MIPS/BFD: Fix assertion in `mips_elf_sort_hash_table'
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we suppress checks for invalid branches between ISA modes. */
447 bfd_boolean ignore_branch_isa;
448
449 /* True if we're generating code for VxWorks. */
450 bfd_boolean is_vxworks;
451
452 /* True if we already reported the small-data section overflow. */
453 bfd_boolean small_data_overflow_reported;
454
455 /* Shortcuts to some dynamic sections, or NULL if they are not
456 being used. */
457 asection *srelplt2;
458 asection *sstubs;
459
460 /* The master GOT information. */
461 struct mips_got_info *got_info;
462
463 /* The global symbol in the GOT with the lowest index in the dynamic
464 symbol table. */
465 struct elf_link_hash_entry *global_gotsym;
466
467 /* The size of the PLT header in bytes. */
468 bfd_vma plt_header_size;
469
470 /* The size of a standard PLT entry in bytes. */
471 bfd_vma plt_mips_entry_size;
472
473 /* The size of a compressed PLT entry in bytes. */
474 bfd_vma plt_comp_entry_size;
475
476 /* The offset of the next standard PLT entry to create. */
477 bfd_vma plt_mips_offset;
478
479 /* The offset of the next compressed PLT entry to create. */
480 bfd_vma plt_comp_offset;
481
482 /* The index of the next .got.plt entry to create. */
483 bfd_vma plt_got_index;
484
485 /* The number of functions that need a lazy-binding stub. */
486 bfd_vma lazy_stub_count;
487
488 /* The size of a function stub entry in bytes. */
489 bfd_vma function_stub_size;
490
491 /* The number of reserved entries at the beginning of the GOT. */
492 unsigned int reserved_gotno;
493
494 /* The section used for mips_elf_la25_stub trampolines.
495 See the comment above that structure for details. */
496 asection *strampoline;
497
498 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
499 pairs. */
500 htab_t la25_stubs;
501
502 /* A function FN (NAME, IS, OS) that creates a new input section
503 called NAME and links it to output section OS. If IS is nonnull,
504 the new section should go immediately before it, otherwise it
505 should go at the (current) beginning of OS.
506
507 The function returns the new section on success, otherwise it
508 returns null. */
509 asection *(*add_stub_section) (const char *, asection *, asection *);
510
511 /* Small local sym cache. */
512 struct sym_cache sym_cache;
513
514 /* Is the PLT header compressed? */
515 unsigned int plt_header_is_comp : 1;
516 };
517
518 /* Get the MIPS ELF linker hash table from a link_info structure. */
519
520 #define mips_elf_hash_table(p) \
521 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
522 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
523
524 /* A structure used to communicate with htab_traverse callbacks. */
525 struct mips_htab_traverse_info
526 {
527 /* The usual link-wide information. */
528 struct bfd_link_info *info;
529 bfd *output_bfd;
530
531 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
532 bfd_boolean error;
533 };
534
535 /* MIPS ELF private object data. */
536
537 struct mips_elf_obj_tdata
538 {
539 /* Generic ELF private object data. */
540 struct elf_obj_tdata root;
541
542 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
543 bfd *abi_fp_bfd;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
546 bfd *abi_msa_bfd;
547
548 /* The abiflags for this object. */
549 Elf_Internal_ABIFlags_v0 abiflags;
550 bfd_boolean abiflags_valid;
551
552 /* The GOT requirements of input bfds. */
553 struct mips_got_info *got;
554
555 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
556 included directly in this one, but there's no point to wasting
557 the memory just for the infrequently called find_nearest_line. */
558 struct mips_elf_find_line *find_line_info;
559
560 /* An array of stub sections indexed by symbol number. */
561 asection **local_stubs;
562 asection **local_call_stubs;
563
564 /* The Irix 5 support uses two virtual sections, which represent
565 text/data symbols defined in dynamic objects. */
566 asymbol *elf_data_symbol;
567 asymbol *elf_text_symbol;
568 asection *elf_data_section;
569 asection *elf_text_section;
570 };
571
572 /* Get MIPS ELF private object data from BFD's tdata. */
573
574 #define mips_elf_tdata(bfd) \
575 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
576
577 #define TLS_RELOC_P(r_type) \
578 (r_type == R_MIPS_TLS_DTPMOD32 \
579 || r_type == R_MIPS_TLS_DTPMOD64 \
580 || r_type == R_MIPS_TLS_DTPREL32 \
581 || r_type == R_MIPS_TLS_DTPREL64 \
582 || r_type == R_MIPS_TLS_GD \
583 || r_type == R_MIPS_TLS_LDM \
584 || r_type == R_MIPS_TLS_DTPREL_HI16 \
585 || r_type == R_MIPS_TLS_DTPREL_LO16 \
586 || r_type == R_MIPS_TLS_GOTTPREL \
587 || r_type == R_MIPS_TLS_TPREL32 \
588 || r_type == R_MIPS_TLS_TPREL64 \
589 || r_type == R_MIPS_TLS_TPREL_HI16 \
590 || r_type == R_MIPS_TLS_TPREL_LO16 \
591 || r_type == R_MIPS16_TLS_GD \
592 || r_type == R_MIPS16_TLS_LDM \
593 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
594 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
595 || r_type == R_MIPS16_TLS_GOTTPREL \
596 || r_type == R_MIPS16_TLS_TPREL_HI16 \
597 || r_type == R_MIPS16_TLS_TPREL_LO16 \
598 || r_type == R_MICROMIPS_TLS_GD \
599 || r_type == R_MICROMIPS_TLS_LDM \
600 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
601 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
602 || r_type == R_MICROMIPS_TLS_GOTTPREL \
603 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
605
606 /* Structure used to pass information to mips_elf_output_extsym. */
607
608 struct extsym_info
609 {
610 bfd *abfd;
611 struct bfd_link_info *info;
612 struct ecoff_debug_info *debug;
613 const struct ecoff_debug_swap *swap;
614 bfd_boolean failed;
615 };
616
617 /* The names of the runtime procedure table symbols used on IRIX5. */
618
619 static const char * const mips_elf_dynsym_rtproc_names[] =
620 {
621 "_procedure_table",
622 "_procedure_string_table",
623 "_procedure_table_size",
624 NULL
625 };
626
627 /* These structures are used to generate the .compact_rel section on
628 IRIX5. */
629
630 typedef struct
631 {
632 unsigned long id1; /* Always one? */
633 unsigned long num; /* Number of compact relocation entries. */
634 unsigned long id2; /* Always two? */
635 unsigned long offset; /* The file offset of the first relocation. */
636 unsigned long reserved0; /* Zero? */
637 unsigned long reserved1; /* Zero? */
638 } Elf32_compact_rel;
639
640 typedef struct
641 {
642 bfd_byte id1[4];
643 bfd_byte num[4];
644 bfd_byte id2[4];
645 bfd_byte offset[4];
646 bfd_byte reserved0[4];
647 bfd_byte reserved1[4];
648 } Elf32_External_compact_rel;
649
650 typedef struct
651 {
652 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
653 unsigned int rtype : 4; /* Relocation types. See below. */
654 unsigned int dist2to : 8;
655 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
656 unsigned long konst; /* KONST field. See below. */
657 unsigned long vaddr; /* VADDR to be relocated. */
658 } Elf32_crinfo;
659
660 typedef struct
661 {
662 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
663 unsigned int rtype : 4; /* Relocation types. See below. */
664 unsigned int dist2to : 8;
665 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
666 unsigned long konst; /* KONST field. See below. */
667 } Elf32_crinfo2;
668
669 typedef struct
670 {
671 bfd_byte info[4];
672 bfd_byte konst[4];
673 bfd_byte vaddr[4];
674 } Elf32_External_crinfo;
675
676 typedef struct
677 {
678 bfd_byte info[4];
679 bfd_byte konst[4];
680 } Elf32_External_crinfo2;
681
682 /* These are the constants used to swap the bitfields in a crinfo. */
683
684 #define CRINFO_CTYPE (0x1)
685 #define CRINFO_CTYPE_SH (31)
686 #define CRINFO_RTYPE (0xf)
687 #define CRINFO_RTYPE_SH (27)
688 #define CRINFO_DIST2TO (0xff)
689 #define CRINFO_DIST2TO_SH (19)
690 #define CRINFO_RELVADDR (0x7ffff)
691 #define CRINFO_RELVADDR_SH (0)
692
693 /* A compact relocation info has long (3 words) or short (2 words)
694 formats. A short format doesn't have VADDR field and relvaddr
695 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
696 #define CRF_MIPS_LONG 1
697 #define CRF_MIPS_SHORT 0
698
699 /* There are 4 types of compact relocation at least. The value KONST
700 has different meaning for each type:
701
702 (type) (konst)
703 CT_MIPS_REL32 Address in data
704 CT_MIPS_WORD Address in word (XXX)
705 CT_MIPS_GPHI_LO GP - vaddr
706 CT_MIPS_JMPAD Address to jump
707 */
708
709 #define CRT_MIPS_REL32 0xa
710 #define CRT_MIPS_WORD 0xb
711 #define CRT_MIPS_GPHI_LO 0xc
712 #define CRT_MIPS_JMPAD 0xd
713
714 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
715 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
716 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
717 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
718 \f
719 /* The structure of the runtime procedure descriptor created by the
720 loader for use by the static exception system. */
721
722 typedef struct runtime_pdr {
723 bfd_vma adr; /* Memory address of start of procedure. */
724 long regmask; /* Save register mask. */
725 long regoffset; /* Save register offset. */
726 long fregmask; /* Save floating point register mask. */
727 long fregoffset; /* Save floating point register offset. */
728 long frameoffset; /* Frame size. */
729 short framereg; /* Frame pointer register. */
730 short pcreg; /* Offset or reg of return pc. */
731 long irpss; /* Index into the runtime string table. */
732 long reserved;
733 struct exception_info *exception_info;/* Pointer to exception array. */
734 } RPDR, *pRPDR;
735 #define cbRPDR sizeof (RPDR)
736 #define rpdNil ((pRPDR) 0)
737 \f
738 static struct mips_got_entry *mips_elf_create_local_got_entry
739 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
740 struct mips_elf_link_hash_entry *, int);
741 static bfd_boolean mips_elf_sort_hash_table_f
742 (struct mips_elf_link_hash_entry *, void *);
743 static bfd_vma mips_elf_high
744 (bfd_vma);
745 static bfd_boolean mips_elf_create_dynamic_relocation
746 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
747 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
748 bfd_vma *, asection *);
749 static bfd_vma mips_elf_adjust_gp
750 (bfd *, struct mips_got_info *, bfd *);
751
752 /* This will be used when we sort the dynamic relocation records. */
753 static bfd *reldyn_sorting_bfd;
754
755 /* True if ABFD is for CPUs with load interlocking that include
756 non-MIPS1 CPUs and R3900. */
757 #define LOAD_INTERLOCKS_P(abfd) \
758 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
759 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
760
761 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
762 This should be safe for all architectures. We enable this predicate
763 for RM9000 for now. */
764 #define JAL_TO_BAL_P(abfd) \
765 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
766
767 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
768 This should be safe for all architectures. We enable this predicate for
769 all CPUs. */
770 #define JALR_TO_BAL_P(abfd) 1
771
772 /* True if ABFD is for CPUs that are faster if JR is converted to B.
773 This should be safe for all architectures. We enable this predicate for
774 all CPUs. */
775 #define JR_TO_B_P(abfd) 1
776
777 /* True if ABFD is a PIC object. */
778 #define PIC_OBJECT_P(abfd) \
779 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
780
781 /* Nonzero if ABFD is using the O32 ABI. */
782 #define ABI_O32_P(abfd) \
783 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
784
785 /* Nonzero if ABFD is using the N32 ABI. */
786 #define ABI_N32_P(abfd) \
787 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
788
789 /* Nonzero if ABFD is using the N64 ABI. */
790 #define ABI_64_P(abfd) \
791 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
792
793 /* Nonzero if ABFD is using NewABI conventions. */
794 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
795
796 /* Nonzero if ABFD has microMIPS code. */
797 #define MICROMIPS_P(abfd) \
798 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
799
800 /* Nonzero if ABFD is MIPS R6. */
801 #define MIPSR6_P(abfd) \
802 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
803 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
804
805 /* The IRIX compatibility level we are striving for. */
806 #define IRIX_COMPAT(abfd) \
807 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
808
809 /* Whether we are trying to be compatible with IRIX at all. */
810 #define SGI_COMPAT(abfd) \
811 (IRIX_COMPAT (abfd) != ict_none)
812
813 /* The name of the options section. */
814 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
815 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
816
817 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
818 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
819 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
820 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
821
822 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
823 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
824 (strcmp (NAME, ".MIPS.abiflags") == 0)
825
826 /* Whether the section is readonly. */
827 #define MIPS_ELF_READONLY_SECTION(sec) \
828 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
829 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
830
831 /* The name of the stub section. */
832 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
833
834 /* The size of an external REL relocation. */
835 #define MIPS_ELF_REL_SIZE(abfd) \
836 (get_elf_backend_data (abfd)->s->sizeof_rel)
837
838 /* The size of an external RELA relocation. */
839 #define MIPS_ELF_RELA_SIZE(abfd) \
840 (get_elf_backend_data (abfd)->s->sizeof_rela)
841
842 /* The size of an external dynamic table entry. */
843 #define MIPS_ELF_DYN_SIZE(abfd) \
844 (get_elf_backend_data (abfd)->s->sizeof_dyn)
845
846 /* The size of a GOT entry. */
847 #define MIPS_ELF_GOT_SIZE(abfd) \
848 (get_elf_backend_data (abfd)->s->arch_size / 8)
849
850 /* The size of the .rld_map section. */
851 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
852 (get_elf_backend_data (abfd)->s->arch_size / 8)
853
854 /* The size of a symbol-table entry. */
855 #define MIPS_ELF_SYM_SIZE(abfd) \
856 (get_elf_backend_data (abfd)->s->sizeof_sym)
857
858 /* The default alignment for sections, as a power of two. */
859 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
860 (get_elf_backend_data (abfd)->s->log_file_align)
861
862 /* Get word-sized data. */
863 #define MIPS_ELF_GET_WORD(abfd, ptr) \
864 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
865
866 /* Put out word-sized data. */
867 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
868 (ABI_64_P (abfd) \
869 ? bfd_put_64 (abfd, val, ptr) \
870 : bfd_put_32 (abfd, val, ptr))
871
872 /* The opcode for word-sized loads (LW or LD). */
873 #define MIPS_ELF_LOAD_WORD(abfd) \
874 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
875
876 /* Add a dynamic symbol table-entry. */
877 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
878 _bfd_elf_add_dynamic_entry (info, tag, val)
879
880 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
881 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
882
883 /* The name of the dynamic relocation section. */
884 #define MIPS_ELF_REL_DYN_NAME(INFO) \
885 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
886
887 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
888 from smaller values. Start with zero, widen, *then* decrement. */
889 #define MINUS_ONE (((bfd_vma)0) - 1)
890 #define MINUS_TWO (((bfd_vma)0) - 2)
891
892 /* The value to write into got[1] for SVR4 targets, to identify it is
893 a GNU object. The dynamic linker can then use got[1] to store the
894 module pointer. */
895 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
896 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
897
898 /* The offset of $gp from the beginning of the .got section. */
899 #define ELF_MIPS_GP_OFFSET(INFO) \
900 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
901
902 /* The maximum size of the GOT for it to be addressable using 16-bit
903 offsets from $gp. */
904 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
905
906 /* Instructions which appear in a stub. */
907 #define STUB_LW(abfd) \
908 ((ABI_64_P (abfd) \
909 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
910 : 0x8f998010)) /* lw t9,0x8010(gp) */
911 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
912 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
913 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
914 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
915 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
916 #define STUB_LI16S(abfd, VAL) \
917 ((ABI_64_P (abfd) \
918 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
919 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
920
921 /* Likewise for the microMIPS ASE. */
922 #define STUB_LW_MICROMIPS(abfd) \
923 (ABI_64_P (abfd) \
924 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
925 : 0xff3c8010) /* lw t9,0x8010(gp) */
926 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
927 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
928 #define STUB_LUI_MICROMIPS(VAL) \
929 (0x41b80000 + (VAL)) /* lui t8,VAL */
930 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
931 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
932 #define STUB_ORI_MICROMIPS(VAL) \
933 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
934 #define STUB_LI16U_MICROMIPS(VAL) \
935 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
936 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
937 (ABI_64_P (abfd) \
938 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
939 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
940
941 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
942 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
943 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
944 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
945 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
946 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
947
948 /* The name of the dynamic interpreter. This is put in the .interp
949 section. */
950
951 #define ELF_DYNAMIC_INTERPRETER(abfd) \
952 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
953 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
954 : "/usr/lib/libc.so.1")
955
956 #ifdef BFD64
957 #define MNAME(bfd,pre,pos) \
958 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
959 #define ELF_R_SYM(bfd, i) \
960 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
961 #define ELF_R_TYPE(bfd, i) \
962 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
963 #define ELF_R_INFO(bfd, s, t) \
964 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
965 #else
966 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
967 #define ELF_R_SYM(bfd, i) \
968 (ELF32_R_SYM (i))
969 #define ELF_R_TYPE(bfd, i) \
970 (ELF32_R_TYPE (i))
971 #define ELF_R_INFO(bfd, s, t) \
972 (ELF32_R_INFO (s, t))
973 #endif
974 \f
975 /* The mips16 compiler uses a couple of special sections to handle
976 floating point arguments.
977
978 Section names that look like .mips16.fn.FNNAME contain stubs that
979 copy floating point arguments from the fp regs to the gp regs and
980 then jump to FNNAME. If any 32 bit function calls FNNAME, the
981 call should be redirected to the stub instead. If no 32 bit
982 function calls FNNAME, the stub should be discarded. We need to
983 consider any reference to the function, not just a call, because
984 if the address of the function is taken we will need the stub,
985 since the address might be passed to a 32 bit function.
986
987 Section names that look like .mips16.call.FNNAME contain stubs
988 that copy floating point arguments from the gp regs to the fp
989 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
990 then any 16 bit function that calls FNNAME should be redirected
991 to the stub instead. If FNNAME is not a 32 bit function, the
992 stub should be discarded.
993
994 .mips16.call.fp.FNNAME sections are similar, but contain stubs
995 which call FNNAME and then copy the return value from the fp regs
996 to the gp regs. These stubs store the return value in $18 while
997 calling FNNAME; any function which might call one of these stubs
998 must arrange to save $18 around the call. (This case is not
999 needed for 32 bit functions that call 16 bit functions, because
1000 16 bit functions always return floating point values in both
1001 $f0/$f1 and $2/$3.)
1002
1003 Note that in all cases FNNAME might be defined statically.
1004 Therefore, FNNAME is not used literally. Instead, the relocation
1005 information will indicate which symbol the section is for.
1006
1007 We record any stubs that we find in the symbol table. */
1008
1009 #define FN_STUB ".mips16.fn."
1010 #define CALL_STUB ".mips16.call."
1011 #define CALL_FP_STUB ".mips16.call.fp."
1012
1013 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1014 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1015 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1016 \f
1017 /* The format of the first PLT entry in an O32 executable. */
1018 static const bfd_vma mips_o32_exec_plt0_entry[] =
1019 {
1020 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1021 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1022 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1023 0x031cc023, /* subu $24, $24, $28 */
1024 0x03e07825, /* or t7, ra, zero */
1025 0x0018c082, /* srl $24, $24, 2 */
1026 0x0320f809, /* jalr $25 */
1027 0x2718fffe /* subu $24, $24, 2 */
1028 };
1029
1030 /* The format of the first PLT entry in an N32 executable. Different
1031 because gp ($28) is not available; we use t2 ($14) instead. */
1032 static const bfd_vma mips_n32_exec_plt0_entry[] =
1033 {
1034 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1035 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1036 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1037 0x030ec023, /* subu $24, $24, $14 */
1038 0x03e07825, /* or t7, ra, zero */
1039 0x0018c082, /* srl $24, $24, 2 */
1040 0x0320f809, /* jalr $25 */
1041 0x2718fffe /* subu $24, $24, 2 */
1042 };
1043
1044 /* The format of the first PLT entry in an N64 executable. Different
1045 from N32 because of the increased size of GOT entries. */
1046 static const bfd_vma mips_n64_exec_plt0_entry[] =
1047 {
1048 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1049 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1050 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1051 0x030ec023, /* subu $24, $24, $14 */
1052 0x03e07825, /* or t7, ra, zero */
1053 0x0018c0c2, /* srl $24, $24, 3 */
1054 0x0320f809, /* jalr $25 */
1055 0x2718fffe /* subu $24, $24, 2 */
1056 };
1057
1058 /* The format of the microMIPS first PLT entry in an O32 executable.
1059 We rely on v0 ($2) rather than t8 ($24) to contain the address
1060 of the GOTPLT entry handled, so this stub may only be used when
1061 all the subsequent PLT entries are microMIPS code too.
1062
1063 The trailing NOP is for alignment and correct disassembly only. */
1064 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1065 {
1066 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1067 0xff23, 0x0000, /* lw $25, 0($3) */
1068 0x0535, /* subu $2, $2, $3 */
1069 0x2525, /* srl $2, $2, 2 */
1070 0x3302, 0xfffe, /* subu $24, $2, 2 */
1071 0x0dff, /* move $15, $31 */
1072 0x45f9, /* jalrs $25 */
1073 0x0f83, /* move $28, $3 */
1074 0x0c00 /* nop */
1075 };
1076
1077 /* The format of the microMIPS first PLT entry in an O32 executable
1078 in the insn32 mode. */
1079 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1080 {
1081 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1082 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1083 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1084 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1085 0x001f, 0x7a90, /* or $15, $31, zero */
1086 0x0318, 0x1040, /* srl $24, $24, 2 */
1087 0x03f9, 0x0f3c, /* jalr $25 */
1088 0x3318, 0xfffe /* subu $24, $24, 2 */
1089 };
1090
1091 /* The format of subsequent standard PLT entries. */
1092 static const bfd_vma mips_exec_plt_entry[] =
1093 {
1094 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1095 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1096 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1097 0x03200008 /* jr $25 */
1098 };
1099
1100 /* In the following PLT entry the JR and ADDIU instructions will
1101 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1102 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1103 static const bfd_vma mipsr6_exec_plt_entry[] =
1104 {
1105 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1106 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1107 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1108 0x03200009 /* jr $25 */
1109 };
1110
1111 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1112 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1113 directly addressable. */
1114 static const bfd_vma mips16_o32_exec_plt_entry[] =
1115 {
1116 0xb203, /* lw $2, 12($pc) */
1117 0x9a60, /* lw $3, 0($2) */
1118 0x651a, /* move $24, $2 */
1119 0xeb00, /* jr $3 */
1120 0x653b, /* move $25, $3 */
1121 0x6500, /* nop */
1122 0x0000, 0x0000 /* .word (.got.plt entry) */
1123 };
1124
1125 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1126 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1127 static const bfd_vma micromips_o32_exec_plt_entry[] =
1128 {
1129 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1130 0xff22, 0x0000, /* lw $25, 0($2) */
1131 0x4599, /* jr $25 */
1132 0x0f02 /* move $24, $2 */
1133 };
1134
1135 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1136 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1137 {
1138 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1139 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1140 0x0019, 0x0f3c, /* jr $25 */
1141 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1142 };
1143
1144 /* The format of the first PLT entry in a VxWorks executable. */
1145 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1146 {
1147 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1148 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1149 0x8f390008, /* lw t9, 8(t9) */
1150 0x00000000, /* nop */
1151 0x03200008, /* jr t9 */
1152 0x00000000 /* nop */
1153 };
1154
1155 /* The format of subsequent PLT entries. */
1156 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1157 {
1158 0x10000000, /* b .PLT_resolver */
1159 0x24180000, /* li t8, <pltindex> */
1160 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1161 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1162 0x8f390000, /* lw t9, 0(t9) */
1163 0x00000000, /* nop */
1164 0x03200008, /* jr t9 */
1165 0x00000000 /* nop */
1166 };
1167
1168 /* The format of the first PLT entry in a VxWorks shared object. */
1169 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1170 {
1171 0x8f990008, /* lw t9, 8(gp) */
1172 0x00000000, /* nop */
1173 0x03200008, /* jr t9 */
1174 0x00000000, /* nop */
1175 0x00000000, /* nop */
1176 0x00000000 /* nop */
1177 };
1178
1179 /* The format of subsequent PLT entries. */
1180 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1181 {
1182 0x10000000, /* b .PLT_resolver */
1183 0x24180000 /* li t8, <pltindex> */
1184 };
1185 \f
1186 /* microMIPS 32-bit opcode helper installer. */
1187
1188 static void
1189 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1190 {
1191 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1192 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1193 }
1194
1195 /* microMIPS 32-bit opcode helper retriever. */
1196
1197 static bfd_vma
1198 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1199 {
1200 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1201 }
1202 \f
1203 /* Look up an entry in a MIPS ELF linker hash table. */
1204
1205 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1206 ((struct mips_elf_link_hash_entry *) \
1207 elf_link_hash_lookup (&(table)->root, (string), (create), \
1208 (copy), (follow)))
1209
1210 /* Traverse a MIPS ELF linker hash table. */
1211
1212 #define mips_elf_link_hash_traverse(table, func, info) \
1213 (elf_link_hash_traverse \
1214 (&(table)->root, \
1215 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1216 (info)))
1217
1218 /* Find the base offsets for thread-local storage in this object,
1219 for GD/LD and IE/LE respectively. */
1220
1221 #define TP_OFFSET 0x7000
1222 #define DTP_OFFSET 0x8000
1223
1224 static bfd_vma
1225 dtprel_base (struct bfd_link_info *info)
1226 {
1227 /* If tls_sec is NULL, we should have signalled an error already. */
1228 if (elf_hash_table (info)->tls_sec == NULL)
1229 return 0;
1230 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1231 }
1232
1233 static bfd_vma
1234 tprel_base (struct bfd_link_info *info)
1235 {
1236 /* If tls_sec is NULL, we should have signalled an error already. */
1237 if (elf_hash_table (info)->tls_sec == NULL)
1238 return 0;
1239 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1240 }
1241
1242 /* Create an entry in a MIPS ELF linker hash table. */
1243
1244 static struct bfd_hash_entry *
1245 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1246 struct bfd_hash_table *table, const char *string)
1247 {
1248 struct mips_elf_link_hash_entry *ret =
1249 (struct mips_elf_link_hash_entry *) entry;
1250
1251 /* Allocate the structure if it has not already been allocated by a
1252 subclass. */
1253 if (ret == NULL)
1254 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1255 if (ret == NULL)
1256 return (struct bfd_hash_entry *) ret;
1257
1258 /* Call the allocation method of the superclass. */
1259 ret = ((struct mips_elf_link_hash_entry *)
1260 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1261 table, string));
1262 if (ret != NULL)
1263 {
1264 /* Set local fields. */
1265 memset (&ret->esym, 0, sizeof (EXTR));
1266 /* We use -2 as a marker to indicate that the information has
1267 not been set. -1 means there is no associated ifd. */
1268 ret->esym.ifd = -2;
1269 ret->la25_stub = 0;
1270 ret->possibly_dynamic_relocs = 0;
1271 ret->fn_stub = NULL;
1272 ret->call_stub = NULL;
1273 ret->call_fp_stub = NULL;
1274 ret->global_got_area = GGA_NONE;
1275 ret->got_only_for_calls = TRUE;
1276 ret->readonly_reloc = FALSE;
1277 ret->has_static_relocs = FALSE;
1278 ret->no_fn_stub = FALSE;
1279 ret->need_fn_stub = FALSE;
1280 ret->has_nonpic_branches = FALSE;
1281 ret->needs_lazy_stub = FALSE;
1282 ret->use_plt_entry = FALSE;
1283 }
1284
1285 return (struct bfd_hash_entry *) ret;
1286 }
1287
1288 /* Allocate MIPS ELF private object data. */
1289
1290 bfd_boolean
1291 _bfd_mips_elf_mkobject (bfd *abfd)
1292 {
1293 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1294 MIPS_ELF_DATA);
1295 }
1296
1297 bfd_boolean
1298 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1299 {
1300 if (!sec->used_by_bfd)
1301 {
1302 struct _mips_elf_section_data *sdata;
1303 bfd_size_type amt = sizeof (*sdata);
1304
1305 sdata = bfd_zalloc (abfd, amt);
1306 if (sdata == NULL)
1307 return FALSE;
1308 sec->used_by_bfd = sdata;
1309 }
1310
1311 return _bfd_elf_new_section_hook (abfd, sec);
1312 }
1313 \f
1314 /* Read ECOFF debugging information from a .mdebug section into a
1315 ecoff_debug_info structure. */
1316
1317 bfd_boolean
1318 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1319 struct ecoff_debug_info *debug)
1320 {
1321 HDRR *symhdr;
1322 const struct ecoff_debug_swap *swap;
1323 char *ext_hdr;
1324
1325 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1326 memset (debug, 0, sizeof (*debug));
1327
1328 ext_hdr = bfd_malloc (swap->external_hdr_size);
1329 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1330 goto error_return;
1331
1332 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1333 swap->external_hdr_size))
1334 goto error_return;
1335
1336 symhdr = &debug->symbolic_header;
1337 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1338
1339 /* The symbolic header contains absolute file offsets and sizes to
1340 read. */
1341 #define READ(ptr, offset, count, size, type) \
1342 if (symhdr->count == 0) \
1343 debug->ptr = NULL; \
1344 else \
1345 { \
1346 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1347 debug->ptr = bfd_malloc (amt); \
1348 if (debug->ptr == NULL) \
1349 goto error_return; \
1350 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1351 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1352 goto error_return; \
1353 }
1354
1355 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1356 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1357 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1358 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1359 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1360 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1361 union aux_ext *);
1362 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1363 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1364 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1365 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1366 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1367 #undef READ
1368
1369 debug->fdr = NULL;
1370
1371 return TRUE;
1372
1373 error_return:
1374 if (ext_hdr != NULL)
1375 free (ext_hdr);
1376 if (debug->line != NULL)
1377 free (debug->line);
1378 if (debug->external_dnr != NULL)
1379 free (debug->external_dnr);
1380 if (debug->external_pdr != NULL)
1381 free (debug->external_pdr);
1382 if (debug->external_sym != NULL)
1383 free (debug->external_sym);
1384 if (debug->external_opt != NULL)
1385 free (debug->external_opt);
1386 if (debug->external_aux != NULL)
1387 free (debug->external_aux);
1388 if (debug->ss != NULL)
1389 free (debug->ss);
1390 if (debug->ssext != NULL)
1391 free (debug->ssext);
1392 if (debug->external_fdr != NULL)
1393 free (debug->external_fdr);
1394 if (debug->external_rfd != NULL)
1395 free (debug->external_rfd);
1396 if (debug->external_ext != NULL)
1397 free (debug->external_ext);
1398 return FALSE;
1399 }
1400 \f
1401 /* Swap RPDR (runtime procedure table entry) for output. */
1402
1403 static void
1404 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1405 {
1406 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1407 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1408 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1409 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1410 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1411 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1412
1413 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1414 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1415
1416 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1417 }
1418
1419 /* Create a runtime procedure table from the .mdebug section. */
1420
1421 static bfd_boolean
1422 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1423 struct bfd_link_info *info, asection *s,
1424 struct ecoff_debug_info *debug)
1425 {
1426 const struct ecoff_debug_swap *swap;
1427 HDRR *hdr = &debug->symbolic_header;
1428 RPDR *rpdr, *rp;
1429 struct rpdr_ext *erp;
1430 void *rtproc;
1431 struct pdr_ext *epdr;
1432 struct sym_ext *esym;
1433 char *ss, **sv;
1434 char *str;
1435 bfd_size_type size;
1436 bfd_size_type count;
1437 unsigned long sindex;
1438 unsigned long i;
1439 PDR pdr;
1440 SYMR sym;
1441 const char *no_name_func = _("static procedure (no name)");
1442
1443 epdr = NULL;
1444 rpdr = NULL;
1445 esym = NULL;
1446 ss = NULL;
1447 sv = NULL;
1448
1449 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1450
1451 sindex = strlen (no_name_func) + 1;
1452 count = hdr->ipdMax;
1453 if (count > 0)
1454 {
1455 size = swap->external_pdr_size;
1456
1457 epdr = bfd_malloc (size * count);
1458 if (epdr == NULL)
1459 goto error_return;
1460
1461 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1462 goto error_return;
1463
1464 size = sizeof (RPDR);
1465 rp = rpdr = bfd_malloc (size * count);
1466 if (rpdr == NULL)
1467 goto error_return;
1468
1469 size = sizeof (char *);
1470 sv = bfd_malloc (size * count);
1471 if (sv == NULL)
1472 goto error_return;
1473
1474 count = hdr->isymMax;
1475 size = swap->external_sym_size;
1476 esym = bfd_malloc (size * count);
1477 if (esym == NULL)
1478 goto error_return;
1479
1480 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1481 goto error_return;
1482
1483 count = hdr->issMax;
1484 ss = bfd_malloc (count);
1485 if (ss == NULL)
1486 goto error_return;
1487 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1488 goto error_return;
1489
1490 count = hdr->ipdMax;
1491 for (i = 0; i < (unsigned long) count; i++, rp++)
1492 {
1493 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1494 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1495 rp->adr = sym.value;
1496 rp->regmask = pdr.regmask;
1497 rp->regoffset = pdr.regoffset;
1498 rp->fregmask = pdr.fregmask;
1499 rp->fregoffset = pdr.fregoffset;
1500 rp->frameoffset = pdr.frameoffset;
1501 rp->framereg = pdr.framereg;
1502 rp->pcreg = pdr.pcreg;
1503 rp->irpss = sindex;
1504 sv[i] = ss + sym.iss;
1505 sindex += strlen (sv[i]) + 1;
1506 }
1507 }
1508
1509 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1510 size = BFD_ALIGN (size, 16);
1511 rtproc = bfd_alloc (abfd, size);
1512 if (rtproc == NULL)
1513 {
1514 mips_elf_hash_table (info)->procedure_count = 0;
1515 goto error_return;
1516 }
1517
1518 mips_elf_hash_table (info)->procedure_count = count + 2;
1519
1520 erp = rtproc;
1521 memset (erp, 0, sizeof (struct rpdr_ext));
1522 erp++;
1523 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1524 strcpy (str, no_name_func);
1525 str += strlen (no_name_func) + 1;
1526 for (i = 0; i < count; i++)
1527 {
1528 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1529 strcpy (str, sv[i]);
1530 str += strlen (sv[i]) + 1;
1531 }
1532 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1533
1534 /* Set the size and contents of .rtproc section. */
1535 s->size = size;
1536 s->contents = rtproc;
1537
1538 /* Skip this section later on (I don't think this currently
1539 matters, but someday it might). */
1540 s->map_head.link_order = NULL;
1541
1542 if (epdr != NULL)
1543 free (epdr);
1544 if (rpdr != NULL)
1545 free (rpdr);
1546 if (esym != NULL)
1547 free (esym);
1548 if (ss != NULL)
1549 free (ss);
1550 if (sv != NULL)
1551 free (sv);
1552
1553 return TRUE;
1554
1555 error_return:
1556 if (epdr != NULL)
1557 free (epdr);
1558 if (rpdr != NULL)
1559 free (rpdr);
1560 if (esym != NULL)
1561 free (esym);
1562 if (ss != NULL)
1563 free (ss);
1564 if (sv != NULL)
1565 free (sv);
1566 return FALSE;
1567 }
1568 \f
1569 /* We're going to create a stub for H. Create a symbol for the stub's
1570 value and size, to help make the disassembly easier to read. */
1571
1572 static bfd_boolean
1573 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1574 struct mips_elf_link_hash_entry *h,
1575 const char *prefix, asection *s, bfd_vma value,
1576 bfd_vma size)
1577 {
1578 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1579 struct bfd_link_hash_entry *bh;
1580 struct elf_link_hash_entry *elfh;
1581 char *name;
1582 bfd_boolean res;
1583
1584 if (micromips_p)
1585 value |= 1;
1586
1587 /* Create a new symbol. */
1588 name = concat (prefix, h->root.root.root.string, NULL);
1589 bh = NULL;
1590 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1591 BSF_LOCAL, s, value, NULL,
1592 TRUE, FALSE, &bh);
1593 free (name);
1594 if (! res)
1595 return FALSE;
1596
1597 /* Make it a local function. */
1598 elfh = (struct elf_link_hash_entry *) bh;
1599 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1600 elfh->size = size;
1601 elfh->forced_local = 1;
1602 if (micromips_p)
1603 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1604 return TRUE;
1605 }
1606
1607 /* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1609 to read. */
1610
1611 static bfd_boolean
1612 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1614 const char *prefix)
1615 {
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
1618 char *name;
1619 asection *s;
1620 bfd_vma value;
1621 bfd_boolean res;
1622
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1628
1629 /* Create a new symbol. */
1630 name = concat (prefix, h->root.root.root.string, NULL);
1631 bh = NULL;
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1634 TRUE, FALSE, &bh);
1635 free (name);
1636 if (! res)
1637 return FALSE;
1638
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1645 return TRUE;
1646 }
1647
1648 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1650
1651 static bfd_boolean
1652 section_allows_mips16_refs_p (asection *section)
1653 {
1654 const char *name;
1655
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1661 }
1662
1663 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1666
1667 static unsigned long
1668 mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
1670 const Elf_Internal_Rela *relocs,
1671 const Elf_Internal_Rela *relend)
1672 {
1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1674 const Elf_Internal_Rela *rel;
1675
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1681
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1686
1687 return 0;
1688 }
1689
1690 /* Check the mips16 stubs for a particular symbol, and see if we can
1691 discard them. */
1692
1693 static void
1694 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
1696 {
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1701 {
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1704 }
1705
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1708 {
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
1712 h->fn_stub->size = 0;
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
1716 h->fn_stub->output_section = bfd_abs_section_ptr;
1717 }
1718
1719 if (h->call_stub != NULL
1720 && ELF_ST_IS_MIPS16 (h->root.other))
1721 {
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
1725 h->call_stub->size = 0;
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
1729 h->call_stub->output_section = bfd_abs_section_ptr;
1730 }
1731
1732 if (h->call_fp_stub != NULL
1733 && ELF_ST_IS_MIPS16 (h->root.other))
1734 {
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
1738 h->call_fp_stub->size = 0;
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1743 }
1744 }
1745
1746 /* Hashtable callbacks for mips_elf_la25_stubs. */
1747
1748 static hashval_t
1749 mips_elf_la25_stub_hash (const void *entry_)
1750 {
1751 const struct mips_elf_la25_stub *entry;
1752
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1756 }
1757
1758 static int
1759 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760 {
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1762
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1769 }
1770
1771 /* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1773 success. */
1774
1775 bfd_boolean
1776 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1778 asection *))
1779 {
1780 struct mips_elf_link_hash_table *htab;
1781
1782 htab = mips_elf_hash_table (info);
1783 if (htab == NULL)
1784 return FALSE;
1785
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1790 return FALSE;
1791
1792 return TRUE;
1793 }
1794
1795 /* Return true if H is a locally-defined PIC function, in the sense
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
1800
1801 static bfd_boolean
1802 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803 {
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
1808 && !bfd_is_und_section (h->root.root.u.def.section)
1809 && (!ELF_ST_IS_MIPS16 (h->root.other)
1810 || (h->fn_stub && h->need_fn_stub))
1811 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1812 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1813 }
1814
1815 /* Set *SEC to the input section that contains the target of STUB.
1816 Return the offset of the target from the start of that section. */
1817
1818 static bfd_vma
1819 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1820 asection **sec)
1821 {
1822 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1823 {
1824 BFD_ASSERT (stub->h->need_fn_stub);
1825 *sec = stub->h->fn_stub;
1826 return 0;
1827 }
1828 else
1829 {
1830 *sec = stub->h->root.root.u.def.section;
1831 return stub->h->root.root.u.def.value;
1832 }
1833 }
1834
1835 /* STUB describes an la25 stub that we have decided to implement
1836 by inserting an LUI/ADDIU pair before the target function.
1837 Create the section and redirect the function symbol to it. */
1838
1839 static bfd_boolean
1840 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1841 struct bfd_link_info *info)
1842 {
1843 struct mips_elf_link_hash_table *htab;
1844 char *name;
1845 asection *s, *input_section;
1846 unsigned int align;
1847
1848 htab = mips_elf_hash_table (info);
1849 if (htab == NULL)
1850 return FALSE;
1851
1852 /* Create a unique name for the new section. */
1853 name = bfd_malloc (11 + sizeof (".text.stub."));
1854 if (name == NULL)
1855 return FALSE;
1856 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1857
1858 /* Create the section. */
1859 mips_elf_get_la25_target (stub, &input_section);
1860 s = htab->add_stub_section (name, input_section,
1861 input_section->output_section);
1862 if (s == NULL)
1863 return FALSE;
1864
1865 /* Make sure that any padding goes before the stub. */
1866 align = input_section->alignment_power;
1867 if (!bfd_set_section_alignment (s->owner, s, align))
1868 return FALSE;
1869 if (align > 3)
1870 s->size = (1 << align) - 8;
1871
1872 /* Create a symbol for the stub. */
1873 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1874 stub->stub_section = s;
1875 stub->offset = s->size;
1876
1877 /* Allocate room for it. */
1878 s->size += 8;
1879 return TRUE;
1880 }
1881
1882 /* STUB describes an la25 stub that we have decided to implement
1883 with a separate trampoline. Allocate room for it and redirect
1884 the function symbol to it. */
1885
1886 static bfd_boolean
1887 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1888 struct bfd_link_info *info)
1889 {
1890 struct mips_elf_link_hash_table *htab;
1891 asection *s;
1892
1893 htab = mips_elf_hash_table (info);
1894 if (htab == NULL)
1895 return FALSE;
1896
1897 /* Create a trampoline section, if we haven't already. */
1898 s = htab->strampoline;
1899 if (s == NULL)
1900 {
1901 asection *input_section = stub->h->root.root.u.def.section;
1902 s = htab->add_stub_section (".text", NULL,
1903 input_section->output_section);
1904 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1905 return FALSE;
1906 htab->strampoline = s;
1907 }
1908
1909 /* Create a symbol for the stub. */
1910 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1911 stub->stub_section = s;
1912 stub->offset = s->size;
1913
1914 /* Allocate room for it. */
1915 s->size += 16;
1916 return TRUE;
1917 }
1918
1919 /* H describes a symbol that needs an la25 stub. Make sure that an
1920 appropriate stub exists and point H at it. */
1921
1922 static bfd_boolean
1923 mips_elf_add_la25_stub (struct bfd_link_info *info,
1924 struct mips_elf_link_hash_entry *h)
1925 {
1926 struct mips_elf_link_hash_table *htab;
1927 struct mips_elf_la25_stub search, *stub;
1928 bfd_boolean use_trampoline_p;
1929 asection *s;
1930 bfd_vma value;
1931 void **slot;
1932
1933 /* Describe the stub we want. */
1934 search.stub_section = NULL;
1935 search.offset = 0;
1936 search.h = h;
1937
1938 /* See if we've already created an equivalent stub. */
1939 htab = mips_elf_hash_table (info);
1940 if (htab == NULL)
1941 return FALSE;
1942
1943 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1944 if (slot == NULL)
1945 return FALSE;
1946
1947 stub = (struct mips_elf_la25_stub *) *slot;
1948 if (stub != NULL)
1949 {
1950 /* We can reuse the existing stub. */
1951 h->la25_stub = stub;
1952 return TRUE;
1953 }
1954
1955 /* Create a permanent copy of ENTRY and add it to the hash table. */
1956 stub = bfd_malloc (sizeof (search));
1957 if (stub == NULL)
1958 return FALSE;
1959 *stub = search;
1960 *slot = stub;
1961
1962 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1963 of the section and if we would need no more than 2 nops. */
1964 value = mips_elf_get_la25_target (stub, &s);
1965 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1966 value &= ~1;
1967 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1968
1969 h->la25_stub = stub;
1970 return (use_trampoline_p
1971 ? mips_elf_add_la25_trampoline (stub, info)
1972 : mips_elf_add_la25_intro (stub, info));
1973 }
1974
1975 /* A mips_elf_link_hash_traverse callback that is called before sizing
1976 sections. DATA points to a mips_htab_traverse_info structure. */
1977
1978 static bfd_boolean
1979 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1980 {
1981 struct mips_htab_traverse_info *hti;
1982
1983 hti = (struct mips_htab_traverse_info *) data;
1984 if (!bfd_link_relocatable (hti->info))
1985 mips_elf_check_mips16_stubs (hti->info, h);
1986
1987 if (mips_elf_local_pic_function_p (h))
1988 {
1989 /* PR 12845: If H is in a section that has been garbage
1990 collected it will have its output section set to *ABS*. */
1991 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1992 return TRUE;
1993
1994 /* H is a function that might need $25 to be valid on entry.
1995 If we're creating a non-PIC relocatable object, mark H as
1996 being PIC. If we're creating a non-relocatable object with
1997 non-PIC branches and jumps to H, make sure that H has an la25
1998 stub. */
1999 if (bfd_link_relocatable (hti->info))
2000 {
2001 if (!PIC_OBJECT_P (hti->output_bfd))
2002 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2003 }
2004 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2005 {
2006 hti->error = TRUE;
2007 return FALSE;
2008 }
2009 }
2010 return TRUE;
2011 }
2012 \f
2013 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2014 Most mips16 instructions are 16 bits, but these instructions
2015 are 32 bits.
2016
2017 The format of these instructions is:
2018
2019 +--------------+--------------------------------+
2020 | JALX | X| Imm 20:16 | Imm 25:21 |
2021 +--------------+--------------------------------+
2022 | Immediate 15:0 |
2023 +-----------------------------------------------+
2024
2025 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2026 Note that the immediate value in the first word is swapped.
2027
2028 When producing a relocatable object file, R_MIPS16_26 is
2029 handled mostly like R_MIPS_26. In particular, the addend is
2030 stored as a straight 26-bit value in a 32-bit instruction.
2031 (gas makes life simpler for itself by never adjusting a
2032 R_MIPS16_26 reloc to be against a section, so the addend is
2033 always zero). However, the 32 bit instruction is stored as 2
2034 16-bit values, rather than a single 32-bit value. In a
2035 big-endian file, the result is the same; in a little-endian
2036 file, the two 16-bit halves of the 32 bit value are swapped.
2037 This is so that a disassembler can recognize the jal
2038 instruction.
2039
2040 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2041 instruction stored as two 16-bit values. The addend A is the
2042 contents of the targ26 field. The calculation is the same as
2043 R_MIPS_26. When storing the calculated value, reorder the
2044 immediate value as shown above, and don't forget to store the
2045 value as two 16-bit values.
2046
2047 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2048 defined as
2049
2050 big-endian:
2051 +--------+----------------------+
2052 | | |
2053 | | targ26-16 |
2054 |31 26|25 0|
2055 +--------+----------------------+
2056
2057 little-endian:
2058 +----------+------+-------------+
2059 | | | |
2060 | sub1 | | sub2 |
2061 |0 9|10 15|16 31|
2062 +----------+--------------------+
2063 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2064 ((sub1 << 16) | sub2)).
2065
2066 When producing a relocatable object file, the calculation is
2067 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2068 When producing a fully linked file, the calculation is
2069 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2070 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2071
2072 The table below lists the other MIPS16 instruction relocations.
2073 Each one is calculated in the same way as the non-MIPS16 relocation
2074 given on the right, but using the extended MIPS16 layout of 16-bit
2075 immediate fields:
2076
2077 R_MIPS16_GPREL R_MIPS_GPREL16
2078 R_MIPS16_GOT16 R_MIPS_GOT16
2079 R_MIPS16_CALL16 R_MIPS_CALL16
2080 R_MIPS16_HI16 R_MIPS_HI16
2081 R_MIPS16_LO16 R_MIPS_LO16
2082
2083 A typical instruction will have a format like this:
2084
2085 +--------------+--------------------------------+
2086 | EXTEND | Imm 10:5 | Imm 15:11 |
2087 +--------------+--------------------------------+
2088 | Major | rx | ry | Imm 4:0 |
2089 +--------------+--------------------------------+
2090
2091 EXTEND is the five bit value 11110. Major is the instruction
2092 opcode.
2093
2094 All we need to do here is shuffle the bits appropriately.
2095 As above, the two 16-bit halves must be swapped on a
2096 little-endian system.
2097
2098 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2099 relocatable field is shifted by 1 rather than 2 and the same bit
2100 shuffling is done as with the relocations above. */
2101
2102 static inline bfd_boolean
2103 mips16_reloc_p (int r_type)
2104 {
2105 switch (r_type)
2106 {
2107 case R_MIPS16_26:
2108 case R_MIPS16_GPREL:
2109 case R_MIPS16_GOT16:
2110 case R_MIPS16_CALL16:
2111 case R_MIPS16_HI16:
2112 case R_MIPS16_LO16:
2113 case R_MIPS16_TLS_GD:
2114 case R_MIPS16_TLS_LDM:
2115 case R_MIPS16_TLS_DTPREL_HI16:
2116 case R_MIPS16_TLS_DTPREL_LO16:
2117 case R_MIPS16_TLS_GOTTPREL:
2118 case R_MIPS16_TLS_TPREL_HI16:
2119 case R_MIPS16_TLS_TPREL_LO16:
2120 case R_MIPS16_PC16_S1:
2121 return TRUE;
2122
2123 default:
2124 return FALSE;
2125 }
2126 }
2127
2128 /* Check if a microMIPS reloc. */
2129
2130 static inline bfd_boolean
2131 micromips_reloc_p (unsigned int r_type)
2132 {
2133 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2134 }
2135
2136 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2137 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2138 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2139
2140 static inline bfd_boolean
2141 micromips_reloc_shuffle_p (unsigned int r_type)
2142 {
2143 return (micromips_reloc_p (r_type)
2144 && r_type != R_MICROMIPS_PC7_S1
2145 && r_type != R_MICROMIPS_PC10_S1);
2146 }
2147
2148 static inline bfd_boolean
2149 got16_reloc_p (int r_type)
2150 {
2151 return (r_type == R_MIPS_GOT16
2152 || r_type == R_MIPS16_GOT16
2153 || r_type == R_MICROMIPS_GOT16);
2154 }
2155
2156 static inline bfd_boolean
2157 call16_reloc_p (int r_type)
2158 {
2159 return (r_type == R_MIPS_CALL16
2160 || r_type == R_MIPS16_CALL16
2161 || r_type == R_MICROMIPS_CALL16);
2162 }
2163
2164 static inline bfd_boolean
2165 got_disp_reloc_p (unsigned int r_type)
2166 {
2167 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2168 }
2169
2170 static inline bfd_boolean
2171 got_page_reloc_p (unsigned int r_type)
2172 {
2173 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2174 }
2175
2176 static inline bfd_boolean
2177 got_lo16_reloc_p (unsigned int r_type)
2178 {
2179 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2180 }
2181
2182 static inline bfd_boolean
2183 call_hi16_reloc_p (unsigned int r_type)
2184 {
2185 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2186 }
2187
2188 static inline bfd_boolean
2189 call_lo16_reloc_p (unsigned int r_type)
2190 {
2191 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2192 }
2193
2194 static inline bfd_boolean
2195 hi16_reloc_p (int r_type)
2196 {
2197 return (r_type == R_MIPS_HI16
2198 || r_type == R_MIPS16_HI16
2199 || r_type == R_MICROMIPS_HI16
2200 || r_type == R_MIPS_PCHI16);
2201 }
2202
2203 static inline bfd_boolean
2204 lo16_reloc_p (int r_type)
2205 {
2206 return (r_type == R_MIPS_LO16
2207 || r_type == R_MIPS16_LO16
2208 || r_type == R_MICROMIPS_LO16
2209 || r_type == R_MIPS_PCLO16);
2210 }
2211
2212 static inline bfd_boolean
2213 mips16_call_reloc_p (int r_type)
2214 {
2215 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2216 }
2217
2218 static inline bfd_boolean
2219 jal_reloc_p (int r_type)
2220 {
2221 return (r_type == R_MIPS_26
2222 || r_type == R_MIPS16_26
2223 || r_type == R_MICROMIPS_26_S1);
2224 }
2225
2226 static inline bfd_boolean
2227 b_reloc_p (int r_type)
2228 {
2229 return (r_type == R_MIPS_PC26_S2
2230 || r_type == R_MIPS_PC21_S2
2231 || r_type == R_MIPS_PC16
2232 || r_type == R_MIPS_GNU_REL16_S2
2233 || r_type == R_MIPS16_PC16_S1
2234 || r_type == R_MICROMIPS_PC16_S1
2235 || r_type == R_MICROMIPS_PC10_S1
2236 || r_type == R_MICROMIPS_PC7_S1);
2237 }
2238
2239 static inline bfd_boolean
2240 aligned_pcrel_reloc_p (int r_type)
2241 {
2242 return (r_type == R_MIPS_PC18_S3
2243 || r_type == R_MIPS_PC19_S2);
2244 }
2245
2246 static inline bfd_boolean
2247 branch_reloc_p (int r_type)
2248 {
2249 return (r_type == R_MIPS_26
2250 || r_type == R_MIPS_PC26_S2
2251 || r_type == R_MIPS_PC21_S2
2252 || r_type == R_MIPS_PC16
2253 || r_type == R_MIPS_GNU_REL16_S2);
2254 }
2255
2256 static inline bfd_boolean
2257 mips16_branch_reloc_p (int r_type)
2258 {
2259 return (r_type == R_MIPS16_26
2260 || r_type == R_MIPS16_PC16_S1);
2261 }
2262
2263 static inline bfd_boolean
2264 micromips_branch_reloc_p (int r_type)
2265 {
2266 return (r_type == R_MICROMIPS_26_S1
2267 || r_type == R_MICROMIPS_PC16_S1
2268 || r_type == R_MICROMIPS_PC10_S1
2269 || r_type == R_MICROMIPS_PC7_S1);
2270 }
2271
2272 static inline bfd_boolean
2273 tls_gd_reloc_p (unsigned int r_type)
2274 {
2275 return (r_type == R_MIPS_TLS_GD
2276 || r_type == R_MIPS16_TLS_GD
2277 || r_type == R_MICROMIPS_TLS_GD);
2278 }
2279
2280 static inline bfd_boolean
2281 tls_ldm_reloc_p (unsigned int r_type)
2282 {
2283 return (r_type == R_MIPS_TLS_LDM
2284 || r_type == R_MIPS16_TLS_LDM
2285 || r_type == R_MICROMIPS_TLS_LDM);
2286 }
2287
2288 static inline bfd_boolean
2289 tls_gottprel_reloc_p (unsigned int r_type)
2290 {
2291 return (r_type == R_MIPS_TLS_GOTTPREL
2292 || r_type == R_MIPS16_TLS_GOTTPREL
2293 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2294 }
2295
2296 void
2297 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2298 bfd_boolean jal_shuffle, bfd_byte *data)
2299 {
2300 bfd_vma first, second, val;
2301
2302 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2303 return;
2304
2305 /* Pick up the first and second halfwords of the instruction. */
2306 first = bfd_get_16 (abfd, data);
2307 second = bfd_get_16 (abfd, data + 2);
2308 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2309 val = first << 16 | second;
2310 else if (r_type != R_MIPS16_26)
2311 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2312 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2313 else
2314 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2315 | ((first & 0x1f) << 21) | second);
2316 bfd_put_32 (abfd, val, data);
2317 }
2318
2319 void
2320 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2321 bfd_boolean jal_shuffle, bfd_byte *data)
2322 {
2323 bfd_vma first, second, val;
2324
2325 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2326 return;
2327
2328 val = bfd_get_32 (abfd, data);
2329 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2330 {
2331 second = val & 0xffff;
2332 first = val >> 16;
2333 }
2334 else if (r_type != R_MIPS16_26)
2335 {
2336 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2337 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2338 }
2339 else
2340 {
2341 second = val & 0xffff;
2342 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2343 | ((val >> 21) & 0x1f);
2344 }
2345 bfd_put_16 (abfd, second, data + 2);
2346 bfd_put_16 (abfd, first, data);
2347 }
2348
2349 bfd_reloc_status_type
2350 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2351 arelent *reloc_entry, asection *input_section,
2352 bfd_boolean relocatable, void *data, bfd_vma gp)
2353 {
2354 bfd_vma relocation;
2355 bfd_signed_vma val;
2356 bfd_reloc_status_type status;
2357
2358 if (bfd_is_com_section (symbol->section))
2359 relocation = 0;
2360 else
2361 relocation = symbol->value;
2362
2363 relocation += symbol->section->output_section->vma;
2364 relocation += symbol->section->output_offset;
2365
2366 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2367 return bfd_reloc_outofrange;
2368
2369 /* Set val to the offset into the section or symbol. */
2370 val = reloc_entry->addend;
2371
2372 _bfd_mips_elf_sign_extend (val, 16);
2373
2374 /* Adjust val for the final section location and GP value. If we
2375 are producing relocatable output, we don't want to do this for
2376 an external symbol. */
2377 if (! relocatable
2378 || (symbol->flags & BSF_SECTION_SYM) != 0)
2379 val += relocation - gp;
2380
2381 if (reloc_entry->howto->partial_inplace)
2382 {
2383 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2384 (bfd_byte *) data
2385 + reloc_entry->address);
2386 if (status != bfd_reloc_ok)
2387 return status;
2388 }
2389 else
2390 reloc_entry->addend = val;
2391
2392 if (relocatable)
2393 reloc_entry->address += input_section->output_offset;
2394
2395 return bfd_reloc_ok;
2396 }
2397
2398 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2399 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2400 that contains the relocation field and DATA points to the start of
2401 INPUT_SECTION. */
2402
2403 struct mips_hi16
2404 {
2405 struct mips_hi16 *next;
2406 bfd_byte *data;
2407 asection *input_section;
2408 arelent rel;
2409 };
2410
2411 /* FIXME: This should not be a static variable. */
2412
2413 static struct mips_hi16 *mips_hi16_list;
2414
2415 /* A howto special_function for REL *HI16 relocations. We can only
2416 calculate the correct value once we've seen the partnering
2417 *LO16 relocation, so just save the information for later.
2418
2419 The ABI requires that the *LO16 immediately follow the *HI16.
2420 However, as a GNU extension, we permit an arbitrary number of
2421 *HI16s to be associated with a single *LO16. This significantly
2422 simplies the relocation handling in gcc. */
2423
2424 bfd_reloc_status_type
2425 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2426 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2427 asection *input_section, bfd *output_bfd,
2428 char **error_message ATTRIBUTE_UNUSED)
2429 {
2430 struct mips_hi16 *n;
2431
2432 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2433 return bfd_reloc_outofrange;
2434
2435 n = bfd_malloc (sizeof *n);
2436 if (n == NULL)
2437 return bfd_reloc_outofrange;
2438
2439 n->next = mips_hi16_list;
2440 n->data = data;
2441 n->input_section = input_section;
2442 n->rel = *reloc_entry;
2443 mips_hi16_list = n;
2444
2445 if (output_bfd != NULL)
2446 reloc_entry->address += input_section->output_offset;
2447
2448 return bfd_reloc_ok;
2449 }
2450
2451 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2452 like any other 16-bit relocation when applied to global symbols, but is
2453 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2454
2455 bfd_reloc_status_type
2456 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2457 void *data, asection *input_section,
2458 bfd *output_bfd, char **error_message)
2459 {
2460 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2461 || bfd_is_und_section (bfd_get_section (symbol))
2462 || bfd_is_com_section (bfd_get_section (symbol)))
2463 /* The relocation is against a global symbol. */
2464 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2465 input_section, output_bfd,
2466 error_message);
2467
2468 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2469 input_section, output_bfd, error_message);
2470 }
2471
2472 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2473 is a straightforward 16 bit inplace relocation, but we must deal with
2474 any partnering high-part relocations as well. */
2475
2476 bfd_reloc_status_type
2477 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2478 void *data, asection *input_section,
2479 bfd *output_bfd, char **error_message)
2480 {
2481 bfd_vma vallo;
2482 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2483
2484 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2485 return bfd_reloc_outofrange;
2486
2487 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2488 location);
2489 vallo = bfd_get_32 (abfd, location);
2490 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492
2493 while (mips_hi16_list != NULL)
2494 {
2495 bfd_reloc_status_type ret;
2496 struct mips_hi16 *hi;
2497
2498 hi = mips_hi16_list;
2499
2500 /* R_MIPS*_GOT16 relocations are something of a special case. We
2501 want to install the addend in the same way as for a R_MIPS*_HI16
2502 relocation (with a rightshift of 16). However, since GOT16
2503 relocations can also be used with global symbols, their howto
2504 has a rightshift of 0. */
2505 if (hi->rel.howto->type == R_MIPS_GOT16)
2506 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2507 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2508 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2509 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2510 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2511
2512 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2513 carry or borrow will induce a change of +1 or -1 in the high part. */
2514 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2515
2516 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2517 hi->input_section, output_bfd,
2518 error_message);
2519 if (ret != bfd_reloc_ok)
2520 return ret;
2521
2522 mips_hi16_list = hi->next;
2523 free (hi);
2524 }
2525
2526 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2527 input_section, output_bfd,
2528 error_message);
2529 }
2530
2531 /* A generic howto special_function. This calculates and installs the
2532 relocation itself, thus avoiding the oft-discussed problems in
2533 bfd_perform_relocation and bfd_install_relocation. */
2534
2535 bfd_reloc_status_type
2536 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2537 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2538 asection *input_section, bfd *output_bfd,
2539 char **error_message ATTRIBUTE_UNUSED)
2540 {
2541 bfd_signed_vma val;
2542 bfd_reloc_status_type status;
2543 bfd_boolean relocatable;
2544
2545 relocatable = (output_bfd != NULL);
2546
2547 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2548 return bfd_reloc_outofrange;
2549
2550 /* Build up the field adjustment in VAL. */
2551 val = 0;
2552 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2553 {
2554 /* Either we're calculating the final field value or we have a
2555 relocation against a section symbol. Add in the section's
2556 offset or address. */
2557 val += symbol->section->output_section->vma;
2558 val += symbol->section->output_offset;
2559 }
2560
2561 if (!relocatable)
2562 {
2563 /* We're calculating the final field value. Add in the symbol's value
2564 and, if pc-relative, subtract the address of the field itself. */
2565 val += symbol->value;
2566 if (reloc_entry->howto->pc_relative)
2567 {
2568 val -= input_section->output_section->vma;
2569 val -= input_section->output_offset;
2570 val -= reloc_entry->address;
2571 }
2572 }
2573
2574 /* VAL is now the final adjustment. If we're keeping this relocation
2575 in the output file, and if the relocation uses a separate addend,
2576 we just need to add VAL to that addend. Otherwise we need to add
2577 VAL to the relocation field itself. */
2578 if (relocatable && !reloc_entry->howto->partial_inplace)
2579 reloc_entry->addend += val;
2580 else
2581 {
2582 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2583
2584 /* Add in the separate addend, if any. */
2585 val += reloc_entry->addend;
2586
2587 /* Add VAL to the relocation field. */
2588 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2589 location);
2590 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2591 location);
2592 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2593 location);
2594
2595 if (status != bfd_reloc_ok)
2596 return status;
2597 }
2598
2599 if (relocatable)
2600 reloc_entry->address += input_section->output_offset;
2601
2602 return bfd_reloc_ok;
2603 }
2604 \f
2605 /* Swap an entry in a .gptab section. Note that these routines rely
2606 on the equivalence of the two elements of the union. */
2607
2608 static void
2609 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2610 Elf32_gptab *in)
2611 {
2612 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2613 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2614 }
2615
2616 static void
2617 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2618 Elf32_External_gptab *ex)
2619 {
2620 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2621 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2622 }
2623
2624 static void
2625 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2626 Elf32_External_compact_rel *ex)
2627 {
2628 H_PUT_32 (abfd, in->id1, ex->id1);
2629 H_PUT_32 (abfd, in->num, ex->num);
2630 H_PUT_32 (abfd, in->id2, ex->id2);
2631 H_PUT_32 (abfd, in->offset, ex->offset);
2632 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2633 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2634 }
2635
2636 static void
2637 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2638 Elf32_External_crinfo *ex)
2639 {
2640 unsigned long l;
2641
2642 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2643 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2644 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2645 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2646 H_PUT_32 (abfd, l, ex->info);
2647 H_PUT_32 (abfd, in->konst, ex->konst);
2648 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2649 }
2650 \f
2651 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2652 routines swap this structure in and out. They are used outside of
2653 BFD, so they are globally visible. */
2654
2655 void
2656 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2657 Elf32_RegInfo *in)
2658 {
2659 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2660 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2661 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2662 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2663 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2664 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2665 }
2666
2667 void
2668 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2669 Elf32_External_RegInfo *ex)
2670 {
2671 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2672 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2673 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2674 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2675 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2676 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2677 }
2678
2679 /* In the 64 bit ABI, the .MIPS.options section holds register
2680 information in an Elf64_Reginfo structure. These routines swap
2681 them in and out. They are globally visible because they are used
2682 outside of BFD. These routines are here so that gas can call them
2683 without worrying about whether the 64 bit ABI has been included. */
2684
2685 void
2686 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2687 Elf64_Internal_RegInfo *in)
2688 {
2689 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2690 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2691 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2692 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2693 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2694 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2695 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2696 }
2697
2698 void
2699 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2700 Elf64_External_RegInfo *ex)
2701 {
2702 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2703 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2704 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2705 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2706 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2707 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2708 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2709 }
2710
2711 /* Swap in an options header. */
2712
2713 void
2714 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2715 Elf_Internal_Options *in)
2716 {
2717 in->kind = H_GET_8 (abfd, ex->kind);
2718 in->size = H_GET_8 (abfd, ex->size);
2719 in->section = H_GET_16 (abfd, ex->section);
2720 in->info = H_GET_32 (abfd, ex->info);
2721 }
2722
2723 /* Swap out an options header. */
2724
2725 void
2726 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2727 Elf_External_Options *ex)
2728 {
2729 H_PUT_8 (abfd, in->kind, ex->kind);
2730 H_PUT_8 (abfd, in->size, ex->size);
2731 H_PUT_16 (abfd, in->section, ex->section);
2732 H_PUT_32 (abfd, in->info, ex->info);
2733 }
2734
2735 /* Swap in an abiflags structure. */
2736
2737 void
2738 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2739 const Elf_External_ABIFlags_v0 *ex,
2740 Elf_Internal_ABIFlags_v0 *in)
2741 {
2742 in->version = H_GET_16 (abfd, ex->version);
2743 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2744 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2745 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2746 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2747 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2748 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2749 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2750 in->ases = H_GET_32 (abfd, ex->ases);
2751 in->flags1 = H_GET_32 (abfd, ex->flags1);
2752 in->flags2 = H_GET_32 (abfd, ex->flags2);
2753 }
2754
2755 /* Swap out an abiflags structure. */
2756
2757 void
2758 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2759 const Elf_Internal_ABIFlags_v0 *in,
2760 Elf_External_ABIFlags_v0 *ex)
2761 {
2762 H_PUT_16 (abfd, in->version, ex->version);
2763 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2764 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2765 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2766 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2767 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2768 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2769 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2770 H_PUT_32 (abfd, in->ases, ex->ases);
2771 H_PUT_32 (abfd, in->flags1, ex->flags1);
2772 H_PUT_32 (abfd, in->flags2, ex->flags2);
2773 }
2774 \f
2775 /* This function is called via qsort() to sort the dynamic relocation
2776 entries by increasing r_symndx value. */
2777
2778 static int
2779 sort_dynamic_relocs (const void *arg1, const void *arg2)
2780 {
2781 Elf_Internal_Rela int_reloc1;
2782 Elf_Internal_Rela int_reloc2;
2783 int diff;
2784
2785 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2786 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2787
2788 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2789 if (diff != 0)
2790 return diff;
2791
2792 if (int_reloc1.r_offset < int_reloc2.r_offset)
2793 return -1;
2794 if (int_reloc1.r_offset > int_reloc2.r_offset)
2795 return 1;
2796 return 0;
2797 }
2798
2799 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2800
2801 static int
2802 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2803 const void *arg2 ATTRIBUTE_UNUSED)
2804 {
2805 #ifdef BFD64
2806 Elf_Internal_Rela int_reloc1[3];
2807 Elf_Internal_Rela int_reloc2[3];
2808
2809 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2810 (reldyn_sorting_bfd, arg1, int_reloc1);
2811 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2812 (reldyn_sorting_bfd, arg2, int_reloc2);
2813
2814 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2815 return -1;
2816 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2817 return 1;
2818
2819 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2820 return -1;
2821 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2822 return 1;
2823 return 0;
2824 #else
2825 abort ();
2826 #endif
2827 }
2828
2829
2830 /* This routine is used to write out ECOFF debugging external symbol
2831 information. It is called via mips_elf_link_hash_traverse. The
2832 ECOFF external symbol information must match the ELF external
2833 symbol information. Unfortunately, at this point we don't know
2834 whether a symbol is required by reloc information, so the two
2835 tables may wind up being different. We must sort out the external
2836 symbol information before we can set the final size of the .mdebug
2837 section, and we must set the size of the .mdebug section before we
2838 can relocate any sections, and we can't know which symbols are
2839 required by relocation until we relocate the sections.
2840 Fortunately, it is relatively unlikely that any symbol will be
2841 stripped but required by a reloc. In particular, it can not happen
2842 when generating a final executable. */
2843
2844 static bfd_boolean
2845 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2846 {
2847 struct extsym_info *einfo = data;
2848 bfd_boolean strip;
2849 asection *sec, *output_section;
2850
2851 if (h->root.indx == -2)
2852 strip = FALSE;
2853 else if ((h->root.def_dynamic
2854 || h->root.ref_dynamic
2855 || h->root.type == bfd_link_hash_new)
2856 && !h->root.def_regular
2857 && !h->root.ref_regular)
2858 strip = TRUE;
2859 else if (einfo->info->strip == strip_all
2860 || (einfo->info->strip == strip_some
2861 && bfd_hash_lookup (einfo->info->keep_hash,
2862 h->root.root.root.string,
2863 FALSE, FALSE) == NULL))
2864 strip = TRUE;
2865 else
2866 strip = FALSE;
2867
2868 if (strip)
2869 return TRUE;
2870
2871 if (h->esym.ifd == -2)
2872 {
2873 h->esym.jmptbl = 0;
2874 h->esym.cobol_main = 0;
2875 h->esym.weakext = 0;
2876 h->esym.reserved = 0;
2877 h->esym.ifd = ifdNil;
2878 h->esym.asym.value = 0;
2879 h->esym.asym.st = stGlobal;
2880
2881 if (h->root.root.type == bfd_link_hash_undefined
2882 || h->root.root.type == bfd_link_hash_undefweak)
2883 {
2884 const char *name;
2885
2886 /* Use undefined class. Also, set class and type for some
2887 special symbols. */
2888 name = h->root.root.root.string;
2889 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2890 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2891 {
2892 h->esym.asym.sc = scData;
2893 h->esym.asym.st = stLabel;
2894 h->esym.asym.value = 0;
2895 }
2896 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2897 {
2898 h->esym.asym.sc = scAbs;
2899 h->esym.asym.st = stLabel;
2900 h->esym.asym.value =
2901 mips_elf_hash_table (einfo->info)->procedure_count;
2902 }
2903 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2904 {
2905 h->esym.asym.sc = scAbs;
2906 h->esym.asym.st = stLabel;
2907 h->esym.asym.value = elf_gp (einfo->abfd);
2908 }
2909 else
2910 h->esym.asym.sc = scUndefined;
2911 }
2912 else if (h->root.root.type != bfd_link_hash_defined
2913 && h->root.root.type != bfd_link_hash_defweak)
2914 h->esym.asym.sc = scAbs;
2915 else
2916 {
2917 const char *name;
2918
2919 sec = h->root.root.u.def.section;
2920 output_section = sec->output_section;
2921
2922 /* When making a shared library and symbol h is the one from
2923 the another shared library, OUTPUT_SECTION may be null. */
2924 if (output_section == NULL)
2925 h->esym.asym.sc = scUndefined;
2926 else
2927 {
2928 name = bfd_section_name (output_section->owner, output_section);
2929
2930 if (strcmp (name, ".text") == 0)
2931 h->esym.asym.sc = scText;
2932 else if (strcmp (name, ".data") == 0)
2933 h->esym.asym.sc = scData;
2934 else if (strcmp (name, ".sdata") == 0)
2935 h->esym.asym.sc = scSData;
2936 else if (strcmp (name, ".rodata") == 0
2937 || strcmp (name, ".rdata") == 0)
2938 h->esym.asym.sc = scRData;
2939 else if (strcmp (name, ".bss") == 0)
2940 h->esym.asym.sc = scBss;
2941 else if (strcmp (name, ".sbss") == 0)
2942 h->esym.asym.sc = scSBss;
2943 else if (strcmp (name, ".init") == 0)
2944 h->esym.asym.sc = scInit;
2945 else if (strcmp (name, ".fini") == 0)
2946 h->esym.asym.sc = scFini;
2947 else
2948 h->esym.asym.sc = scAbs;
2949 }
2950 }
2951
2952 h->esym.asym.reserved = 0;
2953 h->esym.asym.index = indexNil;
2954 }
2955
2956 if (h->root.root.type == bfd_link_hash_common)
2957 h->esym.asym.value = h->root.root.u.c.size;
2958 else if (h->root.root.type == bfd_link_hash_defined
2959 || h->root.root.type == bfd_link_hash_defweak)
2960 {
2961 if (h->esym.asym.sc == scCommon)
2962 h->esym.asym.sc = scBss;
2963 else if (h->esym.asym.sc == scSCommon)
2964 h->esym.asym.sc = scSBss;
2965
2966 sec = h->root.root.u.def.section;
2967 output_section = sec->output_section;
2968 if (output_section != NULL)
2969 h->esym.asym.value = (h->root.root.u.def.value
2970 + sec->output_offset
2971 + output_section->vma);
2972 else
2973 h->esym.asym.value = 0;
2974 }
2975 else
2976 {
2977 struct mips_elf_link_hash_entry *hd = h;
2978
2979 while (hd->root.root.type == bfd_link_hash_indirect)
2980 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2981
2982 if (hd->needs_lazy_stub)
2983 {
2984 BFD_ASSERT (hd->root.plt.plist != NULL);
2985 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2986 /* Set type and value for a symbol with a function stub. */
2987 h->esym.asym.st = stProc;
2988 sec = hd->root.root.u.def.section;
2989 if (sec == NULL)
2990 h->esym.asym.value = 0;
2991 else
2992 {
2993 output_section = sec->output_section;
2994 if (output_section != NULL)
2995 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2996 + sec->output_offset
2997 + output_section->vma);
2998 else
2999 h->esym.asym.value = 0;
3000 }
3001 }
3002 }
3003
3004 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3005 h->root.root.root.string,
3006 &h->esym))
3007 {
3008 einfo->failed = TRUE;
3009 return FALSE;
3010 }
3011
3012 return TRUE;
3013 }
3014
3015 /* A comparison routine used to sort .gptab entries. */
3016
3017 static int
3018 gptab_compare (const void *p1, const void *p2)
3019 {
3020 const Elf32_gptab *a1 = p1;
3021 const Elf32_gptab *a2 = p2;
3022
3023 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3024 }
3025 \f
3026 /* Functions to manage the got entry hash table. */
3027
3028 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3029 hash number. */
3030
3031 static INLINE hashval_t
3032 mips_elf_hash_bfd_vma (bfd_vma addr)
3033 {
3034 #ifdef BFD64
3035 return addr + (addr >> 32);
3036 #else
3037 return addr;
3038 #endif
3039 }
3040
3041 static hashval_t
3042 mips_elf_got_entry_hash (const void *entry_)
3043 {
3044 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3045
3046 return (entry->symndx
3047 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3048 + (entry->tls_type == GOT_TLS_LDM ? 0
3049 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3050 : entry->symndx >= 0 ? (entry->abfd->id
3051 + mips_elf_hash_bfd_vma (entry->d.addend))
3052 : entry->d.h->root.root.root.hash));
3053 }
3054
3055 static int
3056 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3057 {
3058 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3059 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3060
3061 return (e1->symndx == e2->symndx
3062 && e1->tls_type == e2->tls_type
3063 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3064 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3065 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3066 && e1->d.addend == e2->d.addend)
3067 : e2->abfd && e1->d.h == e2->d.h));
3068 }
3069
3070 static hashval_t
3071 mips_got_page_ref_hash (const void *ref_)
3072 {
3073 const struct mips_got_page_ref *ref;
3074
3075 ref = (const struct mips_got_page_ref *) ref_;
3076 return ((ref->symndx >= 0
3077 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3078 : ref->u.h->root.root.root.hash)
3079 + mips_elf_hash_bfd_vma (ref->addend));
3080 }
3081
3082 static int
3083 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3084 {
3085 const struct mips_got_page_ref *ref1, *ref2;
3086
3087 ref1 = (const struct mips_got_page_ref *) ref1_;
3088 ref2 = (const struct mips_got_page_ref *) ref2_;
3089 return (ref1->symndx == ref2->symndx
3090 && (ref1->symndx < 0
3091 ? ref1->u.h == ref2->u.h
3092 : ref1->u.abfd == ref2->u.abfd)
3093 && ref1->addend == ref2->addend);
3094 }
3095
3096 static hashval_t
3097 mips_got_page_entry_hash (const void *entry_)
3098 {
3099 const struct mips_got_page_entry *entry;
3100
3101 entry = (const struct mips_got_page_entry *) entry_;
3102 return entry->sec->id;
3103 }
3104
3105 static int
3106 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3107 {
3108 const struct mips_got_page_entry *entry1, *entry2;
3109
3110 entry1 = (const struct mips_got_page_entry *) entry1_;
3111 entry2 = (const struct mips_got_page_entry *) entry2_;
3112 return entry1->sec == entry2->sec;
3113 }
3114 \f
3115 /* Create and return a new mips_got_info structure. */
3116
3117 static struct mips_got_info *
3118 mips_elf_create_got_info (bfd *abfd)
3119 {
3120 struct mips_got_info *g;
3121
3122 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3123 if (g == NULL)
3124 return NULL;
3125
3126 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3127 mips_elf_got_entry_eq, NULL);
3128 if (g->got_entries == NULL)
3129 return NULL;
3130
3131 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3132 mips_got_page_ref_eq, NULL);
3133 if (g->got_page_refs == NULL)
3134 return NULL;
3135
3136 return g;
3137 }
3138
3139 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3140 CREATE_P and if ABFD doesn't already have a GOT. */
3141
3142 static struct mips_got_info *
3143 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3144 {
3145 struct mips_elf_obj_tdata *tdata;
3146
3147 if (!is_mips_elf (abfd))
3148 return NULL;
3149
3150 tdata = mips_elf_tdata (abfd);
3151 if (!tdata->got && create_p)
3152 tdata->got = mips_elf_create_got_info (abfd);
3153 return tdata->got;
3154 }
3155
3156 /* Record that ABFD should use output GOT G. */
3157
3158 static void
3159 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3160 {
3161 struct mips_elf_obj_tdata *tdata;
3162
3163 BFD_ASSERT (is_mips_elf (abfd));
3164 tdata = mips_elf_tdata (abfd);
3165 if (tdata->got)
3166 {
3167 /* The GOT structure itself and the hash table entries are
3168 allocated to a bfd, but the hash tables aren't. */
3169 htab_delete (tdata->got->got_entries);
3170 htab_delete (tdata->got->got_page_refs);
3171 if (tdata->got->got_page_entries)
3172 htab_delete (tdata->got->got_page_entries);
3173 }
3174 tdata->got = g;
3175 }
3176
3177 /* Return the dynamic relocation section. If it doesn't exist, try to
3178 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3179 if creation fails. */
3180
3181 static asection *
3182 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3183 {
3184 const char *dname;
3185 asection *sreloc;
3186 bfd *dynobj;
3187
3188 dname = MIPS_ELF_REL_DYN_NAME (info);
3189 dynobj = elf_hash_table (info)->dynobj;
3190 sreloc = bfd_get_linker_section (dynobj, dname);
3191 if (sreloc == NULL && create_p)
3192 {
3193 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3194 (SEC_ALLOC
3195 | SEC_LOAD
3196 | SEC_HAS_CONTENTS
3197 | SEC_IN_MEMORY
3198 | SEC_LINKER_CREATED
3199 | SEC_READONLY));
3200 if (sreloc == NULL
3201 || ! bfd_set_section_alignment (dynobj, sreloc,
3202 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3203 return NULL;
3204 }
3205 return sreloc;
3206 }
3207
3208 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3209
3210 static int
3211 mips_elf_reloc_tls_type (unsigned int r_type)
3212 {
3213 if (tls_gd_reloc_p (r_type))
3214 return GOT_TLS_GD;
3215
3216 if (tls_ldm_reloc_p (r_type))
3217 return GOT_TLS_LDM;
3218
3219 if (tls_gottprel_reloc_p (r_type))
3220 return GOT_TLS_IE;
3221
3222 return GOT_TLS_NONE;
3223 }
3224
3225 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3226
3227 static int
3228 mips_tls_got_entries (unsigned int type)
3229 {
3230 switch (type)
3231 {
3232 case GOT_TLS_GD:
3233 case GOT_TLS_LDM:
3234 return 2;
3235
3236 case GOT_TLS_IE:
3237 return 1;
3238
3239 case GOT_TLS_NONE:
3240 return 0;
3241 }
3242 abort ();
3243 }
3244
3245 /* Count the number of relocations needed for a TLS GOT entry, with
3246 access types from TLS_TYPE, and symbol H (or a local symbol if H
3247 is NULL). */
3248
3249 static int
3250 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3251 struct elf_link_hash_entry *h)
3252 {
3253 int indx = 0;
3254 bfd_boolean need_relocs = FALSE;
3255 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3256
3257 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3258 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3259 indx = h->dynindx;
3260
3261 if ((bfd_link_pic (info) || indx != 0)
3262 && (h == NULL
3263 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3264 || h->root.type != bfd_link_hash_undefweak))
3265 need_relocs = TRUE;
3266
3267 if (!need_relocs)
3268 return 0;
3269
3270 switch (tls_type)
3271 {
3272 case GOT_TLS_GD:
3273 return indx != 0 ? 2 : 1;
3274
3275 case GOT_TLS_IE:
3276 return 1;
3277
3278 case GOT_TLS_LDM:
3279 return bfd_link_pic (info) ? 1 : 0;
3280
3281 default:
3282 return 0;
3283 }
3284 }
3285
3286 /* Add the number of GOT entries and TLS relocations required by ENTRY
3287 to G. */
3288
3289 static void
3290 mips_elf_count_got_entry (struct bfd_link_info *info,
3291 struct mips_got_info *g,
3292 struct mips_got_entry *entry)
3293 {
3294 if (entry->tls_type)
3295 {
3296 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3297 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3298 entry->symndx < 0
3299 ? &entry->d.h->root : NULL);
3300 }
3301 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3302 g->local_gotno += 1;
3303 else
3304 g->global_gotno += 1;
3305 }
3306
3307 /* Output a simple dynamic relocation into SRELOC. */
3308
3309 static void
3310 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3311 asection *sreloc,
3312 unsigned long reloc_index,
3313 unsigned long indx,
3314 int r_type,
3315 bfd_vma offset)
3316 {
3317 Elf_Internal_Rela rel[3];
3318
3319 memset (rel, 0, sizeof (rel));
3320
3321 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3322 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3323
3324 if (ABI_64_P (output_bfd))
3325 {
3326 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3327 (output_bfd, &rel[0],
3328 (sreloc->contents
3329 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3330 }
3331 else
3332 bfd_elf32_swap_reloc_out
3333 (output_bfd, &rel[0],
3334 (sreloc->contents
3335 + reloc_index * sizeof (Elf32_External_Rel)));
3336 }
3337
3338 /* Initialize a set of TLS GOT entries for one symbol. */
3339
3340 static void
3341 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3342 struct mips_got_entry *entry,
3343 struct mips_elf_link_hash_entry *h,
3344 bfd_vma value)
3345 {
3346 struct mips_elf_link_hash_table *htab;
3347 int indx;
3348 asection *sreloc, *sgot;
3349 bfd_vma got_offset, got_offset2;
3350 bfd_boolean need_relocs = FALSE;
3351
3352 htab = mips_elf_hash_table (info);
3353 if (htab == NULL)
3354 return;
3355
3356 sgot = htab->root.sgot;
3357
3358 indx = 0;
3359 if (h != NULL)
3360 {
3361 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3362
3363 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3364 &h->root)
3365 && (!bfd_link_pic (info)
3366 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3367 indx = h->root.dynindx;
3368 }
3369
3370 if (entry->tls_initialized)
3371 return;
3372
3373 if ((bfd_link_pic (info) || indx != 0)
3374 && (h == NULL
3375 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3376 || h->root.type != bfd_link_hash_undefweak))
3377 need_relocs = TRUE;
3378
3379 /* MINUS_ONE means the symbol is not defined in this object. It may not
3380 be defined at all; assume that the value doesn't matter in that
3381 case. Otherwise complain if we would use the value. */
3382 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3383 || h->root.root.type == bfd_link_hash_undefweak);
3384
3385 /* Emit necessary relocations. */
3386 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3387 got_offset = entry->gotidx;
3388
3389 switch (entry->tls_type)
3390 {
3391 case GOT_TLS_GD:
3392 /* General Dynamic. */
3393 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3394
3395 if (need_relocs)
3396 {
3397 mips_elf_output_dynamic_relocation
3398 (abfd, sreloc, sreloc->reloc_count++, indx,
3399 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3400 sgot->output_offset + sgot->output_section->vma + got_offset);
3401
3402 if (indx)
3403 mips_elf_output_dynamic_relocation
3404 (abfd, sreloc, sreloc->reloc_count++, indx,
3405 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3406 sgot->output_offset + sgot->output_section->vma + got_offset2);
3407 else
3408 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3409 sgot->contents + got_offset2);
3410 }
3411 else
3412 {
3413 MIPS_ELF_PUT_WORD (abfd, 1,
3414 sgot->contents + got_offset);
3415 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3416 sgot->contents + got_offset2);
3417 }
3418 break;
3419
3420 case GOT_TLS_IE:
3421 /* Initial Exec model. */
3422 if (need_relocs)
3423 {
3424 if (indx == 0)
3425 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3426 sgot->contents + got_offset);
3427 else
3428 MIPS_ELF_PUT_WORD (abfd, 0,
3429 sgot->contents + got_offset);
3430
3431 mips_elf_output_dynamic_relocation
3432 (abfd, sreloc, sreloc->reloc_count++, indx,
3433 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3434 sgot->output_offset + sgot->output_section->vma + got_offset);
3435 }
3436 else
3437 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3438 sgot->contents + got_offset);
3439 break;
3440
3441 case GOT_TLS_LDM:
3442 /* The initial offset is zero, and the LD offsets will include the
3443 bias by DTP_OFFSET. */
3444 MIPS_ELF_PUT_WORD (abfd, 0,
3445 sgot->contents + got_offset
3446 + MIPS_ELF_GOT_SIZE (abfd));
3447
3448 if (!bfd_link_pic (info))
3449 MIPS_ELF_PUT_WORD (abfd, 1,
3450 sgot->contents + got_offset);
3451 else
3452 mips_elf_output_dynamic_relocation
3453 (abfd, sreloc, sreloc->reloc_count++, indx,
3454 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3455 sgot->output_offset + sgot->output_section->vma + got_offset);
3456 break;
3457
3458 default:
3459 abort ();
3460 }
3461
3462 entry->tls_initialized = TRUE;
3463 }
3464
3465 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3466 for global symbol H. .got.plt comes before the GOT, so the offset
3467 will be negative. */
3468
3469 static bfd_vma
3470 mips_elf_gotplt_index (struct bfd_link_info *info,
3471 struct elf_link_hash_entry *h)
3472 {
3473 bfd_vma got_address, got_value;
3474 struct mips_elf_link_hash_table *htab;
3475
3476 htab = mips_elf_hash_table (info);
3477 BFD_ASSERT (htab != NULL);
3478
3479 BFD_ASSERT (h->plt.plist != NULL);
3480 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3481
3482 /* Calculate the address of the associated .got.plt entry. */
3483 got_address = (htab->root.sgotplt->output_section->vma
3484 + htab->root.sgotplt->output_offset
3485 + (h->plt.plist->gotplt_index
3486 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3487
3488 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3489 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3490 + htab->root.hgot->root.u.def.section->output_offset
3491 + htab->root.hgot->root.u.def.value);
3492
3493 return got_address - got_value;
3494 }
3495
3496 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3497 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3498 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3499 offset can be found. */
3500
3501 static bfd_vma
3502 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3503 bfd_vma value, unsigned long r_symndx,
3504 struct mips_elf_link_hash_entry *h, int r_type)
3505 {
3506 struct mips_elf_link_hash_table *htab;
3507 struct mips_got_entry *entry;
3508
3509 htab = mips_elf_hash_table (info);
3510 BFD_ASSERT (htab != NULL);
3511
3512 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3513 r_symndx, h, r_type);
3514 if (!entry)
3515 return MINUS_ONE;
3516
3517 if (entry->tls_type)
3518 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3519 return entry->gotidx;
3520 }
3521
3522 /* Return the GOT index of global symbol H in the primary GOT. */
3523
3524 static bfd_vma
3525 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3526 struct elf_link_hash_entry *h)
3527 {
3528 struct mips_elf_link_hash_table *htab;
3529 long global_got_dynindx;
3530 struct mips_got_info *g;
3531 bfd_vma got_index;
3532
3533 htab = mips_elf_hash_table (info);
3534 BFD_ASSERT (htab != NULL);
3535
3536 global_got_dynindx = 0;
3537 if (htab->global_gotsym != NULL)
3538 global_got_dynindx = htab->global_gotsym->dynindx;
3539
3540 /* Once we determine the global GOT entry with the lowest dynamic
3541 symbol table index, we must put all dynamic symbols with greater
3542 indices into the primary GOT. That makes it easy to calculate the
3543 GOT offset. */
3544 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3545 g = mips_elf_bfd_got (obfd, FALSE);
3546 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3547 * MIPS_ELF_GOT_SIZE (obfd));
3548 BFD_ASSERT (got_index < htab->root.sgot->size);
3549
3550 return got_index;
3551 }
3552
3553 /* Return the GOT index for the global symbol indicated by H, which is
3554 referenced by a relocation of type R_TYPE in IBFD. */
3555
3556 static bfd_vma
3557 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3558 struct elf_link_hash_entry *h, int r_type)
3559 {
3560 struct mips_elf_link_hash_table *htab;
3561 struct mips_got_info *g;
3562 struct mips_got_entry lookup, *entry;
3563 bfd_vma gotidx;
3564
3565 htab = mips_elf_hash_table (info);
3566 BFD_ASSERT (htab != NULL);
3567
3568 g = mips_elf_bfd_got (ibfd, FALSE);
3569 BFD_ASSERT (g);
3570
3571 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3572 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3573 return mips_elf_primary_global_got_index (obfd, info, h);
3574
3575 lookup.abfd = ibfd;
3576 lookup.symndx = -1;
3577 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3578 entry = htab_find (g->got_entries, &lookup);
3579 BFD_ASSERT (entry);
3580
3581 gotidx = entry->gotidx;
3582 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3583
3584 if (lookup.tls_type)
3585 {
3586 bfd_vma value = MINUS_ONE;
3587
3588 if ((h->root.type == bfd_link_hash_defined
3589 || h->root.type == bfd_link_hash_defweak)
3590 && h->root.u.def.section->output_section)
3591 value = (h->root.u.def.value
3592 + h->root.u.def.section->output_offset
3593 + h->root.u.def.section->output_section->vma);
3594
3595 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3596 }
3597 return gotidx;
3598 }
3599
3600 /* Find a GOT page entry that points to within 32KB of VALUE. These
3601 entries are supposed to be placed at small offsets in the GOT, i.e.,
3602 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3603 entry could be created. If OFFSETP is nonnull, use it to return the
3604 offset of the GOT entry from VALUE. */
3605
3606 static bfd_vma
3607 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3608 bfd_vma value, bfd_vma *offsetp)
3609 {
3610 bfd_vma page, got_index;
3611 struct mips_got_entry *entry;
3612
3613 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3614 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3615 NULL, R_MIPS_GOT_PAGE);
3616
3617 if (!entry)
3618 return MINUS_ONE;
3619
3620 got_index = entry->gotidx;
3621
3622 if (offsetp)
3623 *offsetp = value - entry->d.address;
3624
3625 return got_index;
3626 }
3627
3628 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3629 EXTERNAL is true if the relocation was originally against a global
3630 symbol that binds locally. */
3631
3632 static bfd_vma
3633 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3634 bfd_vma value, bfd_boolean external)
3635 {
3636 struct mips_got_entry *entry;
3637
3638 /* GOT16 relocations against local symbols are followed by a LO16
3639 relocation; those against global symbols are not. Thus if the
3640 symbol was originally local, the GOT16 relocation should load the
3641 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3642 if (! external)
3643 value = mips_elf_high (value) << 16;
3644
3645 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3646 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3647 same in all cases. */
3648 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3649 NULL, R_MIPS_GOT16);
3650 if (entry)
3651 return entry->gotidx;
3652 else
3653 return MINUS_ONE;
3654 }
3655
3656 /* Returns the offset for the entry at the INDEXth position
3657 in the GOT. */
3658
3659 static bfd_vma
3660 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3661 bfd *input_bfd, bfd_vma got_index)
3662 {
3663 struct mips_elf_link_hash_table *htab;
3664 asection *sgot;
3665 bfd_vma gp;
3666
3667 htab = mips_elf_hash_table (info);
3668 BFD_ASSERT (htab != NULL);
3669
3670 sgot = htab->root.sgot;
3671 gp = _bfd_get_gp_value (output_bfd)
3672 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3673
3674 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3675 }
3676
3677 /* Create and return a local GOT entry for VALUE, which was calculated
3678 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3679 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3680 instead. */
3681
3682 static struct mips_got_entry *
3683 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3684 bfd *ibfd, bfd_vma value,
3685 unsigned long r_symndx,
3686 struct mips_elf_link_hash_entry *h,
3687 int r_type)
3688 {
3689 struct mips_got_entry lookup, *entry;
3690 void **loc;
3691 struct mips_got_info *g;
3692 struct mips_elf_link_hash_table *htab;
3693 bfd_vma gotidx;
3694
3695 htab = mips_elf_hash_table (info);
3696 BFD_ASSERT (htab != NULL);
3697
3698 g = mips_elf_bfd_got (ibfd, FALSE);
3699 if (g == NULL)
3700 {
3701 g = mips_elf_bfd_got (abfd, FALSE);
3702 BFD_ASSERT (g != NULL);
3703 }
3704
3705 /* This function shouldn't be called for symbols that live in the global
3706 area of the GOT. */
3707 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3708
3709 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3710 if (lookup.tls_type)
3711 {
3712 lookup.abfd = ibfd;
3713 if (tls_ldm_reloc_p (r_type))
3714 {
3715 lookup.symndx = 0;
3716 lookup.d.addend = 0;
3717 }
3718 else if (h == NULL)
3719 {
3720 lookup.symndx = r_symndx;
3721 lookup.d.addend = 0;
3722 }
3723 else
3724 {
3725 lookup.symndx = -1;
3726 lookup.d.h = h;
3727 }
3728
3729 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3730 BFD_ASSERT (entry);
3731
3732 gotidx = entry->gotidx;
3733 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3734
3735 return entry;
3736 }
3737
3738 lookup.abfd = NULL;
3739 lookup.symndx = -1;
3740 lookup.d.address = value;
3741 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3742 if (!loc)
3743 return NULL;
3744
3745 entry = (struct mips_got_entry *) *loc;
3746 if (entry)
3747 return entry;
3748
3749 if (g->assigned_low_gotno > g->assigned_high_gotno)
3750 {
3751 /* We didn't allocate enough space in the GOT. */
3752 _bfd_error_handler
3753 (_("not enough GOT space for local GOT entries"));
3754 bfd_set_error (bfd_error_bad_value);
3755 return NULL;
3756 }
3757
3758 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3759 if (!entry)
3760 return NULL;
3761
3762 if (got16_reloc_p (r_type)
3763 || call16_reloc_p (r_type)
3764 || got_page_reloc_p (r_type)
3765 || got_disp_reloc_p (r_type))
3766 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3767 else
3768 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3769
3770 *entry = lookup;
3771 *loc = entry;
3772
3773 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3774
3775 /* These GOT entries need a dynamic relocation on VxWorks. */
3776 if (htab->is_vxworks)
3777 {
3778 Elf_Internal_Rela outrel;
3779 asection *s;
3780 bfd_byte *rloc;
3781 bfd_vma got_address;
3782
3783 s = mips_elf_rel_dyn_section (info, FALSE);
3784 got_address = (htab->root.sgot->output_section->vma
3785 + htab->root.sgot->output_offset
3786 + entry->gotidx);
3787
3788 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3789 outrel.r_offset = got_address;
3790 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3791 outrel.r_addend = value;
3792 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3793 }
3794
3795 return entry;
3796 }
3797
3798 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3799 The number might be exact or a worst-case estimate, depending on how
3800 much information is available to elf_backend_omit_section_dynsym at
3801 the current linking stage. */
3802
3803 static bfd_size_type
3804 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3805 {
3806 bfd_size_type count;
3807
3808 count = 0;
3809 if (bfd_link_pic (info)
3810 || elf_hash_table (info)->is_relocatable_executable)
3811 {
3812 asection *p;
3813 const struct elf_backend_data *bed;
3814
3815 bed = get_elf_backend_data (output_bfd);
3816 for (p = output_bfd->sections; p ; p = p->next)
3817 if ((p->flags & SEC_EXCLUDE) == 0
3818 && (p->flags & SEC_ALLOC) != 0
3819 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3820 ++count;
3821 }
3822 return count;
3823 }
3824
3825 /* Sort the dynamic symbol table so that symbols that need GOT entries
3826 appear towards the end. */
3827
3828 static bfd_boolean
3829 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3830 {
3831 struct mips_elf_link_hash_table *htab;
3832 struct mips_elf_hash_sort_data hsd;
3833 struct mips_got_info *g;
3834
3835 htab = mips_elf_hash_table (info);
3836 BFD_ASSERT (htab != NULL);
3837
3838 if (elf_hash_table (info)->dynsymcount == 0)
3839 return TRUE;
3840
3841 g = htab->got_info;
3842 if (g == NULL)
3843 return TRUE;
3844
3845 hsd.low = NULL;
3846 hsd.max_unref_got_dynindx
3847 = hsd.min_got_dynindx
3848 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3849 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3850 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3851 elf_hash_table (info)),
3852 mips_elf_sort_hash_table_f,
3853 &hsd);
3854
3855 /* There should have been enough room in the symbol table to
3856 accommodate both the GOT and non-GOT symbols. */
3857 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3858 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3859 == elf_hash_table (info)->dynsymcount);
3860 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3861 == g->global_gotno);
3862
3863 /* Now we know which dynamic symbol has the lowest dynamic symbol
3864 table index in the GOT. */
3865 htab->global_gotsym = hsd.low;
3866
3867 return TRUE;
3868 }
3869
3870 /* If H needs a GOT entry, assign it the highest available dynamic
3871 index. Otherwise, assign it the lowest available dynamic
3872 index. */
3873
3874 static bfd_boolean
3875 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3876 {
3877 struct mips_elf_hash_sort_data *hsd = data;
3878
3879 /* Symbols without dynamic symbol table entries aren't interesting
3880 at all. */
3881 if (h->root.dynindx == -1)
3882 return TRUE;
3883
3884 switch (h->global_got_area)
3885 {
3886 case GGA_NONE:
3887 h->root.dynindx = hsd->max_non_got_dynindx++;
3888 break;
3889
3890 case GGA_NORMAL:
3891 h->root.dynindx = --hsd->min_got_dynindx;
3892 hsd->low = (struct elf_link_hash_entry *) h;
3893 break;
3894
3895 case GGA_RELOC_ONLY:
3896 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 h->root.dynindx = hsd->max_unref_got_dynindx++;
3899 break;
3900 }
3901
3902 return TRUE;
3903 }
3904
3905 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3906 (which is owned by the caller and shouldn't be added to the
3907 hash table directly). */
3908
3909 static bfd_boolean
3910 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3911 struct mips_got_entry *lookup)
3912 {
3913 struct mips_elf_link_hash_table *htab;
3914 struct mips_got_entry *entry;
3915 struct mips_got_info *g;
3916 void **loc, **bfd_loc;
3917
3918 /* Make sure there's a slot for this entry in the master GOT. */
3919 htab = mips_elf_hash_table (info);
3920 g = htab->got_info;
3921 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3922 if (!loc)
3923 return FALSE;
3924
3925 /* Populate the entry if it isn't already. */
3926 entry = (struct mips_got_entry *) *loc;
3927 if (!entry)
3928 {
3929 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3930 if (!entry)
3931 return FALSE;
3932
3933 lookup->tls_initialized = FALSE;
3934 lookup->gotidx = -1;
3935 *entry = *lookup;
3936 *loc = entry;
3937 }
3938
3939 /* Reuse the same GOT entry for the BFD's GOT. */
3940 g = mips_elf_bfd_got (abfd, TRUE);
3941 if (!g)
3942 return FALSE;
3943
3944 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3945 if (!bfd_loc)
3946 return FALSE;
3947
3948 if (!*bfd_loc)
3949 *bfd_loc = entry;
3950 return TRUE;
3951 }
3952
3953 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3954 entry for it. FOR_CALL is true if the caller is only interested in
3955 using the GOT entry for calls. */
3956
3957 static bfd_boolean
3958 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3959 bfd *abfd, struct bfd_link_info *info,
3960 bfd_boolean for_call, int r_type)
3961 {
3962 struct mips_elf_link_hash_table *htab;
3963 struct mips_elf_link_hash_entry *hmips;
3964 struct mips_got_entry entry;
3965 unsigned char tls_type;
3966
3967 htab = mips_elf_hash_table (info);
3968 BFD_ASSERT (htab != NULL);
3969
3970 hmips = (struct mips_elf_link_hash_entry *) h;
3971 if (!for_call)
3972 hmips->got_only_for_calls = FALSE;
3973
3974 /* A global symbol in the GOT must also be in the dynamic symbol
3975 table. */
3976 if (h->dynindx == -1)
3977 {
3978 switch (ELF_ST_VISIBILITY (h->other))
3979 {
3980 case STV_INTERNAL:
3981 case STV_HIDDEN:
3982 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3983 break;
3984 }
3985 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3986 return FALSE;
3987 }
3988
3989 tls_type = mips_elf_reloc_tls_type (r_type);
3990 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3991 hmips->global_got_area = GGA_NORMAL;
3992
3993 entry.abfd = abfd;
3994 entry.symndx = -1;
3995 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3996 entry.tls_type = tls_type;
3997 return mips_elf_record_got_entry (info, abfd, &entry);
3998 }
3999
4000 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4001 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4002
4003 static bfd_boolean
4004 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4005 struct bfd_link_info *info, int r_type)
4006 {
4007 struct mips_elf_link_hash_table *htab;
4008 struct mips_got_info *g;
4009 struct mips_got_entry entry;
4010
4011 htab = mips_elf_hash_table (info);
4012 BFD_ASSERT (htab != NULL);
4013
4014 g = htab->got_info;
4015 BFD_ASSERT (g != NULL);
4016
4017 entry.abfd = abfd;
4018 entry.symndx = symndx;
4019 entry.d.addend = addend;
4020 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4021 return mips_elf_record_got_entry (info, abfd, &entry);
4022 }
4023
4024 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4025 H is the symbol's hash table entry, or null if SYMNDX is local
4026 to ABFD. */
4027
4028 static bfd_boolean
4029 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4030 long symndx, struct elf_link_hash_entry *h,
4031 bfd_signed_vma addend)
4032 {
4033 struct mips_elf_link_hash_table *htab;
4034 struct mips_got_info *g1, *g2;
4035 struct mips_got_page_ref lookup, *entry;
4036 void **loc, **bfd_loc;
4037
4038 htab = mips_elf_hash_table (info);
4039 BFD_ASSERT (htab != NULL);
4040
4041 g1 = htab->got_info;
4042 BFD_ASSERT (g1 != NULL);
4043
4044 if (h)
4045 {
4046 lookup.symndx = -1;
4047 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4048 }
4049 else
4050 {
4051 lookup.symndx = symndx;
4052 lookup.u.abfd = abfd;
4053 }
4054 lookup.addend = addend;
4055 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4056 if (loc == NULL)
4057 return FALSE;
4058
4059 entry = (struct mips_got_page_ref *) *loc;
4060 if (!entry)
4061 {
4062 entry = bfd_alloc (abfd, sizeof (*entry));
4063 if (!entry)
4064 return FALSE;
4065
4066 *entry = lookup;
4067 *loc = entry;
4068 }
4069
4070 /* Add the same entry to the BFD's GOT. */
4071 g2 = mips_elf_bfd_got (abfd, TRUE);
4072 if (!g2)
4073 return FALSE;
4074
4075 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4076 if (!bfd_loc)
4077 return FALSE;
4078
4079 if (!*bfd_loc)
4080 *bfd_loc = entry;
4081
4082 return TRUE;
4083 }
4084
4085 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4086
4087 static void
4088 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4089 unsigned int n)
4090 {
4091 asection *s;
4092 struct mips_elf_link_hash_table *htab;
4093
4094 htab = mips_elf_hash_table (info);
4095 BFD_ASSERT (htab != NULL);
4096
4097 s = mips_elf_rel_dyn_section (info, FALSE);
4098 BFD_ASSERT (s != NULL);
4099
4100 if (htab->is_vxworks)
4101 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4102 else
4103 {
4104 if (s->size == 0)
4105 {
4106 /* Make room for a null element. */
4107 s->size += MIPS_ELF_REL_SIZE (abfd);
4108 ++s->reloc_count;
4109 }
4110 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4111 }
4112 }
4113 \f
4114 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4115 mips_elf_traverse_got_arg structure. Count the number of GOT
4116 entries and TLS relocs. Set DATA->value to true if we need
4117 to resolve indirect or warning symbols and then recreate the GOT. */
4118
4119 static int
4120 mips_elf_check_recreate_got (void **entryp, void *data)
4121 {
4122 struct mips_got_entry *entry;
4123 struct mips_elf_traverse_got_arg *arg;
4124
4125 entry = (struct mips_got_entry *) *entryp;
4126 arg = (struct mips_elf_traverse_got_arg *) data;
4127 if (entry->abfd != NULL && entry->symndx == -1)
4128 {
4129 struct mips_elf_link_hash_entry *h;
4130
4131 h = entry->d.h;
4132 if (h->root.root.type == bfd_link_hash_indirect
4133 || h->root.root.type == bfd_link_hash_warning)
4134 {
4135 arg->value = TRUE;
4136 return 0;
4137 }
4138 }
4139 mips_elf_count_got_entry (arg->info, arg->g, entry);
4140 return 1;
4141 }
4142
4143 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4144 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4145 converting entries for indirect and warning symbols into entries
4146 for the target symbol. Set DATA->g to null on error. */
4147
4148 static int
4149 mips_elf_recreate_got (void **entryp, void *data)
4150 {
4151 struct mips_got_entry new_entry, *entry;
4152 struct mips_elf_traverse_got_arg *arg;
4153 void **slot;
4154
4155 entry = (struct mips_got_entry *) *entryp;
4156 arg = (struct mips_elf_traverse_got_arg *) data;
4157 if (entry->abfd != NULL
4158 && entry->symndx == -1
4159 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4160 || entry->d.h->root.root.type == bfd_link_hash_warning))
4161 {
4162 struct mips_elf_link_hash_entry *h;
4163
4164 new_entry = *entry;
4165 entry = &new_entry;
4166 h = entry->d.h;
4167 do
4168 {
4169 BFD_ASSERT (h->global_got_area == GGA_NONE);
4170 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4171 }
4172 while (h->root.root.type == bfd_link_hash_indirect
4173 || h->root.root.type == bfd_link_hash_warning);
4174 entry->d.h = h;
4175 }
4176 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4177 if (slot == NULL)
4178 {
4179 arg->g = NULL;
4180 return 0;
4181 }
4182 if (*slot == NULL)
4183 {
4184 if (entry == &new_entry)
4185 {
4186 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4187 if (!entry)
4188 {
4189 arg->g = NULL;
4190 return 0;
4191 }
4192 *entry = new_entry;
4193 }
4194 *slot = entry;
4195 mips_elf_count_got_entry (arg->info, arg->g, entry);
4196 }
4197 return 1;
4198 }
4199
4200 /* Return the maximum number of GOT page entries required for RANGE. */
4201
4202 static bfd_vma
4203 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4204 {
4205 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4206 }
4207
4208 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4209
4210 static bfd_boolean
4211 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4212 asection *sec, bfd_signed_vma addend)
4213 {
4214 struct mips_got_info *g = arg->g;
4215 struct mips_got_page_entry lookup, *entry;
4216 struct mips_got_page_range **range_ptr, *range;
4217 bfd_vma old_pages, new_pages;
4218 void **loc;
4219
4220 /* Find the mips_got_page_entry hash table entry for this section. */
4221 lookup.sec = sec;
4222 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4223 if (loc == NULL)
4224 return FALSE;
4225
4226 /* Create a mips_got_page_entry if this is the first time we've
4227 seen the section. */
4228 entry = (struct mips_got_page_entry *) *loc;
4229 if (!entry)
4230 {
4231 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4232 if (!entry)
4233 return FALSE;
4234
4235 entry->sec = sec;
4236 *loc = entry;
4237 }
4238
4239 /* Skip over ranges whose maximum extent cannot share a page entry
4240 with ADDEND. */
4241 range_ptr = &entry->ranges;
4242 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4243 range_ptr = &(*range_ptr)->next;
4244
4245 /* If we scanned to the end of the list, or found a range whose
4246 minimum extent cannot share a page entry with ADDEND, create
4247 a new singleton range. */
4248 range = *range_ptr;
4249 if (!range || addend < range->min_addend - 0xffff)
4250 {
4251 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4252 if (!range)
4253 return FALSE;
4254
4255 range->next = *range_ptr;
4256 range->min_addend = addend;
4257 range->max_addend = addend;
4258
4259 *range_ptr = range;
4260 entry->num_pages++;
4261 g->page_gotno++;
4262 return TRUE;
4263 }
4264
4265 /* Remember how many pages the old range contributed. */
4266 old_pages = mips_elf_pages_for_range (range);
4267
4268 /* Update the ranges. */
4269 if (addend < range->min_addend)
4270 range->min_addend = addend;
4271 else if (addend > range->max_addend)
4272 {
4273 if (range->next && addend >= range->next->min_addend - 0xffff)
4274 {
4275 old_pages += mips_elf_pages_for_range (range->next);
4276 range->max_addend = range->next->max_addend;
4277 range->next = range->next->next;
4278 }
4279 else
4280 range->max_addend = addend;
4281 }
4282
4283 /* Record any change in the total estimate. */
4284 new_pages = mips_elf_pages_for_range (range);
4285 if (old_pages != new_pages)
4286 {
4287 entry->num_pages += new_pages - old_pages;
4288 g->page_gotno += new_pages - old_pages;
4289 }
4290
4291 return TRUE;
4292 }
4293
4294 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4295 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4296 whether the page reference described by *REFP needs a GOT page entry,
4297 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4298
4299 static bfd_boolean
4300 mips_elf_resolve_got_page_ref (void **refp, void *data)
4301 {
4302 struct mips_got_page_ref *ref;
4303 struct mips_elf_traverse_got_arg *arg;
4304 struct mips_elf_link_hash_table *htab;
4305 asection *sec;
4306 bfd_vma addend;
4307
4308 ref = (struct mips_got_page_ref *) *refp;
4309 arg = (struct mips_elf_traverse_got_arg *) data;
4310 htab = mips_elf_hash_table (arg->info);
4311
4312 if (ref->symndx < 0)
4313 {
4314 struct mips_elf_link_hash_entry *h;
4315
4316 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4317 h = ref->u.h;
4318 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4319 return 1;
4320
4321 /* Ignore undefined symbols; we'll issue an error later if
4322 appropriate. */
4323 if (!((h->root.root.type == bfd_link_hash_defined
4324 || h->root.root.type == bfd_link_hash_defweak)
4325 && h->root.root.u.def.section))
4326 return 1;
4327
4328 sec = h->root.root.u.def.section;
4329 addend = h->root.root.u.def.value + ref->addend;
4330 }
4331 else
4332 {
4333 Elf_Internal_Sym *isym;
4334
4335 /* Read in the symbol. */
4336 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4337 ref->symndx);
4338 if (isym == NULL)
4339 {
4340 arg->g = NULL;
4341 return 0;
4342 }
4343
4344 /* Get the associated input section. */
4345 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4346 if (sec == NULL)
4347 {
4348 arg->g = NULL;
4349 return 0;
4350 }
4351
4352 /* If this is a mergable section, work out the section and offset
4353 of the merged data. For section symbols, the addend specifies
4354 of the offset _of_ the first byte in the data, otherwise it
4355 specifies the offset _from_ the first byte. */
4356 if (sec->flags & SEC_MERGE)
4357 {
4358 void *secinfo;
4359
4360 secinfo = elf_section_data (sec)->sec_info;
4361 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4362 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4363 isym->st_value + ref->addend);
4364 else
4365 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4366 isym->st_value) + ref->addend;
4367 }
4368 else
4369 addend = isym->st_value + ref->addend;
4370 }
4371 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4372 {
4373 arg->g = NULL;
4374 return 0;
4375 }
4376 return 1;
4377 }
4378
4379 /* If any entries in G->got_entries are for indirect or warning symbols,
4380 replace them with entries for the target symbol. Convert g->got_page_refs
4381 into got_page_entry structures and estimate the number of page entries
4382 that they require. */
4383
4384 static bfd_boolean
4385 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4386 struct mips_got_info *g)
4387 {
4388 struct mips_elf_traverse_got_arg tga;
4389 struct mips_got_info oldg;
4390
4391 oldg = *g;
4392
4393 tga.info = info;
4394 tga.g = g;
4395 tga.value = FALSE;
4396 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4397 if (tga.value)
4398 {
4399 *g = oldg;
4400 g->got_entries = htab_create (htab_size (oldg.got_entries),
4401 mips_elf_got_entry_hash,
4402 mips_elf_got_entry_eq, NULL);
4403 if (!g->got_entries)
4404 return FALSE;
4405
4406 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4407 if (!tga.g)
4408 return FALSE;
4409
4410 htab_delete (oldg.got_entries);
4411 }
4412
4413 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4414 mips_got_page_entry_eq, NULL);
4415 if (g->got_page_entries == NULL)
4416 return FALSE;
4417
4418 tga.info = info;
4419 tga.g = g;
4420 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4421
4422 return TRUE;
4423 }
4424
4425 /* Return true if a GOT entry for H should live in the local rather than
4426 global GOT area. */
4427
4428 static bfd_boolean
4429 mips_use_local_got_p (struct bfd_link_info *info,
4430 struct mips_elf_link_hash_entry *h)
4431 {
4432 /* Symbols that aren't in the dynamic symbol table must live in the
4433 local GOT. This includes symbols that are completely undefined
4434 and which therefore don't bind locally. We'll report undefined
4435 symbols later if appropriate. */
4436 if (h->root.dynindx == -1)
4437 return TRUE;
4438
4439 /* Symbols that bind locally can (and in the case of forced-local
4440 symbols, must) live in the local GOT. */
4441 if (h->got_only_for_calls
4442 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4443 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4444 return TRUE;
4445
4446 /* If this is an executable that must provide a definition of the symbol,
4447 either though PLTs or copy relocations, then that address should go in
4448 the local rather than global GOT. */
4449 if (bfd_link_executable (info) && h->has_static_relocs)
4450 return TRUE;
4451
4452 return FALSE;
4453 }
4454
4455 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4456 link_info structure. Decide whether the hash entry needs an entry in
4457 the global part of the primary GOT, setting global_got_area accordingly.
4458 Count the number of global symbols that are in the primary GOT only
4459 because they have relocations against them (reloc_only_gotno). */
4460
4461 static int
4462 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4463 {
4464 struct bfd_link_info *info;
4465 struct mips_elf_link_hash_table *htab;
4466 struct mips_got_info *g;
4467
4468 info = (struct bfd_link_info *) data;
4469 htab = mips_elf_hash_table (info);
4470 g = htab->got_info;
4471 if (h->global_got_area != GGA_NONE)
4472 {
4473 /* Make a final decision about whether the symbol belongs in the
4474 local or global GOT. */
4475 if (mips_use_local_got_p (info, h))
4476 /* The symbol belongs in the local GOT. We no longer need this
4477 entry if it was only used for relocations; those relocations
4478 will be against the null or section symbol instead of H. */
4479 h->global_got_area = GGA_NONE;
4480 else if (htab->is_vxworks
4481 && h->got_only_for_calls
4482 && h->root.plt.plist->mips_offset != MINUS_ONE)
4483 /* On VxWorks, calls can refer directly to the .got.plt entry;
4484 they don't need entries in the regular GOT. .got.plt entries
4485 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4486 h->global_got_area = GGA_NONE;
4487 else if (h->global_got_area == GGA_RELOC_ONLY)
4488 {
4489 g->reloc_only_gotno++;
4490 g->global_gotno++;
4491 }
4492 }
4493 return 1;
4494 }
4495 \f
4496 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4497 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4498
4499 static int
4500 mips_elf_add_got_entry (void **entryp, void *data)
4501 {
4502 struct mips_got_entry *entry;
4503 struct mips_elf_traverse_got_arg *arg;
4504 void **slot;
4505
4506 entry = (struct mips_got_entry *) *entryp;
4507 arg = (struct mips_elf_traverse_got_arg *) data;
4508 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4509 if (!slot)
4510 {
4511 arg->g = NULL;
4512 return 0;
4513 }
4514 if (!*slot)
4515 {
4516 *slot = entry;
4517 mips_elf_count_got_entry (arg->info, arg->g, entry);
4518 }
4519 return 1;
4520 }
4521
4522 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4523 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4524
4525 static int
4526 mips_elf_add_got_page_entry (void **entryp, void *data)
4527 {
4528 struct mips_got_page_entry *entry;
4529 struct mips_elf_traverse_got_arg *arg;
4530 void **slot;
4531
4532 entry = (struct mips_got_page_entry *) *entryp;
4533 arg = (struct mips_elf_traverse_got_arg *) data;
4534 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4535 if (!slot)
4536 {
4537 arg->g = NULL;
4538 return 0;
4539 }
4540 if (!*slot)
4541 {
4542 *slot = entry;
4543 arg->g->page_gotno += entry->num_pages;
4544 }
4545 return 1;
4546 }
4547
4548 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4549 this would lead to overflow, 1 if they were merged successfully,
4550 and 0 if a merge failed due to lack of memory. (These values are chosen
4551 so that nonnegative return values can be returned by a htab_traverse
4552 callback.) */
4553
4554 static int
4555 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4556 struct mips_got_info *to,
4557 struct mips_elf_got_per_bfd_arg *arg)
4558 {
4559 struct mips_elf_traverse_got_arg tga;
4560 unsigned int estimate;
4561
4562 /* Work out how many page entries we would need for the combined GOT. */
4563 estimate = arg->max_pages;
4564 if (estimate >= from->page_gotno + to->page_gotno)
4565 estimate = from->page_gotno + to->page_gotno;
4566
4567 /* And conservatively estimate how many local and TLS entries
4568 would be needed. */
4569 estimate += from->local_gotno + to->local_gotno;
4570 estimate += from->tls_gotno + to->tls_gotno;
4571
4572 /* If we're merging with the primary got, any TLS relocations will
4573 come after the full set of global entries. Otherwise estimate those
4574 conservatively as well. */
4575 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4576 estimate += arg->global_count;
4577 else
4578 estimate += from->global_gotno + to->global_gotno;
4579
4580 /* Bail out if the combined GOT might be too big. */
4581 if (estimate > arg->max_count)
4582 return -1;
4583
4584 /* Transfer the bfd's got information from FROM to TO. */
4585 tga.info = arg->info;
4586 tga.g = to;
4587 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4588 if (!tga.g)
4589 return 0;
4590
4591 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4592 if (!tga.g)
4593 return 0;
4594
4595 mips_elf_replace_bfd_got (abfd, to);
4596 return 1;
4597 }
4598
4599 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4600 as possible of the primary got, since it doesn't require explicit
4601 dynamic relocations, but don't use bfds that would reference global
4602 symbols out of the addressable range. Failing the primary got,
4603 attempt to merge with the current got, or finish the current got
4604 and then make make the new got current. */
4605
4606 static bfd_boolean
4607 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4608 struct mips_elf_got_per_bfd_arg *arg)
4609 {
4610 unsigned int estimate;
4611 int result;
4612
4613 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4614 return FALSE;
4615
4616 /* Work out the number of page, local and TLS entries. */
4617 estimate = arg->max_pages;
4618 if (estimate > g->page_gotno)
4619 estimate = g->page_gotno;
4620 estimate += g->local_gotno + g->tls_gotno;
4621
4622 /* We place TLS GOT entries after both locals and globals. The globals
4623 for the primary GOT may overflow the normal GOT size limit, so be
4624 sure not to merge a GOT which requires TLS with the primary GOT in that
4625 case. This doesn't affect non-primary GOTs. */
4626 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4627
4628 if (estimate <= arg->max_count)
4629 {
4630 /* If we don't have a primary GOT, use it as
4631 a starting point for the primary GOT. */
4632 if (!arg->primary)
4633 {
4634 arg->primary = g;
4635 return TRUE;
4636 }
4637
4638 /* Try merging with the primary GOT. */
4639 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4640 if (result >= 0)
4641 return result;
4642 }
4643
4644 /* If we can merge with the last-created got, do it. */
4645 if (arg->current)
4646 {
4647 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4648 if (result >= 0)
4649 return result;
4650 }
4651
4652 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4653 fits; if it turns out that it doesn't, we'll get relocation
4654 overflows anyway. */
4655 g->next = arg->current;
4656 arg->current = g;
4657
4658 return TRUE;
4659 }
4660
4661 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4662 to GOTIDX, duplicating the entry if it has already been assigned
4663 an index in a different GOT. */
4664
4665 static bfd_boolean
4666 mips_elf_set_gotidx (void **entryp, long gotidx)
4667 {
4668 struct mips_got_entry *entry;
4669
4670 entry = (struct mips_got_entry *) *entryp;
4671 if (entry->gotidx > 0)
4672 {
4673 struct mips_got_entry *new_entry;
4674
4675 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4676 if (!new_entry)
4677 return FALSE;
4678
4679 *new_entry = *entry;
4680 *entryp = new_entry;
4681 entry = new_entry;
4682 }
4683 entry->gotidx = gotidx;
4684 return TRUE;
4685 }
4686
4687 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4688 mips_elf_traverse_got_arg in which DATA->value is the size of one
4689 GOT entry. Set DATA->g to null on failure. */
4690
4691 static int
4692 mips_elf_initialize_tls_index (void **entryp, void *data)
4693 {
4694 struct mips_got_entry *entry;
4695 struct mips_elf_traverse_got_arg *arg;
4696
4697 /* We're only interested in TLS symbols. */
4698 entry = (struct mips_got_entry *) *entryp;
4699 if (entry->tls_type == GOT_TLS_NONE)
4700 return 1;
4701
4702 arg = (struct mips_elf_traverse_got_arg *) data;
4703 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4704 {
4705 arg->g = NULL;
4706 return 0;
4707 }
4708
4709 /* Account for the entries we've just allocated. */
4710 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4711 return 1;
4712 }
4713
4714 /* A htab_traverse callback for GOT entries, where DATA points to a
4715 mips_elf_traverse_got_arg. Set the global_got_area of each global
4716 symbol to DATA->value. */
4717
4718 static int
4719 mips_elf_set_global_got_area (void **entryp, void *data)
4720 {
4721 struct mips_got_entry *entry;
4722 struct mips_elf_traverse_got_arg *arg;
4723
4724 entry = (struct mips_got_entry *) *entryp;
4725 arg = (struct mips_elf_traverse_got_arg *) data;
4726 if (entry->abfd != NULL
4727 && entry->symndx == -1
4728 && entry->d.h->global_got_area != GGA_NONE)
4729 entry->d.h->global_got_area = arg->value;
4730 return 1;
4731 }
4732
4733 /* A htab_traverse callback for secondary GOT entries, where DATA points
4734 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4735 and record the number of relocations they require. DATA->value is
4736 the size of one GOT entry. Set DATA->g to null on failure. */
4737
4738 static int
4739 mips_elf_set_global_gotidx (void **entryp, void *data)
4740 {
4741 struct mips_got_entry *entry;
4742 struct mips_elf_traverse_got_arg *arg;
4743
4744 entry = (struct mips_got_entry *) *entryp;
4745 arg = (struct mips_elf_traverse_got_arg *) data;
4746 if (entry->abfd != NULL
4747 && entry->symndx == -1
4748 && entry->d.h->global_got_area != GGA_NONE)
4749 {
4750 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4751 {
4752 arg->g = NULL;
4753 return 0;
4754 }
4755 arg->g->assigned_low_gotno += 1;
4756
4757 if (bfd_link_pic (arg->info)
4758 || (elf_hash_table (arg->info)->dynamic_sections_created
4759 && entry->d.h->root.def_dynamic
4760 && !entry->d.h->root.def_regular))
4761 arg->g->relocs += 1;
4762 }
4763
4764 return 1;
4765 }
4766
4767 /* A htab_traverse callback for GOT entries for which DATA is the
4768 bfd_link_info. Forbid any global symbols from having traditional
4769 lazy-binding stubs. */
4770
4771 static int
4772 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4773 {
4774 struct bfd_link_info *info;
4775 struct mips_elf_link_hash_table *htab;
4776 struct mips_got_entry *entry;
4777
4778 entry = (struct mips_got_entry *) *entryp;
4779 info = (struct bfd_link_info *) data;
4780 htab = mips_elf_hash_table (info);
4781 BFD_ASSERT (htab != NULL);
4782
4783 if (entry->abfd != NULL
4784 && entry->symndx == -1
4785 && entry->d.h->needs_lazy_stub)
4786 {
4787 entry->d.h->needs_lazy_stub = FALSE;
4788 htab->lazy_stub_count--;
4789 }
4790
4791 return 1;
4792 }
4793
4794 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4795 the primary GOT. */
4796 static bfd_vma
4797 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4798 {
4799 if (!g->next)
4800 return 0;
4801
4802 g = mips_elf_bfd_got (ibfd, FALSE);
4803 if (! g)
4804 return 0;
4805
4806 BFD_ASSERT (g->next);
4807
4808 g = g->next;
4809
4810 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4811 * MIPS_ELF_GOT_SIZE (abfd);
4812 }
4813
4814 /* Turn a single GOT that is too big for 16-bit addressing into
4815 a sequence of GOTs, each one 16-bit addressable. */
4816
4817 static bfd_boolean
4818 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4819 asection *got, bfd_size_type pages)
4820 {
4821 struct mips_elf_link_hash_table *htab;
4822 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4823 struct mips_elf_traverse_got_arg tga;
4824 struct mips_got_info *g, *gg;
4825 unsigned int assign, needed_relocs;
4826 bfd *dynobj, *ibfd;
4827
4828 dynobj = elf_hash_table (info)->dynobj;
4829 htab = mips_elf_hash_table (info);
4830 BFD_ASSERT (htab != NULL);
4831
4832 g = htab->got_info;
4833
4834 got_per_bfd_arg.obfd = abfd;
4835 got_per_bfd_arg.info = info;
4836 got_per_bfd_arg.current = NULL;
4837 got_per_bfd_arg.primary = NULL;
4838 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4839 / MIPS_ELF_GOT_SIZE (abfd))
4840 - htab->reserved_gotno);
4841 got_per_bfd_arg.max_pages = pages;
4842 /* The number of globals that will be included in the primary GOT.
4843 See the calls to mips_elf_set_global_got_area below for more
4844 information. */
4845 got_per_bfd_arg.global_count = g->global_gotno;
4846
4847 /* Try to merge the GOTs of input bfds together, as long as they
4848 don't seem to exceed the maximum GOT size, choosing one of them
4849 to be the primary GOT. */
4850 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4851 {
4852 gg = mips_elf_bfd_got (ibfd, FALSE);
4853 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4854 return FALSE;
4855 }
4856
4857 /* If we do not find any suitable primary GOT, create an empty one. */
4858 if (got_per_bfd_arg.primary == NULL)
4859 g->next = mips_elf_create_got_info (abfd);
4860 else
4861 g->next = got_per_bfd_arg.primary;
4862 g->next->next = got_per_bfd_arg.current;
4863
4864 /* GG is now the master GOT, and G is the primary GOT. */
4865 gg = g;
4866 g = g->next;
4867
4868 /* Map the output bfd to the primary got. That's what we're going
4869 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4870 didn't mark in check_relocs, and we want a quick way to find it.
4871 We can't just use gg->next because we're going to reverse the
4872 list. */
4873 mips_elf_replace_bfd_got (abfd, g);
4874
4875 /* Every symbol that is referenced in a dynamic relocation must be
4876 present in the primary GOT, so arrange for them to appear after
4877 those that are actually referenced. */
4878 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4879 g->global_gotno = gg->global_gotno;
4880
4881 tga.info = info;
4882 tga.value = GGA_RELOC_ONLY;
4883 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4884 tga.value = GGA_NORMAL;
4885 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4886
4887 /* Now go through the GOTs assigning them offset ranges.
4888 [assigned_low_gotno, local_gotno[ will be set to the range of local
4889 entries in each GOT. We can then compute the end of a GOT by
4890 adding local_gotno to global_gotno. We reverse the list and make
4891 it circular since then we'll be able to quickly compute the
4892 beginning of a GOT, by computing the end of its predecessor. To
4893 avoid special cases for the primary GOT, while still preserving
4894 assertions that are valid for both single- and multi-got links,
4895 we arrange for the main got struct to have the right number of
4896 global entries, but set its local_gotno such that the initial
4897 offset of the primary GOT is zero. Remember that the primary GOT
4898 will become the last item in the circular linked list, so it
4899 points back to the master GOT. */
4900 gg->local_gotno = -g->global_gotno;
4901 gg->global_gotno = g->global_gotno;
4902 gg->tls_gotno = 0;
4903 assign = 0;
4904 gg->next = gg;
4905
4906 do
4907 {
4908 struct mips_got_info *gn;
4909
4910 assign += htab->reserved_gotno;
4911 g->assigned_low_gotno = assign;
4912 g->local_gotno += assign;
4913 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4914 g->assigned_high_gotno = g->local_gotno - 1;
4915 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4916
4917 /* Take g out of the direct list, and push it onto the reversed
4918 list that gg points to. g->next is guaranteed to be nonnull after
4919 this operation, as required by mips_elf_initialize_tls_index. */
4920 gn = g->next;
4921 g->next = gg->next;
4922 gg->next = g;
4923
4924 /* Set up any TLS entries. We always place the TLS entries after
4925 all non-TLS entries. */
4926 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4927 tga.g = g;
4928 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4929 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4930 if (!tga.g)
4931 return FALSE;
4932 BFD_ASSERT (g->tls_assigned_gotno == assign);
4933
4934 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4935 g = gn;
4936
4937 /* Forbid global symbols in every non-primary GOT from having
4938 lazy-binding stubs. */
4939 if (g)
4940 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4941 }
4942 while (g);
4943
4944 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4945
4946 needed_relocs = 0;
4947 for (g = gg->next; g && g->next != gg; g = g->next)
4948 {
4949 unsigned int save_assign;
4950
4951 /* Assign offsets to global GOT entries and count how many
4952 relocations they need. */
4953 save_assign = g->assigned_low_gotno;
4954 g->assigned_low_gotno = g->local_gotno;
4955 tga.info = info;
4956 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4957 tga.g = g;
4958 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4959 if (!tga.g)
4960 return FALSE;
4961 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4962 g->assigned_low_gotno = save_assign;
4963
4964 if (bfd_link_pic (info))
4965 {
4966 g->relocs += g->local_gotno - g->assigned_low_gotno;
4967 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4968 + g->next->global_gotno
4969 + g->next->tls_gotno
4970 + htab->reserved_gotno);
4971 }
4972 needed_relocs += g->relocs;
4973 }
4974 needed_relocs += g->relocs;
4975
4976 if (needed_relocs)
4977 mips_elf_allocate_dynamic_relocations (dynobj, info,
4978 needed_relocs);
4979
4980 return TRUE;
4981 }
4982
4983 \f
4984 /* Returns the first relocation of type r_type found, beginning with
4985 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4986
4987 static const Elf_Internal_Rela *
4988 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4989 const Elf_Internal_Rela *relocation,
4990 const Elf_Internal_Rela *relend)
4991 {
4992 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4993
4994 while (relocation < relend)
4995 {
4996 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4997 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4998 return relocation;
4999
5000 ++relocation;
5001 }
5002
5003 /* We didn't find it. */
5004 return NULL;
5005 }
5006
5007 /* Return whether an input relocation is against a local symbol. */
5008
5009 static bfd_boolean
5010 mips_elf_local_relocation_p (bfd *input_bfd,
5011 const Elf_Internal_Rela *relocation,
5012 asection **local_sections)
5013 {
5014 unsigned long r_symndx;
5015 Elf_Internal_Shdr *symtab_hdr;
5016 size_t extsymoff;
5017
5018 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5019 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5020 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5021
5022 if (r_symndx < extsymoff)
5023 return TRUE;
5024 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5025 return TRUE;
5026
5027 return FALSE;
5028 }
5029 \f
5030 /* Sign-extend VALUE, which has the indicated number of BITS. */
5031
5032 bfd_vma
5033 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5034 {
5035 if (value & ((bfd_vma) 1 << (bits - 1)))
5036 /* VALUE is negative. */
5037 value |= ((bfd_vma) - 1) << bits;
5038
5039 return value;
5040 }
5041
5042 /* Return non-zero if the indicated VALUE has overflowed the maximum
5043 range expressible by a signed number with the indicated number of
5044 BITS. */
5045
5046 static bfd_boolean
5047 mips_elf_overflow_p (bfd_vma value, int bits)
5048 {
5049 bfd_signed_vma svalue = (bfd_signed_vma) value;
5050
5051 if (svalue > (1 << (bits - 1)) - 1)
5052 /* The value is too big. */
5053 return TRUE;
5054 else if (svalue < -(1 << (bits - 1)))
5055 /* The value is too small. */
5056 return TRUE;
5057
5058 /* All is well. */
5059 return FALSE;
5060 }
5061
5062 /* Calculate the %high function. */
5063
5064 static bfd_vma
5065 mips_elf_high (bfd_vma value)
5066 {
5067 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5068 }
5069
5070 /* Calculate the %higher function. */
5071
5072 static bfd_vma
5073 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5074 {
5075 #ifdef BFD64
5076 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5077 #else
5078 abort ();
5079 return MINUS_ONE;
5080 #endif
5081 }
5082
5083 /* Calculate the %highest function. */
5084
5085 static bfd_vma
5086 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5087 {
5088 #ifdef BFD64
5089 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5090 #else
5091 abort ();
5092 return MINUS_ONE;
5093 #endif
5094 }
5095 \f
5096 /* Create the .compact_rel section. */
5097
5098 static bfd_boolean
5099 mips_elf_create_compact_rel_section
5100 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5101 {
5102 flagword flags;
5103 register asection *s;
5104
5105 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5106 {
5107 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5108 | SEC_READONLY);
5109
5110 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5111 if (s == NULL
5112 || ! bfd_set_section_alignment (abfd, s,
5113 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5114 return FALSE;
5115
5116 s->size = sizeof (Elf32_External_compact_rel);
5117 }
5118
5119 return TRUE;
5120 }
5121
5122 /* Create the .got section to hold the global offset table. */
5123
5124 static bfd_boolean
5125 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5126 {
5127 flagword flags;
5128 register asection *s;
5129 struct elf_link_hash_entry *h;
5130 struct bfd_link_hash_entry *bh;
5131 struct mips_elf_link_hash_table *htab;
5132
5133 htab = mips_elf_hash_table (info);
5134 BFD_ASSERT (htab != NULL);
5135
5136 /* This function may be called more than once. */
5137 if (htab->root.sgot)
5138 return TRUE;
5139
5140 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5141 | SEC_LINKER_CREATED);
5142
5143 /* We have to use an alignment of 2**4 here because this is hardcoded
5144 in the function stub generation and in the linker script. */
5145 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5146 if (s == NULL
5147 || ! bfd_set_section_alignment (abfd, s, 4))
5148 return FALSE;
5149 htab->root.sgot = s;
5150
5151 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5152 linker script because we don't want to define the symbol if we
5153 are not creating a global offset table. */
5154 bh = NULL;
5155 if (! (_bfd_generic_link_add_one_symbol
5156 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5157 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5158 return FALSE;
5159
5160 h = (struct elf_link_hash_entry *) bh;
5161 h->non_elf = 0;
5162 h->def_regular = 1;
5163 h->type = STT_OBJECT;
5164 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5165 elf_hash_table (info)->hgot = h;
5166
5167 if (bfd_link_pic (info)
5168 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5169 return FALSE;
5170
5171 htab->got_info = mips_elf_create_got_info (abfd);
5172 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5173 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5174
5175 /* We also need a .got.plt section when generating PLTs. */
5176 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5177 SEC_ALLOC | SEC_LOAD
5178 | SEC_HAS_CONTENTS
5179 | SEC_IN_MEMORY
5180 | SEC_LINKER_CREATED);
5181 if (s == NULL)
5182 return FALSE;
5183 htab->root.sgotplt = s;
5184
5185 return TRUE;
5186 }
5187 \f
5188 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5189 __GOTT_INDEX__ symbols. These symbols are only special for
5190 shared objects; they are not used in executables. */
5191
5192 static bfd_boolean
5193 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5194 {
5195 return (mips_elf_hash_table (info)->is_vxworks
5196 && bfd_link_pic (info)
5197 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5198 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5199 }
5200
5201 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5202 require an la25 stub. See also mips_elf_local_pic_function_p,
5203 which determines whether the destination function ever requires a
5204 stub. */
5205
5206 static bfd_boolean
5207 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5208 bfd_boolean target_is_16_bit_code_p)
5209 {
5210 /* We specifically ignore branches and jumps from EF_PIC objects,
5211 where the onus is on the compiler or programmer to perform any
5212 necessary initialization of $25. Sometimes such initialization
5213 is unnecessary; for example, -mno-shared functions do not use
5214 the incoming value of $25, and may therefore be called directly. */
5215 if (PIC_OBJECT_P (input_bfd))
5216 return FALSE;
5217
5218 switch (r_type)
5219 {
5220 case R_MIPS_26:
5221 case R_MIPS_PC16:
5222 case R_MIPS_PC21_S2:
5223 case R_MIPS_PC26_S2:
5224 case R_MICROMIPS_26_S1:
5225 case R_MICROMIPS_PC7_S1:
5226 case R_MICROMIPS_PC10_S1:
5227 case R_MICROMIPS_PC16_S1:
5228 case R_MICROMIPS_PC23_S2:
5229 return TRUE;
5230
5231 case R_MIPS16_26:
5232 return !target_is_16_bit_code_p;
5233
5234 default:
5235 return FALSE;
5236 }
5237 }
5238 \f
5239 /* Calculate the value produced by the RELOCATION (which comes from
5240 the INPUT_BFD). The ADDEND is the addend to use for this
5241 RELOCATION; RELOCATION->R_ADDEND is ignored.
5242
5243 The result of the relocation calculation is stored in VALUEP.
5244 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5245 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5246
5247 This function returns bfd_reloc_continue if the caller need take no
5248 further action regarding this relocation, bfd_reloc_notsupported if
5249 something goes dramatically wrong, bfd_reloc_overflow if an
5250 overflow occurs, and bfd_reloc_ok to indicate success. */
5251
5252 static bfd_reloc_status_type
5253 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5254 asection *input_section,
5255 struct bfd_link_info *info,
5256 const Elf_Internal_Rela *relocation,
5257 bfd_vma addend, reloc_howto_type *howto,
5258 Elf_Internal_Sym *local_syms,
5259 asection **local_sections, bfd_vma *valuep,
5260 const char **namep,
5261 bfd_boolean *cross_mode_jump_p,
5262 bfd_boolean save_addend)
5263 {
5264 /* The eventual value we will return. */
5265 bfd_vma value;
5266 /* The address of the symbol against which the relocation is
5267 occurring. */
5268 bfd_vma symbol = 0;
5269 /* The final GP value to be used for the relocatable, executable, or
5270 shared object file being produced. */
5271 bfd_vma gp;
5272 /* The place (section offset or address) of the storage unit being
5273 relocated. */
5274 bfd_vma p;
5275 /* The value of GP used to create the relocatable object. */
5276 bfd_vma gp0;
5277 /* The offset into the global offset table at which the address of
5278 the relocation entry symbol, adjusted by the addend, resides
5279 during execution. */
5280 bfd_vma g = MINUS_ONE;
5281 /* The section in which the symbol referenced by the relocation is
5282 located. */
5283 asection *sec = NULL;
5284 struct mips_elf_link_hash_entry *h = NULL;
5285 /* TRUE if the symbol referred to by this relocation is a local
5286 symbol. */
5287 bfd_boolean local_p, was_local_p;
5288 /* TRUE if the symbol referred to by this relocation is a section
5289 symbol. */
5290 bfd_boolean section_p = FALSE;
5291 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5292 bfd_boolean gp_disp_p = FALSE;
5293 /* TRUE if the symbol referred to by this relocation is
5294 "__gnu_local_gp". */
5295 bfd_boolean gnu_local_gp_p = FALSE;
5296 Elf_Internal_Shdr *symtab_hdr;
5297 size_t extsymoff;
5298 unsigned long r_symndx;
5299 int r_type;
5300 /* TRUE if overflow occurred during the calculation of the
5301 relocation value. */
5302 bfd_boolean overflowed_p;
5303 /* TRUE if this relocation refers to a MIPS16 function. */
5304 bfd_boolean target_is_16_bit_code_p = FALSE;
5305 bfd_boolean target_is_micromips_code_p = FALSE;
5306 struct mips_elf_link_hash_table *htab;
5307 bfd *dynobj;
5308
5309 dynobj = elf_hash_table (info)->dynobj;
5310 htab = mips_elf_hash_table (info);
5311 BFD_ASSERT (htab != NULL);
5312
5313 /* Parse the relocation. */
5314 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5315 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5316 p = (input_section->output_section->vma
5317 + input_section->output_offset
5318 + relocation->r_offset);
5319
5320 /* Assume that there will be no overflow. */
5321 overflowed_p = FALSE;
5322
5323 /* Figure out whether or not the symbol is local, and get the offset
5324 used in the array of hash table entries. */
5325 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5326 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5327 local_sections);
5328 was_local_p = local_p;
5329 if (! elf_bad_symtab (input_bfd))
5330 extsymoff = symtab_hdr->sh_info;
5331 else
5332 {
5333 /* The symbol table does not follow the rule that local symbols
5334 must come before globals. */
5335 extsymoff = 0;
5336 }
5337
5338 /* Figure out the value of the symbol. */
5339 if (local_p)
5340 {
5341 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5342 Elf_Internal_Sym *sym;
5343
5344 sym = local_syms + r_symndx;
5345 sec = local_sections[r_symndx];
5346
5347 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5348
5349 symbol = sec->output_section->vma + sec->output_offset;
5350 if (!section_p || (sec->flags & SEC_MERGE))
5351 symbol += sym->st_value;
5352 if ((sec->flags & SEC_MERGE) && section_p)
5353 {
5354 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5355 addend -= symbol;
5356 addend += sec->output_section->vma + sec->output_offset;
5357 }
5358
5359 /* MIPS16/microMIPS text labels should be treated as odd. */
5360 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5361 ++symbol;
5362
5363 /* Record the name of this symbol, for our caller. */
5364 *namep = bfd_elf_string_from_elf_section (input_bfd,
5365 symtab_hdr->sh_link,
5366 sym->st_name);
5367 if (*namep == NULL || **namep == '\0')
5368 *namep = bfd_section_name (input_bfd, sec);
5369
5370 /* For relocations against a section symbol and ones against no
5371 symbol (absolute relocations) infer the ISA mode from the addend. */
5372 if (section_p || r_symndx == STN_UNDEF)
5373 {
5374 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5375 target_is_micromips_code_p = (addend & 1) && micromips_p;
5376 }
5377 /* For relocations against an absolute symbol infer the ISA mode
5378 from the value of the symbol plus addend. */
5379 else if (bfd_is_abs_section (sec))
5380 {
5381 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5382 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5383 }
5384 /* Otherwise just use the regular symbol annotation available. */
5385 else
5386 {
5387 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5388 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5389 }
5390 }
5391 else
5392 {
5393 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5394
5395 /* For global symbols we look up the symbol in the hash-table. */
5396 h = ((struct mips_elf_link_hash_entry *)
5397 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5398 /* Find the real hash-table entry for this symbol. */
5399 while (h->root.root.type == bfd_link_hash_indirect
5400 || h->root.root.type == bfd_link_hash_warning)
5401 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5402
5403 /* Record the name of this symbol, for our caller. */
5404 *namep = h->root.root.root.string;
5405
5406 /* See if this is the special _gp_disp symbol. Note that such a
5407 symbol must always be a global symbol. */
5408 if (strcmp (*namep, "_gp_disp") == 0
5409 && ! NEWABI_P (input_bfd))
5410 {
5411 /* Relocations against _gp_disp are permitted only with
5412 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5413 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5414 return bfd_reloc_notsupported;
5415
5416 gp_disp_p = TRUE;
5417 }
5418 /* See if this is the special _gp symbol. Note that such a
5419 symbol must always be a global symbol. */
5420 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5421 gnu_local_gp_p = TRUE;
5422
5423
5424 /* If this symbol is defined, calculate its address. Note that
5425 _gp_disp is a magic symbol, always implicitly defined by the
5426 linker, so it's inappropriate to check to see whether or not
5427 its defined. */
5428 else if ((h->root.root.type == bfd_link_hash_defined
5429 || h->root.root.type == bfd_link_hash_defweak)
5430 && h->root.root.u.def.section)
5431 {
5432 sec = h->root.root.u.def.section;
5433 if (sec->output_section)
5434 symbol = (h->root.root.u.def.value
5435 + sec->output_section->vma
5436 + sec->output_offset);
5437 else
5438 symbol = h->root.root.u.def.value;
5439 }
5440 else if (h->root.root.type == bfd_link_hash_undefweak)
5441 /* We allow relocations against undefined weak symbols, giving
5442 it the value zero, so that you can undefined weak functions
5443 and check to see if they exist by looking at their
5444 addresses. */
5445 symbol = 0;
5446 else if (info->unresolved_syms_in_objects == RM_IGNORE
5447 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5448 symbol = 0;
5449 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5450 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5451 {
5452 /* If this is a dynamic link, we should have created a
5453 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5454 in in _bfd_mips_elf_create_dynamic_sections.
5455 Otherwise, we should define the symbol with a value of 0.
5456 FIXME: It should probably get into the symbol table
5457 somehow as well. */
5458 BFD_ASSERT (! bfd_link_pic (info));
5459 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5460 symbol = 0;
5461 }
5462 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5463 {
5464 /* This is an optional symbol - an Irix specific extension to the
5465 ELF spec. Ignore it for now.
5466 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5467 than simply ignoring them, but we do not handle this for now.
5468 For information see the "64-bit ELF Object File Specification"
5469 which is available from here:
5470 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5471 symbol = 0;
5472 }
5473 else
5474 {
5475 (*info->callbacks->undefined_symbol)
5476 (info, h->root.root.root.string, input_bfd,
5477 input_section, relocation->r_offset,
5478 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5479 || ELF_ST_VISIBILITY (h->root.other));
5480 return bfd_reloc_undefined;
5481 }
5482
5483 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5484 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5485 }
5486
5487 /* If this is a reference to a 16-bit function with a stub, we need
5488 to redirect the relocation to the stub unless:
5489
5490 (a) the relocation is for a MIPS16 JAL;
5491
5492 (b) the relocation is for a MIPS16 PIC call, and there are no
5493 non-MIPS16 uses of the GOT slot; or
5494
5495 (c) the section allows direct references to MIPS16 functions. */
5496 if (r_type != R_MIPS16_26
5497 && !bfd_link_relocatable (info)
5498 && ((h != NULL
5499 && h->fn_stub != NULL
5500 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5501 || (local_p
5502 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5503 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5504 && !section_allows_mips16_refs_p (input_section))
5505 {
5506 /* This is a 32- or 64-bit call to a 16-bit function. We should
5507 have already noticed that we were going to need the
5508 stub. */
5509 if (local_p)
5510 {
5511 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5512 value = 0;
5513 }
5514 else
5515 {
5516 BFD_ASSERT (h->need_fn_stub);
5517 if (h->la25_stub)
5518 {
5519 /* If a LA25 header for the stub itself exists, point to the
5520 prepended LUI/ADDIU sequence. */
5521 sec = h->la25_stub->stub_section;
5522 value = h->la25_stub->offset;
5523 }
5524 else
5525 {
5526 sec = h->fn_stub;
5527 value = 0;
5528 }
5529 }
5530
5531 symbol = sec->output_section->vma + sec->output_offset + value;
5532 /* The target is 16-bit, but the stub isn't. */
5533 target_is_16_bit_code_p = FALSE;
5534 }
5535 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5536 to a standard MIPS function, we need to redirect the call to the stub.
5537 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5538 indirect calls should use an indirect stub instead. */
5539 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5540 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5541 || (local_p
5542 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5543 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5544 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5545 {
5546 if (local_p)
5547 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5548 else
5549 {
5550 /* If both call_stub and call_fp_stub are defined, we can figure
5551 out which one to use by checking which one appears in the input
5552 file. */
5553 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5554 {
5555 asection *o;
5556
5557 sec = NULL;
5558 for (o = input_bfd->sections; o != NULL; o = o->next)
5559 {
5560 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5561 {
5562 sec = h->call_fp_stub;
5563 break;
5564 }
5565 }
5566 if (sec == NULL)
5567 sec = h->call_stub;
5568 }
5569 else if (h->call_stub != NULL)
5570 sec = h->call_stub;
5571 else
5572 sec = h->call_fp_stub;
5573 }
5574
5575 BFD_ASSERT (sec->size > 0);
5576 symbol = sec->output_section->vma + sec->output_offset;
5577 }
5578 /* If this is a direct call to a PIC function, redirect to the
5579 non-PIC stub. */
5580 else if (h != NULL && h->la25_stub
5581 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5582 target_is_16_bit_code_p))
5583 {
5584 symbol = (h->la25_stub->stub_section->output_section->vma
5585 + h->la25_stub->stub_section->output_offset
5586 + h->la25_stub->offset);
5587 if (ELF_ST_IS_MICROMIPS (h->root.other))
5588 symbol |= 1;
5589 }
5590 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5591 entry is used if a standard PLT entry has also been made. In this
5592 case the symbol will have been set by mips_elf_set_plt_sym_value
5593 to point to the standard PLT entry, so redirect to the compressed
5594 one. */
5595 else if ((mips16_branch_reloc_p (r_type)
5596 || micromips_branch_reloc_p (r_type))
5597 && !bfd_link_relocatable (info)
5598 && h != NULL
5599 && h->use_plt_entry
5600 && h->root.plt.plist->comp_offset != MINUS_ONE
5601 && h->root.plt.plist->mips_offset != MINUS_ONE)
5602 {
5603 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5604
5605 sec = htab->root.splt;
5606 symbol = (sec->output_section->vma
5607 + sec->output_offset
5608 + htab->plt_header_size
5609 + htab->plt_mips_offset
5610 + h->root.plt.plist->comp_offset
5611 + 1);
5612
5613 target_is_16_bit_code_p = !micromips_p;
5614 target_is_micromips_code_p = micromips_p;
5615 }
5616
5617 /* Make sure MIPS16 and microMIPS are not used together. */
5618 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5619 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5620 {
5621 _bfd_error_handler
5622 (_("MIPS16 and microMIPS functions cannot call each other"));
5623 return bfd_reloc_notsupported;
5624 }
5625
5626 /* Calls from 16-bit code to 32-bit code and vice versa require the
5627 mode change. However, we can ignore calls to undefined weak symbols,
5628 which should never be executed at runtime. This exception is important
5629 because the assembly writer may have "known" that any definition of the
5630 symbol would be 16-bit code, and that direct jumps were therefore
5631 acceptable. */
5632 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5633 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5634 && ((mips16_branch_reloc_p (r_type)
5635 && !target_is_16_bit_code_p)
5636 || (micromips_branch_reloc_p (r_type)
5637 && !target_is_micromips_code_p)
5638 || ((branch_reloc_p (r_type)
5639 || r_type == R_MIPS_JALR)
5640 && (target_is_16_bit_code_p
5641 || target_is_micromips_code_p))));
5642
5643 local_p = (h == NULL || mips_use_local_got_p (info, h));
5644
5645 gp0 = _bfd_get_gp_value (input_bfd);
5646 gp = _bfd_get_gp_value (abfd);
5647 if (htab->got_info)
5648 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5649
5650 if (gnu_local_gp_p)
5651 symbol = gp;
5652
5653 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5654 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5655 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5656 if (got_page_reloc_p (r_type) && !local_p)
5657 {
5658 r_type = (micromips_reloc_p (r_type)
5659 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5660 addend = 0;
5661 }
5662
5663 /* If we haven't already determined the GOT offset, and we're going
5664 to need it, get it now. */
5665 switch (r_type)
5666 {
5667 case R_MIPS16_CALL16:
5668 case R_MIPS16_GOT16:
5669 case R_MIPS_CALL16:
5670 case R_MIPS_GOT16:
5671 case R_MIPS_GOT_DISP:
5672 case R_MIPS_GOT_HI16:
5673 case R_MIPS_CALL_HI16:
5674 case R_MIPS_GOT_LO16:
5675 case R_MIPS_CALL_LO16:
5676 case R_MICROMIPS_CALL16:
5677 case R_MICROMIPS_GOT16:
5678 case R_MICROMIPS_GOT_DISP:
5679 case R_MICROMIPS_GOT_HI16:
5680 case R_MICROMIPS_CALL_HI16:
5681 case R_MICROMIPS_GOT_LO16:
5682 case R_MICROMIPS_CALL_LO16:
5683 case R_MIPS_TLS_GD:
5684 case R_MIPS_TLS_GOTTPREL:
5685 case R_MIPS_TLS_LDM:
5686 case R_MIPS16_TLS_GD:
5687 case R_MIPS16_TLS_GOTTPREL:
5688 case R_MIPS16_TLS_LDM:
5689 case R_MICROMIPS_TLS_GD:
5690 case R_MICROMIPS_TLS_GOTTPREL:
5691 case R_MICROMIPS_TLS_LDM:
5692 /* Find the index into the GOT where this value is located. */
5693 if (tls_ldm_reloc_p (r_type))
5694 {
5695 g = mips_elf_local_got_index (abfd, input_bfd, info,
5696 0, 0, NULL, r_type);
5697 if (g == MINUS_ONE)
5698 return bfd_reloc_outofrange;
5699 }
5700 else if (!local_p)
5701 {
5702 /* On VxWorks, CALL relocations should refer to the .got.plt
5703 entry, which is initialized to point at the PLT stub. */
5704 if (htab->is_vxworks
5705 && (call_hi16_reloc_p (r_type)
5706 || call_lo16_reloc_p (r_type)
5707 || call16_reloc_p (r_type)))
5708 {
5709 BFD_ASSERT (addend == 0);
5710 BFD_ASSERT (h->root.needs_plt);
5711 g = mips_elf_gotplt_index (info, &h->root);
5712 }
5713 else
5714 {
5715 BFD_ASSERT (addend == 0);
5716 g = mips_elf_global_got_index (abfd, info, input_bfd,
5717 &h->root, r_type);
5718 if (!TLS_RELOC_P (r_type)
5719 && !elf_hash_table (info)->dynamic_sections_created)
5720 /* This is a static link. We must initialize the GOT entry. */
5721 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5722 }
5723 }
5724 else if (!htab->is_vxworks
5725 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5726 /* The calculation below does not involve "g". */
5727 break;
5728 else
5729 {
5730 g = mips_elf_local_got_index (abfd, input_bfd, info,
5731 symbol + addend, r_symndx, h, r_type);
5732 if (g == MINUS_ONE)
5733 return bfd_reloc_outofrange;
5734 }
5735
5736 /* Convert GOT indices to actual offsets. */
5737 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5738 break;
5739 }
5740
5741 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5742 symbols are resolved by the loader. Add them to .rela.dyn. */
5743 if (h != NULL && is_gott_symbol (info, &h->root))
5744 {
5745 Elf_Internal_Rela outrel;
5746 bfd_byte *loc;
5747 asection *s;
5748
5749 s = mips_elf_rel_dyn_section (info, FALSE);
5750 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5751
5752 outrel.r_offset = (input_section->output_section->vma
5753 + input_section->output_offset
5754 + relocation->r_offset);
5755 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5756 outrel.r_addend = addend;
5757 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5758
5759 /* If we've written this relocation for a readonly section,
5760 we need to set DF_TEXTREL again, so that we do not delete the
5761 DT_TEXTREL tag. */
5762 if (MIPS_ELF_READONLY_SECTION (input_section))
5763 info->flags |= DF_TEXTREL;
5764
5765 *valuep = 0;
5766 return bfd_reloc_ok;
5767 }
5768
5769 /* Figure out what kind of relocation is being performed. */
5770 switch (r_type)
5771 {
5772 case R_MIPS_NONE:
5773 return bfd_reloc_continue;
5774
5775 case R_MIPS_16:
5776 if (howto->partial_inplace)
5777 addend = _bfd_mips_elf_sign_extend (addend, 16);
5778 value = symbol + addend;
5779 overflowed_p = mips_elf_overflow_p (value, 16);
5780 break;
5781
5782 case R_MIPS_32:
5783 case R_MIPS_REL32:
5784 case R_MIPS_64:
5785 if ((bfd_link_pic (info)
5786 || (htab->root.dynamic_sections_created
5787 && h != NULL
5788 && h->root.def_dynamic
5789 && !h->root.def_regular
5790 && !h->has_static_relocs))
5791 && r_symndx != STN_UNDEF
5792 && (h == NULL
5793 || h->root.root.type != bfd_link_hash_undefweak
5794 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5795 && (input_section->flags & SEC_ALLOC) != 0)
5796 {
5797 /* If we're creating a shared library, then we can't know
5798 where the symbol will end up. So, we create a relocation
5799 record in the output, and leave the job up to the dynamic
5800 linker. We must do the same for executable references to
5801 shared library symbols, unless we've decided to use copy
5802 relocs or PLTs instead. */
5803 value = addend;
5804 if (!mips_elf_create_dynamic_relocation (abfd,
5805 info,
5806 relocation,
5807 h,
5808 sec,
5809 symbol,
5810 &value,
5811 input_section))
5812 return bfd_reloc_undefined;
5813 }
5814 else
5815 {
5816 if (r_type != R_MIPS_REL32)
5817 value = symbol + addend;
5818 else
5819 value = addend;
5820 }
5821 value &= howto->dst_mask;
5822 break;
5823
5824 case R_MIPS_PC32:
5825 value = symbol + addend - p;
5826 value &= howto->dst_mask;
5827 break;
5828
5829 case R_MIPS16_26:
5830 /* The calculation for R_MIPS16_26 is just the same as for an
5831 R_MIPS_26. It's only the storage of the relocated field into
5832 the output file that's different. That's handled in
5833 mips_elf_perform_relocation. So, we just fall through to the
5834 R_MIPS_26 case here. */
5835 case R_MIPS_26:
5836 case R_MICROMIPS_26_S1:
5837 {
5838 unsigned int shift;
5839
5840 /* Shift is 2, unusually, for microMIPS JALX. */
5841 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5842
5843 if (howto->partial_inplace && !section_p)
5844 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5845 else
5846 value = addend;
5847 value += symbol;
5848
5849 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5850 be the correct ISA mode selector except for weak undefined
5851 symbols. */
5852 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5853 && (*cross_mode_jump_p
5854 ? (value & 3) != (r_type == R_MIPS_26)
5855 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5856 return bfd_reloc_outofrange;
5857
5858 value >>= shift;
5859 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5860 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5861 value &= howto->dst_mask;
5862 }
5863 break;
5864
5865 case R_MIPS_TLS_DTPREL_HI16:
5866 case R_MIPS16_TLS_DTPREL_HI16:
5867 case R_MICROMIPS_TLS_DTPREL_HI16:
5868 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5869 & howto->dst_mask);
5870 break;
5871
5872 case R_MIPS_TLS_DTPREL_LO16:
5873 case R_MIPS_TLS_DTPREL32:
5874 case R_MIPS_TLS_DTPREL64:
5875 case R_MIPS16_TLS_DTPREL_LO16:
5876 case R_MICROMIPS_TLS_DTPREL_LO16:
5877 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5878 break;
5879
5880 case R_MIPS_TLS_TPREL_HI16:
5881 case R_MIPS16_TLS_TPREL_HI16:
5882 case R_MICROMIPS_TLS_TPREL_HI16:
5883 value = (mips_elf_high (addend + symbol - tprel_base (info))
5884 & howto->dst_mask);
5885 break;
5886
5887 case R_MIPS_TLS_TPREL_LO16:
5888 case R_MIPS_TLS_TPREL32:
5889 case R_MIPS_TLS_TPREL64:
5890 case R_MIPS16_TLS_TPREL_LO16:
5891 case R_MICROMIPS_TLS_TPREL_LO16:
5892 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5893 break;
5894
5895 case R_MIPS_HI16:
5896 case R_MIPS16_HI16:
5897 case R_MICROMIPS_HI16:
5898 if (!gp_disp_p)
5899 {
5900 value = mips_elf_high (addend + symbol);
5901 value &= howto->dst_mask;
5902 }
5903 else
5904 {
5905 /* For MIPS16 ABI code we generate this sequence
5906 0: li $v0,%hi(_gp_disp)
5907 4: addiupc $v1,%lo(_gp_disp)
5908 8: sll $v0,16
5909 12: addu $v0,$v1
5910 14: move $gp,$v0
5911 So the offsets of hi and lo relocs are the same, but the
5912 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5913 ADDIUPC clears the low two bits of the instruction address,
5914 so the base is ($t9 + 4) & ~3. */
5915 if (r_type == R_MIPS16_HI16)
5916 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5917 /* The microMIPS .cpload sequence uses the same assembly
5918 instructions as the traditional psABI version, but the
5919 incoming $t9 has the low bit set. */
5920 else if (r_type == R_MICROMIPS_HI16)
5921 value = mips_elf_high (addend + gp - p - 1);
5922 else
5923 value = mips_elf_high (addend + gp - p);
5924 }
5925 break;
5926
5927 case R_MIPS_LO16:
5928 case R_MIPS16_LO16:
5929 case R_MICROMIPS_LO16:
5930 case R_MICROMIPS_HI0_LO16:
5931 if (!gp_disp_p)
5932 value = (symbol + addend) & howto->dst_mask;
5933 else
5934 {
5935 /* See the comment for R_MIPS16_HI16 above for the reason
5936 for this conditional. */
5937 if (r_type == R_MIPS16_LO16)
5938 value = addend + gp - (p & ~(bfd_vma) 0x3);
5939 else if (r_type == R_MICROMIPS_LO16
5940 || r_type == R_MICROMIPS_HI0_LO16)
5941 value = addend + gp - p + 3;
5942 else
5943 value = addend + gp - p + 4;
5944 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5945 for overflow. But, on, say, IRIX5, relocations against
5946 _gp_disp are normally generated from the .cpload
5947 pseudo-op. It generates code that normally looks like
5948 this:
5949
5950 lui $gp,%hi(_gp_disp)
5951 addiu $gp,$gp,%lo(_gp_disp)
5952 addu $gp,$gp,$t9
5953
5954 Here $t9 holds the address of the function being called,
5955 as required by the MIPS ELF ABI. The R_MIPS_LO16
5956 relocation can easily overflow in this situation, but the
5957 R_MIPS_HI16 relocation will handle the overflow.
5958 Therefore, we consider this a bug in the MIPS ABI, and do
5959 not check for overflow here. */
5960 }
5961 break;
5962
5963 case R_MIPS_LITERAL:
5964 case R_MICROMIPS_LITERAL:
5965 /* Because we don't merge literal sections, we can handle this
5966 just like R_MIPS_GPREL16. In the long run, we should merge
5967 shared literals, and then we will need to additional work
5968 here. */
5969
5970 /* Fall through. */
5971
5972 case R_MIPS16_GPREL:
5973 /* The R_MIPS16_GPREL performs the same calculation as
5974 R_MIPS_GPREL16, but stores the relocated bits in a different
5975 order. We don't need to do anything special here; the
5976 differences are handled in mips_elf_perform_relocation. */
5977 case R_MIPS_GPREL16:
5978 case R_MICROMIPS_GPREL7_S2:
5979 case R_MICROMIPS_GPREL16:
5980 /* Only sign-extend the addend if it was extracted from the
5981 instruction. If the addend was separate, leave it alone,
5982 otherwise we may lose significant bits. */
5983 if (howto->partial_inplace)
5984 addend = _bfd_mips_elf_sign_extend (addend, 16);
5985 value = symbol + addend - gp;
5986 /* If the symbol was local, any earlier relocatable links will
5987 have adjusted its addend with the gp offset, so compensate
5988 for that now. Don't do it for symbols forced local in this
5989 link, though, since they won't have had the gp offset applied
5990 to them before. */
5991 if (was_local_p)
5992 value += gp0;
5993 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5994 overflowed_p = mips_elf_overflow_p (value, 16);
5995 break;
5996
5997 case R_MIPS16_GOT16:
5998 case R_MIPS16_CALL16:
5999 case R_MIPS_GOT16:
6000 case R_MIPS_CALL16:
6001 case R_MICROMIPS_GOT16:
6002 case R_MICROMIPS_CALL16:
6003 /* VxWorks does not have separate local and global semantics for
6004 R_MIPS*_GOT16; every relocation evaluates to "G". */
6005 if (!htab->is_vxworks && local_p)
6006 {
6007 value = mips_elf_got16_entry (abfd, input_bfd, info,
6008 symbol + addend, !was_local_p);
6009 if (value == MINUS_ONE)
6010 return bfd_reloc_outofrange;
6011 value
6012 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6013 overflowed_p = mips_elf_overflow_p (value, 16);
6014 break;
6015 }
6016
6017 /* Fall through. */
6018
6019 case R_MIPS_TLS_GD:
6020 case R_MIPS_TLS_GOTTPREL:
6021 case R_MIPS_TLS_LDM:
6022 case R_MIPS_GOT_DISP:
6023 case R_MIPS16_TLS_GD:
6024 case R_MIPS16_TLS_GOTTPREL:
6025 case R_MIPS16_TLS_LDM:
6026 case R_MICROMIPS_TLS_GD:
6027 case R_MICROMIPS_TLS_GOTTPREL:
6028 case R_MICROMIPS_TLS_LDM:
6029 case R_MICROMIPS_GOT_DISP:
6030 value = g;
6031 overflowed_p = mips_elf_overflow_p (value, 16);
6032 break;
6033
6034 case R_MIPS_GPREL32:
6035 value = (addend + symbol + gp0 - gp);
6036 if (!save_addend)
6037 value &= howto->dst_mask;
6038 break;
6039
6040 case R_MIPS_PC16:
6041 case R_MIPS_GNU_REL16_S2:
6042 if (howto->partial_inplace)
6043 addend = _bfd_mips_elf_sign_extend (addend, 18);
6044
6045 /* No need to exclude weak undefined symbols here as they resolve
6046 to 0 and never set `*cross_mode_jump_p', so this alignment check
6047 will never trigger for them. */
6048 if (*cross_mode_jump_p
6049 ? ((symbol + addend) & 3) != 1
6050 : ((symbol + addend) & 3) != 0)
6051 return bfd_reloc_outofrange;
6052
6053 value = symbol + addend - p;
6054 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6055 overflowed_p = mips_elf_overflow_p (value, 18);
6056 value >>= howto->rightshift;
6057 value &= howto->dst_mask;
6058 break;
6059
6060 case R_MIPS16_PC16_S1:
6061 if (howto->partial_inplace)
6062 addend = _bfd_mips_elf_sign_extend (addend, 17);
6063
6064 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6065 && (*cross_mode_jump_p
6066 ? ((symbol + addend) & 3) != 0
6067 : ((symbol + addend) & 1) == 0))
6068 return bfd_reloc_outofrange;
6069
6070 value = symbol + addend - p;
6071 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6072 overflowed_p = mips_elf_overflow_p (value, 17);
6073 value >>= howto->rightshift;
6074 value &= howto->dst_mask;
6075 break;
6076
6077 case R_MIPS_PC21_S2:
6078 if (howto->partial_inplace)
6079 addend = _bfd_mips_elf_sign_extend (addend, 23);
6080
6081 if ((symbol + addend) & 3)
6082 return bfd_reloc_outofrange;
6083
6084 value = symbol + addend - p;
6085 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6086 overflowed_p = mips_elf_overflow_p (value, 23);
6087 value >>= howto->rightshift;
6088 value &= howto->dst_mask;
6089 break;
6090
6091 case R_MIPS_PC26_S2:
6092 if (howto->partial_inplace)
6093 addend = _bfd_mips_elf_sign_extend (addend, 28);
6094
6095 if ((symbol + addend) & 3)
6096 return bfd_reloc_outofrange;
6097
6098 value = symbol + addend - p;
6099 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6100 overflowed_p = mips_elf_overflow_p (value, 28);
6101 value >>= howto->rightshift;
6102 value &= howto->dst_mask;
6103 break;
6104
6105 case R_MIPS_PC18_S3:
6106 if (howto->partial_inplace)
6107 addend = _bfd_mips_elf_sign_extend (addend, 21);
6108
6109 if ((symbol + addend) & 7)
6110 return bfd_reloc_outofrange;
6111
6112 value = symbol + addend - ((p | 7) ^ 7);
6113 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6114 overflowed_p = mips_elf_overflow_p (value, 21);
6115 value >>= howto->rightshift;
6116 value &= howto->dst_mask;
6117 break;
6118
6119 case R_MIPS_PC19_S2:
6120 if (howto->partial_inplace)
6121 addend = _bfd_mips_elf_sign_extend (addend, 21);
6122
6123 if ((symbol + addend) & 3)
6124 return bfd_reloc_outofrange;
6125
6126 value = symbol + addend - p;
6127 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6128 overflowed_p = mips_elf_overflow_p (value, 21);
6129 value >>= howto->rightshift;
6130 value &= howto->dst_mask;
6131 break;
6132
6133 case R_MIPS_PCHI16:
6134 value = mips_elf_high (symbol + addend - p);
6135 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6136 overflowed_p = mips_elf_overflow_p (value, 16);
6137 value &= howto->dst_mask;
6138 break;
6139
6140 case R_MIPS_PCLO16:
6141 if (howto->partial_inplace)
6142 addend = _bfd_mips_elf_sign_extend (addend, 16);
6143 value = symbol + addend - p;
6144 value &= howto->dst_mask;
6145 break;
6146
6147 case R_MICROMIPS_PC7_S1:
6148 if (howto->partial_inplace)
6149 addend = _bfd_mips_elf_sign_extend (addend, 8);
6150
6151 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6152 && (*cross_mode_jump_p
6153 ? ((symbol + addend + 2) & 3) != 0
6154 : ((symbol + addend + 2) & 1) == 0))
6155 return bfd_reloc_outofrange;
6156
6157 value = symbol + addend - p;
6158 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6159 overflowed_p = mips_elf_overflow_p (value, 8);
6160 value >>= howto->rightshift;
6161 value &= howto->dst_mask;
6162 break;
6163
6164 case R_MICROMIPS_PC10_S1:
6165 if (howto->partial_inplace)
6166 addend = _bfd_mips_elf_sign_extend (addend, 11);
6167
6168 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6169 && (*cross_mode_jump_p
6170 ? ((symbol + addend + 2) & 3) != 0
6171 : ((symbol + addend + 2) & 1) == 0))
6172 return bfd_reloc_outofrange;
6173
6174 value = symbol + addend - p;
6175 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6176 overflowed_p = mips_elf_overflow_p (value, 11);
6177 value >>= howto->rightshift;
6178 value &= howto->dst_mask;
6179 break;
6180
6181 case R_MICROMIPS_PC16_S1:
6182 if (howto->partial_inplace)
6183 addend = _bfd_mips_elf_sign_extend (addend, 17);
6184
6185 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6186 && (*cross_mode_jump_p
6187 ? ((symbol + addend) & 3) != 0
6188 : ((symbol + addend) & 1) == 0))
6189 return bfd_reloc_outofrange;
6190
6191 value = symbol + addend - p;
6192 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6193 overflowed_p = mips_elf_overflow_p (value, 17);
6194 value >>= howto->rightshift;
6195 value &= howto->dst_mask;
6196 break;
6197
6198 case R_MICROMIPS_PC23_S2:
6199 if (howto->partial_inplace)
6200 addend = _bfd_mips_elf_sign_extend (addend, 25);
6201 value = symbol + addend - ((p | 3) ^ 3);
6202 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6203 overflowed_p = mips_elf_overflow_p (value, 25);
6204 value >>= howto->rightshift;
6205 value &= howto->dst_mask;
6206 break;
6207
6208 case R_MIPS_GOT_HI16:
6209 case R_MIPS_CALL_HI16:
6210 case R_MICROMIPS_GOT_HI16:
6211 case R_MICROMIPS_CALL_HI16:
6212 /* We're allowed to handle these two relocations identically.
6213 The dynamic linker is allowed to handle the CALL relocations
6214 differently by creating a lazy evaluation stub. */
6215 value = g;
6216 value = mips_elf_high (value);
6217 value &= howto->dst_mask;
6218 break;
6219
6220 case R_MIPS_GOT_LO16:
6221 case R_MIPS_CALL_LO16:
6222 case R_MICROMIPS_GOT_LO16:
6223 case R_MICROMIPS_CALL_LO16:
6224 value = g & howto->dst_mask;
6225 break;
6226
6227 case R_MIPS_GOT_PAGE:
6228 case R_MICROMIPS_GOT_PAGE:
6229 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6230 if (value == MINUS_ONE)
6231 return bfd_reloc_outofrange;
6232 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6233 overflowed_p = mips_elf_overflow_p (value, 16);
6234 break;
6235
6236 case R_MIPS_GOT_OFST:
6237 case R_MICROMIPS_GOT_OFST:
6238 if (local_p)
6239 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6240 else
6241 value = addend;
6242 overflowed_p = mips_elf_overflow_p (value, 16);
6243 break;
6244
6245 case R_MIPS_SUB:
6246 case R_MICROMIPS_SUB:
6247 value = symbol - addend;
6248 value &= howto->dst_mask;
6249 break;
6250
6251 case R_MIPS_HIGHER:
6252 case R_MICROMIPS_HIGHER:
6253 value = mips_elf_higher (addend + symbol);
6254 value &= howto->dst_mask;
6255 break;
6256
6257 case R_MIPS_HIGHEST:
6258 case R_MICROMIPS_HIGHEST:
6259 value = mips_elf_highest (addend + symbol);
6260 value &= howto->dst_mask;
6261 break;
6262
6263 case R_MIPS_SCN_DISP:
6264 case R_MICROMIPS_SCN_DISP:
6265 value = symbol + addend - sec->output_offset;
6266 value &= howto->dst_mask;
6267 break;
6268
6269 case R_MIPS_JALR:
6270 case R_MICROMIPS_JALR:
6271 /* This relocation is only a hint. In some cases, we optimize
6272 it into a bal instruction. But we don't try to optimize
6273 when the symbol does not resolve locally. */
6274 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6275 return bfd_reloc_continue;
6276 value = symbol + addend;
6277 break;
6278
6279 case R_MIPS_PJUMP:
6280 case R_MIPS_GNU_VTINHERIT:
6281 case R_MIPS_GNU_VTENTRY:
6282 /* We don't do anything with these at present. */
6283 return bfd_reloc_continue;
6284
6285 default:
6286 /* An unrecognized relocation type. */
6287 return bfd_reloc_notsupported;
6288 }
6289
6290 /* Store the VALUE for our caller. */
6291 *valuep = value;
6292 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6293 }
6294
6295 /* Obtain the field relocated by RELOCATION. */
6296
6297 static bfd_vma
6298 mips_elf_obtain_contents (reloc_howto_type *howto,
6299 const Elf_Internal_Rela *relocation,
6300 bfd *input_bfd, bfd_byte *contents)
6301 {
6302 bfd_vma x = 0;
6303 bfd_byte *location = contents + relocation->r_offset;
6304 unsigned int size = bfd_get_reloc_size (howto);
6305
6306 /* Obtain the bytes. */
6307 if (size != 0)
6308 x = bfd_get (8 * size, input_bfd, location);
6309
6310 return x;
6311 }
6312
6313 /* It has been determined that the result of the RELOCATION is the
6314 VALUE. Use HOWTO to place VALUE into the output file at the
6315 appropriate position. The SECTION is the section to which the
6316 relocation applies.
6317 CROSS_MODE_JUMP_P is true if the relocation field
6318 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6319
6320 Returns FALSE if anything goes wrong. */
6321
6322 static bfd_boolean
6323 mips_elf_perform_relocation (struct bfd_link_info *info,
6324 reloc_howto_type *howto,
6325 const Elf_Internal_Rela *relocation,
6326 bfd_vma value, bfd *input_bfd,
6327 asection *input_section, bfd_byte *contents,
6328 bfd_boolean cross_mode_jump_p)
6329 {
6330 bfd_vma x;
6331 bfd_byte *location;
6332 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6333 unsigned int size;
6334
6335 /* Figure out where the relocation is occurring. */
6336 location = contents + relocation->r_offset;
6337
6338 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6339
6340 /* Obtain the current value. */
6341 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6342
6343 /* Clear the field we are setting. */
6344 x &= ~howto->dst_mask;
6345
6346 /* Set the field. */
6347 x |= (value & howto->dst_mask);
6348
6349 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6350 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6351 {
6352 bfd_vma opcode = x >> 26;
6353
6354 if (r_type == R_MIPS16_26 ? opcode == 0x7
6355 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6356 : opcode == 0x1d)
6357 {
6358 info->callbacks->einfo
6359 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6360 input_bfd, input_section, relocation->r_offset);
6361 return TRUE;
6362 }
6363 }
6364 if (cross_mode_jump_p && jal_reloc_p (r_type))
6365 {
6366 bfd_boolean ok;
6367 bfd_vma opcode = x >> 26;
6368 bfd_vma jalx_opcode;
6369
6370 /* Check to see if the opcode is already JAL or JALX. */
6371 if (r_type == R_MIPS16_26)
6372 {
6373 ok = ((opcode == 0x6) || (opcode == 0x7));
6374 jalx_opcode = 0x7;
6375 }
6376 else if (r_type == R_MICROMIPS_26_S1)
6377 {
6378 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6379 jalx_opcode = 0x3c;
6380 }
6381 else
6382 {
6383 ok = ((opcode == 0x3) || (opcode == 0x1d));
6384 jalx_opcode = 0x1d;
6385 }
6386
6387 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6388 convert J or JALS to JALX. */
6389 if (!ok)
6390 {
6391 info->callbacks->einfo
6392 (_("%X%H: Unsupported jump between ISA modes; "
6393 "consider recompiling with interlinking enabled\n"),
6394 input_bfd, input_section, relocation->r_offset);
6395 return TRUE;
6396 }
6397
6398 /* Make this the JALX opcode. */
6399 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6400 }
6401 else if (cross_mode_jump_p && b_reloc_p (r_type))
6402 {
6403 bfd_boolean ok = FALSE;
6404 bfd_vma opcode = x >> 16;
6405 bfd_vma jalx_opcode = 0;
6406 bfd_vma addr;
6407 bfd_vma dest;
6408
6409 if (r_type == R_MICROMIPS_PC16_S1)
6410 {
6411 ok = opcode == 0x4060;
6412 jalx_opcode = 0x3c;
6413 value <<= 1;
6414 }
6415 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6416 {
6417 ok = opcode == 0x411;
6418 jalx_opcode = 0x1d;
6419 value <<= 2;
6420 }
6421
6422 if (ok && !bfd_link_pic (info))
6423 {
6424 addr = (input_section->output_section->vma
6425 + input_section->output_offset
6426 + relocation->r_offset
6427 + 4);
6428 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6429
6430 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6431 {
6432 info->callbacks->einfo
6433 (_("%X%H: Cannot convert branch between ISA modes "
6434 "to JALX: relocation out of range\n"),
6435 input_bfd, input_section, relocation->r_offset);
6436 return TRUE;
6437 }
6438
6439 /* Make this the JALX opcode. */
6440 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6441 }
6442 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6443 {
6444 info->callbacks->einfo
6445 (_("%X%H: Unsupported branch between ISA modes\n"),
6446 input_bfd, input_section, relocation->r_offset);
6447 return TRUE;
6448 }
6449 }
6450
6451 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6452 range. */
6453 if (!bfd_link_relocatable (info)
6454 && !cross_mode_jump_p
6455 && ((JAL_TO_BAL_P (input_bfd)
6456 && r_type == R_MIPS_26
6457 && (x >> 26) == 0x3) /* jal addr */
6458 || (JALR_TO_BAL_P (input_bfd)
6459 && r_type == R_MIPS_JALR
6460 && x == 0x0320f809) /* jalr t9 */
6461 || (JR_TO_B_P (input_bfd)
6462 && r_type == R_MIPS_JALR
6463 && x == 0x03200008))) /* jr t9 */
6464 {
6465 bfd_vma addr;
6466 bfd_vma dest;
6467 bfd_signed_vma off;
6468
6469 addr = (input_section->output_section->vma
6470 + input_section->output_offset
6471 + relocation->r_offset
6472 + 4);
6473 if (r_type == R_MIPS_26)
6474 dest = (value << 2) | ((addr >> 28) << 28);
6475 else
6476 dest = value;
6477 off = dest - addr;
6478 if (off <= 0x1ffff && off >= -0x20000)
6479 {
6480 if (x == 0x03200008) /* jr t9 */
6481 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6482 else
6483 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6484 }
6485 }
6486
6487 /* Put the value into the output. */
6488 size = bfd_get_reloc_size (howto);
6489 if (size != 0)
6490 bfd_put (8 * size, input_bfd, x, location);
6491
6492 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6493 location);
6494
6495 return TRUE;
6496 }
6497 \f
6498 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6499 is the original relocation, which is now being transformed into a
6500 dynamic relocation. The ADDENDP is adjusted if necessary; the
6501 caller should store the result in place of the original addend. */
6502
6503 static bfd_boolean
6504 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6505 struct bfd_link_info *info,
6506 const Elf_Internal_Rela *rel,
6507 struct mips_elf_link_hash_entry *h,
6508 asection *sec, bfd_vma symbol,
6509 bfd_vma *addendp, asection *input_section)
6510 {
6511 Elf_Internal_Rela outrel[3];
6512 asection *sreloc;
6513 bfd *dynobj;
6514 int r_type;
6515 long indx;
6516 bfd_boolean defined_p;
6517 struct mips_elf_link_hash_table *htab;
6518
6519 htab = mips_elf_hash_table (info);
6520 BFD_ASSERT (htab != NULL);
6521
6522 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6523 dynobj = elf_hash_table (info)->dynobj;
6524 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6525 BFD_ASSERT (sreloc != NULL);
6526 BFD_ASSERT (sreloc->contents != NULL);
6527 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6528 < sreloc->size);
6529
6530 outrel[0].r_offset =
6531 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6532 if (ABI_64_P (output_bfd))
6533 {
6534 outrel[1].r_offset =
6535 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6536 outrel[2].r_offset =
6537 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6538 }
6539
6540 if (outrel[0].r_offset == MINUS_ONE)
6541 /* The relocation field has been deleted. */
6542 return TRUE;
6543
6544 if (outrel[0].r_offset == MINUS_TWO)
6545 {
6546 /* The relocation field has been converted into a relative value of
6547 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6548 the field to be fully relocated, so add in the symbol's value. */
6549 *addendp += symbol;
6550 return TRUE;
6551 }
6552
6553 /* We must now calculate the dynamic symbol table index to use
6554 in the relocation. */
6555 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6556 {
6557 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6558 indx = h->root.dynindx;
6559 if (SGI_COMPAT (output_bfd))
6560 defined_p = h->root.def_regular;
6561 else
6562 /* ??? glibc's ld.so just adds the final GOT entry to the
6563 relocation field. It therefore treats relocs against
6564 defined symbols in the same way as relocs against
6565 undefined symbols. */
6566 defined_p = FALSE;
6567 }
6568 else
6569 {
6570 if (sec != NULL && bfd_is_abs_section (sec))
6571 indx = 0;
6572 else if (sec == NULL || sec->owner == NULL)
6573 {
6574 bfd_set_error (bfd_error_bad_value);
6575 return FALSE;
6576 }
6577 else
6578 {
6579 indx = elf_section_data (sec->output_section)->dynindx;
6580 if (indx == 0)
6581 {
6582 asection *osec = htab->root.text_index_section;
6583 indx = elf_section_data (osec)->dynindx;
6584 }
6585 if (indx == 0)
6586 abort ();
6587 }
6588
6589 /* Instead of generating a relocation using the section
6590 symbol, we may as well make it a fully relative
6591 relocation. We want to avoid generating relocations to
6592 local symbols because we used to generate them
6593 incorrectly, without adding the original symbol value,
6594 which is mandated by the ABI for section symbols. In
6595 order to give dynamic loaders and applications time to
6596 phase out the incorrect use, we refrain from emitting
6597 section-relative relocations. It's not like they're
6598 useful, after all. This should be a bit more efficient
6599 as well. */
6600 /* ??? Although this behavior is compatible with glibc's ld.so,
6601 the ABI says that relocations against STN_UNDEF should have
6602 a symbol value of 0. Irix rld honors this, so relocations
6603 against STN_UNDEF have no effect. */
6604 if (!SGI_COMPAT (output_bfd))
6605 indx = 0;
6606 defined_p = TRUE;
6607 }
6608
6609 /* If the relocation was previously an absolute relocation and
6610 this symbol will not be referred to by the relocation, we must
6611 adjust it by the value we give it in the dynamic symbol table.
6612 Otherwise leave the job up to the dynamic linker. */
6613 if (defined_p && r_type != R_MIPS_REL32)
6614 *addendp += symbol;
6615
6616 if (htab->is_vxworks)
6617 /* VxWorks uses non-relative relocations for this. */
6618 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6619 else
6620 /* The relocation is always an REL32 relocation because we don't
6621 know where the shared library will wind up at load-time. */
6622 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6623 R_MIPS_REL32);
6624
6625 /* For strict adherence to the ABI specification, we should
6626 generate a R_MIPS_64 relocation record by itself before the
6627 _REL32/_64 record as well, such that the addend is read in as
6628 a 64-bit value (REL32 is a 32-bit relocation, after all).
6629 However, since none of the existing ELF64 MIPS dynamic
6630 loaders seems to care, we don't waste space with these
6631 artificial relocations. If this turns out to not be true,
6632 mips_elf_allocate_dynamic_relocation() should be tweaked so
6633 as to make room for a pair of dynamic relocations per
6634 invocation if ABI_64_P, and here we should generate an
6635 additional relocation record with R_MIPS_64 by itself for a
6636 NULL symbol before this relocation record. */
6637 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6638 ABI_64_P (output_bfd)
6639 ? R_MIPS_64
6640 : R_MIPS_NONE);
6641 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6642
6643 /* Adjust the output offset of the relocation to reference the
6644 correct location in the output file. */
6645 outrel[0].r_offset += (input_section->output_section->vma
6646 + input_section->output_offset);
6647 outrel[1].r_offset += (input_section->output_section->vma
6648 + input_section->output_offset);
6649 outrel[2].r_offset += (input_section->output_section->vma
6650 + input_section->output_offset);
6651
6652 /* Put the relocation back out. We have to use the special
6653 relocation outputter in the 64-bit case since the 64-bit
6654 relocation format is non-standard. */
6655 if (ABI_64_P (output_bfd))
6656 {
6657 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6658 (output_bfd, &outrel[0],
6659 (sreloc->contents
6660 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6661 }
6662 else if (htab->is_vxworks)
6663 {
6664 /* VxWorks uses RELA rather than REL dynamic relocations. */
6665 outrel[0].r_addend = *addendp;
6666 bfd_elf32_swap_reloca_out
6667 (output_bfd, &outrel[0],
6668 (sreloc->contents
6669 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6670 }
6671 else
6672 bfd_elf32_swap_reloc_out
6673 (output_bfd, &outrel[0],
6674 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6675
6676 /* We've now added another relocation. */
6677 ++sreloc->reloc_count;
6678
6679 /* Make sure the output section is writable. The dynamic linker
6680 will be writing to it. */
6681 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6682 |= SHF_WRITE;
6683
6684 /* On IRIX5, make an entry of compact relocation info. */
6685 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6686 {
6687 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6688 bfd_byte *cr;
6689
6690 if (scpt)
6691 {
6692 Elf32_crinfo cptrel;
6693
6694 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6695 cptrel.vaddr = (rel->r_offset
6696 + input_section->output_section->vma
6697 + input_section->output_offset);
6698 if (r_type == R_MIPS_REL32)
6699 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6700 else
6701 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6702 mips_elf_set_cr_dist2to (cptrel, 0);
6703 cptrel.konst = *addendp;
6704
6705 cr = (scpt->contents
6706 + sizeof (Elf32_External_compact_rel));
6707 mips_elf_set_cr_relvaddr (cptrel, 0);
6708 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6709 ((Elf32_External_crinfo *) cr
6710 + scpt->reloc_count));
6711 ++scpt->reloc_count;
6712 }
6713 }
6714
6715 /* If we've written this relocation for a readonly section,
6716 we need to set DF_TEXTREL again, so that we do not delete the
6717 DT_TEXTREL tag. */
6718 if (MIPS_ELF_READONLY_SECTION (input_section))
6719 info->flags |= DF_TEXTREL;
6720
6721 return TRUE;
6722 }
6723 \f
6724 /* Return the MACH for a MIPS e_flags value. */
6725
6726 unsigned long
6727 _bfd_elf_mips_mach (flagword flags)
6728 {
6729 switch (flags & EF_MIPS_MACH)
6730 {
6731 case E_MIPS_MACH_3900:
6732 return bfd_mach_mips3900;
6733
6734 case E_MIPS_MACH_4010:
6735 return bfd_mach_mips4010;
6736
6737 case E_MIPS_MACH_4100:
6738 return bfd_mach_mips4100;
6739
6740 case E_MIPS_MACH_4111:
6741 return bfd_mach_mips4111;
6742
6743 case E_MIPS_MACH_4120:
6744 return bfd_mach_mips4120;
6745
6746 case E_MIPS_MACH_4650:
6747 return bfd_mach_mips4650;
6748
6749 case E_MIPS_MACH_5400:
6750 return bfd_mach_mips5400;
6751
6752 case E_MIPS_MACH_5500:
6753 return bfd_mach_mips5500;
6754
6755 case E_MIPS_MACH_5900:
6756 return bfd_mach_mips5900;
6757
6758 case E_MIPS_MACH_9000:
6759 return bfd_mach_mips9000;
6760
6761 case E_MIPS_MACH_SB1:
6762 return bfd_mach_mips_sb1;
6763
6764 case E_MIPS_MACH_LS2E:
6765 return bfd_mach_mips_loongson_2e;
6766
6767 case E_MIPS_MACH_LS2F:
6768 return bfd_mach_mips_loongson_2f;
6769
6770 case E_MIPS_MACH_LS3A:
6771 return bfd_mach_mips_loongson_3a;
6772
6773 case E_MIPS_MACH_OCTEON3:
6774 return bfd_mach_mips_octeon3;
6775
6776 case E_MIPS_MACH_OCTEON2:
6777 return bfd_mach_mips_octeon2;
6778
6779 case E_MIPS_MACH_OCTEON:
6780 return bfd_mach_mips_octeon;
6781
6782 case E_MIPS_MACH_XLR:
6783 return bfd_mach_mips_xlr;
6784
6785 default:
6786 switch (flags & EF_MIPS_ARCH)
6787 {
6788 default:
6789 case E_MIPS_ARCH_1:
6790 return bfd_mach_mips3000;
6791
6792 case E_MIPS_ARCH_2:
6793 return bfd_mach_mips6000;
6794
6795 case E_MIPS_ARCH_3:
6796 return bfd_mach_mips4000;
6797
6798 case E_MIPS_ARCH_4:
6799 return bfd_mach_mips8000;
6800
6801 case E_MIPS_ARCH_5:
6802 return bfd_mach_mips5;
6803
6804 case E_MIPS_ARCH_32:
6805 return bfd_mach_mipsisa32;
6806
6807 case E_MIPS_ARCH_64:
6808 return bfd_mach_mipsisa64;
6809
6810 case E_MIPS_ARCH_32R2:
6811 return bfd_mach_mipsisa32r2;
6812
6813 case E_MIPS_ARCH_64R2:
6814 return bfd_mach_mipsisa64r2;
6815
6816 case E_MIPS_ARCH_32R6:
6817 return bfd_mach_mipsisa32r6;
6818
6819 case E_MIPS_ARCH_64R6:
6820 return bfd_mach_mipsisa64r6;
6821 }
6822 }
6823
6824 return 0;
6825 }
6826
6827 /* Return printable name for ABI. */
6828
6829 static INLINE char *
6830 elf_mips_abi_name (bfd *abfd)
6831 {
6832 flagword flags;
6833
6834 flags = elf_elfheader (abfd)->e_flags;
6835 switch (flags & EF_MIPS_ABI)
6836 {
6837 case 0:
6838 if (ABI_N32_P (abfd))
6839 return "N32";
6840 else if (ABI_64_P (abfd))
6841 return "64";
6842 else
6843 return "none";
6844 case E_MIPS_ABI_O32:
6845 return "O32";
6846 case E_MIPS_ABI_O64:
6847 return "O64";
6848 case E_MIPS_ABI_EABI32:
6849 return "EABI32";
6850 case E_MIPS_ABI_EABI64:
6851 return "EABI64";
6852 default:
6853 return "unknown abi";
6854 }
6855 }
6856 \f
6857 /* MIPS ELF uses two common sections. One is the usual one, and the
6858 other is for small objects. All the small objects are kept
6859 together, and then referenced via the gp pointer, which yields
6860 faster assembler code. This is what we use for the small common
6861 section. This approach is copied from ecoff.c. */
6862 static asection mips_elf_scom_section;
6863 static asymbol mips_elf_scom_symbol;
6864 static asymbol *mips_elf_scom_symbol_ptr;
6865
6866 /* MIPS ELF also uses an acommon section, which represents an
6867 allocated common symbol which may be overridden by a
6868 definition in a shared library. */
6869 static asection mips_elf_acom_section;
6870 static asymbol mips_elf_acom_symbol;
6871 static asymbol *mips_elf_acom_symbol_ptr;
6872
6873 /* This is used for both the 32-bit and the 64-bit ABI. */
6874
6875 void
6876 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6877 {
6878 elf_symbol_type *elfsym;
6879
6880 /* Handle the special MIPS section numbers that a symbol may use. */
6881 elfsym = (elf_symbol_type *) asym;
6882 switch (elfsym->internal_elf_sym.st_shndx)
6883 {
6884 case SHN_MIPS_ACOMMON:
6885 /* This section is used in a dynamically linked executable file.
6886 It is an allocated common section. The dynamic linker can
6887 either resolve these symbols to something in a shared
6888 library, or it can just leave them here. For our purposes,
6889 we can consider these symbols to be in a new section. */
6890 if (mips_elf_acom_section.name == NULL)
6891 {
6892 /* Initialize the acommon section. */
6893 mips_elf_acom_section.name = ".acommon";
6894 mips_elf_acom_section.flags = SEC_ALLOC;
6895 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6896 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6897 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6898 mips_elf_acom_symbol.name = ".acommon";
6899 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6900 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6901 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6902 }
6903 asym->section = &mips_elf_acom_section;
6904 break;
6905
6906 case SHN_COMMON:
6907 /* Common symbols less than the GP size are automatically
6908 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6909 if (asym->value > elf_gp_size (abfd)
6910 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6911 || IRIX_COMPAT (abfd) == ict_irix6)
6912 break;
6913 /* Fall through. */
6914 case SHN_MIPS_SCOMMON:
6915 if (mips_elf_scom_section.name == NULL)
6916 {
6917 /* Initialize the small common section. */
6918 mips_elf_scom_section.name = ".scommon";
6919 mips_elf_scom_section.flags = SEC_IS_COMMON;
6920 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6921 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6922 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6923 mips_elf_scom_symbol.name = ".scommon";
6924 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6925 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6926 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6927 }
6928 asym->section = &mips_elf_scom_section;
6929 asym->value = elfsym->internal_elf_sym.st_size;
6930 break;
6931
6932 case SHN_MIPS_SUNDEFINED:
6933 asym->section = bfd_und_section_ptr;
6934 break;
6935
6936 case SHN_MIPS_TEXT:
6937 {
6938 asection *section = bfd_get_section_by_name (abfd, ".text");
6939
6940 if (section != NULL)
6941 {
6942 asym->section = section;
6943 /* MIPS_TEXT is a bit special, the address is not an offset
6944 to the base of the .text section. So substract the section
6945 base address to make it an offset. */
6946 asym->value -= section->vma;
6947 }
6948 }
6949 break;
6950
6951 case SHN_MIPS_DATA:
6952 {
6953 asection *section = bfd_get_section_by_name (abfd, ".data");
6954
6955 if (section != NULL)
6956 {
6957 asym->section = section;
6958 /* MIPS_DATA is a bit special, the address is not an offset
6959 to the base of the .data section. So substract the section
6960 base address to make it an offset. */
6961 asym->value -= section->vma;
6962 }
6963 }
6964 break;
6965 }
6966
6967 /* If this is an odd-valued function symbol, assume it's a MIPS16
6968 or microMIPS one. */
6969 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6970 && (asym->value & 1) != 0)
6971 {
6972 asym->value--;
6973 if (MICROMIPS_P (abfd))
6974 elfsym->internal_elf_sym.st_other
6975 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6976 else
6977 elfsym->internal_elf_sym.st_other
6978 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6979 }
6980 }
6981 \f
6982 /* Implement elf_backend_eh_frame_address_size. This differs from
6983 the default in the way it handles EABI64.
6984
6985 EABI64 was originally specified as an LP64 ABI, and that is what
6986 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6987 historically accepted the combination of -mabi=eabi and -mlong32,
6988 and this ILP32 variation has become semi-official over time.
6989 Both forms use elf32 and have pointer-sized FDE addresses.
6990
6991 If an EABI object was generated by GCC 4.0 or above, it will have
6992 an empty .gcc_compiled_longXX section, where XX is the size of longs
6993 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6994 have no special marking to distinguish them from LP64 objects.
6995
6996 We don't want users of the official LP64 ABI to be punished for the
6997 existence of the ILP32 variant, but at the same time, we don't want
6998 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6999 We therefore take the following approach:
7000
7001 - If ABFD contains a .gcc_compiled_longXX section, use it to
7002 determine the pointer size.
7003
7004 - Otherwise check the type of the first relocation. Assume that
7005 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7006
7007 - Otherwise punt.
7008
7009 The second check is enough to detect LP64 objects generated by pre-4.0
7010 compilers because, in the kind of output generated by those compilers,
7011 the first relocation will be associated with either a CIE personality
7012 routine or an FDE start address. Furthermore, the compilers never
7013 used a special (non-pointer) encoding for this ABI.
7014
7015 Checking the relocation type should also be safe because there is no
7016 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7017 did so. */
7018
7019 unsigned int
7020 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7021 {
7022 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7023 return 8;
7024 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7025 {
7026 bfd_boolean long32_p, long64_p;
7027
7028 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7029 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7030 if (long32_p && long64_p)
7031 return 0;
7032 if (long32_p)
7033 return 4;
7034 if (long64_p)
7035 return 8;
7036
7037 if (sec->reloc_count > 0
7038 && elf_section_data (sec)->relocs != NULL
7039 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7040 == R_MIPS_64))
7041 return 8;
7042
7043 return 0;
7044 }
7045 return 4;
7046 }
7047 \f
7048 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7049 relocations against two unnamed section symbols to resolve to the
7050 same address. For example, if we have code like:
7051
7052 lw $4,%got_disp(.data)($gp)
7053 lw $25,%got_disp(.text)($gp)
7054 jalr $25
7055
7056 then the linker will resolve both relocations to .data and the program
7057 will jump there rather than to .text.
7058
7059 We can work around this problem by giving names to local section symbols.
7060 This is also what the MIPSpro tools do. */
7061
7062 bfd_boolean
7063 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7064 {
7065 return SGI_COMPAT (abfd);
7066 }
7067 \f
7068 /* Work over a section just before writing it out. This routine is
7069 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7070 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7071 a better way. */
7072
7073 bfd_boolean
7074 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7075 {
7076 if (hdr->sh_type == SHT_MIPS_REGINFO
7077 && hdr->sh_size > 0)
7078 {
7079 bfd_byte buf[4];
7080
7081 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7082 BFD_ASSERT (hdr->contents == NULL);
7083
7084 if (bfd_seek (abfd,
7085 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7086 SEEK_SET) != 0)
7087 return FALSE;
7088 H_PUT_32 (abfd, elf_gp (abfd), buf);
7089 if (bfd_bwrite (buf, 4, abfd) != 4)
7090 return FALSE;
7091 }
7092
7093 if (hdr->sh_type == SHT_MIPS_OPTIONS
7094 && hdr->bfd_section != NULL
7095 && mips_elf_section_data (hdr->bfd_section) != NULL
7096 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7097 {
7098 bfd_byte *contents, *l, *lend;
7099
7100 /* We stored the section contents in the tdata field in the
7101 set_section_contents routine. We save the section contents
7102 so that we don't have to read them again.
7103 At this point we know that elf_gp is set, so we can look
7104 through the section contents to see if there is an
7105 ODK_REGINFO structure. */
7106
7107 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7108 l = contents;
7109 lend = contents + hdr->sh_size;
7110 while (l + sizeof (Elf_External_Options) <= lend)
7111 {
7112 Elf_Internal_Options intopt;
7113
7114 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7115 &intopt);
7116 if (intopt.size < sizeof (Elf_External_Options))
7117 {
7118 _bfd_error_handler
7119 /* xgettext:c-format */
7120 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7121 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7122 break;
7123 }
7124 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7125 {
7126 bfd_byte buf[8];
7127
7128 if (bfd_seek (abfd,
7129 (hdr->sh_offset
7130 + (l - contents)
7131 + sizeof (Elf_External_Options)
7132 + (sizeof (Elf64_External_RegInfo) - 8)),
7133 SEEK_SET) != 0)
7134 return FALSE;
7135 H_PUT_64 (abfd, elf_gp (abfd), buf);
7136 if (bfd_bwrite (buf, 8, abfd) != 8)
7137 return FALSE;
7138 }
7139 else if (intopt.kind == ODK_REGINFO)
7140 {
7141 bfd_byte buf[4];
7142
7143 if (bfd_seek (abfd,
7144 (hdr->sh_offset
7145 + (l - contents)
7146 + sizeof (Elf_External_Options)
7147 + (sizeof (Elf32_External_RegInfo) - 4)),
7148 SEEK_SET) != 0)
7149 return FALSE;
7150 H_PUT_32 (abfd, elf_gp (abfd), buf);
7151 if (bfd_bwrite (buf, 4, abfd) != 4)
7152 return FALSE;
7153 }
7154 l += intopt.size;
7155 }
7156 }
7157
7158 if (hdr->bfd_section != NULL)
7159 {
7160 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7161
7162 /* .sbss is not handled specially here because the GNU/Linux
7163 prelinker can convert .sbss from NOBITS to PROGBITS and
7164 changing it back to NOBITS breaks the binary. The entry in
7165 _bfd_mips_elf_special_sections will ensure the correct flags
7166 are set on .sbss if BFD creates it without reading it from an
7167 input file, and without special handling here the flags set
7168 on it in an input file will be followed. */
7169 if (strcmp (name, ".sdata") == 0
7170 || strcmp (name, ".lit8") == 0
7171 || strcmp (name, ".lit4") == 0)
7172 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7173 else if (strcmp (name, ".srdata") == 0)
7174 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7175 else if (strcmp (name, ".compact_rel") == 0)
7176 hdr->sh_flags = 0;
7177 else if (strcmp (name, ".rtproc") == 0)
7178 {
7179 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7180 {
7181 unsigned int adjust;
7182
7183 adjust = hdr->sh_size % hdr->sh_addralign;
7184 if (adjust != 0)
7185 hdr->sh_size += hdr->sh_addralign - adjust;
7186 }
7187 }
7188 }
7189
7190 return TRUE;
7191 }
7192
7193 /* Handle a MIPS specific section when reading an object file. This
7194 is called when elfcode.h finds a section with an unknown type.
7195 This routine supports both the 32-bit and 64-bit ELF ABI.
7196
7197 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7198 how to. */
7199
7200 bfd_boolean
7201 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7202 Elf_Internal_Shdr *hdr,
7203 const char *name,
7204 int shindex)
7205 {
7206 flagword flags = 0;
7207
7208 /* There ought to be a place to keep ELF backend specific flags, but
7209 at the moment there isn't one. We just keep track of the
7210 sections by their name, instead. Fortunately, the ABI gives
7211 suggested names for all the MIPS specific sections, so we will
7212 probably get away with this. */
7213 switch (hdr->sh_type)
7214 {
7215 case SHT_MIPS_LIBLIST:
7216 if (strcmp (name, ".liblist") != 0)
7217 return FALSE;
7218 break;
7219 case SHT_MIPS_MSYM:
7220 if (strcmp (name, ".msym") != 0)
7221 return FALSE;
7222 break;
7223 case SHT_MIPS_CONFLICT:
7224 if (strcmp (name, ".conflict") != 0)
7225 return FALSE;
7226 break;
7227 case SHT_MIPS_GPTAB:
7228 if (! CONST_STRNEQ (name, ".gptab."))
7229 return FALSE;
7230 break;
7231 case SHT_MIPS_UCODE:
7232 if (strcmp (name, ".ucode") != 0)
7233 return FALSE;
7234 break;
7235 case SHT_MIPS_DEBUG:
7236 if (strcmp (name, ".mdebug") != 0)
7237 return FALSE;
7238 flags = SEC_DEBUGGING;
7239 break;
7240 case SHT_MIPS_REGINFO:
7241 if (strcmp (name, ".reginfo") != 0
7242 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7243 return FALSE;
7244 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7245 break;
7246 case SHT_MIPS_IFACE:
7247 if (strcmp (name, ".MIPS.interfaces") != 0)
7248 return FALSE;
7249 break;
7250 case SHT_MIPS_CONTENT:
7251 if (! CONST_STRNEQ (name, ".MIPS.content"))
7252 return FALSE;
7253 break;
7254 case SHT_MIPS_OPTIONS:
7255 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7256 return FALSE;
7257 break;
7258 case SHT_MIPS_ABIFLAGS:
7259 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7260 return FALSE;
7261 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7262 break;
7263 case SHT_MIPS_DWARF:
7264 if (! CONST_STRNEQ (name, ".debug_")
7265 && ! CONST_STRNEQ (name, ".zdebug_"))
7266 return FALSE;
7267 break;
7268 case SHT_MIPS_SYMBOL_LIB:
7269 if (strcmp (name, ".MIPS.symlib") != 0)
7270 return FALSE;
7271 break;
7272 case SHT_MIPS_EVENTS:
7273 if (! CONST_STRNEQ (name, ".MIPS.events")
7274 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7275 return FALSE;
7276 break;
7277 default:
7278 break;
7279 }
7280
7281 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7282 return FALSE;
7283
7284 if (flags)
7285 {
7286 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7287 (bfd_get_section_flags (abfd,
7288 hdr->bfd_section)
7289 | flags)))
7290 return FALSE;
7291 }
7292
7293 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7294 {
7295 Elf_External_ABIFlags_v0 ext;
7296
7297 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7298 &ext, 0, sizeof ext))
7299 return FALSE;
7300 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7301 &mips_elf_tdata (abfd)->abiflags);
7302 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7303 return FALSE;
7304 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7305 }
7306
7307 /* FIXME: We should record sh_info for a .gptab section. */
7308
7309 /* For a .reginfo section, set the gp value in the tdata information
7310 from the contents of this section. We need the gp value while
7311 processing relocs, so we just get it now. The .reginfo section
7312 is not used in the 64-bit MIPS ELF ABI. */
7313 if (hdr->sh_type == SHT_MIPS_REGINFO)
7314 {
7315 Elf32_External_RegInfo ext;
7316 Elf32_RegInfo s;
7317
7318 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7319 &ext, 0, sizeof ext))
7320 return FALSE;
7321 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7322 elf_gp (abfd) = s.ri_gp_value;
7323 }
7324
7325 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7326 set the gp value based on what we find. We may see both
7327 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7328 they should agree. */
7329 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7330 {
7331 bfd_byte *contents, *l, *lend;
7332
7333 contents = bfd_malloc (hdr->sh_size);
7334 if (contents == NULL)
7335 return FALSE;
7336 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7337 0, hdr->sh_size))
7338 {
7339 free (contents);
7340 return FALSE;
7341 }
7342 l = contents;
7343 lend = contents + hdr->sh_size;
7344 while (l + sizeof (Elf_External_Options) <= lend)
7345 {
7346 Elf_Internal_Options intopt;
7347
7348 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7349 &intopt);
7350 if (intopt.size < sizeof (Elf_External_Options))
7351 {
7352 _bfd_error_handler
7353 /* xgettext:c-format */
7354 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7355 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7356 break;
7357 }
7358 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7359 {
7360 Elf64_Internal_RegInfo intreg;
7361
7362 bfd_mips_elf64_swap_reginfo_in
7363 (abfd,
7364 ((Elf64_External_RegInfo *)
7365 (l + sizeof (Elf_External_Options))),
7366 &intreg);
7367 elf_gp (abfd) = intreg.ri_gp_value;
7368 }
7369 else if (intopt.kind == ODK_REGINFO)
7370 {
7371 Elf32_RegInfo intreg;
7372
7373 bfd_mips_elf32_swap_reginfo_in
7374 (abfd,
7375 ((Elf32_External_RegInfo *)
7376 (l + sizeof (Elf_External_Options))),
7377 &intreg);
7378 elf_gp (abfd) = intreg.ri_gp_value;
7379 }
7380 l += intopt.size;
7381 }
7382 free (contents);
7383 }
7384
7385 return TRUE;
7386 }
7387
7388 /* Set the correct type for a MIPS ELF section. We do this by the
7389 section name, which is a hack, but ought to work. This routine is
7390 used by both the 32-bit and the 64-bit ABI. */
7391
7392 bfd_boolean
7393 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7394 {
7395 const char *name = bfd_get_section_name (abfd, sec);
7396
7397 if (strcmp (name, ".liblist") == 0)
7398 {
7399 hdr->sh_type = SHT_MIPS_LIBLIST;
7400 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7401 /* The sh_link field is set in final_write_processing. */
7402 }
7403 else if (strcmp (name, ".conflict") == 0)
7404 hdr->sh_type = SHT_MIPS_CONFLICT;
7405 else if (CONST_STRNEQ (name, ".gptab."))
7406 {
7407 hdr->sh_type = SHT_MIPS_GPTAB;
7408 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7409 /* The sh_info field is set in final_write_processing. */
7410 }
7411 else if (strcmp (name, ".ucode") == 0)
7412 hdr->sh_type = SHT_MIPS_UCODE;
7413 else if (strcmp (name, ".mdebug") == 0)
7414 {
7415 hdr->sh_type = SHT_MIPS_DEBUG;
7416 /* In a shared object on IRIX 5.3, the .mdebug section has an
7417 entsize of 0. FIXME: Does this matter? */
7418 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7419 hdr->sh_entsize = 0;
7420 else
7421 hdr->sh_entsize = 1;
7422 }
7423 else if (strcmp (name, ".reginfo") == 0)
7424 {
7425 hdr->sh_type = SHT_MIPS_REGINFO;
7426 /* In a shared object on IRIX 5.3, the .reginfo section has an
7427 entsize of 0x18. FIXME: Does this matter? */
7428 if (SGI_COMPAT (abfd))
7429 {
7430 if ((abfd->flags & DYNAMIC) != 0)
7431 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7432 else
7433 hdr->sh_entsize = 1;
7434 }
7435 else
7436 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7437 }
7438 else if (SGI_COMPAT (abfd)
7439 && (strcmp (name, ".hash") == 0
7440 || strcmp (name, ".dynamic") == 0
7441 || strcmp (name, ".dynstr") == 0))
7442 {
7443 if (SGI_COMPAT (abfd))
7444 hdr->sh_entsize = 0;
7445 #if 0
7446 /* This isn't how the IRIX6 linker behaves. */
7447 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7448 #endif
7449 }
7450 else if (strcmp (name, ".got") == 0
7451 || strcmp (name, ".srdata") == 0
7452 || strcmp (name, ".sdata") == 0
7453 || strcmp (name, ".sbss") == 0
7454 || strcmp (name, ".lit4") == 0
7455 || strcmp (name, ".lit8") == 0)
7456 hdr->sh_flags |= SHF_MIPS_GPREL;
7457 else if (strcmp (name, ".MIPS.interfaces") == 0)
7458 {
7459 hdr->sh_type = SHT_MIPS_IFACE;
7460 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7461 }
7462 else if (CONST_STRNEQ (name, ".MIPS.content"))
7463 {
7464 hdr->sh_type = SHT_MIPS_CONTENT;
7465 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7466 /* The sh_info field is set in final_write_processing. */
7467 }
7468 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7469 {
7470 hdr->sh_type = SHT_MIPS_OPTIONS;
7471 hdr->sh_entsize = 1;
7472 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7473 }
7474 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7475 {
7476 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7477 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7478 }
7479 else if (CONST_STRNEQ (name, ".debug_")
7480 || CONST_STRNEQ (name, ".zdebug_"))
7481 {
7482 hdr->sh_type = SHT_MIPS_DWARF;
7483
7484 /* Irix facilities such as libexc expect a single .debug_frame
7485 per executable, the system ones have NOSTRIP set and the linker
7486 doesn't merge sections with different flags so ... */
7487 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7488 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7489 }
7490 else if (strcmp (name, ".MIPS.symlib") == 0)
7491 {
7492 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7493 /* The sh_link and sh_info fields are set in
7494 final_write_processing. */
7495 }
7496 else if (CONST_STRNEQ (name, ".MIPS.events")
7497 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7498 {
7499 hdr->sh_type = SHT_MIPS_EVENTS;
7500 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7501 /* The sh_link field is set in final_write_processing. */
7502 }
7503 else if (strcmp (name, ".msym") == 0)
7504 {
7505 hdr->sh_type = SHT_MIPS_MSYM;
7506 hdr->sh_flags |= SHF_ALLOC;
7507 hdr->sh_entsize = 8;
7508 }
7509
7510 /* The generic elf_fake_sections will set up REL_HDR using the default
7511 kind of relocations. We used to set up a second header for the
7512 non-default kind of relocations here, but only NewABI would use
7513 these, and the IRIX ld doesn't like resulting empty RELA sections.
7514 Thus we create those header only on demand now. */
7515
7516 return TRUE;
7517 }
7518
7519 /* Given a BFD section, try to locate the corresponding ELF section
7520 index. This is used by both the 32-bit and the 64-bit ABI.
7521 Actually, it's not clear to me that the 64-bit ABI supports these,
7522 but for non-PIC objects we will certainly want support for at least
7523 the .scommon section. */
7524
7525 bfd_boolean
7526 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7527 asection *sec, int *retval)
7528 {
7529 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7530 {
7531 *retval = SHN_MIPS_SCOMMON;
7532 return TRUE;
7533 }
7534 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7535 {
7536 *retval = SHN_MIPS_ACOMMON;
7537 return TRUE;
7538 }
7539 return FALSE;
7540 }
7541 \f
7542 /* Hook called by the linker routine which adds symbols from an object
7543 file. We must handle the special MIPS section numbers here. */
7544
7545 bfd_boolean
7546 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7547 Elf_Internal_Sym *sym, const char **namep,
7548 flagword *flagsp ATTRIBUTE_UNUSED,
7549 asection **secp, bfd_vma *valp)
7550 {
7551 if (SGI_COMPAT (abfd)
7552 && (abfd->flags & DYNAMIC) != 0
7553 && strcmp (*namep, "_rld_new_interface") == 0)
7554 {
7555 /* Skip IRIX5 rld entry name. */
7556 *namep = NULL;
7557 return TRUE;
7558 }
7559
7560 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7561 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7562 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7563 a magic symbol resolved by the linker, we ignore this bogus definition
7564 of _gp_disp. New ABI objects do not suffer from this problem so this
7565 is not done for them. */
7566 if (!NEWABI_P(abfd)
7567 && (sym->st_shndx == SHN_ABS)
7568 && (strcmp (*namep, "_gp_disp") == 0))
7569 {
7570 *namep = NULL;
7571 return TRUE;
7572 }
7573
7574 switch (sym->st_shndx)
7575 {
7576 case SHN_COMMON:
7577 /* Common symbols less than the GP size are automatically
7578 treated as SHN_MIPS_SCOMMON symbols. */
7579 if (sym->st_size > elf_gp_size (abfd)
7580 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7581 || IRIX_COMPAT (abfd) == ict_irix6)
7582 break;
7583 /* Fall through. */
7584 case SHN_MIPS_SCOMMON:
7585 *secp = bfd_make_section_old_way (abfd, ".scommon");
7586 (*secp)->flags |= SEC_IS_COMMON;
7587 *valp = sym->st_size;
7588 break;
7589
7590 case SHN_MIPS_TEXT:
7591 /* This section is used in a shared object. */
7592 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7593 {
7594 asymbol *elf_text_symbol;
7595 asection *elf_text_section;
7596 bfd_size_type amt = sizeof (asection);
7597
7598 elf_text_section = bfd_zalloc (abfd, amt);
7599 if (elf_text_section == NULL)
7600 return FALSE;
7601
7602 amt = sizeof (asymbol);
7603 elf_text_symbol = bfd_zalloc (abfd, amt);
7604 if (elf_text_symbol == NULL)
7605 return FALSE;
7606
7607 /* Initialize the section. */
7608
7609 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7610 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7611
7612 elf_text_section->symbol = elf_text_symbol;
7613 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7614
7615 elf_text_section->name = ".text";
7616 elf_text_section->flags = SEC_NO_FLAGS;
7617 elf_text_section->output_section = NULL;
7618 elf_text_section->owner = abfd;
7619 elf_text_symbol->name = ".text";
7620 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7621 elf_text_symbol->section = elf_text_section;
7622 }
7623 /* This code used to do *secp = bfd_und_section_ptr if
7624 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7625 so I took it out. */
7626 *secp = mips_elf_tdata (abfd)->elf_text_section;
7627 break;
7628
7629 case SHN_MIPS_ACOMMON:
7630 /* Fall through. XXX Can we treat this as allocated data? */
7631 case SHN_MIPS_DATA:
7632 /* This section is used in a shared object. */
7633 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7634 {
7635 asymbol *elf_data_symbol;
7636 asection *elf_data_section;
7637 bfd_size_type amt = sizeof (asection);
7638
7639 elf_data_section = bfd_zalloc (abfd, amt);
7640 if (elf_data_section == NULL)
7641 return FALSE;
7642
7643 amt = sizeof (asymbol);
7644 elf_data_symbol = bfd_zalloc (abfd, amt);
7645 if (elf_data_symbol == NULL)
7646 return FALSE;
7647
7648 /* Initialize the section. */
7649
7650 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7651 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7652
7653 elf_data_section->symbol = elf_data_symbol;
7654 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7655
7656 elf_data_section->name = ".data";
7657 elf_data_section->flags = SEC_NO_FLAGS;
7658 elf_data_section->output_section = NULL;
7659 elf_data_section->owner = abfd;
7660 elf_data_symbol->name = ".data";
7661 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7662 elf_data_symbol->section = elf_data_section;
7663 }
7664 /* This code used to do *secp = bfd_und_section_ptr if
7665 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7666 so I took it out. */
7667 *secp = mips_elf_tdata (abfd)->elf_data_section;
7668 break;
7669
7670 case SHN_MIPS_SUNDEFINED:
7671 *secp = bfd_und_section_ptr;
7672 break;
7673 }
7674
7675 if (SGI_COMPAT (abfd)
7676 && ! bfd_link_pic (info)
7677 && info->output_bfd->xvec == abfd->xvec
7678 && strcmp (*namep, "__rld_obj_head") == 0)
7679 {
7680 struct elf_link_hash_entry *h;
7681 struct bfd_link_hash_entry *bh;
7682
7683 /* Mark __rld_obj_head as dynamic. */
7684 bh = NULL;
7685 if (! (_bfd_generic_link_add_one_symbol
7686 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7687 get_elf_backend_data (abfd)->collect, &bh)))
7688 return FALSE;
7689
7690 h = (struct elf_link_hash_entry *) bh;
7691 h->non_elf = 0;
7692 h->def_regular = 1;
7693 h->type = STT_OBJECT;
7694
7695 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7696 return FALSE;
7697
7698 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7699 mips_elf_hash_table (info)->rld_symbol = h;
7700 }
7701
7702 /* If this is a mips16 text symbol, add 1 to the value to make it
7703 odd. This will cause something like .word SYM to come up with
7704 the right value when it is loaded into the PC. */
7705 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7706 ++*valp;
7707
7708 return TRUE;
7709 }
7710
7711 /* This hook function is called before the linker writes out a global
7712 symbol. We mark symbols as small common if appropriate. This is
7713 also where we undo the increment of the value for a mips16 symbol. */
7714
7715 int
7716 _bfd_mips_elf_link_output_symbol_hook
7717 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7718 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7719 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7720 {
7721 /* If we see a common symbol, which implies a relocatable link, then
7722 if a symbol was small common in an input file, mark it as small
7723 common in the output file. */
7724 if (sym->st_shndx == SHN_COMMON
7725 && strcmp (input_sec->name, ".scommon") == 0)
7726 sym->st_shndx = SHN_MIPS_SCOMMON;
7727
7728 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7729 sym->st_value &= ~1;
7730
7731 return 1;
7732 }
7733 \f
7734 /* Functions for the dynamic linker. */
7735
7736 /* Create dynamic sections when linking against a dynamic object. */
7737
7738 bfd_boolean
7739 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7740 {
7741 struct elf_link_hash_entry *h;
7742 struct bfd_link_hash_entry *bh;
7743 flagword flags;
7744 register asection *s;
7745 const char * const *namep;
7746 struct mips_elf_link_hash_table *htab;
7747
7748 htab = mips_elf_hash_table (info);
7749 BFD_ASSERT (htab != NULL);
7750
7751 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7752 | SEC_LINKER_CREATED | SEC_READONLY);
7753
7754 /* The psABI requires a read-only .dynamic section, but the VxWorks
7755 EABI doesn't. */
7756 if (!htab->is_vxworks)
7757 {
7758 s = bfd_get_linker_section (abfd, ".dynamic");
7759 if (s != NULL)
7760 {
7761 if (! bfd_set_section_flags (abfd, s, flags))
7762 return FALSE;
7763 }
7764 }
7765
7766 /* We need to create .got section. */
7767 if (!mips_elf_create_got_section (abfd, info))
7768 return FALSE;
7769
7770 if (! mips_elf_rel_dyn_section (info, TRUE))
7771 return FALSE;
7772
7773 /* Create .stub section. */
7774 s = bfd_make_section_anyway_with_flags (abfd,
7775 MIPS_ELF_STUB_SECTION_NAME (abfd),
7776 flags | SEC_CODE);
7777 if (s == NULL
7778 || ! bfd_set_section_alignment (abfd, s,
7779 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7780 return FALSE;
7781 htab->sstubs = s;
7782
7783 if (!mips_elf_hash_table (info)->use_rld_obj_head
7784 && bfd_link_executable (info)
7785 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7786 {
7787 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7788 flags &~ (flagword) SEC_READONLY);
7789 if (s == NULL
7790 || ! bfd_set_section_alignment (abfd, s,
7791 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7792 return FALSE;
7793 }
7794
7795 /* On IRIX5, we adjust add some additional symbols and change the
7796 alignments of several sections. There is no ABI documentation
7797 indicating that this is necessary on IRIX6, nor any evidence that
7798 the linker takes such action. */
7799 if (IRIX_COMPAT (abfd) == ict_irix5)
7800 {
7801 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7802 {
7803 bh = NULL;
7804 if (! (_bfd_generic_link_add_one_symbol
7805 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7806 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7807 return FALSE;
7808
7809 h = (struct elf_link_hash_entry *) bh;
7810 h->non_elf = 0;
7811 h->def_regular = 1;
7812 h->type = STT_SECTION;
7813
7814 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7815 return FALSE;
7816 }
7817
7818 /* We need to create a .compact_rel section. */
7819 if (SGI_COMPAT (abfd))
7820 {
7821 if (!mips_elf_create_compact_rel_section (abfd, info))
7822 return FALSE;
7823 }
7824
7825 /* Change alignments of some sections. */
7826 s = bfd_get_linker_section (abfd, ".hash");
7827 if (s != NULL)
7828 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7829
7830 s = bfd_get_linker_section (abfd, ".dynsym");
7831 if (s != NULL)
7832 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7833
7834 s = bfd_get_linker_section (abfd, ".dynstr");
7835 if (s != NULL)
7836 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7837
7838 /* ??? */
7839 s = bfd_get_section_by_name (abfd, ".reginfo");
7840 if (s != NULL)
7841 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7842
7843 s = bfd_get_linker_section (abfd, ".dynamic");
7844 if (s != NULL)
7845 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7846 }
7847
7848 if (bfd_link_executable (info))
7849 {
7850 const char *name;
7851
7852 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7853 bh = NULL;
7854 if (!(_bfd_generic_link_add_one_symbol
7855 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7856 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7857 return FALSE;
7858
7859 h = (struct elf_link_hash_entry *) bh;
7860 h->non_elf = 0;
7861 h->def_regular = 1;
7862 h->type = STT_SECTION;
7863
7864 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7865 return FALSE;
7866
7867 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7868 {
7869 /* __rld_map is a four byte word located in the .data section
7870 and is filled in by the rtld to contain a pointer to
7871 the _r_debug structure. Its symbol value will be set in
7872 _bfd_mips_elf_finish_dynamic_symbol. */
7873 s = bfd_get_linker_section (abfd, ".rld_map");
7874 BFD_ASSERT (s != NULL);
7875
7876 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7877 bh = NULL;
7878 if (!(_bfd_generic_link_add_one_symbol
7879 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7880 get_elf_backend_data (abfd)->collect, &bh)))
7881 return FALSE;
7882
7883 h = (struct elf_link_hash_entry *) bh;
7884 h->non_elf = 0;
7885 h->def_regular = 1;
7886 h->type = STT_OBJECT;
7887
7888 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7889 return FALSE;
7890 mips_elf_hash_table (info)->rld_symbol = h;
7891 }
7892 }
7893
7894 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7895 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7896 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7897 return FALSE;
7898
7899 /* Do the usual VxWorks handling. */
7900 if (htab->is_vxworks
7901 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7902 return FALSE;
7903
7904 return TRUE;
7905 }
7906 \f
7907 /* Return true if relocation REL against section SEC is a REL rather than
7908 RELA relocation. RELOCS is the first relocation in the section and
7909 ABFD is the bfd that contains SEC. */
7910
7911 static bfd_boolean
7912 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7913 const Elf_Internal_Rela *relocs,
7914 const Elf_Internal_Rela *rel)
7915 {
7916 Elf_Internal_Shdr *rel_hdr;
7917 const struct elf_backend_data *bed;
7918
7919 /* To determine which flavor of relocation this is, we depend on the
7920 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7921 rel_hdr = elf_section_data (sec)->rel.hdr;
7922 if (rel_hdr == NULL)
7923 return FALSE;
7924 bed = get_elf_backend_data (abfd);
7925 return ((size_t) (rel - relocs)
7926 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7927 }
7928
7929 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7930 HOWTO is the relocation's howto and CONTENTS points to the contents
7931 of the section that REL is against. */
7932
7933 static bfd_vma
7934 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7935 reloc_howto_type *howto, bfd_byte *contents)
7936 {
7937 bfd_byte *location;
7938 unsigned int r_type;
7939 bfd_vma addend;
7940 bfd_vma bytes;
7941
7942 r_type = ELF_R_TYPE (abfd, rel->r_info);
7943 location = contents + rel->r_offset;
7944
7945 /* Get the addend, which is stored in the input file. */
7946 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7947 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7948 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7949
7950 addend = bytes & howto->src_mask;
7951
7952 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7953 accordingly. */
7954 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7955 addend <<= 1;
7956
7957 return addend;
7958 }
7959
7960 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7961 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7962 and update *ADDEND with the final addend. Return true on success
7963 or false if the LO16 could not be found. RELEND is the exclusive
7964 upper bound on the relocations for REL's section. */
7965
7966 static bfd_boolean
7967 mips_elf_add_lo16_rel_addend (bfd *abfd,
7968 const Elf_Internal_Rela *rel,
7969 const Elf_Internal_Rela *relend,
7970 bfd_byte *contents, bfd_vma *addend)
7971 {
7972 unsigned int r_type, lo16_type;
7973 const Elf_Internal_Rela *lo16_relocation;
7974 reloc_howto_type *lo16_howto;
7975 bfd_vma l;
7976
7977 r_type = ELF_R_TYPE (abfd, rel->r_info);
7978 if (mips16_reloc_p (r_type))
7979 lo16_type = R_MIPS16_LO16;
7980 else if (micromips_reloc_p (r_type))
7981 lo16_type = R_MICROMIPS_LO16;
7982 else if (r_type == R_MIPS_PCHI16)
7983 lo16_type = R_MIPS_PCLO16;
7984 else
7985 lo16_type = R_MIPS_LO16;
7986
7987 /* The combined value is the sum of the HI16 addend, left-shifted by
7988 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7989 code does a `lui' of the HI16 value, and then an `addiu' of the
7990 LO16 value.)
7991
7992 Scan ahead to find a matching LO16 relocation.
7993
7994 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7995 be immediately following. However, for the IRIX6 ABI, the next
7996 relocation may be a composed relocation consisting of several
7997 relocations for the same address. In that case, the R_MIPS_LO16
7998 relocation may occur as one of these. We permit a similar
7999 extension in general, as that is useful for GCC.
8000
8001 In some cases GCC dead code elimination removes the LO16 but keeps
8002 the corresponding HI16. This is strictly speaking a violation of
8003 the ABI but not immediately harmful. */
8004 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8005 if (lo16_relocation == NULL)
8006 return FALSE;
8007
8008 /* Obtain the addend kept there. */
8009 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8010 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8011
8012 l <<= lo16_howto->rightshift;
8013 l = _bfd_mips_elf_sign_extend (l, 16);
8014
8015 *addend <<= 16;
8016 *addend += l;
8017 return TRUE;
8018 }
8019
8020 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8021 store the contents in *CONTENTS on success. Assume that *CONTENTS
8022 already holds the contents if it is nonull on entry. */
8023
8024 static bfd_boolean
8025 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8026 {
8027 if (*contents)
8028 return TRUE;
8029
8030 /* Get cached copy if it exists. */
8031 if (elf_section_data (sec)->this_hdr.contents != NULL)
8032 {
8033 *contents = elf_section_data (sec)->this_hdr.contents;
8034 return TRUE;
8035 }
8036
8037 return bfd_malloc_and_get_section (abfd, sec, contents);
8038 }
8039
8040 /* Make a new PLT record to keep internal data. */
8041
8042 static struct plt_entry *
8043 mips_elf_make_plt_record (bfd *abfd)
8044 {
8045 struct plt_entry *entry;
8046
8047 entry = bfd_zalloc (abfd, sizeof (*entry));
8048 if (entry == NULL)
8049 return NULL;
8050
8051 entry->stub_offset = MINUS_ONE;
8052 entry->mips_offset = MINUS_ONE;
8053 entry->comp_offset = MINUS_ONE;
8054 entry->gotplt_index = MINUS_ONE;
8055 return entry;
8056 }
8057
8058 /* Look through the relocs for a section during the first phase, and
8059 allocate space in the global offset table and record the need for
8060 standard MIPS and compressed procedure linkage table entries. */
8061
8062 bfd_boolean
8063 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8064 asection *sec, const Elf_Internal_Rela *relocs)
8065 {
8066 const char *name;
8067 bfd *dynobj;
8068 Elf_Internal_Shdr *symtab_hdr;
8069 struct elf_link_hash_entry **sym_hashes;
8070 size_t extsymoff;
8071 const Elf_Internal_Rela *rel;
8072 const Elf_Internal_Rela *rel_end;
8073 asection *sreloc;
8074 const struct elf_backend_data *bed;
8075 struct mips_elf_link_hash_table *htab;
8076 bfd_byte *contents;
8077 bfd_vma addend;
8078 reloc_howto_type *howto;
8079
8080 if (bfd_link_relocatable (info))
8081 return TRUE;
8082
8083 htab = mips_elf_hash_table (info);
8084 BFD_ASSERT (htab != NULL);
8085
8086 dynobj = elf_hash_table (info)->dynobj;
8087 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8088 sym_hashes = elf_sym_hashes (abfd);
8089 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8090
8091 bed = get_elf_backend_data (abfd);
8092 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8093
8094 /* Check for the mips16 stub sections. */
8095
8096 name = bfd_get_section_name (abfd, sec);
8097 if (FN_STUB_P (name))
8098 {
8099 unsigned long r_symndx;
8100
8101 /* Look at the relocation information to figure out which symbol
8102 this is for. */
8103
8104 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8105 if (r_symndx == 0)
8106 {
8107 _bfd_error_handler
8108 /* xgettext:c-format */
8109 (_("%B: Warning: cannot determine the target function for"
8110 " stub section `%s'"),
8111 abfd, name);
8112 bfd_set_error (bfd_error_bad_value);
8113 return FALSE;
8114 }
8115
8116 if (r_symndx < extsymoff
8117 || sym_hashes[r_symndx - extsymoff] == NULL)
8118 {
8119 asection *o;
8120
8121 /* This stub is for a local symbol. This stub will only be
8122 needed if there is some relocation in this BFD, other
8123 than a 16 bit function call, which refers to this symbol. */
8124 for (o = abfd->sections; o != NULL; o = o->next)
8125 {
8126 Elf_Internal_Rela *sec_relocs;
8127 const Elf_Internal_Rela *r, *rend;
8128
8129 /* We can ignore stub sections when looking for relocs. */
8130 if ((o->flags & SEC_RELOC) == 0
8131 || o->reloc_count == 0
8132 || section_allows_mips16_refs_p (o))
8133 continue;
8134
8135 sec_relocs
8136 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8137 info->keep_memory);
8138 if (sec_relocs == NULL)
8139 return FALSE;
8140
8141 rend = sec_relocs + o->reloc_count;
8142 for (r = sec_relocs; r < rend; r++)
8143 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8144 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8145 break;
8146
8147 if (elf_section_data (o)->relocs != sec_relocs)
8148 free (sec_relocs);
8149
8150 if (r < rend)
8151 break;
8152 }
8153
8154 if (o == NULL)
8155 {
8156 /* There is no non-call reloc for this stub, so we do
8157 not need it. Since this function is called before
8158 the linker maps input sections to output sections, we
8159 can easily discard it by setting the SEC_EXCLUDE
8160 flag. */
8161 sec->flags |= SEC_EXCLUDE;
8162 return TRUE;
8163 }
8164
8165 /* Record this stub in an array of local symbol stubs for
8166 this BFD. */
8167 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8168 {
8169 unsigned long symcount;
8170 asection **n;
8171 bfd_size_type amt;
8172
8173 if (elf_bad_symtab (abfd))
8174 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8175 else
8176 symcount = symtab_hdr->sh_info;
8177 amt = symcount * sizeof (asection *);
8178 n = bfd_zalloc (abfd, amt);
8179 if (n == NULL)
8180 return FALSE;
8181 mips_elf_tdata (abfd)->local_stubs = n;
8182 }
8183
8184 sec->flags |= SEC_KEEP;
8185 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8186
8187 /* We don't need to set mips16_stubs_seen in this case.
8188 That flag is used to see whether we need to look through
8189 the global symbol table for stubs. We don't need to set
8190 it here, because we just have a local stub. */
8191 }
8192 else
8193 {
8194 struct mips_elf_link_hash_entry *h;
8195
8196 h = ((struct mips_elf_link_hash_entry *)
8197 sym_hashes[r_symndx - extsymoff]);
8198
8199 while (h->root.root.type == bfd_link_hash_indirect
8200 || h->root.root.type == bfd_link_hash_warning)
8201 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8202
8203 /* H is the symbol this stub is for. */
8204
8205 /* If we already have an appropriate stub for this function, we
8206 don't need another one, so we can discard this one. Since
8207 this function is called before the linker maps input sections
8208 to output sections, we can easily discard it by setting the
8209 SEC_EXCLUDE flag. */
8210 if (h->fn_stub != NULL)
8211 {
8212 sec->flags |= SEC_EXCLUDE;
8213 return TRUE;
8214 }
8215
8216 sec->flags |= SEC_KEEP;
8217 h->fn_stub = sec;
8218 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8219 }
8220 }
8221 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8222 {
8223 unsigned long r_symndx;
8224 struct mips_elf_link_hash_entry *h;
8225 asection **loc;
8226
8227 /* Look at the relocation information to figure out which symbol
8228 this is for. */
8229
8230 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8231 if (r_symndx == 0)
8232 {
8233 _bfd_error_handler
8234 /* xgettext:c-format */
8235 (_("%B: Warning: cannot determine the target function for"
8236 " stub section `%s'"),
8237 abfd, name);
8238 bfd_set_error (bfd_error_bad_value);
8239 return FALSE;
8240 }
8241
8242 if (r_symndx < extsymoff
8243 || sym_hashes[r_symndx - extsymoff] == NULL)
8244 {
8245 asection *o;
8246
8247 /* This stub is for a local symbol. This stub will only be
8248 needed if there is some relocation (R_MIPS16_26) in this BFD
8249 that refers to this symbol. */
8250 for (o = abfd->sections; o != NULL; o = o->next)
8251 {
8252 Elf_Internal_Rela *sec_relocs;
8253 const Elf_Internal_Rela *r, *rend;
8254
8255 /* We can ignore stub sections when looking for relocs. */
8256 if ((o->flags & SEC_RELOC) == 0
8257 || o->reloc_count == 0
8258 || section_allows_mips16_refs_p (o))
8259 continue;
8260
8261 sec_relocs
8262 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8263 info->keep_memory);
8264 if (sec_relocs == NULL)
8265 return FALSE;
8266
8267 rend = sec_relocs + o->reloc_count;
8268 for (r = sec_relocs; r < rend; r++)
8269 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8270 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8271 break;
8272
8273 if (elf_section_data (o)->relocs != sec_relocs)
8274 free (sec_relocs);
8275
8276 if (r < rend)
8277 break;
8278 }
8279
8280 if (o == NULL)
8281 {
8282 /* There is no non-call reloc for this stub, so we do
8283 not need it. Since this function is called before
8284 the linker maps input sections to output sections, we
8285 can easily discard it by setting the SEC_EXCLUDE
8286 flag. */
8287 sec->flags |= SEC_EXCLUDE;
8288 return TRUE;
8289 }
8290
8291 /* Record this stub in an array of local symbol call_stubs for
8292 this BFD. */
8293 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8294 {
8295 unsigned long symcount;
8296 asection **n;
8297 bfd_size_type amt;
8298
8299 if (elf_bad_symtab (abfd))
8300 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8301 else
8302 symcount = symtab_hdr->sh_info;
8303 amt = symcount * sizeof (asection *);
8304 n = bfd_zalloc (abfd, amt);
8305 if (n == NULL)
8306 return FALSE;
8307 mips_elf_tdata (abfd)->local_call_stubs = n;
8308 }
8309
8310 sec->flags |= SEC_KEEP;
8311 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8312
8313 /* We don't need to set mips16_stubs_seen in this case.
8314 That flag is used to see whether we need to look through
8315 the global symbol table for stubs. We don't need to set
8316 it here, because we just have a local stub. */
8317 }
8318 else
8319 {
8320 h = ((struct mips_elf_link_hash_entry *)
8321 sym_hashes[r_symndx - extsymoff]);
8322
8323 /* H is the symbol this stub is for. */
8324
8325 if (CALL_FP_STUB_P (name))
8326 loc = &h->call_fp_stub;
8327 else
8328 loc = &h->call_stub;
8329
8330 /* If we already have an appropriate stub for this function, we
8331 don't need another one, so we can discard this one. Since
8332 this function is called before the linker maps input sections
8333 to output sections, we can easily discard it by setting the
8334 SEC_EXCLUDE flag. */
8335 if (*loc != NULL)
8336 {
8337 sec->flags |= SEC_EXCLUDE;
8338 return TRUE;
8339 }
8340
8341 sec->flags |= SEC_KEEP;
8342 *loc = sec;
8343 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8344 }
8345 }
8346
8347 sreloc = NULL;
8348 contents = NULL;
8349 for (rel = relocs; rel < rel_end; ++rel)
8350 {
8351 unsigned long r_symndx;
8352 unsigned int r_type;
8353 struct elf_link_hash_entry *h;
8354 bfd_boolean can_make_dynamic_p;
8355 bfd_boolean call_reloc_p;
8356 bfd_boolean constrain_symbol_p;
8357
8358 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8359 r_type = ELF_R_TYPE (abfd, rel->r_info);
8360
8361 if (r_symndx < extsymoff)
8362 h = NULL;
8363 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8364 {
8365 _bfd_error_handler
8366 /* xgettext:c-format */
8367 (_("%B: Malformed reloc detected for section %s"),
8368 abfd, name);
8369 bfd_set_error (bfd_error_bad_value);
8370 return FALSE;
8371 }
8372 else
8373 {
8374 h = sym_hashes[r_symndx - extsymoff];
8375 if (h != NULL)
8376 {
8377 while (h->root.type == bfd_link_hash_indirect
8378 || h->root.type == bfd_link_hash_warning)
8379 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8380
8381 /* PR15323, ref flags aren't set for references in the
8382 same object. */
8383 h->root.non_ir_ref = 1;
8384 }
8385 }
8386
8387 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8388 relocation into a dynamic one. */
8389 can_make_dynamic_p = FALSE;
8390
8391 /* Set CALL_RELOC_P to true if the relocation is for a call,
8392 and if pointer equality therefore doesn't matter. */
8393 call_reloc_p = FALSE;
8394
8395 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8396 into account when deciding how to define the symbol.
8397 Relocations in nonallocatable sections such as .pdr and
8398 .debug* should have no effect. */
8399 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8400
8401 switch (r_type)
8402 {
8403 case R_MIPS_CALL16:
8404 case R_MIPS_CALL_HI16:
8405 case R_MIPS_CALL_LO16:
8406 case R_MIPS16_CALL16:
8407 case R_MICROMIPS_CALL16:
8408 case R_MICROMIPS_CALL_HI16:
8409 case R_MICROMIPS_CALL_LO16:
8410 call_reloc_p = TRUE;
8411 /* Fall through. */
8412
8413 case R_MIPS_GOT16:
8414 case R_MIPS_GOT_HI16:
8415 case R_MIPS_GOT_LO16:
8416 case R_MIPS_GOT_PAGE:
8417 case R_MIPS_GOT_OFST:
8418 case R_MIPS_GOT_DISP:
8419 case R_MIPS_TLS_GOTTPREL:
8420 case R_MIPS_TLS_GD:
8421 case R_MIPS_TLS_LDM:
8422 case R_MIPS16_GOT16:
8423 case R_MIPS16_TLS_GOTTPREL:
8424 case R_MIPS16_TLS_GD:
8425 case R_MIPS16_TLS_LDM:
8426 case R_MICROMIPS_GOT16:
8427 case R_MICROMIPS_GOT_HI16:
8428 case R_MICROMIPS_GOT_LO16:
8429 case R_MICROMIPS_GOT_PAGE:
8430 case R_MICROMIPS_GOT_OFST:
8431 case R_MICROMIPS_GOT_DISP:
8432 case R_MICROMIPS_TLS_GOTTPREL:
8433 case R_MICROMIPS_TLS_GD:
8434 case R_MICROMIPS_TLS_LDM:
8435 if (dynobj == NULL)
8436 elf_hash_table (info)->dynobj = dynobj = abfd;
8437 if (!mips_elf_create_got_section (dynobj, info))
8438 return FALSE;
8439 if (htab->is_vxworks && !bfd_link_pic (info))
8440 {
8441 _bfd_error_handler
8442 /* xgettext:c-format */
8443 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8444 abfd, (unsigned long) rel->r_offset);
8445 bfd_set_error (bfd_error_bad_value);
8446 return FALSE;
8447 }
8448 can_make_dynamic_p = TRUE;
8449 break;
8450
8451 case R_MIPS_NONE:
8452 case R_MIPS_JALR:
8453 case R_MICROMIPS_JALR:
8454 /* These relocations have empty fields and are purely there to
8455 provide link information. The symbol value doesn't matter. */
8456 constrain_symbol_p = FALSE;
8457 break;
8458
8459 case R_MIPS_GPREL16:
8460 case R_MIPS_GPREL32:
8461 case R_MIPS16_GPREL:
8462 case R_MICROMIPS_GPREL16:
8463 /* GP-relative relocations always resolve to a definition in a
8464 regular input file, ignoring the one-definition rule. This is
8465 important for the GP setup sequence in NewABI code, which
8466 always resolves to a local function even if other relocations
8467 against the symbol wouldn't. */
8468 constrain_symbol_p = FALSE;
8469 break;
8470
8471 case R_MIPS_32:
8472 case R_MIPS_REL32:
8473 case R_MIPS_64:
8474 /* In VxWorks executables, references to external symbols
8475 must be handled using copy relocs or PLT entries; it is not
8476 possible to convert this relocation into a dynamic one.
8477
8478 For executables that use PLTs and copy-relocs, we have a
8479 choice between converting the relocation into a dynamic
8480 one or using copy relocations or PLT entries. It is
8481 usually better to do the former, unless the relocation is
8482 against a read-only section. */
8483 if ((bfd_link_pic (info)
8484 || (h != NULL
8485 && !htab->is_vxworks
8486 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8487 && !(!info->nocopyreloc
8488 && !PIC_OBJECT_P (abfd)
8489 && MIPS_ELF_READONLY_SECTION (sec))))
8490 && (sec->flags & SEC_ALLOC) != 0)
8491 {
8492 can_make_dynamic_p = TRUE;
8493 if (dynobj == NULL)
8494 elf_hash_table (info)->dynobj = dynobj = abfd;
8495 }
8496 break;
8497
8498 case R_MIPS_26:
8499 case R_MIPS_PC16:
8500 case R_MIPS_PC21_S2:
8501 case R_MIPS_PC26_S2:
8502 case R_MIPS16_26:
8503 case R_MIPS16_PC16_S1:
8504 case R_MICROMIPS_26_S1:
8505 case R_MICROMIPS_PC7_S1:
8506 case R_MICROMIPS_PC10_S1:
8507 case R_MICROMIPS_PC16_S1:
8508 case R_MICROMIPS_PC23_S2:
8509 call_reloc_p = TRUE;
8510 break;
8511 }
8512
8513 if (h)
8514 {
8515 if (constrain_symbol_p)
8516 {
8517 if (!can_make_dynamic_p)
8518 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8519
8520 if (!call_reloc_p)
8521 h->pointer_equality_needed = 1;
8522
8523 /* We must not create a stub for a symbol that has
8524 relocations related to taking the function's address.
8525 This doesn't apply to VxWorks, where CALL relocs refer
8526 to a .got.plt entry instead of a normal .got entry. */
8527 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8528 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8529 }
8530
8531 /* Relocations against the special VxWorks __GOTT_BASE__ and
8532 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8533 room for them in .rela.dyn. */
8534 if (is_gott_symbol (info, h))
8535 {
8536 if (sreloc == NULL)
8537 {
8538 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8539 if (sreloc == NULL)
8540 return FALSE;
8541 }
8542 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8543 if (MIPS_ELF_READONLY_SECTION (sec))
8544 /* We tell the dynamic linker that there are
8545 relocations against the text segment. */
8546 info->flags |= DF_TEXTREL;
8547 }
8548 }
8549 else if (call_lo16_reloc_p (r_type)
8550 || got_lo16_reloc_p (r_type)
8551 || got_disp_reloc_p (r_type)
8552 || (got16_reloc_p (r_type) && htab->is_vxworks))
8553 {
8554 /* We may need a local GOT entry for this relocation. We
8555 don't count R_MIPS_GOT_PAGE because we can estimate the
8556 maximum number of pages needed by looking at the size of
8557 the segment. Similar comments apply to R_MIPS*_GOT16 and
8558 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8559 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8560 R_MIPS_CALL_HI16 because these are always followed by an
8561 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8562 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8563 rel->r_addend, info, r_type))
8564 return FALSE;
8565 }
8566
8567 if (h != NULL
8568 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8569 ELF_ST_IS_MIPS16 (h->other)))
8570 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8571
8572 switch (r_type)
8573 {
8574 case R_MIPS_CALL16:
8575 case R_MIPS16_CALL16:
8576 case R_MICROMIPS_CALL16:
8577 if (h == NULL)
8578 {
8579 _bfd_error_handler
8580 /* xgettext:c-format */
8581 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8582 abfd, (unsigned long) rel->r_offset);
8583 bfd_set_error (bfd_error_bad_value);
8584 return FALSE;
8585 }
8586 /* Fall through. */
8587
8588 case R_MIPS_CALL_HI16:
8589 case R_MIPS_CALL_LO16:
8590 case R_MICROMIPS_CALL_HI16:
8591 case R_MICROMIPS_CALL_LO16:
8592 if (h != NULL)
8593 {
8594 /* Make sure there is room in the regular GOT to hold the
8595 function's address. We may eliminate it in favour of
8596 a .got.plt entry later; see mips_elf_count_got_symbols. */
8597 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8598 r_type))
8599 return FALSE;
8600
8601 /* We need a stub, not a plt entry for the undefined
8602 function. But we record it as if it needs plt. See
8603 _bfd_elf_adjust_dynamic_symbol. */
8604 h->needs_plt = 1;
8605 h->type = STT_FUNC;
8606 }
8607 break;
8608
8609 case R_MIPS_GOT_PAGE:
8610 case R_MICROMIPS_GOT_PAGE:
8611 case R_MIPS16_GOT16:
8612 case R_MIPS_GOT16:
8613 case R_MIPS_GOT_HI16:
8614 case R_MIPS_GOT_LO16:
8615 case R_MICROMIPS_GOT16:
8616 case R_MICROMIPS_GOT_HI16:
8617 case R_MICROMIPS_GOT_LO16:
8618 if (!h || got_page_reloc_p (r_type))
8619 {
8620 /* This relocation needs (or may need, if h != NULL) a
8621 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8622 know for sure until we know whether the symbol is
8623 preemptible. */
8624 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8625 {
8626 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8627 return FALSE;
8628 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8629 addend = mips_elf_read_rel_addend (abfd, rel,
8630 howto, contents);
8631 if (got16_reloc_p (r_type))
8632 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8633 contents, &addend);
8634 else
8635 addend <<= howto->rightshift;
8636 }
8637 else
8638 addend = rel->r_addend;
8639 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8640 h, addend))
8641 return FALSE;
8642
8643 if (h)
8644 {
8645 struct mips_elf_link_hash_entry *hmips =
8646 (struct mips_elf_link_hash_entry *) h;
8647
8648 /* This symbol is definitely not overridable. */
8649 if (hmips->root.def_regular
8650 && ! (bfd_link_pic (info) && ! info->symbolic
8651 && ! hmips->root.forced_local))
8652 h = NULL;
8653 }
8654 }
8655 /* If this is a global, overridable symbol, GOT_PAGE will
8656 decay to GOT_DISP, so we'll need a GOT entry for it. */
8657 /* Fall through. */
8658
8659 case R_MIPS_GOT_DISP:
8660 case R_MICROMIPS_GOT_DISP:
8661 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8662 FALSE, r_type))
8663 return FALSE;
8664 break;
8665
8666 case R_MIPS_TLS_GOTTPREL:
8667 case R_MIPS16_TLS_GOTTPREL:
8668 case R_MICROMIPS_TLS_GOTTPREL:
8669 if (bfd_link_pic (info))
8670 info->flags |= DF_STATIC_TLS;
8671 /* Fall through */
8672
8673 case R_MIPS_TLS_LDM:
8674 case R_MIPS16_TLS_LDM:
8675 case R_MICROMIPS_TLS_LDM:
8676 if (tls_ldm_reloc_p (r_type))
8677 {
8678 r_symndx = STN_UNDEF;
8679 h = NULL;
8680 }
8681 /* Fall through */
8682
8683 case R_MIPS_TLS_GD:
8684 case R_MIPS16_TLS_GD:
8685 case R_MICROMIPS_TLS_GD:
8686 /* This symbol requires a global offset table entry, or two
8687 for TLS GD relocations. */
8688 if (h != NULL)
8689 {
8690 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8691 FALSE, r_type))
8692 return FALSE;
8693 }
8694 else
8695 {
8696 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8697 rel->r_addend,
8698 info, r_type))
8699 return FALSE;
8700 }
8701 break;
8702
8703 case R_MIPS_32:
8704 case R_MIPS_REL32:
8705 case R_MIPS_64:
8706 /* In VxWorks executables, references to external symbols
8707 are handled using copy relocs or PLT stubs, so there's
8708 no need to add a .rela.dyn entry for this relocation. */
8709 if (can_make_dynamic_p)
8710 {
8711 if (sreloc == NULL)
8712 {
8713 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8714 if (sreloc == NULL)
8715 return FALSE;
8716 }
8717 if (bfd_link_pic (info) && h == NULL)
8718 {
8719 /* When creating a shared object, we must copy these
8720 reloc types into the output file as R_MIPS_REL32
8721 relocs. Make room for this reloc in .rel(a).dyn. */
8722 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8723 if (MIPS_ELF_READONLY_SECTION (sec))
8724 /* We tell the dynamic linker that there are
8725 relocations against the text segment. */
8726 info->flags |= DF_TEXTREL;
8727 }
8728 else
8729 {
8730 struct mips_elf_link_hash_entry *hmips;
8731
8732 /* For a shared object, we must copy this relocation
8733 unless the symbol turns out to be undefined and
8734 weak with non-default visibility, in which case
8735 it will be left as zero.
8736
8737 We could elide R_MIPS_REL32 for locally binding symbols
8738 in shared libraries, but do not yet do so.
8739
8740 For an executable, we only need to copy this
8741 reloc if the symbol is defined in a dynamic
8742 object. */
8743 hmips = (struct mips_elf_link_hash_entry *) h;
8744 ++hmips->possibly_dynamic_relocs;
8745 if (MIPS_ELF_READONLY_SECTION (sec))
8746 /* We need it to tell the dynamic linker if there
8747 are relocations against the text segment. */
8748 hmips->readonly_reloc = TRUE;
8749 }
8750 }
8751
8752 if (SGI_COMPAT (abfd))
8753 mips_elf_hash_table (info)->compact_rel_size +=
8754 sizeof (Elf32_External_crinfo);
8755 break;
8756
8757 case R_MIPS_26:
8758 case R_MIPS_GPREL16:
8759 case R_MIPS_LITERAL:
8760 case R_MIPS_GPREL32:
8761 case R_MICROMIPS_26_S1:
8762 case R_MICROMIPS_GPREL16:
8763 case R_MICROMIPS_LITERAL:
8764 case R_MICROMIPS_GPREL7_S2:
8765 if (SGI_COMPAT (abfd))
8766 mips_elf_hash_table (info)->compact_rel_size +=
8767 sizeof (Elf32_External_crinfo);
8768 break;
8769
8770 /* This relocation describes the C++ object vtable hierarchy.
8771 Reconstruct it for later use during GC. */
8772 case R_MIPS_GNU_VTINHERIT:
8773 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8774 return FALSE;
8775 break;
8776
8777 /* This relocation describes which C++ vtable entries are actually
8778 used. Record for later use during GC. */
8779 case R_MIPS_GNU_VTENTRY:
8780 BFD_ASSERT (h != NULL);
8781 if (h != NULL
8782 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8783 return FALSE;
8784 break;
8785
8786 default:
8787 break;
8788 }
8789
8790 /* Record the need for a PLT entry. At this point we don't know
8791 yet if we are going to create a PLT in the first place, but
8792 we only record whether the relocation requires a standard MIPS
8793 or a compressed code entry anyway. If we don't make a PLT after
8794 all, then we'll just ignore these arrangements. Likewise if
8795 a PLT entry is not created because the symbol is satisfied
8796 locally. */
8797 if (h != NULL
8798 && (branch_reloc_p (r_type)
8799 || mips16_branch_reloc_p (r_type)
8800 || micromips_branch_reloc_p (r_type))
8801 && !SYMBOL_CALLS_LOCAL (info, h))
8802 {
8803 if (h->plt.plist == NULL)
8804 h->plt.plist = mips_elf_make_plt_record (abfd);
8805 if (h->plt.plist == NULL)
8806 return FALSE;
8807
8808 if (branch_reloc_p (r_type))
8809 h->plt.plist->need_mips = TRUE;
8810 else
8811 h->plt.plist->need_comp = TRUE;
8812 }
8813
8814 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8815 if there is one. We only need to handle global symbols here;
8816 we decide whether to keep or delete stubs for local symbols
8817 when processing the stub's relocations. */
8818 if (h != NULL
8819 && !mips16_call_reloc_p (r_type)
8820 && !section_allows_mips16_refs_p (sec))
8821 {
8822 struct mips_elf_link_hash_entry *mh;
8823
8824 mh = (struct mips_elf_link_hash_entry *) h;
8825 mh->need_fn_stub = TRUE;
8826 }
8827
8828 /* Refuse some position-dependent relocations when creating a
8829 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8830 not PIC, but we can create dynamic relocations and the result
8831 will be fine. Also do not refuse R_MIPS_LO16, which can be
8832 combined with R_MIPS_GOT16. */
8833 if (bfd_link_pic (info))
8834 {
8835 switch (r_type)
8836 {
8837 case R_MIPS16_HI16:
8838 case R_MIPS_HI16:
8839 case R_MIPS_HIGHER:
8840 case R_MIPS_HIGHEST:
8841 case R_MICROMIPS_HI16:
8842 case R_MICROMIPS_HIGHER:
8843 case R_MICROMIPS_HIGHEST:
8844 /* Don't refuse a high part relocation if it's against
8845 no symbol (e.g. part of a compound relocation). */
8846 if (r_symndx == STN_UNDEF)
8847 break;
8848
8849 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8850 and has a special meaning. */
8851 if (!NEWABI_P (abfd) && h != NULL
8852 && strcmp (h->root.root.string, "_gp_disp") == 0)
8853 break;
8854
8855 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8856 if (is_gott_symbol (info, h))
8857 break;
8858
8859 /* FALLTHROUGH */
8860
8861 case R_MIPS16_26:
8862 case R_MIPS_26:
8863 case R_MICROMIPS_26_S1:
8864 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8865 _bfd_error_handler
8866 /* xgettext:c-format */
8867 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8868 abfd, howto->name,
8869 (h) ? h->root.root.string : "a local symbol");
8870 bfd_set_error (bfd_error_bad_value);
8871 return FALSE;
8872 default:
8873 break;
8874 }
8875 }
8876 }
8877
8878 return TRUE;
8879 }
8880 \f
8881 bfd_boolean
8882 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8883 struct bfd_link_info *link_info,
8884 bfd_boolean *again)
8885 {
8886 Elf_Internal_Rela *internal_relocs;
8887 Elf_Internal_Rela *irel, *irelend;
8888 Elf_Internal_Shdr *symtab_hdr;
8889 bfd_byte *contents = NULL;
8890 size_t extsymoff;
8891 bfd_boolean changed_contents = FALSE;
8892 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8893 Elf_Internal_Sym *isymbuf = NULL;
8894
8895 /* We are not currently changing any sizes, so only one pass. */
8896 *again = FALSE;
8897
8898 if (bfd_link_relocatable (link_info))
8899 return TRUE;
8900
8901 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8902 link_info->keep_memory);
8903 if (internal_relocs == NULL)
8904 return TRUE;
8905
8906 irelend = internal_relocs + sec->reloc_count
8907 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8908 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8909 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8910
8911 for (irel = internal_relocs; irel < irelend; irel++)
8912 {
8913 bfd_vma symval;
8914 bfd_signed_vma sym_offset;
8915 unsigned int r_type;
8916 unsigned long r_symndx;
8917 asection *sym_sec;
8918 unsigned long instruction;
8919
8920 /* Turn jalr into bgezal, and jr into beq, if they're marked
8921 with a JALR relocation, that indicate where they jump to.
8922 This saves some pipeline bubbles. */
8923 r_type = ELF_R_TYPE (abfd, irel->r_info);
8924 if (r_type != R_MIPS_JALR)
8925 continue;
8926
8927 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8928 /* Compute the address of the jump target. */
8929 if (r_symndx >= extsymoff)
8930 {
8931 struct mips_elf_link_hash_entry *h
8932 = ((struct mips_elf_link_hash_entry *)
8933 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8934
8935 while (h->root.root.type == bfd_link_hash_indirect
8936 || h->root.root.type == bfd_link_hash_warning)
8937 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8938
8939 /* If a symbol is undefined, or if it may be overridden,
8940 skip it. */
8941 if (! ((h->root.root.type == bfd_link_hash_defined
8942 || h->root.root.type == bfd_link_hash_defweak)
8943 && h->root.root.u.def.section)
8944 || (bfd_link_pic (link_info) && ! link_info->symbolic
8945 && !h->root.forced_local))
8946 continue;
8947
8948 sym_sec = h->root.root.u.def.section;
8949 if (sym_sec->output_section)
8950 symval = (h->root.root.u.def.value
8951 + sym_sec->output_section->vma
8952 + sym_sec->output_offset);
8953 else
8954 symval = h->root.root.u.def.value;
8955 }
8956 else
8957 {
8958 Elf_Internal_Sym *isym;
8959
8960 /* Read this BFD's symbols if we haven't done so already. */
8961 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8962 {
8963 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8964 if (isymbuf == NULL)
8965 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8966 symtab_hdr->sh_info, 0,
8967 NULL, NULL, NULL);
8968 if (isymbuf == NULL)
8969 goto relax_return;
8970 }
8971
8972 isym = isymbuf + r_symndx;
8973 if (isym->st_shndx == SHN_UNDEF)
8974 continue;
8975 else if (isym->st_shndx == SHN_ABS)
8976 sym_sec = bfd_abs_section_ptr;
8977 else if (isym->st_shndx == SHN_COMMON)
8978 sym_sec = bfd_com_section_ptr;
8979 else
8980 sym_sec
8981 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8982 symval = isym->st_value
8983 + sym_sec->output_section->vma
8984 + sym_sec->output_offset;
8985 }
8986
8987 /* Compute branch offset, from delay slot of the jump to the
8988 branch target. */
8989 sym_offset = (symval + irel->r_addend)
8990 - (sec_start + irel->r_offset + 4);
8991
8992 /* Branch offset must be properly aligned. */
8993 if ((sym_offset & 3) != 0)
8994 continue;
8995
8996 sym_offset >>= 2;
8997
8998 /* Check that it's in range. */
8999 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
9000 continue;
9001
9002 /* Get the section contents if we haven't done so already. */
9003 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9004 goto relax_return;
9005
9006 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9007
9008 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9009 if ((instruction & 0xfc1fffff) == 0x0000f809)
9010 instruction = 0x04110000;
9011 /* If it was jr <reg>, turn it into b <target>. */
9012 else if ((instruction & 0xfc1fffff) == 0x00000008)
9013 instruction = 0x10000000;
9014 else
9015 continue;
9016
9017 instruction |= (sym_offset & 0xffff);
9018 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9019 changed_contents = TRUE;
9020 }
9021
9022 if (contents != NULL
9023 && elf_section_data (sec)->this_hdr.contents != contents)
9024 {
9025 if (!changed_contents && !link_info->keep_memory)
9026 free (contents);
9027 else
9028 {
9029 /* Cache the section contents for elf_link_input_bfd. */
9030 elf_section_data (sec)->this_hdr.contents = contents;
9031 }
9032 }
9033 return TRUE;
9034
9035 relax_return:
9036 if (contents != NULL
9037 && elf_section_data (sec)->this_hdr.contents != contents)
9038 free (contents);
9039 return FALSE;
9040 }
9041 \f
9042 /* Allocate space for global sym dynamic relocs. */
9043
9044 static bfd_boolean
9045 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9046 {
9047 struct bfd_link_info *info = inf;
9048 bfd *dynobj;
9049 struct mips_elf_link_hash_entry *hmips;
9050 struct mips_elf_link_hash_table *htab;
9051
9052 htab = mips_elf_hash_table (info);
9053 BFD_ASSERT (htab != NULL);
9054
9055 dynobj = elf_hash_table (info)->dynobj;
9056 hmips = (struct mips_elf_link_hash_entry *) h;
9057
9058 /* VxWorks executables are handled elsewhere; we only need to
9059 allocate relocations in shared objects. */
9060 if (htab->is_vxworks && !bfd_link_pic (info))
9061 return TRUE;
9062
9063 /* Ignore indirect symbols. All relocations against such symbols
9064 will be redirected to the target symbol. */
9065 if (h->root.type == bfd_link_hash_indirect)
9066 return TRUE;
9067
9068 /* If this symbol is defined in a dynamic object, or we are creating
9069 a shared library, we will need to copy any R_MIPS_32 or
9070 R_MIPS_REL32 relocs against it into the output file. */
9071 if (! bfd_link_relocatable (info)
9072 && hmips->possibly_dynamic_relocs != 0
9073 && (h->root.type == bfd_link_hash_defweak
9074 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9075 || bfd_link_pic (info)))
9076 {
9077 bfd_boolean do_copy = TRUE;
9078
9079 if (h->root.type == bfd_link_hash_undefweak)
9080 {
9081 /* Do not copy relocations for undefined weak symbols with
9082 non-default visibility. */
9083 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9084 do_copy = FALSE;
9085
9086 /* Make sure undefined weak symbols are output as a dynamic
9087 symbol in PIEs. */
9088 else if (h->dynindx == -1 && !h->forced_local)
9089 {
9090 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9091 return FALSE;
9092 }
9093 }
9094
9095 if (do_copy)
9096 {
9097 /* Even though we don't directly need a GOT entry for this symbol,
9098 the SVR4 psABI requires it to have a dynamic symbol table
9099 index greater that DT_MIPS_GOTSYM if there are dynamic
9100 relocations against it.
9101
9102 VxWorks does not enforce the same mapping between the GOT
9103 and the symbol table, so the same requirement does not
9104 apply there. */
9105 if (!htab->is_vxworks)
9106 {
9107 if (hmips->global_got_area > GGA_RELOC_ONLY)
9108 hmips->global_got_area = GGA_RELOC_ONLY;
9109 hmips->got_only_for_calls = FALSE;
9110 }
9111
9112 mips_elf_allocate_dynamic_relocations
9113 (dynobj, info, hmips->possibly_dynamic_relocs);
9114 if (hmips->readonly_reloc)
9115 /* We tell the dynamic linker that there are relocations
9116 against the text segment. */
9117 info->flags |= DF_TEXTREL;
9118 }
9119 }
9120
9121 return TRUE;
9122 }
9123
9124 /* Adjust a symbol defined by a dynamic object and referenced by a
9125 regular object. The current definition is in some section of the
9126 dynamic object, but we're not including those sections. We have to
9127 change the definition to something the rest of the link can
9128 understand. */
9129
9130 bfd_boolean
9131 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9132 struct elf_link_hash_entry *h)
9133 {
9134 bfd *dynobj;
9135 struct mips_elf_link_hash_entry *hmips;
9136 struct mips_elf_link_hash_table *htab;
9137 asection *s, *srel;
9138
9139 htab = mips_elf_hash_table (info);
9140 BFD_ASSERT (htab != NULL);
9141
9142 dynobj = elf_hash_table (info)->dynobj;
9143 hmips = (struct mips_elf_link_hash_entry *) h;
9144
9145 /* Make sure we know what is going on here. */
9146 BFD_ASSERT (dynobj != NULL
9147 && (h->needs_plt
9148 || h->u.weakdef != NULL
9149 || (h->def_dynamic
9150 && h->ref_regular
9151 && !h->def_regular)));
9152
9153 hmips = (struct mips_elf_link_hash_entry *) h;
9154
9155 /* If there are call relocations against an externally-defined symbol,
9156 see whether we can create a MIPS lazy-binding stub for it. We can
9157 only do this if all references to the function are through call
9158 relocations, and in that case, the traditional lazy-binding stubs
9159 are much more efficient than PLT entries.
9160
9161 Traditional stubs are only available on SVR4 psABI-based systems;
9162 VxWorks always uses PLTs instead. */
9163 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9164 {
9165 if (! elf_hash_table (info)->dynamic_sections_created)
9166 return TRUE;
9167
9168 /* If this symbol is not defined in a regular file, then set
9169 the symbol to the stub location. This is required to make
9170 function pointers compare as equal between the normal
9171 executable and the shared library. */
9172 if (!h->def_regular)
9173 {
9174 hmips->needs_lazy_stub = TRUE;
9175 htab->lazy_stub_count++;
9176 return TRUE;
9177 }
9178 }
9179 /* As above, VxWorks requires PLT entries for externally-defined
9180 functions that are only accessed through call relocations.
9181
9182 Both VxWorks and non-VxWorks targets also need PLT entries if there
9183 are static-only relocations against an externally-defined function.
9184 This can technically occur for shared libraries if there are
9185 branches to the symbol, although it is unlikely that this will be
9186 used in practice due to the short ranges involved. It can occur
9187 for any relative or absolute relocation in executables; in that
9188 case, the PLT entry becomes the function's canonical address. */
9189 else if (((h->needs_plt && !hmips->no_fn_stub)
9190 || (h->type == STT_FUNC && hmips->has_static_relocs))
9191 && htab->use_plts_and_copy_relocs
9192 && !SYMBOL_CALLS_LOCAL (info, h)
9193 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9194 && h->root.type == bfd_link_hash_undefweak))
9195 {
9196 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9197 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9198
9199 /* If this is the first symbol to need a PLT entry, then make some
9200 basic setup. Also work out PLT entry sizes. We'll need them
9201 for PLT offset calculations. */
9202 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9203 {
9204 BFD_ASSERT (htab->root.sgotplt->size == 0);
9205 BFD_ASSERT (htab->plt_got_index == 0);
9206
9207 /* If we're using the PLT additions to the psABI, each PLT
9208 entry is 16 bytes and the PLT0 entry is 32 bytes.
9209 Encourage better cache usage by aligning. We do this
9210 lazily to avoid pessimizing traditional objects. */
9211 if (!htab->is_vxworks
9212 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9213 return FALSE;
9214
9215 /* Make sure that .got.plt is word-aligned. We do this lazily
9216 for the same reason as above. */
9217 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9218 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9219 return FALSE;
9220
9221 /* On non-VxWorks targets, the first two entries in .got.plt
9222 are reserved. */
9223 if (!htab->is_vxworks)
9224 htab->plt_got_index
9225 += (get_elf_backend_data (dynobj)->got_header_size
9226 / MIPS_ELF_GOT_SIZE (dynobj));
9227
9228 /* On VxWorks, also allocate room for the header's
9229 .rela.plt.unloaded entries. */
9230 if (htab->is_vxworks && !bfd_link_pic (info))
9231 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9232
9233 /* Now work out the sizes of individual PLT entries. */
9234 if (htab->is_vxworks && bfd_link_pic (info))
9235 htab->plt_mips_entry_size
9236 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9237 else if (htab->is_vxworks)
9238 htab->plt_mips_entry_size
9239 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9240 else if (newabi_p)
9241 htab->plt_mips_entry_size
9242 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9243 else if (!micromips_p)
9244 {
9245 htab->plt_mips_entry_size
9246 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9247 htab->plt_comp_entry_size
9248 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9249 }
9250 else if (htab->insn32)
9251 {
9252 htab->plt_mips_entry_size
9253 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9254 htab->plt_comp_entry_size
9255 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9256 }
9257 else
9258 {
9259 htab->plt_mips_entry_size
9260 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9261 htab->plt_comp_entry_size
9262 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9263 }
9264 }
9265
9266 if (h->plt.plist == NULL)
9267 h->plt.plist = mips_elf_make_plt_record (dynobj);
9268 if (h->plt.plist == NULL)
9269 return FALSE;
9270
9271 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9272 n32 or n64, so always use a standard entry there.
9273
9274 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9275 all MIPS16 calls will go via that stub, and there is no benefit
9276 to having a MIPS16 entry. And in the case of call_stub a
9277 standard entry actually has to be used as the stub ends with a J
9278 instruction. */
9279 if (newabi_p
9280 || htab->is_vxworks
9281 || hmips->call_stub
9282 || hmips->call_fp_stub)
9283 {
9284 h->plt.plist->need_mips = TRUE;
9285 h->plt.plist->need_comp = FALSE;
9286 }
9287
9288 /* Otherwise, if there are no direct calls to the function, we
9289 have a free choice of whether to use standard or compressed
9290 entries. Prefer microMIPS entries if the object is known to
9291 contain microMIPS code, so that it becomes possible to create
9292 pure microMIPS binaries. Prefer standard entries otherwise,
9293 because MIPS16 ones are no smaller and are usually slower. */
9294 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9295 {
9296 if (micromips_p)
9297 h->plt.plist->need_comp = TRUE;
9298 else
9299 h->plt.plist->need_mips = TRUE;
9300 }
9301
9302 if (h->plt.plist->need_mips)
9303 {
9304 h->plt.plist->mips_offset = htab->plt_mips_offset;
9305 htab->plt_mips_offset += htab->plt_mips_entry_size;
9306 }
9307 if (h->plt.plist->need_comp)
9308 {
9309 h->plt.plist->comp_offset = htab->plt_comp_offset;
9310 htab->plt_comp_offset += htab->plt_comp_entry_size;
9311 }
9312
9313 /* Reserve the corresponding .got.plt entry now too. */
9314 h->plt.plist->gotplt_index = htab->plt_got_index++;
9315
9316 /* If the output file has no definition of the symbol, set the
9317 symbol's value to the address of the stub. */
9318 if (!bfd_link_pic (info) && !h->def_regular)
9319 hmips->use_plt_entry = TRUE;
9320
9321 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9322 htab->root.srelplt->size += (htab->is_vxworks
9323 ? MIPS_ELF_RELA_SIZE (dynobj)
9324 : MIPS_ELF_REL_SIZE (dynobj));
9325
9326 /* Make room for the .rela.plt.unloaded relocations. */
9327 if (htab->is_vxworks && !bfd_link_pic (info))
9328 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9329
9330 /* All relocations against this symbol that could have been made
9331 dynamic will now refer to the PLT entry instead. */
9332 hmips->possibly_dynamic_relocs = 0;
9333
9334 return TRUE;
9335 }
9336
9337 /* If this is a weak symbol, and there is a real definition, the
9338 processor independent code will have arranged for us to see the
9339 real definition first, and we can just use the same value. */
9340 if (h->u.weakdef != NULL)
9341 {
9342 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9343 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9344 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9345 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9346 return TRUE;
9347 }
9348
9349 /* Otherwise, there is nothing further to do for symbols defined
9350 in regular objects. */
9351 if (h->def_regular)
9352 return TRUE;
9353
9354 /* There's also nothing more to do if we'll convert all relocations
9355 against this symbol into dynamic relocations. */
9356 if (!hmips->has_static_relocs)
9357 return TRUE;
9358
9359 /* We're now relying on copy relocations. Complain if we have
9360 some that we can't convert. */
9361 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9362 {
9363 _bfd_error_handler (_("non-dynamic relocations refer to "
9364 "dynamic symbol %s"),
9365 h->root.root.string);
9366 bfd_set_error (bfd_error_bad_value);
9367 return FALSE;
9368 }
9369
9370 /* We must allocate the symbol in our .dynbss section, which will
9371 become part of the .bss section of the executable. There will be
9372 an entry for this symbol in the .dynsym section. The dynamic
9373 object will contain position independent code, so all references
9374 from the dynamic object to this symbol will go through the global
9375 offset table. The dynamic linker will use the .dynsym entry to
9376 determine the address it must put in the global offset table, so
9377 both the dynamic object and the regular object will refer to the
9378 same memory location for the variable. */
9379
9380 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9381 {
9382 s = htab->root.sdynrelro;
9383 srel = htab->root.sreldynrelro;
9384 }
9385 else
9386 {
9387 s = htab->root.sdynbss;
9388 srel = htab->root.srelbss;
9389 }
9390 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9391 {
9392 if (htab->is_vxworks)
9393 srel->size += sizeof (Elf32_External_Rela);
9394 else
9395 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9396 h->needs_copy = 1;
9397 }
9398
9399 /* All relocations against this symbol that could have been made
9400 dynamic will now refer to the local copy instead. */
9401 hmips->possibly_dynamic_relocs = 0;
9402
9403 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9404 }
9405 \f
9406 /* This function is called after all the input files have been read,
9407 and the input sections have been assigned to output sections. We
9408 check for any mips16 stub sections that we can discard. */
9409
9410 bfd_boolean
9411 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9412 struct bfd_link_info *info)
9413 {
9414 asection *sect;
9415 struct mips_elf_link_hash_table *htab;
9416 struct mips_htab_traverse_info hti;
9417
9418 htab = mips_elf_hash_table (info);
9419 BFD_ASSERT (htab != NULL);
9420
9421 /* The .reginfo section has a fixed size. */
9422 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9423 if (sect != NULL)
9424 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9425
9426 /* The .MIPS.abiflags section has a fixed size. */
9427 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9428 if (sect != NULL)
9429 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9430
9431 hti.info = info;
9432 hti.output_bfd = output_bfd;
9433 hti.error = FALSE;
9434 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9435 mips_elf_check_symbols, &hti);
9436 if (hti.error)
9437 return FALSE;
9438
9439 return TRUE;
9440 }
9441
9442 /* If the link uses a GOT, lay it out and work out its size. */
9443
9444 static bfd_boolean
9445 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9446 {
9447 bfd *dynobj;
9448 asection *s;
9449 struct mips_got_info *g;
9450 bfd_size_type loadable_size = 0;
9451 bfd_size_type page_gotno;
9452 bfd *ibfd;
9453 struct mips_elf_traverse_got_arg tga;
9454 struct mips_elf_link_hash_table *htab;
9455
9456 htab = mips_elf_hash_table (info);
9457 BFD_ASSERT (htab != NULL);
9458
9459 s = htab->root.sgot;
9460 if (s == NULL)
9461 return TRUE;
9462
9463 dynobj = elf_hash_table (info)->dynobj;
9464 g = htab->got_info;
9465
9466 /* Allocate room for the reserved entries. VxWorks always reserves
9467 3 entries; other objects only reserve 2 entries. */
9468 BFD_ASSERT (g->assigned_low_gotno == 0);
9469 if (htab->is_vxworks)
9470 htab->reserved_gotno = 3;
9471 else
9472 htab->reserved_gotno = 2;
9473 g->local_gotno += htab->reserved_gotno;
9474 g->assigned_low_gotno = htab->reserved_gotno;
9475
9476 /* Decide which symbols need to go in the global part of the GOT and
9477 count the number of reloc-only GOT symbols. */
9478 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9479
9480 if (!mips_elf_resolve_final_got_entries (info, g))
9481 return FALSE;
9482
9483 /* Calculate the total loadable size of the output. That
9484 will give us the maximum number of GOT_PAGE entries
9485 required. */
9486 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9487 {
9488 asection *subsection;
9489
9490 for (subsection = ibfd->sections;
9491 subsection;
9492 subsection = subsection->next)
9493 {
9494 if ((subsection->flags & SEC_ALLOC) == 0)
9495 continue;
9496 loadable_size += ((subsection->size + 0xf)
9497 &~ (bfd_size_type) 0xf);
9498 }
9499 }
9500
9501 if (htab->is_vxworks)
9502 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9503 relocations against local symbols evaluate to "G", and the EABI does
9504 not include R_MIPS_GOT_PAGE. */
9505 page_gotno = 0;
9506 else
9507 /* Assume there are two loadable segments consisting of contiguous
9508 sections. Is 5 enough? */
9509 page_gotno = (loadable_size >> 16) + 5;
9510
9511 /* Choose the smaller of the two page estimates; both are intended to be
9512 conservative. */
9513 if (page_gotno > g->page_gotno)
9514 page_gotno = g->page_gotno;
9515
9516 g->local_gotno += page_gotno;
9517 g->assigned_high_gotno = g->local_gotno - 1;
9518
9519 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9520 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9521 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9522
9523 /* VxWorks does not support multiple GOTs. It initializes $gp to
9524 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9525 dynamic loader. */
9526 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9527 {
9528 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9529 return FALSE;
9530 }
9531 else
9532 {
9533 /* Record that all bfds use G. This also has the effect of freeing
9534 the per-bfd GOTs, which we no longer need. */
9535 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9536 if (mips_elf_bfd_got (ibfd, FALSE))
9537 mips_elf_replace_bfd_got (ibfd, g);
9538 mips_elf_replace_bfd_got (output_bfd, g);
9539
9540 /* Set up TLS entries. */
9541 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9542 tga.info = info;
9543 tga.g = g;
9544 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9545 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9546 if (!tga.g)
9547 return FALSE;
9548 BFD_ASSERT (g->tls_assigned_gotno
9549 == g->global_gotno + g->local_gotno + g->tls_gotno);
9550
9551 /* Each VxWorks GOT entry needs an explicit relocation. */
9552 if (htab->is_vxworks && bfd_link_pic (info))
9553 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9554
9555 /* Allocate room for the TLS relocations. */
9556 if (g->relocs)
9557 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9558 }
9559
9560 return TRUE;
9561 }
9562
9563 /* Estimate the size of the .MIPS.stubs section. */
9564
9565 static void
9566 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9567 {
9568 struct mips_elf_link_hash_table *htab;
9569 bfd_size_type dynsymcount;
9570
9571 htab = mips_elf_hash_table (info);
9572 BFD_ASSERT (htab != NULL);
9573
9574 if (htab->lazy_stub_count == 0)
9575 return;
9576
9577 /* IRIX rld assumes that a function stub isn't at the end of the .text
9578 section, so add a dummy entry to the end. */
9579 htab->lazy_stub_count++;
9580
9581 /* Get a worst-case estimate of the number of dynamic symbols needed.
9582 At this point, dynsymcount does not account for section symbols
9583 and count_section_dynsyms may overestimate the number that will
9584 be needed. */
9585 dynsymcount = (elf_hash_table (info)->dynsymcount
9586 + count_section_dynsyms (output_bfd, info));
9587
9588 /* Determine the size of one stub entry. There's no disadvantage
9589 from using microMIPS code here, so for the sake of pure-microMIPS
9590 binaries we prefer it whenever there's any microMIPS code in
9591 output produced at all. This has a benefit of stubs being
9592 shorter by 4 bytes each too, unless in the insn32 mode. */
9593 if (!MICROMIPS_P (output_bfd))
9594 htab->function_stub_size = (dynsymcount > 0x10000
9595 ? MIPS_FUNCTION_STUB_BIG_SIZE
9596 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9597 else if (htab->insn32)
9598 htab->function_stub_size = (dynsymcount > 0x10000
9599 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9600 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9601 else
9602 htab->function_stub_size = (dynsymcount > 0x10000
9603 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9604 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9605
9606 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9607 }
9608
9609 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9610 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9611 stub, allocate an entry in the stubs section. */
9612
9613 static bfd_boolean
9614 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9615 {
9616 struct mips_htab_traverse_info *hti = data;
9617 struct mips_elf_link_hash_table *htab;
9618 struct bfd_link_info *info;
9619 bfd *output_bfd;
9620
9621 info = hti->info;
9622 output_bfd = hti->output_bfd;
9623 htab = mips_elf_hash_table (info);
9624 BFD_ASSERT (htab != NULL);
9625
9626 if (h->needs_lazy_stub)
9627 {
9628 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9629 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9630 bfd_vma isa_bit = micromips_p;
9631
9632 BFD_ASSERT (htab->root.dynobj != NULL);
9633 if (h->root.plt.plist == NULL)
9634 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9635 if (h->root.plt.plist == NULL)
9636 {
9637 hti->error = TRUE;
9638 return FALSE;
9639 }
9640 h->root.root.u.def.section = htab->sstubs;
9641 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9642 h->root.plt.plist->stub_offset = htab->sstubs->size;
9643 h->root.other = other;
9644 htab->sstubs->size += htab->function_stub_size;
9645 }
9646 return TRUE;
9647 }
9648
9649 /* Allocate offsets in the stubs section to each symbol that needs one.
9650 Set the final size of the .MIPS.stub section. */
9651
9652 static bfd_boolean
9653 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9654 {
9655 bfd *output_bfd = info->output_bfd;
9656 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9657 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9658 bfd_vma isa_bit = micromips_p;
9659 struct mips_elf_link_hash_table *htab;
9660 struct mips_htab_traverse_info hti;
9661 struct elf_link_hash_entry *h;
9662 bfd *dynobj;
9663
9664 htab = mips_elf_hash_table (info);
9665 BFD_ASSERT (htab != NULL);
9666
9667 if (htab->lazy_stub_count == 0)
9668 return TRUE;
9669
9670 htab->sstubs->size = 0;
9671 hti.info = info;
9672 hti.output_bfd = output_bfd;
9673 hti.error = FALSE;
9674 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9675 if (hti.error)
9676 return FALSE;
9677 htab->sstubs->size += htab->function_stub_size;
9678 BFD_ASSERT (htab->sstubs->size
9679 == htab->lazy_stub_count * htab->function_stub_size);
9680
9681 dynobj = elf_hash_table (info)->dynobj;
9682 BFD_ASSERT (dynobj != NULL);
9683 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9684 if (h == NULL)
9685 return FALSE;
9686 h->root.u.def.value = isa_bit;
9687 h->other = other;
9688 h->type = STT_FUNC;
9689
9690 return TRUE;
9691 }
9692
9693 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9694 bfd_link_info. If H uses the address of a PLT entry as the value
9695 of the symbol, then set the entry in the symbol table now. Prefer
9696 a standard MIPS PLT entry. */
9697
9698 static bfd_boolean
9699 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9700 {
9701 struct bfd_link_info *info = data;
9702 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9703 struct mips_elf_link_hash_table *htab;
9704 unsigned int other;
9705 bfd_vma isa_bit;
9706 bfd_vma val;
9707
9708 htab = mips_elf_hash_table (info);
9709 BFD_ASSERT (htab != NULL);
9710
9711 if (h->use_plt_entry)
9712 {
9713 BFD_ASSERT (h->root.plt.plist != NULL);
9714 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9715 || h->root.plt.plist->comp_offset != MINUS_ONE);
9716
9717 val = htab->plt_header_size;
9718 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9719 {
9720 isa_bit = 0;
9721 val += h->root.plt.plist->mips_offset;
9722 other = 0;
9723 }
9724 else
9725 {
9726 isa_bit = 1;
9727 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9728 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9729 }
9730 val += isa_bit;
9731 /* For VxWorks, point at the PLT load stub rather than the lazy
9732 resolution stub; this stub will become the canonical function
9733 address. */
9734 if (htab->is_vxworks)
9735 val += 8;
9736
9737 h->root.root.u.def.section = htab->root.splt;
9738 h->root.root.u.def.value = val;
9739 h->root.other = other;
9740 }
9741
9742 return TRUE;
9743 }
9744
9745 /* Set the sizes of the dynamic sections. */
9746
9747 bfd_boolean
9748 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9749 struct bfd_link_info *info)
9750 {
9751 bfd *dynobj;
9752 asection *s, *sreldyn;
9753 bfd_boolean reltext;
9754 struct mips_elf_link_hash_table *htab;
9755
9756 htab = mips_elf_hash_table (info);
9757 BFD_ASSERT (htab != NULL);
9758 dynobj = elf_hash_table (info)->dynobj;
9759 BFD_ASSERT (dynobj != NULL);
9760
9761 if (elf_hash_table (info)->dynamic_sections_created)
9762 {
9763 /* Set the contents of the .interp section to the interpreter. */
9764 if (bfd_link_executable (info) && !info->nointerp)
9765 {
9766 s = bfd_get_linker_section (dynobj, ".interp");
9767 BFD_ASSERT (s != NULL);
9768 s->size
9769 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9770 s->contents
9771 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9772 }
9773
9774 /* Figure out the size of the PLT header if we know that we
9775 are using it. For the sake of cache alignment always use
9776 a standard header whenever any standard entries are present
9777 even if microMIPS entries are present as well. This also
9778 lets the microMIPS header rely on the value of $v0 only set
9779 by microMIPS entries, for a small size reduction.
9780
9781 Set symbol table entry values for symbols that use the
9782 address of their PLT entry now that we can calculate it.
9783
9784 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9785 haven't already in _bfd_elf_create_dynamic_sections. */
9786 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9787 {
9788 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9789 && !htab->plt_mips_offset);
9790 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9791 bfd_vma isa_bit = micromips_p;
9792 struct elf_link_hash_entry *h;
9793 bfd_vma size;
9794
9795 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9796 BFD_ASSERT (htab->root.sgotplt->size == 0);
9797 BFD_ASSERT (htab->root.splt->size == 0);
9798
9799 if (htab->is_vxworks && bfd_link_pic (info))
9800 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9801 else if (htab->is_vxworks)
9802 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9803 else if (ABI_64_P (output_bfd))
9804 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9805 else if (ABI_N32_P (output_bfd))
9806 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9807 else if (!micromips_p)
9808 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9809 else if (htab->insn32)
9810 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9811 else
9812 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9813
9814 htab->plt_header_is_comp = micromips_p;
9815 htab->plt_header_size = size;
9816 htab->root.splt->size = (size
9817 + htab->plt_mips_offset
9818 + htab->plt_comp_offset);
9819 htab->root.sgotplt->size = (htab->plt_got_index
9820 * MIPS_ELF_GOT_SIZE (dynobj));
9821
9822 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9823
9824 if (htab->root.hplt == NULL)
9825 {
9826 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9827 "_PROCEDURE_LINKAGE_TABLE_");
9828 htab->root.hplt = h;
9829 if (h == NULL)
9830 return FALSE;
9831 }
9832
9833 h = htab->root.hplt;
9834 h->root.u.def.value = isa_bit;
9835 h->other = other;
9836 h->type = STT_FUNC;
9837 }
9838 }
9839
9840 /* Allocate space for global sym dynamic relocs. */
9841 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9842
9843 mips_elf_estimate_stub_size (output_bfd, info);
9844
9845 if (!mips_elf_lay_out_got (output_bfd, info))
9846 return FALSE;
9847
9848 mips_elf_lay_out_lazy_stubs (info);
9849
9850 /* The check_relocs and adjust_dynamic_symbol entry points have
9851 determined the sizes of the various dynamic sections. Allocate
9852 memory for them. */
9853 reltext = FALSE;
9854 for (s = dynobj->sections; s != NULL; s = s->next)
9855 {
9856 const char *name;
9857
9858 /* It's OK to base decisions on the section name, because none
9859 of the dynobj section names depend upon the input files. */
9860 name = bfd_get_section_name (dynobj, s);
9861
9862 if ((s->flags & SEC_LINKER_CREATED) == 0)
9863 continue;
9864
9865 if (CONST_STRNEQ (name, ".rel"))
9866 {
9867 if (s->size != 0)
9868 {
9869 const char *outname;
9870 asection *target;
9871
9872 /* If this relocation section applies to a read only
9873 section, then we probably need a DT_TEXTREL entry.
9874 If the relocation section is .rel(a).dyn, we always
9875 assert a DT_TEXTREL entry rather than testing whether
9876 there exists a relocation to a read only section or
9877 not. */
9878 outname = bfd_get_section_name (output_bfd,
9879 s->output_section);
9880 target = bfd_get_section_by_name (output_bfd, outname + 4);
9881 if ((target != NULL
9882 && (target->flags & SEC_READONLY) != 0
9883 && (target->flags & SEC_ALLOC) != 0)
9884 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9885 reltext = TRUE;
9886
9887 /* We use the reloc_count field as a counter if we need
9888 to copy relocs into the output file. */
9889 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9890 s->reloc_count = 0;
9891
9892 /* If combreloc is enabled, elf_link_sort_relocs() will
9893 sort relocations, but in a different way than we do,
9894 and before we're done creating relocations. Also, it
9895 will move them around between input sections'
9896 relocation's contents, so our sorting would be
9897 broken, so don't let it run. */
9898 info->combreloc = 0;
9899 }
9900 }
9901 else if (bfd_link_executable (info)
9902 && ! mips_elf_hash_table (info)->use_rld_obj_head
9903 && CONST_STRNEQ (name, ".rld_map"))
9904 {
9905 /* We add a room for __rld_map. It will be filled in by the
9906 rtld to contain a pointer to the _r_debug structure. */
9907 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9908 }
9909 else if (SGI_COMPAT (output_bfd)
9910 && CONST_STRNEQ (name, ".compact_rel"))
9911 s->size += mips_elf_hash_table (info)->compact_rel_size;
9912 else if (s == htab->root.splt)
9913 {
9914 /* If the last PLT entry has a branch delay slot, allocate
9915 room for an extra nop to fill the delay slot. This is
9916 for CPUs without load interlocking. */
9917 if (! LOAD_INTERLOCKS_P (output_bfd)
9918 && ! htab->is_vxworks && s->size > 0)
9919 s->size += 4;
9920 }
9921 else if (! CONST_STRNEQ (name, ".init")
9922 && s != htab->root.sgot
9923 && s != htab->root.sgotplt
9924 && s != htab->sstubs
9925 && s != htab->root.sdynbss
9926 && s != htab->root.sdynrelro)
9927 {
9928 /* It's not one of our sections, so don't allocate space. */
9929 continue;
9930 }
9931
9932 if (s->size == 0)
9933 {
9934 s->flags |= SEC_EXCLUDE;
9935 continue;
9936 }
9937
9938 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9939 continue;
9940
9941 /* Allocate memory for the section contents. */
9942 s->contents = bfd_zalloc (dynobj, s->size);
9943 if (s->contents == NULL)
9944 {
9945 bfd_set_error (bfd_error_no_memory);
9946 return FALSE;
9947 }
9948 }
9949
9950 if (elf_hash_table (info)->dynamic_sections_created)
9951 {
9952 /* Add some entries to the .dynamic section. We fill in the
9953 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9954 must add the entries now so that we get the correct size for
9955 the .dynamic section. */
9956
9957 /* SGI object has the equivalence of DT_DEBUG in the
9958 DT_MIPS_RLD_MAP entry. This must come first because glibc
9959 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9960 may only look at the first one they see. */
9961 if (!bfd_link_pic (info)
9962 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9963 return FALSE;
9964
9965 if (bfd_link_executable (info)
9966 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9967 return FALSE;
9968
9969 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9970 used by the debugger. */
9971 if (bfd_link_executable (info)
9972 && !SGI_COMPAT (output_bfd)
9973 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9974 return FALSE;
9975
9976 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9977 info->flags |= DF_TEXTREL;
9978
9979 if ((info->flags & DF_TEXTREL) != 0)
9980 {
9981 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9982 return FALSE;
9983
9984 /* Clear the DF_TEXTREL flag. It will be set again if we
9985 write out an actual text relocation; we may not, because
9986 at this point we do not know whether e.g. any .eh_frame
9987 absolute relocations have been converted to PC-relative. */
9988 info->flags &= ~DF_TEXTREL;
9989 }
9990
9991 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9992 return FALSE;
9993
9994 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9995 if (htab->is_vxworks)
9996 {
9997 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9998 use any of the DT_MIPS_* tags. */
9999 if (sreldyn && sreldyn->size > 0)
10000 {
10001 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10002 return FALSE;
10003
10004 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10005 return FALSE;
10006
10007 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10008 return FALSE;
10009 }
10010 }
10011 else
10012 {
10013 if (sreldyn && sreldyn->size > 0)
10014 {
10015 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10016 return FALSE;
10017
10018 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10019 return FALSE;
10020
10021 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10022 return FALSE;
10023 }
10024
10025 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10026 return FALSE;
10027
10028 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10029 return FALSE;
10030
10031 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10032 return FALSE;
10033
10034 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10035 return FALSE;
10036
10037 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10038 return FALSE;
10039
10040 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10041 return FALSE;
10042
10043 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10044 return FALSE;
10045
10046 if (IRIX_COMPAT (dynobj) == ict_irix5
10047 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10048 return FALSE;
10049
10050 if (IRIX_COMPAT (dynobj) == ict_irix6
10051 && (bfd_get_section_by_name
10052 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10053 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10054 return FALSE;
10055 }
10056 if (htab->root.splt->size > 0)
10057 {
10058 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10059 return FALSE;
10060
10061 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10062 return FALSE;
10063
10064 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10065 return FALSE;
10066
10067 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10068 return FALSE;
10069 }
10070 if (htab->is_vxworks
10071 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10072 return FALSE;
10073 }
10074
10075 return TRUE;
10076 }
10077 \f
10078 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10079 Adjust its R_ADDEND field so that it is correct for the output file.
10080 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10081 and sections respectively; both use symbol indexes. */
10082
10083 static void
10084 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10085 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10086 asection **local_sections, Elf_Internal_Rela *rel)
10087 {
10088 unsigned int r_type, r_symndx;
10089 Elf_Internal_Sym *sym;
10090 asection *sec;
10091
10092 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10093 {
10094 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10095 if (gprel16_reloc_p (r_type)
10096 || r_type == R_MIPS_GPREL32
10097 || literal_reloc_p (r_type))
10098 {
10099 rel->r_addend += _bfd_get_gp_value (input_bfd);
10100 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10101 }
10102
10103 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10104 sym = local_syms + r_symndx;
10105
10106 /* Adjust REL's addend to account for section merging. */
10107 if (!bfd_link_relocatable (info))
10108 {
10109 sec = local_sections[r_symndx];
10110 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10111 }
10112
10113 /* This would normally be done by the rela_normal code in elflink.c. */
10114 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10115 rel->r_addend += local_sections[r_symndx]->output_offset;
10116 }
10117 }
10118
10119 /* Handle relocations against symbols from removed linkonce sections,
10120 or sections discarded by a linker script. We use this wrapper around
10121 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10122 on 64-bit ELF targets. In this case for any relocation handled, which
10123 always be the first in a triplet, the remaining two have to be processed
10124 together with the first, even if they are R_MIPS_NONE. It is the symbol
10125 index referred by the first reloc that applies to all the three and the
10126 remaining two never refer to an object symbol. And it is the final
10127 relocation (the last non-null one) that determines the output field of
10128 the whole relocation so retrieve the corresponding howto structure for
10129 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10130
10131 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10132 and therefore requires to be pasted in a loop. It also defines a block
10133 and does not protect any of its arguments, hence the extra brackets. */
10134
10135 static void
10136 mips_reloc_against_discarded_section (bfd *output_bfd,
10137 struct bfd_link_info *info,
10138 bfd *input_bfd, asection *input_section,
10139 Elf_Internal_Rela **rel,
10140 const Elf_Internal_Rela **relend,
10141 bfd_boolean rel_reloc,
10142 reloc_howto_type *howto,
10143 bfd_byte *contents)
10144 {
10145 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10146 int count = bed->s->int_rels_per_ext_rel;
10147 unsigned int r_type;
10148 int i;
10149
10150 for (i = count - 1; i > 0; i--)
10151 {
10152 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10153 if (r_type != R_MIPS_NONE)
10154 {
10155 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10156 break;
10157 }
10158 }
10159 do
10160 {
10161 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10162 (*rel), count, (*relend),
10163 howto, i, contents);
10164 }
10165 while (0);
10166 }
10167
10168 /* Relocate a MIPS ELF section. */
10169
10170 bfd_boolean
10171 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10172 bfd *input_bfd, asection *input_section,
10173 bfd_byte *contents, Elf_Internal_Rela *relocs,
10174 Elf_Internal_Sym *local_syms,
10175 asection **local_sections)
10176 {
10177 Elf_Internal_Rela *rel;
10178 const Elf_Internal_Rela *relend;
10179 bfd_vma addend = 0;
10180 bfd_boolean use_saved_addend_p = FALSE;
10181 const struct elf_backend_data *bed;
10182
10183 bed = get_elf_backend_data (output_bfd);
10184 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10185 for (rel = relocs; rel < relend; ++rel)
10186 {
10187 const char *name;
10188 bfd_vma value = 0;
10189 reloc_howto_type *howto;
10190 bfd_boolean cross_mode_jump_p = FALSE;
10191 /* TRUE if the relocation is a RELA relocation, rather than a
10192 REL relocation. */
10193 bfd_boolean rela_relocation_p = TRUE;
10194 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10195 const char *msg;
10196 unsigned long r_symndx;
10197 asection *sec;
10198 Elf_Internal_Shdr *symtab_hdr;
10199 struct elf_link_hash_entry *h;
10200 bfd_boolean rel_reloc;
10201
10202 rel_reloc = (NEWABI_P (input_bfd)
10203 && mips_elf_rel_relocation_p (input_bfd, input_section,
10204 relocs, rel));
10205 /* Find the relocation howto for this relocation. */
10206 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10207
10208 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10209 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10210 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10211 {
10212 sec = local_sections[r_symndx];
10213 h = NULL;
10214 }
10215 else
10216 {
10217 unsigned long extsymoff;
10218
10219 extsymoff = 0;
10220 if (!elf_bad_symtab (input_bfd))
10221 extsymoff = symtab_hdr->sh_info;
10222 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10223 while (h->root.type == bfd_link_hash_indirect
10224 || h->root.type == bfd_link_hash_warning)
10225 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10226
10227 sec = NULL;
10228 if (h->root.type == bfd_link_hash_defined
10229 || h->root.type == bfd_link_hash_defweak)
10230 sec = h->root.u.def.section;
10231 }
10232
10233 if (sec != NULL && discarded_section (sec))
10234 {
10235 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10236 input_section, &rel, &relend,
10237 rel_reloc, howto, contents);
10238 continue;
10239 }
10240
10241 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10242 {
10243 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10244 64-bit code, but make sure all their addresses are in the
10245 lowermost or uppermost 32-bit section of the 64-bit address
10246 space. Thus, when they use an R_MIPS_64 they mean what is
10247 usually meant by R_MIPS_32, with the exception that the
10248 stored value is sign-extended to 64 bits. */
10249 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10250
10251 /* On big-endian systems, we need to lie about the position
10252 of the reloc. */
10253 if (bfd_big_endian (input_bfd))
10254 rel->r_offset += 4;
10255 }
10256
10257 if (!use_saved_addend_p)
10258 {
10259 /* If these relocations were originally of the REL variety,
10260 we must pull the addend out of the field that will be
10261 relocated. Otherwise, we simply use the contents of the
10262 RELA relocation. */
10263 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10264 relocs, rel))
10265 {
10266 rela_relocation_p = FALSE;
10267 addend = mips_elf_read_rel_addend (input_bfd, rel,
10268 howto, contents);
10269 if (hi16_reloc_p (r_type)
10270 || (got16_reloc_p (r_type)
10271 && mips_elf_local_relocation_p (input_bfd, rel,
10272 local_sections)))
10273 {
10274 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10275 contents, &addend))
10276 {
10277 if (h)
10278 name = h->root.root.string;
10279 else
10280 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10281 local_syms + r_symndx,
10282 sec);
10283 _bfd_error_handler
10284 /* xgettext:c-format */
10285 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10286 input_bfd, input_section, name, howto->name,
10287 rel->r_offset);
10288 }
10289 }
10290 else
10291 addend <<= howto->rightshift;
10292 }
10293 else
10294 addend = rel->r_addend;
10295 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10296 local_syms, local_sections, rel);
10297 }
10298
10299 if (bfd_link_relocatable (info))
10300 {
10301 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10302 && bfd_big_endian (input_bfd))
10303 rel->r_offset -= 4;
10304
10305 if (!rela_relocation_p && rel->r_addend)
10306 {
10307 addend += rel->r_addend;
10308 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10309 addend = mips_elf_high (addend);
10310 else if (r_type == R_MIPS_HIGHER)
10311 addend = mips_elf_higher (addend);
10312 else if (r_type == R_MIPS_HIGHEST)
10313 addend = mips_elf_highest (addend);
10314 else
10315 addend >>= howto->rightshift;
10316
10317 /* We use the source mask, rather than the destination
10318 mask because the place to which we are writing will be
10319 source of the addend in the final link. */
10320 addend &= howto->src_mask;
10321
10322 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10323 /* See the comment above about using R_MIPS_64 in the 32-bit
10324 ABI. Here, we need to update the addend. It would be
10325 possible to get away with just using the R_MIPS_32 reloc
10326 but for endianness. */
10327 {
10328 bfd_vma sign_bits;
10329 bfd_vma low_bits;
10330 bfd_vma high_bits;
10331
10332 if (addend & ((bfd_vma) 1 << 31))
10333 #ifdef BFD64
10334 sign_bits = ((bfd_vma) 1 << 32) - 1;
10335 #else
10336 sign_bits = -1;
10337 #endif
10338 else
10339 sign_bits = 0;
10340
10341 /* If we don't know that we have a 64-bit type,
10342 do two separate stores. */
10343 if (bfd_big_endian (input_bfd))
10344 {
10345 /* Store the sign-bits (which are most significant)
10346 first. */
10347 low_bits = sign_bits;
10348 high_bits = addend;
10349 }
10350 else
10351 {
10352 low_bits = addend;
10353 high_bits = sign_bits;
10354 }
10355 bfd_put_32 (input_bfd, low_bits,
10356 contents + rel->r_offset);
10357 bfd_put_32 (input_bfd, high_bits,
10358 contents + rel->r_offset + 4);
10359 continue;
10360 }
10361
10362 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10363 input_bfd, input_section,
10364 contents, FALSE))
10365 return FALSE;
10366 }
10367
10368 /* Go on to the next relocation. */
10369 continue;
10370 }
10371
10372 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10373 relocations for the same offset. In that case we are
10374 supposed to treat the output of each relocation as the addend
10375 for the next. */
10376 if (rel + 1 < relend
10377 && rel->r_offset == rel[1].r_offset
10378 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10379 use_saved_addend_p = TRUE;
10380 else
10381 use_saved_addend_p = FALSE;
10382
10383 /* Figure out what value we are supposed to relocate. */
10384 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10385 input_section, info, rel,
10386 addend, howto, local_syms,
10387 local_sections, &value,
10388 &name, &cross_mode_jump_p,
10389 use_saved_addend_p))
10390 {
10391 case bfd_reloc_continue:
10392 /* There's nothing to do. */
10393 continue;
10394
10395 case bfd_reloc_undefined:
10396 /* mips_elf_calculate_relocation already called the
10397 undefined_symbol callback. There's no real point in
10398 trying to perform the relocation at this point, so we
10399 just skip ahead to the next relocation. */
10400 continue;
10401
10402 case bfd_reloc_notsupported:
10403 msg = _("internal error: unsupported relocation error");
10404 info->callbacks->warning
10405 (info, msg, name, input_bfd, input_section, rel->r_offset);
10406 return FALSE;
10407
10408 case bfd_reloc_overflow:
10409 if (use_saved_addend_p)
10410 /* Ignore overflow until we reach the last relocation for
10411 a given location. */
10412 ;
10413 else
10414 {
10415 struct mips_elf_link_hash_table *htab;
10416
10417 htab = mips_elf_hash_table (info);
10418 BFD_ASSERT (htab != NULL);
10419 BFD_ASSERT (name != NULL);
10420 if (!htab->small_data_overflow_reported
10421 && (gprel16_reloc_p (howto->type)
10422 || literal_reloc_p (howto->type)))
10423 {
10424 msg = _("small-data section exceeds 64KB;"
10425 " lower small-data size limit (see option -G)");
10426
10427 htab->small_data_overflow_reported = TRUE;
10428 (*info->callbacks->einfo) ("%P: %s\n", msg);
10429 }
10430 (*info->callbacks->reloc_overflow)
10431 (info, NULL, name, howto->name, (bfd_vma) 0,
10432 input_bfd, input_section, rel->r_offset);
10433 }
10434 break;
10435
10436 case bfd_reloc_ok:
10437 break;
10438
10439 case bfd_reloc_outofrange:
10440 msg = NULL;
10441 if (jal_reloc_p (howto->type))
10442 msg = (cross_mode_jump_p
10443 ? _("Cannot convert a jump to JALX "
10444 "for a non-word-aligned address")
10445 : (howto->type == R_MIPS16_26
10446 ? _("Jump to a non-word-aligned address")
10447 : _("Jump to a non-instruction-aligned address")));
10448 else if (b_reloc_p (howto->type))
10449 msg = (cross_mode_jump_p
10450 ? _("Cannot convert a branch to JALX "
10451 "for a non-word-aligned address")
10452 : _("Branch to a non-instruction-aligned address"));
10453 else if (aligned_pcrel_reloc_p (howto->type))
10454 msg = _("PC-relative load from unaligned address");
10455 if (msg)
10456 {
10457 info->callbacks->einfo
10458 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10459 break;
10460 }
10461 /* Fall through. */
10462
10463 default:
10464 abort ();
10465 break;
10466 }
10467
10468 /* If we've got another relocation for the address, keep going
10469 until we reach the last one. */
10470 if (use_saved_addend_p)
10471 {
10472 addend = value;
10473 continue;
10474 }
10475
10476 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10477 /* See the comment above about using R_MIPS_64 in the 32-bit
10478 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10479 that calculated the right value. Now, however, we
10480 sign-extend the 32-bit result to 64-bits, and store it as a
10481 64-bit value. We are especially generous here in that we
10482 go to extreme lengths to support this usage on systems with
10483 only a 32-bit VMA. */
10484 {
10485 bfd_vma sign_bits;
10486 bfd_vma low_bits;
10487 bfd_vma high_bits;
10488
10489 if (value & ((bfd_vma) 1 << 31))
10490 #ifdef BFD64
10491 sign_bits = ((bfd_vma) 1 << 32) - 1;
10492 #else
10493 sign_bits = -1;
10494 #endif
10495 else
10496 sign_bits = 0;
10497
10498 /* If we don't know that we have a 64-bit type,
10499 do two separate stores. */
10500 if (bfd_big_endian (input_bfd))
10501 {
10502 /* Undo what we did above. */
10503 rel->r_offset -= 4;
10504 /* Store the sign-bits (which are most significant)
10505 first. */
10506 low_bits = sign_bits;
10507 high_bits = value;
10508 }
10509 else
10510 {
10511 low_bits = value;
10512 high_bits = sign_bits;
10513 }
10514 bfd_put_32 (input_bfd, low_bits,
10515 contents + rel->r_offset);
10516 bfd_put_32 (input_bfd, high_bits,
10517 contents + rel->r_offset + 4);
10518 continue;
10519 }
10520
10521 /* Actually perform the relocation. */
10522 if (! mips_elf_perform_relocation (info, howto, rel, value,
10523 input_bfd, input_section,
10524 contents, cross_mode_jump_p))
10525 return FALSE;
10526 }
10527
10528 return TRUE;
10529 }
10530 \f
10531 /* A function that iterates over each entry in la25_stubs and fills
10532 in the code for each one. DATA points to a mips_htab_traverse_info. */
10533
10534 static int
10535 mips_elf_create_la25_stub (void **slot, void *data)
10536 {
10537 struct mips_htab_traverse_info *hti;
10538 struct mips_elf_link_hash_table *htab;
10539 struct mips_elf_la25_stub *stub;
10540 asection *s;
10541 bfd_byte *loc;
10542 bfd_vma offset, target, target_high, target_low;
10543
10544 stub = (struct mips_elf_la25_stub *) *slot;
10545 hti = (struct mips_htab_traverse_info *) data;
10546 htab = mips_elf_hash_table (hti->info);
10547 BFD_ASSERT (htab != NULL);
10548
10549 /* Create the section contents, if we haven't already. */
10550 s = stub->stub_section;
10551 loc = s->contents;
10552 if (loc == NULL)
10553 {
10554 loc = bfd_malloc (s->size);
10555 if (loc == NULL)
10556 {
10557 hti->error = TRUE;
10558 return FALSE;
10559 }
10560 s->contents = loc;
10561 }
10562
10563 /* Work out where in the section this stub should go. */
10564 offset = stub->offset;
10565
10566 /* Work out the target address. */
10567 target = mips_elf_get_la25_target (stub, &s);
10568 target += s->output_section->vma + s->output_offset;
10569
10570 target_high = ((target + 0x8000) >> 16) & 0xffff;
10571 target_low = (target & 0xffff);
10572
10573 if (stub->stub_section != htab->strampoline)
10574 {
10575 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10576 of the section and write the two instructions at the end. */
10577 memset (loc, 0, offset);
10578 loc += offset;
10579 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10580 {
10581 bfd_put_micromips_32 (hti->output_bfd,
10582 LA25_LUI_MICROMIPS (target_high),
10583 loc);
10584 bfd_put_micromips_32 (hti->output_bfd,
10585 LA25_ADDIU_MICROMIPS (target_low),
10586 loc + 4);
10587 }
10588 else
10589 {
10590 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10591 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10592 }
10593 }
10594 else
10595 {
10596 /* This is trampoline. */
10597 loc += offset;
10598 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10599 {
10600 bfd_put_micromips_32 (hti->output_bfd,
10601 LA25_LUI_MICROMIPS (target_high), loc);
10602 bfd_put_micromips_32 (hti->output_bfd,
10603 LA25_J_MICROMIPS (target), loc + 4);
10604 bfd_put_micromips_32 (hti->output_bfd,
10605 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10606 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10607 }
10608 else
10609 {
10610 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10611 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10612 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10613 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10614 }
10615 }
10616 return TRUE;
10617 }
10618
10619 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10620 adjust it appropriately now. */
10621
10622 static void
10623 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10624 const char *name, Elf_Internal_Sym *sym)
10625 {
10626 /* The linker script takes care of providing names and values for
10627 these, but we must place them into the right sections. */
10628 static const char* const text_section_symbols[] = {
10629 "_ftext",
10630 "_etext",
10631 "__dso_displacement",
10632 "__elf_header",
10633 "__program_header_table",
10634 NULL
10635 };
10636
10637 static const char* const data_section_symbols[] = {
10638 "_fdata",
10639 "_edata",
10640 "_end",
10641 "_fbss",
10642 NULL
10643 };
10644
10645 const char* const *p;
10646 int i;
10647
10648 for (i = 0; i < 2; ++i)
10649 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10650 *p;
10651 ++p)
10652 if (strcmp (*p, name) == 0)
10653 {
10654 /* All of these symbols are given type STT_SECTION by the
10655 IRIX6 linker. */
10656 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10657 sym->st_other = STO_PROTECTED;
10658
10659 /* The IRIX linker puts these symbols in special sections. */
10660 if (i == 0)
10661 sym->st_shndx = SHN_MIPS_TEXT;
10662 else
10663 sym->st_shndx = SHN_MIPS_DATA;
10664
10665 break;
10666 }
10667 }
10668
10669 /* Finish up dynamic symbol handling. We set the contents of various
10670 dynamic sections here. */
10671
10672 bfd_boolean
10673 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10674 struct bfd_link_info *info,
10675 struct elf_link_hash_entry *h,
10676 Elf_Internal_Sym *sym)
10677 {
10678 bfd *dynobj;
10679 asection *sgot;
10680 struct mips_got_info *g, *gg;
10681 const char *name;
10682 int idx;
10683 struct mips_elf_link_hash_table *htab;
10684 struct mips_elf_link_hash_entry *hmips;
10685
10686 htab = mips_elf_hash_table (info);
10687 BFD_ASSERT (htab != NULL);
10688 dynobj = elf_hash_table (info)->dynobj;
10689 hmips = (struct mips_elf_link_hash_entry *) h;
10690
10691 BFD_ASSERT (!htab->is_vxworks);
10692
10693 if (h->plt.plist != NULL
10694 && (h->plt.plist->mips_offset != MINUS_ONE
10695 || h->plt.plist->comp_offset != MINUS_ONE))
10696 {
10697 /* We've decided to create a PLT entry for this symbol. */
10698 bfd_byte *loc;
10699 bfd_vma header_address, got_address;
10700 bfd_vma got_address_high, got_address_low, load;
10701 bfd_vma got_index;
10702 bfd_vma isa_bit;
10703
10704 got_index = h->plt.plist->gotplt_index;
10705
10706 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10707 BFD_ASSERT (h->dynindx != -1);
10708 BFD_ASSERT (htab->root.splt != NULL);
10709 BFD_ASSERT (got_index != MINUS_ONE);
10710 BFD_ASSERT (!h->def_regular);
10711
10712 /* Calculate the address of the PLT header. */
10713 isa_bit = htab->plt_header_is_comp;
10714 header_address = (htab->root.splt->output_section->vma
10715 + htab->root.splt->output_offset + isa_bit);
10716
10717 /* Calculate the address of the .got.plt entry. */
10718 got_address = (htab->root.sgotplt->output_section->vma
10719 + htab->root.sgotplt->output_offset
10720 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10721
10722 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10723 got_address_low = got_address & 0xffff;
10724
10725 /* Initially point the .got.plt entry at the PLT header. */
10726 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10727 if (ABI_64_P (output_bfd))
10728 bfd_put_64 (output_bfd, header_address, loc);
10729 else
10730 bfd_put_32 (output_bfd, header_address, loc);
10731
10732 /* Now handle the PLT itself. First the standard entry (the order
10733 does not matter, we just have to pick one). */
10734 if (h->plt.plist->mips_offset != MINUS_ONE)
10735 {
10736 const bfd_vma *plt_entry;
10737 bfd_vma plt_offset;
10738
10739 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10740
10741 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10742
10743 /* Find out where the .plt entry should go. */
10744 loc = htab->root.splt->contents + plt_offset;
10745
10746 /* Pick the load opcode. */
10747 load = MIPS_ELF_LOAD_WORD (output_bfd);
10748
10749 /* Fill in the PLT entry itself. */
10750
10751 if (MIPSR6_P (output_bfd))
10752 plt_entry = mipsr6_exec_plt_entry;
10753 else
10754 plt_entry = mips_exec_plt_entry;
10755 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10756 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10757 loc + 4);
10758
10759 if (! LOAD_INTERLOCKS_P (output_bfd))
10760 {
10761 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10762 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10763 }
10764 else
10765 {
10766 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10767 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10768 loc + 12);
10769 }
10770 }
10771
10772 /* Now the compressed entry. They come after any standard ones. */
10773 if (h->plt.plist->comp_offset != MINUS_ONE)
10774 {
10775 bfd_vma plt_offset;
10776
10777 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10778 + h->plt.plist->comp_offset);
10779
10780 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10781
10782 /* Find out where the .plt entry should go. */
10783 loc = htab->root.splt->contents + plt_offset;
10784
10785 /* Fill in the PLT entry itself. */
10786 if (!MICROMIPS_P (output_bfd))
10787 {
10788 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10789
10790 bfd_put_16 (output_bfd, plt_entry[0], loc);
10791 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10792 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10793 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10794 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10795 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10796 bfd_put_32 (output_bfd, got_address, loc + 12);
10797 }
10798 else if (htab->insn32)
10799 {
10800 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10801
10802 bfd_put_16 (output_bfd, plt_entry[0], loc);
10803 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10804 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10805 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10806 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10807 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10808 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10809 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10810 }
10811 else
10812 {
10813 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10814 bfd_signed_vma gotpc_offset;
10815 bfd_vma loc_address;
10816
10817 BFD_ASSERT (got_address % 4 == 0);
10818
10819 loc_address = (htab->root.splt->output_section->vma
10820 + htab->root.splt->output_offset + plt_offset);
10821 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10822
10823 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10824 if (gotpc_offset + 0x1000000 >= 0x2000000)
10825 {
10826 _bfd_error_handler
10827 /* xgettext:c-format */
10828 (_("%B: `%A' offset of %ld from `%A' "
10829 "beyond the range of ADDIUPC"),
10830 output_bfd,
10831 htab->root.sgotplt->output_section,
10832 htab->root.splt->output_section,
10833 (long) gotpc_offset);
10834 bfd_set_error (bfd_error_no_error);
10835 return FALSE;
10836 }
10837 bfd_put_16 (output_bfd,
10838 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10839 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10840 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10841 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10842 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10843 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10844 }
10845 }
10846
10847 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10848 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10849 got_index - 2, h->dynindx,
10850 R_MIPS_JUMP_SLOT, got_address);
10851
10852 /* We distinguish between PLT entries and lazy-binding stubs by
10853 giving the former an st_other value of STO_MIPS_PLT. Set the
10854 flag and leave the value if there are any relocations in the
10855 binary where pointer equality matters. */
10856 sym->st_shndx = SHN_UNDEF;
10857 if (h->pointer_equality_needed)
10858 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10859 else
10860 {
10861 sym->st_value = 0;
10862 sym->st_other = 0;
10863 }
10864 }
10865
10866 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10867 {
10868 /* We've decided to create a lazy-binding stub. */
10869 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10870 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10871 bfd_vma stub_size = htab->function_stub_size;
10872 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10873 bfd_vma isa_bit = micromips_p;
10874 bfd_vma stub_big_size;
10875
10876 if (!micromips_p)
10877 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10878 else if (htab->insn32)
10879 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10880 else
10881 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10882
10883 /* This symbol has a stub. Set it up. */
10884
10885 BFD_ASSERT (h->dynindx != -1);
10886
10887 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10888
10889 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10890 sign extension at runtime in the stub, resulting in a negative
10891 index value. */
10892 if (h->dynindx & ~0x7fffffff)
10893 return FALSE;
10894
10895 /* Fill the stub. */
10896 if (micromips_p)
10897 {
10898 idx = 0;
10899 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10900 stub + idx);
10901 idx += 4;
10902 if (htab->insn32)
10903 {
10904 bfd_put_micromips_32 (output_bfd,
10905 STUB_MOVE32_MICROMIPS, stub + idx);
10906 idx += 4;
10907 }
10908 else
10909 {
10910 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10911 idx += 2;
10912 }
10913 if (stub_size == stub_big_size)
10914 {
10915 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10916
10917 bfd_put_micromips_32 (output_bfd,
10918 STUB_LUI_MICROMIPS (dynindx_hi),
10919 stub + idx);
10920 idx += 4;
10921 }
10922 if (htab->insn32)
10923 {
10924 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10925 stub + idx);
10926 idx += 4;
10927 }
10928 else
10929 {
10930 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10931 idx += 2;
10932 }
10933
10934 /* If a large stub is not required and sign extension is not a
10935 problem, then use legacy code in the stub. */
10936 if (stub_size == stub_big_size)
10937 bfd_put_micromips_32 (output_bfd,
10938 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10939 stub + idx);
10940 else if (h->dynindx & ~0x7fff)
10941 bfd_put_micromips_32 (output_bfd,
10942 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10943 stub + idx);
10944 else
10945 bfd_put_micromips_32 (output_bfd,
10946 STUB_LI16S_MICROMIPS (output_bfd,
10947 h->dynindx),
10948 stub + idx);
10949 }
10950 else
10951 {
10952 idx = 0;
10953 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10954 idx += 4;
10955 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10956 idx += 4;
10957 if (stub_size == stub_big_size)
10958 {
10959 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10960 stub + idx);
10961 idx += 4;
10962 }
10963 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10964 idx += 4;
10965
10966 /* If a large stub is not required and sign extension is not a
10967 problem, then use legacy code in the stub. */
10968 if (stub_size == stub_big_size)
10969 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10970 stub + idx);
10971 else if (h->dynindx & ~0x7fff)
10972 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10973 stub + idx);
10974 else
10975 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10976 stub + idx);
10977 }
10978
10979 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10980 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10981 stub, stub_size);
10982
10983 /* Mark the symbol as undefined. stub_offset != -1 occurs
10984 only for the referenced symbol. */
10985 sym->st_shndx = SHN_UNDEF;
10986
10987 /* The run-time linker uses the st_value field of the symbol
10988 to reset the global offset table entry for this external
10989 to its stub address when unlinking a shared object. */
10990 sym->st_value = (htab->sstubs->output_section->vma
10991 + htab->sstubs->output_offset
10992 + h->plt.plist->stub_offset
10993 + isa_bit);
10994 sym->st_other = other;
10995 }
10996
10997 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10998 refer to the stub, since only the stub uses the standard calling
10999 conventions. */
11000 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11001 {
11002 BFD_ASSERT (hmips->need_fn_stub);
11003 sym->st_value = (hmips->fn_stub->output_section->vma
11004 + hmips->fn_stub->output_offset);
11005 sym->st_size = hmips->fn_stub->size;
11006 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11007 }
11008
11009 BFD_ASSERT (h->dynindx != -1
11010 || h->forced_local);
11011
11012 sgot = htab->root.sgot;
11013 g = htab->got_info;
11014 BFD_ASSERT (g != NULL);
11015
11016 /* Run through the global symbol table, creating GOT entries for all
11017 the symbols that need them. */
11018 if (hmips->global_got_area != GGA_NONE)
11019 {
11020 bfd_vma offset;
11021 bfd_vma value;
11022
11023 value = sym->st_value;
11024 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11025 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11026 }
11027
11028 if (hmips->global_got_area != GGA_NONE && g->next)
11029 {
11030 struct mips_got_entry e, *p;
11031 bfd_vma entry;
11032 bfd_vma offset;
11033
11034 gg = g;
11035
11036 e.abfd = output_bfd;
11037 e.symndx = -1;
11038 e.d.h = hmips;
11039 e.tls_type = GOT_TLS_NONE;
11040
11041 for (g = g->next; g->next != gg; g = g->next)
11042 {
11043 if (g->got_entries
11044 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11045 &e)))
11046 {
11047 offset = p->gotidx;
11048 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11049 if (bfd_link_pic (info)
11050 || (elf_hash_table (info)->dynamic_sections_created
11051 && p->d.h != NULL
11052 && p->d.h->root.def_dynamic
11053 && !p->d.h->root.def_regular))
11054 {
11055 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11056 the various compatibility problems, it's easier to mock
11057 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11058 mips_elf_create_dynamic_relocation to calculate the
11059 appropriate addend. */
11060 Elf_Internal_Rela rel[3];
11061
11062 memset (rel, 0, sizeof (rel));
11063 if (ABI_64_P (output_bfd))
11064 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11065 else
11066 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11067 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11068
11069 entry = 0;
11070 if (! (mips_elf_create_dynamic_relocation
11071 (output_bfd, info, rel,
11072 e.d.h, NULL, sym->st_value, &entry, sgot)))
11073 return FALSE;
11074 }
11075 else
11076 entry = sym->st_value;
11077 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11078 }
11079 }
11080 }
11081
11082 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11083 name = h->root.root.string;
11084 if (h == elf_hash_table (info)->hdynamic
11085 || h == elf_hash_table (info)->hgot)
11086 sym->st_shndx = SHN_ABS;
11087 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11088 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11089 {
11090 sym->st_shndx = SHN_ABS;
11091 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11092 sym->st_value = 1;
11093 }
11094 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
11095 {
11096 sym->st_shndx = SHN_ABS;
11097 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11098 sym->st_value = elf_gp (output_bfd);
11099 }
11100 else if (SGI_COMPAT (output_bfd))
11101 {
11102 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11103 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11104 {
11105 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11106 sym->st_other = STO_PROTECTED;
11107 sym->st_value = 0;
11108 sym->st_shndx = SHN_MIPS_DATA;
11109 }
11110 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11111 {
11112 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11113 sym->st_other = STO_PROTECTED;
11114 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11115 sym->st_shndx = SHN_ABS;
11116 }
11117 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11118 {
11119 if (h->type == STT_FUNC)
11120 sym->st_shndx = SHN_MIPS_TEXT;
11121 else if (h->type == STT_OBJECT)
11122 sym->st_shndx = SHN_MIPS_DATA;
11123 }
11124 }
11125
11126 /* Emit a copy reloc, if needed. */
11127 if (h->needs_copy)
11128 {
11129 asection *s;
11130 bfd_vma symval;
11131
11132 BFD_ASSERT (h->dynindx != -1);
11133 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11134
11135 s = mips_elf_rel_dyn_section (info, FALSE);
11136 symval = (h->root.u.def.section->output_section->vma
11137 + h->root.u.def.section->output_offset
11138 + h->root.u.def.value);
11139 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11140 h->dynindx, R_MIPS_COPY, symval);
11141 }
11142
11143 /* Handle the IRIX6-specific symbols. */
11144 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11145 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11146
11147 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11148 to treat compressed symbols like any other. */
11149 if (ELF_ST_IS_MIPS16 (sym->st_other))
11150 {
11151 BFD_ASSERT (sym->st_value & 1);
11152 sym->st_other -= STO_MIPS16;
11153 }
11154 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11155 {
11156 BFD_ASSERT (sym->st_value & 1);
11157 sym->st_other -= STO_MICROMIPS;
11158 }
11159
11160 return TRUE;
11161 }
11162
11163 /* Likewise, for VxWorks. */
11164
11165 bfd_boolean
11166 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11167 struct bfd_link_info *info,
11168 struct elf_link_hash_entry *h,
11169 Elf_Internal_Sym *sym)
11170 {
11171 bfd *dynobj;
11172 asection *sgot;
11173 struct mips_got_info *g;
11174 struct mips_elf_link_hash_table *htab;
11175 struct mips_elf_link_hash_entry *hmips;
11176
11177 htab = mips_elf_hash_table (info);
11178 BFD_ASSERT (htab != NULL);
11179 dynobj = elf_hash_table (info)->dynobj;
11180 hmips = (struct mips_elf_link_hash_entry *) h;
11181
11182 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11183 {
11184 bfd_byte *loc;
11185 bfd_vma plt_address, got_address, got_offset, branch_offset;
11186 Elf_Internal_Rela rel;
11187 static const bfd_vma *plt_entry;
11188 bfd_vma gotplt_index;
11189 bfd_vma plt_offset;
11190
11191 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11192 gotplt_index = h->plt.plist->gotplt_index;
11193
11194 BFD_ASSERT (h->dynindx != -1);
11195 BFD_ASSERT (htab->root.splt != NULL);
11196 BFD_ASSERT (gotplt_index != MINUS_ONE);
11197 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11198
11199 /* Calculate the address of the .plt entry. */
11200 plt_address = (htab->root.splt->output_section->vma
11201 + htab->root.splt->output_offset
11202 + plt_offset);
11203
11204 /* Calculate the address of the .got.plt entry. */
11205 got_address = (htab->root.sgotplt->output_section->vma
11206 + htab->root.sgotplt->output_offset
11207 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11208
11209 /* Calculate the offset of the .got.plt entry from
11210 _GLOBAL_OFFSET_TABLE_. */
11211 got_offset = mips_elf_gotplt_index (info, h);
11212
11213 /* Calculate the offset for the branch at the start of the PLT
11214 entry. The branch jumps to the beginning of .plt. */
11215 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11216
11217 /* Fill in the initial value of the .got.plt entry. */
11218 bfd_put_32 (output_bfd, plt_address,
11219 (htab->root.sgotplt->contents
11220 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11221
11222 /* Find out where the .plt entry should go. */
11223 loc = htab->root.splt->contents + plt_offset;
11224
11225 if (bfd_link_pic (info))
11226 {
11227 plt_entry = mips_vxworks_shared_plt_entry;
11228 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11229 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11230 }
11231 else
11232 {
11233 bfd_vma got_address_high, got_address_low;
11234
11235 plt_entry = mips_vxworks_exec_plt_entry;
11236 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11237 got_address_low = got_address & 0xffff;
11238
11239 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11240 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11241 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11242 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11243 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11244 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11245 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11246 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11247
11248 loc = (htab->srelplt2->contents
11249 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11250
11251 /* Emit a relocation for the .got.plt entry. */
11252 rel.r_offset = got_address;
11253 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11254 rel.r_addend = plt_offset;
11255 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11256
11257 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11258 loc += sizeof (Elf32_External_Rela);
11259 rel.r_offset = plt_address + 8;
11260 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11261 rel.r_addend = got_offset;
11262 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11263
11264 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11265 loc += sizeof (Elf32_External_Rela);
11266 rel.r_offset += 4;
11267 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11268 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11269 }
11270
11271 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11272 loc = (htab->root.srelplt->contents
11273 + gotplt_index * sizeof (Elf32_External_Rela));
11274 rel.r_offset = got_address;
11275 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11276 rel.r_addend = 0;
11277 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11278
11279 if (!h->def_regular)
11280 sym->st_shndx = SHN_UNDEF;
11281 }
11282
11283 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11284
11285 sgot = htab->root.sgot;
11286 g = htab->got_info;
11287 BFD_ASSERT (g != NULL);
11288
11289 /* See if this symbol has an entry in the GOT. */
11290 if (hmips->global_got_area != GGA_NONE)
11291 {
11292 bfd_vma offset;
11293 Elf_Internal_Rela outrel;
11294 bfd_byte *loc;
11295 asection *s;
11296
11297 /* Install the symbol value in the GOT. */
11298 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11299 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11300
11301 /* Add a dynamic relocation for it. */
11302 s = mips_elf_rel_dyn_section (info, FALSE);
11303 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11304 outrel.r_offset = (sgot->output_section->vma
11305 + sgot->output_offset
11306 + offset);
11307 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11308 outrel.r_addend = 0;
11309 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11310 }
11311
11312 /* Emit a copy reloc, if needed. */
11313 if (h->needs_copy)
11314 {
11315 Elf_Internal_Rela rel;
11316 asection *srel;
11317 bfd_byte *loc;
11318
11319 BFD_ASSERT (h->dynindx != -1);
11320
11321 rel.r_offset = (h->root.u.def.section->output_section->vma
11322 + h->root.u.def.section->output_offset
11323 + h->root.u.def.value);
11324 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11325 rel.r_addend = 0;
11326 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
11327 srel = htab->root.sreldynrelro;
11328 else
11329 srel = htab->root.srelbss;
11330 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11331 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11332 ++srel->reloc_count;
11333 }
11334
11335 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11336 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11337 sym->st_value &= ~1;
11338
11339 return TRUE;
11340 }
11341
11342 /* Write out a plt0 entry to the beginning of .plt. */
11343
11344 static bfd_boolean
11345 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11346 {
11347 bfd_byte *loc;
11348 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11349 static const bfd_vma *plt_entry;
11350 struct mips_elf_link_hash_table *htab;
11351
11352 htab = mips_elf_hash_table (info);
11353 BFD_ASSERT (htab != NULL);
11354
11355 if (ABI_64_P (output_bfd))
11356 plt_entry = mips_n64_exec_plt0_entry;
11357 else if (ABI_N32_P (output_bfd))
11358 plt_entry = mips_n32_exec_plt0_entry;
11359 else if (!htab->plt_header_is_comp)
11360 plt_entry = mips_o32_exec_plt0_entry;
11361 else if (htab->insn32)
11362 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11363 else
11364 plt_entry = micromips_o32_exec_plt0_entry;
11365
11366 /* Calculate the value of .got.plt. */
11367 gotplt_value = (htab->root.sgotplt->output_section->vma
11368 + htab->root.sgotplt->output_offset);
11369 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11370 gotplt_value_low = gotplt_value & 0xffff;
11371
11372 /* The PLT sequence is not safe for N64 if .got.plt's address can
11373 not be loaded in two instructions. */
11374 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11375 || ~(gotplt_value | 0x7fffffff) == 0);
11376
11377 /* Install the PLT header. */
11378 loc = htab->root.splt->contents;
11379 if (plt_entry == micromips_o32_exec_plt0_entry)
11380 {
11381 bfd_vma gotpc_offset;
11382 bfd_vma loc_address;
11383 size_t i;
11384
11385 BFD_ASSERT (gotplt_value % 4 == 0);
11386
11387 loc_address = (htab->root.splt->output_section->vma
11388 + htab->root.splt->output_offset);
11389 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11390
11391 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11392 if (gotpc_offset + 0x1000000 >= 0x2000000)
11393 {
11394 _bfd_error_handler
11395 /* xgettext:c-format */
11396 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11397 output_bfd,
11398 htab->root.sgotplt->output_section,
11399 htab->root.splt->output_section,
11400 (long) gotpc_offset);
11401 bfd_set_error (bfd_error_no_error);
11402 return FALSE;
11403 }
11404 bfd_put_16 (output_bfd,
11405 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11406 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11407 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11408 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11409 }
11410 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11411 {
11412 size_t i;
11413
11414 bfd_put_16 (output_bfd, plt_entry[0], loc);
11415 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11416 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11417 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11418 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11419 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11420 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11421 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11422 }
11423 else
11424 {
11425 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11426 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11427 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11428 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11429 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11430 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11431 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11432 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11433 }
11434
11435 return TRUE;
11436 }
11437
11438 /* Install the PLT header for a VxWorks executable and finalize the
11439 contents of .rela.plt.unloaded. */
11440
11441 static void
11442 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11443 {
11444 Elf_Internal_Rela rela;
11445 bfd_byte *loc;
11446 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11447 static const bfd_vma *plt_entry;
11448 struct mips_elf_link_hash_table *htab;
11449
11450 htab = mips_elf_hash_table (info);
11451 BFD_ASSERT (htab != NULL);
11452
11453 plt_entry = mips_vxworks_exec_plt0_entry;
11454
11455 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11456 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11457 + htab->root.hgot->root.u.def.section->output_offset
11458 + htab->root.hgot->root.u.def.value);
11459
11460 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11461 got_value_low = got_value & 0xffff;
11462
11463 /* Calculate the address of the PLT header. */
11464 plt_address = (htab->root.splt->output_section->vma
11465 + htab->root.splt->output_offset);
11466
11467 /* Install the PLT header. */
11468 loc = htab->root.splt->contents;
11469 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11470 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11471 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11472 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11473 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11474 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11475
11476 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11477 loc = htab->srelplt2->contents;
11478 rela.r_offset = plt_address;
11479 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11480 rela.r_addend = 0;
11481 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11482 loc += sizeof (Elf32_External_Rela);
11483
11484 /* Output the relocation for the following addiu of
11485 %lo(_GLOBAL_OFFSET_TABLE_). */
11486 rela.r_offset += 4;
11487 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11488 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11489 loc += sizeof (Elf32_External_Rela);
11490
11491 /* Fix up the remaining relocations. They may have the wrong
11492 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11493 in which symbols were output. */
11494 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11495 {
11496 Elf_Internal_Rela rel;
11497
11498 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11499 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11500 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11501 loc += sizeof (Elf32_External_Rela);
11502
11503 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11504 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11505 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11506 loc += sizeof (Elf32_External_Rela);
11507
11508 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11509 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11510 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11511 loc += sizeof (Elf32_External_Rela);
11512 }
11513 }
11514
11515 /* Install the PLT header for a VxWorks shared library. */
11516
11517 static void
11518 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11519 {
11520 unsigned int i;
11521 struct mips_elf_link_hash_table *htab;
11522
11523 htab = mips_elf_hash_table (info);
11524 BFD_ASSERT (htab != NULL);
11525
11526 /* We just need to copy the entry byte-by-byte. */
11527 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11528 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11529 htab->root.splt->contents + i * 4);
11530 }
11531
11532 /* Finish up the dynamic sections. */
11533
11534 bfd_boolean
11535 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11536 struct bfd_link_info *info)
11537 {
11538 bfd *dynobj;
11539 asection *sdyn;
11540 asection *sgot;
11541 struct mips_got_info *gg, *g;
11542 struct mips_elf_link_hash_table *htab;
11543
11544 htab = mips_elf_hash_table (info);
11545 BFD_ASSERT (htab != NULL);
11546
11547 dynobj = elf_hash_table (info)->dynobj;
11548
11549 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11550
11551 sgot = htab->root.sgot;
11552 gg = htab->got_info;
11553
11554 if (elf_hash_table (info)->dynamic_sections_created)
11555 {
11556 bfd_byte *b;
11557 int dyn_to_skip = 0, dyn_skipped = 0;
11558
11559 BFD_ASSERT (sdyn != NULL);
11560 BFD_ASSERT (gg != NULL);
11561
11562 g = mips_elf_bfd_got (output_bfd, FALSE);
11563 BFD_ASSERT (g != NULL);
11564
11565 for (b = sdyn->contents;
11566 b < sdyn->contents + sdyn->size;
11567 b += MIPS_ELF_DYN_SIZE (dynobj))
11568 {
11569 Elf_Internal_Dyn dyn;
11570 const char *name;
11571 size_t elemsize;
11572 asection *s;
11573 bfd_boolean swap_out_p;
11574
11575 /* Read in the current dynamic entry. */
11576 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11577
11578 /* Assume that we're going to modify it and write it out. */
11579 swap_out_p = TRUE;
11580
11581 switch (dyn.d_tag)
11582 {
11583 case DT_RELENT:
11584 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11585 break;
11586
11587 case DT_RELAENT:
11588 BFD_ASSERT (htab->is_vxworks);
11589 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11590 break;
11591
11592 case DT_STRSZ:
11593 /* Rewrite DT_STRSZ. */
11594 dyn.d_un.d_val =
11595 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11596 break;
11597
11598 case DT_PLTGOT:
11599 s = htab->root.sgot;
11600 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11601 break;
11602
11603 case DT_MIPS_PLTGOT:
11604 s = htab->root.sgotplt;
11605 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11606 break;
11607
11608 case DT_MIPS_RLD_VERSION:
11609 dyn.d_un.d_val = 1; /* XXX */
11610 break;
11611
11612 case DT_MIPS_FLAGS:
11613 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11614 break;
11615
11616 case DT_MIPS_TIME_STAMP:
11617 {
11618 time_t t;
11619 time (&t);
11620 dyn.d_un.d_val = t;
11621 }
11622 break;
11623
11624 case DT_MIPS_ICHECKSUM:
11625 /* XXX FIXME: */
11626 swap_out_p = FALSE;
11627 break;
11628
11629 case DT_MIPS_IVERSION:
11630 /* XXX FIXME: */
11631 swap_out_p = FALSE;
11632 break;
11633
11634 case DT_MIPS_BASE_ADDRESS:
11635 s = output_bfd->sections;
11636 BFD_ASSERT (s != NULL);
11637 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11638 break;
11639
11640 case DT_MIPS_LOCAL_GOTNO:
11641 dyn.d_un.d_val = g->local_gotno;
11642 break;
11643
11644 case DT_MIPS_UNREFEXTNO:
11645 /* The index into the dynamic symbol table which is the
11646 entry of the first external symbol that is not
11647 referenced within the same object. */
11648 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11649 break;
11650
11651 case DT_MIPS_GOTSYM:
11652 if (htab->global_gotsym)
11653 {
11654 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11655 break;
11656 }
11657 /* In case if we don't have global got symbols we default
11658 to setting DT_MIPS_GOTSYM to the same value as
11659 DT_MIPS_SYMTABNO. */
11660 /* Fall through. */
11661
11662 case DT_MIPS_SYMTABNO:
11663 name = ".dynsym";
11664 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11665 s = bfd_get_linker_section (dynobj, name);
11666
11667 if (s != NULL)
11668 dyn.d_un.d_val = s->size / elemsize;
11669 else
11670 dyn.d_un.d_val = 0;
11671 break;
11672
11673 case DT_MIPS_HIPAGENO:
11674 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11675 break;
11676
11677 case DT_MIPS_RLD_MAP:
11678 {
11679 struct elf_link_hash_entry *h;
11680 h = mips_elf_hash_table (info)->rld_symbol;
11681 if (!h)
11682 {
11683 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11684 swap_out_p = FALSE;
11685 break;
11686 }
11687 s = h->root.u.def.section;
11688
11689 /* The MIPS_RLD_MAP tag stores the absolute address of the
11690 debug pointer. */
11691 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11692 + h->root.u.def.value);
11693 }
11694 break;
11695
11696 case DT_MIPS_RLD_MAP_REL:
11697 {
11698 struct elf_link_hash_entry *h;
11699 bfd_vma dt_addr, rld_addr;
11700 h = mips_elf_hash_table (info)->rld_symbol;
11701 if (!h)
11702 {
11703 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11704 swap_out_p = FALSE;
11705 break;
11706 }
11707 s = h->root.u.def.section;
11708
11709 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11710 pointer, relative to the address of the tag. */
11711 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11712 + (b - sdyn->contents));
11713 rld_addr = (s->output_section->vma + s->output_offset
11714 + h->root.u.def.value);
11715 dyn.d_un.d_ptr = rld_addr - dt_addr;
11716 }
11717 break;
11718
11719 case DT_MIPS_OPTIONS:
11720 s = (bfd_get_section_by_name
11721 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11722 dyn.d_un.d_ptr = s->vma;
11723 break;
11724
11725 case DT_PLTREL:
11726 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11727 if (htab->is_vxworks)
11728 dyn.d_un.d_val = DT_RELA;
11729 else
11730 dyn.d_un.d_val = DT_REL;
11731 break;
11732
11733 case DT_PLTRELSZ:
11734 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11735 dyn.d_un.d_val = htab->root.srelplt->size;
11736 break;
11737
11738 case DT_JMPREL:
11739 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11740 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11741 + htab->root.srelplt->output_offset);
11742 break;
11743
11744 case DT_TEXTREL:
11745 /* If we didn't need any text relocations after all, delete
11746 the dynamic tag. */
11747 if (!(info->flags & DF_TEXTREL))
11748 {
11749 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11750 swap_out_p = FALSE;
11751 }
11752 break;
11753
11754 case DT_FLAGS:
11755 /* If we didn't need any text relocations after all, clear
11756 DF_TEXTREL from DT_FLAGS. */
11757 if (!(info->flags & DF_TEXTREL))
11758 dyn.d_un.d_val &= ~DF_TEXTREL;
11759 else
11760 swap_out_p = FALSE;
11761 break;
11762
11763 default:
11764 swap_out_p = FALSE;
11765 if (htab->is_vxworks
11766 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11767 swap_out_p = TRUE;
11768 break;
11769 }
11770
11771 if (swap_out_p || dyn_skipped)
11772 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11773 (dynobj, &dyn, b - dyn_skipped);
11774
11775 if (dyn_to_skip)
11776 {
11777 dyn_skipped += dyn_to_skip;
11778 dyn_to_skip = 0;
11779 }
11780 }
11781
11782 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11783 if (dyn_skipped > 0)
11784 memset (b - dyn_skipped, 0, dyn_skipped);
11785 }
11786
11787 if (sgot != NULL && sgot->size > 0
11788 && !bfd_is_abs_section (sgot->output_section))
11789 {
11790 if (htab->is_vxworks)
11791 {
11792 /* The first entry of the global offset table points to the
11793 ".dynamic" section. The second is initialized by the
11794 loader and contains the shared library identifier.
11795 The third is also initialized by the loader and points
11796 to the lazy resolution stub. */
11797 MIPS_ELF_PUT_WORD (output_bfd,
11798 sdyn->output_offset + sdyn->output_section->vma,
11799 sgot->contents);
11800 MIPS_ELF_PUT_WORD (output_bfd, 0,
11801 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11802 MIPS_ELF_PUT_WORD (output_bfd, 0,
11803 sgot->contents
11804 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11805 }
11806 else
11807 {
11808 /* The first entry of the global offset table will be filled at
11809 runtime. The second entry will be used by some runtime loaders.
11810 This isn't the case of IRIX rld. */
11811 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11812 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11813 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11814 }
11815
11816 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11817 = MIPS_ELF_GOT_SIZE (output_bfd);
11818 }
11819
11820 /* Generate dynamic relocations for the non-primary gots. */
11821 if (gg != NULL && gg->next)
11822 {
11823 Elf_Internal_Rela rel[3];
11824 bfd_vma addend = 0;
11825
11826 memset (rel, 0, sizeof (rel));
11827 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11828
11829 for (g = gg->next; g->next != gg; g = g->next)
11830 {
11831 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11832 + g->next->tls_gotno;
11833
11834 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11835 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11836 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11837 sgot->contents
11838 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11839
11840 if (! bfd_link_pic (info))
11841 continue;
11842
11843 for (; got_index < g->local_gotno; got_index++)
11844 {
11845 if (got_index >= g->assigned_low_gotno
11846 && got_index <= g->assigned_high_gotno)
11847 continue;
11848
11849 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11850 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11851 if (!(mips_elf_create_dynamic_relocation
11852 (output_bfd, info, rel, NULL,
11853 bfd_abs_section_ptr,
11854 0, &addend, sgot)))
11855 return FALSE;
11856 BFD_ASSERT (addend == 0);
11857 }
11858 }
11859 }
11860
11861 /* The generation of dynamic relocations for the non-primary gots
11862 adds more dynamic relocations. We cannot count them until
11863 here. */
11864
11865 if (elf_hash_table (info)->dynamic_sections_created)
11866 {
11867 bfd_byte *b;
11868 bfd_boolean swap_out_p;
11869
11870 BFD_ASSERT (sdyn != NULL);
11871
11872 for (b = sdyn->contents;
11873 b < sdyn->contents + sdyn->size;
11874 b += MIPS_ELF_DYN_SIZE (dynobj))
11875 {
11876 Elf_Internal_Dyn dyn;
11877 asection *s;
11878
11879 /* Read in the current dynamic entry. */
11880 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11881
11882 /* Assume that we're going to modify it and write it out. */
11883 swap_out_p = TRUE;
11884
11885 switch (dyn.d_tag)
11886 {
11887 case DT_RELSZ:
11888 /* Reduce DT_RELSZ to account for any relocations we
11889 decided not to make. This is for the n64 irix rld,
11890 which doesn't seem to apply any relocations if there
11891 are trailing null entries. */
11892 s = mips_elf_rel_dyn_section (info, FALSE);
11893 dyn.d_un.d_val = (s->reloc_count
11894 * (ABI_64_P (output_bfd)
11895 ? sizeof (Elf64_Mips_External_Rel)
11896 : sizeof (Elf32_External_Rel)));
11897 /* Adjust the section size too. Tools like the prelinker
11898 can reasonably expect the values to the same. */
11899 elf_section_data (s->output_section)->this_hdr.sh_size
11900 = dyn.d_un.d_val;
11901 break;
11902
11903 default:
11904 swap_out_p = FALSE;
11905 break;
11906 }
11907
11908 if (swap_out_p)
11909 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11910 (dynobj, &dyn, b);
11911 }
11912 }
11913
11914 {
11915 asection *s;
11916 Elf32_compact_rel cpt;
11917
11918 if (SGI_COMPAT (output_bfd))
11919 {
11920 /* Write .compact_rel section out. */
11921 s = bfd_get_linker_section (dynobj, ".compact_rel");
11922 if (s != NULL)
11923 {
11924 cpt.id1 = 1;
11925 cpt.num = s->reloc_count;
11926 cpt.id2 = 2;
11927 cpt.offset = (s->output_section->filepos
11928 + sizeof (Elf32_External_compact_rel));
11929 cpt.reserved0 = 0;
11930 cpt.reserved1 = 0;
11931 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11932 ((Elf32_External_compact_rel *)
11933 s->contents));
11934
11935 /* Clean up a dummy stub function entry in .text. */
11936 if (htab->sstubs != NULL)
11937 {
11938 file_ptr dummy_offset;
11939
11940 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11941 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11942 memset (htab->sstubs->contents + dummy_offset, 0,
11943 htab->function_stub_size);
11944 }
11945 }
11946 }
11947
11948 /* The psABI says that the dynamic relocations must be sorted in
11949 increasing order of r_symndx. The VxWorks EABI doesn't require
11950 this, and because the code below handles REL rather than RELA
11951 relocations, using it for VxWorks would be outright harmful. */
11952 if (!htab->is_vxworks)
11953 {
11954 s = mips_elf_rel_dyn_section (info, FALSE);
11955 if (s != NULL
11956 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11957 {
11958 reldyn_sorting_bfd = output_bfd;
11959
11960 if (ABI_64_P (output_bfd))
11961 qsort ((Elf64_External_Rel *) s->contents + 1,
11962 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11963 sort_dynamic_relocs_64);
11964 else
11965 qsort ((Elf32_External_Rel *) s->contents + 1,
11966 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11967 sort_dynamic_relocs);
11968 }
11969 }
11970 }
11971
11972 if (htab->root.splt && htab->root.splt->size > 0)
11973 {
11974 if (htab->is_vxworks)
11975 {
11976 if (bfd_link_pic (info))
11977 mips_vxworks_finish_shared_plt (output_bfd, info);
11978 else
11979 mips_vxworks_finish_exec_plt (output_bfd, info);
11980 }
11981 else
11982 {
11983 BFD_ASSERT (!bfd_link_pic (info));
11984 if (!mips_finish_exec_plt (output_bfd, info))
11985 return FALSE;
11986 }
11987 }
11988 return TRUE;
11989 }
11990
11991
11992 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11993
11994 static void
11995 mips_set_isa_flags (bfd *abfd)
11996 {
11997 flagword val;
11998
11999 switch (bfd_get_mach (abfd))
12000 {
12001 default:
12002 case bfd_mach_mips3000:
12003 val = E_MIPS_ARCH_1;
12004 break;
12005
12006 case bfd_mach_mips3900:
12007 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12008 break;
12009
12010 case bfd_mach_mips6000:
12011 val = E_MIPS_ARCH_2;
12012 break;
12013
12014 case bfd_mach_mips4000:
12015 case bfd_mach_mips4300:
12016 case bfd_mach_mips4400:
12017 case bfd_mach_mips4600:
12018 val = E_MIPS_ARCH_3;
12019 break;
12020
12021 case bfd_mach_mips4010:
12022 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12023 break;
12024
12025 case bfd_mach_mips4100:
12026 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12027 break;
12028
12029 case bfd_mach_mips4111:
12030 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12031 break;
12032
12033 case bfd_mach_mips4120:
12034 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12035 break;
12036
12037 case bfd_mach_mips4650:
12038 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12039 break;
12040
12041 case bfd_mach_mips5400:
12042 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12043 break;
12044
12045 case bfd_mach_mips5500:
12046 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12047 break;
12048
12049 case bfd_mach_mips5900:
12050 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12051 break;
12052
12053 case bfd_mach_mips9000:
12054 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12055 break;
12056
12057 case bfd_mach_mips5000:
12058 case bfd_mach_mips7000:
12059 case bfd_mach_mips8000:
12060 case bfd_mach_mips10000:
12061 case bfd_mach_mips12000:
12062 case bfd_mach_mips14000:
12063 case bfd_mach_mips16000:
12064 val = E_MIPS_ARCH_4;
12065 break;
12066
12067 case bfd_mach_mips5:
12068 val = E_MIPS_ARCH_5;
12069 break;
12070
12071 case bfd_mach_mips_loongson_2e:
12072 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12073 break;
12074
12075 case bfd_mach_mips_loongson_2f:
12076 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12077 break;
12078
12079 case bfd_mach_mips_sb1:
12080 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12081 break;
12082
12083 case bfd_mach_mips_loongson_3a:
12084 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
12085 break;
12086
12087 case bfd_mach_mips_octeon:
12088 case bfd_mach_mips_octeonp:
12089 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12090 break;
12091
12092 case bfd_mach_mips_octeon3:
12093 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12094 break;
12095
12096 case bfd_mach_mips_xlr:
12097 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12098 break;
12099
12100 case bfd_mach_mips_octeon2:
12101 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12102 break;
12103
12104 case bfd_mach_mipsisa32:
12105 val = E_MIPS_ARCH_32;
12106 break;
12107
12108 case bfd_mach_mipsisa64:
12109 val = E_MIPS_ARCH_64;
12110 break;
12111
12112 case bfd_mach_mipsisa32r2:
12113 case bfd_mach_mipsisa32r3:
12114 case bfd_mach_mipsisa32r5:
12115 val = E_MIPS_ARCH_32R2;
12116 break;
12117
12118 case bfd_mach_mipsisa64r2:
12119 case bfd_mach_mipsisa64r3:
12120 case bfd_mach_mipsisa64r5:
12121 val = E_MIPS_ARCH_64R2;
12122 break;
12123
12124 case bfd_mach_mipsisa32r6:
12125 val = E_MIPS_ARCH_32R6;
12126 break;
12127
12128 case bfd_mach_mipsisa64r6:
12129 val = E_MIPS_ARCH_64R6;
12130 break;
12131 }
12132 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12133 elf_elfheader (abfd)->e_flags |= val;
12134
12135 }
12136
12137
12138 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12139 Don't do so for code sections. We want to keep ordering of HI16/LO16
12140 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12141 relocs to be sorted. */
12142
12143 bfd_boolean
12144 _bfd_mips_elf_sort_relocs_p (asection *sec)
12145 {
12146 return (sec->flags & SEC_CODE) == 0;
12147 }
12148
12149
12150 /* The final processing done just before writing out a MIPS ELF object
12151 file. This gets the MIPS architecture right based on the machine
12152 number. This is used by both the 32-bit and the 64-bit ABI. */
12153
12154 void
12155 _bfd_mips_elf_final_write_processing (bfd *abfd,
12156 bfd_boolean linker ATTRIBUTE_UNUSED)
12157 {
12158 unsigned int i;
12159 Elf_Internal_Shdr **hdrpp;
12160 const char *name;
12161 asection *sec;
12162
12163 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12164 is nonzero. This is for compatibility with old objects, which used
12165 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12166 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12167 mips_set_isa_flags (abfd);
12168
12169 /* Set the sh_info field for .gptab sections and other appropriate
12170 info for each special section. */
12171 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12172 i < elf_numsections (abfd);
12173 i++, hdrpp++)
12174 {
12175 switch ((*hdrpp)->sh_type)
12176 {
12177 case SHT_MIPS_MSYM:
12178 case SHT_MIPS_LIBLIST:
12179 sec = bfd_get_section_by_name (abfd, ".dynstr");
12180 if (sec != NULL)
12181 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12182 break;
12183
12184 case SHT_MIPS_GPTAB:
12185 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12186 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12187 BFD_ASSERT (name != NULL
12188 && CONST_STRNEQ (name, ".gptab."));
12189 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12190 BFD_ASSERT (sec != NULL);
12191 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12192 break;
12193
12194 case SHT_MIPS_CONTENT:
12195 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12196 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12197 BFD_ASSERT (name != NULL
12198 && CONST_STRNEQ (name, ".MIPS.content"));
12199 sec = bfd_get_section_by_name (abfd,
12200 name + sizeof ".MIPS.content" - 1);
12201 BFD_ASSERT (sec != NULL);
12202 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12203 break;
12204
12205 case SHT_MIPS_SYMBOL_LIB:
12206 sec = bfd_get_section_by_name (abfd, ".dynsym");
12207 if (sec != NULL)
12208 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12209 sec = bfd_get_section_by_name (abfd, ".liblist");
12210 if (sec != NULL)
12211 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12212 break;
12213
12214 case SHT_MIPS_EVENTS:
12215 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12216 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12217 BFD_ASSERT (name != NULL);
12218 if (CONST_STRNEQ (name, ".MIPS.events"))
12219 sec = bfd_get_section_by_name (abfd,
12220 name + sizeof ".MIPS.events" - 1);
12221 else
12222 {
12223 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12224 sec = bfd_get_section_by_name (abfd,
12225 (name
12226 + sizeof ".MIPS.post_rel" - 1));
12227 }
12228 BFD_ASSERT (sec != NULL);
12229 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12230 break;
12231
12232 }
12233 }
12234 }
12235 \f
12236 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12237 segments. */
12238
12239 int
12240 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12241 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12242 {
12243 asection *s;
12244 int ret = 0;
12245
12246 /* See if we need a PT_MIPS_REGINFO segment. */
12247 s = bfd_get_section_by_name (abfd, ".reginfo");
12248 if (s && (s->flags & SEC_LOAD))
12249 ++ret;
12250
12251 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12252 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12253 ++ret;
12254
12255 /* See if we need a PT_MIPS_OPTIONS segment. */
12256 if (IRIX_COMPAT (abfd) == ict_irix6
12257 && bfd_get_section_by_name (abfd,
12258 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12259 ++ret;
12260
12261 /* See if we need a PT_MIPS_RTPROC segment. */
12262 if (IRIX_COMPAT (abfd) == ict_irix5
12263 && bfd_get_section_by_name (abfd, ".dynamic")
12264 && bfd_get_section_by_name (abfd, ".mdebug"))
12265 ++ret;
12266
12267 /* Allocate a PT_NULL header in dynamic objects. See
12268 _bfd_mips_elf_modify_segment_map for details. */
12269 if (!SGI_COMPAT (abfd)
12270 && bfd_get_section_by_name (abfd, ".dynamic"))
12271 ++ret;
12272
12273 return ret;
12274 }
12275
12276 /* Modify the segment map for an IRIX5 executable. */
12277
12278 bfd_boolean
12279 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12280 struct bfd_link_info *info)
12281 {
12282 asection *s;
12283 struct elf_segment_map *m, **pm;
12284 bfd_size_type amt;
12285
12286 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12287 segment. */
12288 s = bfd_get_section_by_name (abfd, ".reginfo");
12289 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12290 {
12291 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12292 if (m->p_type == PT_MIPS_REGINFO)
12293 break;
12294 if (m == NULL)
12295 {
12296 amt = sizeof *m;
12297 m = bfd_zalloc (abfd, amt);
12298 if (m == NULL)
12299 return FALSE;
12300
12301 m->p_type = PT_MIPS_REGINFO;
12302 m->count = 1;
12303 m->sections[0] = s;
12304
12305 /* We want to put it after the PHDR and INTERP segments. */
12306 pm = &elf_seg_map (abfd);
12307 while (*pm != NULL
12308 && ((*pm)->p_type == PT_PHDR
12309 || (*pm)->p_type == PT_INTERP))
12310 pm = &(*pm)->next;
12311
12312 m->next = *pm;
12313 *pm = m;
12314 }
12315 }
12316
12317 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12318 segment. */
12319 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12320 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12321 {
12322 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12323 if (m->p_type == PT_MIPS_ABIFLAGS)
12324 break;
12325 if (m == NULL)
12326 {
12327 amt = sizeof *m;
12328 m = bfd_zalloc (abfd, amt);
12329 if (m == NULL)
12330 return FALSE;
12331
12332 m->p_type = PT_MIPS_ABIFLAGS;
12333 m->count = 1;
12334 m->sections[0] = s;
12335
12336 /* We want to put it after the PHDR and INTERP segments. */
12337 pm = &elf_seg_map (abfd);
12338 while (*pm != NULL
12339 && ((*pm)->p_type == PT_PHDR
12340 || (*pm)->p_type == PT_INTERP))
12341 pm = &(*pm)->next;
12342
12343 m->next = *pm;
12344 *pm = m;
12345 }
12346 }
12347
12348 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12349 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12350 PT_MIPS_OPTIONS segment immediately following the program header
12351 table. */
12352 if (NEWABI_P (abfd)
12353 /* On non-IRIX6 new abi, we'll have already created a segment
12354 for this section, so don't create another. I'm not sure this
12355 is not also the case for IRIX 6, but I can't test it right
12356 now. */
12357 && IRIX_COMPAT (abfd) == ict_irix6)
12358 {
12359 for (s = abfd->sections; s; s = s->next)
12360 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12361 break;
12362
12363 if (s)
12364 {
12365 struct elf_segment_map *options_segment;
12366
12367 pm = &elf_seg_map (abfd);
12368 while (*pm != NULL
12369 && ((*pm)->p_type == PT_PHDR
12370 || (*pm)->p_type == PT_INTERP))
12371 pm = &(*pm)->next;
12372
12373 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12374 {
12375 amt = sizeof (struct elf_segment_map);
12376 options_segment = bfd_zalloc (abfd, amt);
12377 options_segment->next = *pm;
12378 options_segment->p_type = PT_MIPS_OPTIONS;
12379 options_segment->p_flags = PF_R;
12380 options_segment->p_flags_valid = TRUE;
12381 options_segment->count = 1;
12382 options_segment->sections[0] = s;
12383 *pm = options_segment;
12384 }
12385 }
12386 }
12387 else
12388 {
12389 if (IRIX_COMPAT (abfd) == ict_irix5)
12390 {
12391 /* If there are .dynamic and .mdebug sections, we make a room
12392 for the RTPROC header. FIXME: Rewrite without section names. */
12393 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12394 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12395 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12396 {
12397 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12398 if (m->p_type == PT_MIPS_RTPROC)
12399 break;
12400 if (m == NULL)
12401 {
12402 amt = sizeof *m;
12403 m = bfd_zalloc (abfd, amt);
12404 if (m == NULL)
12405 return FALSE;
12406
12407 m->p_type = PT_MIPS_RTPROC;
12408
12409 s = bfd_get_section_by_name (abfd, ".rtproc");
12410 if (s == NULL)
12411 {
12412 m->count = 0;
12413 m->p_flags = 0;
12414 m->p_flags_valid = 1;
12415 }
12416 else
12417 {
12418 m->count = 1;
12419 m->sections[0] = s;
12420 }
12421
12422 /* We want to put it after the DYNAMIC segment. */
12423 pm = &elf_seg_map (abfd);
12424 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12425 pm = &(*pm)->next;
12426 if (*pm != NULL)
12427 pm = &(*pm)->next;
12428
12429 m->next = *pm;
12430 *pm = m;
12431 }
12432 }
12433 }
12434 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12435 .dynstr, .dynsym, and .hash sections, and everything in
12436 between. */
12437 for (pm = &elf_seg_map (abfd); *pm != NULL;
12438 pm = &(*pm)->next)
12439 if ((*pm)->p_type == PT_DYNAMIC)
12440 break;
12441 m = *pm;
12442 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12443 glibc's dynamic linker has traditionally derived the number of
12444 tags from the p_filesz field, and sometimes allocates stack
12445 arrays of that size. An overly-big PT_DYNAMIC segment can
12446 be actively harmful in such cases. Making PT_DYNAMIC contain
12447 other sections can also make life hard for the prelinker,
12448 which might move one of the other sections to a different
12449 PT_LOAD segment. */
12450 if (SGI_COMPAT (abfd)
12451 && m != NULL
12452 && m->count == 1
12453 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12454 {
12455 static const char *sec_names[] =
12456 {
12457 ".dynamic", ".dynstr", ".dynsym", ".hash"
12458 };
12459 bfd_vma low, high;
12460 unsigned int i, c;
12461 struct elf_segment_map *n;
12462
12463 low = ~(bfd_vma) 0;
12464 high = 0;
12465 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12466 {
12467 s = bfd_get_section_by_name (abfd, sec_names[i]);
12468 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12469 {
12470 bfd_size_type sz;
12471
12472 if (low > s->vma)
12473 low = s->vma;
12474 sz = s->size;
12475 if (high < s->vma + sz)
12476 high = s->vma + sz;
12477 }
12478 }
12479
12480 c = 0;
12481 for (s = abfd->sections; s != NULL; s = s->next)
12482 if ((s->flags & SEC_LOAD) != 0
12483 && s->vma >= low
12484 && s->vma + s->size <= high)
12485 ++c;
12486
12487 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12488 n = bfd_zalloc (abfd, amt);
12489 if (n == NULL)
12490 return FALSE;
12491 *n = *m;
12492 n->count = c;
12493
12494 i = 0;
12495 for (s = abfd->sections; s != NULL; s = s->next)
12496 {
12497 if ((s->flags & SEC_LOAD) != 0
12498 && s->vma >= low
12499 && s->vma + s->size <= high)
12500 {
12501 n->sections[i] = s;
12502 ++i;
12503 }
12504 }
12505
12506 *pm = n;
12507 }
12508 }
12509
12510 /* Allocate a spare program header in dynamic objects so that tools
12511 like the prelinker can add an extra PT_LOAD entry.
12512
12513 If the prelinker needs to make room for a new PT_LOAD entry, its
12514 standard procedure is to move the first (read-only) sections into
12515 the new (writable) segment. However, the MIPS ABI requires
12516 .dynamic to be in a read-only segment, and the section will often
12517 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12518
12519 Although the prelinker could in principle move .dynamic to a
12520 writable segment, it seems better to allocate a spare program
12521 header instead, and avoid the need to move any sections.
12522 There is a long tradition of allocating spare dynamic tags,
12523 so allocating a spare program header seems like a natural
12524 extension.
12525
12526 If INFO is NULL, we may be copying an already prelinked binary
12527 with objcopy or strip, so do not add this header. */
12528 if (info != NULL
12529 && !SGI_COMPAT (abfd)
12530 && bfd_get_section_by_name (abfd, ".dynamic"))
12531 {
12532 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12533 if ((*pm)->p_type == PT_NULL)
12534 break;
12535 if (*pm == NULL)
12536 {
12537 m = bfd_zalloc (abfd, sizeof (*m));
12538 if (m == NULL)
12539 return FALSE;
12540
12541 m->p_type = PT_NULL;
12542 *pm = m;
12543 }
12544 }
12545
12546 return TRUE;
12547 }
12548 \f
12549 /* Return the section that should be marked against GC for a given
12550 relocation. */
12551
12552 asection *
12553 _bfd_mips_elf_gc_mark_hook (asection *sec,
12554 struct bfd_link_info *info,
12555 Elf_Internal_Rela *rel,
12556 struct elf_link_hash_entry *h,
12557 Elf_Internal_Sym *sym)
12558 {
12559 /* ??? Do mips16 stub sections need to be handled special? */
12560
12561 if (h != NULL)
12562 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12563 {
12564 case R_MIPS_GNU_VTINHERIT:
12565 case R_MIPS_GNU_VTENTRY:
12566 return NULL;
12567 }
12568
12569 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12570 }
12571
12572 /* Update the got entry reference counts for the section being removed. */
12573
12574 bfd_boolean
12575 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12576 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12577 asection *sec ATTRIBUTE_UNUSED,
12578 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12579 {
12580 #if 0
12581 Elf_Internal_Shdr *symtab_hdr;
12582 struct elf_link_hash_entry **sym_hashes;
12583 bfd_signed_vma *local_got_refcounts;
12584 const Elf_Internal_Rela *rel, *relend;
12585 unsigned long r_symndx;
12586 struct elf_link_hash_entry *h;
12587
12588 if (bfd_link_relocatable (info))
12589 return TRUE;
12590
12591 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12592 sym_hashes = elf_sym_hashes (abfd);
12593 local_got_refcounts = elf_local_got_refcounts (abfd);
12594
12595 relend = relocs + sec->reloc_count;
12596 for (rel = relocs; rel < relend; rel++)
12597 switch (ELF_R_TYPE (abfd, rel->r_info))
12598 {
12599 case R_MIPS16_GOT16:
12600 case R_MIPS16_CALL16:
12601 case R_MIPS_GOT16:
12602 case R_MIPS_CALL16:
12603 case R_MIPS_CALL_HI16:
12604 case R_MIPS_CALL_LO16:
12605 case R_MIPS_GOT_HI16:
12606 case R_MIPS_GOT_LO16:
12607 case R_MIPS_GOT_DISP:
12608 case R_MIPS_GOT_PAGE:
12609 case R_MIPS_GOT_OFST:
12610 case R_MICROMIPS_GOT16:
12611 case R_MICROMIPS_CALL16:
12612 case R_MICROMIPS_CALL_HI16:
12613 case R_MICROMIPS_CALL_LO16:
12614 case R_MICROMIPS_GOT_HI16:
12615 case R_MICROMIPS_GOT_LO16:
12616 case R_MICROMIPS_GOT_DISP:
12617 case R_MICROMIPS_GOT_PAGE:
12618 case R_MICROMIPS_GOT_OFST:
12619 /* ??? It would seem that the existing MIPS code does no sort
12620 of reference counting or whatnot on its GOT and PLT entries,
12621 so it is not possible to garbage collect them at this time. */
12622 break;
12623
12624 default:
12625 break;
12626 }
12627 #endif
12628
12629 return TRUE;
12630 }
12631
12632 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12633
12634 bfd_boolean
12635 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12636 elf_gc_mark_hook_fn gc_mark_hook)
12637 {
12638 bfd *sub;
12639
12640 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12641
12642 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12643 {
12644 asection *o;
12645
12646 if (! is_mips_elf (sub))
12647 continue;
12648
12649 for (o = sub->sections; o != NULL; o = o->next)
12650 if (!o->gc_mark
12651 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12652 (bfd_get_section_name (sub, o)))
12653 {
12654 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12655 return FALSE;
12656 }
12657 }
12658
12659 return TRUE;
12660 }
12661 \f
12662 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12663 hiding the old indirect symbol. Process additional relocation
12664 information. Also called for weakdefs, in which case we just let
12665 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12666
12667 void
12668 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12669 struct elf_link_hash_entry *dir,
12670 struct elf_link_hash_entry *ind)
12671 {
12672 struct mips_elf_link_hash_entry *dirmips, *indmips;
12673
12674 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12675
12676 dirmips = (struct mips_elf_link_hash_entry *) dir;
12677 indmips = (struct mips_elf_link_hash_entry *) ind;
12678 /* Any absolute non-dynamic relocations against an indirect or weak
12679 definition will be against the target symbol. */
12680 if (indmips->has_static_relocs)
12681 dirmips->has_static_relocs = TRUE;
12682
12683 if (ind->root.type != bfd_link_hash_indirect)
12684 return;
12685
12686 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12687 if (indmips->readonly_reloc)
12688 dirmips->readonly_reloc = TRUE;
12689 if (indmips->no_fn_stub)
12690 dirmips->no_fn_stub = TRUE;
12691 if (indmips->fn_stub)
12692 {
12693 dirmips->fn_stub = indmips->fn_stub;
12694 indmips->fn_stub = NULL;
12695 }
12696 if (indmips->need_fn_stub)
12697 {
12698 dirmips->need_fn_stub = TRUE;
12699 indmips->need_fn_stub = FALSE;
12700 }
12701 if (indmips->call_stub)
12702 {
12703 dirmips->call_stub = indmips->call_stub;
12704 indmips->call_stub = NULL;
12705 }
12706 if (indmips->call_fp_stub)
12707 {
12708 dirmips->call_fp_stub = indmips->call_fp_stub;
12709 indmips->call_fp_stub = NULL;
12710 }
12711 if (indmips->global_got_area < dirmips->global_got_area)
12712 dirmips->global_got_area = indmips->global_got_area;
12713 if (indmips->global_got_area < GGA_NONE)
12714 indmips->global_got_area = GGA_NONE;
12715 if (indmips->has_nonpic_branches)
12716 dirmips->has_nonpic_branches = TRUE;
12717 }
12718 \f
12719 #define PDR_SIZE 32
12720
12721 bfd_boolean
12722 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12723 struct bfd_link_info *info)
12724 {
12725 asection *o;
12726 bfd_boolean ret = FALSE;
12727 unsigned char *tdata;
12728 size_t i, skip;
12729
12730 o = bfd_get_section_by_name (abfd, ".pdr");
12731 if (! o)
12732 return FALSE;
12733 if (o->size == 0)
12734 return FALSE;
12735 if (o->size % PDR_SIZE != 0)
12736 return FALSE;
12737 if (o->output_section != NULL
12738 && bfd_is_abs_section (o->output_section))
12739 return FALSE;
12740
12741 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12742 if (! tdata)
12743 return FALSE;
12744
12745 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12746 info->keep_memory);
12747 if (!cookie->rels)
12748 {
12749 free (tdata);
12750 return FALSE;
12751 }
12752
12753 cookie->rel = cookie->rels;
12754 cookie->relend = cookie->rels + o->reloc_count;
12755
12756 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12757 {
12758 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12759 {
12760 tdata[i] = 1;
12761 skip ++;
12762 }
12763 }
12764
12765 if (skip != 0)
12766 {
12767 mips_elf_section_data (o)->u.tdata = tdata;
12768 if (o->rawsize == 0)
12769 o->rawsize = o->size;
12770 o->size -= skip * PDR_SIZE;
12771 ret = TRUE;
12772 }
12773 else
12774 free (tdata);
12775
12776 if (! info->keep_memory)
12777 free (cookie->rels);
12778
12779 return ret;
12780 }
12781
12782 bfd_boolean
12783 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12784 {
12785 if (strcmp (sec->name, ".pdr") == 0)
12786 return TRUE;
12787 return FALSE;
12788 }
12789
12790 bfd_boolean
12791 _bfd_mips_elf_write_section (bfd *output_bfd,
12792 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12793 asection *sec, bfd_byte *contents)
12794 {
12795 bfd_byte *to, *from, *end;
12796 int i;
12797
12798 if (strcmp (sec->name, ".pdr") != 0)
12799 return FALSE;
12800
12801 if (mips_elf_section_data (sec)->u.tdata == NULL)
12802 return FALSE;
12803
12804 to = contents;
12805 end = contents + sec->size;
12806 for (from = contents, i = 0;
12807 from < end;
12808 from += PDR_SIZE, i++)
12809 {
12810 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12811 continue;
12812 if (to != from)
12813 memcpy (to, from, PDR_SIZE);
12814 to += PDR_SIZE;
12815 }
12816 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12817 sec->output_offset, sec->size);
12818 return TRUE;
12819 }
12820 \f
12821 /* microMIPS code retains local labels for linker relaxation. Omit them
12822 from output by default for clarity. */
12823
12824 bfd_boolean
12825 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12826 {
12827 return _bfd_elf_is_local_label_name (abfd, sym->name);
12828 }
12829
12830 /* MIPS ELF uses a special find_nearest_line routine in order the
12831 handle the ECOFF debugging information. */
12832
12833 struct mips_elf_find_line
12834 {
12835 struct ecoff_debug_info d;
12836 struct ecoff_find_line i;
12837 };
12838
12839 bfd_boolean
12840 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12841 asection *section, bfd_vma offset,
12842 const char **filename_ptr,
12843 const char **functionname_ptr,
12844 unsigned int *line_ptr,
12845 unsigned int *discriminator_ptr)
12846 {
12847 asection *msec;
12848
12849 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12850 filename_ptr, functionname_ptr,
12851 line_ptr, discriminator_ptr,
12852 dwarf_debug_sections,
12853 ABI_64_P (abfd) ? 8 : 0,
12854 &elf_tdata (abfd)->dwarf2_find_line_info))
12855 return TRUE;
12856
12857 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12858 filename_ptr, functionname_ptr,
12859 line_ptr))
12860 return TRUE;
12861
12862 msec = bfd_get_section_by_name (abfd, ".mdebug");
12863 if (msec != NULL)
12864 {
12865 flagword origflags;
12866 struct mips_elf_find_line *fi;
12867 const struct ecoff_debug_swap * const swap =
12868 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12869
12870 /* If we are called during a link, mips_elf_final_link may have
12871 cleared the SEC_HAS_CONTENTS field. We force it back on here
12872 if appropriate (which it normally will be). */
12873 origflags = msec->flags;
12874 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12875 msec->flags |= SEC_HAS_CONTENTS;
12876
12877 fi = mips_elf_tdata (abfd)->find_line_info;
12878 if (fi == NULL)
12879 {
12880 bfd_size_type external_fdr_size;
12881 char *fraw_src;
12882 char *fraw_end;
12883 struct fdr *fdr_ptr;
12884 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12885
12886 fi = bfd_zalloc (abfd, amt);
12887 if (fi == NULL)
12888 {
12889 msec->flags = origflags;
12890 return FALSE;
12891 }
12892
12893 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12894 {
12895 msec->flags = origflags;
12896 return FALSE;
12897 }
12898
12899 /* Swap in the FDR information. */
12900 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12901 fi->d.fdr = bfd_alloc (abfd, amt);
12902 if (fi->d.fdr == NULL)
12903 {
12904 msec->flags = origflags;
12905 return FALSE;
12906 }
12907 external_fdr_size = swap->external_fdr_size;
12908 fdr_ptr = fi->d.fdr;
12909 fraw_src = (char *) fi->d.external_fdr;
12910 fraw_end = (fraw_src
12911 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12912 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12913 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12914
12915 mips_elf_tdata (abfd)->find_line_info = fi;
12916
12917 /* Note that we don't bother to ever free this information.
12918 find_nearest_line is either called all the time, as in
12919 objdump -l, so the information should be saved, or it is
12920 rarely called, as in ld error messages, so the memory
12921 wasted is unimportant. Still, it would probably be a
12922 good idea for free_cached_info to throw it away. */
12923 }
12924
12925 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12926 &fi->i, filename_ptr, functionname_ptr,
12927 line_ptr))
12928 {
12929 msec->flags = origflags;
12930 return TRUE;
12931 }
12932
12933 msec->flags = origflags;
12934 }
12935
12936 /* Fall back on the generic ELF find_nearest_line routine. */
12937
12938 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12939 filename_ptr, functionname_ptr,
12940 line_ptr, discriminator_ptr);
12941 }
12942
12943 bfd_boolean
12944 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12945 const char **filename_ptr,
12946 const char **functionname_ptr,
12947 unsigned int *line_ptr)
12948 {
12949 bfd_boolean found;
12950 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12951 functionname_ptr, line_ptr,
12952 & elf_tdata (abfd)->dwarf2_find_line_info);
12953 return found;
12954 }
12955
12956 \f
12957 /* When are writing out the .options or .MIPS.options section,
12958 remember the bytes we are writing out, so that we can install the
12959 GP value in the section_processing routine. */
12960
12961 bfd_boolean
12962 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12963 const void *location,
12964 file_ptr offset, bfd_size_type count)
12965 {
12966 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12967 {
12968 bfd_byte *c;
12969
12970 if (elf_section_data (section) == NULL)
12971 {
12972 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12973 section->used_by_bfd = bfd_zalloc (abfd, amt);
12974 if (elf_section_data (section) == NULL)
12975 return FALSE;
12976 }
12977 c = mips_elf_section_data (section)->u.tdata;
12978 if (c == NULL)
12979 {
12980 c = bfd_zalloc (abfd, section->size);
12981 if (c == NULL)
12982 return FALSE;
12983 mips_elf_section_data (section)->u.tdata = c;
12984 }
12985
12986 memcpy (c + offset, location, count);
12987 }
12988
12989 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12990 count);
12991 }
12992
12993 /* This is almost identical to bfd_generic_get_... except that some
12994 MIPS relocations need to be handled specially. Sigh. */
12995
12996 bfd_byte *
12997 _bfd_elf_mips_get_relocated_section_contents
12998 (bfd *abfd,
12999 struct bfd_link_info *link_info,
13000 struct bfd_link_order *link_order,
13001 bfd_byte *data,
13002 bfd_boolean relocatable,
13003 asymbol **symbols)
13004 {
13005 /* Get enough memory to hold the stuff */
13006 bfd *input_bfd = link_order->u.indirect.section->owner;
13007 asection *input_section = link_order->u.indirect.section;
13008 bfd_size_type sz;
13009
13010 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13011 arelent **reloc_vector = NULL;
13012 long reloc_count;
13013
13014 if (reloc_size < 0)
13015 goto error_return;
13016
13017 reloc_vector = bfd_malloc (reloc_size);
13018 if (reloc_vector == NULL && reloc_size != 0)
13019 goto error_return;
13020
13021 /* read in the section */
13022 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13023 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13024 goto error_return;
13025
13026 reloc_count = bfd_canonicalize_reloc (input_bfd,
13027 input_section,
13028 reloc_vector,
13029 symbols);
13030 if (reloc_count < 0)
13031 goto error_return;
13032
13033 if (reloc_count > 0)
13034 {
13035 arelent **parent;
13036 /* for mips */
13037 int gp_found;
13038 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13039
13040 {
13041 struct bfd_hash_entry *h;
13042 struct bfd_link_hash_entry *lh;
13043 /* Skip all this stuff if we aren't mixing formats. */
13044 if (abfd && input_bfd
13045 && abfd->xvec == input_bfd->xvec)
13046 lh = 0;
13047 else
13048 {
13049 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13050 lh = (struct bfd_link_hash_entry *) h;
13051 }
13052 lookup:
13053 if (lh)
13054 {
13055 switch (lh->type)
13056 {
13057 case bfd_link_hash_undefined:
13058 case bfd_link_hash_undefweak:
13059 case bfd_link_hash_common:
13060 gp_found = 0;
13061 break;
13062 case bfd_link_hash_defined:
13063 case bfd_link_hash_defweak:
13064 gp_found = 1;
13065 gp = lh->u.def.value;
13066 break;
13067 case bfd_link_hash_indirect:
13068 case bfd_link_hash_warning:
13069 lh = lh->u.i.link;
13070 /* @@FIXME ignoring warning for now */
13071 goto lookup;
13072 case bfd_link_hash_new:
13073 default:
13074 abort ();
13075 }
13076 }
13077 else
13078 gp_found = 0;
13079 }
13080 /* end mips */
13081 for (parent = reloc_vector; *parent != NULL; parent++)
13082 {
13083 char *error_message = NULL;
13084 bfd_reloc_status_type r;
13085
13086 /* Specific to MIPS: Deal with relocation types that require
13087 knowing the gp of the output bfd. */
13088 asymbol *sym = *(*parent)->sym_ptr_ptr;
13089
13090 /* If we've managed to find the gp and have a special
13091 function for the relocation then go ahead, else default
13092 to the generic handling. */
13093 if (gp_found
13094 && (*parent)->howto->special_function
13095 == _bfd_mips_elf32_gprel16_reloc)
13096 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13097 input_section, relocatable,
13098 data, gp);
13099 else
13100 r = bfd_perform_relocation (input_bfd, *parent, data,
13101 input_section,
13102 relocatable ? abfd : NULL,
13103 &error_message);
13104
13105 if (relocatable)
13106 {
13107 asection *os = input_section->output_section;
13108
13109 /* A partial link, so keep the relocs */
13110 os->orelocation[os->reloc_count] = *parent;
13111 os->reloc_count++;
13112 }
13113
13114 if (r != bfd_reloc_ok)
13115 {
13116 switch (r)
13117 {
13118 case bfd_reloc_undefined:
13119 (*link_info->callbacks->undefined_symbol)
13120 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13121 input_bfd, input_section, (*parent)->address, TRUE);
13122 break;
13123 case bfd_reloc_dangerous:
13124 BFD_ASSERT (error_message != NULL);
13125 (*link_info->callbacks->reloc_dangerous)
13126 (link_info, error_message,
13127 input_bfd, input_section, (*parent)->address);
13128 break;
13129 case bfd_reloc_overflow:
13130 (*link_info->callbacks->reloc_overflow)
13131 (link_info, NULL,
13132 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13133 (*parent)->howto->name, (*parent)->addend,
13134 input_bfd, input_section, (*parent)->address);
13135 break;
13136 case bfd_reloc_outofrange:
13137 default:
13138 abort ();
13139 break;
13140 }
13141
13142 }
13143 }
13144 }
13145 if (reloc_vector != NULL)
13146 free (reloc_vector);
13147 return data;
13148
13149 error_return:
13150 if (reloc_vector != NULL)
13151 free (reloc_vector);
13152 return NULL;
13153 }
13154 \f
13155 static bfd_boolean
13156 mips_elf_relax_delete_bytes (bfd *abfd,
13157 asection *sec, bfd_vma addr, int count)
13158 {
13159 Elf_Internal_Shdr *symtab_hdr;
13160 unsigned int sec_shndx;
13161 bfd_byte *contents;
13162 Elf_Internal_Rela *irel, *irelend;
13163 Elf_Internal_Sym *isym;
13164 Elf_Internal_Sym *isymend;
13165 struct elf_link_hash_entry **sym_hashes;
13166 struct elf_link_hash_entry **end_hashes;
13167 struct elf_link_hash_entry **start_hashes;
13168 unsigned int symcount;
13169
13170 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13171 contents = elf_section_data (sec)->this_hdr.contents;
13172
13173 irel = elf_section_data (sec)->relocs;
13174 irelend = irel + sec->reloc_count;
13175
13176 /* Actually delete the bytes. */
13177 memmove (contents + addr, contents + addr + count,
13178 (size_t) (sec->size - addr - count));
13179 sec->size -= count;
13180
13181 /* Adjust all the relocs. */
13182 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13183 {
13184 /* Get the new reloc address. */
13185 if (irel->r_offset > addr)
13186 irel->r_offset -= count;
13187 }
13188
13189 BFD_ASSERT (addr % 2 == 0);
13190 BFD_ASSERT (count % 2 == 0);
13191
13192 /* Adjust the local symbols defined in this section. */
13193 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13194 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13195 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13196 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13197 isym->st_value -= count;
13198
13199 /* Now adjust the global symbols defined in this section. */
13200 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13201 - symtab_hdr->sh_info);
13202 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13203 end_hashes = sym_hashes + symcount;
13204
13205 for (; sym_hashes < end_hashes; sym_hashes++)
13206 {
13207 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13208
13209 if ((sym_hash->root.type == bfd_link_hash_defined
13210 || sym_hash->root.type == bfd_link_hash_defweak)
13211 && sym_hash->root.u.def.section == sec)
13212 {
13213 bfd_vma value = sym_hash->root.u.def.value;
13214
13215 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13216 value &= MINUS_TWO;
13217 if (value > addr)
13218 sym_hash->root.u.def.value -= count;
13219 }
13220 }
13221
13222 return TRUE;
13223 }
13224
13225
13226 /* Opcodes needed for microMIPS relaxation as found in
13227 opcodes/micromips-opc.c. */
13228
13229 struct opcode_descriptor {
13230 unsigned long match;
13231 unsigned long mask;
13232 };
13233
13234 /* The $ra register aka $31. */
13235
13236 #define RA 31
13237
13238 /* 32-bit instruction format register fields. */
13239
13240 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13241 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13242
13243 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13244
13245 #define OP16_VALID_REG(r) \
13246 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13247
13248
13249 /* 32-bit and 16-bit branches. */
13250
13251 static const struct opcode_descriptor b_insns_32[] = {
13252 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13253 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13254 { 0, 0 } /* End marker for find_match(). */
13255 };
13256
13257 static const struct opcode_descriptor bc_insn_32 =
13258 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13259
13260 static const struct opcode_descriptor bz_insn_32 =
13261 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13262
13263 static const struct opcode_descriptor bzal_insn_32 =
13264 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13265
13266 static const struct opcode_descriptor beq_insn_32 =
13267 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13268
13269 static const struct opcode_descriptor b_insn_16 =
13270 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13271
13272 static const struct opcode_descriptor bz_insn_16 =
13273 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13274
13275
13276 /* 32-bit and 16-bit branch EQ and NE zero. */
13277
13278 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13279 eq and second the ne. This convention is used when replacing a
13280 32-bit BEQ/BNE with the 16-bit version. */
13281
13282 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13283
13284 static const struct opcode_descriptor bz_rs_insns_32[] = {
13285 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13286 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13287 { 0, 0 } /* End marker for find_match(). */
13288 };
13289
13290 static const struct opcode_descriptor bz_rt_insns_32[] = {
13291 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13292 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13293 { 0, 0 } /* End marker for find_match(). */
13294 };
13295
13296 static const struct opcode_descriptor bzc_insns_32[] = {
13297 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13298 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13299 { 0, 0 } /* End marker for find_match(). */
13300 };
13301
13302 static const struct opcode_descriptor bz_insns_16[] = {
13303 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13304 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13305 { 0, 0 } /* End marker for find_match(). */
13306 };
13307
13308 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13309
13310 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13311 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13312
13313
13314 /* 32-bit instructions with a delay slot. */
13315
13316 static const struct opcode_descriptor jal_insn_32_bd16 =
13317 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13318
13319 static const struct opcode_descriptor jal_insn_32_bd32 =
13320 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13321
13322 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13323 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13324
13325 static const struct opcode_descriptor j_insn_32 =
13326 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13327
13328 static const struct opcode_descriptor jalr_insn_32 =
13329 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13330
13331 /* This table can be compacted, because no opcode replacement is made. */
13332
13333 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13334 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13335
13336 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13337 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13338
13339 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13340 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13341 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13342 { 0, 0 } /* End marker for find_match(). */
13343 };
13344
13345 /* This table can be compacted, because no opcode replacement is made. */
13346
13347 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13348 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13349
13350 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13351 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13352 { 0, 0 } /* End marker for find_match(). */
13353 };
13354
13355
13356 /* 16-bit instructions with a delay slot. */
13357
13358 static const struct opcode_descriptor jalr_insn_16_bd16 =
13359 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13360
13361 static const struct opcode_descriptor jalr_insn_16_bd32 =
13362 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13363
13364 static const struct opcode_descriptor jr_insn_16 =
13365 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13366
13367 #define JR16_REG(opcode) ((opcode) & 0x1f)
13368
13369 /* This table can be compacted, because no opcode replacement is made. */
13370
13371 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13372 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13373
13374 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13375 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13376 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13377 { 0, 0 } /* End marker for find_match(). */
13378 };
13379
13380
13381 /* LUI instruction. */
13382
13383 static const struct opcode_descriptor lui_insn =
13384 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13385
13386
13387 /* ADDIU instruction. */
13388
13389 static const struct opcode_descriptor addiu_insn =
13390 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13391
13392 static const struct opcode_descriptor addiupc_insn =
13393 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13394
13395 #define ADDIUPC_REG_FIELD(r) \
13396 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13397
13398
13399 /* Relaxable instructions in a JAL delay slot: MOVE. */
13400
13401 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13402 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13403 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13404 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13405
13406 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13407 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13408
13409 static const struct opcode_descriptor move_insns_32[] = {
13410 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13411 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13412 { 0, 0 } /* End marker for find_match(). */
13413 };
13414
13415 static const struct opcode_descriptor move_insn_16 =
13416 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13417
13418
13419 /* NOP instructions. */
13420
13421 static const struct opcode_descriptor nop_insn_32 =
13422 { /* "nop", "", */ 0x00000000, 0xffffffff };
13423
13424 static const struct opcode_descriptor nop_insn_16 =
13425 { /* "nop", "", */ 0x0c00, 0xffff };
13426
13427
13428 /* Instruction match support. */
13429
13430 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13431
13432 static int
13433 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13434 {
13435 unsigned long indx;
13436
13437 for (indx = 0; insn[indx].mask != 0; indx++)
13438 if (MATCH (opcode, insn[indx]))
13439 return indx;
13440
13441 return -1;
13442 }
13443
13444
13445 /* Branch and delay slot decoding support. */
13446
13447 /* If PTR points to what *might* be a 16-bit branch or jump, then
13448 return the minimum length of its delay slot, otherwise return 0.
13449 Non-zero results are not definitive as we might be checking against
13450 the second half of another instruction. */
13451
13452 static int
13453 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13454 {
13455 unsigned long opcode;
13456 int bdsize;
13457
13458 opcode = bfd_get_16 (abfd, ptr);
13459 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13460 /* 16-bit branch/jump with a 32-bit delay slot. */
13461 bdsize = 4;
13462 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13463 || find_match (opcode, ds_insns_16_bd16) >= 0)
13464 /* 16-bit branch/jump with a 16-bit delay slot. */
13465 bdsize = 2;
13466 else
13467 /* No delay slot. */
13468 bdsize = 0;
13469
13470 return bdsize;
13471 }
13472
13473 /* If PTR points to what *might* be a 32-bit branch or jump, then
13474 return the minimum length of its delay slot, otherwise return 0.
13475 Non-zero results are not definitive as we might be checking against
13476 the second half of another instruction. */
13477
13478 static int
13479 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13480 {
13481 unsigned long opcode;
13482 int bdsize;
13483
13484 opcode = bfd_get_micromips_32 (abfd, ptr);
13485 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13486 /* 32-bit branch/jump with a 32-bit delay slot. */
13487 bdsize = 4;
13488 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13489 /* 32-bit branch/jump with a 16-bit delay slot. */
13490 bdsize = 2;
13491 else
13492 /* No delay slot. */
13493 bdsize = 0;
13494
13495 return bdsize;
13496 }
13497
13498 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13499 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13500
13501 static bfd_boolean
13502 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13503 {
13504 unsigned long opcode;
13505
13506 opcode = bfd_get_16 (abfd, ptr);
13507 if (MATCH (opcode, b_insn_16)
13508 /* B16 */
13509 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13510 /* JR16 */
13511 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13512 /* BEQZ16, BNEZ16 */
13513 || (MATCH (opcode, jalr_insn_16_bd32)
13514 /* JALR16 */
13515 && reg != JR16_REG (opcode) && reg != RA))
13516 return TRUE;
13517
13518 return FALSE;
13519 }
13520
13521 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13522 then return TRUE, otherwise FALSE. */
13523
13524 static bfd_boolean
13525 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13526 {
13527 unsigned long opcode;
13528
13529 opcode = bfd_get_micromips_32 (abfd, ptr);
13530 if (MATCH (opcode, j_insn_32)
13531 /* J */
13532 || MATCH (opcode, bc_insn_32)
13533 /* BC1F, BC1T, BC2F, BC2T */
13534 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13535 /* JAL, JALX */
13536 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13537 /* BGEZ, BGTZ, BLEZ, BLTZ */
13538 || (MATCH (opcode, bzal_insn_32)
13539 /* BGEZAL, BLTZAL */
13540 && reg != OP32_SREG (opcode) && reg != RA)
13541 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13542 /* JALR, JALR.HB, BEQ, BNE */
13543 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13544 return TRUE;
13545
13546 return FALSE;
13547 }
13548
13549 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13550 IRELEND) at OFFSET indicate that there must be a compact branch there,
13551 then return TRUE, otherwise FALSE. */
13552
13553 static bfd_boolean
13554 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13555 const Elf_Internal_Rela *internal_relocs,
13556 const Elf_Internal_Rela *irelend)
13557 {
13558 const Elf_Internal_Rela *irel;
13559 unsigned long opcode;
13560
13561 opcode = bfd_get_micromips_32 (abfd, ptr);
13562 if (find_match (opcode, bzc_insns_32) < 0)
13563 return FALSE;
13564
13565 for (irel = internal_relocs; irel < irelend; irel++)
13566 if (irel->r_offset == offset
13567 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13568 return TRUE;
13569
13570 return FALSE;
13571 }
13572
13573 /* Bitsize checking. */
13574 #define IS_BITSIZE(val, N) \
13575 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13576 - (1ULL << ((N) - 1))) == (val))
13577
13578 \f
13579 bfd_boolean
13580 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13581 struct bfd_link_info *link_info,
13582 bfd_boolean *again)
13583 {
13584 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13585 Elf_Internal_Shdr *symtab_hdr;
13586 Elf_Internal_Rela *internal_relocs;
13587 Elf_Internal_Rela *irel, *irelend;
13588 bfd_byte *contents = NULL;
13589 Elf_Internal_Sym *isymbuf = NULL;
13590
13591 /* Assume nothing changes. */
13592 *again = FALSE;
13593
13594 /* We don't have to do anything for a relocatable link, if
13595 this section does not have relocs, or if this is not a
13596 code section. */
13597
13598 if (bfd_link_relocatable (link_info)
13599 || (sec->flags & SEC_RELOC) == 0
13600 || sec->reloc_count == 0
13601 || (sec->flags & SEC_CODE) == 0)
13602 return TRUE;
13603
13604 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13605
13606 /* Get a copy of the native relocations. */
13607 internal_relocs = (_bfd_elf_link_read_relocs
13608 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13609 link_info->keep_memory));
13610 if (internal_relocs == NULL)
13611 goto error_return;
13612
13613 /* Walk through them looking for relaxing opportunities. */
13614 irelend = internal_relocs + sec->reloc_count;
13615 for (irel = internal_relocs; irel < irelend; irel++)
13616 {
13617 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13618 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13619 bfd_boolean target_is_micromips_code_p;
13620 unsigned long opcode;
13621 bfd_vma symval;
13622 bfd_vma pcrval;
13623 bfd_byte *ptr;
13624 int fndopc;
13625
13626 /* The number of bytes to delete for relaxation and from where
13627 to delete these bytes starting at irel->r_offset. */
13628 int delcnt = 0;
13629 int deloff = 0;
13630
13631 /* If this isn't something that can be relaxed, then ignore
13632 this reloc. */
13633 if (r_type != R_MICROMIPS_HI16
13634 && r_type != R_MICROMIPS_PC16_S1
13635 && r_type != R_MICROMIPS_26_S1)
13636 continue;
13637
13638 /* Get the section contents if we haven't done so already. */
13639 if (contents == NULL)
13640 {
13641 /* Get cached copy if it exists. */
13642 if (elf_section_data (sec)->this_hdr.contents != NULL)
13643 contents = elf_section_data (sec)->this_hdr.contents;
13644 /* Go get them off disk. */
13645 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13646 goto error_return;
13647 }
13648 ptr = contents + irel->r_offset;
13649
13650 /* Read this BFD's local symbols if we haven't done so already. */
13651 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13652 {
13653 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13654 if (isymbuf == NULL)
13655 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13656 symtab_hdr->sh_info, 0,
13657 NULL, NULL, NULL);
13658 if (isymbuf == NULL)
13659 goto error_return;
13660 }
13661
13662 /* Get the value of the symbol referred to by the reloc. */
13663 if (r_symndx < symtab_hdr->sh_info)
13664 {
13665 /* A local symbol. */
13666 Elf_Internal_Sym *isym;
13667 asection *sym_sec;
13668
13669 isym = isymbuf + r_symndx;
13670 if (isym->st_shndx == SHN_UNDEF)
13671 sym_sec = bfd_und_section_ptr;
13672 else if (isym->st_shndx == SHN_ABS)
13673 sym_sec = bfd_abs_section_ptr;
13674 else if (isym->st_shndx == SHN_COMMON)
13675 sym_sec = bfd_com_section_ptr;
13676 else
13677 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13678 symval = (isym->st_value
13679 + sym_sec->output_section->vma
13680 + sym_sec->output_offset);
13681 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13682 }
13683 else
13684 {
13685 unsigned long indx;
13686 struct elf_link_hash_entry *h;
13687
13688 /* An external symbol. */
13689 indx = r_symndx - symtab_hdr->sh_info;
13690 h = elf_sym_hashes (abfd)[indx];
13691 BFD_ASSERT (h != NULL);
13692
13693 if (h->root.type != bfd_link_hash_defined
13694 && h->root.type != bfd_link_hash_defweak)
13695 /* This appears to be a reference to an undefined
13696 symbol. Just ignore it -- it will be caught by the
13697 regular reloc processing. */
13698 continue;
13699
13700 symval = (h->root.u.def.value
13701 + h->root.u.def.section->output_section->vma
13702 + h->root.u.def.section->output_offset);
13703 target_is_micromips_code_p = (!h->needs_plt
13704 && ELF_ST_IS_MICROMIPS (h->other));
13705 }
13706
13707
13708 /* For simplicity of coding, we are going to modify the
13709 section contents, the section relocs, and the BFD symbol
13710 table. We must tell the rest of the code not to free up this
13711 information. It would be possible to instead create a table
13712 of changes which have to be made, as is done in coff-mips.c;
13713 that would be more work, but would require less memory when
13714 the linker is run. */
13715
13716 /* Only 32-bit instructions relaxed. */
13717 if (irel->r_offset + 4 > sec->size)
13718 continue;
13719
13720 opcode = bfd_get_micromips_32 (abfd, ptr);
13721
13722 /* This is the pc-relative distance from the instruction the
13723 relocation is applied to, to the symbol referred. */
13724 pcrval = (symval
13725 - (sec->output_section->vma + sec->output_offset)
13726 - irel->r_offset);
13727
13728 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13729 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13730 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13731
13732 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13733
13734 where pcrval has first to be adjusted to apply against the LO16
13735 location (we make the adjustment later on, when we have figured
13736 out the offset). */
13737 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13738 {
13739 bfd_boolean bzc = FALSE;
13740 unsigned long nextopc;
13741 unsigned long reg;
13742 bfd_vma offset;
13743
13744 /* Give up if the previous reloc was a HI16 against this symbol
13745 too. */
13746 if (irel > internal_relocs
13747 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13748 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13749 continue;
13750
13751 /* Or if the next reloc is not a LO16 against this symbol. */
13752 if (irel + 1 >= irelend
13753 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13754 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13755 continue;
13756
13757 /* Or if the second next reloc is a LO16 against this symbol too. */
13758 if (irel + 2 >= irelend
13759 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13760 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13761 continue;
13762
13763 /* See if the LUI instruction *might* be in a branch delay slot.
13764 We check whether what looks like a 16-bit branch or jump is
13765 actually an immediate argument to a compact branch, and let
13766 it through if so. */
13767 if (irel->r_offset >= 2
13768 && check_br16_dslot (abfd, ptr - 2)
13769 && !(irel->r_offset >= 4
13770 && (bzc = check_relocated_bzc (abfd,
13771 ptr - 4, irel->r_offset - 4,
13772 internal_relocs, irelend))))
13773 continue;
13774 if (irel->r_offset >= 4
13775 && !bzc
13776 && check_br32_dslot (abfd, ptr - 4))
13777 continue;
13778
13779 reg = OP32_SREG (opcode);
13780
13781 /* We only relax adjacent instructions or ones separated with
13782 a branch or jump that has a delay slot. The branch or jump
13783 must not fiddle with the register used to hold the address.
13784 Subtract 4 for the LUI itself. */
13785 offset = irel[1].r_offset - irel[0].r_offset;
13786 switch (offset - 4)
13787 {
13788 case 0:
13789 break;
13790 case 2:
13791 if (check_br16 (abfd, ptr + 4, reg))
13792 break;
13793 continue;
13794 case 4:
13795 if (check_br32 (abfd, ptr + 4, reg))
13796 break;
13797 continue;
13798 default:
13799 continue;
13800 }
13801
13802 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13803
13804 /* Give up unless the same register is used with both
13805 relocations. */
13806 if (OP32_SREG (nextopc) != reg)
13807 continue;
13808
13809 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13810 and rounding up to take masking of the two LSBs into account. */
13811 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13812
13813 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13814 if (IS_BITSIZE (symval, 16))
13815 {
13816 /* Fix the relocation's type. */
13817 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13818
13819 /* Instructions using R_MICROMIPS_LO16 have the base or
13820 source register in bits 20:16. This register becomes $0
13821 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13822 nextopc &= ~0x001f0000;
13823 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13824 contents + irel[1].r_offset);
13825 }
13826
13827 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13828 We add 4 to take LUI deletion into account while checking
13829 the PC-relative distance. */
13830 else if (symval % 4 == 0
13831 && IS_BITSIZE (pcrval + 4, 25)
13832 && MATCH (nextopc, addiu_insn)
13833 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13834 && OP16_VALID_REG (OP32_TREG (nextopc)))
13835 {
13836 /* Fix the relocation's type. */
13837 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13838
13839 /* Replace ADDIU with the ADDIUPC version. */
13840 nextopc = (addiupc_insn.match
13841 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13842
13843 bfd_put_micromips_32 (abfd, nextopc,
13844 contents + irel[1].r_offset);
13845 }
13846
13847 /* Can't do anything, give up, sigh... */
13848 else
13849 continue;
13850
13851 /* Fix the relocation's type. */
13852 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13853
13854 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13855 delcnt = 4;
13856 deloff = 0;
13857 }
13858
13859 /* Compact branch relaxation -- due to the multitude of macros
13860 employed by the compiler/assembler, compact branches are not
13861 always generated. Obviously, this can/will be fixed elsewhere,
13862 but there is no drawback in double checking it here. */
13863 else if (r_type == R_MICROMIPS_PC16_S1
13864 && irel->r_offset + 5 < sec->size
13865 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13866 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13867 && ((!insn32
13868 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13869 nop_insn_16) ? 2 : 0))
13870 || (irel->r_offset + 7 < sec->size
13871 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13872 ptr + 4),
13873 nop_insn_32) ? 4 : 0))))
13874 {
13875 unsigned long reg;
13876
13877 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13878
13879 /* Replace BEQZ/BNEZ with the compact version. */
13880 opcode = (bzc_insns_32[fndopc].match
13881 | BZC32_REG_FIELD (reg)
13882 | (opcode & 0xffff)); /* Addend value. */
13883
13884 bfd_put_micromips_32 (abfd, opcode, ptr);
13885
13886 /* Delete the delay slot NOP: two or four bytes from
13887 irel->offset + 4; delcnt has already been set above. */
13888 deloff = 4;
13889 }
13890
13891 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13892 to check the distance from the next instruction, so subtract 2. */
13893 else if (!insn32
13894 && r_type == R_MICROMIPS_PC16_S1
13895 && IS_BITSIZE (pcrval - 2, 11)
13896 && find_match (opcode, b_insns_32) >= 0)
13897 {
13898 /* Fix the relocation's type. */
13899 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13900
13901 /* Replace the 32-bit opcode with a 16-bit opcode. */
13902 bfd_put_16 (abfd,
13903 (b_insn_16.match
13904 | (opcode & 0x3ff)), /* Addend value. */
13905 ptr);
13906
13907 /* Delete 2 bytes from irel->r_offset + 2. */
13908 delcnt = 2;
13909 deloff = 2;
13910 }
13911
13912 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13913 to check the distance from the next instruction, so subtract 2. */
13914 else if (!insn32
13915 && r_type == R_MICROMIPS_PC16_S1
13916 && IS_BITSIZE (pcrval - 2, 8)
13917 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13918 && OP16_VALID_REG (OP32_SREG (opcode)))
13919 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13920 && OP16_VALID_REG (OP32_TREG (opcode)))))
13921 {
13922 unsigned long reg;
13923
13924 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13925
13926 /* Fix the relocation's type. */
13927 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13928
13929 /* Replace the 32-bit opcode with a 16-bit opcode. */
13930 bfd_put_16 (abfd,
13931 (bz_insns_16[fndopc].match
13932 | BZ16_REG_FIELD (reg)
13933 | (opcode & 0x7f)), /* Addend value. */
13934 ptr);
13935
13936 /* Delete 2 bytes from irel->r_offset + 2. */
13937 delcnt = 2;
13938 deloff = 2;
13939 }
13940
13941 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13942 else if (!insn32
13943 && r_type == R_MICROMIPS_26_S1
13944 && target_is_micromips_code_p
13945 && irel->r_offset + 7 < sec->size
13946 && MATCH (opcode, jal_insn_32_bd32))
13947 {
13948 unsigned long n32opc;
13949 bfd_boolean relaxed = FALSE;
13950
13951 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13952
13953 if (MATCH (n32opc, nop_insn_32))
13954 {
13955 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13956 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13957
13958 relaxed = TRUE;
13959 }
13960 else if (find_match (n32opc, move_insns_32) >= 0)
13961 {
13962 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13963 bfd_put_16 (abfd,
13964 (move_insn_16.match
13965 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13966 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13967 ptr + 4);
13968
13969 relaxed = TRUE;
13970 }
13971 /* Other 32-bit instructions relaxable to 16-bit
13972 instructions will be handled here later. */
13973
13974 if (relaxed)
13975 {
13976 /* JAL with 32-bit delay slot that is changed to a JALS
13977 with 16-bit delay slot. */
13978 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13979
13980 /* Delete 2 bytes from irel->r_offset + 6. */
13981 delcnt = 2;
13982 deloff = 6;
13983 }
13984 }
13985
13986 if (delcnt != 0)
13987 {
13988 /* Note that we've changed the relocs, section contents, etc. */
13989 elf_section_data (sec)->relocs = internal_relocs;
13990 elf_section_data (sec)->this_hdr.contents = contents;
13991 symtab_hdr->contents = (unsigned char *) isymbuf;
13992
13993 /* Delete bytes depending on the delcnt and deloff. */
13994 if (!mips_elf_relax_delete_bytes (abfd, sec,
13995 irel->r_offset + deloff, delcnt))
13996 goto error_return;
13997
13998 /* That will change things, so we should relax again.
13999 Note that this is not required, and it may be slow. */
14000 *again = TRUE;
14001 }
14002 }
14003
14004 if (isymbuf != NULL
14005 && symtab_hdr->contents != (unsigned char *) isymbuf)
14006 {
14007 if (! link_info->keep_memory)
14008 free (isymbuf);
14009 else
14010 {
14011 /* Cache the symbols for elf_link_input_bfd. */
14012 symtab_hdr->contents = (unsigned char *) isymbuf;
14013 }
14014 }
14015
14016 if (contents != NULL
14017 && elf_section_data (sec)->this_hdr.contents != contents)
14018 {
14019 if (! link_info->keep_memory)
14020 free (contents);
14021 else
14022 {
14023 /* Cache the section contents for elf_link_input_bfd. */
14024 elf_section_data (sec)->this_hdr.contents = contents;
14025 }
14026 }
14027
14028 if (internal_relocs != NULL
14029 && elf_section_data (sec)->relocs != internal_relocs)
14030 free (internal_relocs);
14031
14032 return TRUE;
14033
14034 error_return:
14035 if (isymbuf != NULL
14036 && symtab_hdr->contents != (unsigned char *) isymbuf)
14037 free (isymbuf);
14038 if (contents != NULL
14039 && elf_section_data (sec)->this_hdr.contents != contents)
14040 free (contents);
14041 if (internal_relocs != NULL
14042 && elf_section_data (sec)->relocs != internal_relocs)
14043 free (internal_relocs);
14044
14045 return FALSE;
14046 }
14047 \f
14048 /* Create a MIPS ELF linker hash table. */
14049
14050 struct bfd_link_hash_table *
14051 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14052 {
14053 struct mips_elf_link_hash_table *ret;
14054 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14055
14056 ret = bfd_zmalloc (amt);
14057 if (ret == NULL)
14058 return NULL;
14059
14060 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14061 mips_elf_link_hash_newfunc,
14062 sizeof (struct mips_elf_link_hash_entry),
14063 MIPS_ELF_DATA))
14064 {
14065 free (ret);
14066 return NULL;
14067 }
14068 ret->root.init_plt_refcount.plist = NULL;
14069 ret->root.init_plt_offset.plist = NULL;
14070
14071 return &ret->root.root;
14072 }
14073
14074 /* Likewise, but indicate that the target is VxWorks. */
14075
14076 struct bfd_link_hash_table *
14077 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14078 {
14079 struct bfd_link_hash_table *ret;
14080
14081 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14082 if (ret)
14083 {
14084 struct mips_elf_link_hash_table *htab;
14085
14086 htab = (struct mips_elf_link_hash_table *) ret;
14087 htab->use_plts_and_copy_relocs = TRUE;
14088 htab->is_vxworks = TRUE;
14089 }
14090 return ret;
14091 }
14092
14093 /* A function that the linker calls if we are allowed to use PLTs
14094 and copy relocs. */
14095
14096 void
14097 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14098 {
14099 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14100 }
14101
14102 /* A function that the linker calls to select between all or only
14103 32-bit microMIPS instructions, and between making or ignoring
14104 branch relocation checks for invalid transitions between ISA modes. */
14105
14106 void
14107 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14108 bfd_boolean ignore_branch_isa)
14109 {
14110 mips_elf_hash_table (info)->insn32 = insn32;
14111 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14112 }
14113 \f
14114 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14115
14116 struct mips_mach_extension
14117 {
14118 unsigned long extension, base;
14119 };
14120
14121
14122 /* An array describing how BFD machines relate to one another. The entries
14123 are ordered topologically with MIPS I extensions listed last. */
14124
14125 static const struct mips_mach_extension mips_mach_extensions[] =
14126 {
14127 /* MIPS64r2 extensions. */
14128 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14129 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14130 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14131 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14132 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14133
14134 /* MIPS64 extensions. */
14135 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14136 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14137 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14138
14139 /* MIPS V extensions. */
14140 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14141
14142 /* R10000 extensions. */
14143 { bfd_mach_mips12000, bfd_mach_mips10000 },
14144 { bfd_mach_mips14000, bfd_mach_mips10000 },
14145 { bfd_mach_mips16000, bfd_mach_mips10000 },
14146
14147 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14148 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14149 better to allow vr5400 and vr5500 code to be merged anyway, since
14150 many libraries will just use the core ISA. Perhaps we could add
14151 some sort of ASE flag if this ever proves a problem. */
14152 { bfd_mach_mips5500, bfd_mach_mips5400 },
14153 { bfd_mach_mips5400, bfd_mach_mips5000 },
14154
14155 /* MIPS IV extensions. */
14156 { bfd_mach_mips5, bfd_mach_mips8000 },
14157 { bfd_mach_mips10000, bfd_mach_mips8000 },
14158 { bfd_mach_mips5000, bfd_mach_mips8000 },
14159 { bfd_mach_mips7000, bfd_mach_mips8000 },
14160 { bfd_mach_mips9000, bfd_mach_mips8000 },
14161
14162 /* VR4100 extensions. */
14163 { bfd_mach_mips4120, bfd_mach_mips4100 },
14164 { bfd_mach_mips4111, bfd_mach_mips4100 },
14165
14166 /* MIPS III extensions. */
14167 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14168 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14169 { bfd_mach_mips8000, bfd_mach_mips4000 },
14170 { bfd_mach_mips4650, bfd_mach_mips4000 },
14171 { bfd_mach_mips4600, bfd_mach_mips4000 },
14172 { bfd_mach_mips4400, bfd_mach_mips4000 },
14173 { bfd_mach_mips4300, bfd_mach_mips4000 },
14174 { bfd_mach_mips4100, bfd_mach_mips4000 },
14175 { bfd_mach_mips4010, bfd_mach_mips4000 },
14176 { bfd_mach_mips5900, bfd_mach_mips4000 },
14177
14178 /* MIPS32 extensions. */
14179 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14180
14181 /* MIPS II extensions. */
14182 { bfd_mach_mips4000, bfd_mach_mips6000 },
14183 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14184
14185 /* MIPS I extensions. */
14186 { bfd_mach_mips6000, bfd_mach_mips3000 },
14187 { bfd_mach_mips3900, bfd_mach_mips3000 }
14188 };
14189
14190 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14191
14192 static bfd_boolean
14193 mips_mach_extends_p (unsigned long base, unsigned long extension)
14194 {
14195 size_t i;
14196
14197 if (extension == base)
14198 return TRUE;
14199
14200 if (base == bfd_mach_mipsisa32
14201 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14202 return TRUE;
14203
14204 if (base == bfd_mach_mipsisa32r2
14205 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14206 return TRUE;
14207
14208 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14209 if (extension == mips_mach_extensions[i].extension)
14210 {
14211 extension = mips_mach_extensions[i].base;
14212 if (extension == base)
14213 return TRUE;
14214 }
14215
14216 return FALSE;
14217 }
14218
14219 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14220
14221 static unsigned long
14222 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14223 {
14224 switch (isa_ext)
14225 {
14226 case AFL_EXT_3900: return bfd_mach_mips3900;
14227 case AFL_EXT_4010: return bfd_mach_mips4010;
14228 case AFL_EXT_4100: return bfd_mach_mips4100;
14229 case AFL_EXT_4111: return bfd_mach_mips4111;
14230 case AFL_EXT_4120: return bfd_mach_mips4120;
14231 case AFL_EXT_4650: return bfd_mach_mips4650;
14232 case AFL_EXT_5400: return bfd_mach_mips5400;
14233 case AFL_EXT_5500: return bfd_mach_mips5500;
14234 case AFL_EXT_5900: return bfd_mach_mips5900;
14235 case AFL_EXT_10000: return bfd_mach_mips10000;
14236 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14237 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14238 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14239 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14240 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14241 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14242 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14243 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14244 default: return bfd_mach_mips3000;
14245 }
14246 }
14247
14248 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14249
14250 unsigned int
14251 bfd_mips_isa_ext (bfd *abfd)
14252 {
14253 switch (bfd_get_mach (abfd))
14254 {
14255 case bfd_mach_mips3900: return AFL_EXT_3900;
14256 case bfd_mach_mips4010: return AFL_EXT_4010;
14257 case bfd_mach_mips4100: return AFL_EXT_4100;
14258 case bfd_mach_mips4111: return AFL_EXT_4111;
14259 case bfd_mach_mips4120: return AFL_EXT_4120;
14260 case bfd_mach_mips4650: return AFL_EXT_4650;
14261 case bfd_mach_mips5400: return AFL_EXT_5400;
14262 case bfd_mach_mips5500: return AFL_EXT_5500;
14263 case bfd_mach_mips5900: return AFL_EXT_5900;
14264 case bfd_mach_mips10000: return AFL_EXT_10000;
14265 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14266 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14267 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14268 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14269 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14270 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14271 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14272 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14273 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14274 default: return 0;
14275 }
14276 }
14277
14278 /* Encode ISA level and revision as a single value. */
14279 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14280
14281 /* Decode a single value into level and revision. */
14282 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14283 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14284
14285 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14286
14287 static void
14288 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14289 {
14290 int new_isa = 0;
14291 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14292 {
14293 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14294 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14295 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14296 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14297 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14298 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14299 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14300 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14301 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14302 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14303 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14304 default:
14305 _bfd_error_handler
14306 /* xgettext:c-format */
14307 (_("%B: Unknown architecture %s"),
14308 abfd, bfd_printable_name (abfd));
14309 }
14310
14311 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14312 {
14313 abiflags->isa_level = ISA_LEVEL (new_isa);
14314 abiflags->isa_rev = ISA_REV (new_isa);
14315 }
14316
14317 /* Update the isa_ext if ABFD describes a further extension. */
14318 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14319 bfd_get_mach (abfd)))
14320 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14321 }
14322
14323 /* Return true if the given ELF header flags describe a 32-bit binary. */
14324
14325 static bfd_boolean
14326 mips_32bit_flags_p (flagword flags)
14327 {
14328 return ((flags & EF_MIPS_32BITMODE) != 0
14329 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14330 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14331 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14332 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14333 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14334 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14335 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14336 }
14337
14338 /* Infer the content of the ABI flags based on the elf header. */
14339
14340 static void
14341 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14342 {
14343 obj_attribute *in_attr;
14344
14345 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14346 update_mips_abiflags_isa (abfd, abiflags);
14347
14348 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14349 abiflags->gpr_size = AFL_REG_32;
14350 else
14351 abiflags->gpr_size = AFL_REG_64;
14352
14353 abiflags->cpr1_size = AFL_REG_NONE;
14354
14355 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14356 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14357
14358 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14359 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14360 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14361 && abiflags->gpr_size == AFL_REG_32))
14362 abiflags->cpr1_size = AFL_REG_32;
14363 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14364 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14365 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14366 abiflags->cpr1_size = AFL_REG_64;
14367
14368 abiflags->cpr2_size = AFL_REG_NONE;
14369
14370 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14371 abiflags->ases |= AFL_ASE_MDMX;
14372 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14373 abiflags->ases |= AFL_ASE_MIPS16;
14374 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14375 abiflags->ases |= AFL_ASE_MICROMIPS;
14376
14377 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14378 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14379 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14380 && abiflags->isa_level >= 32
14381 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14382 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14383 }
14384
14385 /* We need to use a special link routine to handle the .reginfo and
14386 the .mdebug sections. We need to merge all instances of these
14387 sections together, not write them all out sequentially. */
14388
14389 bfd_boolean
14390 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14391 {
14392 asection *o;
14393 struct bfd_link_order *p;
14394 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14395 asection *rtproc_sec, *abiflags_sec;
14396 Elf32_RegInfo reginfo;
14397 struct ecoff_debug_info debug;
14398 struct mips_htab_traverse_info hti;
14399 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14400 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14401 HDRR *symhdr = &debug.symbolic_header;
14402 void *mdebug_handle = NULL;
14403 asection *s;
14404 EXTR esym;
14405 unsigned int i;
14406 bfd_size_type amt;
14407 struct mips_elf_link_hash_table *htab;
14408
14409 static const char * const secname[] =
14410 {
14411 ".text", ".init", ".fini", ".data",
14412 ".rodata", ".sdata", ".sbss", ".bss"
14413 };
14414 static const int sc[] =
14415 {
14416 scText, scInit, scFini, scData,
14417 scRData, scSData, scSBss, scBss
14418 };
14419
14420 /* Sort the dynamic symbols so that those with GOT entries come after
14421 those without. */
14422 htab = mips_elf_hash_table (info);
14423 BFD_ASSERT (htab != NULL);
14424
14425 if (!mips_elf_sort_hash_table (abfd, info))
14426 return FALSE;
14427
14428 /* Create any scheduled LA25 stubs. */
14429 hti.info = info;
14430 hti.output_bfd = abfd;
14431 hti.error = FALSE;
14432 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14433 if (hti.error)
14434 return FALSE;
14435
14436 /* Get a value for the GP register. */
14437 if (elf_gp (abfd) == 0)
14438 {
14439 struct bfd_link_hash_entry *h;
14440
14441 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14442 if (h != NULL && h->type == bfd_link_hash_defined)
14443 elf_gp (abfd) = (h->u.def.value
14444 + h->u.def.section->output_section->vma
14445 + h->u.def.section->output_offset);
14446 else if (htab->is_vxworks
14447 && (h = bfd_link_hash_lookup (info->hash,
14448 "_GLOBAL_OFFSET_TABLE_",
14449 FALSE, FALSE, TRUE))
14450 && h->type == bfd_link_hash_defined)
14451 elf_gp (abfd) = (h->u.def.section->output_section->vma
14452 + h->u.def.section->output_offset
14453 + h->u.def.value);
14454 else if (bfd_link_relocatable (info))
14455 {
14456 bfd_vma lo = MINUS_ONE;
14457
14458 /* Find the GP-relative section with the lowest offset. */
14459 for (o = abfd->sections; o != NULL; o = o->next)
14460 if (o->vma < lo
14461 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14462 lo = o->vma;
14463
14464 /* And calculate GP relative to that. */
14465 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14466 }
14467 else
14468 {
14469 /* If the relocate_section function needs to do a reloc
14470 involving the GP value, it should make a reloc_dangerous
14471 callback to warn that GP is not defined. */
14472 }
14473 }
14474
14475 /* Go through the sections and collect the .reginfo and .mdebug
14476 information. */
14477 abiflags_sec = NULL;
14478 reginfo_sec = NULL;
14479 mdebug_sec = NULL;
14480 gptab_data_sec = NULL;
14481 gptab_bss_sec = NULL;
14482 for (o = abfd->sections; o != NULL; o = o->next)
14483 {
14484 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14485 {
14486 /* We have found the .MIPS.abiflags section in the output file.
14487 Look through all the link_orders comprising it and remove them.
14488 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14489 for (p = o->map_head.link_order; p != NULL; p = p->next)
14490 {
14491 asection *input_section;
14492
14493 if (p->type != bfd_indirect_link_order)
14494 {
14495 if (p->type == bfd_data_link_order)
14496 continue;
14497 abort ();
14498 }
14499
14500 input_section = p->u.indirect.section;
14501
14502 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14503 elf_link_input_bfd ignores this section. */
14504 input_section->flags &= ~SEC_HAS_CONTENTS;
14505 }
14506
14507 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14508 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14509
14510 /* Skip this section later on (I don't think this currently
14511 matters, but someday it might). */
14512 o->map_head.link_order = NULL;
14513
14514 abiflags_sec = o;
14515 }
14516
14517 if (strcmp (o->name, ".reginfo") == 0)
14518 {
14519 memset (&reginfo, 0, sizeof reginfo);
14520
14521 /* We have found the .reginfo section in the output file.
14522 Look through all the link_orders comprising it and merge
14523 the information together. */
14524 for (p = o->map_head.link_order; p != NULL; p = p->next)
14525 {
14526 asection *input_section;
14527 bfd *input_bfd;
14528 Elf32_External_RegInfo ext;
14529 Elf32_RegInfo sub;
14530
14531 if (p->type != bfd_indirect_link_order)
14532 {
14533 if (p->type == bfd_data_link_order)
14534 continue;
14535 abort ();
14536 }
14537
14538 input_section = p->u.indirect.section;
14539 input_bfd = input_section->owner;
14540
14541 if (! bfd_get_section_contents (input_bfd, input_section,
14542 &ext, 0, sizeof ext))
14543 return FALSE;
14544
14545 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14546
14547 reginfo.ri_gprmask |= sub.ri_gprmask;
14548 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14549 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14550 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14551 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14552
14553 /* ri_gp_value is set by the function
14554 mips_elf32_section_processing when the section is
14555 finally written out. */
14556
14557 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14558 elf_link_input_bfd ignores this section. */
14559 input_section->flags &= ~SEC_HAS_CONTENTS;
14560 }
14561
14562 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14563 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14564
14565 /* Skip this section later on (I don't think this currently
14566 matters, but someday it might). */
14567 o->map_head.link_order = NULL;
14568
14569 reginfo_sec = o;
14570 }
14571
14572 if (strcmp (o->name, ".mdebug") == 0)
14573 {
14574 struct extsym_info einfo;
14575 bfd_vma last;
14576
14577 /* We have found the .mdebug section in the output file.
14578 Look through all the link_orders comprising it and merge
14579 the information together. */
14580 symhdr->magic = swap->sym_magic;
14581 /* FIXME: What should the version stamp be? */
14582 symhdr->vstamp = 0;
14583 symhdr->ilineMax = 0;
14584 symhdr->cbLine = 0;
14585 symhdr->idnMax = 0;
14586 symhdr->ipdMax = 0;
14587 symhdr->isymMax = 0;
14588 symhdr->ioptMax = 0;
14589 symhdr->iauxMax = 0;
14590 symhdr->issMax = 0;
14591 symhdr->issExtMax = 0;
14592 symhdr->ifdMax = 0;
14593 symhdr->crfd = 0;
14594 symhdr->iextMax = 0;
14595
14596 /* We accumulate the debugging information itself in the
14597 debug_info structure. */
14598 debug.line = NULL;
14599 debug.external_dnr = NULL;
14600 debug.external_pdr = NULL;
14601 debug.external_sym = NULL;
14602 debug.external_opt = NULL;
14603 debug.external_aux = NULL;
14604 debug.ss = NULL;
14605 debug.ssext = debug.ssext_end = NULL;
14606 debug.external_fdr = NULL;
14607 debug.external_rfd = NULL;
14608 debug.external_ext = debug.external_ext_end = NULL;
14609
14610 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14611 if (mdebug_handle == NULL)
14612 return FALSE;
14613
14614 esym.jmptbl = 0;
14615 esym.cobol_main = 0;
14616 esym.weakext = 0;
14617 esym.reserved = 0;
14618 esym.ifd = ifdNil;
14619 esym.asym.iss = issNil;
14620 esym.asym.st = stLocal;
14621 esym.asym.reserved = 0;
14622 esym.asym.index = indexNil;
14623 last = 0;
14624 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14625 {
14626 esym.asym.sc = sc[i];
14627 s = bfd_get_section_by_name (abfd, secname[i]);
14628 if (s != NULL)
14629 {
14630 esym.asym.value = s->vma;
14631 last = s->vma + s->size;
14632 }
14633 else
14634 esym.asym.value = last;
14635 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14636 secname[i], &esym))
14637 return FALSE;
14638 }
14639
14640 for (p = o->map_head.link_order; p != NULL; p = p->next)
14641 {
14642 asection *input_section;
14643 bfd *input_bfd;
14644 const struct ecoff_debug_swap *input_swap;
14645 struct ecoff_debug_info input_debug;
14646 char *eraw_src;
14647 char *eraw_end;
14648
14649 if (p->type != bfd_indirect_link_order)
14650 {
14651 if (p->type == bfd_data_link_order)
14652 continue;
14653 abort ();
14654 }
14655
14656 input_section = p->u.indirect.section;
14657 input_bfd = input_section->owner;
14658
14659 if (!is_mips_elf (input_bfd))
14660 {
14661 /* I don't know what a non MIPS ELF bfd would be
14662 doing with a .mdebug section, but I don't really
14663 want to deal with it. */
14664 continue;
14665 }
14666
14667 input_swap = (get_elf_backend_data (input_bfd)
14668 ->elf_backend_ecoff_debug_swap);
14669
14670 BFD_ASSERT (p->size == input_section->size);
14671
14672 /* The ECOFF linking code expects that we have already
14673 read in the debugging information and set up an
14674 ecoff_debug_info structure, so we do that now. */
14675 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14676 &input_debug))
14677 return FALSE;
14678
14679 if (! (bfd_ecoff_debug_accumulate
14680 (mdebug_handle, abfd, &debug, swap, input_bfd,
14681 &input_debug, input_swap, info)))
14682 return FALSE;
14683
14684 /* Loop through the external symbols. For each one with
14685 interesting information, try to find the symbol in
14686 the linker global hash table and save the information
14687 for the output external symbols. */
14688 eraw_src = input_debug.external_ext;
14689 eraw_end = (eraw_src
14690 + (input_debug.symbolic_header.iextMax
14691 * input_swap->external_ext_size));
14692 for (;
14693 eraw_src < eraw_end;
14694 eraw_src += input_swap->external_ext_size)
14695 {
14696 EXTR ext;
14697 const char *name;
14698 struct mips_elf_link_hash_entry *h;
14699
14700 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14701 if (ext.asym.sc == scNil
14702 || ext.asym.sc == scUndefined
14703 || ext.asym.sc == scSUndefined)
14704 continue;
14705
14706 name = input_debug.ssext + ext.asym.iss;
14707 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14708 name, FALSE, FALSE, TRUE);
14709 if (h == NULL || h->esym.ifd != -2)
14710 continue;
14711
14712 if (ext.ifd != -1)
14713 {
14714 BFD_ASSERT (ext.ifd
14715 < input_debug.symbolic_header.ifdMax);
14716 ext.ifd = input_debug.ifdmap[ext.ifd];
14717 }
14718
14719 h->esym = ext;
14720 }
14721
14722 /* Free up the information we just read. */
14723 free (input_debug.line);
14724 free (input_debug.external_dnr);
14725 free (input_debug.external_pdr);
14726 free (input_debug.external_sym);
14727 free (input_debug.external_opt);
14728 free (input_debug.external_aux);
14729 free (input_debug.ss);
14730 free (input_debug.ssext);
14731 free (input_debug.external_fdr);
14732 free (input_debug.external_rfd);
14733 free (input_debug.external_ext);
14734
14735 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14736 elf_link_input_bfd ignores this section. */
14737 input_section->flags &= ~SEC_HAS_CONTENTS;
14738 }
14739
14740 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14741 {
14742 /* Create .rtproc section. */
14743 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14744 if (rtproc_sec == NULL)
14745 {
14746 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14747 | SEC_LINKER_CREATED | SEC_READONLY);
14748
14749 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14750 ".rtproc",
14751 flags);
14752 if (rtproc_sec == NULL
14753 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14754 return FALSE;
14755 }
14756
14757 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14758 info, rtproc_sec,
14759 &debug))
14760 return FALSE;
14761 }
14762
14763 /* Build the external symbol information. */
14764 einfo.abfd = abfd;
14765 einfo.info = info;
14766 einfo.debug = &debug;
14767 einfo.swap = swap;
14768 einfo.failed = FALSE;
14769 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14770 mips_elf_output_extsym, &einfo);
14771 if (einfo.failed)
14772 return FALSE;
14773
14774 /* Set the size of the .mdebug section. */
14775 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14776
14777 /* Skip this section later on (I don't think this currently
14778 matters, but someday it might). */
14779 o->map_head.link_order = NULL;
14780
14781 mdebug_sec = o;
14782 }
14783
14784 if (CONST_STRNEQ (o->name, ".gptab."))
14785 {
14786 const char *subname;
14787 unsigned int c;
14788 Elf32_gptab *tab;
14789 Elf32_External_gptab *ext_tab;
14790 unsigned int j;
14791
14792 /* The .gptab.sdata and .gptab.sbss sections hold
14793 information describing how the small data area would
14794 change depending upon the -G switch. These sections
14795 not used in executables files. */
14796 if (! bfd_link_relocatable (info))
14797 {
14798 for (p = o->map_head.link_order; p != NULL; p = p->next)
14799 {
14800 asection *input_section;
14801
14802 if (p->type != bfd_indirect_link_order)
14803 {
14804 if (p->type == bfd_data_link_order)
14805 continue;
14806 abort ();
14807 }
14808
14809 input_section = p->u.indirect.section;
14810
14811 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14812 elf_link_input_bfd ignores this section. */
14813 input_section->flags &= ~SEC_HAS_CONTENTS;
14814 }
14815
14816 /* Skip this section later on (I don't think this
14817 currently matters, but someday it might). */
14818 o->map_head.link_order = NULL;
14819
14820 /* Really remove the section. */
14821 bfd_section_list_remove (abfd, o);
14822 --abfd->section_count;
14823
14824 continue;
14825 }
14826
14827 /* There is one gptab for initialized data, and one for
14828 uninitialized data. */
14829 if (strcmp (o->name, ".gptab.sdata") == 0)
14830 gptab_data_sec = o;
14831 else if (strcmp (o->name, ".gptab.sbss") == 0)
14832 gptab_bss_sec = o;
14833 else
14834 {
14835 _bfd_error_handler
14836 /* xgettext:c-format */
14837 (_("%s: illegal section name `%s'"),
14838 bfd_get_filename (abfd), o->name);
14839 bfd_set_error (bfd_error_nonrepresentable_section);
14840 return FALSE;
14841 }
14842
14843 /* The linker script always combines .gptab.data and
14844 .gptab.sdata into .gptab.sdata, and likewise for
14845 .gptab.bss and .gptab.sbss. It is possible that there is
14846 no .sdata or .sbss section in the output file, in which
14847 case we must change the name of the output section. */
14848 subname = o->name + sizeof ".gptab" - 1;
14849 if (bfd_get_section_by_name (abfd, subname) == NULL)
14850 {
14851 if (o == gptab_data_sec)
14852 o->name = ".gptab.data";
14853 else
14854 o->name = ".gptab.bss";
14855 subname = o->name + sizeof ".gptab" - 1;
14856 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14857 }
14858
14859 /* Set up the first entry. */
14860 c = 1;
14861 amt = c * sizeof (Elf32_gptab);
14862 tab = bfd_malloc (amt);
14863 if (tab == NULL)
14864 return FALSE;
14865 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14866 tab[0].gt_header.gt_unused = 0;
14867
14868 /* Combine the input sections. */
14869 for (p = o->map_head.link_order; p != NULL; p = p->next)
14870 {
14871 asection *input_section;
14872 bfd *input_bfd;
14873 bfd_size_type size;
14874 unsigned long last;
14875 bfd_size_type gpentry;
14876
14877 if (p->type != bfd_indirect_link_order)
14878 {
14879 if (p->type == bfd_data_link_order)
14880 continue;
14881 abort ();
14882 }
14883
14884 input_section = p->u.indirect.section;
14885 input_bfd = input_section->owner;
14886
14887 /* Combine the gptab entries for this input section one
14888 by one. We know that the input gptab entries are
14889 sorted by ascending -G value. */
14890 size = input_section->size;
14891 last = 0;
14892 for (gpentry = sizeof (Elf32_External_gptab);
14893 gpentry < size;
14894 gpentry += sizeof (Elf32_External_gptab))
14895 {
14896 Elf32_External_gptab ext_gptab;
14897 Elf32_gptab int_gptab;
14898 unsigned long val;
14899 unsigned long add;
14900 bfd_boolean exact;
14901 unsigned int look;
14902
14903 if (! (bfd_get_section_contents
14904 (input_bfd, input_section, &ext_gptab, gpentry,
14905 sizeof (Elf32_External_gptab))))
14906 {
14907 free (tab);
14908 return FALSE;
14909 }
14910
14911 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14912 &int_gptab);
14913 val = int_gptab.gt_entry.gt_g_value;
14914 add = int_gptab.gt_entry.gt_bytes - last;
14915
14916 exact = FALSE;
14917 for (look = 1; look < c; look++)
14918 {
14919 if (tab[look].gt_entry.gt_g_value >= val)
14920 tab[look].gt_entry.gt_bytes += add;
14921
14922 if (tab[look].gt_entry.gt_g_value == val)
14923 exact = TRUE;
14924 }
14925
14926 if (! exact)
14927 {
14928 Elf32_gptab *new_tab;
14929 unsigned int max;
14930
14931 /* We need a new table entry. */
14932 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14933 new_tab = bfd_realloc (tab, amt);
14934 if (new_tab == NULL)
14935 {
14936 free (tab);
14937 return FALSE;
14938 }
14939 tab = new_tab;
14940 tab[c].gt_entry.gt_g_value = val;
14941 tab[c].gt_entry.gt_bytes = add;
14942
14943 /* Merge in the size for the next smallest -G
14944 value, since that will be implied by this new
14945 value. */
14946 max = 0;
14947 for (look = 1; look < c; look++)
14948 {
14949 if (tab[look].gt_entry.gt_g_value < val
14950 && (max == 0
14951 || (tab[look].gt_entry.gt_g_value
14952 > tab[max].gt_entry.gt_g_value)))
14953 max = look;
14954 }
14955 if (max != 0)
14956 tab[c].gt_entry.gt_bytes +=
14957 tab[max].gt_entry.gt_bytes;
14958
14959 ++c;
14960 }
14961
14962 last = int_gptab.gt_entry.gt_bytes;
14963 }
14964
14965 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14966 elf_link_input_bfd ignores this section. */
14967 input_section->flags &= ~SEC_HAS_CONTENTS;
14968 }
14969
14970 /* The table must be sorted by -G value. */
14971 if (c > 2)
14972 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14973
14974 /* Swap out the table. */
14975 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14976 ext_tab = bfd_alloc (abfd, amt);
14977 if (ext_tab == NULL)
14978 {
14979 free (tab);
14980 return FALSE;
14981 }
14982
14983 for (j = 0; j < c; j++)
14984 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14985 free (tab);
14986
14987 o->size = c * sizeof (Elf32_External_gptab);
14988 o->contents = (bfd_byte *) ext_tab;
14989
14990 /* Skip this section later on (I don't think this currently
14991 matters, but someday it might). */
14992 o->map_head.link_order = NULL;
14993 }
14994 }
14995
14996 /* Invoke the regular ELF backend linker to do all the work. */
14997 if (!bfd_elf_final_link (abfd, info))
14998 return FALSE;
14999
15000 /* Now write out the computed sections. */
15001
15002 if (abiflags_sec != NULL)
15003 {
15004 Elf_External_ABIFlags_v0 ext;
15005 Elf_Internal_ABIFlags_v0 *abiflags;
15006
15007 abiflags = &mips_elf_tdata (abfd)->abiflags;
15008
15009 /* Set up the abiflags if no valid input sections were found. */
15010 if (!mips_elf_tdata (abfd)->abiflags_valid)
15011 {
15012 infer_mips_abiflags (abfd, abiflags);
15013 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15014 }
15015 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15016 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15017 return FALSE;
15018 }
15019
15020 if (reginfo_sec != NULL)
15021 {
15022 Elf32_External_RegInfo ext;
15023
15024 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15025 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15026 return FALSE;
15027 }
15028
15029 if (mdebug_sec != NULL)
15030 {
15031 BFD_ASSERT (abfd->output_has_begun);
15032 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15033 swap, info,
15034 mdebug_sec->filepos))
15035 return FALSE;
15036
15037 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15038 }
15039
15040 if (gptab_data_sec != NULL)
15041 {
15042 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15043 gptab_data_sec->contents,
15044 0, gptab_data_sec->size))
15045 return FALSE;
15046 }
15047
15048 if (gptab_bss_sec != NULL)
15049 {
15050 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15051 gptab_bss_sec->contents,
15052 0, gptab_bss_sec->size))
15053 return FALSE;
15054 }
15055
15056 if (SGI_COMPAT (abfd))
15057 {
15058 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15059 if (rtproc_sec != NULL)
15060 {
15061 if (! bfd_set_section_contents (abfd, rtproc_sec,
15062 rtproc_sec->contents,
15063 0, rtproc_sec->size))
15064 return FALSE;
15065 }
15066 }
15067
15068 return TRUE;
15069 }
15070 \f
15071 /* Merge object file header flags from IBFD into OBFD. Raise an error
15072 if there are conflicting settings. */
15073
15074 static bfd_boolean
15075 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15076 {
15077 bfd *obfd = info->output_bfd;
15078 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15079 flagword old_flags;
15080 flagword new_flags;
15081 bfd_boolean ok;
15082
15083 new_flags = elf_elfheader (ibfd)->e_flags;
15084 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15085 old_flags = elf_elfheader (obfd)->e_flags;
15086
15087 /* Check flag compatibility. */
15088
15089 new_flags &= ~EF_MIPS_NOREORDER;
15090 old_flags &= ~EF_MIPS_NOREORDER;
15091
15092 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15093 doesn't seem to matter. */
15094 new_flags &= ~EF_MIPS_XGOT;
15095 old_flags &= ~EF_MIPS_XGOT;
15096
15097 /* MIPSpro generates ucode info in n64 objects. Again, we should
15098 just be able to ignore this. */
15099 new_flags &= ~EF_MIPS_UCODE;
15100 old_flags &= ~EF_MIPS_UCODE;
15101
15102 /* DSOs should only be linked with CPIC code. */
15103 if ((ibfd->flags & DYNAMIC) != 0)
15104 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15105
15106 if (new_flags == old_flags)
15107 return TRUE;
15108
15109 ok = TRUE;
15110
15111 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15112 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15113 {
15114 _bfd_error_handler
15115 (_("%B: warning: linking abicalls files with non-abicalls files"),
15116 ibfd);
15117 ok = TRUE;
15118 }
15119
15120 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15121 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15122 if (! (new_flags & EF_MIPS_PIC))
15123 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15124
15125 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15126 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15127
15128 /* Compare the ISAs. */
15129 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15130 {
15131 _bfd_error_handler
15132 (_("%B: linking 32-bit code with 64-bit code"),
15133 ibfd);
15134 ok = FALSE;
15135 }
15136 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15137 {
15138 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15139 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15140 {
15141 /* Copy the architecture info from IBFD to OBFD. Also copy
15142 the 32-bit flag (if set) so that we continue to recognise
15143 OBFD as a 32-bit binary. */
15144 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15145 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15146 elf_elfheader (obfd)->e_flags
15147 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15148
15149 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15150 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15151
15152 /* Copy across the ABI flags if OBFD doesn't use them
15153 and if that was what caused us to treat IBFD as 32-bit. */
15154 if ((old_flags & EF_MIPS_ABI) == 0
15155 && mips_32bit_flags_p (new_flags)
15156 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15157 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15158 }
15159 else
15160 {
15161 /* The ISAs aren't compatible. */
15162 _bfd_error_handler
15163 /* xgettext:c-format */
15164 (_("%B: linking %s module with previous %s modules"),
15165 ibfd,
15166 bfd_printable_name (ibfd),
15167 bfd_printable_name (obfd));
15168 ok = FALSE;
15169 }
15170 }
15171
15172 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15173 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15174
15175 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15176 does set EI_CLASS differently from any 32-bit ABI. */
15177 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15178 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15179 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15180 {
15181 /* Only error if both are set (to different values). */
15182 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15183 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15184 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15185 {
15186 _bfd_error_handler
15187 /* xgettext:c-format */
15188 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15189 ibfd,
15190 elf_mips_abi_name (ibfd),
15191 elf_mips_abi_name (obfd));
15192 ok = FALSE;
15193 }
15194 new_flags &= ~EF_MIPS_ABI;
15195 old_flags &= ~EF_MIPS_ABI;
15196 }
15197
15198 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15199 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15200 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15201 {
15202 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15203 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15204 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15205 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15206 int micro_mis = old_m16 && new_micro;
15207 int m16_mis = old_micro && new_m16;
15208
15209 if (m16_mis || micro_mis)
15210 {
15211 _bfd_error_handler
15212 /* xgettext:c-format */
15213 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15214 ibfd,
15215 m16_mis ? "MIPS16" : "microMIPS",
15216 m16_mis ? "microMIPS" : "MIPS16");
15217 ok = FALSE;
15218 }
15219
15220 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15221
15222 new_flags &= ~ EF_MIPS_ARCH_ASE;
15223 old_flags &= ~ EF_MIPS_ARCH_ASE;
15224 }
15225
15226 /* Compare NaN encodings. */
15227 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15228 {
15229 /* xgettext:c-format */
15230 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15231 ibfd,
15232 (new_flags & EF_MIPS_NAN2008
15233 ? "-mnan=2008" : "-mnan=legacy"),
15234 (old_flags & EF_MIPS_NAN2008
15235 ? "-mnan=2008" : "-mnan=legacy"));
15236 ok = FALSE;
15237 new_flags &= ~EF_MIPS_NAN2008;
15238 old_flags &= ~EF_MIPS_NAN2008;
15239 }
15240
15241 /* Compare FP64 state. */
15242 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15243 {
15244 /* xgettext:c-format */
15245 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15246 ibfd,
15247 (new_flags & EF_MIPS_FP64
15248 ? "-mfp64" : "-mfp32"),
15249 (old_flags & EF_MIPS_FP64
15250 ? "-mfp64" : "-mfp32"));
15251 ok = FALSE;
15252 new_flags &= ~EF_MIPS_FP64;
15253 old_flags &= ~EF_MIPS_FP64;
15254 }
15255
15256 /* Warn about any other mismatches */
15257 if (new_flags != old_flags)
15258 {
15259 /* xgettext:c-format */
15260 _bfd_error_handler
15261 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15262 "(0x%lx)"),
15263 ibfd, (unsigned long) new_flags,
15264 (unsigned long) old_flags);
15265 ok = FALSE;
15266 }
15267
15268 return ok;
15269 }
15270
15271 /* Merge object attributes from IBFD into OBFD. Raise an error if
15272 there are conflicting attributes. */
15273 static bfd_boolean
15274 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15275 {
15276 bfd *obfd = info->output_bfd;
15277 obj_attribute *in_attr;
15278 obj_attribute *out_attr;
15279 bfd *abi_fp_bfd;
15280 bfd *abi_msa_bfd;
15281
15282 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15283 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15284 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15285 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15286
15287 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15288 if (!abi_msa_bfd
15289 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15290 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15291
15292 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15293 {
15294 /* This is the first object. Copy the attributes. */
15295 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15296
15297 /* Use the Tag_null value to indicate the attributes have been
15298 initialized. */
15299 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15300
15301 return TRUE;
15302 }
15303
15304 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15305 non-conflicting ones. */
15306 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15307 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15308 {
15309 int out_fp, in_fp;
15310
15311 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15312 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15313 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15314 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15315 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15316 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15317 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15318 || in_fp == Val_GNU_MIPS_ABI_FP_64
15319 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15320 {
15321 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15322 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15323 }
15324 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15325 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15326 || out_fp == Val_GNU_MIPS_ABI_FP_64
15327 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15328 /* Keep the current setting. */;
15329 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15330 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15331 {
15332 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15333 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15334 }
15335 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15336 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15337 /* Keep the current setting. */;
15338 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15339 {
15340 const char *out_string, *in_string;
15341
15342 out_string = _bfd_mips_fp_abi_string (out_fp);
15343 in_string = _bfd_mips_fp_abi_string (in_fp);
15344 /* First warn about cases involving unrecognised ABIs. */
15345 if (!out_string && !in_string)
15346 /* xgettext:c-format */
15347 _bfd_error_handler
15348 (_("Warning: %B uses unknown floating point ABI %d "
15349 "(set by %B), %B uses unknown floating point ABI %d"),
15350 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15351 else if (!out_string)
15352 _bfd_error_handler
15353 /* xgettext:c-format */
15354 (_("Warning: %B uses unknown floating point ABI %d "
15355 "(set by %B), %B uses %s"),
15356 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15357 else if (!in_string)
15358 _bfd_error_handler
15359 /* xgettext:c-format */
15360 (_("Warning: %B uses %s (set by %B), "
15361 "%B uses unknown floating point ABI %d"),
15362 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15363 else
15364 {
15365 /* If one of the bfds is soft-float, the other must be
15366 hard-float. The exact choice of hard-float ABI isn't
15367 really relevant to the error message. */
15368 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15369 out_string = "-mhard-float";
15370 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15371 in_string = "-mhard-float";
15372 _bfd_error_handler
15373 /* xgettext:c-format */
15374 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15375 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15376 }
15377 }
15378 }
15379
15380 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15381 non-conflicting ones. */
15382 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15383 {
15384 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15385 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15386 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15387 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15388 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15389 {
15390 case Val_GNU_MIPS_ABI_MSA_128:
15391 _bfd_error_handler
15392 /* xgettext:c-format */
15393 (_("Warning: %B uses %s (set by %B), "
15394 "%B uses unknown MSA ABI %d"),
15395 obfd, abi_msa_bfd, ibfd,
15396 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15397 break;
15398
15399 default:
15400 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15401 {
15402 case Val_GNU_MIPS_ABI_MSA_128:
15403 _bfd_error_handler
15404 /* xgettext:c-format */
15405 (_("Warning: %B uses unknown MSA ABI %d "
15406 "(set by %B), %B uses %s"),
15407 obfd, abi_msa_bfd, ibfd,
15408 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15409 break;
15410
15411 default:
15412 _bfd_error_handler
15413 /* xgettext:c-format */
15414 (_("Warning: %B uses unknown MSA ABI %d "
15415 "(set by %B), %B uses unknown MSA ABI %d"),
15416 obfd, abi_msa_bfd, ibfd,
15417 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15418 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15419 break;
15420 }
15421 }
15422 }
15423
15424 /* Merge Tag_compatibility attributes and any common GNU ones. */
15425 return _bfd_elf_merge_object_attributes (ibfd, info);
15426 }
15427
15428 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15429 there are conflicting settings. */
15430
15431 static bfd_boolean
15432 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15433 {
15434 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15435 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15436 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15437
15438 /* Update the output abiflags fp_abi using the computed fp_abi. */
15439 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15440
15441 #define max(a, b) ((a) > (b) ? (a) : (b))
15442 /* Merge abiflags. */
15443 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15444 in_tdata->abiflags.isa_level);
15445 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15446 in_tdata->abiflags.isa_rev);
15447 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15448 in_tdata->abiflags.gpr_size);
15449 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15450 in_tdata->abiflags.cpr1_size);
15451 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15452 in_tdata->abiflags.cpr2_size);
15453 #undef max
15454 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15455 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15456
15457 return TRUE;
15458 }
15459
15460 /* Merge backend specific data from an object file to the output
15461 object file when linking. */
15462
15463 bfd_boolean
15464 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15465 {
15466 bfd *obfd = info->output_bfd;
15467 struct mips_elf_obj_tdata *out_tdata;
15468 struct mips_elf_obj_tdata *in_tdata;
15469 bfd_boolean null_input_bfd = TRUE;
15470 asection *sec;
15471 bfd_boolean ok;
15472
15473 /* Check if we have the same endianness. */
15474 if (! _bfd_generic_verify_endian_match (ibfd, info))
15475 {
15476 _bfd_error_handler
15477 (_("%B: endianness incompatible with that of the selected emulation"),
15478 ibfd);
15479 return FALSE;
15480 }
15481
15482 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15483 return TRUE;
15484
15485 in_tdata = mips_elf_tdata (ibfd);
15486 out_tdata = mips_elf_tdata (obfd);
15487
15488 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15489 {
15490 _bfd_error_handler
15491 (_("%B: ABI is incompatible with that of the selected emulation"),
15492 ibfd);
15493 return FALSE;
15494 }
15495
15496 /* Check to see if the input BFD actually contains any sections. If not,
15497 then it has no attributes, and its flags may not have been initialized
15498 either, but it cannot actually cause any incompatibility. */
15499 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15500 {
15501 /* Ignore synthetic sections and empty .text, .data and .bss sections
15502 which are automatically generated by gas. Also ignore fake
15503 (s)common sections, since merely defining a common symbol does
15504 not affect compatibility. */
15505 if ((sec->flags & SEC_IS_COMMON) == 0
15506 && strcmp (sec->name, ".reginfo")
15507 && strcmp (sec->name, ".mdebug")
15508 && (sec->size != 0
15509 || (strcmp (sec->name, ".text")
15510 && strcmp (sec->name, ".data")
15511 && strcmp (sec->name, ".bss"))))
15512 {
15513 null_input_bfd = FALSE;
15514 break;
15515 }
15516 }
15517 if (null_input_bfd)
15518 return TRUE;
15519
15520 /* Populate abiflags using existing information. */
15521 if (in_tdata->abiflags_valid)
15522 {
15523 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15524 Elf_Internal_ABIFlags_v0 in_abiflags;
15525 Elf_Internal_ABIFlags_v0 abiflags;
15526
15527 /* Set up the FP ABI attribute from the abiflags if it is not already
15528 set. */
15529 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15530 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15531
15532 infer_mips_abiflags (ibfd, &abiflags);
15533 in_abiflags = in_tdata->abiflags;
15534
15535 /* It is not possible to infer the correct ISA revision
15536 for R3 or R5 so drop down to R2 for the checks. */
15537 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15538 in_abiflags.isa_rev = 2;
15539
15540 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15541 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15542 _bfd_error_handler
15543 (_("%B: warning: Inconsistent ISA between e_flags and "
15544 ".MIPS.abiflags"), ibfd);
15545 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15546 && in_abiflags.fp_abi != abiflags.fp_abi)
15547 _bfd_error_handler
15548 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15549 ".MIPS.abiflags"), ibfd);
15550 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15551 _bfd_error_handler
15552 (_("%B: warning: Inconsistent ASEs between e_flags and "
15553 ".MIPS.abiflags"), ibfd);
15554 /* The isa_ext is allowed to be an extension of what can be inferred
15555 from e_flags. */
15556 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15557 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15558 _bfd_error_handler
15559 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15560 ".MIPS.abiflags"), ibfd);
15561 if (in_abiflags.flags2 != 0)
15562 _bfd_error_handler
15563 (_("%B: warning: Unexpected flag in the flags2 field of "
15564 ".MIPS.abiflags (0x%lx)"), ibfd,
15565 (unsigned long) in_abiflags.flags2);
15566 }
15567 else
15568 {
15569 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15570 in_tdata->abiflags_valid = TRUE;
15571 }
15572
15573 if (!out_tdata->abiflags_valid)
15574 {
15575 /* Copy input abiflags if output abiflags are not already valid. */
15576 out_tdata->abiflags = in_tdata->abiflags;
15577 out_tdata->abiflags_valid = TRUE;
15578 }
15579
15580 if (! elf_flags_init (obfd))
15581 {
15582 elf_flags_init (obfd) = TRUE;
15583 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15584 elf_elfheader (obfd)->e_ident[EI_CLASS]
15585 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15586
15587 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15588 && (bfd_get_arch_info (obfd)->the_default
15589 || mips_mach_extends_p (bfd_get_mach (obfd),
15590 bfd_get_mach (ibfd))))
15591 {
15592 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15593 bfd_get_mach (ibfd)))
15594 return FALSE;
15595
15596 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15597 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15598 }
15599
15600 ok = TRUE;
15601 }
15602 else
15603 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15604
15605 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15606
15607 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15608
15609 if (!ok)
15610 {
15611 bfd_set_error (bfd_error_bad_value);
15612 return FALSE;
15613 }
15614
15615 return TRUE;
15616 }
15617
15618 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15619
15620 bfd_boolean
15621 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15622 {
15623 BFD_ASSERT (!elf_flags_init (abfd)
15624 || elf_elfheader (abfd)->e_flags == flags);
15625
15626 elf_elfheader (abfd)->e_flags = flags;
15627 elf_flags_init (abfd) = TRUE;
15628 return TRUE;
15629 }
15630
15631 char *
15632 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15633 {
15634 switch (dtag)
15635 {
15636 default: return "";
15637 case DT_MIPS_RLD_VERSION:
15638 return "MIPS_RLD_VERSION";
15639 case DT_MIPS_TIME_STAMP:
15640 return "MIPS_TIME_STAMP";
15641 case DT_MIPS_ICHECKSUM:
15642 return "MIPS_ICHECKSUM";
15643 case DT_MIPS_IVERSION:
15644 return "MIPS_IVERSION";
15645 case DT_MIPS_FLAGS:
15646 return "MIPS_FLAGS";
15647 case DT_MIPS_BASE_ADDRESS:
15648 return "MIPS_BASE_ADDRESS";
15649 case DT_MIPS_MSYM:
15650 return "MIPS_MSYM";
15651 case DT_MIPS_CONFLICT:
15652 return "MIPS_CONFLICT";
15653 case DT_MIPS_LIBLIST:
15654 return "MIPS_LIBLIST";
15655 case DT_MIPS_LOCAL_GOTNO:
15656 return "MIPS_LOCAL_GOTNO";
15657 case DT_MIPS_CONFLICTNO:
15658 return "MIPS_CONFLICTNO";
15659 case DT_MIPS_LIBLISTNO:
15660 return "MIPS_LIBLISTNO";
15661 case DT_MIPS_SYMTABNO:
15662 return "MIPS_SYMTABNO";
15663 case DT_MIPS_UNREFEXTNO:
15664 return "MIPS_UNREFEXTNO";
15665 case DT_MIPS_GOTSYM:
15666 return "MIPS_GOTSYM";
15667 case DT_MIPS_HIPAGENO:
15668 return "MIPS_HIPAGENO";
15669 case DT_MIPS_RLD_MAP:
15670 return "MIPS_RLD_MAP";
15671 case DT_MIPS_RLD_MAP_REL:
15672 return "MIPS_RLD_MAP_REL";
15673 case DT_MIPS_DELTA_CLASS:
15674 return "MIPS_DELTA_CLASS";
15675 case DT_MIPS_DELTA_CLASS_NO:
15676 return "MIPS_DELTA_CLASS_NO";
15677 case DT_MIPS_DELTA_INSTANCE:
15678 return "MIPS_DELTA_INSTANCE";
15679 case DT_MIPS_DELTA_INSTANCE_NO:
15680 return "MIPS_DELTA_INSTANCE_NO";
15681 case DT_MIPS_DELTA_RELOC:
15682 return "MIPS_DELTA_RELOC";
15683 case DT_MIPS_DELTA_RELOC_NO:
15684 return "MIPS_DELTA_RELOC_NO";
15685 case DT_MIPS_DELTA_SYM:
15686 return "MIPS_DELTA_SYM";
15687 case DT_MIPS_DELTA_SYM_NO:
15688 return "MIPS_DELTA_SYM_NO";
15689 case DT_MIPS_DELTA_CLASSSYM:
15690 return "MIPS_DELTA_CLASSSYM";
15691 case DT_MIPS_DELTA_CLASSSYM_NO:
15692 return "MIPS_DELTA_CLASSSYM_NO";
15693 case DT_MIPS_CXX_FLAGS:
15694 return "MIPS_CXX_FLAGS";
15695 case DT_MIPS_PIXIE_INIT:
15696 return "MIPS_PIXIE_INIT";
15697 case DT_MIPS_SYMBOL_LIB:
15698 return "MIPS_SYMBOL_LIB";
15699 case DT_MIPS_LOCALPAGE_GOTIDX:
15700 return "MIPS_LOCALPAGE_GOTIDX";
15701 case DT_MIPS_LOCAL_GOTIDX:
15702 return "MIPS_LOCAL_GOTIDX";
15703 case DT_MIPS_HIDDEN_GOTIDX:
15704 return "MIPS_HIDDEN_GOTIDX";
15705 case DT_MIPS_PROTECTED_GOTIDX:
15706 return "MIPS_PROTECTED_GOT_IDX";
15707 case DT_MIPS_OPTIONS:
15708 return "MIPS_OPTIONS";
15709 case DT_MIPS_INTERFACE:
15710 return "MIPS_INTERFACE";
15711 case DT_MIPS_DYNSTR_ALIGN:
15712 return "DT_MIPS_DYNSTR_ALIGN";
15713 case DT_MIPS_INTERFACE_SIZE:
15714 return "DT_MIPS_INTERFACE_SIZE";
15715 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15716 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15717 case DT_MIPS_PERF_SUFFIX:
15718 return "DT_MIPS_PERF_SUFFIX";
15719 case DT_MIPS_COMPACT_SIZE:
15720 return "DT_MIPS_COMPACT_SIZE";
15721 case DT_MIPS_GP_VALUE:
15722 return "DT_MIPS_GP_VALUE";
15723 case DT_MIPS_AUX_DYNAMIC:
15724 return "DT_MIPS_AUX_DYNAMIC";
15725 case DT_MIPS_PLTGOT:
15726 return "DT_MIPS_PLTGOT";
15727 case DT_MIPS_RWPLT:
15728 return "DT_MIPS_RWPLT";
15729 }
15730 }
15731
15732 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15733 not known. */
15734
15735 const char *
15736 _bfd_mips_fp_abi_string (int fp)
15737 {
15738 switch (fp)
15739 {
15740 /* These strings aren't translated because they're simply
15741 option lists. */
15742 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15743 return "-mdouble-float";
15744
15745 case Val_GNU_MIPS_ABI_FP_SINGLE:
15746 return "-msingle-float";
15747
15748 case Val_GNU_MIPS_ABI_FP_SOFT:
15749 return "-msoft-float";
15750
15751 case Val_GNU_MIPS_ABI_FP_OLD_64:
15752 return _("-mips32r2 -mfp64 (12 callee-saved)");
15753
15754 case Val_GNU_MIPS_ABI_FP_XX:
15755 return "-mfpxx";
15756
15757 case Val_GNU_MIPS_ABI_FP_64:
15758 return "-mgp32 -mfp64";
15759
15760 case Val_GNU_MIPS_ABI_FP_64A:
15761 return "-mgp32 -mfp64 -mno-odd-spreg";
15762
15763 default:
15764 return 0;
15765 }
15766 }
15767
15768 static void
15769 print_mips_ases (FILE *file, unsigned int mask)
15770 {
15771 if (mask & AFL_ASE_DSP)
15772 fputs ("\n\tDSP ASE", file);
15773 if (mask & AFL_ASE_DSPR2)
15774 fputs ("\n\tDSP R2 ASE", file);
15775 if (mask & AFL_ASE_DSPR3)
15776 fputs ("\n\tDSP R3 ASE", file);
15777 if (mask & AFL_ASE_EVA)
15778 fputs ("\n\tEnhanced VA Scheme", file);
15779 if (mask & AFL_ASE_MCU)
15780 fputs ("\n\tMCU (MicroController) ASE", file);
15781 if (mask & AFL_ASE_MDMX)
15782 fputs ("\n\tMDMX ASE", file);
15783 if (mask & AFL_ASE_MIPS3D)
15784 fputs ("\n\tMIPS-3D ASE", file);
15785 if (mask & AFL_ASE_MT)
15786 fputs ("\n\tMT ASE", file);
15787 if (mask & AFL_ASE_SMARTMIPS)
15788 fputs ("\n\tSmartMIPS ASE", file);
15789 if (mask & AFL_ASE_VIRT)
15790 fputs ("\n\tVZ ASE", file);
15791 if (mask & AFL_ASE_MSA)
15792 fputs ("\n\tMSA ASE", file);
15793 if (mask & AFL_ASE_MIPS16)
15794 fputs ("\n\tMIPS16 ASE", file);
15795 if (mask & AFL_ASE_MICROMIPS)
15796 fputs ("\n\tMICROMIPS ASE", file);
15797 if (mask & AFL_ASE_XPA)
15798 fputs ("\n\tXPA ASE", file);
15799 if (mask == 0)
15800 fprintf (file, "\n\t%s", _("None"));
15801 else if ((mask & ~AFL_ASE_MASK) != 0)
15802 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15803 }
15804
15805 static void
15806 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15807 {
15808 switch (isa_ext)
15809 {
15810 case 0:
15811 fputs (_("None"), file);
15812 break;
15813 case AFL_EXT_XLR:
15814 fputs ("RMI XLR", file);
15815 break;
15816 case AFL_EXT_OCTEON3:
15817 fputs ("Cavium Networks Octeon3", file);
15818 break;
15819 case AFL_EXT_OCTEON2:
15820 fputs ("Cavium Networks Octeon2", file);
15821 break;
15822 case AFL_EXT_OCTEONP:
15823 fputs ("Cavium Networks OcteonP", file);
15824 break;
15825 case AFL_EXT_LOONGSON_3A:
15826 fputs ("Loongson 3A", file);
15827 break;
15828 case AFL_EXT_OCTEON:
15829 fputs ("Cavium Networks Octeon", file);
15830 break;
15831 case AFL_EXT_5900:
15832 fputs ("Toshiba R5900", file);
15833 break;
15834 case AFL_EXT_4650:
15835 fputs ("MIPS R4650", file);
15836 break;
15837 case AFL_EXT_4010:
15838 fputs ("LSI R4010", file);
15839 break;
15840 case AFL_EXT_4100:
15841 fputs ("NEC VR4100", file);
15842 break;
15843 case AFL_EXT_3900:
15844 fputs ("Toshiba R3900", file);
15845 break;
15846 case AFL_EXT_10000:
15847 fputs ("MIPS R10000", file);
15848 break;
15849 case AFL_EXT_SB1:
15850 fputs ("Broadcom SB-1", file);
15851 break;
15852 case AFL_EXT_4111:
15853 fputs ("NEC VR4111/VR4181", file);
15854 break;
15855 case AFL_EXT_4120:
15856 fputs ("NEC VR4120", file);
15857 break;
15858 case AFL_EXT_5400:
15859 fputs ("NEC VR5400", file);
15860 break;
15861 case AFL_EXT_5500:
15862 fputs ("NEC VR5500", file);
15863 break;
15864 case AFL_EXT_LOONGSON_2E:
15865 fputs ("ST Microelectronics Loongson 2E", file);
15866 break;
15867 case AFL_EXT_LOONGSON_2F:
15868 fputs ("ST Microelectronics Loongson 2F", file);
15869 break;
15870 default:
15871 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15872 break;
15873 }
15874 }
15875
15876 static void
15877 print_mips_fp_abi_value (FILE *file, int val)
15878 {
15879 switch (val)
15880 {
15881 case Val_GNU_MIPS_ABI_FP_ANY:
15882 fprintf (file, _("Hard or soft float\n"));
15883 break;
15884 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15885 fprintf (file, _("Hard float (double precision)\n"));
15886 break;
15887 case Val_GNU_MIPS_ABI_FP_SINGLE:
15888 fprintf (file, _("Hard float (single precision)\n"));
15889 break;
15890 case Val_GNU_MIPS_ABI_FP_SOFT:
15891 fprintf (file, _("Soft float\n"));
15892 break;
15893 case Val_GNU_MIPS_ABI_FP_OLD_64:
15894 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15895 break;
15896 case Val_GNU_MIPS_ABI_FP_XX:
15897 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15898 break;
15899 case Val_GNU_MIPS_ABI_FP_64:
15900 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15901 break;
15902 case Val_GNU_MIPS_ABI_FP_64A:
15903 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15904 break;
15905 default:
15906 fprintf (file, "??? (%d)\n", val);
15907 break;
15908 }
15909 }
15910
15911 static int
15912 get_mips_reg_size (int reg_size)
15913 {
15914 return (reg_size == AFL_REG_NONE) ? 0
15915 : (reg_size == AFL_REG_32) ? 32
15916 : (reg_size == AFL_REG_64) ? 64
15917 : (reg_size == AFL_REG_128) ? 128
15918 : -1;
15919 }
15920
15921 bfd_boolean
15922 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15923 {
15924 FILE *file = ptr;
15925
15926 BFD_ASSERT (abfd != NULL && ptr != NULL);
15927
15928 /* Print normal ELF private data. */
15929 _bfd_elf_print_private_bfd_data (abfd, ptr);
15930
15931 /* xgettext:c-format */
15932 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15933
15934 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15935 fprintf (file, _(" [abi=O32]"));
15936 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15937 fprintf (file, _(" [abi=O64]"));
15938 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15939 fprintf (file, _(" [abi=EABI32]"));
15940 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15941 fprintf (file, _(" [abi=EABI64]"));
15942 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15943 fprintf (file, _(" [abi unknown]"));
15944 else if (ABI_N32_P (abfd))
15945 fprintf (file, _(" [abi=N32]"));
15946 else if (ABI_64_P (abfd))
15947 fprintf (file, _(" [abi=64]"));
15948 else
15949 fprintf (file, _(" [no abi set]"));
15950
15951 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15952 fprintf (file, " [mips1]");
15953 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15954 fprintf (file, " [mips2]");
15955 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15956 fprintf (file, " [mips3]");
15957 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15958 fprintf (file, " [mips4]");
15959 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15960 fprintf (file, " [mips5]");
15961 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15962 fprintf (file, " [mips32]");
15963 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15964 fprintf (file, " [mips64]");
15965 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15966 fprintf (file, " [mips32r2]");
15967 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15968 fprintf (file, " [mips64r2]");
15969 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15970 fprintf (file, " [mips32r6]");
15971 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15972 fprintf (file, " [mips64r6]");
15973 else
15974 fprintf (file, _(" [unknown ISA]"));
15975
15976 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15977 fprintf (file, " [mdmx]");
15978
15979 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15980 fprintf (file, " [mips16]");
15981
15982 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15983 fprintf (file, " [micromips]");
15984
15985 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15986 fprintf (file, " [nan2008]");
15987
15988 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15989 fprintf (file, " [old fp64]");
15990
15991 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15992 fprintf (file, " [32bitmode]");
15993 else
15994 fprintf (file, _(" [not 32bitmode]"));
15995
15996 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15997 fprintf (file, " [noreorder]");
15998
15999 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16000 fprintf (file, " [PIC]");
16001
16002 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16003 fprintf (file, " [CPIC]");
16004
16005 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16006 fprintf (file, " [XGOT]");
16007
16008 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16009 fprintf (file, " [UCODE]");
16010
16011 fputc ('\n', file);
16012
16013 if (mips_elf_tdata (abfd)->abiflags_valid)
16014 {
16015 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16016 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16017 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16018 if (abiflags->isa_rev > 1)
16019 fprintf (file, "r%d", abiflags->isa_rev);
16020 fprintf (file, "\nGPR size: %d",
16021 get_mips_reg_size (abiflags->gpr_size));
16022 fprintf (file, "\nCPR1 size: %d",
16023 get_mips_reg_size (abiflags->cpr1_size));
16024 fprintf (file, "\nCPR2 size: %d",
16025 get_mips_reg_size (abiflags->cpr2_size));
16026 fputs ("\nFP ABI: ", file);
16027 print_mips_fp_abi_value (file, abiflags->fp_abi);
16028 fputs ("ISA Extension: ", file);
16029 print_mips_isa_ext (file, abiflags->isa_ext);
16030 fputs ("\nASEs:", file);
16031 print_mips_ases (file, abiflags->ases);
16032 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16033 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16034 fputc ('\n', file);
16035 }
16036
16037 return TRUE;
16038 }
16039
16040 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16041 {
16042 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16043 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16044 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16045 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16046 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16047 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16048 { NULL, 0, 0, 0, 0 }
16049 };
16050
16051 /* Merge non visibility st_other attributes. Ensure that the
16052 STO_OPTIONAL flag is copied into h->other, even if this is not a
16053 definiton of the symbol. */
16054 void
16055 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16056 const Elf_Internal_Sym *isym,
16057 bfd_boolean definition,
16058 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16059 {
16060 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16061 {
16062 unsigned char other;
16063
16064 other = (definition ? isym->st_other : h->other);
16065 other &= ~ELF_ST_VISIBILITY (-1);
16066 h->other = other | ELF_ST_VISIBILITY (h->other);
16067 }
16068
16069 if (!definition
16070 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16071 h->other |= STO_OPTIONAL;
16072 }
16073
16074 /* Decide whether an undefined symbol is special and can be ignored.
16075 This is the case for OPTIONAL symbols on IRIX. */
16076 bfd_boolean
16077 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16078 {
16079 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16080 }
16081
16082 bfd_boolean
16083 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16084 {
16085 return (sym->st_shndx == SHN_COMMON
16086 || sym->st_shndx == SHN_MIPS_ACOMMON
16087 || sym->st_shndx == SHN_MIPS_SCOMMON);
16088 }
16089
16090 /* Return address for Ith PLT stub in section PLT, for relocation REL
16091 or (bfd_vma) -1 if it should not be included. */
16092
16093 bfd_vma
16094 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16095 const arelent *rel ATTRIBUTE_UNUSED)
16096 {
16097 return (plt->vma
16098 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16099 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16100 }
16101
16102 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16103 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16104 and .got.plt and also the slots may be of a different size each we walk
16105 the PLT manually fetching instructions and matching them against known
16106 patterns. To make things easier standard MIPS slots, if any, always come
16107 first. As we don't create proper ELF symbols we use the UDATA.I member
16108 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16109 with the ST_OTHER member of the ELF symbol. */
16110
16111 long
16112 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16113 long symcount ATTRIBUTE_UNUSED,
16114 asymbol **syms ATTRIBUTE_UNUSED,
16115 long dynsymcount, asymbol **dynsyms,
16116 asymbol **ret)
16117 {
16118 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16119 static const char microsuffix[] = "@micromipsplt";
16120 static const char m16suffix[] = "@mips16plt";
16121 static const char mipssuffix[] = "@plt";
16122
16123 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16124 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16125 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16126 Elf_Internal_Shdr *hdr;
16127 bfd_byte *plt_data;
16128 bfd_vma plt_offset;
16129 unsigned int other;
16130 bfd_vma entry_size;
16131 bfd_vma plt0_size;
16132 asection *relplt;
16133 bfd_vma opcode;
16134 asection *plt;
16135 asymbol *send;
16136 size_t size;
16137 char *names;
16138 long counti;
16139 arelent *p;
16140 asymbol *s;
16141 char *nend;
16142 long count;
16143 long pi;
16144 long i;
16145 long n;
16146
16147 *ret = NULL;
16148
16149 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16150 return 0;
16151
16152 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16153 if (relplt == NULL)
16154 return 0;
16155
16156 hdr = &elf_section_data (relplt)->this_hdr;
16157 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16158 return 0;
16159
16160 plt = bfd_get_section_by_name (abfd, ".plt");
16161 if (plt == NULL)
16162 return 0;
16163
16164 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16165 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16166 return -1;
16167 p = relplt->relocation;
16168
16169 /* Calculating the exact amount of space required for symbols would
16170 require two passes over the PLT, so just pessimise assuming two
16171 PLT slots per relocation. */
16172 count = relplt->size / hdr->sh_entsize;
16173 counti = count * bed->s->int_rels_per_ext_rel;
16174 size = 2 * count * sizeof (asymbol);
16175 size += count * (sizeof (mipssuffix) +
16176 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16177 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16178 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16179
16180 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16181 size += sizeof (asymbol) + sizeof (pltname);
16182
16183 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16184 return -1;
16185
16186 if (plt->size < 16)
16187 return -1;
16188
16189 s = *ret = bfd_malloc (size);
16190 if (s == NULL)
16191 return -1;
16192 send = s + 2 * count + 1;
16193
16194 names = (char *) send;
16195 nend = (char *) s + size;
16196 n = 0;
16197
16198 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16199 if (opcode == 0x3302fffe)
16200 {
16201 if (!micromips_p)
16202 return -1;
16203 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16204 other = STO_MICROMIPS;
16205 }
16206 else if (opcode == 0x0398c1d0)
16207 {
16208 if (!micromips_p)
16209 return -1;
16210 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16211 other = STO_MICROMIPS;
16212 }
16213 else
16214 {
16215 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16216 other = 0;
16217 }
16218
16219 s->the_bfd = abfd;
16220 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16221 s->section = plt;
16222 s->value = 0;
16223 s->name = names;
16224 s->udata.i = other;
16225 memcpy (names, pltname, sizeof (pltname));
16226 names += sizeof (pltname);
16227 ++s, ++n;
16228
16229 pi = 0;
16230 for (plt_offset = plt0_size;
16231 plt_offset + 8 <= plt->size && s < send;
16232 plt_offset += entry_size)
16233 {
16234 bfd_vma gotplt_addr;
16235 const char *suffix;
16236 bfd_vma gotplt_hi;
16237 bfd_vma gotplt_lo;
16238 size_t suffixlen;
16239
16240 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16241
16242 /* Check if the second word matches the expected MIPS16 instruction. */
16243 if (opcode == 0x651aeb00)
16244 {
16245 if (micromips_p)
16246 return -1;
16247 /* Truncated table??? */
16248 if (plt_offset + 16 > plt->size)
16249 break;
16250 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16251 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16252 suffixlen = sizeof (m16suffix);
16253 suffix = m16suffix;
16254 other = STO_MIPS16;
16255 }
16256 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16257 else if (opcode == 0xff220000)
16258 {
16259 if (!micromips_p)
16260 return -1;
16261 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16262 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16263 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16264 gotplt_lo <<= 2;
16265 gotplt_addr = gotplt_hi + gotplt_lo;
16266 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16267 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16268 suffixlen = sizeof (microsuffix);
16269 suffix = microsuffix;
16270 other = STO_MICROMIPS;
16271 }
16272 /* Likewise the expected microMIPS instruction (insn32 mode). */
16273 else if ((opcode & 0xffff0000) == 0xff2f0000)
16274 {
16275 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16276 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16277 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16278 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16279 gotplt_addr = gotplt_hi + gotplt_lo;
16280 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16281 suffixlen = sizeof (microsuffix);
16282 suffix = microsuffix;
16283 other = STO_MICROMIPS;
16284 }
16285 /* Otherwise assume standard MIPS code. */
16286 else
16287 {
16288 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16289 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16290 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16291 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16292 gotplt_addr = gotplt_hi + gotplt_lo;
16293 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16294 suffixlen = sizeof (mipssuffix);
16295 suffix = mipssuffix;
16296 other = 0;
16297 }
16298 /* Truncated table??? */
16299 if (plt_offset + entry_size > plt->size)
16300 break;
16301
16302 for (i = 0;
16303 i < count && p[pi].address != gotplt_addr;
16304 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16305
16306 if (i < count)
16307 {
16308 size_t namelen;
16309 size_t len;
16310
16311 *s = **p[pi].sym_ptr_ptr;
16312 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16313 we are defining a symbol, ensure one of them is set. */
16314 if ((s->flags & BSF_LOCAL) == 0)
16315 s->flags |= BSF_GLOBAL;
16316 s->flags |= BSF_SYNTHETIC;
16317 s->section = plt;
16318 s->value = plt_offset;
16319 s->name = names;
16320 s->udata.i = other;
16321
16322 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16323 namelen = len + suffixlen;
16324 if (names + namelen > nend)
16325 break;
16326
16327 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16328 names += len;
16329 memcpy (names, suffix, suffixlen);
16330 names += suffixlen;
16331
16332 ++s, ++n;
16333 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16334 }
16335 }
16336
16337 free (plt_data);
16338
16339 return n;
16340 }
16341
16342 /* Return the ABI flags associated with ABFD if available. */
16343
16344 Elf_Internal_ABIFlags_v0 *
16345 bfd_mips_elf_get_abiflags (bfd *abfd)
16346 {
16347 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16348
16349 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16350 }
16351
16352 void
16353 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16354 {
16355 struct mips_elf_link_hash_table *htab;
16356 Elf_Internal_Ehdr *i_ehdrp;
16357
16358 i_ehdrp = elf_elfheader (abfd);
16359 if (link_info)
16360 {
16361 htab = mips_elf_hash_table (link_info);
16362 BFD_ASSERT (htab != NULL);
16363
16364 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16365 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16366 }
16367
16368 _bfd_elf_post_process_headers (abfd, link_info);
16369
16370 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16371 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16372 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16373 }
16374
16375 int
16376 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16377 {
16378 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16379 }
16380
16381 /* Return the opcode for can't unwind. */
16382
16383 int
16384 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16385 {
16386 return COMPACT_EH_CANT_UNWIND_OPCODE;
16387 }
This page took 0.403857 seconds and 5 git commands to generate.