MIPS/LD: Fix memory fault linking non-PIC object in to shared library
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
296 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
297 #define LA25_LUI_MICROMIPS(VAL) \
298 (0x41b90000 | (VAL)) /* lui t9,VAL */
299 #define LA25_J_MICROMIPS(VAL) \
300 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
301 #define LA25_ADDIU_MICROMIPS(VAL) \
302 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
303
304 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
305 the dynamic symbols. */
306
307 struct mips_elf_hash_sort_data
308 {
309 /* The symbol in the global GOT with the lowest dynamic symbol table
310 index. */
311 struct elf_link_hash_entry *low;
312 /* The least dynamic symbol table index corresponding to a non-TLS
313 symbol with a GOT entry. */
314 bfd_size_type min_got_dynindx;
315 /* The greatest dynamic symbol table index corresponding to a symbol
316 with a GOT entry that is not referenced (e.g., a dynamic symbol
317 with dynamic relocations pointing to it from non-primary GOTs). */
318 bfd_size_type max_unref_got_dynindx;
319 /* The greatest dynamic symbol table index corresponding to a local
320 symbol. */
321 bfd_size_type max_local_dynindx;
322 /* The greatest dynamic symbol table index corresponding to an external
323 symbol without a GOT entry. */
324 bfd_size_type max_non_got_dynindx;
325 };
326
327 /* We make up to two PLT entries if needed, one for standard MIPS code
328 and one for compressed code, either a MIPS16 or microMIPS one. We
329 keep a separate record of traditional lazy-binding stubs, for easier
330 processing. */
331
332 struct plt_entry
333 {
334 /* Traditional SVR4 stub offset, or -1 if none. */
335 bfd_vma stub_offset;
336
337 /* Standard PLT entry offset, or -1 if none. */
338 bfd_vma mips_offset;
339
340 /* Compressed PLT entry offset, or -1 if none. */
341 bfd_vma comp_offset;
342
343 /* The corresponding .got.plt index, or -1 if none. */
344 bfd_vma gotplt_index;
345
346 /* Whether we need a standard PLT entry. */
347 unsigned int need_mips : 1;
348
349 /* Whether we need a compressed PLT entry. */
350 unsigned int need_comp : 1;
351 };
352
353 /* The MIPS ELF linker needs additional information for each symbol in
354 the global hash table. */
355
356 struct mips_elf_link_hash_entry
357 {
358 struct elf_link_hash_entry root;
359
360 /* External symbol information. */
361 EXTR esym;
362
363 /* The la25 stub we have created for ths symbol, if any. */
364 struct mips_elf_la25_stub *la25_stub;
365
366 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
367 this symbol. */
368 unsigned int possibly_dynamic_relocs;
369
370 /* If there is a stub that 32 bit functions should use to call this
371 16 bit function, this points to the section containing the stub. */
372 asection *fn_stub;
373
374 /* If there is a stub that 16 bit functions should use to call this
375 32 bit function, this points to the section containing the stub. */
376 asection *call_stub;
377
378 /* This is like the call_stub field, but it is used if the function
379 being called returns a floating point value. */
380 asection *call_fp_stub;
381
382 /* The highest GGA_* value that satisfies all references to this symbol. */
383 unsigned int global_got_area : 2;
384
385 /* True if all GOT relocations against this symbol are for calls. This is
386 a looser condition than no_fn_stub below, because there may be other
387 non-call non-GOT relocations against the symbol. */
388 unsigned int got_only_for_calls : 1;
389
390 /* True if one of the relocations described by possibly_dynamic_relocs
391 is against a readonly section. */
392 unsigned int readonly_reloc : 1;
393
394 /* True if there is a relocation against this symbol that must be
395 resolved by the static linker (in other words, if the relocation
396 cannot possibly be made dynamic). */
397 unsigned int has_static_relocs : 1;
398
399 /* True if we must not create a .MIPS.stubs entry for this symbol.
400 This is set, for example, if there are relocations related to
401 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
402 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
403 unsigned int no_fn_stub : 1;
404
405 /* Whether we need the fn_stub; this is true if this symbol appears
406 in any relocs other than a 16 bit call. */
407 unsigned int need_fn_stub : 1;
408
409 /* True if this symbol is referenced by branch relocations from
410 any non-PIC input file. This is used to determine whether an
411 la25 stub is required. */
412 unsigned int has_nonpic_branches : 1;
413
414 /* Does this symbol need a traditional MIPS lazy-binding stub
415 (as opposed to a PLT entry)? */
416 unsigned int needs_lazy_stub : 1;
417
418 /* Does this symbol resolve to a PLT entry? */
419 unsigned int use_plt_entry : 1;
420 };
421
422 /* MIPS ELF linker hash table. */
423
424 struct mips_elf_link_hash_table
425 {
426 struct elf_link_hash_table root;
427
428 /* The number of .rtproc entries. */
429 bfd_size_type procedure_count;
430
431 /* The size of the .compact_rel section (if SGI_COMPAT). */
432 bfd_size_type compact_rel_size;
433
434 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
435 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
436 bfd_boolean use_rld_obj_head;
437
438 /* The __rld_map or __rld_obj_head symbol. */
439 struct elf_link_hash_entry *rld_symbol;
440
441 /* This is set if we see any mips16 stub sections. */
442 bfd_boolean mips16_stubs_seen;
443
444 /* True if we can generate copy relocs and PLTs. */
445 bfd_boolean use_plts_and_copy_relocs;
446
447 /* True if we can only use 32-bit microMIPS instructions. */
448 bfd_boolean insn32;
449
450 /* True if we suppress checks for invalid branches between ISA modes. */
451 bfd_boolean ignore_branch_isa;
452
453 /* True if we are targetting R6 compact branches. */
454 bfd_boolean compact_branches;
455
456 /* True if we're generating code for VxWorks. */
457 bfd_boolean is_vxworks;
458
459 /* True if we already reported the small-data section overflow. */
460 bfd_boolean small_data_overflow_reported;
461
462 /* True if we use the special `__gnu_absolute_zero' symbol. */
463 bfd_boolean use_absolute_zero;
464
465 /* True if we have been configured for a GNU target. */
466 bfd_boolean gnu_target;
467
468 /* Shortcuts to some dynamic sections, or NULL if they are not
469 being used. */
470 asection *srelplt2;
471 asection *sstubs;
472
473 /* The master GOT information. */
474 struct mips_got_info *got_info;
475
476 /* The global symbol in the GOT with the lowest index in the dynamic
477 symbol table. */
478 struct elf_link_hash_entry *global_gotsym;
479
480 /* The size of the PLT header in bytes. */
481 bfd_vma plt_header_size;
482
483 /* The size of a standard PLT entry in bytes. */
484 bfd_vma plt_mips_entry_size;
485
486 /* The size of a compressed PLT entry in bytes. */
487 bfd_vma plt_comp_entry_size;
488
489 /* The offset of the next standard PLT entry to create. */
490 bfd_vma plt_mips_offset;
491
492 /* The offset of the next compressed PLT entry to create. */
493 bfd_vma plt_comp_offset;
494
495 /* The index of the next .got.plt entry to create. */
496 bfd_vma plt_got_index;
497
498 /* The number of functions that need a lazy-binding stub. */
499 bfd_vma lazy_stub_count;
500
501 /* The size of a function stub entry in bytes. */
502 bfd_vma function_stub_size;
503
504 /* The number of reserved entries at the beginning of the GOT. */
505 unsigned int reserved_gotno;
506
507 /* The section used for mips_elf_la25_stub trampolines.
508 See the comment above that structure for details. */
509 asection *strampoline;
510
511 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
512 pairs. */
513 htab_t la25_stubs;
514
515 /* A function FN (NAME, IS, OS) that creates a new input section
516 called NAME and links it to output section OS. If IS is nonnull,
517 the new section should go immediately before it, otherwise it
518 should go at the (current) beginning of OS.
519
520 The function returns the new section on success, otherwise it
521 returns null. */
522 asection *(*add_stub_section) (const char *, asection *, asection *);
523
524 /* Small local sym cache. */
525 struct sym_cache sym_cache;
526
527 /* Is the PLT header compressed? */
528 unsigned int plt_header_is_comp : 1;
529 };
530
531 /* Get the MIPS ELF linker hash table from a link_info structure. */
532
533 #define mips_elf_hash_table(p) \
534 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
535 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
536
537 /* A structure used to communicate with htab_traverse callbacks. */
538 struct mips_htab_traverse_info
539 {
540 /* The usual link-wide information. */
541 struct bfd_link_info *info;
542 bfd *output_bfd;
543
544 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
545 bfd_boolean error;
546 };
547
548 /* MIPS ELF private object data. */
549
550 struct mips_elf_obj_tdata
551 {
552 /* Generic ELF private object data. */
553 struct elf_obj_tdata root;
554
555 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
556 bfd *abi_fp_bfd;
557
558 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
559 bfd *abi_msa_bfd;
560
561 /* The abiflags for this object. */
562 Elf_Internal_ABIFlags_v0 abiflags;
563 bfd_boolean abiflags_valid;
564
565 /* The GOT requirements of input bfds. */
566 struct mips_got_info *got;
567
568 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
569 included directly in this one, but there's no point to wasting
570 the memory just for the infrequently called find_nearest_line. */
571 struct mips_elf_find_line *find_line_info;
572
573 /* An array of stub sections indexed by symbol number. */
574 asection **local_stubs;
575 asection **local_call_stubs;
576
577 /* The Irix 5 support uses two virtual sections, which represent
578 text/data symbols defined in dynamic objects. */
579 asymbol *elf_data_symbol;
580 asymbol *elf_text_symbol;
581 asection *elf_data_section;
582 asection *elf_text_section;
583 };
584
585 /* Get MIPS ELF private object data from BFD's tdata. */
586
587 #define mips_elf_tdata(bfd) \
588 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
589
590 #define TLS_RELOC_P(r_type) \
591 (r_type == R_MIPS_TLS_DTPMOD32 \
592 || r_type == R_MIPS_TLS_DTPMOD64 \
593 || r_type == R_MIPS_TLS_DTPREL32 \
594 || r_type == R_MIPS_TLS_DTPREL64 \
595 || r_type == R_MIPS_TLS_GD \
596 || r_type == R_MIPS_TLS_LDM \
597 || r_type == R_MIPS_TLS_DTPREL_HI16 \
598 || r_type == R_MIPS_TLS_DTPREL_LO16 \
599 || r_type == R_MIPS_TLS_GOTTPREL \
600 || r_type == R_MIPS_TLS_TPREL32 \
601 || r_type == R_MIPS_TLS_TPREL64 \
602 || r_type == R_MIPS_TLS_TPREL_HI16 \
603 || r_type == R_MIPS_TLS_TPREL_LO16 \
604 || r_type == R_MIPS16_TLS_GD \
605 || r_type == R_MIPS16_TLS_LDM \
606 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
607 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GOTTPREL \
609 || r_type == R_MIPS16_TLS_TPREL_HI16 \
610 || r_type == R_MIPS16_TLS_TPREL_LO16 \
611 || r_type == R_MICROMIPS_TLS_GD \
612 || r_type == R_MICROMIPS_TLS_LDM \
613 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
614 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GOTTPREL \
616 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
617 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
618
619 /* Structure used to pass information to mips_elf_output_extsym. */
620
621 struct extsym_info
622 {
623 bfd *abfd;
624 struct bfd_link_info *info;
625 struct ecoff_debug_info *debug;
626 const struct ecoff_debug_swap *swap;
627 bfd_boolean failed;
628 };
629
630 /* The names of the runtime procedure table symbols used on IRIX5. */
631
632 static const char * const mips_elf_dynsym_rtproc_names[] =
633 {
634 "_procedure_table",
635 "_procedure_string_table",
636 "_procedure_table_size",
637 NULL
638 };
639
640 /* These structures are used to generate the .compact_rel section on
641 IRIX5. */
642
643 typedef struct
644 {
645 unsigned long id1; /* Always one? */
646 unsigned long num; /* Number of compact relocation entries. */
647 unsigned long id2; /* Always two? */
648 unsigned long offset; /* The file offset of the first relocation. */
649 unsigned long reserved0; /* Zero? */
650 unsigned long reserved1; /* Zero? */
651 } Elf32_compact_rel;
652
653 typedef struct
654 {
655 bfd_byte id1[4];
656 bfd_byte num[4];
657 bfd_byte id2[4];
658 bfd_byte offset[4];
659 bfd_byte reserved0[4];
660 bfd_byte reserved1[4];
661 } Elf32_External_compact_rel;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 unsigned long vaddr; /* VADDR to be relocated. */
671 } Elf32_crinfo;
672
673 typedef struct
674 {
675 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
676 unsigned int rtype : 4; /* Relocation types. See below. */
677 unsigned int dist2to : 8;
678 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
679 unsigned long konst; /* KONST field. See below. */
680 } Elf32_crinfo2;
681
682 typedef struct
683 {
684 bfd_byte info[4];
685 bfd_byte konst[4];
686 bfd_byte vaddr[4];
687 } Elf32_External_crinfo;
688
689 typedef struct
690 {
691 bfd_byte info[4];
692 bfd_byte konst[4];
693 } Elf32_External_crinfo2;
694
695 /* These are the constants used to swap the bitfields in a crinfo. */
696
697 #define CRINFO_CTYPE (0x1)
698 #define CRINFO_CTYPE_SH (31)
699 #define CRINFO_RTYPE (0xf)
700 #define CRINFO_RTYPE_SH (27)
701 #define CRINFO_DIST2TO (0xff)
702 #define CRINFO_DIST2TO_SH (19)
703 #define CRINFO_RELVADDR (0x7ffff)
704 #define CRINFO_RELVADDR_SH (0)
705
706 /* A compact relocation info has long (3 words) or short (2 words)
707 formats. A short format doesn't have VADDR field and relvaddr
708 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
709 #define CRF_MIPS_LONG 1
710 #define CRF_MIPS_SHORT 0
711
712 /* There are 4 types of compact relocation at least. The value KONST
713 has different meaning for each type:
714
715 (type) (konst)
716 CT_MIPS_REL32 Address in data
717 CT_MIPS_WORD Address in word (XXX)
718 CT_MIPS_GPHI_LO GP - vaddr
719 CT_MIPS_JMPAD Address to jump
720 */
721
722 #define CRT_MIPS_REL32 0xa
723 #define CRT_MIPS_WORD 0xb
724 #define CRT_MIPS_GPHI_LO 0xc
725 #define CRT_MIPS_JMPAD 0xd
726
727 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
728 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
729 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
730 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
731 \f
732 /* The structure of the runtime procedure descriptor created by the
733 loader for use by the static exception system. */
734
735 typedef struct runtime_pdr {
736 bfd_vma adr; /* Memory address of start of procedure. */
737 long regmask; /* Save register mask. */
738 long regoffset; /* Save register offset. */
739 long fregmask; /* Save floating point register mask. */
740 long fregoffset; /* Save floating point register offset. */
741 long frameoffset; /* Frame size. */
742 short framereg; /* Frame pointer register. */
743 short pcreg; /* Offset or reg of return pc. */
744 long irpss; /* Index into the runtime string table. */
745 long reserved;
746 struct exception_info *exception_info;/* Pointer to exception array. */
747 } RPDR, *pRPDR;
748 #define cbRPDR sizeof (RPDR)
749 #define rpdNil ((pRPDR) 0)
750 \f
751 static struct mips_got_entry *mips_elf_create_local_got_entry
752 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
753 struct mips_elf_link_hash_entry *, int);
754 static bfd_boolean mips_elf_sort_hash_table_f
755 (struct mips_elf_link_hash_entry *, void *);
756 static bfd_vma mips_elf_high
757 (bfd_vma);
758 static bfd_boolean mips_elf_create_dynamic_relocation
759 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
760 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
761 bfd_vma *, asection *);
762 static bfd_vma mips_elf_adjust_gp
763 (bfd *, struct mips_got_info *, bfd *);
764
765 /* This will be used when we sort the dynamic relocation records. */
766 static bfd *reldyn_sorting_bfd;
767
768 /* True if ABFD is for CPUs with load interlocking that include
769 non-MIPS1 CPUs and R3900. */
770 #define LOAD_INTERLOCKS_P(abfd) \
771 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
772 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
773
774 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
775 This should be safe for all architectures. We enable this predicate
776 for RM9000 for now. */
777 #define JAL_TO_BAL_P(abfd) \
778 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
779
780 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
781 This should be safe for all architectures. We enable this predicate for
782 all CPUs. */
783 #define JALR_TO_BAL_P(abfd) 1
784
785 /* True if ABFD is for CPUs that are faster if JR is converted to B.
786 This should be safe for all architectures. We enable this predicate for
787 all CPUs. */
788 #define JR_TO_B_P(abfd) 1
789
790 /* True if ABFD is a PIC object. */
791 #define PIC_OBJECT_P(abfd) \
792 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
793
794 /* Nonzero if ABFD is using the O32 ABI. */
795 #define ABI_O32_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
797
798 /* Nonzero if ABFD is using the N32 ABI. */
799 #define ABI_N32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
801
802 /* Nonzero if ABFD is using the N64 ABI. */
803 #define ABI_64_P(abfd) \
804 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
805
806 /* Nonzero if ABFD is using NewABI conventions. */
807 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
808
809 /* Nonzero if ABFD has microMIPS code. */
810 #define MICROMIPS_P(abfd) \
811 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
812
813 /* Nonzero if ABFD is MIPS R6. */
814 #define MIPSR6_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
816 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
817
818 /* The IRIX compatibility level we are striving for. */
819 #define IRIX_COMPAT(abfd) \
820 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
821
822 /* Whether we are trying to be compatible with IRIX at all. */
823 #define SGI_COMPAT(abfd) \
824 (IRIX_COMPAT (abfd) != ict_none)
825
826 /* The name of the options section. */
827 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
828 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
829
830 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
831 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
832 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
833 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
834
835 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
836 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.abiflags") == 0)
838
839 /* Whether the section is readonly. */
840 #define MIPS_ELF_READONLY_SECTION(sec) \
841 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
842 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
843
844 /* The name of the stub section. */
845 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
846
847 /* The size of an external REL relocation. */
848 #define MIPS_ELF_REL_SIZE(abfd) \
849 (get_elf_backend_data (abfd)->s->sizeof_rel)
850
851 /* The size of an external RELA relocation. */
852 #define MIPS_ELF_RELA_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rela)
854
855 /* The size of an external dynamic table entry. */
856 #define MIPS_ELF_DYN_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_dyn)
858
859 /* The size of a GOT entry. */
860 #define MIPS_ELF_GOT_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->arch_size / 8)
862
863 /* The size of the .rld_map section. */
864 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
866
867 /* The size of a symbol-table entry. */
868 #define MIPS_ELF_SYM_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->sizeof_sym)
870
871 /* The default alignment for sections, as a power of two. */
872 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
873 (get_elf_backend_data (abfd)->s->log_file_align)
874
875 /* Get word-sized data. */
876 #define MIPS_ELF_GET_WORD(abfd, ptr) \
877 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
878
879 /* Put out word-sized data. */
880 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
881 (ABI_64_P (abfd) \
882 ? bfd_put_64 (abfd, val, ptr) \
883 : bfd_put_32 (abfd, val, ptr))
884
885 /* The opcode for word-sized loads (LW or LD). */
886 #define MIPS_ELF_LOAD_WORD(abfd) \
887 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
888
889 /* Add a dynamic symbol table-entry. */
890 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
891 _bfd_elf_add_dynamic_entry (info, tag, val)
892
893 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
894 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
895
896 /* The name of the dynamic relocation section. */
897 #define MIPS_ELF_REL_DYN_NAME(INFO) \
898 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
899
900 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
901 from smaller values. Start with zero, widen, *then* decrement. */
902 #define MINUS_ONE (((bfd_vma)0) - 1)
903 #define MINUS_TWO (((bfd_vma)0) - 2)
904
905 /* The value to write into got[1] for SVR4 targets, to identify it is
906 a GNU object. The dynamic linker can then use got[1] to store the
907 module pointer. */
908 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
909 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
910
911 /* The offset of $gp from the beginning of the .got section. */
912 #define ELF_MIPS_GP_OFFSET(INFO) \
913 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
914
915 /* The maximum size of the GOT for it to be addressable using 16-bit
916 offsets from $gp. */
917 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
918
919 /* Instructions which appear in a stub. */
920 #define STUB_LW(abfd) \
921 ((ABI_64_P (abfd) \
922 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
923 : 0x8f998010)) /* lw t9,0x8010(gp) */
924 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
925 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
926 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
927 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
928 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
929 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
930 #define STUB_LI16S(abfd, VAL) \
931 ((ABI_64_P (abfd) \
932 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
933 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
934
935 /* Likewise for the microMIPS ASE. */
936 #define STUB_LW_MICROMIPS(abfd) \
937 (ABI_64_P (abfd) \
938 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
939 : 0xff3c8010) /* lw t9,0x8010(gp) */
940 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
941 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
942 #define STUB_LUI_MICROMIPS(VAL) \
943 (0x41b80000 + (VAL)) /* lui t8,VAL */
944 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
945 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
946 #define STUB_ORI_MICROMIPS(VAL) \
947 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
948 #define STUB_LI16U_MICROMIPS(VAL) \
949 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
950 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
951 (ABI_64_P (abfd) \
952 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
953 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
954
955 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
956 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
957 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
958 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
959 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
960 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
961
962 /* The name of the dynamic interpreter. This is put in the .interp
963 section. */
964
965 #define ELF_DYNAMIC_INTERPRETER(abfd) \
966 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
967 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
968 : "/usr/lib/libc.so.1")
969
970 #ifdef BFD64
971 #define MNAME(bfd,pre,pos) \
972 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
973 #define ELF_R_SYM(bfd, i) \
974 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
975 #define ELF_R_TYPE(bfd, i) \
976 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
977 #define ELF_R_INFO(bfd, s, t) \
978 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
979 #else
980 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
981 #define ELF_R_SYM(bfd, i) \
982 (ELF32_R_SYM (i))
983 #define ELF_R_TYPE(bfd, i) \
984 (ELF32_R_TYPE (i))
985 #define ELF_R_INFO(bfd, s, t) \
986 (ELF32_R_INFO (s, t))
987 #endif
988 \f
989 /* The mips16 compiler uses a couple of special sections to handle
990 floating point arguments.
991
992 Section names that look like .mips16.fn.FNNAME contain stubs that
993 copy floating point arguments from the fp regs to the gp regs and
994 then jump to FNNAME. If any 32 bit function calls FNNAME, the
995 call should be redirected to the stub instead. If no 32 bit
996 function calls FNNAME, the stub should be discarded. We need to
997 consider any reference to the function, not just a call, because
998 if the address of the function is taken we will need the stub,
999 since the address might be passed to a 32 bit function.
1000
1001 Section names that look like .mips16.call.FNNAME contain stubs
1002 that copy floating point arguments from the gp regs to the fp
1003 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1004 then any 16 bit function that calls FNNAME should be redirected
1005 to the stub instead. If FNNAME is not a 32 bit function, the
1006 stub should be discarded.
1007
1008 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1009 which call FNNAME and then copy the return value from the fp regs
1010 to the gp regs. These stubs store the return value in $18 while
1011 calling FNNAME; any function which might call one of these stubs
1012 must arrange to save $18 around the call. (This case is not
1013 needed for 32 bit functions that call 16 bit functions, because
1014 16 bit functions always return floating point values in both
1015 $f0/$f1 and $2/$3.)
1016
1017 Note that in all cases FNNAME might be defined statically.
1018 Therefore, FNNAME is not used literally. Instead, the relocation
1019 information will indicate which symbol the section is for.
1020
1021 We record any stubs that we find in the symbol table. */
1022
1023 #define FN_STUB ".mips16.fn."
1024 #define CALL_STUB ".mips16.call."
1025 #define CALL_FP_STUB ".mips16.call.fp."
1026
1027 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1028 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1029 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1030 \f
1031 /* The format of the first PLT entry in an O32 executable. */
1032 static const bfd_vma mips_o32_exec_plt0_entry[] =
1033 {
1034 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1035 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1036 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1037 0x031cc023, /* subu $24, $24, $28 */
1038 0x03e07825, /* or t7, ra, zero */
1039 0x0018c082, /* srl $24, $24, 2 */
1040 0x0320f809, /* jalr $25 */
1041 0x2718fffe /* subu $24, $24, 2 */
1042 };
1043
1044 /* The format of the first PLT entry in an O32 executable using compact
1045 jumps. */
1046 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1047 {
1048 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1049 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1050 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1051 0x031cc023, /* subu $24, $24, $28 */
1052 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1053 0x0018c082, /* srl $24, $24, 2 */
1054 0x2718fffe, /* subu $24, $24, 2 */
1055 0xf8190000 /* jalrc $25 */
1056 };
1057
1058 /* The format of the first PLT entry in an N32 executable. Different
1059 because gp ($28) is not available; we use t2 ($14) instead. */
1060 static const bfd_vma mips_n32_exec_plt0_entry[] =
1061 {
1062 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1063 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1064 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1065 0x030ec023, /* subu $24, $24, $14 */
1066 0x03e07825, /* or t7, ra, zero */
1067 0x0018c082, /* srl $24, $24, 2 */
1068 0x0320f809, /* jalr $25 */
1069 0x2718fffe /* subu $24, $24, 2 */
1070 };
1071
1072 /* The format of the first PLT entry in an N32 executable using compact
1073 jumps. Different because gp ($28) is not available; we use t2 ($14)
1074 instead. */
1075 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1076 {
1077 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1078 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1079 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1080 0x030ec023, /* subu $24, $24, $14 */
1081 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1082 0x0018c082, /* srl $24, $24, 2 */
1083 0x2718fffe, /* subu $24, $24, 2 */
1084 0xf8190000 /* jalrc $25 */
1085 };
1086
1087 /* The format of the first PLT entry in an N64 executable. Different
1088 from N32 because of the increased size of GOT entries. */
1089 static const bfd_vma mips_n64_exec_plt0_entry[] =
1090 {
1091 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1092 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1093 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1094 0x030ec023, /* subu $24, $24, $14 */
1095 0x03e07825, /* or t7, ra, zero */
1096 0x0018c0c2, /* srl $24, $24, 3 */
1097 0x0320f809, /* jalr $25 */
1098 0x2718fffe /* subu $24, $24, 2 */
1099 };
1100
1101 /* The format of the first PLT entry in an N64 executable using compact
1102 jumps. Different from N32 because of the increased size of GOT
1103 entries. */
1104 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1105 {
1106 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1107 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1108 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1109 0x030ec023, /* subu $24, $24, $14 */
1110 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1111 0x0018c0c2, /* srl $24, $24, 3 */
1112 0x2718fffe, /* subu $24, $24, 2 */
1113 0xf8190000 /* jalrc $25 */
1114 };
1115
1116
1117 /* The format of the microMIPS first PLT entry in an O32 executable.
1118 We rely on v0 ($2) rather than t8 ($24) to contain the address
1119 of the GOTPLT entry handled, so this stub may only be used when
1120 all the subsequent PLT entries are microMIPS code too.
1121
1122 The trailing NOP is for alignment and correct disassembly only. */
1123 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1124 {
1125 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1126 0xff23, 0x0000, /* lw $25, 0($3) */
1127 0x0535, /* subu $2, $2, $3 */
1128 0x2525, /* srl $2, $2, 2 */
1129 0x3302, 0xfffe, /* subu $24, $2, 2 */
1130 0x0dff, /* move $15, $31 */
1131 0x45f9, /* jalrs $25 */
1132 0x0f83, /* move $28, $3 */
1133 0x0c00 /* nop */
1134 };
1135
1136 /* The format of the microMIPS first PLT entry in an O32 executable
1137 in the insn32 mode. */
1138 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1139 {
1140 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1141 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1142 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1143 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1144 0x001f, 0x7a90, /* or $15, $31, zero */
1145 0x0318, 0x1040, /* srl $24, $24, 2 */
1146 0x03f9, 0x0f3c, /* jalr $25 */
1147 0x3318, 0xfffe /* subu $24, $24, 2 */
1148 };
1149
1150 /* The format of subsequent standard PLT entries. */
1151 static const bfd_vma mips_exec_plt_entry[] =
1152 {
1153 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1154 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1155 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1156 0x03200008 /* jr $25 */
1157 };
1158
1159 static const bfd_vma mipsr6_exec_plt_entry[] =
1160 {
1161 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1162 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1163 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1164 0x03200009 /* jr $25 */
1165 };
1166
1167 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1168 {
1169 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1170 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1171 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1172 0xd8190000 /* jic $25, 0 */
1173 };
1174
1175 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1176 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1177 directly addressable. */
1178 static const bfd_vma mips16_o32_exec_plt_entry[] =
1179 {
1180 0xb203, /* lw $2, 12($pc) */
1181 0x9a60, /* lw $3, 0($2) */
1182 0x651a, /* move $24, $2 */
1183 0xeb00, /* jr $3 */
1184 0x653b, /* move $25, $3 */
1185 0x6500, /* nop */
1186 0x0000, 0x0000 /* .word (.got.plt entry) */
1187 };
1188
1189 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1190 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1191 static const bfd_vma micromips_o32_exec_plt_entry[] =
1192 {
1193 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1194 0xff22, 0x0000, /* lw $25, 0($2) */
1195 0x4599, /* jr $25 */
1196 0x0f02 /* move $24, $2 */
1197 };
1198
1199 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1200 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1201 {
1202 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1203 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1204 0x0019, 0x0f3c, /* jr $25 */
1205 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1206 };
1207
1208 /* The format of the first PLT entry in a VxWorks executable. */
1209 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1210 {
1211 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1212 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1213 0x8f390008, /* lw t9, 8(t9) */
1214 0x00000000, /* nop */
1215 0x03200008, /* jr t9 */
1216 0x00000000 /* nop */
1217 };
1218
1219 /* The format of subsequent PLT entries. */
1220 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1221 {
1222 0x10000000, /* b .PLT_resolver */
1223 0x24180000, /* li t8, <pltindex> */
1224 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1225 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1226 0x8f390000, /* lw t9, 0(t9) */
1227 0x00000000, /* nop */
1228 0x03200008, /* jr t9 */
1229 0x00000000 /* nop */
1230 };
1231
1232 /* The format of the first PLT entry in a VxWorks shared object. */
1233 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1234 {
1235 0x8f990008, /* lw t9, 8(gp) */
1236 0x00000000, /* nop */
1237 0x03200008, /* jr t9 */
1238 0x00000000, /* nop */
1239 0x00000000, /* nop */
1240 0x00000000 /* nop */
1241 };
1242
1243 /* The format of subsequent PLT entries. */
1244 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1245 {
1246 0x10000000, /* b .PLT_resolver */
1247 0x24180000 /* li t8, <pltindex> */
1248 };
1249 \f
1250 /* microMIPS 32-bit opcode helper installer. */
1251
1252 static void
1253 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1254 {
1255 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1256 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1257 }
1258
1259 /* microMIPS 32-bit opcode helper retriever. */
1260
1261 static bfd_vma
1262 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1263 {
1264 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1265 }
1266 \f
1267 /* Look up an entry in a MIPS ELF linker hash table. */
1268
1269 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1270 ((struct mips_elf_link_hash_entry *) \
1271 elf_link_hash_lookup (&(table)->root, (string), (create), \
1272 (copy), (follow)))
1273
1274 /* Traverse a MIPS ELF linker hash table. */
1275
1276 #define mips_elf_link_hash_traverse(table, func, info) \
1277 (elf_link_hash_traverse \
1278 (&(table)->root, \
1279 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1280 (info)))
1281
1282 /* Find the base offsets for thread-local storage in this object,
1283 for GD/LD and IE/LE respectively. */
1284
1285 #define TP_OFFSET 0x7000
1286 #define DTP_OFFSET 0x8000
1287
1288 static bfd_vma
1289 dtprel_base (struct bfd_link_info *info)
1290 {
1291 /* If tls_sec is NULL, we should have signalled an error already. */
1292 if (elf_hash_table (info)->tls_sec == NULL)
1293 return 0;
1294 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1295 }
1296
1297 static bfd_vma
1298 tprel_base (struct bfd_link_info *info)
1299 {
1300 /* If tls_sec is NULL, we should have signalled an error already. */
1301 if (elf_hash_table (info)->tls_sec == NULL)
1302 return 0;
1303 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1304 }
1305
1306 /* Create an entry in a MIPS ELF linker hash table. */
1307
1308 static struct bfd_hash_entry *
1309 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1310 struct bfd_hash_table *table, const char *string)
1311 {
1312 struct mips_elf_link_hash_entry *ret =
1313 (struct mips_elf_link_hash_entry *) entry;
1314
1315 /* Allocate the structure if it has not already been allocated by a
1316 subclass. */
1317 if (ret == NULL)
1318 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1319 if (ret == NULL)
1320 return (struct bfd_hash_entry *) ret;
1321
1322 /* Call the allocation method of the superclass. */
1323 ret = ((struct mips_elf_link_hash_entry *)
1324 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1325 table, string));
1326 if (ret != NULL)
1327 {
1328 /* Set local fields. */
1329 memset (&ret->esym, 0, sizeof (EXTR));
1330 /* We use -2 as a marker to indicate that the information has
1331 not been set. -1 means there is no associated ifd. */
1332 ret->esym.ifd = -2;
1333 ret->la25_stub = 0;
1334 ret->possibly_dynamic_relocs = 0;
1335 ret->fn_stub = NULL;
1336 ret->call_stub = NULL;
1337 ret->call_fp_stub = NULL;
1338 ret->global_got_area = GGA_NONE;
1339 ret->got_only_for_calls = TRUE;
1340 ret->readonly_reloc = FALSE;
1341 ret->has_static_relocs = FALSE;
1342 ret->no_fn_stub = FALSE;
1343 ret->need_fn_stub = FALSE;
1344 ret->has_nonpic_branches = FALSE;
1345 ret->needs_lazy_stub = FALSE;
1346 ret->use_plt_entry = FALSE;
1347 }
1348
1349 return (struct bfd_hash_entry *) ret;
1350 }
1351
1352 /* Allocate MIPS ELF private object data. */
1353
1354 bfd_boolean
1355 _bfd_mips_elf_mkobject (bfd *abfd)
1356 {
1357 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1358 MIPS_ELF_DATA);
1359 }
1360
1361 bfd_boolean
1362 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1363 {
1364 if (!sec->used_by_bfd)
1365 {
1366 struct _mips_elf_section_data *sdata;
1367 bfd_size_type amt = sizeof (*sdata);
1368
1369 sdata = bfd_zalloc (abfd, amt);
1370 if (sdata == NULL)
1371 return FALSE;
1372 sec->used_by_bfd = sdata;
1373 }
1374
1375 return _bfd_elf_new_section_hook (abfd, sec);
1376 }
1377 \f
1378 /* Read ECOFF debugging information from a .mdebug section into a
1379 ecoff_debug_info structure. */
1380
1381 bfd_boolean
1382 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1383 struct ecoff_debug_info *debug)
1384 {
1385 HDRR *symhdr;
1386 const struct ecoff_debug_swap *swap;
1387 char *ext_hdr;
1388
1389 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1390 memset (debug, 0, sizeof (*debug));
1391
1392 ext_hdr = bfd_malloc (swap->external_hdr_size);
1393 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1394 goto error_return;
1395
1396 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1397 swap->external_hdr_size))
1398 goto error_return;
1399
1400 symhdr = &debug->symbolic_header;
1401 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1402
1403 /* The symbolic header contains absolute file offsets and sizes to
1404 read. */
1405 #define READ(ptr, offset, count, size, type) \
1406 if (symhdr->count == 0) \
1407 debug->ptr = NULL; \
1408 else \
1409 { \
1410 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1411 debug->ptr = bfd_malloc (amt); \
1412 if (debug->ptr == NULL) \
1413 goto error_return; \
1414 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1415 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1416 goto error_return; \
1417 }
1418
1419 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1420 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1421 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1422 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1423 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1424 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1425 union aux_ext *);
1426 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1427 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1428 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1429 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1430 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1431 #undef READ
1432
1433 debug->fdr = NULL;
1434
1435 return TRUE;
1436
1437 error_return:
1438 if (ext_hdr != NULL)
1439 free (ext_hdr);
1440 if (debug->line != NULL)
1441 free (debug->line);
1442 if (debug->external_dnr != NULL)
1443 free (debug->external_dnr);
1444 if (debug->external_pdr != NULL)
1445 free (debug->external_pdr);
1446 if (debug->external_sym != NULL)
1447 free (debug->external_sym);
1448 if (debug->external_opt != NULL)
1449 free (debug->external_opt);
1450 if (debug->external_aux != NULL)
1451 free (debug->external_aux);
1452 if (debug->ss != NULL)
1453 free (debug->ss);
1454 if (debug->ssext != NULL)
1455 free (debug->ssext);
1456 if (debug->external_fdr != NULL)
1457 free (debug->external_fdr);
1458 if (debug->external_rfd != NULL)
1459 free (debug->external_rfd);
1460 if (debug->external_ext != NULL)
1461 free (debug->external_ext);
1462 return FALSE;
1463 }
1464 \f
1465 /* Swap RPDR (runtime procedure table entry) for output. */
1466
1467 static void
1468 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1469 {
1470 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1476
1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1479
1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1481 }
1482
1483 /* Create a runtime procedure table from the .mdebug section. */
1484
1485 static bfd_boolean
1486 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 struct bfd_link_info *info, asection *s,
1488 struct ecoff_debug_info *debug)
1489 {
1490 const struct ecoff_debug_swap *swap;
1491 HDRR *hdr = &debug->symbolic_header;
1492 RPDR *rpdr, *rp;
1493 struct rpdr_ext *erp;
1494 void *rtproc;
1495 struct pdr_ext *epdr;
1496 struct sym_ext *esym;
1497 char *ss, **sv;
1498 char *str;
1499 bfd_size_type size;
1500 bfd_size_type count;
1501 unsigned long sindex;
1502 unsigned long i;
1503 PDR pdr;
1504 SYMR sym;
1505 const char *no_name_func = _("static procedure (no name)");
1506
1507 epdr = NULL;
1508 rpdr = NULL;
1509 esym = NULL;
1510 ss = NULL;
1511 sv = NULL;
1512
1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1514
1515 sindex = strlen (no_name_func) + 1;
1516 count = hdr->ipdMax;
1517 if (count > 0)
1518 {
1519 size = swap->external_pdr_size;
1520
1521 epdr = bfd_malloc (size * count);
1522 if (epdr == NULL)
1523 goto error_return;
1524
1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1526 goto error_return;
1527
1528 size = sizeof (RPDR);
1529 rp = rpdr = bfd_malloc (size * count);
1530 if (rpdr == NULL)
1531 goto error_return;
1532
1533 size = sizeof (char *);
1534 sv = bfd_malloc (size * count);
1535 if (sv == NULL)
1536 goto error_return;
1537
1538 count = hdr->isymMax;
1539 size = swap->external_sym_size;
1540 esym = bfd_malloc (size * count);
1541 if (esym == NULL)
1542 goto error_return;
1543
1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1545 goto error_return;
1546
1547 count = hdr->issMax;
1548 ss = bfd_malloc (count);
1549 if (ss == NULL)
1550 goto error_return;
1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1552 goto error_return;
1553
1554 count = hdr->ipdMax;
1555 for (i = 0; i < (unsigned long) count; i++, rp++)
1556 {
1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1559 rp->adr = sym.value;
1560 rp->regmask = pdr.regmask;
1561 rp->regoffset = pdr.regoffset;
1562 rp->fregmask = pdr.fregmask;
1563 rp->fregoffset = pdr.fregoffset;
1564 rp->frameoffset = pdr.frameoffset;
1565 rp->framereg = pdr.framereg;
1566 rp->pcreg = pdr.pcreg;
1567 rp->irpss = sindex;
1568 sv[i] = ss + sym.iss;
1569 sindex += strlen (sv[i]) + 1;
1570 }
1571 }
1572
1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574 size = BFD_ALIGN (size, 16);
1575 rtproc = bfd_alloc (abfd, size);
1576 if (rtproc == NULL)
1577 {
1578 mips_elf_hash_table (info)->procedure_count = 0;
1579 goto error_return;
1580 }
1581
1582 mips_elf_hash_table (info)->procedure_count = count + 2;
1583
1584 erp = rtproc;
1585 memset (erp, 0, sizeof (struct rpdr_ext));
1586 erp++;
1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588 strcpy (str, no_name_func);
1589 str += strlen (no_name_func) + 1;
1590 for (i = 0; i < count; i++)
1591 {
1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593 strcpy (str, sv[i]);
1594 str += strlen (sv[i]) + 1;
1595 }
1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1597
1598 /* Set the size and contents of .rtproc section. */
1599 s->size = size;
1600 s->contents = rtproc;
1601
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
1604 s->map_head.link_order = NULL;
1605
1606 if (epdr != NULL)
1607 free (epdr);
1608 if (rpdr != NULL)
1609 free (rpdr);
1610 if (esym != NULL)
1611 free (esym);
1612 if (ss != NULL)
1613 free (ss);
1614 if (sv != NULL)
1615 free (sv);
1616
1617 return TRUE;
1618
1619 error_return:
1620 if (epdr != NULL)
1621 free (epdr);
1622 if (rpdr != NULL)
1623 free (rpdr);
1624 if (esym != NULL)
1625 free (esym);
1626 if (ss != NULL)
1627 free (ss);
1628 if (sv != NULL)
1629 free (sv);
1630 return FALSE;
1631 }
1632 \f
1633 /* We're going to create a stub for H. Create a symbol for the stub's
1634 value and size, to help make the disassembly easier to read. */
1635
1636 static bfd_boolean
1637 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1638 struct mips_elf_link_hash_entry *h,
1639 const char *prefix, asection *s, bfd_vma value,
1640 bfd_vma size)
1641 {
1642 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1643 struct bfd_link_hash_entry *bh;
1644 struct elf_link_hash_entry *elfh;
1645 char *name;
1646 bfd_boolean res;
1647
1648 if (micromips_p)
1649 value |= 1;
1650
1651 /* Create a new symbol. */
1652 name = concat (prefix, h->root.root.root.string, NULL);
1653 bh = NULL;
1654 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1655 BSF_LOCAL, s, value, NULL,
1656 TRUE, FALSE, &bh);
1657 free (name);
1658 if (! res)
1659 return FALSE;
1660
1661 /* Make it a local function. */
1662 elfh = (struct elf_link_hash_entry *) bh;
1663 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1664 elfh->size = size;
1665 elfh->forced_local = 1;
1666 if (micromips_p)
1667 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1668 return TRUE;
1669 }
1670
1671 /* We're about to redefine H. Create a symbol to represent H's
1672 current value and size, to help make the disassembly easier
1673 to read. */
1674
1675 static bfd_boolean
1676 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1677 struct mips_elf_link_hash_entry *h,
1678 const char *prefix)
1679 {
1680 struct bfd_link_hash_entry *bh;
1681 struct elf_link_hash_entry *elfh;
1682 char *name;
1683 asection *s;
1684 bfd_vma value;
1685 bfd_boolean res;
1686
1687 /* Read the symbol's value. */
1688 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1689 || h->root.root.type == bfd_link_hash_defweak);
1690 s = h->root.root.u.def.section;
1691 value = h->root.root.u.def.value;
1692
1693 /* Create a new symbol. */
1694 name = concat (prefix, h->root.root.root.string, NULL);
1695 bh = NULL;
1696 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1697 BSF_LOCAL, s, value, NULL,
1698 TRUE, FALSE, &bh);
1699 free (name);
1700 if (! res)
1701 return FALSE;
1702
1703 /* Make it local and copy the other attributes from H. */
1704 elfh = (struct elf_link_hash_entry *) bh;
1705 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1706 elfh->other = h->root.other;
1707 elfh->size = h->root.size;
1708 elfh->forced_local = 1;
1709 return TRUE;
1710 }
1711
1712 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1713 function rather than to a hard-float stub. */
1714
1715 static bfd_boolean
1716 section_allows_mips16_refs_p (asection *section)
1717 {
1718 const char *name;
1719
1720 name = bfd_get_section_name (section->owner, section);
1721 return (FN_STUB_P (name)
1722 || CALL_STUB_P (name)
1723 || CALL_FP_STUB_P (name)
1724 || strcmp (name, ".pdr") == 0);
1725 }
1726
1727 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1728 stub section of some kind. Return the R_SYMNDX of the target
1729 function, or 0 if we can't decide which function that is. */
1730
1731 static unsigned long
1732 mips16_stub_symndx (const struct elf_backend_data *bed,
1733 asection *sec ATTRIBUTE_UNUSED,
1734 const Elf_Internal_Rela *relocs,
1735 const Elf_Internal_Rela *relend)
1736 {
1737 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1738 const Elf_Internal_Rela *rel;
1739
1740 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1741 one in a compound relocation. */
1742 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1743 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1744 return ELF_R_SYM (sec->owner, rel->r_info);
1745
1746 /* Otherwise trust the first relocation, whatever its kind. This is
1747 the traditional behavior. */
1748 if (relocs < relend)
1749 return ELF_R_SYM (sec->owner, relocs->r_info);
1750
1751 return 0;
1752 }
1753
1754 /* Check the mips16 stubs for a particular symbol, and see if we can
1755 discard them. */
1756
1757 static void
1758 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1759 struct mips_elf_link_hash_entry *h)
1760 {
1761 /* Dynamic symbols must use the standard call interface, in case other
1762 objects try to call them. */
1763 if (h->fn_stub != NULL
1764 && h->root.dynindx != -1)
1765 {
1766 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1767 h->need_fn_stub = TRUE;
1768 }
1769
1770 if (h->fn_stub != NULL
1771 && ! h->need_fn_stub)
1772 {
1773 /* We don't need the fn_stub; the only references to this symbol
1774 are 16 bit calls. Clobber the size to 0 to prevent it from
1775 being included in the link. */
1776 h->fn_stub->size = 0;
1777 h->fn_stub->flags &= ~SEC_RELOC;
1778 h->fn_stub->reloc_count = 0;
1779 h->fn_stub->flags |= SEC_EXCLUDE;
1780 h->fn_stub->output_section = bfd_abs_section_ptr;
1781 }
1782
1783 if (h->call_stub != NULL
1784 && ELF_ST_IS_MIPS16 (h->root.other))
1785 {
1786 /* We don't need the call_stub; this is a 16 bit function, so
1787 calls from other 16 bit functions are OK. Clobber the size
1788 to 0 to prevent it from being included in the link. */
1789 h->call_stub->size = 0;
1790 h->call_stub->flags &= ~SEC_RELOC;
1791 h->call_stub->reloc_count = 0;
1792 h->call_stub->flags |= SEC_EXCLUDE;
1793 h->call_stub->output_section = bfd_abs_section_ptr;
1794 }
1795
1796 if (h->call_fp_stub != NULL
1797 && ELF_ST_IS_MIPS16 (h->root.other))
1798 {
1799 /* We don't need the call_stub; this is a 16 bit function, so
1800 calls from other 16 bit functions are OK. Clobber the size
1801 to 0 to prevent it from being included in the link. */
1802 h->call_fp_stub->size = 0;
1803 h->call_fp_stub->flags &= ~SEC_RELOC;
1804 h->call_fp_stub->reloc_count = 0;
1805 h->call_fp_stub->flags |= SEC_EXCLUDE;
1806 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1807 }
1808 }
1809
1810 /* Hashtable callbacks for mips_elf_la25_stubs. */
1811
1812 static hashval_t
1813 mips_elf_la25_stub_hash (const void *entry_)
1814 {
1815 const struct mips_elf_la25_stub *entry;
1816
1817 entry = (struct mips_elf_la25_stub *) entry_;
1818 return entry->h->root.root.u.def.section->id
1819 + entry->h->root.root.u.def.value;
1820 }
1821
1822 static int
1823 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1824 {
1825 const struct mips_elf_la25_stub *entry1, *entry2;
1826
1827 entry1 = (struct mips_elf_la25_stub *) entry1_;
1828 entry2 = (struct mips_elf_la25_stub *) entry2_;
1829 return ((entry1->h->root.root.u.def.section
1830 == entry2->h->root.root.u.def.section)
1831 && (entry1->h->root.root.u.def.value
1832 == entry2->h->root.root.u.def.value));
1833 }
1834
1835 /* Called by the linker to set up the la25 stub-creation code. FN is
1836 the linker's implementation of add_stub_function. Return true on
1837 success. */
1838
1839 bfd_boolean
1840 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1841 asection *(*fn) (const char *, asection *,
1842 asection *))
1843 {
1844 struct mips_elf_link_hash_table *htab;
1845
1846 htab = mips_elf_hash_table (info);
1847 if (htab == NULL)
1848 return FALSE;
1849
1850 htab->add_stub_section = fn;
1851 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1852 mips_elf_la25_stub_eq, NULL);
1853 if (htab->la25_stubs == NULL)
1854 return FALSE;
1855
1856 return TRUE;
1857 }
1858
1859 /* Return true if H is a locally-defined PIC function, in the sense
1860 that it or its fn_stub might need $25 to be valid on entry.
1861 Note that MIPS16 functions set up $gp using PC-relative instructions,
1862 so they themselves never need $25 to be valid. Only non-MIPS16
1863 entry points are of interest here. */
1864
1865 static bfd_boolean
1866 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1867 {
1868 return ((h->root.root.type == bfd_link_hash_defined
1869 || h->root.root.type == bfd_link_hash_defweak)
1870 && h->root.def_regular
1871 && !bfd_is_abs_section (h->root.root.u.def.section)
1872 && !bfd_is_und_section (h->root.root.u.def.section)
1873 && (!ELF_ST_IS_MIPS16 (h->root.other)
1874 || (h->fn_stub && h->need_fn_stub))
1875 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1876 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1877 }
1878
1879 /* Set *SEC to the input section that contains the target of STUB.
1880 Return the offset of the target from the start of that section. */
1881
1882 static bfd_vma
1883 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1884 asection **sec)
1885 {
1886 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1887 {
1888 BFD_ASSERT (stub->h->need_fn_stub);
1889 *sec = stub->h->fn_stub;
1890 return 0;
1891 }
1892 else
1893 {
1894 *sec = stub->h->root.root.u.def.section;
1895 return stub->h->root.root.u.def.value;
1896 }
1897 }
1898
1899 /* STUB describes an la25 stub that we have decided to implement
1900 by inserting an LUI/ADDIU pair before the target function.
1901 Create the section and redirect the function symbol to it. */
1902
1903 static bfd_boolean
1904 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1905 struct bfd_link_info *info)
1906 {
1907 struct mips_elf_link_hash_table *htab;
1908 char *name;
1909 asection *s, *input_section;
1910 unsigned int align;
1911
1912 htab = mips_elf_hash_table (info);
1913 if (htab == NULL)
1914 return FALSE;
1915
1916 /* Create a unique name for the new section. */
1917 name = bfd_malloc (11 + sizeof (".text.stub."));
1918 if (name == NULL)
1919 return FALSE;
1920 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1921
1922 /* Create the section. */
1923 mips_elf_get_la25_target (stub, &input_section);
1924 s = htab->add_stub_section (name, input_section,
1925 input_section->output_section);
1926 if (s == NULL)
1927 return FALSE;
1928
1929 /* Make sure that any padding goes before the stub. */
1930 align = input_section->alignment_power;
1931 if (!bfd_set_section_alignment (s->owner, s, align))
1932 return FALSE;
1933 if (align > 3)
1934 s->size = (1 << align) - 8;
1935
1936 /* Create a symbol for the stub. */
1937 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1938 stub->stub_section = s;
1939 stub->offset = s->size;
1940
1941 /* Allocate room for it. */
1942 s->size += 8;
1943 return TRUE;
1944 }
1945
1946 /* STUB describes an la25 stub that we have decided to implement
1947 with a separate trampoline. Allocate room for it and redirect
1948 the function symbol to it. */
1949
1950 static bfd_boolean
1951 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1952 struct bfd_link_info *info)
1953 {
1954 struct mips_elf_link_hash_table *htab;
1955 asection *s;
1956
1957 htab = mips_elf_hash_table (info);
1958 if (htab == NULL)
1959 return FALSE;
1960
1961 /* Create a trampoline section, if we haven't already. */
1962 s = htab->strampoline;
1963 if (s == NULL)
1964 {
1965 asection *input_section = stub->h->root.root.u.def.section;
1966 s = htab->add_stub_section (".text", NULL,
1967 input_section->output_section);
1968 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1969 return FALSE;
1970 htab->strampoline = s;
1971 }
1972
1973 /* Create a symbol for the stub. */
1974 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1975 stub->stub_section = s;
1976 stub->offset = s->size;
1977
1978 /* Allocate room for it. */
1979 s->size += 16;
1980 return TRUE;
1981 }
1982
1983 /* H describes a symbol that needs an la25 stub. Make sure that an
1984 appropriate stub exists and point H at it. */
1985
1986 static bfd_boolean
1987 mips_elf_add_la25_stub (struct bfd_link_info *info,
1988 struct mips_elf_link_hash_entry *h)
1989 {
1990 struct mips_elf_link_hash_table *htab;
1991 struct mips_elf_la25_stub search, *stub;
1992 bfd_boolean use_trampoline_p;
1993 asection *s;
1994 bfd_vma value;
1995 void **slot;
1996
1997 /* Describe the stub we want. */
1998 search.stub_section = NULL;
1999 search.offset = 0;
2000 search.h = h;
2001
2002 /* See if we've already created an equivalent stub. */
2003 htab = mips_elf_hash_table (info);
2004 if (htab == NULL)
2005 return FALSE;
2006
2007 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
2008 if (slot == NULL)
2009 return FALSE;
2010
2011 stub = (struct mips_elf_la25_stub *) *slot;
2012 if (stub != NULL)
2013 {
2014 /* We can reuse the existing stub. */
2015 h->la25_stub = stub;
2016 return TRUE;
2017 }
2018
2019 /* Create a permanent copy of ENTRY and add it to the hash table. */
2020 stub = bfd_malloc (sizeof (search));
2021 if (stub == NULL)
2022 return FALSE;
2023 *stub = search;
2024 *slot = stub;
2025
2026 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2027 of the section and if we would need no more than 2 nops. */
2028 value = mips_elf_get_la25_target (stub, &s);
2029 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2030 value &= ~1;
2031 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2032
2033 h->la25_stub = stub;
2034 return (use_trampoline_p
2035 ? mips_elf_add_la25_trampoline (stub, info)
2036 : mips_elf_add_la25_intro (stub, info));
2037 }
2038
2039 /* A mips_elf_link_hash_traverse callback that is called before sizing
2040 sections. DATA points to a mips_htab_traverse_info structure. */
2041
2042 static bfd_boolean
2043 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2044 {
2045 struct mips_htab_traverse_info *hti;
2046
2047 hti = (struct mips_htab_traverse_info *) data;
2048 if (!bfd_link_relocatable (hti->info))
2049 mips_elf_check_mips16_stubs (hti->info, h);
2050
2051 if (mips_elf_local_pic_function_p (h))
2052 {
2053 /* PR 12845: If H is in a section that has been garbage
2054 collected it will have its output section set to *ABS*. */
2055 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2056 return TRUE;
2057
2058 /* H is a function that might need $25 to be valid on entry.
2059 If we're creating a non-PIC relocatable object, mark H as
2060 being PIC. If we're creating a non-relocatable object with
2061 non-PIC branches and jumps to H, make sure that H has an la25
2062 stub. */
2063 if (bfd_link_relocatable (hti->info))
2064 {
2065 if (!PIC_OBJECT_P (hti->output_bfd))
2066 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2067 }
2068 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2069 {
2070 hti->error = TRUE;
2071 return FALSE;
2072 }
2073 }
2074 return TRUE;
2075 }
2076 \f
2077 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2078 Most mips16 instructions are 16 bits, but these instructions
2079 are 32 bits.
2080
2081 The format of these instructions is:
2082
2083 +--------------+--------------------------------+
2084 | JALX | X| Imm 20:16 | Imm 25:21 |
2085 +--------------+--------------------------------+
2086 | Immediate 15:0 |
2087 +-----------------------------------------------+
2088
2089 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2090 Note that the immediate value in the first word is swapped.
2091
2092 When producing a relocatable object file, R_MIPS16_26 is
2093 handled mostly like R_MIPS_26. In particular, the addend is
2094 stored as a straight 26-bit value in a 32-bit instruction.
2095 (gas makes life simpler for itself by never adjusting a
2096 R_MIPS16_26 reloc to be against a section, so the addend is
2097 always zero). However, the 32 bit instruction is stored as 2
2098 16-bit values, rather than a single 32-bit value. In a
2099 big-endian file, the result is the same; in a little-endian
2100 file, the two 16-bit halves of the 32 bit value are swapped.
2101 This is so that a disassembler can recognize the jal
2102 instruction.
2103
2104 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2105 instruction stored as two 16-bit values. The addend A is the
2106 contents of the targ26 field. The calculation is the same as
2107 R_MIPS_26. When storing the calculated value, reorder the
2108 immediate value as shown above, and don't forget to store the
2109 value as two 16-bit values.
2110
2111 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2112 defined as
2113
2114 big-endian:
2115 +--------+----------------------+
2116 | | |
2117 | | targ26-16 |
2118 |31 26|25 0|
2119 +--------+----------------------+
2120
2121 little-endian:
2122 +----------+------+-------------+
2123 | | | |
2124 | sub1 | | sub2 |
2125 |0 9|10 15|16 31|
2126 +----------+--------------------+
2127 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2128 ((sub1 << 16) | sub2)).
2129
2130 When producing a relocatable object file, the calculation is
2131 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2132 When producing a fully linked file, the calculation is
2133 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2134 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2135
2136 The table below lists the other MIPS16 instruction relocations.
2137 Each one is calculated in the same way as the non-MIPS16 relocation
2138 given on the right, but using the extended MIPS16 layout of 16-bit
2139 immediate fields:
2140
2141 R_MIPS16_GPREL R_MIPS_GPREL16
2142 R_MIPS16_GOT16 R_MIPS_GOT16
2143 R_MIPS16_CALL16 R_MIPS_CALL16
2144 R_MIPS16_HI16 R_MIPS_HI16
2145 R_MIPS16_LO16 R_MIPS_LO16
2146
2147 A typical instruction will have a format like this:
2148
2149 +--------------+--------------------------------+
2150 | EXTEND | Imm 10:5 | Imm 15:11 |
2151 +--------------+--------------------------------+
2152 | Major | rx | ry | Imm 4:0 |
2153 +--------------+--------------------------------+
2154
2155 EXTEND is the five bit value 11110. Major is the instruction
2156 opcode.
2157
2158 All we need to do here is shuffle the bits appropriately.
2159 As above, the two 16-bit halves must be swapped on a
2160 little-endian system.
2161
2162 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2163 relocatable field is shifted by 1 rather than 2 and the same bit
2164 shuffling is done as with the relocations above. */
2165
2166 static inline bfd_boolean
2167 mips16_reloc_p (int r_type)
2168 {
2169 switch (r_type)
2170 {
2171 case R_MIPS16_26:
2172 case R_MIPS16_GPREL:
2173 case R_MIPS16_GOT16:
2174 case R_MIPS16_CALL16:
2175 case R_MIPS16_HI16:
2176 case R_MIPS16_LO16:
2177 case R_MIPS16_TLS_GD:
2178 case R_MIPS16_TLS_LDM:
2179 case R_MIPS16_TLS_DTPREL_HI16:
2180 case R_MIPS16_TLS_DTPREL_LO16:
2181 case R_MIPS16_TLS_GOTTPREL:
2182 case R_MIPS16_TLS_TPREL_HI16:
2183 case R_MIPS16_TLS_TPREL_LO16:
2184 case R_MIPS16_PC16_S1:
2185 return TRUE;
2186
2187 default:
2188 return FALSE;
2189 }
2190 }
2191
2192 /* Check if a microMIPS reloc. */
2193
2194 static inline bfd_boolean
2195 micromips_reloc_p (unsigned int r_type)
2196 {
2197 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2198 }
2199
2200 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2201 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2202 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2203
2204 static inline bfd_boolean
2205 micromips_reloc_shuffle_p (unsigned int r_type)
2206 {
2207 return (micromips_reloc_p (r_type)
2208 && r_type != R_MICROMIPS_PC7_S1
2209 && r_type != R_MICROMIPS_PC10_S1);
2210 }
2211
2212 static inline bfd_boolean
2213 got16_reloc_p (int r_type)
2214 {
2215 return (r_type == R_MIPS_GOT16
2216 || r_type == R_MIPS16_GOT16
2217 || r_type == R_MICROMIPS_GOT16);
2218 }
2219
2220 static inline bfd_boolean
2221 call16_reloc_p (int r_type)
2222 {
2223 return (r_type == R_MIPS_CALL16
2224 || r_type == R_MIPS16_CALL16
2225 || r_type == R_MICROMIPS_CALL16);
2226 }
2227
2228 static inline bfd_boolean
2229 got_disp_reloc_p (unsigned int r_type)
2230 {
2231 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2232 }
2233
2234 static inline bfd_boolean
2235 got_page_reloc_p (unsigned int r_type)
2236 {
2237 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2238 }
2239
2240 static inline bfd_boolean
2241 got_lo16_reloc_p (unsigned int r_type)
2242 {
2243 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2244 }
2245
2246 static inline bfd_boolean
2247 call_hi16_reloc_p (unsigned int r_type)
2248 {
2249 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2250 }
2251
2252 static inline bfd_boolean
2253 call_lo16_reloc_p (unsigned int r_type)
2254 {
2255 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2256 }
2257
2258 static inline bfd_boolean
2259 hi16_reloc_p (int r_type)
2260 {
2261 return (r_type == R_MIPS_HI16
2262 || r_type == R_MIPS16_HI16
2263 || r_type == R_MICROMIPS_HI16
2264 || r_type == R_MIPS_PCHI16);
2265 }
2266
2267 static inline bfd_boolean
2268 lo16_reloc_p (int r_type)
2269 {
2270 return (r_type == R_MIPS_LO16
2271 || r_type == R_MIPS16_LO16
2272 || r_type == R_MICROMIPS_LO16
2273 || r_type == R_MIPS_PCLO16);
2274 }
2275
2276 static inline bfd_boolean
2277 mips16_call_reloc_p (int r_type)
2278 {
2279 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2280 }
2281
2282 static inline bfd_boolean
2283 jal_reloc_p (int r_type)
2284 {
2285 return (r_type == R_MIPS_26
2286 || r_type == R_MIPS16_26
2287 || r_type == R_MICROMIPS_26_S1);
2288 }
2289
2290 static inline bfd_boolean
2291 b_reloc_p (int r_type)
2292 {
2293 return (r_type == R_MIPS_PC26_S2
2294 || r_type == R_MIPS_PC21_S2
2295 || r_type == R_MIPS_PC16
2296 || r_type == R_MIPS_GNU_REL16_S2
2297 || r_type == R_MIPS16_PC16_S1
2298 || r_type == R_MICROMIPS_PC16_S1
2299 || r_type == R_MICROMIPS_PC10_S1
2300 || r_type == R_MICROMIPS_PC7_S1);
2301 }
2302
2303 static inline bfd_boolean
2304 aligned_pcrel_reloc_p (int r_type)
2305 {
2306 return (r_type == R_MIPS_PC18_S3
2307 || r_type == R_MIPS_PC19_S2);
2308 }
2309
2310 static inline bfd_boolean
2311 branch_reloc_p (int r_type)
2312 {
2313 return (r_type == R_MIPS_26
2314 || r_type == R_MIPS_PC26_S2
2315 || r_type == R_MIPS_PC21_S2
2316 || r_type == R_MIPS_PC16
2317 || r_type == R_MIPS_GNU_REL16_S2);
2318 }
2319
2320 static inline bfd_boolean
2321 mips16_branch_reloc_p (int r_type)
2322 {
2323 return (r_type == R_MIPS16_26
2324 || r_type == R_MIPS16_PC16_S1);
2325 }
2326
2327 static inline bfd_boolean
2328 micromips_branch_reloc_p (int r_type)
2329 {
2330 return (r_type == R_MICROMIPS_26_S1
2331 || r_type == R_MICROMIPS_PC16_S1
2332 || r_type == R_MICROMIPS_PC10_S1
2333 || r_type == R_MICROMIPS_PC7_S1);
2334 }
2335
2336 static inline bfd_boolean
2337 tls_gd_reloc_p (unsigned int r_type)
2338 {
2339 return (r_type == R_MIPS_TLS_GD
2340 || r_type == R_MIPS16_TLS_GD
2341 || r_type == R_MICROMIPS_TLS_GD);
2342 }
2343
2344 static inline bfd_boolean
2345 tls_ldm_reloc_p (unsigned int r_type)
2346 {
2347 return (r_type == R_MIPS_TLS_LDM
2348 || r_type == R_MIPS16_TLS_LDM
2349 || r_type == R_MICROMIPS_TLS_LDM);
2350 }
2351
2352 static inline bfd_boolean
2353 tls_gottprel_reloc_p (unsigned int r_type)
2354 {
2355 return (r_type == R_MIPS_TLS_GOTTPREL
2356 || r_type == R_MIPS16_TLS_GOTTPREL
2357 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2358 }
2359
2360 void
2361 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2362 bfd_boolean jal_shuffle, bfd_byte *data)
2363 {
2364 bfd_vma first, second, val;
2365
2366 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2367 return;
2368
2369 /* Pick up the first and second halfwords of the instruction. */
2370 first = bfd_get_16 (abfd, data);
2371 second = bfd_get_16 (abfd, data + 2);
2372 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2373 val = first << 16 | second;
2374 else if (r_type != R_MIPS16_26)
2375 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2376 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2377 else
2378 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2379 | ((first & 0x1f) << 21) | second);
2380 bfd_put_32 (abfd, val, data);
2381 }
2382
2383 void
2384 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2385 bfd_boolean jal_shuffle, bfd_byte *data)
2386 {
2387 bfd_vma first, second, val;
2388
2389 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2390 return;
2391
2392 val = bfd_get_32 (abfd, data);
2393 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2394 {
2395 second = val & 0xffff;
2396 first = val >> 16;
2397 }
2398 else if (r_type != R_MIPS16_26)
2399 {
2400 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2401 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2402 }
2403 else
2404 {
2405 second = val & 0xffff;
2406 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2407 | ((val >> 21) & 0x1f);
2408 }
2409 bfd_put_16 (abfd, second, data + 2);
2410 bfd_put_16 (abfd, first, data);
2411 }
2412
2413 bfd_reloc_status_type
2414 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2415 arelent *reloc_entry, asection *input_section,
2416 bfd_boolean relocatable, void *data, bfd_vma gp)
2417 {
2418 bfd_vma relocation;
2419 bfd_signed_vma val;
2420 bfd_reloc_status_type status;
2421
2422 if (bfd_is_com_section (symbol->section))
2423 relocation = 0;
2424 else
2425 relocation = symbol->value;
2426
2427 relocation += symbol->section->output_section->vma;
2428 relocation += symbol->section->output_offset;
2429
2430 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2431 return bfd_reloc_outofrange;
2432
2433 /* Set val to the offset into the section or symbol. */
2434 val = reloc_entry->addend;
2435
2436 _bfd_mips_elf_sign_extend (val, 16);
2437
2438 /* Adjust val for the final section location and GP value. If we
2439 are producing relocatable output, we don't want to do this for
2440 an external symbol. */
2441 if (! relocatable
2442 || (symbol->flags & BSF_SECTION_SYM) != 0)
2443 val += relocation - gp;
2444
2445 if (reloc_entry->howto->partial_inplace)
2446 {
2447 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2448 (bfd_byte *) data
2449 + reloc_entry->address);
2450 if (status != bfd_reloc_ok)
2451 return status;
2452 }
2453 else
2454 reloc_entry->addend = val;
2455
2456 if (relocatable)
2457 reloc_entry->address += input_section->output_offset;
2458
2459 return bfd_reloc_ok;
2460 }
2461
2462 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2463 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2464 that contains the relocation field and DATA points to the start of
2465 INPUT_SECTION. */
2466
2467 struct mips_hi16
2468 {
2469 struct mips_hi16 *next;
2470 bfd_byte *data;
2471 asection *input_section;
2472 arelent rel;
2473 };
2474
2475 /* FIXME: This should not be a static variable. */
2476
2477 static struct mips_hi16 *mips_hi16_list;
2478
2479 /* A howto special_function for REL *HI16 relocations. We can only
2480 calculate the correct value once we've seen the partnering
2481 *LO16 relocation, so just save the information for later.
2482
2483 The ABI requires that the *LO16 immediately follow the *HI16.
2484 However, as a GNU extension, we permit an arbitrary number of
2485 *HI16s to be associated with a single *LO16. This significantly
2486 simplies the relocation handling in gcc. */
2487
2488 bfd_reloc_status_type
2489 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2490 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2491 asection *input_section, bfd *output_bfd,
2492 char **error_message ATTRIBUTE_UNUSED)
2493 {
2494 struct mips_hi16 *n;
2495
2496 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2497 return bfd_reloc_outofrange;
2498
2499 n = bfd_malloc (sizeof *n);
2500 if (n == NULL)
2501 return bfd_reloc_outofrange;
2502
2503 n->next = mips_hi16_list;
2504 n->data = data;
2505 n->input_section = input_section;
2506 n->rel = *reloc_entry;
2507 mips_hi16_list = n;
2508
2509 if (output_bfd != NULL)
2510 reloc_entry->address += input_section->output_offset;
2511
2512 return bfd_reloc_ok;
2513 }
2514
2515 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2516 like any other 16-bit relocation when applied to global symbols, but is
2517 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2518
2519 bfd_reloc_status_type
2520 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2521 void *data, asection *input_section,
2522 bfd *output_bfd, char **error_message)
2523 {
2524 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2525 || bfd_is_und_section (bfd_get_section (symbol))
2526 || bfd_is_com_section (bfd_get_section (symbol)))
2527 /* The relocation is against a global symbol. */
2528 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2529 input_section, output_bfd,
2530 error_message);
2531
2532 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2533 input_section, output_bfd, error_message);
2534 }
2535
2536 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2537 is a straightforward 16 bit inplace relocation, but we must deal with
2538 any partnering high-part relocations as well. */
2539
2540 bfd_reloc_status_type
2541 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2542 void *data, asection *input_section,
2543 bfd *output_bfd, char **error_message)
2544 {
2545 bfd_vma vallo;
2546 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2547
2548 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2549 return bfd_reloc_outofrange;
2550
2551 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2552 location);
2553 vallo = bfd_get_32 (abfd, location);
2554 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2555 location);
2556
2557 while (mips_hi16_list != NULL)
2558 {
2559 bfd_reloc_status_type ret;
2560 struct mips_hi16 *hi;
2561
2562 hi = mips_hi16_list;
2563
2564 /* R_MIPS*_GOT16 relocations are something of a special case. We
2565 want to install the addend in the same way as for a R_MIPS*_HI16
2566 relocation (with a rightshift of 16). However, since GOT16
2567 relocations can also be used with global symbols, their howto
2568 has a rightshift of 0. */
2569 if (hi->rel.howto->type == R_MIPS_GOT16)
2570 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2571 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2572 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2573 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2574 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2575
2576 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2577 carry or borrow will induce a change of +1 or -1 in the high part. */
2578 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2579
2580 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2581 hi->input_section, output_bfd,
2582 error_message);
2583 if (ret != bfd_reloc_ok)
2584 return ret;
2585
2586 mips_hi16_list = hi->next;
2587 free (hi);
2588 }
2589
2590 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2591 input_section, output_bfd,
2592 error_message);
2593 }
2594
2595 /* A generic howto special_function. This calculates and installs the
2596 relocation itself, thus avoiding the oft-discussed problems in
2597 bfd_perform_relocation and bfd_install_relocation. */
2598
2599 bfd_reloc_status_type
2600 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2601 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2602 asection *input_section, bfd *output_bfd,
2603 char **error_message ATTRIBUTE_UNUSED)
2604 {
2605 bfd_signed_vma val;
2606 bfd_reloc_status_type status;
2607 bfd_boolean relocatable;
2608
2609 relocatable = (output_bfd != NULL);
2610
2611 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2612 return bfd_reloc_outofrange;
2613
2614 /* Build up the field adjustment in VAL. */
2615 val = 0;
2616 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2617 {
2618 /* Either we're calculating the final field value or we have a
2619 relocation against a section symbol. Add in the section's
2620 offset or address. */
2621 val += symbol->section->output_section->vma;
2622 val += symbol->section->output_offset;
2623 }
2624
2625 if (!relocatable)
2626 {
2627 /* We're calculating the final field value. Add in the symbol's value
2628 and, if pc-relative, subtract the address of the field itself. */
2629 val += symbol->value;
2630 if (reloc_entry->howto->pc_relative)
2631 {
2632 val -= input_section->output_section->vma;
2633 val -= input_section->output_offset;
2634 val -= reloc_entry->address;
2635 }
2636 }
2637
2638 /* VAL is now the final adjustment. If we're keeping this relocation
2639 in the output file, and if the relocation uses a separate addend,
2640 we just need to add VAL to that addend. Otherwise we need to add
2641 VAL to the relocation field itself. */
2642 if (relocatable && !reloc_entry->howto->partial_inplace)
2643 reloc_entry->addend += val;
2644 else
2645 {
2646 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2647
2648 /* Add in the separate addend, if any. */
2649 val += reloc_entry->addend;
2650
2651 /* Add VAL to the relocation field. */
2652 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2653 location);
2654 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2655 location);
2656 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2657 location);
2658
2659 if (status != bfd_reloc_ok)
2660 return status;
2661 }
2662
2663 if (relocatable)
2664 reloc_entry->address += input_section->output_offset;
2665
2666 return bfd_reloc_ok;
2667 }
2668 \f
2669 /* Swap an entry in a .gptab section. Note that these routines rely
2670 on the equivalence of the two elements of the union. */
2671
2672 static void
2673 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2674 Elf32_gptab *in)
2675 {
2676 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2677 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2678 }
2679
2680 static void
2681 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2682 Elf32_External_gptab *ex)
2683 {
2684 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2685 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2686 }
2687
2688 static void
2689 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2690 Elf32_External_compact_rel *ex)
2691 {
2692 H_PUT_32 (abfd, in->id1, ex->id1);
2693 H_PUT_32 (abfd, in->num, ex->num);
2694 H_PUT_32 (abfd, in->id2, ex->id2);
2695 H_PUT_32 (abfd, in->offset, ex->offset);
2696 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2697 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2698 }
2699
2700 static void
2701 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2702 Elf32_External_crinfo *ex)
2703 {
2704 unsigned long l;
2705
2706 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2707 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2708 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2709 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2710 H_PUT_32 (abfd, l, ex->info);
2711 H_PUT_32 (abfd, in->konst, ex->konst);
2712 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2713 }
2714 \f
2715 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2716 routines swap this structure in and out. They are used outside of
2717 BFD, so they are globally visible. */
2718
2719 void
2720 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2721 Elf32_RegInfo *in)
2722 {
2723 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2724 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2725 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2726 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2727 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2728 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2729 }
2730
2731 void
2732 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2733 Elf32_External_RegInfo *ex)
2734 {
2735 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2736 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2737 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2738 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2739 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2740 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2741 }
2742
2743 /* In the 64 bit ABI, the .MIPS.options section holds register
2744 information in an Elf64_Reginfo structure. These routines swap
2745 them in and out. They are globally visible because they are used
2746 outside of BFD. These routines are here so that gas can call them
2747 without worrying about whether the 64 bit ABI has been included. */
2748
2749 void
2750 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2751 Elf64_Internal_RegInfo *in)
2752 {
2753 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2754 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2755 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2756 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2757 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2758 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2759 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2760 }
2761
2762 void
2763 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2764 Elf64_External_RegInfo *ex)
2765 {
2766 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2767 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2768 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2769 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2770 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2771 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2772 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2773 }
2774
2775 /* Swap in an options header. */
2776
2777 void
2778 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2779 Elf_Internal_Options *in)
2780 {
2781 in->kind = H_GET_8 (abfd, ex->kind);
2782 in->size = H_GET_8 (abfd, ex->size);
2783 in->section = H_GET_16 (abfd, ex->section);
2784 in->info = H_GET_32 (abfd, ex->info);
2785 }
2786
2787 /* Swap out an options header. */
2788
2789 void
2790 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2791 Elf_External_Options *ex)
2792 {
2793 H_PUT_8 (abfd, in->kind, ex->kind);
2794 H_PUT_8 (abfd, in->size, ex->size);
2795 H_PUT_16 (abfd, in->section, ex->section);
2796 H_PUT_32 (abfd, in->info, ex->info);
2797 }
2798
2799 /* Swap in an abiflags structure. */
2800
2801 void
2802 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2803 const Elf_External_ABIFlags_v0 *ex,
2804 Elf_Internal_ABIFlags_v0 *in)
2805 {
2806 in->version = H_GET_16 (abfd, ex->version);
2807 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2808 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2809 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2810 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2811 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2812 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2813 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2814 in->ases = H_GET_32 (abfd, ex->ases);
2815 in->flags1 = H_GET_32 (abfd, ex->flags1);
2816 in->flags2 = H_GET_32 (abfd, ex->flags2);
2817 }
2818
2819 /* Swap out an abiflags structure. */
2820
2821 void
2822 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2823 const Elf_Internal_ABIFlags_v0 *in,
2824 Elf_External_ABIFlags_v0 *ex)
2825 {
2826 H_PUT_16 (abfd, in->version, ex->version);
2827 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2828 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2829 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2830 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2831 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2832 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2833 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2834 H_PUT_32 (abfd, in->ases, ex->ases);
2835 H_PUT_32 (abfd, in->flags1, ex->flags1);
2836 H_PUT_32 (abfd, in->flags2, ex->flags2);
2837 }
2838 \f
2839 /* This function is called via qsort() to sort the dynamic relocation
2840 entries by increasing r_symndx value. */
2841
2842 static int
2843 sort_dynamic_relocs (const void *arg1, const void *arg2)
2844 {
2845 Elf_Internal_Rela int_reloc1;
2846 Elf_Internal_Rela int_reloc2;
2847 int diff;
2848
2849 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2850 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2851
2852 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2853 if (diff != 0)
2854 return diff;
2855
2856 if (int_reloc1.r_offset < int_reloc2.r_offset)
2857 return -1;
2858 if (int_reloc1.r_offset > int_reloc2.r_offset)
2859 return 1;
2860 return 0;
2861 }
2862
2863 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2864
2865 static int
2866 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2867 const void *arg2 ATTRIBUTE_UNUSED)
2868 {
2869 #ifdef BFD64
2870 Elf_Internal_Rela int_reloc1[3];
2871 Elf_Internal_Rela int_reloc2[3];
2872
2873 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2874 (reldyn_sorting_bfd, arg1, int_reloc1);
2875 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2876 (reldyn_sorting_bfd, arg2, int_reloc2);
2877
2878 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2879 return -1;
2880 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2881 return 1;
2882
2883 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2884 return -1;
2885 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2886 return 1;
2887 return 0;
2888 #else
2889 abort ();
2890 #endif
2891 }
2892
2893
2894 /* This routine is used to write out ECOFF debugging external symbol
2895 information. It is called via mips_elf_link_hash_traverse. The
2896 ECOFF external symbol information must match the ELF external
2897 symbol information. Unfortunately, at this point we don't know
2898 whether a symbol is required by reloc information, so the two
2899 tables may wind up being different. We must sort out the external
2900 symbol information before we can set the final size of the .mdebug
2901 section, and we must set the size of the .mdebug section before we
2902 can relocate any sections, and we can't know which symbols are
2903 required by relocation until we relocate the sections.
2904 Fortunately, it is relatively unlikely that any symbol will be
2905 stripped but required by a reloc. In particular, it can not happen
2906 when generating a final executable. */
2907
2908 static bfd_boolean
2909 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2910 {
2911 struct extsym_info *einfo = data;
2912 bfd_boolean strip;
2913 asection *sec, *output_section;
2914
2915 if (h->root.indx == -2)
2916 strip = FALSE;
2917 else if ((h->root.def_dynamic
2918 || h->root.ref_dynamic
2919 || h->root.type == bfd_link_hash_new)
2920 && !h->root.def_regular
2921 && !h->root.ref_regular)
2922 strip = TRUE;
2923 else if (einfo->info->strip == strip_all
2924 || (einfo->info->strip == strip_some
2925 && bfd_hash_lookup (einfo->info->keep_hash,
2926 h->root.root.root.string,
2927 FALSE, FALSE) == NULL))
2928 strip = TRUE;
2929 else
2930 strip = FALSE;
2931
2932 if (strip)
2933 return TRUE;
2934
2935 if (h->esym.ifd == -2)
2936 {
2937 h->esym.jmptbl = 0;
2938 h->esym.cobol_main = 0;
2939 h->esym.weakext = 0;
2940 h->esym.reserved = 0;
2941 h->esym.ifd = ifdNil;
2942 h->esym.asym.value = 0;
2943 h->esym.asym.st = stGlobal;
2944
2945 if (h->root.root.type == bfd_link_hash_undefined
2946 || h->root.root.type == bfd_link_hash_undefweak)
2947 {
2948 const char *name;
2949
2950 /* Use undefined class. Also, set class and type for some
2951 special symbols. */
2952 name = h->root.root.root.string;
2953 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2954 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2955 {
2956 h->esym.asym.sc = scData;
2957 h->esym.asym.st = stLabel;
2958 h->esym.asym.value = 0;
2959 }
2960 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2961 {
2962 h->esym.asym.sc = scAbs;
2963 h->esym.asym.st = stLabel;
2964 h->esym.asym.value =
2965 mips_elf_hash_table (einfo->info)->procedure_count;
2966 }
2967 else
2968 h->esym.asym.sc = scUndefined;
2969 }
2970 else if (h->root.root.type != bfd_link_hash_defined
2971 && h->root.root.type != bfd_link_hash_defweak)
2972 h->esym.asym.sc = scAbs;
2973 else
2974 {
2975 const char *name;
2976
2977 sec = h->root.root.u.def.section;
2978 output_section = sec->output_section;
2979
2980 /* When making a shared library and symbol h is the one from
2981 the another shared library, OUTPUT_SECTION may be null. */
2982 if (output_section == NULL)
2983 h->esym.asym.sc = scUndefined;
2984 else
2985 {
2986 name = bfd_section_name (output_section->owner, output_section);
2987
2988 if (strcmp (name, ".text") == 0)
2989 h->esym.asym.sc = scText;
2990 else if (strcmp (name, ".data") == 0)
2991 h->esym.asym.sc = scData;
2992 else if (strcmp (name, ".sdata") == 0)
2993 h->esym.asym.sc = scSData;
2994 else if (strcmp (name, ".rodata") == 0
2995 || strcmp (name, ".rdata") == 0)
2996 h->esym.asym.sc = scRData;
2997 else if (strcmp (name, ".bss") == 0)
2998 h->esym.asym.sc = scBss;
2999 else if (strcmp (name, ".sbss") == 0)
3000 h->esym.asym.sc = scSBss;
3001 else if (strcmp (name, ".init") == 0)
3002 h->esym.asym.sc = scInit;
3003 else if (strcmp (name, ".fini") == 0)
3004 h->esym.asym.sc = scFini;
3005 else
3006 h->esym.asym.sc = scAbs;
3007 }
3008 }
3009
3010 h->esym.asym.reserved = 0;
3011 h->esym.asym.index = indexNil;
3012 }
3013
3014 if (h->root.root.type == bfd_link_hash_common)
3015 h->esym.asym.value = h->root.root.u.c.size;
3016 else if (h->root.root.type == bfd_link_hash_defined
3017 || h->root.root.type == bfd_link_hash_defweak)
3018 {
3019 if (h->esym.asym.sc == scCommon)
3020 h->esym.asym.sc = scBss;
3021 else if (h->esym.asym.sc == scSCommon)
3022 h->esym.asym.sc = scSBss;
3023
3024 sec = h->root.root.u.def.section;
3025 output_section = sec->output_section;
3026 if (output_section != NULL)
3027 h->esym.asym.value = (h->root.root.u.def.value
3028 + sec->output_offset
3029 + output_section->vma);
3030 else
3031 h->esym.asym.value = 0;
3032 }
3033 else
3034 {
3035 struct mips_elf_link_hash_entry *hd = h;
3036
3037 while (hd->root.root.type == bfd_link_hash_indirect)
3038 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3039
3040 if (hd->needs_lazy_stub)
3041 {
3042 BFD_ASSERT (hd->root.plt.plist != NULL);
3043 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3044 /* Set type and value for a symbol with a function stub. */
3045 h->esym.asym.st = stProc;
3046 sec = hd->root.root.u.def.section;
3047 if (sec == NULL)
3048 h->esym.asym.value = 0;
3049 else
3050 {
3051 output_section = sec->output_section;
3052 if (output_section != NULL)
3053 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3054 + sec->output_offset
3055 + output_section->vma);
3056 else
3057 h->esym.asym.value = 0;
3058 }
3059 }
3060 }
3061
3062 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3063 h->root.root.root.string,
3064 &h->esym))
3065 {
3066 einfo->failed = TRUE;
3067 return FALSE;
3068 }
3069
3070 return TRUE;
3071 }
3072
3073 /* A comparison routine used to sort .gptab entries. */
3074
3075 static int
3076 gptab_compare (const void *p1, const void *p2)
3077 {
3078 const Elf32_gptab *a1 = p1;
3079 const Elf32_gptab *a2 = p2;
3080
3081 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3082 }
3083 \f
3084 /* Functions to manage the got entry hash table. */
3085
3086 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3087 hash number. */
3088
3089 static INLINE hashval_t
3090 mips_elf_hash_bfd_vma (bfd_vma addr)
3091 {
3092 #ifdef BFD64
3093 return addr + (addr >> 32);
3094 #else
3095 return addr;
3096 #endif
3097 }
3098
3099 static hashval_t
3100 mips_elf_got_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3103
3104 return (entry->symndx
3105 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3106 + (entry->tls_type == GOT_TLS_LDM ? 0
3107 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3108 : entry->symndx >= 0 ? (entry->abfd->id
3109 + mips_elf_hash_bfd_vma (entry->d.addend))
3110 : entry->d.h->root.root.root.hash));
3111 }
3112
3113 static int
3114 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3115 {
3116 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3117 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3118
3119 return (e1->symndx == e2->symndx
3120 && e1->tls_type == e2->tls_type
3121 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3122 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3123 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3124 && e1->d.addend == e2->d.addend)
3125 : e2->abfd && e1->d.h == e2->d.h));
3126 }
3127
3128 static hashval_t
3129 mips_got_page_ref_hash (const void *ref_)
3130 {
3131 const struct mips_got_page_ref *ref;
3132
3133 ref = (const struct mips_got_page_ref *) ref_;
3134 return ((ref->symndx >= 0
3135 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3136 : ref->u.h->root.root.root.hash)
3137 + mips_elf_hash_bfd_vma (ref->addend));
3138 }
3139
3140 static int
3141 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3142 {
3143 const struct mips_got_page_ref *ref1, *ref2;
3144
3145 ref1 = (const struct mips_got_page_ref *) ref1_;
3146 ref2 = (const struct mips_got_page_ref *) ref2_;
3147 return (ref1->symndx == ref2->symndx
3148 && (ref1->symndx < 0
3149 ? ref1->u.h == ref2->u.h
3150 : ref1->u.abfd == ref2->u.abfd)
3151 && ref1->addend == ref2->addend);
3152 }
3153
3154 static hashval_t
3155 mips_got_page_entry_hash (const void *entry_)
3156 {
3157 const struct mips_got_page_entry *entry;
3158
3159 entry = (const struct mips_got_page_entry *) entry_;
3160 return entry->sec->id;
3161 }
3162
3163 static int
3164 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3165 {
3166 const struct mips_got_page_entry *entry1, *entry2;
3167
3168 entry1 = (const struct mips_got_page_entry *) entry1_;
3169 entry2 = (const struct mips_got_page_entry *) entry2_;
3170 return entry1->sec == entry2->sec;
3171 }
3172 \f
3173 /* Create and return a new mips_got_info structure. */
3174
3175 static struct mips_got_info *
3176 mips_elf_create_got_info (bfd *abfd)
3177 {
3178 struct mips_got_info *g;
3179
3180 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3181 if (g == NULL)
3182 return NULL;
3183
3184 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3185 mips_elf_got_entry_eq, NULL);
3186 if (g->got_entries == NULL)
3187 return NULL;
3188
3189 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3190 mips_got_page_ref_eq, NULL);
3191 if (g->got_page_refs == NULL)
3192 return NULL;
3193
3194 return g;
3195 }
3196
3197 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3198 CREATE_P and if ABFD doesn't already have a GOT. */
3199
3200 static struct mips_got_info *
3201 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3202 {
3203 struct mips_elf_obj_tdata *tdata;
3204
3205 if (!is_mips_elf (abfd))
3206 return NULL;
3207
3208 tdata = mips_elf_tdata (abfd);
3209 if (!tdata->got && create_p)
3210 tdata->got = mips_elf_create_got_info (abfd);
3211 return tdata->got;
3212 }
3213
3214 /* Record that ABFD should use output GOT G. */
3215
3216 static void
3217 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3218 {
3219 struct mips_elf_obj_tdata *tdata;
3220
3221 BFD_ASSERT (is_mips_elf (abfd));
3222 tdata = mips_elf_tdata (abfd);
3223 if (tdata->got)
3224 {
3225 /* The GOT structure itself and the hash table entries are
3226 allocated to a bfd, but the hash tables aren't. */
3227 htab_delete (tdata->got->got_entries);
3228 htab_delete (tdata->got->got_page_refs);
3229 if (tdata->got->got_page_entries)
3230 htab_delete (tdata->got->got_page_entries);
3231 }
3232 tdata->got = g;
3233 }
3234
3235 /* Return the dynamic relocation section. If it doesn't exist, try to
3236 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3237 if creation fails. */
3238
3239 static asection *
3240 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3241 {
3242 const char *dname;
3243 asection *sreloc;
3244 bfd *dynobj;
3245
3246 dname = MIPS_ELF_REL_DYN_NAME (info);
3247 dynobj = elf_hash_table (info)->dynobj;
3248 sreloc = bfd_get_linker_section (dynobj, dname);
3249 if (sreloc == NULL && create_p)
3250 {
3251 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3252 (SEC_ALLOC
3253 | SEC_LOAD
3254 | SEC_HAS_CONTENTS
3255 | SEC_IN_MEMORY
3256 | SEC_LINKER_CREATED
3257 | SEC_READONLY));
3258 if (sreloc == NULL
3259 || ! bfd_set_section_alignment (dynobj, sreloc,
3260 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3261 return NULL;
3262 }
3263 return sreloc;
3264 }
3265
3266 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3267
3268 static int
3269 mips_elf_reloc_tls_type (unsigned int r_type)
3270 {
3271 if (tls_gd_reloc_p (r_type))
3272 return GOT_TLS_GD;
3273
3274 if (tls_ldm_reloc_p (r_type))
3275 return GOT_TLS_LDM;
3276
3277 if (tls_gottprel_reloc_p (r_type))
3278 return GOT_TLS_IE;
3279
3280 return GOT_TLS_NONE;
3281 }
3282
3283 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3284
3285 static int
3286 mips_tls_got_entries (unsigned int type)
3287 {
3288 switch (type)
3289 {
3290 case GOT_TLS_GD:
3291 case GOT_TLS_LDM:
3292 return 2;
3293
3294 case GOT_TLS_IE:
3295 return 1;
3296
3297 case GOT_TLS_NONE:
3298 return 0;
3299 }
3300 abort ();
3301 }
3302
3303 /* Count the number of relocations needed for a TLS GOT entry, with
3304 access types from TLS_TYPE, and symbol H (or a local symbol if H
3305 is NULL). */
3306
3307 static int
3308 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3309 struct elf_link_hash_entry *h)
3310 {
3311 int indx = 0;
3312 bfd_boolean need_relocs = FALSE;
3313 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3314
3315 if (h != NULL
3316 && h->dynindx != -1
3317 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3318 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3319 indx = h->dynindx;
3320
3321 if ((bfd_link_dll (info) || indx != 0)
3322 && (h == NULL
3323 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3324 || h->root.type != bfd_link_hash_undefweak))
3325 need_relocs = TRUE;
3326
3327 if (!need_relocs)
3328 return 0;
3329
3330 switch (tls_type)
3331 {
3332 case GOT_TLS_GD:
3333 return indx != 0 ? 2 : 1;
3334
3335 case GOT_TLS_IE:
3336 return 1;
3337
3338 case GOT_TLS_LDM:
3339 return bfd_link_dll (info) ? 1 : 0;
3340
3341 default:
3342 return 0;
3343 }
3344 }
3345
3346 /* Add the number of GOT entries and TLS relocations required by ENTRY
3347 to G. */
3348
3349 static void
3350 mips_elf_count_got_entry (struct bfd_link_info *info,
3351 struct mips_got_info *g,
3352 struct mips_got_entry *entry)
3353 {
3354 if (entry->tls_type)
3355 {
3356 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3357 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3358 entry->symndx < 0
3359 ? &entry->d.h->root : NULL);
3360 }
3361 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3362 g->local_gotno += 1;
3363 else
3364 g->global_gotno += 1;
3365 }
3366
3367 /* Output a simple dynamic relocation into SRELOC. */
3368
3369 static void
3370 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3371 asection *sreloc,
3372 unsigned long reloc_index,
3373 unsigned long indx,
3374 int r_type,
3375 bfd_vma offset)
3376 {
3377 Elf_Internal_Rela rel[3];
3378
3379 memset (rel, 0, sizeof (rel));
3380
3381 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3382 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3383
3384 if (ABI_64_P (output_bfd))
3385 {
3386 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3387 (output_bfd, &rel[0],
3388 (sreloc->contents
3389 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3390 }
3391 else
3392 bfd_elf32_swap_reloc_out
3393 (output_bfd, &rel[0],
3394 (sreloc->contents
3395 + reloc_index * sizeof (Elf32_External_Rel)));
3396 }
3397
3398 /* Initialize a set of TLS GOT entries for one symbol. */
3399
3400 static void
3401 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3402 struct mips_got_entry *entry,
3403 struct mips_elf_link_hash_entry *h,
3404 bfd_vma value)
3405 {
3406 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3407 struct mips_elf_link_hash_table *htab;
3408 int indx;
3409 asection *sreloc, *sgot;
3410 bfd_vma got_offset, got_offset2;
3411 bfd_boolean need_relocs = FALSE;
3412
3413 htab = mips_elf_hash_table (info);
3414 if (htab == NULL)
3415 return;
3416
3417 sgot = htab->root.sgot;
3418
3419 indx = 0;
3420 if (h != NULL
3421 && h->root.dynindx != -1
3422 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3423 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3424 indx = h->root.dynindx;
3425
3426 if (entry->tls_initialized)
3427 return;
3428
3429 if ((bfd_link_dll (info) || indx != 0)
3430 && (h == NULL
3431 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3432 || h->root.type != bfd_link_hash_undefweak))
3433 need_relocs = TRUE;
3434
3435 /* MINUS_ONE means the symbol is not defined in this object. It may not
3436 be defined at all; assume that the value doesn't matter in that
3437 case. Otherwise complain if we would use the value. */
3438 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3439 || h->root.root.type == bfd_link_hash_undefweak);
3440
3441 /* Emit necessary relocations. */
3442 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3443 got_offset = entry->gotidx;
3444
3445 switch (entry->tls_type)
3446 {
3447 case GOT_TLS_GD:
3448 /* General Dynamic. */
3449 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3450
3451 if (need_relocs)
3452 {
3453 mips_elf_output_dynamic_relocation
3454 (abfd, sreloc, sreloc->reloc_count++, indx,
3455 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3456 sgot->output_offset + sgot->output_section->vma + got_offset);
3457
3458 if (indx)
3459 mips_elf_output_dynamic_relocation
3460 (abfd, sreloc, sreloc->reloc_count++, indx,
3461 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3462 sgot->output_offset + sgot->output_section->vma + got_offset2);
3463 else
3464 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3465 sgot->contents + got_offset2);
3466 }
3467 else
3468 {
3469 MIPS_ELF_PUT_WORD (abfd, 1,
3470 sgot->contents + got_offset);
3471 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3472 sgot->contents + got_offset2);
3473 }
3474 break;
3475
3476 case GOT_TLS_IE:
3477 /* Initial Exec model. */
3478 if (need_relocs)
3479 {
3480 if (indx == 0)
3481 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3482 sgot->contents + got_offset);
3483 else
3484 MIPS_ELF_PUT_WORD (abfd, 0,
3485 sgot->contents + got_offset);
3486
3487 mips_elf_output_dynamic_relocation
3488 (abfd, sreloc, sreloc->reloc_count++, indx,
3489 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3490 sgot->output_offset + sgot->output_section->vma + got_offset);
3491 }
3492 else
3493 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3494 sgot->contents + got_offset);
3495 break;
3496
3497 case GOT_TLS_LDM:
3498 /* The initial offset is zero, and the LD offsets will include the
3499 bias by DTP_OFFSET. */
3500 MIPS_ELF_PUT_WORD (abfd, 0,
3501 sgot->contents + got_offset
3502 + MIPS_ELF_GOT_SIZE (abfd));
3503
3504 if (!bfd_link_dll (info))
3505 MIPS_ELF_PUT_WORD (abfd, 1,
3506 sgot->contents + got_offset);
3507 else
3508 mips_elf_output_dynamic_relocation
3509 (abfd, sreloc, sreloc->reloc_count++, indx,
3510 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3511 sgot->output_offset + sgot->output_section->vma + got_offset);
3512 break;
3513
3514 default:
3515 abort ();
3516 }
3517
3518 entry->tls_initialized = TRUE;
3519 }
3520
3521 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3522 for global symbol H. .got.plt comes before the GOT, so the offset
3523 will be negative. */
3524
3525 static bfd_vma
3526 mips_elf_gotplt_index (struct bfd_link_info *info,
3527 struct elf_link_hash_entry *h)
3528 {
3529 bfd_vma got_address, got_value;
3530 struct mips_elf_link_hash_table *htab;
3531
3532 htab = mips_elf_hash_table (info);
3533 BFD_ASSERT (htab != NULL);
3534
3535 BFD_ASSERT (h->plt.plist != NULL);
3536 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3537
3538 /* Calculate the address of the associated .got.plt entry. */
3539 got_address = (htab->root.sgotplt->output_section->vma
3540 + htab->root.sgotplt->output_offset
3541 + (h->plt.plist->gotplt_index
3542 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3543
3544 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3545 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3546 + htab->root.hgot->root.u.def.section->output_offset
3547 + htab->root.hgot->root.u.def.value);
3548
3549 return got_address - got_value;
3550 }
3551
3552 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3553 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3554 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3555 offset can be found. */
3556
3557 static bfd_vma
3558 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3559 bfd_vma value, unsigned long r_symndx,
3560 struct mips_elf_link_hash_entry *h, int r_type)
3561 {
3562 struct mips_elf_link_hash_table *htab;
3563 struct mips_got_entry *entry;
3564
3565 htab = mips_elf_hash_table (info);
3566 BFD_ASSERT (htab != NULL);
3567
3568 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3569 r_symndx, h, r_type);
3570 if (!entry)
3571 return MINUS_ONE;
3572
3573 if (entry->tls_type)
3574 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3575 return entry->gotidx;
3576 }
3577
3578 /* Return the GOT index of global symbol H in the primary GOT. */
3579
3580 static bfd_vma
3581 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3582 struct elf_link_hash_entry *h)
3583 {
3584 struct mips_elf_link_hash_table *htab;
3585 long global_got_dynindx;
3586 struct mips_got_info *g;
3587 bfd_vma got_index;
3588
3589 htab = mips_elf_hash_table (info);
3590 BFD_ASSERT (htab != NULL);
3591
3592 global_got_dynindx = 0;
3593 if (htab->global_gotsym != NULL)
3594 global_got_dynindx = htab->global_gotsym->dynindx;
3595
3596 /* Once we determine the global GOT entry with the lowest dynamic
3597 symbol table index, we must put all dynamic symbols with greater
3598 indices into the primary GOT. That makes it easy to calculate the
3599 GOT offset. */
3600 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3601 g = mips_elf_bfd_got (obfd, FALSE);
3602 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3603 * MIPS_ELF_GOT_SIZE (obfd));
3604 BFD_ASSERT (got_index < htab->root.sgot->size);
3605
3606 return got_index;
3607 }
3608
3609 /* Return the GOT index for the global symbol indicated by H, which is
3610 referenced by a relocation of type R_TYPE in IBFD. */
3611
3612 static bfd_vma
3613 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3614 struct elf_link_hash_entry *h, int r_type)
3615 {
3616 struct mips_elf_link_hash_table *htab;
3617 struct mips_got_info *g;
3618 struct mips_got_entry lookup, *entry;
3619 bfd_vma gotidx;
3620
3621 htab = mips_elf_hash_table (info);
3622 BFD_ASSERT (htab != NULL);
3623
3624 g = mips_elf_bfd_got (ibfd, FALSE);
3625 BFD_ASSERT (g);
3626
3627 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3628 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3629 return mips_elf_primary_global_got_index (obfd, info, h);
3630
3631 lookup.abfd = ibfd;
3632 lookup.symndx = -1;
3633 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3634 entry = htab_find (g->got_entries, &lookup);
3635 BFD_ASSERT (entry);
3636
3637 gotidx = entry->gotidx;
3638 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3639
3640 if (lookup.tls_type)
3641 {
3642 bfd_vma value = MINUS_ONE;
3643
3644 if ((h->root.type == bfd_link_hash_defined
3645 || h->root.type == bfd_link_hash_defweak)
3646 && h->root.u.def.section->output_section)
3647 value = (h->root.u.def.value
3648 + h->root.u.def.section->output_offset
3649 + h->root.u.def.section->output_section->vma);
3650
3651 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3652 }
3653 return gotidx;
3654 }
3655
3656 /* Find a GOT page entry that points to within 32KB of VALUE. These
3657 entries are supposed to be placed at small offsets in the GOT, i.e.,
3658 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3659 entry could be created. If OFFSETP is nonnull, use it to return the
3660 offset of the GOT entry from VALUE. */
3661
3662 static bfd_vma
3663 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3664 bfd_vma value, bfd_vma *offsetp)
3665 {
3666 bfd_vma page, got_index;
3667 struct mips_got_entry *entry;
3668
3669 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3670 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3671 NULL, R_MIPS_GOT_PAGE);
3672
3673 if (!entry)
3674 return MINUS_ONE;
3675
3676 got_index = entry->gotidx;
3677
3678 if (offsetp)
3679 *offsetp = value - entry->d.address;
3680
3681 return got_index;
3682 }
3683
3684 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3685 EXTERNAL is true if the relocation was originally against a global
3686 symbol that binds locally. */
3687
3688 static bfd_vma
3689 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3690 bfd_vma value, bfd_boolean external)
3691 {
3692 struct mips_got_entry *entry;
3693
3694 /* GOT16 relocations against local symbols are followed by a LO16
3695 relocation; those against global symbols are not. Thus if the
3696 symbol was originally local, the GOT16 relocation should load the
3697 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3698 if (! external)
3699 value = mips_elf_high (value) << 16;
3700
3701 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3702 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3703 same in all cases. */
3704 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3705 NULL, R_MIPS_GOT16);
3706 if (entry)
3707 return entry->gotidx;
3708 else
3709 return MINUS_ONE;
3710 }
3711
3712 /* Returns the offset for the entry at the INDEXth position
3713 in the GOT. */
3714
3715 static bfd_vma
3716 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3717 bfd *input_bfd, bfd_vma got_index)
3718 {
3719 struct mips_elf_link_hash_table *htab;
3720 asection *sgot;
3721 bfd_vma gp;
3722
3723 htab = mips_elf_hash_table (info);
3724 BFD_ASSERT (htab != NULL);
3725
3726 sgot = htab->root.sgot;
3727 gp = _bfd_get_gp_value (output_bfd)
3728 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3729
3730 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3731 }
3732
3733 /* Create and return a local GOT entry for VALUE, which was calculated
3734 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3735 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3736 instead. */
3737
3738 static struct mips_got_entry *
3739 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3740 bfd *ibfd, bfd_vma value,
3741 unsigned long r_symndx,
3742 struct mips_elf_link_hash_entry *h,
3743 int r_type)
3744 {
3745 struct mips_got_entry lookup, *entry;
3746 void **loc;
3747 struct mips_got_info *g;
3748 struct mips_elf_link_hash_table *htab;
3749 bfd_vma gotidx;
3750
3751 htab = mips_elf_hash_table (info);
3752 BFD_ASSERT (htab != NULL);
3753
3754 g = mips_elf_bfd_got (ibfd, FALSE);
3755 if (g == NULL)
3756 {
3757 g = mips_elf_bfd_got (abfd, FALSE);
3758 BFD_ASSERT (g != NULL);
3759 }
3760
3761 /* This function shouldn't be called for symbols that live in the global
3762 area of the GOT. */
3763 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3764
3765 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3766 if (lookup.tls_type)
3767 {
3768 lookup.abfd = ibfd;
3769 if (tls_ldm_reloc_p (r_type))
3770 {
3771 lookup.symndx = 0;
3772 lookup.d.addend = 0;
3773 }
3774 else if (h == NULL)
3775 {
3776 lookup.symndx = r_symndx;
3777 lookup.d.addend = 0;
3778 }
3779 else
3780 {
3781 lookup.symndx = -1;
3782 lookup.d.h = h;
3783 }
3784
3785 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3786 BFD_ASSERT (entry);
3787
3788 gotidx = entry->gotidx;
3789 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3790
3791 return entry;
3792 }
3793
3794 lookup.abfd = NULL;
3795 lookup.symndx = -1;
3796 lookup.d.address = value;
3797 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3798 if (!loc)
3799 return NULL;
3800
3801 entry = (struct mips_got_entry *) *loc;
3802 if (entry)
3803 return entry;
3804
3805 if (g->assigned_low_gotno > g->assigned_high_gotno)
3806 {
3807 /* We didn't allocate enough space in the GOT. */
3808 _bfd_error_handler
3809 (_("not enough GOT space for local GOT entries"));
3810 bfd_set_error (bfd_error_bad_value);
3811 return NULL;
3812 }
3813
3814 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3815 if (!entry)
3816 return NULL;
3817
3818 if (got16_reloc_p (r_type)
3819 || call16_reloc_p (r_type)
3820 || got_page_reloc_p (r_type)
3821 || got_disp_reloc_p (r_type))
3822 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3823 else
3824 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3825
3826 *entry = lookup;
3827 *loc = entry;
3828
3829 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3830
3831 /* These GOT entries need a dynamic relocation on VxWorks. */
3832 if (htab->is_vxworks)
3833 {
3834 Elf_Internal_Rela outrel;
3835 asection *s;
3836 bfd_byte *rloc;
3837 bfd_vma got_address;
3838
3839 s = mips_elf_rel_dyn_section (info, FALSE);
3840 got_address = (htab->root.sgot->output_section->vma
3841 + htab->root.sgot->output_offset
3842 + entry->gotidx);
3843
3844 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3845 outrel.r_offset = got_address;
3846 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3847 outrel.r_addend = value;
3848 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3849 }
3850
3851 return entry;
3852 }
3853
3854 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3855 The number might be exact or a worst-case estimate, depending on how
3856 much information is available to elf_backend_omit_section_dynsym at
3857 the current linking stage. */
3858
3859 static bfd_size_type
3860 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3861 {
3862 bfd_size_type count;
3863
3864 count = 0;
3865 if (bfd_link_pic (info)
3866 || elf_hash_table (info)->is_relocatable_executable)
3867 {
3868 asection *p;
3869 const struct elf_backend_data *bed;
3870
3871 bed = get_elf_backend_data (output_bfd);
3872 for (p = output_bfd->sections; p ; p = p->next)
3873 if ((p->flags & SEC_EXCLUDE) == 0
3874 && (p->flags & SEC_ALLOC) != 0
3875 && elf_hash_table (info)->dynamic_relocs
3876 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3877 ++count;
3878 }
3879 return count;
3880 }
3881
3882 /* Sort the dynamic symbol table so that symbols that need GOT entries
3883 appear towards the end. */
3884
3885 static bfd_boolean
3886 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3887 {
3888 struct mips_elf_link_hash_table *htab;
3889 struct mips_elf_hash_sort_data hsd;
3890 struct mips_got_info *g;
3891
3892 htab = mips_elf_hash_table (info);
3893 BFD_ASSERT (htab != NULL);
3894
3895 if (htab->root.dynsymcount == 0)
3896 return TRUE;
3897
3898 g = htab->got_info;
3899 if (g == NULL)
3900 return TRUE;
3901
3902 hsd.low = NULL;
3903 hsd.max_unref_got_dynindx
3904 = hsd.min_got_dynindx
3905 = (htab->root.dynsymcount - g->reloc_only_gotno);
3906 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3907 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3908 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3909 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3910 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3911
3912 /* There should have been enough room in the symbol table to
3913 accommodate both the GOT and non-GOT symbols. */
3914 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3915 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3916 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3917 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3918
3919 /* Now we know which dynamic symbol has the lowest dynamic symbol
3920 table index in the GOT. */
3921 htab->global_gotsym = hsd.low;
3922
3923 return TRUE;
3924 }
3925
3926 /* If H needs a GOT entry, assign it the highest available dynamic
3927 index. Otherwise, assign it the lowest available dynamic
3928 index. */
3929
3930 static bfd_boolean
3931 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3932 {
3933 struct mips_elf_hash_sort_data *hsd = data;
3934
3935 /* Symbols without dynamic symbol table entries aren't interesting
3936 at all. */
3937 if (h->root.dynindx == -1)
3938 return TRUE;
3939
3940 switch (h->global_got_area)
3941 {
3942 case GGA_NONE:
3943 if (h->root.forced_local)
3944 h->root.dynindx = hsd->max_local_dynindx++;
3945 else
3946 h->root.dynindx = hsd->max_non_got_dynindx++;
3947 break;
3948
3949 case GGA_NORMAL:
3950 h->root.dynindx = --hsd->min_got_dynindx;
3951 hsd->low = (struct elf_link_hash_entry *) h;
3952 break;
3953
3954 case GGA_RELOC_ONLY:
3955 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3956 hsd->low = (struct elf_link_hash_entry *) h;
3957 h->root.dynindx = hsd->max_unref_got_dynindx++;
3958 break;
3959 }
3960
3961 return TRUE;
3962 }
3963
3964 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3965 (which is owned by the caller and shouldn't be added to the
3966 hash table directly). */
3967
3968 static bfd_boolean
3969 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3970 struct mips_got_entry *lookup)
3971 {
3972 struct mips_elf_link_hash_table *htab;
3973 struct mips_got_entry *entry;
3974 struct mips_got_info *g;
3975 void **loc, **bfd_loc;
3976
3977 /* Make sure there's a slot for this entry in the master GOT. */
3978 htab = mips_elf_hash_table (info);
3979 g = htab->got_info;
3980 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3981 if (!loc)
3982 return FALSE;
3983
3984 /* Populate the entry if it isn't already. */
3985 entry = (struct mips_got_entry *) *loc;
3986 if (!entry)
3987 {
3988 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3989 if (!entry)
3990 return FALSE;
3991
3992 lookup->tls_initialized = FALSE;
3993 lookup->gotidx = -1;
3994 *entry = *lookup;
3995 *loc = entry;
3996 }
3997
3998 /* Reuse the same GOT entry for the BFD's GOT. */
3999 g = mips_elf_bfd_got (abfd, TRUE);
4000 if (!g)
4001 return FALSE;
4002
4003 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4004 if (!bfd_loc)
4005 return FALSE;
4006
4007 if (!*bfd_loc)
4008 *bfd_loc = entry;
4009 return TRUE;
4010 }
4011
4012 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4013 entry for it. FOR_CALL is true if the caller is only interested in
4014 using the GOT entry for calls. */
4015
4016 static bfd_boolean
4017 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4018 bfd *abfd, struct bfd_link_info *info,
4019 bfd_boolean for_call, int r_type)
4020 {
4021 struct mips_elf_link_hash_table *htab;
4022 struct mips_elf_link_hash_entry *hmips;
4023 struct mips_got_entry entry;
4024 unsigned char tls_type;
4025
4026 htab = mips_elf_hash_table (info);
4027 BFD_ASSERT (htab != NULL);
4028
4029 hmips = (struct mips_elf_link_hash_entry *) h;
4030 if (!for_call)
4031 hmips->got_only_for_calls = FALSE;
4032
4033 /* A global symbol in the GOT must also be in the dynamic symbol
4034 table. */
4035 if (h->dynindx == -1)
4036 {
4037 switch (ELF_ST_VISIBILITY (h->other))
4038 {
4039 case STV_INTERNAL:
4040 case STV_HIDDEN:
4041 _bfd_mips_elf_hide_symbol (info, h, TRUE);
4042 break;
4043 }
4044 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4045 return FALSE;
4046 }
4047
4048 tls_type = mips_elf_reloc_tls_type (r_type);
4049 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4050 hmips->global_got_area = GGA_NORMAL;
4051
4052 entry.abfd = abfd;
4053 entry.symndx = -1;
4054 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4055 entry.tls_type = tls_type;
4056 return mips_elf_record_got_entry (info, abfd, &entry);
4057 }
4058
4059 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4060 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4061
4062 static bfd_boolean
4063 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4064 struct bfd_link_info *info, int r_type)
4065 {
4066 struct mips_elf_link_hash_table *htab;
4067 struct mips_got_info *g;
4068 struct mips_got_entry entry;
4069
4070 htab = mips_elf_hash_table (info);
4071 BFD_ASSERT (htab != NULL);
4072
4073 g = htab->got_info;
4074 BFD_ASSERT (g != NULL);
4075
4076 entry.abfd = abfd;
4077 entry.symndx = symndx;
4078 entry.d.addend = addend;
4079 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4080 return mips_elf_record_got_entry (info, abfd, &entry);
4081 }
4082
4083 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4084 H is the symbol's hash table entry, or null if SYMNDX is local
4085 to ABFD. */
4086
4087 static bfd_boolean
4088 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4089 long symndx, struct elf_link_hash_entry *h,
4090 bfd_signed_vma addend)
4091 {
4092 struct mips_elf_link_hash_table *htab;
4093 struct mips_got_info *g1, *g2;
4094 struct mips_got_page_ref lookup, *entry;
4095 void **loc, **bfd_loc;
4096
4097 htab = mips_elf_hash_table (info);
4098 BFD_ASSERT (htab != NULL);
4099
4100 g1 = htab->got_info;
4101 BFD_ASSERT (g1 != NULL);
4102
4103 if (h)
4104 {
4105 lookup.symndx = -1;
4106 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4107 }
4108 else
4109 {
4110 lookup.symndx = symndx;
4111 lookup.u.abfd = abfd;
4112 }
4113 lookup.addend = addend;
4114 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4115 if (loc == NULL)
4116 return FALSE;
4117
4118 entry = (struct mips_got_page_ref *) *loc;
4119 if (!entry)
4120 {
4121 entry = bfd_alloc (abfd, sizeof (*entry));
4122 if (!entry)
4123 return FALSE;
4124
4125 *entry = lookup;
4126 *loc = entry;
4127 }
4128
4129 /* Add the same entry to the BFD's GOT. */
4130 g2 = mips_elf_bfd_got (abfd, TRUE);
4131 if (!g2)
4132 return FALSE;
4133
4134 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4135 if (!bfd_loc)
4136 return FALSE;
4137
4138 if (!*bfd_loc)
4139 *bfd_loc = entry;
4140
4141 return TRUE;
4142 }
4143
4144 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4145
4146 static void
4147 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4148 unsigned int n)
4149 {
4150 asection *s;
4151 struct mips_elf_link_hash_table *htab;
4152
4153 htab = mips_elf_hash_table (info);
4154 BFD_ASSERT (htab != NULL);
4155
4156 s = mips_elf_rel_dyn_section (info, FALSE);
4157 BFD_ASSERT (s != NULL);
4158
4159 if (htab->is_vxworks)
4160 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4161 else
4162 {
4163 if (s->size == 0)
4164 {
4165 /* Make room for a null element. */
4166 s->size += MIPS_ELF_REL_SIZE (abfd);
4167 ++s->reloc_count;
4168 }
4169 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4170 }
4171 }
4172 \f
4173 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4174 mips_elf_traverse_got_arg structure. Count the number of GOT
4175 entries and TLS relocs. Set DATA->value to true if we need
4176 to resolve indirect or warning symbols and then recreate the GOT. */
4177
4178 static int
4179 mips_elf_check_recreate_got (void **entryp, void *data)
4180 {
4181 struct mips_got_entry *entry;
4182 struct mips_elf_traverse_got_arg *arg;
4183
4184 entry = (struct mips_got_entry *) *entryp;
4185 arg = (struct mips_elf_traverse_got_arg *) data;
4186 if (entry->abfd != NULL && entry->symndx == -1)
4187 {
4188 struct mips_elf_link_hash_entry *h;
4189
4190 h = entry->d.h;
4191 if (h->root.root.type == bfd_link_hash_indirect
4192 || h->root.root.type == bfd_link_hash_warning)
4193 {
4194 arg->value = TRUE;
4195 return 0;
4196 }
4197 }
4198 mips_elf_count_got_entry (arg->info, arg->g, entry);
4199 return 1;
4200 }
4201
4202 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4203 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4204 converting entries for indirect and warning symbols into entries
4205 for the target symbol. Set DATA->g to null on error. */
4206
4207 static int
4208 mips_elf_recreate_got (void **entryp, void *data)
4209 {
4210 struct mips_got_entry new_entry, *entry;
4211 struct mips_elf_traverse_got_arg *arg;
4212 void **slot;
4213
4214 entry = (struct mips_got_entry *) *entryp;
4215 arg = (struct mips_elf_traverse_got_arg *) data;
4216 if (entry->abfd != NULL
4217 && entry->symndx == -1
4218 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4219 || entry->d.h->root.root.type == bfd_link_hash_warning))
4220 {
4221 struct mips_elf_link_hash_entry *h;
4222
4223 new_entry = *entry;
4224 entry = &new_entry;
4225 h = entry->d.h;
4226 do
4227 {
4228 BFD_ASSERT (h->global_got_area == GGA_NONE);
4229 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4230 }
4231 while (h->root.root.type == bfd_link_hash_indirect
4232 || h->root.root.type == bfd_link_hash_warning);
4233 entry->d.h = h;
4234 }
4235 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4236 if (slot == NULL)
4237 {
4238 arg->g = NULL;
4239 return 0;
4240 }
4241 if (*slot == NULL)
4242 {
4243 if (entry == &new_entry)
4244 {
4245 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4246 if (!entry)
4247 {
4248 arg->g = NULL;
4249 return 0;
4250 }
4251 *entry = new_entry;
4252 }
4253 *slot = entry;
4254 mips_elf_count_got_entry (arg->info, arg->g, entry);
4255 }
4256 return 1;
4257 }
4258
4259 /* Return the maximum number of GOT page entries required for RANGE. */
4260
4261 static bfd_vma
4262 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4263 {
4264 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4265 }
4266
4267 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4268
4269 static bfd_boolean
4270 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4271 asection *sec, bfd_signed_vma addend)
4272 {
4273 struct mips_got_info *g = arg->g;
4274 struct mips_got_page_entry lookup, *entry;
4275 struct mips_got_page_range **range_ptr, *range;
4276 bfd_vma old_pages, new_pages;
4277 void **loc;
4278
4279 /* Find the mips_got_page_entry hash table entry for this section. */
4280 lookup.sec = sec;
4281 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4282 if (loc == NULL)
4283 return FALSE;
4284
4285 /* Create a mips_got_page_entry if this is the first time we've
4286 seen the section. */
4287 entry = (struct mips_got_page_entry *) *loc;
4288 if (!entry)
4289 {
4290 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4291 if (!entry)
4292 return FALSE;
4293
4294 entry->sec = sec;
4295 *loc = entry;
4296 }
4297
4298 /* Skip over ranges whose maximum extent cannot share a page entry
4299 with ADDEND. */
4300 range_ptr = &entry->ranges;
4301 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4302 range_ptr = &(*range_ptr)->next;
4303
4304 /* If we scanned to the end of the list, or found a range whose
4305 minimum extent cannot share a page entry with ADDEND, create
4306 a new singleton range. */
4307 range = *range_ptr;
4308 if (!range || addend < range->min_addend - 0xffff)
4309 {
4310 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4311 if (!range)
4312 return FALSE;
4313
4314 range->next = *range_ptr;
4315 range->min_addend = addend;
4316 range->max_addend = addend;
4317
4318 *range_ptr = range;
4319 entry->num_pages++;
4320 g->page_gotno++;
4321 return TRUE;
4322 }
4323
4324 /* Remember how many pages the old range contributed. */
4325 old_pages = mips_elf_pages_for_range (range);
4326
4327 /* Update the ranges. */
4328 if (addend < range->min_addend)
4329 range->min_addend = addend;
4330 else if (addend > range->max_addend)
4331 {
4332 if (range->next && addend >= range->next->min_addend - 0xffff)
4333 {
4334 old_pages += mips_elf_pages_for_range (range->next);
4335 range->max_addend = range->next->max_addend;
4336 range->next = range->next->next;
4337 }
4338 else
4339 range->max_addend = addend;
4340 }
4341
4342 /* Record any change in the total estimate. */
4343 new_pages = mips_elf_pages_for_range (range);
4344 if (old_pages != new_pages)
4345 {
4346 entry->num_pages += new_pages - old_pages;
4347 g->page_gotno += new_pages - old_pages;
4348 }
4349
4350 return TRUE;
4351 }
4352
4353 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4354 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4355 whether the page reference described by *REFP needs a GOT page entry,
4356 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4357
4358 static bfd_boolean
4359 mips_elf_resolve_got_page_ref (void **refp, void *data)
4360 {
4361 struct mips_got_page_ref *ref;
4362 struct mips_elf_traverse_got_arg *arg;
4363 struct mips_elf_link_hash_table *htab;
4364 asection *sec;
4365 bfd_vma addend;
4366
4367 ref = (struct mips_got_page_ref *) *refp;
4368 arg = (struct mips_elf_traverse_got_arg *) data;
4369 htab = mips_elf_hash_table (arg->info);
4370
4371 if (ref->symndx < 0)
4372 {
4373 struct mips_elf_link_hash_entry *h;
4374
4375 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4376 h = ref->u.h;
4377 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4378 return 1;
4379
4380 /* Ignore undefined symbols; we'll issue an error later if
4381 appropriate. */
4382 if (!((h->root.root.type == bfd_link_hash_defined
4383 || h->root.root.type == bfd_link_hash_defweak)
4384 && h->root.root.u.def.section))
4385 return 1;
4386
4387 sec = h->root.root.u.def.section;
4388 addend = h->root.root.u.def.value + ref->addend;
4389 }
4390 else
4391 {
4392 Elf_Internal_Sym *isym;
4393
4394 /* Read in the symbol. */
4395 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4396 ref->symndx);
4397 if (isym == NULL)
4398 {
4399 arg->g = NULL;
4400 return 0;
4401 }
4402
4403 /* Get the associated input section. */
4404 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4405 if (sec == NULL)
4406 {
4407 arg->g = NULL;
4408 return 0;
4409 }
4410
4411 /* If this is a mergable section, work out the section and offset
4412 of the merged data. For section symbols, the addend specifies
4413 of the offset _of_ the first byte in the data, otherwise it
4414 specifies the offset _from_ the first byte. */
4415 if (sec->flags & SEC_MERGE)
4416 {
4417 void *secinfo;
4418
4419 secinfo = elf_section_data (sec)->sec_info;
4420 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4421 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4422 isym->st_value + ref->addend);
4423 else
4424 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4425 isym->st_value) + ref->addend;
4426 }
4427 else
4428 addend = isym->st_value + ref->addend;
4429 }
4430 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4431 {
4432 arg->g = NULL;
4433 return 0;
4434 }
4435 return 1;
4436 }
4437
4438 /* If any entries in G->got_entries are for indirect or warning symbols,
4439 replace them with entries for the target symbol. Convert g->got_page_refs
4440 into got_page_entry structures and estimate the number of page entries
4441 that they require. */
4442
4443 static bfd_boolean
4444 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4445 struct mips_got_info *g)
4446 {
4447 struct mips_elf_traverse_got_arg tga;
4448 struct mips_got_info oldg;
4449
4450 oldg = *g;
4451
4452 tga.info = info;
4453 tga.g = g;
4454 tga.value = FALSE;
4455 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4456 if (tga.value)
4457 {
4458 *g = oldg;
4459 g->got_entries = htab_create (htab_size (oldg.got_entries),
4460 mips_elf_got_entry_hash,
4461 mips_elf_got_entry_eq, NULL);
4462 if (!g->got_entries)
4463 return FALSE;
4464
4465 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4466 if (!tga.g)
4467 return FALSE;
4468
4469 htab_delete (oldg.got_entries);
4470 }
4471
4472 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4473 mips_got_page_entry_eq, NULL);
4474 if (g->got_page_entries == NULL)
4475 return FALSE;
4476
4477 tga.info = info;
4478 tga.g = g;
4479 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4480
4481 return TRUE;
4482 }
4483
4484 /* Return true if a GOT entry for H should live in the local rather than
4485 global GOT area. */
4486
4487 static bfd_boolean
4488 mips_use_local_got_p (struct bfd_link_info *info,
4489 struct mips_elf_link_hash_entry *h)
4490 {
4491 /* Symbols that aren't in the dynamic symbol table must live in the
4492 local GOT. This includes symbols that are completely undefined
4493 and which therefore don't bind locally. We'll report undefined
4494 symbols later if appropriate. */
4495 if (h->root.dynindx == -1)
4496 return TRUE;
4497
4498 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4499 to the local GOT, as they would be implicitly relocated by the
4500 base address by the dynamic loader. */
4501 if (bfd_is_abs_symbol (&h->root.root))
4502 return FALSE;
4503
4504 /* Symbols that bind locally can (and in the case of forced-local
4505 symbols, must) live in the local GOT. */
4506 if (h->got_only_for_calls
4507 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4508 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4509 return TRUE;
4510
4511 /* If this is an executable that must provide a definition of the symbol,
4512 either though PLTs or copy relocations, then that address should go in
4513 the local rather than global GOT. */
4514 if (bfd_link_executable (info) && h->has_static_relocs)
4515 return TRUE;
4516
4517 return FALSE;
4518 }
4519
4520 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4521 link_info structure. Decide whether the hash entry needs an entry in
4522 the global part of the primary GOT, setting global_got_area accordingly.
4523 Count the number of global symbols that are in the primary GOT only
4524 because they have relocations against them (reloc_only_gotno). */
4525
4526 static int
4527 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4528 {
4529 struct bfd_link_info *info;
4530 struct mips_elf_link_hash_table *htab;
4531 struct mips_got_info *g;
4532
4533 info = (struct bfd_link_info *) data;
4534 htab = mips_elf_hash_table (info);
4535 g = htab->got_info;
4536 if (h->global_got_area != GGA_NONE)
4537 {
4538 /* Make a final decision about whether the symbol belongs in the
4539 local or global GOT. */
4540 if (mips_use_local_got_p (info, h))
4541 /* The symbol belongs in the local GOT. We no longer need this
4542 entry if it was only used for relocations; those relocations
4543 will be against the null or section symbol instead of H. */
4544 h->global_got_area = GGA_NONE;
4545 else if (htab->is_vxworks
4546 && h->got_only_for_calls
4547 && h->root.plt.plist->mips_offset != MINUS_ONE)
4548 /* On VxWorks, calls can refer directly to the .got.plt entry;
4549 they don't need entries in the regular GOT. .got.plt entries
4550 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4551 h->global_got_area = GGA_NONE;
4552 else if (h->global_got_area == GGA_RELOC_ONLY)
4553 {
4554 g->reloc_only_gotno++;
4555 g->global_gotno++;
4556 }
4557 }
4558 return 1;
4559 }
4560 \f
4561 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4562 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4563
4564 static int
4565 mips_elf_add_got_entry (void **entryp, void *data)
4566 {
4567 struct mips_got_entry *entry;
4568 struct mips_elf_traverse_got_arg *arg;
4569 void **slot;
4570
4571 entry = (struct mips_got_entry *) *entryp;
4572 arg = (struct mips_elf_traverse_got_arg *) data;
4573 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4574 if (!slot)
4575 {
4576 arg->g = NULL;
4577 return 0;
4578 }
4579 if (!*slot)
4580 {
4581 *slot = entry;
4582 mips_elf_count_got_entry (arg->info, arg->g, entry);
4583 }
4584 return 1;
4585 }
4586
4587 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4588 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4589
4590 static int
4591 mips_elf_add_got_page_entry (void **entryp, void *data)
4592 {
4593 struct mips_got_page_entry *entry;
4594 struct mips_elf_traverse_got_arg *arg;
4595 void **slot;
4596
4597 entry = (struct mips_got_page_entry *) *entryp;
4598 arg = (struct mips_elf_traverse_got_arg *) data;
4599 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4600 if (!slot)
4601 {
4602 arg->g = NULL;
4603 return 0;
4604 }
4605 if (!*slot)
4606 {
4607 *slot = entry;
4608 arg->g->page_gotno += entry->num_pages;
4609 }
4610 return 1;
4611 }
4612
4613 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4614 this would lead to overflow, 1 if they were merged successfully,
4615 and 0 if a merge failed due to lack of memory. (These values are chosen
4616 so that nonnegative return values can be returned by a htab_traverse
4617 callback.) */
4618
4619 static int
4620 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4621 struct mips_got_info *to,
4622 struct mips_elf_got_per_bfd_arg *arg)
4623 {
4624 struct mips_elf_traverse_got_arg tga;
4625 unsigned int estimate;
4626
4627 /* Work out how many page entries we would need for the combined GOT. */
4628 estimate = arg->max_pages;
4629 if (estimate >= from->page_gotno + to->page_gotno)
4630 estimate = from->page_gotno + to->page_gotno;
4631
4632 /* And conservatively estimate how many local and TLS entries
4633 would be needed. */
4634 estimate += from->local_gotno + to->local_gotno;
4635 estimate += from->tls_gotno + to->tls_gotno;
4636
4637 /* If we're merging with the primary got, any TLS relocations will
4638 come after the full set of global entries. Otherwise estimate those
4639 conservatively as well. */
4640 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4641 estimate += arg->global_count;
4642 else
4643 estimate += from->global_gotno + to->global_gotno;
4644
4645 /* Bail out if the combined GOT might be too big. */
4646 if (estimate > arg->max_count)
4647 return -1;
4648
4649 /* Transfer the bfd's got information from FROM to TO. */
4650 tga.info = arg->info;
4651 tga.g = to;
4652 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4653 if (!tga.g)
4654 return 0;
4655
4656 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4657 if (!tga.g)
4658 return 0;
4659
4660 mips_elf_replace_bfd_got (abfd, to);
4661 return 1;
4662 }
4663
4664 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4665 as possible of the primary got, since it doesn't require explicit
4666 dynamic relocations, but don't use bfds that would reference global
4667 symbols out of the addressable range. Failing the primary got,
4668 attempt to merge with the current got, or finish the current got
4669 and then make make the new got current. */
4670
4671 static bfd_boolean
4672 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4673 struct mips_elf_got_per_bfd_arg *arg)
4674 {
4675 unsigned int estimate;
4676 int result;
4677
4678 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4679 return FALSE;
4680
4681 /* Work out the number of page, local and TLS entries. */
4682 estimate = arg->max_pages;
4683 if (estimate > g->page_gotno)
4684 estimate = g->page_gotno;
4685 estimate += g->local_gotno + g->tls_gotno;
4686
4687 /* We place TLS GOT entries after both locals and globals. The globals
4688 for the primary GOT may overflow the normal GOT size limit, so be
4689 sure not to merge a GOT which requires TLS with the primary GOT in that
4690 case. This doesn't affect non-primary GOTs. */
4691 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4692
4693 if (estimate <= arg->max_count)
4694 {
4695 /* If we don't have a primary GOT, use it as
4696 a starting point for the primary GOT. */
4697 if (!arg->primary)
4698 {
4699 arg->primary = g;
4700 return TRUE;
4701 }
4702
4703 /* Try merging with the primary GOT. */
4704 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4705 if (result >= 0)
4706 return result;
4707 }
4708
4709 /* If we can merge with the last-created got, do it. */
4710 if (arg->current)
4711 {
4712 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4713 if (result >= 0)
4714 return result;
4715 }
4716
4717 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4718 fits; if it turns out that it doesn't, we'll get relocation
4719 overflows anyway. */
4720 g->next = arg->current;
4721 arg->current = g;
4722
4723 return TRUE;
4724 }
4725
4726 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4727 to GOTIDX, duplicating the entry if it has already been assigned
4728 an index in a different GOT. */
4729
4730 static bfd_boolean
4731 mips_elf_set_gotidx (void **entryp, long gotidx)
4732 {
4733 struct mips_got_entry *entry;
4734
4735 entry = (struct mips_got_entry *) *entryp;
4736 if (entry->gotidx > 0)
4737 {
4738 struct mips_got_entry *new_entry;
4739
4740 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4741 if (!new_entry)
4742 return FALSE;
4743
4744 *new_entry = *entry;
4745 *entryp = new_entry;
4746 entry = new_entry;
4747 }
4748 entry->gotidx = gotidx;
4749 return TRUE;
4750 }
4751
4752 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4753 mips_elf_traverse_got_arg in which DATA->value is the size of one
4754 GOT entry. Set DATA->g to null on failure. */
4755
4756 static int
4757 mips_elf_initialize_tls_index (void **entryp, void *data)
4758 {
4759 struct mips_got_entry *entry;
4760 struct mips_elf_traverse_got_arg *arg;
4761
4762 /* We're only interested in TLS symbols. */
4763 entry = (struct mips_got_entry *) *entryp;
4764 if (entry->tls_type == GOT_TLS_NONE)
4765 return 1;
4766
4767 arg = (struct mips_elf_traverse_got_arg *) data;
4768 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4769 {
4770 arg->g = NULL;
4771 return 0;
4772 }
4773
4774 /* Account for the entries we've just allocated. */
4775 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4776 return 1;
4777 }
4778
4779 /* A htab_traverse callback for GOT entries, where DATA points to a
4780 mips_elf_traverse_got_arg. Set the global_got_area of each global
4781 symbol to DATA->value. */
4782
4783 static int
4784 mips_elf_set_global_got_area (void **entryp, void *data)
4785 {
4786 struct mips_got_entry *entry;
4787 struct mips_elf_traverse_got_arg *arg;
4788
4789 entry = (struct mips_got_entry *) *entryp;
4790 arg = (struct mips_elf_traverse_got_arg *) data;
4791 if (entry->abfd != NULL
4792 && entry->symndx == -1
4793 && entry->d.h->global_got_area != GGA_NONE)
4794 entry->d.h->global_got_area = arg->value;
4795 return 1;
4796 }
4797
4798 /* A htab_traverse callback for secondary GOT entries, where DATA points
4799 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4800 and record the number of relocations they require. DATA->value is
4801 the size of one GOT entry. Set DATA->g to null on failure. */
4802
4803 static int
4804 mips_elf_set_global_gotidx (void **entryp, void *data)
4805 {
4806 struct mips_got_entry *entry;
4807 struct mips_elf_traverse_got_arg *arg;
4808
4809 entry = (struct mips_got_entry *) *entryp;
4810 arg = (struct mips_elf_traverse_got_arg *) data;
4811 if (entry->abfd != NULL
4812 && entry->symndx == -1
4813 && entry->d.h->global_got_area != GGA_NONE)
4814 {
4815 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4816 {
4817 arg->g = NULL;
4818 return 0;
4819 }
4820 arg->g->assigned_low_gotno += 1;
4821
4822 if (bfd_link_pic (arg->info)
4823 || (elf_hash_table (arg->info)->dynamic_sections_created
4824 && entry->d.h->root.def_dynamic
4825 && !entry->d.h->root.def_regular))
4826 arg->g->relocs += 1;
4827 }
4828
4829 return 1;
4830 }
4831
4832 /* A htab_traverse callback for GOT entries for which DATA is the
4833 bfd_link_info. Forbid any global symbols from having traditional
4834 lazy-binding stubs. */
4835
4836 static int
4837 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4838 {
4839 struct bfd_link_info *info;
4840 struct mips_elf_link_hash_table *htab;
4841 struct mips_got_entry *entry;
4842
4843 entry = (struct mips_got_entry *) *entryp;
4844 info = (struct bfd_link_info *) data;
4845 htab = mips_elf_hash_table (info);
4846 BFD_ASSERT (htab != NULL);
4847
4848 if (entry->abfd != NULL
4849 && entry->symndx == -1
4850 && entry->d.h->needs_lazy_stub)
4851 {
4852 entry->d.h->needs_lazy_stub = FALSE;
4853 htab->lazy_stub_count--;
4854 }
4855
4856 return 1;
4857 }
4858
4859 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4860 the primary GOT. */
4861 static bfd_vma
4862 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4863 {
4864 if (!g->next)
4865 return 0;
4866
4867 g = mips_elf_bfd_got (ibfd, FALSE);
4868 if (! g)
4869 return 0;
4870
4871 BFD_ASSERT (g->next);
4872
4873 g = g->next;
4874
4875 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4876 * MIPS_ELF_GOT_SIZE (abfd);
4877 }
4878
4879 /* Turn a single GOT that is too big for 16-bit addressing into
4880 a sequence of GOTs, each one 16-bit addressable. */
4881
4882 static bfd_boolean
4883 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4884 asection *got, bfd_size_type pages)
4885 {
4886 struct mips_elf_link_hash_table *htab;
4887 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4888 struct mips_elf_traverse_got_arg tga;
4889 struct mips_got_info *g, *gg;
4890 unsigned int assign, needed_relocs;
4891 bfd *dynobj, *ibfd;
4892
4893 dynobj = elf_hash_table (info)->dynobj;
4894 htab = mips_elf_hash_table (info);
4895 BFD_ASSERT (htab != NULL);
4896
4897 g = htab->got_info;
4898
4899 got_per_bfd_arg.obfd = abfd;
4900 got_per_bfd_arg.info = info;
4901 got_per_bfd_arg.current = NULL;
4902 got_per_bfd_arg.primary = NULL;
4903 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4904 / MIPS_ELF_GOT_SIZE (abfd))
4905 - htab->reserved_gotno);
4906 got_per_bfd_arg.max_pages = pages;
4907 /* The number of globals that will be included in the primary GOT.
4908 See the calls to mips_elf_set_global_got_area below for more
4909 information. */
4910 got_per_bfd_arg.global_count = g->global_gotno;
4911
4912 /* Try to merge the GOTs of input bfds together, as long as they
4913 don't seem to exceed the maximum GOT size, choosing one of them
4914 to be the primary GOT. */
4915 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4916 {
4917 gg = mips_elf_bfd_got (ibfd, FALSE);
4918 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4919 return FALSE;
4920 }
4921
4922 /* If we do not find any suitable primary GOT, create an empty one. */
4923 if (got_per_bfd_arg.primary == NULL)
4924 g->next = mips_elf_create_got_info (abfd);
4925 else
4926 g->next = got_per_bfd_arg.primary;
4927 g->next->next = got_per_bfd_arg.current;
4928
4929 /* GG is now the master GOT, and G is the primary GOT. */
4930 gg = g;
4931 g = g->next;
4932
4933 /* Map the output bfd to the primary got. That's what we're going
4934 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4935 didn't mark in check_relocs, and we want a quick way to find it.
4936 We can't just use gg->next because we're going to reverse the
4937 list. */
4938 mips_elf_replace_bfd_got (abfd, g);
4939
4940 /* Every symbol that is referenced in a dynamic relocation must be
4941 present in the primary GOT, so arrange for them to appear after
4942 those that are actually referenced. */
4943 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4944 g->global_gotno = gg->global_gotno;
4945
4946 tga.info = info;
4947 tga.value = GGA_RELOC_ONLY;
4948 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4949 tga.value = GGA_NORMAL;
4950 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4951
4952 /* Now go through the GOTs assigning them offset ranges.
4953 [assigned_low_gotno, local_gotno[ will be set to the range of local
4954 entries in each GOT. We can then compute the end of a GOT by
4955 adding local_gotno to global_gotno. We reverse the list and make
4956 it circular since then we'll be able to quickly compute the
4957 beginning of a GOT, by computing the end of its predecessor. To
4958 avoid special cases for the primary GOT, while still preserving
4959 assertions that are valid for both single- and multi-got links,
4960 we arrange for the main got struct to have the right number of
4961 global entries, but set its local_gotno such that the initial
4962 offset of the primary GOT is zero. Remember that the primary GOT
4963 will become the last item in the circular linked list, so it
4964 points back to the master GOT. */
4965 gg->local_gotno = -g->global_gotno;
4966 gg->global_gotno = g->global_gotno;
4967 gg->tls_gotno = 0;
4968 assign = 0;
4969 gg->next = gg;
4970
4971 do
4972 {
4973 struct mips_got_info *gn;
4974
4975 assign += htab->reserved_gotno;
4976 g->assigned_low_gotno = assign;
4977 g->local_gotno += assign;
4978 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4979 g->assigned_high_gotno = g->local_gotno - 1;
4980 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4981
4982 /* Take g out of the direct list, and push it onto the reversed
4983 list that gg points to. g->next is guaranteed to be nonnull after
4984 this operation, as required by mips_elf_initialize_tls_index. */
4985 gn = g->next;
4986 g->next = gg->next;
4987 gg->next = g;
4988
4989 /* Set up any TLS entries. We always place the TLS entries after
4990 all non-TLS entries. */
4991 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4992 tga.g = g;
4993 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4994 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4995 if (!tga.g)
4996 return FALSE;
4997 BFD_ASSERT (g->tls_assigned_gotno == assign);
4998
4999 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5000 g = gn;
5001
5002 /* Forbid global symbols in every non-primary GOT from having
5003 lazy-binding stubs. */
5004 if (g)
5005 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5006 }
5007 while (g);
5008
5009 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5010
5011 needed_relocs = 0;
5012 for (g = gg->next; g && g->next != gg; g = g->next)
5013 {
5014 unsigned int save_assign;
5015
5016 /* Assign offsets to global GOT entries and count how many
5017 relocations they need. */
5018 save_assign = g->assigned_low_gotno;
5019 g->assigned_low_gotno = g->local_gotno;
5020 tga.info = info;
5021 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5022 tga.g = g;
5023 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5024 if (!tga.g)
5025 return FALSE;
5026 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5027 g->assigned_low_gotno = save_assign;
5028
5029 if (bfd_link_pic (info))
5030 {
5031 g->relocs += g->local_gotno - g->assigned_low_gotno;
5032 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5033 + g->next->global_gotno
5034 + g->next->tls_gotno
5035 + htab->reserved_gotno);
5036 }
5037 needed_relocs += g->relocs;
5038 }
5039 needed_relocs += g->relocs;
5040
5041 if (needed_relocs)
5042 mips_elf_allocate_dynamic_relocations (dynobj, info,
5043 needed_relocs);
5044
5045 return TRUE;
5046 }
5047
5048 \f
5049 /* Returns the first relocation of type r_type found, beginning with
5050 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5051
5052 static const Elf_Internal_Rela *
5053 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5054 const Elf_Internal_Rela *relocation,
5055 const Elf_Internal_Rela *relend)
5056 {
5057 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5058
5059 while (relocation < relend)
5060 {
5061 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5062 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5063 return relocation;
5064
5065 ++relocation;
5066 }
5067
5068 /* We didn't find it. */
5069 return NULL;
5070 }
5071
5072 /* Return whether an input relocation is against a local symbol. */
5073
5074 static bfd_boolean
5075 mips_elf_local_relocation_p (bfd *input_bfd,
5076 const Elf_Internal_Rela *relocation,
5077 asection **local_sections)
5078 {
5079 unsigned long r_symndx;
5080 Elf_Internal_Shdr *symtab_hdr;
5081 size_t extsymoff;
5082
5083 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5084 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5085 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5086
5087 if (r_symndx < extsymoff)
5088 return TRUE;
5089 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5090 return TRUE;
5091
5092 return FALSE;
5093 }
5094 \f
5095 /* Sign-extend VALUE, which has the indicated number of BITS. */
5096
5097 bfd_vma
5098 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5099 {
5100 if (value & ((bfd_vma) 1 << (bits - 1)))
5101 /* VALUE is negative. */
5102 value |= ((bfd_vma) - 1) << bits;
5103
5104 return value;
5105 }
5106
5107 /* Return non-zero if the indicated VALUE has overflowed the maximum
5108 range expressible by a signed number with the indicated number of
5109 BITS. */
5110
5111 static bfd_boolean
5112 mips_elf_overflow_p (bfd_vma value, int bits)
5113 {
5114 bfd_signed_vma svalue = (bfd_signed_vma) value;
5115
5116 if (svalue > (1 << (bits - 1)) - 1)
5117 /* The value is too big. */
5118 return TRUE;
5119 else if (svalue < -(1 << (bits - 1)))
5120 /* The value is too small. */
5121 return TRUE;
5122
5123 /* All is well. */
5124 return FALSE;
5125 }
5126
5127 /* Calculate the %high function. */
5128
5129 static bfd_vma
5130 mips_elf_high (bfd_vma value)
5131 {
5132 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5133 }
5134
5135 /* Calculate the %higher function. */
5136
5137 static bfd_vma
5138 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5139 {
5140 #ifdef BFD64
5141 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5142 #else
5143 abort ();
5144 return MINUS_ONE;
5145 #endif
5146 }
5147
5148 /* Calculate the %highest function. */
5149
5150 static bfd_vma
5151 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5152 {
5153 #ifdef BFD64
5154 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5155 #else
5156 abort ();
5157 return MINUS_ONE;
5158 #endif
5159 }
5160 \f
5161 /* Create the .compact_rel section. */
5162
5163 static bfd_boolean
5164 mips_elf_create_compact_rel_section
5165 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5166 {
5167 flagword flags;
5168 register asection *s;
5169
5170 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5171 {
5172 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5173 | SEC_READONLY);
5174
5175 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5176 if (s == NULL
5177 || ! bfd_set_section_alignment (abfd, s,
5178 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5179 return FALSE;
5180
5181 s->size = sizeof (Elf32_External_compact_rel);
5182 }
5183
5184 return TRUE;
5185 }
5186
5187 /* Create the .got section to hold the global offset table. */
5188
5189 static bfd_boolean
5190 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5191 {
5192 flagword flags;
5193 register asection *s;
5194 struct elf_link_hash_entry *h;
5195 struct bfd_link_hash_entry *bh;
5196 struct mips_elf_link_hash_table *htab;
5197
5198 htab = mips_elf_hash_table (info);
5199 BFD_ASSERT (htab != NULL);
5200
5201 /* This function may be called more than once. */
5202 if (htab->root.sgot)
5203 return TRUE;
5204
5205 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5206 | SEC_LINKER_CREATED);
5207
5208 /* We have to use an alignment of 2**4 here because this is hardcoded
5209 in the function stub generation and in the linker script. */
5210 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5211 if (s == NULL
5212 || ! bfd_set_section_alignment (abfd, s, 4))
5213 return FALSE;
5214 htab->root.sgot = s;
5215
5216 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5217 linker script because we don't want to define the symbol if we
5218 are not creating a global offset table. */
5219 bh = NULL;
5220 if (! (_bfd_generic_link_add_one_symbol
5221 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5222 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5223 return FALSE;
5224
5225 h = (struct elf_link_hash_entry *) bh;
5226 h->non_elf = 0;
5227 h->def_regular = 1;
5228 h->type = STT_OBJECT;
5229 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5230 elf_hash_table (info)->hgot = h;
5231
5232 if (bfd_link_pic (info)
5233 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5234 return FALSE;
5235
5236 htab->got_info = mips_elf_create_got_info (abfd);
5237 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5238 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5239
5240 /* We also need a .got.plt section when generating PLTs. */
5241 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5242 SEC_ALLOC | SEC_LOAD
5243 | SEC_HAS_CONTENTS
5244 | SEC_IN_MEMORY
5245 | SEC_LINKER_CREATED);
5246 if (s == NULL)
5247 return FALSE;
5248 htab->root.sgotplt = s;
5249
5250 return TRUE;
5251 }
5252 \f
5253 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5254 __GOTT_INDEX__ symbols. These symbols are only special for
5255 shared objects; they are not used in executables. */
5256
5257 static bfd_boolean
5258 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5259 {
5260 return (mips_elf_hash_table (info)->is_vxworks
5261 && bfd_link_pic (info)
5262 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5263 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5264 }
5265
5266 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5267 require an la25 stub. See also mips_elf_local_pic_function_p,
5268 which determines whether the destination function ever requires a
5269 stub. */
5270
5271 static bfd_boolean
5272 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5273 bfd_boolean target_is_16_bit_code_p)
5274 {
5275 /* We specifically ignore branches and jumps from EF_PIC objects,
5276 where the onus is on the compiler or programmer to perform any
5277 necessary initialization of $25. Sometimes such initialization
5278 is unnecessary; for example, -mno-shared functions do not use
5279 the incoming value of $25, and may therefore be called directly. */
5280 if (PIC_OBJECT_P (input_bfd))
5281 return FALSE;
5282
5283 switch (r_type)
5284 {
5285 case R_MIPS_26:
5286 case R_MIPS_PC16:
5287 case R_MIPS_PC21_S2:
5288 case R_MIPS_PC26_S2:
5289 case R_MICROMIPS_26_S1:
5290 case R_MICROMIPS_PC7_S1:
5291 case R_MICROMIPS_PC10_S1:
5292 case R_MICROMIPS_PC16_S1:
5293 case R_MICROMIPS_PC23_S2:
5294 return TRUE;
5295
5296 case R_MIPS16_26:
5297 return !target_is_16_bit_code_p;
5298
5299 default:
5300 return FALSE;
5301 }
5302 }
5303 \f
5304 /* Obtain the field relocated by RELOCATION. */
5305
5306 static bfd_vma
5307 mips_elf_obtain_contents (reloc_howto_type *howto,
5308 const Elf_Internal_Rela *relocation,
5309 bfd *input_bfd, bfd_byte *contents)
5310 {
5311 bfd_vma x = 0;
5312 bfd_byte *location = contents + relocation->r_offset;
5313 unsigned int size = bfd_get_reloc_size (howto);
5314
5315 /* Obtain the bytes. */
5316 if (size != 0)
5317 x = bfd_get (8 * size, input_bfd, location);
5318
5319 return x;
5320 }
5321
5322 /* Store the field relocated by RELOCATION. */
5323
5324 static void
5325 mips_elf_store_contents (reloc_howto_type *howto,
5326 const Elf_Internal_Rela *relocation,
5327 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5328 {
5329 bfd_byte *location = contents + relocation->r_offset;
5330 unsigned int size = bfd_get_reloc_size (howto);
5331
5332 /* Put the value into the output. */
5333 if (size != 0)
5334 bfd_put (8 * size, input_bfd, x, location);
5335 }
5336
5337 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5338 RELOCATION described by HOWTO, with a move of 0 to the load target
5339 register, returning TRUE if that is successful and FALSE otherwise.
5340 If DOIT is FALSE, then only determine it patching is possible and
5341 return status without actually changing CONTENTS.
5342 */
5343
5344 static bfd_boolean
5345 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5346 const Elf_Internal_Rela *relocation,
5347 reloc_howto_type *howto, bfd_boolean doit)
5348 {
5349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5350 bfd_byte *location = contents + relocation->r_offset;
5351 bfd_boolean nullified = TRUE;
5352 bfd_vma x;
5353
5354 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5355
5356 /* Obtain the current value. */
5357 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5358
5359 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5360 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5361 if (mips16_reloc_p (r_type)
5362 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5363 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5364 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5365 else if (micromips_reloc_p (r_type)
5366 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5367 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5368 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5369 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5370 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5371 else
5372 nullified = FALSE;
5373
5374 /* Put the value into the output. */
5375 if (doit && nullified)
5376 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5377
5378 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5379
5380 return nullified;
5381 }
5382
5383 /* Calculate the value produced by the RELOCATION (which comes from
5384 the INPUT_BFD). The ADDEND is the addend to use for this
5385 RELOCATION; RELOCATION->R_ADDEND is ignored.
5386
5387 The result of the relocation calculation is stored in VALUEP.
5388 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5389 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5390
5391 This function returns bfd_reloc_continue if the caller need take no
5392 further action regarding this relocation, bfd_reloc_notsupported if
5393 something goes dramatically wrong, bfd_reloc_overflow if an
5394 overflow occurs, and bfd_reloc_ok to indicate success. */
5395
5396 static bfd_reloc_status_type
5397 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5398 asection *input_section, bfd_byte *contents,
5399 struct bfd_link_info *info,
5400 const Elf_Internal_Rela *relocation,
5401 bfd_vma addend, reloc_howto_type *howto,
5402 Elf_Internal_Sym *local_syms,
5403 asection **local_sections, bfd_vma *valuep,
5404 const char **namep,
5405 bfd_boolean *cross_mode_jump_p,
5406 bfd_boolean save_addend)
5407 {
5408 /* The eventual value we will return. */
5409 bfd_vma value;
5410 /* The address of the symbol against which the relocation is
5411 occurring. */
5412 bfd_vma symbol = 0;
5413 /* The final GP value to be used for the relocatable, executable, or
5414 shared object file being produced. */
5415 bfd_vma gp;
5416 /* The place (section offset or address) of the storage unit being
5417 relocated. */
5418 bfd_vma p;
5419 /* The value of GP used to create the relocatable object. */
5420 bfd_vma gp0;
5421 /* The offset into the global offset table at which the address of
5422 the relocation entry symbol, adjusted by the addend, resides
5423 during execution. */
5424 bfd_vma g = MINUS_ONE;
5425 /* The section in which the symbol referenced by the relocation is
5426 located. */
5427 asection *sec = NULL;
5428 struct mips_elf_link_hash_entry *h = NULL;
5429 /* TRUE if the symbol referred to by this relocation is a local
5430 symbol. */
5431 bfd_boolean local_p, was_local_p;
5432 /* TRUE if the symbol referred to by this relocation is a section
5433 symbol. */
5434 bfd_boolean section_p = FALSE;
5435 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5436 bfd_boolean gp_disp_p = FALSE;
5437 /* TRUE if the symbol referred to by this relocation is
5438 "__gnu_local_gp". */
5439 bfd_boolean gnu_local_gp_p = FALSE;
5440 Elf_Internal_Shdr *symtab_hdr;
5441 size_t extsymoff;
5442 unsigned long r_symndx;
5443 int r_type;
5444 /* TRUE if overflow occurred during the calculation of the
5445 relocation value. */
5446 bfd_boolean overflowed_p;
5447 /* TRUE if this relocation refers to a MIPS16 function. */
5448 bfd_boolean target_is_16_bit_code_p = FALSE;
5449 bfd_boolean target_is_micromips_code_p = FALSE;
5450 struct mips_elf_link_hash_table *htab;
5451 bfd *dynobj;
5452 bfd_boolean resolved_to_zero;
5453
5454 dynobj = elf_hash_table (info)->dynobj;
5455 htab = mips_elf_hash_table (info);
5456 BFD_ASSERT (htab != NULL);
5457
5458 /* Parse the relocation. */
5459 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5460 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5461 p = (input_section->output_section->vma
5462 + input_section->output_offset
5463 + relocation->r_offset);
5464
5465 /* Assume that there will be no overflow. */
5466 overflowed_p = FALSE;
5467
5468 /* Figure out whether or not the symbol is local, and get the offset
5469 used in the array of hash table entries. */
5470 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5471 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5472 local_sections);
5473 was_local_p = local_p;
5474 if (! elf_bad_symtab (input_bfd))
5475 extsymoff = symtab_hdr->sh_info;
5476 else
5477 {
5478 /* The symbol table does not follow the rule that local symbols
5479 must come before globals. */
5480 extsymoff = 0;
5481 }
5482
5483 /* Figure out the value of the symbol. */
5484 if (local_p)
5485 {
5486 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5487 Elf_Internal_Sym *sym;
5488
5489 sym = local_syms + r_symndx;
5490 sec = local_sections[r_symndx];
5491
5492 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5493
5494 symbol = sec->output_section->vma + sec->output_offset;
5495 if (!section_p || (sec->flags & SEC_MERGE))
5496 symbol += sym->st_value;
5497 if ((sec->flags & SEC_MERGE) && section_p)
5498 {
5499 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5500 addend -= symbol;
5501 addend += sec->output_section->vma + sec->output_offset;
5502 }
5503
5504 /* MIPS16/microMIPS text labels should be treated as odd. */
5505 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5506 ++symbol;
5507
5508 /* Record the name of this symbol, for our caller. */
5509 *namep = bfd_elf_string_from_elf_section (input_bfd,
5510 symtab_hdr->sh_link,
5511 sym->st_name);
5512 if (*namep == NULL || **namep == '\0')
5513 *namep = bfd_section_name (input_bfd, sec);
5514
5515 /* For relocations against a section symbol and ones against no
5516 symbol (absolute relocations) infer the ISA mode from the addend. */
5517 if (section_p || r_symndx == STN_UNDEF)
5518 {
5519 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5520 target_is_micromips_code_p = (addend & 1) && micromips_p;
5521 }
5522 /* For relocations against an absolute symbol infer the ISA mode
5523 from the value of the symbol plus addend. */
5524 else if (bfd_is_abs_section (sec))
5525 {
5526 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5527 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5528 }
5529 /* Otherwise just use the regular symbol annotation available. */
5530 else
5531 {
5532 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5533 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5534 }
5535 }
5536 else
5537 {
5538 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5539
5540 /* For global symbols we look up the symbol in the hash-table. */
5541 h = ((struct mips_elf_link_hash_entry *)
5542 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5543 /* Find the real hash-table entry for this symbol. */
5544 while (h->root.root.type == bfd_link_hash_indirect
5545 || h->root.root.type == bfd_link_hash_warning)
5546 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5547
5548 /* Record the name of this symbol, for our caller. */
5549 *namep = h->root.root.root.string;
5550
5551 /* See if this is the special _gp_disp symbol. Note that such a
5552 symbol must always be a global symbol. */
5553 if (strcmp (*namep, "_gp_disp") == 0
5554 && ! NEWABI_P (input_bfd))
5555 {
5556 /* Relocations against _gp_disp are permitted only with
5557 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5558 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5559 return bfd_reloc_notsupported;
5560
5561 gp_disp_p = TRUE;
5562 }
5563 /* See if this is the special _gp symbol. Note that such a
5564 symbol must always be a global symbol. */
5565 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5566 gnu_local_gp_p = TRUE;
5567
5568
5569 /* If this symbol is defined, calculate its address. Note that
5570 _gp_disp is a magic symbol, always implicitly defined by the
5571 linker, so it's inappropriate to check to see whether or not
5572 its defined. */
5573 else if ((h->root.root.type == bfd_link_hash_defined
5574 || h->root.root.type == bfd_link_hash_defweak)
5575 && h->root.root.u.def.section)
5576 {
5577 sec = h->root.root.u.def.section;
5578 if (sec->output_section)
5579 symbol = (h->root.root.u.def.value
5580 + sec->output_section->vma
5581 + sec->output_offset);
5582 else
5583 symbol = h->root.root.u.def.value;
5584 }
5585 else if (h->root.root.type == bfd_link_hash_undefweak)
5586 /* We allow relocations against undefined weak symbols, giving
5587 it the value zero, so that you can undefined weak functions
5588 and check to see if they exist by looking at their
5589 addresses. */
5590 symbol = 0;
5591 else if (info->unresolved_syms_in_objects == RM_IGNORE
5592 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5593 symbol = 0;
5594 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5595 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5596 {
5597 /* If this is a dynamic link, we should have created a
5598 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5599 in _bfd_mips_elf_create_dynamic_sections.
5600 Otherwise, we should define the symbol with a value of 0.
5601 FIXME: It should probably get into the symbol table
5602 somehow as well. */
5603 BFD_ASSERT (! bfd_link_pic (info));
5604 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5605 symbol = 0;
5606 }
5607 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5608 {
5609 /* This is an optional symbol - an Irix specific extension to the
5610 ELF spec. Ignore it for now.
5611 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5612 than simply ignoring them, but we do not handle this for now.
5613 For information see the "64-bit ELF Object File Specification"
5614 which is available from here:
5615 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5616 symbol = 0;
5617 }
5618 else
5619 {
5620 bfd_boolean reject_undefined
5621 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5622 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5623
5624 (*info->callbacks->undefined_symbol)
5625 (info, h->root.root.root.string, input_bfd,
5626 input_section, relocation->r_offset, reject_undefined);
5627
5628 if (reject_undefined)
5629 return bfd_reloc_undefined;
5630
5631 symbol = 0;
5632 }
5633
5634 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5635 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5636 }
5637
5638 /* If this is a reference to a 16-bit function with a stub, we need
5639 to redirect the relocation to the stub unless:
5640
5641 (a) the relocation is for a MIPS16 JAL;
5642
5643 (b) the relocation is for a MIPS16 PIC call, and there are no
5644 non-MIPS16 uses of the GOT slot; or
5645
5646 (c) the section allows direct references to MIPS16 functions. */
5647 if (r_type != R_MIPS16_26
5648 && !bfd_link_relocatable (info)
5649 && ((h != NULL
5650 && h->fn_stub != NULL
5651 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5652 || (local_p
5653 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5654 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5655 && !section_allows_mips16_refs_p (input_section))
5656 {
5657 /* This is a 32- or 64-bit call to a 16-bit function. We should
5658 have already noticed that we were going to need the
5659 stub. */
5660 if (local_p)
5661 {
5662 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5663 value = 0;
5664 }
5665 else
5666 {
5667 BFD_ASSERT (h->need_fn_stub);
5668 if (h->la25_stub)
5669 {
5670 /* If a LA25 header for the stub itself exists, point to the
5671 prepended LUI/ADDIU sequence. */
5672 sec = h->la25_stub->stub_section;
5673 value = h->la25_stub->offset;
5674 }
5675 else
5676 {
5677 sec = h->fn_stub;
5678 value = 0;
5679 }
5680 }
5681
5682 symbol = sec->output_section->vma + sec->output_offset + value;
5683 /* The target is 16-bit, but the stub isn't. */
5684 target_is_16_bit_code_p = FALSE;
5685 }
5686 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5687 to a standard MIPS function, we need to redirect the call to the stub.
5688 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5689 indirect calls should use an indirect stub instead. */
5690 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5691 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5692 || (local_p
5693 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5694 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5695 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5696 {
5697 if (local_p)
5698 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5699 else
5700 {
5701 /* If both call_stub and call_fp_stub are defined, we can figure
5702 out which one to use by checking which one appears in the input
5703 file. */
5704 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5705 {
5706 asection *o;
5707
5708 sec = NULL;
5709 for (o = input_bfd->sections; o != NULL; o = o->next)
5710 {
5711 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5712 {
5713 sec = h->call_fp_stub;
5714 break;
5715 }
5716 }
5717 if (sec == NULL)
5718 sec = h->call_stub;
5719 }
5720 else if (h->call_stub != NULL)
5721 sec = h->call_stub;
5722 else
5723 sec = h->call_fp_stub;
5724 }
5725
5726 BFD_ASSERT (sec->size > 0);
5727 symbol = sec->output_section->vma + sec->output_offset;
5728 }
5729 /* If this is a direct call to a PIC function, redirect to the
5730 non-PIC stub. */
5731 else if (h != NULL && h->la25_stub
5732 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5733 target_is_16_bit_code_p))
5734 {
5735 symbol = (h->la25_stub->stub_section->output_section->vma
5736 + h->la25_stub->stub_section->output_offset
5737 + h->la25_stub->offset);
5738 if (ELF_ST_IS_MICROMIPS (h->root.other))
5739 symbol |= 1;
5740 }
5741 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5742 entry is used if a standard PLT entry has also been made. In this
5743 case the symbol will have been set by mips_elf_set_plt_sym_value
5744 to point to the standard PLT entry, so redirect to the compressed
5745 one. */
5746 else if ((mips16_branch_reloc_p (r_type)
5747 || micromips_branch_reloc_p (r_type))
5748 && !bfd_link_relocatable (info)
5749 && h != NULL
5750 && h->use_plt_entry
5751 && h->root.plt.plist->comp_offset != MINUS_ONE
5752 && h->root.plt.plist->mips_offset != MINUS_ONE)
5753 {
5754 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5755
5756 sec = htab->root.splt;
5757 symbol = (sec->output_section->vma
5758 + sec->output_offset
5759 + htab->plt_header_size
5760 + htab->plt_mips_offset
5761 + h->root.plt.plist->comp_offset
5762 + 1);
5763
5764 target_is_16_bit_code_p = !micromips_p;
5765 target_is_micromips_code_p = micromips_p;
5766 }
5767
5768 /* Make sure MIPS16 and microMIPS are not used together. */
5769 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5770 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5771 {
5772 _bfd_error_handler
5773 (_("MIPS16 and microMIPS functions cannot call each other"));
5774 return bfd_reloc_notsupported;
5775 }
5776
5777 /* Calls from 16-bit code to 32-bit code and vice versa require the
5778 mode change. However, we can ignore calls to undefined weak symbols,
5779 which should never be executed at runtime. This exception is important
5780 because the assembly writer may have "known" that any definition of the
5781 symbol would be 16-bit code, and that direct jumps were therefore
5782 acceptable. */
5783 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5784 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5785 && ((mips16_branch_reloc_p (r_type)
5786 && !target_is_16_bit_code_p)
5787 || (micromips_branch_reloc_p (r_type)
5788 && !target_is_micromips_code_p)
5789 || ((branch_reloc_p (r_type)
5790 || r_type == R_MIPS_JALR)
5791 && (target_is_16_bit_code_p
5792 || target_is_micromips_code_p))));
5793
5794 resolved_to_zero = (h != NULL
5795 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5796
5797 switch (r_type)
5798 {
5799 case R_MIPS16_CALL16:
5800 case R_MIPS16_GOT16:
5801 case R_MIPS_CALL16:
5802 case R_MIPS_GOT16:
5803 case R_MIPS_GOT_PAGE:
5804 case R_MIPS_GOT_DISP:
5805 case R_MIPS_GOT_LO16:
5806 case R_MIPS_CALL_LO16:
5807 case R_MICROMIPS_CALL16:
5808 case R_MICROMIPS_GOT16:
5809 case R_MICROMIPS_GOT_PAGE:
5810 case R_MICROMIPS_GOT_DISP:
5811 case R_MICROMIPS_GOT_LO16:
5812 case R_MICROMIPS_CALL_LO16:
5813 if (resolved_to_zero
5814 && !bfd_link_relocatable (info)
5815 && mips_elf_nullify_got_load (input_bfd, contents,
5816 relocation, howto, TRUE))
5817 return bfd_reloc_continue;
5818
5819 /* Fall through. */
5820 case R_MIPS_GOT_HI16:
5821 case R_MIPS_CALL_HI16:
5822 case R_MICROMIPS_GOT_HI16:
5823 case R_MICROMIPS_CALL_HI16:
5824 if (resolved_to_zero
5825 && htab->use_absolute_zero
5826 && bfd_link_pic (info))
5827 {
5828 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5829 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5830 FALSE, FALSE, FALSE);
5831 BFD_ASSERT (h != NULL);
5832 }
5833 break;
5834 }
5835
5836 local_p = (h == NULL || mips_use_local_got_p (info, h));
5837
5838 gp0 = _bfd_get_gp_value (input_bfd);
5839 gp = _bfd_get_gp_value (abfd);
5840 if (htab->got_info)
5841 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5842
5843 if (gnu_local_gp_p)
5844 symbol = gp;
5845
5846 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5847 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5848 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5849 if (got_page_reloc_p (r_type) && !local_p)
5850 {
5851 r_type = (micromips_reloc_p (r_type)
5852 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5853 addend = 0;
5854 }
5855
5856 /* If we haven't already determined the GOT offset, and we're going
5857 to need it, get it now. */
5858 switch (r_type)
5859 {
5860 case R_MIPS16_CALL16:
5861 case R_MIPS16_GOT16:
5862 case R_MIPS_CALL16:
5863 case R_MIPS_GOT16:
5864 case R_MIPS_GOT_DISP:
5865 case R_MIPS_GOT_HI16:
5866 case R_MIPS_CALL_HI16:
5867 case R_MIPS_GOT_LO16:
5868 case R_MIPS_CALL_LO16:
5869 case R_MICROMIPS_CALL16:
5870 case R_MICROMIPS_GOT16:
5871 case R_MICROMIPS_GOT_DISP:
5872 case R_MICROMIPS_GOT_HI16:
5873 case R_MICROMIPS_CALL_HI16:
5874 case R_MICROMIPS_GOT_LO16:
5875 case R_MICROMIPS_CALL_LO16:
5876 case R_MIPS_TLS_GD:
5877 case R_MIPS_TLS_GOTTPREL:
5878 case R_MIPS_TLS_LDM:
5879 case R_MIPS16_TLS_GD:
5880 case R_MIPS16_TLS_GOTTPREL:
5881 case R_MIPS16_TLS_LDM:
5882 case R_MICROMIPS_TLS_GD:
5883 case R_MICROMIPS_TLS_GOTTPREL:
5884 case R_MICROMIPS_TLS_LDM:
5885 /* Find the index into the GOT where this value is located. */
5886 if (tls_ldm_reloc_p (r_type))
5887 {
5888 g = mips_elf_local_got_index (abfd, input_bfd, info,
5889 0, 0, NULL, r_type);
5890 if (g == MINUS_ONE)
5891 return bfd_reloc_outofrange;
5892 }
5893 else if (!local_p)
5894 {
5895 /* On VxWorks, CALL relocations should refer to the .got.plt
5896 entry, which is initialized to point at the PLT stub. */
5897 if (htab->is_vxworks
5898 && (call_hi16_reloc_p (r_type)
5899 || call_lo16_reloc_p (r_type)
5900 || call16_reloc_p (r_type)))
5901 {
5902 BFD_ASSERT (addend == 0);
5903 BFD_ASSERT (h->root.needs_plt);
5904 g = mips_elf_gotplt_index (info, &h->root);
5905 }
5906 else
5907 {
5908 BFD_ASSERT (addend == 0);
5909 g = mips_elf_global_got_index (abfd, info, input_bfd,
5910 &h->root, r_type);
5911 if (!TLS_RELOC_P (r_type)
5912 && !elf_hash_table (info)->dynamic_sections_created)
5913 /* This is a static link. We must initialize the GOT entry. */
5914 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5915 }
5916 }
5917 else if (!htab->is_vxworks
5918 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5919 /* The calculation below does not involve "g". */
5920 break;
5921 else
5922 {
5923 g = mips_elf_local_got_index (abfd, input_bfd, info,
5924 symbol + addend, r_symndx, h, r_type);
5925 if (g == MINUS_ONE)
5926 return bfd_reloc_outofrange;
5927 }
5928
5929 /* Convert GOT indices to actual offsets. */
5930 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5931 break;
5932 }
5933
5934 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5935 symbols are resolved by the loader. Add them to .rela.dyn. */
5936 if (h != NULL && is_gott_symbol (info, &h->root))
5937 {
5938 Elf_Internal_Rela outrel;
5939 bfd_byte *loc;
5940 asection *s;
5941
5942 s = mips_elf_rel_dyn_section (info, FALSE);
5943 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5944
5945 outrel.r_offset = (input_section->output_section->vma
5946 + input_section->output_offset
5947 + relocation->r_offset);
5948 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5949 outrel.r_addend = addend;
5950 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5951
5952 /* If we've written this relocation for a readonly section,
5953 we need to set DF_TEXTREL again, so that we do not delete the
5954 DT_TEXTREL tag. */
5955 if (MIPS_ELF_READONLY_SECTION (input_section))
5956 info->flags |= DF_TEXTREL;
5957
5958 *valuep = 0;
5959 return bfd_reloc_ok;
5960 }
5961
5962 /* Figure out what kind of relocation is being performed. */
5963 switch (r_type)
5964 {
5965 case R_MIPS_NONE:
5966 return bfd_reloc_continue;
5967
5968 case R_MIPS_16:
5969 if (howto->partial_inplace)
5970 addend = _bfd_mips_elf_sign_extend (addend, 16);
5971 value = symbol + addend;
5972 overflowed_p = mips_elf_overflow_p (value, 16);
5973 break;
5974
5975 case R_MIPS_32:
5976 case R_MIPS_REL32:
5977 case R_MIPS_64:
5978 if ((bfd_link_pic (info)
5979 || (htab->root.dynamic_sections_created
5980 && h != NULL
5981 && h->root.def_dynamic
5982 && !h->root.def_regular
5983 && !h->has_static_relocs))
5984 && r_symndx != STN_UNDEF
5985 && (h == NULL
5986 || h->root.root.type != bfd_link_hash_undefweak
5987 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5988 && !resolved_to_zero))
5989 && (input_section->flags & SEC_ALLOC) != 0)
5990 {
5991 /* If we're creating a shared library, then we can't know
5992 where the symbol will end up. So, we create a relocation
5993 record in the output, and leave the job up to the dynamic
5994 linker. We must do the same for executable references to
5995 shared library symbols, unless we've decided to use copy
5996 relocs or PLTs instead. */
5997 value = addend;
5998 if (!mips_elf_create_dynamic_relocation (abfd,
5999 info,
6000 relocation,
6001 h,
6002 sec,
6003 symbol,
6004 &value,
6005 input_section))
6006 return bfd_reloc_undefined;
6007 }
6008 else
6009 {
6010 if (r_type != R_MIPS_REL32)
6011 value = symbol + addend;
6012 else
6013 value = addend;
6014 }
6015 value &= howto->dst_mask;
6016 break;
6017
6018 case R_MIPS_PC32:
6019 value = symbol + addend - p;
6020 value &= howto->dst_mask;
6021 break;
6022
6023 case R_MIPS16_26:
6024 /* The calculation for R_MIPS16_26 is just the same as for an
6025 R_MIPS_26. It's only the storage of the relocated field into
6026 the output file that's different. That's handled in
6027 mips_elf_perform_relocation. So, we just fall through to the
6028 R_MIPS_26 case here. */
6029 case R_MIPS_26:
6030 case R_MICROMIPS_26_S1:
6031 {
6032 unsigned int shift;
6033
6034 /* Shift is 2, unusually, for microMIPS JALX. */
6035 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6036
6037 if (howto->partial_inplace && !section_p)
6038 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6039 else
6040 value = addend;
6041 value += symbol;
6042
6043 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6044 be the correct ISA mode selector except for weak undefined
6045 symbols. */
6046 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6047 && (*cross_mode_jump_p
6048 ? (value & 3) != (r_type == R_MIPS_26)
6049 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6050 return bfd_reloc_outofrange;
6051
6052 value >>= shift;
6053 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6055 value &= howto->dst_mask;
6056 }
6057 break;
6058
6059 case R_MIPS_TLS_DTPREL_HI16:
6060 case R_MIPS16_TLS_DTPREL_HI16:
6061 case R_MICROMIPS_TLS_DTPREL_HI16:
6062 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6063 & howto->dst_mask);
6064 break;
6065
6066 case R_MIPS_TLS_DTPREL_LO16:
6067 case R_MIPS_TLS_DTPREL32:
6068 case R_MIPS_TLS_DTPREL64:
6069 case R_MIPS16_TLS_DTPREL_LO16:
6070 case R_MICROMIPS_TLS_DTPREL_LO16:
6071 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6072 break;
6073
6074 case R_MIPS_TLS_TPREL_HI16:
6075 case R_MIPS16_TLS_TPREL_HI16:
6076 case R_MICROMIPS_TLS_TPREL_HI16:
6077 value = (mips_elf_high (addend + symbol - tprel_base (info))
6078 & howto->dst_mask);
6079 break;
6080
6081 case R_MIPS_TLS_TPREL_LO16:
6082 case R_MIPS_TLS_TPREL32:
6083 case R_MIPS_TLS_TPREL64:
6084 case R_MIPS16_TLS_TPREL_LO16:
6085 case R_MICROMIPS_TLS_TPREL_LO16:
6086 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6087 break;
6088
6089 case R_MIPS_HI16:
6090 case R_MIPS16_HI16:
6091 case R_MICROMIPS_HI16:
6092 if (!gp_disp_p)
6093 {
6094 value = mips_elf_high (addend + symbol);
6095 value &= howto->dst_mask;
6096 }
6097 else
6098 {
6099 /* For MIPS16 ABI code we generate this sequence
6100 0: li $v0,%hi(_gp_disp)
6101 4: addiupc $v1,%lo(_gp_disp)
6102 8: sll $v0,16
6103 12: addu $v0,$v1
6104 14: move $gp,$v0
6105 So the offsets of hi and lo relocs are the same, but the
6106 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6107 ADDIUPC clears the low two bits of the instruction address,
6108 so the base is ($t9 + 4) & ~3. */
6109 if (r_type == R_MIPS16_HI16)
6110 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6111 /* The microMIPS .cpload sequence uses the same assembly
6112 instructions as the traditional psABI version, but the
6113 incoming $t9 has the low bit set. */
6114 else if (r_type == R_MICROMIPS_HI16)
6115 value = mips_elf_high (addend + gp - p - 1);
6116 else
6117 value = mips_elf_high (addend + gp - p);
6118 }
6119 break;
6120
6121 case R_MIPS_LO16:
6122 case R_MIPS16_LO16:
6123 case R_MICROMIPS_LO16:
6124 case R_MICROMIPS_HI0_LO16:
6125 if (!gp_disp_p)
6126 value = (symbol + addend) & howto->dst_mask;
6127 else
6128 {
6129 /* See the comment for R_MIPS16_HI16 above for the reason
6130 for this conditional. */
6131 if (r_type == R_MIPS16_LO16)
6132 value = addend + gp - (p & ~(bfd_vma) 0x3);
6133 else if (r_type == R_MICROMIPS_LO16
6134 || r_type == R_MICROMIPS_HI0_LO16)
6135 value = addend + gp - p + 3;
6136 else
6137 value = addend + gp - p + 4;
6138 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6139 for overflow. But, on, say, IRIX5, relocations against
6140 _gp_disp are normally generated from the .cpload
6141 pseudo-op. It generates code that normally looks like
6142 this:
6143
6144 lui $gp,%hi(_gp_disp)
6145 addiu $gp,$gp,%lo(_gp_disp)
6146 addu $gp,$gp,$t9
6147
6148 Here $t9 holds the address of the function being called,
6149 as required by the MIPS ELF ABI. The R_MIPS_LO16
6150 relocation can easily overflow in this situation, but the
6151 R_MIPS_HI16 relocation will handle the overflow.
6152 Therefore, we consider this a bug in the MIPS ABI, and do
6153 not check for overflow here. */
6154 }
6155 break;
6156
6157 case R_MIPS_LITERAL:
6158 case R_MICROMIPS_LITERAL:
6159 /* Because we don't merge literal sections, we can handle this
6160 just like R_MIPS_GPREL16. In the long run, we should merge
6161 shared literals, and then we will need to additional work
6162 here. */
6163
6164 /* Fall through. */
6165
6166 case R_MIPS16_GPREL:
6167 /* The R_MIPS16_GPREL performs the same calculation as
6168 R_MIPS_GPREL16, but stores the relocated bits in a different
6169 order. We don't need to do anything special here; the
6170 differences are handled in mips_elf_perform_relocation. */
6171 case R_MIPS_GPREL16:
6172 case R_MICROMIPS_GPREL7_S2:
6173 case R_MICROMIPS_GPREL16:
6174 /* Only sign-extend the addend if it was extracted from the
6175 instruction. If the addend was separate, leave it alone,
6176 otherwise we may lose significant bits. */
6177 if (howto->partial_inplace)
6178 addend = _bfd_mips_elf_sign_extend (addend, 16);
6179 value = symbol + addend - gp;
6180 /* If the symbol was local, any earlier relocatable links will
6181 have adjusted its addend with the gp offset, so compensate
6182 for that now. Don't do it for symbols forced local in this
6183 link, though, since they won't have had the gp offset applied
6184 to them before. */
6185 if (was_local_p)
6186 value += gp0;
6187 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6188 overflowed_p = mips_elf_overflow_p (value, 16);
6189 break;
6190
6191 case R_MIPS16_GOT16:
6192 case R_MIPS16_CALL16:
6193 case R_MIPS_GOT16:
6194 case R_MIPS_CALL16:
6195 case R_MICROMIPS_GOT16:
6196 case R_MICROMIPS_CALL16:
6197 /* VxWorks does not have separate local and global semantics for
6198 R_MIPS*_GOT16; every relocation evaluates to "G". */
6199 if (!htab->is_vxworks && local_p)
6200 {
6201 value = mips_elf_got16_entry (abfd, input_bfd, info,
6202 symbol + addend, !was_local_p);
6203 if (value == MINUS_ONE)
6204 return bfd_reloc_outofrange;
6205 value
6206 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6207 overflowed_p = mips_elf_overflow_p (value, 16);
6208 break;
6209 }
6210
6211 /* Fall through. */
6212
6213 case R_MIPS_TLS_GD:
6214 case R_MIPS_TLS_GOTTPREL:
6215 case R_MIPS_TLS_LDM:
6216 case R_MIPS_GOT_DISP:
6217 case R_MIPS16_TLS_GD:
6218 case R_MIPS16_TLS_GOTTPREL:
6219 case R_MIPS16_TLS_LDM:
6220 case R_MICROMIPS_TLS_GD:
6221 case R_MICROMIPS_TLS_GOTTPREL:
6222 case R_MICROMIPS_TLS_LDM:
6223 case R_MICROMIPS_GOT_DISP:
6224 value = g;
6225 overflowed_p = mips_elf_overflow_p (value, 16);
6226 break;
6227
6228 case R_MIPS_GPREL32:
6229 value = (addend + symbol + gp0 - gp);
6230 if (!save_addend)
6231 value &= howto->dst_mask;
6232 break;
6233
6234 case R_MIPS_PC16:
6235 case R_MIPS_GNU_REL16_S2:
6236 if (howto->partial_inplace)
6237 addend = _bfd_mips_elf_sign_extend (addend, 18);
6238
6239 /* No need to exclude weak undefined symbols here as they resolve
6240 to 0 and never set `*cross_mode_jump_p', so this alignment check
6241 will never trigger for them. */
6242 if (*cross_mode_jump_p
6243 ? ((symbol + addend) & 3) != 1
6244 : ((symbol + addend) & 3) != 0)
6245 return bfd_reloc_outofrange;
6246
6247 value = symbol + addend - p;
6248 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6249 overflowed_p = mips_elf_overflow_p (value, 18);
6250 value >>= howto->rightshift;
6251 value &= howto->dst_mask;
6252 break;
6253
6254 case R_MIPS16_PC16_S1:
6255 if (howto->partial_inplace)
6256 addend = _bfd_mips_elf_sign_extend (addend, 17);
6257
6258 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6259 && (*cross_mode_jump_p
6260 ? ((symbol + addend) & 3) != 0
6261 : ((symbol + addend) & 1) == 0))
6262 return bfd_reloc_outofrange;
6263
6264 value = symbol + addend - p;
6265 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 overflowed_p = mips_elf_overflow_p (value, 17);
6267 value >>= howto->rightshift;
6268 value &= howto->dst_mask;
6269 break;
6270
6271 case R_MIPS_PC21_S2:
6272 if (howto->partial_inplace)
6273 addend = _bfd_mips_elf_sign_extend (addend, 23);
6274
6275 if ((symbol + addend) & 3)
6276 return bfd_reloc_outofrange;
6277
6278 value = symbol + addend - p;
6279 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6280 overflowed_p = mips_elf_overflow_p (value, 23);
6281 value >>= howto->rightshift;
6282 value &= howto->dst_mask;
6283 break;
6284
6285 case R_MIPS_PC26_S2:
6286 if (howto->partial_inplace)
6287 addend = _bfd_mips_elf_sign_extend (addend, 28);
6288
6289 if ((symbol + addend) & 3)
6290 return bfd_reloc_outofrange;
6291
6292 value = symbol + addend - p;
6293 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6294 overflowed_p = mips_elf_overflow_p (value, 28);
6295 value >>= howto->rightshift;
6296 value &= howto->dst_mask;
6297 break;
6298
6299 case R_MIPS_PC18_S3:
6300 if (howto->partial_inplace)
6301 addend = _bfd_mips_elf_sign_extend (addend, 21);
6302
6303 if ((symbol + addend) & 7)
6304 return bfd_reloc_outofrange;
6305
6306 value = symbol + addend - ((p | 7) ^ 7);
6307 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6308 overflowed_p = mips_elf_overflow_p (value, 21);
6309 value >>= howto->rightshift;
6310 value &= howto->dst_mask;
6311 break;
6312
6313 case R_MIPS_PC19_S2:
6314 if (howto->partial_inplace)
6315 addend = _bfd_mips_elf_sign_extend (addend, 21);
6316
6317 if ((symbol + addend) & 3)
6318 return bfd_reloc_outofrange;
6319
6320 value = symbol + addend - p;
6321 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6322 overflowed_p = mips_elf_overflow_p (value, 21);
6323 value >>= howto->rightshift;
6324 value &= howto->dst_mask;
6325 break;
6326
6327 case R_MIPS_PCHI16:
6328 value = mips_elf_high (symbol + addend - p);
6329 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6330 overflowed_p = mips_elf_overflow_p (value, 16);
6331 value &= howto->dst_mask;
6332 break;
6333
6334 case R_MIPS_PCLO16:
6335 if (howto->partial_inplace)
6336 addend = _bfd_mips_elf_sign_extend (addend, 16);
6337 value = symbol + addend - p;
6338 value &= howto->dst_mask;
6339 break;
6340
6341 case R_MICROMIPS_PC7_S1:
6342 if (howto->partial_inplace)
6343 addend = _bfd_mips_elf_sign_extend (addend, 8);
6344
6345 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6346 && (*cross_mode_jump_p
6347 ? ((symbol + addend + 2) & 3) != 0
6348 : ((symbol + addend + 2) & 1) == 0))
6349 return bfd_reloc_outofrange;
6350
6351 value = symbol + addend - p;
6352 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6353 overflowed_p = mips_elf_overflow_p (value, 8);
6354 value >>= howto->rightshift;
6355 value &= howto->dst_mask;
6356 break;
6357
6358 case R_MICROMIPS_PC10_S1:
6359 if (howto->partial_inplace)
6360 addend = _bfd_mips_elf_sign_extend (addend, 11);
6361
6362 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6363 && (*cross_mode_jump_p
6364 ? ((symbol + addend + 2) & 3) != 0
6365 : ((symbol + addend + 2) & 1) == 0))
6366 return bfd_reloc_outofrange;
6367
6368 value = symbol + addend - p;
6369 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6370 overflowed_p = mips_elf_overflow_p (value, 11);
6371 value >>= howto->rightshift;
6372 value &= howto->dst_mask;
6373 break;
6374
6375 case R_MICROMIPS_PC16_S1:
6376 if (howto->partial_inplace)
6377 addend = _bfd_mips_elf_sign_extend (addend, 17);
6378
6379 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6380 && (*cross_mode_jump_p
6381 ? ((symbol + addend) & 3) != 0
6382 : ((symbol + addend) & 1) == 0))
6383 return bfd_reloc_outofrange;
6384
6385 value = symbol + addend - p;
6386 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6387 overflowed_p = mips_elf_overflow_p (value, 17);
6388 value >>= howto->rightshift;
6389 value &= howto->dst_mask;
6390 break;
6391
6392 case R_MICROMIPS_PC23_S2:
6393 if (howto->partial_inplace)
6394 addend = _bfd_mips_elf_sign_extend (addend, 25);
6395 value = symbol + addend - ((p | 3) ^ 3);
6396 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6397 overflowed_p = mips_elf_overflow_p (value, 25);
6398 value >>= howto->rightshift;
6399 value &= howto->dst_mask;
6400 break;
6401
6402 case R_MIPS_GOT_HI16:
6403 case R_MIPS_CALL_HI16:
6404 case R_MICROMIPS_GOT_HI16:
6405 case R_MICROMIPS_CALL_HI16:
6406 /* We're allowed to handle these two relocations identically.
6407 The dynamic linker is allowed to handle the CALL relocations
6408 differently by creating a lazy evaluation stub. */
6409 value = g;
6410 value = mips_elf_high (value);
6411 value &= howto->dst_mask;
6412 break;
6413
6414 case R_MIPS_GOT_LO16:
6415 case R_MIPS_CALL_LO16:
6416 case R_MICROMIPS_GOT_LO16:
6417 case R_MICROMIPS_CALL_LO16:
6418 value = g & howto->dst_mask;
6419 break;
6420
6421 case R_MIPS_GOT_PAGE:
6422 case R_MICROMIPS_GOT_PAGE:
6423 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6424 if (value == MINUS_ONE)
6425 return bfd_reloc_outofrange;
6426 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6427 overflowed_p = mips_elf_overflow_p (value, 16);
6428 break;
6429
6430 case R_MIPS_GOT_OFST:
6431 case R_MICROMIPS_GOT_OFST:
6432 if (local_p)
6433 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6434 else
6435 value = addend;
6436 overflowed_p = mips_elf_overflow_p (value, 16);
6437 break;
6438
6439 case R_MIPS_SUB:
6440 case R_MICROMIPS_SUB:
6441 value = symbol - addend;
6442 value &= howto->dst_mask;
6443 break;
6444
6445 case R_MIPS_HIGHER:
6446 case R_MICROMIPS_HIGHER:
6447 value = mips_elf_higher (addend + symbol);
6448 value &= howto->dst_mask;
6449 break;
6450
6451 case R_MIPS_HIGHEST:
6452 case R_MICROMIPS_HIGHEST:
6453 value = mips_elf_highest (addend + symbol);
6454 value &= howto->dst_mask;
6455 break;
6456
6457 case R_MIPS_SCN_DISP:
6458 case R_MICROMIPS_SCN_DISP:
6459 value = symbol + addend - sec->output_offset;
6460 value &= howto->dst_mask;
6461 break;
6462
6463 case R_MIPS_JALR:
6464 case R_MICROMIPS_JALR:
6465 /* This relocation is only a hint. In some cases, we optimize
6466 it into a bal instruction. But we don't try to optimize
6467 when the symbol does not resolve locally. */
6468 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6469 return bfd_reloc_continue;
6470 /* We can't optimize cross-mode jumps either. */
6471 if (*cross_mode_jump_p)
6472 return bfd_reloc_continue;
6473 value = symbol + addend;
6474 /* Neither we can non-instruction-aligned targets. */
6475 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6476 return bfd_reloc_continue;
6477 break;
6478
6479 case R_MIPS_PJUMP:
6480 case R_MIPS_GNU_VTINHERIT:
6481 case R_MIPS_GNU_VTENTRY:
6482 /* We don't do anything with these at present. */
6483 return bfd_reloc_continue;
6484
6485 default:
6486 /* An unrecognized relocation type. */
6487 return bfd_reloc_notsupported;
6488 }
6489
6490 /* Store the VALUE for our caller. */
6491 *valuep = value;
6492 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6493 }
6494
6495 /* It has been determined that the result of the RELOCATION is the
6496 VALUE. Use HOWTO to place VALUE into the output file at the
6497 appropriate position. The SECTION is the section to which the
6498 relocation applies.
6499 CROSS_MODE_JUMP_P is true if the relocation field
6500 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6501
6502 Returns FALSE if anything goes wrong. */
6503
6504 static bfd_boolean
6505 mips_elf_perform_relocation (struct bfd_link_info *info,
6506 reloc_howto_type *howto,
6507 const Elf_Internal_Rela *relocation,
6508 bfd_vma value, bfd *input_bfd,
6509 asection *input_section, bfd_byte *contents,
6510 bfd_boolean cross_mode_jump_p)
6511 {
6512 bfd_vma x;
6513 bfd_byte *location;
6514 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6515
6516 /* Figure out where the relocation is occurring. */
6517 location = contents + relocation->r_offset;
6518
6519 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6520
6521 /* Obtain the current value. */
6522 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6523
6524 /* Clear the field we are setting. */
6525 x &= ~howto->dst_mask;
6526
6527 /* Set the field. */
6528 x |= (value & howto->dst_mask);
6529
6530 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6531 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6532 {
6533 bfd_vma opcode = x >> 26;
6534
6535 if (r_type == R_MIPS16_26 ? opcode == 0x7
6536 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6537 : opcode == 0x1d)
6538 {
6539 info->callbacks->einfo
6540 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6541 input_bfd, input_section, relocation->r_offset);
6542 return TRUE;
6543 }
6544 }
6545 if (cross_mode_jump_p && jal_reloc_p (r_type))
6546 {
6547 bfd_boolean ok;
6548 bfd_vma opcode = x >> 26;
6549 bfd_vma jalx_opcode;
6550
6551 /* Check to see if the opcode is already JAL or JALX. */
6552 if (r_type == R_MIPS16_26)
6553 {
6554 ok = ((opcode == 0x6) || (opcode == 0x7));
6555 jalx_opcode = 0x7;
6556 }
6557 else if (r_type == R_MICROMIPS_26_S1)
6558 {
6559 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6560 jalx_opcode = 0x3c;
6561 }
6562 else
6563 {
6564 ok = ((opcode == 0x3) || (opcode == 0x1d));
6565 jalx_opcode = 0x1d;
6566 }
6567
6568 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6569 convert J or JALS to JALX. */
6570 if (!ok)
6571 {
6572 info->callbacks->einfo
6573 (_("%X%H: unsupported jump between ISA modes; "
6574 "consider recompiling with interlinking enabled\n"),
6575 input_bfd, input_section, relocation->r_offset);
6576 return TRUE;
6577 }
6578
6579 /* Make this the JALX opcode. */
6580 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6581 }
6582 else if (cross_mode_jump_p && b_reloc_p (r_type))
6583 {
6584 bfd_boolean ok = FALSE;
6585 bfd_vma opcode = x >> 16;
6586 bfd_vma jalx_opcode = 0;
6587 bfd_vma sign_bit = 0;
6588 bfd_vma addr;
6589 bfd_vma dest;
6590
6591 if (r_type == R_MICROMIPS_PC16_S1)
6592 {
6593 ok = opcode == 0x4060;
6594 jalx_opcode = 0x3c;
6595 sign_bit = 0x10000;
6596 value <<= 1;
6597 }
6598 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6599 {
6600 ok = opcode == 0x411;
6601 jalx_opcode = 0x1d;
6602 sign_bit = 0x20000;
6603 value <<= 2;
6604 }
6605
6606 if (ok && !bfd_link_pic (info))
6607 {
6608 addr = (input_section->output_section->vma
6609 + input_section->output_offset
6610 + relocation->r_offset
6611 + 4);
6612 dest = (addr
6613 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6614
6615 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6616 {
6617 info->callbacks->einfo
6618 (_("%X%H: cannot convert branch between ISA modes "
6619 "to JALX: relocation out of range\n"),
6620 input_bfd, input_section, relocation->r_offset);
6621 return TRUE;
6622 }
6623
6624 /* Make this the JALX opcode. */
6625 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6626 }
6627 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6628 {
6629 info->callbacks->einfo
6630 (_("%X%H: unsupported branch between ISA modes\n"),
6631 input_bfd, input_section, relocation->r_offset);
6632 return TRUE;
6633 }
6634 }
6635
6636 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6637 range. */
6638 if (!bfd_link_relocatable (info)
6639 && !cross_mode_jump_p
6640 && ((JAL_TO_BAL_P (input_bfd)
6641 && r_type == R_MIPS_26
6642 && (x >> 26) == 0x3) /* jal addr */
6643 || (JALR_TO_BAL_P (input_bfd)
6644 && r_type == R_MIPS_JALR
6645 && x == 0x0320f809) /* jalr t9 */
6646 || (JR_TO_B_P (input_bfd)
6647 && r_type == R_MIPS_JALR
6648 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6649 {
6650 bfd_vma addr;
6651 bfd_vma dest;
6652 bfd_signed_vma off;
6653
6654 addr = (input_section->output_section->vma
6655 + input_section->output_offset
6656 + relocation->r_offset
6657 + 4);
6658 if (r_type == R_MIPS_26)
6659 dest = (value << 2) | ((addr >> 28) << 28);
6660 else
6661 dest = value;
6662 off = dest - addr;
6663 if (off <= 0x1ffff && off >= -0x20000)
6664 {
6665 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6666 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6667 else
6668 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6669 }
6670 }
6671
6672 /* Put the value into the output. */
6673 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6674
6675 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6676 location);
6677
6678 return TRUE;
6679 }
6680 \f
6681 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6682 is the original relocation, which is now being transformed into a
6683 dynamic relocation. The ADDENDP is adjusted if necessary; the
6684 caller should store the result in place of the original addend. */
6685
6686 static bfd_boolean
6687 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6688 struct bfd_link_info *info,
6689 const Elf_Internal_Rela *rel,
6690 struct mips_elf_link_hash_entry *h,
6691 asection *sec, bfd_vma symbol,
6692 bfd_vma *addendp, asection *input_section)
6693 {
6694 Elf_Internal_Rela outrel[3];
6695 asection *sreloc;
6696 bfd *dynobj;
6697 int r_type;
6698 long indx;
6699 bfd_boolean defined_p;
6700 struct mips_elf_link_hash_table *htab;
6701
6702 htab = mips_elf_hash_table (info);
6703 BFD_ASSERT (htab != NULL);
6704
6705 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6706 dynobj = elf_hash_table (info)->dynobj;
6707 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6708 BFD_ASSERT (sreloc != NULL);
6709 BFD_ASSERT (sreloc->contents != NULL);
6710 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6711 < sreloc->size);
6712
6713 outrel[0].r_offset =
6714 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6715 if (ABI_64_P (output_bfd))
6716 {
6717 outrel[1].r_offset =
6718 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6719 outrel[2].r_offset =
6720 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6721 }
6722
6723 if (outrel[0].r_offset == MINUS_ONE)
6724 /* The relocation field has been deleted. */
6725 return TRUE;
6726
6727 if (outrel[0].r_offset == MINUS_TWO)
6728 {
6729 /* The relocation field has been converted into a relative value of
6730 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6731 the field to be fully relocated, so add in the symbol's value. */
6732 *addendp += symbol;
6733 return TRUE;
6734 }
6735
6736 /* We must now calculate the dynamic symbol table index to use
6737 in the relocation. */
6738 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6739 {
6740 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6741 indx = h->root.dynindx;
6742 if (SGI_COMPAT (output_bfd))
6743 defined_p = h->root.def_regular;
6744 else
6745 /* ??? glibc's ld.so just adds the final GOT entry to the
6746 relocation field. It therefore treats relocs against
6747 defined symbols in the same way as relocs against
6748 undefined symbols. */
6749 defined_p = FALSE;
6750 }
6751 else
6752 {
6753 if (sec != NULL && bfd_is_abs_section (sec))
6754 indx = 0;
6755 else if (sec == NULL || sec->owner == NULL)
6756 {
6757 bfd_set_error (bfd_error_bad_value);
6758 return FALSE;
6759 }
6760 else
6761 {
6762 indx = elf_section_data (sec->output_section)->dynindx;
6763 if (indx == 0)
6764 {
6765 asection *osec = htab->root.text_index_section;
6766 indx = elf_section_data (osec)->dynindx;
6767 }
6768 if (indx == 0)
6769 abort ();
6770 }
6771
6772 /* Instead of generating a relocation using the section
6773 symbol, we may as well make it a fully relative
6774 relocation. We want to avoid generating relocations to
6775 local symbols because we used to generate them
6776 incorrectly, without adding the original symbol value,
6777 which is mandated by the ABI for section symbols. In
6778 order to give dynamic loaders and applications time to
6779 phase out the incorrect use, we refrain from emitting
6780 section-relative relocations. It's not like they're
6781 useful, after all. This should be a bit more efficient
6782 as well. */
6783 /* ??? Although this behavior is compatible with glibc's ld.so,
6784 the ABI says that relocations against STN_UNDEF should have
6785 a symbol value of 0. Irix rld honors this, so relocations
6786 against STN_UNDEF have no effect. */
6787 if (!SGI_COMPAT (output_bfd))
6788 indx = 0;
6789 defined_p = TRUE;
6790 }
6791
6792 /* If the relocation was previously an absolute relocation and
6793 this symbol will not be referred to by the relocation, we must
6794 adjust it by the value we give it in the dynamic symbol table.
6795 Otherwise leave the job up to the dynamic linker. */
6796 if (defined_p && r_type != R_MIPS_REL32)
6797 *addendp += symbol;
6798
6799 if (htab->is_vxworks)
6800 /* VxWorks uses non-relative relocations for this. */
6801 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6802 else
6803 /* The relocation is always an REL32 relocation because we don't
6804 know where the shared library will wind up at load-time. */
6805 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6806 R_MIPS_REL32);
6807
6808 /* For strict adherence to the ABI specification, we should
6809 generate a R_MIPS_64 relocation record by itself before the
6810 _REL32/_64 record as well, such that the addend is read in as
6811 a 64-bit value (REL32 is a 32-bit relocation, after all).
6812 However, since none of the existing ELF64 MIPS dynamic
6813 loaders seems to care, we don't waste space with these
6814 artificial relocations. If this turns out to not be true,
6815 mips_elf_allocate_dynamic_relocation() should be tweaked so
6816 as to make room for a pair of dynamic relocations per
6817 invocation if ABI_64_P, and here we should generate an
6818 additional relocation record with R_MIPS_64 by itself for a
6819 NULL symbol before this relocation record. */
6820 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6821 ABI_64_P (output_bfd)
6822 ? R_MIPS_64
6823 : R_MIPS_NONE);
6824 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6825
6826 /* Adjust the output offset of the relocation to reference the
6827 correct location in the output file. */
6828 outrel[0].r_offset += (input_section->output_section->vma
6829 + input_section->output_offset);
6830 outrel[1].r_offset += (input_section->output_section->vma
6831 + input_section->output_offset);
6832 outrel[2].r_offset += (input_section->output_section->vma
6833 + input_section->output_offset);
6834
6835 /* Put the relocation back out. We have to use the special
6836 relocation outputter in the 64-bit case since the 64-bit
6837 relocation format is non-standard. */
6838 if (ABI_64_P (output_bfd))
6839 {
6840 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6841 (output_bfd, &outrel[0],
6842 (sreloc->contents
6843 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6844 }
6845 else if (htab->is_vxworks)
6846 {
6847 /* VxWorks uses RELA rather than REL dynamic relocations. */
6848 outrel[0].r_addend = *addendp;
6849 bfd_elf32_swap_reloca_out
6850 (output_bfd, &outrel[0],
6851 (sreloc->contents
6852 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6853 }
6854 else
6855 bfd_elf32_swap_reloc_out
6856 (output_bfd, &outrel[0],
6857 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6858
6859 /* We've now added another relocation. */
6860 ++sreloc->reloc_count;
6861
6862 /* Make sure the output section is writable. The dynamic linker
6863 will be writing to it. */
6864 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6865 |= SHF_WRITE;
6866
6867 /* On IRIX5, make an entry of compact relocation info. */
6868 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6869 {
6870 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6871 bfd_byte *cr;
6872
6873 if (scpt)
6874 {
6875 Elf32_crinfo cptrel;
6876
6877 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6878 cptrel.vaddr = (rel->r_offset
6879 + input_section->output_section->vma
6880 + input_section->output_offset);
6881 if (r_type == R_MIPS_REL32)
6882 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6883 else
6884 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6885 mips_elf_set_cr_dist2to (cptrel, 0);
6886 cptrel.konst = *addendp;
6887
6888 cr = (scpt->contents
6889 + sizeof (Elf32_External_compact_rel));
6890 mips_elf_set_cr_relvaddr (cptrel, 0);
6891 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6892 ((Elf32_External_crinfo *) cr
6893 + scpt->reloc_count));
6894 ++scpt->reloc_count;
6895 }
6896 }
6897
6898 /* If we've written this relocation for a readonly section,
6899 we need to set DF_TEXTREL again, so that we do not delete the
6900 DT_TEXTREL tag. */
6901 if (MIPS_ELF_READONLY_SECTION (input_section))
6902 info->flags |= DF_TEXTREL;
6903
6904 return TRUE;
6905 }
6906 \f
6907 /* Return the MACH for a MIPS e_flags value. */
6908
6909 unsigned long
6910 _bfd_elf_mips_mach (flagword flags)
6911 {
6912 switch (flags & EF_MIPS_MACH)
6913 {
6914 case E_MIPS_MACH_3900:
6915 return bfd_mach_mips3900;
6916
6917 case E_MIPS_MACH_4010:
6918 return bfd_mach_mips4010;
6919
6920 case E_MIPS_MACH_4100:
6921 return bfd_mach_mips4100;
6922
6923 case E_MIPS_MACH_4111:
6924 return bfd_mach_mips4111;
6925
6926 case E_MIPS_MACH_4120:
6927 return bfd_mach_mips4120;
6928
6929 case E_MIPS_MACH_4650:
6930 return bfd_mach_mips4650;
6931
6932 case E_MIPS_MACH_5400:
6933 return bfd_mach_mips5400;
6934
6935 case E_MIPS_MACH_5500:
6936 return bfd_mach_mips5500;
6937
6938 case E_MIPS_MACH_5900:
6939 return bfd_mach_mips5900;
6940
6941 case E_MIPS_MACH_9000:
6942 return bfd_mach_mips9000;
6943
6944 case E_MIPS_MACH_SB1:
6945 return bfd_mach_mips_sb1;
6946
6947 case E_MIPS_MACH_LS2E:
6948 return bfd_mach_mips_loongson_2e;
6949
6950 case E_MIPS_MACH_LS2F:
6951 return bfd_mach_mips_loongson_2f;
6952
6953 case E_MIPS_MACH_GS464:
6954 return bfd_mach_mips_gs464;
6955
6956 case E_MIPS_MACH_GS464E:
6957 return bfd_mach_mips_gs464e;
6958
6959 case E_MIPS_MACH_GS264E:
6960 return bfd_mach_mips_gs264e;
6961
6962 case E_MIPS_MACH_OCTEON3:
6963 return bfd_mach_mips_octeon3;
6964
6965 case E_MIPS_MACH_OCTEON2:
6966 return bfd_mach_mips_octeon2;
6967
6968 case E_MIPS_MACH_OCTEON:
6969 return bfd_mach_mips_octeon;
6970
6971 case E_MIPS_MACH_XLR:
6972 return bfd_mach_mips_xlr;
6973
6974 case E_MIPS_MACH_IAMR2:
6975 return bfd_mach_mips_interaptiv_mr2;
6976
6977 default:
6978 switch (flags & EF_MIPS_ARCH)
6979 {
6980 default:
6981 case E_MIPS_ARCH_1:
6982 return bfd_mach_mips3000;
6983
6984 case E_MIPS_ARCH_2:
6985 return bfd_mach_mips6000;
6986
6987 case E_MIPS_ARCH_3:
6988 return bfd_mach_mips4000;
6989
6990 case E_MIPS_ARCH_4:
6991 return bfd_mach_mips8000;
6992
6993 case E_MIPS_ARCH_5:
6994 return bfd_mach_mips5;
6995
6996 case E_MIPS_ARCH_32:
6997 return bfd_mach_mipsisa32;
6998
6999 case E_MIPS_ARCH_64:
7000 return bfd_mach_mipsisa64;
7001
7002 case E_MIPS_ARCH_32R2:
7003 return bfd_mach_mipsisa32r2;
7004
7005 case E_MIPS_ARCH_64R2:
7006 return bfd_mach_mipsisa64r2;
7007
7008 case E_MIPS_ARCH_32R6:
7009 return bfd_mach_mipsisa32r6;
7010
7011 case E_MIPS_ARCH_64R6:
7012 return bfd_mach_mipsisa64r6;
7013 }
7014 }
7015
7016 return 0;
7017 }
7018
7019 /* Return printable name for ABI. */
7020
7021 static INLINE char *
7022 elf_mips_abi_name (bfd *abfd)
7023 {
7024 flagword flags;
7025
7026 flags = elf_elfheader (abfd)->e_flags;
7027 switch (flags & EF_MIPS_ABI)
7028 {
7029 case 0:
7030 if (ABI_N32_P (abfd))
7031 return "N32";
7032 else if (ABI_64_P (abfd))
7033 return "64";
7034 else
7035 return "none";
7036 case E_MIPS_ABI_O32:
7037 return "O32";
7038 case E_MIPS_ABI_O64:
7039 return "O64";
7040 case E_MIPS_ABI_EABI32:
7041 return "EABI32";
7042 case E_MIPS_ABI_EABI64:
7043 return "EABI64";
7044 default:
7045 return "unknown abi";
7046 }
7047 }
7048 \f
7049 /* MIPS ELF uses two common sections. One is the usual one, and the
7050 other is for small objects. All the small objects are kept
7051 together, and then referenced via the gp pointer, which yields
7052 faster assembler code. This is what we use for the small common
7053 section. This approach is copied from ecoff.c. */
7054 static asection mips_elf_scom_section;
7055 static asymbol mips_elf_scom_symbol;
7056 static asymbol *mips_elf_scom_symbol_ptr;
7057
7058 /* MIPS ELF also uses an acommon section, which represents an
7059 allocated common symbol which may be overridden by a
7060 definition in a shared library. */
7061 static asection mips_elf_acom_section;
7062 static asymbol mips_elf_acom_symbol;
7063 static asymbol *mips_elf_acom_symbol_ptr;
7064
7065 /* This is used for both the 32-bit and the 64-bit ABI. */
7066
7067 void
7068 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7069 {
7070 elf_symbol_type *elfsym;
7071
7072 /* Handle the special MIPS section numbers that a symbol may use. */
7073 elfsym = (elf_symbol_type *) asym;
7074 switch (elfsym->internal_elf_sym.st_shndx)
7075 {
7076 case SHN_MIPS_ACOMMON:
7077 /* This section is used in a dynamically linked executable file.
7078 It is an allocated common section. The dynamic linker can
7079 either resolve these symbols to something in a shared
7080 library, or it can just leave them here. For our purposes,
7081 we can consider these symbols to be in a new section. */
7082 if (mips_elf_acom_section.name == NULL)
7083 {
7084 /* Initialize the acommon section. */
7085 mips_elf_acom_section.name = ".acommon";
7086 mips_elf_acom_section.flags = SEC_ALLOC;
7087 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7088 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7089 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7090 mips_elf_acom_symbol.name = ".acommon";
7091 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7092 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7093 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7094 }
7095 asym->section = &mips_elf_acom_section;
7096 break;
7097
7098 case SHN_COMMON:
7099 /* Common symbols less than the GP size are automatically
7100 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7101 if (asym->value > elf_gp_size (abfd)
7102 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7103 || IRIX_COMPAT (abfd) == ict_irix6)
7104 break;
7105 /* Fall through. */
7106 case SHN_MIPS_SCOMMON:
7107 if (mips_elf_scom_section.name == NULL)
7108 {
7109 /* Initialize the small common section. */
7110 mips_elf_scom_section.name = ".scommon";
7111 mips_elf_scom_section.flags = SEC_IS_COMMON;
7112 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7113 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7114 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7115 mips_elf_scom_symbol.name = ".scommon";
7116 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7117 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7118 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7119 }
7120 asym->section = &mips_elf_scom_section;
7121 asym->value = elfsym->internal_elf_sym.st_size;
7122 break;
7123
7124 case SHN_MIPS_SUNDEFINED:
7125 asym->section = bfd_und_section_ptr;
7126 break;
7127
7128 case SHN_MIPS_TEXT:
7129 {
7130 asection *section = bfd_get_section_by_name (abfd, ".text");
7131
7132 if (section != NULL)
7133 {
7134 asym->section = section;
7135 /* MIPS_TEXT is a bit special, the address is not an offset
7136 to the base of the .text section. So subtract the section
7137 base address to make it an offset. */
7138 asym->value -= section->vma;
7139 }
7140 }
7141 break;
7142
7143 case SHN_MIPS_DATA:
7144 {
7145 asection *section = bfd_get_section_by_name (abfd, ".data");
7146
7147 if (section != NULL)
7148 {
7149 asym->section = section;
7150 /* MIPS_DATA is a bit special, the address is not an offset
7151 to the base of the .data section. So subtract the section
7152 base address to make it an offset. */
7153 asym->value -= section->vma;
7154 }
7155 }
7156 break;
7157 }
7158
7159 /* If this is an odd-valued function symbol, assume it's a MIPS16
7160 or microMIPS one. */
7161 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7162 && (asym->value & 1) != 0)
7163 {
7164 asym->value--;
7165 if (MICROMIPS_P (abfd))
7166 elfsym->internal_elf_sym.st_other
7167 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7168 else
7169 elfsym->internal_elf_sym.st_other
7170 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7171 }
7172 }
7173 \f
7174 /* Implement elf_backend_eh_frame_address_size. This differs from
7175 the default in the way it handles EABI64.
7176
7177 EABI64 was originally specified as an LP64 ABI, and that is what
7178 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7179 historically accepted the combination of -mabi=eabi and -mlong32,
7180 and this ILP32 variation has become semi-official over time.
7181 Both forms use elf32 and have pointer-sized FDE addresses.
7182
7183 If an EABI object was generated by GCC 4.0 or above, it will have
7184 an empty .gcc_compiled_longXX section, where XX is the size of longs
7185 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7186 have no special marking to distinguish them from LP64 objects.
7187
7188 We don't want users of the official LP64 ABI to be punished for the
7189 existence of the ILP32 variant, but at the same time, we don't want
7190 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7191 We therefore take the following approach:
7192
7193 - If ABFD contains a .gcc_compiled_longXX section, use it to
7194 determine the pointer size.
7195
7196 - Otherwise check the type of the first relocation. Assume that
7197 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7198
7199 - Otherwise punt.
7200
7201 The second check is enough to detect LP64 objects generated by pre-4.0
7202 compilers because, in the kind of output generated by those compilers,
7203 the first relocation will be associated with either a CIE personality
7204 routine or an FDE start address. Furthermore, the compilers never
7205 used a special (non-pointer) encoding for this ABI.
7206
7207 Checking the relocation type should also be safe because there is no
7208 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7209 did so. */
7210
7211 unsigned int
7212 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7213 {
7214 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7215 return 8;
7216 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7217 {
7218 bfd_boolean long32_p, long64_p;
7219
7220 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7221 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7222 if (long32_p && long64_p)
7223 return 0;
7224 if (long32_p)
7225 return 4;
7226 if (long64_p)
7227 return 8;
7228
7229 if (sec->reloc_count > 0
7230 && elf_section_data (sec)->relocs != NULL
7231 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7232 == R_MIPS_64))
7233 return 8;
7234
7235 return 0;
7236 }
7237 return 4;
7238 }
7239 \f
7240 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7241 relocations against two unnamed section symbols to resolve to the
7242 same address. For example, if we have code like:
7243
7244 lw $4,%got_disp(.data)($gp)
7245 lw $25,%got_disp(.text)($gp)
7246 jalr $25
7247
7248 then the linker will resolve both relocations to .data and the program
7249 will jump there rather than to .text.
7250
7251 We can work around this problem by giving names to local section symbols.
7252 This is also what the MIPSpro tools do. */
7253
7254 bfd_boolean
7255 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7256 {
7257 return SGI_COMPAT (abfd);
7258 }
7259 \f
7260 /* Work over a section just before writing it out. This routine is
7261 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7262 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7263 a better way. */
7264
7265 bfd_boolean
7266 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7267 {
7268 if (hdr->sh_type == SHT_MIPS_REGINFO
7269 && hdr->sh_size > 0)
7270 {
7271 bfd_byte buf[4];
7272
7273 BFD_ASSERT (hdr->contents == NULL);
7274
7275 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7276 {
7277 _bfd_error_handler
7278 (_("%pB: incorrect `.reginfo' section size; "
7279 "expected %" PRIu64 ", got %" PRIu64),
7280 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7281 (uint64_t) hdr->sh_size);
7282 bfd_set_error (bfd_error_bad_value);
7283 return FALSE;
7284 }
7285
7286 if (bfd_seek (abfd,
7287 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7288 SEEK_SET) != 0)
7289 return FALSE;
7290 H_PUT_32 (abfd, elf_gp (abfd), buf);
7291 if (bfd_bwrite (buf, 4, abfd) != 4)
7292 return FALSE;
7293 }
7294
7295 if (hdr->sh_type == SHT_MIPS_OPTIONS
7296 && hdr->bfd_section != NULL
7297 && mips_elf_section_data (hdr->bfd_section) != NULL
7298 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7299 {
7300 bfd_byte *contents, *l, *lend;
7301
7302 /* We stored the section contents in the tdata field in the
7303 set_section_contents routine. We save the section contents
7304 so that we don't have to read them again.
7305 At this point we know that elf_gp is set, so we can look
7306 through the section contents to see if there is an
7307 ODK_REGINFO structure. */
7308
7309 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7310 l = contents;
7311 lend = contents + hdr->sh_size;
7312 while (l + sizeof (Elf_External_Options) <= lend)
7313 {
7314 Elf_Internal_Options intopt;
7315
7316 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7317 &intopt);
7318 if (intopt.size < sizeof (Elf_External_Options))
7319 {
7320 _bfd_error_handler
7321 /* xgettext:c-format */
7322 (_("%pB: warning: bad `%s' option size %u smaller than"
7323 " its header"),
7324 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7325 break;
7326 }
7327 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7328 {
7329 bfd_byte buf[8];
7330
7331 if (bfd_seek (abfd,
7332 (hdr->sh_offset
7333 + (l - contents)
7334 + sizeof (Elf_External_Options)
7335 + (sizeof (Elf64_External_RegInfo) - 8)),
7336 SEEK_SET) != 0)
7337 return FALSE;
7338 H_PUT_64 (abfd, elf_gp (abfd), buf);
7339 if (bfd_bwrite (buf, 8, abfd) != 8)
7340 return FALSE;
7341 }
7342 else if (intopt.kind == ODK_REGINFO)
7343 {
7344 bfd_byte buf[4];
7345
7346 if (bfd_seek (abfd,
7347 (hdr->sh_offset
7348 + (l - contents)
7349 + sizeof (Elf_External_Options)
7350 + (sizeof (Elf32_External_RegInfo) - 4)),
7351 SEEK_SET) != 0)
7352 return FALSE;
7353 H_PUT_32 (abfd, elf_gp (abfd), buf);
7354 if (bfd_bwrite (buf, 4, abfd) != 4)
7355 return FALSE;
7356 }
7357 l += intopt.size;
7358 }
7359 }
7360
7361 if (hdr->bfd_section != NULL)
7362 {
7363 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7364
7365 /* .sbss is not handled specially here because the GNU/Linux
7366 prelinker can convert .sbss from NOBITS to PROGBITS and
7367 changing it back to NOBITS breaks the binary. The entry in
7368 _bfd_mips_elf_special_sections will ensure the correct flags
7369 are set on .sbss if BFD creates it without reading it from an
7370 input file, and without special handling here the flags set
7371 on it in an input file will be followed. */
7372 if (strcmp (name, ".sdata") == 0
7373 || strcmp (name, ".lit8") == 0
7374 || strcmp (name, ".lit4") == 0)
7375 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7376 else if (strcmp (name, ".srdata") == 0)
7377 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7378 else if (strcmp (name, ".compact_rel") == 0)
7379 hdr->sh_flags = 0;
7380 else if (strcmp (name, ".rtproc") == 0)
7381 {
7382 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7383 {
7384 unsigned int adjust;
7385
7386 adjust = hdr->sh_size % hdr->sh_addralign;
7387 if (adjust != 0)
7388 hdr->sh_size += hdr->sh_addralign - adjust;
7389 }
7390 }
7391 }
7392
7393 return TRUE;
7394 }
7395
7396 /* Handle a MIPS specific section when reading an object file. This
7397 is called when elfcode.h finds a section with an unknown type.
7398 This routine supports both the 32-bit and 64-bit ELF ABI.
7399
7400 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7401 how to. */
7402
7403 bfd_boolean
7404 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7405 Elf_Internal_Shdr *hdr,
7406 const char *name,
7407 int shindex)
7408 {
7409 flagword flags = 0;
7410
7411 /* There ought to be a place to keep ELF backend specific flags, but
7412 at the moment there isn't one. We just keep track of the
7413 sections by their name, instead. Fortunately, the ABI gives
7414 suggested names for all the MIPS specific sections, so we will
7415 probably get away with this. */
7416 switch (hdr->sh_type)
7417 {
7418 case SHT_MIPS_LIBLIST:
7419 if (strcmp (name, ".liblist") != 0)
7420 return FALSE;
7421 break;
7422 case SHT_MIPS_MSYM:
7423 if (strcmp (name, ".msym") != 0)
7424 return FALSE;
7425 break;
7426 case SHT_MIPS_CONFLICT:
7427 if (strcmp (name, ".conflict") != 0)
7428 return FALSE;
7429 break;
7430 case SHT_MIPS_GPTAB:
7431 if (! CONST_STRNEQ (name, ".gptab."))
7432 return FALSE;
7433 break;
7434 case SHT_MIPS_UCODE:
7435 if (strcmp (name, ".ucode") != 0)
7436 return FALSE;
7437 break;
7438 case SHT_MIPS_DEBUG:
7439 if (strcmp (name, ".mdebug") != 0)
7440 return FALSE;
7441 flags = SEC_DEBUGGING;
7442 break;
7443 case SHT_MIPS_REGINFO:
7444 if (strcmp (name, ".reginfo") != 0
7445 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7446 return FALSE;
7447 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7448 break;
7449 case SHT_MIPS_IFACE:
7450 if (strcmp (name, ".MIPS.interfaces") != 0)
7451 return FALSE;
7452 break;
7453 case SHT_MIPS_CONTENT:
7454 if (! CONST_STRNEQ (name, ".MIPS.content"))
7455 return FALSE;
7456 break;
7457 case SHT_MIPS_OPTIONS:
7458 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7459 return FALSE;
7460 break;
7461 case SHT_MIPS_ABIFLAGS:
7462 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7463 return FALSE;
7464 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7465 break;
7466 case SHT_MIPS_DWARF:
7467 if (! CONST_STRNEQ (name, ".debug_")
7468 && ! CONST_STRNEQ (name, ".zdebug_"))
7469 return FALSE;
7470 break;
7471 case SHT_MIPS_SYMBOL_LIB:
7472 if (strcmp (name, ".MIPS.symlib") != 0)
7473 return FALSE;
7474 break;
7475 case SHT_MIPS_EVENTS:
7476 if (! CONST_STRNEQ (name, ".MIPS.events")
7477 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7478 return FALSE;
7479 break;
7480 default:
7481 break;
7482 }
7483
7484 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7485 return FALSE;
7486
7487 if (flags)
7488 {
7489 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7490 (bfd_get_section_flags (abfd,
7491 hdr->bfd_section)
7492 | flags)))
7493 return FALSE;
7494 }
7495
7496 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7497 {
7498 Elf_External_ABIFlags_v0 ext;
7499
7500 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7501 &ext, 0, sizeof ext))
7502 return FALSE;
7503 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7504 &mips_elf_tdata (abfd)->abiflags);
7505 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7506 return FALSE;
7507 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7508 }
7509
7510 /* FIXME: We should record sh_info for a .gptab section. */
7511
7512 /* For a .reginfo section, set the gp value in the tdata information
7513 from the contents of this section. We need the gp value while
7514 processing relocs, so we just get it now. The .reginfo section
7515 is not used in the 64-bit MIPS ELF ABI. */
7516 if (hdr->sh_type == SHT_MIPS_REGINFO)
7517 {
7518 Elf32_External_RegInfo ext;
7519 Elf32_RegInfo s;
7520
7521 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7522 &ext, 0, sizeof ext))
7523 return FALSE;
7524 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7525 elf_gp (abfd) = s.ri_gp_value;
7526 }
7527
7528 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7529 set the gp value based on what we find. We may see both
7530 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7531 they should agree. */
7532 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7533 {
7534 bfd_byte *contents, *l, *lend;
7535
7536 contents = bfd_malloc (hdr->sh_size);
7537 if (contents == NULL)
7538 return FALSE;
7539 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7540 0, hdr->sh_size))
7541 {
7542 free (contents);
7543 return FALSE;
7544 }
7545 l = contents;
7546 lend = contents + hdr->sh_size;
7547 while (l + sizeof (Elf_External_Options) <= lend)
7548 {
7549 Elf_Internal_Options intopt;
7550
7551 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7552 &intopt);
7553 if (intopt.size < sizeof (Elf_External_Options))
7554 {
7555 _bfd_error_handler
7556 /* xgettext:c-format */
7557 (_("%pB: warning: bad `%s' option size %u smaller than"
7558 " its header"),
7559 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7560 break;
7561 }
7562 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7563 {
7564 Elf64_Internal_RegInfo intreg;
7565
7566 bfd_mips_elf64_swap_reginfo_in
7567 (abfd,
7568 ((Elf64_External_RegInfo *)
7569 (l + sizeof (Elf_External_Options))),
7570 &intreg);
7571 elf_gp (abfd) = intreg.ri_gp_value;
7572 }
7573 else if (intopt.kind == ODK_REGINFO)
7574 {
7575 Elf32_RegInfo intreg;
7576
7577 bfd_mips_elf32_swap_reginfo_in
7578 (abfd,
7579 ((Elf32_External_RegInfo *)
7580 (l + sizeof (Elf_External_Options))),
7581 &intreg);
7582 elf_gp (abfd) = intreg.ri_gp_value;
7583 }
7584 l += intopt.size;
7585 }
7586 free (contents);
7587 }
7588
7589 return TRUE;
7590 }
7591
7592 /* Set the correct type for a MIPS ELF section. We do this by the
7593 section name, which is a hack, but ought to work. This routine is
7594 used by both the 32-bit and the 64-bit ABI. */
7595
7596 bfd_boolean
7597 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7598 {
7599 const char *name = bfd_get_section_name (abfd, sec);
7600
7601 if (strcmp (name, ".liblist") == 0)
7602 {
7603 hdr->sh_type = SHT_MIPS_LIBLIST;
7604 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7605 /* The sh_link field is set in final_write_processing. */
7606 }
7607 else if (strcmp (name, ".conflict") == 0)
7608 hdr->sh_type = SHT_MIPS_CONFLICT;
7609 else if (CONST_STRNEQ (name, ".gptab."))
7610 {
7611 hdr->sh_type = SHT_MIPS_GPTAB;
7612 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7613 /* The sh_info field is set in final_write_processing. */
7614 }
7615 else if (strcmp (name, ".ucode") == 0)
7616 hdr->sh_type = SHT_MIPS_UCODE;
7617 else if (strcmp (name, ".mdebug") == 0)
7618 {
7619 hdr->sh_type = SHT_MIPS_DEBUG;
7620 /* In a shared object on IRIX 5.3, the .mdebug section has an
7621 entsize of 0. FIXME: Does this matter? */
7622 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7623 hdr->sh_entsize = 0;
7624 else
7625 hdr->sh_entsize = 1;
7626 }
7627 else if (strcmp (name, ".reginfo") == 0)
7628 {
7629 hdr->sh_type = SHT_MIPS_REGINFO;
7630 /* In a shared object on IRIX 5.3, the .reginfo section has an
7631 entsize of 0x18. FIXME: Does this matter? */
7632 if (SGI_COMPAT (abfd))
7633 {
7634 if ((abfd->flags & DYNAMIC) != 0)
7635 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7636 else
7637 hdr->sh_entsize = 1;
7638 }
7639 else
7640 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7641 }
7642 else if (SGI_COMPAT (abfd)
7643 && (strcmp (name, ".hash") == 0
7644 || strcmp (name, ".dynamic") == 0
7645 || strcmp (name, ".dynstr") == 0))
7646 {
7647 if (SGI_COMPAT (abfd))
7648 hdr->sh_entsize = 0;
7649 #if 0
7650 /* This isn't how the IRIX6 linker behaves. */
7651 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7652 #endif
7653 }
7654 else if (strcmp (name, ".got") == 0
7655 || strcmp (name, ".srdata") == 0
7656 || strcmp (name, ".sdata") == 0
7657 || strcmp (name, ".sbss") == 0
7658 || strcmp (name, ".lit4") == 0
7659 || strcmp (name, ".lit8") == 0)
7660 hdr->sh_flags |= SHF_MIPS_GPREL;
7661 else if (strcmp (name, ".MIPS.interfaces") == 0)
7662 {
7663 hdr->sh_type = SHT_MIPS_IFACE;
7664 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7665 }
7666 else if (CONST_STRNEQ (name, ".MIPS.content"))
7667 {
7668 hdr->sh_type = SHT_MIPS_CONTENT;
7669 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7670 /* The sh_info field is set in final_write_processing. */
7671 }
7672 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7673 {
7674 hdr->sh_type = SHT_MIPS_OPTIONS;
7675 hdr->sh_entsize = 1;
7676 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7677 }
7678 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7679 {
7680 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7681 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7682 }
7683 else if (CONST_STRNEQ (name, ".debug_")
7684 || CONST_STRNEQ (name, ".zdebug_"))
7685 {
7686 hdr->sh_type = SHT_MIPS_DWARF;
7687
7688 /* Irix facilities such as libexc expect a single .debug_frame
7689 per executable, the system ones have NOSTRIP set and the linker
7690 doesn't merge sections with different flags so ... */
7691 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7692 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7693 }
7694 else if (strcmp (name, ".MIPS.symlib") == 0)
7695 {
7696 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7697 /* The sh_link and sh_info fields are set in
7698 final_write_processing. */
7699 }
7700 else if (CONST_STRNEQ (name, ".MIPS.events")
7701 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7702 {
7703 hdr->sh_type = SHT_MIPS_EVENTS;
7704 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7705 /* The sh_link field is set in final_write_processing. */
7706 }
7707 else if (strcmp (name, ".msym") == 0)
7708 {
7709 hdr->sh_type = SHT_MIPS_MSYM;
7710 hdr->sh_flags |= SHF_ALLOC;
7711 hdr->sh_entsize = 8;
7712 }
7713
7714 /* The generic elf_fake_sections will set up REL_HDR using the default
7715 kind of relocations. We used to set up a second header for the
7716 non-default kind of relocations here, but only NewABI would use
7717 these, and the IRIX ld doesn't like resulting empty RELA sections.
7718 Thus we create those header only on demand now. */
7719
7720 return TRUE;
7721 }
7722
7723 /* Given a BFD section, try to locate the corresponding ELF section
7724 index. This is used by both the 32-bit and the 64-bit ABI.
7725 Actually, it's not clear to me that the 64-bit ABI supports these,
7726 but for non-PIC objects we will certainly want support for at least
7727 the .scommon section. */
7728
7729 bfd_boolean
7730 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7731 asection *sec, int *retval)
7732 {
7733 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7734 {
7735 *retval = SHN_MIPS_SCOMMON;
7736 return TRUE;
7737 }
7738 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7739 {
7740 *retval = SHN_MIPS_ACOMMON;
7741 return TRUE;
7742 }
7743 return FALSE;
7744 }
7745 \f
7746 /* Hook called by the linker routine which adds symbols from an object
7747 file. We must handle the special MIPS section numbers here. */
7748
7749 bfd_boolean
7750 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7751 Elf_Internal_Sym *sym, const char **namep,
7752 flagword *flagsp ATTRIBUTE_UNUSED,
7753 asection **secp, bfd_vma *valp)
7754 {
7755 if (SGI_COMPAT (abfd)
7756 && (abfd->flags & DYNAMIC) != 0
7757 && strcmp (*namep, "_rld_new_interface") == 0)
7758 {
7759 /* Skip IRIX5 rld entry name. */
7760 *namep = NULL;
7761 return TRUE;
7762 }
7763
7764 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7765 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7766 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7767 a magic symbol resolved by the linker, we ignore this bogus definition
7768 of _gp_disp. New ABI objects do not suffer from this problem so this
7769 is not done for them. */
7770 if (!NEWABI_P(abfd)
7771 && (sym->st_shndx == SHN_ABS)
7772 && (strcmp (*namep, "_gp_disp") == 0))
7773 {
7774 *namep = NULL;
7775 return TRUE;
7776 }
7777
7778 switch (sym->st_shndx)
7779 {
7780 case SHN_COMMON:
7781 /* Common symbols less than the GP size are automatically
7782 treated as SHN_MIPS_SCOMMON symbols. */
7783 if (sym->st_size > elf_gp_size (abfd)
7784 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7785 || IRIX_COMPAT (abfd) == ict_irix6)
7786 break;
7787 /* Fall through. */
7788 case SHN_MIPS_SCOMMON:
7789 *secp = bfd_make_section_old_way (abfd, ".scommon");
7790 (*secp)->flags |= SEC_IS_COMMON;
7791 *valp = sym->st_size;
7792 break;
7793
7794 case SHN_MIPS_TEXT:
7795 /* This section is used in a shared object. */
7796 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7797 {
7798 asymbol *elf_text_symbol;
7799 asection *elf_text_section;
7800 bfd_size_type amt = sizeof (asection);
7801
7802 elf_text_section = bfd_zalloc (abfd, amt);
7803 if (elf_text_section == NULL)
7804 return FALSE;
7805
7806 amt = sizeof (asymbol);
7807 elf_text_symbol = bfd_zalloc (abfd, amt);
7808 if (elf_text_symbol == NULL)
7809 return FALSE;
7810
7811 /* Initialize the section. */
7812
7813 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7814 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7815
7816 elf_text_section->symbol = elf_text_symbol;
7817 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7818
7819 elf_text_section->name = ".text";
7820 elf_text_section->flags = SEC_NO_FLAGS;
7821 elf_text_section->output_section = NULL;
7822 elf_text_section->owner = abfd;
7823 elf_text_symbol->name = ".text";
7824 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7825 elf_text_symbol->section = elf_text_section;
7826 }
7827 /* This code used to do *secp = bfd_und_section_ptr if
7828 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7829 so I took it out. */
7830 *secp = mips_elf_tdata (abfd)->elf_text_section;
7831 break;
7832
7833 case SHN_MIPS_ACOMMON:
7834 /* Fall through. XXX Can we treat this as allocated data? */
7835 case SHN_MIPS_DATA:
7836 /* This section is used in a shared object. */
7837 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7838 {
7839 asymbol *elf_data_symbol;
7840 asection *elf_data_section;
7841 bfd_size_type amt = sizeof (asection);
7842
7843 elf_data_section = bfd_zalloc (abfd, amt);
7844 if (elf_data_section == NULL)
7845 return FALSE;
7846
7847 amt = sizeof (asymbol);
7848 elf_data_symbol = bfd_zalloc (abfd, amt);
7849 if (elf_data_symbol == NULL)
7850 return FALSE;
7851
7852 /* Initialize the section. */
7853
7854 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7855 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7856
7857 elf_data_section->symbol = elf_data_symbol;
7858 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7859
7860 elf_data_section->name = ".data";
7861 elf_data_section->flags = SEC_NO_FLAGS;
7862 elf_data_section->output_section = NULL;
7863 elf_data_section->owner = abfd;
7864 elf_data_symbol->name = ".data";
7865 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7866 elf_data_symbol->section = elf_data_section;
7867 }
7868 /* This code used to do *secp = bfd_und_section_ptr if
7869 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7870 so I took it out. */
7871 *secp = mips_elf_tdata (abfd)->elf_data_section;
7872 break;
7873
7874 case SHN_MIPS_SUNDEFINED:
7875 *secp = bfd_und_section_ptr;
7876 break;
7877 }
7878
7879 if (SGI_COMPAT (abfd)
7880 && ! bfd_link_pic (info)
7881 && info->output_bfd->xvec == abfd->xvec
7882 && strcmp (*namep, "__rld_obj_head") == 0)
7883 {
7884 struct elf_link_hash_entry *h;
7885 struct bfd_link_hash_entry *bh;
7886
7887 /* Mark __rld_obj_head as dynamic. */
7888 bh = NULL;
7889 if (! (_bfd_generic_link_add_one_symbol
7890 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7891 get_elf_backend_data (abfd)->collect, &bh)))
7892 return FALSE;
7893
7894 h = (struct elf_link_hash_entry *) bh;
7895 h->non_elf = 0;
7896 h->def_regular = 1;
7897 h->type = STT_OBJECT;
7898
7899 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7900 return FALSE;
7901
7902 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7903 mips_elf_hash_table (info)->rld_symbol = h;
7904 }
7905
7906 /* If this is a mips16 text symbol, add 1 to the value to make it
7907 odd. This will cause something like .word SYM to come up with
7908 the right value when it is loaded into the PC. */
7909 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7910 ++*valp;
7911
7912 return TRUE;
7913 }
7914
7915 /* This hook function is called before the linker writes out a global
7916 symbol. We mark symbols as small common if appropriate. This is
7917 also where we undo the increment of the value for a mips16 symbol. */
7918
7919 int
7920 _bfd_mips_elf_link_output_symbol_hook
7921 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7922 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7923 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7924 {
7925 /* If we see a common symbol, which implies a relocatable link, then
7926 if a symbol was small common in an input file, mark it as small
7927 common in the output file. */
7928 if (sym->st_shndx == SHN_COMMON
7929 && strcmp (input_sec->name, ".scommon") == 0)
7930 sym->st_shndx = SHN_MIPS_SCOMMON;
7931
7932 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7933 sym->st_value &= ~1;
7934
7935 return 1;
7936 }
7937 \f
7938 /* Functions for the dynamic linker. */
7939
7940 /* Create dynamic sections when linking against a dynamic object. */
7941
7942 bfd_boolean
7943 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7944 {
7945 struct elf_link_hash_entry *h;
7946 struct bfd_link_hash_entry *bh;
7947 flagword flags;
7948 register asection *s;
7949 const char * const *namep;
7950 struct mips_elf_link_hash_table *htab;
7951
7952 htab = mips_elf_hash_table (info);
7953 BFD_ASSERT (htab != NULL);
7954
7955 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7956 | SEC_LINKER_CREATED | SEC_READONLY);
7957
7958 /* The psABI requires a read-only .dynamic section, but the VxWorks
7959 EABI doesn't. */
7960 if (!htab->is_vxworks)
7961 {
7962 s = bfd_get_linker_section (abfd, ".dynamic");
7963 if (s != NULL)
7964 {
7965 if (! bfd_set_section_flags (abfd, s, flags))
7966 return FALSE;
7967 }
7968 }
7969
7970 /* We need to create .got section. */
7971 if (!mips_elf_create_got_section (abfd, info))
7972 return FALSE;
7973
7974 if (! mips_elf_rel_dyn_section (info, TRUE))
7975 return FALSE;
7976
7977 /* Create .stub section. */
7978 s = bfd_make_section_anyway_with_flags (abfd,
7979 MIPS_ELF_STUB_SECTION_NAME (abfd),
7980 flags | SEC_CODE);
7981 if (s == NULL
7982 || ! bfd_set_section_alignment (abfd, s,
7983 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7984 return FALSE;
7985 htab->sstubs = s;
7986
7987 if (!mips_elf_hash_table (info)->use_rld_obj_head
7988 && bfd_link_executable (info)
7989 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7990 {
7991 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7992 flags &~ (flagword) SEC_READONLY);
7993 if (s == NULL
7994 || ! bfd_set_section_alignment (abfd, s,
7995 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7996 return FALSE;
7997 }
7998
7999 /* On IRIX5, we adjust add some additional symbols and change the
8000 alignments of several sections. There is no ABI documentation
8001 indicating that this is necessary on IRIX6, nor any evidence that
8002 the linker takes such action. */
8003 if (IRIX_COMPAT (abfd) == ict_irix5)
8004 {
8005 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8006 {
8007 bh = NULL;
8008 if (! (_bfd_generic_link_add_one_symbol
8009 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8010 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8011 return FALSE;
8012
8013 h = (struct elf_link_hash_entry *) bh;
8014 h->mark = 1;
8015 h->non_elf = 0;
8016 h->def_regular = 1;
8017 h->type = STT_SECTION;
8018
8019 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8020 return FALSE;
8021 }
8022
8023 /* We need to create a .compact_rel section. */
8024 if (SGI_COMPAT (abfd))
8025 {
8026 if (!mips_elf_create_compact_rel_section (abfd, info))
8027 return FALSE;
8028 }
8029
8030 /* Change alignments of some sections. */
8031 s = bfd_get_linker_section (abfd, ".hash");
8032 if (s != NULL)
8033 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8034
8035 s = bfd_get_linker_section (abfd, ".dynsym");
8036 if (s != NULL)
8037 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8038
8039 s = bfd_get_linker_section (abfd, ".dynstr");
8040 if (s != NULL)
8041 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8042
8043 /* ??? */
8044 s = bfd_get_section_by_name (abfd, ".reginfo");
8045 if (s != NULL)
8046 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8047
8048 s = bfd_get_linker_section (abfd, ".dynamic");
8049 if (s != NULL)
8050 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8051 }
8052
8053 if (bfd_link_executable (info))
8054 {
8055 const char *name;
8056
8057 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8058 bh = NULL;
8059 if (!(_bfd_generic_link_add_one_symbol
8060 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8061 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8062 return FALSE;
8063
8064 h = (struct elf_link_hash_entry *) bh;
8065 h->non_elf = 0;
8066 h->def_regular = 1;
8067 h->type = STT_SECTION;
8068
8069 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8070 return FALSE;
8071
8072 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8073 {
8074 /* __rld_map is a four byte word located in the .data section
8075 and is filled in by the rtld to contain a pointer to
8076 the _r_debug structure. Its symbol value will be set in
8077 _bfd_mips_elf_finish_dynamic_symbol. */
8078 s = bfd_get_linker_section (abfd, ".rld_map");
8079 BFD_ASSERT (s != NULL);
8080
8081 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8082 bh = NULL;
8083 if (!(_bfd_generic_link_add_one_symbol
8084 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8085 get_elf_backend_data (abfd)->collect, &bh)))
8086 return FALSE;
8087
8088 h = (struct elf_link_hash_entry *) bh;
8089 h->non_elf = 0;
8090 h->def_regular = 1;
8091 h->type = STT_OBJECT;
8092
8093 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8094 return FALSE;
8095 mips_elf_hash_table (info)->rld_symbol = h;
8096 }
8097 }
8098
8099 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8100 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8101 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8102 return FALSE;
8103
8104 /* Do the usual VxWorks handling. */
8105 if (htab->is_vxworks
8106 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8107 return FALSE;
8108
8109 return TRUE;
8110 }
8111 \f
8112 /* Return true if relocation REL against section SEC is a REL rather than
8113 RELA relocation. RELOCS is the first relocation in the section and
8114 ABFD is the bfd that contains SEC. */
8115
8116 static bfd_boolean
8117 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8118 const Elf_Internal_Rela *relocs,
8119 const Elf_Internal_Rela *rel)
8120 {
8121 Elf_Internal_Shdr *rel_hdr;
8122 const struct elf_backend_data *bed;
8123
8124 /* To determine which flavor of relocation this is, we depend on the
8125 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8126 rel_hdr = elf_section_data (sec)->rel.hdr;
8127 if (rel_hdr == NULL)
8128 return FALSE;
8129 bed = get_elf_backend_data (abfd);
8130 return ((size_t) (rel - relocs)
8131 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8132 }
8133
8134 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8135 HOWTO is the relocation's howto and CONTENTS points to the contents
8136 of the section that REL is against. */
8137
8138 static bfd_vma
8139 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8140 reloc_howto_type *howto, bfd_byte *contents)
8141 {
8142 bfd_byte *location;
8143 unsigned int r_type;
8144 bfd_vma addend;
8145 bfd_vma bytes;
8146
8147 r_type = ELF_R_TYPE (abfd, rel->r_info);
8148 location = contents + rel->r_offset;
8149
8150 /* Get the addend, which is stored in the input file. */
8151 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8152 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8153 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8154
8155 addend = bytes & howto->src_mask;
8156
8157 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8158 accordingly. */
8159 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8160 addend <<= 1;
8161
8162 return addend;
8163 }
8164
8165 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8166 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8167 and update *ADDEND with the final addend. Return true on success
8168 or false if the LO16 could not be found. RELEND is the exclusive
8169 upper bound on the relocations for REL's section. */
8170
8171 static bfd_boolean
8172 mips_elf_add_lo16_rel_addend (bfd *abfd,
8173 const Elf_Internal_Rela *rel,
8174 const Elf_Internal_Rela *relend,
8175 bfd_byte *contents, bfd_vma *addend)
8176 {
8177 unsigned int r_type, lo16_type;
8178 const Elf_Internal_Rela *lo16_relocation;
8179 reloc_howto_type *lo16_howto;
8180 bfd_vma l;
8181
8182 r_type = ELF_R_TYPE (abfd, rel->r_info);
8183 if (mips16_reloc_p (r_type))
8184 lo16_type = R_MIPS16_LO16;
8185 else if (micromips_reloc_p (r_type))
8186 lo16_type = R_MICROMIPS_LO16;
8187 else if (r_type == R_MIPS_PCHI16)
8188 lo16_type = R_MIPS_PCLO16;
8189 else
8190 lo16_type = R_MIPS_LO16;
8191
8192 /* The combined value is the sum of the HI16 addend, left-shifted by
8193 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8194 code does a `lui' of the HI16 value, and then an `addiu' of the
8195 LO16 value.)
8196
8197 Scan ahead to find a matching LO16 relocation.
8198
8199 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8200 be immediately following. However, for the IRIX6 ABI, the next
8201 relocation may be a composed relocation consisting of several
8202 relocations for the same address. In that case, the R_MIPS_LO16
8203 relocation may occur as one of these. We permit a similar
8204 extension in general, as that is useful for GCC.
8205
8206 In some cases GCC dead code elimination removes the LO16 but keeps
8207 the corresponding HI16. This is strictly speaking a violation of
8208 the ABI but not immediately harmful. */
8209 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8210 if (lo16_relocation == NULL)
8211 return FALSE;
8212
8213 /* Obtain the addend kept there. */
8214 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8215 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8216
8217 l <<= lo16_howto->rightshift;
8218 l = _bfd_mips_elf_sign_extend (l, 16);
8219
8220 *addend <<= 16;
8221 *addend += l;
8222 return TRUE;
8223 }
8224
8225 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8226 store the contents in *CONTENTS on success. Assume that *CONTENTS
8227 already holds the contents if it is nonull on entry. */
8228
8229 static bfd_boolean
8230 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8231 {
8232 if (*contents)
8233 return TRUE;
8234
8235 /* Get cached copy if it exists. */
8236 if (elf_section_data (sec)->this_hdr.contents != NULL)
8237 {
8238 *contents = elf_section_data (sec)->this_hdr.contents;
8239 return TRUE;
8240 }
8241
8242 return bfd_malloc_and_get_section (abfd, sec, contents);
8243 }
8244
8245 /* Make a new PLT record to keep internal data. */
8246
8247 static struct plt_entry *
8248 mips_elf_make_plt_record (bfd *abfd)
8249 {
8250 struct plt_entry *entry;
8251
8252 entry = bfd_zalloc (abfd, sizeof (*entry));
8253 if (entry == NULL)
8254 return NULL;
8255
8256 entry->stub_offset = MINUS_ONE;
8257 entry->mips_offset = MINUS_ONE;
8258 entry->comp_offset = MINUS_ONE;
8259 entry->gotplt_index = MINUS_ONE;
8260 return entry;
8261 }
8262
8263 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8264 for PIC code, as otherwise there is no load-time relocation involved
8265 and local GOT entries whose value is zero at static link time will
8266 retain their value at load time. */
8267
8268 static bfd_boolean
8269 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8270 struct mips_elf_link_hash_table *htab,
8271 unsigned int r_type)
8272 {
8273 union
8274 {
8275 struct elf_link_hash_entry *eh;
8276 struct bfd_link_hash_entry *bh;
8277 }
8278 hzero;
8279
8280 BFD_ASSERT (!htab->use_absolute_zero);
8281 BFD_ASSERT (bfd_link_pic (info));
8282
8283 hzero.bh = NULL;
8284 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8285 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8286 NULL, FALSE, FALSE, &hzero.bh))
8287 return FALSE;
8288
8289 BFD_ASSERT (hzero.bh != NULL);
8290 hzero.eh->size = 0;
8291 hzero.eh->type = STT_NOTYPE;
8292 hzero.eh->other = STV_PROTECTED;
8293 hzero.eh->def_regular = 1;
8294 hzero.eh->non_elf = 0;
8295
8296 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8297 return FALSE;
8298
8299 htab->use_absolute_zero = TRUE;
8300
8301 return TRUE;
8302 }
8303
8304 /* Look through the relocs for a section during the first phase, and
8305 allocate space in the global offset table and record the need for
8306 standard MIPS and compressed procedure linkage table entries. */
8307
8308 bfd_boolean
8309 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8310 asection *sec, const Elf_Internal_Rela *relocs)
8311 {
8312 const char *name;
8313 bfd *dynobj;
8314 Elf_Internal_Shdr *symtab_hdr;
8315 struct elf_link_hash_entry **sym_hashes;
8316 size_t extsymoff;
8317 const Elf_Internal_Rela *rel;
8318 const Elf_Internal_Rela *rel_end;
8319 asection *sreloc;
8320 const struct elf_backend_data *bed;
8321 struct mips_elf_link_hash_table *htab;
8322 bfd_byte *contents;
8323 bfd_vma addend;
8324 reloc_howto_type *howto;
8325
8326 if (bfd_link_relocatable (info))
8327 return TRUE;
8328
8329 htab = mips_elf_hash_table (info);
8330 BFD_ASSERT (htab != NULL);
8331
8332 dynobj = elf_hash_table (info)->dynobj;
8333 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8334 sym_hashes = elf_sym_hashes (abfd);
8335 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8336
8337 bed = get_elf_backend_data (abfd);
8338 rel_end = relocs + sec->reloc_count;
8339
8340 /* Check for the mips16 stub sections. */
8341
8342 name = bfd_get_section_name (abfd, sec);
8343 if (FN_STUB_P (name))
8344 {
8345 unsigned long r_symndx;
8346
8347 /* Look at the relocation information to figure out which symbol
8348 this is for. */
8349
8350 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8351 if (r_symndx == 0)
8352 {
8353 _bfd_error_handler
8354 /* xgettext:c-format */
8355 (_("%pB: warning: cannot determine the target function for"
8356 " stub section `%s'"),
8357 abfd, name);
8358 bfd_set_error (bfd_error_bad_value);
8359 return FALSE;
8360 }
8361
8362 if (r_symndx < extsymoff
8363 || sym_hashes[r_symndx - extsymoff] == NULL)
8364 {
8365 asection *o;
8366
8367 /* This stub is for a local symbol. This stub will only be
8368 needed if there is some relocation in this BFD, other
8369 than a 16 bit function call, which refers to this symbol. */
8370 for (o = abfd->sections; o != NULL; o = o->next)
8371 {
8372 Elf_Internal_Rela *sec_relocs;
8373 const Elf_Internal_Rela *r, *rend;
8374
8375 /* We can ignore stub sections when looking for relocs. */
8376 if ((o->flags & SEC_RELOC) == 0
8377 || o->reloc_count == 0
8378 || section_allows_mips16_refs_p (o))
8379 continue;
8380
8381 sec_relocs
8382 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8383 info->keep_memory);
8384 if (sec_relocs == NULL)
8385 return FALSE;
8386
8387 rend = sec_relocs + o->reloc_count;
8388 for (r = sec_relocs; r < rend; r++)
8389 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8390 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8391 break;
8392
8393 if (elf_section_data (o)->relocs != sec_relocs)
8394 free (sec_relocs);
8395
8396 if (r < rend)
8397 break;
8398 }
8399
8400 if (o == NULL)
8401 {
8402 /* There is no non-call reloc for this stub, so we do
8403 not need it. Since this function is called before
8404 the linker maps input sections to output sections, we
8405 can easily discard it by setting the SEC_EXCLUDE
8406 flag. */
8407 sec->flags |= SEC_EXCLUDE;
8408 return TRUE;
8409 }
8410
8411 /* Record this stub in an array of local symbol stubs for
8412 this BFD. */
8413 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8414 {
8415 unsigned long symcount;
8416 asection **n;
8417 bfd_size_type amt;
8418
8419 if (elf_bad_symtab (abfd))
8420 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8421 else
8422 symcount = symtab_hdr->sh_info;
8423 amt = symcount * sizeof (asection *);
8424 n = bfd_zalloc (abfd, amt);
8425 if (n == NULL)
8426 return FALSE;
8427 mips_elf_tdata (abfd)->local_stubs = n;
8428 }
8429
8430 sec->flags |= SEC_KEEP;
8431 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8432
8433 /* We don't need to set mips16_stubs_seen in this case.
8434 That flag is used to see whether we need to look through
8435 the global symbol table for stubs. We don't need to set
8436 it here, because we just have a local stub. */
8437 }
8438 else
8439 {
8440 struct mips_elf_link_hash_entry *h;
8441
8442 h = ((struct mips_elf_link_hash_entry *)
8443 sym_hashes[r_symndx - extsymoff]);
8444
8445 while (h->root.root.type == bfd_link_hash_indirect
8446 || h->root.root.type == bfd_link_hash_warning)
8447 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8448
8449 /* H is the symbol this stub is for. */
8450
8451 /* If we already have an appropriate stub for this function, we
8452 don't need another one, so we can discard this one. Since
8453 this function is called before the linker maps input sections
8454 to output sections, we can easily discard it by setting the
8455 SEC_EXCLUDE flag. */
8456 if (h->fn_stub != NULL)
8457 {
8458 sec->flags |= SEC_EXCLUDE;
8459 return TRUE;
8460 }
8461
8462 sec->flags |= SEC_KEEP;
8463 h->fn_stub = sec;
8464 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8465 }
8466 }
8467 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8468 {
8469 unsigned long r_symndx;
8470 struct mips_elf_link_hash_entry *h;
8471 asection **loc;
8472
8473 /* Look at the relocation information to figure out which symbol
8474 this is for. */
8475
8476 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8477 if (r_symndx == 0)
8478 {
8479 _bfd_error_handler
8480 /* xgettext:c-format */
8481 (_("%pB: warning: cannot determine the target function for"
8482 " stub section `%s'"),
8483 abfd, name);
8484 bfd_set_error (bfd_error_bad_value);
8485 return FALSE;
8486 }
8487
8488 if (r_symndx < extsymoff
8489 || sym_hashes[r_symndx - extsymoff] == NULL)
8490 {
8491 asection *o;
8492
8493 /* This stub is for a local symbol. This stub will only be
8494 needed if there is some relocation (R_MIPS16_26) in this BFD
8495 that refers to this symbol. */
8496 for (o = abfd->sections; o != NULL; o = o->next)
8497 {
8498 Elf_Internal_Rela *sec_relocs;
8499 const Elf_Internal_Rela *r, *rend;
8500
8501 /* We can ignore stub sections when looking for relocs. */
8502 if ((o->flags & SEC_RELOC) == 0
8503 || o->reloc_count == 0
8504 || section_allows_mips16_refs_p (o))
8505 continue;
8506
8507 sec_relocs
8508 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8509 info->keep_memory);
8510 if (sec_relocs == NULL)
8511 return FALSE;
8512
8513 rend = sec_relocs + o->reloc_count;
8514 for (r = sec_relocs; r < rend; r++)
8515 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8516 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8517 break;
8518
8519 if (elf_section_data (o)->relocs != sec_relocs)
8520 free (sec_relocs);
8521
8522 if (r < rend)
8523 break;
8524 }
8525
8526 if (o == NULL)
8527 {
8528 /* There is no non-call reloc for this stub, so we do
8529 not need it. Since this function is called before
8530 the linker maps input sections to output sections, we
8531 can easily discard it by setting the SEC_EXCLUDE
8532 flag. */
8533 sec->flags |= SEC_EXCLUDE;
8534 return TRUE;
8535 }
8536
8537 /* Record this stub in an array of local symbol call_stubs for
8538 this BFD. */
8539 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8540 {
8541 unsigned long symcount;
8542 asection **n;
8543 bfd_size_type amt;
8544
8545 if (elf_bad_symtab (abfd))
8546 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8547 else
8548 symcount = symtab_hdr->sh_info;
8549 amt = symcount * sizeof (asection *);
8550 n = bfd_zalloc (abfd, amt);
8551 if (n == NULL)
8552 return FALSE;
8553 mips_elf_tdata (abfd)->local_call_stubs = n;
8554 }
8555
8556 sec->flags |= SEC_KEEP;
8557 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8558
8559 /* We don't need to set mips16_stubs_seen in this case.
8560 That flag is used to see whether we need to look through
8561 the global symbol table for stubs. We don't need to set
8562 it here, because we just have a local stub. */
8563 }
8564 else
8565 {
8566 h = ((struct mips_elf_link_hash_entry *)
8567 sym_hashes[r_symndx - extsymoff]);
8568
8569 /* H is the symbol this stub is for. */
8570
8571 if (CALL_FP_STUB_P (name))
8572 loc = &h->call_fp_stub;
8573 else
8574 loc = &h->call_stub;
8575
8576 /* If we already have an appropriate stub for this function, we
8577 don't need another one, so we can discard this one. Since
8578 this function is called before the linker maps input sections
8579 to output sections, we can easily discard it by setting the
8580 SEC_EXCLUDE flag. */
8581 if (*loc != NULL)
8582 {
8583 sec->flags |= SEC_EXCLUDE;
8584 return TRUE;
8585 }
8586
8587 sec->flags |= SEC_KEEP;
8588 *loc = sec;
8589 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8590 }
8591 }
8592
8593 sreloc = NULL;
8594 contents = NULL;
8595 for (rel = relocs; rel < rel_end; ++rel)
8596 {
8597 unsigned long r_symndx;
8598 unsigned int r_type;
8599 struct elf_link_hash_entry *h;
8600 bfd_boolean can_make_dynamic_p;
8601 bfd_boolean call_reloc_p;
8602 bfd_boolean constrain_symbol_p;
8603
8604 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8605 r_type = ELF_R_TYPE (abfd, rel->r_info);
8606
8607 if (r_symndx < extsymoff)
8608 h = NULL;
8609 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8610 {
8611 _bfd_error_handler
8612 /* xgettext:c-format */
8613 (_("%pB: malformed reloc detected for section %s"),
8614 abfd, name);
8615 bfd_set_error (bfd_error_bad_value);
8616 return FALSE;
8617 }
8618 else
8619 {
8620 h = sym_hashes[r_symndx - extsymoff];
8621 if (h != NULL)
8622 {
8623 while (h->root.type == bfd_link_hash_indirect
8624 || h->root.type == bfd_link_hash_warning)
8625 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8626 }
8627 }
8628
8629 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8630 relocation into a dynamic one. */
8631 can_make_dynamic_p = FALSE;
8632
8633 /* Set CALL_RELOC_P to true if the relocation is for a call,
8634 and if pointer equality therefore doesn't matter. */
8635 call_reloc_p = FALSE;
8636
8637 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8638 into account when deciding how to define the symbol.
8639 Relocations in nonallocatable sections such as .pdr and
8640 .debug* should have no effect. */
8641 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8642
8643 switch (r_type)
8644 {
8645 case R_MIPS_CALL16:
8646 case R_MIPS_CALL_HI16:
8647 case R_MIPS_CALL_LO16:
8648 case R_MIPS16_CALL16:
8649 case R_MICROMIPS_CALL16:
8650 case R_MICROMIPS_CALL_HI16:
8651 case R_MICROMIPS_CALL_LO16:
8652 call_reloc_p = TRUE;
8653 /* Fall through. */
8654
8655 case R_MIPS_GOT16:
8656 case R_MIPS_GOT_LO16:
8657 case R_MIPS_GOT_PAGE:
8658 case R_MIPS_GOT_DISP:
8659 case R_MIPS16_GOT16:
8660 case R_MICROMIPS_GOT16:
8661 case R_MICROMIPS_GOT_LO16:
8662 case R_MICROMIPS_GOT_PAGE:
8663 case R_MICROMIPS_GOT_DISP:
8664 /* If we have a symbol that will resolve to zero at static link
8665 time and it is used by a GOT relocation applied to code we
8666 cannot relax to an immediate zero load, then we will be using
8667 the special `__gnu_absolute_zero' symbol whose value is zero
8668 at dynamic load time. We ignore HI16-type GOT relocations at
8669 this stage, because their handling will depend entirely on
8670 the corresponding LO16-type GOT relocation. */
8671 if (!call_hi16_reloc_p (r_type)
8672 && h != NULL
8673 && bfd_link_pic (info)
8674 && !htab->use_absolute_zero
8675 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8676 {
8677 bfd_boolean rel_reloc;
8678
8679 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8680 return FALSE;
8681
8682 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8683 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8684
8685 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8686 FALSE))
8687 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8688 return FALSE;
8689 }
8690
8691 /* Fall through. */
8692 case R_MIPS_GOT_HI16:
8693 case R_MIPS_GOT_OFST:
8694 case R_MIPS_TLS_GOTTPREL:
8695 case R_MIPS_TLS_GD:
8696 case R_MIPS_TLS_LDM:
8697 case R_MIPS16_TLS_GOTTPREL:
8698 case R_MIPS16_TLS_GD:
8699 case R_MIPS16_TLS_LDM:
8700 case R_MICROMIPS_GOT_HI16:
8701 case R_MICROMIPS_GOT_OFST:
8702 case R_MICROMIPS_TLS_GOTTPREL:
8703 case R_MICROMIPS_TLS_GD:
8704 case R_MICROMIPS_TLS_LDM:
8705 if (dynobj == NULL)
8706 elf_hash_table (info)->dynobj = dynobj = abfd;
8707 if (!mips_elf_create_got_section (dynobj, info))
8708 return FALSE;
8709 if (htab->is_vxworks && !bfd_link_pic (info))
8710 {
8711 _bfd_error_handler
8712 /* xgettext:c-format */
8713 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8714 abfd, (uint64_t) rel->r_offset);
8715 bfd_set_error (bfd_error_bad_value);
8716 return FALSE;
8717 }
8718 can_make_dynamic_p = TRUE;
8719 break;
8720
8721 case R_MIPS_NONE:
8722 case R_MIPS_JALR:
8723 case R_MICROMIPS_JALR:
8724 /* These relocations have empty fields and are purely there to
8725 provide link information. The symbol value doesn't matter. */
8726 constrain_symbol_p = FALSE;
8727 break;
8728
8729 case R_MIPS_GPREL16:
8730 case R_MIPS_GPREL32:
8731 case R_MIPS16_GPREL:
8732 case R_MICROMIPS_GPREL16:
8733 /* GP-relative relocations always resolve to a definition in a
8734 regular input file, ignoring the one-definition rule. This is
8735 important for the GP setup sequence in NewABI code, which
8736 always resolves to a local function even if other relocations
8737 against the symbol wouldn't. */
8738 constrain_symbol_p = FALSE;
8739 break;
8740
8741 case R_MIPS_32:
8742 case R_MIPS_REL32:
8743 case R_MIPS_64:
8744 /* In VxWorks executables, references to external symbols
8745 must be handled using copy relocs or PLT entries; it is not
8746 possible to convert this relocation into a dynamic one.
8747
8748 For executables that use PLTs and copy-relocs, we have a
8749 choice between converting the relocation into a dynamic
8750 one or using copy relocations or PLT entries. It is
8751 usually better to do the former, unless the relocation is
8752 against a read-only section. */
8753 if ((bfd_link_pic (info)
8754 || (h != NULL
8755 && !htab->is_vxworks
8756 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8757 && !(!info->nocopyreloc
8758 && !PIC_OBJECT_P (abfd)
8759 && MIPS_ELF_READONLY_SECTION (sec))))
8760 && (sec->flags & SEC_ALLOC) != 0)
8761 {
8762 can_make_dynamic_p = TRUE;
8763 if (dynobj == NULL)
8764 elf_hash_table (info)->dynobj = dynobj = abfd;
8765 }
8766 break;
8767
8768 case R_MIPS_26:
8769 case R_MIPS_PC16:
8770 case R_MIPS_PC21_S2:
8771 case R_MIPS_PC26_S2:
8772 case R_MIPS16_26:
8773 case R_MIPS16_PC16_S1:
8774 case R_MICROMIPS_26_S1:
8775 case R_MICROMIPS_PC7_S1:
8776 case R_MICROMIPS_PC10_S1:
8777 case R_MICROMIPS_PC16_S1:
8778 case R_MICROMIPS_PC23_S2:
8779 call_reloc_p = TRUE;
8780 break;
8781 }
8782
8783 if (h)
8784 {
8785 if (constrain_symbol_p)
8786 {
8787 if (!can_make_dynamic_p)
8788 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8789
8790 if (!call_reloc_p)
8791 h->pointer_equality_needed = 1;
8792
8793 /* We must not create a stub for a symbol that has
8794 relocations related to taking the function's address.
8795 This doesn't apply to VxWorks, where CALL relocs refer
8796 to a .got.plt entry instead of a normal .got entry. */
8797 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8798 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8799 }
8800
8801 /* Relocations against the special VxWorks __GOTT_BASE__ and
8802 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8803 room for them in .rela.dyn. */
8804 if (is_gott_symbol (info, h))
8805 {
8806 if (sreloc == NULL)
8807 {
8808 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8809 if (sreloc == NULL)
8810 return FALSE;
8811 }
8812 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8813 if (MIPS_ELF_READONLY_SECTION (sec))
8814 /* We tell the dynamic linker that there are
8815 relocations against the text segment. */
8816 info->flags |= DF_TEXTREL;
8817 }
8818 }
8819 else if (call_lo16_reloc_p (r_type)
8820 || got_lo16_reloc_p (r_type)
8821 || got_disp_reloc_p (r_type)
8822 || (got16_reloc_p (r_type) && htab->is_vxworks))
8823 {
8824 /* We may need a local GOT entry for this relocation. We
8825 don't count R_MIPS_GOT_PAGE because we can estimate the
8826 maximum number of pages needed by looking at the size of
8827 the segment. Similar comments apply to R_MIPS*_GOT16 and
8828 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8829 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8830 R_MIPS_CALL_HI16 because these are always followed by an
8831 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8832 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8833 rel->r_addend, info, r_type))
8834 return FALSE;
8835 }
8836
8837 if (h != NULL
8838 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8839 ELF_ST_IS_MIPS16 (h->other)))
8840 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8841
8842 switch (r_type)
8843 {
8844 case R_MIPS_CALL16:
8845 case R_MIPS16_CALL16:
8846 case R_MICROMIPS_CALL16:
8847 if (h == NULL)
8848 {
8849 _bfd_error_handler
8850 /* xgettext:c-format */
8851 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8852 abfd, (uint64_t) rel->r_offset);
8853 bfd_set_error (bfd_error_bad_value);
8854 return FALSE;
8855 }
8856 /* Fall through. */
8857
8858 case R_MIPS_CALL_HI16:
8859 case R_MIPS_CALL_LO16:
8860 case R_MICROMIPS_CALL_HI16:
8861 case R_MICROMIPS_CALL_LO16:
8862 if (h != NULL)
8863 {
8864 /* Make sure there is room in the regular GOT to hold the
8865 function's address. We may eliminate it in favour of
8866 a .got.plt entry later; see mips_elf_count_got_symbols. */
8867 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8868 r_type))
8869 return FALSE;
8870
8871 /* We need a stub, not a plt entry for the undefined
8872 function. But we record it as if it needs plt. See
8873 _bfd_elf_adjust_dynamic_symbol. */
8874 h->needs_plt = 1;
8875 h->type = STT_FUNC;
8876 }
8877 break;
8878
8879 case R_MIPS_GOT_PAGE:
8880 case R_MICROMIPS_GOT_PAGE:
8881 case R_MIPS16_GOT16:
8882 case R_MIPS_GOT16:
8883 case R_MIPS_GOT_HI16:
8884 case R_MIPS_GOT_LO16:
8885 case R_MICROMIPS_GOT16:
8886 case R_MICROMIPS_GOT_HI16:
8887 case R_MICROMIPS_GOT_LO16:
8888 if (!h || got_page_reloc_p (r_type))
8889 {
8890 /* This relocation needs (or may need, if h != NULL) a
8891 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8892 know for sure until we know whether the symbol is
8893 preemptible. */
8894 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8895 {
8896 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8897 return FALSE;
8898 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8899 addend = mips_elf_read_rel_addend (abfd, rel,
8900 howto, contents);
8901 if (got16_reloc_p (r_type))
8902 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8903 contents, &addend);
8904 else
8905 addend <<= howto->rightshift;
8906 }
8907 else
8908 addend = rel->r_addend;
8909 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8910 h, addend))
8911 return FALSE;
8912
8913 if (h)
8914 {
8915 struct mips_elf_link_hash_entry *hmips =
8916 (struct mips_elf_link_hash_entry *) h;
8917
8918 /* This symbol is definitely not overridable. */
8919 if (hmips->root.def_regular
8920 && ! (bfd_link_pic (info) && ! info->symbolic
8921 && ! hmips->root.forced_local))
8922 h = NULL;
8923 }
8924 }
8925 /* If this is a global, overridable symbol, GOT_PAGE will
8926 decay to GOT_DISP, so we'll need a GOT entry for it. */
8927 /* Fall through. */
8928
8929 case R_MIPS_GOT_DISP:
8930 case R_MICROMIPS_GOT_DISP:
8931 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8932 FALSE, r_type))
8933 return FALSE;
8934 break;
8935
8936 case R_MIPS_TLS_GOTTPREL:
8937 case R_MIPS16_TLS_GOTTPREL:
8938 case R_MICROMIPS_TLS_GOTTPREL:
8939 if (bfd_link_pic (info))
8940 info->flags |= DF_STATIC_TLS;
8941 /* Fall through */
8942
8943 case R_MIPS_TLS_LDM:
8944 case R_MIPS16_TLS_LDM:
8945 case R_MICROMIPS_TLS_LDM:
8946 if (tls_ldm_reloc_p (r_type))
8947 {
8948 r_symndx = STN_UNDEF;
8949 h = NULL;
8950 }
8951 /* Fall through */
8952
8953 case R_MIPS_TLS_GD:
8954 case R_MIPS16_TLS_GD:
8955 case R_MICROMIPS_TLS_GD:
8956 /* This symbol requires a global offset table entry, or two
8957 for TLS GD relocations. */
8958 if (h != NULL)
8959 {
8960 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8961 FALSE, r_type))
8962 return FALSE;
8963 }
8964 else
8965 {
8966 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8967 rel->r_addend,
8968 info, r_type))
8969 return FALSE;
8970 }
8971 break;
8972
8973 case R_MIPS_32:
8974 case R_MIPS_REL32:
8975 case R_MIPS_64:
8976 /* In VxWorks executables, references to external symbols
8977 are handled using copy relocs or PLT stubs, so there's
8978 no need to add a .rela.dyn entry for this relocation. */
8979 if (can_make_dynamic_p)
8980 {
8981 if (sreloc == NULL)
8982 {
8983 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8984 if (sreloc == NULL)
8985 return FALSE;
8986 }
8987 if (bfd_link_pic (info) && h == NULL)
8988 {
8989 /* When creating a shared object, we must copy these
8990 reloc types into the output file as R_MIPS_REL32
8991 relocs. Make room for this reloc in .rel(a).dyn. */
8992 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8993 if (MIPS_ELF_READONLY_SECTION (sec))
8994 /* We tell the dynamic linker that there are
8995 relocations against the text segment. */
8996 info->flags |= DF_TEXTREL;
8997 }
8998 else
8999 {
9000 struct mips_elf_link_hash_entry *hmips;
9001
9002 /* For a shared object, we must copy this relocation
9003 unless the symbol turns out to be undefined and
9004 weak with non-default visibility, in which case
9005 it will be left as zero.
9006
9007 We could elide R_MIPS_REL32 for locally binding symbols
9008 in shared libraries, but do not yet do so.
9009
9010 For an executable, we only need to copy this
9011 reloc if the symbol is defined in a dynamic
9012 object. */
9013 hmips = (struct mips_elf_link_hash_entry *) h;
9014 ++hmips->possibly_dynamic_relocs;
9015 if (MIPS_ELF_READONLY_SECTION (sec))
9016 /* We need it to tell the dynamic linker if there
9017 are relocations against the text segment. */
9018 hmips->readonly_reloc = TRUE;
9019 }
9020 }
9021
9022 if (SGI_COMPAT (abfd))
9023 mips_elf_hash_table (info)->compact_rel_size +=
9024 sizeof (Elf32_External_crinfo);
9025 break;
9026
9027 case R_MIPS_26:
9028 case R_MIPS_GPREL16:
9029 case R_MIPS_LITERAL:
9030 case R_MIPS_GPREL32:
9031 case R_MICROMIPS_26_S1:
9032 case R_MICROMIPS_GPREL16:
9033 case R_MICROMIPS_LITERAL:
9034 case R_MICROMIPS_GPREL7_S2:
9035 if (SGI_COMPAT (abfd))
9036 mips_elf_hash_table (info)->compact_rel_size +=
9037 sizeof (Elf32_External_crinfo);
9038 break;
9039
9040 /* This relocation describes the C++ object vtable hierarchy.
9041 Reconstruct it for later use during GC. */
9042 case R_MIPS_GNU_VTINHERIT:
9043 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9044 return FALSE;
9045 break;
9046
9047 /* This relocation describes which C++ vtable entries are actually
9048 used. Record for later use during GC. */
9049 case R_MIPS_GNU_VTENTRY:
9050 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9051 return FALSE;
9052 break;
9053
9054 default:
9055 break;
9056 }
9057
9058 /* Record the need for a PLT entry. At this point we don't know
9059 yet if we are going to create a PLT in the first place, but
9060 we only record whether the relocation requires a standard MIPS
9061 or a compressed code entry anyway. If we don't make a PLT after
9062 all, then we'll just ignore these arrangements. Likewise if
9063 a PLT entry is not created because the symbol is satisfied
9064 locally. */
9065 if (h != NULL
9066 && (branch_reloc_p (r_type)
9067 || mips16_branch_reloc_p (r_type)
9068 || micromips_branch_reloc_p (r_type))
9069 && !SYMBOL_CALLS_LOCAL (info, h))
9070 {
9071 if (h->plt.plist == NULL)
9072 h->plt.plist = mips_elf_make_plt_record (abfd);
9073 if (h->plt.plist == NULL)
9074 return FALSE;
9075
9076 if (branch_reloc_p (r_type))
9077 h->plt.plist->need_mips = TRUE;
9078 else
9079 h->plt.plist->need_comp = TRUE;
9080 }
9081
9082 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9083 if there is one. We only need to handle global symbols here;
9084 we decide whether to keep or delete stubs for local symbols
9085 when processing the stub's relocations. */
9086 if (h != NULL
9087 && !mips16_call_reloc_p (r_type)
9088 && !section_allows_mips16_refs_p (sec))
9089 {
9090 struct mips_elf_link_hash_entry *mh;
9091
9092 mh = (struct mips_elf_link_hash_entry *) h;
9093 mh->need_fn_stub = TRUE;
9094 }
9095
9096 /* Refuse some position-dependent relocations when creating a
9097 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9098 not PIC, but we can create dynamic relocations and the result
9099 will be fine. Also do not refuse R_MIPS_LO16, which can be
9100 combined with R_MIPS_GOT16. */
9101 if (bfd_link_pic (info))
9102 {
9103 switch (r_type)
9104 {
9105 case R_MIPS16_HI16:
9106 case R_MIPS_HI16:
9107 case R_MIPS_HIGHER:
9108 case R_MIPS_HIGHEST:
9109 case R_MICROMIPS_HI16:
9110 case R_MICROMIPS_HIGHER:
9111 case R_MICROMIPS_HIGHEST:
9112 /* Don't refuse a high part relocation if it's against
9113 no symbol (e.g. part of a compound relocation). */
9114 if (r_symndx == STN_UNDEF)
9115 break;
9116
9117 /* Likewise an absolute symbol. */
9118 if (h != NULL && bfd_is_abs_symbol (&h->root))
9119 break;
9120
9121 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9122 and has a special meaning. */
9123 if (!NEWABI_P (abfd) && h != NULL
9124 && strcmp (h->root.root.string, "_gp_disp") == 0)
9125 break;
9126
9127 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9128 if (is_gott_symbol (info, h))
9129 break;
9130
9131 /* FALLTHROUGH */
9132
9133 case R_MIPS16_26:
9134 case R_MIPS_26:
9135 case R_MICROMIPS_26_S1:
9136 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9137 /* An error for unsupported relocations is raised as part
9138 of the above search, so we can skip the following. */
9139 if (howto != NULL)
9140 info->callbacks->einfo
9141 /* xgettext:c-format */
9142 (_("%X%H: relocation %s against `%s' cannot be used"
9143 " when making a shared object; recompile with -fPIC\n"),
9144 abfd, sec, rel->r_offset, howto->name,
9145 (h) ? h->root.root.string : "a local symbol");
9146 break;
9147 default:
9148 break;
9149 }
9150 }
9151 }
9152
9153 return TRUE;
9154 }
9155 \f
9156 /* Allocate space for global sym dynamic relocs. */
9157
9158 static bfd_boolean
9159 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9160 {
9161 struct bfd_link_info *info = inf;
9162 bfd *dynobj;
9163 struct mips_elf_link_hash_entry *hmips;
9164 struct mips_elf_link_hash_table *htab;
9165
9166 htab = mips_elf_hash_table (info);
9167 BFD_ASSERT (htab != NULL);
9168
9169 dynobj = elf_hash_table (info)->dynobj;
9170 hmips = (struct mips_elf_link_hash_entry *) h;
9171
9172 /* VxWorks executables are handled elsewhere; we only need to
9173 allocate relocations in shared objects. */
9174 if (htab->is_vxworks && !bfd_link_pic (info))
9175 return TRUE;
9176
9177 /* Ignore indirect symbols. All relocations against such symbols
9178 will be redirected to the target symbol. */
9179 if (h->root.type == bfd_link_hash_indirect)
9180 return TRUE;
9181
9182 /* If this symbol is defined in a dynamic object, or we are creating
9183 a shared library, we will need to copy any R_MIPS_32 or
9184 R_MIPS_REL32 relocs against it into the output file. */
9185 if (! bfd_link_relocatable (info)
9186 && hmips->possibly_dynamic_relocs != 0
9187 && (h->root.type == bfd_link_hash_defweak
9188 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9189 || bfd_link_pic (info)))
9190 {
9191 bfd_boolean do_copy = TRUE;
9192
9193 if (h->root.type == bfd_link_hash_undefweak)
9194 {
9195 /* Do not copy relocations for undefined weak symbols that
9196 we are not going to export. */
9197 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9198 do_copy = FALSE;
9199
9200 /* Make sure undefined weak symbols are output as a dynamic
9201 symbol in PIEs. */
9202 else if (h->dynindx == -1 && !h->forced_local)
9203 {
9204 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9205 return FALSE;
9206 }
9207 }
9208
9209 if (do_copy)
9210 {
9211 /* Even though we don't directly need a GOT entry for this symbol,
9212 the SVR4 psABI requires it to have a dynamic symbol table
9213 index greater that DT_MIPS_GOTSYM if there are dynamic
9214 relocations against it.
9215
9216 VxWorks does not enforce the same mapping between the GOT
9217 and the symbol table, so the same requirement does not
9218 apply there. */
9219 if (!htab->is_vxworks)
9220 {
9221 if (hmips->global_got_area > GGA_RELOC_ONLY)
9222 hmips->global_got_area = GGA_RELOC_ONLY;
9223 hmips->got_only_for_calls = FALSE;
9224 }
9225
9226 mips_elf_allocate_dynamic_relocations
9227 (dynobj, info, hmips->possibly_dynamic_relocs);
9228 if (hmips->readonly_reloc)
9229 /* We tell the dynamic linker that there are relocations
9230 against the text segment. */
9231 info->flags |= DF_TEXTREL;
9232 }
9233 }
9234
9235 return TRUE;
9236 }
9237
9238 /* Adjust a symbol defined by a dynamic object and referenced by a
9239 regular object. The current definition is in some section of the
9240 dynamic object, but we're not including those sections. We have to
9241 change the definition to something the rest of the link can
9242 understand. */
9243
9244 bfd_boolean
9245 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9246 struct elf_link_hash_entry *h)
9247 {
9248 bfd *dynobj;
9249 struct mips_elf_link_hash_entry *hmips;
9250 struct mips_elf_link_hash_table *htab;
9251 asection *s, *srel;
9252
9253 htab = mips_elf_hash_table (info);
9254 BFD_ASSERT (htab != NULL);
9255
9256 dynobj = elf_hash_table (info)->dynobj;
9257 hmips = (struct mips_elf_link_hash_entry *) h;
9258
9259 /* Make sure we know what is going on here. */
9260 BFD_ASSERT (dynobj != NULL
9261 && (h->needs_plt
9262 || h->is_weakalias
9263 || (h->def_dynamic
9264 && h->ref_regular
9265 && !h->def_regular)));
9266
9267 hmips = (struct mips_elf_link_hash_entry *) h;
9268
9269 /* If there are call relocations against an externally-defined symbol,
9270 see whether we can create a MIPS lazy-binding stub for it. We can
9271 only do this if all references to the function are through call
9272 relocations, and in that case, the traditional lazy-binding stubs
9273 are much more efficient than PLT entries.
9274
9275 Traditional stubs are only available on SVR4 psABI-based systems;
9276 VxWorks always uses PLTs instead. */
9277 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9278 {
9279 if (! elf_hash_table (info)->dynamic_sections_created)
9280 return TRUE;
9281
9282 /* If this symbol is not defined in a regular file, then set
9283 the symbol to the stub location. This is required to make
9284 function pointers compare as equal between the normal
9285 executable and the shared library. */
9286 if (!h->def_regular
9287 && !bfd_is_abs_section (htab->sstubs->output_section))
9288 {
9289 hmips->needs_lazy_stub = TRUE;
9290 htab->lazy_stub_count++;
9291 return TRUE;
9292 }
9293 }
9294 /* As above, VxWorks requires PLT entries for externally-defined
9295 functions that are only accessed through call relocations.
9296
9297 Both VxWorks and non-VxWorks targets also need PLT entries if there
9298 are static-only relocations against an externally-defined function.
9299 This can technically occur for shared libraries if there are
9300 branches to the symbol, although it is unlikely that this will be
9301 used in practice due to the short ranges involved. It can occur
9302 for any relative or absolute relocation in executables; in that
9303 case, the PLT entry becomes the function's canonical address. */
9304 else if (((h->needs_plt && !hmips->no_fn_stub)
9305 || (h->type == STT_FUNC && hmips->has_static_relocs))
9306 && htab->use_plts_and_copy_relocs
9307 && !SYMBOL_CALLS_LOCAL (info, h)
9308 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9309 && h->root.type == bfd_link_hash_undefweak))
9310 {
9311 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9312 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9313
9314 /* If this is the first symbol to need a PLT entry, then make some
9315 basic setup. Also work out PLT entry sizes. We'll need them
9316 for PLT offset calculations. */
9317 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9318 {
9319 BFD_ASSERT (htab->root.sgotplt->size == 0);
9320 BFD_ASSERT (htab->plt_got_index == 0);
9321
9322 /* If we're using the PLT additions to the psABI, each PLT
9323 entry is 16 bytes and the PLT0 entry is 32 bytes.
9324 Encourage better cache usage by aligning. We do this
9325 lazily to avoid pessimizing traditional objects. */
9326 if (!htab->is_vxworks
9327 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9328 return FALSE;
9329
9330 /* Make sure that .got.plt is word-aligned. We do this lazily
9331 for the same reason as above. */
9332 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9333 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9334 return FALSE;
9335
9336 /* On non-VxWorks targets, the first two entries in .got.plt
9337 are reserved. */
9338 if (!htab->is_vxworks)
9339 htab->plt_got_index
9340 += (get_elf_backend_data (dynobj)->got_header_size
9341 / MIPS_ELF_GOT_SIZE (dynobj));
9342
9343 /* On VxWorks, also allocate room for the header's
9344 .rela.plt.unloaded entries. */
9345 if (htab->is_vxworks && !bfd_link_pic (info))
9346 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9347
9348 /* Now work out the sizes of individual PLT entries. */
9349 if (htab->is_vxworks && bfd_link_pic (info))
9350 htab->plt_mips_entry_size
9351 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9352 else if (htab->is_vxworks)
9353 htab->plt_mips_entry_size
9354 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9355 else if (newabi_p)
9356 htab->plt_mips_entry_size
9357 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9358 else if (!micromips_p)
9359 {
9360 htab->plt_mips_entry_size
9361 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9362 htab->plt_comp_entry_size
9363 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9364 }
9365 else if (htab->insn32)
9366 {
9367 htab->plt_mips_entry_size
9368 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9369 htab->plt_comp_entry_size
9370 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9371 }
9372 else
9373 {
9374 htab->plt_mips_entry_size
9375 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9376 htab->plt_comp_entry_size
9377 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9378 }
9379 }
9380
9381 if (h->plt.plist == NULL)
9382 h->plt.plist = mips_elf_make_plt_record (dynobj);
9383 if (h->plt.plist == NULL)
9384 return FALSE;
9385
9386 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9387 n32 or n64, so always use a standard entry there.
9388
9389 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9390 all MIPS16 calls will go via that stub, and there is no benefit
9391 to having a MIPS16 entry. And in the case of call_stub a
9392 standard entry actually has to be used as the stub ends with a J
9393 instruction. */
9394 if (newabi_p
9395 || htab->is_vxworks
9396 || hmips->call_stub
9397 || hmips->call_fp_stub)
9398 {
9399 h->plt.plist->need_mips = TRUE;
9400 h->plt.plist->need_comp = FALSE;
9401 }
9402
9403 /* Otherwise, if there are no direct calls to the function, we
9404 have a free choice of whether to use standard or compressed
9405 entries. Prefer microMIPS entries if the object is known to
9406 contain microMIPS code, so that it becomes possible to create
9407 pure microMIPS binaries. Prefer standard entries otherwise,
9408 because MIPS16 ones are no smaller and are usually slower. */
9409 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9410 {
9411 if (micromips_p)
9412 h->plt.plist->need_comp = TRUE;
9413 else
9414 h->plt.plist->need_mips = TRUE;
9415 }
9416
9417 if (h->plt.plist->need_mips)
9418 {
9419 h->plt.plist->mips_offset = htab->plt_mips_offset;
9420 htab->plt_mips_offset += htab->plt_mips_entry_size;
9421 }
9422 if (h->plt.plist->need_comp)
9423 {
9424 h->plt.plist->comp_offset = htab->plt_comp_offset;
9425 htab->plt_comp_offset += htab->plt_comp_entry_size;
9426 }
9427
9428 /* Reserve the corresponding .got.plt entry now too. */
9429 h->plt.plist->gotplt_index = htab->plt_got_index++;
9430
9431 /* If the output file has no definition of the symbol, set the
9432 symbol's value to the address of the stub. */
9433 if (!bfd_link_pic (info) && !h->def_regular)
9434 hmips->use_plt_entry = TRUE;
9435
9436 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9437 htab->root.srelplt->size += (htab->is_vxworks
9438 ? MIPS_ELF_RELA_SIZE (dynobj)
9439 : MIPS_ELF_REL_SIZE (dynobj));
9440
9441 /* Make room for the .rela.plt.unloaded relocations. */
9442 if (htab->is_vxworks && !bfd_link_pic (info))
9443 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9444
9445 /* All relocations against this symbol that could have been made
9446 dynamic will now refer to the PLT entry instead. */
9447 hmips->possibly_dynamic_relocs = 0;
9448
9449 return TRUE;
9450 }
9451
9452 /* If this is a weak symbol, and there is a real definition, the
9453 processor independent code will have arranged for us to see the
9454 real definition first, and we can just use the same value. */
9455 if (h->is_weakalias)
9456 {
9457 struct elf_link_hash_entry *def = weakdef (h);
9458 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9459 h->root.u.def.section = def->root.u.def.section;
9460 h->root.u.def.value = def->root.u.def.value;
9461 return TRUE;
9462 }
9463
9464 /* Otherwise, there is nothing further to do for symbols defined
9465 in regular objects. */
9466 if (h->def_regular)
9467 return TRUE;
9468
9469 /* There's also nothing more to do if we'll convert all relocations
9470 against this symbol into dynamic relocations. */
9471 if (!hmips->has_static_relocs)
9472 return TRUE;
9473
9474 /* We're now relying on copy relocations. Complain if we have
9475 some that we can't convert. */
9476 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9477 {
9478 _bfd_error_handler (_("non-dynamic relocations refer to "
9479 "dynamic symbol %s"),
9480 h->root.root.string);
9481 bfd_set_error (bfd_error_bad_value);
9482 return FALSE;
9483 }
9484
9485 /* We must allocate the symbol in our .dynbss section, which will
9486 become part of the .bss section of the executable. There will be
9487 an entry for this symbol in the .dynsym section. The dynamic
9488 object will contain position independent code, so all references
9489 from the dynamic object to this symbol will go through the global
9490 offset table. The dynamic linker will use the .dynsym entry to
9491 determine the address it must put in the global offset table, so
9492 both the dynamic object and the regular object will refer to the
9493 same memory location for the variable. */
9494
9495 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9496 {
9497 s = htab->root.sdynrelro;
9498 srel = htab->root.sreldynrelro;
9499 }
9500 else
9501 {
9502 s = htab->root.sdynbss;
9503 srel = htab->root.srelbss;
9504 }
9505 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9506 {
9507 if (htab->is_vxworks)
9508 srel->size += sizeof (Elf32_External_Rela);
9509 else
9510 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9511 h->needs_copy = 1;
9512 }
9513
9514 /* All relocations against this symbol that could have been made
9515 dynamic will now refer to the local copy instead. */
9516 hmips->possibly_dynamic_relocs = 0;
9517
9518 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9519 }
9520 \f
9521 /* This function is called after all the input files have been read,
9522 and the input sections have been assigned to output sections. We
9523 check for any mips16 stub sections that we can discard. */
9524
9525 bfd_boolean
9526 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9527 struct bfd_link_info *info)
9528 {
9529 asection *sect;
9530 struct mips_elf_link_hash_table *htab;
9531 struct mips_htab_traverse_info hti;
9532
9533 htab = mips_elf_hash_table (info);
9534 BFD_ASSERT (htab != NULL);
9535
9536 /* The .reginfo section has a fixed size. */
9537 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9538 if (sect != NULL)
9539 {
9540 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9541 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9542 }
9543
9544 /* The .MIPS.abiflags section has a fixed size. */
9545 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9546 if (sect != NULL)
9547 {
9548 bfd_set_section_size (output_bfd, sect,
9549 sizeof (Elf_External_ABIFlags_v0));
9550 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9551 }
9552
9553 hti.info = info;
9554 hti.output_bfd = output_bfd;
9555 hti.error = FALSE;
9556 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9557 mips_elf_check_symbols, &hti);
9558 if (hti.error)
9559 return FALSE;
9560
9561 return TRUE;
9562 }
9563
9564 /* If the link uses a GOT, lay it out and work out its size. */
9565
9566 static bfd_boolean
9567 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9568 {
9569 bfd *dynobj;
9570 asection *s;
9571 struct mips_got_info *g;
9572 bfd_size_type loadable_size = 0;
9573 bfd_size_type page_gotno;
9574 bfd *ibfd;
9575 struct mips_elf_traverse_got_arg tga;
9576 struct mips_elf_link_hash_table *htab;
9577
9578 htab = mips_elf_hash_table (info);
9579 BFD_ASSERT (htab != NULL);
9580
9581 s = htab->root.sgot;
9582 if (s == NULL)
9583 return TRUE;
9584
9585 dynobj = elf_hash_table (info)->dynobj;
9586 g = htab->got_info;
9587
9588 /* Allocate room for the reserved entries. VxWorks always reserves
9589 3 entries; other objects only reserve 2 entries. */
9590 BFD_ASSERT (g->assigned_low_gotno == 0);
9591 if (htab->is_vxworks)
9592 htab->reserved_gotno = 3;
9593 else
9594 htab->reserved_gotno = 2;
9595 g->local_gotno += htab->reserved_gotno;
9596 g->assigned_low_gotno = htab->reserved_gotno;
9597
9598 /* Decide which symbols need to go in the global part of the GOT and
9599 count the number of reloc-only GOT symbols. */
9600 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9601
9602 if (!mips_elf_resolve_final_got_entries (info, g))
9603 return FALSE;
9604
9605 /* Calculate the total loadable size of the output. That
9606 will give us the maximum number of GOT_PAGE entries
9607 required. */
9608 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9609 {
9610 asection *subsection;
9611
9612 for (subsection = ibfd->sections;
9613 subsection;
9614 subsection = subsection->next)
9615 {
9616 if ((subsection->flags & SEC_ALLOC) == 0)
9617 continue;
9618 loadable_size += ((subsection->size + 0xf)
9619 &~ (bfd_size_type) 0xf);
9620 }
9621 }
9622
9623 if (htab->is_vxworks)
9624 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9625 relocations against local symbols evaluate to "G", and the EABI does
9626 not include R_MIPS_GOT_PAGE. */
9627 page_gotno = 0;
9628 else
9629 /* Assume there are two loadable segments consisting of contiguous
9630 sections. Is 5 enough? */
9631 page_gotno = (loadable_size >> 16) + 5;
9632
9633 /* Choose the smaller of the two page estimates; both are intended to be
9634 conservative. */
9635 if (page_gotno > g->page_gotno)
9636 page_gotno = g->page_gotno;
9637
9638 g->local_gotno += page_gotno;
9639 g->assigned_high_gotno = g->local_gotno - 1;
9640
9641 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9642 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9643 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9644
9645 /* VxWorks does not support multiple GOTs. It initializes $gp to
9646 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9647 dynamic loader. */
9648 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9649 {
9650 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9651 return FALSE;
9652 }
9653 else
9654 {
9655 /* Record that all bfds use G. This also has the effect of freeing
9656 the per-bfd GOTs, which we no longer need. */
9657 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9658 if (mips_elf_bfd_got (ibfd, FALSE))
9659 mips_elf_replace_bfd_got (ibfd, g);
9660 mips_elf_replace_bfd_got (output_bfd, g);
9661
9662 /* Set up TLS entries. */
9663 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9664 tga.info = info;
9665 tga.g = g;
9666 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9667 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9668 if (!tga.g)
9669 return FALSE;
9670 BFD_ASSERT (g->tls_assigned_gotno
9671 == g->global_gotno + g->local_gotno + g->tls_gotno);
9672
9673 /* Each VxWorks GOT entry needs an explicit relocation. */
9674 if (htab->is_vxworks && bfd_link_pic (info))
9675 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9676
9677 /* Allocate room for the TLS relocations. */
9678 if (g->relocs)
9679 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9680 }
9681
9682 return TRUE;
9683 }
9684
9685 /* Estimate the size of the .MIPS.stubs section. */
9686
9687 static void
9688 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9689 {
9690 struct mips_elf_link_hash_table *htab;
9691 bfd_size_type dynsymcount;
9692
9693 htab = mips_elf_hash_table (info);
9694 BFD_ASSERT (htab != NULL);
9695
9696 if (htab->lazy_stub_count == 0)
9697 return;
9698
9699 /* IRIX rld assumes that a function stub isn't at the end of the .text
9700 section, so add a dummy entry to the end. */
9701 htab->lazy_stub_count++;
9702
9703 /* Get a worst-case estimate of the number of dynamic symbols needed.
9704 At this point, dynsymcount does not account for section symbols
9705 and count_section_dynsyms may overestimate the number that will
9706 be needed. */
9707 dynsymcount = (elf_hash_table (info)->dynsymcount
9708 + count_section_dynsyms (output_bfd, info));
9709
9710 /* Determine the size of one stub entry. There's no disadvantage
9711 from using microMIPS code here, so for the sake of pure-microMIPS
9712 binaries we prefer it whenever there's any microMIPS code in
9713 output produced at all. This has a benefit of stubs being
9714 shorter by 4 bytes each too, unless in the insn32 mode. */
9715 if (!MICROMIPS_P (output_bfd))
9716 htab->function_stub_size = (dynsymcount > 0x10000
9717 ? MIPS_FUNCTION_STUB_BIG_SIZE
9718 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9719 else if (htab->insn32)
9720 htab->function_stub_size = (dynsymcount > 0x10000
9721 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9722 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9723 else
9724 htab->function_stub_size = (dynsymcount > 0x10000
9725 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9726 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9727
9728 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9729 }
9730
9731 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9732 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9733 stub, allocate an entry in the stubs section. */
9734
9735 static bfd_boolean
9736 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9737 {
9738 struct mips_htab_traverse_info *hti = data;
9739 struct mips_elf_link_hash_table *htab;
9740 struct bfd_link_info *info;
9741 bfd *output_bfd;
9742
9743 info = hti->info;
9744 output_bfd = hti->output_bfd;
9745 htab = mips_elf_hash_table (info);
9746 BFD_ASSERT (htab != NULL);
9747
9748 if (h->needs_lazy_stub)
9749 {
9750 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9751 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9752 bfd_vma isa_bit = micromips_p;
9753
9754 BFD_ASSERT (htab->root.dynobj != NULL);
9755 if (h->root.plt.plist == NULL)
9756 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9757 if (h->root.plt.plist == NULL)
9758 {
9759 hti->error = TRUE;
9760 return FALSE;
9761 }
9762 h->root.root.u.def.section = htab->sstubs;
9763 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9764 h->root.plt.plist->stub_offset = htab->sstubs->size;
9765 h->root.other = other;
9766 htab->sstubs->size += htab->function_stub_size;
9767 }
9768 return TRUE;
9769 }
9770
9771 /* Allocate offsets in the stubs section to each symbol that needs one.
9772 Set the final size of the .MIPS.stub section. */
9773
9774 static bfd_boolean
9775 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9776 {
9777 bfd *output_bfd = info->output_bfd;
9778 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9779 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9780 bfd_vma isa_bit = micromips_p;
9781 struct mips_elf_link_hash_table *htab;
9782 struct mips_htab_traverse_info hti;
9783 struct elf_link_hash_entry *h;
9784 bfd *dynobj;
9785
9786 htab = mips_elf_hash_table (info);
9787 BFD_ASSERT (htab != NULL);
9788
9789 if (htab->lazy_stub_count == 0)
9790 return TRUE;
9791
9792 htab->sstubs->size = 0;
9793 hti.info = info;
9794 hti.output_bfd = output_bfd;
9795 hti.error = FALSE;
9796 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9797 if (hti.error)
9798 return FALSE;
9799 htab->sstubs->size += htab->function_stub_size;
9800 BFD_ASSERT (htab->sstubs->size
9801 == htab->lazy_stub_count * htab->function_stub_size);
9802
9803 dynobj = elf_hash_table (info)->dynobj;
9804 BFD_ASSERT (dynobj != NULL);
9805 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9806 if (h == NULL)
9807 return FALSE;
9808 h->root.u.def.value = isa_bit;
9809 h->other = other;
9810 h->type = STT_FUNC;
9811
9812 return TRUE;
9813 }
9814
9815 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9816 bfd_link_info. If H uses the address of a PLT entry as the value
9817 of the symbol, then set the entry in the symbol table now. Prefer
9818 a standard MIPS PLT entry. */
9819
9820 static bfd_boolean
9821 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9822 {
9823 struct bfd_link_info *info = data;
9824 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9825 struct mips_elf_link_hash_table *htab;
9826 unsigned int other;
9827 bfd_vma isa_bit;
9828 bfd_vma val;
9829
9830 htab = mips_elf_hash_table (info);
9831 BFD_ASSERT (htab != NULL);
9832
9833 if (h->use_plt_entry)
9834 {
9835 BFD_ASSERT (h->root.plt.plist != NULL);
9836 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9837 || h->root.plt.plist->comp_offset != MINUS_ONE);
9838
9839 val = htab->plt_header_size;
9840 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9841 {
9842 isa_bit = 0;
9843 val += h->root.plt.plist->mips_offset;
9844 other = 0;
9845 }
9846 else
9847 {
9848 isa_bit = 1;
9849 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9850 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9851 }
9852 val += isa_bit;
9853 /* For VxWorks, point at the PLT load stub rather than the lazy
9854 resolution stub; this stub will become the canonical function
9855 address. */
9856 if (htab->is_vxworks)
9857 val += 8;
9858
9859 h->root.root.u.def.section = htab->root.splt;
9860 h->root.root.u.def.value = val;
9861 h->root.other = other;
9862 }
9863
9864 return TRUE;
9865 }
9866
9867 /* Set the sizes of the dynamic sections. */
9868
9869 bfd_boolean
9870 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9871 struct bfd_link_info *info)
9872 {
9873 bfd *dynobj;
9874 asection *s, *sreldyn;
9875 bfd_boolean reltext;
9876 struct mips_elf_link_hash_table *htab;
9877
9878 htab = mips_elf_hash_table (info);
9879 BFD_ASSERT (htab != NULL);
9880 dynobj = elf_hash_table (info)->dynobj;
9881 BFD_ASSERT (dynobj != NULL);
9882
9883 if (elf_hash_table (info)->dynamic_sections_created)
9884 {
9885 /* Set the contents of the .interp section to the interpreter. */
9886 if (bfd_link_executable (info) && !info->nointerp)
9887 {
9888 s = bfd_get_linker_section (dynobj, ".interp");
9889 BFD_ASSERT (s != NULL);
9890 s->size
9891 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9892 s->contents
9893 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9894 }
9895
9896 /* Figure out the size of the PLT header if we know that we
9897 are using it. For the sake of cache alignment always use
9898 a standard header whenever any standard entries are present
9899 even if microMIPS entries are present as well. This also
9900 lets the microMIPS header rely on the value of $v0 only set
9901 by microMIPS entries, for a small size reduction.
9902
9903 Set symbol table entry values for symbols that use the
9904 address of their PLT entry now that we can calculate it.
9905
9906 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9907 haven't already in _bfd_elf_create_dynamic_sections. */
9908 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9909 {
9910 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9911 && !htab->plt_mips_offset);
9912 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9913 bfd_vma isa_bit = micromips_p;
9914 struct elf_link_hash_entry *h;
9915 bfd_vma size;
9916
9917 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9918 BFD_ASSERT (htab->root.sgotplt->size == 0);
9919 BFD_ASSERT (htab->root.splt->size == 0);
9920
9921 if (htab->is_vxworks && bfd_link_pic (info))
9922 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9923 else if (htab->is_vxworks)
9924 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9925 else if (ABI_64_P (output_bfd))
9926 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9927 else if (ABI_N32_P (output_bfd))
9928 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9929 else if (!micromips_p)
9930 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9931 else if (htab->insn32)
9932 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9933 else
9934 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9935
9936 htab->plt_header_is_comp = micromips_p;
9937 htab->plt_header_size = size;
9938 htab->root.splt->size = (size
9939 + htab->plt_mips_offset
9940 + htab->plt_comp_offset);
9941 htab->root.sgotplt->size = (htab->plt_got_index
9942 * MIPS_ELF_GOT_SIZE (dynobj));
9943
9944 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9945
9946 if (htab->root.hplt == NULL)
9947 {
9948 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9949 "_PROCEDURE_LINKAGE_TABLE_");
9950 htab->root.hplt = h;
9951 if (h == NULL)
9952 return FALSE;
9953 }
9954
9955 h = htab->root.hplt;
9956 h->root.u.def.value = isa_bit;
9957 h->other = other;
9958 h->type = STT_FUNC;
9959 }
9960 }
9961
9962 /* Allocate space for global sym dynamic relocs. */
9963 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9964
9965 mips_elf_estimate_stub_size (output_bfd, info);
9966
9967 if (!mips_elf_lay_out_got (output_bfd, info))
9968 return FALSE;
9969
9970 mips_elf_lay_out_lazy_stubs (info);
9971
9972 /* The check_relocs and adjust_dynamic_symbol entry points have
9973 determined the sizes of the various dynamic sections. Allocate
9974 memory for them. */
9975 reltext = FALSE;
9976 for (s = dynobj->sections; s != NULL; s = s->next)
9977 {
9978 const char *name;
9979
9980 /* It's OK to base decisions on the section name, because none
9981 of the dynobj section names depend upon the input files. */
9982 name = bfd_get_section_name (dynobj, s);
9983
9984 if ((s->flags & SEC_LINKER_CREATED) == 0)
9985 continue;
9986
9987 if (CONST_STRNEQ (name, ".rel"))
9988 {
9989 if (s->size != 0)
9990 {
9991 const char *outname;
9992 asection *target;
9993
9994 /* If this relocation section applies to a read only
9995 section, then we probably need a DT_TEXTREL entry.
9996 If the relocation section is .rel(a).dyn, we always
9997 assert a DT_TEXTREL entry rather than testing whether
9998 there exists a relocation to a read only section or
9999 not. */
10000 outname = bfd_get_section_name (output_bfd,
10001 s->output_section);
10002 target = bfd_get_section_by_name (output_bfd, outname + 4);
10003 if ((target != NULL
10004 && (target->flags & SEC_READONLY) != 0
10005 && (target->flags & SEC_ALLOC) != 0)
10006 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10007 reltext = TRUE;
10008
10009 /* We use the reloc_count field as a counter if we need
10010 to copy relocs into the output file. */
10011 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10012 s->reloc_count = 0;
10013
10014 /* If combreloc is enabled, elf_link_sort_relocs() will
10015 sort relocations, but in a different way than we do,
10016 and before we're done creating relocations. Also, it
10017 will move them around between input sections'
10018 relocation's contents, so our sorting would be
10019 broken, so don't let it run. */
10020 info->combreloc = 0;
10021 }
10022 }
10023 else if (bfd_link_executable (info)
10024 && ! mips_elf_hash_table (info)->use_rld_obj_head
10025 && CONST_STRNEQ (name, ".rld_map"))
10026 {
10027 /* We add a room for __rld_map. It will be filled in by the
10028 rtld to contain a pointer to the _r_debug structure. */
10029 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10030 }
10031 else if (SGI_COMPAT (output_bfd)
10032 && CONST_STRNEQ (name, ".compact_rel"))
10033 s->size += mips_elf_hash_table (info)->compact_rel_size;
10034 else if (s == htab->root.splt)
10035 {
10036 /* If the last PLT entry has a branch delay slot, allocate
10037 room for an extra nop to fill the delay slot. This is
10038 for CPUs without load interlocking. */
10039 if (! LOAD_INTERLOCKS_P (output_bfd)
10040 && ! htab->is_vxworks && s->size > 0)
10041 s->size += 4;
10042 }
10043 else if (! CONST_STRNEQ (name, ".init")
10044 && s != htab->root.sgot
10045 && s != htab->root.sgotplt
10046 && s != htab->sstubs
10047 && s != htab->root.sdynbss
10048 && s != htab->root.sdynrelro)
10049 {
10050 /* It's not one of our sections, so don't allocate space. */
10051 continue;
10052 }
10053
10054 if (s->size == 0)
10055 {
10056 s->flags |= SEC_EXCLUDE;
10057 continue;
10058 }
10059
10060 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10061 continue;
10062
10063 /* Allocate memory for the section contents. */
10064 s->contents = bfd_zalloc (dynobj, s->size);
10065 if (s->contents == NULL)
10066 {
10067 bfd_set_error (bfd_error_no_memory);
10068 return FALSE;
10069 }
10070 }
10071
10072 if (elf_hash_table (info)->dynamic_sections_created)
10073 {
10074 /* Add some entries to the .dynamic section. We fill in the
10075 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10076 must add the entries now so that we get the correct size for
10077 the .dynamic section. */
10078
10079 /* SGI object has the equivalence of DT_DEBUG in the
10080 DT_MIPS_RLD_MAP entry. This must come first because glibc
10081 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10082 may only look at the first one they see. */
10083 if (!bfd_link_pic (info)
10084 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10085 return FALSE;
10086
10087 if (bfd_link_executable (info)
10088 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10089 return FALSE;
10090
10091 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10092 used by the debugger. */
10093 if (bfd_link_executable (info)
10094 && !SGI_COMPAT (output_bfd)
10095 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10096 return FALSE;
10097
10098 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
10099 info->flags |= DF_TEXTREL;
10100
10101 if ((info->flags & DF_TEXTREL) != 0)
10102 {
10103 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10104 return FALSE;
10105
10106 /* Clear the DF_TEXTREL flag. It will be set again if we
10107 write out an actual text relocation; we may not, because
10108 at this point we do not know whether e.g. any .eh_frame
10109 absolute relocations have been converted to PC-relative. */
10110 info->flags &= ~DF_TEXTREL;
10111 }
10112
10113 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10114 return FALSE;
10115
10116 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10117 if (htab->is_vxworks)
10118 {
10119 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10120 use any of the DT_MIPS_* tags. */
10121 if (sreldyn && sreldyn->size > 0)
10122 {
10123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10124 return FALSE;
10125
10126 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10127 return FALSE;
10128
10129 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10130 return FALSE;
10131 }
10132 }
10133 else
10134 {
10135 if (sreldyn && sreldyn->size > 0
10136 && !bfd_is_abs_section (sreldyn->output_section))
10137 {
10138 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10139 return FALSE;
10140
10141 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10142 return FALSE;
10143
10144 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10145 return FALSE;
10146 }
10147
10148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10149 return FALSE;
10150
10151 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10152 return FALSE;
10153
10154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10155 return FALSE;
10156
10157 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10158 return FALSE;
10159
10160 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10161 return FALSE;
10162
10163 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10164 return FALSE;
10165
10166 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10167 return FALSE;
10168
10169 if (IRIX_COMPAT (dynobj) == ict_irix5
10170 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10171 return FALSE;
10172
10173 if (IRIX_COMPAT (dynobj) == ict_irix6
10174 && (bfd_get_section_by_name
10175 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10176 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10177 return FALSE;
10178 }
10179 if (htab->root.splt->size > 0)
10180 {
10181 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10182 return FALSE;
10183
10184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10185 return FALSE;
10186
10187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10188 return FALSE;
10189
10190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10191 return FALSE;
10192 }
10193 if (htab->is_vxworks
10194 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10195 return FALSE;
10196 }
10197
10198 return TRUE;
10199 }
10200 \f
10201 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10202 Adjust its R_ADDEND field so that it is correct for the output file.
10203 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10204 and sections respectively; both use symbol indexes. */
10205
10206 static void
10207 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10208 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10209 asection **local_sections, Elf_Internal_Rela *rel)
10210 {
10211 unsigned int r_type, r_symndx;
10212 Elf_Internal_Sym *sym;
10213 asection *sec;
10214
10215 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10216 {
10217 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10218 if (gprel16_reloc_p (r_type)
10219 || r_type == R_MIPS_GPREL32
10220 || literal_reloc_p (r_type))
10221 {
10222 rel->r_addend += _bfd_get_gp_value (input_bfd);
10223 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10224 }
10225
10226 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10227 sym = local_syms + r_symndx;
10228
10229 /* Adjust REL's addend to account for section merging. */
10230 if (!bfd_link_relocatable (info))
10231 {
10232 sec = local_sections[r_symndx];
10233 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10234 }
10235
10236 /* This would normally be done by the rela_normal code in elflink.c. */
10237 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10238 rel->r_addend += local_sections[r_symndx]->output_offset;
10239 }
10240 }
10241
10242 /* Handle relocations against symbols from removed linkonce sections,
10243 or sections discarded by a linker script. We use this wrapper around
10244 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10245 on 64-bit ELF targets. In this case for any relocation handled, which
10246 always be the first in a triplet, the remaining two have to be processed
10247 together with the first, even if they are R_MIPS_NONE. It is the symbol
10248 index referred by the first reloc that applies to all the three and the
10249 remaining two never refer to an object symbol. And it is the final
10250 relocation (the last non-null one) that determines the output field of
10251 the whole relocation so retrieve the corresponding howto structure for
10252 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10253
10254 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10255 and therefore requires to be pasted in a loop. It also defines a block
10256 and does not protect any of its arguments, hence the extra brackets. */
10257
10258 static void
10259 mips_reloc_against_discarded_section (bfd *output_bfd,
10260 struct bfd_link_info *info,
10261 bfd *input_bfd, asection *input_section,
10262 Elf_Internal_Rela **rel,
10263 const Elf_Internal_Rela **relend,
10264 bfd_boolean rel_reloc,
10265 reloc_howto_type *howto,
10266 bfd_byte *contents)
10267 {
10268 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10269 int count = bed->s->int_rels_per_ext_rel;
10270 unsigned int r_type;
10271 int i;
10272
10273 for (i = count - 1; i > 0; i--)
10274 {
10275 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10276 if (r_type != R_MIPS_NONE)
10277 {
10278 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10279 break;
10280 }
10281 }
10282 do
10283 {
10284 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10285 (*rel), count, (*relend),
10286 howto, i, contents);
10287 }
10288 while (0);
10289 }
10290
10291 /* Relocate a MIPS ELF section. */
10292
10293 bfd_boolean
10294 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10295 bfd *input_bfd, asection *input_section,
10296 bfd_byte *contents, Elf_Internal_Rela *relocs,
10297 Elf_Internal_Sym *local_syms,
10298 asection **local_sections)
10299 {
10300 Elf_Internal_Rela *rel;
10301 const Elf_Internal_Rela *relend;
10302 bfd_vma addend = 0;
10303 bfd_boolean use_saved_addend_p = FALSE;
10304
10305 relend = relocs + input_section->reloc_count;
10306 for (rel = relocs; rel < relend; ++rel)
10307 {
10308 const char *name;
10309 bfd_vma value = 0;
10310 reloc_howto_type *howto;
10311 bfd_boolean cross_mode_jump_p = FALSE;
10312 /* TRUE if the relocation is a RELA relocation, rather than a
10313 REL relocation. */
10314 bfd_boolean rela_relocation_p = TRUE;
10315 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10316 const char *msg;
10317 unsigned long r_symndx;
10318 asection *sec;
10319 Elf_Internal_Shdr *symtab_hdr;
10320 struct elf_link_hash_entry *h;
10321 bfd_boolean rel_reloc;
10322
10323 rel_reloc = (NEWABI_P (input_bfd)
10324 && mips_elf_rel_relocation_p (input_bfd, input_section,
10325 relocs, rel));
10326 /* Find the relocation howto for this relocation. */
10327 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10328
10329 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10330 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10331 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10332 {
10333 sec = local_sections[r_symndx];
10334 h = NULL;
10335 }
10336 else
10337 {
10338 unsigned long extsymoff;
10339
10340 extsymoff = 0;
10341 if (!elf_bad_symtab (input_bfd))
10342 extsymoff = symtab_hdr->sh_info;
10343 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10344 while (h->root.type == bfd_link_hash_indirect
10345 || h->root.type == bfd_link_hash_warning)
10346 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10347
10348 sec = NULL;
10349 if (h->root.type == bfd_link_hash_defined
10350 || h->root.type == bfd_link_hash_defweak)
10351 sec = h->root.u.def.section;
10352 }
10353
10354 if (sec != NULL && discarded_section (sec))
10355 {
10356 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10357 input_section, &rel, &relend,
10358 rel_reloc, howto, contents);
10359 continue;
10360 }
10361
10362 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10363 {
10364 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10365 64-bit code, but make sure all their addresses are in the
10366 lowermost or uppermost 32-bit section of the 64-bit address
10367 space. Thus, when they use an R_MIPS_64 they mean what is
10368 usually meant by R_MIPS_32, with the exception that the
10369 stored value is sign-extended to 64 bits. */
10370 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10371
10372 /* On big-endian systems, we need to lie about the position
10373 of the reloc. */
10374 if (bfd_big_endian (input_bfd))
10375 rel->r_offset += 4;
10376 }
10377
10378 if (!use_saved_addend_p)
10379 {
10380 /* If these relocations were originally of the REL variety,
10381 we must pull the addend out of the field that will be
10382 relocated. Otherwise, we simply use the contents of the
10383 RELA relocation. */
10384 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10385 relocs, rel))
10386 {
10387 rela_relocation_p = FALSE;
10388 addend = mips_elf_read_rel_addend (input_bfd, rel,
10389 howto, contents);
10390 if (hi16_reloc_p (r_type)
10391 || (got16_reloc_p (r_type)
10392 && mips_elf_local_relocation_p (input_bfd, rel,
10393 local_sections)))
10394 {
10395 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10396 contents, &addend))
10397 {
10398 if (h)
10399 name = h->root.root.string;
10400 else
10401 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10402 local_syms + r_symndx,
10403 sec);
10404 _bfd_error_handler
10405 /* xgettext:c-format */
10406 (_("%pB: can't find matching LO16 reloc against `%s'"
10407 " for %s at %#" PRIx64 " in section `%pA'"),
10408 input_bfd, name,
10409 howto->name, (uint64_t) rel->r_offset, input_section);
10410 }
10411 }
10412 else
10413 addend <<= howto->rightshift;
10414 }
10415 else
10416 addend = rel->r_addend;
10417 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10418 local_syms, local_sections, rel);
10419 }
10420
10421 if (bfd_link_relocatable (info))
10422 {
10423 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10424 && bfd_big_endian (input_bfd))
10425 rel->r_offset -= 4;
10426
10427 if (!rela_relocation_p && rel->r_addend)
10428 {
10429 addend += rel->r_addend;
10430 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10431 addend = mips_elf_high (addend);
10432 else if (r_type == R_MIPS_HIGHER)
10433 addend = mips_elf_higher (addend);
10434 else if (r_type == R_MIPS_HIGHEST)
10435 addend = mips_elf_highest (addend);
10436 else
10437 addend >>= howto->rightshift;
10438
10439 /* We use the source mask, rather than the destination
10440 mask because the place to which we are writing will be
10441 source of the addend in the final link. */
10442 addend &= howto->src_mask;
10443
10444 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10445 /* See the comment above about using R_MIPS_64 in the 32-bit
10446 ABI. Here, we need to update the addend. It would be
10447 possible to get away with just using the R_MIPS_32 reloc
10448 but for endianness. */
10449 {
10450 bfd_vma sign_bits;
10451 bfd_vma low_bits;
10452 bfd_vma high_bits;
10453
10454 if (addend & ((bfd_vma) 1 << 31))
10455 #ifdef BFD64
10456 sign_bits = ((bfd_vma) 1 << 32) - 1;
10457 #else
10458 sign_bits = -1;
10459 #endif
10460 else
10461 sign_bits = 0;
10462
10463 /* If we don't know that we have a 64-bit type,
10464 do two separate stores. */
10465 if (bfd_big_endian (input_bfd))
10466 {
10467 /* Store the sign-bits (which are most significant)
10468 first. */
10469 low_bits = sign_bits;
10470 high_bits = addend;
10471 }
10472 else
10473 {
10474 low_bits = addend;
10475 high_bits = sign_bits;
10476 }
10477 bfd_put_32 (input_bfd, low_bits,
10478 contents + rel->r_offset);
10479 bfd_put_32 (input_bfd, high_bits,
10480 contents + rel->r_offset + 4);
10481 continue;
10482 }
10483
10484 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10485 input_bfd, input_section,
10486 contents, FALSE))
10487 return FALSE;
10488 }
10489
10490 /* Go on to the next relocation. */
10491 continue;
10492 }
10493
10494 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10495 relocations for the same offset. In that case we are
10496 supposed to treat the output of each relocation as the addend
10497 for the next. */
10498 if (rel + 1 < relend
10499 && rel->r_offset == rel[1].r_offset
10500 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10501 use_saved_addend_p = TRUE;
10502 else
10503 use_saved_addend_p = FALSE;
10504
10505 /* Figure out what value we are supposed to relocate. */
10506 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10507 input_section, contents,
10508 info, rel, addend, howto,
10509 local_syms, local_sections,
10510 &value, &name, &cross_mode_jump_p,
10511 use_saved_addend_p))
10512 {
10513 case bfd_reloc_continue:
10514 /* There's nothing to do. */
10515 continue;
10516
10517 case bfd_reloc_undefined:
10518 /* mips_elf_calculate_relocation already called the
10519 undefined_symbol callback. There's no real point in
10520 trying to perform the relocation at this point, so we
10521 just skip ahead to the next relocation. */
10522 continue;
10523
10524 case bfd_reloc_notsupported:
10525 msg = _("internal error: unsupported relocation error");
10526 info->callbacks->warning
10527 (info, msg, name, input_bfd, input_section, rel->r_offset);
10528 return FALSE;
10529
10530 case bfd_reloc_overflow:
10531 if (use_saved_addend_p)
10532 /* Ignore overflow until we reach the last relocation for
10533 a given location. */
10534 ;
10535 else
10536 {
10537 struct mips_elf_link_hash_table *htab;
10538
10539 htab = mips_elf_hash_table (info);
10540 BFD_ASSERT (htab != NULL);
10541 BFD_ASSERT (name != NULL);
10542 if (!htab->small_data_overflow_reported
10543 && (gprel16_reloc_p (howto->type)
10544 || literal_reloc_p (howto->type)))
10545 {
10546 msg = _("small-data section exceeds 64KB;"
10547 " lower small-data size limit (see option -G)");
10548
10549 htab->small_data_overflow_reported = TRUE;
10550 (*info->callbacks->einfo) ("%P: %s\n", msg);
10551 }
10552 (*info->callbacks->reloc_overflow)
10553 (info, NULL, name, howto->name, (bfd_vma) 0,
10554 input_bfd, input_section, rel->r_offset);
10555 }
10556 break;
10557
10558 case bfd_reloc_ok:
10559 break;
10560
10561 case bfd_reloc_outofrange:
10562 msg = NULL;
10563 if (jal_reloc_p (howto->type))
10564 msg = (cross_mode_jump_p
10565 ? _("cannot convert a jump to JALX "
10566 "for a non-word-aligned address")
10567 : (howto->type == R_MIPS16_26
10568 ? _("jump to a non-word-aligned address")
10569 : _("jump to a non-instruction-aligned address")));
10570 else if (b_reloc_p (howto->type))
10571 msg = (cross_mode_jump_p
10572 ? _("cannot convert a branch to JALX "
10573 "for a non-word-aligned address")
10574 : _("branch to a non-instruction-aligned address"));
10575 else if (aligned_pcrel_reloc_p (howto->type))
10576 msg = _("PC-relative load from unaligned address");
10577 if (msg)
10578 {
10579 info->callbacks->einfo
10580 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10581 break;
10582 }
10583 /* Fall through. */
10584
10585 default:
10586 abort ();
10587 break;
10588 }
10589
10590 /* If we've got another relocation for the address, keep going
10591 until we reach the last one. */
10592 if (use_saved_addend_p)
10593 {
10594 addend = value;
10595 continue;
10596 }
10597
10598 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10599 /* See the comment above about using R_MIPS_64 in the 32-bit
10600 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10601 that calculated the right value. Now, however, we
10602 sign-extend the 32-bit result to 64-bits, and store it as a
10603 64-bit value. We are especially generous here in that we
10604 go to extreme lengths to support this usage on systems with
10605 only a 32-bit VMA. */
10606 {
10607 bfd_vma sign_bits;
10608 bfd_vma low_bits;
10609 bfd_vma high_bits;
10610
10611 if (value & ((bfd_vma) 1 << 31))
10612 #ifdef BFD64
10613 sign_bits = ((bfd_vma) 1 << 32) - 1;
10614 #else
10615 sign_bits = -1;
10616 #endif
10617 else
10618 sign_bits = 0;
10619
10620 /* If we don't know that we have a 64-bit type,
10621 do two separate stores. */
10622 if (bfd_big_endian (input_bfd))
10623 {
10624 /* Undo what we did above. */
10625 rel->r_offset -= 4;
10626 /* Store the sign-bits (which are most significant)
10627 first. */
10628 low_bits = sign_bits;
10629 high_bits = value;
10630 }
10631 else
10632 {
10633 low_bits = value;
10634 high_bits = sign_bits;
10635 }
10636 bfd_put_32 (input_bfd, low_bits,
10637 contents + rel->r_offset);
10638 bfd_put_32 (input_bfd, high_bits,
10639 contents + rel->r_offset + 4);
10640 continue;
10641 }
10642
10643 /* Actually perform the relocation. */
10644 if (! mips_elf_perform_relocation (info, howto, rel, value,
10645 input_bfd, input_section,
10646 contents, cross_mode_jump_p))
10647 return FALSE;
10648 }
10649
10650 return TRUE;
10651 }
10652 \f
10653 /* A function that iterates over each entry in la25_stubs and fills
10654 in the code for each one. DATA points to a mips_htab_traverse_info. */
10655
10656 static int
10657 mips_elf_create_la25_stub (void **slot, void *data)
10658 {
10659 struct mips_htab_traverse_info *hti;
10660 struct mips_elf_link_hash_table *htab;
10661 struct mips_elf_la25_stub *stub;
10662 asection *s;
10663 bfd_byte *loc;
10664 bfd_vma offset, target, target_high, target_low;
10665 bfd_vma branch_pc;
10666 bfd_signed_vma pcrel_offset = 0;
10667
10668 stub = (struct mips_elf_la25_stub *) *slot;
10669 hti = (struct mips_htab_traverse_info *) data;
10670 htab = mips_elf_hash_table (hti->info);
10671 BFD_ASSERT (htab != NULL);
10672
10673 /* Create the section contents, if we haven't already. */
10674 s = stub->stub_section;
10675 loc = s->contents;
10676 if (loc == NULL)
10677 {
10678 loc = bfd_malloc (s->size);
10679 if (loc == NULL)
10680 {
10681 hti->error = TRUE;
10682 return FALSE;
10683 }
10684 s->contents = loc;
10685 }
10686
10687 /* Work out where in the section this stub should go. */
10688 offset = stub->offset;
10689
10690 /* We add 8 here to account for the LUI/ADDIU instructions
10691 before the branch instruction. This cannot be moved down to
10692 where pcrel_offset is calculated as 's' is updated in
10693 mips_elf_get_la25_target. */
10694 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10695
10696 /* Work out the target address. */
10697 target = mips_elf_get_la25_target (stub, &s);
10698 target += s->output_section->vma + s->output_offset;
10699
10700 target_high = ((target + 0x8000) >> 16) & 0xffff;
10701 target_low = (target & 0xffff);
10702
10703 /* Calculate the PC of the compact branch instruction (for the case where
10704 compact branches are used for either microMIPSR6 or MIPSR6 with
10705 compact branches. Add 4-bytes to account for BC using the PC of the
10706 next instruction as the base. */
10707 pcrel_offset = target - (branch_pc + 4);
10708
10709 if (stub->stub_section != htab->strampoline)
10710 {
10711 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10712 of the section and write the two instructions at the end. */
10713 memset (loc, 0, offset);
10714 loc += offset;
10715 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10716 {
10717 bfd_put_micromips_32 (hti->output_bfd,
10718 LA25_LUI_MICROMIPS (target_high),
10719 loc);
10720 bfd_put_micromips_32 (hti->output_bfd,
10721 LA25_ADDIU_MICROMIPS (target_low),
10722 loc + 4);
10723 }
10724 else
10725 {
10726 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10727 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10728 }
10729 }
10730 else
10731 {
10732 /* This is trampoline. */
10733 loc += offset;
10734 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10735 {
10736 bfd_put_micromips_32 (hti->output_bfd,
10737 LA25_LUI_MICROMIPS (target_high), loc);
10738 bfd_put_micromips_32 (hti->output_bfd,
10739 LA25_J_MICROMIPS (target), loc + 4);
10740 bfd_put_micromips_32 (hti->output_bfd,
10741 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10742 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10743 }
10744 else
10745 {
10746 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10747 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10748 {
10749 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10750 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10751 }
10752 else
10753 {
10754 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10755 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10756 }
10757 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10758 }
10759 }
10760 return TRUE;
10761 }
10762
10763 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10764 adjust it appropriately now. */
10765
10766 static void
10767 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10768 const char *name, Elf_Internal_Sym *sym)
10769 {
10770 /* The linker script takes care of providing names and values for
10771 these, but we must place them into the right sections. */
10772 static const char* const text_section_symbols[] = {
10773 "_ftext",
10774 "_etext",
10775 "__dso_displacement",
10776 "__elf_header",
10777 "__program_header_table",
10778 NULL
10779 };
10780
10781 static const char* const data_section_symbols[] = {
10782 "_fdata",
10783 "_edata",
10784 "_end",
10785 "_fbss",
10786 NULL
10787 };
10788
10789 const char* const *p;
10790 int i;
10791
10792 for (i = 0; i < 2; ++i)
10793 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10794 *p;
10795 ++p)
10796 if (strcmp (*p, name) == 0)
10797 {
10798 /* All of these symbols are given type STT_SECTION by the
10799 IRIX6 linker. */
10800 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10801 sym->st_other = STO_PROTECTED;
10802
10803 /* The IRIX linker puts these symbols in special sections. */
10804 if (i == 0)
10805 sym->st_shndx = SHN_MIPS_TEXT;
10806 else
10807 sym->st_shndx = SHN_MIPS_DATA;
10808
10809 break;
10810 }
10811 }
10812
10813 /* Finish up dynamic symbol handling. We set the contents of various
10814 dynamic sections here. */
10815
10816 bfd_boolean
10817 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10818 struct bfd_link_info *info,
10819 struct elf_link_hash_entry *h,
10820 Elf_Internal_Sym *sym)
10821 {
10822 bfd *dynobj;
10823 asection *sgot;
10824 struct mips_got_info *g, *gg;
10825 const char *name;
10826 int idx;
10827 struct mips_elf_link_hash_table *htab;
10828 struct mips_elf_link_hash_entry *hmips;
10829
10830 htab = mips_elf_hash_table (info);
10831 BFD_ASSERT (htab != NULL);
10832 dynobj = elf_hash_table (info)->dynobj;
10833 hmips = (struct mips_elf_link_hash_entry *) h;
10834
10835 BFD_ASSERT (!htab->is_vxworks);
10836
10837 if (h->plt.plist != NULL
10838 && (h->plt.plist->mips_offset != MINUS_ONE
10839 || h->plt.plist->comp_offset != MINUS_ONE))
10840 {
10841 /* We've decided to create a PLT entry for this symbol. */
10842 bfd_byte *loc;
10843 bfd_vma header_address, got_address;
10844 bfd_vma got_address_high, got_address_low, load;
10845 bfd_vma got_index;
10846 bfd_vma isa_bit;
10847
10848 got_index = h->plt.plist->gotplt_index;
10849
10850 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10851 BFD_ASSERT (h->dynindx != -1);
10852 BFD_ASSERT (htab->root.splt != NULL);
10853 BFD_ASSERT (got_index != MINUS_ONE);
10854 BFD_ASSERT (!h->def_regular);
10855
10856 /* Calculate the address of the PLT header. */
10857 isa_bit = htab->plt_header_is_comp;
10858 header_address = (htab->root.splt->output_section->vma
10859 + htab->root.splt->output_offset + isa_bit);
10860
10861 /* Calculate the address of the .got.plt entry. */
10862 got_address = (htab->root.sgotplt->output_section->vma
10863 + htab->root.sgotplt->output_offset
10864 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10865
10866 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10867 got_address_low = got_address & 0xffff;
10868
10869 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10870 cannot be loaded in two instructions. */
10871 if (ABI_64_P (output_bfd)
10872 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10873 {
10874 _bfd_error_handler
10875 /* xgettext:c-format */
10876 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10877 "supported; consider using `-Ttext-segment=...'"),
10878 output_bfd,
10879 htab->root.sgotplt->output_section,
10880 (int64_t) got_address);
10881 bfd_set_error (bfd_error_no_error);
10882 return FALSE;
10883 }
10884
10885 /* Initially point the .got.plt entry at the PLT header. */
10886 loc = (htab->root.sgotplt->contents
10887 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10888 if (ABI_64_P (output_bfd))
10889 bfd_put_64 (output_bfd, header_address, loc);
10890 else
10891 bfd_put_32 (output_bfd, header_address, loc);
10892
10893 /* Now handle the PLT itself. First the standard entry (the order
10894 does not matter, we just have to pick one). */
10895 if (h->plt.plist->mips_offset != MINUS_ONE)
10896 {
10897 const bfd_vma *plt_entry;
10898 bfd_vma plt_offset;
10899
10900 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10901
10902 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10903
10904 /* Find out where the .plt entry should go. */
10905 loc = htab->root.splt->contents + plt_offset;
10906
10907 /* Pick the load opcode. */
10908 load = MIPS_ELF_LOAD_WORD (output_bfd);
10909
10910 /* Fill in the PLT entry itself. */
10911
10912 if (MIPSR6_P (output_bfd))
10913 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10914 : mipsr6_exec_plt_entry;
10915 else
10916 plt_entry = mips_exec_plt_entry;
10917 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10918 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10919 loc + 4);
10920
10921 if (! LOAD_INTERLOCKS_P (output_bfd)
10922 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10923 {
10924 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10925 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10926 }
10927 else
10928 {
10929 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10930 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10931 loc + 12);
10932 }
10933 }
10934
10935 /* Now the compressed entry. They come after any standard ones. */
10936 if (h->plt.plist->comp_offset != MINUS_ONE)
10937 {
10938 bfd_vma plt_offset;
10939
10940 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10941 + h->plt.plist->comp_offset);
10942
10943 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10944
10945 /* Find out where the .plt entry should go. */
10946 loc = htab->root.splt->contents + plt_offset;
10947
10948 /* Fill in the PLT entry itself. */
10949 if (!MICROMIPS_P (output_bfd))
10950 {
10951 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10952
10953 bfd_put_16 (output_bfd, plt_entry[0], loc);
10954 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10955 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10956 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10957 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10958 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10959 bfd_put_32 (output_bfd, got_address, loc + 12);
10960 }
10961 else if (htab->insn32)
10962 {
10963 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10964
10965 bfd_put_16 (output_bfd, plt_entry[0], loc);
10966 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10967 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10968 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10969 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10970 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10971 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10972 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10973 }
10974 else
10975 {
10976 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10977 bfd_signed_vma gotpc_offset;
10978 bfd_vma loc_address;
10979
10980 BFD_ASSERT (got_address % 4 == 0);
10981
10982 loc_address = (htab->root.splt->output_section->vma
10983 + htab->root.splt->output_offset + plt_offset);
10984 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10985
10986 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10987 if (gotpc_offset + 0x1000000 >= 0x2000000)
10988 {
10989 _bfd_error_handler
10990 /* xgettext:c-format */
10991 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10992 "beyond the range of ADDIUPC"),
10993 output_bfd,
10994 htab->root.sgotplt->output_section,
10995 (int64_t) gotpc_offset,
10996 htab->root.splt->output_section);
10997 bfd_set_error (bfd_error_no_error);
10998 return FALSE;
10999 }
11000 bfd_put_16 (output_bfd,
11001 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11002 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11003 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11004 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11005 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11006 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11007 }
11008 }
11009
11010 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11011 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11012 got_index - 2, h->dynindx,
11013 R_MIPS_JUMP_SLOT, got_address);
11014
11015 /* We distinguish between PLT entries and lazy-binding stubs by
11016 giving the former an st_other value of STO_MIPS_PLT. Set the
11017 flag and leave the value if there are any relocations in the
11018 binary where pointer equality matters. */
11019 sym->st_shndx = SHN_UNDEF;
11020 if (h->pointer_equality_needed)
11021 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11022 else
11023 {
11024 sym->st_value = 0;
11025 sym->st_other = 0;
11026 }
11027 }
11028
11029 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11030 {
11031 /* We've decided to create a lazy-binding stub. */
11032 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11033 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11034 bfd_vma stub_size = htab->function_stub_size;
11035 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11036 bfd_vma isa_bit = micromips_p;
11037 bfd_vma stub_big_size;
11038
11039 if (!micromips_p)
11040 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11041 else if (htab->insn32)
11042 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11043 else
11044 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11045
11046 /* This symbol has a stub. Set it up. */
11047
11048 BFD_ASSERT (h->dynindx != -1);
11049
11050 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11051
11052 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11053 sign extension at runtime in the stub, resulting in a negative
11054 index value. */
11055 if (h->dynindx & ~0x7fffffff)
11056 return FALSE;
11057
11058 /* Fill the stub. */
11059 if (micromips_p)
11060 {
11061 idx = 0;
11062 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11063 stub + idx);
11064 idx += 4;
11065 if (htab->insn32)
11066 {
11067 bfd_put_micromips_32 (output_bfd,
11068 STUB_MOVE32_MICROMIPS, stub + idx);
11069 idx += 4;
11070 }
11071 else
11072 {
11073 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11074 idx += 2;
11075 }
11076 if (stub_size == stub_big_size)
11077 {
11078 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11079
11080 bfd_put_micromips_32 (output_bfd,
11081 STUB_LUI_MICROMIPS (dynindx_hi),
11082 stub + idx);
11083 idx += 4;
11084 }
11085 if (htab->insn32)
11086 {
11087 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11088 stub + idx);
11089 idx += 4;
11090 }
11091 else
11092 {
11093 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11094 idx += 2;
11095 }
11096
11097 /* If a large stub is not required and sign extension is not a
11098 problem, then use legacy code in the stub. */
11099 if (stub_size == stub_big_size)
11100 bfd_put_micromips_32 (output_bfd,
11101 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11102 stub + idx);
11103 else if (h->dynindx & ~0x7fff)
11104 bfd_put_micromips_32 (output_bfd,
11105 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11106 stub + idx);
11107 else
11108 bfd_put_micromips_32 (output_bfd,
11109 STUB_LI16S_MICROMIPS (output_bfd,
11110 h->dynindx),
11111 stub + idx);
11112 }
11113 else
11114 {
11115 idx = 0;
11116 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11117 idx += 4;
11118 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11119 idx += 4;
11120 if (stub_size == stub_big_size)
11121 {
11122 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11123 stub + idx);
11124 idx += 4;
11125 }
11126
11127 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11128 {
11129 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11130 idx += 4;
11131 }
11132
11133 /* If a large stub is not required and sign extension is not a
11134 problem, then use legacy code in the stub. */
11135 if (stub_size == stub_big_size)
11136 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11137 stub + idx);
11138 else if (h->dynindx & ~0x7fff)
11139 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11140 stub + idx);
11141 else
11142 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11143 stub + idx);
11144 idx += 4;
11145
11146 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11147 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11148 }
11149
11150 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11151 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11152 stub, stub_size);
11153
11154 /* Mark the symbol as undefined. stub_offset != -1 occurs
11155 only for the referenced symbol. */
11156 sym->st_shndx = SHN_UNDEF;
11157
11158 /* The run-time linker uses the st_value field of the symbol
11159 to reset the global offset table entry for this external
11160 to its stub address when unlinking a shared object. */
11161 sym->st_value = (htab->sstubs->output_section->vma
11162 + htab->sstubs->output_offset
11163 + h->plt.plist->stub_offset
11164 + isa_bit);
11165 sym->st_other = other;
11166 }
11167
11168 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11169 refer to the stub, since only the stub uses the standard calling
11170 conventions. */
11171 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11172 {
11173 BFD_ASSERT (hmips->need_fn_stub);
11174 sym->st_value = (hmips->fn_stub->output_section->vma
11175 + hmips->fn_stub->output_offset);
11176 sym->st_size = hmips->fn_stub->size;
11177 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11178 }
11179
11180 BFD_ASSERT (h->dynindx != -1
11181 || h->forced_local);
11182
11183 sgot = htab->root.sgot;
11184 g = htab->got_info;
11185 BFD_ASSERT (g != NULL);
11186
11187 /* Run through the global symbol table, creating GOT entries for all
11188 the symbols that need them. */
11189 if (hmips->global_got_area != GGA_NONE)
11190 {
11191 bfd_vma offset;
11192 bfd_vma value;
11193
11194 value = sym->st_value;
11195 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11196 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11197 }
11198
11199 if (hmips->global_got_area != GGA_NONE && g->next)
11200 {
11201 struct mips_got_entry e, *p;
11202 bfd_vma entry;
11203 bfd_vma offset;
11204
11205 gg = g;
11206
11207 e.abfd = output_bfd;
11208 e.symndx = -1;
11209 e.d.h = hmips;
11210 e.tls_type = GOT_TLS_NONE;
11211
11212 for (g = g->next; g->next != gg; g = g->next)
11213 {
11214 if (g->got_entries
11215 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11216 &e)))
11217 {
11218 offset = p->gotidx;
11219 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11220 if (bfd_link_pic (info)
11221 || (elf_hash_table (info)->dynamic_sections_created
11222 && p->d.h != NULL
11223 && p->d.h->root.def_dynamic
11224 && !p->d.h->root.def_regular))
11225 {
11226 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11227 the various compatibility problems, it's easier to mock
11228 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11229 mips_elf_create_dynamic_relocation to calculate the
11230 appropriate addend. */
11231 Elf_Internal_Rela rel[3];
11232
11233 memset (rel, 0, sizeof (rel));
11234 if (ABI_64_P (output_bfd))
11235 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11236 else
11237 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11238 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11239
11240 entry = 0;
11241 if (! (mips_elf_create_dynamic_relocation
11242 (output_bfd, info, rel,
11243 e.d.h, NULL, sym->st_value, &entry, sgot)))
11244 return FALSE;
11245 }
11246 else
11247 entry = sym->st_value;
11248 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11249 }
11250 }
11251 }
11252
11253 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11254 name = h->root.root.string;
11255 if (h == elf_hash_table (info)->hdynamic
11256 || h == elf_hash_table (info)->hgot)
11257 sym->st_shndx = SHN_ABS;
11258 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11259 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11260 {
11261 sym->st_shndx = SHN_ABS;
11262 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11263 sym->st_value = 1;
11264 }
11265 else if (SGI_COMPAT (output_bfd))
11266 {
11267 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11268 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11269 {
11270 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11271 sym->st_other = STO_PROTECTED;
11272 sym->st_value = 0;
11273 sym->st_shndx = SHN_MIPS_DATA;
11274 }
11275 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11276 {
11277 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11278 sym->st_other = STO_PROTECTED;
11279 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11280 sym->st_shndx = SHN_ABS;
11281 }
11282 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11283 {
11284 if (h->type == STT_FUNC)
11285 sym->st_shndx = SHN_MIPS_TEXT;
11286 else if (h->type == STT_OBJECT)
11287 sym->st_shndx = SHN_MIPS_DATA;
11288 }
11289 }
11290
11291 /* Emit a copy reloc, if needed. */
11292 if (h->needs_copy)
11293 {
11294 asection *s;
11295 bfd_vma symval;
11296
11297 BFD_ASSERT (h->dynindx != -1);
11298 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11299
11300 s = mips_elf_rel_dyn_section (info, FALSE);
11301 symval = (h->root.u.def.section->output_section->vma
11302 + h->root.u.def.section->output_offset
11303 + h->root.u.def.value);
11304 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11305 h->dynindx, R_MIPS_COPY, symval);
11306 }
11307
11308 /* Handle the IRIX6-specific symbols. */
11309 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11310 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11311
11312 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11313 to treat compressed symbols like any other. */
11314 if (ELF_ST_IS_MIPS16 (sym->st_other))
11315 {
11316 BFD_ASSERT (sym->st_value & 1);
11317 sym->st_other -= STO_MIPS16;
11318 }
11319 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11320 {
11321 BFD_ASSERT (sym->st_value & 1);
11322 sym->st_other -= STO_MICROMIPS;
11323 }
11324
11325 return TRUE;
11326 }
11327
11328 /* Likewise, for VxWorks. */
11329
11330 bfd_boolean
11331 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11332 struct bfd_link_info *info,
11333 struct elf_link_hash_entry *h,
11334 Elf_Internal_Sym *sym)
11335 {
11336 bfd *dynobj;
11337 asection *sgot;
11338 struct mips_got_info *g;
11339 struct mips_elf_link_hash_table *htab;
11340 struct mips_elf_link_hash_entry *hmips;
11341
11342 htab = mips_elf_hash_table (info);
11343 BFD_ASSERT (htab != NULL);
11344 dynobj = elf_hash_table (info)->dynobj;
11345 hmips = (struct mips_elf_link_hash_entry *) h;
11346
11347 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11348 {
11349 bfd_byte *loc;
11350 bfd_vma plt_address, got_address, got_offset, branch_offset;
11351 Elf_Internal_Rela rel;
11352 static const bfd_vma *plt_entry;
11353 bfd_vma gotplt_index;
11354 bfd_vma plt_offset;
11355
11356 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11357 gotplt_index = h->plt.plist->gotplt_index;
11358
11359 BFD_ASSERT (h->dynindx != -1);
11360 BFD_ASSERT (htab->root.splt != NULL);
11361 BFD_ASSERT (gotplt_index != MINUS_ONE);
11362 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11363
11364 /* Calculate the address of the .plt entry. */
11365 plt_address = (htab->root.splt->output_section->vma
11366 + htab->root.splt->output_offset
11367 + plt_offset);
11368
11369 /* Calculate the address of the .got.plt entry. */
11370 got_address = (htab->root.sgotplt->output_section->vma
11371 + htab->root.sgotplt->output_offset
11372 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11373
11374 /* Calculate the offset of the .got.plt entry from
11375 _GLOBAL_OFFSET_TABLE_. */
11376 got_offset = mips_elf_gotplt_index (info, h);
11377
11378 /* Calculate the offset for the branch at the start of the PLT
11379 entry. The branch jumps to the beginning of .plt. */
11380 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11381
11382 /* Fill in the initial value of the .got.plt entry. */
11383 bfd_put_32 (output_bfd, plt_address,
11384 (htab->root.sgotplt->contents
11385 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11386
11387 /* Find out where the .plt entry should go. */
11388 loc = htab->root.splt->contents + plt_offset;
11389
11390 if (bfd_link_pic (info))
11391 {
11392 plt_entry = mips_vxworks_shared_plt_entry;
11393 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11394 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11395 }
11396 else
11397 {
11398 bfd_vma got_address_high, got_address_low;
11399
11400 plt_entry = mips_vxworks_exec_plt_entry;
11401 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11402 got_address_low = got_address & 0xffff;
11403
11404 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11405 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11406 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11407 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11408 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11409 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11410 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11411 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11412
11413 loc = (htab->srelplt2->contents
11414 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11415
11416 /* Emit a relocation for the .got.plt entry. */
11417 rel.r_offset = got_address;
11418 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11419 rel.r_addend = plt_offset;
11420 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11421
11422 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11423 loc += sizeof (Elf32_External_Rela);
11424 rel.r_offset = plt_address + 8;
11425 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11426 rel.r_addend = got_offset;
11427 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11428
11429 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11430 loc += sizeof (Elf32_External_Rela);
11431 rel.r_offset += 4;
11432 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11433 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11434 }
11435
11436 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11437 loc = (htab->root.srelplt->contents
11438 + gotplt_index * sizeof (Elf32_External_Rela));
11439 rel.r_offset = got_address;
11440 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11441 rel.r_addend = 0;
11442 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11443
11444 if (!h->def_regular)
11445 sym->st_shndx = SHN_UNDEF;
11446 }
11447
11448 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11449
11450 sgot = htab->root.sgot;
11451 g = htab->got_info;
11452 BFD_ASSERT (g != NULL);
11453
11454 /* See if this symbol has an entry in the GOT. */
11455 if (hmips->global_got_area != GGA_NONE)
11456 {
11457 bfd_vma offset;
11458 Elf_Internal_Rela outrel;
11459 bfd_byte *loc;
11460 asection *s;
11461
11462 /* Install the symbol value in the GOT. */
11463 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11464 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11465
11466 /* Add a dynamic relocation for it. */
11467 s = mips_elf_rel_dyn_section (info, FALSE);
11468 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11469 outrel.r_offset = (sgot->output_section->vma
11470 + sgot->output_offset
11471 + offset);
11472 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11473 outrel.r_addend = 0;
11474 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11475 }
11476
11477 /* Emit a copy reloc, if needed. */
11478 if (h->needs_copy)
11479 {
11480 Elf_Internal_Rela rel;
11481 asection *srel;
11482 bfd_byte *loc;
11483
11484 BFD_ASSERT (h->dynindx != -1);
11485
11486 rel.r_offset = (h->root.u.def.section->output_section->vma
11487 + h->root.u.def.section->output_offset
11488 + h->root.u.def.value);
11489 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11490 rel.r_addend = 0;
11491 if (h->root.u.def.section == htab->root.sdynrelro)
11492 srel = htab->root.sreldynrelro;
11493 else
11494 srel = htab->root.srelbss;
11495 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11496 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11497 ++srel->reloc_count;
11498 }
11499
11500 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11501 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11502 sym->st_value &= ~1;
11503
11504 return TRUE;
11505 }
11506
11507 /* Write out a plt0 entry to the beginning of .plt. */
11508
11509 static bfd_boolean
11510 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11511 {
11512 bfd_byte *loc;
11513 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11514 static const bfd_vma *plt_entry;
11515 struct mips_elf_link_hash_table *htab;
11516
11517 htab = mips_elf_hash_table (info);
11518 BFD_ASSERT (htab != NULL);
11519
11520 if (ABI_64_P (output_bfd))
11521 plt_entry = (htab->compact_branches
11522 ? mipsr6_n64_exec_plt0_entry_compact
11523 : mips_n64_exec_plt0_entry);
11524 else if (ABI_N32_P (output_bfd))
11525 plt_entry = (htab->compact_branches
11526 ? mipsr6_n32_exec_plt0_entry_compact
11527 : mips_n32_exec_plt0_entry);
11528 else if (!htab->plt_header_is_comp)
11529 plt_entry = (htab->compact_branches
11530 ? mipsr6_o32_exec_plt0_entry_compact
11531 : mips_o32_exec_plt0_entry);
11532 else if (htab->insn32)
11533 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11534 else
11535 plt_entry = micromips_o32_exec_plt0_entry;
11536
11537 /* Calculate the value of .got.plt. */
11538 gotplt_value = (htab->root.sgotplt->output_section->vma
11539 + htab->root.sgotplt->output_offset);
11540 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11541 gotplt_value_low = gotplt_value & 0xffff;
11542
11543 /* The PLT sequence is not safe for N64 if .got.plt's address can
11544 not be loaded in two instructions. */
11545 if (ABI_64_P (output_bfd)
11546 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11547 {
11548 _bfd_error_handler
11549 /* xgettext:c-format */
11550 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11551 "supported; consider using `-Ttext-segment=...'"),
11552 output_bfd,
11553 htab->root.sgotplt->output_section,
11554 (int64_t) gotplt_value);
11555 bfd_set_error (bfd_error_no_error);
11556 return FALSE;
11557 }
11558
11559 /* Install the PLT header. */
11560 loc = htab->root.splt->contents;
11561 if (plt_entry == micromips_o32_exec_plt0_entry)
11562 {
11563 bfd_vma gotpc_offset;
11564 bfd_vma loc_address;
11565 size_t i;
11566
11567 BFD_ASSERT (gotplt_value % 4 == 0);
11568
11569 loc_address = (htab->root.splt->output_section->vma
11570 + htab->root.splt->output_offset);
11571 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11572
11573 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11574 if (gotpc_offset + 0x1000000 >= 0x2000000)
11575 {
11576 _bfd_error_handler
11577 /* xgettext:c-format */
11578 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11579 "beyond the range of ADDIUPC"),
11580 output_bfd,
11581 htab->root.sgotplt->output_section,
11582 (int64_t) gotpc_offset,
11583 htab->root.splt->output_section);
11584 bfd_set_error (bfd_error_no_error);
11585 return FALSE;
11586 }
11587 bfd_put_16 (output_bfd,
11588 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11589 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11590 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11591 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11592 }
11593 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11594 {
11595 size_t i;
11596
11597 bfd_put_16 (output_bfd, plt_entry[0], loc);
11598 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11599 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11600 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11601 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11602 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11603 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11604 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11605 }
11606 else
11607 {
11608 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11609 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11610 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11611 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11612 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11613 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11614 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11615 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11616 }
11617
11618 return TRUE;
11619 }
11620
11621 /* Install the PLT header for a VxWorks executable and finalize the
11622 contents of .rela.plt.unloaded. */
11623
11624 static void
11625 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11626 {
11627 Elf_Internal_Rela rela;
11628 bfd_byte *loc;
11629 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11630 static const bfd_vma *plt_entry;
11631 struct mips_elf_link_hash_table *htab;
11632
11633 htab = mips_elf_hash_table (info);
11634 BFD_ASSERT (htab != NULL);
11635
11636 plt_entry = mips_vxworks_exec_plt0_entry;
11637
11638 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11639 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11640 + htab->root.hgot->root.u.def.section->output_offset
11641 + htab->root.hgot->root.u.def.value);
11642
11643 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11644 got_value_low = got_value & 0xffff;
11645
11646 /* Calculate the address of the PLT header. */
11647 plt_address = (htab->root.splt->output_section->vma
11648 + htab->root.splt->output_offset);
11649
11650 /* Install the PLT header. */
11651 loc = htab->root.splt->contents;
11652 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11653 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11654 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11655 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11656 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11657 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11658
11659 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11660 loc = htab->srelplt2->contents;
11661 rela.r_offset = plt_address;
11662 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11663 rela.r_addend = 0;
11664 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11665 loc += sizeof (Elf32_External_Rela);
11666
11667 /* Output the relocation for the following addiu of
11668 %lo(_GLOBAL_OFFSET_TABLE_). */
11669 rela.r_offset += 4;
11670 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11671 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11672 loc += sizeof (Elf32_External_Rela);
11673
11674 /* Fix up the remaining relocations. They may have the wrong
11675 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11676 in which symbols were output. */
11677 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11678 {
11679 Elf_Internal_Rela rel;
11680
11681 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11682 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11683 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11684 loc += sizeof (Elf32_External_Rela);
11685
11686 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11687 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11688 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11689 loc += sizeof (Elf32_External_Rela);
11690
11691 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11692 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11693 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11694 loc += sizeof (Elf32_External_Rela);
11695 }
11696 }
11697
11698 /* Install the PLT header for a VxWorks shared library. */
11699
11700 static void
11701 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11702 {
11703 unsigned int i;
11704 struct mips_elf_link_hash_table *htab;
11705
11706 htab = mips_elf_hash_table (info);
11707 BFD_ASSERT (htab != NULL);
11708
11709 /* We just need to copy the entry byte-by-byte. */
11710 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11711 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11712 htab->root.splt->contents + i * 4);
11713 }
11714
11715 /* Finish up the dynamic sections. */
11716
11717 bfd_boolean
11718 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11719 struct bfd_link_info *info)
11720 {
11721 bfd *dynobj;
11722 asection *sdyn;
11723 asection *sgot;
11724 struct mips_got_info *gg, *g;
11725 struct mips_elf_link_hash_table *htab;
11726
11727 htab = mips_elf_hash_table (info);
11728 BFD_ASSERT (htab != NULL);
11729
11730 dynobj = elf_hash_table (info)->dynobj;
11731
11732 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11733
11734 sgot = htab->root.sgot;
11735 gg = htab->got_info;
11736
11737 if (elf_hash_table (info)->dynamic_sections_created)
11738 {
11739 bfd_byte *b;
11740 int dyn_to_skip = 0, dyn_skipped = 0;
11741
11742 BFD_ASSERT (sdyn != NULL);
11743 BFD_ASSERT (gg != NULL);
11744
11745 g = mips_elf_bfd_got (output_bfd, FALSE);
11746 BFD_ASSERT (g != NULL);
11747
11748 for (b = sdyn->contents;
11749 b < sdyn->contents + sdyn->size;
11750 b += MIPS_ELF_DYN_SIZE (dynobj))
11751 {
11752 Elf_Internal_Dyn dyn;
11753 const char *name;
11754 size_t elemsize;
11755 asection *s;
11756 bfd_boolean swap_out_p;
11757
11758 /* Read in the current dynamic entry. */
11759 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11760
11761 /* Assume that we're going to modify it and write it out. */
11762 swap_out_p = TRUE;
11763
11764 switch (dyn.d_tag)
11765 {
11766 case DT_RELENT:
11767 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11768 break;
11769
11770 case DT_RELAENT:
11771 BFD_ASSERT (htab->is_vxworks);
11772 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11773 break;
11774
11775 case DT_STRSZ:
11776 /* Rewrite DT_STRSZ. */
11777 dyn.d_un.d_val =
11778 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11779 break;
11780
11781 case DT_PLTGOT:
11782 s = htab->root.sgot;
11783 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11784 break;
11785
11786 case DT_MIPS_PLTGOT:
11787 s = htab->root.sgotplt;
11788 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11789 break;
11790
11791 case DT_MIPS_RLD_VERSION:
11792 dyn.d_un.d_val = 1; /* XXX */
11793 break;
11794
11795 case DT_MIPS_FLAGS:
11796 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11797 break;
11798
11799 case DT_MIPS_TIME_STAMP:
11800 {
11801 time_t t;
11802 time (&t);
11803 dyn.d_un.d_val = t;
11804 }
11805 break;
11806
11807 case DT_MIPS_ICHECKSUM:
11808 /* XXX FIXME: */
11809 swap_out_p = FALSE;
11810 break;
11811
11812 case DT_MIPS_IVERSION:
11813 /* XXX FIXME: */
11814 swap_out_p = FALSE;
11815 break;
11816
11817 case DT_MIPS_BASE_ADDRESS:
11818 s = output_bfd->sections;
11819 BFD_ASSERT (s != NULL);
11820 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11821 break;
11822
11823 case DT_MIPS_LOCAL_GOTNO:
11824 dyn.d_un.d_val = g->local_gotno;
11825 break;
11826
11827 case DT_MIPS_UNREFEXTNO:
11828 /* The index into the dynamic symbol table which is the
11829 entry of the first external symbol that is not
11830 referenced within the same object. */
11831 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11832 break;
11833
11834 case DT_MIPS_GOTSYM:
11835 if (htab->global_gotsym)
11836 {
11837 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11838 break;
11839 }
11840 /* In case if we don't have global got symbols we default
11841 to setting DT_MIPS_GOTSYM to the same value as
11842 DT_MIPS_SYMTABNO. */
11843 /* Fall through. */
11844
11845 case DT_MIPS_SYMTABNO:
11846 name = ".dynsym";
11847 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11848 s = bfd_get_linker_section (dynobj, name);
11849
11850 if (s != NULL)
11851 dyn.d_un.d_val = s->size / elemsize;
11852 else
11853 dyn.d_un.d_val = 0;
11854 break;
11855
11856 case DT_MIPS_HIPAGENO:
11857 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11858 break;
11859
11860 case DT_MIPS_RLD_MAP:
11861 {
11862 struct elf_link_hash_entry *h;
11863 h = mips_elf_hash_table (info)->rld_symbol;
11864 if (!h)
11865 {
11866 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11867 swap_out_p = FALSE;
11868 break;
11869 }
11870 s = h->root.u.def.section;
11871
11872 /* The MIPS_RLD_MAP tag stores the absolute address of the
11873 debug pointer. */
11874 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11875 + h->root.u.def.value);
11876 }
11877 break;
11878
11879 case DT_MIPS_RLD_MAP_REL:
11880 {
11881 struct elf_link_hash_entry *h;
11882 bfd_vma dt_addr, rld_addr;
11883 h = mips_elf_hash_table (info)->rld_symbol;
11884 if (!h)
11885 {
11886 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11887 swap_out_p = FALSE;
11888 break;
11889 }
11890 s = h->root.u.def.section;
11891
11892 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11893 pointer, relative to the address of the tag. */
11894 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11895 + (b - sdyn->contents));
11896 rld_addr = (s->output_section->vma + s->output_offset
11897 + h->root.u.def.value);
11898 dyn.d_un.d_ptr = rld_addr - dt_addr;
11899 }
11900 break;
11901
11902 case DT_MIPS_OPTIONS:
11903 s = (bfd_get_section_by_name
11904 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11905 dyn.d_un.d_ptr = s->vma;
11906 break;
11907
11908 case DT_PLTREL:
11909 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11910 if (htab->is_vxworks)
11911 dyn.d_un.d_val = DT_RELA;
11912 else
11913 dyn.d_un.d_val = DT_REL;
11914 break;
11915
11916 case DT_PLTRELSZ:
11917 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11918 dyn.d_un.d_val = htab->root.srelplt->size;
11919 break;
11920
11921 case DT_JMPREL:
11922 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11923 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11924 + htab->root.srelplt->output_offset);
11925 break;
11926
11927 case DT_TEXTREL:
11928 /* If we didn't need any text relocations after all, delete
11929 the dynamic tag. */
11930 if (!(info->flags & DF_TEXTREL))
11931 {
11932 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11933 swap_out_p = FALSE;
11934 }
11935 break;
11936
11937 case DT_FLAGS:
11938 /* If we didn't need any text relocations after all, clear
11939 DF_TEXTREL from DT_FLAGS. */
11940 if (!(info->flags & DF_TEXTREL))
11941 dyn.d_un.d_val &= ~DF_TEXTREL;
11942 else
11943 swap_out_p = FALSE;
11944 break;
11945
11946 default:
11947 swap_out_p = FALSE;
11948 if (htab->is_vxworks
11949 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11950 swap_out_p = TRUE;
11951 break;
11952 }
11953
11954 if (swap_out_p || dyn_skipped)
11955 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11956 (dynobj, &dyn, b - dyn_skipped);
11957
11958 if (dyn_to_skip)
11959 {
11960 dyn_skipped += dyn_to_skip;
11961 dyn_to_skip = 0;
11962 }
11963 }
11964
11965 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11966 if (dyn_skipped > 0)
11967 memset (b - dyn_skipped, 0, dyn_skipped);
11968 }
11969
11970 if (sgot != NULL && sgot->size > 0
11971 && !bfd_is_abs_section (sgot->output_section))
11972 {
11973 if (htab->is_vxworks)
11974 {
11975 /* The first entry of the global offset table points to the
11976 ".dynamic" section. The second is initialized by the
11977 loader and contains the shared library identifier.
11978 The third is also initialized by the loader and points
11979 to the lazy resolution stub. */
11980 MIPS_ELF_PUT_WORD (output_bfd,
11981 sdyn->output_offset + sdyn->output_section->vma,
11982 sgot->contents);
11983 MIPS_ELF_PUT_WORD (output_bfd, 0,
11984 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11985 MIPS_ELF_PUT_WORD (output_bfd, 0,
11986 sgot->contents
11987 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11988 }
11989 else
11990 {
11991 /* The first entry of the global offset table will be filled at
11992 runtime. The second entry will be used by some runtime loaders.
11993 This isn't the case of IRIX rld. */
11994 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11995 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11996 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11997 }
11998
11999 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12000 = MIPS_ELF_GOT_SIZE (output_bfd);
12001 }
12002
12003 /* Generate dynamic relocations for the non-primary gots. */
12004 if (gg != NULL && gg->next)
12005 {
12006 Elf_Internal_Rela rel[3];
12007 bfd_vma addend = 0;
12008
12009 memset (rel, 0, sizeof (rel));
12010 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12011
12012 for (g = gg->next; g->next != gg; g = g->next)
12013 {
12014 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12015 + g->next->tls_gotno;
12016
12017 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12018 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12019 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12020 sgot->contents
12021 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12022
12023 if (! bfd_link_pic (info))
12024 continue;
12025
12026 for (; got_index < g->local_gotno; got_index++)
12027 {
12028 if (got_index >= g->assigned_low_gotno
12029 && got_index <= g->assigned_high_gotno)
12030 continue;
12031
12032 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12033 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12034 if (!(mips_elf_create_dynamic_relocation
12035 (output_bfd, info, rel, NULL,
12036 bfd_abs_section_ptr,
12037 0, &addend, sgot)))
12038 return FALSE;
12039 BFD_ASSERT (addend == 0);
12040 }
12041 }
12042 }
12043
12044 /* The generation of dynamic relocations for the non-primary gots
12045 adds more dynamic relocations. We cannot count them until
12046 here. */
12047
12048 if (elf_hash_table (info)->dynamic_sections_created)
12049 {
12050 bfd_byte *b;
12051 bfd_boolean swap_out_p;
12052
12053 BFD_ASSERT (sdyn != NULL);
12054
12055 for (b = sdyn->contents;
12056 b < sdyn->contents + sdyn->size;
12057 b += MIPS_ELF_DYN_SIZE (dynobj))
12058 {
12059 Elf_Internal_Dyn dyn;
12060 asection *s;
12061
12062 /* Read in the current dynamic entry. */
12063 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12064
12065 /* Assume that we're going to modify it and write it out. */
12066 swap_out_p = TRUE;
12067
12068 switch (dyn.d_tag)
12069 {
12070 case DT_RELSZ:
12071 /* Reduce DT_RELSZ to account for any relocations we
12072 decided not to make. This is for the n64 irix rld,
12073 which doesn't seem to apply any relocations if there
12074 are trailing null entries. */
12075 s = mips_elf_rel_dyn_section (info, FALSE);
12076 dyn.d_un.d_val = (s->reloc_count
12077 * (ABI_64_P (output_bfd)
12078 ? sizeof (Elf64_Mips_External_Rel)
12079 : sizeof (Elf32_External_Rel)));
12080 /* Adjust the section size too. Tools like the prelinker
12081 can reasonably expect the values to the same. */
12082 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12083 elf_section_data (s->output_section)->this_hdr.sh_size
12084 = dyn.d_un.d_val;
12085 break;
12086
12087 default:
12088 swap_out_p = FALSE;
12089 break;
12090 }
12091
12092 if (swap_out_p)
12093 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12094 (dynobj, &dyn, b);
12095 }
12096 }
12097
12098 {
12099 asection *s;
12100 Elf32_compact_rel cpt;
12101
12102 if (SGI_COMPAT (output_bfd))
12103 {
12104 /* Write .compact_rel section out. */
12105 s = bfd_get_linker_section (dynobj, ".compact_rel");
12106 if (s != NULL)
12107 {
12108 cpt.id1 = 1;
12109 cpt.num = s->reloc_count;
12110 cpt.id2 = 2;
12111 cpt.offset = (s->output_section->filepos
12112 + sizeof (Elf32_External_compact_rel));
12113 cpt.reserved0 = 0;
12114 cpt.reserved1 = 0;
12115 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12116 ((Elf32_External_compact_rel *)
12117 s->contents));
12118
12119 /* Clean up a dummy stub function entry in .text. */
12120 if (htab->sstubs != NULL)
12121 {
12122 file_ptr dummy_offset;
12123
12124 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12125 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12126 memset (htab->sstubs->contents + dummy_offset, 0,
12127 htab->function_stub_size);
12128 }
12129 }
12130 }
12131
12132 /* The psABI says that the dynamic relocations must be sorted in
12133 increasing order of r_symndx. The VxWorks EABI doesn't require
12134 this, and because the code below handles REL rather than RELA
12135 relocations, using it for VxWorks would be outright harmful. */
12136 if (!htab->is_vxworks)
12137 {
12138 s = mips_elf_rel_dyn_section (info, FALSE);
12139 if (s != NULL
12140 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12141 {
12142 reldyn_sorting_bfd = output_bfd;
12143
12144 if (ABI_64_P (output_bfd))
12145 qsort ((Elf64_External_Rel *) s->contents + 1,
12146 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12147 sort_dynamic_relocs_64);
12148 else
12149 qsort ((Elf32_External_Rel *) s->contents + 1,
12150 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12151 sort_dynamic_relocs);
12152 }
12153 }
12154 }
12155
12156 if (htab->root.splt && htab->root.splt->size > 0)
12157 {
12158 if (htab->is_vxworks)
12159 {
12160 if (bfd_link_pic (info))
12161 mips_vxworks_finish_shared_plt (output_bfd, info);
12162 else
12163 mips_vxworks_finish_exec_plt (output_bfd, info);
12164 }
12165 else
12166 {
12167 BFD_ASSERT (!bfd_link_pic (info));
12168 if (!mips_finish_exec_plt (output_bfd, info))
12169 return FALSE;
12170 }
12171 }
12172 return TRUE;
12173 }
12174
12175
12176 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12177
12178 static void
12179 mips_set_isa_flags (bfd *abfd)
12180 {
12181 flagword val;
12182
12183 switch (bfd_get_mach (abfd))
12184 {
12185 default:
12186 case bfd_mach_mips3000:
12187 val = E_MIPS_ARCH_1;
12188 break;
12189
12190 case bfd_mach_mips3900:
12191 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12192 break;
12193
12194 case bfd_mach_mips6000:
12195 val = E_MIPS_ARCH_2;
12196 break;
12197
12198 case bfd_mach_mips4010:
12199 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12200 break;
12201
12202 case bfd_mach_mips4000:
12203 case bfd_mach_mips4300:
12204 case bfd_mach_mips4400:
12205 case bfd_mach_mips4600:
12206 val = E_MIPS_ARCH_3;
12207 break;
12208
12209 case bfd_mach_mips4100:
12210 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12211 break;
12212
12213 case bfd_mach_mips4111:
12214 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12215 break;
12216
12217 case bfd_mach_mips4120:
12218 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12219 break;
12220
12221 case bfd_mach_mips4650:
12222 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12223 break;
12224
12225 case bfd_mach_mips5400:
12226 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12227 break;
12228
12229 case bfd_mach_mips5500:
12230 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12231 break;
12232
12233 case bfd_mach_mips5900:
12234 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12235 break;
12236
12237 case bfd_mach_mips9000:
12238 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12239 break;
12240
12241 case bfd_mach_mips5000:
12242 case bfd_mach_mips7000:
12243 case bfd_mach_mips8000:
12244 case bfd_mach_mips10000:
12245 case bfd_mach_mips12000:
12246 case bfd_mach_mips14000:
12247 case bfd_mach_mips16000:
12248 val = E_MIPS_ARCH_4;
12249 break;
12250
12251 case bfd_mach_mips5:
12252 val = E_MIPS_ARCH_5;
12253 break;
12254
12255 case bfd_mach_mips_loongson_2e:
12256 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12257 break;
12258
12259 case bfd_mach_mips_loongson_2f:
12260 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12261 break;
12262
12263 case bfd_mach_mips_sb1:
12264 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12265 break;
12266
12267 case bfd_mach_mips_gs464:
12268 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12269 break;
12270
12271 case bfd_mach_mips_gs464e:
12272 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12273 break;
12274
12275 case bfd_mach_mips_gs264e:
12276 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12277 break;
12278
12279 case bfd_mach_mips_octeon:
12280 case bfd_mach_mips_octeonp:
12281 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12282 break;
12283
12284 case bfd_mach_mips_octeon3:
12285 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12286 break;
12287
12288 case bfd_mach_mips_xlr:
12289 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12290 break;
12291
12292 case bfd_mach_mips_octeon2:
12293 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12294 break;
12295
12296 case bfd_mach_mipsisa32:
12297 val = E_MIPS_ARCH_32;
12298 break;
12299
12300 case bfd_mach_mipsisa64:
12301 val = E_MIPS_ARCH_64;
12302 break;
12303
12304 case bfd_mach_mipsisa32r2:
12305 case bfd_mach_mipsisa32r3:
12306 case bfd_mach_mipsisa32r5:
12307 val = E_MIPS_ARCH_32R2;
12308 break;
12309
12310 case bfd_mach_mips_interaptiv_mr2:
12311 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12312 break;
12313
12314 case bfd_mach_mipsisa64r2:
12315 case bfd_mach_mipsisa64r3:
12316 case bfd_mach_mipsisa64r5:
12317 val = E_MIPS_ARCH_64R2;
12318 break;
12319
12320 case bfd_mach_mipsisa32r6:
12321 val = E_MIPS_ARCH_32R6;
12322 break;
12323
12324 case bfd_mach_mipsisa64r6:
12325 val = E_MIPS_ARCH_64R6;
12326 break;
12327 }
12328 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12329 elf_elfheader (abfd)->e_flags |= val;
12330
12331 }
12332
12333
12334 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12335 Don't do so for code sections. We want to keep ordering of HI16/LO16
12336 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12337 relocs to be sorted. */
12338
12339 bfd_boolean
12340 _bfd_mips_elf_sort_relocs_p (asection *sec)
12341 {
12342 return (sec->flags & SEC_CODE) == 0;
12343 }
12344
12345
12346 /* The final processing done just before writing out a MIPS ELF object
12347 file. This gets the MIPS architecture right based on the machine
12348 number. This is used by both the 32-bit and the 64-bit ABI. */
12349
12350 void
12351 _bfd_mips_elf_final_write_processing (bfd *abfd,
12352 bfd_boolean linker ATTRIBUTE_UNUSED)
12353 {
12354 unsigned int i;
12355 Elf_Internal_Shdr **hdrpp;
12356 const char *name;
12357 asection *sec;
12358
12359 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12360 is nonzero. This is for compatibility with old objects, which used
12361 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12362 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12363 mips_set_isa_flags (abfd);
12364
12365 /* Set the sh_info field for .gptab sections and other appropriate
12366 info for each special section. */
12367 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12368 i < elf_numsections (abfd);
12369 i++, hdrpp++)
12370 {
12371 switch ((*hdrpp)->sh_type)
12372 {
12373 case SHT_MIPS_MSYM:
12374 case SHT_MIPS_LIBLIST:
12375 sec = bfd_get_section_by_name (abfd, ".dynstr");
12376 if (sec != NULL)
12377 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12378 break;
12379
12380 case SHT_MIPS_GPTAB:
12381 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12382 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12383 BFD_ASSERT (name != NULL
12384 && CONST_STRNEQ (name, ".gptab."));
12385 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12386 BFD_ASSERT (sec != NULL);
12387 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12388 break;
12389
12390 case SHT_MIPS_CONTENT:
12391 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12392 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12393 BFD_ASSERT (name != NULL
12394 && CONST_STRNEQ (name, ".MIPS.content"));
12395 sec = bfd_get_section_by_name (abfd,
12396 name + sizeof ".MIPS.content" - 1);
12397 BFD_ASSERT (sec != NULL);
12398 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12399 break;
12400
12401 case SHT_MIPS_SYMBOL_LIB:
12402 sec = bfd_get_section_by_name (abfd, ".dynsym");
12403 if (sec != NULL)
12404 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12405 sec = bfd_get_section_by_name (abfd, ".liblist");
12406 if (sec != NULL)
12407 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12408 break;
12409
12410 case SHT_MIPS_EVENTS:
12411 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12412 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12413 BFD_ASSERT (name != NULL);
12414 if (CONST_STRNEQ (name, ".MIPS.events"))
12415 sec = bfd_get_section_by_name (abfd,
12416 name + sizeof ".MIPS.events" - 1);
12417 else
12418 {
12419 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12420 sec = bfd_get_section_by_name (abfd,
12421 (name
12422 + sizeof ".MIPS.post_rel" - 1));
12423 }
12424 BFD_ASSERT (sec != NULL);
12425 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12426 break;
12427
12428 }
12429 }
12430 }
12431 \f
12432 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12433 segments. */
12434
12435 int
12436 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12437 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12438 {
12439 asection *s;
12440 int ret = 0;
12441
12442 /* See if we need a PT_MIPS_REGINFO segment. */
12443 s = bfd_get_section_by_name (abfd, ".reginfo");
12444 if (s && (s->flags & SEC_LOAD))
12445 ++ret;
12446
12447 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12448 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12449 ++ret;
12450
12451 /* See if we need a PT_MIPS_OPTIONS segment. */
12452 if (IRIX_COMPAT (abfd) == ict_irix6
12453 && bfd_get_section_by_name (abfd,
12454 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12455 ++ret;
12456
12457 /* See if we need a PT_MIPS_RTPROC segment. */
12458 if (IRIX_COMPAT (abfd) == ict_irix5
12459 && bfd_get_section_by_name (abfd, ".dynamic")
12460 && bfd_get_section_by_name (abfd, ".mdebug"))
12461 ++ret;
12462
12463 /* Allocate a PT_NULL header in dynamic objects. See
12464 _bfd_mips_elf_modify_segment_map for details. */
12465 if (!SGI_COMPAT (abfd)
12466 && bfd_get_section_by_name (abfd, ".dynamic"))
12467 ++ret;
12468
12469 return ret;
12470 }
12471
12472 /* Modify the segment map for an IRIX5 executable. */
12473
12474 bfd_boolean
12475 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12476 struct bfd_link_info *info)
12477 {
12478 asection *s;
12479 struct elf_segment_map *m, **pm;
12480 bfd_size_type amt;
12481
12482 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12483 segment. */
12484 s = bfd_get_section_by_name (abfd, ".reginfo");
12485 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12486 {
12487 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12488 if (m->p_type == PT_MIPS_REGINFO)
12489 break;
12490 if (m == NULL)
12491 {
12492 amt = sizeof *m;
12493 m = bfd_zalloc (abfd, amt);
12494 if (m == NULL)
12495 return FALSE;
12496
12497 m->p_type = PT_MIPS_REGINFO;
12498 m->count = 1;
12499 m->sections[0] = s;
12500
12501 /* We want to put it after the PHDR and INTERP segments. */
12502 pm = &elf_seg_map (abfd);
12503 while (*pm != NULL
12504 && ((*pm)->p_type == PT_PHDR
12505 || (*pm)->p_type == PT_INTERP))
12506 pm = &(*pm)->next;
12507
12508 m->next = *pm;
12509 *pm = m;
12510 }
12511 }
12512
12513 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12514 segment. */
12515 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12516 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12517 {
12518 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12519 if (m->p_type == PT_MIPS_ABIFLAGS)
12520 break;
12521 if (m == NULL)
12522 {
12523 amt = sizeof *m;
12524 m = bfd_zalloc (abfd, amt);
12525 if (m == NULL)
12526 return FALSE;
12527
12528 m->p_type = PT_MIPS_ABIFLAGS;
12529 m->count = 1;
12530 m->sections[0] = s;
12531
12532 /* We want to put it after the PHDR and INTERP segments. */
12533 pm = &elf_seg_map (abfd);
12534 while (*pm != NULL
12535 && ((*pm)->p_type == PT_PHDR
12536 || (*pm)->p_type == PT_INTERP))
12537 pm = &(*pm)->next;
12538
12539 m->next = *pm;
12540 *pm = m;
12541 }
12542 }
12543
12544 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12545 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12546 PT_MIPS_OPTIONS segment immediately following the program header
12547 table. */
12548 if (NEWABI_P (abfd)
12549 /* On non-IRIX6 new abi, we'll have already created a segment
12550 for this section, so don't create another. I'm not sure this
12551 is not also the case for IRIX 6, but I can't test it right
12552 now. */
12553 && IRIX_COMPAT (abfd) == ict_irix6)
12554 {
12555 for (s = abfd->sections; s; s = s->next)
12556 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12557 break;
12558
12559 if (s)
12560 {
12561 struct elf_segment_map *options_segment;
12562
12563 pm = &elf_seg_map (abfd);
12564 while (*pm != NULL
12565 && ((*pm)->p_type == PT_PHDR
12566 || (*pm)->p_type == PT_INTERP))
12567 pm = &(*pm)->next;
12568
12569 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12570 {
12571 amt = sizeof (struct elf_segment_map);
12572 options_segment = bfd_zalloc (abfd, amt);
12573 options_segment->next = *pm;
12574 options_segment->p_type = PT_MIPS_OPTIONS;
12575 options_segment->p_flags = PF_R;
12576 options_segment->p_flags_valid = TRUE;
12577 options_segment->count = 1;
12578 options_segment->sections[0] = s;
12579 *pm = options_segment;
12580 }
12581 }
12582 }
12583 else
12584 {
12585 if (IRIX_COMPAT (abfd) == ict_irix5)
12586 {
12587 /* If there are .dynamic and .mdebug sections, we make a room
12588 for the RTPROC header. FIXME: Rewrite without section names. */
12589 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12590 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12591 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12592 {
12593 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12594 if (m->p_type == PT_MIPS_RTPROC)
12595 break;
12596 if (m == NULL)
12597 {
12598 amt = sizeof *m;
12599 m = bfd_zalloc (abfd, amt);
12600 if (m == NULL)
12601 return FALSE;
12602
12603 m->p_type = PT_MIPS_RTPROC;
12604
12605 s = bfd_get_section_by_name (abfd, ".rtproc");
12606 if (s == NULL)
12607 {
12608 m->count = 0;
12609 m->p_flags = 0;
12610 m->p_flags_valid = 1;
12611 }
12612 else
12613 {
12614 m->count = 1;
12615 m->sections[0] = s;
12616 }
12617
12618 /* We want to put it after the DYNAMIC segment. */
12619 pm = &elf_seg_map (abfd);
12620 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12621 pm = &(*pm)->next;
12622 if (*pm != NULL)
12623 pm = &(*pm)->next;
12624
12625 m->next = *pm;
12626 *pm = m;
12627 }
12628 }
12629 }
12630 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12631 .dynstr, .dynsym, and .hash sections, and everything in
12632 between. */
12633 for (pm = &elf_seg_map (abfd); *pm != NULL;
12634 pm = &(*pm)->next)
12635 if ((*pm)->p_type == PT_DYNAMIC)
12636 break;
12637 m = *pm;
12638 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12639 glibc's dynamic linker has traditionally derived the number of
12640 tags from the p_filesz field, and sometimes allocates stack
12641 arrays of that size. An overly-big PT_DYNAMIC segment can
12642 be actively harmful in such cases. Making PT_DYNAMIC contain
12643 other sections can also make life hard for the prelinker,
12644 which might move one of the other sections to a different
12645 PT_LOAD segment. */
12646 if (SGI_COMPAT (abfd)
12647 && m != NULL
12648 && m->count == 1
12649 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12650 {
12651 static const char *sec_names[] =
12652 {
12653 ".dynamic", ".dynstr", ".dynsym", ".hash"
12654 };
12655 bfd_vma low, high;
12656 unsigned int i, c;
12657 struct elf_segment_map *n;
12658
12659 low = ~(bfd_vma) 0;
12660 high = 0;
12661 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12662 {
12663 s = bfd_get_section_by_name (abfd, sec_names[i]);
12664 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12665 {
12666 bfd_size_type sz;
12667
12668 if (low > s->vma)
12669 low = s->vma;
12670 sz = s->size;
12671 if (high < s->vma + sz)
12672 high = s->vma + sz;
12673 }
12674 }
12675
12676 c = 0;
12677 for (s = abfd->sections; s != NULL; s = s->next)
12678 if ((s->flags & SEC_LOAD) != 0
12679 && s->vma >= low
12680 && s->vma + s->size <= high)
12681 ++c;
12682
12683 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12684 n = bfd_zalloc (abfd, amt);
12685 if (n == NULL)
12686 return FALSE;
12687 *n = *m;
12688 n->count = c;
12689
12690 i = 0;
12691 for (s = abfd->sections; s != NULL; s = s->next)
12692 {
12693 if ((s->flags & SEC_LOAD) != 0
12694 && s->vma >= low
12695 && s->vma + s->size <= high)
12696 {
12697 n->sections[i] = s;
12698 ++i;
12699 }
12700 }
12701
12702 *pm = n;
12703 }
12704 }
12705
12706 /* Allocate a spare program header in dynamic objects so that tools
12707 like the prelinker can add an extra PT_LOAD entry.
12708
12709 If the prelinker needs to make room for a new PT_LOAD entry, its
12710 standard procedure is to move the first (read-only) sections into
12711 the new (writable) segment. However, the MIPS ABI requires
12712 .dynamic to be in a read-only segment, and the section will often
12713 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12714
12715 Although the prelinker could in principle move .dynamic to a
12716 writable segment, it seems better to allocate a spare program
12717 header instead, and avoid the need to move any sections.
12718 There is a long tradition of allocating spare dynamic tags,
12719 so allocating a spare program header seems like a natural
12720 extension.
12721
12722 If INFO is NULL, we may be copying an already prelinked binary
12723 with objcopy or strip, so do not add this header. */
12724 if (info != NULL
12725 && !SGI_COMPAT (abfd)
12726 && bfd_get_section_by_name (abfd, ".dynamic"))
12727 {
12728 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12729 if ((*pm)->p_type == PT_NULL)
12730 break;
12731 if (*pm == NULL)
12732 {
12733 m = bfd_zalloc (abfd, sizeof (*m));
12734 if (m == NULL)
12735 return FALSE;
12736
12737 m->p_type = PT_NULL;
12738 *pm = m;
12739 }
12740 }
12741
12742 return TRUE;
12743 }
12744 \f
12745 /* Return the section that should be marked against GC for a given
12746 relocation. */
12747
12748 asection *
12749 _bfd_mips_elf_gc_mark_hook (asection *sec,
12750 struct bfd_link_info *info,
12751 Elf_Internal_Rela *rel,
12752 struct elf_link_hash_entry *h,
12753 Elf_Internal_Sym *sym)
12754 {
12755 /* ??? Do mips16 stub sections need to be handled special? */
12756
12757 if (h != NULL)
12758 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12759 {
12760 case R_MIPS_GNU_VTINHERIT:
12761 case R_MIPS_GNU_VTENTRY:
12762 return NULL;
12763 }
12764
12765 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12766 }
12767
12768 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12769
12770 bfd_boolean
12771 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12772 elf_gc_mark_hook_fn gc_mark_hook)
12773 {
12774 bfd *sub;
12775
12776 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12777
12778 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12779 {
12780 asection *o;
12781
12782 if (! is_mips_elf (sub))
12783 continue;
12784
12785 for (o = sub->sections; o != NULL; o = o->next)
12786 if (!o->gc_mark
12787 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12788 (bfd_get_section_name (sub, o)))
12789 {
12790 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12791 return FALSE;
12792 }
12793 }
12794
12795 return TRUE;
12796 }
12797 \f
12798 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12799 hiding the old indirect symbol. Process additional relocation
12800 information. Also called for weakdefs, in which case we just let
12801 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12802
12803 void
12804 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12805 struct elf_link_hash_entry *dir,
12806 struct elf_link_hash_entry *ind)
12807 {
12808 struct mips_elf_link_hash_entry *dirmips, *indmips;
12809
12810 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12811
12812 dirmips = (struct mips_elf_link_hash_entry *) dir;
12813 indmips = (struct mips_elf_link_hash_entry *) ind;
12814 /* Any absolute non-dynamic relocations against an indirect or weak
12815 definition will be against the target symbol. */
12816 if (indmips->has_static_relocs)
12817 dirmips->has_static_relocs = TRUE;
12818
12819 if (ind->root.type != bfd_link_hash_indirect)
12820 return;
12821
12822 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12823 if (indmips->readonly_reloc)
12824 dirmips->readonly_reloc = TRUE;
12825 if (indmips->no_fn_stub)
12826 dirmips->no_fn_stub = TRUE;
12827 if (indmips->fn_stub)
12828 {
12829 dirmips->fn_stub = indmips->fn_stub;
12830 indmips->fn_stub = NULL;
12831 }
12832 if (indmips->need_fn_stub)
12833 {
12834 dirmips->need_fn_stub = TRUE;
12835 indmips->need_fn_stub = FALSE;
12836 }
12837 if (indmips->call_stub)
12838 {
12839 dirmips->call_stub = indmips->call_stub;
12840 indmips->call_stub = NULL;
12841 }
12842 if (indmips->call_fp_stub)
12843 {
12844 dirmips->call_fp_stub = indmips->call_fp_stub;
12845 indmips->call_fp_stub = NULL;
12846 }
12847 if (indmips->global_got_area < dirmips->global_got_area)
12848 dirmips->global_got_area = indmips->global_got_area;
12849 if (indmips->global_got_area < GGA_NONE)
12850 indmips->global_got_area = GGA_NONE;
12851 if (indmips->has_nonpic_branches)
12852 dirmips->has_nonpic_branches = TRUE;
12853 }
12854
12855 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12856 to hide it. It has to remain global (it will also be protected) so as to
12857 be assigned a global GOT entry, which will then remain unchanged at load
12858 time. */
12859
12860 void
12861 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12862 struct elf_link_hash_entry *entry,
12863 bfd_boolean force_local)
12864 {
12865 struct mips_elf_link_hash_table *htab;
12866
12867 htab = mips_elf_hash_table (info);
12868 BFD_ASSERT (htab != NULL);
12869 if (htab->use_absolute_zero
12870 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12871 return;
12872
12873 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12874 }
12875 \f
12876 #define PDR_SIZE 32
12877
12878 bfd_boolean
12879 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12880 struct bfd_link_info *info)
12881 {
12882 asection *o;
12883 bfd_boolean ret = FALSE;
12884 unsigned char *tdata;
12885 size_t i, skip;
12886
12887 o = bfd_get_section_by_name (abfd, ".pdr");
12888 if (! o)
12889 return FALSE;
12890 if (o->size == 0)
12891 return FALSE;
12892 if (o->size % PDR_SIZE != 0)
12893 return FALSE;
12894 if (o->output_section != NULL
12895 && bfd_is_abs_section (o->output_section))
12896 return FALSE;
12897
12898 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12899 if (! tdata)
12900 return FALSE;
12901
12902 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12903 info->keep_memory);
12904 if (!cookie->rels)
12905 {
12906 free (tdata);
12907 return FALSE;
12908 }
12909
12910 cookie->rel = cookie->rels;
12911 cookie->relend = cookie->rels + o->reloc_count;
12912
12913 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12914 {
12915 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12916 {
12917 tdata[i] = 1;
12918 skip ++;
12919 }
12920 }
12921
12922 if (skip != 0)
12923 {
12924 mips_elf_section_data (o)->u.tdata = tdata;
12925 if (o->rawsize == 0)
12926 o->rawsize = o->size;
12927 o->size -= skip * PDR_SIZE;
12928 ret = TRUE;
12929 }
12930 else
12931 free (tdata);
12932
12933 if (! info->keep_memory)
12934 free (cookie->rels);
12935
12936 return ret;
12937 }
12938
12939 bfd_boolean
12940 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12941 {
12942 if (strcmp (sec->name, ".pdr") == 0)
12943 return TRUE;
12944 return FALSE;
12945 }
12946
12947 bfd_boolean
12948 _bfd_mips_elf_write_section (bfd *output_bfd,
12949 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12950 asection *sec, bfd_byte *contents)
12951 {
12952 bfd_byte *to, *from, *end;
12953 int i;
12954
12955 if (strcmp (sec->name, ".pdr") != 0)
12956 return FALSE;
12957
12958 if (mips_elf_section_data (sec)->u.tdata == NULL)
12959 return FALSE;
12960
12961 to = contents;
12962 end = contents + sec->size;
12963 for (from = contents, i = 0;
12964 from < end;
12965 from += PDR_SIZE, i++)
12966 {
12967 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12968 continue;
12969 if (to != from)
12970 memcpy (to, from, PDR_SIZE);
12971 to += PDR_SIZE;
12972 }
12973 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12974 sec->output_offset, sec->size);
12975 return TRUE;
12976 }
12977 \f
12978 /* microMIPS code retains local labels for linker relaxation. Omit them
12979 from output by default for clarity. */
12980
12981 bfd_boolean
12982 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12983 {
12984 return _bfd_elf_is_local_label_name (abfd, sym->name);
12985 }
12986
12987 /* MIPS ELF uses a special find_nearest_line routine in order the
12988 handle the ECOFF debugging information. */
12989
12990 struct mips_elf_find_line
12991 {
12992 struct ecoff_debug_info d;
12993 struct ecoff_find_line i;
12994 };
12995
12996 bfd_boolean
12997 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12998 asection *section, bfd_vma offset,
12999 const char **filename_ptr,
13000 const char **functionname_ptr,
13001 unsigned int *line_ptr,
13002 unsigned int *discriminator_ptr)
13003 {
13004 asection *msec;
13005
13006 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13007 filename_ptr, functionname_ptr,
13008 line_ptr, discriminator_ptr,
13009 dwarf_debug_sections,
13010 ABI_64_P (abfd) ? 8 : 0,
13011 &elf_tdata (abfd)->dwarf2_find_line_info)
13012 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13013 filename_ptr, functionname_ptr,
13014 line_ptr))
13015 {
13016 /* PR 22789: If the function name or filename was not found through
13017 the debug information, then try an ordinary lookup instead. */
13018 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
13019 || (filename_ptr != NULL && *filename_ptr == NULL))
13020 {
13021 /* Do not override already discovered names. */
13022 if (functionname_ptr != NULL && *functionname_ptr != NULL)
13023 functionname_ptr = NULL;
13024
13025 if (filename_ptr != NULL && *filename_ptr != NULL)
13026 filename_ptr = NULL;
13027
13028 _bfd_elf_find_function (abfd, symbols, section, offset,
13029 filename_ptr, functionname_ptr);
13030 }
13031
13032 return TRUE;
13033 }
13034
13035 msec = bfd_get_section_by_name (abfd, ".mdebug");
13036 if (msec != NULL)
13037 {
13038 flagword origflags;
13039 struct mips_elf_find_line *fi;
13040 const struct ecoff_debug_swap * const swap =
13041 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13042
13043 /* If we are called during a link, mips_elf_final_link may have
13044 cleared the SEC_HAS_CONTENTS field. We force it back on here
13045 if appropriate (which it normally will be). */
13046 origflags = msec->flags;
13047 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13048 msec->flags |= SEC_HAS_CONTENTS;
13049
13050 fi = mips_elf_tdata (abfd)->find_line_info;
13051 if (fi == NULL)
13052 {
13053 bfd_size_type external_fdr_size;
13054 char *fraw_src;
13055 char *fraw_end;
13056 struct fdr *fdr_ptr;
13057 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13058
13059 fi = bfd_zalloc (abfd, amt);
13060 if (fi == NULL)
13061 {
13062 msec->flags = origflags;
13063 return FALSE;
13064 }
13065
13066 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13067 {
13068 msec->flags = origflags;
13069 return FALSE;
13070 }
13071
13072 /* Swap in the FDR information. */
13073 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13074 fi->d.fdr = bfd_alloc (abfd, amt);
13075 if (fi->d.fdr == NULL)
13076 {
13077 msec->flags = origflags;
13078 return FALSE;
13079 }
13080 external_fdr_size = swap->external_fdr_size;
13081 fdr_ptr = fi->d.fdr;
13082 fraw_src = (char *) fi->d.external_fdr;
13083 fraw_end = (fraw_src
13084 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13085 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13086 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13087
13088 mips_elf_tdata (abfd)->find_line_info = fi;
13089
13090 /* Note that we don't bother to ever free this information.
13091 find_nearest_line is either called all the time, as in
13092 objdump -l, so the information should be saved, or it is
13093 rarely called, as in ld error messages, so the memory
13094 wasted is unimportant. Still, it would probably be a
13095 good idea for free_cached_info to throw it away. */
13096 }
13097
13098 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13099 &fi->i, filename_ptr, functionname_ptr,
13100 line_ptr))
13101 {
13102 msec->flags = origflags;
13103 return TRUE;
13104 }
13105
13106 msec->flags = origflags;
13107 }
13108
13109 /* Fall back on the generic ELF find_nearest_line routine. */
13110
13111 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13112 filename_ptr, functionname_ptr,
13113 line_ptr, discriminator_ptr);
13114 }
13115
13116 bfd_boolean
13117 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13118 const char **filename_ptr,
13119 const char **functionname_ptr,
13120 unsigned int *line_ptr)
13121 {
13122 bfd_boolean found;
13123 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13124 functionname_ptr, line_ptr,
13125 & elf_tdata (abfd)->dwarf2_find_line_info);
13126 return found;
13127 }
13128
13129 \f
13130 /* When are writing out the .options or .MIPS.options section,
13131 remember the bytes we are writing out, so that we can install the
13132 GP value in the section_processing routine. */
13133
13134 bfd_boolean
13135 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13136 const void *location,
13137 file_ptr offset, bfd_size_type count)
13138 {
13139 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13140 {
13141 bfd_byte *c;
13142
13143 if (elf_section_data (section) == NULL)
13144 {
13145 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
13146 section->used_by_bfd = bfd_zalloc (abfd, amt);
13147 if (elf_section_data (section) == NULL)
13148 return FALSE;
13149 }
13150 c = mips_elf_section_data (section)->u.tdata;
13151 if (c == NULL)
13152 {
13153 c = bfd_zalloc (abfd, section->size);
13154 if (c == NULL)
13155 return FALSE;
13156 mips_elf_section_data (section)->u.tdata = c;
13157 }
13158
13159 memcpy (c + offset, location, count);
13160 }
13161
13162 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13163 count);
13164 }
13165
13166 /* This is almost identical to bfd_generic_get_... except that some
13167 MIPS relocations need to be handled specially. Sigh. */
13168
13169 bfd_byte *
13170 _bfd_elf_mips_get_relocated_section_contents
13171 (bfd *abfd,
13172 struct bfd_link_info *link_info,
13173 struct bfd_link_order *link_order,
13174 bfd_byte *data,
13175 bfd_boolean relocatable,
13176 asymbol **symbols)
13177 {
13178 /* Get enough memory to hold the stuff */
13179 bfd *input_bfd = link_order->u.indirect.section->owner;
13180 asection *input_section = link_order->u.indirect.section;
13181 bfd_size_type sz;
13182
13183 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13184 arelent **reloc_vector = NULL;
13185 long reloc_count;
13186
13187 if (reloc_size < 0)
13188 goto error_return;
13189
13190 reloc_vector = bfd_malloc (reloc_size);
13191 if (reloc_vector == NULL && reloc_size != 0)
13192 goto error_return;
13193
13194 /* read in the section */
13195 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13196 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13197 goto error_return;
13198
13199 reloc_count = bfd_canonicalize_reloc (input_bfd,
13200 input_section,
13201 reloc_vector,
13202 symbols);
13203 if (reloc_count < 0)
13204 goto error_return;
13205
13206 if (reloc_count > 0)
13207 {
13208 arelent **parent;
13209 /* for mips */
13210 int gp_found;
13211 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13212
13213 {
13214 struct bfd_hash_entry *h;
13215 struct bfd_link_hash_entry *lh;
13216 /* Skip all this stuff if we aren't mixing formats. */
13217 if (abfd && input_bfd
13218 && abfd->xvec == input_bfd->xvec)
13219 lh = 0;
13220 else
13221 {
13222 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13223 lh = (struct bfd_link_hash_entry *) h;
13224 }
13225 lookup:
13226 if (lh)
13227 {
13228 switch (lh->type)
13229 {
13230 case bfd_link_hash_undefined:
13231 case bfd_link_hash_undefweak:
13232 case bfd_link_hash_common:
13233 gp_found = 0;
13234 break;
13235 case bfd_link_hash_defined:
13236 case bfd_link_hash_defweak:
13237 gp_found = 1;
13238 gp = lh->u.def.value;
13239 break;
13240 case bfd_link_hash_indirect:
13241 case bfd_link_hash_warning:
13242 lh = lh->u.i.link;
13243 /* @@FIXME ignoring warning for now */
13244 goto lookup;
13245 case bfd_link_hash_new:
13246 default:
13247 abort ();
13248 }
13249 }
13250 else
13251 gp_found = 0;
13252 }
13253 /* end mips */
13254 for (parent = reloc_vector; *parent != NULL; parent++)
13255 {
13256 char *error_message = NULL;
13257 bfd_reloc_status_type r;
13258
13259 /* Specific to MIPS: Deal with relocation types that require
13260 knowing the gp of the output bfd. */
13261 asymbol *sym = *(*parent)->sym_ptr_ptr;
13262
13263 /* If we've managed to find the gp and have a special
13264 function for the relocation then go ahead, else default
13265 to the generic handling. */
13266 if (gp_found
13267 && (*parent)->howto->special_function
13268 == _bfd_mips_elf32_gprel16_reloc)
13269 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13270 input_section, relocatable,
13271 data, gp);
13272 else
13273 r = bfd_perform_relocation (input_bfd, *parent, data,
13274 input_section,
13275 relocatable ? abfd : NULL,
13276 &error_message);
13277
13278 if (relocatable)
13279 {
13280 asection *os = input_section->output_section;
13281
13282 /* A partial link, so keep the relocs */
13283 os->orelocation[os->reloc_count] = *parent;
13284 os->reloc_count++;
13285 }
13286
13287 if (r != bfd_reloc_ok)
13288 {
13289 switch (r)
13290 {
13291 case bfd_reloc_undefined:
13292 (*link_info->callbacks->undefined_symbol)
13293 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13294 input_bfd, input_section, (*parent)->address, TRUE);
13295 break;
13296 case bfd_reloc_dangerous:
13297 BFD_ASSERT (error_message != NULL);
13298 (*link_info->callbacks->reloc_dangerous)
13299 (link_info, error_message,
13300 input_bfd, input_section, (*parent)->address);
13301 break;
13302 case bfd_reloc_overflow:
13303 (*link_info->callbacks->reloc_overflow)
13304 (link_info, NULL,
13305 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13306 (*parent)->howto->name, (*parent)->addend,
13307 input_bfd, input_section, (*parent)->address);
13308 break;
13309 case bfd_reloc_outofrange:
13310 default:
13311 abort ();
13312 break;
13313 }
13314
13315 }
13316 }
13317 }
13318 if (reloc_vector != NULL)
13319 free (reloc_vector);
13320 return data;
13321
13322 error_return:
13323 if (reloc_vector != NULL)
13324 free (reloc_vector);
13325 return NULL;
13326 }
13327 \f
13328 static bfd_boolean
13329 mips_elf_relax_delete_bytes (bfd *abfd,
13330 asection *sec, bfd_vma addr, int count)
13331 {
13332 Elf_Internal_Shdr *symtab_hdr;
13333 unsigned int sec_shndx;
13334 bfd_byte *contents;
13335 Elf_Internal_Rela *irel, *irelend;
13336 Elf_Internal_Sym *isym;
13337 Elf_Internal_Sym *isymend;
13338 struct elf_link_hash_entry **sym_hashes;
13339 struct elf_link_hash_entry **end_hashes;
13340 struct elf_link_hash_entry **start_hashes;
13341 unsigned int symcount;
13342
13343 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13344 contents = elf_section_data (sec)->this_hdr.contents;
13345
13346 irel = elf_section_data (sec)->relocs;
13347 irelend = irel + sec->reloc_count;
13348
13349 /* Actually delete the bytes. */
13350 memmove (contents + addr, contents + addr + count,
13351 (size_t) (sec->size - addr - count));
13352 sec->size -= count;
13353
13354 /* Adjust all the relocs. */
13355 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13356 {
13357 /* Get the new reloc address. */
13358 if (irel->r_offset > addr)
13359 irel->r_offset -= count;
13360 }
13361
13362 BFD_ASSERT (addr % 2 == 0);
13363 BFD_ASSERT (count % 2 == 0);
13364
13365 /* Adjust the local symbols defined in this section. */
13366 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13367 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13368 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13369 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13370 isym->st_value -= count;
13371
13372 /* Now adjust the global symbols defined in this section. */
13373 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13374 - symtab_hdr->sh_info);
13375 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13376 end_hashes = sym_hashes + symcount;
13377
13378 for (; sym_hashes < end_hashes; sym_hashes++)
13379 {
13380 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13381
13382 if ((sym_hash->root.type == bfd_link_hash_defined
13383 || sym_hash->root.type == bfd_link_hash_defweak)
13384 && sym_hash->root.u.def.section == sec)
13385 {
13386 bfd_vma value = sym_hash->root.u.def.value;
13387
13388 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13389 value &= MINUS_TWO;
13390 if (value > addr)
13391 sym_hash->root.u.def.value -= count;
13392 }
13393 }
13394
13395 return TRUE;
13396 }
13397
13398
13399 /* Opcodes needed for microMIPS relaxation as found in
13400 opcodes/micromips-opc.c. */
13401
13402 struct opcode_descriptor {
13403 unsigned long match;
13404 unsigned long mask;
13405 };
13406
13407 /* The $ra register aka $31. */
13408
13409 #define RA 31
13410
13411 /* 32-bit instruction format register fields. */
13412
13413 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13414 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13415
13416 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13417
13418 #define OP16_VALID_REG(r) \
13419 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13420
13421
13422 /* 32-bit and 16-bit branches. */
13423
13424 static const struct opcode_descriptor b_insns_32[] = {
13425 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13426 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13427 { 0, 0 } /* End marker for find_match(). */
13428 };
13429
13430 static const struct opcode_descriptor bc_insn_32 =
13431 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13432
13433 static const struct opcode_descriptor bz_insn_32 =
13434 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13435
13436 static const struct opcode_descriptor bzal_insn_32 =
13437 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13438
13439 static const struct opcode_descriptor beq_insn_32 =
13440 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13441
13442 static const struct opcode_descriptor b_insn_16 =
13443 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13444
13445 static const struct opcode_descriptor bz_insn_16 =
13446 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13447
13448
13449 /* 32-bit and 16-bit branch EQ and NE zero. */
13450
13451 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13452 eq and second the ne. This convention is used when replacing a
13453 32-bit BEQ/BNE with the 16-bit version. */
13454
13455 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13456
13457 static const struct opcode_descriptor bz_rs_insns_32[] = {
13458 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13459 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13460 { 0, 0 } /* End marker for find_match(). */
13461 };
13462
13463 static const struct opcode_descriptor bz_rt_insns_32[] = {
13464 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13465 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13466 { 0, 0 } /* End marker for find_match(). */
13467 };
13468
13469 static const struct opcode_descriptor bzc_insns_32[] = {
13470 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13471 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13472 { 0, 0 } /* End marker for find_match(). */
13473 };
13474
13475 static const struct opcode_descriptor bz_insns_16[] = {
13476 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13477 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13478 { 0, 0 } /* End marker for find_match(). */
13479 };
13480
13481 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13482
13483 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13484 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13485
13486
13487 /* 32-bit instructions with a delay slot. */
13488
13489 static const struct opcode_descriptor jal_insn_32_bd16 =
13490 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13491
13492 static const struct opcode_descriptor jal_insn_32_bd32 =
13493 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13494
13495 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13496 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13497
13498 static const struct opcode_descriptor j_insn_32 =
13499 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13500
13501 static const struct opcode_descriptor jalr_insn_32 =
13502 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13503
13504 /* This table can be compacted, because no opcode replacement is made. */
13505
13506 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13507 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13508
13509 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13510 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13511
13512 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13513 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13514 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13515 { 0, 0 } /* End marker for find_match(). */
13516 };
13517
13518 /* This table can be compacted, because no opcode replacement is made. */
13519
13520 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13521 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13522
13523 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13524 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13525 { 0, 0 } /* End marker for find_match(). */
13526 };
13527
13528
13529 /* 16-bit instructions with a delay slot. */
13530
13531 static const struct opcode_descriptor jalr_insn_16_bd16 =
13532 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13533
13534 static const struct opcode_descriptor jalr_insn_16_bd32 =
13535 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13536
13537 static const struct opcode_descriptor jr_insn_16 =
13538 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13539
13540 #define JR16_REG(opcode) ((opcode) & 0x1f)
13541
13542 /* This table can be compacted, because no opcode replacement is made. */
13543
13544 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13545 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13546
13547 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13548 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13549 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13550 { 0, 0 } /* End marker for find_match(). */
13551 };
13552
13553
13554 /* LUI instruction. */
13555
13556 static const struct opcode_descriptor lui_insn =
13557 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13558
13559
13560 /* ADDIU instruction. */
13561
13562 static const struct opcode_descriptor addiu_insn =
13563 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13564
13565 static const struct opcode_descriptor addiupc_insn =
13566 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13567
13568 #define ADDIUPC_REG_FIELD(r) \
13569 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13570
13571
13572 /* Relaxable instructions in a JAL delay slot: MOVE. */
13573
13574 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13575 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13576 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13577 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13578
13579 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13580 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13581
13582 static const struct opcode_descriptor move_insns_32[] = {
13583 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13584 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13585 { 0, 0 } /* End marker for find_match(). */
13586 };
13587
13588 static const struct opcode_descriptor move_insn_16 =
13589 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13590
13591
13592 /* NOP instructions. */
13593
13594 static const struct opcode_descriptor nop_insn_32 =
13595 { /* "nop", "", */ 0x00000000, 0xffffffff };
13596
13597 static const struct opcode_descriptor nop_insn_16 =
13598 { /* "nop", "", */ 0x0c00, 0xffff };
13599
13600
13601 /* Instruction match support. */
13602
13603 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13604
13605 static int
13606 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13607 {
13608 unsigned long indx;
13609
13610 for (indx = 0; insn[indx].mask != 0; indx++)
13611 if (MATCH (opcode, insn[indx]))
13612 return indx;
13613
13614 return -1;
13615 }
13616
13617
13618 /* Branch and delay slot decoding support. */
13619
13620 /* If PTR points to what *might* be a 16-bit branch or jump, then
13621 return the minimum length of its delay slot, otherwise return 0.
13622 Non-zero results are not definitive as we might be checking against
13623 the second half of another instruction. */
13624
13625 static int
13626 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13627 {
13628 unsigned long opcode;
13629 int bdsize;
13630
13631 opcode = bfd_get_16 (abfd, ptr);
13632 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13633 /* 16-bit branch/jump with a 32-bit delay slot. */
13634 bdsize = 4;
13635 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13636 || find_match (opcode, ds_insns_16_bd16) >= 0)
13637 /* 16-bit branch/jump with a 16-bit delay slot. */
13638 bdsize = 2;
13639 else
13640 /* No delay slot. */
13641 bdsize = 0;
13642
13643 return bdsize;
13644 }
13645
13646 /* If PTR points to what *might* be a 32-bit branch or jump, then
13647 return the minimum length of its delay slot, otherwise return 0.
13648 Non-zero results are not definitive as we might be checking against
13649 the second half of another instruction. */
13650
13651 static int
13652 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13653 {
13654 unsigned long opcode;
13655 int bdsize;
13656
13657 opcode = bfd_get_micromips_32 (abfd, ptr);
13658 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13659 /* 32-bit branch/jump with a 32-bit delay slot. */
13660 bdsize = 4;
13661 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13662 /* 32-bit branch/jump with a 16-bit delay slot. */
13663 bdsize = 2;
13664 else
13665 /* No delay slot. */
13666 bdsize = 0;
13667
13668 return bdsize;
13669 }
13670
13671 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13672 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13673
13674 static bfd_boolean
13675 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13676 {
13677 unsigned long opcode;
13678
13679 opcode = bfd_get_16 (abfd, ptr);
13680 if (MATCH (opcode, b_insn_16)
13681 /* B16 */
13682 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13683 /* JR16 */
13684 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13685 /* BEQZ16, BNEZ16 */
13686 || (MATCH (opcode, jalr_insn_16_bd32)
13687 /* JALR16 */
13688 && reg != JR16_REG (opcode) && reg != RA))
13689 return TRUE;
13690
13691 return FALSE;
13692 }
13693
13694 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13695 then return TRUE, otherwise FALSE. */
13696
13697 static bfd_boolean
13698 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13699 {
13700 unsigned long opcode;
13701
13702 opcode = bfd_get_micromips_32 (abfd, ptr);
13703 if (MATCH (opcode, j_insn_32)
13704 /* J */
13705 || MATCH (opcode, bc_insn_32)
13706 /* BC1F, BC1T, BC2F, BC2T */
13707 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13708 /* JAL, JALX */
13709 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13710 /* BGEZ, BGTZ, BLEZ, BLTZ */
13711 || (MATCH (opcode, bzal_insn_32)
13712 /* BGEZAL, BLTZAL */
13713 && reg != OP32_SREG (opcode) && reg != RA)
13714 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13715 /* JALR, JALR.HB, BEQ, BNE */
13716 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13717 return TRUE;
13718
13719 return FALSE;
13720 }
13721
13722 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13723 IRELEND) at OFFSET indicate that there must be a compact branch there,
13724 then return TRUE, otherwise FALSE. */
13725
13726 static bfd_boolean
13727 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13728 const Elf_Internal_Rela *internal_relocs,
13729 const Elf_Internal_Rela *irelend)
13730 {
13731 const Elf_Internal_Rela *irel;
13732 unsigned long opcode;
13733
13734 opcode = bfd_get_micromips_32 (abfd, ptr);
13735 if (find_match (opcode, bzc_insns_32) < 0)
13736 return FALSE;
13737
13738 for (irel = internal_relocs; irel < irelend; irel++)
13739 if (irel->r_offset == offset
13740 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13741 return TRUE;
13742
13743 return FALSE;
13744 }
13745
13746 /* Bitsize checking. */
13747 #define IS_BITSIZE(val, N) \
13748 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13749 - (1ULL << ((N) - 1))) == (val))
13750
13751 \f
13752 bfd_boolean
13753 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13754 struct bfd_link_info *link_info,
13755 bfd_boolean *again)
13756 {
13757 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13758 Elf_Internal_Shdr *symtab_hdr;
13759 Elf_Internal_Rela *internal_relocs;
13760 Elf_Internal_Rela *irel, *irelend;
13761 bfd_byte *contents = NULL;
13762 Elf_Internal_Sym *isymbuf = NULL;
13763
13764 /* Assume nothing changes. */
13765 *again = FALSE;
13766
13767 /* We don't have to do anything for a relocatable link, if
13768 this section does not have relocs, or if this is not a
13769 code section. */
13770
13771 if (bfd_link_relocatable (link_info)
13772 || (sec->flags & SEC_RELOC) == 0
13773 || sec->reloc_count == 0
13774 || (sec->flags & SEC_CODE) == 0)
13775 return TRUE;
13776
13777 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13778
13779 /* Get a copy of the native relocations. */
13780 internal_relocs = (_bfd_elf_link_read_relocs
13781 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13782 link_info->keep_memory));
13783 if (internal_relocs == NULL)
13784 goto error_return;
13785
13786 /* Walk through them looking for relaxing opportunities. */
13787 irelend = internal_relocs + sec->reloc_count;
13788 for (irel = internal_relocs; irel < irelend; irel++)
13789 {
13790 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13791 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13792 bfd_boolean target_is_micromips_code_p;
13793 unsigned long opcode;
13794 bfd_vma symval;
13795 bfd_vma pcrval;
13796 bfd_byte *ptr;
13797 int fndopc;
13798
13799 /* The number of bytes to delete for relaxation and from where
13800 to delete these bytes starting at irel->r_offset. */
13801 int delcnt = 0;
13802 int deloff = 0;
13803
13804 /* If this isn't something that can be relaxed, then ignore
13805 this reloc. */
13806 if (r_type != R_MICROMIPS_HI16
13807 && r_type != R_MICROMIPS_PC16_S1
13808 && r_type != R_MICROMIPS_26_S1)
13809 continue;
13810
13811 /* Get the section contents if we haven't done so already. */
13812 if (contents == NULL)
13813 {
13814 /* Get cached copy if it exists. */
13815 if (elf_section_data (sec)->this_hdr.contents != NULL)
13816 contents = elf_section_data (sec)->this_hdr.contents;
13817 /* Go get them off disk. */
13818 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13819 goto error_return;
13820 }
13821 ptr = contents + irel->r_offset;
13822
13823 /* Read this BFD's local symbols if we haven't done so already. */
13824 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13825 {
13826 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13827 if (isymbuf == NULL)
13828 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13829 symtab_hdr->sh_info, 0,
13830 NULL, NULL, NULL);
13831 if (isymbuf == NULL)
13832 goto error_return;
13833 }
13834
13835 /* Get the value of the symbol referred to by the reloc. */
13836 if (r_symndx < symtab_hdr->sh_info)
13837 {
13838 /* A local symbol. */
13839 Elf_Internal_Sym *isym;
13840 asection *sym_sec;
13841
13842 isym = isymbuf + r_symndx;
13843 if (isym->st_shndx == SHN_UNDEF)
13844 sym_sec = bfd_und_section_ptr;
13845 else if (isym->st_shndx == SHN_ABS)
13846 sym_sec = bfd_abs_section_ptr;
13847 else if (isym->st_shndx == SHN_COMMON)
13848 sym_sec = bfd_com_section_ptr;
13849 else
13850 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13851 symval = (isym->st_value
13852 + sym_sec->output_section->vma
13853 + sym_sec->output_offset);
13854 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13855 }
13856 else
13857 {
13858 unsigned long indx;
13859 struct elf_link_hash_entry *h;
13860
13861 /* An external symbol. */
13862 indx = r_symndx - symtab_hdr->sh_info;
13863 h = elf_sym_hashes (abfd)[indx];
13864 BFD_ASSERT (h != NULL);
13865
13866 if (h->root.type != bfd_link_hash_defined
13867 && h->root.type != bfd_link_hash_defweak)
13868 /* This appears to be a reference to an undefined
13869 symbol. Just ignore it -- it will be caught by the
13870 regular reloc processing. */
13871 continue;
13872
13873 symval = (h->root.u.def.value
13874 + h->root.u.def.section->output_section->vma
13875 + h->root.u.def.section->output_offset);
13876 target_is_micromips_code_p = (!h->needs_plt
13877 && ELF_ST_IS_MICROMIPS (h->other));
13878 }
13879
13880
13881 /* For simplicity of coding, we are going to modify the
13882 section contents, the section relocs, and the BFD symbol
13883 table. We must tell the rest of the code not to free up this
13884 information. It would be possible to instead create a table
13885 of changes which have to be made, as is done in coff-mips.c;
13886 that would be more work, but would require less memory when
13887 the linker is run. */
13888
13889 /* Only 32-bit instructions relaxed. */
13890 if (irel->r_offset + 4 > sec->size)
13891 continue;
13892
13893 opcode = bfd_get_micromips_32 (abfd, ptr);
13894
13895 /* This is the pc-relative distance from the instruction the
13896 relocation is applied to, to the symbol referred. */
13897 pcrval = (symval
13898 - (sec->output_section->vma + sec->output_offset)
13899 - irel->r_offset);
13900
13901 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13902 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13903 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13904
13905 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13906
13907 where pcrval has first to be adjusted to apply against the LO16
13908 location (we make the adjustment later on, when we have figured
13909 out the offset). */
13910 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13911 {
13912 bfd_boolean bzc = FALSE;
13913 unsigned long nextopc;
13914 unsigned long reg;
13915 bfd_vma offset;
13916
13917 /* Give up if the previous reloc was a HI16 against this symbol
13918 too. */
13919 if (irel > internal_relocs
13920 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13921 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13922 continue;
13923
13924 /* Or if the next reloc is not a LO16 against this symbol. */
13925 if (irel + 1 >= irelend
13926 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13927 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13928 continue;
13929
13930 /* Or if the second next reloc is a LO16 against this symbol too. */
13931 if (irel + 2 >= irelend
13932 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13933 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13934 continue;
13935
13936 /* See if the LUI instruction *might* be in a branch delay slot.
13937 We check whether what looks like a 16-bit branch or jump is
13938 actually an immediate argument to a compact branch, and let
13939 it through if so. */
13940 if (irel->r_offset >= 2
13941 && check_br16_dslot (abfd, ptr - 2)
13942 && !(irel->r_offset >= 4
13943 && (bzc = check_relocated_bzc (abfd,
13944 ptr - 4, irel->r_offset - 4,
13945 internal_relocs, irelend))))
13946 continue;
13947 if (irel->r_offset >= 4
13948 && !bzc
13949 && check_br32_dslot (abfd, ptr - 4))
13950 continue;
13951
13952 reg = OP32_SREG (opcode);
13953
13954 /* We only relax adjacent instructions or ones separated with
13955 a branch or jump that has a delay slot. The branch or jump
13956 must not fiddle with the register used to hold the address.
13957 Subtract 4 for the LUI itself. */
13958 offset = irel[1].r_offset - irel[0].r_offset;
13959 switch (offset - 4)
13960 {
13961 case 0:
13962 break;
13963 case 2:
13964 if (check_br16 (abfd, ptr + 4, reg))
13965 break;
13966 continue;
13967 case 4:
13968 if (check_br32 (abfd, ptr + 4, reg))
13969 break;
13970 continue;
13971 default:
13972 continue;
13973 }
13974
13975 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13976
13977 /* Give up unless the same register is used with both
13978 relocations. */
13979 if (OP32_SREG (nextopc) != reg)
13980 continue;
13981
13982 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13983 and rounding up to take masking of the two LSBs into account. */
13984 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13985
13986 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13987 if (IS_BITSIZE (symval, 16))
13988 {
13989 /* Fix the relocation's type. */
13990 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13991
13992 /* Instructions using R_MICROMIPS_LO16 have the base or
13993 source register in bits 20:16. This register becomes $0
13994 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13995 nextopc &= ~0x001f0000;
13996 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13997 contents + irel[1].r_offset);
13998 }
13999
14000 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14001 We add 4 to take LUI deletion into account while checking
14002 the PC-relative distance. */
14003 else if (symval % 4 == 0
14004 && IS_BITSIZE (pcrval + 4, 25)
14005 && MATCH (nextopc, addiu_insn)
14006 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14007 && OP16_VALID_REG (OP32_TREG (nextopc)))
14008 {
14009 /* Fix the relocation's type. */
14010 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14011
14012 /* Replace ADDIU with the ADDIUPC version. */
14013 nextopc = (addiupc_insn.match
14014 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14015
14016 bfd_put_micromips_32 (abfd, nextopc,
14017 contents + irel[1].r_offset);
14018 }
14019
14020 /* Can't do anything, give up, sigh... */
14021 else
14022 continue;
14023
14024 /* Fix the relocation's type. */
14025 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14026
14027 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14028 delcnt = 4;
14029 deloff = 0;
14030 }
14031
14032 /* Compact branch relaxation -- due to the multitude of macros
14033 employed by the compiler/assembler, compact branches are not
14034 always generated. Obviously, this can/will be fixed elsewhere,
14035 but there is no drawback in double checking it here. */
14036 else if (r_type == R_MICROMIPS_PC16_S1
14037 && irel->r_offset + 5 < sec->size
14038 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14039 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14040 && ((!insn32
14041 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14042 nop_insn_16) ? 2 : 0))
14043 || (irel->r_offset + 7 < sec->size
14044 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14045 ptr + 4),
14046 nop_insn_32) ? 4 : 0))))
14047 {
14048 unsigned long reg;
14049
14050 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14051
14052 /* Replace BEQZ/BNEZ with the compact version. */
14053 opcode = (bzc_insns_32[fndopc].match
14054 | BZC32_REG_FIELD (reg)
14055 | (opcode & 0xffff)); /* Addend value. */
14056
14057 bfd_put_micromips_32 (abfd, opcode, ptr);
14058
14059 /* Delete the delay slot NOP: two or four bytes from
14060 irel->offset + 4; delcnt has already been set above. */
14061 deloff = 4;
14062 }
14063
14064 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14065 to check the distance from the next instruction, so subtract 2. */
14066 else if (!insn32
14067 && r_type == R_MICROMIPS_PC16_S1
14068 && IS_BITSIZE (pcrval - 2, 11)
14069 && find_match (opcode, b_insns_32) >= 0)
14070 {
14071 /* Fix the relocation's type. */
14072 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14073
14074 /* Replace the 32-bit opcode with a 16-bit opcode. */
14075 bfd_put_16 (abfd,
14076 (b_insn_16.match
14077 | (opcode & 0x3ff)), /* Addend value. */
14078 ptr);
14079
14080 /* Delete 2 bytes from irel->r_offset + 2. */
14081 delcnt = 2;
14082 deloff = 2;
14083 }
14084
14085 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14086 to check the distance from the next instruction, so subtract 2. */
14087 else if (!insn32
14088 && r_type == R_MICROMIPS_PC16_S1
14089 && IS_BITSIZE (pcrval - 2, 8)
14090 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14091 && OP16_VALID_REG (OP32_SREG (opcode)))
14092 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14093 && OP16_VALID_REG (OP32_TREG (opcode)))))
14094 {
14095 unsigned long reg;
14096
14097 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14098
14099 /* Fix the relocation's type. */
14100 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14101
14102 /* Replace the 32-bit opcode with a 16-bit opcode. */
14103 bfd_put_16 (abfd,
14104 (bz_insns_16[fndopc].match
14105 | BZ16_REG_FIELD (reg)
14106 | (opcode & 0x7f)), /* Addend value. */
14107 ptr);
14108
14109 /* Delete 2 bytes from irel->r_offset + 2. */
14110 delcnt = 2;
14111 deloff = 2;
14112 }
14113
14114 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14115 else if (!insn32
14116 && r_type == R_MICROMIPS_26_S1
14117 && target_is_micromips_code_p
14118 && irel->r_offset + 7 < sec->size
14119 && MATCH (opcode, jal_insn_32_bd32))
14120 {
14121 unsigned long n32opc;
14122 bfd_boolean relaxed = FALSE;
14123
14124 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14125
14126 if (MATCH (n32opc, nop_insn_32))
14127 {
14128 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14129 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14130
14131 relaxed = TRUE;
14132 }
14133 else if (find_match (n32opc, move_insns_32) >= 0)
14134 {
14135 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14136 bfd_put_16 (abfd,
14137 (move_insn_16.match
14138 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14139 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14140 ptr + 4);
14141
14142 relaxed = TRUE;
14143 }
14144 /* Other 32-bit instructions relaxable to 16-bit
14145 instructions will be handled here later. */
14146
14147 if (relaxed)
14148 {
14149 /* JAL with 32-bit delay slot that is changed to a JALS
14150 with 16-bit delay slot. */
14151 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14152
14153 /* Delete 2 bytes from irel->r_offset + 6. */
14154 delcnt = 2;
14155 deloff = 6;
14156 }
14157 }
14158
14159 if (delcnt != 0)
14160 {
14161 /* Note that we've changed the relocs, section contents, etc. */
14162 elf_section_data (sec)->relocs = internal_relocs;
14163 elf_section_data (sec)->this_hdr.contents = contents;
14164 symtab_hdr->contents = (unsigned char *) isymbuf;
14165
14166 /* Delete bytes depending on the delcnt and deloff. */
14167 if (!mips_elf_relax_delete_bytes (abfd, sec,
14168 irel->r_offset + deloff, delcnt))
14169 goto error_return;
14170
14171 /* That will change things, so we should relax again.
14172 Note that this is not required, and it may be slow. */
14173 *again = TRUE;
14174 }
14175 }
14176
14177 if (isymbuf != NULL
14178 && symtab_hdr->contents != (unsigned char *) isymbuf)
14179 {
14180 if (! link_info->keep_memory)
14181 free (isymbuf);
14182 else
14183 {
14184 /* Cache the symbols for elf_link_input_bfd. */
14185 symtab_hdr->contents = (unsigned char *) isymbuf;
14186 }
14187 }
14188
14189 if (contents != NULL
14190 && elf_section_data (sec)->this_hdr.contents != contents)
14191 {
14192 if (! link_info->keep_memory)
14193 free (contents);
14194 else
14195 {
14196 /* Cache the section contents for elf_link_input_bfd. */
14197 elf_section_data (sec)->this_hdr.contents = contents;
14198 }
14199 }
14200
14201 if (internal_relocs != NULL
14202 && elf_section_data (sec)->relocs != internal_relocs)
14203 free (internal_relocs);
14204
14205 return TRUE;
14206
14207 error_return:
14208 if (isymbuf != NULL
14209 && symtab_hdr->contents != (unsigned char *) isymbuf)
14210 free (isymbuf);
14211 if (contents != NULL
14212 && elf_section_data (sec)->this_hdr.contents != contents)
14213 free (contents);
14214 if (internal_relocs != NULL
14215 && elf_section_data (sec)->relocs != internal_relocs)
14216 free (internal_relocs);
14217
14218 return FALSE;
14219 }
14220 \f
14221 /* Create a MIPS ELF linker hash table. */
14222
14223 struct bfd_link_hash_table *
14224 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14225 {
14226 struct mips_elf_link_hash_table *ret;
14227 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14228
14229 ret = bfd_zmalloc (amt);
14230 if (ret == NULL)
14231 return NULL;
14232
14233 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14234 mips_elf_link_hash_newfunc,
14235 sizeof (struct mips_elf_link_hash_entry),
14236 MIPS_ELF_DATA))
14237 {
14238 free (ret);
14239 return NULL;
14240 }
14241 ret->root.init_plt_refcount.plist = NULL;
14242 ret->root.init_plt_offset.plist = NULL;
14243
14244 return &ret->root.root;
14245 }
14246
14247 /* Likewise, but indicate that the target is VxWorks. */
14248
14249 struct bfd_link_hash_table *
14250 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14251 {
14252 struct bfd_link_hash_table *ret;
14253
14254 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14255 if (ret)
14256 {
14257 struct mips_elf_link_hash_table *htab;
14258
14259 htab = (struct mips_elf_link_hash_table *) ret;
14260 htab->use_plts_and_copy_relocs = TRUE;
14261 htab->is_vxworks = TRUE;
14262 }
14263 return ret;
14264 }
14265
14266 /* A function that the linker calls if we are allowed to use PLTs
14267 and copy relocs. */
14268
14269 void
14270 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14271 {
14272 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14273 }
14274
14275 /* A function that the linker calls to select between all or only
14276 32-bit microMIPS instructions, and between making or ignoring
14277 branch relocation checks for invalid transitions between ISA modes.
14278 Also record whether we have been configured for a GNU target. */
14279
14280 void
14281 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14282 bfd_boolean ignore_branch_isa,
14283 bfd_boolean gnu_target)
14284 {
14285 mips_elf_hash_table (info)->insn32 = insn32;
14286 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14287 mips_elf_hash_table (info)->gnu_target = gnu_target;
14288 }
14289
14290 /* A function that the linker calls to enable use of compact branches in
14291 linker generated code for MIPSR6. */
14292
14293 void
14294 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14295 {
14296 mips_elf_hash_table (info)->compact_branches = on;
14297 }
14298
14299 \f
14300 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14301
14302 struct mips_mach_extension
14303 {
14304 unsigned long extension, base;
14305 };
14306
14307
14308 /* An array describing how BFD machines relate to one another. The entries
14309 are ordered topologically with MIPS I extensions listed last. */
14310
14311 static const struct mips_mach_extension mips_mach_extensions[] =
14312 {
14313 /* MIPS64r2 extensions. */
14314 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14315 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14316 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14317 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14318 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14319 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14320 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14321
14322 /* MIPS64 extensions. */
14323 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14324 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14325 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14326
14327 /* MIPS V extensions. */
14328 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14329
14330 /* R10000 extensions. */
14331 { bfd_mach_mips12000, bfd_mach_mips10000 },
14332 { bfd_mach_mips14000, bfd_mach_mips10000 },
14333 { bfd_mach_mips16000, bfd_mach_mips10000 },
14334
14335 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14336 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14337 better to allow vr5400 and vr5500 code to be merged anyway, since
14338 many libraries will just use the core ISA. Perhaps we could add
14339 some sort of ASE flag if this ever proves a problem. */
14340 { bfd_mach_mips5500, bfd_mach_mips5400 },
14341 { bfd_mach_mips5400, bfd_mach_mips5000 },
14342
14343 /* MIPS IV extensions. */
14344 { bfd_mach_mips5, bfd_mach_mips8000 },
14345 { bfd_mach_mips10000, bfd_mach_mips8000 },
14346 { bfd_mach_mips5000, bfd_mach_mips8000 },
14347 { bfd_mach_mips7000, bfd_mach_mips8000 },
14348 { bfd_mach_mips9000, bfd_mach_mips8000 },
14349
14350 /* VR4100 extensions. */
14351 { bfd_mach_mips4120, bfd_mach_mips4100 },
14352 { bfd_mach_mips4111, bfd_mach_mips4100 },
14353
14354 /* MIPS III extensions. */
14355 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14356 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14357 { bfd_mach_mips8000, bfd_mach_mips4000 },
14358 { bfd_mach_mips4650, bfd_mach_mips4000 },
14359 { bfd_mach_mips4600, bfd_mach_mips4000 },
14360 { bfd_mach_mips4400, bfd_mach_mips4000 },
14361 { bfd_mach_mips4300, bfd_mach_mips4000 },
14362 { bfd_mach_mips4100, bfd_mach_mips4000 },
14363 { bfd_mach_mips5900, bfd_mach_mips4000 },
14364
14365 /* MIPS32r3 extensions. */
14366 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14367
14368 /* MIPS32r2 extensions. */
14369 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14370
14371 /* MIPS32 extensions. */
14372 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14373
14374 /* MIPS II extensions. */
14375 { bfd_mach_mips4000, bfd_mach_mips6000 },
14376 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14377 { bfd_mach_mips4010, bfd_mach_mips6000 },
14378
14379 /* MIPS I extensions. */
14380 { bfd_mach_mips6000, bfd_mach_mips3000 },
14381 { bfd_mach_mips3900, bfd_mach_mips3000 }
14382 };
14383
14384 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14385
14386 static bfd_boolean
14387 mips_mach_extends_p (unsigned long base, unsigned long extension)
14388 {
14389 size_t i;
14390
14391 if (extension == base)
14392 return TRUE;
14393
14394 if (base == bfd_mach_mipsisa32
14395 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14396 return TRUE;
14397
14398 if (base == bfd_mach_mipsisa32r2
14399 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14400 return TRUE;
14401
14402 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14403 if (extension == mips_mach_extensions[i].extension)
14404 {
14405 extension = mips_mach_extensions[i].base;
14406 if (extension == base)
14407 return TRUE;
14408 }
14409
14410 return FALSE;
14411 }
14412
14413 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14414
14415 static unsigned long
14416 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14417 {
14418 switch (isa_ext)
14419 {
14420 case AFL_EXT_3900: return bfd_mach_mips3900;
14421 case AFL_EXT_4010: return bfd_mach_mips4010;
14422 case AFL_EXT_4100: return bfd_mach_mips4100;
14423 case AFL_EXT_4111: return bfd_mach_mips4111;
14424 case AFL_EXT_4120: return bfd_mach_mips4120;
14425 case AFL_EXT_4650: return bfd_mach_mips4650;
14426 case AFL_EXT_5400: return bfd_mach_mips5400;
14427 case AFL_EXT_5500: return bfd_mach_mips5500;
14428 case AFL_EXT_5900: return bfd_mach_mips5900;
14429 case AFL_EXT_10000: return bfd_mach_mips10000;
14430 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14431 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14432 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14433 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14434 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14435 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14436 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14437 default: return bfd_mach_mips3000;
14438 }
14439 }
14440
14441 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14442
14443 unsigned int
14444 bfd_mips_isa_ext (bfd *abfd)
14445 {
14446 switch (bfd_get_mach (abfd))
14447 {
14448 case bfd_mach_mips3900: return AFL_EXT_3900;
14449 case bfd_mach_mips4010: return AFL_EXT_4010;
14450 case bfd_mach_mips4100: return AFL_EXT_4100;
14451 case bfd_mach_mips4111: return AFL_EXT_4111;
14452 case bfd_mach_mips4120: return AFL_EXT_4120;
14453 case bfd_mach_mips4650: return AFL_EXT_4650;
14454 case bfd_mach_mips5400: return AFL_EXT_5400;
14455 case bfd_mach_mips5500: return AFL_EXT_5500;
14456 case bfd_mach_mips5900: return AFL_EXT_5900;
14457 case bfd_mach_mips10000: return AFL_EXT_10000;
14458 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14459 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14460 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14461 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14462 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14463 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14464 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14465 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14466 case bfd_mach_mips_interaptiv_mr2:
14467 return AFL_EXT_INTERAPTIV_MR2;
14468 default: return 0;
14469 }
14470 }
14471
14472 /* Encode ISA level and revision as a single value. */
14473 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14474
14475 /* Decode a single value into level and revision. */
14476 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14477 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14478
14479 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14480
14481 static void
14482 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14483 {
14484 int new_isa = 0;
14485 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14486 {
14487 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14488 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14489 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14490 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14491 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14492 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14493 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14494 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14495 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14496 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14497 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14498 default:
14499 _bfd_error_handler
14500 /* xgettext:c-format */
14501 (_("%pB: unknown architecture %s"),
14502 abfd, bfd_printable_name (abfd));
14503 }
14504
14505 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14506 {
14507 abiflags->isa_level = ISA_LEVEL (new_isa);
14508 abiflags->isa_rev = ISA_REV (new_isa);
14509 }
14510
14511 /* Update the isa_ext if ABFD describes a further extension. */
14512 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14513 bfd_get_mach (abfd)))
14514 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14515 }
14516
14517 /* Return true if the given ELF header flags describe a 32-bit binary. */
14518
14519 static bfd_boolean
14520 mips_32bit_flags_p (flagword flags)
14521 {
14522 return ((flags & EF_MIPS_32BITMODE) != 0
14523 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14524 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14525 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14526 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14527 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14528 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14529 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14530 }
14531
14532 /* Infer the content of the ABI flags based on the elf header. */
14533
14534 static void
14535 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14536 {
14537 obj_attribute *in_attr;
14538
14539 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14540 update_mips_abiflags_isa (abfd, abiflags);
14541
14542 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14543 abiflags->gpr_size = AFL_REG_32;
14544 else
14545 abiflags->gpr_size = AFL_REG_64;
14546
14547 abiflags->cpr1_size = AFL_REG_NONE;
14548
14549 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14550 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14551
14552 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14553 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14554 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14555 && abiflags->gpr_size == AFL_REG_32))
14556 abiflags->cpr1_size = AFL_REG_32;
14557 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14558 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14559 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14560 abiflags->cpr1_size = AFL_REG_64;
14561
14562 abiflags->cpr2_size = AFL_REG_NONE;
14563
14564 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14565 abiflags->ases |= AFL_ASE_MDMX;
14566 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14567 abiflags->ases |= AFL_ASE_MIPS16;
14568 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14569 abiflags->ases |= AFL_ASE_MICROMIPS;
14570
14571 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14572 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14573 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14574 && abiflags->isa_level >= 32
14575 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14576 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14577 }
14578
14579 /* We need to use a special link routine to handle the .reginfo and
14580 the .mdebug sections. We need to merge all instances of these
14581 sections together, not write them all out sequentially. */
14582
14583 bfd_boolean
14584 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14585 {
14586 asection *o;
14587 struct bfd_link_order *p;
14588 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14589 asection *rtproc_sec, *abiflags_sec;
14590 Elf32_RegInfo reginfo;
14591 struct ecoff_debug_info debug;
14592 struct mips_htab_traverse_info hti;
14593 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14594 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14595 HDRR *symhdr = &debug.symbolic_header;
14596 void *mdebug_handle = NULL;
14597 asection *s;
14598 EXTR esym;
14599 unsigned int i;
14600 bfd_size_type amt;
14601 struct mips_elf_link_hash_table *htab;
14602
14603 static const char * const secname[] =
14604 {
14605 ".text", ".init", ".fini", ".data",
14606 ".rodata", ".sdata", ".sbss", ".bss"
14607 };
14608 static const int sc[] =
14609 {
14610 scText, scInit, scFini, scData,
14611 scRData, scSData, scSBss, scBss
14612 };
14613
14614 htab = mips_elf_hash_table (info);
14615 BFD_ASSERT (htab != NULL);
14616
14617 /* Sort the dynamic symbols so that those with GOT entries come after
14618 those without. */
14619 if (!mips_elf_sort_hash_table (abfd, info))
14620 return FALSE;
14621
14622 /* Create any scheduled LA25 stubs. */
14623 hti.info = info;
14624 hti.output_bfd = abfd;
14625 hti.error = FALSE;
14626 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14627 if (hti.error)
14628 return FALSE;
14629
14630 /* Get a value for the GP register. */
14631 if (elf_gp (abfd) == 0)
14632 {
14633 struct bfd_link_hash_entry *h;
14634
14635 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14636 if (h != NULL && h->type == bfd_link_hash_defined)
14637 elf_gp (abfd) = (h->u.def.value
14638 + h->u.def.section->output_section->vma
14639 + h->u.def.section->output_offset);
14640 else if (htab->is_vxworks
14641 && (h = bfd_link_hash_lookup (info->hash,
14642 "_GLOBAL_OFFSET_TABLE_",
14643 FALSE, FALSE, TRUE))
14644 && h->type == bfd_link_hash_defined)
14645 elf_gp (abfd) = (h->u.def.section->output_section->vma
14646 + h->u.def.section->output_offset
14647 + h->u.def.value);
14648 else if (bfd_link_relocatable (info))
14649 {
14650 bfd_vma lo = MINUS_ONE;
14651
14652 /* Find the GP-relative section with the lowest offset. */
14653 for (o = abfd->sections; o != NULL; o = o->next)
14654 if (o->vma < lo
14655 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14656 lo = o->vma;
14657
14658 /* And calculate GP relative to that. */
14659 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14660 }
14661 else
14662 {
14663 /* If the relocate_section function needs to do a reloc
14664 involving the GP value, it should make a reloc_dangerous
14665 callback to warn that GP is not defined. */
14666 }
14667 }
14668
14669 /* Go through the sections and collect the .reginfo and .mdebug
14670 information. */
14671 abiflags_sec = NULL;
14672 reginfo_sec = NULL;
14673 mdebug_sec = NULL;
14674 gptab_data_sec = NULL;
14675 gptab_bss_sec = NULL;
14676 for (o = abfd->sections; o != NULL; o = o->next)
14677 {
14678 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14679 {
14680 /* We have found the .MIPS.abiflags section in the output file.
14681 Look through all the link_orders comprising it and remove them.
14682 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14683 for (p = o->map_head.link_order; p != NULL; p = p->next)
14684 {
14685 asection *input_section;
14686
14687 if (p->type != bfd_indirect_link_order)
14688 {
14689 if (p->type == bfd_data_link_order)
14690 continue;
14691 abort ();
14692 }
14693
14694 input_section = p->u.indirect.section;
14695
14696 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14697 elf_link_input_bfd ignores this section. */
14698 input_section->flags &= ~SEC_HAS_CONTENTS;
14699 }
14700
14701 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14702 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14703
14704 /* Skip this section later on (I don't think this currently
14705 matters, but someday it might). */
14706 o->map_head.link_order = NULL;
14707
14708 abiflags_sec = o;
14709 }
14710
14711 if (strcmp (o->name, ".reginfo") == 0)
14712 {
14713 memset (&reginfo, 0, sizeof reginfo);
14714
14715 /* We have found the .reginfo section in the output file.
14716 Look through all the link_orders comprising it and merge
14717 the information together. */
14718 for (p = o->map_head.link_order; p != NULL; p = p->next)
14719 {
14720 asection *input_section;
14721 bfd *input_bfd;
14722 Elf32_External_RegInfo ext;
14723 Elf32_RegInfo sub;
14724 bfd_size_type sz;
14725
14726 if (p->type != bfd_indirect_link_order)
14727 {
14728 if (p->type == bfd_data_link_order)
14729 continue;
14730 abort ();
14731 }
14732
14733 input_section = p->u.indirect.section;
14734 input_bfd = input_section->owner;
14735
14736 sz = (input_section->size < sizeof (ext)
14737 ? input_section->size : sizeof (ext));
14738 memset (&ext, 0, sizeof (ext));
14739 if (! bfd_get_section_contents (input_bfd, input_section,
14740 &ext, 0, sz))
14741 return FALSE;
14742
14743 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14744
14745 reginfo.ri_gprmask |= sub.ri_gprmask;
14746 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14747 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14748 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14749 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14750
14751 /* ri_gp_value is set by the function
14752 `_bfd_mips_elf_section_processing' when the section is
14753 finally written out. */
14754
14755 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14756 elf_link_input_bfd ignores this section. */
14757 input_section->flags &= ~SEC_HAS_CONTENTS;
14758 }
14759
14760 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14761 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14762
14763 /* Skip this section later on (I don't think this currently
14764 matters, but someday it might). */
14765 o->map_head.link_order = NULL;
14766
14767 reginfo_sec = o;
14768 }
14769
14770 if (strcmp (o->name, ".mdebug") == 0)
14771 {
14772 struct extsym_info einfo;
14773 bfd_vma last;
14774
14775 /* We have found the .mdebug section in the output file.
14776 Look through all the link_orders comprising it and merge
14777 the information together. */
14778 symhdr->magic = swap->sym_magic;
14779 /* FIXME: What should the version stamp be? */
14780 symhdr->vstamp = 0;
14781 symhdr->ilineMax = 0;
14782 symhdr->cbLine = 0;
14783 symhdr->idnMax = 0;
14784 symhdr->ipdMax = 0;
14785 symhdr->isymMax = 0;
14786 symhdr->ioptMax = 0;
14787 symhdr->iauxMax = 0;
14788 symhdr->issMax = 0;
14789 symhdr->issExtMax = 0;
14790 symhdr->ifdMax = 0;
14791 symhdr->crfd = 0;
14792 symhdr->iextMax = 0;
14793
14794 /* We accumulate the debugging information itself in the
14795 debug_info structure. */
14796 debug.line = NULL;
14797 debug.external_dnr = NULL;
14798 debug.external_pdr = NULL;
14799 debug.external_sym = NULL;
14800 debug.external_opt = NULL;
14801 debug.external_aux = NULL;
14802 debug.ss = NULL;
14803 debug.ssext = debug.ssext_end = NULL;
14804 debug.external_fdr = NULL;
14805 debug.external_rfd = NULL;
14806 debug.external_ext = debug.external_ext_end = NULL;
14807
14808 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14809 if (mdebug_handle == NULL)
14810 return FALSE;
14811
14812 esym.jmptbl = 0;
14813 esym.cobol_main = 0;
14814 esym.weakext = 0;
14815 esym.reserved = 0;
14816 esym.ifd = ifdNil;
14817 esym.asym.iss = issNil;
14818 esym.asym.st = stLocal;
14819 esym.asym.reserved = 0;
14820 esym.asym.index = indexNil;
14821 last = 0;
14822 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14823 {
14824 esym.asym.sc = sc[i];
14825 s = bfd_get_section_by_name (abfd, secname[i]);
14826 if (s != NULL)
14827 {
14828 esym.asym.value = s->vma;
14829 last = s->vma + s->size;
14830 }
14831 else
14832 esym.asym.value = last;
14833 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14834 secname[i], &esym))
14835 return FALSE;
14836 }
14837
14838 for (p = o->map_head.link_order; p != NULL; p = p->next)
14839 {
14840 asection *input_section;
14841 bfd *input_bfd;
14842 const struct ecoff_debug_swap *input_swap;
14843 struct ecoff_debug_info input_debug;
14844 char *eraw_src;
14845 char *eraw_end;
14846
14847 if (p->type != bfd_indirect_link_order)
14848 {
14849 if (p->type == bfd_data_link_order)
14850 continue;
14851 abort ();
14852 }
14853
14854 input_section = p->u.indirect.section;
14855 input_bfd = input_section->owner;
14856
14857 if (!is_mips_elf (input_bfd))
14858 {
14859 /* I don't know what a non MIPS ELF bfd would be
14860 doing with a .mdebug section, but I don't really
14861 want to deal with it. */
14862 continue;
14863 }
14864
14865 input_swap = (get_elf_backend_data (input_bfd)
14866 ->elf_backend_ecoff_debug_swap);
14867
14868 BFD_ASSERT (p->size == input_section->size);
14869
14870 /* The ECOFF linking code expects that we have already
14871 read in the debugging information and set up an
14872 ecoff_debug_info structure, so we do that now. */
14873 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14874 &input_debug))
14875 return FALSE;
14876
14877 if (! (bfd_ecoff_debug_accumulate
14878 (mdebug_handle, abfd, &debug, swap, input_bfd,
14879 &input_debug, input_swap, info)))
14880 return FALSE;
14881
14882 /* Loop through the external symbols. For each one with
14883 interesting information, try to find the symbol in
14884 the linker global hash table and save the information
14885 for the output external symbols. */
14886 eraw_src = input_debug.external_ext;
14887 eraw_end = (eraw_src
14888 + (input_debug.symbolic_header.iextMax
14889 * input_swap->external_ext_size));
14890 for (;
14891 eraw_src < eraw_end;
14892 eraw_src += input_swap->external_ext_size)
14893 {
14894 EXTR ext;
14895 const char *name;
14896 struct mips_elf_link_hash_entry *h;
14897
14898 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14899 if (ext.asym.sc == scNil
14900 || ext.asym.sc == scUndefined
14901 || ext.asym.sc == scSUndefined)
14902 continue;
14903
14904 name = input_debug.ssext + ext.asym.iss;
14905 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14906 name, FALSE, FALSE, TRUE);
14907 if (h == NULL || h->esym.ifd != -2)
14908 continue;
14909
14910 if (ext.ifd != -1)
14911 {
14912 BFD_ASSERT (ext.ifd
14913 < input_debug.symbolic_header.ifdMax);
14914 ext.ifd = input_debug.ifdmap[ext.ifd];
14915 }
14916
14917 h->esym = ext;
14918 }
14919
14920 /* Free up the information we just read. */
14921 free (input_debug.line);
14922 free (input_debug.external_dnr);
14923 free (input_debug.external_pdr);
14924 free (input_debug.external_sym);
14925 free (input_debug.external_opt);
14926 free (input_debug.external_aux);
14927 free (input_debug.ss);
14928 free (input_debug.ssext);
14929 free (input_debug.external_fdr);
14930 free (input_debug.external_rfd);
14931 free (input_debug.external_ext);
14932
14933 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14934 elf_link_input_bfd ignores this section. */
14935 input_section->flags &= ~SEC_HAS_CONTENTS;
14936 }
14937
14938 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14939 {
14940 /* Create .rtproc section. */
14941 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14942 if (rtproc_sec == NULL)
14943 {
14944 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14945 | SEC_LINKER_CREATED | SEC_READONLY);
14946
14947 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14948 ".rtproc",
14949 flags);
14950 if (rtproc_sec == NULL
14951 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14952 return FALSE;
14953 }
14954
14955 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14956 info, rtproc_sec,
14957 &debug))
14958 return FALSE;
14959 }
14960
14961 /* Build the external symbol information. */
14962 einfo.abfd = abfd;
14963 einfo.info = info;
14964 einfo.debug = &debug;
14965 einfo.swap = swap;
14966 einfo.failed = FALSE;
14967 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14968 mips_elf_output_extsym, &einfo);
14969 if (einfo.failed)
14970 return FALSE;
14971
14972 /* Set the size of the .mdebug section. */
14973 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14974
14975 /* Skip this section later on (I don't think this currently
14976 matters, but someday it might). */
14977 o->map_head.link_order = NULL;
14978
14979 mdebug_sec = o;
14980 }
14981
14982 if (CONST_STRNEQ (o->name, ".gptab."))
14983 {
14984 const char *subname;
14985 unsigned int c;
14986 Elf32_gptab *tab;
14987 Elf32_External_gptab *ext_tab;
14988 unsigned int j;
14989
14990 /* The .gptab.sdata and .gptab.sbss sections hold
14991 information describing how the small data area would
14992 change depending upon the -G switch. These sections
14993 not used in executables files. */
14994 if (! bfd_link_relocatable (info))
14995 {
14996 for (p = o->map_head.link_order; p != NULL; p = p->next)
14997 {
14998 asection *input_section;
14999
15000 if (p->type != bfd_indirect_link_order)
15001 {
15002 if (p->type == bfd_data_link_order)
15003 continue;
15004 abort ();
15005 }
15006
15007 input_section = p->u.indirect.section;
15008
15009 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15010 elf_link_input_bfd ignores this section. */
15011 input_section->flags &= ~SEC_HAS_CONTENTS;
15012 }
15013
15014 /* Skip this section later on (I don't think this
15015 currently matters, but someday it might). */
15016 o->map_head.link_order = NULL;
15017
15018 /* Really remove the section. */
15019 bfd_section_list_remove (abfd, o);
15020 --abfd->section_count;
15021
15022 continue;
15023 }
15024
15025 /* There is one gptab for initialized data, and one for
15026 uninitialized data. */
15027 if (strcmp (o->name, ".gptab.sdata") == 0)
15028 gptab_data_sec = o;
15029 else if (strcmp (o->name, ".gptab.sbss") == 0)
15030 gptab_bss_sec = o;
15031 else
15032 {
15033 _bfd_error_handler
15034 /* xgettext:c-format */
15035 (_("%pB: illegal section name `%pA'"), abfd, o);
15036 bfd_set_error (bfd_error_nonrepresentable_section);
15037 return FALSE;
15038 }
15039
15040 /* The linker script always combines .gptab.data and
15041 .gptab.sdata into .gptab.sdata, and likewise for
15042 .gptab.bss and .gptab.sbss. It is possible that there is
15043 no .sdata or .sbss section in the output file, in which
15044 case we must change the name of the output section. */
15045 subname = o->name + sizeof ".gptab" - 1;
15046 if (bfd_get_section_by_name (abfd, subname) == NULL)
15047 {
15048 if (o == gptab_data_sec)
15049 o->name = ".gptab.data";
15050 else
15051 o->name = ".gptab.bss";
15052 subname = o->name + sizeof ".gptab" - 1;
15053 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15054 }
15055
15056 /* Set up the first entry. */
15057 c = 1;
15058 amt = c * sizeof (Elf32_gptab);
15059 tab = bfd_malloc (amt);
15060 if (tab == NULL)
15061 return FALSE;
15062 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15063 tab[0].gt_header.gt_unused = 0;
15064
15065 /* Combine the input sections. */
15066 for (p = o->map_head.link_order; p != NULL; p = p->next)
15067 {
15068 asection *input_section;
15069 bfd *input_bfd;
15070 bfd_size_type size;
15071 unsigned long last;
15072 bfd_size_type gpentry;
15073
15074 if (p->type != bfd_indirect_link_order)
15075 {
15076 if (p->type == bfd_data_link_order)
15077 continue;
15078 abort ();
15079 }
15080
15081 input_section = p->u.indirect.section;
15082 input_bfd = input_section->owner;
15083
15084 /* Combine the gptab entries for this input section one
15085 by one. We know that the input gptab entries are
15086 sorted by ascending -G value. */
15087 size = input_section->size;
15088 last = 0;
15089 for (gpentry = sizeof (Elf32_External_gptab);
15090 gpentry < size;
15091 gpentry += sizeof (Elf32_External_gptab))
15092 {
15093 Elf32_External_gptab ext_gptab;
15094 Elf32_gptab int_gptab;
15095 unsigned long val;
15096 unsigned long add;
15097 bfd_boolean exact;
15098 unsigned int look;
15099
15100 if (! (bfd_get_section_contents
15101 (input_bfd, input_section, &ext_gptab, gpentry,
15102 sizeof (Elf32_External_gptab))))
15103 {
15104 free (tab);
15105 return FALSE;
15106 }
15107
15108 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15109 &int_gptab);
15110 val = int_gptab.gt_entry.gt_g_value;
15111 add = int_gptab.gt_entry.gt_bytes - last;
15112
15113 exact = FALSE;
15114 for (look = 1; look < c; look++)
15115 {
15116 if (tab[look].gt_entry.gt_g_value >= val)
15117 tab[look].gt_entry.gt_bytes += add;
15118
15119 if (tab[look].gt_entry.gt_g_value == val)
15120 exact = TRUE;
15121 }
15122
15123 if (! exact)
15124 {
15125 Elf32_gptab *new_tab;
15126 unsigned int max;
15127
15128 /* We need a new table entry. */
15129 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15130 new_tab = bfd_realloc (tab, amt);
15131 if (new_tab == NULL)
15132 {
15133 free (tab);
15134 return FALSE;
15135 }
15136 tab = new_tab;
15137 tab[c].gt_entry.gt_g_value = val;
15138 tab[c].gt_entry.gt_bytes = add;
15139
15140 /* Merge in the size for the next smallest -G
15141 value, since that will be implied by this new
15142 value. */
15143 max = 0;
15144 for (look = 1; look < c; look++)
15145 {
15146 if (tab[look].gt_entry.gt_g_value < val
15147 && (max == 0
15148 || (tab[look].gt_entry.gt_g_value
15149 > tab[max].gt_entry.gt_g_value)))
15150 max = look;
15151 }
15152 if (max != 0)
15153 tab[c].gt_entry.gt_bytes +=
15154 tab[max].gt_entry.gt_bytes;
15155
15156 ++c;
15157 }
15158
15159 last = int_gptab.gt_entry.gt_bytes;
15160 }
15161
15162 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15163 elf_link_input_bfd ignores this section. */
15164 input_section->flags &= ~SEC_HAS_CONTENTS;
15165 }
15166
15167 /* The table must be sorted by -G value. */
15168 if (c > 2)
15169 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15170
15171 /* Swap out the table. */
15172 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15173 ext_tab = bfd_alloc (abfd, amt);
15174 if (ext_tab == NULL)
15175 {
15176 free (tab);
15177 return FALSE;
15178 }
15179
15180 for (j = 0; j < c; j++)
15181 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15182 free (tab);
15183
15184 o->size = c * sizeof (Elf32_External_gptab);
15185 o->contents = (bfd_byte *) ext_tab;
15186
15187 /* Skip this section later on (I don't think this currently
15188 matters, but someday it might). */
15189 o->map_head.link_order = NULL;
15190 }
15191 }
15192
15193 /* Invoke the regular ELF backend linker to do all the work. */
15194 if (!bfd_elf_final_link (abfd, info))
15195 return FALSE;
15196
15197 /* Now write out the computed sections. */
15198
15199 if (abiflags_sec != NULL)
15200 {
15201 Elf_External_ABIFlags_v0 ext;
15202 Elf_Internal_ABIFlags_v0 *abiflags;
15203
15204 abiflags = &mips_elf_tdata (abfd)->abiflags;
15205
15206 /* Set up the abiflags if no valid input sections were found. */
15207 if (!mips_elf_tdata (abfd)->abiflags_valid)
15208 {
15209 infer_mips_abiflags (abfd, abiflags);
15210 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15211 }
15212 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15213 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15214 return FALSE;
15215 }
15216
15217 if (reginfo_sec != NULL)
15218 {
15219 Elf32_External_RegInfo ext;
15220
15221 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15222 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15223 return FALSE;
15224 }
15225
15226 if (mdebug_sec != NULL)
15227 {
15228 BFD_ASSERT (abfd->output_has_begun);
15229 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15230 swap, info,
15231 mdebug_sec->filepos))
15232 return FALSE;
15233
15234 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15235 }
15236
15237 if (gptab_data_sec != NULL)
15238 {
15239 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15240 gptab_data_sec->contents,
15241 0, gptab_data_sec->size))
15242 return FALSE;
15243 }
15244
15245 if (gptab_bss_sec != NULL)
15246 {
15247 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15248 gptab_bss_sec->contents,
15249 0, gptab_bss_sec->size))
15250 return FALSE;
15251 }
15252
15253 if (SGI_COMPAT (abfd))
15254 {
15255 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15256 if (rtproc_sec != NULL)
15257 {
15258 if (! bfd_set_section_contents (abfd, rtproc_sec,
15259 rtproc_sec->contents,
15260 0, rtproc_sec->size))
15261 return FALSE;
15262 }
15263 }
15264
15265 return TRUE;
15266 }
15267 \f
15268 /* Merge object file header flags from IBFD into OBFD. Raise an error
15269 if there are conflicting settings. */
15270
15271 static bfd_boolean
15272 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15273 {
15274 bfd *obfd = info->output_bfd;
15275 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15276 flagword old_flags;
15277 flagword new_flags;
15278 bfd_boolean ok;
15279
15280 new_flags = elf_elfheader (ibfd)->e_flags;
15281 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15282 old_flags = elf_elfheader (obfd)->e_flags;
15283
15284 /* Check flag compatibility. */
15285
15286 new_flags &= ~EF_MIPS_NOREORDER;
15287 old_flags &= ~EF_MIPS_NOREORDER;
15288
15289 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15290 doesn't seem to matter. */
15291 new_flags &= ~EF_MIPS_XGOT;
15292 old_flags &= ~EF_MIPS_XGOT;
15293
15294 /* MIPSpro generates ucode info in n64 objects. Again, we should
15295 just be able to ignore this. */
15296 new_flags &= ~EF_MIPS_UCODE;
15297 old_flags &= ~EF_MIPS_UCODE;
15298
15299 /* DSOs should only be linked with CPIC code. */
15300 if ((ibfd->flags & DYNAMIC) != 0)
15301 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15302
15303 if (new_flags == old_flags)
15304 return TRUE;
15305
15306 ok = TRUE;
15307
15308 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15309 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15310 {
15311 _bfd_error_handler
15312 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15313 ibfd);
15314 ok = TRUE;
15315 }
15316
15317 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15318 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15319 if (! (new_flags & EF_MIPS_PIC))
15320 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15321
15322 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15323 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15324
15325 /* Compare the ISAs. */
15326 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15327 {
15328 _bfd_error_handler
15329 (_("%pB: linking 32-bit code with 64-bit code"),
15330 ibfd);
15331 ok = FALSE;
15332 }
15333 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15334 {
15335 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15336 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15337 {
15338 /* Copy the architecture info from IBFD to OBFD. Also copy
15339 the 32-bit flag (if set) so that we continue to recognise
15340 OBFD as a 32-bit binary. */
15341 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15342 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15343 elf_elfheader (obfd)->e_flags
15344 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15345
15346 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15347 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15348
15349 /* Copy across the ABI flags if OBFD doesn't use them
15350 and if that was what caused us to treat IBFD as 32-bit. */
15351 if ((old_flags & EF_MIPS_ABI) == 0
15352 && mips_32bit_flags_p (new_flags)
15353 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15354 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15355 }
15356 else
15357 {
15358 /* The ISAs aren't compatible. */
15359 _bfd_error_handler
15360 /* xgettext:c-format */
15361 (_("%pB: linking %s module with previous %s modules"),
15362 ibfd,
15363 bfd_printable_name (ibfd),
15364 bfd_printable_name (obfd));
15365 ok = FALSE;
15366 }
15367 }
15368
15369 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15370 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15371
15372 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15373 does set EI_CLASS differently from any 32-bit ABI. */
15374 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15375 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15376 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15377 {
15378 /* Only error if both are set (to different values). */
15379 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15380 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15381 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15382 {
15383 _bfd_error_handler
15384 /* xgettext:c-format */
15385 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15386 ibfd,
15387 elf_mips_abi_name (ibfd),
15388 elf_mips_abi_name (obfd));
15389 ok = FALSE;
15390 }
15391 new_flags &= ~EF_MIPS_ABI;
15392 old_flags &= ~EF_MIPS_ABI;
15393 }
15394
15395 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15396 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15397 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15398 {
15399 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15400 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15401 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15402 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15403 int micro_mis = old_m16 && new_micro;
15404 int m16_mis = old_micro && new_m16;
15405
15406 if (m16_mis || micro_mis)
15407 {
15408 _bfd_error_handler
15409 /* xgettext:c-format */
15410 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15411 ibfd,
15412 m16_mis ? "MIPS16" : "microMIPS",
15413 m16_mis ? "microMIPS" : "MIPS16");
15414 ok = FALSE;
15415 }
15416
15417 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15418
15419 new_flags &= ~ EF_MIPS_ARCH_ASE;
15420 old_flags &= ~ EF_MIPS_ARCH_ASE;
15421 }
15422
15423 /* Compare NaN encodings. */
15424 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15425 {
15426 /* xgettext:c-format */
15427 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15428 ibfd,
15429 (new_flags & EF_MIPS_NAN2008
15430 ? "-mnan=2008" : "-mnan=legacy"),
15431 (old_flags & EF_MIPS_NAN2008
15432 ? "-mnan=2008" : "-mnan=legacy"));
15433 ok = FALSE;
15434 new_flags &= ~EF_MIPS_NAN2008;
15435 old_flags &= ~EF_MIPS_NAN2008;
15436 }
15437
15438 /* Compare FP64 state. */
15439 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15440 {
15441 /* xgettext:c-format */
15442 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15443 ibfd,
15444 (new_flags & EF_MIPS_FP64
15445 ? "-mfp64" : "-mfp32"),
15446 (old_flags & EF_MIPS_FP64
15447 ? "-mfp64" : "-mfp32"));
15448 ok = FALSE;
15449 new_flags &= ~EF_MIPS_FP64;
15450 old_flags &= ~EF_MIPS_FP64;
15451 }
15452
15453 /* Warn about any other mismatches */
15454 if (new_flags != old_flags)
15455 {
15456 /* xgettext:c-format */
15457 _bfd_error_handler
15458 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15459 "(%#x)"),
15460 ibfd, new_flags, old_flags);
15461 ok = FALSE;
15462 }
15463
15464 return ok;
15465 }
15466
15467 /* Merge object attributes from IBFD into OBFD. Raise an error if
15468 there are conflicting attributes. */
15469 static bfd_boolean
15470 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15471 {
15472 bfd *obfd = info->output_bfd;
15473 obj_attribute *in_attr;
15474 obj_attribute *out_attr;
15475 bfd *abi_fp_bfd;
15476 bfd *abi_msa_bfd;
15477
15478 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15479 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15480 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15481 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15482
15483 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15484 if (!abi_msa_bfd
15485 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15486 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15487
15488 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15489 {
15490 /* This is the first object. Copy the attributes. */
15491 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15492
15493 /* Use the Tag_null value to indicate the attributes have been
15494 initialized. */
15495 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15496
15497 return TRUE;
15498 }
15499
15500 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15501 non-conflicting ones. */
15502 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15503 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15504 {
15505 int out_fp, in_fp;
15506
15507 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15508 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15509 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15510 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15511 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15512 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15513 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15514 || in_fp == Val_GNU_MIPS_ABI_FP_64
15515 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15516 {
15517 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15518 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15519 }
15520 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15521 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15522 || out_fp == Val_GNU_MIPS_ABI_FP_64
15523 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15524 /* Keep the current setting. */;
15525 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15526 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15527 {
15528 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15529 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15530 }
15531 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15532 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15533 /* Keep the current setting. */;
15534 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15535 {
15536 const char *out_string, *in_string;
15537
15538 out_string = _bfd_mips_fp_abi_string (out_fp);
15539 in_string = _bfd_mips_fp_abi_string (in_fp);
15540 /* First warn about cases involving unrecognised ABIs. */
15541 if (!out_string && !in_string)
15542 /* xgettext:c-format */
15543 _bfd_error_handler
15544 (_("warning: %pB uses unknown floating point ABI %d "
15545 "(set by %pB), %pB uses unknown floating point ABI %d"),
15546 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15547 else if (!out_string)
15548 _bfd_error_handler
15549 /* xgettext:c-format */
15550 (_("warning: %pB uses unknown floating point ABI %d "
15551 "(set by %pB), %pB uses %s"),
15552 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15553 else if (!in_string)
15554 _bfd_error_handler
15555 /* xgettext:c-format */
15556 (_("warning: %pB uses %s (set by %pB), "
15557 "%pB uses unknown floating point ABI %d"),
15558 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15559 else
15560 {
15561 /* If one of the bfds is soft-float, the other must be
15562 hard-float. The exact choice of hard-float ABI isn't
15563 really relevant to the error message. */
15564 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15565 out_string = "-mhard-float";
15566 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15567 in_string = "-mhard-float";
15568 _bfd_error_handler
15569 /* xgettext:c-format */
15570 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15571 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15572 }
15573 }
15574 }
15575
15576 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15577 non-conflicting ones. */
15578 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15579 {
15580 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15581 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15582 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15583 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15584 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15585 {
15586 case Val_GNU_MIPS_ABI_MSA_128:
15587 _bfd_error_handler
15588 /* xgettext:c-format */
15589 (_("warning: %pB uses %s (set by %pB), "
15590 "%pB uses unknown MSA ABI %d"),
15591 obfd, "-mmsa", abi_msa_bfd,
15592 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15593 break;
15594
15595 default:
15596 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15597 {
15598 case Val_GNU_MIPS_ABI_MSA_128:
15599 _bfd_error_handler
15600 /* xgettext:c-format */
15601 (_("warning: %pB uses unknown MSA ABI %d "
15602 "(set by %pB), %pB uses %s"),
15603 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15604 abi_msa_bfd, ibfd, "-mmsa");
15605 break;
15606
15607 default:
15608 _bfd_error_handler
15609 /* xgettext:c-format */
15610 (_("warning: %pB uses unknown MSA ABI %d "
15611 "(set by %pB), %pB uses unknown MSA ABI %d"),
15612 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15613 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15614 break;
15615 }
15616 }
15617 }
15618
15619 /* Merge Tag_compatibility attributes and any common GNU ones. */
15620 return _bfd_elf_merge_object_attributes (ibfd, info);
15621 }
15622
15623 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15624 there are conflicting settings. */
15625
15626 static bfd_boolean
15627 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15628 {
15629 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15630 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15631 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15632
15633 /* Update the output abiflags fp_abi using the computed fp_abi. */
15634 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15635
15636 #define max(a, b) ((a) > (b) ? (a) : (b))
15637 /* Merge abiflags. */
15638 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15639 in_tdata->abiflags.isa_level);
15640 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15641 in_tdata->abiflags.isa_rev);
15642 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15643 in_tdata->abiflags.gpr_size);
15644 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15645 in_tdata->abiflags.cpr1_size);
15646 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15647 in_tdata->abiflags.cpr2_size);
15648 #undef max
15649 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15650 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15651
15652 return TRUE;
15653 }
15654
15655 /* Merge backend specific data from an object file to the output
15656 object file when linking. */
15657
15658 bfd_boolean
15659 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15660 {
15661 bfd *obfd = info->output_bfd;
15662 struct mips_elf_obj_tdata *out_tdata;
15663 struct mips_elf_obj_tdata *in_tdata;
15664 bfd_boolean null_input_bfd = TRUE;
15665 asection *sec;
15666 bfd_boolean ok;
15667
15668 /* Check if we have the same endianness. */
15669 if (! _bfd_generic_verify_endian_match (ibfd, info))
15670 {
15671 _bfd_error_handler
15672 (_("%pB: endianness incompatible with that of the selected emulation"),
15673 ibfd);
15674 return FALSE;
15675 }
15676
15677 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15678 return TRUE;
15679
15680 in_tdata = mips_elf_tdata (ibfd);
15681 out_tdata = mips_elf_tdata (obfd);
15682
15683 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15684 {
15685 _bfd_error_handler
15686 (_("%pB: ABI is incompatible with that of the selected emulation"),
15687 ibfd);
15688 return FALSE;
15689 }
15690
15691 /* Check to see if the input BFD actually contains any sections. If not,
15692 then it has no attributes, and its flags may not have been initialized
15693 either, but it cannot actually cause any incompatibility. */
15694 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15695 {
15696 /* Ignore synthetic sections and empty .text, .data and .bss sections
15697 which are automatically generated by gas. Also ignore fake
15698 (s)common sections, since merely defining a common symbol does
15699 not affect compatibility. */
15700 if ((sec->flags & SEC_IS_COMMON) == 0
15701 && strcmp (sec->name, ".reginfo")
15702 && strcmp (sec->name, ".mdebug")
15703 && (sec->size != 0
15704 || (strcmp (sec->name, ".text")
15705 && strcmp (sec->name, ".data")
15706 && strcmp (sec->name, ".bss"))))
15707 {
15708 null_input_bfd = FALSE;
15709 break;
15710 }
15711 }
15712 if (null_input_bfd)
15713 return TRUE;
15714
15715 /* Populate abiflags using existing information. */
15716 if (in_tdata->abiflags_valid)
15717 {
15718 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15719 Elf_Internal_ABIFlags_v0 in_abiflags;
15720 Elf_Internal_ABIFlags_v0 abiflags;
15721
15722 /* Set up the FP ABI attribute from the abiflags if it is not already
15723 set. */
15724 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15725 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15726
15727 infer_mips_abiflags (ibfd, &abiflags);
15728 in_abiflags = in_tdata->abiflags;
15729
15730 /* It is not possible to infer the correct ISA revision
15731 for R3 or R5 so drop down to R2 for the checks. */
15732 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15733 in_abiflags.isa_rev = 2;
15734
15735 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15736 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15737 _bfd_error_handler
15738 (_("%pB: warning: inconsistent ISA between e_flags and "
15739 ".MIPS.abiflags"), ibfd);
15740 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15741 && in_abiflags.fp_abi != abiflags.fp_abi)
15742 _bfd_error_handler
15743 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15744 ".MIPS.abiflags"), ibfd);
15745 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15746 _bfd_error_handler
15747 (_("%pB: warning: inconsistent ASEs between e_flags and "
15748 ".MIPS.abiflags"), ibfd);
15749 /* The isa_ext is allowed to be an extension of what can be inferred
15750 from e_flags. */
15751 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15752 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15753 _bfd_error_handler
15754 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15755 ".MIPS.abiflags"), ibfd);
15756 if (in_abiflags.flags2 != 0)
15757 _bfd_error_handler
15758 (_("%pB: warning: unexpected flag in the flags2 field of "
15759 ".MIPS.abiflags (0x%lx)"), ibfd,
15760 in_abiflags.flags2);
15761 }
15762 else
15763 {
15764 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15765 in_tdata->abiflags_valid = TRUE;
15766 }
15767
15768 if (!out_tdata->abiflags_valid)
15769 {
15770 /* Copy input abiflags if output abiflags are not already valid. */
15771 out_tdata->abiflags = in_tdata->abiflags;
15772 out_tdata->abiflags_valid = TRUE;
15773 }
15774
15775 if (! elf_flags_init (obfd))
15776 {
15777 elf_flags_init (obfd) = TRUE;
15778 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15779 elf_elfheader (obfd)->e_ident[EI_CLASS]
15780 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15781
15782 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15783 && (bfd_get_arch_info (obfd)->the_default
15784 || mips_mach_extends_p (bfd_get_mach (obfd),
15785 bfd_get_mach (ibfd))))
15786 {
15787 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15788 bfd_get_mach (ibfd)))
15789 return FALSE;
15790
15791 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15792 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15793 }
15794
15795 ok = TRUE;
15796 }
15797 else
15798 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15799
15800 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15801
15802 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15803
15804 if (!ok)
15805 {
15806 bfd_set_error (bfd_error_bad_value);
15807 return FALSE;
15808 }
15809
15810 return TRUE;
15811 }
15812
15813 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15814
15815 bfd_boolean
15816 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15817 {
15818 BFD_ASSERT (!elf_flags_init (abfd)
15819 || elf_elfheader (abfd)->e_flags == flags);
15820
15821 elf_elfheader (abfd)->e_flags = flags;
15822 elf_flags_init (abfd) = TRUE;
15823 return TRUE;
15824 }
15825
15826 char *
15827 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15828 {
15829 switch (dtag)
15830 {
15831 default: return "";
15832 case DT_MIPS_RLD_VERSION:
15833 return "MIPS_RLD_VERSION";
15834 case DT_MIPS_TIME_STAMP:
15835 return "MIPS_TIME_STAMP";
15836 case DT_MIPS_ICHECKSUM:
15837 return "MIPS_ICHECKSUM";
15838 case DT_MIPS_IVERSION:
15839 return "MIPS_IVERSION";
15840 case DT_MIPS_FLAGS:
15841 return "MIPS_FLAGS";
15842 case DT_MIPS_BASE_ADDRESS:
15843 return "MIPS_BASE_ADDRESS";
15844 case DT_MIPS_MSYM:
15845 return "MIPS_MSYM";
15846 case DT_MIPS_CONFLICT:
15847 return "MIPS_CONFLICT";
15848 case DT_MIPS_LIBLIST:
15849 return "MIPS_LIBLIST";
15850 case DT_MIPS_LOCAL_GOTNO:
15851 return "MIPS_LOCAL_GOTNO";
15852 case DT_MIPS_CONFLICTNO:
15853 return "MIPS_CONFLICTNO";
15854 case DT_MIPS_LIBLISTNO:
15855 return "MIPS_LIBLISTNO";
15856 case DT_MIPS_SYMTABNO:
15857 return "MIPS_SYMTABNO";
15858 case DT_MIPS_UNREFEXTNO:
15859 return "MIPS_UNREFEXTNO";
15860 case DT_MIPS_GOTSYM:
15861 return "MIPS_GOTSYM";
15862 case DT_MIPS_HIPAGENO:
15863 return "MIPS_HIPAGENO";
15864 case DT_MIPS_RLD_MAP:
15865 return "MIPS_RLD_MAP";
15866 case DT_MIPS_RLD_MAP_REL:
15867 return "MIPS_RLD_MAP_REL";
15868 case DT_MIPS_DELTA_CLASS:
15869 return "MIPS_DELTA_CLASS";
15870 case DT_MIPS_DELTA_CLASS_NO:
15871 return "MIPS_DELTA_CLASS_NO";
15872 case DT_MIPS_DELTA_INSTANCE:
15873 return "MIPS_DELTA_INSTANCE";
15874 case DT_MIPS_DELTA_INSTANCE_NO:
15875 return "MIPS_DELTA_INSTANCE_NO";
15876 case DT_MIPS_DELTA_RELOC:
15877 return "MIPS_DELTA_RELOC";
15878 case DT_MIPS_DELTA_RELOC_NO:
15879 return "MIPS_DELTA_RELOC_NO";
15880 case DT_MIPS_DELTA_SYM:
15881 return "MIPS_DELTA_SYM";
15882 case DT_MIPS_DELTA_SYM_NO:
15883 return "MIPS_DELTA_SYM_NO";
15884 case DT_MIPS_DELTA_CLASSSYM:
15885 return "MIPS_DELTA_CLASSSYM";
15886 case DT_MIPS_DELTA_CLASSSYM_NO:
15887 return "MIPS_DELTA_CLASSSYM_NO";
15888 case DT_MIPS_CXX_FLAGS:
15889 return "MIPS_CXX_FLAGS";
15890 case DT_MIPS_PIXIE_INIT:
15891 return "MIPS_PIXIE_INIT";
15892 case DT_MIPS_SYMBOL_LIB:
15893 return "MIPS_SYMBOL_LIB";
15894 case DT_MIPS_LOCALPAGE_GOTIDX:
15895 return "MIPS_LOCALPAGE_GOTIDX";
15896 case DT_MIPS_LOCAL_GOTIDX:
15897 return "MIPS_LOCAL_GOTIDX";
15898 case DT_MIPS_HIDDEN_GOTIDX:
15899 return "MIPS_HIDDEN_GOTIDX";
15900 case DT_MIPS_PROTECTED_GOTIDX:
15901 return "MIPS_PROTECTED_GOT_IDX";
15902 case DT_MIPS_OPTIONS:
15903 return "MIPS_OPTIONS";
15904 case DT_MIPS_INTERFACE:
15905 return "MIPS_INTERFACE";
15906 case DT_MIPS_DYNSTR_ALIGN:
15907 return "DT_MIPS_DYNSTR_ALIGN";
15908 case DT_MIPS_INTERFACE_SIZE:
15909 return "DT_MIPS_INTERFACE_SIZE";
15910 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15911 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15912 case DT_MIPS_PERF_SUFFIX:
15913 return "DT_MIPS_PERF_SUFFIX";
15914 case DT_MIPS_COMPACT_SIZE:
15915 return "DT_MIPS_COMPACT_SIZE";
15916 case DT_MIPS_GP_VALUE:
15917 return "DT_MIPS_GP_VALUE";
15918 case DT_MIPS_AUX_DYNAMIC:
15919 return "DT_MIPS_AUX_DYNAMIC";
15920 case DT_MIPS_PLTGOT:
15921 return "DT_MIPS_PLTGOT";
15922 case DT_MIPS_RWPLT:
15923 return "DT_MIPS_RWPLT";
15924 }
15925 }
15926
15927 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15928 not known. */
15929
15930 const char *
15931 _bfd_mips_fp_abi_string (int fp)
15932 {
15933 switch (fp)
15934 {
15935 /* These strings aren't translated because they're simply
15936 option lists. */
15937 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15938 return "-mdouble-float";
15939
15940 case Val_GNU_MIPS_ABI_FP_SINGLE:
15941 return "-msingle-float";
15942
15943 case Val_GNU_MIPS_ABI_FP_SOFT:
15944 return "-msoft-float";
15945
15946 case Val_GNU_MIPS_ABI_FP_OLD_64:
15947 return _("-mips32r2 -mfp64 (12 callee-saved)");
15948
15949 case Val_GNU_MIPS_ABI_FP_XX:
15950 return "-mfpxx";
15951
15952 case Val_GNU_MIPS_ABI_FP_64:
15953 return "-mgp32 -mfp64";
15954
15955 case Val_GNU_MIPS_ABI_FP_64A:
15956 return "-mgp32 -mfp64 -mno-odd-spreg";
15957
15958 default:
15959 return 0;
15960 }
15961 }
15962
15963 static void
15964 print_mips_ases (FILE *file, unsigned int mask)
15965 {
15966 if (mask & AFL_ASE_DSP)
15967 fputs ("\n\tDSP ASE", file);
15968 if (mask & AFL_ASE_DSPR2)
15969 fputs ("\n\tDSP R2 ASE", file);
15970 if (mask & AFL_ASE_DSPR3)
15971 fputs ("\n\tDSP R3 ASE", file);
15972 if (mask & AFL_ASE_EVA)
15973 fputs ("\n\tEnhanced VA Scheme", file);
15974 if (mask & AFL_ASE_MCU)
15975 fputs ("\n\tMCU (MicroController) ASE", file);
15976 if (mask & AFL_ASE_MDMX)
15977 fputs ("\n\tMDMX ASE", file);
15978 if (mask & AFL_ASE_MIPS3D)
15979 fputs ("\n\tMIPS-3D ASE", file);
15980 if (mask & AFL_ASE_MT)
15981 fputs ("\n\tMT ASE", file);
15982 if (mask & AFL_ASE_SMARTMIPS)
15983 fputs ("\n\tSmartMIPS ASE", file);
15984 if (mask & AFL_ASE_VIRT)
15985 fputs ("\n\tVZ ASE", file);
15986 if (mask & AFL_ASE_MSA)
15987 fputs ("\n\tMSA ASE", file);
15988 if (mask & AFL_ASE_MIPS16)
15989 fputs ("\n\tMIPS16 ASE", file);
15990 if (mask & AFL_ASE_MICROMIPS)
15991 fputs ("\n\tMICROMIPS ASE", file);
15992 if (mask & AFL_ASE_XPA)
15993 fputs ("\n\tXPA ASE", file);
15994 if (mask & AFL_ASE_MIPS16E2)
15995 fputs ("\n\tMIPS16e2 ASE", file);
15996 if (mask & AFL_ASE_CRC)
15997 fputs ("\n\tCRC ASE", file);
15998 if (mask & AFL_ASE_GINV)
15999 fputs ("\n\tGINV ASE", file);
16000 if (mask & AFL_ASE_LOONGSON_MMI)
16001 fputs ("\n\tLoongson MMI ASE", file);
16002 if (mask & AFL_ASE_LOONGSON_CAM)
16003 fputs ("\n\tLoongson CAM ASE", file);
16004 if (mask & AFL_ASE_LOONGSON_EXT)
16005 fputs ("\n\tLoongson EXT ASE", file);
16006 if (mask & AFL_ASE_LOONGSON_EXT2)
16007 fputs ("\n\tLoongson EXT2 ASE", file);
16008 if (mask == 0)
16009 fprintf (file, "\n\t%s", _("None"));
16010 else if ((mask & ~AFL_ASE_MASK) != 0)
16011 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16012 }
16013
16014 static void
16015 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16016 {
16017 switch (isa_ext)
16018 {
16019 case 0:
16020 fputs (_("None"), file);
16021 break;
16022 case AFL_EXT_XLR:
16023 fputs ("RMI XLR", file);
16024 break;
16025 case AFL_EXT_OCTEON3:
16026 fputs ("Cavium Networks Octeon3", file);
16027 break;
16028 case AFL_EXT_OCTEON2:
16029 fputs ("Cavium Networks Octeon2", file);
16030 break;
16031 case AFL_EXT_OCTEONP:
16032 fputs ("Cavium Networks OcteonP", file);
16033 break;
16034 case AFL_EXT_OCTEON:
16035 fputs ("Cavium Networks Octeon", file);
16036 break;
16037 case AFL_EXT_5900:
16038 fputs ("Toshiba R5900", file);
16039 break;
16040 case AFL_EXT_4650:
16041 fputs ("MIPS R4650", file);
16042 break;
16043 case AFL_EXT_4010:
16044 fputs ("LSI R4010", file);
16045 break;
16046 case AFL_EXT_4100:
16047 fputs ("NEC VR4100", file);
16048 break;
16049 case AFL_EXT_3900:
16050 fputs ("Toshiba R3900", file);
16051 break;
16052 case AFL_EXT_10000:
16053 fputs ("MIPS R10000", file);
16054 break;
16055 case AFL_EXT_SB1:
16056 fputs ("Broadcom SB-1", file);
16057 break;
16058 case AFL_EXT_4111:
16059 fputs ("NEC VR4111/VR4181", file);
16060 break;
16061 case AFL_EXT_4120:
16062 fputs ("NEC VR4120", file);
16063 break;
16064 case AFL_EXT_5400:
16065 fputs ("NEC VR5400", file);
16066 break;
16067 case AFL_EXT_5500:
16068 fputs ("NEC VR5500", file);
16069 break;
16070 case AFL_EXT_LOONGSON_2E:
16071 fputs ("ST Microelectronics Loongson 2E", file);
16072 break;
16073 case AFL_EXT_LOONGSON_2F:
16074 fputs ("ST Microelectronics Loongson 2F", file);
16075 break;
16076 case AFL_EXT_INTERAPTIV_MR2:
16077 fputs ("Imagination interAptiv MR2", file);
16078 break;
16079 default:
16080 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16081 break;
16082 }
16083 }
16084
16085 static void
16086 print_mips_fp_abi_value (FILE *file, int val)
16087 {
16088 switch (val)
16089 {
16090 case Val_GNU_MIPS_ABI_FP_ANY:
16091 fprintf (file, _("Hard or soft float\n"));
16092 break;
16093 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16094 fprintf (file, _("Hard float (double precision)\n"));
16095 break;
16096 case Val_GNU_MIPS_ABI_FP_SINGLE:
16097 fprintf (file, _("Hard float (single precision)\n"));
16098 break;
16099 case Val_GNU_MIPS_ABI_FP_SOFT:
16100 fprintf (file, _("Soft float\n"));
16101 break;
16102 case Val_GNU_MIPS_ABI_FP_OLD_64:
16103 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16104 break;
16105 case Val_GNU_MIPS_ABI_FP_XX:
16106 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16107 break;
16108 case Val_GNU_MIPS_ABI_FP_64:
16109 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16110 break;
16111 case Val_GNU_MIPS_ABI_FP_64A:
16112 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16113 break;
16114 default:
16115 fprintf (file, "??? (%d)\n", val);
16116 break;
16117 }
16118 }
16119
16120 static int
16121 get_mips_reg_size (int reg_size)
16122 {
16123 return (reg_size == AFL_REG_NONE) ? 0
16124 : (reg_size == AFL_REG_32) ? 32
16125 : (reg_size == AFL_REG_64) ? 64
16126 : (reg_size == AFL_REG_128) ? 128
16127 : -1;
16128 }
16129
16130 bfd_boolean
16131 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16132 {
16133 FILE *file = ptr;
16134
16135 BFD_ASSERT (abfd != NULL && ptr != NULL);
16136
16137 /* Print normal ELF private data. */
16138 _bfd_elf_print_private_bfd_data (abfd, ptr);
16139
16140 /* xgettext:c-format */
16141 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16142
16143 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16144 fprintf (file, _(" [abi=O32]"));
16145 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16146 fprintf (file, _(" [abi=O64]"));
16147 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16148 fprintf (file, _(" [abi=EABI32]"));
16149 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16150 fprintf (file, _(" [abi=EABI64]"));
16151 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16152 fprintf (file, _(" [abi unknown]"));
16153 else if (ABI_N32_P (abfd))
16154 fprintf (file, _(" [abi=N32]"));
16155 else if (ABI_64_P (abfd))
16156 fprintf (file, _(" [abi=64]"));
16157 else
16158 fprintf (file, _(" [no abi set]"));
16159
16160 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16161 fprintf (file, " [mips1]");
16162 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16163 fprintf (file, " [mips2]");
16164 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16165 fprintf (file, " [mips3]");
16166 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16167 fprintf (file, " [mips4]");
16168 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16169 fprintf (file, " [mips5]");
16170 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16171 fprintf (file, " [mips32]");
16172 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16173 fprintf (file, " [mips64]");
16174 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16175 fprintf (file, " [mips32r2]");
16176 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16177 fprintf (file, " [mips64r2]");
16178 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16179 fprintf (file, " [mips32r6]");
16180 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16181 fprintf (file, " [mips64r6]");
16182 else
16183 fprintf (file, _(" [unknown ISA]"));
16184
16185 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16186 fprintf (file, " [mdmx]");
16187
16188 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16189 fprintf (file, " [mips16]");
16190
16191 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16192 fprintf (file, " [micromips]");
16193
16194 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16195 fprintf (file, " [nan2008]");
16196
16197 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16198 fprintf (file, " [old fp64]");
16199
16200 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16201 fprintf (file, " [32bitmode]");
16202 else
16203 fprintf (file, _(" [not 32bitmode]"));
16204
16205 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16206 fprintf (file, " [noreorder]");
16207
16208 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16209 fprintf (file, " [PIC]");
16210
16211 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16212 fprintf (file, " [CPIC]");
16213
16214 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16215 fprintf (file, " [XGOT]");
16216
16217 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16218 fprintf (file, " [UCODE]");
16219
16220 fputc ('\n', file);
16221
16222 if (mips_elf_tdata (abfd)->abiflags_valid)
16223 {
16224 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16225 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16226 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16227 if (abiflags->isa_rev > 1)
16228 fprintf (file, "r%d", abiflags->isa_rev);
16229 fprintf (file, "\nGPR size: %d",
16230 get_mips_reg_size (abiflags->gpr_size));
16231 fprintf (file, "\nCPR1 size: %d",
16232 get_mips_reg_size (abiflags->cpr1_size));
16233 fprintf (file, "\nCPR2 size: %d",
16234 get_mips_reg_size (abiflags->cpr2_size));
16235 fputs ("\nFP ABI: ", file);
16236 print_mips_fp_abi_value (file, abiflags->fp_abi);
16237 fputs ("ISA Extension: ", file);
16238 print_mips_isa_ext (file, abiflags->isa_ext);
16239 fputs ("\nASEs:", file);
16240 print_mips_ases (file, abiflags->ases);
16241 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16242 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16243 fputc ('\n', file);
16244 }
16245
16246 return TRUE;
16247 }
16248
16249 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16250 {
16251 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16252 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16253 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16254 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16255 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16256 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16257 { NULL, 0, 0, 0, 0 }
16258 };
16259
16260 /* Merge non visibility st_other attributes. Ensure that the
16261 STO_OPTIONAL flag is copied into h->other, even if this is not a
16262 definiton of the symbol. */
16263 void
16264 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16265 const Elf_Internal_Sym *isym,
16266 bfd_boolean definition,
16267 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16268 {
16269 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16270 {
16271 unsigned char other;
16272
16273 other = (definition ? isym->st_other : h->other);
16274 other &= ~ELF_ST_VISIBILITY (-1);
16275 h->other = other | ELF_ST_VISIBILITY (h->other);
16276 }
16277
16278 if (!definition
16279 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16280 h->other |= STO_OPTIONAL;
16281 }
16282
16283 /* Decide whether an undefined symbol is special and can be ignored.
16284 This is the case for OPTIONAL symbols on IRIX. */
16285 bfd_boolean
16286 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16287 {
16288 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16289 }
16290
16291 bfd_boolean
16292 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16293 {
16294 return (sym->st_shndx == SHN_COMMON
16295 || sym->st_shndx == SHN_MIPS_ACOMMON
16296 || sym->st_shndx == SHN_MIPS_SCOMMON);
16297 }
16298
16299 /* Return address for Ith PLT stub in section PLT, for relocation REL
16300 or (bfd_vma) -1 if it should not be included. */
16301
16302 bfd_vma
16303 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16304 const arelent *rel ATTRIBUTE_UNUSED)
16305 {
16306 return (plt->vma
16307 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16308 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16309 }
16310
16311 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16312 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16313 and .got.plt and also the slots may be of a different size each we walk
16314 the PLT manually fetching instructions and matching them against known
16315 patterns. To make things easier standard MIPS slots, if any, always come
16316 first. As we don't create proper ELF symbols we use the UDATA.I member
16317 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16318 with the ST_OTHER member of the ELF symbol. */
16319
16320 long
16321 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16322 long symcount ATTRIBUTE_UNUSED,
16323 asymbol **syms ATTRIBUTE_UNUSED,
16324 long dynsymcount, asymbol **dynsyms,
16325 asymbol **ret)
16326 {
16327 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16328 static const char microsuffix[] = "@micromipsplt";
16329 static const char m16suffix[] = "@mips16plt";
16330 static const char mipssuffix[] = "@plt";
16331
16332 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16333 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16334 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16335 Elf_Internal_Shdr *hdr;
16336 bfd_byte *plt_data;
16337 bfd_vma plt_offset;
16338 unsigned int other;
16339 bfd_vma entry_size;
16340 bfd_vma plt0_size;
16341 asection *relplt;
16342 bfd_vma opcode;
16343 asection *plt;
16344 asymbol *send;
16345 size_t size;
16346 char *names;
16347 long counti;
16348 arelent *p;
16349 asymbol *s;
16350 char *nend;
16351 long count;
16352 long pi;
16353 long i;
16354 long n;
16355
16356 *ret = NULL;
16357
16358 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16359 return 0;
16360
16361 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16362 if (relplt == NULL)
16363 return 0;
16364
16365 hdr = &elf_section_data (relplt)->this_hdr;
16366 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16367 return 0;
16368
16369 plt = bfd_get_section_by_name (abfd, ".plt");
16370 if (plt == NULL)
16371 return 0;
16372
16373 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16374 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16375 return -1;
16376 p = relplt->relocation;
16377
16378 /* Calculating the exact amount of space required for symbols would
16379 require two passes over the PLT, so just pessimise assuming two
16380 PLT slots per relocation. */
16381 count = relplt->size / hdr->sh_entsize;
16382 counti = count * bed->s->int_rels_per_ext_rel;
16383 size = 2 * count * sizeof (asymbol);
16384 size += count * (sizeof (mipssuffix) +
16385 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16386 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16387 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16388
16389 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16390 size += sizeof (asymbol) + sizeof (pltname);
16391
16392 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16393 return -1;
16394
16395 if (plt->size < 16)
16396 return -1;
16397
16398 s = *ret = bfd_malloc (size);
16399 if (s == NULL)
16400 return -1;
16401 send = s + 2 * count + 1;
16402
16403 names = (char *) send;
16404 nend = (char *) s + size;
16405 n = 0;
16406
16407 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16408 if (opcode == 0x3302fffe)
16409 {
16410 if (!micromips_p)
16411 return -1;
16412 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16413 other = STO_MICROMIPS;
16414 }
16415 else if (opcode == 0x0398c1d0)
16416 {
16417 if (!micromips_p)
16418 return -1;
16419 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16420 other = STO_MICROMIPS;
16421 }
16422 else
16423 {
16424 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16425 other = 0;
16426 }
16427
16428 s->the_bfd = abfd;
16429 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16430 s->section = plt;
16431 s->value = 0;
16432 s->name = names;
16433 s->udata.i = other;
16434 memcpy (names, pltname, sizeof (pltname));
16435 names += sizeof (pltname);
16436 ++s, ++n;
16437
16438 pi = 0;
16439 for (plt_offset = plt0_size;
16440 plt_offset + 8 <= plt->size && s < send;
16441 plt_offset += entry_size)
16442 {
16443 bfd_vma gotplt_addr;
16444 const char *suffix;
16445 bfd_vma gotplt_hi;
16446 bfd_vma gotplt_lo;
16447 size_t suffixlen;
16448
16449 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16450
16451 /* Check if the second word matches the expected MIPS16 instruction. */
16452 if (opcode == 0x651aeb00)
16453 {
16454 if (micromips_p)
16455 return -1;
16456 /* Truncated table??? */
16457 if (plt_offset + 16 > plt->size)
16458 break;
16459 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16460 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16461 suffixlen = sizeof (m16suffix);
16462 suffix = m16suffix;
16463 other = STO_MIPS16;
16464 }
16465 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16466 else if (opcode == 0xff220000)
16467 {
16468 if (!micromips_p)
16469 return -1;
16470 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16471 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16472 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16473 gotplt_lo <<= 2;
16474 gotplt_addr = gotplt_hi + gotplt_lo;
16475 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16476 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16477 suffixlen = sizeof (microsuffix);
16478 suffix = microsuffix;
16479 other = STO_MICROMIPS;
16480 }
16481 /* Likewise the expected microMIPS instruction (insn32 mode). */
16482 else if ((opcode & 0xffff0000) == 0xff2f0000)
16483 {
16484 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16485 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16486 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16487 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16488 gotplt_addr = gotplt_hi + gotplt_lo;
16489 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16490 suffixlen = sizeof (microsuffix);
16491 suffix = microsuffix;
16492 other = STO_MICROMIPS;
16493 }
16494 /* Otherwise assume standard MIPS code. */
16495 else
16496 {
16497 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16498 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16499 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16500 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16501 gotplt_addr = gotplt_hi + gotplt_lo;
16502 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16503 suffixlen = sizeof (mipssuffix);
16504 suffix = mipssuffix;
16505 other = 0;
16506 }
16507 /* Truncated table??? */
16508 if (plt_offset + entry_size > plt->size)
16509 break;
16510
16511 for (i = 0;
16512 i < count && p[pi].address != gotplt_addr;
16513 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16514
16515 if (i < count)
16516 {
16517 size_t namelen;
16518 size_t len;
16519
16520 *s = **p[pi].sym_ptr_ptr;
16521 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16522 we are defining a symbol, ensure one of them is set. */
16523 if ((s->flags & BSF_LOCAL) == 0)
16524 s->flags |= BSF_GLOBAL;
16525 s->flags |= BSF_SYNTHETIC;
16526 s->section = plt;
16527 s->value = plt_offset;
16528 s->name = names;
16529 s->udata.i = other;
16530
16531 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16532 namelen = len + suffixlen;
16533 if (names + namelen > nend)
16534 break;
16535
16536 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16537 names += len;
16538 memcpy (names, suffix, suffixlen);
16539 names += suffixlen;
16540
16541 ++s, ++n;
16542 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16543 }
16544 }
16545
16546 free (plt_data);
16547
16548 return n;
16549 }
16550
16551 /* Return the ABI flags associated with ABFD if available. */
16552
16553 Elf_Internal_ABIFlags_v0 *
16554 bfd_mips_elf_get_abiflags (bfd *abfd)
16555 {
16556 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16557
16558 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16559 }
16560
16561 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16562 field. Taken from `libc-abis.h' generated at GNU libc build time.
16563 Using a MIPS_ prefix as other libc targets use different values. */
16564 enum
16565 {
16566 MIPS_LIBC_ABI_DEFAULT = 0,
16567 MIPS_LIBC_ABI_MIPS_PLT,
16568 MIPS_LIBC_ABI_UNIQUE,
16569 MIPS_LIBC_ABI_MIPS_O32_FP64,
16570 MIPS_LIBC_ABI_ABSOLUTE,
16571 MIPS_LIBC_ABI_MAX
16572 };
16573
16574 void
16575 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16576 {
16577 struct mips_elf_link_hash_table *htab = NULL;
16578 Elf_Internal_Ehdr *i_ehdrp;
16579
16580 i_ehdrp = elf_elfheader (abfd);
16581 if (link_info)
16582 {
16583 htab = mips_elf_hash_table (link_info);
16584 BFD_ASSERT (htab != NULL);
16585 }
16586
16587 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16588 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16589
16590 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16591 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16592 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16593
16594 /* Mark that we need support for absolute symbols in the dynamic loader. */
16595 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16596 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16597
16598 _bfd_elf_post_process_headers (abfd, link_info);
16599 }
16600
16601 int
16602 _bfd_mips_elf_compact_eh_encoding
16603 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16604 {
16605 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16606 }
16607
16608 /* Return the opcode for can't unwind. */
16609
16610 int
16611 _bfd_mips_elf_cant_unwind_opcode
16612 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16613 {
16614 return COMPACT_EH_CANT_UNWIND_OPCODE;
16615 }
This page took 0.362093 seconds and 5 git commands to generate.