIX. */
14147 bfd_boolean
14148 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14149 {
14150 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14151 }
14152
14153 bfd_boolean
14154 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14155 {
14156 return (sym->st_shndx == SHN_COMMON
14157 || sym->st_shndx == SHN_MIPS_ACOMMON
14158 || sym->st_shndx == SHN_MIPS_SCOMMON);
14159 }
14160
14161 /* Return address for Ith PLT stub in section PLT, for relocation REL
14162 or (bfd_vma) -1 if it should not be included. */
14163
14164 bfd_vma
14165 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14166 const arelent *rel ATTRIBUTE_UNUSED)
14167 {
14168 return (plt->vma
14169 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14170 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14171 }
14172
14173 void
14174 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14175 {
14176 struct mips_elf_link_hash_table *htab;
14177 Elf_Internal_Ehdr *i_ehdrp;
14178
14179 i_ehdrp = elf_elfheader (abfd);
14180 if (link_info)
14181 {
14182 htab = mips_elf_hash_table (link_info);
14183 BFD_ASSERT (htab != NULL);
14184
14185 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14186 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14187 }
14188 }
This page took 0.664746 seconds and 4 git commands to generate.