_bfd_mul_overflow
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2020 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40 #include "dwarf2.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56 };
57
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
77 {
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
96
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
100
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
109 };
110
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
122 {
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130 };
131
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135 struct mips_got_page_range
136 {
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140 };
141
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
145 {
146 /* The section that these entries are based on. */
147 asection *sec;
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152 };
153
154 /* This structure is used to hold .got information when linking. */
155
156 struct mips_got_info
157 {
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno;
177 /* A hash table holding members of the got. */
178 struct htab *got_entries;
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab *got_page_refs;
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab *got_page_entries;
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info *next;
186 };
187
188 /* Structure passed when merging bfds' gots. */
189
190 struct mips_elf_got_per_bfd_arg
191 {
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
213 };
214
215 /* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
217
218 struct mips_elf_traverse_got_arg
219 {
220 struct bfd_link_info *info;
221 struct mips_got_info *g;
222 int value;
223 };
224
225 struct _mips_elf_section_data
226 {
227 struct bfd_elf_section_data elf;
228 union
229 {
230 bfd_byte *tdata;
231 } u;
232 };
233
234 #define mips_elf_section_data(sec) \
235 ((struct _mips_elf_section_data *) elf_section_data (sec))
236
237 #define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
240 && elf_object_id (bfd) == MIPS_ELF_DATA)
241
242 /* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
255
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259 #define GGA_NORMAL 0
260 #define GGA_RELOC_ONLY 1
261 #define GGA_NONE 2
262
263 /* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
265
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
268
269 immediately before a PIC function "func". The second is to add:
270
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
274
275 to a separate trampoline section.
276
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280 struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
283
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
286
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
290 };
291
292 /* Macros for populating a mips_elf_la25_stub. */
293
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
304
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
307
308 struct mips_elf_hash_sort_data
309 {
310 /* The symbol in the global GOT with the lowest dynamic symbol table
311 index. */
312 struct elf_link_hash_entry *low;
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
315 bfd_size_type min_got_dynindx;
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
318 with dynamic relocations pointing to it from non-primary GOTs). */
319 bfd_size_type max_unref_got_dynindx;
320 /* The greatest dynamic symbol table index corresponding to a local
321 symbol. */
322 bfd_size_type max_local_dynindx;
323 /* The greatest dynamic symbol table index corresponding to an external
324 symbol without a GOT entry. */
325 bfd_size_type max_non_got_dynindx;
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
327 bfd *output_bfd;
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
330 bfd_byte *mipsxhash;
331 };
332
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
336 processing. */
337
338 struct plt_entry
339 {
340 /* Traditional SVR4 stub offset, or -1 if none. */
341 bfd_vma stub_offset;
342
343 /* Standard PLT entry offset, or -1 if none. */
344 bfd_vma mips_offset;
345
346 /* Compressed PLT entry offset, or -1 if none. */
347 bfd_vma comp_offset;
348
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index;
351
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips : 1;
354
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp : 1;
357 };
358
359 /* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
361
362 struct mips_elf_link_hash_entry
363 {
364 struct elf_link_hash_entry root;
365
366 /* External symbol information. */
367 EXTR esym;
368
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub *la25_stub;
371
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373 this symbol. */
374 unsigned int possibly_dynamic_relocs;
375
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
378 asection *fn_stub;
379
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
382 asection *call_stub;
383
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection *call_fp_stub;
387
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc;
390
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area : 2;
393
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls : 1;
398
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc : 1;
402
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs : 1;
407
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub : 1;
413
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub : 1;
417
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches : 1;
422
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub : 1;
426
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry : 1;
429 };
430
431 /* MIPS ELF linker hash table. */
432
433 struct mips_elf_link_hash_table
434 {
435 struct elf_link_hash_table root;
436
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count;
439
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size;
442
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
445 bfd_boolean use_rld_obj_head;
446
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry *rld_symbol;
449
450 /* This is set if we see any mips16 stub sections. */
451 bfd_boolean mips16_stubs_seen;
452
453 /* True if we can generate copy relocs and PLTs. */
454 bfd_boolean use_plts_and_copy_relocs;
455
456 /* True if we can only use 32-bit microMIPS instructions. */
457 bfd_boolean insn32;
458
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bfd_boolean ignore_branch_isa;
461
462 /* True if we are targetting R6 compact branches. */
463 bfd_boolean compact_branches;
464
465 /* True if we're generating code for VxWorks. */
466 bfd_boolean is_vxworks;
467
468 /* True if we already reported the small-data section overflow. */
469 bfd_boolean small_data_overflow_reported;
470
471 /* True if we use the special `__gnu_absolute_zero' symbol. */
472 bfd_boolean use_absolute_zero;
473
474 /* True if we have been configured for a GNU target. */
475 bfd_boolean gnu_target;
476
477 /* Shortcuts to some dynamic sections, or NULL if they are not
478 being used. */
479 asection *srelplt2;
480 asection *sstubs;
481
482 /* The master GOT information. */
483 struct mips_got_info *got_info;
484
485 /* The global symbol in the GOT with the lowest index in the dynamic
486 symbol table. */
487 struct elf_link_hash_entry *global_gotsym;
488
489 /* The size of the PLT header in bytes. */
490 bfd_vma plt_header_size;
491
492 /* The size of a standard PLT entry in bytes. */
493 bfd_vma plt_mips_entry_size;
494
495 /* The size of a compressed PLT entry in bytes. */
496 bfd_vma plt_comp_entry_size;
497
498 /* The offset of the next standard PLT entry to create. */
499 bfd_vma plt_mips_offset;
500
501 /* The offset of the next compressed PLT entry to create. */
502 bfd_vma plt_comp_offset;
503
504 /* The index of the next .got.plt entry to create. */
505 bfd_vma plt_got_index;
506
507 /* The number of functions that need a lazy-binding stub. */
508 bfd_vma lazy_stub_count;
509
510 /* The size of a function stub entry in bytes. */
511 bfd_vma function_stub_size;
512
513 /* The number of reserved entries at the beginning of the GOT. */
514 unsigned int reserved_gotno;
515
516 /* The section used for mips_elf_la25_stub trampolines.
517 See the comment above that structure for details. */
518 asection *strampoline;
519
520 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
521 pairs. */
522 htab_t la25_stubs;
523
524 /* A function FN (NAME, IS, OS) that creates a new input section
525 called NAME and links it to output section OS. If IS is nonnull,
526 the new section should go immediately before it, otherwise it
527 should go at the (current) beginning of OS.
528
529 The function returns the new section on success, otherwise it
530 returns null. */
531 asection *(*add_stub_section) (const char *, asection *, asection *);
532
533 /* Small local sym cache. */
534 struct sym_cache sym_cache;
535
536 /* Is the PLT header compressed? */
537 unsigned int plt_header_is_comp : 1;
538 };
539
540 /* Get the MIPS ELF linker hash table from a link_info structure. */
541
542 #define mips_elf_hash_table(p) \
543 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
544 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
545
546 /* A structure used to communicate with htab_traverse callbacks. */
547 struct mips_htab_traverse_info
548 {
549 /* The usual link-wide information. */
550 struct bfd_link_info *info;
551 bfd *output_bfd;
552
553 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
554 bfd_boolean error;
555 };
556
557 /* MIPS ELF private object data. */
558
559 struct mips_elf_obj_tdata
560 {
561 /* Generic ELF private object data. */
562 struct elf_obj_tdata root;
563
564 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
565 bfd *abi_fp_bfd;
566
567 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
568 bfd *abi_msa_bfd;
569
570 /* The abiflags for this object. */
571 Elf_Internal_ABIFlags_v0 abiflags;
572 bfd_boolean abiflags_valid;
573
574 /* The GOT requirements of input bfds. */
575 struct mips_got_info *got;
576
577 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
578 included directly in this one, but there's no point to wasting
579 the memory just for the infrequently called find_nearest_line. */
580 struct mips_elf_find_line *find_line_info;
581
582 /* An array of stub sections indexed by symbol number. */
583 asection **local_stubs;
584 asection **local_call_stubs;
585
586 /* The Irix 5 support uses two virtual sections, which represent
587 text/data symbols defined in dynamic objects. */
588 asymbol *elf_data_symbol;
589 asymbol *elf_text_symbol;
590 asection *elf_data_section;
591 asection *elf_text_section;
592 };
593
594 /* Get MIPS ELF private object data from BFD's tdata. */
595
596 #define mips_elf_tdata(bfd) \
597 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
598
599 #define TLS_RELOC_P(r_type) \
600 (r_type == R_MIPS_TLS_DTPMOD32 \
601 || r_type == R_MIPS_TLS_DTPMOD64 \
602 || r_type == R_MIPS_TLS_DTPREL32 \
603 || r_type == R_MIPS_TLS_DTPREL64 \
604 || r_type == R_MIPS_TLS_GD \
605 || r_type == R_MIPS_TLS_LDM \
606 || r_type == R_MIPS_TLS_DTPREL_HI16 \
607 || r_type == R_MIPS_TLS_DTPREL_LO16 \
608 || r_type == R_MIPS_TLS_GOTTPREL \
609 || r_type == R_MIPS_TLS_TPREL32 \
610 || r_type == R_MIPS_TLS_TPREL64 \
611 || r_type == R_MIPS_TLS_TPREL_HI16 \
612 || r_type == R_MIPS_TLS_TPREL_LO16 \
613 || r_type == R_MIPS16_TLS_GD \
614 || r_type == R_MIPS16_TLS_LDM \
615 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
616 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
617 || r_type == R_MIPS16_TLS_GOTTPREL \
618 || r_type == R_MIPS16_TLS_TPREL_HI16 \
619 || r_type == R_MIPS16_TLS_TPREL_LO16 \
620 || r_type == R_MICROMIPS_TLS_GD \
621 || r_type == R_MICROMIPS_TLS_LDM \
622 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
623 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
624 || r_type == R_MICROMIPS_TLS_GOTTPREL \
625 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
626 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
627
628 /* Structure used to pass information to mips_elf_output_extsym. */
629
630 struct extsym_info
631 {
632 bfd *abfd;
633 struct bfd_link_info *info;
634 struct ecoff_debug_info *debug;
635 const struct ecoff_debug_swap *swap;
636 bfd_boolean failed;
637 };
638
639 /* The names of the runtime procedure table symbols used on IRIX5. */
640
641 static const char * const mips_elf_dynsym_rtproc_names[] =
642 {
643 "_procedure_table",
644 "_procedure_string_table",
645 "_procedure_table_size",
646 NULL
647 };
648
649 /* These structures are used to generate the .compact_rel section on
650 IRIX5. */
651
652 typedef struct
653 {
654 unsigned long id1; /* Always one? */
655 unsigned long num; /* Number of compact relocation entries. */
656 unsigned long id2; /* Always two? */
657 unsigned long offset; /* The file offset of the first relocation. */
658 unsigned long reserved0; /* Zero? */
659 unsigned long reserved1; /* Zero? */
660 } Elf32_compact_rel;
661
662 typedef struct
663 {
664 bfd_byte id1[4];
665 bfd_byte num[4];
666 bfd_byte id2[4];
667 bfd_byte offset[4];
668 bfd_byte reserved0[4];
669 bfd_byte reserved1[4];
670 } Elf32_External_compact_rel;
671
672 typedef struct
673 {
674 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
675 unsigned int rtype : 4; /* Relocation types. See below. */
676 unsigned int dist2to : 8;
677 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
678 unsigned long konst; /* KONST field. See below. */
679 unsigned long vaddr; /* VADDR to be relocated. */
680 } Elf32_crinfo;
681
682 typedef struct
683 {
684 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
685 unsigned int rtype : 4; /* Relocation types. See below. */
686 unsigned int dist2to : 8;
687 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
688 unsigned long konst; /* KONST field. See below. */
689 } Elf32_crinfo2;
690
691 typedef struct
692 {
693 bfd_byte info[4];
694 bfd_byte konst[4];
695 bfd_byte vaddr[4];
696 } Elf32_External_crinfo;
697
698 typedef struct
699 {
700 bfd_byte info[4];
701 bfd_byte konst[4];
702 } Elf32_External_crinfo2;
703
704 /* These are the constants used to swap the bitfields in a crinfo. */
705
706 #define CRINFO_CTYPE (0x1)
707 #define CRINFO_CTYPE_SH (31)
708 #define CRINFO_RTYPE (0xf)
709 #define CRINFO_RTYPE_SH (27)
710 #define CRINFO_DIST2TO (0xff)
711 #define CRINFO_DIST2TO_SH (19)
712 #define CRINFO_RELVADDR (0x7ffff)
713 #define CRINFO_RELVADDR_SH (0)
714
715 /* A compact relocation info has long (3 words) or short (2 words)
716 formats. A short format doesn't have VADDR field and relvaddr
717 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
718 #define CRF_MIPS_LONG 1
719 #define CRF_MIPS_SHORT 0
720
721 /* There are 4 types of compact relocation at least. The value KONST
722 has different meaning for each type:
723
724 (type) (konst)
725 CT_MIPS_REL32 Address in data
726 CT_MIPS_WORD Address in word (XXX)
727 CT_MIPS_GPHI_LO GP - vaddr
728 CT_MIPS_JMPAD Address to jump
729 */
730
731 #define CRT_MIPS_REL32 0xa
732 #define CRT_MIPS_WORD 0xb
733 #define CRT_MIPS_GPHI_LO 0xc
734 #define CRT_MIPS_JMPAD 0xd
735
736 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
737 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
738 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
739 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
740 \f
741 /* The structure of the runtime procedure descriptor created by the
742 loader for use by the static exception system. */
743
744 typedef struct runtime_pdr {
745 bfd_vma adr; /* Memory address of start of procedure. */
746 long regmask; /* Save register mask. */
747 long regoffset; /* Save register offset. */
748 long fregmask; /* Save floating point register mask. */
749 long fregoffset; /* Save floating point register offset. */
750 long frameoffset; /* Frame size. */
751 short framereg; /* Frame pointer register. */
752 short pcreg; /* Offset or reg of return pc. */
753 long irpss; /* Index into the runtime string table. */
754 long reserved;
755 struct exception_info *exception_info;/* Pointer to exception array. */
756 } RPDR, *pRPDR;
757 #define cbRPDR sizeof (RPDR)
758 #define rpdNil ((pRPDR) 0)
759 \f
760 static struct mips_got_entry *mips_elf_create_local_got_entry
761 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
762 struct mips_elf_link_hash_entry *, int);
763 static bfd_boolean mips_elf_sort_hash_table_f
764 (struct mips_elf_link_hash_entry *, void *);
765 static bfd_vma mips_elf_high
766 (bfd_vma);
767 static bfd_boolean mips_elf_create_dynamic_relocation
768 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
769 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
770 bfd_vma *, asection *);
771 static bfd_vma mips_elf_adjust_gp
772 (bfd *, struct mips_got_info *, bfd *);
773
774 /* This will be used when we sort the dynamic relocation records. */
775 static bfd *reldyn_sorting_bfd;
776
777 /* True if ABFD is for CPUs with load interlocking that include
778 non-MIPS1 CPUs and R3900. */
779 #define LOAD_INTERLOCKS_P(abfd) \
780 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
781 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
782
783 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
784 This should be safe for all architectures. We enable this predicate
785 for RM9000 for now. */
786 #define JAL_TO_BAL_P(abfd) \
787 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
788
789 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
790 This should be safe for all architectures. We enable this predicate for
791 all CPUs. */
792 #define JALR_TO_BAL_P(abfd) 1
793
794 /* True if ABFD is for CPUs that are faster if JR is converted to B.
795 This should be safe for all architectures. We enable this predicate for
796 all CPUs. */
797 #define JR_TO_B_P(abfd) 1
798
799 /* True if ABFD is a PIC object. */
800 #define PIC_OBJECT_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
802
803 /* Nonzero if ABFD is using the O32 ABI. */
804 #define ABI_O32_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
806
807 /* Nonzero if ABFD is using the N32 ABI. */
808 #define ABI_N32_P(abfd) \
809 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
810
811 /* Nonzero if ABFD is using the N64 ABI. */
812 #define ABI_64_P(abfd) \
813 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
814
815 /* Nonzero if ABFD is using NewABI conventions. */
816 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
817
818 /* Nonzero if ABFD has microMIPS code. */
819 #define MICROMIPS_P(abfd) \
820 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
821
822 /* Nonzero if ABFD is MIPS R6. */
823 #define MIPSR6_P(abfd) \
824 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
825 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
826
827 /* The IRIX compatibility level we are striving for. */
828 #define IRIX_COMPAT(abfd) \
829 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
830
831 /* Whether we are trying to be compatible with IRIX at all. */
832 #define SGI_COMPAT(abfd) \
833 (IRIX_COMPAT (abfd) != ict_none)
834
835 /* The name of the options section. */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
837 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
838
839 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
840 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
841 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
842 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
843
844 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
845 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
846 (strcmp (NAME, ".MIPS.abiflags") == 0)
847
848 /* Whether the section is readonly. */
849 #define MIPS_ELF_READONLY_SECTION(sec) \
850 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
851 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
852
853 /* The name of the stub section. */
854 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
855
856 /* The size of an external REL relocation. */
857 #define MIPS_ELF_REL_SIZE(abfd) \
858 (get_elf_backend_data (abfd)->s->sizeof_rel)
859
860 /* The size of an external RELA relocation. */
861 #define MIPS_ELF_RELA_SIZE(abfd) \
862 (get_elf_backend_data (abfd)->s->sizeof_rela)
863
864 /* The size of an external dynamic table entry. */
865 #define MIPS_ELF_DYN_SIZE(abfd) \
866 (get_elf_backend_data (abfd)->s->sizeof_dyn)
867
868 /* The size of a GOT entry. */
869 #define MIPS_ELF_GOT_SIZE(abfd) \
870 (get_elf_backend_data (abfd)->s->arch_size / 8)
871
872 /* The size of the .rld_map section. */
873 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
874 (get_elf_backend_data (abfd)->s->arch_size / 8)
875
876 /* The size of a symbol-table entry. */
877 #define MIPS_ELF_SYM_SIZE(abfd) \
878 (get_elf_backend_data (abfd)->s->sizeof_sym)
879
880 /* The default alignment for sections, as a power of two. */
881 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
882 (get_elf_backend_data (abfd)->s->log_file_align)
883
884 /* Get word-sized data. */
885 #define MIPS_ELF_GET_WORD(abfd, ptr) \
886 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
887
888 /* Put out word-sized data. */
889 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
890 (ABI_64_P (abfd) \
891 ? bfd_put_64 (abfd, val, ptr) \
892 : bfd_put_32 (abfd, val, ptr))
893
894 /* The opcode for word-sized loads (LW or LD). */
895 #define MIPS_ELF_LOAD_WORD(abfd) \
896 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
897
898 /* Add a dynamic symbol table-entry. */
899 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
900 _bfd_elf_add_dynamic_entry (info, tag, val)
901
902 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
903 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
904
905 /* The name of the dynamic relocation section. */
906 #define MIPS_ELF_REL_DYN_NAME(INFO) \
907 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
908
909 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
910 from smaller values. Start with zero, widen, *then* decrement. */
911 #define MINUS_ONE (((bfd_vma)0) - 1)
912 #define MINUS_TWO (((bfd_vma)0) - 2)
913
914 /* The value to write into got[1] for SVR4 targets, to identify it is
915 a GNU object. The dynamic linker can then use got[1] to store the
916 module pointer. */
917 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
918 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
919
920 /* The offset of $gp from the beginning of the .got section. */
921 #define ELF_MIPS_GP_OFFSET(INFO) \
922 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
923
924 /* The maximum size of the GOT for it to be addressable using 16-bit
925 offsets from $gp. */
926 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
927
928 /* Instructions which appear in a stub. */
929 #define STUB_LW(abfd) \
930 ((ABI_64_P (abfd) \
931 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
932 : 0x8f998010)) /* lw t9,0x8010(gp) */
933 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
934 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
935 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
936 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
937 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
938 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S(abfd, VAL) \
940 ((ABI_64_P (abfd) \
941 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
942 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
943
944 /* Likewise for the microMIPS ASE. */
945 #define STUB_LW_MICROMIPS(abfd) \
946 (ABI_64_P (abfd) \
947 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
948 : 0xff3c8010) /* lw t9,0x8010(gp) */
949 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
950 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
951 #define STUB_LUI_MICROMIPS(VAL) \
952 (0x41b80000 + (VAL)) /* lui t8,VAL */
953 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
954 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
955 #define STUB_ORI_MICROMIPS(VAL) \
956 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
957 #define STUB_LI16U_MICROMIPS(VAL) \
958 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
959 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
960 (ABI_64_P (abfd) \
961 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
962 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
963
964 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
965 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
966 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
967 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
968 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
969 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
970
971 /* The name of the dynamic interpreter. This is put in the .interp
972 section. */
973
974 #define ELF_DYNAMIC_INTERPRETER(abfd) \
975 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
976 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
977 : "/usr/lib/libc.so.1")
978
979 #ifdef BFD64
980 #define MNAME(bfd,pre,pos) \
981 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
982 #define ELF_R_SYM(bfd, i) \
983 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
984 #define ELF_R_TYPE(bfd, i) \
985 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
986 #define ELF_R_INFO(bfd, s, t) \
987 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
988 #else
989 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
990 #define ELF_R_SYM(bfd, i) \
991 (ELF32_R_SYM (i))
992 #define ELF_R_TYPE(bfd, i) \
993 (ELF32_R_TYPE (i))
994 #define ELF_R_INFO(bfd, s, t) \
995 (ELF32_R_INFO (s, t))
996 #endif
997 \f
998 /* The mips16 compiler uses a couple of special sections to handle
999 floating point arguments.
1000
1001 Section names that look like .mips16.fn.FNNAME contain stubs that
1002 copy floating point arguments from the fp regs to the gp regs and
1003 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1004 call should be redirected to the stub instead. If no 32 bit
1005 function calls FNNAME, the stub should be discarded. We need to
1006 consider any reference to the function, not just a call, because
1007 if the address of the function is taken we will need the stub,
1008 since the address might be passed to a 32 bit function.
1009
1010 Section names that look like .mips16.call.FNNAME contain stubs
1011 that copy floating point arguments from the gp regs to the fp
1012 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1013 then any 16 bit function that calls FNNAME should be redirected
1014 to the stub instead. If FNNAME is not a 32 bit function, the
1015 stub should be discarded.
1016
1017 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1018 which call FNNAME and then copy the return value from the fp regs
1019 to the gp regs. These stubs store the return value in $18 while
1020 calling FNNAME; any function which might call one of these stubs
1021 must arrange to save $18 around the call. (This case is not
1022 needed for 32 bit functions that call 16 bit functions, because
1023 16 bit functions always return floating point values in both
1024 $f0/$f1 and $2/$3.)
1025
1026 Note that in all cases FNNAME might be defined statically.
1027 Therefore, FNNAME is not used literally. Instead, the relocation
1028 information will indicate which symbol the section is for.
1029
1030 We record any stubs that we find in the symbol table. */
1031
1032 #define FN_STUB ".mips16.fn."
1033 #define CALL_STUB ".mips16.call."
1034 #define CALL_FP_STUB ".mips16.call.fp."
1035
1036 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1037 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1038 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1039 \f
1040 /* The format of the first PLT entry in an O32 executable. */
1041 static const bfd_vma mips_o32_exec_plt0_entry[] =
1042 {
1043 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1044 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1045 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1046 0x031cc023, /* subu $24, $24, $28 */
1047 0x03e07825, /* or t7, ra, zero */
1048 0x0018c082, /* srl $24, $24, 2 */
1049 0x0320f809, /* jalr $25 */
1050 0x2718fffe /* subu $24, $24, 2 */
1051 };
1052
1053 /* The format of the first PLT entry in an O32 executable using compact
1054 jumps. */
1055 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1056 {
1057 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1058 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1059 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1060 0x031cc023, /* subu $24, $24, $28 */
1061 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1062 0x0018c082, /* srl $24, $24, 2 */
1063 0x2718fffe, /* subu $24, $24, 2 */
1064 0xf8190000 /* jalrc $25 */
1065 };
1066
1067 /* The format of the first PLT entry in an N32 executable. Different
1068 because gp ($28) is not available; we use t2 ($14) instead. */
1069 static const bfd_vma mips_n32_exec_plt0_entry[] =
1070 {
1071 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1072 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1073 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1074 0x030ec023, /* subu $24, $24, $14 */
1075 0x03e07825, /* or t7, ra, zero */
1076 0x0018c082, /* srl $24, $24, 2 */
1077 0x0320f809, /* jalr $25 */
1078 0x2718fffe /* subu $24, $24, 2 */
1079 };
1080
1081 /* The format of the first PLT entry in an N32 executable using compact
1082 jumps. Different because gp ($28) is not available; we use t2 ($14)
1083 instead. */
1084 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1085 {
1086 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1087 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1088 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1089 0x030ec023, /* subu $24, $24, $14 */
1090 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1091 0x0018c082, /* srl $24, $24, 2 */
1092 0x2718fffe, /* subu $24, $24, 2 */
1093 0xf8190000 /* jalrc $25 */
1094 };
1095
1096 /* The format of the first PLT entry in an N64 executable. Different
1097 from N32 because of the increased size of GOT entries. */
1098 static const bfd_vma mips_n64_exec_plt0_entry[] =
1099 {
1100 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1101 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1102 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1103 0x030ec023, /* subu $24, $24, $14 */
1104 0x03e07825, /* or t7, ra, zero */
1105 0x0018c0c2, /* srl $24, $24, 3 */
1106 0x0320f809, /* jalr $25 */
1107 0x2718fffe /* subu $24, $24, 2 */
1108 };
1109
1110 /* The format of the first PLT entry in an N64 executable using compact
1111 jumps. Different from N32 because of the increased size of GOT
1112 entries. */
1113 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1114 {
1115 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1116 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1117 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1118 0x030ec023, /* subu $24, $24, $14 */
1119 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1120 0x0018c0c2, /* srl $24, $24, 3 */
1121 0x2718fffe, /* subu $24, $24, 2 */
1122 0xf8190000 /* jalrc $25 */
1123 };
1124
1125
1126 /* The format of the microMIPS first PLT entry in an O32 executable.
1127 We rely on v0 ($2) rather than t8 ($24) to contain the address
1128 of the GOTPLT entry handled, so this stub may only be used when
1129 all the subsequent PLT entries are microMIPS code too.
1130
1131 The trailing NOP is for alignment and correct disassembly only. */
1132 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1133 {
1134 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1135 0xff23, 0x0000, /* lw $25, 0($3) */
1136 0x0535, /* subu $2, $2, $3 */
1137 0x2525, /* srl $2, $2, 2 */
1138 0x3302, 0xfffe, /* subu $24, $2, 2 */
1139 0x0dff, /* move $15, $31 */
1140 0x45f9, /* jalrs $25 */
1141 0x0f83, /* move $28, $3 */
1142 0x0c00 /* nop */
1143 };
1144
1145 /* The format of the microMIPS first PLT entry in an O32 executable
1146 in the insn32 mode. */
1147 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1148 {
1149 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1150 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1151 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1152 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1153 0x001f, 0x7a90, /* or $15, $31, zero */
1154 0x0318, 0x1040, /* srl $24, $24, 2 */
1155 0x03f9, 0x0f3c, /* jalr $25 */
1156 0x3318, 0xfffe /* subu $24, $24, 2 */
1157 };
1158
1159 /* The format of subsequent standard PLT entries. */
1160 static const bfd_vma mips_exec_plt_entry[] =
1161 {
1162 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1163 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1164 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1165 0x03200008 /* jr $25 */
1166 };
1167
1168 static const bfd_vma mipsr6_exec_plt_entry[] =
1169 {
1170 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1171 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1172 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1173 0x03200009 /* jr $25 */
1174 };
1175
1176 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1177 {
1178 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1179 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1180 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1181 0xd8190000 /* jic $25, 0 */
1182 };
1183
1184 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1185 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1186 directly addressable. */
1187 static const bfd_vma mips16_o32_exec_plt_entry[] =
1188 {
1189 0xb203, /* lw $2, 12($pc) */
1190 0x9a60, /* lw $3, 0($2) */
1191 0x651a, /* move $24, $2 */
1192 0xeb00, /* jr $3 */
1193 0x653b, /* move $25, $3 */
1194 0x6500, /* nop */
1195 0x0000, 0x0000 /* .word (.got.plt entry) */
1196 };
1197
1198 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1199 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1200 static const bfd_vma micromips_o32_exec_plt_entry[] =
1201 {
1202 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1203 0xff22, 0x0000, /* lw $25, 0($2) */
1204 0x4599, /* jr $25 */
1205 0x0f02 /* move $24, $2 */
1206 };
1207
1208 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1209 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1210 {
1211 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1212 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1213 0x0019, 0x0f3c, /* jr $25 */
1214 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1215 };
1216
1217 /* The format of the first PLT entry in a VxWorks executable. */
1218 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1219 {
1220 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1221 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1222 0x8f390008, /* lw t9, 8(t9) */
1223 0x00000000, /* nop */
1224 0x03200008, /* jr t9 */
1225 0x00000000 /* nop */
1226 };
1227
1228 /* The format of subsequent PLT entries. */
1229 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1230 {
1231 0x10000000, /* b .PLT_resolver */
1232 0x24180000, /* li t8, <pltindex> */
1233 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1234 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1235 0x8f390000, /* lw t9, 0(t9) */
1236 0x00000000, /* nop */
1237 0x03200008, /* jr t9 */
1238 0x00000000 /* nop */
1239 };
1240
1241 /* The format of the first PLT entry in a VxWorks shared object. */
1242 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1243 {
1244 0x8f990008, /* lw t9, 8(gp) */
1245 0x00000000, /* nop */
1246 0x03200008, /* jr t9 */
1247 0x00000000, /* nop */
1248 0x00000000, /* nop */
1249 0x00000000 /* nop */
1250 };
1251
1252 /* The format of subsequent PLT entries. */
1253 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1254 {
1255 0x10000000, /* b .PLT_resolver */
1256 0x24180000 /* li t8, <pltindex> */
1257 };
1258 \f
1259 /* microMIPS 32-bit opcode helper installer. */
1260
1261 static void
1262 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1263 {
1264 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1265 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1266 }
1267
1268 /* microMIPS 32-bit opcode helper retriever. */
1269
1270 static bfd_vma
1271 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1272 {
1273 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1274 }
1275 \f
1276 /* Look up an entry in a MIPS ELF linker hash table. */
1277
1278 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1279 ((struct mips_elf_link_hash_entry *) \
1280 elf_link_hash_lookup (&(table)->root, (string), (create), \
1281 (copy), (follow)))
1282
1283 /* Traverse a MIPS ELF linker hash table. */
1284
1285 #define mips_elf_link_hash_traverse(table, func, info) \
1286 (elf_link_hash_traverse \
1287 (&(table)->root, \
1288 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1289 (info)))
1290
1291 /* Find the base offsets for thread-local storage in this object,
1292 for GD/LD and IE/LE respectively. */
1293
1294 #define TP_OFFSET 0x7000
1295 #define DTP_OFFSET 0x8000
1296
1297 static bfd_vma
1298 dtprel_base (struct bfd_link_info *info)
1299 {
1300 /* If tls_sec is NULL, we should have signalled an error already. */
1301 if (elf_hash_table (info)->tls_sec == NULL)
1302 return 0;
1303 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1304 }
1305
1306 static bfd_vma
1307 tprel_base (struct bfd_link_info *info)
1308 {
1309 /* If tls_sec is NULL, we should have signalled an error already. */
1310 if (elf_hash_table (info)->tls_sec == NULL)
1311 return 0;
1312 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1313 }
1314
1315 /* Create an entry in a MIPS ELF linker hash table. */
1316
1317 static struct bfd_hash_entry *
1318 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1319 struct bfd_hash_table *table, const char *string)
1320 {
1321 struct mips_elf_link_hash_entry *ret =
1322 (struct mips_elf_link_hash_entry *) entry;
1323
1324 /* Allocate the structure if it has not already been allocated by a
1325 subclass. */
1326 if (ret == NULL)
1327 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1328 if (ret == NULL)
1329 return (struct bfd_hash_entry *) ret;
1330
1331 /* Call the allocation method of the superclass. */
1332 ret = ((struct mips_elf_link_hash_entry *)
1333 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1334 table, string));
1335 if (ret != NULL)
1336 {
1337 /* Set local fields. */
1338 memset (&ret->esym, 0, sizeof (EXTR));
1339 /* We use -2 as a marker to indicate that the information has
1340 not been set. -1 means there is no associated ifd. */
1341 ret->esym.ifd = -2;
1342 ret->la25_stub = 0;
1343 ret->possibly_dynamic_relocs = 0;
1344 ret->fn_stub = NULL;
1345 ret->call_stub = NULL;
1346 ret->call_fp_stub = NULL;
1347 ret->mipsxhash_loc = 0;
1348 ret->global_got_area = GGA_NONE;
1349 ret->got_only_for_calls = TRUE;
1350 ret->readonly_reloc = FALSE;
1351 ret->has_static_relocs = FALSE;
1352 ret->no_fn_stub = FALSE;
1353 ret->need_fn_stub = FALSE;
1354 ret->has_nonpic_branches = FALSE;
1355 ret->needs_lazy_stub = FALSE;
1356 ret->use_plt_entry = FALSE;
1357 }
1358
1359 return (struct bfd_hash_entry *) ret;
1360 }
1361
1362 /* Allocate MIPS ELF private object data. */
1363
1364 bfd_boolean
1365 _bfd_mips_elf_mkobject (bfd *abfd)
1366 {
1367 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1368 MIPS_ELF_DATA);
1369 }
1370
1371 bfd_boolean
1372 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1373 {
1374 if (!sec->used_by_bfd)
1375 {
1376 struct _mips_elf_section_data *sdata;
1377 size_t amt = sizeof (*sdata);
1378
1379 sdata = bfd_zalloc (abfd, amt);
1380 if (sdata == NULL)
1381 return FALSE;
1382 sec->used_by_bfd = sdata;
1383 }
1384
1385 return _bfd_elf_new_section_hook (abfd, sec);
1386 }
1387 \f
1388 /* Read ECOFF debugging information from a .mdebug section into a
1389 ecoff_debug_info structure. */
1390
1391 bfd_boolean
1392 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1393 struct ecoff_debug_info *debug)
1394 {
1395 HDRR *symhdr;
1396 const struct ecoff_debug_swap *swap;
1397 char *ext_hdr;
1398
1399 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1400 memset (debug, 0, sizeof (*debug));
1401
1402 ext_hdr = bfd_malloc (swap->external_hdr_size);
1403 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1404 goto error_return;
1405
1406 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1407 swap->external_hdr_size))
1408 goto error_return;
1409
1410 symhdr = &debug->symbolic_header;
1411 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1412
1413 /* The symbolic header contains absolute file offsets and sizes to
1414 read. */
1415 #define READ(ptr, offset, count, size, type) \
1416 do \
1417 { \
1418 size_t amt; \
1419 debug->ptr = NULL; \
1420 if (symhdr->count == 0) \
1421 break; \
1422 if (_bfd_mul_overflow (size, symhdr->count, &amt)) \
1423 { \
1424 bfd_set_error (bfd_error_file_too_big); \
1425 goto error_return; \
1426 } \
1427 debug->ptr = bfd_malloc (amt); \
1428 if (debug->ptr == NULL) \
1429 goto error_return; \
1430 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1431 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1432 goto error_return; \
1433 } while (0)
1434
1435 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1436 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1437 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1438 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1439 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1440 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1441 union aux_ext *);
1442 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1443 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1444 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1445 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1446 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1447 #undef READ
1448
1449 debug->fdr = NULL;
1450
1451 return TRUE;
1452
1453 error_return:
1454 if (ext_hdr != NULL)
1455 free (ext_hdr);
1456 if (debug->line != NULL)
1457 free (debug->line);
1458 if (debug->external_dnr != NULL)
1459 free (debug->external_dnr);
1460 if (debug->external_pdr != NULL)
1461 free (debug->external_pdr);
1462 if (debug->external_sym != NULL)
1463 free (debug->external_sym);
1464 if (debug->external_opt != NULL)
1465 free (debug->external_opt);
1466 if (debug->external_aux != NULL)
1467 free (debug->external_aux);
1468 if (debug->ss != NULL)
1469 free (debug->ss);
1470 if (debug->ssext != NULL)
1471 free (debug->ssext);
1472 if (debug->external_fdr != NULL)
1473 free (debug->external_fdr);
1474 if (debug->external_rfd != NULL)
1475 free (debug->external_rfd);
1476 if (debug->external_ext != NULL)
1477 free (debug->external_ext);
1478 return FALSE;
1479 }
1480 \f
1481 /* Swap RPDR (runtime procedure table entry) for output. */
1482
1483 static void
1484 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1485 {
1486 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1487 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1488 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1489 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1490 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1491 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1492
1493 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1494 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1495
1496 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1497 }
1498
1499 /* Create a runtime procedure table from the .mdebug section. */
1500
1501 static bfd_boolean
1502 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1503 struct bfd_link_info *info, asection *s,
1504 struct ecoff_debug_info *debug)
1505 {
1506 const struct ecoff_debug_swap *swap;
1507 HDRR *hdr = &debug->symbolic_header;
1508 RPDR *rpdr, *rp;
1509 struct rpdr_ext *erp;
1510 void *rtproc;
1511 struct pdr_ext *epdr;
1512 struct sym_ext *esym;
1513 char *ss, **sv;
1514 char *str;
1515 bfd_size_type size;
1516 bfd_size_type count;
1517 unsigned long sindex;
1518 unsigned long i;
1519 PDR pdr;
1520 SYMR sym;
1521 const char *no_name_func = _("static procedure (no name)");
1522
1523 epdr = NULL;
1524 rpdr = NULL;
1525 esym = NULL;
1526 ss = NULL;
1527 sv = NULL;
1528
1529 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1530
1531 sindex = strlen (no_name_func) + 1;
1532 count = hdr->ipdMax;
1533 if (count > 0)
1534 {
1535 size = swap->external_pdr_size;
1536
1537 epdr = bfd_malloc (size * count);
1538 if (epdr == NULL)
1539 goto error_return;
1540
1541 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1542 goto error_return;
1543
1544 size = sizeof (RPDR);
1545 rp = rpdr = bfd_malloc (size * count);
1546 if (rpdr == NULL)
1547 goto error_return;
1548
1549 size = sizeof (char *);
1550 sv = bfd_malloc (size * count);
1551 if (sv == NULL)
1552 goto error_return;
1553
1554 count = hdr->isymMax;
1555 size = swap->external_sym_size;
1556 esym = bfd_malloc (size * count);
1557 if (esym == NULL)
1558 goto error_return;
1559
1560 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1561 goto error_return;
1562
1563 count = hdr->issMax;
1564 ss = bfd_malloc (count);
1565 if (ss == NULL)
1566 goto error_return;
1567 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1568 goto error_return;
1569
1570 count = hdr->ipdMax;
1571 for (i = 0; i < (unsigned long) count; i++, rp++)
1572 {
1573 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1574 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1575 rp->adr = sym.value;
1576 rp->regmask = pdr.regmask;
1577 rp->regoffset = pdr.regoffset;
1578 rp->fregmask = pdr.fregmask;
1579 rp->fregoffset = pdr.fregoffset;
1580 rp->frameoffset = pdr.frameoffset;
1581 rp->framereg = pdr.framereg;
1582 rp->pcreg = pdr.pcreg;
1583 rp->irpss = sindex;
1584 sv[i] = ss + sym.iss;
1585 sindex += strlen (sv[i]) + 1;
1586 }
1587 }
1588
1589 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1590 size = BFD_ALIGN (size, 16);
1591 rtproc = bfd_alloc (abfd, size);
1592 if (rtproc == NULL)
1593 {
1594 mips_elf_hash_table (info)->procedure_count = 0;
1595 goto error_return;
1596 }
1597
1598 mips_elf_hash_table (info)->procedure_count = count + 2;
1599
1600 erp = rtproc;
1601 memset (erp, 0, sizeof (struct rpdr_ext));
1602 erp++;
1603 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1604 strcpy (str, no_name_func);
1605 str += strlen (no_name_func) + 1;
1606 for (i = 0; i < count; i++)
1607 {
1608 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1609 strcpy (str, sv[i]);
1610 str += strlen (sv[i]) + 1;
1611 }
1612 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1613
1614 /* Set the size and contents of .rtproc section. */
1615 s->size = size;
1616 s->contents = rtproc;
1617
1618 /* Skip this section later on (I don't think this currently
1619 matters, but someday it might). */
1620 s->map_head.link_order = NULL;
1621
1622 if (epdr != NULL)
1623 free (epdr);
1624 if (rpdr != NULL)
1625 free (rpdr);
1626 if (esym != NULL)
1627 free (esym);
1628 if (ss != NULL)
1629 free (ss);
1630 if (sv != NULL)
1631 free (sv);
1632
1633 return TRUE;
1634
1635 error_return:
1636 if (epdr != NULL)
1637 free (epdr);
1638 if (rpdr != NULL)
1639 free (rpdr);
1640 if (esym != NULL)
1641 free (esym);
1642 if (ss != NULL)
1643 free (ss);
1644 if (sv != NULL)
1645 free (sv);
1646 return FALSE;
1647 }
1648 \f
1649 /* We're going to create a stub for H. Create a symbol for the stub's
1650 value and size, to help make the disassembly easier to read. */
1651
1652 static bfd_boolean
1653 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1654 struct mips_elf_link_hash_entry *h,
1655 const char *prefix, asection *s, bfd_vma value,
1656 bfd_vma size)
1657 {
1658 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1659 struct bfd_link_hash_entry *bh;
1660 struct elf_link_hash_entry *elfh;
1661 char *name;
1662 bfd_boolean res;
1663
1664 if (micromips_p)
1665 value |= 1;
1666
1667 /* Create a new symbol. */
1668 name = concat (prefix, h->root.root.root.string, NULL);
1669 bh = NULL;
1670 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1671 BSF_LOCAL, s, value, NULL,
1672 TRUE, FALSE, &bh);
1673 free (name);
1674 if (! res)
1675 return FALSE;
1676
1677 /* Make it a local function. */
1678 elfh = (struct elf_link_hash_entry *) bh;
1679 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1680 elfh->size = size;
1681 elfh->forced_local = 1;
1682 if (micromips_p)
1683 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1684 return TRUE;
1685 }
1686
1687 /* We're about to redefine H. Create a symbol to represent H's
1688 current value and size, to help make the disassembly easier
1689 to read. */
1690
1691 static bfd_boolean
1692 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1693 struct mips_elf_link_hash_entry *h,
1694 const char *prefix)
1695 {
1696 struct bfd_link_hash_entry *bh;
1697 struct elf_link_hash_entry *elfh;
1698 char *name;
1699 asection *s;
1700 bfd_vma value;
1701 bfd_boolean res;
1702
1703 /* Read the symbol's value. */
1704 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1705 || h->root.root.type == bfd_link_hash_defweak);
1706 s = h->root.root.u.def.section;
1707 value = h->root.root.u.def.value;
1708
1709 /* Create a new symbol. */
1710 name = concat (prefix, h->root.root.root.string, NULL);
1711 bh = NULL;
1712 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1713 BSF_LOCAL, s, value, NULL,
1714 TRUE, FALSE, &bh);
1715 free (name);
1716 if (! res)
1717 return FALSE;
1718
1719 /* Make it local and copy the other attributes from H. */
1720 elfh = (struct elf_link_hash_entry *) bh;
1721 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1722 elfh->other = h->root.other;
1723 elfh->size = h->root.size;
1724 elfh->forced_local = 1;
1725 return TRUE;
1726 }
1727
1728 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1729 function rather than to a hard-float stub. */
1730
1731 static bfd_boolean
1732 section_allows_mips16_refs_p (asection *section)
1733 {
1734 const char *name;
1735
1736 name = bfd_section_name (section);
1737 return (FN_STUB_P (name)
1738 || CALL_STUB_P (name)
1739 || CALL_FP_STUB_P (name)
1740 || strcmp (name, ".pdr") == 0);
1741 }
1742
1743 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1744 stub section of some kind. Return the R_SYMNDX of the target
1745 function, or 0 if we can't decide which function that is. */
1746
1747 static unsigned long
1748 mips16_stub_symndx (const struct elf_backend_data *bed,
1749 asection *sec ATTRIBUTE_UNUSED,
1750 const Elf_Internal_Rela *relocs,
1751 const Elf_Internal_Rela *relend)
1752 {
1753 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1754 const Elf_Internal_Rela *rel;
1755
1756 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1757 one in a compound relocation. */
1758 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1759 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1760 return ELF_R_SYM (sec->owner, rel->r_info);
1761
1762 /* Otherwise trust the first relocation, whatever its kind. This is
1763 the traditional behavior. */
1764 if (relocs < relend)
1765 return ELF_R_SYM (sec->owner, relocs->r_info);
1766
1767 return 0;
1768 }
1769
1770 /* Check the mips16 stubs for a particular symbol, and see if we can
1771 discard them. */
1772
1773 static void
1774 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1775 struct mips_elf_link_hash_entry *h)
1776 {
1777 /* Dynamic symbols must use the standard call interface, in case other
1778 objects try to call them. */
1779 if (h->fn_stub != NULL
1780 && h->root.dynindx != -1)
1781 {
1782 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1783 h->need_fn_stub = TRUE;
1784 }
1785
1786 if (h->fn_stub != NULL
1787 && ! h->need_fn_stub)
1788 {
1789 /* We don't need the fn_stub; the only references to this symbol
1790 are 16 bit calls. Clobber the size to 0 to prevent it from
1791 being included in the link. */
1792 h->fn_stub->size = 0;
1793 h->fn_stub->flags &= ~SEC_RELOC;
1794 h->fn_stub->reloc_count = 0;
1795 h->fn_stub->flags |= SEC_EXCLUDE;
1796 h->fn_stub->output_section = bfd_abs_section_ptr;
1797 }
1798
1799 if (h->call_stub != NULL
1800 && ELF_ST_IS_MIPS16 (h->root.other))
1801 {
1802 /* We don't need the call_stub; this is a 16 bit function, so
1803 calls from other 16 bit functions are OK. Clobber the size
1804 to 0 to prevent it from being included in the link. */
1805 h->call_stub->size = 0;
1806 h->call_stub->flags &= ~SEC_RELOC;
1807 h->call_stub->reloc_count = 0;
1808 h->call_stub->flags |= SEC_EXCLUDE;
1809 h->call_stub->output_section = bfd_abs_section_ptr;
1810 }
1811
1812 if (h->call_fp_stub != NULL
1813 && ELF_ST_IS_MIPS16 (h->root.other))
1814 {
1815 /* We don't need the call_stub; this is a 16 bit function, so
1816 calls from other 16 bit functions are OK. Clobber the size
1817 to 0 to prevent it from being included in the link. */
1818 h->call_fp_stub->size = 0;
1819 h->call_fp_stub->flags &= ~SEC_RELOC;
1820 h->call_fp_stub->reloc_count = 0;
1821 h->call_fp_stub->flags |= SEC_EXCLUDE;
1822 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1823 }
1824 }
1825
1826 /* Hashtable callbacks for mips_elf_la25_stubs. */
1827
1828 static hashval_t
1829 mips_elf_la25_stub_hash (const void *entry_)
1830 {
1831 const struct mips_elf_la25_stub *entry;
1832
1833 entry = (struct mips_elf_la25_stub *) entry_;
1834 return entry->h->root.root.u.def.section->id
1835 + entry->h->root.root.u.def.value;
1836 }
1837
1838 static int
1839 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1840 {
1841 const struct mips_elf_la25_stub *entry1, *entry2;
1842
1843 entry1 = (struct mips_elf_la25_stub *) entry1_;
1844 entry2 = (struct mips_elf_la25_stub *) entry2_;
1845 return ((entry1->h->root.root.u.def.section
1846 == entry2->h->root.root.u.def.section)
1847 && (entry1->h->root.root.u.def.value
1848 == entry2->h->root.root.u.def.value));
1849 }
1850
1851 /* Called by the linker to set up the la25 stub-creation code. FN is
1852 the linker's implementation of add_stub_function. Return true on
1853 success. */
1854
1855 bfd_boolean
1856 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1857 asection *(*fn) (const char *, asection *,
1858 asection *))
1859 {
1860 struct mips_elf_link_hash_table *htab;
1861
1862 htab = mips_elf_hash_table (info);
1863 if (htab == NULL)
1864 return FALSE;
1865
1866 htab->add_stub_section = fn;
1867 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1868 mips_elf_la25_stub_eq, NULL);
1869 if (htab->la25_stubs == NULL)
1870 return FALSE;
1871
1872 return TRUE;
1873 }
1874
1875 /* Return true if H is a locally-defined PIC function, in the sense
1876 that it or its fn_stub might need $25 to be valid on entry.
1877 Note that MIPS16 functions set up $gp using PC-relative instructions,
1878 so they themselves never need $25 to be valid. Only non-MIPS16
1879 entry points are of interest here. */
1880
1881 static bfd_boolean
1882 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1883 {
1884 return ((h->root.root.type == bfd_link_hash_defined
1885 || h->root.root.type == bfd_link_hash_defweak)
1886 && h->root.def_regular
1887 && !bfd_is_abs_section (h->root.root.u.def.section)
1888 && !bfd_is_und_section (h->root.root.u.def.section)
1889 && (!ELF_ST_IS_MIPS16 (h->root.other)
1890 || (h->fn_stub && h->need_fn_stub))
1891 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1892 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1893 }
1894
1895 /* Set *SEC to the input section that contains the target of STUB.
1896 Return the offset of the target from the start of that section. */
1897
1898 static bfd_vma
1899 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1900 asection **sec)
1901 {
1902 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1903 {
1904 BFD_ASSERT (stub->h->need_fn_stub);
1905 *sec = stub->h->fn_stub;
1906 return 0;
1907 }
1908 else
1909 {
1910 *sec = stub->h->root.root.u.def.section;
1911 return stub->h->root.root.u.def.value;
1912 }
1913 }
1914
1915 /* STUB describes an la25 stub that we have decided to implement
1916 by inserting an LUI/ADDIU pair before the target function.
1917 Create the section and redirect the function symbol to it. */
1918
1919 static bfd_boolean
1920 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1921 struct bfd_link_info *info)
1922 {
1923 struct mips_elf_link_hash_table *htab;
1924 char *name;
1925 asection *s, *input_section;
1926 unsigned int align;
1927
1928 htab = mips_elf_hash_table (info);
1929 if (htab == NULL)
1930 return FALSE;
1931
1932 /* Create a unique name for the new section. */
1933 name = bfd_malloc (11 + sizeof (".text.stub."));
1934 if (name == NULL)
1935 return FALSE;
1936 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1937
1938 /* Create the section. */
1939 mips_elf_get_la25_target (stub, &input_section);
1940 s = htab->add_stub_section (name, input_section,
1941 input_section->output_section);
1942 if (s == NULL)
1943 return FALSE;
1944
1945 /* Make sure that any padding goes before the stub. */
1946 align = input_section->alignment_power;
1947 if (!bfd_set_section_alignment (s, align))
1948 return FALSE;
1949 if (align > 3)
1950 s->size = (1 << align) - 8;
1951
1952 /* Create a symbol for the stub. */
1953 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1954 stub->stub_section = s;
1955 stub->offset = s->size;
1956
1957 /* Allocate room for it. */
1958 s->size += 8;
1959 return TRUE;
1960 }
1961
1962 /* STUB describes an la25 stub that we have decided to implement
1963 with a separate trampoline. Allocate room for it and redirect
1964 the function symbol to it. */
1965
1966 static bfd_boolean
1967 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1968 struct bfd_link_info *info)
1969 {
1970 struct mips_elf_link_hash_table *htab;
1971 asection *s;
1972
1973 htab = mips_elf_hash_table (info);
1974 if (htab == NULL)
1975 return FALSE;
1976
1977 /* Create a trampoline section, if we haven't already. */
1978 s = htab->strampoline;
1979 if (s == NULL)
1980 {
1981 asection *input_section = stub->h->root.root.u.def.section;
1982 s = htab->add_stub_section (".text", NULL,
1983 input_section->output_section);
1984 if (s == NULL || !bfd_set_section_alignment (s, 4))
1985 return FALSE;
1986 htab->strampoline = s;
1987 }
1988
1989 /* Create a symbol for the stub. */
1990 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1991 stub->stub_section = s;
1992 stub->offset = s->size;
1993
1994 /* Allocate room for it. */
1995 s->size += 16;
1996 return TRUE;
1997 }
1998
1999 /* H describes a symbol that needs an la25 stub. Make sure that an
2000 appropriate stub exists and point H at it. */
2001
2002 static bfd_boolean
2003 mips_elf_add_la25_stub (struct bfd_link_info *info,
2004 struct mips_elf_link_hash_entry *h)
2005 {
2006 struct mips_elf_link_hash_table *htab;
2007 struct mips_elf_la25_stub search, *stub;
2008 bfd_boolean use_trampoline_p;
2009 asection *s;
2010 bfd_vma value;
2011 void **slot;
2012
2013 /* Describe the stub we want. */
2014 search.stub_section = NULL;
2015 search.offset = 0;
2016 search.h = h;
2017
2018 /* See if we've already created an equivalent stub. */
2019 htab = mips_elf_hash_table (info);
2020 if (htab == NULL)
2021 return FALSE;
2022
2023 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
2024 if (slot == NULL)
2025 return FALSE;
2026
2027 stub = (struct mips_elf_la25_stub *) *slot;
2028 if (stub != NULL)
2029 {
2030 /* We can reuse the existing stub. */
2031 h->la25_stub = stub;
2032 return TRUE;
2033 }
2034
2035 /* Create a permanent copy of ENTRY and add it to the hash table. */
2036 stub = bfd_malloc (sizeof (search));
2037 if (stub == NULL)
2038 return FALSE;
2039 *stub = search;
2040 *slot = stub;
2041
2042 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2043 of the section and if we would need no more than 2 nops. */
2044 value = mips_elf_get_la25_target (stub, &s);
2045 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2046 value &= ~1;
2047 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2048
2049 h->la25_stub = stub;
2050 return (use_trampoline_p
2051 ? mips_elf_add_la25_trampoline (stub, info)
2052 : mips_elf_add_la25_intro (stub, info));
2053 }
2054
2055 /* A mips_elf_link_hash_traverse callback that is called before sizing
2056 sections. DATA points to a mips_htab_traverse_info structure. */
2057
2058 static bfd_boolean
2059 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2060 {
2061 struct mips_htab_traverse_info *hti;
2062
2063 hti = (struct mips_htab_traverse_info *) data;
2064 if (!bfd_link_relocatable (hti->info))
2065 mips_elf_check_mips16_stubs (hti->info, h);
2066
2067 if (mips_elf_local_pic_function_p (h))
2068 {
2069 /* PR 12845: If H is in a section that has been garbage
2070 collected it will have its output section set to *ABS*. */
2071 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2072 return TRUE;
2073
2074 /* H is a function that might need $25 to be valid on entry.
2075 If we're creating a non-PIC relocatable object, mark H as
2076 being PIC. If we're creating a non-relocatable object with
2077 non-PIC branches and jumps to H, make sure that H has an la25
2078 stub. */
2079 if (bfd_link_relocatable (hti->info))
2080 {
2081 if (!PIC_OBJECT_P (hti->output_bfd))
2082 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2083 }
2084 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2085 {
2086 hti->error = TRUE;
2087 return FALSE;
2088 }
2089 }
2090 return TRUE;
2091 }
2092 \f
2093 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2094 Most mips16 instructions are 16 bits, but these instructions
2095 are 32 bits.
2096
2097 The format of these instructions is:
2098
2099 +--------------+--------------------------------+
2100 | JALX | X| Imm 20:16 | Imm 25:21 |
2101 +--------------+--------------------------------+
2102 | Immediate 15:0 |
2103 +-----------------------------------------------+
2104
2105 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2106 Note that the immediate value in the first word is swapped.
2107
2108 When producing a relocatable object file, R_MIPS16_26 is
2109 handled mostly like R_MIPS_26. In particular, the addend is
2110 stored as a straight 26-bit value in a 32-bit instruction.
2111 (gas makes life simpler for itself by never adjusting a
2112 R_MIPS16_26 reloc to be against a section, so the addend is
2113 always zero). However, the 32 bit instruction is stored as 2
2114 16-bit values, rather than a single 32-bit value. In a
2115 big-endian file, the result is the same; in a little-endian
2116 file, the two 16-bit halves of the 32 bit value are swapped.
2117 This is so that a disassembler can recognize the jal
2118 instruction.
2119
2120 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2121 instruction stored as two 16-bit values. The addend A is the
2122 contents of the targ26 field. The calculation is the same as
2123 R_MIPS_26. When storing the calculated value, reorder the
2124 immediate value as shown above, and don't forget to store the
2125 value as two 16-bit values.
2126
2127 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2128 defined as
2129
2130 big-endian:
2131 +--------+----------------------+
2132 | | |
2133 | | targ26-16 |
2134 |31 26|25 0|
2135 +--------+----------------------+
2136
2137 little-endian:
2138 +----------+------+-------------+
2139 | | | |
2140 | sub1 | | sub2 |
2141 |0 9|10 15|16 31|
2142 +----------+--------------------+
2143 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2144 ((sub1 << 16) | sub2)).
2145
2146 When producing a relocatable object file, the calculation is
2147 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2148 When producing a fully linked file, the calculation is
2149 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2150 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2151
2152 The table below lists the other MIPS16 instruction relocations.
2153 Each one is calculated in the same way as the non-MIPS16 relocation
2154 given on the right, but using the extended MIPS16 layout of 16-bit
2155 immediate fields:
2156
2157 R_MIPS16_GPREL R_MIPS_GPREL16
2158 R_MIPS16_GOT16 R_MIPS_GOT16
2159 R_MIPS16_CALL16 R_MIPS_CALL16
2160 R_MIPS16_HI16 R_MIPS_HI16
2161 R_MIPS16_LO16 R_MIPS_LO16
2162
2163 A typical instruction will have a format like this:
2164
2165 +--------------+--------------------------------+
2166 | EXTEND | Imm 10:5 | Imm 15:11 |
2167 +--------------+--------------------------------+
2168 | Major | rx | ry | Imm 4:0 |
2169 +--------------+--------------------------------+
2170
2171 EXTEND is the five bit value 11110. Major is the instruction
2172 opcode.
2173
2174 All we need to do here is shuffle the bits appropriately.
2175 As above, the two 16-bit halves must be swapped on a
2176 little-endian system.
2177
2178 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2179 relocatable field is shifted by 1 rather than 2 and the same bit
2180 shuffling is done as with the relocations above. */
2181
2182 static inline bfd_boolean
2183 mips16_reloc_p (int r_type)
2184 {
2185 switch (r_type)
2186 {
2187 case R_MIPS16_26:
2188 case R_MIPS16_GPREL:
2189 case R_MIPS16_GOT16:
2190 case R_MIPS16_CALL16:
2191 case R_MIPS16_HI16:
2192 case R_MIPS16_LO16:
2193 case R_MIPS16_TLS_GD:
2194 case R_MIPS16_TLS_LDM:
2195 case R_MIPS16_TLS_DTPREL_HI16:
2196 case R_MIPS16_TLS_DTPREL_LO16:
2197 case R_MIPS16_TLS_GOTTPREL:
2198 case R_MIPS16_TLS_TPREL_HI16:
2199 case R_MIPS16_TLS_TPREL_LO16:
2200 case R_MIPS16_PC16_S1:
2201 return TRUE;
2202
2203 default:
2204 return FALSE;
2205 }
2206 }
2207
2208 /* Check if a microMIPS reloc. */
2209
2210 static inline bfd_boolean
2211 micromips_reloc_p (unsigned int r_type)
2212 {
2213 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2214 }
2215
2216 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2217 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2218 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2219
2220 static inline bfd_boolean
2221 micromips_reloc_shuffle_p (unsigned int r_type)
2222 {
2223 return (micromips_reloc_p (r_type)
2224 && r_type != R_MICROMIPS_PC7_S1
2225 && r_type != R_MICROMIPS_PC10_S1);
2226 }
2227
2228 static inline bfd_boolean
2229 got16_reloc_p (int r_type)
2230 {
2231 return (r_type == R_MIPS_GOT16
2232 || r_type == R_MIPS16_GOT16
2233 || r_type == R_MICROMIPS_GOT16);
2234 }
2235
2236 static inline bfd_boolean
2237 call16_reloc_p (int r_type)
2238 {
2239 return (r_type == R_MIPS_CALL16
2240 || r_type == R_MIPS16_CALL16
2241 || r_type == R_MICROMIPS_CALL16);
2242 }
2243
2244 static inline bfd_boolean
2245 got_disp_reloc_p (unsigned int r_type)
2246 {
2247 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2248 }
2249
2250 static inline bfd_boolean
2251 got_page_reloc_p (unsigned int r_type)
2252 {
2253 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2254 }
2255
2256 static inline bfd_boolean
2257 got_lo16_reloc_p (unsigned int r_type)
2258 {
2259 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2260 }
2261
2262 static inline bfd_boolean
2263 call_hi16_reloc_p (unsigned int r_type)
2264 {
2265 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2266 }
2267
2268 static inline bfd_boolean
2269 call_lo16_reloc_p (unsigned int r_type)
2270 {
2271 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2272 }
2273
2274 static inline bfd_boolean
2275 hi16_reloc_p (int r_type)
2276 {
2277 return (r_type == R_MIPS_HI16
2278 || r_type == R_MIPS16_HI16
2279 || r_type == R_MICROMIPS_HI16
2280 || r_type == R_MIPS_PCHI16);
2281 }
2282
2283 static inline bfd_boolean
2284 lo16_reloc_p (int r_type)
2285 {
2286 return (r_type == R_MIPS_LO16
2287 || r_type == R_MIPS16_LO16
2288 || r_type == R_MICROMIPS_LO16
2289 || r_type == R_MIPS_PCLO16);
2290 }
2291
2292 static inline bfd_boolean
2293 mips16_call_reloc_p (int r_type)
2294 {
2295 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2296 }
2297
2298 static inline bfd_boolean
2299 jal_reloc_p (int r_type)
2300 {
2301 return (r_type == R_MIPS_26
2302 || r_type == R_MIPS16_26
2303 || r_type == R_MICROMIPS_26_S1);
2304 }
2305
2306 static inline bfd_boolean
2307 b_reloc_p (int r_type)
2308 {
2309 return (r_type == R_MIPS_PC26_S2
2310 || r_type == R_MIPS_PC21_S2
2311 || r_type == R_MIPS_PC16
2312 || r_type == R_MIPS_GNU_REL16_S2
2313 || r_type == R_MIPS16_PC16_S1
2314 || r_type == R_MICROMIPS_PC16_S1
2315 || r_type == R_MICROMIPS_PC10_S1
2316 || r_type == R_MICROMIPS_PC7_S1);
2317 }
2318
2319 static inline bfd_boolean
2320 aligned_pcrel_reloc_p (int r_type)
2321 {
2322 return (r_type == R_MIPS_PC18_S3
2323 || r_type == R_MIPS_PC19_S2);
2324 }
2325
2326 static inline bfd_boolean
2327 branch_reloc_p (int r_type)
2328 {
2329 return (r_type == R_MIPS_26
2330 || r_type == R_MIPS_PC26_S2
2331 || r_type == R_MIPS_PC21_S2
2332 || r_type == R_MIPS_PC16
2333 || r_type == R_MIPS_GNU_REL16_S2);
2334 }
2335
2336 static inline bfd_boolean
2337 mips16_branch_reloc_p (int r_type)
2338 {
2339 return (r_type == R_MIPS16_26
2340 || r_type == R_MIPS16_PC16_S1);
2341 }
2342
2343 static inline bfd_boolean
2344 micromips_branch_reloc_p (int r_type)
2345 {
2346 return (r_type == R_MICROMIPS_26_S1
2347 || r_type == R_MICROMIPS_PC16_S1
2348 || r_type == R_MICROMIPS_PC10_S1
2349 || r_type == R_MICROMIPS_PC7_S1);
2350 }
2351
2352 static inline bfd_boolean
2353 tls_gd_reloc_p (unsigned int r_type)
2354 {
2355 return (r_type == R_MIPS_TLS_GD
2356 || r_type == R_MIPS16_TLS_GD
2357 || r_type == R_MICROMIPS_TLS_GD);
2358 }
2359
2360 static inline bfd_boolean
2361 tls_ldm_reloc_p (unsigned int r_type)
2362 {
2363 return (r_type == R_MIPS_TLS_LDM
2364 || r_type == R_MIPS16_TLS_LDM
2365 || r_type == R_MICROMIPS_TLS_LDM);
2366 }
2367
2368 static inline bfd_boolean
2369 tls_gottprel_reloc_p (unsigned int r_type)
2370 {
2371 return (r_type == R_MIPS_TLS_GOTTPREL
2372 || r_type == R_MIPS16_TLS_GOTTPREL
2373 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2374 }
2375
2376 void
2377 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2378 bfd_boolean jal_shuffle, bfd_byte *data)
2379 {
2380 bfd_vma first, second, val;
2381
2382 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2383 return;
2384
2385 /* Pick up the first and second halfwords of the instruction. */
2386 first = bfd_get_16 (abfd, data);
2387 second = bfd_get_16 (abfd, data + 2);
2388 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2389 val = first << 16 | second;
2390 else if (r_type != R_MIPS16_26)
2391 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2392 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2393 else
2394 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2395 | ((first & 0x1f) << 21) | second);
2396 bfd_put_32 (abfd, val, data);
2397 }
2398
2399 void
2400 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2401 bfd_boolean jal_shuffle, bfd_byte *data)
2402 {
2403 bfd_vma first, second, val;
2404
2405 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2406 return;
2407
2408 val = bfd_get_32 (abfd, data);
2409 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2410 {
2411 second = val & 0xffff;
2412 first = val >> 16;
2413 }
2414 else if (r_type != R_MIPS16_26)
2415 {
2416 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2417 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2418 }
2419 else
2420 {
2421 second = val & 0xffff;
2422 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2423 | ((val >> 21) & 0x1f);
2424 }
2425 bfd_put_16 (abfd, second, data + 2);
2426 bfd_put_16 (abfd, first, data);
2427 }
2428
2429 bfd_reloc_status_type
2430 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2431 arelent *reloc_entry, asection *input_section,
2432 bfd_boolean relocatable, void *data, bfd_vma gp)
2433 {
2434 bfd_vma relocation;
2435 bfd_signed_vma val;
2436 bfd_reloc_status_type status;
2437
2438 if (bfd_is_com_section (symbol->section))
2439 relocation = 0;
2440 else
2441 relocation = symbol->value;
2442
2443 relocation += symbol->section->output_section->vma;
2444 relocation += symbol->section->output_offset;
2445
2446 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2447 return bfd_reloc_outofrange;
2448
2449 /* Set val to the offset into the section or symbol. */
2450 val = reloc_entry->addend;
2451
2452 _bfd_mips_elf_sign_extend (val, 16);
2453
2454 /* Adjust val for the final section location and GP value. If we
2455 are producing relocatable output, we don't want to do this for
2456 an external symbol. */
2457 if (! relocatable
2458 || (symbol->flags & BSF_SECTION_SYM) != 0)
2459 val += relocation - gp;
2460
2461 if (reloc_entry->howto->partial_inplace)
2462 {
2463 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2464 (bfd_byte *) data
2465 + reloc_entry->address);
2466 if (status != bfd_reloc_ok)
2467 return status;
2468 }
2469 else
2470 reloc_entry->addend = val;
2471
2472 if (relocatable)
2473 reloc_entry->address += input_section->output_offset;
2474
2475 return bfd_reloc_ok;
2476 }
2477
2478 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2479 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2480 that contains the relocation field and DATA points to the start of
2481 INPUT_SECTION. */
2482
2483 struct mips_hi16
2484 {
2485 struct mips_hi16 *next;
2486 bfd_byte *data;
2487 asection *input_section;
2488 arelent rel;
2489 };
2490
2491 /* FIXME: This should not be a static variable. */
2492
2493 static struct mips_hi16 *mips_hi16_list;
2494
2495 /* A howto special_function for REL *HI16 relocations. We can only
2496 calculate the correct value once we've seen the partnering
2497 *LO16 relocation, so just save the information for later.
2498
2499 The ABI requires that the *LO16 immediately follow the *HI16.
2500 However, as a GNU extension, we permit an arbitrary number of
2501 *HI16s to be associated with a single *LO16. This significantly
2502 simplies the relocation handling in gcc. */
2503
2504 bfd_reloc_status_type
2505 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2506 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2507 asection *input_section, bfd *output_bfd,
2508 char **error_message ATTRIBUTE_UNUSED)
2509 {
2510 struct mips_hi16 *n;
2511
2512 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2513 return bfd_reloc_outofrange;
2514
2515 n = bfd_malloc (sizeof *n);
2516 if (n == NULL)
2517 return bfd_reloc_outofrange;
2518
2519 n->next = mips_hi16_list;
2520 n->data = data;
2521 n->input_section = input_section;
2522 n->rel = *reloc_entry;
2523 mips_hi16_list = n;
2524
2525 if (output_bfd != NULL)
2526 reloc_entry->address += input_section->output_offset;
2527
2528 return bfd_reloc_ok;
2529 }
2530
2531 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2532 like any other 16-bit relocation when applied to global symbols, but is
2533 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2534
2535 bfd_reloc_status_type
2536 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2537 void *data, asection *input_section,
2538 bfd *output_bfd, char **error_message)
2539 {
2540 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2541 || bfd_is_und_section (bfd_asymbol_section (symbol))
2542 || bfd_is_com_section (bfd_asymbol_section (symbol)))
2543 /* The relocation is against a global symbol. */
2544 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2545 input_section, output_bfd,
2546 error_message);
2547
2548 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2549 input_section, output_bfd, error_message);
2550 }
2551
2552 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2553 is a straightforward 16 bit inplace relocation, but we must deal with
2554 any partnering high-part relocations as well. */
2555
2556 bfd_reloc_status_type
2557 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2558 void *data, asection *input_section,
2559 bfd *output_bfd, char **error_message)
2560 {
2561 bfd_vma vallo;
2562 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2563
2564 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2565 return bfd_reloc_outofrange;
2566
2567 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2568 location);
2569 vallo = bfd_get_32 (abfd, location);
2570 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2571 location);
2572
2573 while (mips_hi16_list != NULL)
2574 {
2575 bfd_reloc_status_type ret;
2576 struct mips_hi16 *hi;
2577
2578 hi = mips_hi16_list;
2579
2580 /* R_MIPS*_GOT16 relocations are something of a special case. We
2581 want to install the addend in the same way as for a R_MIPS*_HI16
2582 relocation (with a rightshift of 16). However, since GOT16
2583 relocations can also be used with global symbols, their howto
2584 has a rightshift of 0. */
2585 if (hi->rel.howto->type == R_MIPS_GOT16)
2586 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2587 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2588 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2589 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2590 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2591
2592 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2593 carry or borrow will induce a change of +1 or -1 in the high part. */
2594 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2595
2596 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2597 hi->input_section, output_bfd,
2598 error_message);
2599 if (ret != bfd_reloc_ok)
2600 return ret;
2601
2602 mips_hi16_list = hi->next;
2603 free (hi);
2604 }
2605
2606 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2607 input_section, output_bfd,
2608 error_message);
2609 }
2610
2611 /* A generic howto special_function. This calculates and installs the
2612 relocation itself, thus avoiding the oft-discussed problems in
2613 bfd_perform_relocation and bfd_install_relocation. */
2614
2615 bfd_reloc_status_type
2616 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2617 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2618 asection *input_section, bfd *output_bfd,
2619 char **error_message ATTRIBUTE_UNUSED)
2620 {
2621 bfd_signed_vma val;
2622 bfd_reloc_status_type status;
2623 bfd_boolean relocatable;
2624
2625 relocatable = (output_bfd != NULL);
2626
2627 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2628 return bfd_reloc_outofrange;
2629
2630 /* Build up the field adjustment in VAL. */
2631 val = 0;
2632 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2633 {
2634 /* Either we're calculating the final field value or we have a
2635 relocation against a section symbol. Add in the section's
2636 offset or address. */
2637 val += symbol->section->output_section->vma;
2638 val += symbol->section->output_offset;
2639 }
2640
2641 if (!relocatable)
2642 {
2643 /* We're calculating the final field value. Add in the symbol's value
2644 and, if pc-relative, subtract the address of the field itself. */
2645 val += symbol->value;
2646 if (reloc_entry->howto->pc_relative)
2647 {
2648 val -= input_section->output_section->vma;
2649 val -= input_section->output_offset;
2650 val -= reloc_entry->address;
2651 }
2652 }
2653
2654 /* VAL is now the final adjustment. If we're keeping this relocation
2655 in the output file, and if the relocation uses a separate addend,
2656 we just need to add VAL to that addend. Otherwise we need to add
2657 VAL to the relocation field itself. */
2658 if (relocatable && !reloc_entry->howto->partial_inplace)
2659 reloc_entry->addend += val;
2660 else
2661 {
2662 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2663
2664 /* Add in the separate addend, if any. */
2665 val += reloc_entry->addend;
2666
2667 /* Add VAL to the relocation field. */
2668 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2669 location);
2670 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2671 location);
2672 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2673 location);
2674
2675 if (status != bfd_reloc_ok)
2676 return status;
2677 }
2678
2679 if (relocatable)
2680 reloc_entry->address += input_section->output_offset;
2681
2682 return bfd_reloc_ok;
2683 }
2684 \f
2685 /* Swap an entry in a .gptab section. Note that these routines rely
2686 on the equivalence of the two elements of the union. */
2687
2688 static void
2689 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2690 Elf32_gptab *in)
2691 {
2692 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2693 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2694 }
2695
2696 static void
2697 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2698 Elf32_External_gptab *ex)
2699 {
2700 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2701 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2702 }
2703
2704 static void
2705 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2706 Elf32_External_compact_rel *ex)
2707 {
2708 H_PUT_32 (abfd, in->id1, ex->id1);
2709 H_PUT_32 (abfd, in->num, ex->num);
2710 H_PUT_32 (abfd, in->id2, ex->id2);
2711 H_PUT_32 (abfd, in->offset, ex->offset);
2712 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2713 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2714 }
2715
2716 static void
2717 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2718 Elf32_External_crinfo *ex)
2719 {
2720 unsigned long l;
2721
2722 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2723 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2724 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2725 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2726 H_PUT_32 (abfd, l, ex->info);
2727 H_PUT_32 (abfd, in->konst, ex->konst);
2728 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2729 }
2730 \f
2731 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2732 routines swap this structure in and out. They are used outside of
2733 BFD, so they are globally visible. */
2734
2735 void
2736 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2737 Elf32_RegInfo *in)
2738 {
2739 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2740 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2741 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2742 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2743 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2744 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2745 }
2746
2747 void
2748 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2749 Elf32_External_RegInfo *ex)
2750 {
2751 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2752 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2753 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2754 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2755 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2756 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2757 }
2758
2759 /* In the 64 bit ABI, the .MIPS.options section holds register
2760 information in an Elf64_Reginfo structure. These routines swap
2761 them in and out. They are globally visible because they are used
2762 outside of BFD. These routines are here so that gas can call them
2763 without worrying about whether the 64 bit ABI has been included. */
2764
2765 void
2766 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2767 Elf64_Internal_RegInfo *in)
2768 {
2769 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2770 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2771 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2772 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2773 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2774 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2775 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2776 }
2777
2778 void
2779 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2780 Elf64_External_RegInfo *ex)
2781 {
2782 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2783 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2784 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2785 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2786 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2787 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2788 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2789 }
2790
2791 /* Swap in an options header. */
2792
2793 void
2794 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2795 Elf_Internal_Options *in)
2796 {
2797 in->kind = H_GET_8 (abfd, ex->kind);
2798 in->size = H_GET_8 (abfd, ex->size);
2799 in->section = H_GET_16 (abfd, ex->section);
2800 in->info = H_GET_32 (abfd, ex->info);
2801 }
2802
2803 /* Swap out an options header. */
2804
2805 void
2806 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2807 Elf_External_Options *ex)
2808 {
2809 H_PUT_8 (abfd, in->kind, ex->kind);
2810 H_PUT_8 (abfd, in->size, ex->size);
2811 H_PUT_16 (abfd, in->section, ex->section);
2812 H_PUT_32 (abfd, in->info, ex->info);
2813 }
2814
2815 /* Swap in an abiflags structure. */
2816
2817 void
2818 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2819 const Elf_External_ABIFlags_v0 *ex,
2820 Elf_Internal_ABIFlags_v0 *in)
2821 {
2822 in->version = H_GET_16 (abfd, ex->version);
2823 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2824 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2825 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2826 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2827 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2828 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2829 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2830 in->ases = H_GET_32 (abfd, ex->ases);
2831 in->flags1 = H_GET_32 (abfd, ex->flags1);
2832 in->flags2 = H_GET_32 (abfd, ex->flags2);
2833 }
2834
2835 /* Swap out an abiflags structure. */
2836
2837 void
2838 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2839 const Elf_Internal_ABIFlags_v0 *in,
2840 Elf_External_ABIFlags_v0 *ex)
2841 {
2842 H_PUT_16 (abfd, in->version, ex->version);
2843 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2844 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2845 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2846 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2847 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2848 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2849 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2850 H_PUT_32 (abfd, in->ases, ex->ases);
2851 H_PUT_32 (abfd, in->flags1, ex->flags1);
2852 H_PUT_32 (abfd, in->flags2, ex->flags2);
2853 }
2854 \f
2855 /* This function is called via qsort() to sort the dynamic relocation
2856 entries by increasing r_symndx value. */
2857
2858 static int
2859 sort_dynamic_relocs (const void *arg1, const void *arg2)
2860 {
2861 Elf_Internal_Rela int_reloc1;
2862 Elf_Internal_Rela int_reloc2;
2863 int diff;
2864
2865 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2866 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2867
2868 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2869 if (diff != 0)
2870 return diff;
2871
2872 if (int_reloc1.r_offset < int_reloc2.r_offset)
2873 return -1;
2874 if (int_reloc1.r_offset > int_reloc2.r_offset)
2875 return 1;
2876 return 0;
2877 }
2878
2879 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2880
2881 static int
2882 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2883 const void *arg2 ATTRIBUTE_UNUSED)
2884 {
2885 #ifdef BFD64
2886 Elf_Internal_Rela int_reloc1[3];
2887 Elf_Internal_Rela int_reloc2[3];
2888
2889 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2890 (reldyn_sorting_bfd, arg1, int_reloc1);
2891 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2892 (reldyn_sorting_bfd, arg2, int_reloc2);
2893
2894 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2895 return -1;
2896 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2897 return 1;
2898
2899 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2900 return -1;
2901 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2902 return 1;
2903 return 0;
2904 #else
2905 abort ();
2906 #endif
2907 }
2908
2909
2910 /* This routine is used to write out ECOFF debugging external symbol
2911 information. It is called via mips_elf_link_hash_traverse. The
2912 ECOFF external symbol information must match the ELF external
2913 symbol information. Unfortunately, at this point we don't know
2914 whether a symbol is required by reloc information, so the two
2915 tables may wind up being different. We must sort out the external
2916 symbol information before we can set the final size of the .mdebug
2917 section, and we must set the size of the .mdebug section before we
2918 can relocate any sections, and we can't know which symbols are
2919 required by relocation until we relocate the sections.
2920 Fortunately, it is relatively unlikely that any symbol will be
2921 stripped but required by a reloc. In particular, it can not happen
2922 when generating a final executable. */
2923
2924 static bfd_boolean
2925 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2926 {
2927 struct extsym_info *einfo = data;
2928 bfd_boolean strip;
2929 asection *sec, *output_section;
2930
2931 if (h->root.indx == -2)
2932 strip = FALSE;
2933 else if ((h->root.def_dynamic
2934 || h->root.ref_dynamic
2935 || h->root.type == bfd_link_hash_new)
2936 && !h->root.def_regular
2937 && !h->root.ref_regular)
2938 strip = TRUE;
2939 else if (einfo->info->strip == strip_all
2940 || (einfo->info->strip == strip_some
2941 && bfd_hash_lookup (einfo->info->keep_hash,
2942 h->root.root.root.string,
2943 FALSE, FALSE) == NULL))
2944 strip = TRUE;
2945 else
2946 strip = FALSE;
2947
2948 if (strip)
2949 return TRUE;
2950
2951 if (h->esym.ifd == -2)
2952 {
2953 h->esym.jmptbl = 0;
2954 h->esym.cobol_main = 0;
2955 h->esym.weakext = 0;
2956 h->esym.reserved = 0;
2957 h->esym.ifd = ifdNil;
2958 h->esym.asym.value = 0;
2959 h->esym.asym.st = stGlobal;
2960
2961 if (h->root.root.type == bfd_link_hash_undefined
2962 || h->root.root.type == bfd_link_hash_undefweak)
2963 {
2964 const char *name;
2965
2966 /* Use undefined class. Also, set class and type for some
2967 special symbols. */
2968 name = h->root.root.root.string;
2969 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2970 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2971 {
2972 h->esym.asym.sc = scData;
2973 h->esym.asym.st = stLabel;
2974 h->esym.asym.value = 0;
2975 }
2976 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2977 {
2978 h->esym.asym.sc = scAbs;
2979 h->esym.asym.st = stLabel;
2980 h->esym.asym.value =
2981 mips_elf_hash_table (einfo->info)->procedure_count;
2982 }
2983 else
2984 h->esym.asym.sc = scUndefined;
2985 }
2986 else if (h->root.root.type != bfd_link_hash_defined
2987 && h->root.root.type != bfd_link_hash_defweak)
2988 h->esym.asym.sc = scAbs;
2989 else
2990 {
2991 const char *name;
2992
2993 sec = h->root.root.u.def.section;
2994 output_section = sec->output_section;
2995
2996 /* When making a shared library and symbol h is the one from
2997 the another shared library, OUTPUT_SECTION may be null. */
2998 if (output_section == NULL)
2999 h->esym.asym.sc = scUndefined;
3000 else
3001 {
3002 name = bfd_section_name (output_section);
3003
3004 if (strcmp (name, ".text") == 0)
3005 h->esym.asym.sc = scText;
3006 else if (strcmp (name, ".data") == 0)
3007 h->esym.asym.sc = scData;
3008 else if (strcmp (name, ".sdata") == 0)
3009 h->esym.asym.sc = scSData;
3010 else if (strcmp (name, ".rodata") == 0
3011 || strcmp (name, ".rdata") == 0)
3012 h->esym.asym.sc = scRData;
3013 else if (strcmp (name, ".bss") == 0)
3014 h->esym.asym.sc = scBss;
3015 else if (strcmp (name, ".sbss") == 0)
3016 h->esym.asym.sc = scSBss;
3017 else if (strcmp (name, ".init") == 0)
3018 h->esym.asym.sc = scInit;
3019 else if (strcmp (name, ".fini") == 0)
3020 h->esym.asym.sc = scFini;
3021 else
3022 h->esym.asym.sc = scAbs;
3023 }
3024 }
3025
3026 h->esym.asym.reserved = 0;
3027 h->esym.asym.index = indexNil;
3028 }
3029
3030 if (h->root.root.type == bfd_link_hash_common)
3031 h->esym.asym.value = h->root.root.u.c.size;
3032 else if (h->root.root.type == bfd_link_hash_defined
3033 || h->root.root.type == bfd_link_hash_defweak)
3034 {
3035 if (h->esym.asym.sc == scCommon)
3036 h->esym.asym.sc = scBss;
3037 else if (h->esym.asym.sc == scSCommon)
3038 h->esym.asym.sc = scSBss;
3039
3040 sec = h->root.root.u.def.section;
3041 output_section = sec->output_section;
3042 if (output_section != NULL)
3043 h->esym.asym.value = (h->root.root.u.def.value
3044 + sec->output_offset
3045 + output_section->vma);
3046 else
3047 h->esym.asym.value = 0;
3048 }
3049 else
3050 {
3051 struct mips_elf_link_hash_entry *hd = h;
3052
3053 while (hd->root.root.type == bfd_link_hash_indirect)
3054 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3055
3056 if (hd->needs_lazy_stub)
3057 {
3058 BFD_ASSERT (hd->root.plt.plist != NULL);
3059 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3060 /* Set type and value for a symbol with a function stub. */
3061 h->esym.asym.st = stProc;
3062 sec = hd->root.root.u.def.section;
3063 if (sec == NULL)
3064 h->esym.asym.value = 0;
3065 else
3066 {
3067 output_section = sec->output_section;
3068 if (output_section != NULL)
3069 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3070 + sec->output_offset
3071 + output_section->vma);
3072 else
3073 h->esym.asym.value = 0;
3074 }
3075 }
3076 }
3077
3078 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3079 h->root.root.root.string,
3080 &h->esym))
3081 {
3082 einfo->failed = TRUE;
3083 return FALSE;
3084 }
3085
3086 return TRUE;
3087 }
3088
3089 /* A comparison routine used to sort .gptab entries. */
3090
3091 static int
3092 gptab_compare (const void *p1, const void *p2)
3093 {
3094 const Elf32_gptab *a1 = p1;
3095 const Elf32_gptab *a2 = p2;
3096
3097 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3098 }
3099 \f
3100 /* Functions to manage the got entry hash table. */
3101
3102 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3103 hash number. */
3104
3105 static INLINE hashval_t
3106 mips_elf_hash_bfd_vma (bfd_vma addr)
3107 {
3108 #ifdef BFD64
3109 return addr + (addr >> 32);
3110 #else
3111 return addr;
3112 #endif
3113 }
3114
3115 static hashval_t
3116 mips_elf_got_entry_hash (const void *entry_)
3117 {
3118 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3119
3120 return (entry->symndx
3121 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3122 + (entry->tls_type == GOT_TLS_LDM ? 0
3123 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3124 : entry->symndx >= 0 ? (entry->abfd->id
3125 + mips_elf_hash_bfd_vma (entry->d.addend))
3126 : entry->d.h->root.root.root.hash));
3127 }
3128
3129 static int
3130 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3131 {
3132 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3133 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3134
3135 return (e1->symndx == e2->symndx
3136 && e1->tls_type == e2->tls_type
3137 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3138 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3139 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3140 && e1->d.addend == e2->d.addend)
3141 : e2->abfd && e1->d.h == e2->d.h));
3142 }
3143
3144 static hashval_t
3145 mips_got_page_ref_hash (const void *ref_)
3146 {
3147 const struct mips_got_page_ref *ref;
3148
3149 ref = (const struct mips_got_page_ref *) ref_;
3150 return ((ref->symndx >= 0
3151 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3152 : ref->u.h->root.root.root.hash)
3153 + mips_elf_hash_bfd_vma (ref->addend));
3154 }
3155
3156 static int
3157 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3158 {
3159 const struct mips_got_page_ref *ref1, *ref2;
3160
3161 ref1 = (const struct mips_got_page_ref *) ref1_;
3162 ref2 = (const struct mips_got_page_ref *) ref2_;
3163 return (ref1->symndx == ref2->symndx
3164 && (ref1->symndx < 0
3165 ? ref1->u.h == ref2->u.h
3166 : ref1->u.abfd == ref2->u.abfd)
3167 && ref1->addend == ref2->addend);
3168 }
3169
3170 static hashval_t
3171 mips_got_page_entry_hash (const void *entry_)
3172 {
3173 const struct mips_got_page_entry *entry;
3174
3175 entry = (const struct mips_got_page_entry *) entry_;
3176 return entry->sec->id;
3177 }
3178
3179 static int
3180 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3181 {
3182 const struct mips_got_page_entry *entry1, *entry2;
3183
3184 entry1 = (const struct mips_got_page_entry *) entry1_;
3185 entry2 = (const struct mips_got_page_entry *) entry2_;
3186 return entry1->sec == entry2->sec;
3187 }
3188 \f
3189 /* Create and return a new mips_got_info structure. */
3190
3191 static struct mips_got_info *
3192 mips_elf_create_got_info (bfd *abfd)
3193 {
3194 struct mips_got_info *g;
3195
3196 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3197 if (g == NULL)
3198 return NULL;
3199
3200 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3201 mips_elf_got_entry_eq, NULL);
3202 if (g->got_entries == NULL)
3203 return NULL;
3204
3205 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3206 mips_got_page_ref_eq, NULL);
3207 if (g->got_page_refs == NULL)
3208 return NULL;
3209
3210 return g;
3211 }
3212
3213 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3214 CREATE_P and if ABFD doesn't already have a GOT. */
3215
3216 static struct mips_got_info *
3217 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3218 {
3219 struct mips_elf_obj_tdata *tdata;
3220
3221 if (!is_mips_elf (abfd))
3222 return NULL;
3223
3224 tdata = mips_elf_tdata (abfd);
3225 if (!tdata->got && create_p)
3226 tdata->got = mips_elf_create_got_info (abfd);
3227 return tdata->got;
3228 }
3229
3230 /* Record that ABFD should use output GOT G. */
3231
3232 static void
3233 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3234 {
3235 struct mips_elf_obj_tdata *tdata;
3236
3237 BFD_ASSERT (is_mips_elf (abfd));
3238 tdata = mips_elf_tdata (abfd);
3239 if (tdata->got)
3240 {
3241 /* The GOT structure itself and the hash table entries are
3242 allocated to a bfd, but the hash tables aren't. */
3243 htab_delete (tdata->got->got_entries);
3244 htab_delete (tdata->got->got_page_refs);
3245 if (tdata->got->got_page_entries)
3246 htab_delete (tdata->got->got_page_entries);
3247 }
3248 tdata->got = g;
3249 }
3250
3251 /* Return the dynamic relocation section. If it doesn't exist, try to
3252 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3253 if creation fails. */
3254
3255 static asection *
3256 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3257 {
3258 const char *dname;
3259 asection *sreloc;
3260 bfd *dynobj;
3261
3262 dname = MIPS_ELF_REL_DYN_NAME (info);
3263 dynobj = elf_hash_table (info)->dynobj;
3264 sreloc = bfd_get_linker_section (dynobj, dname);
3265 if (sreloc == NULL && create_p)
3266 {
3267 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3268 (SEC_ALLOC
3269 | SEC_LOAD
3270 | SEC_HAS_CONTENTS
3271 | SEC_IN_MEMORY
3272 | SEC_LINKER_CREATED
3273 | SEC_READONLY));
3274 if (sreloc == NULL
3275 || !bfd_set_section_alignment (sreloc,
3276 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3277 return NULL;
3278 }
3279 return sreloc;
3280 }
3281
3282 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3283
3284 static int
3285 mips_elf_reloc_tls_type (unsigned int r_type)
3286 {
3287 if (tls_gd_reloc_p (r_type))
3288 return GOT_TLS_GD;
3289
3290 if (tls_ldm_reloc_p (r_type))
3291 return GOT_TLS_LDM;
3292
3293 if (tls_gottprel_reloc_p (r_type))
3294 return GOT_TLS_IE;
3295
3296 return GOT_TLS_NONE;
3297 }
3298
3299 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3300
3301 static int
3302 mips_tls_got_entries (unsigned int type)
3303 {
3304 switch (type)
3305 {
3306 case GOT_TLS_GD:
3307 case GOT_TLS_LDM:
3308 return 2;
3309
3310 case GOT_TLS_IE:
3311 return 1;
3312
3313 case GOT_TLS_NONE:
3314 return 0;
3315 }
3316 abort ();
3317 }
3318
3319 /* Count the number of relocations needed for a TLS GOT entry, with
3320 access types from TLS_TYPE, and symbol H (or a local symbol if H
3321 is NULL). */
3322
3323 static int
3324 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3325 struct elf_link_hash_entry *h)
3326 {
3327 int indx = 0;
3328 bfd_boolean need_relocs = FALSE;
3329 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3330
3331 if (h != NULL
3332 && h->dynindx != -1
3333 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3334 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3335 indx = h->dynindx;
3336
3337 if ((bfd_link_dll (info) || indx != 0)
3338 && (h == NULL
3339 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3340 || h->root.type != bfd_link_hash_undefweak))
3341 need_relocs = TRUE;
3342
3343 if (!need_relocs)
3344 return 0;
3345
3346 switch (tls_type)
3347 {
3348 case GOT_TLS_GD:
3349 return indx != 0 ? 2 : 1;
3350
3351 case GOT_TLS_IE:
3352 return 1;
3353
3354 case GOT_TLS_LDM:
3355 return bfd_link_dll (info) ? 1 : 0;
3356
3357 default:
3358 return 0;
3359 }
3360 }
3361
3362 /* Add the number of GOT entries and TLS relocations required by ENTRY
3363 to G. */
3364
3365 static void
3366 mips_elf_count_got_entry (struct bfd_link_info *info,
3367 struct mips_got_info *g,
3368 struct mips_got_entry *entry)
3369 {
3370 if (entry->tls_type)
3371 {
3372 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3373 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3374 entry->symndx < 0
3375 ? &entry->d.h->root : NULL);
3376 }
3377 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3378 g->local_gotno += 1;
3379 else
3380 g->global_gotno += 1;
3381 }
3382
3383 /* Output a simple dynamic relocation into SRELOC. */
3384
3385 static void
3386 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3387 asection *sreloc,
3388 unsigned long reloc_index,
3389 unsigned long indx,
3390 int r_type,
3391 bfd_vma offset)
3392 {
3393 Elf_Internal_Rela rel[3];
3394
3395 memset (rel, 0, sizeof (rel));
3396
3397 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3398 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3399
3400 if (ABI_64_P (output_bfd))
3401 {
3402 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3403 (output_bfd, &rel[0],
3404 (sreloc->contents
3405 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3406 }
3407 else
3408 bfd_elf32_swap_reloc_out
3409 (output_bfd, &rel[0],
3410 (sreloc->contents
3411 + reloc_index * sizeof (Elf32_External_Rel)));
3412 }
3413
3414 /* Initialize a set of TLS GOT entries for one symbol. */
3415
3416 static void
3417 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3418 struct mips_got_entry *entry,
3419 struct mips_elf_link_hash_entry *h,
3420 bfd_vma value)
3421 {
3422 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3423 struct mips_elf_link_hash_table *htab;
3424 int indx;
3425 asection *sreloc, *sgot;
3426 bfd_vma got_offset, got_offset2;
3427 bfd_boolean need_relocs = FALSE;
3428
3429 htab = mips_elf_hash_table (info);
3430 if (htab == NULL)
3431 return;
3432
3433 sgot = htab->root.sgot;
3434
3435 indx = 0;
3436 if (h != NULL
3437 && h->root.dynindx != -1
3438 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3439 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3440 indx = h->root.dynindx;
3441
3442 if (entry->tls_initialized)
3443 return;
3444
3445 if ((bfd_link_dll (info) || indx != 0)
3446 && (h == NULL
3447 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3448 || h->root.type != bfd_link_hash_undefweak))
3449 need_relocs = TRUE;
3450
3451 /* MINUS_ONE means the symbol is not defined in this object. It may not
3452 be defined at all; assume that the value doesn't matter in that
3453 case. Otherwise complain if we would use the value. */
3454 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3455 || h->root.root.type == bfd_link_hash_undefweak);
3456
3457 /* Emit necessary relocations. */
3458 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3459 got_offset = entry->gotidx;
3460
3461 switch (entry->tls_type)
3462 {
3463 case GOT_TLS_GD:
3464 /* General Dynamic. */
3465 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3466
3467 if (need_relocs)
3468 {
3469 mips_elf_output_dynamic_relocation
3470 (abfd, sreloc, sreloc->reloc_count++, indx,
3471 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3472 sgot->output_offset + sgot->output_section->vma + got_offset);
3473
3474 if (indx)
3475 mips_elf_output_dynamic_relocation
3476 (abfd, sreloc, sreloc->reloc_count++, indx,
3477 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3478 sgot->output_offset + sgot->output_section->vma + got_offset2);
3479 else
3480 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3481 sgot->contents + got_offset2);
3482 }
3483 else
3484 {
3485 MIPS_ELF_PUT_WORD (abfd, 1,
3486 sgot->contents + got_offset);
3487 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3488 sgot->contents + got_offset2);
3489 }
3490 break;
3491
3492 case GOT_TLS_IE:
3493 /* Initial Exec model. */
3494 if (need_relocs)
3495 {
3496 if (indx == 0)
3497 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3498 sgot->contents + got_offset);
3499 else
3500 MIPS_ELF_PUT_WORD (abfd, 0,
3501 sgot->contents + got_offset);
3502
3503 mips_elf_output_dynamic_relocation
3504 (abfd, sreloc, sreloc->reloc_count++, indx,
3505 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3506 sgot->output_offset + sgot->output_section->vma + got_offset);
3507 }
3508 else
3509 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3510 sgot->contents + got_offset);
3511 break;
3512
3513 case GOT_TLS_LDM:
3514 /* The initial offset is zero, and the LD offsets will include the
3515 bias by DTP_OFFSET. */
3516 MIPS_ELF_PUT_WORD (abfd, 0,
3517 sgot->contents + got_offset
3518 + MIPS_ELF_GOT_SIZE (abfd));
3519
3520 if (!bfd_link_dll (info))
3521 MIPS_ELF_PUT_WORD (abfd, 1,
3522 sgot->contents + got_offset);
3523 else
3524 mips_elf_output_dynamic_relocation
3525 (abfd, sreloc, sreloc->reloc_count++, indx,
3526 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3527 sgot->output_offset + sgot->output_section->vma + got_offset);
3528 break;
3529
3530 default:
3531 abort ();
3532 }
3533
3534 entry->tls_initialized = TRUE;
3535 }
3536
3537 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3538 for global symbol H. .got.plt comes before the GOT, so the offset
3539 will be negative. */
3540
3541 static bfd_vma
3542 mips_elf_gotplt_index (struct bfd_link_info *info,
3543 struct elf_link_hash_entry *h)
3544 {
3545 bfd_vma got_address, got_value;
3546 struct mips_elf_link_hash_table *htab;
3547
3548 htab = mips_elf_hash_table (info);
3549 BFD_ASSERT (htab != NULL);
3550
3551 BFD_ASSERT (h->plt.plist != NULL);
3552 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3553
3554 /* Calculate the address of the associated .got.plt entry. */
3555 got_address = (htab->root.sgotplt->output_section->vma
3556 + htab->root.sgotplt->output_offset
3557 + (h->plt.plist->gotplt_index
3558 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3559
3560 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3561 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3562 + htab->root.hgot->root.u.def.section->output_offset
3563 + htab->root.hgot->root.u.def.value);
3564
3565 return got_address - got_value;
3566 }
3567
3568 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3569 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3570 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3571 offset can be found. */
3572
3573 static bfd_vma
3574 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3575 bfd_vma value, unsigned long r_symndx,
3576 struct mips_elf_link_hash_entry *h, int r_type)
3577 {
3578 struct mips_elf_link_hash_table *htab;
3579 struct mips_got_entry *entry;
3580
3581 htab = mips_elf_hash_table (info);
3582 BFD_ASSERT (htab != NULL);
3583
3584 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3585 r_symndx, h, r_type);
3586 if (!entry)
3587 return MINUS_ONE;
3588
3589 if (entry->tls_type)
3590 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3591 return entry->gotidx;
3592 }
3593
3594 /* Return the GOT index of global symbol H in the primary GOT. */
3595
3596 static bfd_vma
3597 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3598 struct elf_link_hash_entry *h)
3599 {
3600 struct mips_elf_link_hash_table *htab;
3601 long global_got_dynindx;
3602 struct mips_got_info *g;
3603 bfd_vma got_index;
3604
3605 htab = mips_elf_hash_table (info);
3606 BFD_ASSERT (htab != NULL);
3607
3608 global_got_dynindx = 0;
3609 if (htab->global_gotsym != NULL)
3610 global_got_dynindx = htab->global_gotsym->dynindx;
3611
3612 /* Once we determine the global GOT entry with the lowest dynamic
3613 symbol table index, we must put all dynamic symbols with greater
3614 indices into the primary GOT. That makes it easy to calculate the
3615 GOT offset. */
3616 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3617 g = mips_elf_bfd_got (obfd, FALSE);
3618 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3619 * MIPS_ELF_GOT_SIZE (obfd));
3620 BFD_ASSERT (got_index < htab->root.sgot->size);
3621
3622 return got_index;
3623 }
3624
3625 /* Return the GOT index for the global symbol indicated by H, which is
3626 referenced by a relocation of type R_TYPE in IBFD. */
3627
3628 static bfd_vma
3629 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3630 struct elf_link_hash_entry *h, int r_type)
3631 {
3632 struct mips_elf_link_hash_table *htab;
3633 struct mips_got_info *g;
3634 struct mips_got_entry lookup, *entry;
3635 bfd_vma gotidx;
3636
3637 htab = mips_elf_hash_table (info);
3638 BFD_ASSERT (htab != NULL);
3639
3640 g = mips_elf_bfd_got (ibfd, FALSE);
3641 BFD_ASSERT (g);
3642
3643 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3644 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3645 return mips_elf_primary_global_got_index (obfd, info, h);
3646
3647 lookup.abfd = ibfd;
3648 lookup.symndx = -1;
3649 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3650 entry = htab_find (g->got_entries, &lookup);
3651 BFD_ASSERT (entry);
3652
3653 gotidx = entry->gotidx;
3654 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3655
3656 if (lookup.tls_type)
3657 {
3658 bfd_vma value = MINUS_ONE;
3659
3660 if ((h->root.type == bfd_link_hash_defined
3661 || h->root.type == bfd_link_hash_defweak)
3662 && h->root.u.def.section->output_section)
3663 value = (h->root.u.def.value
3664 + h->root.u.def.section->output_offset
3665 + h->root.u.def.section->output_section->vma);
3666
3667 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3668 }
3669 return gotidx;
3670 }
3671
3672 /* Find a GOT page entry that points to within 32KB of VALUE. These
3673 entries are supposed to be placed at small offsets in the GOT, i.e.,
3674 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3675 entry could be created. If OFFSETP is nonnull, use it to return the
3676 offset of the GOT entry from VALUE. */
3677
3678 static bfd_vma
3679 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3680 bfd_vma value, bfd_vma *offsetp)
3681 {
3682 bfd_vma page, got_index;
3683 struct mips_got_entry *entry;
3684
3685 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3686 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3687 NULL, R_MIPS_GOT_PAGE);
3688
3689 if (!entry)
3690 return MINUS_ONE;
3691
3692 got_index = entry->gotidx;
3693
3694 if (offsetp)
3695 *offsetp = value - entry->d.address;
3696
3697 return got_index;
3698 }
3699
3700 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3701 EXTERNAL is true if the relocation was originally against a global
3702 symbol that binds locally. */
3703
3704 static bfd_vma
3705 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3706 bfd_vma value, bfd_boolean external)
3707 {
3708 struct mips_got_entry *entry;
3709
3710 /* GOT16 relocations against local symbols are followed by a LO16
3711 relocation; those against global symbols are not. Thus if the
3712 symbol was originally local, the GOT16 relocation should load the
3713 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3714 if (! external)
3715 value = mips_elf_high (value) << 16;
3716
3717 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3718 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3719 same in all cases. */
3720 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3721 NULL, R_MIPS_GOT16);
3722 if (entry)
3723 return entry->gotidx;
3724 else
3725 return MINUS_ONE;
3726 }
3727
3728 /* Returns the offset for the entry at the INDEXth position
3729 in the GOT. */
3730
3731 static bfd_vma
3732 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3733 bfd *input_bfd, bfd_vma got_index)
3734 {
3735 struct mips_elf_link_hash_table *htab;
3736 asection *sgot;
3737 bfd_vma gp;
3738
3739 htab = mips_elf_hash_table (info);
3740 BFD_ASSERT (htab != NULL);
3741
3742 sgot = htab->root.sgot;
3743 gp = _bfd_get_gp_value (output_bfd)
3744 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3745
3746 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3747 }
3748
3749 /* Create and return a local GOT entry for VALUE, which was calculated
3750 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3751 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3752 instead. */
3753
3754 static struct mips_got_entry *
3755 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3756 bfd *ibfd, bfd_vma value,
3757 unsigned long r_symndx,
3758 struct mips_elf_link_hash_entry *h,
3759 int r_type)
3760 {
3761 struct mips_got_entry lookup, *entry;
3762 void **loc;
3763 struct mips_got_info *g;
3764 struct mips_elf_link_hash_table *htab;
3765 bfd_vma gotidx;
3766
3767 htab = mips_elf_hash_table (info);
3768 BFD_ASSERT (htab != NULL);
3769
3770 g = mips_elf_bfd_got (ibfd, FALSE);
3771 if (g == NULL)
3772 {
3773 g = mips_elf_bfd_got (abfd, FALSE);
3774 BFD_ASSERT (g != NULL);
3775 }
3776
3777 /* This function shouldn't be called for symbols that live in the global
3778 area of the GOT. */
3779 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3780
3781 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3782 if (lookup.tls_type)
3783 {
3784 lookup.abfd = ibfd;
3785 if (tls_ldm_reloc_p (r_type))
3786 {
3787 lookup.symndx = 0;
3788 lookup.d.addend = 0;
3789 }
3790 else if (h == NULL)
3791 {
3792 lookup.symndx = r_symndx;
3793 lookup.d.addend = 0;
3794 }
3795 else
3796 {
3797 lookup.symndx = -1;
3798 lookup.d.h = h;
3799 }
3800
3801 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3802 BFD_ASSERT (entry);
3803
3804 gotidx = entry->gotidx;
3805 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3806
3807 return entry;
3808 }
3809
3810 lookup.abfd = NULL;
3811 lookup.symndx = -1;
3812 lookup.d.address = value;
3813 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3814 if (!loc)
3815 return NULL;
3816
3817 entry = (struct mips_got_entry *) *loc;
3818 if (entry)
3819 return entry;
3820
3821 if (g->assigned_low_gotno > g->assigned_high_gotno)
3822 {
3823 /* We didn't allocate enough space in the GOT. */
3824 _bfd_error_handler
3825 (_("not enough GOT space for local GOT entries"));
3826 bfd_set_error (bfd_error_bad_value);
3827 return NULL;
3828 }
3829
3830 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3831 if (!entry)
3832 return NULL;
3833
3834 if (got16_reloc_p (r_type)
3835 || call16_reloc_p (r_type)
3836 || got_page_reloc_p (r_type)
3837 || got_disp_reloc_p (r_type))
3838 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3839 else
3840 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3841
3842 *entry = lookup;
3843 *loc = entry;
3844
3845 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3846
3847 /* These GOT entries need a dynamic relocation on VxWorks. */
3848 if (htab->is_vxworks)
3849 {
3850 Elf_Internal_Rela outrel;
3851 asection *s;
3852 bfd_byte *rloc;
3853 bfd_vma got_address;
3854
3855 s = mips_elf_rel_dyn_section (info, FALSE);
3856 got_address = (htab->root.sgot->output_section->vma
3857 + htab->root.sgot->output_offset
3858 + entry->gotidx);
3859
3860 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3861 outrel.r_offset = got_address;
3862 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3863 outrel.r_addend = value;
3864 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3865 }
3866
3867 return entry;
3868 }
3869
3870 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3871 The number might be exact or a worst-case estimate, depending on how
3872 much information is available to elf_backend_omit_section_dynsym at
3873 the current linking stage. */
3874
3875 static bfd_size_type
3876 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3877 {
3878 bfd_size_type count;
3879
3880 count = 0;
3881 if (bfd_link_pic (info)
3882 || elf_hash_table (info)->is_relocatable_executable)
3883 {
3884 asection *p;
3885 const struct elf_backend_data *bed;
3886
3887 bed = get_elf_backend_data (output_bfd);
3888 for (p = output_bfd->sections; p ; p = p->next)
3889 if ((p->flags & SEC_EXCLUDE) == 0
3890 && (p->flags & SEC_ALLOC) != 0
3891 && elf_hash_table (info)->dynamic_relocs
3892 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3893 ++count;
3894 }
3895 return count;
3896 }
3897
3898 /* Sort the dynamic symbol table so that symbols that need GOT entries
3899 appear towards the end. */
3900
3901 static bfd_boolean
3902 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3903 {
3904 struct mips_elf_link_hash_table *htab;
3905 struct mips_elf_hash_sort_data hsd;
3906 struct mips_got_info *g;
3907
3908 htab = mips_elf_hash_table (info);
3909 BFD_ASSERT (htab != NULL);
3910
3911 if (htab->root.dynsymcount == 0)
3912 return TRUE;
3913
3914 g = htab->got_info;
3915 if (g == NULL)
3916 return TRUE;
3917
3918 hsd.low = NULL;
3919 hsd.max_unref_got_dynindx
3920 = hsd.min_got_dynindx
3921 = (htab->root.dynsymcount - g->reloc_only_gotno);
3922 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3923 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3924 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3925 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3926 hsd.output_bfd = abfd;
3927 if (htab->root.dynobj != NULL
3928 && htab->root.dynamic_sections_created
3929 && info->emit_gnu_hash)
3930 {
3931 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3932 BFD_ASSERT (s != NULL);
3933 hsd.mipsxhash = s->contents;
3934 BFD_ASSERT (hsd.mipsxhash != NULL);
3935 }
3936 else
3937 hsd.mipsxhash = NULL;
3938 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3939
3940 /* There should have been enough room in the symbol table to
3941 accommodate both the GOT and non-GOT symbols. */
3942 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3943 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3944 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3945 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3946
3947 /* Now we know which dynamic symbol has the lowest dynamic symbol
3948 table index in the GOT. */
3949 htab->global_gotsym = hsd.low;
3950
3951 return TRUE;
3952 }
3953
3954 /* If H needs a GOT entry, assign it the highest available dynamic
3955 index. Otherwise, assign it the lowest available dynamic
3956 index. */
3957
3958 static bfd_boolean
3959 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3960 {
3961 struct mips_elf_hash_sort_data *hsd = data;
3962
3963 /* Symbols without dynamic symbol table entries aren't interesting
3964 at all. */
3965 if (h->root.dynindx == -1)
3966 return TRUE;
3967
3968 switch (h->global_got_area)
3969 {
3970 case GGA_NONE:
3971 if (h->root.forced_local)
3972 h->root.dynindx = hsd->max_local_dynindx++;
3973 else
3974 h->root.dynindx = hsd->max_non_got_dynindx++;
3975 break;
3976
3977 case GGA_NORMAL:
3978 h->root.dynindx = --hsd->min_got_dynindx;
3979 hsd->low = (struct elf_link_hash_entry *) h;
3980 break;
3981
3982 case GGA_RELOC_ONLY:
3983 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3984 hsd->low = (struct elf_link_hash_entry *) h;
3985 h->root.dynindx = hsd->max_unref_got_dynindx++;
3986 break;
3987 }
3988
3989 /* Populate the .MIPS.xhash translation table entry with
3990 the symbol dynindx. */
3991 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3992 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3993 hsd->mipsxhash + h->mipsxhash_loc);
3994
3995 return TRUE;
3996 }
3997
3998 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3999 (which is owned by the caller and shouldn't be added to the
4000 hash table directly). */
4001
4002 static bfd_boolean
4003 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
4004 struct mips_got_entry *lookup)
4005 {
4006 struct mips_elf_link_hash_table *htab;
4007 struct mips_got_entry *entry;
4008 struct mips_got_info *g;
4009 void **loc, **bfd_loc;
4010
4011 /* Make sure there's a slot for this entry in the master GOT. */
4012 htab = mips_elf_hash_table (info);
4013 g = htab->got_info;
4014 loc = htab_find_slot (g->got_entries, lookup, INSERT);
4015 if (!loc)
4016 return FALSE;
4017
4018 /* Populate the entry if it isn't already. */
4019 entry = (struct mips_got_entry *) *loc;
4020 if (!entry)
4021 {
4022 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
4023 if (!entry)
4024 return FALSE;
4025
4026 lookup->tls_initialized = FALSE;
4027 lookup->gotidx = -1;
4028 *entry = *lookup;
4029 *loc = entry;
4030 }
4031
4032 /* Reuse the same GOT entry for the BFD's GOT. */
4033 g = mips_elf_bfd_got (abfd, TRUE);
4034 if (!g)
4035 return FALSE;
4036
4037 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4038 if (!bfd_loc)
4039 return FALSE;
4040
4041 if (!*bfd_loc)
4042 *bfd_loc = entry;
4043 return TRUE;
4044 }
4045
4046 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4047 entry for it. FOR_CALL is true if the caller is only interested in
4048 using the GOT entry for calls. */
4049
4050 static bfd_boolean
4051 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4052 bfd *abfd, struct bfd_link_info *info,
4053 bfd_boolean for_call, int r_type)
4054 {
4055 struct mips_elf_link_hash_table *htab;
4056 struct mips_elf_link_hash_entry *hmips;
4057 struct mips_got_entry entry;
4058 unsigned char tls_type;
4059
4060 htab = mips_elf_hash_table (info);
4061 BFD_ASSERT (htab != NULL);
4062
4063 hmips = (struct mips_elf_link_hash_entry *) h;
4064 if (!for_call)
4065 hmips->got_only_for_calls = FALSE;
4066
4067 /* A global symbol in the GOT must also be in the dynamic symbol
4068 table. */
4069 if (h->dynindx == -1)
4070 {
4071 switch (ELF_ST_VISIBILITY (h->other))
4072 {
4073 case STV_INTERNAL:
4074 case STV_HIDDEN:
4075 _bfd_mips_elf_hide_symbol (info, h, TRUE);
4076 break;
4077 }
4078 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4079 return FALSE;
4080 }
4081
4082 tls_type = mips_elf_reloc_tls_type (r_type);
4083 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4084 hmips->global_got_area = GGA_NORMAL;
4085
4086 entry.abfd = abfd;
4087 entry.symndx = -1;
4088 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4089 entry.tls_type = tls_type;
4090 return mips_elf_record_got_entry (info, abfd, &entry);
4091 }
4092
4093 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4094 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4095
4096 static bfd_boolean
4097 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4098 struct bfd_link_info *info, int r_type)
4099 {
4100 struct mips_elf_link_hash_table *htab;
4101 struct mips_got_info *g;
4102 struct mips_got_entry entry;
4103
4104 htab = mips_elf_hash_table (info);
4105 BFD_ASSERT (htab != NULL);
4106
4107 g = htab->got_info;
4108 BFD_ASSERT (g != NULL);
4109
4110 entry.abfd = abfd;
4111 entry.symndx = symndx;
4112 entry.d.addend = addend;
4113 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4114 return mips_elf_record_got_entry (info, abfd, &entry);
4115 }
4116
4117 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4118 H is the symbol's hash table entry, or null if SYMNDX is local
4119 to ABFD. */
4120
4121 static bfd_boolean
4122 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4123 long symndx, struct elf_link_hash_entry *h,
4124 bfd_signed_vma addend)
4125 {
4126 struct mips_elf_link_hash_table *htab;
4127 struct mips_got_info *g1, *g2;
4128 struct mips_got_page_ref lookup, *entry;
4129 void **loc, **bfd_loc;
4130
4131 htab = mips_elf_hash_table (info);
4132 BFD_ASSERT (htab != NULL);
4133
4134 g1 = htab->got_info;
4135 BFD_ASSERT (g1 != NULL);
4136
4137 if (h)
4138 {
4139 lookup.symndx = -1;
4140 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4141 }
4142 else
4143 {
4144 lookup.symndx = symndx;
4145 lookup.u.abfd = abfd;
4146 }
4147 lookup.addend = addend;
4148 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4149 if (loc == NULL)
4150 return FALSE;
4151
4152 entry = (struct mips_got_page_ref *) *loc;
4153 if (!entry)
4154 {
4155 entry = bfd_alloc (abfd, sizeof (*entry));
4156 if (!entry)
4157 return FALSE;
4158
4159 *entry = lookup;
4160 *loc = entry;
4161 }
4162
4163 /* Add the same entry to the BFD's GOT. */
4164 g2 = mips_elf_bfd_got (abfd, TRUE);
4165 if (!g2)
4166 return FALSE;
4167
4168 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4169 if (!bfd_loc)
4170 return FALSE;
4171
4172 if (!*bfd_loc)
4173 *bfd_loc = entry;
4174
4175 return TRUE;
4176 }
4177
4178 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4179
4180 static void
4181 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4182 unsigned int n)
4183 {
4184 asection *s;
4185 struct mips_elf_link_hash_table *htab;
4186
4187 htab = mips_elf_hash_table (info);
4188 BFD_ASSERT (htab != NULL);
4189
4190 s = mips_elf_rel_dyn_section (info, FALSE);
4191 BFD_ASSERT (s != NULL);
4192
4193 if (htab->is_vxworks)
4194 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4195 else
4196 {
4197 if (s->size == 0)
4198 {
4199 /* Make room for a null element. */
4200 s->size += MIPS_ELF_REL_SIZE (abfd);
4201 ++s->reloc_count;
4202 }
4203 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4204 }
4205 }
4206 \f
4207 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4208 mips_elf_traverse_got_arg structure. Count the number of GOT
4209 entries and TLS relocs. Set DATA->value to true if we need
4210 to resolve indirect or warning symbols and then recreate the GOT. */
4211
4212 static int
4213 mips_elf_check_recreate_got (void **entryp, void *data)
4214 {
4215 struct mips_got_entry *entry;
4216 struct mips_elf_traverse_got_arg *arg;
4217
4218 entry = (struct mips_got_entry *) *entryp;
4219 arg = (struct mips_elf_traverse_got_arg *) data;
4220 if (entry->abfd != NULL && entry->symndx == -1)
4221 {
4222 struct mips_elf_link_hash_entry *h;
4223
4224 h = entry->d.h;
4225 if (h->root.root.type == bfd_link_hash_indirect
4226 || h->root.root.type == bfd_link_hash_warning)
4227 {
4228 arg->value = TRUE;
4229 return 0;
4230 }
4231 }
4232 mips_elf_count_got_entry (arg->info, arg->g, entry);
4233 return 1;
4234 }
4235
4236 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4237 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4238 converting entries for indirect and warning symbols into entries
4239 for the target symbol. Set DATA->g to null on error. */
4240
4241 static int
4242 mips_elf_recreate_got (void **entryp, void *data)
4243 {
4244 struct mips_got_entry new_entry, *entry;
4245 struct mips_elf_traverse_got_arg *arg;
4246 void **slot;
4247
4248 entry = (struct mips_got_entry *) *entryp;
4249 arg = (struct mips_elf_traverse_got_arg *) data;
4250 if (entry->abfd != NULL
4251 && entry->symndx == -1
4252 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4253 || entry->d.h->root.root.type == bfd_link_hash_warning))
4254 {
4255 struct mips_elf_link_hash_entry *h;
4256
4257 new_entry = *entry;
4258 entry = &new_entry;
4259 h = entry->d.h;
4260 do
4261 {
4262 BFD_ASSERT (h->global_got_area == GGA_NONE);
4263 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4264 }
4265 while (h->root.root.type == bfd_link_hash_indirect
4266 || h->root.root.type == bfd_link_hash_warning);
4267 entry->d.h = h;
4268 }
4269 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4270 if (slot == NULL)
4271 {
4272 arg->g = NULL;
4273 return 0;
4274 }
4275 if (*slot == NULL)
4276 {
4277 if (entry == &new_entry)
4278 {
4279 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4280 if (!entry)
4281 {
4282 arg->g = NULL;
4283 return 0;
4284 }
4285 *entry = new_entry;
4286 }
4287 *slot = entry;
4288 mips_elf_count_got_entry (arg->info, arg->g, entry);
4289 }
4290 return 1;
4291 }
4292
4293 /* Return the maximum number of GOT page entries required for RANGE. */
4294
4295 static bfd_vma
4296 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4297 {
4298 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4299 }
4300
4301 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4302
4303 static bfd_boolean
4304 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4305 asection *sec, bfd_signed_vma addend)
4306 {
4307 struct mips_got_info *g = arg->g;
4308 struct mips_got_page_entry lookup, *entry;
4309 struct mips_got_page_range **range_ptr, *range;
4310 bfd_vma old_pages, new_pages;
4311 void **loc;
4312
4313 /* Find the mips_got_page_entry hash table entry for this section. */
4314 lookup.sec = sec;
4315 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4316 if (loc == NULL)
4317 return FALSE;
4318
4319 /* Create a mips_got_page_entry if this is the first time we've
4320 seen the section. */
4321 entry = (struct mips_got_page_entry *) *loc;
4322 if (!entry)
4323 {
4324 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4325 if (!entry)
4326 return FALSE;
4327
4328 entry->sec = sec;
4329 *loc = entry;
4330 }
4331
4332 /* Skip over ranges whose maximum extent cannot share a page entry
4333 with ADDEND. */
4334 range_ptr = &entry->ranges;
4335 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4336 range_ptr = &(*range_ptr)->next;
4337
4338 /* If we scanned to the end of the list, or found a range whose
4339 minimum extent cannot share a page entry with ADDEND, create
4340 a new singleton range. */
4341 range = *range_ptr;
4342 if (!range || addend < range->min_addend - 0xffff)
4343 {
4344 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4345 if (!range)
4346 return FALSE;
4347
4348 range->next = *range_ptr;
4349 range->min_addend = addend;
4350 range->max_addend = addend;
4351
4352 *range_ptr = range;
4353 entry->num_pages++;
4354 g->page_gotno++;
4355 return TRUE;
4356 }
4357
4358 /* Remember how many pages the old range contributed. */
4359 old_pages = mips_elf_pages_for_range (range);
4360
4361 /* Update the ranges. */
4362 if (addend < range->min_addend)
4363 range->min_addend = addend;
4364 else if (addend > range->max_addend)
4365 {
4366 if (range->next && addend >= range->next->min_addend - 0xffff)
4367 {
4368 old_pages += mips_elf_pages_for_range (range->next);
4369 range->max_addend = range->next->max_addend;
4370 range->next = range->next->next;
4371 }
4372 else
4373 range->max_addend = addend;
4374 }
4375
4376 /* Record any change in the total estimate. */
4377 new_pages = mips_elf_pages_for_range (range);
4378 if (old_pages != new_pages)
4379 {
4380 entry->num_pages += new_pages - old_pages;
4381 g->page_gotno += new_pages - old_pages;
4382 }
4383
4384 return TRUE;
4385 }
4386
4387 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4388 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4389 whether the page reference described by *REFP needs a GOT page entry,
4390 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4391
4392 static bfd_boolean
4393 mips_elf_resolve_got_page_ref (void **refp, void *data)
4394 {
4395 struct mips_got_page_ref *ref;
4396 struct mips_elf_traverse_got_arg *arg;
4397 struct mips_elf_link_hash_table *htab;
4398 asection *sec;
4399 bfd_vma addend;
4400
4401 ref = (struct mips_got_page_ref *) *refp;
4402 arg = (struct mips_elf_traverse_got_arg *) data;
4403 htab = mips_elf_hash_table (arg->info);
4404
4405 if (ref->symndx < 0)
4406 {
4407 struct mips_elf_link_hash_entry *h;
4408
4409 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4410 h = ref->u.h;
4411 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4412 return 1;
4413
4414 /* Ignore undefined symbols; we'll issue an error later if
4415 appropriate. */
4416 if (!((h->root.root.type == bfd_link_hash_defined
4417 || h->root.root.type == bfd_link_hash_defweak)
4418 && h->root.root.u.def.section))
4419 return 1;
4420
4421 sec = h->root.root.u.def.section;
4422 addend = h->root.root.u.def.value + ref->addend;
4423 }
4424 else
4425 {
4426 Elf_Internal_Sym *isym;
4427
4428 /* Read in the symbol. */
4429 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4430 ref->symndx);
4431 if (isym == NULL)
4432 {
4433 arg->g = NULL;
4434 return 0;
4435 }
4436
4437 /* Get the associated input section. */
4438 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4439 if (sec == NULL)
4440 {
4441 arg->g = NULL;
4442 return 0;
4443 }
4444
4445 /* If this is a mergable section, work out the section and offset
4446 of the merged data. For section symbols, the addend specifies
4447 of the offset _of_ the first byte in the data, otherwise it
4448 specifies the offset _from_ the first byte. */
4449 if (sec->flags & SEC_MERGE)
4450 {
4451 void *secinfo;
4452
4453 secinfo = elf_section_data (sec)->sec_info;
4454 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4455 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4456 isym->st_value + ref->addend);
4457 else
4458 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4459 isym->st_value) + ref->addend;
4460 }
4461 else
4462 addend = isym->st_value + ref->addend;
4463 }
4464 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4465 {
4466 arg->g = NULL;
4467 return 0;
4468 }
4469 return 1;
4470 }
4471
4472 /* If any entries in G->got_entries are for indirect or warning symbols,
4473 replace them with entries for the target symbol. Convert g->got_page_refs
4474 into got_page_entry structures and estimate the number of page entries
4475 that they require. */
4476
4477 static bfd_boolean
4478 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4479 struct mips_got_info *g)
4480 {
4481 struct mips_elf_traverse_got_arg tga;
4482 struct mips_got_info oldg;
4483
4484 oldg = *g;
4485
4486 tga.info = info;
4487 tga.g = g;
4488 tga.value = FALSE;
4489 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4490 if (tga.value)
4491 {
4492 *g = oldg;
4493 g->got_entries = htab_create (htab_size (oldg.got_entries),
4494 mips_elf_got_entry_hash,
4495 mips_elf_got_entry_eq, NULL);
4496 if (!g->got_entries)
4497 return FALSE;
4498
4499 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4500 if (!tga.g)
4501 return FALSE;
4502
4503 htab_delete (oldg.got_entries);
4504 }
4505
4506 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4507 mips_got_page_entry_eq, NULL);
4508 if (g->got_page_entries == NULL)
4509 return FALSE;
4510
4511 tga.info = info;
4512 tga.g = g;
4513 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4514
4515 return TRUE;
4516 }
4517
4518 /* Return true if a GOT entry for H should live in the local rather than
4519 global GOT area. */
4520
4521 static bfd_boolean
4522 mips_use_local_got_p (struct bfd_link_info *info,
4523 struct mips_elf_link_hash_entry *h)
4524 {
4525 /* Symbols that aren't in the dynamic symbol table must live in the
4526 local GOT. This includes symbols that are completely undefined
4527 and which therefore don't bind locally. We'll report undefined
4528 symbols later if appropriate. */
4529 if (h->root.dynindx == -1)
4530 return TRUE;
4531
4532 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4533 to the local GOT, as they would be implicitly relocated by the
4534 base address by the dynamic loader. */
4535 if (bfd_is_abs_symbol (&h->root.root))
4536 return FALSE;
4537
4538 /* Symbols that bind locally can (and in the case of forced-local
4539 symbols, must) live in the local GOT. */
4540 if (h->got_only_for_calls
4541 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4542 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4543 return TRUE;
4544
4545 /* If this is an executable that must provide a definition of the symbol,
4546 either though PLTs or copy relocations, then that address should go in
4547 the local rather than global GOT. */
4548 if (bfd_link_executable (info) && h->has_static_relocs)
4549 return TRUE;
4550
4551 return FALSE;
4552 }
4553
4554 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4555 link_info structure. Decide whether the hash entry needs an entry in
4556 the global part of the primary GOT, setting global_got_area accordingly.
4557 Count the number of global symbols that are in the primary GOT only
4558 because they have relocations against them (reloc_only_gotno). */
4559
4560 static int
4561 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4562 {
4563 struct bfd_link_info *info;
4564 struct mips_elf_link_hash_table *htab;
4565 struct mips_got_info *g;
4566
4567 info = (struct bfd_link_info *) data;
4568 htab = mips_elf_hash_table (info);
4569 g = htab->got_info;
4570 if (h->global_got_area != GGA_NONE)
4571 {
4572 /* Make a final decision about whether the symbol belongs in the
4573 local or global GOT. */
4574 if (mips_use_local_got_p (info, h))
4575 /* The symbol belongs in the local GOT. We no longer need this
4576 entry if it was only used for relocations; those relocations
4577 will be against the null or section symbol instead of H. */
4578 h->global_got_area = GGA_NONE;
4579 else if (htab->is_vxworks
4580 && h->got_only_for_calls
4581 && h->root.plt.plist->mips_offset != MINUS_ONE)
4582 /* On VxWorks, calls can refer directly to the .got.plt entry;
4583 they don't need entries in the regular GOT. .got.plt entries
4584 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4585 h->global_got_area = GGA_NONE;
4586 else if (h->global_got_area == GGA_RELOC_ONLY)
4587 {
4588 g->reloc_only_gotno++;
4589 g->global_gotno++;
4590 }
4591 }
4592 return 1;
4593 }
4594 \f
4595 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4596 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4597
4598 static int
4599 mips_elf_add_got_entry (void **entryp, void *data)
4600 {
4601 struct mips_got_entry *entry;
4602 struct mips_elf_traverse_got_arg *arg;
4603 void **slot;
4604
4605 entry = (struct mips_got_entry *) *entryp;
4606 arg = (struct mips_elf_traverse_got_arg *) data;
4607 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4608 if (!slot)
4609 {
4610 arg->g = NULL;
4611 return 0;
4612 }
4613 if (!*slot)
4614 {
4615 *slot = entry;
4616 mips_elf_count_got_entry (arg->info, arg->g, entry);
4617 }
4618 return 1;
4619 }
4620
4621 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4622 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4623
4624 static int
4625 mips_elf_add_got_page_entry (void **entryp, void *data)
4626 {
4627 struct mips_got_page_entry *entry;
4628 struct mips_elf_traverse_got_arg *arg;
4629 void **slot;
4630
4631 entry = (struct mips_got_page_entry *) *entryp;
4632 arg = (struct mips_elf_traverse_got_arg *) data;
4633 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4634 if (!slot)
4635 {
4636 arg->g = NULL;
4637 return 0;
4638 }
4639 if (!*slot)
4640 {
4641 *slot = entry;
4642 arg->g->page_gotno += entry->num_pages;
4643 }
4644 return 1;
4645 }
4646
4647 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4648 this would lead to overflow, 1 if they were merged successfully,
4649 and 0 if a merge failed due to lack of memory. (These values are chosen
4650 so that nonnegative return values can be returned by a htab_traverse
4651 callback.) */
4652
4653 static int
4654 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4655 struct mips_got_info *to,
4656 struct mips_elf_got_per_bfd_arg *arg)
4657 {
4658 struct mips_elf_traverse_got_arg tga;
4659 unsigned int estimate;
4660
4661 /* Work out how many page entries we would need for the combined GOT. */
4662 estimate = arg->max_pages;
4663 if (estimate >= from->page_gotno + to->page_gotno)
4664 estimate = from->page_gotno + to->page_gotno;
4665
4666 /* And conservatively estimate how many local and TLS entries
4667 would be needed. */
4668 estimate += from->local_gotno + to->local_gotno;
4669 estimate += from->tls_gotno + to->tls_gotno;
4670
4671 /* If we're merging with the primary got, any TLS relocations will
4672 come after the full set of global entries. Otherwise estimate those
4673 conservatively as well. */
4674 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4675 estimate += arg->global_count;
4676 else
4677 estimate += from->global_gotno + to->global_gotno;
4678
4679 /* Bail out if the combined GOT might be too big. */
4680 if (estimate > arg->max_count)
4681 return -1;
4682
4683 /* Transfer the bfd's got information from FROM to TO. */
4684 tga.info = arg->info;
4685 tga.g = to;
4686 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4687 if (!tga.g)
4688 return 0;
4689
4690 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4691 if (!tga.g)
4692 return 0;
4693
4694 mips_elf_replace_bfd_got (abfd, to);
4695 return 1;
4696 }
4697
4698 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4699 as possible of the primary got, since it doesn't require explicit
4700 dynamic relocations, but don't use bfds that would reference global
4701 symbols out of the addressable range. Failing the primary got,
4702 attempt to merge with the current got, or finish the current got
4703 and then make make the new got current. */
4704
4705 static bfd_boolean
4706 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4707 struct mips_elf_got_per_bfd_arg *arg)
4708 {
4709 unsigned int estimate;
4710 int result;
4711
4712 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4713 return FALSE;
4714
4715 /* Work out the number of page, local and TLS entries. */
4716 estimate = arg->max_pages;
4717 if (estimate > g->page_gotno)
4718 estimate = g->page_gotno;
4719 estimate += g->local_gotno + g->tls_gotno;
4720
4721 /* We place TLS GOT entries after both locals and globals. The globals
4722 for the primary GOT may overflow the normal GOT size limit, so be
4723 sure not to merge a GOT which requires TLS with the primary GOT in that
4724 case. This doesn't affect non-primary GOTs. */
4725 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4726
4727 if (estimate <= arg->max_count)
4728 {
4729 /* If we don't have a primary GOT, use it as
4730 a starting point for the primary GOT. */
4731 if (!arg->primary)
4732 {
4733 arg->primary = g;
4734 return TRUE;
4735 }
4736
4737 /* Try merging with the primary GOT. */
4738 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4739 if (result >= 0)
4740 return result;
4741 }
4742
4743 /* If we can merge with the last-created got, do it. */
4744 if (arg->current)
4745 {
4746 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4747 if (result >= 0)
4748 return result;
4749 }
4750
4751 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4752 fits; if it turns out that it doesn't, we'll get relocation
4753 overflows anyway. */
4754 g->next = arg->current;
4755 arg->current = g;
4756
4757 return TRUE;
4758 }
4759
4760 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4761 to GOTIDX, duplicating the entry if it has already been assigned
4762 an index in a different GOT. */
4763
4764 static bfd_boolean
4765 mips_elf_set_gotidx (void **entryp, long gotidx)
4766 {
4767 struct mips_got_entry *entry;
4768
4769 entry = (struct mips_got_entry *) *entryp;
4770 if (entry->gotidx > 0)
4771 {
4772 struct mips_got_entry *new_entry;
4773
4774 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4775 if (!new_entry)
4776 return FALSE;
4777
4778 *new_entry = *entry;
4779 *entryp = new_entry;
4780 entry = new_entry;
4781 }
4782 entry->gotidx = gotidx;
4783 return TRUE;
4784 }
4785
4786 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4787 mips_elf_traverse_got_arg in which DATA->value is the size of one
4788 GOT entry. Set DATA->g to null on failure. */
4789
4790 static int
4791 mips_elf_initialize_tls_index (void **entryp, void *data)
4792 {
4793 struct mips_got_entry *entry;
4794 struct mips_elf_traverse_got_arg *arg;
4795
4796 /* We're only interested in TLS symbols. */
4797 entry = (struct mips_got_entry *) *entryp;
4798 if (entry->tls_type == GOT_TLS_NONE)
4799 return 1;
4800
4801 arg = (struct mips_elf_traverse_got_arg *) data;
4802 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4803 {
4804 arg->g = NULL;
4805 return 0;
4806 }
4807
4808 /* Account for the entries we've just allocated. */
4809 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4810 return 1;
4811 }
4812
4813 /* A htab_traverse callback for GOT entries, where DATA points to a
4814 mips_elf_traverse_got_arg. Set the global_got_area of each global
4815 symbol to DATA->value. */
4816
4817 static int
4818 mips_elf_set_global_got_area (void **entryp, void *data)
4819 {
4820 struct mips_got_entry *entry;
4821 struct mips_elf_traverse_got_arg *arg;
4822
4823 entry = (struct mips_got_entry *) *entryp;
4824 arg = (struct mips_elf_traverse_got_arg *) data;
4825 if (entry->abfd != NULL
4826 && entry->symndx == -1
4827 && entry->d.h->global_got_area != GGA_NONE)
4828 entry->d.h->global_got_area = arg->value;
4829 return 1;
4830 }
4831
4832 /* A htab_traverse callback for secondary GOT entries, where DATA points
4833 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4834 and record the number of relocations they require. DATA->value is
4835 the size of one GOT entry. Set DATA->g to null on failure. */
4836
4837 static int
4838 mips_elf_set_global_gotidx (void **entryp, void *data)
4839 {
4840 struct mips_got_entry *entry;
4841 struct mips_elf_traverse_got_arg *arg;
4842
4843 entry = (struct mips_got_entry *) *entryp;
4844 arg = (struct mips_elf_traverse_got_arg *) data;
4845 if (entry->abfd != NULL
4846 && entry->symndx == -1
4847 && entry->d.h->global_got_area != GGA_NONE)
4848 {
4849 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4850 {
4851 arg->g = NULL;
4852 return 0;
4853 }
4854 arg->g->assigned_low_gotno += 1;
4855
4856 if (bfd_link_pic (arg->info)
4857 || (elf_hash_table (arg->info)->dynamic_sections_created
4858 && entry->d.h->root.def_dynamic
4859 && !entry->d.h->root.def_regular))
4860 arg->g->relocs += 1;
4861 }
4862
4863 return 1;
4864 }
4865
4866 /* A htab_traverse callback for GOT entries for which DATA is the
4867 bfd_link_info. Forbid any global symbols from having traditional
4868 lazy-binding stubs. */
4869
4870 static int
4871 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4872 {
4873 struct bfd_link_info *info;
4874 struct mips_elf_link_hash_table *htab;
4875 struct mips_got_entry *entry;
4876
4877 entry = (struct mips_got_entry *) *entryp;
4878 info = (struct bfd_link_info *) data;
4879 htab = mips_elf_hash_table (info);
4880 BFD_ASSERT (htab != NULL);
4881
4882 if (entry->abfd != NULL
4883 && entry->symndx == -1
4884 && entry->d.h->needs_lazy_stub)
4885 {
4886 entry->d.h->needs_lazy_stub = FALSE;
4887 htab->lazy_stub_count--;
4888 }
4889
4890 return 1;
4891 }
4892
4893 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4894 the primary GOT. */
4895 static bfd_vma
4896 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4897 {
4898 if (!g->next)
4899 return 0;
4900
4901 g = mips_elf_bfd_got (ibfd, FALSE);
4902 if (! g)
4903 return 0;
4904
4905 BFD_ASSERT (g->next);
4906
4907 g = g->next;
4908
4909 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4910 * MIPS_ELF_GOT_SIZE (abfd);
4911 }
4912
4913 /* Turn a single GOT that is too big for 16-bit addressing into
4914 a sequence of GOTs, each one 16-bit addressable. */
4915
4916 static bfd_boolean
4917 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4918 asection *got, bfd_size_type pages)
4919 {
4920 struct mips_elf_link_hash_table *htab;
4921 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4922 struct mips_elf_traverse_got_arg tga;
4923 struct mips_got_info *g, *gg;
4924 unsigned int assign, needed_relocs;
4925 bfd *dynobj, *ibfd;
4926
4927 dynobj = elf_hash_table (info)->dynobj;
4928 htab = mips_elf_hash_table (info);
4929 BFD_ASSERT (htab != NULL);
4930
4931 g = htab->got_info;
4932
4933 got_per_bfd_arg.obfd = abfd;
4934 got_per_bfd_arg.info = info;
4935 got_per_bfd_arg.current = NULL;
4936 got_per_bfd_arg.primary = NULL;
4937 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4938 / MIPS_ELF_GOT_SIZE (abfd))
4939 - htab->reserved_gotno);
4940 got_per_bfd_arg.max_pages = pages;
4941 /* The number of globals that will be included in the primary GOT.
4942 See the calls to mips_elf_set_global_got_area below for more
4943 information. */
4944 got_per_bfd_arg.global_count = g->global_gotno;
4945
4946 /* Try to merge the GOTs of input bfds together, as long as they
4947 don't seem to exceed the maximum GOT size, choosing one of them
4948 to be the primary GOT. */
4949 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4950 {
4951 gg = mips_elf_bfd_got (ibfd, FALSE);
4952 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4953 return FALSE;
4954 }
4955
4956 /* If we do not find any suitable primary GOT, create an empty one. */
4957 if (got_per_bfd_arg.primary == NULL)
4958 g->next = mips_elf_create_got_info (abfd);
4959 else
4960 g->next = got_per_bfd_arg.primary;
4961 g->next->next = got_per_bfd_arg.current;
4962
4963 /* GG is now the master GOT, and G is the primary GOT. */
4964 gg = g;
4965 g = g->next;
4966
4967 /* Map the output bfd to the primary got. That's what we're going
4968 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4969 didn't mark in check_relocs, and we want a quick way to find it.
4970 We can't just use gg->next because we're going to reverse the
4971 list. */
4972 mips_elf_replace_bfd_got (abfd, g);
4973
4974 /* Every symbol that is referenced in a dynamic relocation must be
4975 present in the primary GOT, so arrange for them to appear after
4976 those that are actually referenced. */
4977 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4978 g->global_gotno = gg->global_gotno;
4979
4980 tga.info = info;
4981 tga.value = GGA_RELOC_ONLY;
4982 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4983 tga.value = GGA_NORMAL;
4984 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4985
4986 /* Now go through the GOTs assigning them offset ranges.
4987 [assigned_low_gotno, local_gotno[ will be set to the range of local
4988 entries in each GOT. We can then compute the end of a GOT by
4989 adding local_gotno to global_gotno. We reverse the list and make
4990 it circular since then we'll be able to quickly compute the
4991 beginning of a GOT, by computing the end of its predecessor. To
4992 avoid special cases for the primary GOT, while still preserving
4993 assertions that are valid for both single- and multi-got links,
4994 we arrange for the main got struct to have the right number of
4995 global entries, but set its local_gotno such that the initial
4996 offset of the primary GOT is zero. Remember that the primary GOT
4997 will become the last item in the circular linked list, so it
4998 points back to the master GOT. */
4999 gg->local_gotno = -g->global_gotno;
5000 gg->global_gotno = g->global_gotno;
5001 gg->tls_gotno = 0;
5002 assign = 0;
5003 gg->next = gg;
5004
5005 do
5006 {
5007 struct mips_got_info *gn;
5008
5009 assign += htab->reserved_gotno;
5010 g->assigned_low_gotno = assign;
5011 g->local_gotno += assign;
5012 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
5013 g->assigned_high_gotno = g->local_gotno - 1;
5014 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
5015
5016 /* Take g out of the direct list, and push it onto the reversed
5017 list that gg points to. g->next is guaranteed to be nonnull after
5018 this operation, as required by mips_elf_initialize_tls_index. */
5019 gn = g->next;
5020 g->next = gg->next;
5021 gg->next = g;
5022
5023 /* Set up any TLS entries. We always place the TLS entries after
5024 all non-TLS entries. */
5025 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
5026 tga.g = g;
5027 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5028 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5029 if (!tga.g)
5030 return FALSE;
5031 BFD_ASSERT (g->tls_assigned_gotno == assign);
5032
5033 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5034 g = gn;
5035
5036 /* Forbid global symbols in every non-primary GOT from having
5037 lazy-binding stubs. */
5038 if (g)
5039 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5040 }
5041 while (g);
5042
5043 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5044
5045 needed_relocs = 0;
5046 for (g = gg->next; g && g->next != gg; g = g->next)
5047 {
5048 unsigned int save_assign;
5049
5050 /* Assign offsets to global GOT entries and count how many
5051 relocations they need. */
5052 save_assign = g->assigned_low_gotno;
5053 g->assigned_low_gotno = g->local_gotno;
5054 tga.info = info;
5055 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5056 tga.g = g;
5057 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5058 if (!tga.g)
5059 return FALSE;
5060 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5061 g->assigned_low_gotno = save_assign;
5062
5063 if (bfd_link_pic (info))
5064 {
5065 g->relocs += g->local_gotno - g->assigned_low_gotno;
5066 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5067 + g->next->global_gotno
5068 + g->next->tls_gotno
5069 + htab->reserved_gotno);
5070 }
5071 needed_relocs += g->relocs;
5072 }
5073 needed_relocs += g->relocs;
5074
5075 if (needed_relocs)
5076 mips_elf_allocate_dynamic_relocations (dynobj, info,
5077 needed_relocs);
5078
5079 return TRUE;
5080 }
5081
5082 \f
5083 /* Returns the first relocation of type r_type found, beginning with
5084 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5085
5086 static const Elf_Internal_Rela *
5087 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5088 const Elf_Internal_Rela *relocation,
5089 const Elf_Internal_Rela *relend)
5090 {
5091 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5092
5093 while (relocation < relend)
5094 {
5095 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5096 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5097 return relocation;
5098
5099 ++relocation;
5100 }
5101
5102 /* We didn't find it. */
5103 return NULL;
5104 }
5105
5106 /* Return whether an input relocation is against a local symbol. */
5107
5108 static bfd_boolean
5109 mips_elf_local_relocation_p (bfd *input_bfd,
5110 const Elf_Internal_Rela *relocation,
5111 asection **local_sections)
5112 {
5113 unsigned long r_symndx;
5114 Elf_Internal_Shdr *symtab_hdr;
5115 size_t extsymoff;
5116
5117 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5118 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5119 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5120
5121 if (r_symndx < extsymoff)
5122 return TRUE;
5123 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5124 return TRUE;
5125
5126 return FALSE;
5127 }
5128 \f
5129 /* Sign-extend VALUE, which has the indicated number of BITS. */
5130
5131 bfd_vma
5132 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5133 {
5134 if (value & ((bfd_vma) 1 << (bits - 1)))
5135 /* VALUE is negative. */
5136 value |= ((bfd_vma) - 1) << bits;
5137
5138 return value;
5139 }
5140
5141 /* Return non-zero if the indicated VALUE has overflowed the maximum
5142 range expressible by a signed number with the indicated number of
5143 BITS. */
5144
5145 static bfd_boolean
5146 mips_elf_overflow_p (bfd_vma value, int bits)
5147 {
5148 bfd_signed_vma svalue = (bfd_signed_vma) value;
5149
5150 if (svalue > (1 << (bits - 1)) - 1)
5151 /* The value is too big. */
5152 return TRUE;
5153 else if (svalue < -(1 << (bits - 1)))
5154 /* The value is too small. */
5155 return TRUE;
5156
5157 /* All is well. */
5158 return FALSE;
5159 }
5160
5161 /* Calculate the %high function. */
5162
5163 static bfd_vma
5164 mips_elf_high (bfd_vma value)
5165 {
5166 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5167 }
5168
5169 /* Calculate the %higher function. */
5170
5171 static bfd_vma
5172 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5173 {
5174 #ifdef BFD64
5175 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5176 #else
5177 abort ();
5178 return MINUS_ONE;
5179 #endif
5180 }
5181
5182 /* Calculate the %highest function. */
5183
5184 static bfd_vma
5185 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5186 {
5187 #ifdef BFD64
5188 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5189 #else
5190 abort ();
5191 return MINUS_ONE;
5192 #endif
5193 }
5194 \f
5195 /* Create the .compact_rel section. */
5196
5197 static bfd_boolean
5198 mips_elf_create_compact_rel_section
5199 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5200 {
5201 flagword flags;
5202 register asection *s;
5203
5204 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5205 {
5206 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5207 | SEC_READONLY);
5208
5209 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5210 if (s == NULL
5211 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5212 return FALSE;
5213
5214 s->size = sizeof (Elf32_External_compact_rel);
5215 }
5216
5217 return TRUE;
5218 }
5219
5220 /* Create the .got section to hold the global offset table. */
5221
5222 static bfd_boolean
5223 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5224 {
5225 flagword flags;
5226 register asection *s;
5227 struct elf_link_hash_entry *h;
5228 struct bfd_link_hash_entry *bh;
5229 struct mips_elf_link_hash_table *htab;
5230
5231 htab = mips_elf_hash_table (info);
5232 BFD_ASSERT (htab != NULL);
5233
5234 /* This function may be called more than once. */
5235 if (htab->root.sgot)
5236 return TRUE;
5237
5238 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5239 | SEC_LINKER_CREATED);
5240
5241 /* We have to use an alignment of 2**4 here because this is hardcoded
5242 in the function stub generation and in the linker script. */
5243 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5244 if (s == NULL
5245 || !bfd_set_section_alignment (s, 4))
5246 return FALSE;
5247 htab->root.sgot = s;
5248
5249 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5250 linker script because we don't want to define the symbol if we
5251 are not creating a global offset table. */
5252 bh = NULL;
5253 if (! (_bfd_generic_link_add_one_symbol
5254 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5255 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5256 return FALSE;
5257
5258 h = (struct elf_link_hash_entry *) bh;
5259 h->non_elf = 0;
5260 h->def_regular = 1;
5261 h->type = STT_OBJECT;
5262 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5263 elf_hash_table (info)->hgot = h;
5264
5265 if (bfd_link_pic (info)
5266 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5267 return FALSE;
5268
5269 htab->got_info = mips_elf_create_got_info (abfd);
5270 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5271 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5272
5273 /* We also need a .got.plt section when generating PLTs. */
5274 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5275 SEC_ALLOC | SEC_LOAD
5276 | SEC_HAS_CONTENTS
5277 | SEC_IN_MEMORY
5278 | SEC_LINKER_CREATED);
5279 if (s == NULL)
5280 return FALSE;
5281 htab->root.sgotplt = s;
5282
5283 return TRUE;
5284 }
5285 \f
5286 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5287 __GOTT_INDEX__ symbols. These symbols are only special for
5288 shared objects; they are not used in executables. */
5289
5290 static bfd_boolean
5291 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5292 {
5293 return (mips_elf_hash_table (info)->is_vxworks
5294 && bfd_link_pic (info)
5295 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5296 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5297 }
5298
5299 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5300 require an la25 stub. See also mips_elf_local_pic_function_p,
5301 which determines whether the destination function ever requires a
5302 stub. */
5303
5304 static bfd_boolean
5305 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5306 bfd_boolean target_is_16_bit_code_p)
5307 {
5308 /* We specifically ignore branches and jumps from EF_PIC objects,
5309 where the onus is on the compiler or programmer to perform any
5310 necessary initialization of $25. Sometimes such initialization
5311 is unnecessary; for example, -mno-shared functions do not use
5312 the incoming value of $25, and may therefore be called directly. */
5313 if (PIC_OBJECT_P (input_bfd))
5314 return FALSE;
5315
5316 switch (r_type)
5317 {
5318 case R_MIPS_26:
5319 case R_MIPS_PC16:
5320 case R_MIPS_PC21_S2:
5321 case R_MIPS_PC26_S2:
5322 case R_MICROMIPS_26_S1:
5323 case R_MICROMIPS_PC7_S1:
5324 case R_MICROMIPS_PC10_S1:
5325 case R_MICROMIPS_PC16_S1:
5326 case R_MICROMIPS_PC23_S2:
5327 return TRUE;
5328
5329 case R_MIPS16_26:
5330 return !target_is_16_bit_code_p;
5331
5332 default:
5333 return FALSE;
5334 }
5335 }
5336 \f
5337 /* Obtain the field relocated by RELOCATION. */
5338
5339 static bfd_vma
5340 mips_elf_obtain_contents (reloc_howto_type *howto,
5341 const Elf_Internal_Rela *relocation,
5342 bfd *input_bfd, bfd_byte *contents)
5343 {
5344 bfd_vma x = 0;
5345 bfd_byte *location = contents + relocation->r_offset;
5346 unsigned int size = bfd_get_reloc_size (howto);
5347
5348 /* Obtain the bytes. */
5349 if (size != 0)
5350 x = bfd_get (8 * size, input_bfd, location);
5351
5352 return x;
5353 }
5354
5355 /* Store the field relocated by RELOCATION. */
5356
5357 static void
5358 mips_elf_store_contents (reloc_howto_type *howto,
5359 const Elf_Internal_Rela *relocation,
5360 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5361 {
5362 bfd_byte *location = contents + relocation->r_offset;
5363 unsigned int size = bfd_get_reloc_size (howto);
5364
5365 /* Put the value into the output. */
5366 if (size != 0)
5367 bfd_put (8 * size, input_bfd, x, location);
5368 }
5369
5370 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5371 RELOCATION described by HOWTO, with a move of 0 to the load target
5372 register, returning TRUE if that is successful and FALSE otherwise.
5373 If DOIT is FALSE, then only determine it patching is possible and
5374 return status without actually changing CONTENTS.
5375 */
5376
5377 static bfd_boolean
5378 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5379 const Elf_Internal_Rela *relocation,
5380 reloc_howto_type *howto, bfd_boolean doit)
5381 {
5382 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5383 bfd_byte *location = contents + relocation->r_offset;
5384 bfd_boolean nullified = TRUE;
5385 bfd_vma x;
5386
5387 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5388
5389 /* Obtain the current value. */
5390 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5391
5392 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5393 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5394 if (mips16_reloc_p (r_type)
5395 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5396 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5397 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5398 else if (micromips_reloc_p (r_type)
5399 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5400 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5401 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5402 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5403 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5404 else
5405 nullified = FALSE;
5406
5407 /* Put the value into the output. */
5408 if (doit && nullified)
5409 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5410
5411 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5412
5413 return nullified;
5414 }
5415
5416 /* Calculate the value produced by the RELOCATION (which comes from
5417 the INPUT_BFD). The ADDEND is the addend to use for this
5418 RELOCATION; RELOCATION->R_ADDEND is ignored.
5419
5420 The result of the relocation calculation is stored in VALUEP.
5421 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5422 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5423
5424 This function returns bfd_reloc_continue if the caller need take no
5425 further action regarding this relocation, bfd_reloc_notsupported if
5426 something goes dramatically wrong, bfd_reloc_overflow if an
5427 overflow occurs, and bfd_reloc_ok to indicate success. */
5428
5429 static bfd_reloc_status_type
5430 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5431 asection *input_section, bfd_byte *contents,
5432 struct bfd_link_info *info,
5433 const Elf_Internal_Rela *relocation,
5434 bfd_vma addend, reloc_howto_type *howto,
5435 Elf_Internal_Sym *local_syms,
5436 asection **local_sections, bfd_vma *valuep,
5437 const char **namep,
5438 bfd_boolean *cross_mode_jump_p,
5439 bfd_boolean save_addend)
5440 {
5441 /* The eventual value we will return. */
5442 bfd_vma value;
5443 /* The address of the symbol against which the relocation is
5444 occurring. */
5445 bfd_vma symbol = 0;
5446 /* The final GP value to be used for the relocatable, executable, or
5447 shared object file being produced. */
5448 bfd_vma gp;
5449 /* The place (section offset or address) of the storage unit being
5450 relocated. */
5451 bfd_vma p;
5452 /* The value of GP used to create the relocatable object. */
5453 bfd_vma gp0;
5454 /* The offset into the global offset table at which the address of
5455 the relocation entry symbol, adjusted by the addend, resides
5456 during execution. */
5457 bfd_vma g = MINUS_ONE;
5458 /* The section in which the symbol referenced by the relocation is
5459 located. */
5460 asection *sec = NULL;
5461 struct mips_elf_link_hash_entry *h = NULL;
5462 /* TRUE if the symbol referred to by this relocation is a local
5463 symbol. */
5464 bfd_boolean local_p, was_local_p;
5465 /* TRUE if the symbol referred to by this relocation is a section
5466 symbol. */
5467 bfd_boolean section_p = FALSE;
5468 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5469 bfd_boolean gp_disp_p = FALSE;
5470 /* TRUE if the symbol referred to by this relocation is
5471 "__gnu_local_gp". */
5472 bfd_boolean gnu_local_gp_p = FALSE;
5473 Elf_Internal_Shdr *symtab_hdr;
5474 size_t extsymoff;
5475 unsigned long r_symndx;
5476 int r_type;
5477 /* TRUE if overflow occurred during the calculation of the
5478 relocation value. */
5479 bfd_boolean overflowed_p;
5480 /* TRUE if this relocation refers to a MIPS16 function. */
5481 bfd_boolean target_is_16_bit_code_p = FALSE;
5482 bfd_boolean target_is_micromips_code_p = FALSE;
5483 struct mips_elf_link_hash_table *htab;
5484 bfd *dynobj;
5485 bfd_boolean resolved_to_zero;
5486
5487 dynobj = elf_hash_table (info)->dynobj;
5488 htab = mips_elf_hash_table (info);
5489 BFD_ASSERT (htab != NULL);
5490
5491 /* Parse the relocation. */
5492 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5493 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5494 p = (input_section->output_section->vma
5495 + input_section->output_offset
5496 + relocation->r_offset);
5497
5498 /* Assume that there will be no overflow. */
5499 overflowed_p = FALSE;
5500
5501 /* Figure out whether or not the symbol is local, and get the offset
5502 used in the array of hash table entries. */
5503 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5504 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5505 local_sections);
5506 was_local_p = local_p;
5507 if (! elf_bad_symtab (input_bfd))
5508 extsymoff = symtab_hdr->sh_info;
5509 else
5510 {
5511 /* The symbol table does not follow the rule that local symbols
5512 must come before globals. */
5513 extsymoff = 0;
5514 }
5515
5516 /* Figure out the value of the symbol. */
5517 if (local_p)
5518 {
5519 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5520 Elf_Internal_Sym *sym;
5521
5522 sym = local_syms + r_symndx;
5523 sec = local_sections[r_symndx];
5524
5525 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5526
5527 symbol = sec->output_section->vma + sec->output_offset;
5528 if (!section_p || (sec->flags & SEC_MERGE))
5529 symbol += sym->st_value;
5530 if ((sec->flags & SEC_MERGE) && section_p)
5531 {
5532 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5533 addend -= symbol;
5534 addend += sec->output_section->vma + sec->output_offset;
5535 }
5536
5537 /* MIPS16/microMIPS text labels should be treated as odd. */
5538 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5539 ++symbol;
5540
5541 /* Record the name of this symbol, for our caller. */
5542 *namep = bfd_elf_string_from_elf_section (input_bfd,
5543 symtab_hdr->sh_link,
5544 sym->st_name);
5545 if (*namep == NULL || **namep == '\0')
5546 *namep = bfd_section_name (sec);
5547
5548 /* For relocations against a section symbol and ones against no
5549 symbol (absolute relocations) infer the ISA mode from the addend. */
5550 if (section_p || r_symndx == STN_UNDEF)
5551 {
5552 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5553 target_is_micromips_code_p = (addend & 1) && micromips_p;
5554 }
5555 /* For relocations against an absolute symbol infer the ISA mode
5556 from the value of the symbol plus addend. */
5557 else if (bfd_is_abs_section (sec))
5558 {
5559 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5560 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5561 }
5562 /* Otherwise just use the regular symbol annotation available. */
5563 else
5564 {
5565 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5566 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5567 }
5568 }
5569 else
5570 {
5571 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5572
5573 /* For global symbols we look up the symbol in the hash-table. */
5574 h = ((struct mips_elf_link_hash_entry *)
5575 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5576 /* Find the real hash-table entry for this symbol. */
5577 while (h->root.root.type == bfd_link_hash_indirect
5578 || h->root.root.type == bfd_link_hash_warning)
5579 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5580
5581 /* Record the name of this symbol, for our caller. */
5582 *namep = h->root.root.root.string;
5583
5584 /* See if this is the special _gp_disp symbol. Note that such a
5585 symbol must always be a global symbol. */
5586 if (strcmp (*namep, "_gp_disp") == 0
5587 && ! NEWABI_P (input_bfd))
5588 {
5589 /* Relocations against _gp_disp are permitted only with
5590 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5591 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5592 return bfd_reloc_notsupported;
5593
5594 gp_disp_p = TRUE;
5595 }
5596 /* See if this is the special _gp symbol. Note that such a
5597 symbol must always be a global symbol. */
5598 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5599 gnu_local_gp_p = TRUE;
5600
5601
5602 /* If this symbol is defined, calculate its address. Note that
5603 _gp_disp is a magic symbol, always implicitly defined by the
5604 linker, so it's inappropriate to check to see whether or not
5605 its defined. */
5606 else if ((h->root.root.type == bfd_link_hash_defined
5607 || h->root.root.type == bfd_link_hash_defweak)
5608 && h->root.root.u.def.section)
5609 {
5610 sec = h->root.root.u.def.section;
5611 if (sec->output_section)
5612 symbol = (h->root.root.u.def.value
5613 + sec->output_section->vma
5614 + sec->output_offset);
5615 else
5616 symbol = h->root.root.u.def.value;
5617 }
5618 else if (h->root.root.type == bfd_link_hash_undefweak)
5619 /* We allow relocations against undefined weak symbols, giving
5620 it the value zero, so that you can undefined weak functions
5621 and check to see if they exist by looking at their
5622 addresses. */
5623 symbol = 0;
5624 else if (info->unresolved_syms_in_objects == RM_IGNORE
5625 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5626 symbol = 0;
5627 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5628 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5629 {
5630 /* If this is a dynamic link, we should have created a
5631 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5632 in _bfd_mips_elf_create_dynamic_sections.
5633 Otherwise, we should define the symbol with a value of 0.
5634 FIXME: It should probably get into the symbol table
5635 somehow as well. */
5636 BFD_ASSERT (! bfd_link_pic (info));
5637 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5638 symbol = 0;
5639 }
5640 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5641 {
5642 /* This is an optional symbol - an Irix specific extension to the
5643 ELF spec. Ignore it for now.
5644 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5645 than simply ignoring them, but we do not handle this for now.
5646 For information see the "64-bit ELF Object File Specification"
5647 which is available from here:
5648 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5649 symbol = 0;
5650 }
5651 else
5652 {
5653 bfd_boolean reject_undefined
5654 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5655 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5656
5657 (*info->callbacks->undefined_symbol)
5658 (info, h->root.root.root.string, input_bfd,
5659 input_section, relocation->r_offset, reject_undefined);
5660
5661 if (reject_undefined)
5662 return bfd_reloc_undefined;
5663
5664 symbol = 0;
5665 }
5666
5667 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5668 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5669 }
5670
5671 /* If this is a reference to a 16-bit function with a stub, we need
5672 to redirect the relocation to the stub unless:
5673
5674 (a) the relocation is for a MIPS16 JAL;
5675
5676 (b) the relocation is for a MIPS16 PIC call, and there are no
5677 non-MIPS16 uses of the GOT slot; or
5678
5679 (c) the section allows direct references to MIPS16 functions. */
5680 if (r_type != R_MIPS16_26
5681 && !bfd_link_relocatable (info)
5682 && ((h != NULL
5683 && h->fn_stub != NULL
5684 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5685 || (local_p
5686 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5687 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5688 && !section_allows_mips16_refs_p (input_section))
5689 {
5690 /* This is a 32- or 64-bit call to a 16-bit function. We should
5691 have already noticed that we were going to need the
5692 stub. */
5693 if (local_p)
5694 {
5695 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5696 value = 0;
5697 }
5698 else
5699 {
5700 BFD_ASSERT (h->need_fn_stub);
5701 if (h->la25_stub)
5702 {
5703 /* If a LA25 header for the stub itself exists, point to the
5704 prepended LUI/ADDIU sequence. */
5705 sec = h->la25_stub->stub_section;
5706 value = h->la25_stub->offset;
5707 }
5708 else
5709 {
5710 sec = h->fn_stub;
5711 value = 0;
5712 }
5713 }
5714
5715 symbol = sec->output_section->vma + sec->output_offset + value;
5716 /* The target is 16-bit, but the stub isn't. */
5717 target_is_16_bit_code_p = FALSE;
5718 }
5719 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5720 to a standard MIPS function, we need to redirect the call to the stub.
5721 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5722 indirect calls should use an indirect stub instead. */
5723 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5724 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5725 || (local_p
5726 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5727 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5728 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5729 {
5730 if (local_p)
5731 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5732 else
5733 {
5734 /* If both call_stub and call_fp_stub are defined, we can figure
5735 out which one to use by checking which one appears in the input
5736 file. */
5737 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5738 {
5739 asection *o;
5740
5741 sec = NULL;
5742 for (o = input_bfd->sections; o != NULL; o = o->next)
5743 {
5744 if (CALL_FP_STUB_P (bfd_section_name (o)))
5745 {
5746 sec = h->call_fp_stub;
5747 break;
5748 }
5749 }
5750 if (sec == NULL)
5751 sec = h->call_stub;
5752 }
5753 else if (h->call_stub != NULL)
5754 sec = h->call_stub;
5755 else
5756 sec = h->call_fp_stub;
5757 }
5758
5759 BFD_ASSERT (sec->size > 0);
5760 symbol = sec->output_section->vma + sec->output_offset;
5761 }
5762 /* If this is a direct call to a PIC function, redirect to the
5763 non-PIC stub. */
5764 else if (h != NULL && h->la25_stub
5765 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5766 target_is_16_bit_code_p))
5767 {
5768 symbol = (h->la25_stub->stub_section->output_section->vma
5769 + h->la25_stub->stub_section->output_offset
5770 + h->la25_stub->offset);
5771 if (ELF_ST_IS_MICROMIPS (h->root.other))
5772 symbol |= 1;
5773 }
5774 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5775 entry is used if a standard PLT entry has also been made. In this
5776 case the symbol will have been set by mips_elf_set_plt_sym_value
5777 to point to the standard PLT entry, so redirect to the compressed
5778 one. */
5779 else if ((mips16_branch_reloc_p (r_type)
5780 || micromips_branch_reloc_p (r_type))
5781 && !bfd_link_relocatable (info)
5782 && h != NULL
5783 && h->use_plt_entry
5784 && h->root.plt.plist->comp_offset != MINUS_ONE
5785 && h->root.plt.plist->mips_offset != MINUS_ONE)
5786 {
5787 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5788
5789 sec = htab->root.splt;
5790 symbol = (sec->output_section->vma
5791 + sec->output_offset
5792 + htab->plt_header_size
5793 + htab->plt_mips_offset
5794 + h->root.plt.plist->comp_offset
5795 + 1);
5796
5797 target_is_16_bit_code_p = !micromips_p;
5798 target_is_micromips_code_p = micromips_p;
5799 }
5800
5801 /* Make sure MIPS16 and microMIPS are not used together. */
5802 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5803 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5804 {
5805 _bfd_error_handler
5806 (_("MIPS16 and microMIPS functions cannot call each other"));
5807 return bfd_reloc_notsupported;
5808 }
5809
5810 /* Calls from 16-bit code to 32-bit code and vice versa require the
5811 mode change. However, we can ignore calls to undefined weak symbols,
5812 which should never be executed at runtime. This exception is important
5813 because the assembly writer may have "known" that any definition of the
5814 symbol would be 16-bit code, and that direct jumps were therefore
5815 acceptable. */
5816 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5817 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5818 && ((mips16_branch_reloc_p (r_type)
5819 && !target_is_16_bit_code_p)
5820 || (micromips_branch_reloc_p (r_type)
5821 && !target_is_micromips_code_p)
5822 || ((branch_reloc_p (r_type)
5823 || r_type == R_MIPS_JALR)
5824 && (target_is_16_bit_code_p
5825 || target_is_micromips_code_p))));
5826
5827 resolved_to_zero = (h != NULL
5828 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5829
5830 switch (r_type)
5831 {
5832 case R_MIPS16_CALL16:
5833 case R_MIPS16_GOT16:
5834 case R_MIPS_CALL16:
5835 case R_MIPS_GOT16:
5836 case R_MIPS_GOT_PAGE:
5837 case R_MIPS_GOT_DISP:
5838 case R_MIPS_GOT_LO16:
5839 case R_MIPS_CALL_LO16:
5840 case R_MICROMIPS_CALL16:
5841 case R_MICROMIPS_GOT16:
5842 case R_MICROMIPS_GOT_PAGE:
5843 case R_MICROMIPS_GOT_DISP:
5844 case R_MICROMIPS_GOT_LO16:
5845 case R_MICROMIPS_CALL_LO16:
5846 if (resolved_to_zero
5847 && !bfd_link_relocatable (info)
5848 && mips_elf_nullify_got_load (input_bfd, contents,
5849 relocation, howto, TRUE))
5850 return bfd_reloc_continue;
5851
5852 /* Fall through. */
5853 case R_MIPS_GOT_HI16:
5854 case R_MIPS_CALL_HI16:
5855 case R_MICROMIPS_GOT_HI16:
5856 case R_MICROMIPS_CALL_HI16:
5857 if (resolved_to_zero
5858 && htab->use_absolute_zero
5859 && bfd_link_pic (info))
5860 {
5861 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5862 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5863 FALSE, FALSE, FALSE);
5864 BFD_ASSERT (h != NULL);
5865 }
5866 break;
5867 }
5868
5869 local_p = (h == NULL || mips_use_local_got_p (info, h));
5870
5871 gp0 = _bfd_get_gp_value (input_bfd);
5872 gp = _bfd_get_gp_value (abfd);
5873 if (htab->got_info)
5874 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5875
5876 if (gnu_local_gp_p)
5877 symbol = gp;
5878
5879 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5880 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5881 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5882 if (got_page_reloc_p (r_type) && !local_p)
5883 {
5884 r_type = (micromips_reloc_p (r_type)
5885 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5886 addend = 0;
5887 }
5888
5889 /* If we haven't already determined the GOT offset, and we're going
5890 to need it, get it now. */
5891 switch (r_type)
5892 {
5893 case R_MIPS16_CALL16:
5894 case R_MIPS16_GOT16:
5895 case R_MIPS_CALL16:
5896 case R_MIPS_GOT16:
5897 case R_MIPS_GOT_DISP:
5898 case R_MIPS_GOT_HI16:
5899 case R_MIPS_CALL_HI16:
5900 case R_MIPS_GOT_LO16:
5901 case R_MIPS_CALL_LO16:
5902 case R_MICROMIPS_CALL16:
5903 case R_MICROMIPS_GOT16:
5904 case R_MICROMIPS_GOT_DISP:
5905 case R_MICROMIPS_GOT_HI16:
5906 case R_MICROMIPS_CALL_HI16:
5907 case R_MICROMIPS_GOT_LO16:
5908 case R_MICROMIPS_CALL_LO16:
5909 case R_MIPS_TLS_GD:
5910 case R_MIPS_TLS_GOTTPREL:
5911 case R_MIPS_TLS_LDM:
5912 case R_MIPS16_TLS_GD:
5913 case R_MIPS16_TLS_GOTTPREL:
5914 case R_MIPS16_TLS_LDM:
5915 case R_MICROMIPS_TLS_GD:
5916 case R_MICROMIPS_TLS_GOTTPREL:
5917 case R_MICROMIPS_TLS_LDM:
5918 /* Find the index into the GOT where this value is located. */
5919 if (tls_ldm_reloc_p (r_type))
5920 {
5921 g = mips_elf_local_got_index (abfd, input_bfd, info,
5922 0, 0, NULL, r_type);
5923 if (g == MINUS_ONE)
5924 return bfd_reloc_outofrange;
5925 }
5926 else if (!local_p)
5927 {
5928 /* On VxWorks, CALL relocations should refer to the .got.plt
5929 entry, which is initialized to point at the PLT stub. */
5930 if (htab->is_vxworks
5931 && (call_hi16_reloc_p (r_type)
5932 || call_lo16_reloc_p (r_type)
5933 || call16_reloc_p (r_type)))
5934 {
5935 BFD_ASSERT (addend == 0);
5936 BFD_ASSERT (h->root.needs_plt);
5937 g = mips_elf_gotplt_index (info, &h->root);
5938 }
5939 else
5940 {
5941 BFD_ASSERT (addend == 0);
5942 g = mips_elf_global_got_index (abfd, info, input_bfd,
5943 &h->root, r_type);
5944 if (!TLS_RELOC_P (r_type)
5945 && !elf_hash_table (info)->dynamic_sections_created)
5946 /* This is a static link. We must initialize the GOT entry. */
5947 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5948 }
5949 }
5950 else if (!htab->is_vxworks
5951 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5952 /* The calculation below does not involve "g". */
5953 break;
5954 else
5955 {
5956 g = mips_elf_local_got_index (abfd, input_bfd, info,
5957 symbol + addend, r_symndx, h, r_type);
5958 if (g == MINUS_ONE)
5959 return bfd_reloc_outofrange;
5960 }
5961
5962 /* Convert GOT indices to actual offsets. */
5963 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5964 break;
5965 }
5966
5967 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5968 symbols are resolved by the loader. Add them to .rela.dyn. */
5969 if (h != NULL && is_gott_symbol (info, &h->root))
5970 {
5971 Elf_Internal_Rela outrel;
5972 bfd_byte *loc;
5973 asection *s;
5974
5975 s = mips_elf_rel_dyn_section (info, FALSE);
5976 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5977
5978 outrel.r_offset = (input_section->output_section->vma
5979 + input_section->output_offset
5980 + relocation->r_offset);
5981 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5982 outrel.r_addend = addend;
5983 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5984
5985 /* If we've written this relocation for a readonly section,
5986 we need to set DF_TEXTREL again, so that we do not delete the
5987 DT_TEXTREL tag. */
5988 if (MIPS_ELF_READONLY_SECTION (input_section))
5989 info->flags |= DF_TEXTREL;
5990
5991 *valuep = 0;
5992 return bfd_reloc_ok;
5993 }
5994
5995 /* Figure out what kind of relocation is being performed. */
5996 switch (r_type)
5997 {
5998 case R_MIPS_NONE:
5999 return bfd_reloc_continue;
6000
6001 case R_MIPS_16:
6002 if (howto->partial_inplace)
6003 addend = _bfd_mips_elf_sign_extend (addend, 16);
6004 value = symbol + addend;
6005 overflowed_p = mips_elf_overflow_p (value, 16);
6006 break;
6007
6008 case R_MIPS_32:
6009 case R_MIPS_REL32:
6010 case R_MIPS_64:
6011 if ((bfd_link_pic (info)
6012 || (htab->root.dynamic_sections_created
6013 && h != NULL
6014 && h->root.def_dynamic
6015 && !h->root.def_regular
6016 && !h->has_static_relocs))
6017 && r_symndx != STN_UNDEF
6018 && (h == NULL
6019 || h->root.root.type != bfd_link_hash_undefweak
6020 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
6021 && !resolved_to_zero))
6022 && (input_section->flags & SEC_ALLOC) != 0)
6023 {
6024 /* If we're creating a shared library, then we can't know
6025 where the symbol will end up. So, we create a relocation
6026 record in the output, and leave the job up to the dynamic
6027 linker. We must do the same for executable references to
6028 shared library symbols, unless we've decided to use copy
6029 relocs or PLTs instead. */
6030 value = addend;
6031 if (!mips_elf_create_dynamic_relocation (abfd,
6032 info,
6033 relocation,
6034 h,
6035 sec,
6036 symbol,
6037 &value,
6038 input_section))
6039 return bfd_reloc_undefined;
6040 }
6041 else
6042 {
6043 if (r_type != R_MIPS_REL32)
6044 value = symbol + addend;
6045 else
6046 value = addend;
6047 }
6048 value &= howto->dst_mask;
6049 break;
6050
6051 case R_MIPS_PC32:
6052 value = symbol + addend - p;
6053 value &= howto->dst_mask;
6054 break;
6055
6056 case R_MIPS16_26:
6057 /* The calculation for R_MIPS16_26 is just the same as for an
6058 R_MIPS_26. It's only the storage of the relocated field into
6059 the output file that's different. That's handled in
6060 mips_elf_perform_relocation. So, we just fall through to the
6061 R_MIPS_26 case here. */
6062 case R_MIPS_26:
6063 case R_MICROMIPS_26_S1:
6064 {
6065 unsigned int shift;
6066
6067 /* Shift is 2, unusually, for microMIPS JALX. */
6068 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6069
6070 if (howto->partial_inplace && !section_p)
6071 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6072 else
6073 value = addend;
6074 value += symbol;
6075
6076 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6077 be the correct ISA mode selector except for weak undefined
6078 symbols. */
6079 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6080 && (*cross_mode_jump_p
6081 ? (value & 3) != (r_type == R_MIPS_26)
6082 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6083 return bfd_reloc_outofrange;
6084
6085 value >>= shift;
6086 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6087 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6088 value &= howto->dst_mask;
6089 }
6090 break;
6091
6092 case R_MIPS_TLS_DTPREL_HI16:
6093 case R_MIPS16_TLS_DTPREL_HI16:
6094 case R_MICROMIPS_TLS_DTPREL_HI16:
6095 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6096 & howto->dst_mask);
6097 break;
6098
6099 case R_MIPS_TLS_DTPREL_LO16:
6100 case R_MIPS_TLS_DTPREL32:
6101 case R_MIPS_TLS_DTPREL64:
6102 case R_MIPS16_TLS_DTPREL_LO16:
6103 case R_MICROMIPS_TLS_DTPREL_LO16:
6104 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6105 break;
6106
6107 case R_MIPS_TLS_TPREL_HI16:
6108 case R_MIPS16_TLS_TPREL_HI16:
6109 case R_MICROMIPS_TLS_TPREL_HI16:
6110 value = (mips_elf_high (addend + symbol - tprel_base (info))
6111 & howto->dst_mask);
6112 break;
6113
6114 case R_MIPS_TLS_TPREL_LO16:
6115 case R_MIPS_TLS_TPREL32:
6116 case R_MIPS_TLS_TPREL64:
6117 case R_MIPS16_TLS_TPREL_LO16:
6118 case R_MICROMIPS_TLS_TPREL_LO16:
6119 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6120 break;
6121
6122 case R_MIPS_HI16:
6123 case R_MIPS16_HI16:
6124 case R_MICROMIPS_HI16:
6125 if (!gp_disp_p)
6126 {
6127 value = mips_elf_high (addend + symbol);
6128 value &= howto->dst_mask;
6129 }
6130 else
6131 {
6132 /* For MIPS16 ABI code we generate this sequence
6133 0: li $v0,%hi(_gp_disp)
6134 4: addiupc $v1,%lo(_gp_disp)
6135 8: sll $v0,16
6136 12: addu $v0,$v1
6137 14: move $gp,$v0
6138 So the offsets of hi and lo relocs are the same, but the
6139 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6140 ADDIUPC clears the low two bits of the instruction address,
6141 so the base is ($t9 + 4) & ~3. */
6142 if (r_type == R_MIPS16_HI16)
6143 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6144 /* The microMIPS .cpload sequence uses the same assembly
6145 instructions as the traditional psABI version, but the
6146 incoming $t9 has the low bit set. */
6147 else if (r_type == R_MICROMIPS_HI16)
6148 value = mips_elf_high (addend + gp - p - 1);
6149 else
6150 value = mips_elf_high (addend + gp - p);
6151 }
6152 break;
6153
6154 case R_MIPS_LO16:
6155 case R_MIPS16_LO16:
6156 case R_MICROMIPS_LO16:
6157 case R_MICROMIPS_HI0_LO16:
6158 if (!gp_disp_p)
6159 value = (symbol + addend) & howto->dst_mask;
6160 else
6161 {
6162 /* See the comment for R_MIPS16_HI16 above for the reason
6163 for this conditional. */
6164 if (r_type == R_MIPS16_LO16)
6165 value = addend + gp - (p & ~(bfd_vma) 0x3);
6166 else if (r_type == R_MICROMIPS_LO16
6167 || r_type == R_MICROMIPS_HI0_LO16)
6168 value = addend + gp - p + 3;
6169 else
6170 value = addend + gp - p + 4;
6171 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6172 for overflow. But, on, say, IRIX5, relocations against
6173 _gp_disp are normally generated from the .cpload
6174 pseudo-op. It generates code that normally looks like
6175 this:
6176
6177 lui $gp,%hi(_gp_disp)
6178 addiu $gp,$gp,%lo(_gp_disp)
6179 addu $gp,$gp,$t9
6180
6181 Here $t9 holds the address of the function being called,
6182 as required by the MIPS ELF ABI. The R_MIPS_LO16
6183 relocation can easily overflow in this situation, but the
6184 R_MIPS_HI16 relocation will handle the overflow.
6185 Therefore, we consider this a bug in the MIPS ABI, and do
6186 not check for overflow here. */
6187 }
6188 break;
6189
6190 case R_MIPS_LITERAL:
6191 case R_MICROMIPS_LITERAL:
6192 /* Because we don't merge literal sections, we can handle this
6193 just like R_MIPS_GPREL16. In the long run, we should merge
6194 shared literals, and then we will need to additional work
6195 here. */
6196
6197 /* Fall through. */
6198
6199 case R_MIPS16_GPREL:
6200 /* The R_MIPS16_GPREL performs the same calculation as
6201 R_MIPS_GPREL16, but stores the relocated bits in a different
6202 order. We don't need to do anything special here; the
6203 differences are handled in mips_elf_perform_relocation. */
6204 case R_MIPS_GPREL16:
6205 case R_MICROMIPS_GPREL7_S2:
6206 case R_MICROMIPS_GPREL16:
6207 /* Only sign-extend the addend if it was extracted from the
6208 instruction. If the addend was separate, leave it alone,
6209 otherwise we may lose significant bits. */
6210 if (howto->partial_inplace)
6211 addend = _bfd_mips_elf_sign_extend (addend, 16);
6212 value = symbol + addend - gp;
6213 /* If the symbol was local, any earlier relocatable links will
6214 have adjusted its addend with the gp offset, so compensate
6215 for that now. Don't do it for symbols forced local in this
6216 link, though, since they won't have had the gp offset applied
6217 to them before. */
6218 if (was_local_p)
6219 value += gp0;
6220 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6221 overflowed_p = mips_elf_overflow_p (value, 16);
6222 break;
6223
6224 case R_MIPS16_GOT16:
6225 case R_MIPS16_CALL16:
6226 case R_MIPS_GOT16:
6227 case R_MIPS_CALL16:
6228 case R_MICROMIPS_GOT16:
6229 case R_MICROMIPS_CALL16:
6230 /* VxWorks does not have separate local and global semantics for
6231 R_MIPS*_GOT16; every relocation evaluates to "G". */
6232 if (!htab->is_vxworks && local_p)
6233 {
6234 value = mips_elf_got16_entry (abfd, input_bfd, info,
6235 symbol + addend, !was_local_p);
6236 if (value == MINUS_ONE)
6237 return bfd_reloc_outofrange;
6238 value
6239 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6240 overflowed_p = mips_elf_overflow_p (value, 16);
6241 break;
6242 }
6243
6244 /* Fall through. */
6245
6246 case R_MIPS_TLS_GD:
6247 case R_MIPS_TLS_GOTTPREL:
6248 case R_MIPS_TLS_LDM:
6249 case R_MIPS_GOT_DISP:
6250 case R_MIPS16_TLS_GD:
6251 case R_MIPS16_TLS_GOTTPREL:
6252 case R_MIPS16_TLS_LDM:
6253 case R_MICROMIPS_TLS_GD:
6254 case R_MICROMIPS_TLS_GOTTPREL:
6255 case R_MICROMIPS_TLS_LDM:
6256 case R_MICROMIPS_GOT_DISP:
6257 value = g;
6258 overflowed_p = mips_elf_overflow_p (value, 16);
6259 break;
6260
6261 case R_MIPS_GPREL32:
6262 value = (addend + symbol + gp0 - gp);
6263 if (!save_addend)
6264 value &= howto->dst_mask;
6265 break;
6266
6267 case R_MIPS_PC16:
6268 case R_MIPS_GNU_REL16_S2:
6269 if (howto->partial_inplace)
6270 addend = _bfd_mips_elf_sign_extend (addend, 18);
6271
6272 /* No need to exclude weak undefined symbols here as they resolve
6273 to 0 and never set `*cross_mode_jump_p', so this alignment check
6274 will never trigger for them. */
6275 if (*cross_mode_jump_p
6276 ? ((symbol + addend) & 3) != 1
6277 : ((symbol + addend) & 3) != 0)
6278 return bfd_reloc_outofrange;
6279
6280 value = symbol + addend - p;
6281 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6282 overflowed_p = mips_elf_overflow_p (value, 18);
6283 value >>= howto->rightshift;
6284 value &= howto->dst_mask;
6285 break;
6286
6287 case R_MIPS16_PC16_S1:
6288 if (howto->partial_inplace)
6289 addend = _bfd_mips_elf_sign_extend (addend, 17);
6290
6291 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6292 && (*cross_mode_jump_p
6293 ? ((symbol + addend) & 3) != 0
6294 : ((symbol + addend) & 1) == 0))
6295 return bfd_reloc_outofrange;
6296
6297 value = symbol + addend - p;
6298 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6299 overflowed_p = mips_elf_overflow_p (value, 17);
6300 value >>= howto->rightshift;
6301 value &= howto->dst_mask;
6302 break;
6303
6304 case R_MIPS_PC21_S2:
6305 if (howto->partial_inplace)
6306 addend = _bfd_mips_elf_sign_extend (addend, 23);
6307
6308 if ((symbol + addend) & 3)
6309 return bfd_reloc_outofrange;
6310
6311 value = symbol + addend - p;
6312 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6313 overflowed_p = mips_elf_overflow_p (value, 23);
6314 value >>= howto->rightshift;
6315 value &= howto->dst_mask;
6316 break;
6317
6318 case R_MIPS_PC26_S2:
6319 if (howto->partial_inplace)
6320 addend = _bfd_mips_elf_sign_extend (addend, 28);
6321
6322 if ((symbol + addend) & 3)
6323 return bfd_reloc_outofrange;
6324
6325 value = symbol + addend - p;
6326 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6327 overflowed_p = mips_elf_overflow_p (value, 28);
6328 value >>= howto->rightshift;
6329 value &= howto->dst_mask;
6330 break;
6331
6332 case R_MIPS_PC18_S3:
6333 if (howto->partial_inplace)
6334 addend = _bfd_mips_elf_sign_extend (addend, 21);
6335
6336 if ((symbol + addend) & 7)
6337 return bfd_reloc_outofrange;
6338
6339 value = symbol + addend - ((p | 7) ^ 7);
6340 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6341 overflowed_p = mips_elf_overflow_p (value, 21);
6342 value >>= howto->rightshift;
6343 value &= howto->dst_mask;
6344 break;
6345
6346 case R_MIPS_PC19_S2:
6347 if (howto->partial_inplace)
6348 addend = _bfd_mips_elf_sign_extend (addend, 21);
6349
6350 if ((symbol + addend) & 3)
6351 return bfd_reloc_outofrange;
6352
6353 value = symbol + addend - p;
6354 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6355 overflowed_p = mips_elf_overflow_p (value, 21);
6356 value >>= howto->rightshift;
6357 value &= howto->dst_mask;
6358 break;
6359
6360 case R_MIPS_PCHI16:
6361 value = mips_elf_high (symbol + addend - p);
6362 value &= howto->dst_mask;
6363 break;
6364
6365 case R_MIPS_PCLO16:
6366 if (howto->partial_inplace)
6367 addend = _bfd_mips_elf_sign_extend (addend, 16);
6368 value = symbol + addend - p;
6369 value &= howto->dst_mask;
6370 break;
6371
6372 case R_MICROMIPS_PC7_S1:
6373 if (howto->partial_inplace)
6374 addend = _bfd_mips_elf_sign_extend (addend, 8);
6375
6376 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6377 && (*cross_mode_jump_p
6378 ? ((symbol + addend + 2) & 3) != 0
6379 : ((symbol + addend + 2) & 1) == 0))
6380 return bfd_reloc_outofrange;
6381
6382 value = symbol + addend - p;
6383 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6384 overflowed_p = mips_elf_overflow_p (value, 8);
6385 value >>= howto->rightshift;
6386 value &= howto->dst_mask;
6387 break;
6388
6389 case R_MICROMIPS_PC10_S1:
6390 if (howto->partial_inplace)
6391 addend = _bfd_mips_elf_sign_extend (addend, 11);
6392
6393 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6394 && (*cross_mode_jump_p
6395 ? ((symbol + addend + 2) & 3) != 0
6396 : ((symbol + addend + 2) & 1) == 0))
6397 return bfd_reloc_outofrange;
6398
6399 value = symbol + addend - p;
6400 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6401 overflowed_p = mips_elf_overflow_p (value, 11);
6402 value >>= howto->rightshift;
6403 value &= howto->dst_mask;
6404 break;
6405
6406 case R_MICROMIPS_PC16_S1:
6407 if (howto->partial_inplace)
6408 addend = _bfd_mips_elf_sign_extend (addend, 17);
6409
6410 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6411 && (*cross_mode_jump_p
6412 ? ((symbol + addend) & 3) != 0
6413 : ((symbol + addend) & 1) == 0))
6414 return bfd_reloc_outofrange;
6415
6416 value = symbol + addend - p;
6417 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6418 overflowed_p = mips_elf_overflow_p (value, 17);
6419 value >>= howto->rightshift;
6420 value &= howto->dst_mask;
6421 break;
6422
6423 case R_MICROMIPS_PC23_S2:
6424 if (howto->partial_inplace)
6425 addend = _bfd_mips_elf_sign_extend (addend, 25);
6426 value = symbol + addend - ((p | 3) ^ 3);
6427 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6428 overflowed_p = mips_elf_overflow_p (value, 25);
6429 value >>= howto->rightshift;
6430 value &= howto->dst_mask;
6431 break;
6432
6433 case R_MIPS_GOT_HI16:
6434 case R_MIPS_CALL_HI16:
6435 case R_MICROMIPS_GOT_HI16:
6436 case R_MICROMIPS_CALL_HI16:
6437 /* We're allowed to handle these two relocations identically.
6438 The dynamic linker is allowed to handle the CALL relocations
6439 differently by creating a lazy evaluation stub. */
6440 value = g;
6441 value = mips_elf_high (value);
6442 value &= howto->dst_mask;
6443 break;
6444
6445 case R_MIPS_GOT_LO16:
6446 case R_MIPS_CALL_LO16:
6447 case R_MICROMIPS_GOT_LO16:
6448 case R_MICROMIPS_CALL_LO16:
6449 value = g & howto->dst_mask;
6450 break;
6451
6452 case R_MIPS_GOT_PAGE:
6453 case R_MICROMIPS_GOT_PAGE:
6454 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6455 if (value == MINUS_ONE)
6456 return bfd_reloc_outofrange;
6457 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6458 overflowed_p = mips_elf_overflow_p (value, 16);
6459 break;
6460
6461 case R_MIPS_GOT_OFST:
6462 case R_MICROMIPS_GOT_OFST:
6463 if (local_p)
6464 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6465 else
6466 value = addend;
6467 overflowed_p = mips_elf_overflow_p (value, 16);
6468 break;
6469
6470 case R_MIPS_SUB:
6471 case R_MICROMIPS_SUB:
6472 value = symbol - addend;
6473 value &= howto->dst_mask;
6474 break;
6475
6476 case R_MIPS_HIGHER:
6477 case R_MICROMIPS_HIGHER:
6478 value = mips_elf_higher (addend + symbol);
6479 value &= howto->dst_mask;
6480 break;
6481
6482 case R_MIPS_HIGHEST:
6483 case R_MICROMIPS_HIGHEST:
6484 value = mips_elf_highest (addend + symbol);
6485 value &= howto->dst_mask;
6486 break;
6487
6488 case R_MIPS_SCN_DISP:
6489 case R_MICROMIPS_SCN_DISP:
6490 value = symbol + addend - sec->output_offset;
6491 value &= howto->dst_mask;
6492 break;
6493
6494 case R_MIPS_JALR:
6495 case R_MICROMIPS_JALR:
6496 /* This relocation is only a hint. In some cases, we optimize
6497 it into a bal instruction. But we don't try to optimize
6498 when the symbol does not resolve locally. */
6499 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6500 return bfd_reloc_continue;
6501 /* We can't optimize cross-mode jumps either. */
6502 if (*cross_mode_jump_p)
6503 return bfd_reloc_continue;
6504 value = symbol + addend;
6505 /* Neither we can non-instruction-aligned targets. */
6506 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6507 return bfd_reloc_continue;
6508 break;
6509
6510 case R_MIPS_PJUMP:
6511 case R_MIPS_GNU_VTINHERIT:
6512 case R_MIPS_GNU_VTENTRY:
6513 /* We don't do anything with these at present. */
6514 return bfd_reloc_continue;
6515
6516 default:
6517 /* An unrecognized relocation type. */
6518 return bfd_reloc_notsupported;
6519 }
6520
6521 /* Store the VALUE for our caller. */
6522 *valuep = value;
6523 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6524 }
6525
6526 /* It has been determined that the result of the RELOCATION is the
6527 VALUE. Use HOWTO to place VALUE into the output file at the
6528 appropriate position. The SECTION is the section to which the
6529 relocation applies.
6530 CROSS_MODE_JUMP_P is true if the relocation field
6531 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6532
6533 Returns FALSE if anything goes wrong. */
6534
6535 static bfd_boolean
6536 mips_elf_perform_relocation (struct bfd_link_info *info,
6537 reloc_howto_type *howto,
6538 const Elf_Internal_Rela *relocation,
6539 bfd_vma value, bfd *input_bfd,
6540 asection *input_section, bfd_byte *contents,
6541 bfd_boolean cross_mode_jump_p)
6542 {
6543 bfd_vma x;
6544 bfd_byte *location;
6545 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6546
6547 /* Figure out where the relocation is occurring. */
6548 location = contents + relocation->r_offset;
6549
6550 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6551
6552 /* Obtain the current value. */
6553 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6554
6555 /* Clear the field we are setting. */
6556 x &= ~howto->dst_mask;
6557
6558 /* Set the field. */
6559 x |= (value & howto->dst_mask);
6560
6561 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6562 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6563 {
6564 bfd_vma opcode = x >> 26;
6565
6566 if (r_type == R_MIPS16_26 ? opcode == 0x7
6567 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6568 : opcode == 0x1d)
6569 {
6570 info->callbacks->einfo
6571 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6572 input_bfd, input_section, relocation->r_offset);
6573 return TRUE;
6574 }
6575 }
6576 if (cross_mode_jump_p && jal_reloc_p (r_type))
6577 {
6578 bfd_boolean ok;
6579 bfd_vma opcode = x >> 26;
6580 bfd_vma jalx_opcode;
6581
6582 /* Check to see if the opcode is already JAL or JALX. */
6583 if (r_type == R_MIPS16_26)
6584 {
6585 ok = ((opcode == 0x6) || (opcode == 0x7));
6586 jalx_opcode = 0x7;
6587 }
6588 else if (r_type == R_MICROMIPS_26_S1)
6589 {
6590 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6591 jalx_opcode = 0x3c;
6592 }
6593 else
6594 {
6595 ok = ((opcode == 0x3) || (opcode == 0x1d));
6596 jalx_opcode = 0x1d;
6597 }
6598
6599 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6600 convert J or JALS to JALX. */
6601 if (!ok)
6602 {
6603 info->callbacks->einfo
6604 (_("%X%H: unsupported jump between ISA modes; "
6605 "consider recompiling with interlinking enabled\n"),
6606 input_bfd, input_section, relocation->r_offset);
6607 return TRUE;
6608 }
6609
6610 /* Make this the JALX opcode. */
6611 x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26);
6612 }
6613 else if (cross_mode_jump_p && b_reloc_p (r_type))
6614 {
6615 bfd_boolean ok = FALSE;
6616 bfd_vma opcode = x >> 16;
6617 bfd_vma jalx_opcode = 0;
6618 bfd_vma sign_bit = 0;
6619 bfd_vma addr;
6620 bfd_vma dest;
6621
6622 if (r_type == R_MICROMIPS_PC16_S1)
6623 {
6624 ok = opcode == 0x4060;
6625 jalx_opcode = 0x3c;
6626 sign_bit = 0x10000;
6627 value <<= 1;
6628 }
6629 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6630 {
6631 ok = opcode == 0x411;
6632 jalx_opcode = 0x1d;
6633 sign_bit = 0x20000;
6634 value <<= 2;
6635 }
6636
6637 if (ok && !bfd_link_pic (info))
6638 {
6639 addr = (input_section->output_section->vma
6640 + input_section->output_offset
6641 + relocation->r_offset
6642 + 4);
6643 dest = (addr
6644 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6645
6646 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6647 {
6648 info->callbacks->einfo
6649 (_("%X%H: cannot convert branch between ISA modes "
6650 "to JALX: relocation out of range\n"),
6651 input_bfd, input_section, relocation->r_offset);
6652 return TRUE;
6653 }
6654
6655 /* Make this the JALX opcode. */
6656 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6657 }
6658 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6659 {
6660 info->callbacks->einfo
6661 (_("%X%H: unsupported branch between ISA modes\n"),
6662 input_bfd, input_section, relocation->r_offset);
6663 return TRUE;
6664 }
6665 }
6666
6667 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6668 range. */
6669 if (!bfd_link_relocatable (info)
6670 && !cross_mode_jump_p
6671 && ((JAL_TO_BAL_P (input_bfd)
6672 && r_type == R_MIPS_26
6673 && (x >> 26) == 0x3) /* jal addr */
6674 || (JALR_TO_BAL_P (input_bfd)
6675 && r_type == R_MIPS_JALR
6676 && x == 0x0320f809) /* jalr t9 */
6677 || (JR_TO_B_P (input_bfd)
6678 && r_type == R_MIPS_JALR
6679 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6680 {
6681 bfd_vma addr;
6682 bfd_vma dest;
6683 bfd_signed_vma off;
6684
6685 addr = (input_section->output_section->vma
6686 + input_section->output_offset
6687 + relocation->r_offset
6688 + 4);
6689 if (r_type == R_MIPS_26)
6690 dest = (value << 2) | ((addr >> 28) << 28);
6691 else
6692 dest = value;
6693 off = dest - addr;
6694 if (off <= 0x1ffff && off >= -0x20000)
6695 {
6696 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6697 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6698 else
6699 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6700 }
6701 }
6702
6703 /* Put the value into the output. */
6704 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6705
6706 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6707 location);
6708
6709 return TRUE;
6710 }
6711 \f
6712 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6713 is the original relocation, which is now being transformed into a
6714 dynamic relocation. The ADDENDP is adjusted if necessary; the
6715 caller should store the result in place of the original addend. */
6716
6717 static bfd_boolean
6718 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6719 struct bfd_link_info *info,
6720 const Elf_Internal_Rela *rel,
6721 struct mips_elf_link_hash_entry *h,
6722 asection *sec, bfd_vma symbol,
6723 bfd_vma *addendp, asection *input_section)
6724 {
6725 Elf_Internal_Rela outrel[3];
6726 asection *sreloc;
6727 bfd *dynobj;
6728 int r_type;
6729 long indx;
6730 bfd_boolean defined_p;
6731 struct mips_elf_link_hash_table *htab;
6732
6733 htab = mips_elf_hash_table (info);
6734 BFD_ASSERT (htab != NULL);
6735
6736 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6737 dynobj = elf_hash_table (info)->dynobj;
6738 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6739 BFD_ASSERT (sreloc != NULL);
6740 BFD_ASSERT (sreloc->contents != NULL);
6741 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6742 < sreloc->size);
6743
6744 outrel[0].r_offset =
6745 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6746 if (ABI_64_P (output_bfd))
6747 {
6748 outrel[1].r_offset =
6749 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6750 outrel[2].r_offset =
6751 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6752 }
6753
6754 if (outrel[0].r_offset == MINUS_ONE)
6755 /* The relocation field has been deleted. */
6756 return TRUE;
6757
6758 if (outrel[0].r_offset == MINUS_TWO)
6759 {
6760 /* The relocation field has been converted into a relative value of
6761 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6762 the field to be fully relocated, so add in the symbol's value. */
6763 *addendp += symbol;
6764 return TRUE;
6765 }
6766
6767 /* We must now calculate the dynamic symbol table index to use
6768 in the relocation. */
6769 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6770 {
6771 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6772 indx = h->root.dynindx;
6773 if (SGI_COMPAT (output_bfd))
6774 defined_p = h->root.def_regular;
6775 else
6776 /* ??? glibc's ld.so just adds the final GOT entry to the
6777 relocation field. It therefore treats relocs against
6778 defined symbols in the same way as relocs against
6779 undefined symbols. */
6780 defined_p = FALSE;
6781 }
6782 else
6783 {
6784 if (sec != NULL && bfd_is_abs_section (sec))
6785 indx = 0;
6786 else if (sec == NULL || sec->owner == NULL)
6787 {
6788 bfd_set_error (bfd_error_bad_value);
6789 return FALSE;
6790 }
6791 else
6792 {
6793 indx = elf_section_data (sec->output_section)->dynindx;
6794 if (indx == 0)
6795 {
6796 asection *osec = htab->root.text_index_section;
6797 indx = elf_section_data (osec)->dynindx;
6798 }
6799 if (indx == 0)
6800 abort ();
6801 }
6802
6803 /* Instead of generating a relocation using the section
6804 symbol, we may as well make it a fully relative
6805 relocation. We want to avoid generating relocations to
6806 local symbols because we used to generate them
6807 incorrectly, without adding the original symbol value,
6808 which is mandated by the ABI for section symbols. In
6809 order to give dynamic loaders and applications time to
6810 phase out the incorrect use, we refrain from emitting
6811 section-relative relocations. It's not like they're
6812 useful, after all. This should be a bit more efficient
6813 as well. */
6814 /* ??? Although this behavior is compatible with glibc's ld.so,
6815 the ABI says that relocations against STN_UNDEF should have
6816 a symbol value of 0. Irix rld honors this, so relocations
6817 against STN_UNDEF have no effect. */
6818 if (!SGI_COMPAT (output_bfd))
6819 indx = 0;
6820 defined_p = TRUE;
6821 }
6822
6823 /* If the relocation was previously an absolute relocation and
6824 this symbol will not be referred to by the relocation, we must
6825 adjust it by the value we give it in the dynamic symbol table.
6826 Otherwise leave the job up to the dynamic linker. */
6827 if (defined_p && r_type != R_MIPS_REL32)
6828 *addendp += symbol;
6829
6830 if (htab->is_vxworks)
6831 /* VxWorks uses non-relative relocations for this. */
6832 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6833 else
6834 /* The relocation is always an REL32 relocation because we don't
6835 know where the shared library will wind up at load-time. */
6836 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6837 R_MIPS_REL32);
6838
6839 /* For strict adherence to the ABI specification, we should
6840 generate a R_MIPS_64 relocation record by itself before the
6841 _REL32/_64 record as well, such that the addend is read in as
6842 a 64-bit value (REL32 is a 32-bit relocation, after all).
6843 However, since none of the existing ELF64 MIPS dynamic
6844 loaders seems to care, we don't waste space with these
6845 artificial relocations. If this turns out to not be true,
6846 mips_elf_allocate_dynamic_relocation() should be tweaked so
6847 as to make room for a pair of dynamic relocations per
6848 invocation if ABI_64_P, and here we should generate an
6849 additional relocation record with R_MIPS_64 by itself for a
6850 NULL symbol before this relocation record. */
6851 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6852 ABI_64_P (output_bfd)
6853 ? R_MIPS_64
6854 : R_MIPS_NONE);
6855 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6856
6857 /* Adjust the output offset of the relocation to reference the
6858 correct location in the output file. */
6859 outrel[0].r_offset += (input_section->output_section->vma
6860 + input_section->output_offset);
6861 outrel[1].r_offset += (input_section->output_section->vma
6862 + input_section->output_offset);
6863 outrel[2].r_offset += (input_section->output_section->vma
6864 + input_section->output_offset);
6865
6866 /* Put the relocation back out. We have to use the special
6867 relocation outputter in the 64-bit case since the 64-bit
6868 relocation format is non-standard. */
6869 if (ABI_64_P (output_bfd))
6870 {
6871 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6872 (output_bfd, &outrel[0],
6873 (sreloc->contents
6874 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6875 }
6876 else if (htab->is_vxworks)
6877 {
6878 /* VxWorks uses RELA rather than REL dynamic relocations. */
6879 outrel[0].r_addend = *addendp;
6880 bfd_elf32_swap_reloca_out
6881 (output_bfd, &outrel[0],
6882 (sreloc->contents
6883 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6884 }
6885 else
6886 bfd_elf32_swap_reloc_out
6887 (output_bfd, &outrel[0],
6888 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6889
6890 /* We've now added another relocation. */
6891 ++sreloc->reloc_count;
6892
6893 /* Make sure the output section is writable. The dynamic linker
6894 will be writing to it. */
6895 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6896 |= SHF_WRITE;
6897
6898 /* On IRIX5, make an entry of compact relocation info. */
6899 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6900 {
6901 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6902 bfd_byte *cr;
6903
6904 if (scpt)
6905 {
6906 Elf32_crinfo cptrel;
6907
6908 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6909 cptrel.vaddr = (rel->r_offset
6910 + input_section->output_section->vma
6911 + input_section->output_offset);
6912 if (r_type == R_MIPS_REL32)
6913 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6914 else
6915 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6916 mips_elf_set_cr_dist2to (cptrel, 0);
6917 cptrel.konst = *addendp;
6918
6919 cr = (scpt->contents
6920 + sizeof (Elf32_External_compact_rel));
6921 mips_elf_set_cr_relvaddr (cptrel, 0);
6922 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6923 ((Elf32_External_crinfo *) cr
6924 + scpt->reloc_count));
6925 ++scpt->reloc_count;
6926 }
6927 }
6928
6929 /* If we've written this relocation for a readonly section,
6930 we need to set DF_TEXTREL again, so that we do not delete the
6931 DT_TEXTREL tag. */
6932 if (MIPS_ELF_READONLY_SECTION (input_section))
6933 info->flags |= DF_TEXTREL;
6934
6935 return TRUE;
6936 }
6937 \f
6938 /* Return the MACH for a MIPS e_flags value. */
6939
6940 unsigned long
6941 _bfd_elf_mips_mach (flagword flags)
6942 {
6943 switch (flags & EF_MIPS_MACH)
6944 {
6945 case E_MIPS_MACH_3900:
6946 return bfd_mach_mips3900;
6947
6948 case E_MIPS_MACH_4010:
6949 return bfd_mach_mips4010;
6950
6951 case E_MIPS_MACH_4100:
6952 return bfd_mach_mips4100;
6953
6954 case E_MIPS_MACH_4111:
6955 return bfd_mach_mips4111;
6956
6957 case E_MIPS_MACH_4120:
6958 return bfd_mach_mips4120;
6959
6960 case E_MIPS_MACH_4650:
6961 return bfd_mach_mips4650;
6962
6963 case E_MIPS_MACH_5400:
6964 return bfd_mach_mips5400;
6965
6966 case E_MIPS_MACH_5500:
6967 return bfd_mach_mips5500;
6968
6969 case E_MIPS_MACH_5900:
6970 return bfd_mach_mips5900;
6971
6972 case E_MIPS_MACH_9000:
6973 return bfd_mach_mips9000;
6974
6975 case E_MIPS_MACH_SB1:
6976 return bfd_mach_mips_sb1;
6977
6978 case E_MIPS_MACH_LS2E:
6979 return bfd_mach_mips_loongson_2e;
6980
6981 case E_MIPS_MACH_LS2F:
6982 return bfd_mach_mips_loongson_2f;
6983
6984 case E_MIPS_MACH_GS464:
6985 return bfd_mach_mips_gs464;
6986
6987 case E_MIPS_MACH_GS464E:
6988 return bfd_mach_mips_gs464e;
6989
6990 case E_MIPS_MACH_GS264E:
6991 return bfd_mach_mips_gs264e;
6992
6993 case E_MIPS_MACH_OCTEON3:
6994 return bfd_mach_mips_octeon3;
6995
6996 case E_MIPS_MACH_OCTEON2:
6997 return bfd_mach_mips_octeon2;
6998
6999 case E_MIPS_MACH_OCTEON:
7000 return bfd_mach_mips_octeon;
7001
7002 case E_MIPS_MACH_XLR:
7003 return bfd_mach_mips_xlr;
7004
7005 case E_MIPS_MACH_IAMR2:
7006 return bfd_mach_mips_interaptiv_mr2;
7007
7008 default:
7009 switch (flags & EF_MIPS_ARCH)
7010 {
7011 default:
7012 case E_MIPS_ARCH_1:
7013 return bfd_mach_mips3000;
7014
7015 case E_MIPS_ARCH_2:
7016 return bfd_mach_mips6000;
7017
7018 case E_MIPS_ARCH_3:
7019 return bfd_mach_mips4000;
7020
7021 case E_MIPS_ARCH_4:
7022 return bfd_mach_mips8000;
7023
7024 case E_MIPS_ARCH_5:
7025 return bfd_mach_mips5;
7026
7027 case E_MIPS_ARCH_32:
7028 return bfd_mach_mipsisa32;
7029
7030 case E_MIPS_ARCH_64:
7031 return bfd_mach_mipsisa64;
7032
7033 case E_MIPS_ARCH_32R2:
7034 return bfd_mach_mipsisa32r2;
7035
7036 case E_MIPS_ARCH_64R2:
7037 return bfd_mach_mipsisa64r2;
7038
7039 case E_MIPS_ARCH_32R6:
7040 return bfd_mach_mipsisa32r6;
7041
7042 case E_MIPS_ARCH_64R6:
7043 return bfd_mach_mipsisa64r6;
7044 }
7045 }
7046
7047 return 0;
7048 }
7049
7050 /* Return printable name for ABI. */
7051
7052 static INLINE char *
7053 elf_mips_abi_name (bfd *abfd)
7054 {
7055 flagword flags;
7056
7057 flags = elf_elfheader (abfd)->e_flags;
7058 switch (flags & EF_MIPS_ABI)
7059 {
7060 case 0:
7061 if (ABI_N32_P (abfd))
7062 return "N32";
7063 else if (ABI_64_P (abfd))
7064 return "64";
7065 else
7066 return "none";
7067 case E_MIPS_ABI_O32:
7068 return "O32";
7069 case E_MIPS_ABI_O64:
7070 return "O64";
7071 case E_MIPS_ABI_EABI32:
7072 return "EABI32";
7073 case E_MIPS_ABI_EABI64:
7074 return "EABI64";
7075 default:
7076 return "unknown abi";
7077 }
7078 }
7079 \f
7080 /* MIPS ELF uses two common sections. One is the usual one, and the
7081 other is for small objects. All the small objects are kept
7082 together, and then referenced via the gp pointer, which yields
7083 faster assembler code. This is what we use for the small common
7084 section. This approach is copied from ecoff.c. */
7085 static asection mips_elf_scom_section;
7086 static asymbol mips_elf_scom_symbol;
7087 static asymbol *mips_elf_scom_symbol_ptr;
7088
7089 /* MIPS ELF also uses an acommon section, which represents an
7090 allocated common symbol which may be overridden by a
7091 definition in a shared library. */
7092 static asection mips_elf_acom_section;
7093 static asymbol mips_elf_acom_symbol;
7094 static asymbol *mips_elf_acom_symbol_ptr;
7095
7096 /* This is used for both the 32-bit and the 64-bit ABI. */
7097
7098 void
7099 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7100 {
7101 elf_symbol_type *elfsym;
7102
7103 /* Handle the special MIPS section numbers that a symbol may use. */
7104 elfsym = (elf_symbol_type *) asym;
7105 switch (elfsym->internal_elf_sym.st_shndx)
7106 {
7107 case SHN_MIPS_ACOMMON:
7108 /* This section is used in a dynamically linked executable file.
7109 It is an allocated common section. The dynamic linker can
7110 either resolve these symbols to something in a shared
7111 library, or it can just leave them here. For our purposes,
7112 we can consider these symbols to be in a new section. */
7113 if (mips_elf_acom_section.name == NULL)
7114 {
7115 /* Initialize the acommon section. */
7116 mips_elf_acom_section.name = ".acommon";
7117 mips_elf_acom_section.flags = SEC_ALLOC;
7118 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7119 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7120 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7121 mips_elf_acom_symbol.name = ".acommon";
7122 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7123 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7124 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7125 }
7126 asym->section = &mips_elf_acom_section;
7127 break;
7128
7129 case SHN_COMMON:
7130 /* Common symbols less than the GP size are automatically
7131 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7132 if (asym->value > elf_gp_size (abfd)
7133 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7134 || IRIX_COMPAT (abfd) == ict_irix6)
7135 break;
7136 /* Fall through. */
7137 case SHN_MIPS_SCOMMON:
7138 if (mips_elf_scom_section.name == NULL)
7139 {
7140 /* Initialize the small common section. */
7141 mips_elf_scom_section.name = ".scommon";
7142 mips_elf_scom_section.flags = SEC_IS_COMMON;
7143 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7144 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7145 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7146 mips_elf_scom_symbol.name = ".scommon";
7147 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7148 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7149 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7150 }
7151 asym->section = &mips_elf_scom_section;
7152 asym->value = elfsym->internal_elf_sym.st_size;
7153 break;
7154
7155 case SHN_MIPS_SUNDEFINED:
7156 asym->section = bfd_und_section_ptr;
7157 break;
7158
7159 case SHN_MIPS_TEXT:
7160 {
7161 asection *section = bfd_get_section_by_name (abfd, ".text");
7162
7163 if (section != NULL)
7164 {
7165 asym->section = section;
7166 /* MIPS_TEXT is a bit special, the address is not an offset
7167 to the base of the .text section. So subtract the section
7168 base address to make it an offset. */
7169 asym->value -= section->vma;
7170 }
7171 }
7172 break;
7173
7174 case SHN_MIPS_DATA:
7175 {
7176 asection *section = bfd_get_section_by_name (abfd, ".data");
7177
7178 if (section != NULL)
7179 {
7180 asym->section = section;
7181 /* MIPS_DATA is a bit special, the address is not an offset
7182 to the base of the .data section. So subtract the section
7183 base address to make it an offset. */
7184 asym->value -= section->vma;
7185 }
7186 }
7187 break;
7188 }
7189
7190 /* If this is an odd-valued function symbol, assume it's a MIPS16
7191 or microMIPS one. */
7192 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7193 && (asym->value & 1) != 0)
7194 {
7195 asym->value--;
7196 if (MICROMIPS_P (abfd))
7197 elfsym->internal_elf_sym.st_other
7198 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7199 else
7200 elfsym->internal_elf_sym.st_other
7201 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7202 }
7203 }
7204 \f
7205 /* Implement elf_backend_eh_frame_address_size. This differs from
7206 the default in the way it handles EABI64.
7207
7208 EABI64 was originally specified as an LP64 ABI, and that is what
7209 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7210 historically accepted the combination of -mabi=eabi and -mlong32,
7211 and this ILP32 variation has become semi-official over time.
7212 Both forms use elf32 and have pointer-sized FDE addresses.
7213
7214 If an EABI object was generated by GCC 4.0 or above, it will have
7215 an empty .gcc_compiled_longXX section, where XX is the size of longs
7216 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7217 have no special marking to distinguish them from LP64 objects.
7218
7219 We don't want users of the official LP64 ABI to be punished for the
7220 existence of the ILP32 variant, but at the same time, we don't want
7221 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7222 We therefore take the following approach:
7223
7224 - If ABFD contains a .gcc_compiled_longXX section, use it to
7225 determine the pointer size.
7226
7227 - Otherwise check the type of the first relocation. Assume that
7228 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7229
7230 - Otherwise punt.
7231
7232 The second check is enough to detect LP64 objects generated by pre-4.0
7233 compilers because, in the kind of output generated by those compilers,
7234 the first relocation will be associated with either a CIE personality
7235 routine or an FDE start address. Furthermore, the compilers never
7236 used a special (non-pointer) encoding for this ABI.
7237
7238 Checking the relocation type should also be safe because there is no
7239 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7240 did so. */
7241
7242 unsigned int
7243 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7244 {
7245 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7246 return 8;
7247 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7248 {
7249 bfd_boolean long32_p, long64_p;
7250
7251 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7252 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7253 if (long32_p && long64_p)
7254 return 0;
7255 if (long32_p)
7256 return 4;
7257 if (long64_p)
7258 return 8;
7259
7260 if (sec->reloc_count > 0
7261 && elf_section_data (sec)->relocs != NULL
7262 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7263 == R_MIPS_64))
7264 return 8;
7265
7266 return 0;
7267 }
7268 return 4;
7269 }
7270 \f
7271 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7272 relocations against two unnamed section symbols to resolve to the
7273 same address. For example, if we have code like:
7274
7275 lw $4,%got_disp(.data)($gp)
7276 lw $25,%got_disp(.text)($gp)
7277 jalr $25
7278
7279 then the linker will resolve both relocations to .data and the program
7280 will jump there rather than to .text.
7281
7282 We can work around this problem by giving names to local section symbols.
7283 This is also what the MIPSpro tools do. */
7284
7285 bfd_boolean
7286 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7287 {
7288 return SGI_COMPAT (abfd);
7289 }
7290 \f
7291 /* Work over a section just before writing it out. This routine is
7292 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7293 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7294 a better way. */
7295
7296 bfd_boolean
7297 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7298 {
7299 if (hdr->sh_type == SHT_MIPS_REGINFO
7300 && hdr->sh_size > 0)
7301 {
7302 bfd_byte buf[4];
7303
7304 BFD_ASSERT (hdr->contents == NULL);
7305
7306 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7307 {
7308 _bfd_error_handler
7309 (_("%pB: incorrect `.reginfo' section size; "
7310 "expected %" PRIu64 ", got %" PRIu64),
7311 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7312 (uint64_t) hdr->sh_size);
7313 bfd_set_error (bfd_error_bad_value);
7314 return FALSE;
7315 }
7316
7317 if (bfd_seek (abfd,
7318 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7319 SEEK_SET) != 0)
7320 return FALSE;
7321 H_PUT_32 (abfd, elf_gp (abfd), buf);
7322 if (bfd_bwrite (buf, 4, abfd) != 4)
7323 return FALSE;
7324 }
7325
7326 if (hdr->sh_type == SHT_MIPS_OPTIONS
7327 && hdr->bfd_section != NULL
7328 && mips_elf_section_data (hdr->bfd_section) != NULL
7329 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7330 {
7331 bfd_byte *contents, *l, *lend;
7332
7333 /* We stored the section contents in the tdata field in the
7334 set_section_contents routine. We save the section contents
7335 so that we don't have to read them again.
7336 At this point we know that elf_gp is set, so we can look
7337 through the section contents to see if there is an
7338 ODK_REGINFO structure. */
7339
7340 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7341 l = contents;
7342 lend = contents + hdr->sh_size;
7343 while (l + sizeof (Elf_External_Options) <= lend)
7344 {
7345 Elf_Internal_Options intopt;
7346
7347 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7348 &intopt);
7349 if (intopt.size < sizeof (Elf_External_Options))
7350 {
7351 _bfd_error_handler
7352 /* xgettext:c-format */
7353 (_("%pB: warning: bad `%s' option size %u smaller than"
7354 " its header"),
7355 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7356 break;
7357 }
7358 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7359 {
7360 bfd_byte buf[8];
7361
7362 if (bfd_seek (abfd,
7363 (hdr->sh_offset
7364 + (l - contents)
7365 + sizeof (Elf_External_Options)
7366 + (sizeof (Elf64_External_RegInfo) - 8)),
7367 SEEK_SET) != 0)
7368 return FALSE;
7369 H_PUT_64 (abfd, elf_gp (abfd), buf);
7370 if (bfd_bwrite (buf, 8, abfd) != 8)
7371 return FALSE;
7372 }
7373 else if (intopt.kind == ODK_REGINFO)
7374 {
7375 bfd_byte buf[4];
7376
7377 if (bfd_seek (abfd,
7378 (hdr->sh_offset
7379 + (l - contents)
7380 + sizeof (Elf_External_Options)
7381 + (sizeof (Elf32_External_RegInfo) - 4)),
7382 SEEK_SET) != 0)
7383 return FALSE;
7384 H_PUT_32 (abfd, elf_gp (abfd), buf);
7385 if (bfd_bwrite (buf, 4, abfd) != 4)
7386 return FALSE;
7387 }
7388 l += intopt.size;
7389 }
7390 }
7391
7392 if (hdr->bfd_section != NULL)
7393 {
7394 const char *name = bfd_section_name (hdr->bfd_section);
7395
7396 /* .sbss is not handled specially here because the GNU/Linux
7397 prelinker can convert .sbss from NOBITS to PROGBITS and
7398 changing it back to NOBITS breaks the binary. The entry in
7399 _bfd_mips_elf_special_sections will ensure the correct flags
7400 are set on .sbss if BFD creates it without reading it from an
7401 input file, and without special handling here the flags set
7402 on it in an input file will be followed. */
7403 if (strcmp (name, ".sdata") == 0
7404 || strcmp (name, ".lit8") == 0
7405 || strcmp (name, ".lit4") == 0)
7406 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7407 else if (strcmp (name, ".srdata") == 0)
7408 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7409 else if (strcmp (name, ".compact_rel") == 0)
7410 hdr->sh_flags = 0;
7411 else if (strcmp (name, ".rtproc") == 0)
7412 {
7413 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7414 {
7415 unsigned int adjust;
7416
7417 adjust = hdr->sh_size % hdr->sh_addralign;
7418 if (adjust != 0)
7419 hdr->sh_size += hdr->sh_addralign - adjust;
7420 }
7421 }
7422 }
7423
7424 return TRUE;
7425 }
7426
7427 /* Handle a MIPS specific section when reading an object file. This
7428 is called when elfcode.h finds a section with an unknown type.
7429 This routine supports both the 32-bit and 64-bit ELF ABI.
7430
7431 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7432 how to. */
7433
7434 bfd_boolean
7435 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7436 Elf_Internal_Shdr *hdr,
7437 const char *name,
7438 int shindex)
7439 {
7440 flagword flags = 0;
7441
7442 /* There ought to be a place to keep ELF backend specific flags, but
7443 at the moment there isn't one. We just keep track of the
7444 sections by their name, instead. Fortunately, the ABI gives
7445 suggested names for all the MIPS specific sections, so we will
7446 probably get away with this. */
7447 switch (hdr->sh_type)
7448 {
7449 case SHT_MIPS_LIBLIST:
7450 if (strcmp (name, ".liblist") != 0)
7451 return FALSE;
7452 break;
7453 case SHT_MIPS_MSYM:
7454 if (strcmp (name, ".msym") != 0)
7455 return FALSE;
7456 break;
7457 case SHT_MIPS_CONFLICT:
7458 if (strcmp (name, ".conflict") != 0)
7459 return FALSE;
7460 break;
7461 case SHT_MIPS_GPTAB:
7462 if (! CONST_STRNEQ (name, ".gptab."))
7463 return FALSE;
7464 break;
7465 case SHT_MIPS_UCODE:
7466 if (strcmp (name, ".ucode") != 0)
7467 return FALSE;
7468 break;
7469 case SHT_MIPS_DEBUG:
7470 if (strcmp (name, ".mdebug") != 0)
7471 return FALSE;
7472 flags = SEC_DEBUGGING;
7473 break;
7474 case SHT_MIPS_REGINFO:
7475 if (strcmp (name, ".reginfo") != 0
7476 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7477 return FALSE;
7478 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7479 break;
7480 case SHT_MIPS_IFACE:
7481 if (strcmp (name, ".MIPS.interfaces") != 0)
7482 return FALSE;
7483 break;
7484 case SHT_MIPS_CONTENT:
7485 if (! CONST_STRNEQ (name, ".MIPS.content"))
7486 return FALSE;
7487 break;
7488 case SHT_MIPS_OPTIONS:
7489 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7490 return FALSE;
7491 break;
7492 case SHT_MIPS_ABIFLAGS:
7493 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7494 return FALSE;
7495 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7496 break;
7497 case SHT_MIPS_DWARF:
7498 if (! CONST_STRNEQ (name, ".debug_")
7499 && ! CONST_STRNEQ (name, ".zdebug_"))
7500 return FALSE;
7501 break;
7502 case SHT_MIPS_SYMBOL_LIB:
7503 if (strcmp (name, ".MIPS.symlib") != 0)
7504 return FALSE;
7505 break;
7506 case SHT_MIPS_EVENTS:
7507 if (! CONST_STRNEQ (name, ".MIPS.events")
7508 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7509 return FALSE;
7510 break;
7511 case SHT_MIPS_XHASH:
7512 if (strcmp (name, ".MIPS.xhash") != 0)
7513 return FALSE;
7514 default:
7515 break;
7516 }
7517
7518 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7519 return FALSE;
7520
7521 if (flags)
7522 {
7523 if (!bfd_set_section_flags (hdr->bfd_section,
7524 (bfd_section_flags (hdr->bfd_section)
7525 | flags)))
7526 return FALSE;
7527 }
7528
7529 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7530 {
7531 Elf_External_ABIFlags_v0 ext;
7532
7533 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7534 &ext, 0, sizeof ext))
7535 return FALSE;
7536 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7537 &mips_elf_tdata (abfd)->abiflags);
7538 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7539 return FALSE;
7540 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7541 }
7542
7543 /* FIXME: We should record sh_info for a .gptab section. */
7544
7545 /* For a .reginfo section, set the gp value in the tdata information
7546 from the contents of this section. We need the gp value while
7547 processing relocs, so we just get it now. The .reginfo section
7548 is not used in the 64-bit MIPS ELF ABI. */
7549 if (hdr->sh_type == SHT_MIPS_REGINFO)
7550 {
7551 Elf32_External_RegInfo ext;
7552 Elf32_RegInfo s;
7553
7554 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7555 &ext, 0, sizeof ext))
7556 return FALSE;
7557 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7558 elf_gp (abfd) = s.ri_gp_value;
7559 }
7560
7561 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7562 set the gp value based on what we find. We may see both
7563 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7564 they should agree. */
7565 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7566 {
7567 bfd_byte *contents, *l, *lend;
7568
7569 contents = bfd_malloc (hdr->sh_size);
7570 if (contents == NULL)
7571 return FALSE;
7572 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7573 0, hdr->sh_size))
7574 {
7575 free (contents);
7576 return FALSE;
7577 }
7578 l = contents;
7579 lend = contents + hdr->sh_size;
7580 while (l + sizeof (Elf_External_Options) <= lend)
7581 {
7582 Elf_Internal_Options intopt;
7583
7584 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7585 &intopt);
7586 if (intopt.size < sizeof (Elf_External_Options))
7587 {
7588 _bfd_error_handler
7589 /* xgettext:c-format */
7590 (_("%pB: warning: bad `%s' option size %u smaller than"
7591 " its header"),
7592 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7593 break;
7594 }
7595 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7596 {
7597 Elf64_Internal_RegInfo intreg;
7598
7599 bfd_mips_elf64_swap_reginfo_in
7600 (abfd,
7601 ((Elf64_External_RegInfo *)
7602 (l + sizeof (Elf_External_Options))),
7603 &intreg);
7604 elf_gp (abfd) = intreg.ri_gp_value;
7605 }
7606 else if (intopt.kind == ODK_REGINFO)
7607 {
7608 Elf32_RegInfo intreg;
7609
7610 bfd_mips_elf32_swap_reginfo_in
7611 (abfd,
7612 ((Elf32_External_RegInfo *)
7613 (l + sizeof (Elf_External_Options))),
7614 &intreg);
7615 elf_gp (abfd) = intreg.ri_gp_value;
7616 }
7617 l += intopt.size;
7618 }
7619 free (contents);
7620 }
7621
7622 return TRUE;
7623 }
7624
7625 /* Set the correct type for a MIPS ELF section. We do this by the
7626 section name, which is a hack, but ought to work. This routine is
7627 used by both the 32-bit and the 64-bit ABI. */
7628
7629 bfd_boolean
7630 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7631 {
7632 const char *name = bfd_section_name (sec);
7633
7634 if (strcmp (name, ".liblist") == 0)
7635 {
7636 hdr->sh_type = SHT_MIPS_LIBLIST;
7637 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7638 /* The sh_link field is set in final_write_processing. */
7639 }
7640 else if (strcmp (name, ".conflict") == 0)
7641 hdr->sh_type = SHT_MIPS_CONFLICT;
7642 else if (CONST_STRNEQ (name, ".gptab."))
7643 {
7644 hdr->sh_type = SHT_MIPS_GPTAB;
7645 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7646 /* The sh_info field is set in final_write_processing. */
7647 }
7648 else if (strcmp (name, ".ucode") == 0)
7649 hdr->sh_type = SHT_MIPS_UCODE;
7650 else if (strcmp (name, ".mdebug") == 0)
7651 {
7652 hdr->sh_type = SHT_MIPS_DEBUG;
7653 /* In a shared object on IRIX 5.3, the .mdebug section has an
7654 entsize of 0. FIXME: Does this matter? */
7655 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7656 hdr->sh_entsize = 0;
7657 else
7658 hdr->sh_entsize = 1;
7659 }
7660 else if (strcmp (name, ".reginfo") == 0)
7661 {
7662 hdr->sh_type = SHT_MIPS_REGINFO;
7663 /* In a shared object on IRIX 5.3, the .reginfo section has an
7664 entsize of 0x18. FIXME: Does this matter? */
7665 if (SGI_COMPAT (abfd))
7666 {
7667 if ((abfd->flags & DYNAMIC) != 0)
7668 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7669 else
7670 hdr->sh_entsize = 1;
7671 }
7672 else
7673 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7674 }
7675 else if (SGI_COMPAT (abfd)
7676 && (strcmp (name, ".hash") == 0
7677 || strcmp (name, ".dynamic") == 0
7678 || strcmp (name, ".dynstr") == 0))
7679 {
7680 if (SGI_COMPAT (abfd))
7681 hdr->sh_entsize = 0;
7682 #if 0
7683 /* This isn't how the IRIX6 linker behaves. */
7684 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7685 #endif
7686 }
7687 else if (strcmp (name, ".got") == 0
7688 || strcmp (name, ".srdata") == 0
7689 || strcmp (name, ".sdata") == 0
7690 || strcmp (name, ".sbss") == 0
7691 || strcmp (name, ".lit4") == 0
7692 || strcmp (name, ".lit8") == 0)
7693 hdr->sh_flags |= SHF_MIPS_GPREL;
7694 else if (strcmp (name, ".MIPS.interfaces") == 0)
7695 {
7696 hdr->sh_type = SHT_MIPS_IFACE;
7697 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7698 }
7699 else if (CONST_STRNEQ (name, ".MIPS.content"))
7700 {
7701 hdr->sh_type = SHT_MIPS_CONTENT;
7702 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7703 /* The sh_info field is set in final_write_processing. */
7704 }
7705 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7706 {
7707 hdr->sh_type = SHT_MIPS_OPTIONS;
7708 hdr->sh_entsize = 1;
7709 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7710 }
7711 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7712 {
7713 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7714 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7715 }
7716 else if (CONST_STRNEQ (name, ".debug_")
7717 || CONST_STRNEQ (name, ".zdebug_"))
7718 {
7719 hdr->sh_type = SHT_MIPS_DWARF;
7720
7721 /* Irix facilities such as libexc expect a single .debug_frame
7722 per executable, the system ones have NOSTRIP set and the linker
7723 doesn't merge sections with different flags so ... */
7724 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7725 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7726 }
7727 else if (strcmp (name, ".MIPS.symlib") == 0)
7728 {
7729 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7730 /* The sh_link and sh_info fields are set in
7731 final_write_processing. */
7732 }
7733 else if (CONST_STRNEQ (name, ".MIPS.events")
7734 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7735 {
7736 hdr->sh_type = SHT_MIPS_EVENTS;
7737 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7738 /* The sh_link field is set in final_write_processing. */
7739 }
7740 else if (strcmp (name, ".msym") == 0)
7741 {
7742 hdr->sh_type = SHT_MIPS_MSYM;
7743 hdr->sh_flags |= SHF_ALLOC;
7744 hdr->sh_entsize = 8;
7745 }
7746 else if (strcmp (name, ".MIPS.xhash") == 0)
7747 {
7748 hdr->sh_type = SHT_MIPS_XHASH;
7749 hdr->sh_flags |= SHF_ALLOC;
7750 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7751 }
7752
7753 /* The generic elf_fake_sections will set up REL_HDR using the default
7754 kind of relocations. We used to set up a second header for the
7755 non-default kind of relocations here, but only NewABI would use
7756 these, and the IRIX ld doesn't like resulting empty RELA sections.
7757 Thus we create those header only on demand now. */
7758
7759 return TRUE;
7760 }
7761
7762 /* Given a BFD section, try to locate the corresponding ELF section
7763 index. This is used by both the 32-bit and the 64-bit ABI.
7764 Actually, it's not clear to me that the 64-bit ABI supports these,
7765 but for non-PIC objects we will certainly want support for at least
7766 the .scommon section. */
7767
7768 bfd_boolean
7769 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7770 asection *sec, int *retval)
7771 {
7772 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
7773 {
7774 *retval = SHN_MIPS_SCOMMON;
7775 return TRUE;
7776 }
7777 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
7778 {
7779 *retval = SHN_MIPS_ACOMMON;
7780 return TRUE;
7781 }
7782 return FALSE;
7783 }
7784 \f
7785 /* Hook called by the linker routine which adds symbols from an object
7786 file. We must handle the special MIPS section numbers here. */
7787
7788 bfd_boolean
7789 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7790 Elf_Internal_Sym *sym, const char **namep,
7791 flagword *flagsp ATTRIBUTE_UNUSED,
7792 asection **secp, bfd_vma *valp)
7793 {
7794 if (SGI_COMPAT (abfd)
7795 && (abfd->flags & DYNAMIC) != 0
7796 && strcmp (*namep, "_rld_new_interface") == 0)
7797 {
7798 /* Skip IRIX5 rld entry name. */
7799 *namep = NULL;
7800 return TRUE;
7801 }
7802
7803 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7804 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7805 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7806 a magic symbol resolved by the linker, we ignore this bogus definition
7807 of _gp_disp. New ABI objects do not suffer from this problem so this
7808 is not done for them. */
7809 if (!NEWABI_P(abfd)
7810 && (sym->st_shndx == SHN_ABS)
7811 && (strcmp (*namep, "_gp_disp") == 0))
7812 {
7813 *namep = NULL;
7814 return TRUE;
7815 }
7816
7817 switch (sym->st_shndx)
7818 {
7819 case SHN_COMMON:
7820 /* Common symbols less than the GP size are automatically
7821 treated as SHN_MIPS_SCOMMON symbols. */
7822 if (sym->st_size > elf_gp_size (abfd)
7823 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7824 || IRIX_COMPAT (abfd) == ict_irix6)
7825 break;
7826 /* Fall through. */
7827 case SHN_MIPS_SCOMMON:
7828 *secp = bfd_make_section_old_way (abfd, ".scommon");
7829 (*secp)->flags |= SEC_IS_COMMON;
7830 *valp = sym->st_size;
7831 break;
7832
7833 case SHN_MIPS_TEXT:
7834 /* This section is used in a shared object. */
7835 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7836 {
7837 asymbol *elf_text_symbol;
7838 asection *elf_text_section;
7839 size_t amt = sizeof (asection);
7840
7841 elf_text_section = bfd_zalloc (abfd, amt);
7842 if (elf_text_section == NULL)
7843 return FALSE;
7844
7845 amt = sizeof (asymbol);
7846 elf_text_symbol = bfd_zalloc (abfd, amt);
7847 if (elf_text_symbol == NULL)
7848 return FALSE;
7849
7850 /* Initialize the section. */
7851
7852 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7853 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7854
7855 elf_text_section->symbol = elf_text_symbol;
7856 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7857
7858 elf_text_section->name = ".text";
7859 elf_text_section->flags = SEC_NO_FLAGS;
7860 elf_text_section->output_section = NULL;
7861 elf_text_section->owner = abfd;
7862 elf_text_symbol->name = ".text";
7863 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7864 elf_text_symbol->section = elf_text_section;
7865 }
7866 /* This code used to do *secp = bfd_und_section_ptr if
7867 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7868 so I took it out. */
7869 *secp = mips_elf_tdata (abfd)->elf_text_section;
7870 break;
7871
7872 case SHN_MIPS_ACOMMON:
7873 /* Fall through. XXX Can we treat this as allocated data? */
7874 case SHN_MIPS_DATA:
7875 /* This section is used in a shared object. */
7876 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7877 {
7878 asymbol *elf_data_symbol;
7879 asection *elf_data_section;
7880 size_t amt = sizeof (asection);
7881
7882 elf_data_section = bfd_zalloc (abfd, amt);
7883 if (elf_data_section == NULL)
7884 return FALSE;
7885
7886 amt = sizeof (asymbol);
7887 elf_data_symbol = bfd_zalloc (abfd, amt);
7888 if (elf_data_symbol == NULL)
7889 return FALSE;
7890
7891 /* Initialize the section. */
7892
7893 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7894 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7895
7896 elf_data_section->symbol = elf_data_symbol;
7897 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7898
7899 elf_data_section->name = ".data";
7900 elf_data_section->flags = SEC_NO_FLAGS;
7901 elf_data_section->output_section = NULL;
7902 elf_data_section->owner = abfd;
7903 elf_data_symbol->name = ".data";
7904 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7905 elf_data_symbol->section = elf_data_section;
7906 }
7907 /* This code used to do *secp = bfd_und_section_ptr if
7908 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7909 so I took it out. */
7910 *secp = mips_elf_tdata (abfd)->elf_data_section;
7911 break;
7912
7913 case SHN_MIPS_SUNDEFINED:
7914 *secp = bfd_und_section_ptr;
7915 break;
7916 }
7917
7918 if (SGI_COMPAT (abfd)
7919 && ! bfd_link_pic (info)
7920 && info->output_bfd->xvec == abfd->xvec
7921 && strcmp (*namep, "__rld_obj_head") == 0)
7922 {
7923 struct elf_link_hash_entry *h;
7924 struct bfd_link_hash_entry *bh;
7925
7926 /* Mark __rld_obj_head as dynamic. */
7927 bh = NULL;
7928 if (! (_bfd_generic_link_add_one_symbol
7929 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7930 get_elf_backend_data (abfd)->collect, &bh)))
7931 return FALSE;
7932
7933 h = (struct elf_link_hash_entry *) bh;
7934 h->non_elf = 0;
7935 h->def_regular = 1;
7936 h->type = STT_OBJECT;
7937
7938 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7939 return FALSE;
7940
7941 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7942 mips_elf_hash_table (info)->rld_symbol = h;
7943 }
7944
7945 /* If this is a mips16 text symbol, add 1 to the value to make it
7946 odd. This will cause something like .word SYM to come up with
7947 the right value when it is loaded into the PC. */
7948 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7949 ++*valp;
7950
7951 return TRUE;
7952 }
7953
7954 /* This hook function is called before the linker writes out a global
7955 symbol. We mark symbols as small common if appropriate. This is
7956 also where we undo the increment of the value for a mips16 symbol. */
7957
7958 int
7959 _bfd_mips_elf_link_output_symbol_hook
7960 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7961 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7962 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7963 {
7964 /* If we see a common symbol, which implies a relocatable link, then
7965 if a symbol was small common in an input file, mark it as small
7966 common in the output file. */
7967 if (sym->st_shndx == SHN_COMMON
7968 && strcmp (input_sec->name, ".scommon") == 0)
7969 sym->st_shndx = SHN_MIPS_SCOMMON;
7970
7971 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7972 sym->st_value &= ~1;
7973
7974 return 1;
7975 }
7976 \f
7977 /* Functions for the dynamic linker. */
7978
7979 /* Create dynamic sections when linking against a dynamic object. */
7980
7981 bfd_boolean
7982 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7983 {
7984 struct elf_link_hash_entry *h;
7985 struct bfd_link_hash_entry *bh;
7986 flagword flags;
7987 register asection *s;
7988 const char * const *namep;
7989 struct mips_elf_link_hash_table *htab;
7990
7991 htab = mips_elf_hash_table (info);
7992 BFD_ASSERT (htab != NULL);
7993
7994 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7995 | SEC_LINKER_CREATED | SEC_READONLY);
7996
7997 /* The psABI requires a read-only .dynamic section, but the VxWorks
7998 EABI doesn't. */
7999 if (!htab->is_vxworks)
8000 {
8001 s = bfd_get_linker_section (abfd, ".dynamic");
8002 if (s != NULL)
8003 {
8004 if (!bfd_set_section_flags (s, flags))
8005 return FALSE;
8006 }
8007 }
8008
8009 /* We need to create .got section. */
8010 if (!mips_elf_create_got_section (abfd, info))
8011 return FALSE;
8012
8013 if (! mips_elf_rel_dyn_section (info, TRUE))
8014 return FALSE;
8015
8016 /* Create .stub section. */
8017 s = bfd_make_section_anyway_with_flags (abfd,
8018 MIPS_ELF_STUB_SECTION_NAME (abfd),
8019 flags | SEC_CODE);
8020 if (s == NULL
8021 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8022 return FALSE;
8023 htab->sstubs = s;
8024
8025 if (!mips_elf_hash_table (info)->use_rld_obj_head
8026 && bfd_link_executable (info)
8027 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
8028 {
8029 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
8030 flags &~ (flagword) SEC_READONLY);
8031 if (s == NULL
8032 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8033 return FALSE;
8034 }
8035
8036 /* Create .MIPS.xhash section. */
8037 if (info->emit_gnu_hash)
8038 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
8039 flags | SEC_READONLY);
8040
8041 /* On IRIX5, we adjust add some additional symbols and change the
8042 alignments of several sections. There is no ABI documentation
8043 indicating that this is necessary on IRIX6, nor any evidence that
8044 the linker takes such action. */
8045 if (IRIX_COMPAT (abfd) == ict_irix5)
8046 {
8047 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8048 {
8049 bh = NULL;
8050 if (! (_bfd_generic_link_add_one_symbol
8051 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8052 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8053 return FALSE;
8054
8055 h = (struct elf_link_hash_entry *) bh;
8056 h->mark = 1;
8057 h->non_elf = 0;
8058 h->def_regular = 1;
8059 h->type = STT_SECTION;
8060
8061 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8062 return FALSE;
8063 }
8064
8065 /* We need to create a .compact_rel section. */
8066 if (SGI_COMPAT (abfd))
8067 {
8068 if (!mips_elf_create_compact_rel_section (abfd, info))
8069 return FALSE;
8070 }
8071
8072 /* Change alignments of some sections. */
8073 s = bfd_get_linker_section (abfd, ".hash");
8074 if (s != NULL)
8075 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8076
8077 s = bfd_get_linker_section (abfd, ".dynsym");
8078 if (s != NULL)
8079 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8080
8081 s = bfd_get_linker_section (abfd, ".dynstr");
8082 if (s != NULL)
8083 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8084
8085 /* ??? */
8086 s = bfd_get_section_by_name (abfd, ".reginfo");
8087 if (s != NULL)
8088 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8089
8090 s = bfd_get_linker_section (abfd, ".dynamic");
8091 if (s != NULL)
8092 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8093 }
8094
8095 if (bfd_link_executable (info))
8096 {
8097 const char *name;
8098
8099 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8100 bh = NULL;
8101 if (!(_bfd_generic_link_add_one_symbol
8102 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8103 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8104 return FALSE;
8105
8106 h = (struct elf_link_hash_entry *) bh;
8107 h->non_elf = 0;
8108 h->def_regular = 1;
8109 h->type = STT_SECTION;
8110
8111 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8112 return FALSE;
8113
8114 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8115 {
8116 /* __rld_map is a four byte word located in the .data section
8117 and is filled in by the rtld to contain a pointer to
8118 the _r_debug structure. Its symbol value will be set in
8119 _bfd_mips_elf_finish_dynamic_symbol. */
8120 s = bfd_get_linker_section (abfd, ".rld_map");
8121 BFD_ASSERT (s != NULL);
8122
8123 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8124 bh = NULL;
8125 if (!(_bfd_generic_link_add_one_symbol
8126 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8127 get_elf_backend_data (abfd)->collect, &bh)))
8128 return FALSE;
8129
8130 h = (struct elf_link_hash_entry *) bh;
8131 h->non_elf = 0;
8132 h->def_regular = 1;
8133 h->type = STT_OBJECT;
8134
8135 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8136 return FALSE;
8137 mips_elf_hash_table (info)->rld_symbol = h;
8138 }
8139 }
8140
8141 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8142 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8143 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8144 return FALSE;
8145
8146 /* Do the usual VxWorks handling. */
8147 if (htab->is_vxworks
8148 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8149 return FALSE;
8150
8151 return TRUE;
8152 }
8153 \f
8154 /* Return true if relocation REL against section SEC is a REL rather than
8155 RELA relocation. RELOCS is the first relocation in the section and
8156 ABFD is the bfd that contains SEC. */
8157
8158 static bfd_boolean
8159 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8160 const Elf_Internal_Rela *relocs,
8161 const Elf_Internal_Rela *rel)
8162 {
8163 Elf_Internal_Shdr *rel_hdr;
8164 const struct elf_backend_data *bed;
8165
8166 /* To determine which flavor of relocation this is, we depend on the
8167 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8168 rel_hdr = elf_section_data (sec)->rel.hdr;
8169 if (rel_hdr == NULL)
8170 return FALSE;
8171 bed = get_elf_backend_data (abfd);
8172 return ((size_t) (rel - relocs)
8173 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8174 }
8175
8176 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8177 HOWTO is the relocation's howto and CONTENTS points to the contents
8178 of the section that REL is against. */
8179
8180 static bfd_vma
8181 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8182 reloc_howto_type *howto, bfd_byte *contents)
8183 {
8184 bfd_byte *location;
8185 unsigned int r_type;
8186 bfd_vma addend;
8187 bfd_vma bytes;
8188
8189 r_type = ELF_R_TYPE (abfd, rel->r_info);
8190 location = contents + rel->r_offset;
8191
8192 /* Get the addend, which is stored in the input file. */
8193 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8194 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8195 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8196
8197 addend = bytes & howto->src_mask;
8198
8199 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8200 accordingly. */
8201 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8202 addend <<= 1;
8203
8204 return addend;
8205 }
8206
8207 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8208 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8209 and update *ADDEND with the final addend. Return true on success
8210 or false if the LO16 could not be found. RELEND is the exclusive
8211 upper bound on the relocations for REL's section. */
8212
8213 static bfd_boolean
8214 mips_elf_add_lo16_rel_addend (bfd *abfd,
8215 const Elf_Internal_Rela *rel,
8216 const Elf_Internal_Rela *relend,
8217 bfd_byte *contents, bfd_vma *addend)
8218 {
8219 unsigned int r_type, lo16_type;
8220 const Elf_Internal_Rela *lo16_relocation;
8221 reloc_howto_type *lo16_howto;
8222 bfd_vma l;
8223
8224 r_type = ELF_R_TYPE (abfd, rel->r_info);
8225 if (mips16_reloc_p (r_type))
8226 lo16_type = R_MIPS16_LO16;
8227 else if (micromips_reloc_p (r_type))
8228 lo16_type = R_MICROMIPS_LO16;
8229 else if (r_type == R_MIPS_PCHI16)
8230 lo16_type = R_MIPS_PCLO16;
8231 else
8232 lo16_type = R_MIPS_LO16;
8233
8234 /* The combined value is the sum of the HI16 addend, left-shifted by
8235 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8236 code does a `lui' of the HI16 value, and then an `addiu' of the
8237 LO16 value.)
8238
8239 Scan ahead to find a matching LO16 relocation.
8240
8241 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8242 be immediately following. However, for the IRIX6 ABI, the next
8243 relocation may be a composed relocation consisting of several
8244 relocations for the same address. In that case, the R_MIPS_LO16
8245 relocation may occur as one of these. We permit a similar
8246 extension in general, as that is useful for GCC.
8247
8248 In some cases GCC dead code elimination removes the LO16 but keeps
8249 the corresponding HI16. This is strictly speaking a violation of
8250 the ABI but not immediately harmful. */
8251 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8252 if (lo16_relocation == NULL)
8253 return FALSE;
8254
8255 /* Obtain the addend kept there. */
8256 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8257 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8258
8259 l <<= lo16_howto->rightshift;
8260 l = _bfd_mips_elf_sign_extend (l, 16);
8261
8262 *addend <<= 16;
8263 *addend += l;
8264 return TRUE;
8265 }
8266
8267 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8268 store the contents in *CONTENTS on success. Assume that *CONTENTS
8269 already holds the contents if it is nonull on entry. */
8270
8271 static bfd_boolean
8272 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8273 {
8274 if (*contents)
8275 return TRUE;
8276
8277 /* Get cached copy if it exists. */
8278 if (elf_section_data (sec)->this_hdr.contents != NULL)
8279 {
8280 *contents = elf_section_data (sec)->this_hdr.contents;
8281 return TRUE;
8282 }
8283
8284 return bfd_malloc_and_get_section (abfd, sec, contents);
8285 }
8286
8287 /* Make a new PLT record to keep internal data. */
8288
8289 static struct plt_entry *
8290 mips_elf_make_plt_record (bfd *abfd)
8291 {
8292 struct plt_entry *entry;
8293
8294 entry = bfd_zalloc (abfd, sizeof (*entry));
8295 if (entry == NULL)
8296 return NULL;
8297
8298 entry->stub_offset = MINUS_ONE;
8299 entry->mips_offset = MINUS_ONE;
8300 entry->comp_offset = MINUS_ONE;
8301 entry->gotplt_index = MINUS_ONE;
8302 return entry;
8303 }
8304
8305 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8306 for PIC code, as otherwise there is no load-time relocation involved
8307 and local GOT entries whose value is zero at static link time will
8308 retain their value at load time. */
8309
8310 static bfd_boolean
8311 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8312 struct mips_elf_link_hash_table *htab,
8313 unsigned int r_type)
8314 {
8315 union
8316 {
8317 struct elf_link_hash_entry *eh;
8318 struct bfd_link_hash_entry *bh;
8319 }
8320 hzero;
8321
8322 BFD_ASSERT (!htab->use_absolute_zero);
8323 BFD_ASSERT (bfd_link_pic (info));
8324
8325 hzero.bh = NULL;
8326 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8327 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8328 NULL, FALSE, FALSE, &hzero.bh))
8329 return FALSE;
8330
8331 BFD_ASSERT (hzero.bh != NULL);
8332 hzero.eh->size = 0;
8333 hzero.eh->type = STT_NOTYPE;
8334 hzero.eh->other = STV_PROTECTED;
8335 hzero.eh->def_regular = 1;
8336 hzero.eh->non_elf = 0;
8337
8338 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8339 return FALSE;
8340
8341 htab->use_absolute_zero = TRUE;
8342
8343 return TRUE;
8344 }
8345
8346 /* Look through the relocs for a section during the first phase, and
8347 allocate space in the global offset table and record the need for
8348 standard MIPS and compressed procedure linkage table entries. */
8349
8350 bfd_boolean
8351 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8352 asection *sec, const Elf_Internal_Rela *relocs)
8353 {
8354 const char *name;
8355 bfd *dynobj;
8356 Elf_Internal_Shdr *symtab_hdr;
8357 struct elf_link_hash_entry **sym_hashes;
8358 size_t extsymoff;
8359 const Elf_Internal_Rela *rel;
8360 const Elf_Internal_Rela *rel_end;
8361 asection *sreloc;
8362 const struct elf_backend_data *bed;
8363 struct mips_elf_link_hash_table *htab;
8364 bfd_byte *contents;
8365 bfd_vma addend;
8366 reloc_howto_type *howto;
8367
8368 if (bfd_link_relocatable (info))
8369 return TRUE;
8370
8371 htab = mips_elf_hash_table (info);
8372 BFD_ASSERT (htab != NULL);
8373
8374 dynobj = elf_hash_table (info)->dynobj;
8375 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8376 sym_hashes = elf_sym_hashes (abfd);
8377 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8378
8379 bed = get_elf_backend_data (abfd);
8380 rel_end = relocs + sec->reloc_count;
8381
8382 /* Check for the mips16 stub sections. */
8383
8384 name = bfd_section_name (sec);
8385 if (FN_STUB_P (name))
8386 {
8387 unsigned long r_symndx;
8388
8389 /* Look at the relocation information to figure out which symbol
8390 this is for. */
8391
8392 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8393 if (r_symndx == 0)
8394 {
8395 _bfd_error_handler
8396 /* xgettext:c-format */
8397 (_("%pB: warning: cannot determine the target function for"
8398 " stub section `%s'"),
8399 abfd, name);
8400 bfd_set_error (bfd_error_bad_value);
8401 return FALSE;
8402 }
8403
8404 if (r_symndx < extsymoff
8405 || sym_hashes[r_symndx - extsymoff] == NULL)
8406 {
8407 asection *o;
8408
8409 /* This stub is for a local symbol. This stub will only be
8410 needed if there is some relocation in this BFD, other
8411 than a 16 bit function call, which refers to this symbol. */
8412 for (o = abfd->sections; o != NULL; o = o->next)
8413 {
8414 Elf_Internal_Rela *sec_relocs;
8415 const Elf_Internal_Rela *r, *rend;
8416
8417 /* We can ignore stub sections when looking for relocs. */
8418 if ((o->flags & SEC_RELOC) == 0
8419 || o->reloc_count == 0
8420 || section_allows_mips16_refs_p (o))
8421 continue;
8422
8423 sec_relocs
8424 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8425 info->keep_memory);
8426 if (sec_relocs == NULL)
8427 return FALSE;
8428
8429 rend = sec_relocs + o->reloc_count;
8430 for (r = sec_relocs; r < rend; r++)
8431 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8432 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8433 break;
8434
8435 if (elf_section_data (o)->relocs != sec_relocs)
8436 free (sec_relocs);
8437
8438 if (r < rend)
8439 break;
8440 }
8441
8442 if (o == NULL)
8443 {
8444 /* There is no non-call reloc for this stub, so we do
8445 not need it. Since this function is called before
8446 the linker maps input sections to output sections, we
8447 can easily discard it by setting the SEC_EXCLUDE
8448 flag. */
8449 sec->flags |= SEC_EXCLUDE;
8450 return TRUE;
8451 }
8452
8453 /* Record this stub in an array of local symbol stubs for
8454 this BFD. */
8455 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8456 {
8457 unsigned long symcount;
8458 asection **n;
8459 bfd_size_type amt;
8460
8461 if (elf_bad_symtab (abfd))
8462 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8463 else
8464 symcount = symtab_hdr->sh_info;
8465 amt = symcount * sizeof (asection *);
8466 n = bfd_zalloc (abfd, amt);
8467 if (n == NULL)
8468 return FALSE;
8469 mips_elf_tdata (abfd)->local_stubs = n;
8470 }
8471
8472 sec->flags |= SEC_KEEP;
8473 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8474
8475 /* We don't need to set mips16_stubs_seen in this case.
8476 That flag is used to see whether we need to look through
8477 the global symbol table for stubs. We don't need to set
8478 it here, because we just have a local stub. */
8479 }
8480 else
8481 {
8482 struct mips_elf_link_hash_entry *h;
8483
8484 h = ((struct mips_elf_link_hash_entry *)
8485 sym_hashes[r_symndx - extsymoff]);
8486
8487 while (h->root.root.type == bfd_link_hash_indirect
8488 || h->root.root.type == bfd_link_hash_warning)
8489 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8490
8491 /* H is the symbol this stub is for. */
8492
8493 /* If we already have an appropriate stub for this function, we
8494 don't need another one, so we can discard this one. Since
8495 this function is called before the linker maps input sections
8496 to output sections, we can easily discard it by setting the
8497 SEC_EXCLUDE flag. */
8498 if (h->fn_stub != NULL)
8499 {
8500 sec->flags |= SEC_EXCLUDE;
8501 return TRUE;
8502 }
8503
8504 sec->flags |= SEC_KEEP;
8505 h->fn_stub = sec;
8506 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8507 }
8508 }
8509 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8510 {
8511 unsigned long r_symndx;
8512 struct mips_elf_link_hash_entry *h;
8513 asection **loc;
8514
8515 /* Look at the relocation information to figure out which symbol
8516 this is for. */
8517
8518 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8519 if (r_symndx == 0)
8520 {
8521 _bfd_error_handler
8522 /* xgettext:c-format */
8523 (_("%pB: warning: cannot determine the target function for"
8524 " stub section `%s'"),
8525 abfd, name);
8526 bfd_set_error (bfd_error_bad_value);
8527 return FALSE;
8528 }
8529
8530 if (r_symndx < extsymoff
8531 || sym_hashes[r_symndx - extsymoff] == NULL)
8532 {
8533 asection *o;
8534
8535 /* This stub is for a local symbol. This stub will only be
8536 needed if there is some relocation (R_MIPS16_26) in this BFD
8537 that refers to this symbol. */
8538 for (o = abfd->sections; o != NULL; o = o->next)
8539 {
8540 Elf_Internal_Rela *sec_relocs;
8541 const Elf_Internal_Rela *r, *rend;
8542
8543 /* We can ignore stub sections when looking for relocs. */
8544 if ((o->flags & SEC_RELOC) == 0
8545 || o->reloc_count == 0
8546 || section_allows_mips16_refs_p (o))
8547 continue;
8548
8549 sec_relocs
8550 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8551 info->keep_memory);
8552 if (sec_relocs == NULL)
8553 return FALSE;
8554
8555 rend = sec_relocs + o->reloc_count;
8556 for (r = sec_relocs; r < rend; r++)
8557 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8558 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8559 break;
8560
8561 if (elf_section_data (o)->relocs != sec_relocs)
8562 free (sec_relocs);
8563
8564 if (r < rend)
8565 break;
8566 }
8567
8568 if (o == NULL)
8569 {
8570 /* There is no non-call reloc for this stub, so we do
8571 not need it. Since this function is called before
8572 the linker maps input sections to output sections, we
8573 can easily discard it by setting the SEC_EXCLUDE
8574 flag. */
8575 sec->flags |= SEC_EXCLUDE;
8576 return TRUE;
8577 }
8578
8579 /* Record this stub in an array of local symbol call_stubs for
8580 this BFD. */
8581 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8582 {
8583 unsigned long symcount;
8584 asection **n;
8585 bfd_size_type amt;
8586
8587 if (elf_bad_symtab (abfd))
8588 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8589 else
8590 symcount = symtab_hdr->sh_info;
8591 amt = symcount * sizeof (asection *);
8592 n = bfd_zalloc (abfd, amt);
8593 if (n == NULL)
8594 return FALSE;
8595 mips_elf_tdata (abfd)->local_call_stubs = n;
8596 }
8597
8598 sec->flags |= SEC_KEEP;
8599 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8600
8601 /* We don't need to set mips16_stubs_seen in this case.
8602 That flag is used to see whether we need to look through
8603 the global symbol table for stubs. We don't need to set
8604 it here, because we just have a local stub. */
8605 }
8606 else
8607 {
8608 h = ((struct mips_elf_link_hash_entry *)
8609 sym_hashes[r_symndx - extsymoff]);
8610
8611 /* H is the symbol this stub is for. */
8612
8613 if (CALL_FP_STUB_P (name))
8614 loc = &h->call_fp_stub;
8615 else
8616 loc = &h->call_stub;
8617
8618 /* If we already have an appropriate stub for this function, we
8619 don't need another one, so we can discard this one. Since
8620 this function is called before the linker maps input sections
8621 to output sections, we can easily discard it by setting the
8622 SEC_EXCLUDE flag. */
8623 if (*loc != NULL)
8624 {
8625 sec->flags |= SEC_EXCLUDE;
8626 return TRUE;
8627 }
8628
8629 sec->flags |= SEC_KEEP;
8630 *loc = sec;
8631 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8632 }
8633 }
8634
8635 sreloc = NULL;
8636 contents = NULL;
8637 for (rel = relocs; rel < rel_end; ++rel)
8638 {
8639 unsigned long r_symndx;
8640 unsigned int r_type;
8641 struct elf_link_hash_entry *h;
8642 bfd_boolean can_make_dynamic_p;
8643 bfd_boolean call_reloc_p;
8644 bfd_boolean constrain_symbol_p;
8645
8646 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8647 r_type = ELF_R_TYPE (abfd, rel->r_info);
8648
8649 if (r_symndx < extsymoff)
8650 h = NULL;
8651 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8652 {
8653 _bfd_error_handler
8654 /* xgettext:c-format */
8655 (_("%pB: malformed reloc detected for section %s"),
8656 abfd, name);
8657 bfd_set_error (bfd_error_bad_value);
8658 return FALSE;
8659 }
8660 else
8661 {
8662 h = sym_hashes[r_symndx - extsymoff];
8663 if (h != NULL)
8664 {
8665 while (h->root.type == bfd_link_hash_indirect
8666 || h->root.type == bfd_link_hash_warning)
8667 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8668 }
8669 }
8670
8671 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8672 relocation into a dynamic one. */
8673 can_make_dynamic_p = FALSE;
8674
8675 /* Set CALL_RELOC_P to true if the relocation is for a call,
8676 and if pointer equality therefore doesn't matter. */
8677 call_reloc_p = FALSE;
8678
8679 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8680 into account when deciding how to define the symbol.
8681 Relocations in nonallocatable sections such as .pdr and
8682 .debug* should have no effect. */
8683 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8684
8685 switch (r_type)
8686 {
8687 case R_MIPS_CALL16:
8688 case R_MIPS_CALL_HI16:
8689 case R_MIPS_CALL_LO16:
8690 case R_MIPS16_CALL16:
8691 case R_MICROMIPS_CALL16:
8692 case R_MICROMIPS_CALL_HI16:
8693 case R_MICROMIPS_CALL_LO16:
8694 call_reloc_p = TRUE;
8695 /* Fall through. */
8696
8697 case R_MIPS_GOT16:
8698 case R_MIPS_GOT_LO16:
8699 case R_MIPS_GOT_PAGE:
8700 case R_MIPS_GOT_DISP:
8701 case R_MIPS16_GOT16:
8702 case R_MICROMIPS_GOT16:
8703 case R_MICROMIPS_GOT_LO16:
8704 case R_MICROMIPS_GOT_PAGE:
8705 case R_MICROMIPS_GOT_DISP:
8706 /* If we have a symbol that will resolve to zero at static link
8707 time and it is used by a GOT relocation applied to code we
8708 cannot relax to an immediate zero load, then we will be using
8709 the special `__gnu_absolute_zero' symbol whose value is zero
8710 at dynamic load time. We ignore HI16-type GOT relocations at
8711 this stage, because their handling will depend entirely on
8712 the corresponding LO16-type GOT relocation. */
8713 if (!call_hi16_reloc_p (r_type)
8714 && h != NULL
8715 && bfd_link_pic (info)
8716 && !htab->use_absolute_zero
8717 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8718 {
8719 bfd_boolean rel_reloc;
8720
8721 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8722 return FALSE;
8723
8724 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8725 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8726
8727 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8728 FALSE))
8729 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8730 return FALSE;
8731 }
8732
8733 /* Fall through. */
8734 case R_MIPS_GOT_HI16:
8735 case R_MIPS_GOT_OFST:
8736 case R_MIPS_TLS_GOTTPREL:
8737 case R_MIPS_TLS_GD:
8738 case R_MIPS_TLS_LDM:
8739 case R_MIPS16_TLS_GOTTPREL:
8740 case R_MIPS16_TLS_GD:
8741 case R_MIPS16_TLS_LDM:
8742 case R_MICROMIPS_GOT_HI16:
8743 case R_MICROMIPS_GOT_OFST:
8744 case R_MICROMIPS_TLS_GOTTPREL:
8745 case R_MICROMIPS_TLS_GD:
8746 case R_MICROMIPS_TLS_LDM:
8747 if (dynobj == NULL)
8748 elf_hash_table (info)->dynobj = dynobj = abfd;
8749 if (!mips_elf_create_got_section (dynobj, info))
8750 return FALSE;
8751 if (htab->is_vxworks && !bfd_link_pic (info))
8752 {
8753 _bfd_error_handler
8754 /* xgettext:c-format */
8755 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8756 abfd, (uint64_t) rel->r_offset);
8757 bfd_set_error (bfd_error_bad_value);
8758 return FALSE;
8759 }
8760 can_make_dynamic_p = TRUE;
8761 break;
8762
8763 case R_MIPS_NONE:
8764 case R_MIPS_JALR:
8765 case R_MICROMIPS_JALR:
8766 /* These relocations have empty fields and are purely there to
8767 provide link information. The symbol value doesn't matter. */
8768 constrain_symbol_p = FALSE;
8769 break;
8770
8771 case R_MIPS_GPREL16:
8772 case R_MIPS_GPREL32:
8773 case R_MIPS16_GPREL:
8774 case R_MICROMIPS_GPREL16:
8775 /* GP-relative relocations always resolve to a definition in a
8776 regular input file, ignoring the one-definition rule. This is
8777 important for the GP setup sequence in NewABI code, which
8778 always resolves to a local function even if other relocations
8779 against the symbol wouldn't. */
8780 constrain_symbol_p = FALSE;
8781 break;
8782
8783 case R_MIPS_32:
8784 case R_MIPS_REL32:
8785 case R_MIPS_64:
8786 /* In VxWorks executables, references to external symbols
8787 must be handled using copy relocs or PLT entries; it is not
8788 possible to convert this relocation into a dynamic one.
8789
8790 For executables that use PLTs and copy-relocs, we have a
8791 choice between converting the relocation into a dynamic
8792 one or using copy relocations or PLT entries. It is
8793 usually better to do the former, unless the relocation is
8794 against a read-only section. */
8795 if ((bfd_link_pic (info)
8796 || (h != NULL
8797 && !htab->is_vxworks
8798 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8799 && !(!info->nocopyreloc
8800 && !PIC_OBJECT_P (abfd)
8801 && MIPS_ELF_READONLY_SECTION (sec))))
8802 && (sec->flags & SEC_ALLOC) != 0)
8803 {
8804 can_make_dynamic_p = TRUE;
8805 if (dynobj == NULL)
8806 elf_hash_table (info)->dynobj = dynobj = abfd;
8807 }
8808 break;
8809
8810 case R_MIPS_26:
8811 case R_MIPS_PC16:
8812 case R_MIPS_PC21_S2:
8813 case R_MIPS_PC26_S2:
8814 case R_MIPS16_26:
8815 case R_MIPS16_PC16_S1:
8816 case R_MICROMIPS_26_S1:
8817 case R_MICROMIPS_PC7_S1:
8818 case R_MICROMIPS_PC10_S1:
8819 case R_MICROMIPS_PC16_S1:
8820 case R_MICROMIPS_PC23_S2:
8821 call_reloc_p = TRUE;
8822 break;
8823 }
8824
8825 if (h)
8826 {
8827 if (constrain_symbol_p)
8828 {
8829 if (!can_make_dynamic_p)
8830 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8831
8832 if (!call_reloc_p)
8833 h->pointer_equality_needed = 1;
8834
8835 /* We must not create a stub for a symbol that has
8836 relocations related to taking the function's address.
8837 This doesn't apply to VxWorks, where CALL relocs refer
8838 to a .got.plt entry instead of a normal .got entry. */
8839 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8840 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8841 }
8842
8843 /* Relocations against the special VxWorks __GOTT_BASE__ and
8844 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8845 room for them in .rela.dyn. */
8846 if (is_gott_symbol (info, h))
8847 {
8848 if (sreloc == NULL)
8849 {
8850 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8851 if (sreloc == NULL)
8852 return FALSE;
8853 }
8854 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8855 if (MIPS_ELF_READONLY_SECTION (sec))
8856 /* We tell the dynamic linker that there are
8857 relocations against the text segment. */
8858 info->flags |= DF_TEXTREL;
8859 }
8860 }
8861 else if (call_lo16_reloc_p (r_type)
8862 || got_lo16_reloc_p (r_type)
8863 || got_disp_reloc_p (r_type)
8864 || (got16_reloc_p (r_type) && htab->is_vxworks))
8865 {
8866 /* We may need a local GOT entry for this relocation. We
8867 don't count R_MIPS_GOT_PAGE because we can estimate the
8868 maximum number of pages needed by looking at the size of
8869 the segment. Similar comments apply to R_MIPS*_GOT16 and
8870 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8871 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8872 R_MIPS_CALL_HI16 because these are always followed by an
8873 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8874 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8875 rel->r_addend, info, r_type))
8876 return FALSE;
8877 }
8878
8879 if (h != NULL
8880 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8881 ELF_ST_IS_MIPS16 (h->other)))
8882 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8883
8884 switch (r_type)
8885 {
8886 case R_MIPS_CALL16:
8887 case R_MIPS16_CALL16:
8888 case R_MICROMIPS_CALL16:
8889 if (h == NULL)
8890 {
8891 _bfd_error_handler
8892 /* xgettext:c-format */
8893 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8894 abfd, (uint64_t) rel->r_offset);
8895 bfd_set_error (bfd_error_bad_value);
8896 return FALSE;
8897 }
8898 /* Fall through. */
8899
8900 case R_MIPS_CALL_HI16:
8901 case R_MIPS_CALL_LO16:
8902 case R_MICROMIPS_CALL_HI16:
8903 case R_MICROMIPS_CALL_LO16:
8904 if (h != NULL)
8905 {
8906 /* Make sure there is room in the regular GOT to hold the
8907 function's address. We may eliminate it in favour of
8908 a .got.plt entry later; see mips_elf_count_got_symbols. */
8909 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8910 r_type))
8911 return FALSE;
8912
8913 /* We need a stub, not a plt entry for the undefined
8914 function. But we record it as if it needs plt. See
8915 _bfd_elf_adjust_dynamic_symbol. */
8916 h->needs_plt = 1;
8917 h->type = STT_FUNC;
8918 }
8919 break;
8920
8921 case R_MIPS_GOT_PAGE:
8922 case R_MICROMIPS_GOT_PAGE:
8923 case R_MIPS16_GOT16:
8924 case R_MIPS_GOT16:
8925 case R_MIPS_GOT_HI16:
8926 case R_MIPS_GOT_LO16:
8927 case R_MICROMIPS_GOT16:
8928 case R_MICROMIPS_GOT_HI16:
8929 case R_MICROMIPS_GOT_LO16:
8930 if (!h || got_page_reloc_p (r_type))
8931 {
8932 /* This relocation needs (or may need, if h != NULL) a
8933 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8934 know for sure until we know whether the symbol is
8935 preemptible. */
8936 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8937 {
8938 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8939 return FALSE;
8940 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8941 addend = mips_elf_read_rel_addend (abfd, rel,
8942 howto, contents);
8943 if (got16_reloc_p (r_type))
8944 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8945 contents, &addend);
8946 else
8947 addend <<= howto->rightshift;
8948 }
8949 else
8950 addend = rel->r_addend;
8951 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8952 h, addend))
8953 return FALSE;
8954
8955 if (h)
8956 {
8957 struct mips_elf_link_hash_entry *hmips =
8958 (struct mips_elf_link_hash_entry *) h;
8959
8960 /* This symbol is definitely not overridable. */
8961 if (hmips->root.def_regular
8962 && ! (bfd_link_pic (info) && ! info->symbolic
8963 && ! hmips->root.forced_local))
8964 h = NULL;
8965 }
8966 }
8967 /* If this is a global, overridable symbol, GOT_PAGE will
8968 decay to GOT_DISP, so we'll need a GOT entry for it. */
8969 /* Fall through. */
8970
8971 case R_MIPS_GOT_DISP:
8972 case R_MICROMIPS_GOT_DISP:
8973 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8974 FALSE, r_type))
8975 return FALSE;
8976 break;
8977
8978 case R_MIPS_TLS_GOTTPREL:
8979 case R_MIPS16_TLS_GOTTPREL:
8980 case R_MICROMIPS_TLS_GOTTPREL:
8981 if (bfd_link_pic (info))
8982 info->flags |= DF_STATIC_TLS;
8983 /* Fall through */
8984
8985 case R_MIPS_TLS_LDM:
8986 case R_MIPS16_TLS_LDM:
8987 case R_MICROMIPS_TLS_LDM:
8988 if (tls_ldm_reloc_p (r_type))
8989 {
8990 r_symndx = STN_UNDEF;
8991 h = NULL;
8992 }
8993 /* Fall through */
8994
8995 case R_MIPS_TLS_GD:
8996 case R_MIPS16_TLS_GD:
8997 case R_MICROMIPS_TLS_GD:
8998 /* This symbol requires a global offset table entry, or two
8999 for TLS GD relocations. */
9000 if (h != NULL)
9001 {
9002 if (!mips_elf_record_global_got_symbol (h, abfd, info,
9003 FALSE, r_type))
9004 return FALSE;
9005 }
9006 else
9007 {
9008 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
9009 rel->r_addend,
9010 info, r_type))
9011 return FALSE;
9012 }
9013 break;
9014
9015 case R_MIPS_32:
9016 case R_MIPS_REL32:
9017 case R_MIPS_64:
9018 /* In VxWorks executables, references to external symbols
9019 are handled using copy relocs or PLT stubs, so there's
9020 no need to add a .rela.dyn entry for this relocation. */
9021 if (can_make_dynamic_p)
9022 {
9023 if (sreloc == NULL)
9024 {
9025 sreloc = mips_elf_rel_dyn_section (info, TRUE);
9026 if (sreloc == NULL)
9027 return FALSE;
9028 }
9029 if (bfd_link_pic (info) && h == NULL)
9030 {
9031 /* When creating a shared object, we must copy these
9032 reloc types into the output file as R_MIPS_REL32
9033 relocs. Make room for this reloc in .rel(a).dyn. */
9034 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9035 if (MIPS_ELF_READONLY_SECTION (sec))
9036 /* We tell the dynamic linker that there are
9037 relocations against the text segment. */
9038 info->flags |= DF_TEXTREL;
9039 }
9040 else
9041 {
9042 struct mips_elf_link_hash_entry *hmips;
9043
9044 /* For a shared object, we must copy this relocation
9045 unless the symbol turns out to be undefined and
9046 weak with non-default visibility, in which case
9047 it will be left as zero.
9048
9049 We could elide R_MIPS_REL32 for locally binding symbols
9050 in shared libraries, but do not yet do so.
9051
9052 For an executable, we only need to copy this
9053 reloc if the symbol is defined in a dynamic
9054 object. */
9055 hmips = (struct mips_elf_link_hash_entry *) h;
9056 ++hmips->possibly_dynamic_relocs;
9057 if (MIPS_ELF_READONLY_SECTION (sec))
9058 /* We need it to tell the dynamic linker if there
9059 are relocations against the text segment. */
9060 hmips->readonly_reloc = TRUE;
9061 }
9062 }
9063
9064 if (SGI_COMPAT (abfd))
9065 mips_elf_hash_table (info)->compact_rel_size +=
9066 sizeof (Elf32_External_crinfo);
9067 break;
9068
9069 case R_MIPS_26:
9070 case R_MIPS_GPREL16:
9071 case R_MIPS_LITERAL:
9072 case R_MIPS_GPREL32:
9073 case R_MICROMIPS_26_S1:
9074 case R_MICROMIPS_GPREL16:
9075 case R_MICROMIPS_LITERAL:
9076 case R_MICROMIPS_GPREL7_S2:
9077 if (SGI_COMPAT (abfd))
9078 mips_elf_hash_table (info)->compact_rel_size +=
9079 sizeof (Elf32_External_crinfo);
9080 break;
9081
9082 /* This relocation describes the C++ object vtable hierarchy.
9083 Reconstruct it for later use during GC. */
9084 case R_MIPS_GNU_VTINHERIT:
9085 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9086 return FALSE;
9087 break;
9088
9089 /* This relocation describes which C++ vtable entries are actually
9090 used. Record for later use during GC. */
9091 case R_MIPS_GNU_VTENTRY:
9092 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9093 return FALSE;
9094 break;
9095
9096 default:
9097 break;
9098 }
9099
9100 /* Record the need for a PLT entry. At this point we don't know
9101 yet if we are going to create a PLT in the first place, but
9102 we only record whether the relocation requires a standard MIPS
9103 or a compressed code entry anyway. If we don't make a PLT after
9104 all, then we'll just ignore these arrangements. Likewise if
9105 a PLT entry is not created because the symbol is satisfied
9106 locally. */
9107 if (h != NULL
9108 && (branch_reloc_p (r_type)
9109 || mips16_branch_reloc_p (r_type)
9110 || micromips_branch_reloc_p (r_type))
9111 && !SYMBOL_CALLS_LOCAL (info, h))
9112 {
9113 if (h->plt.plist == NULL)
9114 h->plt.plist = mips_elf_make_plt_record (abfd);
9115 if (h->plt.plist == NULL)
9116 return FALSE;
9117
9118 if (branch_reloc_p (r_type))
9119 h->plt.plist->need_mips = TRUE;
9120 else
9121 h->plt.plist->need_comp = TRUE;
9122 }
9123
9124 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9125 if there is one. We only need to handle global symbols here;
9126 we decide whether to keep or delete stubs for local symbols
9127 when processing the stub's relocations. */
9128 if (h != NULL
9129 && !mips16_call_reloc_p (r_type)
9130 && !section_allows_mips16_refs_p (sec))
9131 {
9132 struct mips_elf_link_hash_entry *mh;
9133
9134 mh = (struct mips_elf_link_hash_entry *) h;
9135 mh->need_fn_stub = TRUE;
9136 }
9137
9138 /* Refuse some position-dependent relocations when creating a
9139 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9140 not PIC, but we can create dynamic relocations and the result
9141 will be fine. Also do not refuse R_MIPS_LO16, which can be
9142 combined with R_MIPS_GOT16. */
9143 if (bfd_link_pic (info))
9144 {
9145 switch (r_type)
9146 {
9147 case R_MIPS_TLS_TPREL_HI16:
9148 case R_MIPS16_TLS_TPREL_HI16:
9149 case R_MICROMIPS_TLS_TPREL_HI16:
9150 case R_MIPS_TLS_TPREL_LO16:
9151 case R_MIPS16_TLS_TPREL_LO16:
9152 case R_MICROMIPS_TLS_TPREL_LO16:
9153 /* These are okay in PIE, but not in a shared library. */
9154 if (bfd_link_executable (info))
9155 break;
9156
9157 /* FALLTHROUGH */
9158
9159 case R_MIPS16_HI16:
9160 case R_MIPS_HI16:
9161 case R_MIPS_HIGHER:
9162 case R_MIPS_HIGHEST:
9163 case R_MICROMIPS_HI16:
9164 case R_MICROMIPS_HIGHER:
9165 case R_MICROMIPS_HIGHEST:
9166 /* Don't refuse a high part relocation if it's against
9167 no symbol (e.g. part of a compound relocation). */
9168 if (r_symndx == STN_UNDEF)
9169 break;
9170
9171 /* Likewise an absolute symbol. */
9172 if (h != NULL && bfd_is_abs_symbol (&h->root))
9173 break;
9174
9175 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9176 and has a special meaning. */
9177 if (!NEWABI_P (abfd) && h != NULL
9178 && strcmp (h->root.root.string, "_gp_disp") == 0)
9179 break;
9180
9181 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9182 if (is_gott_symbol (info, h))
9183 break;
9184
9185 /* FALLTHROUGH */
9186
9187 case R_MIPS16_26:
9188 case R_MIPS_26:
9189 case R_MICROMIPS_26_S1:
9190 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9191 /* An error for unsupported relocations is raised as part
9192 of the above search, so we can skip the following. */
9193 if (howto != NULL)
9194 info->callbacks->einfo
9195 /* xgettext:c-format */
9196 (_("%X%H: relocation %s against `%s' cannot be used"
9197 " when making a shared object; recompile with -fPIC\n"),
9198 abfd, sec, rel->r_offset, howto->name,
9199 (h) ? h->root.root.string : "a local symbol");
9200 break;
9201 default:
9202 break;
9203 }
9204 }
9205 }
9206
9207 return TRUE;
9208 }
9209 \f
9210 /* Allocate space for global sym dynamic relocs. */
9211
9212 static bfd_boolean
9213 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9214 {
9215 struct bfd_link_info *info = inf;
9216 bfd *dynobj;
9217 struct mips_elf_link_hash_entry *hmips;
9218 struct mips_elf_link_hash_table *htab;
9219
9220 htab = mips_elf_hash_table (info);
9221 BFD_ASSERT (htab != NULL);
9222
9223 dynobj = elf_hash_table (info)->dynobj;
9224 hmips = (struct mips_elf_link_hash_entry *) h;
9225
9226 /* VxWorks executables are handled elsewhere; we only need to
9227 allocate relocations in shared objects. */
9228 if (htab->is_vxworks && !bfd_link_pic (info))
9229 return TRUE;
9230
9231 /* Ignore indirect symbols. All relocations against such symbols
9232 will be redirected to the target symbol. */
9233 if (h->root.type == bfd_link_hash_indirect)
9234 return TRUE;
9235
9236 /* If this symbol is defined in a dynamic object, or we are creating
9237 a shared library, we will need to copy any R_MIPS_32 or
9238 R_MIPS_REL32 relocs against it into the output file. */
9239 if (! bfd_link_relocatable (info)
9240 && hmips->possibly_dynamic_relocs != 0
9241 && (h->root.type == bfd_link_hash_defweak
9242 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9243 || bfd_link_pic (info)))
9244 {
9245 bfd_boolean do_copy = TRUE;
9246
9247 if (h->root.type == bfd_link_hash_undefweak)
9248 {
9249 /* Do not copy relocations for undefined weak symbols that
9250 we are not going to export. */
9251 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9252 do_copy = FALSE;
9253
9254 /* Make sure undefined weak symbols are output as a dynamic
9255 symbol in PIEs. */
9256 else if (h->dynindx == -1 && !h->forced_local)
9257 {
9258 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9259 return FALSE;
9260 }
9261 }
9262
9263 if (do_copy)
9264 {
9265 /* Even though we don't directly need a GOT entry for this symbol,
9266 the SVR4 psABI requires it to have a dynamic symbol table
9267 index greater that DT_MIPS_GOTSYM if there are dynamic
9268 relocations against it.
9269
9270 VxWorks does not enforce the same mapping between the GOT
9271 and the symbol table, so the same requirement does not
9272 apply there. */
9273 if (!htab->is_vxworks)
9274 {
9275 if (hmips->global_got_area > GGA_RELOC_ONLY)
9276 hmips->global_got_area = GGA_RELOC_ONLY;
9277 hmips->got_only_for_calls = FALSE;
9278 }
9279
9280 mips_elf_allocate_dynamic_relocations
9281 (dynobj, info, hmips->possibly_dynamic_relocs);
9282 if (hmips->readonly_reloc)
9283 /* We tell the dynamic linker that there are relocations
9284 against the text segment. */
9285 info->flags |= DF_TEXTREL;
9286 }
9287 }
9288
9289 return TRUE;
9290 }
9291
9292 /* Adjust a symbol defined by a dynamic object and referenced by a
9293 regular object. The current definition is in some section of the
9294 dynamic object, but we're not including those sections. We have to
9295 change the definition to something the rest of the link can
9296 understand. */
9297
9298 bfd_boolean
9299 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9300 struct elf_link_hash_entry *h)
9301 {
9302 bfd *dynobj;
9303 struct mips_elf_link_hash_entry *hmips;
9304 struct mips_elf_link_hash_table *htab;
9305 asection *s, *srel;
9306
9307 htab = mips_elf_hash_table (info);
9308 BFD_ASSERT (htab != NULL);
9309
9310 dynobj = elf_hash_table (info)->dynobj;
9311 hmips = (struct mips_elf_link_hash_entry *) h;
9312
9313 /* Make sure we know what is going on here. */
9314 BFD_ASSERT (dynobj != NULL
9315 && (h->needs_plt
9316 || h->is_weakalias
9317 || (h->def_dynamic
9318 && h->ref_regular
9319 && !h->def_regular)));
9320
9321 hmips = (struct mips_elf_link_hash_entry *) h;
9322
9323 /* If there are call relocations against an externally-defined symbol,
9324 see whether we can create a MIPS lazy-binding stub for it. We can
9325 only do this if all references to the function are through call
9326 relocations, and in that case, the traditional lazy-binding stubs
9327 are much more efficient than PLT entries.
9328
9329 Traditional stubs are only available on SVR4 psABI-based systems;
9330 VxWorks always uses PLTs instead. */
9331 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9332 {
9333 if (! elf_hash_table (info)->dynamic_sections_created)
9334 return TRUE;
9335
9336 /* If this symbol is not defined in a regular file, then set
9337 the symbol to the stub location. This is required to make
9338 function pointers compare as equal between the normal
9339 executable and the shared library. */
9340 if (!h->def_regular
9341 && !bfd_is_abs_section (htab->sstubs->output_section))
9342 {
9343 hmips->needs_lazy_stub = TRUE;
9344 htab->lazy_stub_count++;
9345 return TRUE;
9346 }
9347 }
9348 /* As above, VxWorks requires PLT entries for externally-defined
9349 functions that are only accessed through call relocations.
9350
9351 Both VxWorks and non-VxWorks targets also need PLT entries if there
9352 are static-only relocations against an externally-defined function.
9353 This can technically occur for shared libraries if there are
9354 branches to the symbol, although it is unlikely that this will be
9355 used in practice due to the short ranges involved. It can occur
9356 for any relative or absolute relocation in executables; in that
9357 case, the PLT entry becomes the function's canonical address. */
9358 else if (((h->needs_plt && !hmips->no_fn_stub)
9359 || (h->type == STT_FUNC && hmips->has_static_relocs))
9360 && htab->use_plts_and_copy_relocs
9361 && !SYMBOL_CALLS_LOCAL (info, h)
9362 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9363 && h->root.type == bfd_link_hash_undefweak))
9364 {
9365 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9366 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9367
9368 /* If this is the first symbol to need a PLT entry, then make some
9369 basic setup. Also work out PLT entry sizes. We'll need them
9370 for PLT offset calculations. */
9371 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9372 {
9373 BFD_ASSERT (htab->root.sgotplt->size == 0);
9374 BFD_ASSERT (htab->plt_got_index == 0);
9375
9376 /* If we're using the PLT additions to the psABI, each PLT
9377 entry is 16 bytes and the PLT0 entry is 32 bytes.
9378 Encourage better cache usage by aligning. We do this
9379 lazily to avoid pessimizing traditional objects. */
9380 if (!htab->is_vxworks
9381 && !bfd_set_section_alignment (htab->root.splt, 5))
9382 return FALSE;
9383
9384 /* Make sure that .got.plt is word-aligned. We do this lazily
9385 for the same reason as above. */
9386 if (!bfd_set_section_alignment (htab->root.sgotplt,
9387 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9388 return FALSE;
9389
9390 /* On non-VxWorks targets, the first two entries in .got.plt
9391 are reserved. */
9392 if (!htab->is_vxworks)
9393 htab->plt_got_index
9394 += (get_elf_backend_data (dynobj)->got_header_size
9395 / MIPS_ELF_GOT_SIZE (dynobj));
9396
9397 /* On VxWorks, also allocate room for the header's
9398 .rela.plt.unloaded entries. */
9399 if (htab->is_vxworks && !bfd_link_pic (info))
9400 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9401
9402 /* Now work out the sizes of individual PLT entries. */
9403 if (htab->is_vxworks && bfd_link_pic (info))
9404 htab->plt_mips_entry_size
9405 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9406 else if (htab->is_vxworks)
9407 htab->plt_mips_entry_size
9408 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9409 else if (newabi_p)
9410 htab->plt_mips_entry_size
9411 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9412 else if (!micromips_p)
9413 {
9414 htab->plt_mips_entry_size
9415 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9416 htab->plt_comp_entry_size
9417 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9418 }
9419 else if (htab->insn32)
9420 {
9421 htab->plt_mips_entry_size
9422 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9423 htab->plt_comp_entry_size
9424 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9425 }
9426 else
9427 {
9428 htab->plt_mips_entry_size
9429 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9430 htab->plt_comp_entry_size
9431 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9432 }
9433 }
9434
9435 if (h->plt.plist == NULL)
9436 h->plt.plist = mips_elf_make_plt_record (dynobj);
9437 if (h->plt.plist == NULL)
9438 return FALSE;
9439
9440 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9441 n32 or n64, so always use a standard entry there.
9442
9443 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9444 all MIPS16 calls will go via that stub, and there is no benefit
9445 to having a MIPS16 entry. And in the case of call_stub a
9446 standard entry actually has to be used as the stub ends with a J
9447 instruction. */
9448 if (newabi_p
9449 || htab->is_vxworks
9450 || hmips->call_stub
9451 || hmips->call_fp_stub)
9452 {
9453 h->plt.plist->need_mips = TRUE;
9454 h->plt.plist->need_comp = FALSE;
9455 }
9456
9457 /* Otherwise, if there are no direct calls to the function, we
9458 have a free choice of whether to use standard or compressed
9459 entries. Prefer microMIPS entries if the object is known to
9460 contain microMIPS code, so that it becomes possible to create
9461 pure microMIPS binaries. Prefer standard entries otherwise,
9462 because MIPS16 ones are no smaller and are usually slower. */
9463 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9464 {
9465 if (micromips_p)
9466 h->plt.plist->need_comp = TRUE;
9467 else
9468 h->plt.plist->need_mips = TRUE;
9469 }
9470
9471 if (h->plt.plist->need_mips)
9472 {
9473 h->plt.plist->mips_offset = htab->plt_mips_offset;
9474 htab->plt_mips_offset += htab->plt_mips_entry_size;
9475 }
9476 if (h->plt.plist->need_comp)
9477 {
9478 h->plt.plist->comp_offset = htab->plt_comp_offset;
9479 htab->plt_comp_offset += htab->plt_comp_entry_size;
9480 }
9481
9482 /* Reserve the corresponding .got.plt entry now too. */
9483 h->plt.plist->gotplt_index = htab->plt_got_index++;
9484
9485 /* If the output file has no definition of the symbol, set the
9486 symbol's value to the address of the stub. */
9487 if (!bfd_link_pic (info) && !h->def_regular)
9488 hmips->use_plt_entry = TRUE;
9489
9490 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9491 htab->root.srelplt->size += (htab->is_vxworks
9492 ? MIPS_ELF_RELA_SIZE (dynobj)
9493 : MIPS_ELF_REL_SIZE (dynobj));
9494
9495 /* Make room for the .rela.plt.unloaded relocations. */
9496 if (htab->is_vxworks && !bfd_link_pic (info))
9497 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9498
9499 /* All relocations against this symbol that could have been made
9500 dynamic will now refer to the PLT entry instead. */
9501 hmips->possibly_dynamic_relocs = 0;
9502
9503 return TRUE;
9504 }
9505
9506 /* If this is a weak symbol, and there is a real definition, the
9507 processor independent code will have arranged for us to see the
9508 real definition first, and we can just use the same value. */
9509 if (h->is_weakalias)
9510 {
9511 struct elf_link_hash_entry *def = weakdef (h);
9512 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9513 h->root.u.def.section = def->root.u.def.section;
9514 h->root.u.def.value = def->root.u.def.value;
9515 return TRUE;
9516 }
9517
9518 /* Otherwise, there is nothing further to do for symbols defined
9519 in regular objects. */
9520 if (h->def_regular)
9521 return TRUE;
9522
9523 /* There's also nothing more to do if we'll convert all relocations
9524 against this symbol into dynamic relocations. */
9525 if (!hmips->has_static_relocs)
9526 return TRUE;
9527
9528 /* We're now relying on copy relocations. Complain if we have
9529 some that we can't convert. */
9530 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9531 {
9532 _bfd_error_handler (_("non-dynamic relocations refer to "
9533 "dynamic symbol %s"),
9534 h->root.root.string);
9535 bfd_set_error (bfd_error_bad_value);
9536 return FALSE;
9537 }
9538
9539 /* We must allocate the symbol in our .dynbss section, which will
9540 become part of the .bss section of the executable. There will be
9541 an entry for this symbol in the .dynsym section. The dynamic
9542 object will contain position independent code, so all references
9543 from the dynamic object to this symbol will go through the global
9544 offset table. The dynamic linker will use the .dynsym entry to
9545 determine the address it must put in the global offset table, so
9546 both the dynamic object and the regular object will refer to the
9547 same memory location for the variable. */
9548
9549 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9550 {
9551 s = htab->root.sdynrelro;
9552 srel = htab->root.sreldynrelro;
9553 }
9554 else
9555 {
9556 s = htab->root.sdynbss;
9557 srel = htab->root.srelbss;
9558 }
9559 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9560 {
9561 if (htab->is_vxworks)
9562 srel->size += sizeof (Elf32_External_Rela);
9563 else
9564 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9565 h->needs_copy = 1;
9566 }
9567
9568 /* All relocations against this symbol that could have been made
9569 dynamic will now refer to the local copy instead. */
9570 hmips->possibly_dynamic_relocs = 0;
9571
9572 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9573 }
9574 \f
9575 /* This function is called after all the input files have been read,
9576 and the input sections have been assigned to output sections. We
9577 check for any mips16 stub sections that we can discard. */
9578
9579 bfd_boolean
9580 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9581 struct bfd_link_info *info)
9582 {
9583 asection *sect;
9584 struct mips_elf_link_hash_table *htab;
9585 struct mips_htab_traverse_info hti;
9586
9587 htab = mips_elf_hash_table (info);
9588 BFD_ASSERT (htab != NULL);
9589
9590 /* The .reginfo section has a fixed size. */
9591 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9592 if (sect != NULL)
9593 {
9594 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
9595 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9596 }
9597
9598 /* The .MIPS.abiflags section has a fixed size. */
9599 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9600 if (sect != NULL)
9601 {
9602 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
9603 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9604 }
9605
9606 hti.info = info;
9607 hti.output_bfd = output_bfd;
9608 hti.error = FALSE;
9609 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9610 mips_elf_check_symbols, &hti);
9611 if (hti.error)
9612 return FALSE;
9613
9614 return TRUE;
9615 }
9616
9617 /* If the link uses a GOT, lay it out and work out its size. */
9618
9619 static bfd_boolean
9620 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9621 {
9622 bfd *dynobj;
9623 asection *s;
9624 struct mips_got_info *g;
9625 bfd_size_type loadable_size = 0;
9626 bfd_size_type page_gotno;
9627 bfd *ibfd;
9628 struct mips_elf_traverse_got_arg tga;
9629 struct mips_elf_link_hash_table *htab;
9630
9631 htab = mips_elf_hash_table (info);
9632 BFD_ASSERT (htab != NULL);
9633
9634 s = htab->root.sgot;
9635 if (s == NULL)
9636 return TRUE;
9637
9638 dynobj = elf_hash_table (info)->dynobj;
9639 g = htab->got_info;
9640
9641 /* Allocate room for the reserved entries. VxWorks always reserves
9642 3 entries; other objects only reserve 2 entries. */
9643 BFD_ASSERT (g->assigned_low_gotno == 0);
9644 if (htab->is_vxworks)
9645 htab->reserved_gotno = 3;
9646 else
9647 htab->reserved_gotno = 2;
9648 g->local_gotno += htab->reserved_gotno;
9649 g->assigned_low_gotno = htab->reserved_gotno;
9650
9651 /* Decide which symbols need to go in the global part of the GOT and
9652 count the number of reloc-only GOT symbols. */
9653 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9654
9655 if (!mips_elf_resolve_final_got_entries (info, g))
9656 return FALSE;
9657
9658 /* Calculate the total loadable size of the output. That
9659 will give us the maximum number of GOT_PAGE entries
9660 required. */
9661 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9662 {
9663 asection *subsection;
9664
9665 for (subsection = ibfd->sections;
9666 subsection;
9667 subsection = subsection->next)
9668 {
9669 if ((subsection->flags & SEC_ALLOC) == 0)
9670 continue;
9671 loadable_size += ((subsection->size + 0xf)
9672 &~ (bfd_size_type) 0xf);
9673 }
9674 }
9675
9676 if (htab->is_vxworks)
9677 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9678 relocations against local symbols evaluate to "G", and the EABI does
9679 not include R_MIPS_GOT_PAGE. */
9680 page_gotno = 0;
9681 else
9682 /* Assume there are two loadable segments consisting of contiguous
9683 sections. Is 5 enough? */
9684 page_gotno = (loadable_size >> 16) + 5;
9685
9686 /* Choose the smaller of the two page estimates; both are intended to be
9687 conservative. */
9688 if (page_gotno > g->page_gotno)
9689 page_gotno = g->page_gotno;
9690
9691 g->local_gotno += page_gotno;
9692 g->assigned_high_gotno = g->local_gotno - 1;
9693
9694 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9695 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9696 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9697
9698 /* VxWorks does not support multiple GOTs. It initializes $gp to
9699 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9700 dynamic loader. */
9701 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9702 {
9703 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9704 return FALSE;
9705 }
9706 else
9707 {
9708 /* Record that all bfds use G. This also has the effect of freeing
9709 the per-bfd GOTs, which we no longer need. */
9710 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9711 if (mips_elf_bfd_got (ibfd, FALSE))
9712 mips_elf_replace_bfd_got (ibfd, g);
9713 mips_elf_replace_bfd_got (output_bfd, g);
9714
9715 /* Set up TLS entries. */
9716 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9717 tga.info = info;
9718 tga.g = g;
9719 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9720 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9721 if (!tga.g)
9722 return FALSE;
9723 BFD_ASSERT (g->tls_assigned_gotno
9724 == g->global_gotno + g->local_gotno + g->tls_gotno);
9725
9726 /* Each VxWorks GOT entry needs an explicit relocation. */
9727 if (htab->is_vxworks && bfd_link_pic (info))
9728 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9729
9730 /* Allocate room for the TLS relocations. */
9731 if (g->relocs)
9732 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9733 }
9734
9735 return TRUE;
9736 }
9737
9738 /* Estimate the size of the .MIPS.stubs section. */
9739
9740 static void
9741 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9742 {
9743 struct mips_elf_link_hash_table *htab;
9744 bfd_size_type dynsymcount;
9745
9746 htab = mips_elf_hash_table (info);
9747 BFD_ASSERT (htab != NULL);
9748
9749 if (htab->lazy_stub_count == 0)
9750 return;
9751
9752 /* IRIX rld assumes that a function stub isn't at the end of the .text
9753 section, so add a dummy entry to the end. */
9754 htab->lazy_stub_count++;
9755
9756 /* Get a worst-case estimate of the number of dynamic symbols needed.
9757 At this point, dynsymcount does not account for section symbols
9758 and count_section_dynsyms may overestimate the number that will
9759 be needed. */
9760 dynsymcount = (elf_hash_table (info)->dynsymcount
9761 + count_section_dynsyms (output_bfd, info));
9762
9763 /* Determine the size of one stub entry. There's no disadvantage
9764 from using microMIPS code here, so for the sake of pure-microMIPS
9765 binaries we prefer it whenever there's any microMIPS code in
9766 output produced at all. This has a benefit of stubs being
9767 shorter by 4 bytes each too, unless in the insn32 mode. */
9768 if (!MICROMIPS_P (output_bfd))
9769 htab->function_stub_size = (dynsymcount > 0x10000
9770 ? MIPS_FUNCTION_STUB_BIG_SIZE
9771 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9772 else if (htab->insn32)
9773 htab->function_stub_size = (dynsymcount > 0x10000
9774 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9775 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9776 else
9777 htab->function_stub_size = (dynsymcount > 0x10000
9778 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9779 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9780
9781 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9782 }
9783
9784 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9785 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9786 stub, allocate an entry in the stubs section. */
9787
9788 static bfd_boolean
9789 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9790 {
9791 struct mips_htab_traverse_info *hti = data;
9792 struct mips_elf_link_hash_table *htab;
9793 struct bfd_link_info *info;
9794 bfd *output_bfd;
9795
9796 info = hti->info;
9797 output_bfd = hti->output_bfd;
9798 htab = mips_elf_hash_table (info);
9799 BFD_ASSERT (htab != NULL);
9800
9801 if (h->needs_lazy_stub)
9802 {
9803 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9804 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9805 bfd_vma isa_bit = micromips_p;
9806
9807 BFD_ASSERT (htab->root.dynobj != NULL);
9808 if (h->root.plt.plist == NULL)
9809 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9810 if (h->root.plt.plist == NULL)
9811 {
9812 hti->error = TRUE;
9813 return FALSE;
9814 }
9815 h->root.root.u.def.section = htab->sstubs;
9816 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9817 h->root.plt.plist->stub_offset = htab->sstubs->size;
9818 h->root.other = other;
9819 htab->sstubs->size += htab->function_stub_size;
9820 }
9821 return TRUE;
9822 }
9823
9824 /* Allocate offsets in the stubs section to each symbol that needs one.
9825 Set the final size of the .MIPS.stub section. */
9826
9827 static bfd_boolean
9828 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9829 {
9830 bfd *output_bfd = info->output_bfd;
9831 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9832 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9833 bfd_vma isa_bit = micromips_p;
9834 struct mips_elf_link_hash_table *htab;
9835 struct mips_htab_traverse_info hti;
9836 struct elf_link_hash_entry *h;
9837 bfd *dynobj;
9838
9839 htab = mips_elf_hash_table (info);
9840 BFD_ASSERT (htab != NULL);
9841
9842 if (htab->lazy_stub_count == 0)
9843 return TRUE;
9844
9845 htab->sstubs->size = 0;
9846 hti.info = info;
9847 hti.output_bfd = output_bfd;
9848 hti.error = FALSE;
9849 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9850 if (hti.error)
9851 return FALSE;
9852 htab->sstubs->size += htab->function_stub_size;
9853 BFD_ASSERT (htab->sstubs->size
9854 == htab->lazy_stub_count * htab->function_stub_size);
9855
9856 dynobj = elf_hash_table (info)->dynobj;
9857 BFD_ASSERT (dynobj != NULL);
9858 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9859 if (h == NULL)
9860 return FALSE;
9861 h->root.u.def.value = isa_bit;
9862 h->other = other;
9863 h->type = STT_FUNC;
9864
9865 return TRUE;
9866 }
9867
9868 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9869 bfd_link_info. If H uses the address of a PLT entry as the value
9870 of the symbol, then set the entry in the symbol table now. Prefer
9871 a standard MIPS PLT entry. */
9872
9873 static bfd_boolean
9874 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9875 {
9876 struct bfd_link_info *info = data;
9877 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9878 struct mips_elf_link_hash_table *htab;
9879 unsigned int other;
9880 bfd_vma isa_bit;
9881 bfd_vma val;
9882
9883 htab = mips_elf_hash_table (info);
9884 BFD_ASSERT (htab != NULL);
9885
9886 if (h->use_plt_entry)
9887 {
9888 BFD_ASSERT (h->root.plt.plist != NULL);
9889 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9890 || h->root.plt.plist->comp_offset != MINUS_ONE);
9891
9892 val = htab->plt_header_size;
9893 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9894 {
9895 isa_bit = 0;
9896 val += h->root.plt.plist->mips_offset;
9897 other = 0;
9898 }
9899 else
9900 {
9901 isa_bit = 1;
9902 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9903 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9904 }
9905 val += isa_bit;
9906 /* For VxWorks, point at the PLT load stub rather than the lazy
9907 resolution stub; this stub will become the canonical function
9908 address. */
9909 if (htab->is_vxworks)
9910 val += 8;
9911
9912 h->root.root.u.def.section = htab->root.splt;
9913 h->root.root.u.def.value = val;
9914 h->root.other = other;
9915 }
9916
9917 return TRUE;
9918 }
9919
9920 /* Set the sizes of the dynamic sections. */
9921
9922 bfd_boolean
9923 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9924 struct bfd_link_info *info)
9925 {
9926 bfd *dynobj;
9927 asection *s, *sreldyn;
9928 bfd_boolean reltext;
9929 struct mips_elf_link_hash_table *htab;
9930
9931 htab = mips_elf_hash_table (info);
9932 BFD_ASSERT (htab != NULL);
9933 dynobj = elf_hash_table (info)->dynobj;
9934 BFD_ASSERT (dynobj != NULL);
9935
9936 if (elf_hash_table (info)->dynamic_sections_created)
9937 {
9938 /* Set the contents of the .interp section to the interpreter. */
9939 if (bfd_link_executable (info) && !info->nointerp)
9940 {
9941 s = bfd_get_linker_section (dynobj, ".interp");
9942 BFD_ASSERT (s != NULL);
9943 s->size
9944 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9945 s->contents
9946 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9947 }
9948
9949 /* Figure out the size of the PLT header if we know that we
9950 are using it. For the sake of cache alignment always use
9951 a standard header whenever any standard entries are present
9952 even if microMIPS entries are present as well. This also
9953 lets the microMIPS header rely on the value of $v0 only set
9954 by microMIPS entries, for a small size reduction.
9955
9956 Set symbol table entry values for symbols that use the
9957 address of their PLT entry now that we can calculate it.
9958
9959 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9960 haven't already in _bfd_elf_create_dynamic_sections. */
9961 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9962 {
9963 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9964 && !htab->plt_mips_offset);
9965 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9966 bfd_vma isa_bit = micromips_p;
9967 struct elf_link_hash_entry *h;
9968 bfd_vma size;
9969
9970 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9971 BFD_ASSERT (htab->root.sgotplt->size == 0);
9972 BFD_ASSERT (htab->root.splt->size == 0);
9973
9974 if (htab->is_vxworks && bfd_link_pic (info))
9975 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9976 else if (htab->is_vxworks)
9977 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9978 else if (ABI_64_P (output_bfd))
9979 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9980 else if (ABI_N32_P (output_bfd))
9981 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9982 else if (!micromips_p)
9983 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9984 else if (htab->insn32)
9985 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9986 else
9987 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9988
9989 htab->plt_header_is_comp = micromips_p;
9990 htab->plt_header_size = size;
9991 htab->root.splt->size = (size
9992 + htab->plt_mips_offset
9993 + htab->plt_comp_offset);
9994 htab->root.sgotplt->size = (htab->plt_got_index
9995 * MIPS_ELF_GOT_SIZE (dynobj));
9996
9997 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9998
9999 if (htab->root.hplt == NULL)
10000 {
10001 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
10002 "_PROCEDURE_LINKAGE_TABLE_");
10003 htab->root.hplt = h;
10004 if (h == NULL)
10005 return FALSE;
10006 }
10007
10008 h = htab->root.hplt;
10009 h->root.u.def.value = isa_bit;
10010 h->other = other;
10011 h->type = STT_FUNC;
10012 }
10013 }
10014
10015 /* Allocate space for global sym dynamic relocs. */
10016 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
10017
10018 mips_elf_estimate_stub_size (output_bfd, info);
10019
10020 if (!mips_elf_lay_out_got (output_bfd, info))
10021 return FALSE;
10022
10023 mips_elf_lay_out_lazy_stubs (info);
10024
10025 /* The check_relocs and adjust_dynamic_symbol entry points have
10026 determined the sizes of the various dynamic sections. Allocate
10027 memory for them. */
10028 reltext = FALSE;
10029 for (s = dynobj->sections; s != NULL; s = s->next)
10030 {
10031 const char *name;
10032
10033 /* It's OK to base decisions on the section name, because none
10034 of the dynobj section names depend upon the input files. */
10035 name = bfd_section_name (s);
10036
10037 if ((s->flags & SEC_LINKER_CREATED) == 0)
10038 continue;
10039
10040 if (CONST_STRNEQ (name, ".rel"))
10041 {
10042 if (s->size != 0)
10043 {
10044 const char *outname;
10045 asection *target;
10046
10047 /* If this relocation section applies to a read only
10048 section, then we probably need a DT_TEXTREL entry.
10049 If the relocation section is .rel(a).dyn, we always
10050 assert a DT_TEXTREL entry rather than testing whether
10051 there exists a relocation to a read only section or
10052 not. */
10053 outname = bfd_section_name (s->output_section);
10054 target = bfd_get_section_by_name (output_bfd, outname + 4);
10055 if ((target != NULL
10056 && (target->flags & SEC_READONLY) != 0
10057 && (target->flags & SEC_ALLOC) != 0)
10058 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10059 reltext = TRUE;
10060
10061 /* We use the reloc_count field as a counter if we need
10062 to copy relocs into the output file. */
10063 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10064 s->reloc_count = 0;
10065
10066 /* If combreloc is enabled, elf_link_sort_relocs() will
10067 sort relocations, but in a different way than we do,
10068 and before we're done creating relocations. Also, it
10069 will move them around between input sections'
10070 relocation's contents, so our sorting would be
10071 broken, so don't let it run. */
10072 info->combreloc = 0;
10073 }
10074 }
10075 else if (bfd_link_executable (info)
10076 && ! mips_elf_hash_table (info)->use_rld_obj_head
10077 && CONST_STRNEQ (name, ".rld_map"))
10078 {
10079 /* We add a room for __rld_map. It will be filled in by the
10080 rtld to contain a pointer to the _r_debug structure. */
10081 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10082 }
10083 else if (SGI_COMPAT (output_bfd)
10084 && CONST_STRNEQ (name, ".compact_rel"))
10085 s->size += mips_elf_hash_table (info)->compact_rel_size;
10086 else if (s == htab->root.splt)
10087 {
10088 /* If the last PLT entry has a branch delay slot, allocate
10089 room for an extra nop to fill the delay slot. This is
10090 for CPUs without load interlocking. */
10091 if (! LOAD_INTERLOCKS_P (output_bfd)
10092 && ! htab->is_vxworks && s->size > 0)
10093 s->size += 4;
10094 }
10095 else if (! CONST_STRNEQ (name, ".init")
10096 && s != htab->root.sgot
10097 && s != htab->root.sgotplt
10098 && s != htab->sstubs
10099 && s != htab->root.sdynbss
10100 && s != htab->root.sdynrelro)
10101 {
10102 /* It's not one of our sections, so don't allocate space. */
10103 continue;
10104 }
10105
10106 if (s->size == 0)
10107 {
10108 s->flags |= SEC_EXCLUDE;
10109 continue;
10110 }
10111
10112 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10113 continue;
10114
10115 /* Allocate memory for the section contents. */
10116 s->contents = bfd_zalloc (dynobj, s->size);
10117 if (s->contents == NULL)
10118 {
10119 bfd_set_error (bfd_error_no_memory);
10120 return FALSE;
10121 }
10122 }
10123
10124 if (elf_hash_table (info)->dynamic_sections_created)
10125 {
10126 /* Add some entries to the .dynamic section. We fill in the
10127 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10128 must add the entries now so that we get the correct size for
10129 the .dynamic section. */
10130
10131 /* SGI object has the equivalence of DT_DEBUG in the
10132 DT_MIPS_RLD_MAP entry. This must come first because glibc
10133 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10134 may only look at the first one they see. */
10135 if (!bfd_link_pic (info)
10136 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10137 return FALSE;
10138
10139 if (bfd_link_executable (info)
10140 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10141 return FALSE;
10142
10143 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10144 used by the debugger. */
10145 if (bfd_link_executable (info)
10146 && !SGI_COMPAT (output_bfd)
10147 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10148 return FALSE;
10149
10150 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
10151 info->flags |= DF_TEXTREL;
10152
10153 if ((info->flags & DF_TEXTREL) != 0)
10154 {
10155 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10156 return FALSE;
10157
10158 /* Clear the DF_TEXTREL flag. It will be set again if we
10159 write out an actual text relocation; we may not, because
10160 at this point we do not know whether e.g. any .eh_frame
10161 absolute relocations have been converted to PC-relative. */
10162 info->flags &= ~DF_TEXTREL;
10163 }
10164
10165 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10166 return FALSE;
10167
10168 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10169 if (htab->is_vxworks)
10170 {
10171 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10172 use any of the DT_MIPS_* tags. */
10173 if (sreldyn && sreldyn->size > 0)
10174 {
10175 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10176 return FALSE;
10177
10178 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10179 return FALSE;
10180
10181 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10182 return FALSE;
10183 }
10184 }
10185 else
10186 {
10187 if (sreldyn && sreldyn->size > 0
10188 && !bfd_is_abs_section (sreldyn->output_section))
10189 {
10190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10191 return FALSE;
10192
10193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10194 return FALSE;
10195
10196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10197 return FALSE;
10198 }
10199
10200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10201 return FALSE;
10202
10203 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10204 return FALSE;
10205
10206 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10207 return FALSE;
10208
10209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10210 return FALSE;
10211
10212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10213 return FALSE;
10214
10215 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10216 return FALSE;
10217
10218 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10219 return FALSE;
10220
10221 if (info->emit_gnu_hash
10222 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10223 return FALSE;
10224
10225 if (IRIX_COMPAT (dynobj) == ict_irix5
10226 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10227 return FALSE;
10228
10229 if (IRIX_COMPAT (dynobj) == ict_irix6
10230 && (bfd_get_section_by_name
10231 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10232 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10233 return FALSE;
10234 }
10235 if (htab->root.splt->size > 0)
10236 {
10237 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10238 return FALSE;
10239
10240 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10241 return FALSE;
10242
10243 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10244 return FALSE;
10245
10246 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10247 return FALSE;
10248 }
10249 if (htab->is_vxworks
10250 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10251 return FALSE;
10252 }
10253
10254 return TRUE;
10255 }
10256 \f
10257 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10258 Adjust its R_ADDEND field so that it is correct for the output file.
10259 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10260 and sections respectively; both use symbol indexes. */
10261
10262 static void
10263 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10264 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10265 asection **local_sections, Elf_Internal_Rela *rel)
10266 {
10267 unsigned int r_type, r_symndx;
10268 Elf_Internal_Sym *sym;
10269 asection *sec;
10270
10271 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10272 {
10273 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10274 if (gprel16_reloc_p (r_type)
10275 || r_type == R_MIPS_GPREL32
10276 || literal_reloc_p (r_type))
10277 {
10278 rel->r_addend += _bfd_get_gp_value (input_bfd);
10279 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10280 }
10281
10282 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10283 sym = local_syms + r_symndx;
10284
10285 /* Adjust REL's addend to account for section merging. */
10286 if (!bfd_link_relocatable (info))
10287 {
10288 sec = local_sections[r_symndx];
10289 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10290 }
10291
10292 /* This would normally be done by the rela_normal code in elflink.c. */
10293 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10294 rel->r_addend += local_sections[r_symndx]->output_offset;
10295 }
10296 }
10297
10298 /* Handle relocations against symbols from removed linkonce sections,
10299 or sections discarded by a linker script. We use this wrapper around
10300 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10301 on 64-bit ELF targets. In this case for any relocation handled, which
10302 always be the first in a triplet, the remaining two have to be processed
10303 together with the first, even if they are R_MIPS_NONE. It is the symbol
10304 index referred by the first reloc that applies to all the three and the
10305 remaining two never refer to an object symbol. And it is the final
10306 relocation (the last non-null one) that determines the output field of
10307 the whole relocation so retrieve the corresponding howto structure for
10308 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10309
10310 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10311 and therefore requires to be pasted in a loop. It also defines a block
10312 and does not protect any of its arguments, hence the extra brackets. */
10313
10314 static void
10315 mips_reloc_against_discarded_section (bfd *output_bfd,
10316 struct bfd_link_info *info,
10317 bfd *input_bfd, asection *input_section,
10318 Elf_Internal_Rela **rel,
10319 const Elf_Internal_Rela **relend,
10320 bfd_boolean rel_reloc,
10321 reloc_howto_type *howto,
10322 bfd_byte *contents)
10323 {
10324 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10325 int count = bed->s->int_rels_per_ext_rel;
10326 unsigned int r_type;
10327 int i;
10328
10329 for (i = count - 1; i > 0; i--)
10330 {
10331 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10332 if (r_type != R_MIPS_NONE)
10333 {
10334 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10335 break;
10336 }
10337 }
10338 do
10339 {
10340 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10341 (*rel), count, (*relend),
10342 howto, i, contents);
10343 }
10344 while (0);
10345 }
10346
10347 /* Relocate a MIPS ELF section. */
10348
10349 bfd_boolean
10350 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10351 bfd *input_bfd, asection *input_section,
10352 bfd_byte *contents, Elf_Internal_Rela *relocs,
10353 Elf_Internal_Sym *local_syms,
10354 asection **local_sections)
10355 {
10356 Elf_Internal_Rela *rel;
10357 const Elf_Internal_Rela *relend;
10358 bfd_vma addend = 0;
10359 bfd_boolean use_saved_addend_p = FALSE;
10360
10361 relend = relocs + input_section->reloc_count;
10362 for (rel = relocs; rel < relend; ++rel)
10363 {
10364 const char *name;
10365 bfd_vma value = 0;
10366 reloc_howto_type *howto;
10367 bfd_boolean cross_mode_jump_p = FALSE;
10368 /* TRUE if the relocation is a RELA relocation, rather than a
10369 REL relocation. */
10370 bfd_boolean rela_relocation_p = TRUE;
10371 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10372 const char *msg;
10373 unsigned long r_symndx;
10374 asection *sec;
10375 Elf_Internal_Shdr *symtab_hdr;
10376 struct elf_link_hash_entry *h;
10377 bfd_boolean rel_reloc;
10378
10379 rel_reloc = (NEWABI_P (input_bfd)
10380 && mips_elf_rel_relocation_p (input_bfd, input_section,
10381 relocs, rel));
10382 /* Find the relocation howto for this relocation. */
10383 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10384
10385 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10386 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10387 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10388 {
10389 sec = local_sections[r_symndx];
10390 h = NULL;
10391 }
10392 else
10393 {
10394 unsigned long extsymoff;
10395
10396 extsymoff = 0;
10397 if (!elf_bad_symtab (input_bfd))
10398 extsymoff = symtab_hdr->sh_info;
10399 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10400 while (h->root.type == bfd_link_hash_indirect
10401 || h->root.type == bfd_link_hash_warning)
10402 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10403
10404 sec = NULL;
10405 if (h->root.type == bfd_link_hash_defined
10406 || h->root.type == bfd_link_hash_defweak)
10407 sec = h->root.u.def.section;
10408 }
10409
10410 if (sec != NULL && discarded_section (sec))
10411 {
10412 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10413 input_section, &rel, &relend,
10414 rel_reloc, howto, contents);
10415 continue;
10416 }
10417
10418 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10419 {
10420 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10421 64-bit code, but make sure all their addresses are in the
10422 lowermost or uppermost 32-bit section of the 64-bit address
10423 space. Thus, when they use an R_MIPS_64 they mean what is
10424 usually meant by R_MIPS_32, with the exception that the
10425 stored value is sign-extended to 64 bits. */
10426 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10427
10428 /* On big-endian systems, we need to lie about the position
10429 of the reloc. */
10430 if (bfd_big_endian (input_bfd))
10431 rel->r_offset += 4;
10432 }
10433
10434 if (!use_saved_addend_p)
10435 {
10436 /* If these relocations were originally of the REL variety,
10437 we must pull the addend out of the field that will be
10438 relocated. Otherwise, we simply use the contents of the
10439 RELA relocation. */
10440 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10441 relocs, rel))
10442 {
10443 rela_relocation_p = FALSE;
10444 addend = mips_elf_read_rel_addend (input_bfd, rel,
10445 howto, contents);
10446 if (hi16_reloc_p (r_type)
10447 || (got16_reloc_p (r_type)
10448 && mips_elf_local_relocation_p (input_bfd, rel,
10449 local_sections)))
10450 {
10451 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10452 contents, &addend))
10453 {
10454 if (h)
10455 name = h->root.root.string;
10456 else
10457 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10458 local_syms + r_symndx,
10459 sec);
10460 _bfd_error_handler
10461 /* xgettext:c-format */
10462 (_("%pB: can't find matching LO16 reloc against `%s'"
10463 " for %s at %#" PRIx64 " in section `%pA'"),
10464 input_bfd, name,
10465 howto->name, (uint64_t) rel->r_offset, input_section);
10466 }
10467 }
10468 else
10469 addend <<= howto->rightshift;
10470 }
10471 else
10472 addend = rel->r_addend;
10473 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10474 local_syms, local_sections, rel);
10475 }
10476
10477 if (bfd_link_relocatable (info))
10478 {
10479 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10480 && bfd_big_endian (input_bfd))
10481 rel->r_offset -= 4;
10482
10483 if (!rela_relocation_p && rel->r_addend)
10484 {
10485 addend += rel->r_addend;
10486 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10487 addend = mips_elf_high (addend);
10488 else if (r_type == R_MIPS_HIGHER)
10489 addend = mips_elf_higher (addend);
10490 else if (r_type == R_MIPS_HIGHEST)
10491 addend = mips_elf_highest (addend);
10492 else
10493 addend >>= howto->rightshift;
10494
10495 /* We use the source mask, rather than the destination
10496 mask because the place to which we are writing will be
10497 source of the addend in the final link. */
10498 addend &= howto->src_mask;
10499
10500 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10501 /* See the comment above about using R_MIPS_64 in the 32-bit
10502 ABI. Here, we need to update the addend. It would be
10503 possible to get away with just using the R_MIPS_32 reloc
10504 but for endianness. */
10505 {
10506 bfd_vma sign_bits;
10507 bfd_vma low_bits;
10508 bfd_vma high_bits;
10509
10510 if (addend & ((bfd_vma) 1 << 31))
10511 #ifdef BFD64
10512 sign_bits = ((bfd_vma) 1 << 32) - 1;
10513 #else
10514 sign_bits = -1;
10515 #endif
10516 else
10517 sign_bits = 0;
10518
10519 /* If we don't know that we have a 64-bit type,
10520 do two separate stores. */
10521 if (bfd_big_endian (input_bfd))
10522 {
10523 /* Store the sign-bits (which are most significant)
10524 first. */
10525 low_bits = sign_bits;
10526 high_bits = addend;
10527 }
10528 else
10529 {
10530 low_bits = addend;
10531 high_bits = sign_bits;
10532 }
10533 bfd_put_32 (input_bfd, low_bits,
10534 contents + rel->r_offset);
10535 bfd_put_32 (input_bfd, high_bits,
10536 contents + rel->r_offset + 4);
10537 continue;
10538 }
10539
10540 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10541 input_bfd, input_section,
10542 contents, FALSE))
10543 return FALSE;
10544 }
10545
10546 /* Go on to the next relocation. */
10547 continue;
10548 }
10549
10550 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10551 relocations for the same offset. In that case we are
10552 supposed to treat the output of each relocation as the addend
10553 for the next. */
10554 if (rel + 1 < relend
10555 && rel->r_offset == rel[1].r_offset
10556 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10557 use_saved_addend_p = TRUE;
10558 else
10559 use_saved_addend_p = FALSE;
10560
10561 /* Figure out what value we are supposed to relocate. */
10562 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10563 input_section, contents,
10564 info, rel, addend, howto,
10565 local_syms, local_sections,
10566 &value, &name, &cross_mode_jump_p,
10567 use_saved_addend_p))
10568 {
10569 case bfd_reloc_continue:
10570 /* There's nothing to do. */
10571 continue;
10572
10573 case bfd_reloc_undefined:
10574 /* mips_elf_calculate_relocation already called the
10575 undefined_symbol callback. There's no real point in
10576 trying to perform the relocation at this point, so we
10577 just skip ahead to the next relocation. */
10578 continue;
10579
10580 case bfd_reloc_notsupported:
10581 msg = _("internal error: unsupported relocation error");
10582 info->callbacks->warning
10583 (info, msg, name, input_bfd, input_section, rel->r_offset);
10584 return FALSE;
10585
10586 case bfd_reloc_overflow:
10587 if (use_saved_addend_p)
10588 /* Ignore overflow until we reach the last relocation for
10589 a given location. */
10590 ;
10591 else
10592 {
10593 struct mips_elf_link_hash_table *htab;
10594
10595 htab = mips_elf_hash_table (info);
10596 BFD_ASSERT (htab != NULL);
10597 BFD_ASSERT (name != NULL);
10598 if (!htab->small_data_overflow_reported
10599 && (gprel16_reloc_p (howto->type)
10600 || literal_reloc_p (howto->type)))
10601 {
10602 msg = _("small-data section exceeds 64KB;"
10603 " lower small-data size limit (see option -G)");
10604
10605 htab->small_data_overflow_reported = TRUE;
10606 (*info->callbacks->einfo) ("%P: %s\n", msg);
10607 }
10608 (*info->callbacks->reloc_overflow)
10609 (info, NULL, name, howto->name, (bfd_vma) 0,
10610 input_bfd, input_section, rel->r_offset);
10611 }
10612 break;
10613
10614 case bfd_reloc_ok:
10615 break;
10616
10617 case bfd_reloc_outofrange:
10618 msg = NULL;
10619 if (jal_reloc_p (howto->type))
10620 msg = (cross_mode_jump_p
10621 ? _("cannot convert a jump to JALX "
10622 "for a non-word-aligned address")
10623 : (howto->type == R_MIPS16_26
10624 ? _("jump to a non-word-aligned address")
10625 : _("jump to a non-instruction-aligned address")));
10626 else if (b_reloc_p (howto->type))
10627 msg = (cross_mode_jump_p
10628 ? _("cannot convert a branch to JALX "
10629 "for a non-word-aligned address")
10630 : _("branch to a non-instruction-aligned address"));
10631 else if (aligned_pcrel_reloc_p (howto->type))
10632 msg = _("PC-relative load from unaligned address");
10633 if (msg)
10634 {
10635 info->callbacks->einfo
10636 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10637 break;
10638 }
10639 /* Fall through. */
10640
10641 default:
10642 abort ();
10643 break;
10644 }
10645
10646 /* If we've got another relocation for the address, keep going
10647 until we reach the last one. */
10648 if (use_saved_addend_p)
10649 {
10650 addend = value;
10651 continue;
10652 }
10653
10654 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10655 /* See the comment above about using R_MIPS_64 in the 32-bit
10656 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10657 that calculated the right value. Now, however, we
10658 sign-extend the 32-bit result to 64-bits, and store it as a
10659 64-bit value. We are especially generous here in that we
10660 go to extreme lengths to support this usage on systems with
10661 only a 32-bit VMA. */
10662 {
10663 bfd_vma sign_bits;
10664 bfd_vma low_bits;
10665 bfd_vma high_bits;
10666
10667 if (value & ((bfd_vma) 1 << 31))
10668 #ifdef BFD64
10669 sign_bits = ((bfd_vma) 1 << 32) - 1;
10670 #else
10671 sign_bits = -1;
10672 #endif
10673 else
10674 sign_bits = 0;
10675
10676 /* If we don't know that we have a 64-bit type,
10677 do two separate stores. */
10678 if (bfd_big_endian (input_bfd))
10679 {
10680 /* Undo what we did above. */
10681 rel->r_offset -= 4;
10682 /* Store the sign-bits (which are most significant)
10683 first. */
10684 low_bits = sign_bits;
10685 high_bits = value;
10686 }
10687 else
10688 {
10689 low_bits = value;
10690 high_bits = sign_bits;
10691 }
10692 bfd_put_32 (input_bfd, low_bits,
10693 contents + rel->r_offset);
10694 bfd_put_32 (input_bfd, high_bits,
10695 contents + rel->r_offset + 4);
10696 continue;
10697 }
10698
10699 /* Actually perform the relocation. */
10700 if (! mips_elf_perform_relocation (info, howto, rel, value,
10701 input_bfd, input_section,
10702 contents, cross_mode_jump_p))
10703 return FALSE;
10704 }
10705
10706 return TRUE;
10707 }
10708 \f
10709 /* A function that iterates over each entry in la25_stubs and fills
10710 in the code for each one. DATA points to a mips_htab_traverse_info. */
10711
10712 static int
10713 mips_elf_create_la25_stub (void **slot, void *data)
10714 {
10715 struct mips_htab_traverse_info *hti;
10716 struct mips_elf_link_hash_table *htab;
10717 struct mips_elf_la25_stub *stub;
10718 asection *s;
10719 bfd_byte *loc;
10720 bfd_vma offset, target, target_high, target_low;
10721 bfd_vma branch_pc;
10722 bfd_signed_vma pcrel_offset = 0;
10723
10724 stub = (struct mips_elf_la25_stub *) *slot;
10725 hti = (struct mips_htab_traverse_info *) data;
10726 htab = mips_elf_hash_table (hti->info);
10727 BFD_ASSERT (htab != NULL);
10728
10729 /* Create the section contents, if we haven't already. */
10730 s = stub->stub_section;
10731 loc = s->contents;
10732 if (loc == NULL)
10733 {
10734 loc = bfd_malloc (s->size);
10735 if (loc == NULL)
10736 {
10737 hti->error = TRUE;
10738 return FALSE;
10739 }
10740 s->contents = loc;
10741 }
10742
10743 /* Work out where in the section this stub should go. */
10744 offset = stub->offset;
10745
10746 /* We add 8 here to account for the LUI/ADDIU instructions
10747 before the branch instruction. This cannot be moved down to
10748 where pcrel_offset is calculated as 's' is updated in
10749 mips_elf_get_la25_target. */
10750 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10751
10752 /* Work out the target address. */
10753 target = mips_elf_get_la25_target (stub, &s);
10754 target += s->output_section->vma + s->output_offset;
10755
10756 target_high = ((target + 0x8000) >> 16) & 0xffff;
10757 target_low = (target & 0xffff);
10758
10759 /* Calculate the PC of the compact branch instruction (for the case where
10760 compact branches are used for either microMIPSR6 or MIPSR6 with
10761 compact branches. Add 4-bytes to account for BC using the PC of the
10762 next instruction as the base. */
10763 pcrel_offset = target - (branch_pc + 4);
10764
10765 if (stub->stub_section != htab->strampoline)
10766 {
10767 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10768 of the section and write the two instructions at the end. */
10769 memset (loc, 0, offset);
10770 loc += offset;
10771 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10772 {
10773 bfd_put_micromips_32 (hti->output_bfd,
10774 LA25_LUI_MICROMIPS (target_high),
10775 loc);
10776 bfd_put_micromips_32 (hti->output_bfd,
10777 LA25_ADDIU_MICROMIPS (target_low),
10778 loc + 4);
10779 }
10780 else
10781 {
10782 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10783 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10784 }
10785 }
10786 else
10787 {
10788 /* This is trampoline. */
10789 loc += offset;
10790 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10791 {
10792 bfd_put_micromips_32 (hti->output_bfd,
10793 LA25_LUI_MICROMIPS (target_high), loc);
10794 bfd_put_micromips_32 (hti->output_bfd,
10795 LA25_J_MICROMIPS (target), loc + 4);
10796 bfd_put_micromips_32 (hti->output_bfd,
10797 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10798 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10799 }
10800 else
10801 {
10802 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10803 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10804 {
10805 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10806 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10807 }
10808 else
10809 {
10810 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10811 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10812 }
10813 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10814 }
10815 }
10816 return TRUE;
10817 }
10818
10819 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10820 adjust it appropriately now. */
10821
10822 static void
10823 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10824 const char *name, Elf_Internal_Sym *sym)
10825 {
10826 /* The linker script takes care of providing names and values for
10827 these, but we must place them into the right sections. */
10828 static const char* const text_section_symbols[] = {
10829 "_ftext",
10830 "_etext",
10831 "__dso_displacement",
10832 "__elf_header",
10833 "__program_header_table",
10834 NULL
10835 };
10836
10837 static const char* const data_section_symbols[] = {
10838 "_fdata",
10839 "_edata",
10840 "_end",
10841 "_fbss",
10842 NULL
10843 };
10844
10845 const char* const *p;
10846 int i;
10847
10848 for (i = 0; i < 2; ++i)
10849 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10850 *p;
10851 ++p)
10852 if (strcmp (*p, name) == 0)
10853 {
10854 /* All of these symbols are given type STT_SECTION by the
10855 IRIX6 linker. */
10856 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10857 sym->st_other = STO_PROTECTED;
10858
10859 /* The IRIX linker puts these symbols in special sections. */
10860 if (i == 0)
10861 sym->st_shndx = SHN_MIPS_TEXT;
10862 else
10863 sym->st_shndx = SHN_MIPS_DATA;
10864
10865 break;
10866 }
10867 }
10868
10869 /* Finish up dynamic symbol handling. We set the contents of various
10870 dynamic sections here. */
10871
10872 bfd_boolean
10873 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10874 struct bfd_link_info *info,
10875 struct elf_link_hash_entry *h,
10876 Elf_Internal_Sym *sym)
10877 {
10878 bfd *dynobj;
10879 asection *sgot;
10880 struct mips_got_info *g, *gg;
10881 const char *name;
10882 int idx;
10883 struct mips_elf_link_hash_table *htab;
10884 struct mips_elf_link_hash_entry *hmips;
10885
10886 htab = mips_elf_hash_table (info);
10887 BFD_ASSERT (htab != NULL);
10888 dynobj = elf_hash_table (info)->dynobj;
10889 hmips = (struct mips_elf_link_hash_entry *) h;
10890
10891 BFD_ASSERT (!htab->is_vxworks);
10892
10893 if (h->plt.plist != NULL
10894 && (h->plt.plist->mips_offset != MINUS_ONE
10895 || h->plt.plist->comp_offset != MINUS_ONE))
10896 {
10897 /* We've decided to create a PLT entry for this symbol. */
10898 bfd_byte *loc;
10899 bfd_vma header_address, got_address;
10900 bfd_vma got_address_high, got_address_low, load;
10901 bfd_vma got_index;
10902 bfd_vma isa_bit;
10903
10904 got_index = h->plt.plist->gotplt_index;
10905
10906 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10907 BFD_ASSERT (h->dynindx != -1);
10908 BFD_ASSERT (htab->root.splt != NULL);
10909 BFD_ASSERT (got_index != MINUS_ONE);
10910 BFD_ASSERT (!h->def_regular);
10911
10912 /* Calculate the address of the PLT header. */
10913 isa_bit = htab->plt_header_is_comp;
10914 header_address = (htab->root.splt->output_section->vma
10915 + htab->root.splt->output_offset + isa_bit);
10916
10917 /* Calculate the address of the .got.plt entry. */
10918 got_address = (htab->root.sgotplt->output_section->vma
10919 + htab->root.sgotplt->output_offset
10920 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10921
10922 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10923 got_address_low = got_address & 0xffff;
10924
10925 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10926 cannot be loaded in two instructions. */
10927 if (ABI_64_P (output_bfd)
10928 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10929 {
10930 _bfd_error_handler
10931 /* xgettext:c-format */
10932 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10933 "supported; consider using `-Ttext-segment=...'"),
10934 output_bfd,
10935 htab->root.sgotplt->output_section,
10936 (int64_t) got_address);
10937 bfd_set_error (bfd_error_no_error);
10938 return FALSE;
10939 }
10940
10941 /* Initially point the .got.plt entry at the PLT header. */
10942 loc = (htab->root.sgotplt->contents
10943 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10944 if (ABI_64_P (output_bfd))
10945 bfd_put_64 (output_bfd, header_address, loc);
10946 else
10947 bfd_put_32 (output_bfd, header_address, loc);
10948
10949 /* Now handle the PLT itself. First the standard entry (the order
10950 does not matter, we just have to pick one). */
10951 if (h->plt.plist->mips_offset != MINUS_ONE)
10952 {
10953 const bfd_vma *plt_entry;
10954 bfd_vma plt_offset;
10955
10956 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10957
10958 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10959
10960 /* Find out where the .plt entry should go. */
10961 loc = htab->root.splt->contents + plt_offset;
10962
10963 /* Pick the load opcode. */
10964 load = MIPS_ELF_LOAD_WORD (output_bfd);
10965
10966 /* Fill in the PLT entry itself. */
10967
10968 if (MIPSR6_P (output_bfd))
10969 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10970 : mipsr6_exec_plt_entry;
10971 else
10972 plt_entry = mips_exec_plt_entry;
10973 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10974 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10975 loc + 4);
10976
10977 if (! LOAD_INTERLOCKS_P (output_bfd)
10978 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10979 {
10980 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10981 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10982 }
10983 else
10984 {
10985 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10986 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10987 loc + 12);
10988 }
10989 }
10990
10991 /* Now the compressed entry. They come after any standard ones. */
10992 if (h->plt.plist->comp_offset != MINUS_ONE)
10993 {
10994 bfd_vma plt_offset;
10995
10996 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10997 + h->plt.plist->comp_offset);
10998
10999 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11000
11001 /* Find out where the .plt entry should go. */
11002 loc = htab->root.splt->contents + plt_offset;
11003
11004 /* Fill in the PLT entry itself. */
11005 if (!MICROMIPS_P (output_bfd))
11006 {
11007 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
11008
11009 bfd_put_16 (output_bfd, plt_entry[0], loc);
11010 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
11011 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11012 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11013 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11014 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11015 bfd_put_32 (output_bfd, got_address, loc + 12);
11016 }
11017 else if (htab->insn32)
11018 {
11019 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
11020
11021 bfd_put_16 (output_bfd, plt_entry[0], loc);
11022 bfd_put_16 (output_bfd, got_address_high, loc + 2);
11023 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11024 bfd_put_16 (output_bfd, got_address_low, loc + 6);
11025 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11026 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11027 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11028 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11029 }
11030 else
11031 {
11032 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11033 bfd_signed_vma gotpc_offset;
11034 bfd_vma loc_address;
11035
11036 BFD_ASSERT (got_address % 4 == 0);
11037
11038 loc_address = (htab->root.splt->output_section->vma
11039 + htab->root.splt->output_offset + plt_offset);
11040 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11041
11042 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11043 if (gotpc_offset + 0x1000000 >= 0x2000000)
11044 {
11045 _bfd_error_handler
11046 /* xgettext:c-format */
11047 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11048 "beyond the range of ADDIUPC"),
11049 output_bfd,
11050 htab->root.sgotplt->output_section,
11051 (int64_t) gotpc_offset,
11052 htab->root.splt->output_section);
11053 bfd_set_error (bfd_error_no_error);
11054 return FALSE;
11055 }
11056 bfd_put_16 (output_bfd,
11057 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11058 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11059 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11060 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11061 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11062 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11063 }
11064 }
11065
11066 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11067 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11068 got_index - 2, h->dynindx,
11069 R_MIPS_JUMP_SLOT, got_address);
11070
11071 /* We distinguish between PLT entries and lazy-binding stubs by
11072 giving the former an st_other value of STO_MIPS_PLT. Set the
11073 flag and leave the value if there are any relocations in the
11074 binary where pointer equality matters. */
11075 sym->st_shndx = SHN_UNDEF;
11076 if (h->pointer_equality_needed)
11077 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11078 else
11079 {
11080 sym->st_value = 0;
11081 sym->st_other = 0;
11082 }
11083 }
11084
11085 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11086 {
11087 /* We've decided to create a lazy-binding stub. */
11088 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11089 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11090 bfd_vma stub_size = htab->function_stub_size;
11091 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11092 bfd_vma isa_bit = micromips_p;
11093 bfd_vma stub_big_size;
11094
11095 if (!micromips_p)
11096 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11097 else if (htab->insn32)
11098 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11099 else
11100 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11101
11102 /* This symbol has a stub. Set it up. */
11103
11104 BFD_ASSERT (h->dynindx != -1);
11105
11106 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11107
11108 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11109 sign extension at runtime in the stub, resulting in a negative
11110 index value. */
11111 if (h->dynindx & ~0x7fffffff)
11112 return FALSE;
11113
11114 /* Fill the stub. */
11115 if (micromips_p)
11116 {
11117 idx = 0;
11118 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11119 stub + idx);
11120 idx += 4;
11121 if (htab->insn32)
11122 {
11123 bfd_put_micromips_32 (output_bfd,
11124 STUB_MOVE32_MICROMIPS, stub + idx);
11125 idx += 4;
11126 }
11127 else
11128 {
11129 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11130 idx += 2;
11131 }
11132 if (stub_size == stub_big_size)
11133 {
11134 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11135
11136 bfd_put_micromips_32 (output_bfd,
11137 STUB_LUI_MICROMIPS (dynindx_hi),
11138 stub + idx);
11139 idx += 4;
11140 }
11141 if (htab->insn32)
11142 {
11143 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11144 stub + idx);
11145 idx += 4;
11146 }
11147 else
11148 {
11149 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11150 idx += 2;
11151 }
11152
11153 /* If a large stub is not required and sign extension is not a
11154 problem, then use legacy code in the stub. */
11155 if (stub_size == stub_big_size)
11156 bfd_put_micromips_32 (output_bfd,
11157 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11158 stub + idx);
11159 else if (h->dynindx & ~0x7fff)
11160 bfd_put_micromips_32 (output_bfd,
11161 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11162 stub + idx);
11163 else
11164 bfd_put_micromips_32 (output_bfd,
11165 STUB_LI16S_MICROMIPS (output_bfd,
11166 h->dynindx),
11167 stub + idx);
11168 }
11169 else
11170 {
11171 idx = 0;
11172 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11173 idx += 4;
11174 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11175 idx += 4;
11176 if (stub_size == stub_big_size)
11177 {
11178 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11179 stub + idx);
11180 idx += 4;
11181 }
11182
11183 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11184 {
11185 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11186 idx += 4;
11187 }
11188
11189 /* If a large stub is not required and sign extension is not a
11190 problem, then use legacy code in the stub. */
11191 if (stub_size == stub_big_size)
11192 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11193 stub + idx);
11194 else if (h->dynindx & ~0x7fff)
11195 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11196 stub + idx);
11197 else
11198 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11199 stub + idx);
11200 idx += 4;
11201
11202 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11203 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11204 }
11205
11206 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11207 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11208 stub, stub_size);
11209
11210 /* Mark the symbol as undefined. stub_offset != -1 occurs
11211 only for the referenced symbol. */
11212 sym->st_shndx = SHN_UNDEF;
11213
11214 /* The run-time linker uses the st_value field of the symbol
11215 to reset the global offset table entry for this external
11216 to its stub address when unlinking a shared object. */
11217 sym->st_value = (htab->sstubs->output_section->vma
11218 + htab->sstubs->output_offset
11219 + h->plt.plist->stub_offset
11220 + isa_bit);
11221 sym->st_other = other;
11222 }
11223
11224 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11225 refer to the stub, since only the stub uses the standard calling
11226 conventions. */
11227 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11228 {
11229 BFD_ASSERT (hmips->need_fn_stub);
11230 sym->st_value = (hmips->fn_stub->output_section->vma
11231 + hmips->fn_stub->output_offset);
11232 sym->st_size = hmips->fn_stub->size;
11233 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11234 }
11235
11236 BFD_ASSERT (h->dynindx != -1
11237 || h->forced_local);
11238
11239 sgot = htab->root.sgot;
11240 g = htab->got_info;
11241 BFD_ASSERT (g != NULL);
11242
11243 /* Run through the global symbol table, creating GOT entries for all
11244 the symbols that need them. */
11245 if (hmips->global_got_area != GGA_NONE)
11246 {
11247 bfd_vma offset;
11248 bfd_vma value;
11249
11250 value = sym->st_value;
11251 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11252 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11253 }
11254
11255 if (hmips->global_got_area != GGA_NONE && g->next)
11256 {
11257 struct mips_got_entry e, *p;
11258 bfd_vma entry;
11259 bfd_vma offset;
11260
11261 gg = g;
11262
11263 e.abfd = output_bfd;
11264 e.symndx = -1;
11265 e.d.h = hmips;
11266 e.tls_type = GOT_TLS_NONE;
11267
11268 for (g = g->next; g->next != gg; g = g->next)
11269 {
11270 if (g->got_entries
11271 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11272 &e)))
11273 {
11274 offset = p->gotidx;
11275 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11276 if (bfd_link_pic (info)
11277 || (elf_hash_table (info)->dynamic_sections_created
11278 && p->d.h != NULL
11279 && p->d.h->root.def_dynamic
11280 && !p->d.h->root.def_regular))
11281 {
11282 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11283 the various compatibility problems, it's easier to mock
11284 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11285 mips_elf_create_dynamic_relocation to calculate the
11286 appropriate addend. */
11287 Elf_Internal_Rela rel[3];
11288
11289 memset (rel, 0, sizeof (rel));
11290 if (ABI_64_P (output_bfd))
11291 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11292 else
11293 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11294 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11295
11296 entry = 0;
11297 if (! (mips_elf_create_dynamic_relocation
11298 (output_bfd, info, rel,
11299 e.d.h, NULL, sym->st_value, &entry, sgot)))
11300 return FALSE;
11301 }
11302 else
11303 entry = sym->st_value;
11304 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11305 }
11306 }
11307 }
11308
11309 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11310 name = h->root.root.string;
11311 if (h == elf_hash_table (info)->hdynamic
11312 || h == elf_hash_table (info)->hgot)
11313 sym->st_shndx = SHN_ABS;
11314 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11315 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11316 {
11317 sym->st_shndx = SHN_ABS;
11318 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11319 sym->st_value = 1;
11320 }
11321 else if (SGI_COMPAT (output_bfd))
11322 {
11323 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11324 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11325 {
11326 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11327 sym->st_other = STO_PROTECTED;
11328 sym->st_value = 0;
11329 sym->st_shndx = SHN_MIPS_DATA;
11330 }
11331 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11332 {
11333 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11334 sym->st_other = STO_PROTECTED;
11335 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11336 sym->st_shndx = SHN_ABS;
11337 }
11338 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11339 {
11340 if (h->type == STT_FUNC)
11341 sym->st_shndx = SHN_MIPS_TEXT;
11342 else if (h->type == STT_OBJECT)
11343 sym->st_shndx = SHN_MIPS_DATA;
11344 }
11345 }
11346
11347 /* Emit a copy reloc, if needed. */
11348 if (h->needs_copy)
11349 {
11350 asection *s;
11351 bfd_vma symval;
11352
11353 BFD_ASSERT (h->dynindx != -1);
11354 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11355
11356 s = mips_elf_rel_dyn_section (info, FALSE);
11357 symval = (h->root.u.def.section->output_section->vma
11358 + h->root.u.def.section->output_offset
11359 + h->root.u.def.value);
11360 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11361 h->dynindx, R_MIPS_COPY, symval);
11362 }
11363
11364 /* Handle the IRIX6-specific symbols. */
11365 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11366 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11367
11368 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11369 to treat compressed symbols like any other. */
11370 if (ELF_ST_IS_MIPS16 (sym->st_other))
11371 {
11372 BFD_ASSERT (sym->st_value & 1);
11373 sym->st_other -= STO_MIPS16;
11374 }
11375 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11376 {
11377 BFD_ASSERT (sym->st_value & 1);
11378 sym->st_other -= STO_MICROMIPS;
11379 }
11380
11381 return TRUE;
11382 }
11383
11384 /* Likewise, for VxWorks. */
11385
11386 bfd_boolean
11387 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11388 struct bfd_link_info *info,
11389 struct elf_link_hash_entry *h,
11390 Elf_Internal_Sym *sym)
11391 {
11392 bfd *dynobj;
11393 asection *sgot;
11394 struct mips_got_info *g;
11395 struct mips_elf_link_hash_table *htab;
11396 struct mips_elf_link_hash_entry *hmips;
11397
11398 htab = mips_elf_hash_table (info);
11399 BFD_ASSERT (htab != NULL);
11400 dynobj = elf_hash_table (info)->dynobj;
11401 hmips = (struct mips_elf_link_hash_entry *) h;
11402
11403 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11404 {
11405 bfd_byte *loc;
11406 bfd_vma plt_address, got_address, got_offset, branch_offset;
11407 Elf_Internal_Rela rel;
11408 static const bfd_vma *plt_entry;
11409 bfd_vma gotplt_index;
11410 bfd_vma plt_offset;
11411
11412 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11413 gotplt_index = h->plt.plist->gotplt_index;
11414
11415 BFD_ASSERT (h->dynindx != -1);
11416 BFD_ASSERT (htab->root.splt != NULL);
11417 BFD_ASSERT (gotplt_index != MINUS_ONE);
11418 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11419
11420 /* Calculate the address of the .plt entry. */
11421 plt_address = (htab->root.splt->output_section->vma
11422 + htab->root.splt->output_offset
11423 + plt_offset);
11424
11425 /* Calculate the address of the .got.plt entry. */
11426 got_address = (htab->root.sgotplt->output_section->vma
11427 + htab->root.sgotplt->output_offset
11428 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11429
11430 /* Calculate the offset of the .got.plt entry from
11431 _GLOBAL_OFFSET_TABLE_. */
11432 got_offset = mips_elf_gotplt_index (info, h);
11433
11434 /* Calculate the offset for the branch at the start of the PLT
11435 entry. The branch jumps to the beginning of .plt. */
11436 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11437
11438 /* Fill in the initial value of the .got.plt entry. */
11439 bfd_put_32 (output_bfd, plt_address,
11440 (htab->root.sgotplt->contents
11441 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11442
11443 /* Find out where the .plt entry should go. */
11444 loc = htab->root.splt->contents + plt_offset;
11445
11446 if (bfd_link_pic (info))
11447 {
11448 plt_entry = mips_vxworks_shared_plt_entry;
11449 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11450 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11451 }
11452 else
11453 {
11454 bfd_vma got_address_high, got_address_low;
11455
11456 plt_entry = mips_vxworks_exec_plt_entry;
11457 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11458 got_address_low = got_address & 0xffff;
11459
11460 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11461 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11462 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11463 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11464 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11465 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11466 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11467 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11468
11469 loc = (htab->srelplt2->contents
11470 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11471
11472 /* Emit a relocation for the .got.plt entry. */
11473 rel.r_offset = got_address;
11474 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11475 rel.r_addend = plt_offset;
11476 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11477
11478 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11479 loc += sizeof (Elf32_External_Rela);
11480 rel.r_offset = plt_address + 8;
11481 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11482 rel.r_addend = got_offset;
11483 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11484
11485 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11486 loc += sizeof (Elf32_External_Rela);
11487 rel.r_offset += 4;
11488 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11489 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11490 }
11491
11492 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11493 loc = (htab->root.srelplt->contents
11494 + gotplt_index * sizeof (Elf32_External_Rela));
11495 rel.r_offset = got_address;
11496 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11497 rel.r_addend = 0;
11498 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11499
11500 if (!h->def_regular)
11501 sym->st_shndx = SHN_UNDEF;
11502 }
11503
11504 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11505
11506 sgot = htab->root.sgot;
11507 g = htab->got_info;
11508 BFD_ASSERT (g != NULL);
11509
11510 /* See if this symbol has an entry in the GOT. */
11511 if (hmips->global_got_area != GGA_NONE)
11512 {
11513 bfd_vma offset;
11514 Elf_Internal_Rela outrel;
11515 bfd_byte *loc;
11516 asection *s;
11517
11518 /* Install the symbol value in the GOT. */
11519 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11520 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11521
11522 /* Add a dynamic relocation for it. */
11523 s = mips_elf_rel_dyn_section (info, FALSE);
11524 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11525 outrel.r_offset = (sgot->output_section->vma
11526 + sgot->output_offset
11527 + offset);
11528 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11529 outrel.r_addend = 0;
11530 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11531 }
11532
11533 /* Emit a copy reloc, if needed. */
11534 if (h->needs_copy)
11535 {
11536 Elf_Internal_Rela rel;
11537 asection *srel;
11538 bfd_byte *loc;
11539
11540 BFD_ASSERT (h->dynindx != -1);
11541
11542 rel.r_offset = (h->root.u.def.section->output_section->vma
11543 + h->root.u.def.section->output_offset
11544 + h->root.u.def.value);
11545 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11546 rel.r_addend = 0;
11547 if (h->root.u.def.section == htab->root.sdynrelro)
11548 srel = htab->root.sreldynrelro;
11549 else
11550 srel = htab->root.srelbss;
11551 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11552 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11553 ++srel->reloc_count;
11554 }
11555
11556 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11557 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11558 sym->st_value &= ~1;
11559
11560 return TRUE;
11561 }
11562
11563 /* Write out a plt0 entry to the beginning of .plt. */
11564
11565 static bfd_boolean
11566 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11567 {
11568 bfd_byte *loc;
11569 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11570 static const bfd_vma *plt_entry;
11571 struct mips_elf_link_hash_table *htab;
11572
11573 htab = mips_elf_hash_table (info);
11574 BFD_ASSERT (htab != NULL);
11575
11576 if (ABI_64_P (output_bfd))
11577 plt_entry = (htab->compact_branches
11578 ? mipsr6_n64_exec_plt0_entry_compact
11579 : mips_n64_exec_plt0_entry);
11580 else if (ABI_N32_P (output_bfd))
11581 plt_entry = (htab->compact_branches
11582 ? mipsr6_n32_exec_plt0_entry_compact
11583 : mips_n32_exec_plt0_entry);
11584 else if (!htab->plt_header_is_comp)
11585 plt_entry = (htab->compact_branches
11586 ? mipsr6_o32_exec_plt0_entry_compact
11587 : mips_o32_exec_plt0_entry);
11588 else if (htab->insn32)
11589 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11590 else
11591 plt_entry = micromips_o32_exec_plt0_entry;
11592
11593 /* Calculate the value of .got.plt. */
11594 gotplt_value = (htab->root.sgotplt->output_section->vma
11595 + htab->root.sgotplt->output_offset);
11596 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11597 gotplt_value_low = gotplt_value & 0xffff;
11598
11599 /* The PLT sequence is not safe for N64 if .got.plt's address can
11600 not be loaded in two instructions. */
11601 if (ABI_64_P (output_bfd)
11602 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11603 {
11604 _bfd_error_handler
11605 /* xgettext:c-format */
11606 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11607 "supported; consider using `-Ttext-segment=...'"),
11608 output_bfd,
11609 htab->root.sgotplt->output_section,
11610 (int64_t) gotplt_value);
11611 bfd_set_error (bfd_error_no_error);
11612 return FALSE;
11613 }
11614
11615 /* Install the PLT header. */
11616 loc = htab->root.splt->contents;
11617 if (plt_entry == micromips_o32_exec_plt0_entry)
11618 {
11619 bfd_vma gotpc_offset;
11620 bfd_vma loc_address;
11621 size_t i;
11622
11623 BFD_ASSERT (gotplt_value % 4 == 0);
11624
11625 loc_address = (htab->root.splt->output_section->vma
11626 + htab->root.splt->output_offset);
11627 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11628
11629 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11630 if (gotpc_offset + 0x1000000 >= 0x2000000)
11631 {
11632 _bfd_error_handler
11633 /* xgettext:c-format */
11634 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11635 "beyond the range of ADDIUPC"),
11636 output_bfd,
11637 htab->root.sgotplt->output_section,
11638 (int64_t) gotpc_offset,
11639 htab->root.splt->output_section);
11640 bfd_set_error (bfd_error_no_error);
11641 return FALSE;
11642 }
11643 bfd_put_16 (output_bfd,
11644 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11645 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11646 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11647 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11648 }
11649 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11650 {
11651 size_t i;
11652
11653 bfd_put_16 (output_bfd, plt_entry[0], loc);
11654 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11655 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11656 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11657 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11658 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11659 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11660 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11661 }
11662 else
11663 {
11664 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11665 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11666 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11667 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11668 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11669 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11670 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11671 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11672 }
11673
11674 return TRUE;
11675 }
11676
11677 /* Install the PLT header for a VxWorks executable and finalize the
11678 contents of .rela.plt.unloaded. */
11679
11680 static void
11681 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11682 {
11683 Elf_Internal_Rela rela;
11684 bfd_byte *loc;
11685 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11686 static const bfd_vma *plt_entry;
11687 struct mips_elf_link_hash_table *htab;
11688
11689 htab = mips_elf_hash_table (info);
11690 BFD_ASSERT (htab != NULL);
11691
11692 plt_entry = mips_vxworks_exec_plt0_entry;
11693
11694 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11695 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11696 + htab->root.hgot->root.u.def.section->output_offset
11697 + htab->root.hgot->root.u.def.value);
11698
11699 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11700 got_value_low = got_value & 0xffff;
11701
11702 /* Calculate the address of the PLT header. */
11703 plt_address = (htab->root.splt->output_section->vma
11704 + htab->root.splt->output_offset);
11705
11706 /* Install the PLT header. */
11707 loc = htab->root.splt->contents;
11708 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11709 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11710 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11711 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11712 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11713 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11714
11715 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11716 loc = htab->srelplt2->contents;
11717 rela.r_offset = plt_address;
11718 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11719 rela.r_addend = 0;
11720 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11721 loc += sizeof (Elf32_External_Rela);
11722
11723 /* Output the relocation for the following addiu of
11724 %lo(_GLOBAL_OFFSET_TABLE_). */
11725 rela.r_offset += 4;
11726 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11727 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11728 loc += sizeof (Elf32_External_Rela);
11729
11730 /* Fix up the remaining relocations. They may have the wrong
11731 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11732 in which symbols were output. */
11733 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11734 {
11735 Elf_Internal_Rela rel;
11736
11737 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11738 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11739 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11740 loc += sizeof (Elf32_External_Rela);
11741
11742 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11743 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11744 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11745 loc += sizeof (Elf32_External_Rela);
11746
11747 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11748 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11749 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11750 loc += sizeof (Elf32_External_Rela);
11751 }
11752 }
11753
11754 /* Install the PLT header for a VxWorks shared library. */
11755
11756 static void
11757 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11758 {
11759 unsigned int i;
11760 struct mips_elf_link_hash_table *htab;
11761
11762 htab = mips_elf_hash_table (info);
11763 BFD_ASSERT (htab != NULL);
11764
11765 /* We just need to copy the entry byte-by-byte. */
11766 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11767 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11768 htab->root.splt->contents + i * 4);
11769 }
11770
11771 /* Finish up the dynamic sections. */
11772
11773 bfd_boolean
11774 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11775 struct bfd_link_info *info)
11776 {
11777 bfd *dynobj;
11778 asection *sdyn;
11779 asection *sgot;
11780 struct mips_got_info *gg, *g;
11781 struct mips_elf_link_hash_table *htab;
11782
11783 htab = mips_elf_hash_table (info);
11784 BFD_ASSERT (htab != NULL);
11785
11786 dynobj = elf_hash_table (info)->dynobj;
11787
11788 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11789
11790 sgot = htab->root.sgot;
11791 gg = htab->got_info;
11792
11793 if (elf_hash_table (info)->dynamic_sections_created)
11794 {
11795 bfd_byte *b;
11796 int dyn_to_skip = 0, dyn_skipped = 0;
11797
11798 BFD_ASSERT (sdyn != NULL);
11799 BFD_ASSERT (gg != NULL);
11800
11801 g = mips_elf_bfd_got (output_bfd, FALSE);
11802 BFD_ASSERT (g != NULL);
11803
11804 for (b = sdyn->contents;
11805 b < sdyn->contents + sdyn->size;
11806 b += MIPS_ELF_DYN_SIZE (dynobj))
11807 {
11808 Elf_Internal_Dyn dyn;
11809 const char *name;
11810 size_t elemsize;
11811 asection *s;
11812 bfd_boolean swap_out_p;
11813
11814 /* Read in the current dynamic entry. */
11815 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11816
11817 /* Assume that we're going to modify it and write it out. */
11818 swap_out_p = TRUE;
11819
11820 switch (dyn.d_tag)
11821 {
11822 case DT_RELENT:
11823 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11824 break;
11825
11826 case DT_RELAENT:
11827 BFD_ASSERT (htab->is_vxworks);
11828 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11829 break;
11830
11831 case DT_STRSZ:
11832 /* Rewrite DT_STRSZ. */
11833 dyn.d_un.d_val =
11834 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11835 break;
11836
11837 case DT_PLTGOT:
11838 s = htab->root.sgot;
11839 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11840 break;
11841
11842 case DT_MIPS_PLTGOT:
11843 s = htab->root.sgotplt;
11844 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11845 break;
11846
11847 case DT_MIPS_RLD_VERSION:
11848 dyn.d_un.d_val = 1; /* XXX */
11849 break;
11850
11851 case DT_MIPS_FLAGS:
11852 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11853 break;
11854
11855 case DT_MIPS_TIME_STAMP:
11856 {
11857 time_t t;
11858 time (&t);
11859 dyn.d_un.d_val = t;
11860 }
11861 break;
11862
11863 case DT_MIPS_ICHECKSUM:
11864 /* XXX FIXME: */
11865 swap_out_p = FALSE;
11866 break;
11867
11868 case DT_MIPS_IVERSION:
11869 /* XXX FIXME: */
11870 swap_out_p = FALSE;
11871 break;
11872
11873 case DT_MIPS_BASE_ADDRESS:
11874 s = output_bfd->sections;
11875 BFD_ASSERT (s != NULL);
11876 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11877 break;
11878
11879 case DT_MIPS_LOCAL_GOTNO:
11880 dyn.d_un.d_val = g->local_gotno;
11881 break;
11882
11883 case DT_MIPS_UNREFEXTNO:
11884 /* The index into the dynamic symbol table which is the
11885 entry of the first external symbol that is not
11886 referenced within the same object. */
11887 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11888 break;
11889
11890 case DT_MIPS_GOTSYM:
11891 if (htab->global_gotsym)
11892 {
11893 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11894 break;
11895 }
11896 /* In case if we don't have global got symbols we default
11897 to setting DT_MIPS_GOTSYM to the same value as
11898 DT_MIPS_SYMTABNO. */
11899 /* Fall through. */
11900
11901 case DT_MIPS_SYMTABNO:
11902 name = ".dynsym";
11903 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11904 s = bfd_get_linker_section (dynobj, name);
11905
11906 if (s != NULL)
11907 dyn.d_un.d_val = s->size / elemsize;
11908 else
11909 dyn.d_un.d_val = 0;
11910 break;
11911
11912 case DT_MIPS_HIPAGENO:
11913 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11914 break;
11915
11916 case DT_MIPS_RLD_MAP:
11917 {
11918 struct elf_link_hash_entry *h;
11919 h = mips_elf_hash_table (info)->rld_symbol;
11920 if (!h)
11921 {
11922 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11923 swap_out_p = FALSE;
11924 break;
11925 }
11926 s = h->root.u.def.section;
11927
11928 /* The MIPS_RLD_MAP tag stores the absolute address of the
11929 debug pointer. */
11930 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11931 + h->root.u.def.value);
11932 }
11933 break;
11934
11935 case DT_MIPS_RLD_MAP_REL:
11936 {
11937 struct elf_link_hash_entry *h;
11938 bfd_vma dt_addr, rld_addr;
11939 h = mips_elf_hash_table (info)->rld_symbol;
11940 if (!h)
11941 {
11942 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11943 swap_out_p = FALSE;
11944 break;
11945 }
11946 s = h->root.u.def.section;
11947
11948 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11949 pointer, relative to the address of the tag. */
11950 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11951 + (b - sdyn->contents));
11952 rld_addr = (s->output_section->vma + s->output_offset
11953 + h->root.u.def.value);
11954 dyn.d_un.d_ptr = rld_addr - dt_addr;
11955 }
11956 break;
11957
11958 case DT_MIPS_OPTIONS:
11959 s = (bfd_get_section_by_name
11960 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11961 dyn.d_un.d_ptr = s->vma;
11962 break;
11963
11964 case DT_PLTREL:
11965 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11966 if (htab->is_vxworks)
11967 dyn.d_un.d_val = DT_RELA;
11968 else
11969 dyn.d_un.d_val = DT_REL;
11970 break;
11971
11972 case DT_PLTRELSZ:
11973 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11974 dyn.d_un.d_val = htab->root.srelplt->size;
11975 break;
11976
11977 case DT_JMPREL:
11978 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11979 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11980 + htab->root.srelplt->output_offset);
11981 break;
11982
11983 case DT_TEXTREL:
11984 /* If we didn't need any text relocations after all, delete
11985 the dynamic tag. */
11986 if (!(info->flags & DF_TEXTREL))
11987 {
11988 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11989 swap_out_p = FALSE;
11990 }
11991 break;
11992
11993 case DT_FLAGS:
11994 /* If we didn't need any text relocations after all, clear
11995 DF_TEXTREL from DT_FLAGS. */
11996 if (!(info->flags & DF_TEXTREL))
11997 dyn.d_un.d_val &= ~DF_TEXTREL;
11998 else
11999 swap_out_p = FALSE;
12000 break;
12001
12002 case DT_MIPS_XHASH:
12003 name = ".MIPS.xhash";
12004 s = bfd_get_linker_section (dynobj, name);
12005 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
12006 break;
12007
12008 default:
12009 swap_out_p = FALSE;
12010 if (htab->is_vxworks
12011 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12012 swap_out_p = TRUE;
12013 break;
12014 }
12015
12016 if (swap_out_p || dyn_skipped)
12017 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12018 (dynobj, &dyn, b - dyn_skipped);
12019
12020 if (dyn_to_skip)
12021 {
12022 dyn_skipped += dyn_to_skip;
12023 dyn_to_skip = 0;
12024 }
12025 }
12026
12027 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12028 if (dyn_skipped > 0)
12029 memset (b - dyn_skipped, 0, dyn_skipped);
12030 }
12031
12032 if (sgot != NULL && sgot->size > 0
12033 && !bfd_is_abs_section (sgot->output_section))
12034 {
12035 if (htab->is_vxworks)
12036 {
12037 /* The first entry of the global offset table points to the
12038 ".dynamic" section. The second is initialized by the
12039 loader and contains the shared library identifier.
12040 The third is also initialized by the loader and points
12041 to the lazy resolution stub. */
12042 MIPS_ELF_PUT_WORD (output_bfd,
12043 sdyn->output_offset + sdyn->output_section->vma,
12044 sgot->contents);
12045 MIPS_ELF_PUT_WORD (output_bfd, 0,
12046 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12047 MIPS_ELF_PUT_WORD (output_bfd, 0,
12048 sgot->contents
12049 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12050 }
12051 else
12052 {
12053 /* The first entry of the global offset table will be filled at
12054 runtime. The second entry will be used by some runtime loaders.
12055 This isn't the case of IRIX rld. */
12056 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12057 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12058 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12059 }
12060
12061 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12062 = MIPS_ELF_GOT_SIZE (output_bfd);
12063 }
12064
12065 /* Generate dynamic relocations for the non-primary gots. */
12066 if (gg != NULL && gg->next)
12067 {
12068 Elf_Internal_Rela rel[3];
12069 bfd_vma addend = 0;
12070
12071 memset (rel, 0, sizeof (rel));
12072 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12073
12074 for (g = gg->next; g->next != gg; g = g->next)
12075 {
12076 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12077 + g->next->tls_gotno;
12078
12079 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12080 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12081 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12082 sgot->contents
12083 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12084
12085 if (! bfd_link_pic (info))
12086 continue;
12087
12088 for (; got_index < g->local_gotno; got_index++)
12089 {
12090 if (got_index >= g->assigned_low_gotno
12091 && got_index <= g->assigned_high_gotno)
12092 continue;
12093
12094 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12095 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12096 if (!(mips_elf_create_dynamic_relocation
12097 (output_bfd, info, rel, NULL,
12098 bfd_abs_section_ptr,
12099 0, &addend, sgot)))
12100 return FALSE;
12101 BFD_ASSERT (addend == 0);
12102 }
12103 }
12104 }
12105
12106 /* The generation of dynamic relocations for the non-primary gots
12107 adds more dynamic relocations. We cannot count them until
12108 here. */
12109
12110 if (elf_hash_table (info)->dynamic_sections_created)
12111 {
12112 bfd_byte *b;
12113 bfd_boolean swap_out_p;
12114
12115 BFD_ASSERT (sdyn != NULL);
12116
12117 for (b = sdyn->contents;
12118 b < sdyn->contents + sdyn->size;
12119 b += MIPS_ELF_DYN_SIZE (dynobj))
12120 {
12121 Elf_Internal_Dyn dyn;
12122 asection *s;
12123
12124 /* Read in the current dynamic entry. */
12125 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12126
12127 /* Assume that we're going to modify it and write it out. */
12128 swap_out_p = TRUE;
12129
12130 switch (dyn.d_tag)
12131 {
12132 case DT_RELSZ:
12133 /* Reduce DT_RELSZ to account for any relocations we
12134 decided not to make. This is for the n64 irix rld,
12135 which doesn't seem to apply any relocations if there
12136 are trailing null entries. */
12137 s = mips_elf_rel_dyn_section (info, FALSE);
12138 dyn.d_un.d_val = (s->reloc_count
12139 * (ABI_64_P (output_bfd)
12140 ? sizeof (Elf64_Mips_External_Rel)
12141 : sizeof (Elf32_External_Rel)));
12142 /* Adjust the section size too. Tools like the prelinker
12143 can reasonably expect the values to the same. */
12144 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12145 elf_section_data (s->output_section)->this_hdr.sh_size
12146 = dyn.d_un.d_val;
12147 break;
12148
12149 default:
12150 swap_out_p = FALSE;
12151 break;
12152 }
12153
12154 if (swap_out_p)
12155 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12156 (dynobj, &dyn, b);
12157 }
12158 }
12159
12160 {
12161 asection *s;
12162 Elf32_compact_rel cpt;
12163
12164 if (SGI_COMPAT (output_bfd))
12165 {
12166 /* Write .compact_rel section out. */
12167 s = bfd_get_linker_section (dynobj, ".compact_rel");
12168 if (s != NULL)
12169 {
12170 cpt.id1 = 1;
12171 cpt.num = s->reloc_count;
12172 cpt.id2 = 2;
12173 cpt.offset = (s->output_section->filepos
12174 + sizeof (Elf32_External_compact_rel));
12175 cpt.reserved0 = 0;
12176 cpt.reserved1 = 0;
12177 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12178 ((Elf32_External_compact_rel *)
12179 s->contents));
12180
12181 /* Clean up a dummy stub function entry in .text. */
12182 if (htab->sstubs != NULL)
12183 {
12184 file_ptr dummy_offset;
12185
12186 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12187 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12188 memset (htab->sstubs->contents + dummy_offset, 0,
12189 htab->function_stub_size);
12190 }
12191 }
12192 }
12193
12194 /* The psABI says that the dynamic relocations must be sorted in
12195 increasing order of r_symndx. The VxWorks EABI doesn't require
12196 this, and because the code below handles REL rather than RELA
12197 relocations, using it for VxWorks would be outright harmful. */
12198 if (!htab->is_vxworks)
12199 {
12200 s = mips_elf_rel_dyn_section (info, FALSE);
12201 if (s != NULL
12202 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12203 {
12204 reldyn_sorting_bfd = output_bfd;
12205
12206 if (ABI_64_P (output_bfd))
12207 qsort ((Elf64_External_Rel *) s->contents + 1,
12208 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12209 sort_dynamic_relocs_64);
12210 else
12211 qsort ((Elf32_External_Rel *) s->contents + 1,
12212 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12213 sort_dynamic_relocs);
12214 }
12215 }
12216 }
12217
12218 if (htab->root.splt && htab->root.splt->size > 0)
12219 {
12220 if (htab->is_vxworks)
12221 {
12222 if (bfd_link_pic (info))
12223 mips_vxworks_finish_shared_plt (output_bfd, info);
12224 else
12225 mips_vxworks_finish_exec_plt (output_bfd, info);
12226 }
12227 else
12228 {
12229 BFD_ASSERT (!bfd_link_pic (info));
12230 if (!mips_finish_exec_plt (output_bfd, info))
12231 return FALSE;
12232 }
12233 }
12234 return TRUE;
12235 }
12236
12237
12238 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12239
12240 static void
12241 mips_set_isa_flags (bfd *abfd)
12242 {
12243 flagword val;
12244
12245 switch (bfd_get_mach (abfd))
12246 {
12247 default:
12248 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12249 val = E_MIPS_ARCH_3;
12250 else
12251 val = E_MIPS_ARCH_1;
12252 break;
12253
12254 case bfd_mach_mips3000:
12255 val = E_MIPS_ARCH_1;
12256 break;
12257
12258 case bfd_mach_mips3900:
12259 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12260 break;
12261
12262 case bfd_mach_mips6000:
12263 val = E_MIPS_ARCH_2;
12264 break;
12265
12266 case bfd_mach_mips4010:
12267 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12268 break;
12269
12270 case bfd_mach_mips4000:
12271 case bfd_mach_mips4300:
12272 case bfd_mach_mips4400:
12273 case bfd_mach_mips4600:
12274 val = E_MIPS_ARCH_3;
12275 break;
12276
12277 case bfd_mach_mips4100:
12278 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12279 break;
12280
12281 case bfd_mach_mips4111:
12282 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12283 break;
12284
12285 case bfd_mach_mips4120:
12286 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12287 break;
12288
12289 case bfd_mach_mips4650:
12290 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12291 break;
12292
12293 case bfd_mach_mips5400:
12294 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12295 break;
12296
12297 case bfd_mach_mips5500:
12298 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12299 break;
12300
12301 case bfd_mach_mips5900:
12302 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12303 break;
12304
12305 case bfd_mach_mips9000:
12306 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12307 break;
12308
12309 case bfd_mach_mips5000:
12310 case bfd_mach_mips7000:
12311 case bfd_mach_mips8000:
12312 case bfd_mach_mips10000:
12313 case bfd_mach_mips12000:
12314 case bfd_mach_mips14000:
12315 case bfd_mach_mips16000:
12316 val = E_MIPS_ARCH_4;
12317 break;
12318
12319 case bfd_mach_mips5:
12320 val = E_MIPS_ARCH_5;
12321 break;
12322
12323 case bfd_mach_mips_loongson_2e:
12324 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12325 break;
12326
12327 case bfd_mach_mips_loongson_2f:
12328 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12329 break;
12330
12331 case bfd_mach_mips_sb1:
12332 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12333 break;
12334
12335 case bfd_mach_mips_gs464:
12336 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12337 break;
12338
12339 case bfd_mach_mips_gs464e:
12340 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12341 break;
12342
12343 case bfd_mach_mips_gs264e:
12344 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12345 break;
12346
12347 case bfd_mach_mips_octeon:
12348 case bfd_mach_mips_octeonp:
12349 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12350 break;
12351
12352 case bfd_mach_mips_octeon3:
12353 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12354 break;
12355
12356 case bfd_mach_mips_xlr:
12357 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12358 break;
12359
12360 case bfd_mach_mips_octeon2:
12361 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12362 break;
12363
12364 case bfd_mach_mipsisa32:
12365 val = E_MIPS_ARCH_32;
12366 break;
12367
12368 case bfd_mach_mipsisa64:
12369 val = E_MIPS_ARCH_64;
12370 break;
12371
12372 case bfd_mach_mipsisa32r2:
12373 case bfd_mach_mipsisa32r3:
12374 case bfd_mach_mipsisa32r5:
12375 val = E_MIPS_ARCH_32R2;
12376 break;
12377
12378 case bfd_mach_mips_interaptiv_mr2:
12379 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12380 break;
12381
12382 case bfd_mach_mipsisa64r2:
12383 case bfd_mach_mipsisa64r3:
12384 case bfd_mach_mipsisa64r5:
12385 val = E_MIPS_ARCH_64R2;
12386 break;
12387
12388 case bfd_mach_mipsisa32r6:
12389 val = E_MIPS_ARCH_32R6;
12390 break;
12391
12392 case bfd_mach_mipsisa64r6:
12393 val = E_MIPS_ARCH_64R6;
12394 break;
12395 }
12396 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12397 elf_elfheader (abfd)->e_flags |= val;
12398
12399 }
12400
12401
12402 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12403 Don't do so for code sections. We want to keep ordering of HI16/LO16
12404 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12405 relocs to be sorted. */
12406
12407 bfd_boolean
12408 _bfd_mips_elf_sort_relocs_p (asection *sec)
12409 {
12410 return (sec->flags & SEC_CODE) == 0;
12411 }
12412
12413
12414 /* The final processing done just before writing out a MIPS ELF object
12415 file. This gets the MIPS architecture right based on the machine
12416 number. This is used by both the 32-bit and the 64-bit ABI. */
12417
12418 void
12419 _bfd_mips_final_write_processing (bfd *abfd)
12420 {
12421 unsigned int i;
12422 Elf_Internal_Shdr **hdrpp;
12423 const char *name;
12424 asection *sec;
12425
12426 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12427 is nonzero. This is for compatibility with old objects, which used
12428 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12429 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12430 mips_set_isa_flags (abfd);
12431
12432 /* Set the sh_info field for .gptab sections and other appropriate
12433 info for each special section. */
12434 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12435 i < elf_numsections (abfd);
12436 i++, hdrpp++)
12437 {
12438 switch ((*hdrpp)->sh_type)
12439 {
12440 case SHT_MIPS_MSYM:
12441 case SHT_MIPS_LIBLIST:
12442 sec = bfd_get_section_by_name (abfd, ".dynstr");
12443 if (sec != NULL)
12444 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12445 break;
12446
12447 case SHT_MIPS_GPTAB:
12448 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12449 name = bfd_section_name ((*hdrpp)->bfd_section);
12450 BFD_ASSERT (name != NULL
12451 && CONST_STRNEQ (name, ".gptab."));
12452 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12453 BFD_ASSERT (sec != NULL);
12454 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12455 break;
12456
12457 case SHT_MIPS_CONTENT:
12458 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12459 name = bfd_section_name ((*hdrpp)->bfd_section);
12460 BFD_ASSERT (name != NULL
12461 && CONST_STRNEQ (name, ".MIPS.content"));
12462 sec = bfd_get_section_by_name (abfd,
12463 name + sizeof ".MIPS.content" - 1);
12464 BFD_ASSERT (sec != NULL);
12465 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12466 break;
12467
12468 case SHT_MIPS_SYMBOL_LIB:
12469 sec = bfd_get_section_by_name (abfd, ".dynsym");
12470 if (sec != NULL)
12471 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12472 sec = bfd_get_section_by_name (abfd, ".liblist");
12473 if (sec != NULL)
12474 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12475 break;
12476
12477 case SHT_MIPS_EVENTS:
12478 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12479 name = bfd_section_name ((*hdrpp)->bfd_section);
12480 BFD_ASSERT (name != NULL);
12481 if (CONST_STRNEQ (name, ".MIPS.events"))
12482 sec = bfd_get_section_by_name (abfd,
12483 name + sizeof ".MIPS.events" - 1);
12484 else
12485 {
12486 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12487 sec = bfd_get_section_by_name (abfd,
12488 (name
12489 + sizeof ".MIPS.post_rel" - 1));
12490 }
12491 BFD_ASSERT (sec != NULL);
12492 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12493 break;
12494
12495 case SHT_MIPS_XHASH:
12496 sec = bfd_get_section_by_name (abfd, ".dynsym");
12497 if (sec != NULL)
12498 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12499 }
12500 }
12501 }
12502
12503 bfd_boolean
12504 _bfd_mips_elf_final_write_processing (bfd *abfd)
12505 {
12506 _bfd_mips_final_write_processing (abfd);
12507 return _bfd_elf_final_write_processing (abfd);
12508 }
12509 \f
12510 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12511 segments. */
12512
12513 int
12514 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12515 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12516 {
12517 asection *s;
12518 int ret = 0;
12519
12520 /* See if we need a PT_MIPS_REGINFO segment. */
12521 s = bfd_get_section_by_name (abfd, ".reginfo");
12522 if (s && (s->flags & SEC_LOAD))
12523 ++ret;
12524
12525 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12526 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12527 ++ret;
12528
12529 /* See if we need a PT_MIPS_OPTIONS segment. */
12530 if (IRIX_COMPAT (abfd) == ict_irix6
12531 && bfd_get_section_by_name (abfd,
12532 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12533 ++ret;
12534
12535 /* See if we need a PT_MIPS_RTPROC segment. */
12536 if (IRIX_COMPAT (abfd) == ict_irix5
12537 && bfd_get_section_by_name (abfd, ".dynamic")
12538 && bfd_get_section_by_name (abfd, ".mdebug"))
12539 ++ret;
12540
12541 /* Allocate a PT_NULL header in dynamic objects. See
12542 _bfd_mips_elf_modify_segment_map for details. */
12543 if (!SGI_COMPAT (abfd)
12544 && bfd_get_section_by_name (abfd, ".dynamic"))
12545 ++ret;
12546
12547 return ret;
12548 }
12549
12550 /* Modify the segment map for an IRIX5 executable. */
12551
12552 bfd_boolean
12553 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12554 struct bfd_link_info *info)
12555 {
12556 asection *s;
12557 struct elf_segment_map *m, **pm;
12558 size_t amt;
12559
12560 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12561 segment. */
12562 s = bfd_get_section_by_name (abfd, ".reginfo");
12563 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12564 {
12565 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12566 if (m->p_type == PT_MIPS_REGINFO)
12567 break;
12568 if (m == NULL)
12569 {
12570 amt = sizeof *m;
12571 m = bfd_zalloc (abfd, amt);
12572 if (m == NULL)
12573 return FALSE;
12574
12575 m->p_type = PT_MIPS_REGINFO;
12576 m->count = 1;
12577 m->sections[0] = s;
12578
12579 /* We want to put it after the PHDR and INTERP segments. */
12580 pm = &elf_seg_map (abfd);
12581 while (*pm != NULL
12582 && ((*pm)->p_type == PT_PHDR
12583 || (*pm)->p_type == PT_INTERP))
12584 pm = &(*pm)->next;
12585
12586 m->next = *pm;
12587 *pm = m;
12588 }
12589 }
12590
12591 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12592 segment. */
12593 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12594 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12595 {
12596 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12597 if (m->p_type == PT_MIPS_ABIFLAGS)
12598 break;
12599 if (m == NULL)
12600 {
12601 amt = sizeof *m;
12602 m = bfd_zalloc (abfd, amt);
12603 if (m == NULL)
12604 return FALSE;
12605
12606 m->p_type = PT_MIPS_ABIFLAGS;
12607 m->count = 1;
12608 m->sections[0] = s;
12609
12610 /* We want to put it after the PHDR and INTERP segments. */
12611 pm = &elf_seg_map (abfd);
12612 while (*pm != NULL
12613 && ((*pm)->p_type == PT_PHDR
12614 || (*pm)->p_type == PT_INTERP))
12615 pm = &(*pm)->next;
12616
12617 m->next = *pm;
12618 *pm = m;
12619 }
12620 }
12621
12622 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12623 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12624 PT_MIPS_OPTIONS segment immediately following the program header
12625 table. */
12626 if (NEWABI_P (abfd)
12627 /* On non-IRIX6 new abi, we'll have already created a segment
12628 for this section, so don't create another. I'm not sure this
12629 is not also the case for IRIX 6, but I can't test it right
12630 now. */
12631 && IRIX_COMPAT (abfd) == ict_irix6)
12632 {
12633 for (s = abfd->sections; s; s = s->next)
12634 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12635 break;
12636
12637 if (s)
12638 {
12639 struct elf_segment_map *options_segment;
12640
12641 pm = &elf_seg_map (abfd);
12642 while (*pm != NULL
12643 && ((*pm)->p_type == PT_PHDR
12644 || (*pm)->p_type == PT_INTERP))
12645 pm = &(*pm)->next;
12646
12647 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12648 {
12649 amt = sizeof (struct elf_segment_map);
12650 options_segment = bfd_zalloc (abfd, amt);
12651 options_segment->next = *pm;
12652 options_segment->p_type = PT_MIPS_OPTIONS;
12653 options_segment->p_flags = PF_R;
12654 options_segment->p_flags_valid = TRUE;
12655 options_segment->count = 1;
12656 options_segment->sections[0] = s;
12657 *pm = options_segment;
12658 }
12659 }
12660 }
12661 else
12662 {
12663 if (IRIX_COMPAT (abfd) == ict_irix5)
12664 {
12665 /* If there are .dynamic and .mdebug sections, we make a room
12666 for the RTPROC header. FIXME: Rewrite without section names. */
12667 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12668 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12669 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12670 {
12671 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12672 if (m->p_type == PT_MIPS_RTPROC)
12673 break;
12674 if (m == NULL)
12675 {
12676 amt = sizeof *m;
12677 m = bfd_zalloc (abfd, amt);
12678 if (m == NULL)
12679 return FALSE;
12680
12681 m->p_type = PT_MIPS_RTPROC;
12682
12683 s = bfd_get_section_by_name (abfd, ".rtproc");
12684 if (s == NULL)
12685 {
12686 m->count = 0;
12687 m->p_flags = 0;
12688 m->p_flags_valid = 1;
12689 }
12690 else
12691 {
12692 m->count = 1;
12693 m->sections[0] = s;
12694 }
12695
12696 /* We want to put it after the DYNAMIC segment. */
12697 pm = &elf_seg_map (abfd);
12698 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12699 pm = &(*pm)->next;
12700 if (*pm != NULL)
12701 pm = &(*pm)->next;
12702
12703 m->next = *pm;
12704 *pm = m;
12705 }
12706 }
12707 }
12708 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12709 .dynstr, .dynsym, and .hash sections, and everything in
12710 between. */
12711 for (pm = &elf_seg_map (abfd); *pm != NULL;
12712 pm = &(*pm)->next)
12713 if ((*pm)->p_type == PT_DYNAMIC)
12714 break;
12715 m = *pm;
12716 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12717 glibc's dynamic linker has traditionally derived the number of
12718 tags from the p_filesz field, and sometimes allocates stack
12719 arrays of that size. An overly-big PT_DYNAMIC segment can
12720 be actively harmful in such cases. Making PT_DYNAMIC contain
12721 other sections can also make life hard for the prelinker,
12722 which might move one of the other sections to a different
12723 PT_LOAD segment. */
12724 if (SGI_COMPAT (abfd)
12725 && m != NULL
12726 && m->count == 1
12727 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12728 {
12729 static const char *sec_names[] =
12730 {
12731 ".dynamic", ".dynstr", ".dynsym", ".hash"
12732 };
12733 bfd_vma low, high;
12734 unsigned int i, c;
12735 struct elf_segment_map *n;
12736
12737 low = ~(bfd_vma) 0;
12738 high = 0;
12739 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12740 {
12741 s = bfd_get_section_by_name (abfd, sec_names[i]);
12742 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12743 {
12744 bfd_size_type sz;
12745
12746 if (low > s->vma)
12747 low = s->vma;
12748 sz = s->size;
12749 if (high < s->vma + sz)
12750 high = s->vma + sz;
12751 }
12752 }
12753
12754 c = 0;
12755 for (s = abfd->sections; s != NULL; s = s->next)
12756 if ((s->flags & SEC_LOAD) != 0
12757 && s->vma >= low
12758 && s->vma + s->size <= high)
12759 ++c;
12760
12761 amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *);
12762 n = bfd_zalloc (abfd, amt);
12763 if (n == NULL)
12764 return FALSE;
12765 *n = *m;
12766 n->count = c;
12767
12768 i = 0;
12769 for (s = abfd->sections; s != NULL; s = s->next)
12770 {
12771 if ((s->flags & SEC_LOAD) != 0
12772 && s->vma >= low
12773 && s->vma + s->size <= high)
12774 {
12775 n->sections[i] = s;
12776 ++i;
12777 }
12778 }
12779
12780 *pm = n;
12781 }
12782 }
12783
12784 /* Allocate a spare program header in dynamic objects so that tools
12785 like the prelinker can add an extra PT_LOAD entry.
12786
12787 If the prelinker needs to make room for a new PT_LOAD entry, its
12788 standard procedure is to move the first (read-only) sections into
12789 the new (writable) segment. However, the MIPS ABI requires
12790 .dynamic to be in a read-only segment, and the section will often
12791 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12792
12793 Although the prelinker could in principle move .dynamic to a
12794 writable segment, it seems better to allocate a spare program
12795 header instead, and avoid the need to move any sections.
12796 There is a long tradition of allocating spare dynamic tags,
12797 so allocating a spare program header seems like a natural
12798 extension.
12799
12800 If INFO is NULL, we may be copying an already prelinked binary
12801 with objcopy or strip, so do not add this header. */
12802 if (info != NULL
12803 && !SGI_COMPAT (abfd)
12804 && bfd_get_section_by_name (abfd, ".dynamic"))
12805 {
12806 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12807 if ((*pm)->p_type == PT_NULL)
12808 break;
12809 if (*pm == NULL)
12810 {
12811 m = bfd_zalloc (abfd, sizeof (*m));
12812 if (m == NULL)
12813 return FALSE;
12814
12815 m->p_type = PT_NULL;
12816 *pm = m;
12817 }
12818 }
12819
12820 return TRUE;
12821 }
12822 \f
12823 /* Return the section that should be marked against GC for a given
12824 relocation. */
12825
12826 asection *
12827 _bfd_mips_elf_gc_mark_hook (asection *sec,
12828 struct bfd_link_info *info,
12829 Elf_Internal_Rela *rel,
12830 struct elf_link_hash_entry *h,
12831 Elf_Internal_Sym *sym)
12832 {
12833 /* ??? Do mips16 stub sections need to be handled special? */
12834
12835 if (h != NULL)
12836 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12837 {
12838 case R_MIPS_GNU_VTINHERIT:
12839 case R_MIPS_GNU_VTENTRY:
12840 return NULL;
12841 }
12842
12843 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12844 }
12845
12846 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12847
12848 bfd_boolean
12849 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12850 elf_gc_mark_hook_fn gc_mark_hook)
12851 {
12852 bfd *sub;
12853
12854 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12855
12856 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12857 {
12858 asection *o;
12859
12860 if (! is_mips_elf (sub))
12861 continue;
12862
12863 for (o = sub->sections; o != NULL; o = o->next)
12864 if (!o->gc_mark
12865 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
12866 {
12867 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12868 return FALSE;
12869 }
12870 }
12871
12872 return TRUE;
12873 }
12874 \f
12875 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12876 hiding the old indirect symbol. Process additional relocation
12877 information. Also called for weakdefs, in which case we just let
12878 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12879
12880 void
12881 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12882 struct elf_link_hash_entry *dir,
12883 struct elf_link_hash_entry *ind)
12884 {
12885 struct mips_elf_link_hash_entry *dirmips, *indmips;
12886
12887 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12888
12889 dirmips = (struct mips_elf_link_hash_entry *) dir;
12890 indmips = (struct mips_elf_link_hash_entry *) ind;
12891 /* Any absolute non-dynamic relocations against an indirect or weak
12892 definition will be against the target symbol. */
12893 if (indmips->has_static_relocs)
12894 dirmips->has_static_relocs = TRUE;
12895
12896 if (ind->root.type != bfd_link_hash_indirect)
12897 return;
12898
12899 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12900 if (indmips->readonly_reloc)
12901 dirmips->readonly_reloc = TRUE;
12902 if (indmips->no_fn_stub)
12903 dirmips->no_fn_stub = TRUE;
12904 if (indmips->fn_stub)
12905 {
12906 dirmips->fn_stub = indmips->fn_stub;
12907 indmips->fn_stub = NULL;
12908 }
12909 if (indmips->need_fn_stub)
12910 {
12911 dirmips->need_fn_stub = TRUE;
12912 indmips->need_fn_stub = FALSE;
12913 }
12914 if (indmips->call_stub)
12915 {
12916 dirmips->call_stub = indmips->call_stub;
12917 indmips->call_stub = NULL;
12918 }
12919 if (indmips->call_fp_stub)
12920 {
12921 dirmips->call_fp_stub = indmips->call_fp_stub;
12922 indmips->call_fp_stub = NULL;
12923 }
12924 if (indmips->global_got_area < dirmips->global_got_area)
12925 dirmips->global_got_area = indmips->global_got_area;
12926 if (indmips->global_got_area < GGA_NONE)
12927 indmips->global_got_area = GGA_NONE;
12928 if (indmips->has_nonpic_branches)
12929 dirmips->has_nonpic_branches = TRUE;
12930 }
12931
12932 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12933 to hide it. It has to remain global (it will also be protected) so as to
12934 be assigned a global GOT entry, which will then remain unchanged at load
12935 time. */
12936
12937 void
12938 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12939 struct elf_link_hash_entry *entry,
12940 bfd_boolean force_local)
12941 {
12942 struct mips_elf_link_hash_table *htab;
12943
12944 htab = mips_elf_hash_table (info);
12945 BFD_ASSERT (htab != NULL);
12946 if (htab->use_absolute_zero
12947 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12948 return;
12949
12950 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12951 }
12952 \f
12953 #define PDR_SIZE 32
12954
12955 bfd_boolean
12956 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12957 struct bfd_link_info *info)
12958 {
12959 asection *o;
12960 bfd_boolean ret = FALSE;
12961 unsigned char *tdata;
12962 size_t i, skip;
12963
12964 o = bfd_get_section_by_name (abfd, ".pdr");
12965 if (! o)
12966 return FALSE;
12967 if (o->size == 0)
12968 return FALSE;
12969 if (o->size % PDR_SIZE != 0)
12970 return FALSE;
12971 if (o->output_section != NULL
12972 && bfd_is_abs_section (o->output_section))
12973 return FALSE;
12974
12975 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12976 if (! tdata)
12977 return FALSE;
12978
12979 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12980 info->keep_memory);
12981 if (!cookie->rels)
12982 {
12983 free (tdata);
12984 return FALSE;
12985 }
12986
12987 cookie->rel = cookie->rels;
12988 cookie->relend = cookie->rels + o->reloc_count;
12989
12990 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12991 {
12992 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12993 {
12994 tdata[i] = 1;
12995 skip ++;
12996 }
12997 }
12998
12999 if (skip != 0)
13000 {
13001 mips_elf_section_data (o)->u.tdata = tdata;
13002 if (o->rawsize == 0)
13003 o->rawsize = o->size;
13004 o->size -= skip * PDR_SIZE;
13005 ret = TRUE;
13006 }
13007 else
13008 free (tdata);
13009
13010 if (! info->keep_memory)
13011 free (cookie->rels);
13012
13013 return ret;
13014 }
13015
13016 bfd_boolean
13017 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
13018 {
13019 if (strcmp (sec->name, ".pdr") == 0)
13020 return TRUE;
13021 return FALSE;
13022 }
13023
13024 bfd_boolean
13025 _bfd_mips_elf_write_section (bfd *output_bfd,
13026 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
13027 asection *sec, bfd_byte *contents)
13028 {
13029 bfd_byte *to, *from, *end;
13030 int i;
13031
13032 if (strcmp (sec->name, ".pdr") != 0)
13033 return FALSE;
13034
13035 if (mips_elf_section_data (sec)->u.tdata == NULL)
13036 return FALSE;
13037
13038 to = contents;
13039 end = contents + sec->size;
13040 for (from = contents, i = 0;
13041 from < end;
13042 from += PDR_SIZE, i++)
13043 {
13044 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
13045 continue;
13046 if (to != from)
13047 memcpy (to, from, PDR_SIZE);
13048 to += PDR_SIZE;
13049 }
13050 bfd_set_section_contents (output_bfd, sec->output_section, contents,
13051 sec->output_offset, sec->size);
13052 return TRUE;
13053 }
13054 \f
13055 /* microMIPS code retains local labels for linker relaxation. Omit them
13056 from output by default for clarity. */
13057
13058 bfd_boolean
13059 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13060 {
13061 return _bfd_elf_is_local_label_name (abfd, sym->name);
13062 }
13063
13064 /* MIPS ELF uses a special find_nearest_line routine in order the
13065 handle the ECOFF debugging information. */
13066
13067 struct mips_elf_find_line
13068 {
13069 struct ecoff_debug_info d;
13070 struct ecoff_find_line i;
13071 };
13072
13073 bfd_boolean
13074 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13075 asection *section, bfd_vma offset,
13076 const char **filename_ptr,
13077 const char **functionname_ptr,
13078 unsigned int *line_ptr,
13079 unsigned int *discriminator_ptr)
13080 {
13081 asection *msec;
13082
13083 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13084 filename_ptr, functionname_ptr,
13085 line_ptr, discriminator_ptr,
13086 dwarf_debug_sections,
13087 &elf_tdata (abfd)->dwarf2_find_line_info)
13088 == 1)
13089 return TRUE;
13090
13091 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13092 filename_ptr, functionname_ptr,
13093 line_ptr))
13094 {
13095 if (!*functionname_ptr)
13096 _bfd_elf_find_function (abfd, symbols, section, offset,
13097 *filename_ptr ? NULL : filename_ptr,
13098 functionname_ptr);
13099 return TRUE;
13100 }
13101
13102 msec = bfd_get_section_by_name (abfd, ".mdebug");
13103 if (msec != NULL)
13104 {
13105 flagword origflags;
13106 struct mips_elf_find_line *fi;
13107 const struct ecoff_debug_swap * const swap =
13108 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13109
13110 /* If we are called during a link, mips_elf_final_link may have
13111 cleared the SEC_HAS_CONTENTS field. We force it back on here
13112 if appropriate (which it normally will be). */
13113 origflags = msec->flags;
13114 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13115 msec->flags |= SEC_HAS_CONTENTS;
13116
13117 fi = mips_elf_tdata (abfd)->find_line_info;
13118 if (fi == NULL)
13119 {
13120 bfd_size_type external_fdr_size;
13121 char *fraw_src;
13122 char *fraw_end;
13123 struct fdr *fdr_ptr;
13124 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13125
13126 fi = bfd_zalloc (abfd, amt);
13127 if (fi == NULL)
13128 {
13129 msec->flags = origflags;
13130 return FALSE;
13131 }
13132
13133 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13134 {
13135 msec->flags = origflags;
13136 return FALSE;
13137 }
13138
13139 /* Swap in the FDR information. */
13140 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13141 fi->d.fdr = bfd_alloc (abfd, amt);
13142 if (fi->d.fdr == NULL)
13143 {
13144 msec->flags = origflags;
13145 return FALSE;
13146 }
13147 external_fdr_size = swap->external_fdr_size;
13148 fdr_ptr = fi->d.fdr;
13149 fraw_src = (char *) fi->d.external_fdr;
13150 fraw_end = (fraw_src
13151 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13152 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13153 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13154
13155 mips_elf_tdata (abfd)->find_line_info = fi;
13156
13157 /* Note that we don't bother to ever free this information.
13158 find_nearest_line is either called all the time, as in
13159 objdump -l, so the information should be saved, or it is
13160 rarely called, as in ld error messages, so the memory
13161 wasted is unimportant. Still, it would probably be a
13162 good idea for free_cached_info to throw it away. */
13163 }
13164
13165 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13166 &fi->i, filename_ptr, functionname_ptr,
13167 line_ptr))
13168 {
13169 msec->flags = origflags;
13170 return TRUE;
13171 }
13172
13173 msec->flags = origflags;
13174 }
13175
13176 /* Fall back on the generic ELF find_nearest_line routine. */
13177
13178 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13179 filename_ptr, functionname_ptr,
13180 line_ptr, discriminator_ptr);
13181 }
13182
13183 bfd_boolean
13184 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13185 const char **filename_ptr,
13186 const char **functionname_ptr,
13187 unsigned int *line_ptr)
13188 {
13189 bfd_boolean found;
13190 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13191 functionname_ptr, line_ptr,
13192 & elf_tdata (abfd)->dwarf2_find_line_info);
13193 return found;
13194 }
13195
13196 \f
13197 /* When are writing out the .options or .MIPS.options section,
13198 remember the bytes we are writing out, so that we can install the
13199 GP value in the section_processing routine. */
13200
13201 bfd_boolean
13202 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13203 const void *location,
13204 file_ptr offset, bfd_size_type count)
13205 {
13206 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13207 {
13208 bfd_byte *c;
13209
13210 if (elf_section_data (section) == NULL)
13211 {
13212 size_t amt = sizeof (struct bfd_elf_section_data);
13213 section->used_by_bfd = bfd_zalloc (abfd, amt);
13214 if (elf_section_data (section) == NULL)
13215 return FALSE;
13216 }
13217 c = mips_elf_section_data (section)->u.tdata;
13218 if (c == NULL)
13219 {
13220 c = bfd_zalloc (abfd, section->size);
13221 if (c == NULL)
13222 return FALSE;
13223 mips_elf_section_data (section)->u.tdata = c;
13224 }
13225
13226 memcpy (c + offset, location, count);
13227 }
13228
13229 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13230 count);
13231 }
13232
13233 /* This is almost identical to bfd_generic_get_... except that some
13234 MIPS relocations need to be handled specially. Sigh. */
13235
13236 bfd_byte *
13237 _bfd_elf_mips_get_relocated_section_contents
13238 (bfd *abfd,
13239 struct bfd_link_info *link_info,
13240 struct bfd_link_order *link_order,
13241 bfd_byte *data,
13242 bfd_boolean relocatable,
13243 asymbol **symbols)
13244 {
13245 /* Get enough memory to hold the stuff */
13246 bfd *input_bfd = link_order->u.indirect.section->owner;
13247 asection *input_section = link_order->u.indirect.section;
13248 bfd_size_type sz;
13249
13250 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13251 arelent **reloc_vector = NULL;
13252 long reloc_count;
13253
13254 if (reloc_size < 0)
13255 goto error_return;
13256
13257 reloc_vector = bfd_malloc (reloc_size);
13258 if (reloc_vector == NULL && reloc_size != 0)
13259 goto error_return;
13260
13261 /* read in the section */
13262 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13263 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13264 goto error_return;
13265
13266 reloc_count = bfd_canonicalize_reloc (input_bfd,
13267 input_section,
13268 reloc_vector,
13269 symbols);
13270 if (reloc_count < 0)
13271 goto error_return;
13272
13273 if (reloc_count > 0)
13274 {
13275 arelent **parent;
13276 /* for mips */
13277 int gp_found;
13278 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13279
13280 {
13281 struct bfd_hash_entry *h;
13282 struct bfd_link_hash_entry *lh;
13283 /* Skip all this stuff if we aren't mixing formats. */
13284 if (abfd && input_bfd
13285 && abfd->xvec == input_bfd->xvec)
13286 lh = 0;
13287 else
13288 {
13289 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13290 lh = (struct bfd_link_hash_entry *) h;
13291 }
13292 lookup:
13293 if (lh)
13294 {
13295 switch (lh->type)
13296 {
13297 case bfd_link_hash_undefined:
13298 case bfd_link_hash_undefweak:
13299 case bfd_link_hash_common:
13300 gp_found = 0;
13301 break;
13302 case bfd_link_hash_defined:
13303 case bfd_link_hash_defweak:
13304 gp_found = 1;
13305 gp = lh->u.def.value;
13306 break;
13307 case bfd_link_hash_indirect:
13308 case bfd_link_hash_warning:
13309 lh = lh->u.i.link;
13310 /* @@FIXME ignoring warning for now */
13311 goto lookup;
13312 case bfd_link_hash_new:
13313 default:
13314 abort ();
13315 }
13316 }
13317 else
13318 gp_found = 0;
13319 }
13320 /* end mips */
13321 for (parent = reloc_vector; *parent != NULL; parent++)
13322 {
13323 char *error_message = NULL;
13324 bfd_reloc_status_type r;
13325
13326 /* Specific to MIPS: Deal with relocation types that require
13327 knowing the gp of the output bfd. */
13328 asymbol *sym = *(*parent)->sym_ptr_ptr;
13329
13330 /* If we've managed to find the gp and have a special
13331 function for the relocation then go ahead, else default
13332 to the generic handling. */
13333 if (gp_found
13334 && (*parent)->howto->special_function
13335 == _bfd_mips_elf32_gprel16_reloc)
13336 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13337 input_section, relocatable,
13338 data, gp);
13339 else
13340 r = bfd_perform_relocation (input_bfd, *parent, data,
13341 input_section,
13342 relocatable ? abfd : NULL,
13343 &error_message);
13344
13345 if (relocatable)
13346 {
13347 asection *os = input_section->output_section;
13348
13349 /* A partial link, so keep the relocs */
13350 os->orelocation[os->reloc_count] = *parent;
13351 os->reloc_count++;
13352 }
13353
13354 if (r != bfd_reloc_ok)
13355 {
13356 switch (r)
13357 {
13358 case bfd_reloc_undefined:
13359 (*link_info->callbacks->undefined_symbol)
13360 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13361 input_bfd, input_section, (*parent)->address, TRUE);
13362 break;
13363 case bfd_reloc_dangerous:
13364 BFD_ASSERT (error_message != NULL);
13365 (*link_info->callbacks->reloc_dangerous)
13366 (link_info, error_message,
13367 input_bfd, input_section, (*parent)->address);
13368 break;
13369 case bfd_reloc_overflow:
13370 (*link_info->callbacks->reloc_overflow)
13371 (link_info, NULL,
13372 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13373 (*parent)->howto->name, (*parent)->addend,
13374 input_bfd, input_section, (*parent)->address);
13375 break;
13376 case bfd_reloc_outofrange:
13377 default:
13378 abort ();
13379 break;
13380 }
13381
13382 }
13383 }
13384 }
13385 if (reloc_vector != NULL)
13386 free (reloc_vector);
13387 return data;
13388
13389 error_return:
13390 if (reloc_vector != NULL)
13391 free (reloc_vector);
13392 return NULL;
13393 }
13394 \f
13395 static bfd_boolean
13396 mips_elf_relax_delete_bytes (bfd *abfd,
13397 asection *sec, bfd_vma addr, int count)
13398 {
13399 Elf_Internal_Shdr *symtab_hdr;
13400 unsigned int sec_shndx;
13401 bfd_byte *contents;
13402 Elf_Internal_Rela *irel, *irelend;
13403 Elf_Internal_Sym *isym;
13404 Elf_Internal_Sym *isymend;
13405 struct elf_link_hash_entry **sym_hashes;
13406 struct elf_link_hash_entry **end_hashes;
13407 struct elf_link_hash_entry **start_hashes;
13408 unsigned int symcount;
13409
13410 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13411 contents = elf_section_data (sec)->this_hdr.contents;
13412
13413 irel = elf_section_data (sec)->relocs;
13414 irelend = irel + sec->reloc_count;
13415
13416 /* Actually delete the bytes. */
13417 memmove (contents + addr, contents + addr + count,
13418 (size_t) (sec->size - addr - count));
13419 sec->size -= count;
13420
13421 /* Adjust all the relocs. */
13422 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13423 {
13424 /* Get the new reloc address. */
13425 if (irel->r_offset > addr)
13426 irel->r_offset -= count;
13427 }
13428
13429 BFD_ASSERT (addr % 2 == 0);
13430 BFD_ASSERT (count % 2 == 0);
13431
13432 /* Adjust the local symbols defined in this section. */
13433 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13434 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13435 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13436 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13437 isym->st_value -= count;
13438
13439 /* Now adjust the global symbols defined in this section. */
13440 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13441 - symtab_hdr->sh_info);
13442 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13443 end_hashes = sym_hashes + symcount;
13444
13445 for (; sym_hashes < end_hashes; sym_hashes++)
13446 {
13447 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13448
13449 if ((sym_hash->root.type == bfd_link_hash_defined
13450 || sym_hash->root.type == bfd_link_hash_defweak)
13451 && sym_hash->root.u.def.section == sec)
13452 {
13453 bfd_vma value = sym_hash->root.u.def.value;
13454
13455 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13456 value &= MINUS_TWO;
13457 if (value > addr)
13458 sym_hash->root.u.def.value -= count;
13459 }
13460 }
13461
13462 return TRUE;
13463 }
13464
13465
13466 /* Opcodes needed for microMIPS relaxation as found in
13467 opcodes/micromips-opc.c. */
13468
13469 struct opcode_descriptor {
13470 unsigned long match;
13471 unsigned long mask;
13472 };
13473
13474 /* The $ra register aka $31. */
13475
13476 #define RA 31
13477
13478 /* 32-bit instruction format register fields. */
13479
13480 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13481 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13482
13483 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13484
13485 #define OP16_VALID_REG(r) \
13486 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13487
13488
13489 /* 32-bit and 16-bit branches. */
13490
13491 static const struct opcode_descriptor b_insns_32[] = {
13492 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13493 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13494 { 0, 0 } /* End marker for find_match(). */
13495 };
13496
13497 static const struct opcode_descriptor bc_insn_32 =
13498 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13499
13500 static const struct opcode_descriptor bz_insn_32 =
13501 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13502
13503 static const struct opcode_descriptor bzal_insn_32 =
13504 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13505
13506 static const struct opcode_descriptor beq_insn_32 =
13507 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13508
13509 static const struct opcode_descriptor b_insn_16 =
13510 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13511
13512 static const struct opcode_descriptor bz_insn_16 =
13513 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13514
13515
13516 /* 32-bit and 16-bit branch EQ and NE zero. */
13517
13518 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13519 eq and second the ne. This convention is used when replacing a
13520 32-bit BEQ/BNE with the 16-bit version. */
13521
13522 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13523
13524 static const struct opcode_descriptor bz_rs_insns_32[] = {
13525 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13526 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13527 { 0, 0 } /* End marker for find_match(). */
13528 };
13529
13530 static const struct opcode_descriptor bz_rt_insns_32[] = {
13531 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13532 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13533 { 0, 0 } /* End marker for find_match(). */
13534 };
13535
13536 static const struct opcode_descriptor bzc_insns_32[] = {
13537 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13538 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13539 { 0, 0 } /* End marker for find_match(). */
13540 };
13541
13542 static const struct opcode_descriptor bz_insns_16[] = {
13543 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13544 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13545 { 0, 0 } /* End marker for find_match(). */
13546 };
13547
13548 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13549
13550 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13551 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13552
13553
13554 /* 32-bit instructions with a delay slot. */
13555
13556 static const struct opcode_descriptor jal_insn_32_bd16 =
13557 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13558
13559 static const struct opcode_descriptor jal_insn_32_bd32 =
13560 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13561
13562 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13563 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13564
13565 static const struct opcode_descriptor j_insn_32 =
13566 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13567
13568 static const struct opcode_descriptor jalr_insn_32 =
13569 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13570
13571 /* This table can be compacted, because no opcode replacement is made. */
13572
13573 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13574 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13575
13576 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13577 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13578
13579 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13580 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13581 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13582 { 0, 0 } /* End marker for find_match(). */
13583 };
13584
13585 /* This table can be compacted, because no opcode replacement is made. */
13586
13587 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13588 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13589
13590 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13591 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13592 { 0, 0 } /* End marker for find_match(). */
13593 };
13594
13595
13596 /* 16-bit instructions with a delay slot. */
13597
13598 static const struct opcode_descriptor jalr_insn_16_bd16 =
13599 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13600
13601 static const struct opcode_descriptor jalr_insn_16_bd32 =
13602 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13603
13604 static const struct opcode_descriptor jr_insn_16 =
13605 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13606
13607 #define JR16_REG(opcode) ((opcode) & 0x1f)
13608
13609 /* This table can be compacted, because no opcode replacement is made. */
13610
13611 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13612 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13613
13614 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13615 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13616 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13617 { 0, 0 } /* End marker for find_match(). */
13618 };
13619
13620
13621 /* LUI instruction. */
13622
13623 static const struct opcode_descriptor lui_insn =
13624 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13625
13626
13627 /* ADDIU instruction. */
13628
13629 static const struct opcode_descriptor addiu_insn =
13630 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13631
13632 static const struct opcode_descriptor addiupc_insn =
13633 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13634
13635 #define ADDIUPC_REG_FIELD(r) \
13636 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13637
13638
13639 /* Relaxable instructions in a JAL delay slot: MOVE. */
13640
13641 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13642 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13643 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13644 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13645
13646 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13647 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13648
13649 static const struct opcode_descriptor move_insns_32[] = {
13650 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13651 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13652 { 0, 0 } /* End marker for find_match(). */
13653 };
13654
13655 static const struct opcode_descriptor move_insn_16 =
13656 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13657
13658
13659 /* NOP instructions. */
13660
13661 static const struct opcode_descriptor nop_insn_32 =
13662 { /* "nop", "", */ 0x00000000, 0xffffffff };
13663
13664 static const struct opcode_descriptor nop_insn_16 =
13665 { /* "nop", "", */ 0x0c00, 0xffff };
13666
13667
13668 /* Instruction match support. */
13669
13670 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13671
13672 static int
13673 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13674 {
13675 unsigned long indx;
13676
13677 for (indx = 0; insn[indx].mask != 0; indx++)
13678 if (MATCH (opcode, insn[indx]))
13679 return indx;
13680
13681 return -1;
13682 }
13683
13684
13685 /* Branch and delay slot decoding support. */
13686
13687 /* If PTR points to what *might* be a 16-bit branch or jump, then
13688 return the minimum length of its delay slot, otherwise return 0.
13689 Non-zero results are not definitive as we might be checking against
13690 the second half of another instruction. */
13691
13692 static int
13693 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13694 {
13695 unsigned long opcode;
13696 int bdsize;
13697
13698 opcode = bfd_get_16 (abfd, ptr);
13699 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13700 /* 16-bit branch/jump with a 32-bit delay slot. */
13701 bdsize = 4;
13702 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13703 || find_match (opcode, ds_insns_16_bd16) >= 0)
13704 /* 16-bit branch/jump with a 16-bit delay slot. */
13705 bdsize = 2;
13706 else
13707 /* No delay slot. */
13708 bdsize = 0;
13709
13710 return bdsize;
13711 }
13712
13713 /* If PTR points to what *might* be a 32-bit branch or jump, then
13714 return the minimum length of its delay slot, otherwise return 0.
13715 Non-zero results are not definitive as we might be checking against
13716 the second half of another instruction. */
13717
13718 static int
13719 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13720 {
13721 unsigned long opcode;
13722 int bdsize;
13723
13724 opcode = bfd_get_micromips_32 (abfd, ptr);
13725 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13726 /* 32-bit branch/jump with a 32-bit delay slot. */
13727 bdsize = 4;
13728 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13729 /* 32-bit branch/jump with a 16-bit delay slot. */
13730 bdsize = 2;
13731 else
13732 /* No delay slot. */
13733 bdsize = 0;
13734
13735 return bdsize;
13736 }
13737
13738 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13739 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13740
13741 static bfd_boolean
13742 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13743 {
13744 unsigned long opcode;
13745
13746 opcode = bfd_get_16 (abfd, ptr);
13747 if (MATCH (opcode, b_insn_16)
13748 /* B16 */
13749 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13750 /* JR16 */
13751 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13752 /* BEQZ16, BNEZ16 */
13753 || (MATCH (opcode, jalr_insn_16_bd32)
13754 /* JALR16 */
13755 && reg != JR16_REG (opcode) && reg != RA))
13756 return TRUE;
13757
13758 return FALSE;
13759 }
13760
13761 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13762 then return TRUE, otherwise FALSE. */
13763
13764 static bfd_boolean
13765 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13766 {
13767 unsigned long opcode;
13768
13769 opcode = bfd_get_micromips_32 (abfd, ptr);
13770 if (MATCH (opcode, j_insn_32)
13771 /* J */
13772 || MATCH (opcode, bc_insn_32)
13773 /* BC1F, BC1T, BC2F, BC2T */
13774 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13775 /* JAL, JALX */
13776 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13777 /* BGEZ, BGTZ, BLEZ, BLTZ */
13778 || (MATCH (opcode, bzal_insn_32)
13779 /* BGEZAL, BLTZAL */
13780 && reg != OP32_SREG (opcode) && reg != RA)
13781 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13782 /* JALR, JALR.HB, BEQ, BNE */
13783 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13784 return TRUE;
13785
13786 return FALSE;
13787 }
13788
13789 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13790 IRELEND) at OFFSET indicate that there must be a compact branch there,
13791 then return TRUE, otherwise FALSE. */
13792
13793 static bfd_boolean
13794 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13795 const Elf_Internal_Rela *internal_relocs,
13796 const Elf_Internal_Rela *irelend)
13797 {
13798 const Elf_Internal_Rela *irel;
13799 unsigned long opcode;
13800
13801 opcode = bfd_get_micromips_32 (abfd, ptr);
13802 if (find_match (opcode, bzc_insns_32) < 0)
13803 return FALSE;
13804
13805 for (irel = internal_relocs; irel < irelend; irel++)
13806 if (irel->r_offset == offset
13807 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13808 return TRUE;
13809
13810 return FALSE;
13811 }
13812
13813 /* Bitsize checking. */
13814 #define IS_BITSIZE(val, N) \
13815 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13816 - (1ULL << ((N) - 1))) == (val))
13817
13818 \f
13819 bfd_boolean
13820 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13821 struct bfd_link_info *link_info,
13822 bfd_boolean *again)
13823 {
13824 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13825 Elf_Internal_Shdr *symtab_hdr;
13826 Elf_Internal_Rela *internal_relocs;
13827 Elf_Internal_Rela *irel, *irelend;
13828 bfd_byte *contents = NULL;
13829 Elf_Internal_Sym *isymbuf = NULL;
13830
13831 /* Assume nothing changes. */
13832 *again = FALSE;
13833
13834 /* We don't have to do anything for a relocatable link, if
13835 this section does not have relocs, or if this is not a
13836 code section. */
13837
13838 if (bfd_link_relocatable (link_info)
13839 || (sec->flags & SEC_RELOC) == 0
13840 || sec->reloc_count == 0
13841 || (sec->flags & SEC_CODE) == 0)
13842 return TRUE;
13843
13844 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13845
13846 /* Get a copy of the native relocations. */
13847 internal_relocs = (_bfd_elf_link_read_relocs
13848 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13849 link_info->keep_memory));
13850 if (internal_relocs == NULL)
13851 goto error_return;
13852
13853 /* Walk through them looking for relaxing opportunities. */
13854 irelend = internal_relocs + sec->reloc_count;
13855 for (irel = internal_relocs; irel < irelend; irel++)
13856 {
13857 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13858 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13859 bfd_boolean target_is_micromips_code_p;
13860 unsigned long opcode;
13861 bfd_vma symval;
13862 bfd_vma pcrval;
13863 bfd_byte *ptr;
13864 int fndopc;
13865
13866 /* The number of bytes to delete for relaxation and from where
13867 to delete these bytes starting at irel->r_offset. */
13868 int delcnt = 0;
13869 int deloff = 0;
13870
13871 /* If this isn't something that can be relaxed, then ignore
13872 this reloc. */
13873 if (r_type != R_MICROMIPS_HI16
13874 && r_type != R_MICROMIPS_PC16_S1
13875 && r_type != R_MICROMIPS_26_S1)
13876 continue;
13877
13878 /* Get the section contents if we haven't done so already. */
13879 if (contents == NULL)
13880 {
13881 /* Get cached copy if it exists. */
13882 if (elf_section_data (sec)->this_hdr.contents != NULL)
13883 contents = elf_section_data (sec)->this_hdr.contents;
13884 /* Go get them off disk. */
13885 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13886 goto error_return;
13887 }
13888 ptr = contents + irel->r_offset;
13889
13890 /* Read this BFD's local symbols if we haven't done so already. */
13891 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13892 {
13893 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13894 if (isymbuf == NULL)
13895 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13896 symtab_hdr->sh_info, 0,
13897 NULL, NULL, NULL);
13898 if (isymbuf == NULL)
13899 goto error_return;
13900 }
13901
13902 /* Get the value of the symbol referred to by the reloc. */
13903 if (r_symndx < symtab_hdr->sh_info)
13904 {
13905 /* A local symbol. */
13906 Elf_Internal_Sym *isym;
13907 asection *sym_sec;
13908
13909 isym = isymbuf + r_symndx;
13910 if (isym->st_shndx == SHN_UNDEF)
13911 sym_sec = bfd_und_section_ptr;
13912 else if (isym->st_shndx == SHN_ABS)
13913 sym_sec = bfd_abs_section_ptr;
13914 else if (isym->st_shndx == SHN_COMMON)
13915 sym_sec = bfd_com_section_ptr;
13916 else
13917 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13918 symval = (isym->st_value
13919 + sym_sec->output_section->vma
13920 + sym_sec->output_offset);
13921 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13922 }
13923 else
13924 {
13925 unsigned long indx;
13926 struct elf_link_hash_entry *h;
13927
13928 /* An external symbol. */
13929 indx = r_symndx - symtab_hdr->sh_info;
13930 h = elf_sym_hashes (abfd)[indx];
13931 BFD_ASSERT (h != NULL);
13932
13933 if (h->root.type != bfd_link_hash_defined
13934 && h->root.type != bfd_link_hash_defweak)
13935 /* This appears to be a reference to an undefined
13936 symbol. Just ignore it -- it will be caught by the
13937 regular reloc processing. */
13938 continue;
13939
13940 symval = (h->root.u.def.value
13941 + h->root.u.def.section->output_section->vma
13942 + h->root.u.def.section->output_offset);
13943 target_is_micromips_code_p = (!h->needs_plt
13944 && ELF_ST_IS_MICROMIPS (h->other));
13945 }
13946
13947
13948 /* For simplicity of coding, we are going to modify the
13949 section contents, the section relocs, and the BFD symbol
13950 table. We must tell the rest of the code not to free up this
13951 information. It would be possible to instead create a table
13952 of changes which have to be made, as is done in coff-mips.c;
13953 that would be more work, but would require less memory when
13954 the linker is run. */
13955
13956 /* Only 32-bit instructions relaxed. */
13957 if (irel->r_offset + 4 > sec->size)
13958 continue;
13959
13960 opcode = bfd_get_micromips_32 (abfd, ptr);
13961
13962 /* This is the pc-relative distance from the instruction the
13963 relocation is applied to, to the symbol referred. */
13964 pcrval = (symval
13965 - (sec->output_section->vma + sec->output_offset)
13966 - irel->r_offset);
13967
13968 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13969 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13970 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13971
13972 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13973
13974 where pcrval has first to be adjusted to apply against the LO16
13975 location (we make the adjustment later on, when we have figured
13976 out the offset). */
13977 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13978 {
13979 bfd_boolean bzc = FALSE;
13980 unsigned long nextopc;
13981 unsigned long reg;
13982 bfd_vma offset;
13983
13984 /* Give up if the previous reloc was a HI16 against this symbol
13985 too. */
13986 if (irel > internal_relocs
13987 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13988 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13989 continue;
13990
13991 /* Or if the next reloc is not a LO16 against this symbol. */
13992 if (irel + 1 >= irelend
13993 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13994 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13995 continue;
13996
13997 /* Or if the second next reloc is a LO16 against this symbol too. */
13998 if (irel + 2 >= irelend
13999 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
14000 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
14001 continue;
14002
14003 /* See if the LUI instruction *might* be in a branch delay slot.
14004 We check whether what looks like a 16-bit branch or jump is
14005 actually an immediate argument to a compact branch, and let
14006 it through if so. */
14007 if (irel->r_offset >= 2
14008 && check_br16_dslot (abfd, ptr - 2)
14009 && !(irel->r_offset >= 4
14010 && (bzc = check_relocated_bzc (abfd,
14011 ptr - 4, irel->r_offset - 4,
14012 internal_relocs, irelend))))
14013 continue;
14014 if (irel->r_offset >= 4
14015 && !bzc
14016 && check_br32_dslot (abfd, ptr - 4))
14017 continue;
14018
14019 reg = OP32_SREG (opcode);
14020
14021 /* We only relax adjacent instructions or ones separated with
14022 a branch or jump that has a delay slot. The branch or jump
14023 must not fiddle with the register used to hold the address.
14024 Subtract 4 for the LUI itself. */
14025 offset = irel[1].r_offset - irel[0].r_offset;
14026 switch (offset - 4)
14027 {
14028 case 0:
14029 break;
14030 case 2:
14031 if (check_br16 (abfd, ptr + 4, reg))
14032 break;
14033 continue;
14034 case 4:
14035 if (check_br32 (abfd, ptr + 4, reg))
14036 break;
14037 continue;
14038 default:
14039 continue;
14040 }
14041
14042 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
14043
14044 /* Give up unless the same register is used with both
14045 relocations. */
14046 if (OP32_SREG (nextopc) != reg)
14047 continue;
14048
14049 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14050 and rounding up to take masking of the two LSBs into account. */
14051 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14052
14053 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14054 if (IS_BITSIZE (symval, 16))
14055 {
14056 /* Fix the relocation's type. */
14057 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14058
14059 /* Instructions using R_MICROMIPS_LO16 have the base or
14060 source register in bits 20:16. This register becomes $0
14061 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14062 nextopc &= ~0x001f0000;
14063 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14064 contents + irel[1].r_offset);
14065 }
14066
14067 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14068 We add 4 to take LUI deletion into account while checking
14069 the PC-relative distance. */
14070 else if (symval % 4 == 0
14071 && IS_BITSIZE (pcrval + 4, 25)
14072 && MATCH (nextopc, addiu_insn)
14073 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14074 && OP16_VALID_REG (OP32_TREG (nextopc)))
14075 {
14076 /* Fix the relocation's type. */
14077 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14078
14079 /* Replace ADDIU with the ADDIUPC version. */
14080 nextopc = (addiupc_insn.match
14081 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14082
14083 bfd_put_micromips_32 (abfd, nextopc,
14084 contents + irel[1].r_offset);
14085 }
14086
14087 /* Can't do anything, give up, sigh... */
14088 else
14089 continue;
14090
14091 /* Fix the relocation's type. */
14092 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14093
14094 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14095 delcnt = 4;
14096 deloff = 0;
14097 }
14098
14099 /* Compact branch relaxation -- due to the multitude of macros
14100 employed by the compiler/assembler, compact branches are not
14101 always generated. Obviously, this can/will be fixed elsewhere,
14102 but there is no drawback in double checking it here. */
14103 else if (r_type == R_MICROMIPS_PC16_S1
14104 && irel->r_offset + 5 < sec->size
14105 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14106 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14107 && ((!insn32
14108 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14109 nop_insn_16) ? 2 : 0))
14110 || (irel->r_offset + 7 < sec->size
14111 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14112 ptr + 4),
14113 nop_insn_32) ? 4 : 0))))
14114 {
14115 unsigned long reg;
14116
14117 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14118
14119 /* Replace BEQZ/BNEZ with the compact version. */
14120 opcode = (bzc_insns_32[fndopc].match
14121 | BZC32_REG_FIELD (reg)
14122 | (opcode & 0xffff)); /* Addend value. */
14123
14124 bfd_put_micromips_32 (abfd, opcode, ptr);
14125
14126 /* Delete the delay slot NOP: two or four bytes from
14127 irel->offset + 4; delcnt has already been set above. */
14128 deloff = 4;
14129 }
14130
14131 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14132 to check the distance from the next instruction, so subtract 2. */
14133 else if (!insn32
14134 && r_type == R_MICROMIPS_PC16_S1
14135 && IS_BITSIZE (pcrval - 2, 11)
14136 && find_match (opcode, b_insns_32) >= 0)
14137 {
14138 /* Fix the relocation's type. */
14139 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14140
14141 /* Replace the 32-bit opcode with a 16-bit opcode. */
14142 bfd_put_16 (abfd,
14143 (b_insn_16.match
14144 | (opcode & 0x3ff)), /* Addend value. */
14145 ptr);
14146
14147 /* Delete 2 bytes from irel->r_offset + 2. */
14148 delcnt = 2;
14149 deloff = 2;
14150 }
14151
14152 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14153 to check the distance from the next instruction, so subtract 2. */
14154 else if (!insn32
14155 && r_type == R_MICROMIPS_PC16_S1
14156 && IS_BITSIZE (pcrval - 2, 8)
14157 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14158 && OP16_VALID_REG (OP32_SREG (opcode)))
14159 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14160 && OP16_VALID_REG (OP32_TREG (opcode)))))
14161 {
14162 unsigned long reg;
14163
14164 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14165
14166 /* Fix the relocation's type. */
14167 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14168
14169 /* Replace the 32-bit opcode with a 16-bit opcode. */
14170 bfd_put_16 (abfd,
14171 (bz_insns_16[fndopc].match
14172 | BZ16_REG_FIELD (reg)
14173 | (opcode & 0x7f)), /* Addend value. */
14174 ptr);
14175
14176 /* Delete 2 bytes from irel->r_offset + 2. */
14177 delcnt = 2;
14178 deloff = 2;
14179 }
14180
14181 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14182 else if (!insn32
14183 && r_type == R_MICROMIPS_26_S1
14184 && target_is_micromips_code_p
14185 && irel->r_offset + 7 < sec->size
14186 && MATCH (opcode, jal_insn_32_bd32))
14187 {
14188 unsigned long n32opc;
14189 bfd_boolean relaxed = FALSE;
14190
14191 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14192
14193 if (MATCH (n32opc, nop_insn_32))
14194 {
14195 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14196 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14197
14198 relaxed = TRUE;
14199 }
14200 else if (find_match (n32opc, move_insns_32) >= 0)
14201 {
14202 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14203 bfd_put_16 (abfd,
14204 (move_insn_16.match
14205 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14206 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14207 ptr + 4);
14208
14209 relaxed = TRUE;
14210 }
14211 /* Other 32-bit instructions relaxable to 16-bit
14212 instructions will be handled here later. */
14213
14214 if (relaxed)
14215 {
14216 /* JAL with 32-bit delay slot that is changed to a JALS
14217 with 16-bit delay slot. */
14218 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14219
14220 /* Delete 2 bytes from irel->r_offset + 6. */
14221 delcnt = 2;
14222 deloff = 6;
14223 }
14224 }
14225
14226 if (delcnt != 0)
14227 {
14228 /* Note that we've changed the relocs, section contents, etc. */
14229 elf_section_data (sec)->relocs = internal_relocs;
14230 elf_section_data (sec)->this_hdr.contents = contents;
14231 symtab_hdr->contents = (unsigned char *) isymbuf;
14232
14233 /* Delete bytes depending on the delcnt and deloff. */
14234 if (!mips_elf_relax_delete_bytes (abfd, sec,
14235 irel->r_offset + deloff, delcnt))
14236 goto error_return;
14237
14238 /* That will change things, so we should relax again.
14239 Note that this is not required, and it may be slow. */
14240 *again = TRUE;
14241 }
14242 }
14243
14244 if (isymbuf != NULL
14245 && symtab_hdr->contents != (unsigned char *) isymbuf)
14246 {
14247 if (! link_info->keep_memory)
14248 free (isymbuf);
14249 else
14250 {
14251 /* Cache the symbols for elf_link_input_bfd. */
14252 symtab_hdr->contents = (unsigned char *) isymbuf;
14253 }
14254 }
14255
14256 if (contents != NULL
14257 && elf_section_data (sec)->this_hdr.contents != contents)
14258 {
14259 if (! link_info->keep_memory)
14260 free (contents);
14261 else
14262 {
14263 /* Cache the section contents for elf_link_input_bfd. */
14264 elf_section_data (sec)->this_hdr.contents = contents;
14265 }
14266 }
14267
14268 if (internal_relocs != NULL
14269 && elf_section_data (sec)->relocs != internal_relocs)
14270 free (internal_relocs);
14271
14272 return TRUE;
14273
14274 error_return:
14275 if (isymbuf != NULL
14276 && symtab_hdr->contents != (unsigned char *) isymbuf)
14277 free (isymbuf);
14278 if (contents != NULL
14279 && elf_section_data (sec)->this_hdr.contents != contents)
14280 free (contents);
14281 if (internal_relocs != NULL
14282 && elf_section_data (sec)->relocs != internal_relocs)
14283 free (internal_relocs);
14284
14285 return FALSE;
14286 }
14287 \f
14288 /* Create a MIPS ELF linker hash table. */
14289
14290 struct bfd_link_hash_table *
14291 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14292 {
14293 struct mips_elf_link_hash_table *ret;
14294 size_t amt = sizeof (struct mips_elf_link_hash_table);
14295
14296 ret = bfd_zmalloc (amt);
14297 if (ret == NULL)
14298 return NULL;
14299
14300 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14301 mips_elf_link_hash_newfunc,
14302 sizeof (struct mips_elf_link_hash_entry),
14303 MIPS_ELF_DATA))
14304 {
14305 free (ret);
14306 return NULL;
14307 }
14308 ret->root.init_plt_refcount.plist = NULL;
14309 ret->root.init_plt_offset.plist = NULL;
14310
14311 return &ret->root.root;
14312 }
14313
14314 /* Likewise, but indicate that the target is VxWorks. */
14315
14316 struct bfd_link_hash_table *
14317 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14318 {
14319 struct bfd_link_hash_table *ret;
14320
14321 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14322 if (ret)
14323 {
14324 struct mips_elf_link_hash_table *htab;
14325
14326 htab = (struct mips_elf_link_hash_table *) ret;
14327 htab->use_plts_and_copy_relocs = TRUE;
14328 htab->is_vxworks = TRUE;
14329 }
14330 return ret;
14331 }
14332
14333 /* A function that the linker calls if we are allowed to use PLTs
14334 and copy relocs. */
14335
14336 void
14337 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14338 {
14339 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14340 }
14341
14342 /* A function that the linker calls to select between all or only
14343 32-bit microMIPS instructions, and between making or ignoring
14344 branch relocation checks for invalid transitions between ISA modes.
14345 Also record whether we have been configured for a GNU target. */
14346
14347 void
14348 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14349 bfd_boolean ignore_branch_isa,
14350 bfd_boolean gnu_target)
14351 {
14352 mips_elf_hash_table (info)->insn32 = insn32;
14353 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14354 mips_elf_hash_table (info)->gnu_target = gnu_target;
14355 }
14356
14357 /* A function that the linker calls to enable use of compact branches in
14358 linker generated code for MIPSR6. */
14359
14360 void
14361 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14362 {
14363 mips_elf_hash_table (info)->compact_branches = on;
14364 }
14365
14366 \f
14367 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14368
14369 struct mips_mach_extension
14370 {
14371 unsigned long extension, base;
14372 };
14373
14374
14375 /* An array describing how BFD machines relate to one another. The entries
14376 are ordered topologically with MIPS I extensions listed last. */
14377
14378 static const struct mips_mach_extension mips_mach_extensions[] =
14379 {
14380 /* MIPS64r2 extensions. */
14381 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14382 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14383 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14384 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14385 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14386 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14387 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14388
14389 /* MIPS64 extensions. */
14390 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14391 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14392 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14393
14394 /* MIPS V extensions. */
14395 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14396
14397 /* R10000 extensions. */
14398 { bfd_mach_mips12000, bfd_mach_mips10000 },
14399 { bfd_mach_mips14000, bfd_mach_mips10000 },
14400 { bfd_mach_mips16000, bfd_mach_mips10000 },
14401
14402 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14403 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14404 better to allow vr5400 and vr5500 code to be merged anyway, since
14405 many libraries will just use the core ISA. Perhaps we could add
14406 some sort of ASE flag if this ever proves a problem. */
14407 { bfd_mach_mips5500, bfd_mach_mips5400 },
14408 { bfd_mach_mips5400, bfd_mach_mips5000 },
14409
14410 /* MIPS IV extensions. */
14411 { bfd_mach_mips5, bfd_mach_mips8000 },
14412 { bfd_mach_mips10000, bfd_mach_mips8000 },
14413 { bfd_mach_mips5000, bfd_mach_mips8000 },
14414 { bfd_mach_mips7000, bfd_mach_mips8000 },
14415 { bfd_mach_mips9000, bfd_mach_mips8000 },
14416
14417 /* VR4100 extensions. */
14418 { bfd_mach_mips4120, bfd_mach_mips4100 },
14419 { bfd_mach_mips4111, bfd_mach_mips4100 },
14420
14421 /* MIPS III extensions. */
14422 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14423 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14424 { bfd_mach_mips8000, bfd_mach_mips4000 },
14425 { bfd_mach_mips4650, bfd_mach_mips4000 },
14426 { bfd_mach_mips4600, bfd_mach_mips4000 },
14427 { bfd_mach_mips4400, bfd_mach_mips4000 },
14428 { bfd_mach_mips4300, bfd_mach_mips4000 },
14429 { bfd_mach_mips4100, bfd_mach_mips4000 },
14430 { bfd_mach_mips5900, bfd_mach_mips4000 },
14431
14432 /* MIPS32r3 extensions. */
14433 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14434
14435 /* MIPS32r2 extensions. */
14436 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14437
14438 /* MIPS32 extensions. */
14439 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14440
14441 /* MIPS II extensions. */
14442 { bfd_mach_mips4000, bfd_mach_mips6000 },
14443 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14444 { bfd_mach_mips4010, bfd_mach_mips6000 },
14445
14446 /* MIPS I extensions. */
14447 { bfd_mach_mips6000, bfd_mach_mips3000 },
14448 { bfd_mach_mips3900, bfd_mach_mips3000 }
14449 };
14450
14451 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14452
14453 static bfd_boolean
14454 mips_mach_extends_p (unsigned long base, unsigned long extension)
14455 {
14456 size_t i;
14457
14458 if (extension == base)
14459 return TRUE;
14460
14461 if (base == bfd_mach_mipsisa32
14462 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14463 return TRUE;
14464
14465 if (base == bfd_mach_mipsisa32r2
14466 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14467 return TRUE;
14468
14469 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14470 if (extension == mips_mach_extensions[i].extension)
14471 {
14472 extension = mips_mach_extensions[i].base;
14473 if (extension == base)
14474 return TRUE;
14475 }
14476
14477 return FALSE;
14478 }
14479
14480 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14481
14482 static unsigned long
14483 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14484 {
14485 switch (isa_ext)
14486 {
14487 case AFL_EXT_3900: return bfd_mach_mips3900;
14488 case AFL_EXT_4010: return bfd_mach_mips4010;
14489 case AFL_EXT_4100: return bfd_mach_mips4100;
14490 case AFL_EXT_4111: return bfd_mach_mips4111;
14491 case AFL_EXT_4120: return bfd_mach_mips4120;
14492 case AFL_EXT_4650: return bfd_mach_mips4650;
14493 case AFL_EXT_5400: return bfd_mach_mips5400;
14494 case AFL_EXT_5500: return bfd_mach_mips5500;
14495 case AFL_EXT_5900: return bfd_mach_mips5900;
14496 case AFL_EXT_10000: return bfd_mach_mips10000;
14497 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14498 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14499 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14500 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14501 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14502 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14503 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14504 default: return bfd_mach_mips3000;
14505 }
14506 }
14507
14508 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14509
14510 unsigned int
14511 bfd_mips_isa_ext (bfd *abfd)
14512 {
14513 switch (bfd_get_mach (abfd))
14514 {
14515 case bfd_mach_mips3900: return AFL_EXT_3900;
14516 case bfd_mach_mips4010: return AFL_EXT_4010;
14517 case bfd_mach_mips4100: return AFL_EXT_4100;
14518 case bfd_mach_mips4111: return AFL_EXT_4111;
14519 case bfd_mach_mips4120: return AFL_EXT_4120;
14520 case bfd_mach_mips4650: return AFL_EXT_4650;
14521 case bfd_mach_mips5400: return AFL_EXT_5400;
14522 case bfd_mach_mips5500: return AFL_EXT_5500;
14523 case bfd_mach_mips5900: return AFL_EXT_5900;
14524 case bfd_mach_mips10000: return AFL_EXT_10000;
14525 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14526 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14527 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14528 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14529 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14530 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14531 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14532 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14533 case bfd_mach_mips_interaptiv_mr2:
14534 return AFL_EXT_INTERAPTIV_MR2;
14535 default: return 0;
14536 }
14537 }
14538
14539 /* Encode ISA level and revision as a single value. */
14540 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14541
14542 /* Decode a single value into level and revision. */
14543 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14544 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14545
14546 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14547
14548 static void
14549 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14550 {
14551 int new_isa = 0;
14552 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14553 {
14554 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14555 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14556 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14557 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14558 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14559 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14560 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14561 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14562 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14563 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14564 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14565 default:
14566 _bfd_error_handler
14567 /* xgettext:c-format */
14568 (_("%pB: unknown architecture %s"),
14569 abfd, bfd_printable_name (abfd));
14570 }
14571
14572 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14573 {
14574 abiflags->isa_level = ISA_LEVEL (new_isa);
14575 abiflags->isa_rev = ISA_REV (new_isa);
14576 }
14577
14578 /* Update the isa_ext if ABFD describes a further extension. */
14579 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14580 bfd_get_mach (abfd)))
14581 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14582 }
14583
14584 /* Return true if the given ELF header flags describe a 32-bit binary. */
14585
14586 static bfd_boolean
14587 mips_32bit_flags_p (flagword flags)
14588 {
14589 return ((flags & EF_MIPS_32BITMODE) != 0
14590 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14591 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14592 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14593 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14594 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14595 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14596 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14597 }
14598
14599 /* Infer the content of the ABI flags based on the elf header. */
14600
14601 static void
14602 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14603 {
14604 obj_attribute *in_attr;
14605
14606 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14607 update_mips_abiflags_isa (abfd, abiflags);
14608
14609 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14610 abiflags->gpr_size = AFL_REG_32;
14611 else
14612 abiflags->gpr_size = AFL_REG_64;
14613
14614 abiflags->cpr1_size = AFL_REG_NONE;
14615
14616 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14617 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14618
14619 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14620 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14621 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14622 && abiflags->gpr_size == AFL_REG_32))
14623 abiflags->cpr1_size = AFL_REG_32;
14624 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14625 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14626 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14627 abiflags->cpr1_size = AFL_REG_64;
14628
14629 abiflags->cpr2_size = AFL_REG_NONE;
14630
14631 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14632 abiflags->ases |= AFL_ASE_MDMX;
14633 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14634 abiflags->ases |= AFL_ASE_MIPS16;
14635 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14636 abiflags->ases |= AFL_ASE_MICROMIPS;
14637
14638 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14639 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14640 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14641 && abiflags->isa_level >= 32
14642 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14643 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14644 }
14645
14646 /* We need to use a special link routine to handle the .reginfo and
14647 the .mdebug sections. We need to merge all instances of these
14648 sections together, not write them all out sequentially. */
14649
14650 bfd_boolean
14651 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14652 {
14653 asection *o;
14654 struct bfd_link_order *p;
14655 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14656 asection *rtproc_sec, *abiflags_sec;
14657 Elf32_RegInfo reginfo;
14658 struct ecoff_debug_info debug;
14659 struct mips_htab_traverse_info hti;
14660 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14661 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14662 HDRR *symhdr = &debug.symbolic_header;
14663 void *mdebug_handle = NULL;
14664 asection *s;
14665 EXTR esym;
14666 unsigned int i;
14667 bfd_size_type amt;
14668 struct mips_elf_link_hash_table *htab;
14669
14670 static const char * const secname[] =
14671 {
14672 ".text", ".init", ".fini", ".data",
14673 ".rodata", ".sdata", ".sbss", ".bss"
14674 };
14675 static const int sc[] =
14676 {
14677 scText, scInit, scFini, scData,
14678 scRData, scSData, scSBss, scBss
14679 };
14680
14681 htab = mips_elf_hash_table (info);
14682 BFD_ASSERT (htab != NULL);
14683
14684 /* Sort the dynamic symbols so that those with GOT entries come after
14685 those without. */
14686 if (!mips_elf_sort_hash_table (abfd, info))
14687 return FALSE;
14688
14689 /* Create any scheduled LA25 stubs. */
14690 hti.info = info;
14691 hti.output_bfd = abfd;
14692 hti.error = FALSE;
14693 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14694 if (hti.error)
14695 return FALSE;
14696
14697 /* Get a value for the GP register. */
14698 if (elf_gp (abfd) == 0)
14699 {
14700 struct bfd_link_hash_entry *h;
14701
14702 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14703 if (h != NULL && h->type == bfd_link_hash_defined)
14704 elf_gp (abfd) = (h->u.def.value
14705 + h->u.def.section->output_section->vma
14706 + h->u.def.section->output_offset);
14707 else if (htab->is_vxworks
14708 && (h = bfd_link_hash_lookup (info->hash,
14709 "_GLOBAL_OFFSET_TABLE_",
14710 FALSE, FALSE, TRUE))
14711 && h->type == bfd_link_hash_defined)
14712 elf_gp (abfd) = (h->u.def.section->output_section->vma
14713 + h->u.def.section->output_offset
14714 + h->u.def.value);
14715 else if (bfd_link_relocatable (info))
14716 {
14717 bfd_vma lo = MINUS_ONE;
14718
14719 /* Find the GP-relative section with the lowest offset. */
14720 for (o = abfd->sections; o != NULL; o = o->next)
14721 if (o->vma < lo
14722 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14723 lo = o->vma;
14724
14725 /* And calculate GP relative to that. */
14726 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14727 }
14728 else
14729 {
14730 /* If the relocate_section function needs to do a reloc
14731 involving the GP value, it should make a reloc_dangerous
14732 callback to warn that GP is not defined. */
14733 }
14734 }
14735
14736 /* Go through the sections and collect the .reginfo and .mdebug
14737 information. */
14738 abiflags_sec = NULL;
14739 reginfo_sec = NULL;
14740 mdebug_sec = NULL;
14741 gptab_data_sec = NULL;
14742 gptab_bss_sec = NULL;
14743 for (o = abfd->sections; o != NULL; o = o->next)
14744 {
14745 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14746 {
14747 /* We have found the .MIPS.abiflags section in the output file.
14748 Look through all the link_orders comprising it and remove them.
14749 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14750 for (p = o->map_head.link_order; p != NULL; p = p->next)
14751 {
14752 asection *input_section;
14753
14754 if (p->type != bfd_indirect_link_order)
14755 {
14756 if (p->type == bfd_data_link_order)
14757 continue;
14758 abort ();
14759 }
14760
14761 input_section = p->u.indirect.section;
14762
14763 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14764 elf_link_input_bfd ignores this section. */
14765 input_section->flags &= ~SEC_HAS_CONTENTS;
14766 }
14767
14768 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14769 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14770
14771 /* Skip this section later on (I don't think this currently
14772 matters, but someday it might). */
14773 o->map_head.link_order = NULL;
14774
14775 abiflags_sec = o;
14776 }
14777
14778 if (strcmp (o->name, ".reginfo") == 0)
14779 {
14780 memset (&reginfo, 0, sizeof reginfo);
14781
14782 /* We have found the .reginfo section in the output file.
14783 Look through all the link_orders comprising it and merge
14784 the information together. */
14785 for (p = o->map_head.link_order; p != NULL; p = p->next)
14786 {
14787 asection *input_section;
14788 bfd *input_bfd;
14789 Elf32_External_RegInfo ext;
14790 Elf32_RegInfo sub;
14791 bfd_size_type sz;
14792
14793 if (p->type != bfd_indirect_link_order)
14794 {
14795 if (p->type == bfd_data_link_order)
14796 continue;
14797 abort ();
14798 }
14799
14800 input_section = p->u.indirect.section;
14801 input_bfd = input_section->owner;
14802
14803 sz = (input_section->size < sizeof (ext)
14804 ? input_section->size : sizeof (ext));
14805 memset (&ext, 0, sizeof (ext));
14806 if (! bfd_get_section_contents (input_bfd, input_section,
14807 &ext, 0, sz))
14808 return FALSE;
14809
14810 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14811
14812 reginfo.ri_gprmask |= sub.ri_gprmask;
14813 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14814 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14815 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14816 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14817
14818 /* ri_gp_value is set by the function
14819 `_bfd_mips_elf_section_processing' when the section is
14820 finally written out. */
14821
14822 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14823 elf_link_input_bfd ignores this section. */
14824 input_section->flags &= ~SEC_HAS_CONTENTS;
14825 }
14826
14827 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14828 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14829
14830 /* Skip this section later on (I don't think this currently
14831 matters, but someday it might). */
14832 o->map_head.link_order = NULL;
14833
14834 reginfo_sec = o;
14835 }
14836
14837 if (strcmp (o->name, ".mdebug") == 0)
14838 {
14839 struct extsym_info einfo;
14840 bfd_vma last;
14841
14842 /* We have found the .mdebug section in the output file.
14843 Look through all the link_orders comprising it and merge
14844 the information together. */
14845 symhdr->magic = swap->sym_magic;
14846 /* FIXME: What should the version stamp be? */
14847 symhdr->vstamp = 0;
14848 symhdr->ilineMax = 0;
14849 symhdr->cbLine = 0;
14850 symhdr->idnMax = 0;
14851 symhdr->ipdMax = 0;
14852 symhdr->isymMax = 0;
14853 symhdr->ioptMax = 0;
14854 symhdr->iauxMax = 0;
14855 symhdr->issMax = 0;
14856 symhdr->issExtMax = 0;
14857 symhdr->ifdMax = 0;
14858 symhdr->crfd = 0;
14859 symhdr->iextMax = 0;
14860
14861 /* We accumulate the debugging information itself in the
14862 debug_info structure. */
14863 debug.line = NULL;
14864 debug.external_dnr = NULL;
14865 debug.external_pdr = NULL;
14866 debug.external_sym = NULL;
14867 debug.external_opt = NULL;
14868 debug.external_aux = NULL;
14869 debug.ss = NULL;
14870 debug.ssext = debug.ssext_end = NULL;
14871 debug.external_fdr = NULL;
14872 debug.external_rfd = NULL;
14873 debug.external_ext = debug.external_ext_end = NULL;
14874
14875 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14876 if (mdebug_handle == NULL)
14877 return FALSE;
14878
14879 esym.jmptbl = 0;
14880 esym.cobol_main = 0;
14881 esym.weakext = 0;
14882 esym.reserved = 0;
14883 esym.ifd = ifdNil;
14884 esym.asym.iss = issNil;
14885 esym.asym.st = stLocal;
14886 esym.asym.reserved = 0;
14887 esym.asym.index = indexNil;
14888 last = 0;
14889 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14890 {
14891 esym.asym.sc = sc[i];
14892 s = bfd_get_section_by_name (abfd, secname[i]);
14893 if (s != NULL)
14894 {
14895 esym.asym.value = s->vma;
14896 last = s->vma + s->size;
14897 }
14898 else
14899 esym.asym.value = last;
14900 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14901 secname[i], &esym))
14902 return FALSE;
14903 }
14904
14905 for (p = o->map_head.link_order; p != NULL; p = p->next)
14906 {
14907 asection *input_section;
14908 bfd *input_bfd;
14909 const struct ecoff_debug_swap *input_swap;
14910 struct ecoff_debug_info input_debug;
14911 char *eraw_src;
14912 char *eraw_end;
14913
14914 if (p->type != bfd_indirect_link_order)
14915 {
14916 if (p->type == bfd_data_link_order)
14917 continue;
14918 abort ();
14919 }
14920
14921 input_section = p->u.indirect.section;
14922 input_bfd = input_section->owner;
14923
14924 if (!is_mips_elf (input_bfd))
14925 {
14926 /* I don't know what a non MIPS ELF bfd would be
14927 doing with a .mdebug section, but I don't really
14928 want to deal with it. */
14929 continue;
14930 }
14931
14932 input_swap = (get_elf_backend_data (input_bfd)
14933 ->elf_backend_ecoff_debug_swap);
14934
14935 BFD_ASSERT (p->size == input_section->size);
14936
14937 /* The ECOFF linking code expects that we have already
14938 read in the debugging information and set up an
14939 ecoff_debug_info structure, so we do that now. */
14940 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14941 &input_debug))
14942 return FALSE;
14943
14944 if (! (bfd_ecoff_debug_accumulate
14945 (mdebug_handle, abfd, &debug, swap, input_bfd,
14946 &input_debug, input_swap, info)))
14947 return FALSE;
14948
14949 /* Loop through the external symbols. For each one with
14950 interesting information, try to find the symbol in
14951 the linker global hash table and save the information
14952 for the output external symbols. */
14953 eraw_src = input_debug.external_ext;
14954 eraw_end = (eraw_src
14955 + (input_debug.symbolic_header.iextMax
14956 * input_swap->external_ext_size));
14957 for (;
14958 eraw_src < eraw_end;
14959 eraw_src += input_swap->external_ext_size)
14960 {
14961 EXTR ext;
14962 const char *name;
14963 struct mips_elf_link_hash_entry *h;
14964
14965 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14966 if (ext.asym.sc == scNil
14967 || ext.asym.sc == scUndefined
14968 || ext.asym.sc == scSUndefined)
14969 continue;
14970
14971 name = input_debug.ssext + ext.asym.iss;
14972 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14973 name, FALSE, FALSE, TRUE);
14974 if (h == NULL || h->esym.ifd != -2)
14975 continue;
14976
14977 if (ext.ifd != -1)
14978 {
14979 BFD_ASSERT (ext.ifd
14980 < input_debug.symbolic_header.ifdMax);
14981 ext.ifd = input_debug.ifdmap[ext.ifd];
14982 }
14983
14984 h->esym = ext;
14985 }
14986
14987 /* Free up the information we just read. */
14988 free (input_debug.line);
14989 free (input_debug.external_dnr);
14990 free (input_debug.external_pdr);
14991 free (input_debug.external_sym);
14992 free (input_debug.external_opt);
14993 free (input_debug.external_aux);
14994 free (input_debug.ss);
14995 free (input_debug.ssext);
14996 free (input_debug.external_fdr);
14997 free (input_debug.external_rfd);
14998 free (input_debug.external_ext);
14999
15000 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15001 elf_link_input_bfd ignores this section. */
15002 input_section->flags &= ~SEC_HAS_CONTENTS;
15003 }
15004
15005 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
15006 {
15007 /* Create .rtproc section. */
15008 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
15009 if (rtproc_sec == NULL)
15010 {
15011 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
15012 | SEC_LINKER_CREATED | SEC_READONLY);
15013
15014 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
15015 ".rtproc",
15016 flags);
15017 if (rtproc_sec == NULL
15018 || !bfd_set_section_alignment (rtproc_sec, 4))
15019 return FALSE;
15020 }
15021
15022 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15023 info, rtproc_sec,
15024 &debug))
15025 return FALSE;
15026 }
15027
15028 /* Build the external symbol information. */
15029 einfo.abfd = abfd;
15030 einfo.info = info;
15031 einfo.debug = &debug;
15032 einfo.swap = swap;
15033 einfo.failed = FALSE;
15034 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
15035 mips_elf_output_extsym, &einfo);
15036 if (einfo.failed)
15037 return FALSE;
15038
15039 /* Set the size of the .mdebug section. */
15040 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
15041
15042 /* Skip this section later on (I don't think this currently
15043 matters, but someday it might). */
15044 o->map_head.link_order = NULL;
15045
15046 mdebug_sec = o;
15047 }
15048
15049 if (CONST_STRNEQ (o->name, ".gptab."))
15050 {
15051 const char *subname;
15052 unsigned int c;
15053 Elf32_gptab *tab;
15054 Elf32_External_gptab *ext_tab;
15055 unsigned int j;
15056
15057 /* The .gptab.sdata and .gptab.sbss sections hold
15058 information describing how the small data area would
15059 change depending upon the -G switch. These sections
15060 not used in executables files. */
15061 if (! bfd_link_relocatable (info))
15062 {
15063 for (p = o->map_head.link_order; p != NULL; p = p->next)
15064 {
15065 asection *input_section;
15066
15067 if (p->type != bfd_indirect_link_order)
15068 {
15069 if (p->type == bfd_data_link_order)
15070 continue;
15071 abort ();
15072 }
15073
15074 input_section = p->u.indirect.section;
15075
15076 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15077 elf_link_input_bfd ignores this section. */
15078 input_section->flags &= ~SEC_HAS_CONTENTS;
15079 }
15080
15081 /* Skip this section later on (I don't think this
15082 currently matters, but someday it might). */
15083 o->map_head.link_order = NULL;
15084
15085 /* Really remove the section. */
15086 bfd_section_list_remove (abfd, o);
15087 --abfd->section_count;
15088
15089 continue;
15090 }
15091
15092 /* There is one gptab for initialized data, and one for
15093 uninitialized data. */
15094 if (strcmp (o->name, ".gptab.sdata") == 0)
15095 gptab_data_sec = o;
15096 else if (strcmp (o->name, ".gptab.sbss") == 0)
15097 gptab_bss_sec = o;
15098 else
15099 {
15100 _bfd_error_handler
15101 /* xgettext:c-format */
15102 (_("%pB: illegal section name `%pA'"), abfd, o);
15103 bfd_set_error (bfd_error_nonrepresentable_section);
15104 return FALSE;
15105 }
15106
15107 /* The linker script always combines .gptab.data and
15108 .gptab.sdata into .gptab.sdata, and likewise for
15109 .gptab.bss and .gptab.sbss. It is possible that there is
15110 no .sdata or .sbss section in the output file, in which
15111 case we must change the name of the output section. */
15112 subname = o->name + sizeof ".gptab" - 1;
15113 if (bfd_get_section_by_name (abfd, subname) == NULL)
15114 {
15115 if (o == gptab_data_sec)
15116 o->name = ".gptab.data";
15117 else
15118 o->name = ".gptab.bss";
15119 subname = o->name + sizeof ".gptab" - 1;
15120 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15121 }
15122
15123 /* Set up the first entry. */
15124 c = 1;
15125 amt = c * sizeof (Elf32_gptab);
15126 tab = bfd_malloc (amt);
15127 if (tab == NULL)
15128 return FALSE;
15129 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15130 tab[0].gt_header.gt_unused = 0;
15131
15132 /* Combine the input sections. */
15133 for (p = o->map_head.link_order; p != NULL; p = p->next)
15134 {
15135 asection *input_section;
15136 bfd *input_bfd;
15137 bfd_size_type size;
15138 unsigned long last;
15139 bfd_size_type gpentry;
15140
15141 if (p->type != bfd_indirect_link_order)
15142 {
15143 if (p->type == bfd_data_link_order)
15144 continue;
15145 abort ();
15146 }
15147
15148 input_section = p->u.indirect.section;
15149 input_bfd = input_section->owner;
15150
15151 /* Combine the gptab entries for this input section one
15152 by one. We know that the input gptab entries are
15153 sorted by ascending -G value. */
15154 size = input_section->size;
15155 last = 0;
15156 for (gpentry = sizeof (Elf32_External_gptab);
15157 gpentry < size;
15158 gpentry += sizeof (Elf32_External_gptab))
15159 {
15160 Elf32_External_gptab ext_gptab;
15161 Elf32_gptab int_gptab;
15162 unsigned long val;
15163 unsigned long add;
15164 bfd_boolean exact;
15165 unsigned int look;
15166
15167 if (! (bfd_get_section_contents
15168 (input_bfd, input_section, &ext_gptab, gpentry,
15169 sizeof (Elf32_External_gptab))))
15170 {
15171 free (tab);
15172 return FALSE;
15173 }
15174
15175 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15176 &int_gptab);
15177 val = int_gptab.gt_entry.gt_g_value;
15178 add = int_gptab.gt_entry.gt_bytes - last;
15179
15180 exact = FALSE;
15181 for (look = 1; look < c; look++)
15182 {
15183 if (tab[look].gt_entry.gt_g_value >= val)
15184 tab[look].gt_entry.gt_bytes += add;
15185
15186 if (tab[look].gt_entry.gt_g_value == val)
15187 exact = TRUE;
15188 }
15189
15190 if (! exact)
15191 {
15192 Elf32_gptab *new_tab;
15193 unsigned int max;
15194
15195 /* We need a new table entry. */
15196 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15197 new_tab = bfd_realloc (tab, amt);
15198 if (new_tab == NULL)
15199 {
15200 free (tab);
15201 return FALSE;
15202 }
15203 tab = new_tab;
15204 tab[c].gt_entry.gt_g_value = val;
15205 tab[c].gt_entry.gt_bytes = add;
15206
15207 /* Merge in the size for the next smallest -G
15208 value, since that will be implied by this new
15209 value. */
15210 max = 0;
15211 for (look = 1; look < c; look++)
15212 {
15213 if (tab[look].gt_entry.gt_g_value < val
15214 && (max == 0
15215 || (tab[look].gt_entry.gt_g_value
15216 > tab[max].gt_entry.gt_g_value)))
15217 max = look;
15218 }
15219 if (max != 0)
15220 tab[c].gt_entry.gt_bytes +=
15221 tab[max].gt_entry.gt_bytes;
15222
15223 ++c;
15224 }
15225
15226 last = int_gptab.gt_entry.gt_bytes;
15227 }
15228
15229 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15230 elf_link_input_bfd ignores this section. */
15231 input_section->flags &= ~SEC_HAS_CONTENTS;
15232 }
15233
15234 /* The table must be sorted by -G value. */
15235 if (c > 2)
15236 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15237
15238 /* Swap out the table. */
15239 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15240 ext_tab = bfd_alloc (abfd, amt);
15241 if (ext_tab == NULL)
15242 {
15243 free (tab);
15244 return FALSE;
15245 }
15246
15247 for (j = 0; j < c; j++)
15248 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15249 free (tab);
15250
15251 o->size = c * sizeof (Elf32_External_gptab);
15252 o->contents = (bfd_byte *) ext_tab;
15253
15254 /* Skip this section later on (I don't think this currently
15255 matters, but someday it might). */
15256 o->map_head.link_order = NULL;
15257 }
15258 }
15259
15260 /* Invoke the regular ELF backend linker to do all the work. */
15261 if (!bfd_elf_final_link (abfd, info))
15262 return FALSE;
15263
15264 /* Now write out the computed sections. */
15265
15266 if (abiflags_sec != NULL)
15267 {
15268 Elf_External_ABIFlags_v0 ext;
15269 Elf_Internal_ABIFlags_v0 *abiflags;
15270
15271 abiflags = &mips_elf_tdata (abfd)->abiflags;
15272
15273 /* Set up the abiflags if no valid input sections were found. */
15274 if (!mips_elf_tdata (abfd)->abiflags_valid)
15275 {
15276 infer_mips_abiflags (abfd, abiflags);
15277 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15278 }
15279 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15280 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15281 return FALSE;
15282 }
15283
15284 if (reginfo_sec != NULL)
15285 {
15286 Elf32_External_RegInfo ext;
15287
15288 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15289 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15290 return FALSE;
15291 }
15292
15293 if (mdebug_sec != NULL)
15294 {
15295 BFD_ASSERT (abfd->output_has_begun);
15296 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15297 swap, info,
15298 mdebug_sec->filepos))
15299 return FALSE;
15300
15301 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15302 }
15303
15304 if (gptab_data_sec != NULL)
15305 {
15306 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15307 gptab_data_sec->contents,
15308 0, gptab_data_sec->size))
15309 return FALSE;
15310 }
15311
15312 if (gptab_bss_sec != NULL)
15313 {
15314 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15315 gptab_bss_sec->contents,
15316 0, gptab_bss_sec->size))
15317 return FALSE;
15318 }
15319
15320 if (SGI_COMPAT (abfd))
15321 {
15322 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15323 if (rtproc_sec != NULL)
15324 {
15325 if (! bfd_set_section_contents (abfd, rtproc_sec,
15326 rtproc_sec->contents,
15327 0, rtproc_sec->size))
15328 return FALSE;
15329 }
15330 }
15331
15332 return TRUE;
15333 }
15334 \f
15335 /* Merge object file header flags from IBFD into OBFD. Raise an error
15336 if there are conflicting settings. */
15337
15338 static bfd_boolean
15339 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15340 {
15341 bfd *obfd = info->output_bfd;
15342 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15343 flagword old_flags;
15344 flagword new_flags;
15345 bfd_boolean ok;
15346
15347 new_flags = elf_elfheader (ibfd)->e_flags;
15348 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15349 old_flags = elf_elfheader (obfd)->e_flags;
15350
15351 /* Check flag compatibility. */
15352
15353 new_flags &= ~EF_MIPS_NOREORDER;
15354 old_flags &= ~EF_MIPS_NOREORDER;
15355
15356 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15357 doesn't seem to matter. */
15358 new_flags &= ~EF_MIPS_XGOT;
15359 old_flags &= ~EF_MIPS_XGOT;
15360
15361 /* MIPSpro generates ucode info in n64 objects. Again, we should
15362 just be able to ignore this. */
15363 new_flags &= ~EF_MIPS_UCODE;
15364 old_flags &= ~EF_MIPS_UCODE;
15365
15366 /* DSOs should only be linked with CPIC code. */
15367 if ((ibfd->flags & DYNAMIC) != 0)
15368 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15369
15370 if (new_flags == old_flags)
15371 return TRUE;
15372
15373 ok = TRUE;
15374
15375 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15376 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15377 {
15378 _bfd_error_handler
15379 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15380 ibfd);
15381 ok = TRUE;
15382 }
15383
15384 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15385 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15386 if (! (new_flags & EF_MIPS_PIC))
15387 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15388
15389 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15390 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15391
15392 /* Compare the ISAs. */
15393 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15394 {
15395 _bfd_error_handler
15396 (_("%pB: linking 32-bit code with 64-bit code"),
15397 ibfd);
15398 ok = FALSE;
15399 }
15400 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15401 {
15402 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15403 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15404 {
15405 /* Copy the architecture info from IBFD to OBFD. Also copy
15406 the 32-bit flag (if set) so that we continue to recognise
15407 OBFD as a 32-bit binary. */
15408 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15409 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15410 elf_elfheader (obfd)->e_flags
15411 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15412
15413 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15414 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15415
15416 /* Copy across the ABI flags if OBFD doesn't use them
15417 and if that was what caused us to treat IBFD as 32-bit. */
15418 if ((old_flags & EF_MIPS_ABI) == 0
15419 && mips_32bit_flags_p (new_flags)
15420 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15421 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15422 }
15423 else
15424 {
15425 /* The ISAs aren't compatible. */
15426 _bfd_error_handler
15427 /* xgettext:c-format */
15428 (_("%pB: linking %s module with previous %s modules"),
15429 ibfd,
15430 bfd_printable_name (ibfd),
15431 bfd_printable_name (obfd));
15432 ok = FALSE;
15433 }
15434 }
15435
15436 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15437 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15438
15439 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15440 does set EI_CLASS differently from any 32-bit ABI. */
15441 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15442 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15443 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15444 {
15445 /* Only error if both are set (to different values). */
15446 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15447 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15448 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15449 {
15450 _bfd_error_handler
15451 /* xgettext:c-format */
15452 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15453 ibfd,
15454 elf_mips_abi_name (ibfd),
15455 elf_mips_abi_name (obfd));
15456 ok = FALSE;
15457 }
15458 new_flags &= ~EF_MIPS_ABI;
15459 old_flags &= ~EF_MIPS_ABI;
15460 }
15461
15462 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15463 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15464 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15465 {
15466 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15467 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15468 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15469 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15470 int micro_mis = old_m16 && new_micro;
15471 int m16_mis = old_micro && new_m16;
15472
15473 if (m16_mis || micro_mis)
15474 {
15475 _bfd_error_handler
15476 /* xgettext:c-format */
15477 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15478 ibfd,
15479 m16_mis ? "MIPS16" : "microMIPS",
15480 m16_mis ? "microMIPS" : "MIPS16");
15481 ok = FALSE;
15482 }
15483
15484 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15485
15486 new_flags &= ~ EF_MIPS_ARCH_ASE;
15487 old_flags &= ~ EF_MIPS_ARCH_ASE;
15488 }
15489
15490 /* Compare NaN encodings. */
15491 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15492 {
15493 /* xgettext:c-format */
15494 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15495 ibfd,
15496 (new_flags & EF_MIPS_NAN2008
15497 ? "-mnan=2008" : "-mnan=legacy"),
15498 (old_flags & EF_MIPS_NAN2008
15499 ? "-mnan=2008" : "-mnan=legacy"));
15500 ok = FALSE;
15501 new_flags &= ~EF_MIPS_NAN2008;
15502 old_flags &= ~EF_MIPS_NAN2008;
15503 }
15504
15505 /* Compare FP64 state. */
15506 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15507 {
15508 /* xgettext:c-format */
15509 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15510 ibfd,
15511 (new_flags & EF_MIPS_FP64
15512 ? "-mfp64" : "-mfp32"),
15513 (old_flags & EF_MIPS_FP64
15514 ? "-mfp64" : "-mfp32"));
15515 ok = FALSE;
15516 new_flags &= ~EF_MIPS_FP64;
15517 old_flags &= ~EF_MIPS_FP64;
15518 }
15519
15520 /* Warn about any other mismatches */
15521 if (new_flags != old_flags)
15522 {
15523 /* xgettext:c-format */
15524 _bfd_error_handler
15525 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15526 "(%#x)"),
15527 ibfd, new_flags, old_flags);
15528 ok = FALSE;
15529 }
15530
15531 return ok;
15532 }
15533
15534 /* Merge object attributes from IBFD into OBFD. Raise an error if
15535 there are conflicting attributes. */
15536 static bfd_boolean
15537 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15538 {
15539 bfd *obfd = info->output_bfd;
15540 obj_attribute *in_attr;
15541 obj_attribute *out_attr;
15542 bfd *abi_fp_bfd;
15543 bfd *abi_msa_bfd;
15544
15545 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15546 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15547 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15548 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15549
15550 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15551 if (!abi_msa_bfd
15552 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15553 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15554
15555 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15556 {
15557 /* This is the first object. Copy the attributes. */
15558 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15559
15560 /* Use the Tag_null value to indicate the attributes have been
15561 initialized. */
15562 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15563
15564 return TRUE;
15565 }
15566
15567 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15568 non-conflicting ones. */
15569 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15570 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15571 {
15572 int out_fp, in_fp;
15573
15574 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15575 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15576 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15577 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15578 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15579 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15580 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15581 || in_fp == Val_GNU_MIPS_ABI_FP_64
15582 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15583 {
15584 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15585 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15586 }
15587 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15588 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15589 || out_fp == Val_GNU_MIPS_ABI_FP_64
15590 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15591 /* Keep the current setting. */;
15592 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15593 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15594 {
15595 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15596 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15597 }
15598 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15599 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15600 /* Keep the current setting. */;
15601 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15602 {
15603 const char *out_string, *in_string;
15604
15605 out_string = _bfd_mips_fp_abi_string (out_fp);
15606 in_string = _bfd_mips_fp_abi_string (in_fp);
15607 /* First warn about cases involving unrecognised ABIs. */
15608 if (!out_string && !in_string)
15609 /* xgettext:c-format */
15610 _bfd_error_handler
15611 (_("warning: %pB uses unknown floating point ABI %d "
15612 "(set by %pB), %pB uses unknown floating point ABI %d"),
15613 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15614 else if (!out_string)
15615 _bfd_error_handler
15616 /* xgettext:c-format */
15617 (_("warning: %pB uses unknown floating point ABI %d "
15618 "(set by %pB), %pB uses %s"),
15619 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15620 else if (!in_string)
15621 _bfd_error_handler
15622 /* xgettext:c-format */
15623 (_("warning: %pB uses %s (set by %pB), "
15624 "%pB uses unknown floating point ABI %d"),
15625 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15626 else
15627 {
15628 /* If one of the bfds is soft-float, the other must be
15629 hard-float. The exact choice of hard-float ABI isn't
15630 really relevant to the error message. */
15631 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15632 out_string = "-mhard-float";
15633 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15634 in_string = "-mhard-float";
15635 _bfd_error_handler
15636 /* xgettext:c-format */
15637 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15638 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15639 }
15640 }
15641 }
15642
15643 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15644 non-conflicting ones. */
15645 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15646 {
15647 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15648 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15649 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15650 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15651 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15652 {
15653 case Val_GNU_MIPS_ABI_MSA_128:
15654 _bfd_error_handler
15655 /* xgettext:c-format */
15656 (_("warning: %pB uses %s (set by %pB), "
15657 "%pB uses unknown MSA ABI %d"),
15658 obfd, "-mmsa", abi_msa_bfd,
15659 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15660 break;
15661
15662 default:
15663 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15664 {
15665 case Val_GNU_MIPS_ABI_MSA_128:
15666 _bfd_error_handler
15667 /* xgettext:c-format */
15668 (_("warning: %pB uses unknown MSA ABI %d "
15669 "(set by %pB), %pB uses %s"),
15670 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15671 abi_msa_bfd, ibfd, "-mmsa");
15672 break;
15673
15674 default:
15675 _bfd_error_handler
15676 /* xgettext:c-format */
15677 (_("warning: %pB uses unknown MSA ABI %d "
15678 "(set by %pB), %pB uses unknown MSA ABI %d"),
15679 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15680 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15681 break;
15682 }
15683 }
15684 }
15685
15686 /* Merge Tag_compatibility attributes and any common GNU ones. */
15687 return _bfd_elf_merge_object_attributes (ibfd, info);
15688 }
15689
15690 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15691 there are conflicting settings. */
15692
15693 static bfd_boolean
15694 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15695 {
15696 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15697 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15698 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15699
15700 /* Update the output abiflags fp_abi using the computed fp_abi. */
15701 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15702
15703 #define max(a, b) ((a) > (b) ? (a) : (b))
15704 /* Merge abiflags. */
15705 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15706 in_tdata->abiflags.isa_level);
15707 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15708 in_tdata->abiflags.isa_rev);
15709 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15710 in_tdata->abiflags.gpr_size);
15711 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15712 in_tdata->abiflags.cpr1_size);
15713 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15714 in_tdata->abiflags.cpr2_size);
15715 #undef max
15716 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15717 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15718
15719 return TRUE;
15720 }
15721
15722 /* Merge backend specific data from an object file to the output
15723 object file when linking. */
15724
15725 bfd_boolean
15726 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15727 {
15728 bfd *obfd = info->output_bfd;
15729 struct mips_elf_obj_tdata *out_tdata;
15730 struct mips_elf_obj_tdata *in_tdata;
15731 bfd_boolean null_input_bfd = TRUE;
15732 asection *sec;
15733 bfd_boolean ok;
15734
15735 /* Check if we have the same endianness. */
15736 if (! _bfd_generic_verify_endian_match (ibfd, info))
15737 {
15738 _bfd_error_handler
15739 (_("%pB: endianness incompatible with that of the selected emulation"),
15740 ibfd);
15741 return FALSE;
15742 }
15743
15744 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15745 return TRUE;
15746
15747 in_tdata = mips_elf_tdata (ibfd);
15748 out_tdata = mips_elf_tdata (obfd);
15749
15750 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15751 {
15752 _bfd_error_handler
15753 (_("%pB: ABI is incompatible with that of the selected emulation"),
15754 ibfd);
15755 return FALSE;
15756 }
15757
15758 /* Check to see if the input BFD actually contains any sections. If not,
15759 then it has no attributes, and its flags may not have been initialized
15760 either, but it cannot actually cause any incompatibility. */
15761 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15762 {
15763 /* Ignore synthetic sections and empty .text, .data and .bss sections
15764 which are automatically generated by gas. Also ignore fake
15765 (s)common sections, since merely defining a common symbol does
15766 not affect compatibility. */
15767 if ((sec->flags & SEC_IS_COMMON) == 0
15768 && strcmp (sec->name, ".reginfo")
15769 && strcmp (sec->name, ".mdebug")
15770 && (sec->size != 0
15771 || (strcmp (sec->name, ".text")
15772 && strcmp (sec->name, ".data")
15773 && strcmp (sec->name, ".bss"))))
15774 {
15775 null_input_bfd = FALSE;
15776 break;
15777 }
15778 }
15779 if (null_input_bfd)
15780 return TRUE;
15781
15782 /* Populate abiflags using existing information. */
15783 if (in_tdata->abiflags_valid)
15784 {
15785 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15786 Elf_Internal_ABIFlags_v0 in_abiflags;
15787 Elf_Internal_ABIFlags_v0 abiflags;
15788
15789 /* Set up the FP ABI attribute from the abiflags if it is not already
15790 set. */
15791 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15792 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15793
15794 infer_mips_abiflags (ibfd, &abiflags);
15795 in_abiflags = in_tdata->abiflags;
15796
15797 /* It is not possible to infer the correct ISA revision
15798 for R3 or R5 so drop down to R2 for the checks. */
15799 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15800 in_abiflags.isa_rev = 2;
15801
15802 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15803 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15804 _bfd_error_handler
15805 (_("%pB: warning: inconsistent ISA between e_flags and "
15806 ".MIPS.abiflags"), ibfd);
15807 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15808 && in_abiflags.fp_abi != abiflags.fp_abi)
15809 _bfd_error_handler
15810 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15811 ".MIPS.abiflags"), ibfd);
15812 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15813 _bfd_error_handler
15814 (_("%pB: warning: inconsistent ASEs between e_flags and "
15815 ".MIPS.abiflags"), ibfd);
15816 /* The isa_ext is allowed to be an extension of what can be inferred
15817 from e_flags. */
15818 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15819 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15820 _bfd_error_handler
15821 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15822 ".MIPS.abiflags"), ibfd);
15823 if (in_abiflags.flags2 != 0)
15824 _bfd_error_handler
15825 (_("%pB: warning: unexpected flag in the flags2 field of "
15826 ".MIPS.abiflags (0x%lx)"), ibfd,
15827 in_abiflags.flags2);
15828 }
15829 else
15830 {
15831 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15832 in_tdata->abiflags_valid = TRUE;
15833 }
15834
15835 if (!out_tdata->abiflags_valid)
15836 {
15837 /* Copy input abiflags if output abiflags are not already valid. */
15838 out_tdata->abiflags = in_tdata->abiflags;
15839 out_tdata->abiflags_valid = TRUE;
15840 }
15841
15842 if (! elf_flags_init (obfd))
15843 {
15844 elf_flags_init (obfd) = TRUE;
15845 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15846 elf_elfheader (obfd)->e_ident[EI_CLASS]
15847 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15848
15849 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15850 && (bfd_get_arch_info (obfd)->the_default
15851 || mips_mach_extends_p (bfd_get_mach (obfd),
15852 bfd_get_mach (ibfd))))
15853 {
15854 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15855 bfd_get_mach (ibfd)))
15856 return FALSE;
15857
15858 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15859 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15860 }
15861
15862 ok = TRUE;
15863 }
15864 else
15865 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15866
15867 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15868
15869 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15870
15871 if (!ok)
15872 {
15873 bfd_set_error (bfd_error_bad_value);
15874 return FALSE;
15875 }
15876
15877 return TRUE;
15878 }
15879
15880 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15881
15882 bfd_boolean
15883 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15884 {
15885 BFD_ASSERT (!elf_flags_init (abfd)
15886 || elf_elfheader (abfd)->e_flags == flags);
15887
15888 elf_elfheader (abfd)->e_flags = flags;
15889 elf_flags_init (abfd) = TRUE;
15890 return TRUE;
15891 }
15892
15893 char *
15894 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15895 {
15896 switch (dtag)
15897 {
15898 default: return "";
15899 case DT_MIPS_RLD_VERSION:
15900 return "MIPS_RLD_VERSION";
15901 case DT_MIPS_TIME_STAMP:
15902 return "MIPS_TIME_STAMP";
15903 case DT_MIPS_ICHECKSUM:
15904 return "MIPS_ICHECKSUM";
15905 case DT_MIPS_IVERSION:
15906 return "MIPS_IVERSION";
15907 case DT_MIPS_FLAGS:
15908 return "MIPS_FLAGS";
15909 case DT_MIPS_BASE_ADDRESS:
15910 return "MIPS_BASE_ADDRESS";
15911 case DT_MIPS_MSYM:
15912 return "MIPS_MSYM";
15913 case DT_MIPS_CONFLICT:
15914 return "MIPS_CONFLICT";
15915 case DT_MIPS_LIBLIST:
15916 return "MIPS_LIBLIST";
15917 case DT_MIPS_LOCAL_GOTNO:
15918 return "MIPS_LOCAL_GOTNO";
15919 case DT_MIPS_CONFLICTNO:
15920 return "MIPS_CONFLICTNO";
15921 case DT_MIPS_LIBLISTNO:
15922 return "MIPS_LIBLISTNO";
15923 case DT_MIPS_SYMTABNO:
15924 return "MIPS_SYMTABNO";
15925 case DT_MIPS_UNREFEXTNO:
15926 return "MIPS_UNREFEXTNO";
15927 case DT_MIPS_GOTSYM:
15928 return "MIPS_GOTSYM";
15929 case DT_MIPS_HIPAGENO:
15930 return "MIPS_HIPAGENO";
15931 case DT_MIPS_RLD_MAP:
15932 return "MIPS_RLD_MAP";
15933 case DT_MIPS_RLD_MAP_REL:
15934 return "MIPS_RLD_MAP_REL";
15935 case DT_MIPS_DELTA_CLASS:
15936 return "MIPS_DELTA_CLASS";
15937 case DT_MIPS_DELTA_CLASS_NO:
15938 return "MIPS_DELTA_CLASS_NO";
15939 case DT_MIPS_DELTA_INSTANCE:
15940 return "MIPS_DELTA_INSTANCE";
15941 case DT_MIPS_DELTA_INSTANCE_NO:
15942 return "MIPS_DELTA_INSTANCE_NO";
15943 case DT_MIPS_DELTA_RELOC:
15944 return "MIPS_DELTA_RELOC";
15945 case DT_MIPS_DELTA_RELOC_NO:
15946 return "MIPS_DELTA_RELOC_NO";
15947 case DT_MIPS_DELTA_SYM:
15948 return "MIPS_DELTA_SYM";
15949 case DT_MIPS_DELTA_SYM_NO:
15950 return "MIPS_DELTA_SYM_NO";
15951 case DT_MIPS_DELTA_CLASSSYM:
15952 return "MIPS_DELTA_CLASSSYM";
15953 case DT_MIPS_DELTA_CLASSSYM_NO:
15954 return "MIPS_DELTA_CLASSSYM_NO";
15955 case DT_MIPS_CXX_FLAGS:
15956 return "MIPS_CXX_FLAGS";
15957 case DT_MIPS_PIXIE_INIT:
15958 return "MIPS_PIXIE_INIT";
15959 case DT_MIPS_SYMBOL_LIB:
15960 return "MIPS_SYMBOL_LIB";
15961 case DT_MIPS_LOCALPAGE_GOTIDX:
15962 return "MIPS_LOCALPAGE_GOTIDX";
15963 case DT_MIPS_LOCAL_GOTIDX:
15964 return "MIPS_LOCAL_GOTIDX";
15965 case DT_MIPS_HIDDEN_GOTIDX:
15966 return "MIPS_HIDDEN_GOTIDX";
15967 case DT_MIPS_PROTECTED_GOTIDX:
15968 return "MIPS_PROTECTED_GOT_IDX";
15969 case DT_MIPS_OPTIONS:
15970 return "MIPS_OPTIONS";
15971 case DT_MIPS_INTERFACE:
15972 return "MIPS_INTERFACE";
15973 case DT_MIPS_DYNSTR_ALIGN:
15974 return "DT_MIPS_DYNSTR_ALIGN";
15975 case DT_MIPS_INTERFACE_SIZE:
15976 return "DT_MIPS_INTERFACE_SIZE";
15977 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15978 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15979 case DT_MIPS_PERF_SUFFIX:
15980 return "DT_MIPS_PERF_SUFFIX";
15981 case DT_MIPS_COMPACT_SIZE:
15982 return "DT_MIPS_COMPACT_SIZE";
15983 case DT_MIPS_GP_VALUE:
15984 return "DT_MIPS_GP_VALUE";
15985 case DT_MIPS_AUX_DYNAMIC:
15986 return "DT_MIPS_AUX_DYNAMIC";
15987 case DT_MIPS_PLTGOT:
15988 return "DT_MIPS_PLTGOT";
15989 case DT_MIPS_RWPLT:
15990 return "DT_MIPS_RWPLT";
15991 case DT_MIPS_XHASH:
15992 return "DT_MIPS_XHASH";
15993 }
15994 }
15995
15996 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15997 not known. */
15998
15999 const char *
16000 _bfd_mips_fp_abi_string (int fp)
16001 {
16002 switch (fp)
16003 {
16004 /* These strings aren't translated because they're simply
16005 option lists. */
16006 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16007 return "-mdouble-float";
16008
16009 case Val_GNU_MIPS_ABI_FP_SINGLE:
16010 return "-msingle-float";
16011
16012 case Val_GNU_MIPS_ABI_FP_SOFT:
16013 return "-msoft-float";
16014
16015 case Val_GNU_MIPS_ABI_FP_OLD_64:
16016 return _("-mips32r2 -mfp64 (12 callee-saved)");
16017
16018 case Val_GNU_MIPS_ABI_FP_XX:
16019 return "-mfpxx";
16020
16021 case Val_GNU_MIPS_ABI_FP_64:
16022 return "-mgp32 -mfp64";
16023
16024 case Val_GNU_MIPS_ABI_FP_64A:
16025 return "-mgp32 -mfp64 -mno-odd-spreg";
16026
16027 default:
16028 return 0;
16029 }
16030 }
16031
16032 static void
16033 print_mips_ases (FILE *file, unsigned int mask)
16034 {
16035 if (mask & AFL_ASE_DSP)
16036 fputs ("\n\tDSP ASE", file);
16037 if (mask & AFL_ASE_DSPR2)
16038 fputs ("\n\tDSP R2 ASE", file);
16039 if (mask & AFL_ASE_DSPR3)
16040 fputs ("\n\tDSP R3 ASE", file);
16041 if (mask & AFL_ASE_EVA)
16042 fputs ("\n\tEnhanced VA Scheme", file);
16043 if (mask & AFL_ASE_MCU)
16044 fputs ("\n\tMCU (MicroController) ASE", file);
16045 if (mask & AFL_ASE_MDMX)
16046 fputs ("\n\tMDMX ASE", file);
16047 if (mask & AFL_ASE_MIPS3D)
16048 fputs ("\n\tMIPS-3D ASE", file);
16049 if (mask & AFL_ASE_MT)
16050 fputs ("\n\tMT ASE", file);
16051 if (mask & AFL_ASE_SMARTMIPS)
16052 fputs ("\n\tSmartMIPS ASE", file);
16053 if (mask & AFL_ASE_VIRT)
16054 fputs ("\n\tVZ ASE", file);
16055 if (mask & AFL_ASE_MSA)
16056 fputs ("\n\tMSA ASE", file);
16057 if (mask & AFL_ASE_MIPS16)
16058 fputs ("\n\tMIPS16 ASE", file);
16059 if (mask & AFL_ASE_MICROMIPS)
16060 fputs ("\n\tMICROMIPS ASE", file);
16061 if (mask & AFL_ASE_XPA)
16062 fputs ("\n\tXPA ASE", file);
16063 if (mask & AFL_ASE_MIPS16E2)
16064 fputs ("\n\tMIPS16e2 ASE", file);
16065 if (mask & AFL_ASE_CRC)
16066 fputs ("\n\tCRC ASE", file);
16067 if (mask & AFL_ASE_GINV)
16068 fputs ("\n\tGINV ASE", file);
16069 if (mask & AFL_ASE_LOONGSON_MMI)
16070 fputs ("\n\tLoongson MMI ASE", file);
16071 if (mask & AFL_ASE_LOONGSON_CAM)
16072 fputs ("\n\tLoongson CAM ASE", file);
16073 if (mask & AFL_ASE_LOONGSON_EXT)
16074 fputs ("\n\tLoongson EXT ASE", file);
16075 if (mask & AFL_ASE_LOONGSON_EXT2)
16076 fputs ("\n\tLoongson EXT2 ASE", file);
16077 if (mask == 0)
16078 fprintf (file, "\n\t%s", _("None"));
16079 else if ((mask & ~AFL_ASE_MASK) != 0)
16080 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16081 }
16082
16083 static void
16084 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16085 {
16086 switch (isa_ext)
16087 {
16088 case 0:
16089 fputs (_("None"), file);
16090 break;
16091 case AFL_EXT_XLR:
16092 fputs ("RMI XLR", file);
16093 break;
16094 case AFL_EXT_OCTEON3:
16095 fputs ("Cavium Networks Octeon3", file);
16096 break;
16097 case AFL_EXT_OCTEON2:
16098 fputs ("Cavium Networks Octeon2", file);
16099 break;
16100 case AFL_EXT_OCTEONP:
16101 fputs ("Cavium Networks OcteonP", file);
16102 break;
16103 case AFL_EXT_OCTEON:
16104 fputs ("Cavium Networks Octeon", file);
16105 break;
16106 case AFL_EXT_5900:
16107 fputs ("Toshiba R5900", file);
16108 break;
16109 case AFL_EXT_4650:
16110 fputs ("MIPS R4650", file);
16111 break;
16112 case AFL_EXT_4010:
16113 fputs ("LSI R4010", file);
16114 break;
16115 case AFL_EXT_4100:
16116 fputs ("NEC VR4100", file);
16117 break;
16118 case AFL_EXT_3900:
16119 fputs ("Toshiba R3900", file);
16120 break;
16121 case AFL_EXT_10000:
16122 fputs ("MIPS R10000", file);
16123 break;
16124 case AFL_EXT_SB1:
16125 fputs ("Broadcom SB-1", file);
16126 break;
16127 case AFL_EXT_4111:
16128 fputs ("NEC VR4111/VR4181", file);
16129 break;
16130 case AFL_EXT_4120:
16131 fputs ("NEC VR4120", file);
16132 break;
16133 case AFL_EXT_5400:
16134 fputs ("NEC VR5400", file);
16135 break;
16136 case AFL_EXT_5500:
16137 fputs ("NEC VR5500", file);
16138 break;
16139 case AFL_EXT_LOONGSON_2E:
16140 fputs ("ST Microelectronics Loongson 2E", file);
16141 break;
16142 case AFL_EXT_LOONGSON_2F:
16143 fputs ("ST Microelectronics Loongson 2F", file);
16144 break;
16145 case AFL_EXT_INTERAPTIV_MR2:
16146 fputs ("Imagination interAptiv MR2", file);
16147 break;
16148 default:
16149 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16150 break;
16151 }
16152 }
16153
16154 static void
16155 print_mips_fp_abi_value (FILE *file, int val)
16156 {
16157 switch (val)
16158 {
16159 case Val_GNU_MIPS_ABI_FP_ANY:
16160 fprintf (file, _("Hard or soft float\n"));
16161 break;
16162 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16163 fprintf (file, _("Hard float (double precision)\n"));
16164 break;
16165 case Val_GNU_MIPS_ABI_FP_SINGLE:
16166 fprintf (file, _("Hard float (single precision)\n"));
16167 break;
16168 case Val_GNU_MIPS_ABI_FP_SOFT:
16169 fprintf (file, _("Soft float\n"));
16170 break;
16171 case Val_GNU_MIPS_ABI_FP_OLD_64:
16172 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16173 break;
16174 case Val_GNU_MIPS_ABI_FP_XX:
16175 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16176 break;
16177 case Val_GNU_MIPS_ABI_FP_64:
16178 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16179 break;
16180 case Val_GNU_MIPS_ABI_FP_64A:
16181 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16182 break;
16183 default:
16184 fprintf (file, "??? (%d)\n", val);
16185 break;
16186 }
16187 }
16188
16189 static int
16190 get_mips_reg_size (int reg_size)
16191 {
16192 return (reg_size == AFL_REG_NONE) ? 0
16193 : (reg_size == AFL_REG_32) ? 32
16194 : (reg_size == AFL_REG_64) ? 64
16195 : (reg_size == AFL_REG_128) ? 128
16196 : -1;
16197 }
16198
16199 bfd_boolean
16200 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16201 {
16202 FILE *file = ptr;
16203
16204 BFD_ASSERT (abfd != NULL && ptr != NULL);
16205
16206 /* Print normal ELF private data. */
16207 _bfd_elf_print_private_bfd_data (abfd, ptr);
16208
16209 /* xgettext:c-format */
16210 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16211
16212 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16213 fprintf (file, _(" [abi=O32]"));
16214 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16215 fprintf (file, _(" [abi=O64]"));
16216 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16217 fprintf (file, _(" [abi=EABI32]"));
16218 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16219 fprintf (file, _(" [abi=EABI64]"));
16220 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16221 fprintf (file, _(" [abi unknown]"));
16222 else if (ABI_N32_P (abfd))
16223 fprintf (file, _(" [abi=N32]"));
16224 else if (ABI_64_P (abfd))
16225 fprintf (file, _(" [abi=64]"));
16226 else
16227 fprintf (file, _(" [no abi set]"));
16228
16229 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16230 fprintf (file, " [mips1]");
16231 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16232 fprintf (file, " [mips2]");
16233 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16234 fprintf (file, " [mips3]");
16235 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16236 fprintf (file, " [mips4]");
16237 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16238 fprintf (file, " [mips5]");
16239 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16240 fprintf (file, " [mips32]");
16241 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16242 fprintf (file, " [mips64]");
16243 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16244 fprintf (file, " [mips32r2]");
16245 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16246 fprintf (file, " [mips64r2]");
16247 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16248 fprintf (file, " [mips32r6]");
16249 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16250 fprintf (file, " [mips64r6]");
16251 else
16252 fprintf (file, _(" [unknown ISA]"));
16253
16254 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16255 fprintf (file, " [mdmx]");
16256
16257 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16258 fprintf (file, " [mips16]");
16259
16260 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16261 fprintf (file, " [micromips]");
16262
16263 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16264 fprintf (file, " [nan2008]");
16265
16266 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16267 fprintf (file, " [old fp64]");
16268
16269 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16270 fprintf (file, " [32bitmode]");
16271 else
16272 fprintf (file, _(" [not 32bitmode]"));
16273
16274 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16275 fprintf (file, " [noreorder]");
16276
16277 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16278 fprintf (file, " [PIC]");
16279
16280 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16281 fprintf (file, " [CPIC]");
16282
16283 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16284 fprintf (file, " [XGOT]");
16285
16286 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16287 fprintf (file, " [UCODE]");
16288
16289 fputc ('\n', file);
16290
16291 if (mips_elf_tdata (abfd)->abiflags_valid)
16292 {
16293 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16294 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16295 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16296 if (abiflags->isa_rev > 1)
16297 fprintf (file, "r%d", abiflags->isa_rev);
16298 fprintf (file, "\nGPR size: %d",
16299 get_mips_reg_size (abiflags->gpr_size));
16300 fprintf (file, "\nCPR1 size: %d",
16301 get_mips_reg_size (abiflags->cpr1_size));
16302 fprintf (file, "\nCPR2 size: %d",
16303 get_mips_reg_size (abiflags->cpr2_size));
16304 fputs ("\nFP ABI: ", file);
16305 print_mips_fp_abi_value (file, abiflags->fp_abi);
16306 fputs ("ISA Extension: ", file);
16307 print_mips_isa_ext (file, abiflags->isa_ext);
16308 fputs ("\nASEs:", file);
16309 print_mips_ases (file, abiflags->ases);
16310 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16311 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16312 fputc ('\n', file);
16313 }
16314
16315 return TRUE;
16316 }
16317
16318 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16319 {
16320 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16321 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16322 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16323 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16324 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16325 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16326 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
16327 { NULL, 0, 0, 0, 0 }
16328 };
16329
16330 /* Merge non visibility st_other attributes. Ensure that the
16331 STO_OPTIONAL flag is copied into h->other, even if this is not a
16332 definiton of the symbol. */
16333 void
16334 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16335 const Elf_Internal_Sym *isym,
16336 bfd_boolean definition,
16337 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16338 {
16339 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16340 {
16341 unsigned char other;
16342
16343 other = (definition ? isym->st_other : h->other);
16344 other &= ~ELF_ST_VISIBILITY (-1);
16345 h->other = other | ELF_ST_VISIBILITY (h->other);
16346 }
16347
16348 if (!definition
16349 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16350 h->other |= STO_OPTIONAL;
16351 }
16352
16353 /* Decide whether an undefined symbol is special and can be ignored.
16354 This is the case for OPTIONAL symbols on IRIX. */
16355 bfd_boolean
16356 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16357 {
16358 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16359 }
16360
16361 bfd_boolean
16362 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16363 {
16364 return (sym->st_shndx == SHN_COMMON
16365 || sym->st_shndx == SHN_MIPS_ACOMMON
16366 || sym->st_shndx == SHN_MIPS_SCOMMON);
16367 }
16368
16369 /* Return address for Ith PLT stub in section PLT, for relocation REL
16370 or (bfd_vma) -1 if it should not be included. */
16371
16372 bfd_vma
16373 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16374 const arelent *rel ATTRIBUTE_UNUSED)
16375 {
16376 return (plt->vma
16377 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16378 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16379 }
16380
16381 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16382 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16383 and .got.plt and also the slots may be of a different size each we walk
16384 the PLT manually fetching instructions and matching them against known
16385 patterns. To make things easier standard MIPS slots, if any, always come
16386 first. As we don't create proper ELF symbols we use the UDATA.I member
16387 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16388 with the ST_OTHER member of the ELF symbol. */
16389
16390 long
16391 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16392 long symcount ATTRIBUTE_UNUSED,
16393 asymbol **syms ATTRIBUTE_UNUSED,
16394 long dynsymcount, asymbol **dynsyms,
16395 asymbol **ret)
16396 {
16397 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16398 static const char microsuffix[] = "@micromipsplt";
16399 static const char m16suffix[] = "@mips16plt";
16400 static const char mipssuffix[] = "@plt";
16401
16402 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16403 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16404 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16405 Elf_Internal_Shdr *hdr;
16406 bfd_byte *plt_data;
16407 bfd_vma plt_offset;
16408 unsigned int other;
16409 bfd_vma entry_size;
16410 bfd_vma plt0_size;
16411 asection *relplt;
16412 bfd_vma opcode;
16413 asection *plt;
16414 asymbol *send;
16415 size_t size;
16416 char *names;
16417 long counti;
16418 arelent *p;
16419 asymbol *s;
16420 char *nend;
16421 long count;
16422 long pi;
16423 long i;
16424 long n;
16425
16426 *ret = NULL;
16427
16428 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16429 return 0;
16430
16431 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16432 if (relplt == NULL)
16433 return 0;
16434
16435 hdr = &elf_section_data (relplt)->this_hdr;
16436 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16437 return 0;
16438
16439 plt = bfd_get_section_by_name (abfd, ".plt");
16440 if (plt == NULL)
16441 return 0;
16442
16443 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16444 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16445 return -1;
16446 p = relplt->relocation;
16447
16448 /* Calculating the exact amount of space required for symbols would
16449 require two passes over the PLT, so just pessimise assuming two
16450 PLT slots per relocation. */
16451 count = relplt->size / hdr->sh_entsize;
16452 counti = count * bed->s->int_rels_per_ext_rel;
16453 size = 2 * count * sizeof (asymbol);
16454 size += count * (sizeof (mipssuffix) +
16455 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16456 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16457 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16458
16459 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16460 size += sizeof (asymbol) + sizeof (pltname);
16461
16462 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16463 return -1;
16464
16465 if (plt->size < 16)
16466 return -1;
16467
16468 s = *ret = bfd_malloc (size);
16469 if (s == NULL)
16470 return -1;
16471 send = s + 2 * count + 1;
16472
16473 names = (char *) send;
16474 nend = (char *) s + size;
16475 n = 0;
16476
16477 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16478 if (opcode == 0x3302fffe)
16479 {
16480 if (!micromips_p)
16481 return -1;
16482 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16483 other = STO_MICROMIPS;
16484 }
16485 else if (opcode == 0x0398c1d0)
16486 {
16487 if (!micromips_p)
16488 return -1;
16489 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16490 other = STO_MICROMIPS;
16491 }
16492 else
16493 {
16494 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16495 other = 0;
16496 }
16497
16498 s->the_bfd = abfd;
16499 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16500 s->section = plt;
16501 s->value = 0;
16502 s->name = names;
16503 s->udata.i = other;
16504 memcpy (names, pltname, sizeof (pltname));
16505 names += sizeof (pltname);
16506 ++s, ++n;
16507
16508 pi = 0;
16509 for (plt_offset = plt0_size;
16510 plt_offset + 8 <= plt->size && s < send;
16511 plt_offset += entry_size)
16512 {
16513 bfd_vma gotplt_addr;
16514 const char *suffix;
16515 bfd_vma gotplt_hi;
16516 bfd_vma gotplt_lo;
16517 size_t suffixlen;
16518
16519 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16520
16521 /* Check if the second word matches the expected MIPS16 instruction. */
16522 if (opcode == 0x651aeb00)
16523 {
16524 if (micromips_p)
16525 return -1;
16526 /* Truncated table??? */
16527 if (plt_offset + 16 > plt->size)
16528 break;
16529 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16530 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16531 suffixlen = sizeof (m16suffix);
16532 suffix = m16suffix;
16533 other = STO_MIPS16;
16534 }
16535 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16536 else if (opcode == 0xff220000)
16537 {
16538 if (!micromips_p)
16539 return -1;
16540 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16541 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16542 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16543 gotplt_lo <<= 2;
16544 gotplt_addr = gotplt_hi + gotplt_lo;
16545 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16546 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16547 suffixlen = sizeof (microsuffix);
16548 suffix = microsuffix;
16549 other = STO_MICROMIPS;
16550 }
16551 /* Likewise the expected microMIPS instruction (insn32 mode). */
16552 else if ((opcode & 0xffff0000) == 0xff2f0000)
16553 {
16554 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16555 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16556 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16557 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16558 gotplt_addr = gotplt_hi + gotplt_lo;
16559 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16560 suffixlen = sizeof (microsuffix);
16561 suffix = microsuffix;
16562 other = STO_MICROMIPS;
16563 }
16564 /* Otherwise assume standard MIPS code. */
16565 else
16566 {
16567 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16568 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16569 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16570 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16571 gotplt_addr = gotplt_hi + gotplt_lo;
16572 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16573 suffixlen = sizeof (mipssuffix);
16574 suffix = mipssuffix;
16575 other = 0;
16576 }
16577 /* Truncated table??? */
16578 if (plt_offset + entry_size > plt->size)
16579 break;
16580
16581 for (i = 0;
16582 i < count && p[pi].address != gotplt_addr;
16583 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16584
16585 if (i < count)
16586 {
16587 size_t namelen;
16588 size_t len;
16589
16590 *s = **p[pi].sym_ptr_ptr;
16591 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16592 we are defining a symbol, ensure one of them is set. */
16593 if ((s->flags & BSF_LOCAL) == 0)
16594 s->flags |= BSF_GLOBAL;
16595 s->flags |= BSF_SYNTHETIC;
16596 s->section = plt;
16597 s->value = plt_offset;
16598 s->name = names;
16599 s->udata.i = other;
16600
16601 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16602 namelen = len + suffixlen;
16603 if (names + namelen > nend)
16604 break;
16605
16606 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16607 names += len;
16608 memcpy (names, suffix, suffixlen);
16609 names += suffixlen;
16610
16611 ++s, ++n;
16612 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16613 }
16614 }
16615
16616 free (plt_data);
16617
16618 return n;
16619 }
16620
16621 /* Return the ABI flags associated with ABFD if available. */
16622
16623 Elf_Internal_ABIFlags_v0 *
16624 bfd_mips_elf_get_abiflags (bfd *abfd)
16625 {
16626 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16627
16628 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16629 }
16630
16631 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16632 field. Taken from `libc-abis.h' generated at GNU libc build time.
16633 Using a MIPS_ prefix as other libc targets use different values. */
16634 enum
16635 {
16636 MIPS_LIBC_ABI_DEFAULT = 0,
16637 MIPS_LIBC_ABI_MIPS_PLT,
16638 MIPS_LIBC_ABI_UNIQUE,
16639 MIPS_LIBC_ABI_MIPS_O32_FP64,
16640 MIPS_LIBC_ABI_ABSOLUTE,
16641 MIPS_LIBC_ABI_XHASH,
16642 MIPS_LIBC_ABI_MAX
16643 };
16644
16645 bfd_boolean
16646 _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
16647 {
16648 struct mips_elf_link_hash_table *htab = NULL;
16649 Elf_Internal_Ehdr *i_ehdrp;
16650
16651 if (!_bfd_elf_init_file_header (abfd, link_info))
16652 return FALSE;
16653
16654 i_ehdrp = elf_elfheader (abfd);
16655 if (link_info)
16656 {
16657 htab = mips_elf_hash_table (link_info);
16658 BFD_ASSERT (htab != NULL);
16659 }
16660
16661 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16662 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16663
16664 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16665 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16666 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16667
16668 /* Mark that we need support for absolute symbols in the dynamic loader. */
16669 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16670 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16671
16672 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16673 if it is the only hash section that will be created. */
16674 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16675 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
16676 return TRUE;
16677 }
16678
16679 int
16680 _bfd_mips_elf_compact_eh_encoding
16681 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16682 {
16683 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16684 }
16685
16686 /* Return the opcode for can't unwind. */
16687
16688 int
16689 _bfd_mips_elf_cant_unwind_opcode
16690 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16691 {
16692 return COMPACT_EH_CANT_UNWIND_OPCODE;
16693 }
16694
16695 /* Record a position XLAT_LOC in the xlat translation table, associated with
16696 the hash entry H. The entry in the translation table will later be
16697 populated with the real symbol dynindx. */
16698
16699 void
16700 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16701 bfd_vma xlat_loc)
16702 {
16703 struct mips_elf_link_hash_entry *hmips;
16704
16705 hmips = (struct mips_elf_link_hash_entry *) h;
16706 hmips->mipsxhash_loc = xlat_loc;
16707 }
This page took 0.539598 seconds and 5 git commands to generate.