[MIPS] Map 'move' to 'or'.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2015 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
460 asection *sstubs;
461 asection *sgot;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1583 const char *name;
1584
1585 if (ELF_ST_IS_MICROMIPS (h->root.other))
1586 value |= 1;
1587
1588 /* Create a new symbol. */
1589 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1590 bh = NULL;
1591 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1592 BSF_LOCAL, s, value, NULL,
1593 TRUE, FALSE, &bh))
1594 return FALSE;
1595
1596 /* Make it a local function. */
1597 elfh = (struct elf_link_hash_entry *) bh;
1598 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1599 elfh->size = size;
1600 elfh->forced_local = 1;
1601 return TRUE;
1602 }
1603
1604 /* We're about to redefine H. Create a symbol to represent H's
1605 current value and size, to help make the disassembly easier
1606 to read. */
1607
1608 static bfd_boolean
1609 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1610 struct mips_elf_link_hash_entry *h,
1611 const char *prefix)
1612 {
1613 struct bfd_link_hash_entry *bh;
1614 struct elf_link_hash_entry *elfh;
1615 const char *name;
1616 asection *s;
1617 bfd_vma value;
1618
1619 /* Read the symbol's value. */
1620 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1621 || h->root.root.type == bfd_link_hash_defweak);
1622 s = h->root.root.u.def.section;
1623 value = h->root.root.u.def.value;
1624
1625 /* Create a new symbol. */
1626 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1627 bh = NULL;
1628 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1629 BSF_LOCAL, s, value, NULL,
1630 TRUE, FALSE, &bh))
1631 return FALSE;
1632
1633 /* Make it local and copy the other attributes from H. */
1634 elfh = (struct elf_link_hash_entry *) bh;
1635 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1636 elfh->other = h->root.other;
1637 elfh->size = h->root.size;
1638 elfh->forced_local = 1;
1639 return TRUE;
1640 }
1641
1642 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1643 function rather than to a hard-float stub. */
1644
1645 static bfd_boolean
1646 section_allows_mips16_refs_p (asection *section)
1647 {
1648 const char *name;
1649
1650 name = bfd_get_section_name (section->owner, section);
1651 return (FN_STUB_P (name)
1652 || CALL_STUB_P (name)
1653 || CALL_FP_STUB_P (name)
1654 || strcmp (name, ".pdr") == 0);
1655 }
1656
1657 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1658 stub section of some kind. Return the R_SYMNDX of the target
1659 function, or 0 if we can't decide which function that is. */
1660
1661 static unsigned long
1662 mips16_stub_symndx (const struct elf_backend_data *bed,
1663 asection *sec ATTRIBUTE_UNUSED,
1664 const Elf_Internal_Rela *relocs,
1665 const Elf_Internal_Rela *relend)
1666 {
1667 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1668 const Elf_Internal_Rela *rel;
1669
1670 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1671 one in a compound relocation. */
1672 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1673 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1674 return ELF_R_SYM (sec->owner, rel->r_info);
1675
1676 /* Otherwise trust the first relocation, whatever its kind. This is
1677 the traditional behavior. */
1678 if (relocs < relend)
1679 return ELF_R_SYM (sec->owner, relocs->r_info);
1680
1681 return 0;
1682 }
1683
1684 /* Check the mips16 stubs for a particular symbol, and see if we can
1685 discard them. */
1686
1687 static void
1688 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1689 struct mips_elf_link_hash_entry *h)
1690 {
1691 /* Dynamic symbols must use the standard call interface, in case other
1692 objects try to call them. */
1693 if (h->fn_stub != NULL
1694 && h->root.dynindx != -1)
1695 {
1696 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1697 h->need_fn_stub = TRUE;
1698 }
1699
1700 if (h->fn_stub != NULL
1701 && ! h->need_fn_stub)
1702 {
1703 /* We don't need the fn_stub; the only references to this symbol
1704 are 16 bit calls. Clobber the size to 0 to prevent it from
1705 being included in the link. */
1706 h->fn_stub->size = 0;
1707 h->fn_stub->flags &= ~SEC_RELOC;
1708 h->fn_stub->reloc_count = 0;
1709 h->fn_stub->flags |= SEC_EXCLUDE;
1710 }
1711
1712 if (h->call_stub != NULL
1713 && ELF_ST_IS_MIPS16 (h->root.other))
1714 {
1715 /* We don't need the call_stub; this is a 16 bit function, so
1716 calls from other 16 bit functions are OK. Clobber the size
1717 to 0 to prevent it from being included in the link. */
1718 h->call_stub->size = 0;
1719 h->call_stub->flags &= ~SEC_RELOC;
1720 h->call_stub->reloc_count = 0;
1721 h->call_stub->flags |= SEC_EXCLUDE;
1722 }
1723
1724 if (h->call_fp_stub != NULL
1725 && ELF_ST_IS_MIPS16 (h->root.other))
1726 {
1727 /* We don't need the call_stub; this is a 16 bit function, so
1728 calls from other 16 bit functions are OK. Clobber the size
1729 to 0 to prevent it from being included in the link. */
1730 h->call_fp_stub->size = 0;
1731 h->call_fp_stub->flags &= ~SEC_RELOC;
1732 h->call_fp_stub->reloc_count = 0;
1733 h->call_fp_stub->flags |= SEC_EXCLUDE;
1734 }
1735 }
1736
1737 /* Hashtable callbacks for mips_elf_la25_stubs. */
1738
1739 static hashval_t
1740 mips_elf_la25_stub_hash (const void *entry_)
1741 {
1742 const struct mips_elf_la25_stub *entry;
1743
1744 entry = (struct mips_elf_la25_stub *) entry_;
1745 return entry->h->root.root.u.def.section->id
1746 + entry->h->root.root.u.def.value;
1747 }
1748
1749 static int
1750 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1751 {
1752 const struct mips_elf_la25_stub *entry1, *entry2;
1753
1754 entry1 = (struct mips_elf_la25_stub *) entry1_;
1755 entry2 = (struct mips_elf_la25_stub *) entry2_;
1756 return ((entry1->h->root.root.u.def.section
1757 == entry2->h->root.root.u.def.section)
1758 && (entry1->h->root.root.u.def.value
1759 == entry2->h->root.root.u.def.value));
1760 }
1761
1762 /* Called by the linker to set up the la25 stub-creation code. FN is
1763 the linker's implementation of add_stub_function. Return true on
1764 success. */
1765
1766 bfd_boolean
1767 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1768 asection *(*fn) (const char *, asection *,
1769 asection *))
1770 {
1771 struct mips_elf_link_hash_table *htab;
1772
1773 htab = mips_elf_hash_table (info);
1774 if (htab == NULL)
1775 return FALSE;
1776
1777 htab->add_stub_section = fn;
1778 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1779 mips_elf_la25_stub_eq, NULL);
1780 if (htab->la25_stubs == NULL)
1781 return FALSE;
1782
1783 return TRUE;
1784 }
1785
1786 /* Return true if H is a locally-defined PIC function, in the sense
1787 that it or its fn_stub might need $25 to be valid on entry.
1788 Note that MIPS16 functions set up $gp using PC-relative instructions,
1789 so they themselves never need $25 to be valid. Only non-MIPS16
1790 entry points are of interest here. */
1791
1792 static bfd_boolean
1793 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1794 {
1795 return ((h->root.root.type == bfd_link_hash_defined
1796 || h->root.root.type == bfd_link_hash_defweak)
1797 && h->root.def_regular
1798 && !bfd_is_abs_section (h->root.root.u.def.section)
1799 && (!ELF_ST_IS_MIPS16 (h->root.other)
1800 || (h->fn_stub && h->need_fn_stub))
1801 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1802 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1803 }
1804
1805 /* Set *SEC to the input section that contains the target of STUB.
1806 Return the offset of the target from the start of that section. */
1807
1808 static bfd_vma
1809 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1810 asection **sec)
1811 {
1812 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1813 {
1814 BFD_ASSERT (stub->h->need_fn_stub);
1815 *sec = stub->h->fn_stub;
1816 return 0;
1817 }
1818 else
1819 {
1820 *sec = stub->h->root.root.u.def.section;
1821 return stub->h->root.root.u.def.value;
1822 }
1823 }
1824
1825 /* STUB describes an la25 stub that we have decided to implement
1826 by inserting an LUI/ADDIU pair before the target function.
1827 Create the section and redirect the function symbol to it. */
1828
1829 static bfd_boolean
1830 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1831 struct bfd_link_info *info)
1832 {
1833 struct mips_elf_link_hash_table *htab;
1834 char *name;
1835 asection *s, *input_section;
1836 unsigned int align;
1837
1838 htab = mips_elf_hash_table (info);
1839 if (htab == NULL)
1840 return FALSE;
1841
1842 /* Create a unique name for the new section. */
1843 name = bfd_malloc (11 + sizeof (".text.stub."));
1844 if (name == NULL)
1845 return FALSE;
1846 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1847
1848 /* Create the section. */
1849 mips_elf_get_la25_target (stub, &input_section);
1850 s = htab->add_stub_section (name, input_section,
1851 input_section->output_section);
1852 if (s == NULL)
1853 return FALSE;
1854
1855 /* Make sure that any padding goes before the stub. */
1856 align = input_section->alignment_power;
1857 if (!bfd_set_section_alignment (s->owner, s, align))
1858 return FALSE;
1859 if (align > 3)
1860 s->size = (1 << align) - 8;
1861
1862 /* Create a symbol for the stub. */
1863 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1864 stub->stub_section = s;
1865 stub->offset = s->size;
1866
1867 /* Allocate room for it. */
1868 s->size += 8;
1869 return TRUE;
1870 }
1871
1872 /* STUB describes an la25 stub that we have decided to implement
1873 with a separate trampoline. Allocate room for it and redirect
1874 the function symbol to it. */
1875
1876 static bfd_boolean
1877 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1878 struct bfd_link_info *info)
1879 {
1880 struct mips_elf_link_hash_table *htab;
1881 asection *s;
1882
1883 htab = mips_elf_hash_table (info);
1884 if (htab == NULL)
1885 return FALSE;
1886
1887 /* Create a trampoline section, if we haven't already. */
1888 s = htab->strampoline;
1889 if (s == NULL)
1890 {
1891 asection *input_section = stub->h->root.root.u.def.section;
1892 s = htab->add_stub_section (".text", NULL,
1893 input_section->output_section);
1894 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1895 return FALSE;
1896 htab->strampoline = s;
1897 }
1898
1899 /* Create a symbol for the stub. */
1900 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1901 stub->stub_section = s;
1902 stub->offset = s->size;
1903
1904 /* Allocate room for it. */
1905 s->size += 16;
1906 return TRUE;
1907 }
1908
1909 /* H describes a symbol that needs an la25 stub. Make sure that an
1910 appropriate stub exists and point H at it. */
1911
1912 static bfd_boolean
1913 mips_elf_add_la25_stub (struct bfd_link_info *info,
1914 struct mips_elf_link_hash_entry *h)
1915 {
1916 struct mips_elf_link_hash_table *htab;
1917 struct mips_elf_la25_stub search, *stub;
1918 bfd_boolean use_trampoline_p;
1919 asection *s;
1920 bfd_vma value;
1921 void **slot;
1922
1923 /* Describe the stub we want. */
1924 search.stub_section = NULL;
1925 search.offset = 0;
1926 search.h = h;
1927
1928 /* See if we've already created an equivalent stub. */
1929 htab = mips_elf_hash_table (info);
1930 if (htab == NULL)
1931 return FALSE;
1932
1933 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1934 if (slot == NULL)
1935 return FALSE;
1936
1937 stub = (struct mips_elf_la25_stub *) *slot;
1938 if (stub != NULL)
1939 {
1940 /* We can reuse the existing stub. */
1941 h->la25_stub = stub;
1942 return TRUE;
1943 }
1944
1945 /* Create a permanent copy of ENTRY and add it to the hash table. */
1946 stub = bfd_malloc (sizeof (search));
1947 if (stub == NULL)
1948 return FALSE;
1949 *stub = search;
1950 *slot = stub;
1951
1952 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1953 of the section and if we would need no more than 2 nops. */
1954 value = mips_elf_get_la25_target (stub, &s);
1955 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1956
1957 h->la25_stub = stub;
1958 return (use_trampoline_p
1959 ? mips_elf_add_la25_trampoline (stub, info)
1960 : mips_elf_add_la25_intro (stub, info));
1961 }
1962
1963 /* A mips_elf_link_hash_traverse callback that is called before sizing
1964 sections. DATA points to a mips_htab_traverse_info structure. */
1965
1966 static bfd_boolean
1967 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1968 {
1969 struct mips_htab_traverse_info *hti;
1970
1971 hti = (struct mips_htab_traverse_info *) data;
1972 if (!hti->info->relocatable)
1973 mips_elf_check_mips16_stubs (hti->info, h);
1974
1975 if (mips_elf_local_pic_function_p (h))
1976 {
1977 /* PR 12845: If H is in a section that has been garbage
1978 collected it will have its output section set to *ABS*. */
1979 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1980 return TRUE;
1981
1982 /* H is a function that might need $25 to be valid on entry.
1983 If we're creating a non-PIC relocatable object, mark H as
1984 being PIC. If we're creating a non-relocatable object with
1985 non-PIC branches and jumps to H, make sure that H has an la25
1986 stub. */
1987 if (hti->info->relocatable)
1988 {
1989 if (!PIC_OBJECT_P (hti->output_bfd))
1990 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1991 }
1992 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1993 {
1994 hti->error = TRUE;
1995 return FALSE;
1996 }
1997 }
1998 return TRUE;
1999 }
2000 \f
2001 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2002 Most mips16 instructions are 16 bits, but these instructions
2003 are 32 bits.
2004
2005 The format of these instructions is:
2006
2007 +--------------+--------------------------------+
2008 | JALX | X| Imm 20:16 | Imm 25:21 |
2009 +--------------+--------------------------------+
2010 | Immediate 15:0 |
2011 +-----------------------------------------------+
2012
2013 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2014 Note that the immediate value in the first word is swapped.
2015
2016 When producing a relocatable object file, R_MIPS16_26 is
2017 handled mostly like R_MIPS_26. In particular, the addend is
2018 stored as a straight 26-bit value in a 32-bit instruction.
2019 (gas makes life simpler for itself by never adjusting a
2020 R_MIPS16_26 reloc to be against a section, so the addend is
2021 always zero). However, the 32 bit instruction is stored as 2
2022 16-bit values, rather than a single 32-bit value. In a
2023 big-endian file, the result is the same; in a little-endian
2024 file, the two 16-bit halves of the 32 bit value are swapped.
2025 This is so that a disassembler can recognize the jal
2026 instruction.
2027
2028 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2029 instruction stored as two 16-bit values. The addend A is the
2030 contents of the targ26 field. The calculation is the same as
2031 R_MIPS_26. When storing the calculated value, reorder the
2032 immediate value as shown above, and don't forget to store the
2033 value as two 16-bit values.
2034
2035 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2036 defined as
2037
2038 big-endian:
2039 +--------+----------------------+
2040 | | |
2041 | | targ26-16 |
2042 |31 26|25 0|
2043 +--------+----------------------+
2044
2045 little-endian:
2046 +----------+------+-------------+
2047 | | | |
2048 | sub1 | | sub2 |
2049 |0 9|10 15|16 31|
2050 +----------+--------------------+
2051 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2052 ((sub1 << 16) | sub2)).
2053
2054 When producing a relocatable object file, the calculation is
2055 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2056 When producing a fully linked file, the calculation is
2057 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2058 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2059
2060 The table below lists the other MIPS16 instruction relocations.
2061 Each one is calculated in the same way as the non-MIPS16 relocation
2062 given on the right, but using the extended MIPS16 layout of 16-bit
2063 immediate fields:
2064
2065 R_MIPS16_GPREL R_MIPS_GPREL16
2066 R_MIPS16_GOT16 R_MIPS_GOT16
2067 R_MIPS16_CALL16 R_MIPS_CALL16
2068 R_MIPS16_HI16 R_MIPS_HI16
2069 R_MIPS16_LO16 R_MIPS_LO16
2070
2071 A typical instruction will have a format like this:
2072
2073 +--------------+--------------------------------+
2074 | EXTEND | Imm 10:5 | Imm 15:11 |
2075 +--------------+--------------------------------+
2076 | Major | rx | ry | Imm 4:0 |
2077 +--------------+--------------------------------+
2078
2079 EXTEND is the five bit value 11110. Major is the instruction
2080 opcode.
2081
2082 All we need to do here is shuffle the bits appropriately.
2083 As above, the two 16-bit halves must be swapped on a
2084 little-endian system. */
2085
2086 static inline bfd_boolean
2087 mips16_reloc_p (int r_type)
2088 {
2089 switch (r_type)
2090 {
2091 case R_MIPS16_26:
2092 case R_MIPS16_GPREL:
2093 case R_MIPS16_GOT16:
2094 case R_MIPS16_CALL16:
2095 case R_MIPS16_HI16:
2096 case R_MIPS16_LO16:
2097 case R_MIPS16_TLS_GD:
2098 case R_MIPS16_TLS_LDM:
2099 case R_MIPS16_TLS_DTPREL_HI16:
2100 case R_MIPS16_TLS_DTPREL_LO16:
2101 case R_MIPS16_TLS_GOTTPREL:
2102 case R_MIPS16_TLS_TPREL_HI16:
2103 case R_MIPS16_TLS_TPREL_LO16:
2104 return TRUE;
2105
2106 default:
2107 return FALSE;
2108 }
2109 }
2110
2111 /* Check if a microMIPS reloc. */
2112
2113 static inline bfd_boolean
2114 micromips_reloc_p (unsigned int r_type)
2115 {
2116 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2117 }
2118
2119 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2120 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2121 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2122
2123 static inline bfd_boolean
2124 micromips_reloc_shuffle_p (unsigned int r_type)
2125 {
2126 return (micromips_reloc_p (r_type)
2127 && r_type != R_MICROMIPS_PC7_S1
2128 && r_type != R_MICROMIPS_PC10_S1);
2129 }
2130
2131 static inline bfd_boolean
2132 got16_reloc_p (int r_type)
2133 {
2134 return (r_type == R_MIPS_GOT16
2135 || r_type == R_MIPS16_GOT16
2136 || r_type == R_MICROMIPS_GOT16);
2137 }
2138
2139 static inline bfd_boolean
2140 call16_reloc_p (int r_type)
2141 {
2142 return (r_type == R_MIPS_CALL16
2143 || r_type == R_MIPS16_CALL16
2144 || r_type == R_MICROMIPS_CALL16);
2145 }
2146
2147 static inline bfd_boolean
2148 got_disp_reloc_p (unsigned int r_type)
2149 {
2150 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2151 }
2152
2153 static inline bfd_boolean
2154 got_page_reloc_p (unsigned int r_type)
2155 {
2156 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2157 }
2158
2159 static inline bfd_boolean
2160 got_ofst_reloc_p (unsigned int r_type)
2161 {
2162 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2163 }
2164
2165 static inline bfd_boolean
2166 got_hi16_reloc_p (unsigned int r_type)
2167 {
2168 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2169 }
2170
2171 static inline bfd_boolean
2172 got_lo16_reloc_p (unsigned int r_type)
2173 {
2174 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2175 }
2176
2177 static inline bfd_boolean
2178 call_hi16_reloc_p (unsigned int r_type)
2179 {
2180 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2181 }
2182
2183 static inline bfd_boolean
2184 call_lo16_reloc_p (unsigned int r_type)
2185 {
2186 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2187 }
2188
2189 static inline bfd_boolean
2190 hi16_reloc_p (int r_type)
2191 {
2192 return (r_type == R_MIPS_HI16
2193 || r_type == R_MIPS16_HI16
2194 || r_type == R_MICROMIPS_HI16
2195 || r_type == R_MIPS_PCHI16);
2196 }
2197
2198 static inline bfd_boolean
2199 lo16_reloc_p (int r_type)
2200 {
2201 return (r_type == R_MIPS_LO16
2202 || r_type == R_MIPS16_LO16
2203 || r_type == R_MICROMIPS_LO16
2204 || r_type == R_MIPS_PCLO16);
2205 }
2206
2207 static inline bfd_boolean
2208 mips16_call_reloc_p (int r_type)
2209 {
2210 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2211 }
2212
2213 static inline bfd_boolean
2214 jal_reloc_p (int r_type)
2215 {
2216 return (r_type == R_MIPS_26
2217 || r_type == R_MIPS16_26
2218 || r_type == R_MICROMIPS_26_S1);
2219 }
2220
2221 static inline bfd_boolean
2222 aligned_pcrel_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_PC18_S3
2225 || r_type == R_MIPS_PC19_S2);
2226 }
2227
2228 static inline bfd_boolean
2229 micromips_branch_reloc_p (int r_type)
2230 {
2231 return (r_type == R_MICROMIPS_26_S1
2232 || r_type == R_MICROMIPS_PC16_S1
2233 || r_type == R_MICROMIPS_PC10_S1
2234 || r_type == R_MICROMIPS_PC7_S1);
2235 }
2236
2237 static inline bfd_boolean
2238 tls_gd_reloc_p (unsigned int r_type)
2239 {
2240 return (r_type == R_MIPS_TLS_GD
2241 || r_type == R_MIPS16_TLS_GD
2242 || r_type == R_MICROMIPS_TLS_GD);
2243 }
2244
2245 static inline bfd_boolean
2246 tls_ldm_reloc_p (unsigned int r_type)
2247 {
2248 return (r_type == R_MIPS_TLS_LDM
2249 || r_type == R_MIPS16_TLS_LDM
2250 || r_type == R_MICROMIPS_TLS_LDM);
2251 }
2252
2253 static inline bfd_boolean
2254 tls_gottprel_reloc_p (unsigned int r_type)
2255 {
2256 return (r_type == R_MIPS_TLS_GOTTPREL
2257 || r_type == R_MIPS16_TLS_GOTTPREL
2258 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2259 }
2260
2261 void
2262 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2263 bfd_boolean jal_shuffle, bfd_byte *data)
2264 {
2265 bfd_vma first, second, val;
2266
2267 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2268 return;
2269
2270 /* Pick up the first and second halfwords of the instruction. */
2271 first = bfd_get_16 (abfd, data);
2272 second = bfd_get_16 (abfd, data + 2);
2273 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2274 val = first << 16 | second;
2275 else if (r_type != R_MIPS16_26)
2276 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2277 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2278 else
2279 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2280 | ((first & 0x1f) << 21) | second);
2281 bfd_put_32 (abfd, val, data);
2282 }
2283
2284 void
2285 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2286 bfd_boolean jal_shuffle, bfd_byte *data)
2287 {
2288 bfd_vma first, second, val;
2289
2290 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2291 return;
2292
2293 val = bfd_get_32 (abfd, data);
2294 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2295 {
2296 second = val & 0xffff;
2297 first = val >> 16;
2298 }
2299 else if (r_type != R_MIPS16_26)
2300 {
2301 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2302 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2303 }
2304 else
2305 {
2306 second = val & 0xffff;
2307 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2308 | ((val >> 21) & 0x1f);
2309 }
2310 bfd_put_16 (abfd, second, data + 2);
2311 bfd_put_16 (abfd, first, data);
2312 }
2313
2314 bfd_reloc_status_type
2315 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2316 arelent *reloc_entry, asection *input_section,
2317 bfd_boolean relocatable, void *data, bfd_vma gp)
2318 {
2319 bfd_vma relocation;
2320 bfd_signed_vma val;
2321 bfd_reloc_status_type status;
2322
2323 if (bfd_is_com_section (symbol->section))
2324 relocation = 0;
2325 else
2326 relocation = symbol->value;
2327
2328 relocation += symbol->section->output_section->vma;
2329 relocation += symbol->section->output_offset;
2330
2331 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2332 return bfd_reloc_outofrange;
2333
2334 /* Set val to the offset into the section or symbol. */
2335 val = reloc_entry->addend;
2336
2337 _bfd_mips_elf_sign_extend (val, 16);
2338
2339 /* Adjust val for the final section location and GP value. If we
2340 are producing relocatable output, we don't want to do this for
2341 an external symbol. */
2342 if (! relocatable
2343 || (symbol->flags & BSF_SECTION_SYM) != 0)
2344 val += relocation - gp;
2345
2346 if (reloc_entry->howto->partial_inplace)
2347 {
2348 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2349 (bfd_byte *) data
2350 + reloc_entry->address);
2351 if (status != bfd_reloc_ok)
2352 return status;
2353 }
2354 else
2355 reloc_entry->addend = val;
2356
2357 if (relocatable)
2358 reloc_entry->address += input_section->output_offset;
2359
2360 return bfd_reloc_ok;
2361 }
2362
2363 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2364 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2365 that contains the relocation field and DATA points to the start of
2366 INPUT_SECTION. */
2367
2368 struct mips_hi16
2369 {
2370 struct mips_hi16 *next;
2371 bfd_byte *data;
2372 asection *input_section;
2373 arelent rel;
2374 };
2375
2376 /* FIXME: This should not be a static variable. */
2377
2378 static struct mips_hi16 *mips_hi16_list;
2379
2380 /* A howto special_function for REL *HI16 relocations. We can only
2381 calculate the correct value once we've seen the partnering
2382 *LO16 relocation, so just save the information for later.
2383
2384 The ABI requires that the *LO16 immediately follow the *HI16.
2385 However, as a GNU extension, we permit an arbitrary number of
2386 *HI16s to be associated with a single *LO16. This significantly
2387 simplies the relocation handling in gcc. */
2388
2389 bfd_reloc_status_type
2390 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2391 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2392 asection *input_section, bfd *output_bfd,
2393 char **error_message ATTRIBUTE_UNUSED)
2394 {
2395 struct mips_hi16 *n;
2396
2397 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2398 return bfd_reloc_outofrange;
2399
2400 n = bfd_malloc (sizeof *n);
2401 if (n == NULL)
2402 return bfd_reloc_outofrange;
2403
2404 n->next = mips_hi16_list;
2405 n->data = data;
2406 n->input_section = input_section;
2407 n->rel = *reloc_entry;
2408 mips_hi16_list = n;
2409
2410 if (output_bfd != NULL)
2411 reloc_entry->address += input_section->output_offset;
2412
2413 return bfd_reloc_ok;
2414 }
2415
2416 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2417 like any other 16-bit relocation when applied to global symbols, but is
2418 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2419
2420 bfd_reloc_status_type
2421 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2422 void *data, asection *input_section,
2423 bfd *output_bfd, char **error_message)
2424 {
2425 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2426 || bfd_is_und_section (bfd_get_section (symbol))
2427 || bfd_is_com_section (bfd_get_section (symbol)))
2428 /* The relocation is against a global symbol. */
2429 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2430 input_section, output_bfd,
2431 error_message);
2432
2433 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2434 input_section, output_bfd, error_message);
2435 }
2436
2437 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2438 is a straightforward 16 bit inplace relocation, but we must deal with
2439 any partnering high-part relocations as well. */
2440
2441 bfd_reloc_status_type
2442 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2443 void *data, asection *input_section,
2444 bfd *output_bfd, char **error_message)
2445 {
2446 bfd_vma vallo;
2447 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2448
2449 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2450 return bfd_reloc_outofrange;
2451
2452 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2453 location);
2454 vallo = bfd_get_32 (abfd, location);
2455 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2456 location);
2457
2458 while (mips_hi16_list != NULL)
2459 {
2460 bfd_reloc_status_type ret;
2461 struct mips_hi16 *hi;
2462
2463 hi = mips_hi16_list;
2464
2465 /* R_MIPS*_GOT16 relocations are something of a special case. We
2466 want to install the addend in the same way as for a R_MIPS*_HI16
2467 relocation (with a rightshift of 16). However, since GOT16
2468 relocations can also be used with global symbols, their howto
2469 has a rightshift of 0. */
2470 if (hi->rel.howto->type == R_MIPS_GOT16)
2471 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2472 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2473 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2474 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2475 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2476
2477 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2478 carry or borrow will induce a change of +1 or -1 in the high part. */
2479 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2480
2481 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2482 hi->input_section, output_bfd,
2483 error_message);
2484 if (ret != bfd_reloc_ok)
2485 return ret;
2486
2487 mips_hi16_list = hi->next;
2488 free (hi);
2489 }
2490
2491 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2492 input_section, output_bfd,
2493 error_message);
2494 }
2495
2496 /* A generic howto special_function. This calculates and installs the
2497 relocation itself, thus avoiding the oft-discussed problems in
2498 bfd_perform_relocation and bfd_install_relocation. */
2499
2500 bfd_reloc_status_type
2501 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2502 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2503 asection *input_section, bfd *output_bfd,
2504 char **error_message ATTRIBUTE_UNUSED)
2505 {
2506 bfd_signed_vma val;
2507 bfd_reloc_status_type status;
2508 bfd_boolean relocatable;
2509
2510 relocatable = (output_bfd != NULL);
2511
2512 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2513 return bfd_reloc_outofrange;
2514
2515 /* Build up the field adjustment in VAL. */
2516 val = 0;
2517 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2518 {
2519 /* Either we're calculating the final field value or we have a
2520 relocation against a section symbol. Add in the section's
2521 offset or address. */
2522 val += symbol->section->output_section->vma;
2523 val += symbol->section->output_offset;
2524 }
2525
2526 if (!relocatable)
2527 {
2528 /* We're calculating the final field value. Add in the symbol's value
2529 and, if pc-relative, subtract the address of the field itself. */
2530 val += symbol->value;
2531 if (reloc_entry->howto->pc_relative)
2532 {
2533 val -= input_section->output_section->vma;
2534 val -= input_section->output_offset;
2535 val -= reloc_entry->address;
2536 }
2537 }
2538
2539 /* VAL is now the final adjustment. If we're keeping this relocation
2540 in the output file, and if the relocation uses a separate addend,
2541 we just need to add VAL to that addend. Otherwise we need to add
2542 VAL to the relocation field itself. */
2543 if (relocatable && !reloc_entry->howto->partial_inplace)
2544 reloc_entry->addend += val;
2545 else
2546 {
2547 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2548
2549 /* Add in the separate addend, if any. */
2550 val += reloc_entry->addend;
2551
2552 /* Add VAL to the relocation field. */
2553 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2554 location);
2555 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2556 location);
2557 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2558 location);
2559
2560 if (status != bfd_reloc_ok)
2561 return status;
2562 }
2563
2564 if (relocatable)
2565 reloc_entry->address += input_section->output_offset;
2566
2567 return bfd_reloc_ok;
2568 }
2569 \f
2570 /* Swap an entry in a .gptab section. Note that these routines rely
2571 on the equivalence of the two elements of the union. */
2572
2573 static void
2574 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2575 Elf32_gptab *in)
2576 {
2577 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2578 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2579 }
2580
2581 static void
2582 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2583 Elf32_External_gptab *ex)
2584 {
2585 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2586 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2587 }
2588
2589 static void
2590 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2591 Elf32_External_compact_rel *ex)
2592 {
2593 H_PUT_32 (abfd, in->id1, ex->id1);
2594 H_PUT_32 (abfd, in->num, ex->num);
2595 H_PUT_32 (abfd, in->id2, ex->id2);
2596 H_PUT_32 (abfd, in->offset, ex->offset);
2597 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2598 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2599 }
2600
2601 static void
2602 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2603 Elf32_External_crinfo *ex)
2604 {
2605 unsigned long l;
2606
2607 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2608 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2609 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2610 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2611 H_PUT_32 (abfd, l, ex->info);
2612 H_PUT_32 (abfd, in->konst, ex->konst);
2613 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2614 }
2615 \f
2616 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2617 routines swap this structure in and out. They are used outside of
2618 BFD, so they are globally visible. */
2619
2620 void
2621 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2622 Elf32_RegInfo *in)
2623 {
2624 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2625 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2626 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2627 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2628 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2629 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2630 }
2631
2632 void
2633 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2634 Elf32_External_RegInfo *ex)
2635 {
2636 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2637 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2638 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2639 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2640 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2641 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2642 }
2643
2644 /* In the 64 bit ABI, the .MIPS.options section holds register
2645 information in an Elf64_Reginfo structure. These routines swap
2646 them in and out. They are globally visible because they are used
2647 outside of BFD. These routines are here so that gas can call them
2648 without worrying about whether the 64 bit ABI has been included. */
2649
2650 void
2651 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2652 Elf64_Internal_RegInfo *in)
2653 {
2654 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2655 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2656 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2657 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2658 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2659 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2660 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2661 }
2662
2663 void
2664 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2665 Elf64_External_RegInfo *ex)
2666 {
2667 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2668 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2669 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2670 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2671 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2672 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2673 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2674 }
2675
2676 /* Swap in an options header. */
2677
2678 void
2679 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2680 Elf_Internal_Options *in)
2681 {
2682 in->kind = H_GET_8 (abfd, ex->kind);
2683 in->size = H_GET_8 (abfd, ex->size);
2684 in->section = H_GET_16 (abfd, ex->section);
2685 in->info = H_GET_32 (abfd, ex->info);
2686 }
2687
2688 /* Swap out an options header. */
2689
2690 void
2691 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2692 Elf_External_Options *ex)
2693 {
2694 H_PUT_8 (abfd, in->kind, ex->kind);
2695 H_PUT_8 (abfd, in->size, ex->size);
2696 H_PUT_16 (abfd, in->section, ex->section);
2697 H_PUT_32 (abfd, in->info, ex->info);
2698 }
2699
2700 /* Swap in an abiflags structure. */
2701
2702 void
2703 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2704 const Elf_External_ABIFlags_v0 *ex,
2705 Elf_Internal_ABIFlags_v0 *in)
2706 {
2707 in->version = H_GET_16 (abfd, ex->version);
2708 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2709 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2710 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2711 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2712 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2713 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2714 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2715 in->ases = H_GET_32 (abfd, ex->ases);
2716 in->flags1 = H_GET_32 (abfd, ex->flags1);
2717 in->flags2 = H_GET_32 (abfd, ex->flags2);
2718 }
2719
2720 /* Swap out an abiflags structure. */
2721
2722 void
2723 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2724 const Elf_Internal_ABIFlags_v0 *in,
2725 Elf_External_ABIFlags_v0 *ex)
2726 {
2727 H_PUT_16 (abfd, in->version, ex->version);
2728 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2729 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2730 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2731 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2732 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2733 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2734 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2735 H_PUT_32 (abfd, in->ases, ex->ases);
2736 H_PUT_32 (abfd, in->flags1, ex->flags1);
2737 H_PUT_32 (abfd, in->flags2, ex->flags2);
2738 }
2739 \f
2740 /* This function is called via qsort() to sort the dynamic relocation
2741 entries by increasing r_symndx value. */
2742
2743 static int
2744 sort_dynamic_relocs (const void *arg1, const void *arg2)
2745 {
2746 Elf_Internal_Rela int_reloc1;
2747 Elf_Internal_Rela int_reloc2;
2748 int diff;
2749
2750 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2751 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2752
2753 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2754 if (diff != 0)
2755 return diff;
2756
2757 if (int_reloc1.r_offset < int_reloc2.r_offset)
2758 return -1;
2759 if (int_reloc1.r_offset > int_reloc2.r_offset)
2760 return 1;
2761 return 0;
2762 }
2763
2764 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2765
2766 static int
2767 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2768 const void *arg2 ATTRIBUTE_UNUSED)
2769 {
2770 #ifdef BFD64
2771 Elf_Internal_Rela int_reloc1[3];
2772 Elf_Internal_Rela int_reloc2[3];
2773
2774 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2775 (reldyn_sorting_bfd, arg1, int_reloc1);
2776 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2777 (reldyn_sorting_bfd, arg2, int_reloc2);
2778
2779 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2780 return -1;
2781 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2782 return 1;
2783
2784 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2785 return -1;
2786 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2787 return 1;
2788 return 0;
2789 #else
2790 abort ();
2791 #endif
2792 }
2793
2794
2795 /* This routine is used to write out ECOFF debugging external symbol
2796 information. It is called via mips_elf_link_hash_traverse. The
2797 ECOFF external symbol information must match the ELF external
2798 symbol information. Unfortunately, at this point we don't know
2799 whether a symbol is required by reloc information, so the two
2800 tables may wind up being different. We must sort out the external
2801 symbol information before we can set the final size of the .mdebug
2802 section, and we must set the size of the .mdebug section before we
2803 can relocate any sections, and we can't know which symbols are
2804 required by relocation until we relocate the sections.
2805 Fortunately, it is relatively unlikely that any symbol will be
2806 stripped but required by a reloc. In particular, it can not happen
2807 when generating a final executable. */
2808
2809 static bfd_boolean
2810 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2811 {
2812 struct extsym_info *einfo = data;
2813 bfd_boolean strip;
2814 asection *sec, *output_section;
2815
2816 if (h->root.indx == -2)
2817 strip = FALSE;
2818 else if ((h->root.def_dynamic
2819 || h->root.ref_dynamic
2820 || h->root.type == bfd_link_hash_new)
2821 && !h->root.def_regular
2822 && !h->root.ref_regular)
2823 strip = TRUE;
2824 else if (einfo->info->strip == strip_all
2825 || (einfo->info->strip == strip_some
2826 && bfd_hash_lookup (einfo->info->keep_hash,
2827 h->root.root.root.string,
2828 FALSE, FALSE) == NULL))
2829 strip = TRUE;
2830 else
2831 strip = FALSE;
2832
2833 if (strip)
2834 return TRUE;
2835
2836 if (h->esym.ifd == -2)
2837 {
2838 h->esym.jmptbl = 0;
2839 h->esym.cobol_main = 0;
2840 h->esym.weakext = 0;
2841 h->esym.reserved = 0;
2842 h->esym.ifd = ifdNil;
2843 h->esym.asym.value = 0;
2844 h->esym.asym.st = stGlobal;
2845
2846 if (h->root.root.type == bfd_link_hash_undefined
2847 || h->root.root.type == bfd_link_hash_undefweak)
2848 {
2849 const char *name;
2850
2851 /* Use undefined class. Also, set class and type for some
2852 special symbols. */
2853 name = h->root.root.root.string;
2854 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2855 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2856 {
2857 h->esym.asym.sc = scData;
2858 h->esym.asym.st = stLabel;
2859 h->esym.asym.value = 0;
2860 }
2861 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2862 {
2863 h->esym.asym.sc = scAbs;
2864 h->esym.asym.st = stLabel;
2865 h->esym.asym.value =
2866 mips_elf_hash_table (einfo->info)->procedure_count;
2867 }
2868 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2869 {
2870 h->esym.asym.sc = scAbs;
2871 h->esym.asym.st = stLabel;
2872 h->esym.asym.value = elf_gp (einfo->abfd);
2873 }
2874 else
2875 h->esym.asym.sc = scUndefined;
2876 }
2877 else if (h->root.root.type != bfd_link_hash_defined
2878 && h->root.root.type != bfd_link_hash_defweak)
2879 h->esym.asym.sc = scAbs;
2880 else
2881 {
2882 const char *name;
2883
2884 sec = h->root.root.u.def.section;
2885 output_section = sec->output_section;
2886
2887 /* When making a shared library and symbol h is the one from
2888 the another shared library, OUTPUT_SECTION may be null. */
2889 if (output_section == NULL)
2890 h->esym.asym.sc = scUndefined;
2891 else
2892 {
2893 name = bfd_section_name (output_section->owner, output_section);
2894
2895 if (strcmp (name, ".text") == 0)
2896 h->esym.asym.sc = scText;
2897 else if (strcmp (name, ".data") == 0)
2898 h->esym.asym.sc = scData;
2899 else if (strcmp (name, ".sdata") == 0)
2900 h->esym.asym.sc = scSData;
2901 else if (strcmp (name, ".rodata") == 0
2902 || strcmp (name, ".rdata") == 0)
2903 h->esym.asym.sc = scRData;
2904 else if (strcmp (name, ".bss") == 0)
2905 h->esym.asym.sc = scBss;
2906 else if (strcmp (name, ".sbss") == 0)
2907 h->esym.asym.sc = scSBss;
2908 else if (strcmp (name, ".init") == 0)
2909 h->esym.asym.sc = scInit;
2910 else if (strcmp (name, ".fini") == 0)
2911 h->esym.asym.sc = scFini;
2912 else
2913 h->esym.asym.sc = scAbs;
2914 }
2915 }
2916
2917 h->esym.asym.reserved = 0;
2918 h->esym.asym.index = indexNil;
2919 }
2920
2921 if (h->root.root.type == bfd_link_hash_common)
2922 h->esym.asym.value = h->root.root.u.c.size;
2923 else if (h->root.root.type == bfd_link_hash_defined
2924 || h->root.root.type == bfd_link_hash_defweak)
2925 {
2926 if (h->esym.asym.sc == scCommon)
2927 h->esym.asym.sc = scBss;
2928 else if (h->esym.asym.sc == scSCommon)
2929 h->esym.asym.sc = scSBss;
2930
2931 sec = h->root.root.u.def.section;
2932 output_section = sec->output_section;
2933 if (output_section != NULL)
2934 h->esym.asym.value = (h->root.root.u.def.value
2935 + sec->output_offset
2936 + output_section->vma);
2937 else
2938 h->esym.asym.value = 0;
2939 }
2940 else
2941 {
2942 struct mips_elf_link_hash_entry *hd = h;
2943
2944 while (hd->root.root.type == bfd_link_hash_indirect)
2945 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2946
2947 if (hd->needs_lazy_stub)
2948 {
2949 BFD_ASSERT (hd->root.plt.plist != NULL);
2950 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2951 /* Set type and value for a symbol with a function stub. */
2952 h->esym.asym.st = stProc;
2953 sec = hd->root.root.u.def.section;
2954 if (sec == NULL)
2955 h->esym.asym.value = 0;
2956 else
2957 {
2958 output_section = sec->output_section;
2959 if (output_section != NULL)
2960 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2961 + sec->output_offset
2962 + output_section->vma);
2963 else
2964 h->esym.asym.value = 0;
2965 }
2966 }
2967 }
2968
2969 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2970 h->root.root.root.string,
2971 &h->esym))
2972 {
2973 einfo->failed = TRUE;
2974 return FALSE;
2975 }
2976
2977 return TRUE;
2978 }
2979
2980 /* A comparison routine used to sort .gptab entries. */
2981
2982 static int
2983 gptab_compare (const void *p1, const void *p2)
2984 {
2985 const Elf32_gptab *a1 = p1;
2986 const Elf32_gptab *a2 = p2;
2987
2988 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2989 }
2990 \f
2991 /* Functions to manage the got entry hash table. */
2992
2993 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2994 hash number. */
2995
2996 static INLINE hashval_t
2997 mips_elf_hash_bfd_vma (bfd_vma addr)
2998 {
2999 #ifdef BFD64
3000 return addr + (addr >> 32);
3001 #else
3002 return addr;
3003 #endif
3004 }
3005
3006 static hashval_t
3007 mips_elf_got_entry_hash (const void *entry_)
3008 {
3009 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3010
3011 return (entry->symndx
3012 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3013 + (entry->tls_type == GOT_TLS_LDM ? 0
3014 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3015 : entry->symndx >= 0 ? (entry->abfd->id
3016 + mips_elf_hash_bfd_vma (entry->d.addend))
3017 : entry->d.h->root.root.root.hash));
3018 }
3019
3020 static int
3021 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3022 {
3023 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3024 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3025
3026 return (e1->symndx == e2->symndx
3027 && e1->tls_type == e2->tls_type
3028 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3029 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3030 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3031 && e1->d.addend == e2->d.addend)
3032 : e2->abfd && e1->d.h == e2->d.h));
3033 }
3034
3035 static hashval_t
3036 mips_got_page_ref_hash (const void *ref_)
3037 {
3038 const struct mips_got_page_ref *ref;
3039
3040 ref = (const struct mips_got_page_ref *) ref_;
3041 return ((ref->symndx >= 0
3042 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3043 : ref->u.h->root.root.root.hash)
3044 + mips_elf_hash_bfd_vma (ref->addend));
3045 }
3046
3047 static int
3048 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3049 {
3050 const struct mips_got_page_ref *ref1, *ref2;
3051
3052 ref1 = (const struct mips_got_page_ref *) ref1_;
3053 ref2 = (const struct mips_got_page_ref *) ref2_;
3054 return (ref1->symndx == ref2->symndx
3055 && (ref1->symndx < 0
3056 ? ref1->u.h == ref2->u.h
3057 : ref1->u.abfd == ref2->u.abfd)
3058 && ref1->addend == ref2->addend);
3059 }
3060
3061 static hashval_t
3062 mips_got_page_entry_hash (const void *entry_)
3063 {
3064 const struct mips_got_page_entry *entry;
3065
3066 entry = (const struct mips_got_page_entry *) entry_;
3067 return entry->sec->id;
3068 }
3069
3070 static int
3071 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3072 {
3073 const struct mips_got_page_entry *entry1, *entry2;
3074
3075 entry1 = (const struct mips_got_page_entry *) entry1_;
3076 entry2 = (const struct mips_got_page_entry *) entry2_;
3077 return entry1->sec == entry2->sec;
3078 }
3079 \f
3080 /* Create and return a new mips_got_info structure. */
3081
3082 static struct mips_got_info *
3083 mips_elf_create_got_info (bfd *abfd)
3084 {
3085 struct mips_got_info *g;
3086
3087 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3088 if (g == NULL)
3089 return NULL;
3090
3091 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3092 mips_elf_got_entry_eq, NULL);
3093 if (g->got_entries == NULL)
3094 return NULL;
3095
3096 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3097 mips_got_page_ref_eq, NULL);
3098 if (g->got_page_refs == NULL)
3099 return NULL;
3100
3101 return g;
3102 }
3103
3104 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3105 CREATE_P and if ABFD doesn't already have a GOT. */
3106
3107 static struct mips_got_info *
3108 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3109 {
3110 struct mips_elf_obj_tdata *tdata;
3111
3112 if (!is_mips_elf (abfd))
3113 return NULL;
3114
3115 tdata = mips_elf_tdata (abfd);
3116 if (!tdata->got && create_p)
3117 tdata->got = mips_elf_create_got_info (abfd);
3118 return tdata->got;
3119 }
3120
3121 /* Record that ABFD should use output GOT G. */
3122
3123 static void
3124 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3125 {
3126 struct mips_elf_obj_tdata *tdata;
3127
3128 BFD_ASSERT (is_mips_elf (abfd));
3129 tdata = mips_elf_tdata (abfd);
3130 if (tdata->got)
3131 {
3132 /* The GOT structure itself and the hash table entries are
3133 allocated to a bfd, but the hash tables aren't. */
3134 htab_delete (tdata->got->got_entries);
3135 htab_delete (tdata->got->got_page_refs);
3136 if (tdata->got->got_page_entries)
3137 htab_delete (tdata->got->got_page_entries);
3138 }
3139 tdata->got = g;
3140 }
3141
3142 /* Return the dynamic relocation section. If it doesn't exist, try to
3143 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3144 if creation fails. */
3145
3146 static asection *
3147 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3148 {
3149 const char *dname;
3150 asection *sreloc;
3151 bfd *dynobj;
3152
3153 dname = MIPS_ELF_REL_DYN_NAME (info);
3154 dynobj = elf_hash_table (info)->dynobj;
3155 sreloc = bfd_get_linker_section (dynobj, dname);
3156 if (sreloc == NULL && create_p)
3157 {
3158 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3159 (SEC_ALLOC
3160 | SEC_LOAD
3161 | SEC_HAS_CONTENTS
3162 | SEC_IN_MEMORY
3163 | SEC_LINKER_CREATED
3164 | SEC_READONLY));
3165 if (sreloc == NULL
3166 || ! bfd_set_section_alignment (dynobj, sreloc,
3167 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3168 return NULL;
3169 }
3170 return sreloc;
3171 }
3172
3173 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3174
3175 static int
3176 mips_elf_reloc_tls_type (unsigned int r_type)
3177 {
3178 if (tls_gd_reloc_p (r_type))
3179 return GOT_TLS_GD;
3180
3181 if (tls_ldm_reloc_p (r_type))
3182 return GOT_TLS_LDM;
3183
3184 if (tls_gottprel_reloc_p (r_type))
3185 return GOT_TLS_IE;
3186
3187 return GOT_TLS_NONE;
3188 }
3189
3190 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3191
3192 static int
3193 mips_tls_got_entries (unsigned int type)
3194 {
3195 switch (type)
3196 {
3197 case GOT_TLS_GD:
3198 case GOT_TLS_LDM:
3199 return 2;
3200
3201 case GOT_TLS_IE:
3202 return 1;
3203
3204 case GOT_TLS_NONE:
3205 return 0;
3206 }
3207 abort ();
3208 }
3209
3210 /* Count the number of relocations needed for a TLS GOT entry, with
3211 access types from TLS_TYPE, and symbol H (or a local symbol if H
3212 is NULL). */
3213
3214 static int
3215 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3216 struct elf_link_hash_entry *h)
3217 {
3218 int indx = 0;
3219 bfd_boolean need_relocs = FALSE;
3220 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3221
3222 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3223 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3224 indx = h->dynindx;
3225
3226 if ((info->shared || indx != 0)
3227 && (h == NULL
3228 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3229 || h->root.type != bfd_link_hash_undefweak))
3230 need_relocs = TRUE;
3231
3232 if (!need_relocs)
3233 return 0;
3234
3235 switch (tls_type)
3236 {
3237 case GOT_TLS_GD:
3238 return indx != 0 ? 2 : 1;
3239
3240 case GOT_TLS_IE:
3241 return 1;
3242
3243 case GOT_TLS_LDM:
3244 return info->shared ? 1 : 0;
3245
3246 default:
3247 return 0;
3248 }
3249 }
3250
3251 /* Add the number of GOT entries and TLS relocations required by ENTRY
3252 to G. */
3253
3254 static void
3255 mips_elf_count_got_entry (struct bfd_link_info *info,
3256 struct mips_got_info *g,
3257 struct mips_got_entry *entry)
3258 {
3259 if (entry->tls_type)
3260 {
3261 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3262 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3263 entry->symndx < 0
3264 ? &entry->d.h->root : NULL);
3265 }
3266 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3267 g->local_gotno += 1;
3268 else
3269 g->global_gotno += 1;
3270 }
3271
3272 /* Output a simple dynamic relocation into SRELOC. */
3273
3274 static void
3275 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3276 asection *sreloc,
3277 unsigned long reloc_index,
3278 unsigned long indx,
3279 int r_type,
3280 bfd_vma offset)
3281 {
3282 Elf_Internal_Rela rel[3];
3283
3284 memset (rel, 0, sizeof (rel));
3285
3286 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3287 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3288
3289 if (ABI_64_P (output_bfd))
3290 {
3291 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3292 (output_bfd, &rel[0],
3293 (sreloc->contents
3294 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3295 }
3296 else
3297 bfd_elf32_swap_reloc_out
3298 (output_bfd, &rel[0],
3299 (sreloc->contents
3300 + reloc_index * sizeof (Elf32_External_Rel)));
3301 }
3302
3303 /* Initialize a set of TLS GOT entries for one symbol. */
3304
3305 static void
3306 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3307 struct mips_got_entry *entry,
3308 struct mips_elf_link_hash_entry *h,
3309 bfd_vma value)
3310 {
3311 struct mips_elf_link_hash_table *htab;
3312 int indx;
3313 asection *sreloc, *sgot;
3314 bfd_vma got_offset, got_offset2;
3315 bfd_boolean need_relocs = FALSE;
3316
3317 htab = mips_elf_hash_table (info);
3318 if (htab == NULL)
3319 return;
3320
3321 sgot = htab->sgot;
3322
3323 indx = 0;
3324 if (h != NULL)
3325 {
3326 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3327
3328 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3329 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3330 indx = h->root.dynindx;
3331 }
3332
3333 if (entry->tls_initialized)
3334 return;
3335
3336 if ((info->shared || indx != 0)
3337 && (h == NULL
3338 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3339 || h->root.type != bfd_link_hash_undefweak))
3340 need_relocs = TRUE;
3341
3342 /* MINUS_ONE means the symbol is not defined in this object. It may not
3343 be defined at all; assume that the value doesn't matter in that
3344 case. Otherwise complain if we would use the value. */
3345 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3346 || h->root.root.type == bfd_link_hash_undefweak);
3347
3348 /* Emit necessary relocations. */
3349 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3350 got_offset = entry->gotidx;
3351
3352 switch (entry->tls_type)
3353 {
3354 case GOT_TLS_GD:
3355 /* General Dynamic. */
3356 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3357
3358 if (need_relocs)
3359 {
3360 mips_elf_output_dynamic_relocation
3361 (abfd, sreloc, sreloc->reloc_count++, indx,
3362 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3363 sgot->output_offset + sgot->output_section->vma + got_offset);
3364
3365 if (indx)
3366 mips_elf_output_dynamic_relocation
3367 (abfd, sreloc, sreloc->reloc_count++, indx,
3368 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3369 sgot->output_offset + sgot->output_section->vma + got_offset2);
3370 else
3371 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3372 sgot->contents + got_offset2);
3373 }
3374 else
3375 {
3376 MIPS_ELF_PUT_WORD (abfd, 1,
3377 sgot->contents + got_offset);
3378 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3379 sgot->contents + got_offset2);
3380 }
3381 break;
3382
3383 case GOT_TLS_IE:
3384 /* Initial Exec model. */
3385 if (need_relocs)
3386 {
3387 if (indx == 0)
3388 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3389 sgot->contents + got_offset);
3390 else
3391 MIPS_ELF_PUT_WORD (abfd, 0,
3392 sgot->contents + got_offset);
3393
3394 mips_elf_output_dynamic_relocation
3395 (abfd, sreloc, sreloc->reloc_count++, indx,
3396 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3397 sgot->output_offset + sgot->output_section->vma + got_offset);
3398 }
3399 else
3400 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3401 sgot->contents + got_offset);
3402 break;
3403
3404 case GOT_TLS_LDM:
3405 /* The initial offset is zero, and the LD offsets will include the
3406 bias by DTP_OFFSET. */
3407 MIPS_ELF_PUT_WORD (abfd, 0,
3408 sgot->contents + got_offset
3409 + MIPS_ELF_GOT_SIZE (abfd));
3410
3411 if (!info->shared)
3412 MIPS_ELF_PUT_WORD (abfd, 1,
3413 sgot->contents + got_offset);
3414 else
3415 mips_elf_output_dynamic_relocation
3416 (abfd, sreloc, sreloc->reloc_count++, indx,
3417 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3418 sgot->output_offset + sgot->output_section->vma + got_offset);
3419 break;
3420
3421 default:
3422 abort ();
3423 }
3424
3425 entry->tls_initialized = TRUE;
3426 }
3427
3428 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3429 for global symbol H. .got.plt comes before the GOT, so the offset
3430 will be negative. */
3431
3432 static bfd_vma
3433 mips_elf_gotplt_index (struct bfd_link_info *info,
3434 struct elf_link_hash_entry *h)
3435 {
3436 bfd_vma got_address, got_value;
3437 struct mips_elf_link_hash_table *htab;
3438
3439 htab = mips_elf_hash_table (info);
3440 BFD_ASSERT (htab != NULL);
3441
3442 BFD_ASSERT (h->plt.plist != NULL);
3443 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3444
3445 /* Calculate the address of the associated .got.plt entry. */
3446 got_address = (htab->sgotplt->output_section->vma
3447 + htab->sgotplt->output_offset
3448 + (h->plt.plist->gotplt_index
3449 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3450
3451 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3452 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3453 + htab->root.hgot->root.u.def.section->output_offset
3454 + htab->root.hgot->root.u.def.value);
3455
3456 return got_address - got_value;
3457 }
3458
3459 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3460 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3461 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3462 offset can be found. */
3463
3464 static bfd_vma
3465 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3466 bfd_vma value, unsigned long r_symndx,
3467 struct mips_elf_link_hash_entry *h, int r_type)
3468 {
3469 struct mips_elf_link_hash_table *htab;
3470 struct mips_got_entry *entry;
3471
3472 htab = mips_elf_hash_table (info);
3473 BFD_ASSERT (htab != NULL);
3474
3475 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3476 r_symndx, h, r_type);
3477 if (!entry)
3478 return MINUS_ONE;
3479
3480 if (entry->tls_type)
3481 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3482 return entry->gotidx;
3483 }
3484
3485 /* Return the GOT index of global symbol H in the primary GOT. */
3486
3487 static bfd_vma
3488 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3489 struct elf_link_hash_entry *h)
3490 {
3491 struct mips_elf_link_hash_table *htab;
3492 long global_got_dynindx;
3493 struct mips_got_info *g;
3494 bfd_vma got_index;
3495
3496 htab = mips_elf_hash_table (info);
3497 BFD_ASSERT (htab != NULL);
3498
3499 global_got_dynindx = 0;
3500 if (htab->global_gotsym != NULL)
3501 global_got_dynindx = htab->global_gotsym->dynindx;
3502
3503 /* Once we determine the global GOT entry with the lowest dynamic
3504 symbol table index, we must put all dynamic symbols with greater
3505 indices into the primary GOT. That makes it easy to calculate the
3506 GOT offset. */
3507 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3508 g = mips_elf_bfd_got (obfd, FALSE);
3509 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3510 * MIPS_ELF_GOT_SIZE (obfd));
3511 BFD_ASSERT (got_index < htab->sgot->size);
3512
3513 return got_index;
3514 }
3515
3516 /* Return the GOT index for the global symbol indicated by H, which is
3517 referenced by a relocation of type R_TYPE in IBFD. */
3518
3519 static bfd_vma
3520 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3521 struct elf_link_hash_entry *h, int r_type)
3522 {
3523 struct mips_elf_link_hash_table *htab;
3524 struct mips_got_info *g;
3525 struct mips_got_entry lookup, *entry;
3526 bfd_vma gotidx;
3527
3528 htab = mips_elf_hash_table (info);
3529 BFD_ASSERT (htab != NULL);
3530
3531 g = mips_elf_bfd_got (ibfd, FALSE);
3532 BFD_ASSERT (g);
3533
3534 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3535 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3536 return mips_elf_primary_global_got_index (obfd, info, h);
3537
3538 lookup.abfd = ibfd;
3539 lookup.symndx = -1;
3540 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3541 entry = htab_find (g->got_entries, &lookup);
3542 BFD_ASSERT (entry);
3543
3544 gotidx = entry->gotidx;
3545 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3546
3547 if (lookup.tls_type)
3548 {
3549 bfd_vma value = MINUS_ONE;
3550
3551 if ((h->root.type == bfd_link_hash_defined
3552 || h->root.type == bfd_link_hash_defweak)
3553 && h->root.u.def.section->output_section)
3554 value = (h->root.u.def.value
3555 + h->root.u.def.section->output_offset
3556 + h->root.u.def.section->output_section->vma);
3557
3558 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3559 }
3560 return gotidx;
3561 }
3562
3563 /* Find a GOT page entry that points to within 32KB of VALUE. These
3564 entries are supposed to be placed at small offsets in the GOT, i.e.,
3565 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3566 entry could be created. If OFFSETP is nonnull, use it to return the
3567 offset of the GOT entry from VALUE. */
3568
3569 static bfd_vma
3570 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3571 bfd_vma value, bfd_vma *offsetp)
3572 {
3573 bfd_vma page, got_index;
3574 struct mips_got_entry *entry;
3575
3576 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3577 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3578 NULL, R_MIPS_GOT_PAGE);
3579
3580 if (!entry)
3581 return MINUS_ONE;
3582
3583 got_index = entry->gotidx;
3584
3585 if (offsetp)
3586 *offsetp = value - entry->d.address;
3587
3588 return got_index;
3589 }
3590
3591 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3592 EXTERNAL is true if the relocation was originally against a global
3593 symbol that binds locally. */
3594
3595 static bfd_vma
3596 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3597 bfd_vma value, bfd_boolean external)
3598 {
3599 struct mips_got_entry *entry;
3600
3601 /* GOT16 relocations against local symbols are followed by a LO16
3602 relocation; those against global symbols are not. Thus if the
3603 symbol was originally local, the GOT16 relocation should load the
3604 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3605 if (! external)
3606 value = mips_elf_high (value) << 16;
3607
3608 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3609 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3610 same in all cases. */
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3612 NULL, R_MIPS_GOT16);
3613 if (entry)
3614 return entry->gotidx;
3615 else
3616 return MINUS_ONE;
3617 }
3618
3619 /* Returns the offset for the entry at the INDEXth position
3620 in the GOT. */
3621
3622 static bfd_vma
3623 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3624 bfd *input_bfd, bfd_vma got_index)
3625 {
3626 struct mips_elf_link_hash_table *htab;
3627 asection *sgot;
3628 bfd_vma gp;
3629
3630 htab = mips_elf_hash_table (info);
3631 BFD_ASSERT (htab != NULL);
3632
3633 sgot = htab->sgot;
3634 gp = _bfd_get_gp_value (output_bfd)
3635 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3636
3637 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3638 }
3639
3640 /* Create and return a local GOT entry for VALUE, which was calculated
3641 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3642 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3643 instead. */
3644
3645 static struct mips_got_entry *
3646 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3647 bfd *ibfd, bfd_vma value,
3648 unsigned long r_symndx,
3649 struct mips_elf_link_hash_entry *h,
3650 int r_type)
3651 {
3652 struct mips_got_entry lookup, *entry;
3653 void **loc;
3654 struct mips_got_info *g;
3655 struct mips_elf_link_hash_table *htab;
3656 bfd_vma gotidx;
3657
3658 htab = mips_elf_hash_table (info);
3659 BFD_ASSERT (htab != NULL);
3660
3661 g = mips_elf_bfd_got (ibfd, FALSE);
3662 if (g == NULL)
3663 {
3664 g = mips_elf_bfd_got (abfd, FALSE);
3665 BFD_ASSERT (g != NULL);
3666 }
3667
3668 /* This function shouldn't be called for symbols that live in the global
3669 area of the GOT. */
3670 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3671
3672 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3673 if (lookup.tls_type)
3674 {
3675 lookup.abfd = ibfd;
3676 if (tls_ldm_reloc_p (r_type))
3677 {
3678 lookup.symndx = 0;
3679 lookup.d.addend = 0;
3680 }
3681 else if (h == NULL)
3682 {
3683 lookup.symndx = r_symndx;
3684 lookup.d.addend = 0;
3685 }
3686 else
3687 {
3688 lookup.symndx = -1;
3689 lookup.d.h = h;
3690 }
3691
3692 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3693 BFD_ASSERT (entry);
3694
3695 gotidx = entry->gotidx;
3696 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3697
3698 return entry;
3699 }
3700
3701 lookup.abfd = NULL;
3702 lookup.symndx = -1;
3703 lookup.d.address = value;
3704 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3705 if (!loc)
3706 return NULL;
3707
3708 entry = (struct mips_got_entry *) *loc;
3709 if (entry)
3710 return entry;
3711
3712 if (g->assigned_low_gotno > g->assigned_high_gotno)
3713 {
3714 /* We didn't allocate enough space in the GOT. */
3715 (*_bfd_error_handler)
3716 (_("not enough GOT space for local GOT entries"));
3717 bfd_set_error (bfd_error_bad_value);
3718 return NULL;
3719 }
3720
3721 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3722 if (!entry)
3723 return NULL;
3724
3725 if (got16_reloc_p (r_type)
3726 || call16_reloc_p (r_type)
3727 || got_page_reloc_p (r_type)
3728 || got_disp_reloc_p (r_type))
3729 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3730 else
3731 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3732
3733 *entry = lookup;
3734 *loc = entry;
3735
3736 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3737
3738 /* These GOT entries need a dynamic relocation on VxWorks. */
3739 if (htab->is_vxworks)
3740 {
3741 Elf_Internal_Rela outrel;
3742 asection *s;
3743 bfd_byte *rloc;
3744 bfd_vma got_address;
3745
3746 s = mips_elf_rel_dyn_section (info, FALSE);
3747 got_address = (htab->sgot->output_section->vma
3748 + htab->sgot->output_offset
3749 + entry->gotidx);
3750
3751 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3752 outrel.r_offset = got_address;
3753 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3754 outrel.r_addend = value;
3755 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3756 }
3757
3758 return entry;
3759 }
3760
3761 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3762 The number might be exact or a worst-case estimate, depending on how
3763 much information is available to elf_backend_omit_section_dynsym at
3764 the current linking stage. */
3765
3766 static bfd_size_type
3767 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3768 {
3769 bfd_size_type count;
3770
3771 count = 0;
3772 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3773 {
3774 asection *p;
3775 const struct elf_backend_data *bed;
3776
3777 bed = get_elf_backend_data (output_bfd);
3778 for (p = output_bfd->sections; p ; p = p->next)
3779 if ((p->flags & SEC_EXCLUDE) == 0
3780 && (p->flags & SEC_ALLOC) != 0
3781 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3782 ++count;
3783 }
3784 return count;
3785 }
3786
3787 /* Sort the dynamic symbol table so that symbols that need GOT entries
3788 appear towards the end. */
3789
3790 static bfd_boolean
3791 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3792 {
3793 struct mips_elf_link_hash_table *htab;
3794 struct mips_elf_hash_sort_data hsd;
3795 struct mips_got_info *g;
3796
3797 if (elf_hash_table (info)->dynsymcount == 0)
3798 return TRUE;
3799
3800 htab = mips_elf_hash_table (info);
3801 BFD_ASSERT (htab != NULL);
3802
3803 g = htab->got_info;
3804 if (g == NULL)
3805 return TRUE;
3806
3807 hsd.low = NULL;
3808 hsd.max_unref_got_dynindx
3809 = hsd.min_got_dynindx
3810 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3811 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3812 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3813 elf_hash_table (info)),
3814 mips_elf_sort_hash_table_f,
3815 &hsd);
3816
3817 /* There should have been enough room in the symbol table to
3818 accommodate both the GOT and non-GOT symbols. */
3819 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3820 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3821 == elf_hash_table (info)->dynsymcount);
3822 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3823 == g->global_gotno);
3824
3825 /* Now we know which dynamic symbol has the lowest dynamic symbol
3826 table index in the GOT. */
3827 htab->global_gotsym = hsd.low;
3828
3829 return TRUE;
3830 }
3831
3832 /* If H needs a GOT entry, assign it the highest available dynamic
3833 index. Otherwise, assign it the lowest available dynamic
3834 index. */
3835
3836 static bfd_boolean
3837 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3838 {
3839 struct mips_elf_hash_sort_data *hsd = data;
3840
3841 /* Symbols without dynamic symbol table entries aren't interesting
3842 at all. */
3843 if (h->root.dynindx == -1)
3844 return TRUE;
3845
3846 switch (h->global_got_area)
3847 {
3848 case GGA_NONE:
3849 h->root.dynindx = hsd->max_non_got_dynindx++;
3850 break;
3851
3852 case GGA_NORMAL:
3853 h->root.dynindx = --hsd->min_got_dynindx;
3854 hsd->low = (struct elf_link_hash_entry *) h;
3855 break;
3856
3857 case GGA_RELOC_ONLY:
3858 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3859 hsd->low = (struct elf_link_hash_entry *) h;
3860 h->root.dynindx = hsd->max_unref_got_dynindx++;
3861 break;
3862 }
3863
3864 return TRUE;
3865 }
3866
3867 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3868 (which is owned by the caller and shouldn't be added to the
3869 hash table directly). */
3870
3871 static bfd_boolean
3872 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3873 struct mips_got_entry *lookup)
3874 {
3875 struct mips_elf_link_hash_table *htab;
3876 struct mips_got_entry *entry;
3877 struct mips_got_info *g;
3878 void **loc, **bfd_loc;
3879
3880 /* Make sure there's a slot for this entry in the master GOT. */
3881 htab = mips_elf_hash_table (info);
3882 g = htab->got_info;
3883 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3884 if (!loc)
3885 return FALSE;
3886
3887 /* Populate the entry if it isn't already. */
3888 entry = (struct mips_got_entry *) *loc;
3889 if (!entry)
3890 {
3891 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3892 if (!entry)
3893 return FALSE;
3894
3895 lookup->tls_initialized = FALSE;
3896 lookup->gotidx = -1;
3897 *entry = *lookup;
3898 *loc = entry;
3899 }
3900
3901 /* Reuse the same GOT entry for the BFD's GOT. */
3902 g = mips_elf_bfd_got (abfd, TRUE);
3903 if (!g)
3904 return FALSE;
3905
3906 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3907 if (!bfd_loc)
3908 return FALSE;
3909
3910 if (!*bfd_loc)
3911 *bfd_loc = entry;
3912 return TRUE;
3913 }
3914
3915 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3916 entry for it. FOR_CALL is true if the caller is only interested in
3917 using the GOT entry for calls. */
3918
3919 static bfd_boolean
3920 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3921 bfd *abfd, struct bfd_link_info *info,
3922 bfd_boolean for_call, int r_type)
3923 {
3924 struct mips_elf_link_hash_table *htab;
3925 struct mips_elf_link_hash_entry *hmips;
3926 struct mips_got_entry entry;
3927 unsigned char tls_type;
3928
3929 htab = mips_elf_hash_table (info);
3930 BFD_ASSERT (htab != NULL);
3931
3932 hmips = (struct mips_elf_link_hash_entry *) h;
3933 if (!for_call)
3934 hmips->got_only_for_calls = FALSE;
3935
3936 /* A global symbol in the GOT must also be in the dynamic symbol
3937 table. */
3938 if (h->dynindx == -1)
3939 {
3940 switch (ELF_ST_VISIBILITY (h->other))
3941 {
3942 case STV_INTERNAL:
3943 case STV_HIDDEN:
3944 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3945 break;
3946 }
3947 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3948 return FALSE;
3949 }
3950
3951 tls_type = mips_elf_reloc_tls_type (r_type);
3952 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3953 hmips->global_got_area = GGA_NORMAL;
3954
3955 entry.abfd = abfd;
3956 entry.symndx = -1;
3957 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3958 entry.tls_type = tls_type;
3959 return mips_elf_record_got_entry (info, abfd, &entry);
3960 }
3961
3962 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3963 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3964
3965 static bfd_boolean
3966 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3967 struct bfd_link_info *info, int r_type)
3968 {
3969 struct mips_elf_link_hash_table *htab;
3970 struct mips_got_info *g;
3971 struct mips_got_entry entry;
3972
3973 htab = mips_elf_hash_table (info);
3974 BFD_ASSERT (htab != NULL);
3975
3976 g = htab->got_info;
3977 BFD_ASSERT (g != NULL);
3978
3979 entry.abfd = abfd;
3980 entry.symndx = symndx;
3981 entry.d.addend = addend;
3982 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3983 return mips_elf_record_got_entry (info, abfd, &entry);
3984 }
3985
3986 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3987 H is the symbol's hash table entry, or null if SYMNDX is local
3988 to ABFD. */
3989
3990 static bfd_boolean
3991 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3992 long symndx, struct elf_link_hash_entry *h,
3993 bfd_signed_vma addend)
3994 {
3995 struct mips_elf_link_hash_table *htab;
3996 struct mips_got_info *g1, *g2;
3997 struct mips_got_page_ref lookup, *entry;
3998 void **loc, **bfd_loc;
3999
4000 htab = mips_elf_hash_table (info);
4001 BFD_ASSERT (htab != NULL);
4002
4003 g1 = htab->got_info;
4004 BFD_ASSERT (g1 != NULL);
4005
4006 if (h)
4007 {
4008 lookup.symndx = -1;
4009 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4010 }
4011 else
4012 {
4013 lookup.symndx = symndx;
4014 lookup.u.abfd = abfd;
4015 }
4016 lookup.addend = addend;
4017 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4018 if (loc == NULL)
4019 return FALSE;
4020
4021 entry = (struct mips_got_page_ref *) *loc;
4022 if (!entry)
4023 {
4024 entry = bfd_alloc (abfd, sizeof (*entry));
4025 if (!entry)
4026 return FALSE;
4027
4028 *entry = lookup;
4029 *loc = entry;
4030 }
4031
4032 /* Add the same entry to the BFD's GOT. */
4033 g2 = mips_elf_bfd_got (abfd, TRUE);
4034 if (!g2)
4035 return FALSE;
4036
4037 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4038 if (!bfd_loc)
4039 return FALSE;
4040
4041 if (!*bfd_loc)
4042 *bfd_loc = entry;
4043
4044 return TRUE;
4045 }
4046
4047 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4048
4049 static void
4050 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4051 unsigned int n)
4052 {
4053 asection *s;
4054 struct mips_elf_link_hash_table *htab;
4055
4056 htab = mips_elf_hash_table (info);
4057 BFD_ASSERT (htab != NULL);
4058
4059 s = mips_elf_rel_dyn_section (info, FALSE);
4060 BFD_ASSERT (s != NULL);
4061
4062 if (htab->is_vxworks)
4063 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4064 else
4065 {
4066 if (s->size == 0)
4067 {
4068 /* Make room for a null element. */
4069 s->size += MIPS_ELF_REL_SIZE (abfd);
4070 ++s->reloc_count;
4071 }
4072 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4073 }
4074 }
4075 \f
4076 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4077 mips_elf_traverse_got_arg structure. Count the number of GOT
4078 entries and TLS relocs. Set DATA->value to true if we need
4079 to resolve indirect or warning symbols and then recreate the GOT. */
4080
4081 static int
4082 mips_elf_check_recreate_got (void **entryp, void *data)
4083 {
4084 struct mips_got_entry *entry;
4085 struct mips_elf_traverse_got_arg *arg;
4086
4087 entry = (struct mips_got_entry *) *entryp;
4088 arg = (struct mips_elf_traverse_got_arg *) data;
4089 if (entry->abfd != NULL && entry->symndx == -1)
4090 {
4091 struct mips_elf_link_hash_entry *h;
4092
4093 h = entry->d.h;
4094 if (h->root.root.type == bfd_link_hash_indirect
4095 || h->root.root.type == bfd_link_hash_warning)
4096 {
4097 arg->value = TRUE;
4098 return 0;
4099 }
4100 }
4101 mips_elf_count_got_entry (arg->info, arg->g, entry);
4102 return 1;
4103 }
4104
4105 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4106 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4107 converting entries for indirect and warning symbols into entries
4108 for the target symbol. Set DATA->g to null on error. */
4109
4110 static int
4111 mips_elf_recreate_got (void **entryp, void *data)
4112 {
4113 struct mips_got_entry new_entry, *entry;
4114 struct mips_elf_traverse_got_arg *arg;
4115 void **slot;
4116
4117 entry = (struct mips_got_entry *) *entryp;
4118 arg = (struct mips_elf_traverse_got_arg *) data;
4119 if (entry->abfd != NULL
4120 && entry->symndx == -1
4121 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4122 || entry->d.h->root.root.type == bfd_link_hash_warning))
4123 {
4124 struct mips_elf_link_hash_entry *h;
4125
4126 new_entry = *entry;
4127 entry = &new_entry;
4128 h = entry->d.h;
4129 do
4130 {
4131 BFD_ASSERT (h->global_got_area == GGA_NONE);
4132 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4133 }
4134 while (h->root.root.type == bfd_link_hash_indirect
4135 || h->root.root.type == bfd_link_hash_warning);
4136 entry->d.h = h;
4137 }
4138 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4139 if (slot == NULL)
4140 {
4141 arg->g = NULL;
4142 return 0;
4143 }
4144 if (*slot == NULL)
4145 {
4146 if (entry == &new_entry)
4147 {
4148 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4149 if (!entry)
4150 {
4151 arg->g = NULL;
4152 return 0;
4153 }
4154 *entry = new_entry;
4155 }
4156 *slot = entry;
4157 mips_elf_count_got_entry (arg->info, arg->g, entry);
4158 }
4159 return 1;
4160 }
4161
4162 /* Return the maximum number of GOT page entries required for RANGE. */
4163
4164 static bfd_vma
4165 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4166 {
4167 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4168 }
4169
4170 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4171
4172 static bfd_boolean
4173 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4174 asection *sec, bfd_signed_vma addend)
4175 {
4176 struct mips_got_info *g = arg->g;
4177 struct mips_got_page_entry lookup, *entry;
4178 struct mips_got_page_range **range_ptr, *range;
4179 bfd_vma old_pages, new_pages;
4180 void **loc;
4181
4182 /* Find the mips_got_page_entry hash table entry for this section. */
4183 lookup.sec = sec;
4184 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4185 if (loc == NULL)
4186 return FALSE;
4187
4188 /* Create a mips_got_page_entry if this is the first time we've
4189 seen the section. */
4190 entry = (struct mips_got_page_entry *) *loc;
4191 if (!entry)
4192 {
4193 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4194 if (!entry)
4195 return FALSE;
4196
4197 entry->sec = sec;
4198 *loc = entry;
4199 }
4200
4201 /* Skip over ranges whose maximum extent cannot share a page entry
4202 with ADDEND. */
4203 range_ptr = &entry->ranges;
4204 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4205 range_ptr = &(*range_ptr)->next;
4206
4207 /* If we scanned to the end of the list, or found a range whose
4208 minimum extent cannot share a page entry with ADDEND, create
4209 a new singleton range. */
4210 range = *range_ptr;
4211 if (!range || addend < range->min_addend - 0xffff)
4212 {
4213 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4214 if (!range)
4215 return FALSE;
4216
4217 range->next = *range_ptr;
4218 range->min_addend = addend;
4219 range->max_addend = addend;
4220
4221 *range_ptr = range;
4222 entry->num_pages++;
4223 g->page_gotno++;
4224 return TRUE;
4225 }
4226
4227 /* Remember how many pages the old range contributed. */
4228 old_pages = mips_elf_pages_for_range (range);
4229
4230 /* Update the ranges. */
4231 if (addend < range->min_addend)
4232 range->min_addend = addend;
4233 else if (addend > range->max_addend)
4234 {
4235 if (range->next && addend >= range->next->min_addend - 0xffff)
4236 {
4237 old_pages += mips_elf_pages_for_range (range->next);
4238 range->max_addend = range->next->max_addend;
4239 range->next = range->next->next;
4240 }
4241 else
4242 range->max_addend = addend;
4243 }
4244
4245 /* Record any change in the total estimate. */
4246 new_pages = mips_elf_pages_for_range (range);
4247 if (old_pages != new_pages)
4248 {
4249 entry->num_pages += new_pages - old_pages;
4250 g->page_gotno += new_pages - old_pages;
4251 }
4252
4253 return TRUE;
4254 }
4255
4256 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4257 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4258 whether the page reference described by *REFP needs a GOT page entry,
4259 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4260
4261 static bfd_boolean
4262 mips_elf_resolve_got_page_ref (void **refp, void *data)
4263 {
4264 struct mips_got_page_ref *ref;
4265 struct mips_elf_traverse_got_arg *arg;
4266 struct mips_elf_link_hash_table *htab;
4267 asection *sec;
4268 bfd_vma addend;
4269
4270 ref = (struct mips_got_page_ref *) *refp;
4271 arg = (struct mips_elf_traverse_got_arg *) data;
4272 htab = mips_elf_hash_table (arg->info);
4273
4274 if (ref->symndx < 0)
4275 {
4276 struct mips_elf_link_hash_entry *h;
4277
4278 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4279 h = ref->u.h;
4280 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4281 return 1;
4282
4283 /* Ignore undefined symbols; we'll issue an error later if
4284 appropriate. */
4285 if (!((h->root.root.type == bfd_link_hash_defined
4286 || h->root.root.type == bfd_link_hash_defweak)
4287 && h->root.root.u.def.section))
4288 return 1;
4289
4290 sec = h->root.root.u.def.section;
4291 addend = h->root.root.u.def.value + ref->addend;
4292 }
4293 else
4294 {
4295 Elf_Internal_Sym *isym;
4296
4297 /* Read in the symbol. */
4298 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4299 ref->symndx);
4300 if (isym == NULL)
4301 {
4302 arg->g = NULL;
4303 return 0;
4304 }
4305
4306 /* Get the associated input section. */
4307 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4308 if (sec == NULL)
4309 {
4310 arg->g = NULL;
4311 return 0;
4312 }
4313
4314 /* If this is a mergable section, work out the section and offset
4315 of the merged data. For section symbols, the addend specifies
4316 of the offset _of_ the first byte in the data, otherwise it
4317 specifies the offset _from_ the first byte. */
4318 if (sec->flags & SEC_MERGE)
4319 {
4320 void *secinfo;
4321
4322 secinfo = elf_section_data (sec)->sec_info;
4323 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4324 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4325 isym->st_value + ref->addend);
4326 else
4327 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4328 isym->st_value) + ref->addend;
4329 }
4330 else
4331 addend = isym->st_value + ref->addend;
4332 }
4333 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4334 {
4335 arg->g = NULL;
4336 return 0;
4337 }
4338 return 1;
4339 }
4340
4341 /* If any entries in G->got_entries are for indirect or warning symbols,
4342 replace them with entries for the target symbol. Convert g->got_page_refs
4343 into got_page_entry structures and estimate the number of page entries
4344 that they require. */
4345
4346 static bfd_boolean
4347 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4348 struct mips_got_info *g)
4349 {
4350 struct mips_elf_traverse_got_arg tga;
4351 struct mips_got_info oldg;
4352
4353 oldg = *g;
4354
4355 tga.info = info;
4356 tga.g = g;
4357 tga.value = FALSE;
4358 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4359 if (tga.value)
4360 {
4361 *g = oldg;
4362 g->got_entries = htab_create (htab_size (oldg.got_entries),
4363 mips_elf_got_entry_hash,
4364 mips_elf_got_entry_eq, NULL);
4365 if (!g->got_entries)
4366 return FALSE;
4367
4368 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4369 if (!tga.g)
4370 return FALSE;
4371
4372 htab_delete (oldg.got_entries);
4373 }
4374
4375 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4376 mips_got_page_entry_eq, NULL);
4377 if (g->got_page_entries == NULL)
4378 return FALSE;
4379
4380 tga.info = info;
4381 tga.g = g;
4382 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4383
4384 return TRUE;
4385 }
4386
4387 /* Return true if a GOT entry for H should live in the local rather than
4388 global GOT area. */
4389
4390 static bfd_boolean
4391 mips_use_local_got_p (struct bfd_link_info *info,
4392 struct mips_elf_link_hash_entry *h)
4393 {
4394 /* Symbols that aren't in the dynamic symbol table must live in the
4395 local GOT. This includes symbols that are completely undefined
4396 and which therefore don't bind locally. We'll report undefined
4397 symbols later if appropriate. */
4398 if (h->root.dynindx == -1)
4399 return TRUE;
4400
4401 /* Symbols that bind locally can (and in the case of forced-local
4402 symbols, must) live in the local GOT. */
4403 if (h->got_only_for_calls
4404 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4405 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4406 return TRUE;
4407
4408 /* If this is an executable that must provide a definition of the symbol,
4409 either though PLTs or copy relocations, then that address should go in
4410 the local rather than global GOT. */
4411 if (info->executable && h->has_static_relocs)
4412 return TRUE;
4413
4414 return FALSE;
4415 }
4416
4417 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4418 link_info structure. Decide whether the hash entry needs an entry in
4419 the global part of the primary GOT, setting global_got_area accordingly.
4420 Count the number of global symbols that are in the primary GOT only
4421 because they have relocations against them (reloc_only_gotno). */
4422
4423 static int
4424 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4425 {
4426 struct bfd_link_info *info;
4427 struct mips_elf_link_hash_table *htab;
4428 struct mips_got_info *g;
4429
4430 info = (struct bfd_link_info *) data;
4431 htab = mips_elf_hash_table (info);
4432 g = htab->got_info;
4433 if (h->global_got_area != GGA_NONE)
4434 {
4435 /* Make a final decision about whether the symbol belongs in the
4436 local or global GOT. */
4437 if (mips_use_local_got_p (info, h))
4438 /* The symbol belongs in the local GOT. We no longer need this
4439 entry if it was only used for relocations; those relocations
4440 will be against the null or section symbol instead of H. */
4441 h->global_got_area = GGA_NONE;
4442 else if (htab->is_vxworks
4443 && h->got_only_for_calls
4444 && h->root.plt.plist->mips_offset != MINUS_ONE)
4445 /* On VxWorks, calls can refer directly to the .got.plt entry;
4446 they don't need entries in the regular GOT. .got.plt entries
4447 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4448 h->global_got_area = GGA_NONE;
4449 else if (h->global_got_area == GGA_RELOC_ONLY)
4450 {
4451 g->reloc_only_gotno++;
4452 g->global_gotno++;
4453 }
4454 }
4455 return 1;
4456 }
4457 \f
4458 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4459 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4460
4461 static int
4462 mips_elf_add_got_entry (void **entryp, void *data)
4463 {
4464 struct mips_got_entry *entry;
4465 struct mips_elf_traverse_got_arg *arg;
4466 void **slot;
4467
4468 entry = (struct mips_got_entry *) *entryp;
4469 arg = (struct mips_elf_traverse_got_arg *) data;
4470 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4471 if (!slot)
4472 {
4473 arg->g = NULL;
4474 return 0;
4475 }
4476 if (!*slot)
4477 {
4478 *slot = entry;
4479 mips_elf_count_got_entry (arg->info, arg->g, entry);
4480 }
4481 return 1;
4482 }
4483
4484 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4485 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4486
4487 static int
4488 mips_elf_add_got_page_entry (void **entryp, void *data)
4489 {
4490 struct mips_got_page_entry *entry;
4491 struct mips_elf_traverse_got_arg *arg;
4492 void **slot;
4493
4494 entry = (struct mips_got_page_entry *) *entryp;
4495 arg = (struct mips_elf_traverse_got_arg *) data;
4496 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4497 if (!slot)
4498 {
4499 arg->g = NULL;
4500 return 0;
4501 }
4502 if (!*slot)
4503 {
4504 *slot = entry;
4505 arg->g->page_gotno += entry->num_pages;
4506 }
4507 return 1;
4508 }
4509
4510 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4511 this would lead to overflow, 1 if they were merged successfully,
4512 and 0 if a merge failed due to lack of memory. (These values are chosen
4513 so that nonnegative return values can be returned by a htab_traverse
4514 callback.) */
4515
4516 static int
4517 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4518 struct mips_got_info *to,
4519 struct mips_elf_got_per_bfd_arg *arg)
4520 {
4521 struct mips_elf_traverse_got_arg tga;
4522 unsigned int estimate;
4523
4524 /* Work out how many page entries we would need for the combined GOT. */
4525 estimate = arg->max_pages;
4526 if (estimate >= from->page_gotno + to->page_gotno)
4527 estimate = from->page_gotno + to->page_gotno;
4528
4529 /* And conservatively estimate how many local and TLS entries
4530 would be needed. */
4531 estimate += from->local_gotno + to->local_gotno;
4532 estimate += from->tls_gotno + to->tls_gotno;
4533
4534 /* If we're merging with the primary got, any TLS relocations will
4535 come after the full set of global entries. Otherwise estimate those
4536 conservatively as well. */
4537 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4538 estimate += arg->global_count;
4539 else
4540 estimate += from->global_gotno + to->global_gotno;
4541
4542 /* Bail out if the combined GOT might be too big. */
4543 if (estimate > arg->max_count)
4544 return -1;
4545
4546 /* Transfer the bfd's got information from FROM to TO. */
4547 tga.info = arg->info;
4548 tga.g = to;
4549 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4550 if (!tga.g)
4551 return 0;
4552
4553 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4554 if (!tga.g)
4555 return 0;
4556
4557 mips_elf_replace_bfd_got (abfd, to);
4558 return 1;
4559 }
4560
4561 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4562 as possible of the primary got, since it doesn't require explicit
4563 dynamic relocations, but don't use bfds that would reference global
4564 symbols out of the addressable range. Failing the primary got,
4565 attempt to merge with the current got, or finish the current got
4566 and then make make the new got current. */
4567
4568 static bfd_boolean
4569 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4570 struct mips_elf_got_per_bfd_arg *arg)
4571 {
4572 unsigned int estimate;
4573 int result;
4574
4575 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4576 return FALSE;
4577
4578 /* Work out the number of page, local and TLS entries. */
4579 estimate = arg->max_pages;
4580 if (estimate > g->page_gotno)
4581 estimate = g->page_gotno;
4582 estimate += g->local_gotno + g->tls_gotno;
4583
4584 /* We place TLS GOT entries after both locals and globals. The globals
4585 for the primary GOT may overflow the normal GOT size limit, so be
4586 sure not to merge a GOT which requires TLS with the primary GOT in that
4587 case. This doesn't affect non-primary GOTs. */
4588 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4589
4590 if (estimate <= arg->max_count)
4591 {
4592 /* If we don't have a primary GOT, use it as
4593 a starting point for the primary GOT. */
4594 if (!arg->primary)
4595 {
4596 arg->primary = g;
4597 return TRUE;
4598 }
4599
4600 /* Try merging with the primary GOT. */
4601 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4602 if (result >= 0)
4603 return result;
4604 }
4605
4606 /* If we can merge with the last-created got, do it. */
4607 if (arg->current)
4608 {
4609 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4610 if (result >= 0)
4611 return result;
4612 }
4613
4614 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4615 fits; if it turns out that it doesn't, we'll get relocation
4616 overflows anyway. */
4617 g->next = arg->current;
4618 arg->current = g;
4619
4620 return TRUE;
4621 }
4622
4623 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4624 to GOTIDX, duplicating the entry if it has already been assigned
4625 an index in a different GOT. */
4626
4627 static bfd_boolean
4628 mips_elf_set_gotidx (void **entryp, long gotidx)
4629 {
4630 struct mips_got_entry *entry;
4631
4632 entry = (struct mips_got_entry *) *entryp;
4633 if (entry->gotidx > 0)
4634 {
4635 struct mips_got_entry *new_entry;
4636
4637 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4638 if (!new_entry)
4639 return FALSE;
4640
4641 *new_entry = *entry;
4642 *entryp = new_entry;
4643 entry = new_entry;
4644 }
4645 entry->gotidx = gotidx;
4646 return TRUE;
4647 }
4648
4649 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4650 mips_elf_traverse_got_arg in which DATA->value is the size of one
4651 GOT entry. Set DATA->g to null on failure. */
4652
4653 static int
4654 mips_elf_initialize_tls_index (void **entryp, void *data)
4655 {
4656 struct mips_got_entry *entry;
4657 struct mips_elf_traverse_got_arg *arg;
4658
4659 /* We're only interested in TLS symbols. */
4660 entry = (struct mips_got_entry *) *entryp;
4661 if (entry->tls_type == GOT_TLS_NONE)
4662 return 1;
4663
4664 arg = (struct mips_elf_traverse_got_arg *) data;
4665 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4666 {
4667 arg->g = NULL;
4668 return 0;
4669 }
4670
4671 /* Account for the entries we've just allocated. */
4672 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4673 return 1;
4674 }
4675
4676 /* A htab_traverse callback for GOT entries, where DATA points to a
4677 mips_elf_traverse_got_arg. Set the global_got_area of each global
4678 symbol to DATA->value. */
4679
4680 static int
4681 mips_elf_set_global_got_area (void **entryp, void *data)
4682 {
4683 struct mips_got_entry *entry;
4684 struct mips_elf_traverse_got_arg *arg;
4685
4686 entry = (struct mips_got_entry *) *entryp;
4687 arg = (struct mips_elf_traverse_got_arg *) data;
4688 if (entry->abfd != NULL
4689 && entry->symndx == -1
4690 && entry->d.h->global_got_area != GGA_NONE)
4691 entry->d.h->global_got_area = arg->value;
4692 return 1;
4693 }
4694
4695 /* A htab_traverse callback for secondary GOT entries, where DATA points
4696 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4697 and record the number of relocations they require. DATA->value is
4698 the size of one GOT entry. Set DATA->g to null on failure. */
4699
4700 static int
4701 mips_elf_set_global_gotidx (void **entryp, void *data)
4702 {
4703 struct mips_got_entry *entry;
4704 struct mips_elf_traverse_got_arg *arg;
4705
4706 entry = (struct mips_got_entry *) *entryp;
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (entry->abfd != NULL
4709 && entry->symndx == -1
4710 && entry->d.h->global_got_area != GGA_NONE)
4711 {
4712 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4713 {
4714 arg->g = NULL;
4715 return 0;
4716 }
4717 arg->g->assigned_low_gotno += 1;
4718
4719 if (arg->info->shared
4720 || (elf_hash_table (arg->info)->dynamic_sections_created
4721 && entry->d.h->root.def_dynamic
4722 && !entry->d.h->root.def_regular))
4723 arg->g->relocs += 1;
4724 }
4725
4726 return 1;
4727 }
4728
4729 /* A htab_traverse callback for GOT entries for which DATA is the
4730 bfd_link_info. Forbid any global symbols from having traditional
4731 lazy-binding stubs. */
4732
4733 static int
4734 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4735 {
4736 struct bfd_link_info *info;
4737 struct mips_elf_link_hash_table *htab;
4738 struct mips_got_entry *entry;
4739
4740 entry = (struct mips_got_entry *) *entryp;
4741 info = (struct bfd_link_info *) data;
4742 htab = mips_elf_hash_table (info);
4743 BFD_ASSERT (htab != NULL);
4744
4745 if (entry->abfd != NULL
4746 && entry->symndx == -1
4747 && entry->d.h->needs_lazy_stub)
4748 {
4749 entry->d.h->needs_lazy_stub = FALSE;
4750 htab->lazy_stub_count--;
4751 }
4752
4753 return 1;
4754 }
4755
4756 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4757 the primary GOT. */
4758 static bfd_vma
4759 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4760 {
4761 if (!g->next)
4762 return 0;
4763
4764 g = mips_elf_bfd_got (ibfd, FALSE);
4765 if (! g)
4766 return 0;
4767
4768 BFD_ASSERT (g->next);
4769
4770 g = g->next;
4771
4772 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4773 * MIPS_ELF_GOT_SIZE (abfd);
4774 }
4775
4776 /* Turn a single GOT that is too big for 16-bit addressing into
4777 a sequence of GOTs, each one 16-bit addressable. */
4778
4779 static bfd_boolean
4780 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4781 asection *got, bfd_size_type pages)
4782 {
4783 struct mips_elf_link_hash_table *htab;
4784 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4785 struct mips_elf_traverse_got_arg tga;
4786 struct mips_got_info *g, *gg;
4787 unsigned int assign, needed_relocs;
4788 bfd *dynobj, *ibfd;
4789
4790 dynobj = elf_hash_table (info)->dynobj;
4791 htab = mips_elf_hash_table (info);
4792 BFD_ASSERT (htab != NULL);
4793
4794 g = htab->got_info;
4795
4796 got_per_bfd_arg.obfd = abfd;
4797 got_per_bfd_arg.info = info;
4798 got_per_bfd_arg.current = NULL;
4799 got_per_bfd_arg.primary = NULL;
4800 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4801 / MIPS_ELF_GOT_SIZE (abfd))
4802 - htab->reserved_gotno);
4803 got_per_bfd_arg.max_pages = pages;
4804 /* The number of globals that will be included in the primary GOT.
4805 See the calls to mips_elf_set_global_got_area below for more
4806 information. */
4807 got_per_bfd_arg.global_count = g->global_gotno;
4808
4809 /* Try to merge the GOTs of input bfds together, as long as they
4810 don't seem to exceed the maximum GOT size, choosing one of them
4811 to be the primary GOT. */
4812 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4813 {
4814 gg = mips_elf_bfd_got (ibfd, FALSE);
4815 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4816 return FALSE;
4817 }
4818
4819 /* If we do not find any suitable primary GOT, create an empty one. */
4820 if (got_per_bfd_arg.primary == NULL)
4821 g->next = mips_elf_create_got_info (abfd);
4822 else
4823 g->next = got_per_bfd_arg.primary;
4824 g->next->next = got_per_bfd_arg.current;
4825
4826 /* GG is now the master GOT, and G is the primary GOT. */
4827 gg = g;
4828 g = g->next;
4829
4830 /* Map the output bfd to the primary got. That's what we're going
4831 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4832 didn't mark in check_relocs, and we want a quick way to find it.
4833 We can't just use gg->next because we're going to reverse the
4834 list. */
4835 mips_elf_replace_bfd_got (abfd, g);
4836
4837 /* Every symbol that is referenced in a dynamic relocation must be
4838 present in the primary GOT, so arrange for them to appear after
4839 those that are actually referenced. */
4840 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4841 g->global_gotno = gg->global_gotno;
4842
4843 tga.info = info;
4844 tga.value = GGA_RELOC_ONLY;
4845 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4846 tga.value = GGA_NORMAL;
4847 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4848
4849 /* Now go through the GOTs assigning them offset ranges.
4850 [assigned_low_gotno, local_gotno[ will be set to the range of local
4851 entries in each GOT. We can then compute the end of a GOT by
4852 adding local_gotno to global_gotno. We reverse the list and make
4853 it circular since then we'll be able to quickly compute the
4854 beginning of a GOT, by computing the end of its predecessor. To
4855 avoid special cases for the primary GOT, while still preserving
4856 assertions that are valid for both single- and multi-got links,
4857 we arrange for the main got struct to have the right number of
4858 global entries, but set its local_gotno such that the initial
4859 offset of the primary GOT is zero. Remember that the primary GOT
4860 will become the last item in the circular linked list, so it
4861 points back to the master GOT. */
4862 gg->local_gotno = -g->global_gotno;
4863 gg->global_gotno = g->global_gotno;
4864 gg->tls_gotno = 0;
4865 assign = 0;
4866 gg->next = gg;
4867
4868 do
4869 {
4870 struct mips_got_info *gn;
4871
4872 assign += htab->reserved_gotno;
4873 g->assigned_low_gotno = assign;
4874 g->local_gotno += assign;
4875 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4876 g->assigned_high_gotno = g->local_gotno - 1;
4877 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4878
4879 /* Take g out of the direct list, and push it onto the reversed
4880 list that gg points to. g->next is guaranteed to be nonnull after
4881 this operation, as required by mips_elf_initialize_tls_index. */
4882 gn = g->next;
4883 g->next = gg->next;
4884 gg->next = g;
4885
4886 /* Set up any TLS entries. We always place the TLS entries after
4887 all non-TLS entries. */
4888 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4889 tga.g = g;
4890 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4891 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4892 if (!tga.g)
4893 return FALSE;
4894 BFD_ASSERT (g->tls_assigned_gotno == assign);
4895
4896 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4897 g = gn;
4898
4899 /* Forbid global symbols in every non-primary GOT from having
4900 lazy-binding stubs. */
4901 if (g)
4902 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4903 }
4904 while (g);
4905
4906 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4907
4908 needed_relocs = 0;
4909 for (g = gg->next; g && g->next != gg; g = g->next)
4910 {
4911 unsigned int save_assign;
4912
4913 /* Assign offsets to global GOT entries and count how many
4914 relocations they need. */
4915 save_assign = g->assigned_low_gotno;
4916 g->assigned_low_gotno = g->local_gotno;
4917 tga.info = info;
4918 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4919 tga.g = g;
4920 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4921 if (!tga.g)
4922 return FALSE;
4923 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4924 g->assigned_low_gotno = save_assign;
4925
4926 if (info->shared)
4927 {
4928 g->relocs += g->local_gotno - g->assigned_low_gotno;
4929 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4930 + g->next->global_gotno
4931 + g->next->tls_gotno
4932 + htab->reserved_gotno);
4933 }
4934 needed_relocs += g->relocs;
4935 }
4936 needed_relocs += g->relocs;
4937
4938 if (needed_relocs)
4939 mips_elf_allocate_dynamic_relocations (dynobj, info,
4940 needed_relocs);
4941
4942 return TRUE;
4943 }
4944
4945 \f
4946 /* Returns the first relocation of type r_type found, beginning with
4947 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4948
4949 static const Elf_Internal_Rela *
4950 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4951 const Elf_Internal_Rela *relocation,
4952 const Elf_Internal_Rela *relend)
4953 {
4954 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4955
4956 while (relocation < relend)
4957 {
4958 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4959 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4960 return relocation;
4961
4962 ++relocation;
4963 }
4964
4965 /* We didn't find it. */
4966 return NULL;
4967 }
4968
4969 /* Return whether an input relocation is against a local symbol. */
4970
4971 static bfd_boolean
4972 mips_elf_local_relocation_p (bfd *input_bfd,
4973 const Elf_Internal_Rela *relocation,
4974 asection **local_sections)
4975 {
4976 unsigned long r_symndx;
4977 Elf_Internal_Shdr *symtab_hdr;
4978 size_t extsymoff;
4979
4980 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4981 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4982 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4983
4984 if (r_symndx < extsymoff)
4985 return TRUE;
4986 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4987 return TRUE;
4988
4989 return FALSE;
4990 }
4991 \f
4992 /* Sign-extend VALUE, which has the indicated number of BITS. */
4993
4994 bfd_vma
4995 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4996 {
4997 if (value & ((bfd_vma) 1 << (bits - 1)))
4998 /* VALUE is negative. */
4999 value |= ((bfd_vma) - 1) << bits;
5000
5001 return value;
5002 }
5003
5004 /* Return non-zero if the indicated VALUE has overflowed the maximum
5005 range expressible by a signed number with the indicated number of
5006 BITS. */
5007
5008 static bfd_boolean
5009 mips_elf_overflow_p (bfd_vma value, int bits)
5010 {
5011 bfd_signed_vma svalue = (bfd_signed_vma) value;
5012
5013 if (svalue > (1 << (bits - 1)) - 1)
5014 /* The value is too big. */
5015 return TRUE;
5016 else if (svalue < -(1 << (bits - 1)))
5017 /* The value is too small. */
5018 return TRUE;
5019
5020 /* All is well. */
5021 return FALSE;
5022 }
5023
5024 /* Calculate the %high function. */
5025
5026 static bfd_vma
5027 mips_elf_high (bfd_vma value)
5028 {
5029 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5030 }
5031
5032 /* Calculate the %higher function. */
5033
5034 static bfd_vma
5035 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5036 {
5037 #ifdef BFD64
5038 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5039 #else
5040 abort ();
5041 return MINUS_ONE;
5042 #endif
5043 }
5044
5045 /* Calculate the %highest function. */
5046
5047 static bfd_vma
5048 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5049 {
5050 #ifdef BFD64
5051 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5052 #else
5053 abort ();
5054 return MINUS_ONE;
5055 #endif
5056 }
5057 \f
5058 /* Create the .compact_rel section. */
5059
5060 static bfd_boolean
5061 mips_elf_create_compact_rel_section
5062 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5063 {
5064 flagword flags;
5065 register asection *s;
5066
5067 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5068 {
5069 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5070 | SEC_READONLY);
5071
5072 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5073 if (s == NULL
5074 || ! bfd_set_section_alignment (abfd, s,
5075 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5076 return FALSE;
5077
5078 s->size = sizeof (Elf32_External_compact_rel);
5079 }
5080
5081 return TRUE;
5082 }
5083
5084 /* Create the .got section to hold the global offset table. */
5085
5086 static bfd_boolean
5087 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5088 {
5089 flagword flags;
5090 register asection *s;
5091 struct elf_link_hash_entry *h;
5092 struct bfd_link_hash_entry *bh;
5093 struct mips_elf_link_hash_table *htab;
5094
5095 htab = mips_elf_hash_table (info);
5096 BFD_ASSERT (htab != NULL);
5097
5098 /* This function may be called more than once. */
5099 if (htab->sgot)
5100 return TRUE;
5101
5102 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5103 | SEC_LINKER_CREATED);
5104
5105 /* We have to use an alignment of 2**4 here because this is hardcoded
5106 in the function stub generation and in the linker script. */
5107 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5108 if (s == NULL
5109 || ! bfd_set_section_alignment (abfd, s, 4))
5110 return FALSE;
5111 htab->sgot = s;
5112
5113 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5114 linker script because we don't want to define the symbol if we
5115 are not creating a global offset table. */
5116 bh = NULL;
5117 if (! (_bfd_generic_link_add_one_symbol
5118 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5119 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5120 return FALSE;
5121
5122 h = (struct elf_link_hash_entry *) bh;
5123 h->non_elf = 0;
5124 h->def_regular = 1;
5125 h->type = STT_OBJECT;
5126 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5127 elf_hash_table (info)->hgot = h;
5128
5129 if (info->shared
5130 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5131 return FALSE;
5132
5133 htab->got_info = mips_elf_create_got_info (abfd);
5134 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5135 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5136
5137 /* We also need a .got.plt section when generating PLTs. */
5138 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5139 SEC_ALLOC | SEC_LOAD
5140 | SEC_HAS_CONTENTS
5141 | SEC_IN_MEMORY
5142 | SEC_LINKER_CREATED);
5143 if (s == NULL)
5144 return FALSE;
5145 htab->sgotplt = s;
5146
5147 return TRUE;
5148 }
5149 \f
5150 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5151 __GOTT_INDEX__ symbols. These symbols are only special for
5152 shared objects; they are not used in executables. */
5153
5154 static bfd_boolean
5155 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5156 {
5157 return (mips_elf_hash_table (info)->is_vxworks
5158 && info->shared
5159 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5160 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5161 }
5162
5163 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5164 require an la25 stub. See also mips_elf_local_pic_function_p,
5165 which determines whether the destination function ever requires a
5166 stub. */
5167
5168 static bfd_boolean
5169 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5170 bfd_boolean target_is_16_bit_code_p)
5171 {
5172 /* We specifically ignore branches and jumps from EF_PIC objects,
5173 where the onus is on the compiler or programmer to perform any
5174 necessary initialization of $25. Sometimes such initialization
5175 is unnecessary; for example, -mno-shared functions do not use
5176 the incoming value of $25, and may therefore be called directly. */
5177 if (PIC_OBJECT_P (input_bfd))
5178 return FALSE;
5179
5180 switch (r_type)
5181 {
5182 case R_MIPS_26:
5183 case R_MIPS_PC16:
5184 case R_MIPS_PC21_S2:
5185 case R_MIPS_PC26_S2:
5186 case R_MICROMIPS_26_S1:
5187 case R_MICROMIPS_PC7_S1:
5188 case R_MICROMIPS_PC10_S1:
5189 case R_MICROMIPS_PC16_S1:
5190 case R_MICROMIPS_PC23_S2:
5191 return TRUE;
5192
5193 case R_MIPS16_26:
5194 return !target_is_16_bit_code_p;
5195
5196 default:
5197 return FALSE;
5198 }
5199 }
5200 \f
5201 /* Calculate the value produced by the RELOCATION (which comes from
5202 the INPUT_BFD). The ADDEND is the addend to use for this
5203 RELOCATION; RELOCATION->R_ADDEND is ignored.
5204
5205 The result of the relocation calculation is stored in VALUEP.
5206 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5207 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5208
5209 This function returns bfd_reloc_continue if the caller need take no
5210 further action regarding this relocation, bfd_reloc_notsupported if
5211 something goes dramatically wrong, bfd_reloc_overflow if an
5212 overflow occurs, and bfd_reloc_ok to indicate success. */
5213
5214 static bfd_reloc_status_type
5215 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5216 asection *input_section,
5217 struct bfd_link_info *info,
5218 const Elf_Internal_Rela *relocation,
5219 bfd_vma addend, reloc_howto_type *howto,
5220 Elf_Internal_Sym *local_syms,
5221 asection **local_sections, bfd_vma *valuep,
5222 const char **namep,
5223 bfd_boolean *cross_mode_jump_p,
5224 bfd_boolean save_addend)
5225 {
5226 /* The eventual value we will return. */
5227 bfd_vma value;
5228 /* The address of the symbol against which the relocation is
5229 occurring. */
5230 bfd_vma symbol = 0;
5231 /* The final GP value to be used for the relocatable, executable, or
5232 shared object file being produced. */
5233 bfd_vma gp;
5234 /* The place (section offset or address) of the storage unit being
5235 relocated. */
5236 bfd_vma p;
5237 /* The value of GP used to create the relocatable object. */
5238 bfd_vma gp0;
5239 /* The offset into the global offset table at which the address of
5240 the relocation entry symbol, adjusted by the addend, resides
5241 during execution. */
5242 bfd_vma g = MINUS_ONE;
5243 /* The section in which the symbol referenced by the relocation is
5244 located. */
5245 asection *sec = NULL;
5246 struct mips_elf_link_hash_entry *h = NULL;
5247 /* TRUE if the symbol referred to by this relocation is a local
5248 symbol. */
5249 bfd_boolean local_p, was_local_p;
5250 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5251 bfd_boolean gp_disp_p = FALSE;
5252 /* TRUE if the symbol referred to by this relocation is
5253 "__gnu_local_gp". */
5254 bfd_boolean gnu_local_gp_p = FALSE;
5255 Elf_Internal_Shdr *symtab_hdr;
5256 size_t extsymoff;
5257 unsigned long r_symndx;
5258 int r_type;
5259 /* TRUE if overflow occurred during the calculation of the
5260 relocation value. */
5261 bfd_boolean overflowed_p;
5262 /* TRUE if this relocation refers to a MIPS16 function. */
5263 bfd_boolean target_is_16_bit_code_p = FALSE;
5264 bfd_boolean target_is_micromips_code_p = FALSE;
5265 struct mips_elf_link_hash_table *htab;
5266 bfd *dynobj;
5267
5268 dynobj = elf_hash_table (info)->dynobj;
5269 htab = mips_elf_hash_table (info);
5270 BFD_ASSERT (htab != NULL);
5271
5272 /* Parse the relocation. */
5273 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5274 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5275 p = (input_section->output_section->vma
5276 + input_section->output_offset
5277 + relocation->r_offset);
5278
5279 /* Assume that there will be no overflow. */
5280 overflowed_p = FALSE;
5281
5282 /* Figure out whether or not the symbol is local, and get the offset
5283 used in the array of hash table entries. */
5284 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5285 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5286 local_sections);
5287 was_local_p = local_p;
5288 if (! elf_bad_symtab (input_bfd))
5289 extsymoff = symtab_hdr->sh_info;
5290 else
5291 {
5292 /* The symbol table does not follow the rule that local symbols
5293 must come before globals. */
5294 extsymoff = 0;
5295 }
5296
5297 /* Figure out the value of the symbol. */
5298 if (local_p)
5299 {
5300 Elf_Internal_Sym *sym;
5301
5302 sym = local_syms + r_symndx;
5303 sec = local_sections[r_symndx];
5304
5305 symbol = sec->output_section->vma + sec->output_offset;
5306 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5307 || (sec->flags & SEC_MERGE))
5308 symbol += sym->st_value;
5309 if ((sec->flags & SEC_MERGE)
5310 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5311 {
5312 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5313 addend -= symbol;
5314 addend += sec->output_section->vma + sec->output_offset;
5315 }
5316
5317 /* MIPS16/microMIPS text labels should be treated as odd. */
5318 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5319 ++symbol;
5320
5321 /* Record the name of this symbol, for our caller. */
5322 *namep = bfd_elf_string_from_elf_section (input_bfd,
5323 symtab_hdr->sh_link,
5324 sym->st_name);
5325 if (*namep == '\0')
5326 *namep = bfd_section_name (input_bfd, sec);
5327
5328 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5329 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5330 }
5331 else
5332 {
5333 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5334
5335 /* For global symbols we look up the symbol in the hash-table. */
5336 h = ((struct mips_elf_link_hash_entry *)
5337 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5338 /* Find the real hash-table entry for this symbol. */
5339 while (h->root.root.type == bfd_link_hash_indirect
5340 || h->root.root.type == bfd_link_hash_warning)
5341 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5342
5343 /* Record the name of this symbol, for our caller. */
5344 *namep = h->root.root.root.string;
5345
5346 /* See if this is the special _gp_disp symbol. Note that such a
5347 symbol must always be a global symbol. */
5348 if (strcmp (*namep, "_gp_disp") == 0
5349 && ! NEWABI_P (input_bfd))
5350 {
5351 /* Relocations against _gp_disp are permitted only with
5352 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5353 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5354 return bfd_reloc_notsupported;
5355
5356 gp_disp_p = TRUE;
5357 }
5358 /* See if this is the special _gp symbol. Note that such a
5359 symbol must always be a global symbol. */
5360 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5361 gnu_local_gp_p = TRUE;
5362
5363
5364 /* If this symbol is defined, calculate its address. Note that
5365 _gp_disp is a magic symbol, always implicitly defined by the
5366 linker, so it's inappropriate to check to see whether or not
5367 its defined. */
5368 else if ((h->root.root.type == bfd_link_hash_defined
5369 || h->root.root.type == bfd_link_hash_defweak)
5370 && h->root.root.u.def.section)
5371 {
5372 sec = h->root.root.u.def.section;
5373 if (sec->output_section)
5374 symbol = (h->root.root.u.def.value
5375 + sec->output_section->vma
5376 + sec->output_offset);
5377 else
5378 symbol = h->root.root.u.def.value;
5379 }
5380 else if (h->root.root.type == bfd_link_hash_undefweak)
5381 /* We allow relocations against undefined weak symbols, giving
5382 it the value zero, so that you can undefined weak functions
5383 and check to see if they exist by looking at their
5384 addresses. */
5385 symbol = 0;
5386 else if (info->unresolved_syms_in_objects == RM_IGNORE
5387 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5388 symbol = 0;
5389 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5390 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5391 {
5392 /* If this is a dynamic link, we should have created a
5393 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5394 in in _bfd_mips_elf_create_dynamic_sections.
5395 Otherwise, we should define the symbol with a value of 0.
5396 FIXME: It should probably get into the symbol table
5397 somehow as well. */
5398 BFD_ASSERT (! info->shared);
5399 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5400 symbol = 0;
5401 }
5402 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5403 {
5404 /* This is an optional symbol - an Irix specific extension to the
5405 ELF spec. Ignore it for now.
5406 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5407 than simply ignoring them, but we do not handle this for now.
5408 For information see the "64-bit ELF Object File Specification"
5409 which is available from here:
5410 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5411 symbol = 0;
5412 }
5413 else if ((*info->callbacks->undefined_symbol)
5414 (info, h->root.root.root.string, input_bfd,
5415 input_section, relocation->r_offset,
5416 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5417 || ELF_ST_VISIBILITY (h->root.other)))
5418 {
5419 return bfd_reloc_undefined;
5420 }
5421 else
5422 {
5423 return bfd_reloc_notsupported;
5424 }
5425
5426 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5427 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5428 }
5429
5430 /* If this is a reference to a 16-bit function with a stub, we need
5431 to redirect the relocation to the stub unless:
5432
5433 (a) the relocation is for a MIPS16 JAL;
5434
5435 (b) the relocation is for a MIPS16 PIC call, and there are no
5436 non-MIPS16 uses of the GOT slot; or
5437
5438 (c) the section allows direct references to MIPS16 functions. */
5439 if (r_type != R_MIPS16_26
5440 && !info->relocatable
5441 && ((h != NULL
5442 && h->fn_stub != NULL
5443 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5444 || (local_p
5445 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5446 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5447 && !section_allows_mips16_refs_p (input_section))
5448 {
5449 /* This is a 32- or 64-bit call to a 16-bit function. We should
5450 have already noticed that we were going to need the
5451 stub. */
5452 if (local_p)
5453 {
5454 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5455 value = 0;
5456 }
5457 else
5458 {
5459 BFD_ASSERT (h->need_fn_stub);
5460 if (h->la25_stub)
5461 {
5462 /* If a LA25 header for the stub itself exists, point to the
5463 prepended LUI/ADDIU sequence. */
5464 sec = h->la25_stub->stub_section;
5465 value = h->la25_stub->offset;
5466 }
5467 else
5468 {
5469 sec = h->fn_stub;
5470 value = 0;
5471 }
5472 }
5473
5474 symbol = sec->output_section->vma + sec->output_offset + value;
5475 /* The target is 16-bit, but the stub isn't. */
5476 target_is_16_bit_code_p = FALSE;
5477 }
5478 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5479 to a standard MIPS function, we need to redirect the call to the stub.
5480 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5481 indirect calls should use an indirect stub instead. */
5482 else if (r_type == R_MIPS16_26 && !info->relocatable
5483 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5484 || (local_p
5485 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5486 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5487 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5488 {
5489 if (local_p)
5490 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5491 else
5492 {
5493 /* If both call_stub and call_fp_stub are defined, we can figure
5494 out which one to use by checking which one appears in the input
5495 file. */
5496 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5497 {
5498 asection *o;
5499
5500 sec = NULL;
5501 for (o = input_bfd->sections; o != NULL; o = o->next)
5502 {
5503 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5504 {
5505 sec = h->call_fp_stub;
5506 break;
5507 }
5508 }
5509 if (sec == NULL)
5510 sec = h->call_stub;
5511 }
5512 else if (h->call_stub != NULL)
5513 sec = h->call_stub;
5514 else
5515 sec = h->call_fp_stub;
5516 }
5517
5518 BFD_ASSERT (sec->size > 0);
5519 symbol = sec->output_section->vma + sec->output_offset;
5520 }
5521 /* If this is a direct call to a PIC function, redirect to the
5522 non-PIC stub. */
5523 else if (h != NULL && h->la25_stub
5524 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5525 target_is_16_bit_code_p))
5526 symbol = (h->la25_stub->stub_section->output_section->vma
5527 + h->la25_stub->stub_section->output_offset
5528 + h->la25_stub->offset);
5529 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5530 entry is used if a standard PLT entry has also been made. In this
5531 case the symbol will have been set by mips_elf_set_plt_sym_value
5532 to point to the standard PLT entry, so redirect to the compressed
5533 one. */
5534 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5535 && !info->relocatable
5536 && h != NULL
5537 && h->use_plt_entry
5538 && h->root.plt.plist->comp_offset != MINUS_ONE
5539 && h->root.plt.plist->mips_offset != MINUS_ONE)
5540 {
5541 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5542
5543 sec = htab->splt;
5544 symbol = (sec->output_section->vma
5545 + sec->output_offset
5546 + htab->plt_header_size
5547 + htab->plt_mips_offset
5548 + h->root.plt.plist->comp_offset
5549 + 1);
5550
5551 target_is_16_bit_code_p = !micromips_p;
5552 target_is_micromips_code_p = micromips_p;
5553 }
5554
5555 /* Make sure MIPS16 and microMIPS are not used together. */
5556 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5557 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5558 {
5559 (*_bfd_error_handler)
5560 (_("MIPS16 and microMIPS functions cannot call each other"));
5561 return bfd_reloc_notsupported;
5562 }
5563
5564 /* Calls from 16-bit code to 32-bit code and vice versa require the
5565 mode change. However, we can ignore calls to undefined weak symbols,
5566 which should never be executed at runtime. This exception is important
5567 because the assembly writer may have "known" that any definition of the
5568 symbol would be 16-bit code, and that direct jumps were therefore
5569 acceptable. */
5570 *cross_mode_jump_p = (!info->relocatable
5571 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5572 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5573 || (r_type == R_MICROMIPS_26_S1
5574 && !target_is_micromips_code_p)
5575 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5576 && (target_is_16_bit_code_p
5577 || target_is_micromips_code_p))));
5578
5579 local_p = (h == NULL || mips_use_local_got_p (info, h));
5580
5581 gp0 = _bfd_get_gp_value (input_bfd);
5582 gp = _bfd_get_gp_value (abfd);
5583 if (htab->got_info)
5584 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5585
5586 if (gnu_local_gp_p)
5587 symbol = gp;
5588
5589 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5590 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5591 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5592 if (got_page_reloc_p (r_type) && !local_p)
5593 {
5594 r_type = (micromips_reloc_p (r_type)
5595 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5596 addend = 0;
5597 }
5598
5599 /* If we haven't already determined the GOT offset, and we're going
5600 to need it, get it now. */
5601 switch (r_type)
5602 {
5603 case R_MIPS16_CALL16:
5604 case R_MIPS16_GOT16:
5605 case R_MIPS_CALL16:
5606 case R_MIPS_GOT16:
5607 case R_MIPS_GOT_DISP:
5608 case R_MIPS_GOT_HI16:
5609 case R_MIPS_CALL_HI16:
5610 case R_MIPS_GOT_LO16:
5611 case R_MIPS_CALL_LO16:
5612 case R_MICROMIPS_CALL16:
5613 case R_MICROMIPS_GOT16:
5614 case R_MICROMIPS_GOT_DISP:
5615 case R_MICROMIPS_GOT_HI16:
5616 case R_MICROMIPS_CALL_HI16:
5617 case R_MICROMIPS_GOT_LO16:
5618 case R_MICROMIPS_CALL_LO16:
5619 case R_MIPS_TLS_GD:
5620 case R_MIPS_TLS_GOTTPREL:
5621 case R_MIPS_TLS_LDM:
5622 case R_MIPS16_TLS_GD:
5623 case R_MIPS16_TLS_GOTTPREL:
5624 case R_MIPS16_TLS_LDM:
5625 case R_MICROMIPS_TLS_GD:
5626 case R_MICROMIPS_TLS_GOTTPREL:
5627 case R_MICROMIPS_TLS_LDM:
5628 /* Find the index into the GOT where this value is located. */
5629 if (tls_ldm_reloc_p (r_type))
5630 {
5631 g = mips_elf_local_got_index (abfd, input_bfd, info,
5632 0, 0, NULL, r_type);
5633 if (g == MINUS_ONE)
5634 return bfd_reloc_outofrange;
5635 }
5636 else if (!local_p)
5637 {
5638 /* On VxWorks, CALL relocations should refer to the .got.plt
5639 entry, which is initialized to point at the PLT stub. */
5640 if (htab->is_vxworks
5641 && (call_hi16_reloc_p (r_type)
5642 || call_lo16_reloc_p (r_type)
5643 || call16_reloc_p (r_type)))
5644 {
5645 BFD_ASSERT (addend == 0);
5646 BFD_ASSERT (h->root.needs_plt);
5647 g = mips_elf_gotplt_index (info, &h->root);
5648 }
5649 else
5650 {
5651 BFD_ASSERT (addend == 0);
5652 g = mips_elf_global_got_index (abfd, info, input_bfd,
5653 &h->root, r_type);
5654 if (!TLS_RELOC_P (r_type)
5655 && !elf_hash_table (info)->dynamic_sections_created)
5656 /* This is a static link. We must initialize the GOT entry. */
5657 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5658 }
5659 }
5660 else if (!htab->is_vxworks
5661 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5662 /* The calculation below does not involve "g". */
5663 break;
5664 else
5665 {
5666 g = mips_elf_local_got_index (abfd, input_bfd, info,
5667 symbol + addend, r_symndx, h, r_type);
5668 if (g == MINUS_ONE)
5669 return bfd_reloc_outofrange;
5670 }
5671
5672 /* Convert GOT indices to actual offsets. */
5673 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5674 break;
5675 }
5676
5677 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5678 symbols are resolved by the loader. Add them to .rela.dyn. */
5679 if (h != NULL && is_gott_symbol (info, &h->root))
5680 {
5681 Elf_Internal_Rela outrel;
5682 bfd_byte *loc;
5683 asection *s;
5684
5685 s = mips_elf_rel_dyn_section (info, FALSE);
5686 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5687
5688 outrel.r_offset = (input_section->output_section->vma
5689 + input_section->output_offset
5690 + relocation->r_offset);
5691 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5692 outrel.r_addend = addend;
5693 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5694
5695 /* If we've written this relocation for a readonly section,
5696 we need to set DF_TEXTREL again, so that we do not delete the
5697 DT_TEXTREL tag. */
5698 if (MIPS_ELF_READONLY_SECTION (input_section))
5699 info->flags |= DF_TEXTREL;
5700
5701 *valuep = 0;
5702 return bfd_reloc_ok;
5703 }
5704
5705 /* Figure out what kind of relocation is being performed. */
5706 switch (r_type)
5707 {
5708 case R_MIPS_NONE:
5709 return bfd_reloc_continue;
5710
5711 case R_MIPS_16:
5712 if (howto->partial_inplace)
5713 addend = _bfd_mips_elf_sign_extend (addend, 16);
5714 value = symbol + addend;
5715 overflowed_p = mips_elf_overflow_p (value, 16);
5716 break;
5717
5718 case R_MIPS_32:
5719 case R_MIPS_REL32:
5720 case R_MIPS_64:
5721 if ((info->shared
5722 || (htab->root.dynamic_sections_created
5723 && h != NULL
5724 && h->root.def_dynamic
5725 && !h->root.def_regular
5726 && !h->has_static_relocs))
5727 && r_symndx != STN_UNDEF
5728 && (h == NULL
5729 || h->root.root.type != bfd_link_hash_undefweak
5730 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5731 && (input_section->flags & SEC_ALLOC) != 0)
5732 {
5733 /* If we're creating a shared library, then we can't know
5734 where the symbol will end up. So, we create a relocation
5735 record in the output, and leave the job up to the dynamic
5736 linker. We must do the same for executable references to
5737 shared library symbols, unless we've decided to use copy
5738 relocs or PLTs instead. */
5739 value = addend;
5740 if (!mips_elf_create_dynamic_relocation (abfd,
5741 info,
5742 relocation,
5743 h,
5744 sec,
5745 symbol,
5746 &value,
5747 input_section))
5748 return bfd_reloc_undefined;
5749 }
5750 else
5751 {
5752 if (r_type != R_MIPS_REL32)
5753 value = symbol + addend;
5754 else
5755 value = addend;
5756 }
5757 value &= howto->dst_mask;
5758 break;
5759
5760 case R_MIPS_PC32:
5761 value = symbol + addend - p;
5762 value &= howto->dst_mask;
5763 break;
5764
5765 case R_MIPS16_26:
5766 /* The calculation for R_MIPS16_26 is just the same as for an
5767 R_MIPS_26. It's only the storage of the relocated field into
5768 the output file that's different. That's handled in
5769 mips_elf_perform_relocation. So, we just fall through to the
5770 R_MIPS_26 case here. */
5771 case R_MIPS_26:
5772 case R_MICROMIPS_26_S1:
5773 {
5774 unsigned int shift;
5775
5776 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5777 the correct ISA mode selector and bit 1 must be 0. */
5778 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5779 return bfd_reloc_outofrange;
5780
5781 /* Shift is 2, unusually, for microMIPS JALX. */
5782 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5783
5784 if (was_local_p)
5785 value = addend | ((p + 4) & (0xfc000000 << shift));
5786 else if (howto->partial_inplace)
5787 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5788 else
5789 value = addend;
5790 value = (value + symbol) >> shift;
5791 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5792 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5793 value &= howto->dst_mask;
5794 }
5795 break;
5796
5797 case R_MIPS_TLS_DTPREL_HI16:
5798 case R_MIPS16_TLS_DTPREL_HI16:
5799 case R_MICROMIPS_TLS_DTPREL_HI16:
5800 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5801 & howto->dst_mask);
5802 break;
5803
5804 case R_MIPS_TLS_DTPREL_LO16:
5805 case R_MIPS_TLS_DTPREL32:
5806 case R_MIPS_TLS_DTPREL64:
5807 case R_MIPS16_TLS_DTPREL_LO16:
5808 case R_MICROMIPS_TLS_DTPREL_LO16:
5809 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5810 break;
5811
5812 case R_MIPS_TLS_TPREL_HI16:
5813 case R_MIPS16_TLS_TPREL_HI16:
5814 case R_MICROMIPS_TLS_TPREL_HI16:
5815 value = (mips_elf_high (addend + symbol - tprel_base (info))
5816 & howto->dst_mask);
5817 break;
5818
5819 case R_MIPS_TLS_TPREL_LO16:
5820 case R_MIPS_TLS_TPREL32:
5821 case R_MIPS_TLS_TPREL64:
5822 case R_MIPS16_TLS_TPREL_LO16:
5823 case R_MICROMIPS_TLS_TPREL_LO16:
5824 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5825 break;
5826
5827 case R_MIPS_HI16:
5828 case R_MIPS16_HI16:
5829 case R_MICROMIPS_HI16:
5830 if (!gp_disp_p)
5831 {
5832 value = mips_elf_high (addend + symbol);
5833 value &= howto->dst_mask;
5834 }
5835 else
5836 {
5837 /* For MIPS16 ABI code we generate this sequence
5838 0: li $v0,%hi(_gp_disp)
5839 4: addiupc $v1,%lo(_gp_disp)
5840 8: sll $v0,16
5841 12: addu $v0,$v1
5842 14: move $gp,$v0
5843 So the offsets of hi and lo relocs are the same, but the
5844 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5845 ADDIUPC clears the low two bits of the instruction address,
5846 so the base is ($t9 + 4) & ~3. */
5847 if (r_type == R_MIPS16_HI16)
5848 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5849 /* The microMIPS .cpload sequence uses the same assembly
5850 instructions as the traditional psABI version, but the
5851 incoming $t9 has the low bit set. */
5852 else if (r_type == R_MICROMIPS_HI16)
5853 value = mips_elf_high (addend + gp - p - 1);
5854 else
5855 value = mips_elf_high (addend + gp - p);
5856 overflowed_p = mips_elf_overflow_p (value, 16);
5857 }
5858 break;
5859
5860 case R_MIPS_LO16:
5861 case R_MIPS16_LO16:
5862 case R_MICROMIPS_LO16:
5863 case R_MICROMIPS_HI0_LO16:
5864 if (!gp_disp_p)
5865 value = (symbol + addend) & howto->dst_mask;
5866 else
5867 {
5868 /* See the comment for R_MIPS16_HI16 above for the reason
5869 for this conditional. */
5870 if (r_type == R_MIPS16_LO16)
5871 value = addend + gp - (p & ~(bfd_vma) 0x3);
5872 else if (r_type == R_MICROMIPS_LO16
5873 || r_type == R_MICROMIPS_HI0_LO16)
5874 value = addend + gp - p + 3;
5875 else
5876 value = addend + gp - p + 4;
5877 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5878 for overflow. But, on, say, IRIX5, relocations against
5879 _gp_disp are normally generated from the .cpload
5880 pseudo-op. It generates code that normally looks like
5881 this:
5882
5883 lui $gp,%hi(_gp_disp)
5884 addiu $gp,$gp,%lo(_gp_disp)
5885 addu $gp,$gp,$t9
5886
5887 Here $t9 holds the address of the function being called,
5888 as required by the MIPS ELF ABI. The R_MIPS_LO16
5889 relocation can easily overflow in this situation, but the
5890 R_MIPS_HI16 relocation will handle the overflow.
5891 Therefore, we consider this a bug in the MIPS ABI, and do
5892 not check for overflow here. */
5893 }
5894 break;
5895
5896 case R_MIPS_LITERAL:
5897 case R_MICROMIPS_LITERAL:
5898 /* Because we don't merge literal sections, we can handle this
5899 just like R_MIPS_GPREL16. In the long run, we should merge
5900 shared literals, and then we will need to additional work
5901 here. */
5902
5903 /* Fall through. */
5904
5905 case R_MIPS16_GPREL:
5906 /* The R_MIPS16_GPREL performs the same calculation as
5907 R_MIPS_GPREL16, but stores the relocated bits in a different
5908 order. We don't need to do anything special here; the
5909 differences are handled in mips_elf_perform_relocation. */
5910 case R_MIPS_GPREL16:
5911 case R_MICROMIPS_GPREL7_S2:
5912 case R_MICROMIPS_GPREL16:
5913 /* Only sign-extend the addend if it was extracted from the
5914 instruction. If the addend was separate, leave it alone,
5915 otherwise we may lose significant bits. */
5916 if (howto->partial_inplace)
5917 addend = _bfd_mips_elf_sign_extend (addend, 16);
5918 value = symbol + addend - gp;
5919 /* If the symbol was local, any earlier relocatable links will
5920 have adjusted its addend with the gp offset, so compensate
5921 for that now. Don't do it for symbols forced local in this
5922 link, though, since they won't have had the gp offset applied
5923 to them before. */
5924 if (was_local_p)
5925 value += gp0;
5926 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5927 overflowed_p = mips_elf_overflow_p (value, 16);
5928 break;
5929
5930 case R_MIPS16_GOT16:
5931 case R_MIPS16_CALL16:
5932 case R_MIPS_GOT16:
5933 case R_MIPS_CALL16:
5934 case R_MICROMIPS_GOT16:
5935 case R_MICROMIPS_CALL16:
5936 /* VxWorks does not have separate local and global semantics for
5937 R_MIPS*_GOT16; every relocation evaluates to "G". */
5938 if (!htab->is_vxworks && local_p)
5939 {
5940 value = mips_elf_got16_entry (abfd, input_bfd, info,
5941 symbol + addend, !was_local_p);
5942 if (value == MINUS_ONE)
5943 return bfd_reloc_outofrange;
5944 value
5945 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5946 overflowed_p = mips_elf_overflow_p (value, 16);
5947 break;
5948 }
5949
5950 /* Fall through. */
5951
5952 case R_MIPS_TLS_GD:
5953 case R_MIPS_TLS_GOTTPREL:
5954 case R_MIPS_TLS_LDM:
5955 case R_MIPS_GOT_DISP:
5956 case R_MIPS16_TLS_GD:
5957 case R_MIPS16_TLS_GOTTPREL:
5958 case R_MIPS16_TLS_LDM:
5959 case R_MICROMIPS_TLS_GD:
5960 case R_MICROMIPS_TLS_GOTTPREL:
5961 case R_MICROMIPS_TLS_LDM:
5962 case R_MICROMIPS_GOT_DISP:
5963 value = g;
5964 overflowed_p = mips_elf_overflow_p (value, 16);
5965 break;
5966
5967 case R_MIPS_GPREL32:
5968 value = (addend + symbol + gp0 - gp);
5969 if (!save_addend)
5970 value &= howto->dst_mask;
5971 break;
5972
5973 case R_MIPS_PC16:
5974 case R_MIPS_GNU_REL16_S2:
5975 if (howto->partial_inplace)
5976 addend = _bfd_mips_elf_sign_extend (addend, 18);
5977
5978 if ((symbol + addend) & 3)
5979 return bfd_reloc_outofrange;
5980
5981 value = symbol + addend - p;
5982 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5983 overflowed_p = mips_elf_overflow_p (value, 18);
5984 value >>= howto->rightshift;
5985 value &= howto->dst_mask;
5986 break;
5987
5988 case R_MIPS_PC21_S2:
5989 if (howto->partial_inplace)
5990 addend = _bfd_mips_elf_sign_extend (addend, 23);
5991
5992 if ((symbol + addend) & 3)
5993 return bfd_reloc_outofrange;
5994
5995 value = symbol + addend - p;
5996 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5997 overflowed_p = mips_elf_overflow_p (value, 23);
5998 value >>= howto->rightshift;
5999 value &= howto->dst_mask;
6000 break;
6001
6002 case R_MIPS_PC26_S2:
6003 if (howto->partial_inplace)
6004 addend = _bfd_mips_elf_sign_extend (addend, 28);
6005
6006 if ((symbol + addend) & 3)
6007 return bfd_reloc_outofrange;
6008
6009 value = symbol + addend - p;
6010 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6011 overflowed_p = mips_elf_overflow_p (value, 28);
6012 value >>= howto->rightshift;
6013 value &= howto->dst_mask;
6014 break;
6015
6016 case R_MIPS_PC18_S3:
6017 if (howto->partial_inplace)
6018 addend = _bfd_mips_elf_sign_extend (addend, 21);
6019
6020 if ((symbol + addend) & 7)
6021 return bfd_reloc_outofrange;
6022
6023 value = symbol + addend - ((p | 7) ^ 7);
6024 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6025 overflowed_p = mips_elf_overflow_p (value, 21);
6026 value >>= howto->rightshift;
6027 value &= howto->dst_mask;
6028 break;
6029
6030 case R_MIPS_PC19_S2:
6031 if (howto->partial_inplace)
6032 addend = _bfd_mips_elf_sign_extend (addend, 21);
6033
6034 if ((symbol + addend) & 3)
6035 return bfd_reloc_outofrange;
6036
6037 value = symbol + addend - p;
6038 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6039 overflowed_p = mips_elf_overflow_p (value, 21);
6040 value >>= howto->rightshift;
6041 value &= howto->dst_mask;
6042 break;
6043
6044 case R_MIPS_PCHI16:
6045 value = mips_elf_high (symbol + addend - p);
6046 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6047 overflowed_p = mips_elf_overflow_p (value, 16);
6048 value &= howto->dst_mask;
6049 break;
6050
6051 case R_MIPS_PCLO16:
6052 if (howto->partial_inplace)
6053 addend = _bfd_mips_elf_sign_extend (addend, 16);
6054 value = symbol + addend - p;
6055 value &= howto->dst_mask;
6056 break;
6057
6058 case R_MICROMIPS_PC7_S1:
6059 if (howto->partial_inplace)
6060 addend = _bfd_mips_elf_sign_extend (addend, 8);
6061 value = symbol + addend - p;
6062 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6063 overflowed_p = mips_elf_overflow_p (value, 8);
6064 value >>= howto->rightshift;
6065 value &= howto->dst_mask;
6066 break;
6067
6068 case R_MICROMIPS_PC10_S1:
6069 if (howto->partial_inplace)
6070 addend = _bfd_mips_elf_sign_extend (addend, 11);
6071 value = symbol + addend - p;
6072 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6073 overflowed_p = mips_elf_overflow_p (value, 11);
6074 value >>= howto->rightshift;
6075 value &= howto->dst_mask;
6076 break;
6077
6078 case R_MICROMIPS_PC16_S1:
6079 if (howto->partial_inplace)
6080 addend = _bfd_mips_elf_sign_extend (addend, 17);
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6087
6088 case R_MICROMIPS_PC23_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 25);
6091 value = symbol + addend - ((p | 3) ^ 3);
6092 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6093 overflowed_p = mips_elf_overflow_p (value, 25);
6094 value >>= howto->rightshift;
6095 value &= howto->dst_mask;
6096 break;
6097
6098 case R_MIPS_GOT_HI16:
6099 case R_MIPS_CALL_HI16:
6100 case R_MICROMIPS_GOT_HI16:
6101 case R_MICROMIPS_CALL_HI16:
6102 /* We're allowed to handle these two relocations identically.
6103 The dynamic linker is allowed to handle the CALL relocations
6104 differently by creating a lazy evaluation stub. */
6105 value = g;
6106 value = mips_elf_high (value);
6107 value &= howto->dst_mask;
6108 break;
6109
6110 case R_MIPS_GOT_LO16:
6111 case R_MIPS_CALL_LO16:
6112 case R_MICROMIPS_GOT_LO16:
6113 case R_MICROMIPS_CALL_LO16:
6114 value = g & howto->dst_mask;
6115 break;
6116
6117 case R_MIPS_GOT_PAGE:
6118 case R_MICROMIPS_GOT_PAGE:
6119 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6120 if (value == MINUS_ONE)
6121 return bfd_reloc_outofrange;
6122 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6123 overflowed_p = mips_elf_overflow_p (value, 16);
6124 break;
6125
6126 case R_MIPS_GOT_OFST:
6127 case R_MICROMIPS_GOT_OFST:
6128 if (local_p)
6129 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6130 else
6131 value = addend;
6132 overflowed_p = mips_elf_overflow_p (value, 16);
6133 break;
6134
6135 case R_MIPS_SUB:
6136 case R_MICROMIPS_SUB:
6137 value = symbol - addend;
6138 value &= howto->dst_mask;
6139 break;
6140
6141 case R_MIPS_HIGHER:
6142 case R_MICROMIPS_HIGHER:
6143 value = mips_elf_higher (addend + symbol);
6144 value &= howto->dst_mask;
6145 break;
6146
6147 case R_MIPS_HIGHEST:
6148 case R_MICROMIPS_HIGHEST:
6149 value = mips_elf_highest (addend + symbol);
6150 value &= howto->dst_mask;
6151 break;
6152
6153 case R_MIPS_SCN_DISP:
6154 case R_MICROMIPS_SCN_DISP:
6155 value = symbol + addend - sec->output_offset;
6156 value &= howto->dst_mask;
6157 break;
6158
6159 case R_MIPS_JALR:
6160 case R_MICROMIPS_JALR:
6161 /* This relocation is only a hint. In some cases, we optimize
6162 it into a bal instruction. But we don't try to optimize
6163 when the symbol does not resolve locally. */
6164 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6165 return bfd_reloc_continue;
6166 value = symbol + addend;
6167 break;
6168
6169 case R_MIPS_PJUMP:
6170 case R_MIPS_GNU_VTINHERIT:
6171 case R_MIPS_GNU_VTENTRY:
6172 /* We don't do anything with these at present. */
6173 return bfd_reloc_continue;
6174
6175 default:
6176 /* An unrecognized relocation type. */
6177 return bfd_reloc_notsupported;
6178 }
6179
6180 /* Store the VALUE for our caller. */
6181 *valuep = value;
6182 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6183 }
6184
6185 /* Obtain the field relocated by RELOCATION. */
6186
6187 static bfd_vma
6188 mips_elf_obtain_contents (reloc_howto_type *howto,
6189 const Elf_Internal_Rela *relocation,
6190 bfd *input_bfd, bfd_byte *contents)
6191 {
6192 bfd_vma x = 0;
6193 bfd_byte *location = contents + relocation->r_offset;
6194 unsigned int size = bfd_get_reloc_size (howto);
6195
6196 /* Obtain the bytes. */
6197 if (size != 0)
6198 x = bfd_get (8 * size, input_bfd, location);
6199
6200 return x;
6201 }
6202
6203 /* It has been determined that the result of the RELOCATION is the
6204 VALUE. Use HOWTO to place VALUE into the output file at the
6205 appropriate position. The SECTION is the section to which the
6206 relocation applies.
6207 CROSS_MODE_JUMP_P is true if the relocation field
6208 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6209
6210 Returns FALSE if anything goes wrong. */
6211
6212 static bfd_boolean
6213 mips_elf_perform_relocation (struct bfd_link_info *info,
6214 reloc_howto_type *howto,
6215 const Elf_Internal_Rela *relocation,
6216 bfd_vma value, bfd *input_bfd,
6217 asection *input_section, bfd_byte *contents,
6218 bfd_boolean cross_mode_jump_p)
6219 {
6220 bfd_vma x;
6221 bfd_byte *location;
6222 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6223 unsigned int size;
6224
6225 /* Figure out where the relocation is occurring. */
6226 location = contents + relocation->r_offset;
6227
6228 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6229
6230 /* Obtain the current value. */
6231 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6232
6233 /* Clear the field we are setting. */
6234 x &= ~howto->dst_mask;
6235
6236 /* Set the field. */
6237 x |= (value & howto->dst_mask);
6238
6239 /* If required, turn JAL into JALX. */
6240 if (cross_mode_jump_p && jal_reloc_p (r_type))
6241 {
6242 bfd_boolean ok;
6243 bfd_vma opcode = x >> 26;
6244 bfd_vma jalx_opcode;
6245
6246 /* Check to see if the opcode is already JAL or JALX. */
6247 if (r_type == R_MIPS16_26)
6248 {
6249 ok = ((opcode == 0x6) || (opcode == 0x7));
6250 jalx_opcode = 0x7;
6251 }
6252 else if (r_type == R_MICROMIPS_26_S1)
6253 {
6254 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6255 jalx_opcode = 0x3c;
6256 }
6257 else
6258 {
6259 ok = ((opcode == 0x3) || (opcode == 0x1d));
6260 jalx_opcode = 0x1d;
6261 }
6262
6263 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6264 convert J or JALS to JALX. */
6265 if (!ok)
6266 {
6267 (*_bfd_error_handler)
6268 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6269 input_bfd,
6270 input_section,
6271 (unsigned long) relocation->r_offset);
6272 bfd_set_error (bfd_error_bad_value);
6273 return FALSE;
6274 }
6275
6276 /* Make this the JALX opcode. */
6277 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6278 }
6279
6280 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6281 range. */
6282 if (!info->relocatable
6283 && !cross_mode_jump_p
6284 && ((JAL_TO_BAL_P (input_bfd)
6285 && r_type == R_MIPS_26
6286 && (x >> 26) == 0x3) /* jal addr */
6287 || (JALR_TO_BAL_P (input_bfd)
6288 && r_type == R_MIPS_JALR
6289 && x == 0x0320f809) /* jalr t9 */
6290 || (JR_TO_B_P (input_bfd)
6291 && r_type == R_MIPS_JALR
6292 && x == 0x03200008))) /* jr t9 */
6293 {
6294 bfd_vma addr;
6295 bfd_vma dest;
6296 bfd_signed_vma off;
6297
6298 addr = (input_section->output_section->vma
6299 + input_section->output_offset
6300 + relocation->r_offset
6301 + 4);
6302 if (r_type == R_MIPS_26)
6303 dest = (value << 2) | ((addr >> 28) << 28);
6304 else
6305 dest = value;
6306 off = dest - addr;
6307 if (off <= 0x1ffff && off >= -0x20000)
6308 {
6309 if (x == 0x03200008) /* jr t9 */
6310 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6311 else
6312 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6313 }
6314 }
6315
6316 /* Put the value into the output. */
6317 size = bfd_get_reloc_size (howto);
6318 if (size != 0)
6319 bfd_put (8 * size, input_bfd, x, location);
6320
6321 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6322 location);
6323
6324 return TRUE;
6325 }
6326 \f
6327 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6328 is the original relocation, which is now being transformed into a
6329 dynamic relocation. The ADDENDP is adjusted if necessary; the
6330 caller should store the result in place of the original addend. */
6331
6332 static bfd_boolean
6333 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6334 struct bfd_link_info *info,
6335 const Elf_Internal_Rela *rel,
6336 struct mips_elf_link_hash_entry *h,
6337 asection *sec, bfd_vma symbol,
6338 bfd_vma *addendp, asection *input_section)
6339 {
6340 Elf_Internal_Rela outrel[3];
6341 asection *sreloc;
6342 bfd *dynobj;
6343 int r_type;
6344 long indx;
6345 bfd_boolean defined_p;
6346 struct mips_elf_link_hash_table *htab;
6347
6348 htab = mips_elf_hash_table (info);
6349 BFD_ASSERT (htab != NULL);
6350
6351 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6352 dynobj = elf_hash_table (info)->dynobj;
6353 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6354 BFD_ASSERT (sreloc != NULL);
6355 BFD_ASSERT (sreloc->contents != NULL);
6356 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6357 < sreloc->size);
6358
6359 outrel[0].r_offset =
6360 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6361 if (ABI_64_P (output_bfd))
6362 {
6363 outrel[1].r_offset =
6364 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6365 outrel[2].r_offset =
6366 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6367 }
6368
6369 if (outrel[0].r_offset == MINUS_ONE)
6370 /* The relocation field has been deleted. */
6371 return TRUE;
6372
6373 if (outrel[0].r_offset == MINUS_TWO)
6374 {
6375 /* The relocation field has been converted into a relative value of
6376 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6377 the field to be fully relocated, so add in the symbol's value. */
6378 *addendp += symbol;
6379 return TRUE;
6380 }
6381
6382 /* We must now calculate the dynamic symbol table index to use
6383 in the relocation. */
6384 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6385 {
6386 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6387 indx = h->root.dynindx;
6388 if (SGI_COMPAT (output_bfd))
6389 defined_p = h->root.def_regular;
6390 else
6391 /* ??? glibc's ld.so just adds the final GOT entry to the
6392 relocation field. It therefore treats relocs against
6393 defined symbols in the same way as relocs against
6394 undefined symbols. */
6395 defined_p = FALSE;
6396 }
6397 else
6398 {
6399 if (sec != NULL && bfd_is_abs_section (sec))
6400 indx = 0;
6401 else if (sec == NULL || sec->owner == NULL)
6402 {
6403 bfd_set_error (bfd_error_bad_value);
6404 return FALSE;
6405 }
6406 else
6407 {
6408 indx = elf_section_data (sec->output_section)->dynindx;
6409 if (indx == 0)
6410 {
6411 asection *osec = htab->root.text_index_section;
6412 indx = elf_section_data (osec)->dynindx;
6413 }
6414 if (indx == 0)
6415 abort ();
6416 }
6417
6418 /* Instead of generating a relocation using the section
6419 symbol, we may as well make it a fully relative
6420 relocation. We want to avoid generating relocations to
6421 local symbols because we used to generate them
6422 incorrectly, without adding the original symbol value,
6423 which is mandated by the ABI for section symbols. In
6424 order to give dynamic loaders and applications time to
6425 phase out the incorrect use, we refrain from emitting
6426 section-relative relocations. It's not like they're
6427 useful, after all. This should be a bit more efficient
6428 as well. */
6429 /* ??? Although this behavior is compatible with glibc's ld.so,
6430 the ABI says that relocations against STN_UNDEF should have
6431 a symbol value of 0. Irix rld honors this, so relocations
6432 against STN_UNDEF have no effect. */
6433 if (!SGI_COMPAT (output_bfd))
6434 indx = 0;
6435 defined_p = TRUE;
6436 }
6437
6438 /* If the relocation was previously an absolute relocation and
6439 this symbol will not be referred to by the relocation, we must
6440 adjust it by the value we give it in the dynamic symbol table.
6441 Otherwise leave the job up to the dynamic linker. */
6442 if (defined_p && r_type != R_MIPS_REL32)
6443 *addendp += symbol;
6444
6445 if (htab->is_vxworks)
6446 /* VxWorks uses non-relative relocations for this. */
6447 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6448 else
6449 /* The relocation is always an REL32 relocation because we don't
6450 know where the shared library will wind up at load-time. */
6451 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6452 R_MIPS_REL32);
6453
6454 /* For strict adherence to the ABI specification, we should
6455 generate a R_MIPS_64 relocation record by itself before the
6456 _REL32/_64 record as well, such that the addend is read in as
6457 a 64-bit value (REL32 is a 32-bit relocation, after all).
6458 However, since none of the existing ELF64 MIPS dynamic
6459 loaders seems to care, we don't waste space with these
6460 artificial relocations. If this turns out to not be true,
6461 mips_elf_allocate_dynamic_relocation() should be tweaked so
6462 as to make room for a pair of dynamic relocations per
6463 invocation if ABI_64_P, and here we should generate an
6464 additional relocation record with R_MIPS_64 by itself for a
6465 NULL symbol before this relocation record. */
6466 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6467 ABI_64_P (output_bfd)
6468 ? R_MIPS_64
6469 : R_MIPS_NONE);
6470 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6471
6472 /* Adjust the output offset of the relocation to reference the
6473 correct location in the output file. */
6474 outrel[0].r_offset += (input_section->output_section->vma
6475 + input_section->output_offset);
6476 outrel[1].r_offset += (input_section->output_section->vma
6477 + input_section->output_offset);
6478 outrel[2].r_offset += (input_section->output_section->vma
6479 + input_section->output_offset);
6480
6481 /* Put the relocation back out. We have to use the special
6482 relocation outputter in the 64-bit case since the 64-bit
6483 relocation format is non-standard. */
6484 if (ABI_64_P (output_bfd))
6485 {
6486 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6487 (output_bfd, &outrel[0],
6488 (sreloc->contents
6489 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6490 }
6491 else if (htab->is_vxworks)
6492 {
6493 /* VxWorks uses RELA rather than REL dynamic relocations. */
6494 outrel[0].r_addend = *addendp;
6495 bfd_elf32_swap_reloca_out
6496 (output_bfd, &outrel[0],
6497 (sreloc->contents
6498 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6499 }
6500 else
6501 bfd_elf32_swap_reloc_out
6502 (output_bfd, &outrel[0],
6503 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6504
6505 /* We've now added another relocation. */
6506 ++sreloc->reloc_count;
6507
6508 /* Make sure the output section is writable. The dynamic linker
6509 will be writing to it. */
6510 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6511 |= SHF_WRITE;
6512
6513 /* On IRIX5, make an entry of compact relocation info. */
6514 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6515 {
6516 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6517 bfd_byte *cr;
6518
6519 if (scpt)
6520 {
6521 Elf32_crinfo cptrel;
6522
6523 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6524 cptrel.vaddr = (rel->r_offset
6525 + input_section->output_section->vma
6526 + input_section->output_offset);
6527 if (r_type == R_MIPS_REL32)
6528 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6529 else
6530 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6531 mips_elf_set_cr_dist2to (cptrel, 0);
6532 cptrel.konst = *addendp;
6533
6534 cr = (scpt->contents
6535 + sizeof (Elf32_External_compact_rel));
6536 mips_elf_set_cr_relvaddr (cptrel, 0);
6537 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6538 ((Elf32_External_crinfo *) cr
6539 + scpt->reloc_count));
6540 ++scpt->reloc_count;
6541 }
6542 }
6543
6544 /* If we've written this relocation for a readonly section,
6545 we need to set DF_TEXTREL again, so that we do not delete the
6546 DT_TEXTREL tag. */
6547 if (MIPS_ELF_READONLY_SECTION (input_section))
6548 info->flags |= DF_TEXTREL;
6549
6550 return TRUE;
6551 }
6552 \f
6553 /* Return the MACH for a MIPS e_flags value. */
6554
6555 unsigned long
6556 _bfd_elf_mips_mach (flagword flags)
6557 {
6558 switch (flags & EF_MIPS_MACH)
6559 {
6560 case E_MIPS_MACH_3900:
6561 return bfd_mach_mips3900;
6562
6563 case E_MIPS_MACH_4010:
6564 return bfd_mach_mips4010;
6565
6566 case E_MIPS_MACH_4100:
6567 return bfd_mach_mips4100;
6568
6569 case E_MIPS_MACH_4111:
6570 return bfd_mach_mips4111;
6571
6572 case E_MIPS_MACH_4120:
6573 return bfd_mach_mips4120;
6574
6575 case E_MIPS_MACH_4650:
6576 return bfd_mach_mips4650;
6577
6578 case E_MIPS_MACH_5400:
6579 return bfd_mach_mips5400;
6580
6581 case E_MIPS_MACH_5500:
6582 return bfd_mach_mips5500;
6583
6584 case E_MIPS_MACH_5900:
6585 return bfd_mach_mips5900;
6586
6587 case E_MIPS_MACH_9000:
6588 return bfd_mach_mips9000;
6589
6590 case E_MIPS_MACH_SB1:
6591 return bfd_mach_mips_sb1;
6592
6593 case E_MIPS_MACH_LS2E:
6594 return bfd_mach_mips_loongson_2e;
6595
6596 case E_MIPS_MACH_LS2F:
6597 return bfd_mach_mips_loongson_2f;
6598
6599 case E_MIPS_MACH_LS3A:
6600 return bfd_mach_mips_loongson_3a;
6601
6602 case E_MIPS_MACH_OCTEON3:
6603 return bfd_mach_mips_octeon3;
6604
6605 case E_MIPS_MACH_OCTEON2:
6606 return bfd_mach_mips_octeon2;
6607
6608 case E_MIPS_MACH_OCTEON:
6609 return bfd_mach_mips_octeon;
6610
6611 case E_MIPS_MACH_XLR:
6612 return bfd_mach_mips_xlr;
6613
6614 default:
6615 switch (flags & EF_MIPS_ARCH)
6616 {
6617 default:
6618 case E_MIPS_ARCH_1:
6619 return bfd_mach_mips3000;
6620
6621 case E_MIPS_ARCH_2:
6622 return bfd_mach_mips6000;
6623
6624 case E_MIPS_ARCH_3:
6625 return bfd_mach_mips4000;
6626
6627 case E_MIPS_ARCH_4:
6628 return bfd_mach_mips8000;
6629
6630 case E_MIPS_ARCH_5:
6631 return bfd_mach_mips5;
6632
6633 case E_MIPS_ARCH_32:
6634 return bfd_mach_mipsisa32;
6635
6636 case E_MIPS_ARCH_64:
6637 return bfd_mach_mipsisa64;
6638
6639 case E_MIPS_ARCH_32R2:
6640 return bfd_mach_mipsisa32r2;
6641
6642 case E_MIPS_ARCH_64R2:
6643 return bfd_mach_mipsisa64r2;
6644
6645 case E_MIPS_ARCH_32R6:
6646 return bfd_mach_mipsisa32r6;
6647
6648 case E_MIPS_ARCH_64R6:
6649 return bfd_mach_mipsisa64r6;
6650 }
6651 }
6652
6653 return 0;
6654 }
6655
6656 /* Return printable name for ABI. */
6657
6658 static INLINE char *
6659 elf_mips_abi_name (bfd *abfd)
6660 {
6661 flagword flags;
6662
6663 flags = elf_elfheader (abfd)->e_flags;
6664 switch (flags & EF_MIPS_ABI)
6665 {
6666 case 0:
6667 if (ABI_N32_P (abfd))
6668 return "N32";
6669 else if (ABI_64_P (abfd))
6670 return "64";
6671 else
6672 return "none";
6673 case E_MIPS_ABI_O32:
6674 return "O32";
6675 case E_MIPS_ABI_O64:
6676 return "O64";
6677 case E_MIPS_ABI_EABI32:
6678 return "EABI32";
6679 case E_MIPS_ABI_EABI64:
6680 return "EABI64";
6681 default:
6682 return "unknown abi";
6683 }
6684 }
6685 \f
6686 /* MIPS ELF uses two common sections. One is the usual one, and the
6687 other is for small objects. All the small objects are kept
6688 together, and then referenced via the gp pointer, which yields
6689 faster assembler code. This is what we use for the small common
6690 section. This approach is copied from ecoff.c. */
6691 static asection mips_elf_scom_section;
6692 static asymbol mips_elf_scom_symbol;
6693 static asymbol *mips_elf_scom_symbol_ptr;
6694
6695 /* MIPS ELF also uses an acommon section, which represents an
6696 allocated common symbol which may be overridden by a
6697 definition in a shared library. */
6698 static asection mips_elf_acom_section;
6699 static asymbol mips_elf_acom_symbol;
6700 static asymbol *mips_elf_acom_symbol_ptr;
6701
6702 /* This is used for both the 32-bit and the 64-bit ABI. */
6703
6704 void
6705 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6706 {
6707 elf_symbol_type *elfsym;
6708
6709 /* Handle the special MIPS section numbers that a symbol may use. */
6710 elfsym = (elf_symbol_type *) asym;
6711 switch (elfsym->internal_elf_sym.st_shndx)
6712 {
6713 case SHN_MIPS_ACOMMON:
6714 /* This section is used in a dynamically linked executable file.
6715 It is an allocated common section. The dynamic linker can
6716 either resolve these symbols to something in a shared
6717 library, or it can just leave them here. For our purposes,
6718 we can consider these symbols to be in a new section. */
6719 if (mips_elf_acom_section.name == NULL)
6720 {
6721 /* Initialize the acommon section. */
6722 mips_elf_acom_section.name = ".acommon";
6723 mips_elf_acom_section.flags = SEC_ALLOC;
6724 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6725 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6726 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6727 mips_elf_acom_symbol.name = ".acommon";
6728 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6729 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6730 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6731 }
6732 asym->section = &mips_elf_acom_section;
6733 break;
6734
6735 case SHN_COMMON:
6736 /* Common symbols less than the GP size are automatically
6737 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6738 if (asym->value > elf_gp_size (abfd)
6739 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6740 || IRIX_COMPAT (abfd) == ict_irix6)
6741 break;
6742 /* Fall through. */
6743 case SHN_MIPS_SCOMMON:
6744 if (mips_elf_scom_section.name == NULL)
6745 {
6746 /* Initialize the small common section. */
6747 mips_elf_scom_section.name = ".scommon";
6748 mips_elf_scom_section.flags = SEC_IS_COMMON;
6749 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6750 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6751 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6752 mips_elf_scom_symbol.name = ".scommon";
6753 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6754 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6755 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6756 }
6757 asym->section = &mips_elf_scom_section;
6758 asym->value = elfsym->internal_elf_sym.st_size;
6759 break;
6760
6761 case SHN_MIPS_SUNDEFINED:
6762 asym->section = bfd_und_section_ptr;
6763 break;
6764
6765 case SHN_MIPS_TEXT:
6766 {
6767 asection *section = bfd_get_section_by_name (abfd, ".text");
6768
6769 if (section != NULL)
6770 {
6771 asym->section = section;
6772 /* MIPS_TEXT is a bit special, the address is not an offset
6773 to the base of the .text section. So substract the section
6774 base address to make it an offset. */
6775 asym->value -= section->vma;
6776 }
6777 }
6778 break;
6779
6780 case SHN_MIPS_DATA:
6781 {
6782 asection *section = bfd_get_section_by_name (abfd, ".data");
6783
6784 if (section != NULL)
6785 {
6786 asym->section = section;
6787 /* MIPS_DATA is a bit special, the address is not an offset
6788 to the base of the .data section. So substract the section
6789 base address to make it an offset. */
6790 asym->value -= section->vma;
6791 }
6792 }
6793 break;
6794 }
6795
6796 /* If this is an odd-valued function symbol, assume it's a MIPS16
6797 or microMIPS one. */
6798 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6799 && (asym->value & 1) != 0)
6800 {
6801 asym->value--;
6802 if (MICROMIPS_P (abfd))
6803 elfsym->internal_elf_sym.st_other
6804 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6805 else
6806 elfsym->internal_elf_sym.st_other
6807 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6808 }
6809 }
6810 \f
6811 /* Implement elf_backend_eh_frame_address_size. This differs from
6812 the default in the way it handles EABI64.
6813
6814 EABI64 was originally specified as an LP64 ABI, and that is what
6815 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6816 historically accepted the combination of -mabi=eabi and -mlong32,
6817 and this ILP32 variation has become semi-official over time.
6818 Both forms use elf32 and have pointer-sized FDE addresses.
6819
6820 If an EABI object was generated by GCC 4.0 or above, it will have
6821 an empty .gcc_compiled_longXX section, where XX is the size of longs
6822 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6823 have no special marking to distinguish them from LP64 objects.
6824
6825 We don't want users of the official LP64 ABI to be punished for the
6826 existence of the ILP32 variant, but at the same time, we don't want
6827 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6828 We therefore take the following approach:
6829
6830 - If ABFD contains a .gcc_compiled_longXX section, use it to
6831 determine the pointer size.
6832
6833 - Otherwise check the type of the first relocation. Assume that
6834 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6835
6836 - Otherwise punt.
6837
6838 The second check is enough to detect LP64 objects generated by pre-4.0
6839 compilers because, in the kind of output generated by those compilers,
6840 the first relocation will be associated with either a CIE personality
6841 routine or an FDE start address. Furthermore, the compilers never
6842 used a special (non-pointer) encoding for this ABI.
6843
6844 Checking the relocation type should also be safe because there is no
6845 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6846 did so. */
6847
6848 unsigned int
6849 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6850 {
6851 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6852 return 8;
6853 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6854 {
6855 bfd_boolean long32_p, long64_p;
6856
6857 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6858 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6859 if (long32_p && long64_p)
6860 return 0;
6861 if (long32_p)
6862 return 4;
6863 if (long64_p)
6864 return 8;
6865
6866 if (sec->reloc_count > 0
6867 && elf_section_data (sec)->relocs != NULL
6868 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6869 == R_MIPS_64))
6870 return 8;
6871
6872 return 0;
6873 }
6874 return 4;
6875 }
6876 \f
6877 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6878 relocations against two unnamed section symbols to resolve to the
6879 same address. For example, if we have code like:
6880
6881 lw $4,%got_disp(.data)($gp)
6882 lw $25,%got_disp(.text)($gp)
6883 jalr $25
6884
6885 then the linker will resolve both relocations to .data and the program
6886 will jump there rather than to .text.
6887
6888 We can work around this problem by giving names to local section symbols.
6889 This is also what the MIPSpro tools do. */
6890
6891 bfd_boolean
6892 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6893 {
6894 return SGI_COMPAT (abfd);
6895 }
6896 \f
6897 /* Work over a section just before writing it out. This routine is
6898 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6899 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6900 a better way. */
6901
6902 bfd_boolean
6903 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6904 {
6905 if (hdr->sh_type == SHT_MIPS_REGINFO
6906 && hdr->sh_size > 0)
6907 {
6908 bfd_byte buf[4];
6909
6910 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6911 BFD_ASSERT (hdr->contents == NULL);
6912
6913 if (bfd_seek (abfd,
6914 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6915 SEEK_SET) != 0)
6916 return FALSE;
6917 H_PUT_32 (abfd, elf_gp (abfd), buf);
6918 if (bfd_bwrite (buf, 4, abfd) != 4)
6919 return FALSE;
6920 }
6921
6922 if (hdr->sh_type == SHT_MIPS_OPTIONS
6923 && hdr->bfd_section != NULL
6924 && mips_elf_section_data (hdr->bfd_section) != NULL
6925 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6926 {
6927 bfd_byte *contents, *l, *lend;
6928
6929 /* We stored the section contents in the tdata field in the
6930 set_section_contents routine. We save the section contents
6931 so that we don't have to read them again.
6932 At this point we know that elf_gp is set, so we can look
6933 through the section contents to see if there is an
6934 ODK_REGINFO structure. */
6935
6936 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6937 l = contents;
6938 lend = contents + hdr->sh_size;
6939 while (l + sizeof (Elf_External_Options) <= lend)
6940 {
6941 Elf_Internal_Options intopt;
6942
6943 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6944 &intopt);
6945 if (intopt.size < sizeof (Elf_External_Options))
6946 {
6947 (*_bfd_error_handler)
6948 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6949 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6950 break;
6951 }
6952 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6953 {
6954 bfd_byte buf[8];
6955
6956 if (bfd_seek (abfd,
6957 (hdr->sh_offset
6958 + (l - contents)
6959 + sizeof (Elf_External_Options)
6960 + (sizeof (Elf64_External_RegInfo) - 8)),
6961 SEEK_SET) != 0)
6962 return FALSE;
6963 H_PUT_64 (abfd, elf_gp (abfd), buf);
6964 if (bfd_bwrite (buf, 8, abfd) != 8)
6965 return FALSE;
6966 }
6967 else if (intopt.kind == ODK_REGINFO)
6968 {
6969 bfd_byte buf[4];
6970
6971 if (bfd_seek (abfd,
6972 (hdr->sh_offset
6973 + (l - contents)
6974 + sizeof (Elf_External_Options)
6975 + (sizeof (Elf32_External_RegInfo) - 4)),
6976 SEEK_SET) != 0)
6977 return FALSE;
6978 H_PUT_32 (abfd, elf_gp (abfd), buf);
6979 if (bfd_bwrite (buf, 4, abfd) != 4)
6980 return FALSE;
6981 }
6982 l += intopt.size;
6983 }
6984 }
6985
6986 if (hdr->bfd_section != NULL)
6987 {
6988 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6989
6990 /* .sbss is not handled specially here because the GNU/Linux
6991 prelinker can convert .sbss from NOBITS to PROGBITS and
6992 changing it back to NOBITS breaks the binary. The entry in
6993 _bfd_mips_elf_special_sections will ensure the correct flags
6994 are set on .sbss if BFD creates it without reading it from an
6995 input file, and without special handling here the flags set
6996 on it in an input file will be followed. */
6997 if (strcmp (name, ".sdata") == 0
6998 || strcmp (name, ".lit8") == 0
6999 || strcmp (name, ".lit4") == 0)
7000 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7001 else if (strcmp (name, ".srdata") == 0)
7002 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7003 else if (strcmp (name, ".compact_rel") == 0)
7004 hdr->sh_flags = 0;
7005 else if (strcmp (name, ".rtproc") == 0)
7006 {
7007 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7008 {
7009 unsigned int adjust;
7010
7011 adjust = hdr->sh_size % hdr->sh_addralign;
7012 if (adjust != 0)
7013 hdr->sh_size += hdr->sh_addralign - adjust;
7014 }
7015 }
7016 }
7017
7018 return TRUE;
7019 }
7020
7021 /* Handle a MIPS specific section when reading an object file. This
7022 is called when elfcode.h finds a section with an unknown type.
7023 This routine supports both the 32-bit and 64-bit ELF ABI.
7024
7025 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7026 how to. */
7027
7028 bfd_boolean
7029 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7030 Elf_Internal_Shdr *hdr,
7031 const char *name,
7032 int shindex)
7033 {
7034 flagword flags = 0;
7035
7036 /* There ought to be a place to keep ELF backend specific flags, but
7037 at the moment there isn't one. We just keep track of the
7038 sections by their name, instead. Fortunately, the ABI gives
7039 suggested names for all the MIPS specific sections, so we will
7040 probably get away with this. */
7041 switch (hdr->sh_type)
7042 {
7043 case SHT_MIPS_LIBLIST:
7044 if (strcmp (name, ".liblist") != 0)
7045 return FALSE;
7046 break;
7047 case SHT_MIPS_MSYM:
7048 if (strcmp (name, ".msym") != 0)
7049 return FALSE;
7050 break;
7051 case SHT_MIPS_CONFLICT:
7052 if (strcmp (name, ".conflict") != 0)
7053 return FALSE;
7054 break;
7055 case SHT_MIPS_GPTAB:
7056 if (! CONST_STRNEQ (name, ".gptab."))
7057 return FALSE;
7058 break;
7059 case SHT_MIPS_UCODE:
7060 if (strcmp (name, ".ucode") != 0)
7061 return FALSE;
7062 break;
7063 case SHT_MIPS_DEBUG:
7064 if (strcmp (name, ".mdebug") != 0)
7065 return FALSE;
7066 flags = SEC_DEBUGGING;
7067 break;
7068 case SHT_MIPS_REGINFO:
7069 if (strcmp (name, ".reginfo") != 0
7070 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7071 return FALSE;
7072 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7073 break;
7074 case SHT_MIPS_IFACE:
7075 if (strcmp (name, ".MIPS.interfaces") != 0)
7076 return FALSE;
7077 break;
7078 case SHT_MIPS_CONTENT:
7079 if (! CONST_STRNEQ (name, ".MIPS.content"))
7080 return FALSE;
7081 break;
7082 case SHT_MIPS_OPTIONS:
7083 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7084 return FALSE;
7085 break;
7086 case SHT_MIPS_ABIFLAGS:
7087 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7088 return FALSE;
7089 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7090 break;
7091 case SHT_MIPS_DWARF:
7092 if (! CONST_STRNEQ (name, ".debug_")
7093 && ! CONST_STRNEQ (name, ".zdebug_"))
7094 return FALSE;
7095 break;
7096 case SHT_MIPS_SYMBOL_LIB:
7097 if (strcmp (name, ".MIPS.symlib") != 0)
7098 return FALSE;
7099 break;
7100 case SHT_MIPS_EVENTS:
7101 if (! CONST_STRNEQ (name, ".MIPS.events")
7102 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7103 return FALSE;
7104 break;
7105 default:
7106 break;
7107 }
7108
7109 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7110 return FALSE;
7111
7112 if (flags)
7113 {
7114 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7115 (bfd_get_section_flags (abfd,
7116 hdr->bfd_section)
7117 | flags)))
7118 return FALSE;
7119 }
7120
7121 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7122 {
7123 Elf_External_ABIFlags_v0 ext;
7124
7125 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7126 &ext, 0, sizeof ext))
7127 return FALSE;
7128 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7129 &mips_elf_tdata (abfd)->abiflags);
7130 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7131 return FALSE;
7132 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7133 }
7134
7135 /* FIXME: We should record sh_info for a .gptab section. */
7136
7137 /* For a .reginfo section, set the gp value in the tdata information
7138 from the contents of this section. We need the gp value while
7139 processing relocs, so we just get it now. The .reginfo section
7140 is not used in the 64-bit MIPS ELF ABI. */
7141 if (hdr->sh_type == SHT_MIPS_REGINFO)
7142 {
7143 Elf32_External_RegInfo ext;
7144 Elf32_RegInfo s;
7145
7146 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7147 &ext, 0, sizeof ext))
7148 return FALSE;
7149 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7150 elf_gp (abfd) = s.ri_gp_value;
7151 }
7152
7153 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7154 set the gp value based on what we find. We may see both
7155 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7156 they should agree. */
7157 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7158 {
7159 bfd_byte *contents, *l, *lend;
7160
7161 contents = bfd_malloc (hdr->sh_size);
7162 if (contents == NULL)
7163 return FALSE;
7164 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7165 0, hdr->sh_size))
7166 {
7167 free (contents);
7168 return FALSE;
7169 }
7170 l = contents;
7171 lend = contents + hdr->sh_size;
7172 while (l + sizeof (Elf_External_Options) <= lend)
7173 {
7174 Elf_Internal_Options intopt;
7175
7176 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7177 &intopt);
7178 if (intopt.size < sizeof (Elf_External_Options))
7179 {
7180 (*_bfd_error_handler)
7181 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7182 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7183 break;
7184 }
7185 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7186 {
7187 Elf64_Internal_RegInfo intreg;
7188
7189 bfd_mips_elf64_swap_reginfo_in
7190 (abfd,
7191 ((Elf64_External_RegInfo *)
7192 (l + sizeof (Elf_External_Options))),
7193 &intreg);
7194 elf_gp (abfd) = intreg.ri_gp_value;
7195 }
7196 else if (intopt.kind == ODK_REGINFO)
7197 {
7198 Elf32_RegInfo intreg;
7199
7200 bfd_mips_elf32_swap_reginfo_in
7201 (abfd,
7202 ((Elf32_External_RegInfo *)
7203 (l + sizeof (Elf_External_Options))),
7204 &intreg);
7205 elf_gp (abfd) = intreg.ri_gp_value;
7206 }
7207 l += intopt.size;
7208 }
7209 free (contents);
7210 }
7211
7212 return TRUE;
7213 }
7214
7215 /* Set the correct type for a MIPS ELF section. We do this by the
7216 section name, which is a hack, but ought to work. This routine is
7217 used by both the 32-bit and the 64-bit ABI. */
7218
7219 bfd_boolean
7220 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7221 {
7222 const char *name = bfd_get_section_name (abfd, sec);
7223
7224 if (strcmp (name, ".liblist") == 0)
7225 {
7226 hdr->sh_type = SHT_MIPS_LIBLIST;
7227 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7228 /* The sh_link field is set in final_write_processing. */
7229 }
7230 else if (strcmp (name, ".conflict") == 0)
7231 hdr->sh_type = SHT_MIPS_CONFLICT;
7232 else if (CONST_STRNEQ (name, ".gptab."))
7233 {
7234 hdr->sh_type = SHT_MIPS_GPTAB;
7235 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7236 /* The sh_info field is set in final_write_processing. */
7237 }
7238 else if (strcmp (name, ".ucode") == 0)
7239 hdr->sh_type = SHT_MIPS_UCODE;
7240 else if (strcmp (name, ".mdebug") == 0)
7241 {
7242 hdr->sh_type = SHT_MIPS_DEBUG;
7243 /* In a shared object on IRIX 5.3, the .mdebug section has an
7244 entsize of 0. FIXME: Does this matter? */
7245 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7246 hdr->sh_entsize = 0;
7247 else
7248 hdr->sh_entsize = 1;
7249 }
7250 else if (strcmp (name, ".reginfo") == 0)
7251 {
7252 hdr->sh_type = SHT_MIPS_REGINFO;
7253 /* In a shared object on IRIX 5.3, the .reginfo section has an
7254 entsize of 0x18. FIXME: Does this matter? */
7255 if (SGI_COMPAT (abfd))
7256 {
7257 if ((abfd->flags & DYNAMIC) != 0)
7258 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7259 else
7260 hdr->sh_entsize = 1;
7261 }
7262 else
7263 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7264 }
7265 else if (SGI_COMPAT (abfd)
7266 && (strcmp (name, ".hash") == 0
7267 || strcmp (name, ".dynamic") == 0
7268 || strcmp (name, ".dynstr") == 0))
7269 {
7270 if (SGI_COMPAT (abfd))
7271 hdr->sh_entsize = 0;
7272 #if 0
7273 /* This isn't how the IRIX6 linker behaves. */
7274 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7275 #endif
7276 }
7277 else if (strcmp (name, ".got") == 0
7278 || strcmp (name, ".srdata") == 0
7279 || strcmp (name, ".sdata") == 0
7280 || strcmp (name, ".sbss") == 0
7281 || strcmp (name, ".lit4") == 0
7282 || strcmp (name, ".lit8") == 0)
7283 hdr->sh_flags |= SHF_MIPS_GPREL;
7284 else if (strcmp (name, ".MIPS.interfaces") == 0)
7285 {
7286 hdr->sh_type = SHT_MIPS_IFACE;
7287 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7288 }
7289 else if (CONST_STRNEQ (name, ".MIPS.content"))
7290 {
7291 hdr->sh_type = SHT_MIPS_CONTENT;
7292 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7293 /* The sh_info field is set in final_write_processing. */
7294 }
7295 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7296 {
7297 hdr->sh_type = SHT_MIPS_OPTIONS;
7298 hdr->sh_entsize = 1;
7299 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7300 }
7301 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7302 {
7303 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7304 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7305 }
7306 else if (CONST_STRNEQ (name, ".debug_")
7307 || CONST_STRNEQ (name, ".zdebug_"))
7308 {
7309 hdr->sh_type = SHT_MIPS_DWARF;
7310
7311 /* Irix facilities such as libexc expect a single .debug_frame
7312 per executable, the system ones have NOSTRIP set and the linker
7313 doesn't merge sections with different flags so ... */
7314 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7315 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7316 }
7317 else if (strcmp (name, ".MIPS.symlib") == 0)
7318 {
7319 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7320 /* The sh_link and sh_info fields are set in
7321 final_write_processing. */
7322 }
7323 else if (CONST_STRNEQ (name, ".MIPS.events")
7324 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7325 {
7326 hdr->sh_type = SHT_MIPS_EVENTS;
7327 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7328 /* The sh_link field is set in final_write_processing. */
7329 }
7330 else if (strcmp (name, ".msym") == 0)
7331 {
7332 hdr->sh_type = SHT_MIPS_MSYM;
7333 hdr->sh_flags |= SHF_ALLOC;
7334 hdr->sh_entsize = 8;
7335 }
7336
7337 /* The generic elf_fake_sections will set up REL_HDR using the default
7338 kind of relocations. We used to set up a second header for the
7339 non-default kind of relocations here, but only NewABI would use
7340 these, and the IRIX ld doesn't like resulting empty RELA sections.
7341 Thus we create those header only on demand now. */
7342
7343 return TRUE;
7344 }
7345
7346 /* Given a BFD section, try to locate the corresponding ELF section
7347 index. This is used by both the 32-bit and the 64-bit ABI.
7348 Actually, it's not clear to me that the 64-bit ABI supports these,
7349 but for non-PIC objects we will certainly want support for at least
7350 the .scommon section. */
7351
7352 bfd_boolean
7353 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7354 asection *sec, int *retval)
7355 {
7356 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7357 {
7358 *retval = SHN_MIPS_SCOMMON;
7359 return TRUE;
7360 }
7361 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7362 {
7363 *retval = SHN_MIPS_ACOMMON;
7364 return TRUE;
7365 }
7366 return FALSE;
7367 }
7368 \f
7369 /* Hook called by the linker routine which adds symbols from an object
7370 file. We must handle the special MIPS section numbers here. */
7371
7372 bfd_boolean
7373 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7374 Elf_Internal_Sym *sym, const char **namep,
7375 flagword *flagsp ATTRIBUTE_UNUSED,
7376 asection **secp, bfd_vma *valp)
7377 {
7378 if (SGI_COMPAT (abfd)
7379 && (abfd->flags & DYNAMIC) != 0
7380 && strcmp (*namep, "_rld_new_interface") == 0)
7381 {
7382 /* Skip IRIX5 rld entry name. */
7383 *namep = NULL;
7384 return TRUE;
7385 }
7386
7387 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7388 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7389 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7390 a magic symbol resolved by the linker, we ignore this bogus definition
7391 of _gp_disp. New ABI objects do not suffer from this problem so this
7392 is not done for them. */
7393 if (!NEWABI_P(abfd)
7394 && (sym->st_shndx == SHN_ABS)
7395 && (strcmp (*namep, "_gp_disp") == 0))
7396 {
7397 *namep = NULL;
7398 return TRUE;
7399 }
7400
7401 switch (sym->st_shndx)
7402 {
7403 case SHN_COMMON:
7404 /* Common symbols less than the GP size are automatically
7405 treated as SHN_MIPS_SCOMMON symbols. */
7406 if (sym->st_size > elf_gp_size (abfd)
7407 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7408 || IRIX_COMPAT (abfd) == ict_irix6)
7409 break;
7410 /* Fall through. */
7411 case SHN_MIPS_SCOMMON:
7412 *secp = bfd_make_section_old_way (abfd, ".scommon");
7413 (*secp)->flags |= SEC_IS_COMMON;
7414 *valp = sym->st_size;
7415 break;
7416
7417 case SHN_MIPS_TEXT:
7418 /* This section is used in a shared object. */
7419 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7420 {
7421 asymbol *elf_text_symbol;
7422 asection *elf_text_section;
7423 bfd_size_type amt = sizeof (asection);
7424
7425 elf_text_section = bfd_zalloc (abfd, amt);
7426 if (elf_text_section == NULL)
7427 return FALSE;
7428
7429 amt = sizeof (asymbol);
7430 elf_text_symbol = bfd_zalloc (abfd, amt);
7431 if (elf_text_symbol == NULL)
7432 return FALSE;
7433
7434 /* Initialize the section. */
7435
7436 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7437 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7438
7439 elf_text_section->symbol = elf_text_symbol;
7440 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7441
7442 elf_text_section->name = ".text";
7443 elf_text_section->flags = SEC_NO_FLAGS;
7444 elf_text_section->output_section = NULL;
7445 elf_text_section->owner = abfd;
7446 elf_text_symbol->name = ".text";
7447 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7448 elf_text_symbol->section = elf_text_section;
7449 }
7450 /* This code used to do *secp = bfd_und_section_ptr if
7451 info->shared. I don't know why, and that doesn't make sense,
7452 so I took it out. */
7453 *secp = mips_elf_tdata (abfd)->elf_text_section;
7454 break;
7455
7456 case SHN_MIPS_ACOMMON:
7457 /* Fall through. XXX Can we treat this as allocated data? */
7458 case SHN_MIPS_DATA:
7459 /* This section is used in a shared object. */
7460 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7461 {
7462 asymbol *elf_data_symbol;
7463 asection *elf_data_section;
7464 bfd_size_type amt = sizeof (asection);
7465
7466 elf_data_section = bfd_zalloc (abfd, amt);
7467 if (elf_data_section == NULL)
7468 return FALSE;
7469
7470 amt = sizeof (asymbol);
7471 elf_data_symbol = bfd_zalloc (abfd, amt);
7472 if (elf_data_symbol == NULL)
7473 return FALSE;
7474
7475 /* Initialize the section. */
7476
7477 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7478 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7479
7480 elf_data_section->symbol = elf_data_symbol;
7481 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7482
7483 elf_data_section->name = ".data";
7484 elf_data_section->flags = SEC_NO_FLAGS;
7485 elf_data_section->output_section = NULL;
7486 elf_data_section->owner = abfd;
7487 elf_data_symbol->name = ".data";
7488 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7489 elf_data_symbol->section = elf_data_section;
7490 }
7491 /* This code used to do *secp = bfd_und_section_ptr if
7492 info->shared. I don't know why, and that doesn't make sense,
7493 so I took it out. */
7494 *secp = mips_elf_tdata (abfd)->elf_data_section;
7495 break;
7496
7497 case SHN_MIPS_SUNDEFINED:
7498 *secp = bfd_und_section_ptr;
7499 break;
7500 }
7501
7502 if (SGI_COMPAT (abfd)
7503 && ! info->shared
7504 && info->output_bfd->xvec == abfd->xvec
7505 && strcmp (*namep, "__rld_obj_head") == 0)
7506 {
7507 struct elf_link_hash_entry *h;
7508 struct bfd_link_hash_entry *bh;
7509
7510 /* Mark __rld_obj_head as dynamic. */
7511 bh = NULL;
7512 if (! (_bfd_generic_link_add_one_symbol
7513 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7514 get_elf_backend_data (abfd)->collect, &bh)))
7515 return FALSE;
7516
7517 h = (struct elf_link_hash_entry *) bh;
7518 h->non_elf = 0;
7519 h->def_regular = 1;
7520 h->type = STT_OBJECT;
7521
7522 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7523 return FALSE;
7524
7525 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7526 mips_elf_hash_table (info)->rld_symbol = h;
7527 }
7528
7529 /* If this is a mips16 text symbol, add 1 to the value to make it
7530 odd. This will cause something like .word SYM to come up with
7531 the right value when it is loaded into the PC. */
7532 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7533 ++*valp;
7534
7535 return TRUE;
7536 }
7537
7538 /* This hook function is called before the linker writes out a global
7539 symbol. We mark symbols as small common if appropriate. This is
7540 also where we undo the increment of the value for a mips16 symbol. */
7541
7542 int
7543 _bfd_mips_elf_link_output_symbol_hook
7544 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7545 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7546 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7547 {
7548 /* If we see a common symbol, which implies a relocatable link, then
7549 if a symbol was small common in an input file, mark it as small
7550 common in the output file. */
7551 if (sym->st_shndx == SHN_COMMON
7552 && strcmp (input_sec->name, ".scommon") == 0)
7553 sym->st_shndx = SHN_MIPS_SCOMMON;
7554
7555 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7556 sym->st_value &= ~1;
7557
7558 return 1;
7559 }
7560 \f
7561 /* Functions for the dynamic linker. */
7562
7563 /* Create dynamic sections when linking against a dynamic object. */
7564
7565 bfd_boolean
7566 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7567 {
7568 struct elf_link_hash_entry *h;
7569 struct bfd_link_hash_entry *bh;
7570 flagword flags;
7571 register asection *s;
7572 const char * const *namep;
7573 struct mips_elf_link_hash_table *htab;
7574
7575 htab = mips_elf_hash_table (info);
7576 BFD_ASSERT (htab != NULL);
7577
7578 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7579 | SEC_LINKER_CREATED | SEC_READONLY);
7580
7581 /* The psABI requires a read-only .dynamic section, but the VxWorks
7582 EABI doesn't. */
7583 if (!htab->is_vxworks)
7584 {
7585 s = bfd_get_linker_section (abfd, ".dynamic");
7586 if (s != NULL)
7587 {
7588 if (! bfd_set_section_flags (abfd, s, flags))
7589 return FALSE;
7590 }
7591 }
7592
7593 /* We need to create .got section. */
7594 if (!mips_elf_create_got_section (abfd, info))
7595 return FALSE;
7596
7597 if (! mips_elf_rel_dyn_section (info, TRUE))
7598 return FALSE;
7599
7600 /* Create .stub section. */
7601 s = bfd_make_section_anyway_with_flags (abfd,
7602 MIPS_ELF_STUB_SECTION_NAME (abfd),
7603 flags | SEC_CODE);
7604 if (s == NULL
7605 || ! bfd_set_section_alignment (abfd, s,
7606 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7607 return FALSE;
7608 htab->sstubs = s;
7609
7610 if (!mips_elf_hash_table (info)->use_rld_obj_head
7611 && info->executable
7612 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7613 {
7614 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7615 flags &~ (flagword) SEC_READONLY);
7616 if (s == NULL
7617 || ! bfd_set_section_alignment (abfd, s,
7618 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7619 return FALSE;
7620 }
7621
7622 /* On IRIX5, we adjust add some additional symbols and change the
7623 alignments of several sections. There is no ABI documentation
7624 indicating that this is necessary on IRIX6, nor any evidence that
7625 the linker takes such action. */
7626 if (IRIX_COMPAT (abfd) == ict_irix5)
7627 {
7628 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7629 {
7630 bh = NULL;
7631 if (! (_bfd_generic_link_add_one_symbol
7632 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7633 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7634 return FALSE;
7635
7636 h = (struct elf_link_hash_entry *) bh;
7637 h->non_elf = 0;
7638 h->def_regular = 1;
7639 h->type = STT_SECTION;
7640
7641 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7642 return FALSE;
7643 }
7644
7645 /* We need to create a .compact_rel section. */
7646 if (SGI_COMPAT (abfd))
7647 {
7648 if (!mips_elf_create_compact_rel_section (abfd, info))
7649 return FALSE;
7650 }
7651
7652 /* Change alignments of some sections. */
7653 s = bfd_get_linker_section (abfd, ".hash");
7654 if (s != NULL)
7655 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7656
7657 s = bfd_get_linker_section (abfd, ".dynsym");
7658 if (s != NULL)
7659 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7660
7661 s = bfd_get_linker_section (abfd, ".dynstr");
7662 if (s != NULL)
7663 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7664
7665 /* ??? */
7666 s = bfd_get_section_by_name (abfd, ".reginfo");
7667 if (s != NULL)
7668 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7669
7670 s = bfd_get_linker_section (abfd, ".dynamic");
7671 if (s != NULL)
7672 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7673 }
7674
7675 if (info->executable)
7676 {
7677 const char *name;
7678
7679 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7680 bh = NULL;
7681 if (!(_bfd_generic_link_add_one_symbol
7682 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7683 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7684 return FALSE;
7685
7686 h = (struct elf_link_hash_entry *) bh;
7687 h->non_elf = 0;
7688 h->def_regular = 1;
7689 h->type = STT_SECTION;
7690
7691 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7692 return FALSE;
7693
7694 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7695 {
7696 /* __rld_map is a four byte word located in the .data section
7697 and is filled in by the rtld to contain a pointer to
7698 the _r_debug structure. Its symbol value will be set in
7699 _bfd_mips_elf_finish_dynamic_symbol. */
7700 s = bfd_get_linker_section (abfd, ".rld_map");
7701 BFD_ASSERT (s != NULL);
7702
7703 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7704 bh = NULL;
7705 if (!(_bfd_generic_link_add_one_symbol
7706 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7707 get_elf_backend_data (abfd)->collect, &bh)))
7708 return FALSE;
7709
7710 h = (struct elf_link_hash_entry *) bh;
7711 h->non_elf = 0;
7712 h->def_regular = 1;
7713 h->type = STT_OBJECT;
7714
7715 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7716 return FALSE;
7717 mips_elf_hash_table (info)->rld_symbol = h;
7718 }
7719 }
7720
7721 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7722 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7723 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7724 return FALSE;
7725
7726 /* Cache the sections created above. */
7727 htab->splt = bfd_get_linker_section (abfd, ".plt");
7728 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7729 if (htab->is_vxworks)
7730 {
7731 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7732 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7733 }
7734 else
7735 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7736 if (!htab->sdynbss
7737 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7738 || !htab->srelplt
7739 || !htab->splt)
7740 abort ();
7741
7742 /* Do the usual VxWorks handling. */
7743 if (htab->is_vxworks
7744 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7745 return FALSE;
7746
7747 return TRUE;
7748 }
7749 \f
7750 /* Return true if relocation REL against section SEC is a REL rather than
7751 RELA relocation. RELOCS is the first relocation in the section and
7752 ABFD is the bfd that contains SEC. */
7753
7754 static bfd_boolean
7755 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7756 const Elf_Internal_Rela *relocs,
7757 const Elf_Internal_Rela *rel)
7758 {
7759 Elf_Internal_Shdr *rel_hdr;
7760 const struct elf_backend_data *bed;
7761
7762 /* To determine which flavor of relocation this is, we depend on the
7763 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7764 rel_hdr = elf_section_data (sec)->rel.hdr;
7765 if (rel_hdr == NULL)
7766 return FALSE;
7767 bed = get_elf_backend_data (abfd);
7768 return ((size_t) (rel - relocs)
7769 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7770 }
7771
7772 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7773 HOWTO is the relocation's howto and CONTENTS points to the contents
7774 of the section that REL is against. */
7775
7776 static bfd_vma
7777 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7778 reloc_howto_type *howto, bfd_byte *contents)
7779 {
7780 bfd_byte *location;
7781 unsigned int r_type;
7782 bfd_vma addend;
7783
7784 r_type = ELF_R_TYPE (abfd, rel->r_info);
7785 location = contents + rel->r_offset;
7786
7787 /* Get the addend, which is stored in the input file. */
7788 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7789 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7790 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7791
7792 return addend & howto->src_mask;
7793 }
7794
7795 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7796 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7797 and update *ADDEND with the final addend. Return true on success
7798 or false if the LO16 could not be found. RELEND is the exclusive
7799 upper bound on the relocations for REL's section. */
7800
7801 static bfd_boolean
7802 mips_elf_add_lo16_rel_addend (bfd *abfd,
7803 const Elf_Internal_Rela *rel,
7804 const Elf_Internal_Rela *relend,
7805 bfd_byte *contents, bfd_vma *addend)
7806 {
7807 unsigned int r_type, lo16_type;
7808 const Elf_Internal_Rela *lo16_relocation;
7809 reloc_howto_type *lo16_howto;
7810 bfd_vma l;
7811
7812 r_type = ELF_R_TYPE (abfd, rel->r_info);
7813 if (mips16_reloc_p (r_type))
7814 lo16_type = R_MIPS16_LO16;
7815 else if (micromips_reloc_p (r_type))
7816 lo16_type = R_MICROMIPS_LO16;
7817 else if (r_type == R_MIPS_PCHI16)
7818 lo16_type = R_MIPS_PCLO16;
7819 else
7820 lo16_type = R_MIPS_LO16;
7821
7822 /* The combined value is the sum of the HI16 addend, left-shifted by
7823 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7824 code does a `lui' of the HI16 value, and then an `addiu' of the
7825 LO16 value.)
7826
7827 Scan ahead to find a matching LO16 relocation.
7828
7829 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7830 be immediately following. However, for the IRIX6 ABI, the next
7831 relocation may be a composed relocation consisting of several
7832 relocations for the same address. In that case, the R_MIPS_LO16
7833 relocation may occur as one of these. We permit a similar
7834 extension in general, as that is useful for GCC.
7835
7836 In some cases GCC dead code elimination removes the LO16 but keeps
7837 the corresponding HI16. This is strictly speaking a violation of
7838 the ABI but not immediately harmful. */
7839 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7840 if (lo16_relocation == NULL)
7841 return FALSE;
7842
7843 /* Obtain the addend kept there. */
7844 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7845 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7846
7847 l <<= lo16_howto->rightshift;
7848 l = _bfd_mips_elf_sign_extend (l, 16);
7849
7850 *addend <<= 16;
7851 *addend += l;
7852 return TRUE;
7853 }
7854
7855 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7856 store the contents in *CONTENTS on success. Assume that *CONTENTS
7857 already holds the contents if it is nonull on entry. */
7858
7859 static bfd_boolean
7860 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7861 {
7862 if (*contents)
7863 return TRUE;
7864
7865 /* Get cached copy if it exists. */
7866 if (elf_section_data (sec)->this_hdr.contents != NULL)
7867 {
7868 *contents = elf_section_data (sec)->this_hdr.contents;
7869 return TRUE;
7870 }
7871
7872 return bfd_malloc_and_get_section (abfd, sec, contents);
7873 }
7874
7875 /* Make a new PLT record to keep internal data. */
7876
7877 static struct plt_entry *
7878 mips_elf_make_plt_record (bfd *abfd)
7879 {
7880 struct plt_entry *entry;
7881
7882 entry = bfd_zalloc (abfd, sizeof (*entry));
7883 if (entry == NULL)
7884 return NULL;
7885
7886 entry->stub_offset = MINUS_ONE;
7887 entry->mips_offset = MINUS_ONE;
7888 entry->comp_offset = MINUS_ONE;
7889 entry->gotplt_index = MINUS_ONE;
7890 return entry;
7891 }
7892
7893 /* Look through the relocs for a section during the first phase, and
7894 allocate space in the global offset table and record the need for
7895 standard MIPS and compressed procedure linkage table entries. */
7896
7897 bfd_boolean
7898 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7899 asection *sec, const Elf_Internal_Rela *relocs)
7900 {
7901 const char *name;
7902 bfd *dynobj;
7903 Elf_Internal_Shdr *symtab_hdr;
7904 struct elf_link_hash_entry **sym_hashes;
7905 size_t extsymoff;
7906 const Elf_Internal_Rela *rel;
7907 const Elf_Internal_Rela *rel_end;
7908 asection *sreloc;
7909 const struct elf_backend_data *bed;
7910 struct mips_elf_link_hash_table *htab;
7911 bfd_byte *contents;
7912 bfd_vma addend;
7913 reloc_howto_type *howto;
7914
7915 if (info->relocatable)
7916 return TRUE;
7917
7918 htab = mips_elf_hash_table (info);
7919 BFD_ASSERT (htab != NULL);
7920
7921 dynobj = elf_hash_table (info)->dynobj;
7922 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7923 sym_hashes = elf_sym_hashes (abfd);
7924 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7925
7926 bed = get_elf_backend_data (abfd);
7927 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7928
7929 /* Check for the mips16 stub sections. */
7930
7931 name = bfd_get_section_name (abfd, sec);
7932 if (FN_STUB_P (name))
7933 {
7934 unsigned long r_symndx;
7935
7936 /* Look at the relocation information to figure out which symbol
7937 this is for. */
7938
7939 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7940 if (r_symndx == 0)
7941 {
7942 (*_bfd_error_handler)
7943 (_("%B: Warning: cannot determine the target function for"
7944 " stub section `%s'"),
7945 abfd, name);
7946 bfd_set_error (bfd_error_bad_value);
7947 return FALSE;
7948 }
7949
7950 if (r_symndx < extsymoff
7951 || sym_hashes[r_symndx - extsymoff] == NULL)
7952 {
7953 asection *o;
7954
7955 /* This stub is for a local symbol. This stub will only be
7956 needed if there is some relocation in this BFD, other
7957 than a 16 bit function call, which refers to this symbol. */
7958 for (o = abfd->sections; o != NULL; o = o->next)
7959 {
7960 Elf_Internal_Rela *sec_relocs;
7961 const Elf_Internal_Rela *r, *rend;
7962
7963 /* We can ignore stub sections when looking for relocs. */
7964 if ((o->flags & SEC_RELOC) == 0
7965 || o->reloc_count == 0
7966 || section_allows_mips16_refs_p (o))
7967 continue;
7968
7969 sec_relocs
7970 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7971 info->keep_memory);
7972 if (sec_relocs == NULL)
7973 return FALSE;
7974
7975 rend = sec_relocs + o->reloc_count;
7976 for (r = sec_relocs; r < rend; r++)
7977 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7978 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7979 break;
7980
7981 if (elf_section_data (o)->relocs != sec_relocs)
7982 free (sec_relocs);
7983
7984 if (r < rend)
7985 break;
7986 }
7987
7988 if (o == NULL)
7989 {
7990 /* There is no non-call reloc for this stub, so we do
7991 not need it. Since this function is called before
7992 the linker maps input sections to output sections, we
7993 can easily discard it by setting the SEC_EXCLUDE
7994 flag. */
7995 sec->flags |= SEC_EXCLUDE;
7996 return TRUE;
7997 }
7998
7999 /* Record this stub in an array of local symbol stubs for
8000 this BFD. */
8001 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8002 {
8003 unsigned long symcount;
8004 asection **n;
8005 bfd_size_type amt;
8006
8007 if (elf_bad_symtab (abfd))
8008 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8009 else
8010 symcount = symtab_hdr->sh_info;
8011 amt = symcount * sizeof (asection *);
8012 n = bfd_zalloc (abfd, amt);
8013 if (n == NULL)
8014 return FALSE;
8015 mips_elf_tdata (abfd)->local_stubs = n;
8016 }
8017
8018 sec->flags |= SEC_KEEP;
8019 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8020
8021 /* We don't need to set mips16_stubs_seen in this case.
8022 That flag is used to see whether we need to look through
8023 the global symbol table for stubs. We don't need to set
8024 it here, because we just have a local stub. */
8025 }
8026 else
8027 {
8028 struct mips_elf_link_hash_entry *h;
8029
8030 h = ((struct mips_elf_link_hash_entry *)
8031 sym_hashes[r_symndx - extsymoff]);
8032
8033 while (h->root.root.type == bfd_link_hash_indirect
8034 || h->root.root.type == bfd_link_hash_warning)
8035 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8036
8037 /* H is the symbol this stub is for. */
8038
8039 /* If we already have an appropriate stub for this function, we
8040 don't need another one, so we can discard this one. Since
8041 this function is called before the linker maps input sections
8042 to output sections, we can easily discard it by setting the
8043 SEC_EXCLUDE flag. */
8044 if (h->fn_stub != NULL)
8045 {
8046 sec->flags |= SEC_EXCLUDE;
8047 return TRUE;
8048 }
8049
8050 sec->flags |= SEC_KEEP;
8051 h->fn_stub = sec;
8052 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8053 }
8054 }
8055 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8056 {
8057 unsigned long r_symndx;
8058 struct mips_elf_link_hash_entry *h;
8059 asection **loc;
8060
8061 /* Look at the relocation information to figure out which symbol
8062 this is for. */
8063
8064 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8065 if (r_symndx == 0)
8066 {
8067 (*_bfd_error_handler)
8068 (_("%B: Warning: cannot determine the target function for"
8069 " stub section `%s'"),
8070 abfd, name);
8071 bfd_set_error (bfd_error_bad_value);
8072 return FALSE;
8073 }
8074
8075 if (r_symndx < extsymoff
8076 || sym_hashes[r_symndx - extsymoff] == NULL)
8077 {
8078 asection *o;
8079
8080 /* This stub is for a local symbol. This stub will only be
8081 needed if there is some relocation (R_MIPS16_26) in this BFD
8082 that refers to this symbol. */
8083 for (o = abfd->sections; o != NULL; o = o->next)
8084 {
8085 Elf_Internal_Rela *sec_relocs;
8086 const Elf_Internal_Rela *r, *rend;
8087
8088 /* We can ignore stub sections when looking for relocs. */
8089 if ((o->flags & SEC_RELOC) == 0
8090 || o->reloc_count == 0
8091 || section_allows_mips16_refs_p (o))
8092 continue;
8093
8094 sec_relocs
8095 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8096 info->keep_memory);
8097 if (sec_relocs == NULL)
8098 return FALSE;
8099
8100 rend = sec_relocs + o->reloc_count;
8101 for (r = sec_relocs; r < rend; r++)
8102 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8103 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8104 break;
8105
8106 if (elf_section_data (o)->relocs != sec_relocs)
8107 free (sec_relocs);
8108
8109 if (r < rend)
8110 break;
8111 }
8112
8113 if (o == NULL)
8114 {
8115 /* There is no non-call reloc for this stub, so we do
8116 not need it. Since this function is called before
8117 the linker maps input sections to output sections, we
8118 can easily discard it by setting the SEC_EXCLUDE
8119 flag. */
8120 sec->flags |= SEC_EXCLUDE;
8121 return TRUE;
8122 }
8123
8124 /* Record this stub in an array of local symbol call_stubs for
8125 this BFD. */
8126 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8127 {
8128 unsigned long symcount;
8129 asection **n;
8130 bfd_size_type amt;
8131
8132 if (elf_bad_symtab (abfd))
8133 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8134 else
8135 symcount = symtab_hdr->sh_info;
8136 amt = symcount * sizeof (asection *);
8137 n = bfd_zalloc (abfd, amt);
8138 if (n == NULL)
8139 return FALSE;
8140 mips_elf_tdata (abfd)->local_call_stubs = n;
8141 }
8142
8143 sec->flags |= SEC_KEEP;
8144 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8145
8146 /* We don't need to set mips16_stubs_seen in this case.
8147 That flag is used to see whether we need to look through
8148 the global symbol table for stubs. We don't need to set
8149 it here, because we just have a local stub. */
8150 }
8151 else
8152 {
8153 h = ((struct mips_elf_link_hash_entry *)
8154 sym_hashes[r_symndx - extsymoff]);
8155
8156 /* H is the symbol this stub is for. */
8157
8158 if (CALL_FP_STUB_P (name))
8159 loc = &h->call_fp_stub;
8160 else
8161 loc = &h->call_stub;
8162
8163 /* If we already have an appropriate stub for this function, we
8164 don't need another one, so we can discard this one. Since
8165 this function is called before the linker maps input sections
8166 to output sections, we can easily discard it by setting the
8167 SEC_EXCLUDE flag. */
8168 if (*loc != NULL)
8169 {
8170 sec->flags |= SEC_EXCLUDE;
8171 return TRUE;
8172 }
8173
8174 sec->flags |= SEC_KEEP;
8175 *loc = sec;
8176 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8177 }
8178 }
8179
8180 sreloc = NULL;
8181 contents = NULL;
8182 for (rel = relocs; rel < rel_end; ++rel)
8183 {
8184 unsigned long r_symndx;
8185 unsigned int r_type;
8186 struct elf_link_hash_entry *h;
8187 bfd_boolean can_make_dynamic_p;
8188 bfd_boolean call_reloc_p;
8189 bfd_boolean constrain_symbol_p;
8190
8191 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8192 r_type = ELF_R_TYPE (abfd, rel->r_info);
8193
8194 if (r_symndx < extsymoff)
8195 h = NULL;
8196 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8197 {
8198 (*_bfd_error_handler)
8199 (_("%B: Malformed reloc detected for section %s"),
8200 abfd, name);
8201 bfd_set_error (bfd_error_bad_value);
8202 return FALSE;
8203 }
8204 else
8205 {
8206 h = sym_hashes[r_symndx - extsymoff];
8207 if (h != NULL)
8208 {
8209 while (h->root.type == bfd_link_hash_indirect
8210 || h->root.type == bfd_link_hash_warning)
8211 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8212
8213 /* PR15323, ref flags aren't set for references in the
8214 same object. */
8215 h->root.non_ir_ref = 1;
8216 }
8217 }
8218
8219 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8220 relocation into a dynamic one. */
8221 can_make_dynamic_p = FALSE;
8222
8223 /* Set CALL_RELOC_P to true if the relocation is for a call,
8224 and if pointer equality therefore doesn't matter. */
8225 call_reloc_p = FALSE;
8226
8227 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8228 into account when deciding how to define the symbol.
8229 Relocations in nonallocatable sections such as .pdr and
8230 .debug* should have no effect. */
8231 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8232
8233 switch (r_type)
8234 {
8235 case R_MIPS_CALL16:
8236 case R_MIPS_CALL_HI16:
8237 case R_MIPS_CALL_LO16:
8238 case R_MIPS16_CALL16:
8239 case R_MICROMIPS_CALL16:
8240 case R_MICROMIPS_CALL_HI16:
8241 case R_MICROMIPS_CALL_LO16:
8242 call_reloc_p = TRUE;
8243 /* Fall through. */
8244
8245 case R_MIPS_GOT16:
8246 case R_MIPS_GOT_HI16:
8247 case R_MIPS_GOT_LO16:
8248 case R_MIPS_GOT_PAGE:
8249 case R_MIPS_GOT_OFST:
8250 case R_MIPS_GOT_DISP:
8251 case R_MIPS_TLS_GOTTPREL:
8252 case R_MIPS_TLS_GD:
8253 case R_MIPS_TLS_LDM:
8254 case R_MIPS16_GOT16:
8255 case R_MIPS16_TLS_GOTTPREL:
8256 case R_MIPS16_TLS_GD:
8257 case R_MIPS16_TLS_LDM:
8258 case R_MICROMIPS_GOT16:
8259 case R_MICROMIPS_GOT_HI16:
8260 case R_MICROMIPS_GOT_LO16:
8261 case R_MICROMIPS_GOT_PAGE:
8262 case R_MICROMIPS_GOT_OFST:
8263 case R_MICROMIPS_GOT_DISP:
8264 case R_MICROMIPS_TLS_GOTTPREL:
8265 case R_MICROMIPS_TLS_GD:
8266 case R_MICROMIPS_TLS_LDM:
8267 if (dynobj == NULL)
8268 elf_hash_table (info)->dynobj = dynobj = abfd;
8269 if (!mips_elf_create_got_section (dynobj, info))
8270 return FALSE;
8271 if (htab->is_vxworks && !info->shared)
8272 {
8273 (*_bfd_error_handler)
8274 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8275 abfd, (unsigned long) rel->r_offset);
8276 bfd_set_error (bfd_error_bad_value);
8277 return FALSE;
8278 }
8279 can_make_dynamic_p = TRUE;
8280 break;
8281
8282 case R_MIPS_NONE:
8283 case R_MIPS_JALR:
8284 case R_MICROMIPS_JALR:
8285 /* These relocations have empty fields and are purely there to
8286 provide link information. The symbol value doesn't matter. */
8287 constrain_symbol_p = FALSE;
8288 break;
8289
8290 case R_MIPS_GPREL16:
8291 case R_MIPS_GPREL32:
8292 case R_MIPS16_GPREL:
8293 case R_MICROMIPS_GPREL16:
8294 /* GP-relative relocations always resolve to a definition in a
8295 regular input file, ignoring the one-definition rule. This is
8296 important for the GP setup sequence in NewABI code, which
8297 always resolves to a local function even if other relocations
8298 against the symbol wouldn't. */
8299 constrain_symbol_p = FALSE;
8300 break;
8301
8302 case R_MIPS_32:
8303 case R_MIPS_REL32:
8304 case R_MIPS_64:
8305 /* In VxWorks executables, references to external symbols
8306 must be handled using copy relocs or PLT entries; it is not
8307 possible to convert this relocation into a dynamic one.
8308
8309 For executables that use PLTs and copy-relocs, we have a
8310 choice between converting the relocation into a dynamic
8311 one or using copy relocations or PLT entries. It is
8312 usually better to do the former, unless the relocation is
8313 against a read-only section. */
8314 if ((info->shared
8315 || (h != NULL
8316 && !htab->is_vxworks
8317 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8318 && !(!info->nocopyreloc
8319 && !PIC_OBJECT_P (abfd)
8320 && MIPS_ELF_READONLY_SECTION (sec))))
8321 && (sec->flags & SEC_ALLOC) != 0)
8322 {
8323 can_make_dynamic_p = TRUE;
8324 if (dynobj == NULL)
8325 elf_hash_table (info)->dynobj = dynobj = abfd;
8326 }
8327 break;
8328
8329 case R_MIPS_26:
8330 case R_MIPS_PC16:
8331 case R_MIPS_PC21_S2:
8332 case R_MIPS_PC26_S2:
8333 case R_MIPS16_26:
8334 case R_MICROMIPS_26_S1:
8335 case R_MICROMIPS_PC7_S1:
8336 case R_MICROMIPS_PC10_S1:
8337 case R_MICROMIPS_PC16_S1:
8338 case R_MICROMIPS_PC23_S2:
8339 call_reloc_p = TRUE;
8340 break;
8341 }
8342
8343 if (h)
8344 {
8345 if (constrain_symbol_p)
8346 {
8347 if (!can_make_dynamic_p)
8348 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8349
8350 if (!call_reloc_p)
8351 h->pointer_equality_needed = 1;
8352
8353 /* We must not create a stub for a symbol that has
8354 relocations related to taking the function's address.
8355 This doesn't apply to VxWorks, where CALL relocs refer
8356 to a .got.plt entry instead of a normal .got entry. */
8357 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8358 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8359 }
8360
8361 /* Relocations against the special VxWorks __GOTT_BASE__ and
8362 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8363 room for them in .rela.dyn. */
8364 if (is_gott_symbol (info, h))
8365 {
8366 if (sreloc == NULL)
8367 {
8368 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8369 if (sreloc == NULL)
8370 return FALSE;
8371 }
8372 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8373 if (MIPS_ELF_READONLY_SECTION (sec))
8374 /* We tell the dynamic linker that there are
8375 relocations against the text segment. */
8376 info->flags |= DF_TEXTREL;
8377 }
8378 }
8379 else if (call_lo16_reloc_p (r_type)
8380 || got_lo16_reloc_p (r_type)
8381 || got_disp_reloc_p (r_type)
8382 || (got16_reloc_p (r_type) && htab->is_vxworks))
8383 {
8384 /* We may need a local GOT entry for this relocation. We
8385 don't count R_MIPS_GOT_PAGE because we can estimate the
8386 maximum number of pages needed by looking at the size of
8387 the segment. Similar comments apply to R_MIPS*_GOT16 and
8388 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8389 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8390 R_MIPS_CALL_HI16 because these are always followed by an
8391 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8392 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8393 rel->r_addend, info, r_type))
8394 return FALSE;
8395 }
8396
8397 if (h != NULL
8398 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8399 ELF_ST_IS_MIPS16 (h->other)))
8400 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8401
8402 switch (r_type)
8403 {
8404 case R_MIPS_CALL16:
8405 case R_MIPS16_CALL16:
8406 case R_MICROMIPS_CALL16:
8407 if (h == NULL)
8408 {
8409 (*_bfd_error_handler)
8410 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8411 abfd, (unsigned long) rel->r_offset);
8412 bfd_set_error (bfd_error_bad_value);
8413 return FALSE;
8414 }
8415 /* Fall through. */
8416
8417 case R_MIPS_CALL_HI16:
8418 case R_MIPS_CALL_LO16:
8419 case R_MICROMIPS_CALL_HI16:
8420 case R_MICROMIPS_CALL_LO16:
8421 if (h != NULL)
8422 {
8423 /* Make sure there is room in the regular GOT to hold the
8424 function's address. We may eliminate it in favour of
8425 a .got.plt entry later; see mips_elf_count_got_symbols. */
8426 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8427 r_type))
8428 return FALSE;
8429
8430 /* We need a stub, not a plt entry for the undefined
8431 function. But we record it as if it needs plt. See
8432 _bfd_elf_adjust_dynamic_symbol. */
8433 h->needs_plt = 1;
8434 h->type = STT_FUNC;
8435 }
8436 break;
8437
8438 case R_MIPS_GOT_PAGE:
8439 case R_MICROMIPS_GOT_PAGE:
8440 case R_MIPS16_GOT16:
8441 case R_MIPS_GOT16:
8442 case R_MIPS_GOT_HI16:
8443 case R_MIPS_GOT_LO16:
8444 case R_MICROMIPS_GOT16:
8445 case R_MICROMIPS_GOT_HI16:
8446 case R_MICROMIPS_GOT_LO16:
8447 if (!h || got_page_reloc_p (r_type))
8448 {
8449 /* This relocation needs (or may need, if h != NULL) a
8450 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8451 know for sure until we know whether the symbol is
8452 preemptible. */
8453 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8454 {
8455 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8456 return FALSE;
8457 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8458 addend = mips_elf_read_rel_addend (abfd, rel,
8459 howto, contents);
8460 if (got16_reloc_p (r_type))
8461 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8462 contents, &addend);
8463 else
8464 addend <<= howto->rightshift;
8465 }
8466 else
8467 addend = rel->r_addend;
8468 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8469 h, addend))
8470 return FALSE;
8471
8472 if (h)
8473 {
8474 struct mips_elf_link_hash_entry *hmips =
8475 (struct mips_elf_link_hash_entry *) h;
8476
8477 /* This symbol is definitely not overridable. */
8478 if (hmips->root.def_regular
8479 && ! (info->shared && ! info->symbolic
8480 && ! hmips->root.forced_local))
8481 h = NULL;
8482 }
8483 }
8484 /* If this is a global, overridable symbol, GOT_PAGE will
8485 decay to GOT_DISP, so we'll need a GOT entry for it. */
8486 /* Fall through. */
8487
8488 case R_MIPS_GOT_DISP:
8489 case R_MICROMIPS_GOT_DISP:
8490 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8491 FALSE, r_type))
8492 return FALSE;
8493 break;
8494
8495 case R_MIPS_TLS_GOTTPREL:
8496 case R_MIPS16_TLS_GOTTPREL:
8497 case R_MICROMIPS_TLS_GOTTPREL:
8498 if (info->shared)
8499 info->flags |= DF_STATIC_TLS;
8500 /* Fall through */
8501
8502 case R_MIPS_TLS_LDM:
8503 case R_MIPS16_TLS_LDM:
8504 case R_MICROMIPS_TLS_LDM:
8505 if (tls_ldm_reloc_p (r_type))
8506 {
8507 r_symndx = STN_UNDEF;
8508 h = NULL;
8509 }
8510 /* Fall through */
8511
8512 case R_MIPS_TLS_GD:
8513 case R_MIPS16_TLS_GD:
8514 case R_MICROMIPS_TLS_GD:
8515 /* This symbol requires a global offset table entry, or two
8516 for TLS GD relocations. */
8517 if (h != NULL)
8518 {
8519 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8520 FALSE, r_type))
8521 return FALSE;
8522 }
8523 else
8524 {
8525 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8526 rel->r_addend,
8527 info, r_type))
8528 return FALSE;
8529 }
8530 break;
8531
8532 case R_MIPS_32:
8533 case R_MIPS_REL32:
8534 case R_MIPS_64:
8535 /* In VxWorks executables, references to external symbols
8536 are handled using copy relocs or PLT stubs, so there's
8537 no need to add a .rela.dyn entry for this relocation. */
8538 if (can_make_dynamic_p)
8539 {
8540 if (sreloc == NULL)
8541 {
8542 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8543 if (sreloc == NULL)
8544 return FALSE;
8545 }
8546 if (info->shared && h == NULL)
8547 {
8548 /* When creating a shared object, we must copy these
8549 reloc types into the output file as R_MIPS_REL32
8550 relocs. Make room for this reloc in .rel(a).dyn. */
8551 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8552 if (MIPS_ELF_READONLY_SECTION (sec))
8553 /* We tell the dynamic linker that there are
8554 relocations against the text segment. */
8555 info->flags |= DF_TEXTREL;
8556 }
8557 else
8558 {
8559 struct mips_elf_link_hash_entry *hmips;
8560
8561 /* For a shared object, we must copy this relocation
8562 unless the symbol turns out to be undefined and
8563 weak with non-default visibility, in which case
8564 it will be left as zero.
8565
8566 We could elide R_MIPS_REL32 for locally binding symbols
8567 in shared libraries, but do not yet do so.
8568
8569 For an executable, we only need to copy this
8570 reloc if the symbol is defined in a dynamic
8571 object. */
8572 hmips = (struct mips_elf_link_hash_entry *) h;
8573 ++hmips->possibly_dynamic_relocs;
8574 if (MIPS_ELF_READONLY_SECTION (sec))
8575 /* We need it to tell the dynamic linker if there
8576 are relocations against the text segment. */
8577 hmips->readonly_reloc = TRUE;
8578 }
8579 }
8580
8581 if (SGI_COMPAT (abfd))
8582 mips_elf_hash_table (info)->compact_rel_size +=
8583 sizeof (Elf32_External_crinfo);
8584 break;
8585
8586 case R_MIPS_26:
8587 case R_MIPS_GPREL16:
8588 case R_MIPS_LITERAL:
8589 case R_MIPS_GPREL32:
8590 case R_MICROMIPS_26_S1:
8591 case R_MICROMIPS_GPREL16:
8592 case R_MICROMIPS_LITERAL:
8593 case R_MICROMIPS_GPREL7_S2:
8594 if (SGI_COMPAT (abfd))
8595 mips_elf_hash_table (info)->compact_rel_size +=
8596 sizeof (Elf32_External_crinfo);
8597 break;
8598
8599 /* This relocation describes the C++ object vtable hierarchy.
8600 Reconstruct it for later use during GC. */
8601 case R_MIPS_GNU_VTINHERIT:
8602 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8603 return FALSE;
8604 break;
8605
8606 /* This relocation describes which C++ vtable entries are actually
8607 used. Record for later use during GC. */
8608 case R_MIPS_GNU_VTENTRY:
8609 BFD_ASSERT (h != NULL);
8610 if (h != NULL
8611 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8612 return FALSE;
8613 break;
8614
8615 default:
8616 break;
8617 }
8618
8619 /* Record the need for a PLT entry. At this point we don't know
8620 yet if we are going to create a PLT in the first place, but
8621 we only record whether the relocation requires a standard MIPS
8622 or a compressed code entry anyway. If we don't make a PLT after
8623 all, then we'll just ignore these arrangements. Likewise if
8624 a PLT entry is not created because the symbol is satisfied
8625 locally. */
8626 if (h != NULL
8627 && jal_reloc_p (r_type)
8628 && !SYMBOL_CALLS_LOCAL (info, h))
8629 {
8630 if (h->plt.plist == NULL)
8631 h->plt.plist = mips_elf_make_plt_record (abfd);
8632 if (h->plt.plist == NULL)
8633 return FALSE;
8634
8635 if (r_type == R_MIPS_26)
8636 h->plt.plist->need_mips = TRUE;
8637 else
8638 h->plt.plist->need_comp = TRUE;
8639 }
8640
8641 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8642 if there is one. We only need to handle global symbols here;
8643 we decide whether to keep or delete stubs for local symbols
8644 when processing the stub's relocations. */
8645 if (h != NULL
8646 && !mips16_call_reloc_p (r_type)
8647 && !section_allows_mips16_refs_p (sec))
8648 {
8649 struct mips_elf_link_hash_entry *mh;
8650
8651 mh = (struct mips_elf_link_hash_entry *) h;
8652 mh->need_fn_stub = TRUE;
8653 }
8654
8655 /* Refuse some position-dependent relocations when creating a
8656 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8657 not PIC, but we can create dynamic relocations and the result
8658 will be fine. Also do not refuse R_MIPS_LO16, which can be
8659 combined with R_MIPS_GOT16. */
8660 if (info->shared)
8661 {
8662 switch (r_type)
8663 {
8664 case R_MIPS16_HI16:
8665 case R_MIPS_HI16:
8666 case R_MIPS_HIGHER:
8667 case R_MIPS_HIGHEST:
8668 case R_MICROMIPS_HI16:
8669 case R_MICROMIPS_HIGHER:
8670 case R_MICROMIPS_HIGHEST:
8671 /* Don't refuse a high part relocation if it's against
8672 no symbol (e.g. part of a compound relocation). */
8673 if (r_symndx == STN_UNDEF)
8674 break;
8675
8676 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8677 and has a special meaning. */
8678 if (!NEWABI_P (abfd) && h != NULL
8679 && strcmp (h->root.root.string, "_gp_disp") == 0)
8680 break;
8681
8682 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8683 if (is_gott_symbol (info, h))
8684 break;
8685
8686 /* FALLTHROUGH */
8687
8688 case R_MIPS16_26:
8689 case R_MIPS_26:
8690 case R_MICROMIPS_26_S1:
8691 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8692 (*_bfd_error_handler)
8693 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8694 abfd, howto->name,
8695 (h) ? h->root.root.string : "a local symbol");
8696 bfd_set_error (bfd_error_bad_value);
8697 return FALSE;
8698 default:
8699 break;
8700 }
8701 }
8702 }
8703
8704 return TRUE;
8705 }
8706 \f
8707 bfd_boolean
8708 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8709 struct bfd_link_info *link_info,
8710 bfd_boolean *again)
8711 {
8712 Elf_Internal_Rela *internal_relocs;
8713 Elf_Internal_Rela *irel, *irelend;
8714 Elf_Internal_Shdr *symtab_hdr;
8715 bfd_byte *contents = NULL;
8716 size_t extsymoff;
8717 bfd_boolean changed_contents = FALSE;
8718 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8719 Elf_Internal_Sym *isymbuf = NULL;
8720
8721 /* We are not currently changing any sizes, so only one pass. */
8722 *again = FALSE;
8723
8724 if (link_info->relocatable)
8725 return TRUE;
8726
8727 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8728 link_info->keep_memory);
8729 if (internal_relocs == NULL)
8730 return TRUE;
8731
8732 irelend = internal_relocs + sec->reloc_count
8733 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8734 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8735 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8736
8737 for (irel = internal_relocs; irel < irelend; irel++)
8738 {
8739 bfd_vma symval;
8740 bfd_signed_vma sym_offset;
8741 unsigned int r_type;
8742 unsigned long r_symndx;
8743 asection *sym_sec;
8744 unsigned long instruction;
8745
8746 /* Turn jalr into bgezal, and jr into beq, if they're marked
8747 with a JALR relocation, that indicate where they jump to.
8748 This saves some pipeline bubbles. */
8749 r_type = ELF_R_TYPE (abfd, irel->r_info);
8750 if (r_type != R_MIPS_JALR)
8751 continue;
8752
8753 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8754 /* Compute the address of the jump target. */
8755 if (r_symndx >= extsymoff)
8756 {
8757 struct mips_elf_link_hash_entry *h
8758 = ((struct mips_elf_link_hash_entry *)
8759 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8760
8761 while (h->root.root.type == bfd_link_hash_indirect
8762 || h->root.root.type == bfd_link_hash_warning)
8763 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8764
8765 /* If a symbol is undefined, or if it may be overridden,
8766 skip it. */
8767 if (! ((h->root.root.type == bfd_link_hash_defined
8768 || h->root.root.type == bfd_link_hash_defweak)
8769 && h->root.root.u.def.section)
8770 || (link_info->shared && ! link_info->symbolic
8771 && !h->root.forced_local))
8772 continue;
8773
8774 sym_sec = h->root.root.u.def.section;
8775 if (sym_sec->output_section)
8776 symval = (h->root.root.u.def.value
8777 + sym_sec->output_section->vma
8778 + sym_sec->output_offset);
8779 else
8780 symval = h->root.root.u.def.value;
8781 }
8782 else
8783 {
8784 Elf_Internal_Sym *isym;
8785
8786 /* Read this BFD's symbols if we haven't done so already. */
8787 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8788 {
8789 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8790 if (isymbuf == NULL)
8791 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8792 symtab_hdr->sh_info, 0,
8793 NULL, NULL, NULL);
8794 if (isymbuf == NULL)
8795 goto relax_return;
8796 }
8797
8798 isym = isymbuf + r_symndx;
8799 if (isym->st_shndx == SHN_UNDEF)
8800 continue;
8801 else if (isym->st_shndx == SHN_ABS)
8802 sym_sec = bfd_abs_section_ptr;
8803 else if (isym->st_shndx == SHN_COMMON)
8804 sym_sec = bfd_com_section_ptr;
8805 else
8806 sym_sec
8807 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8808 symval = isym->st_value
8809 + sym_sec->output_section->vma
8810 + sym_sec->output_offset;
8811 }
8812
8813 /* Compute branch offset, from delay slot of the jump to the
8814 branch target. */
8815 sym_offset = (symval + irel->r_addend)
8816 - (sec_start + irel->r_offset + 4);
8817
8818 /* Branch offset must be properly aligned. */
8819 if ((sym_offset & 3) != 0)
8820 continue;
8821
8822 sym_offset >>= 2;
8823
8824 /* Check that it's in range. */
8825 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8826 continue;
8827
8828 /* Get the section contents if we haven't done so already. */
8829 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8830 goto relax_return;
8831
8832 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8833
8834 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8835 if ((instruction & 0xfc1fffff) == 0x0000f809)
8836 instruction = 0x04110000;
8837 /* If it was jr <reg>, turn it into b <target>. */
8838 else if ((instruction & 0xfc1fffff) == 0x00000008)
8839 instruction = 0x10000000;
8840 else
8841 continue;
8842
8843 instruction |= (sym_offset & 0xffff);
8844 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8845 changed_contents = TRUE;
8846 }
8847
8848 if (contents != NULL
8849 && elf_section_data (sec)->this_hdr.contents != contents)
8850 {
8851 if (!changed_contents && !link_info->keep_memory)
8852 free (contents);
8853 else
8854 {
8855 /* Cache the section contents for elf_link_input_bfd. */
8856 elf_section_data (sec)->this_hdr.contents = contents;
8857 }
8858 }
8859 return TRUE;
8860
8861 relax_return:
8862 if (contents != NULL
8863 && elf_section_data (sec)->this_hdr.contents != contents)
8864 free (contents);
8865 return FALSE;
8866 }
8867 \f
8868 /* Allocate space for global sym dynamic relocs. */
8869
8870 static bfd_boolean
8871 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8872 {
8873 struct bfd_link_info *info = inf;
8874 bfd *dynobj;
8875 struct mips_elf_link_hash_entry *hmips;
8876 struct mips_elf_link_hash_table *htab;
8877
8878 htab = mips_elf_hash_table (info);
8879 BFD_ASSERT (htab != NULL);
8880
8881 dynobj = elf_hash_table (info)->dynobj;
8882 hmips = (struct mips_elf_link_hash_entry *) h;
8883
8884 /* VxWorks executables are handled elsewhere; we only need to
8885 allocate relocations in shared objects. */
8886 if (htab->is_vxworks && !info->shared)
8887 return TRUE;
8888
8889 /* Ignore indirect symbols. All relocations against such symbols
8890 will be redirected to the target symbol. */
8891 if (h->root.type == bfd_link_hash_indirect)
8892 return TRUE;
8893
8894 /* If this symbol is defined in a dynamic object, or we are creating
8895 a shared library, we will need to copy any R_MIPS_32 or
8896 R_MIPS_REL32 relocs against it into the output file. */
8897 if (! info->relocatable
8898 && hmips->possibly_dynamic_relocs != 0
8899 && (h->root.type == bfd_link_hash_defweak
8900 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8901 || info->shared))
8902 {
8903 bfd_boolean do_copy = TRUE;
8904
8905 if (h->root.type == bfd_link_hash_undefweak)
8906 {
8907 /* Do not copy relocations for undefined weak symbols with
8908 non-default visibility. */
8909 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8910 do_copy = FALSE;
8911
8912 /* Make sure undefined weak symbols are output as a dynamic
8913 symbol in PIEs. */
8914 else if (h->dynindx == -1 && !h->forced_local)
8915 {
8916 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8917 return FALSE;
8918 }
8919 }
8920
8921 if (do_copy)
8922 {
8923 /* Even though we don't directly need a GOT entry for this symbol,
8924 the SVR4 psABI requires it to have a dynamic symbol table
8925 index greater that DT_MIPS_GOTSYM if there are dynamic
8926 relocations against it.
8927
8928 VxWorks does not enforce the same mapping between the GOT
8929 and the symbol table, so the same requirement does not
8930 apply there. */
8931 if (!htab->is_vxworks)
8932 {
8933 if (hmips->global_got_area > GGA_RELOC_ONLY)
8934 hmips->global_got_area = GGA_RELOC_ONLY;
8935 hmips->got_only_for_calls = FALSE;
8936 }
8937
8938 mips_elf_allocate_dynamic_relocations
8939 (dynobj, info, hmips->possibly_dynamic_relocs);
8940 if (hmips->readonly_reloc)
8941 /* We tell the dynamic linker that there are relocations
8942 against the text segment. */
8943 info->flags |= DF_TEXTREL;
8944 }
8945 }
8946
8947 return TRUE;
8948 }
8949
8950 /* Adjust a symbol defined by a dynamic object and referenced by a
8951 regular object. The current definition is in some section of the
8952 dynamic object, but we're not including those sections. We have to
8953 change the definition to something the rest of the link can
8954 understand. */
8955
8956 bfd_boolean
8957 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8958 struct elf_link_hash_entry *h)
8959 {
8960 bfd *dynobj;
8961 struct mips_elf_link_hash_entry *hmips;
8962 struct mips_elf_link_hash_table *htab;
8963
8964 htab = mips_elf_hash_table (info);
8965 BFD_ASSERT (htab != NULL);
8966
8967 dynobj = elf_hash_table (info)->dynobj;
8968 hmips = (struct mips_elf_link_hash_entry *) h;
8969
8970 /* Make sure we know what is going on here. */
8971 BFD_ASSERT (dynobj != NULL
8972 && (h->needs_plt
8973 || h->u.weakdef != NULL
8974 || (h->def_dynamic
8975 && h->ref_regular
8976 && !h->def_regular)));
8977
8978 hmips = (struct mips_elf_link_hash_entry *) h;
8979
8980 /* If there are call relocations against an externally-defined symbol,
8981 see whether we can create a MIPS lazy-binding stub for it. We can
8982 only do this if all references to the function are through call
8983 relocations, and in that case, the traditional lazy-binding stubs
8984 are much more efficient than PLT entries.
8985
8986 Traditional stubs are only available on SVR4 psABI-based systems;
8987 VxWorks always uses PLTs instead. */
8988 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8989 {
8990 if (! elf_hash_table (info)->dynamic_sections_created)
8991 return TRUE;
8992
8993 /* If this symbol is not defined in a regular file, then set
8994 the symbol to the stub location. This is required to make
8995 function pointers compare as equal between the normal
8996 executable and the shared library. */
8997 if (!h->def_regular)
8998 {
8999 hmips->needs_lazy_stub = TRUE;
9000 htab->lazy_stub_count++;
9001 return TRUE;
9002 }
9003 }
9004 /* As above, VxWorks requires PLT entries for externally-defined
9005 functions that are only accessed through call relocations.
9006
9007 Both VxWorks and non-VxWorks targets also need PLT entries if there
9008 are static-only relocations against an externally-defined function.
9009 This can technically occur for shared libraries if there are
9010 branches to the symbol, although it is unlikely that this will be
9011 used in practice due to the short ranges involved. It can occur
9012 for any relative or absolute relocation in executables; in that
9013 case, the PLT entry becomes the function's canonical address. */
9014 else if (((h->needs_plt && !hmips->no_fn_stub)
9015 || (h->type == STT_FUNC && hmips->has_static_relocs))
9016 && htab->use_plts_and_copy_relocs
9017 && !SYMBOL_CALLS_LOCAL (info, h)
9018 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9019 && h->root.type == bfd_link_hash_undefweak))
9020 {
9021 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9022 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9023
9024 /* If this is the first symbol to need a PLT entry, then make some
9025 basic setup. Also work out PLT entry sizes. We'll need them
9026 for PLT offset calculations. */
9027 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9028 {
9029 BFD_ASSERT (htab->sgotplt->size == 0);
9030 BFD_ASSERT (htab->plt_got_index == 0);
9031
9032 /* If we're using the PLT additions to the psABI, each PLT
9033 entry is 16 bytes and the PLT0 entry is 32 bytes.
9034 Encourage better cache usage by aligning. We do this
9035 lazily to avoid pessimizing traditional objects. */
9036 if (!htab->is_vxworks
9037 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9038 return FALSE;
9039
9040 /* Make sure that .got.plt is word-aligned. We do this lazily
9041 for the same reason as above. */
9042 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9043 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9044 return FALSE;
9045
9046 /* On non-VxWorks targets, the first two entries in .got.plt
9047 are reserved. */
9048 if (!htab->is_vxworks)
9049 htab->plt_got_index
9050 += (get_elf_backend_data (dynobj)->got_header_size
9051 / MIPS_ELF_GOT_SIZE (dynobj));
9052
9053 /* On VxWorks, also allocate room for the header's
9054 .rela.plt.unloaded entries. */
9055 if (htab->is_vxworks && !info->shared)
9056 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9057
9058 /* Now work out the sizes of individual PLT entries. */
9059 if (htab->is_vxworks && info->shared)
9060 htab->plt_mips_entry_size
9061 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9062 else if (htab->is_vxworks)
9063 htab->plt_mips_entry_size
9064 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9065 else if (newabi_p)
9066 htab->plt_mips_entry_size
9067 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9068 else if (!micromips_p)
9069 {
9070 htab->plt_mips_entry_size
9071 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9072 htab->plt_comp_entry_size
9073 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9074 }
9075 else if (htab->insn32)
9076 {
9077 htab->plt_mips_entry_size
9078 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9079 htab->plt_comp_entry_size
9080 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9081 }
9082 else
9083 {
9084 htab->plt_mips_entry_size
9085 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9086 htab->plt_comp_entry_size
9087 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9088 }
9089 }
9090
9091 if (h->plt.plist == NULL)
9092 h->plt.plist = mips_elf_make_plt_record (dynobj);
9093 if (h->plt.plist == NULL)
9094 return FALSE;
9095
9096 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9097 n32 or n64, so always use a standard entry there.
9098
9099 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9100 all MIPS16 calls will go via that stub, and there is no benefit
9101 to having a MIPS16 entry. And in the case of call_stub a
9102 standard entry actually has to be used as the stub ends with a J
9103 instruction. */
9104 if (newabi_p
9105 || htab->is_vxworks
9106 || hmips->call_stub
9107 || hmips->call_fp_stub)
9108 {
9109 h->plt.plist->need_mips = TRUE;
9110 h->plt.plist->need_comp = FALSE;
9111 }
9112
9113 /* Otherwise, if there are no direct calls to the function, we
9114 have a free choice of whether to use standard or compressed
9115 entries. Prefer microMIPS entries if the object is known to
9116 contain microMIPS code, so that it becomes possible to create
9117 pure microMIPS binaries. Prefer standard entries otherwise,
9118 because MIPS16 ones are no smaller and are usually slower. */
9119 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9120 {
9121 if (micromips_p)
9122 h->plt.plist->need_comp = TRUE;
9123 else
9124 h->plt.plist->need_mips = TRUE;
9125 }
9126
9127 if (h->plt.plist->need_mips)
9128 {
9129 h->plt.plist->mips_offset = htab->plt_mips_offset;
9130 htab->plt_mips_offset += htab->plt_mips_entry_size;
9131 }
9132 if (h->plt.plist->need_comp)
9133 {
9134 h->plt.plist->comp_offset = htab->plt_comp_offset;
9135 htab->plt_comp_offset += htab->plt_comp_entry_size;
9136 }
9137
9138 /* Reserve the corresponding .got.plt entry now too. */
9139 h->plt.plist->gotplt_index = htab->plt_got_index++;
9140
9141 /* If the output file has no definition of the symbol, set the
9142 symbol's value to the address of the stub. */
9143 if (!info->shared && !h->def_regular)
9144 hmips->use_plt_entry = TRUE;
9145
9146 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9147 htab->srelplt->size += (htab->is_vxworks
9148 ? MIPS_ELF_RELA_SIZE (dynobj)
9149 : MIPS_ELF_REL_SIZE (dynobj));
9150
9151 /* Make room for the .rela.plt.unloaded relocations. */
9152 if (htab->is_vxworks && !info->shared)
9153 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9154
9155 /* All relocations against this symbol that could have been made
9156 dynamic will now refer to the PLT entry instead. */
9157 hmips->possibly_dynamic_relocs = 0;
9158
9159 return TRUE;
9160 }
9161
9162 /* If this is a weak symbol, and there is a real definition, the
9163 processor independent code will have arranged for us to see the
9164 real definition first, and we can just use the same value. */
9165 if (h->u.weakdef != NULL)
9166 {
9167 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9168 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9169 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9170 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9171 return TRUE;
9172 }
9173
9174 /* Otherwise, there is nothing further to do for symbols defined
9175 in regular objects. */
9176 if (h->def_regular)
9177 return TRUE;
9178
9179 /* There's also nothing more to do if we'll convert all relocations
9180 against this symbol into dynamic relocations. */
9181 if (!hmips->has_static_relocs)
9182 return TRUE;
9183
9184 /* We're now relying on copy relocations. Complain if we have
9185 some that we can't convert. */
9186 if (!htab->use_plts_and_copy_relocs || info->shared)
9187 {
9188 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9189 "dynamic symbol %s"),
9190 h->root.root.string);
9191 bfd_set_error (bfd_error_bad_value);
9192 return FALSE;
9193 }
9194
9195 /* We must allocate the symbol in our .dynbss section, which will
9196 become part of the .bss section of the executable. There will be
9197 an entry for this symbol in the .dynsym section. The dynamic
9198 object will contain position independent code, so all references
9199 from the dynamic object to this symbol will go through the global
9200 offset table. The dynamic linker will use the .dynsym entry to
9201 determine the address it must put in the global offset table, so
9202 both the dynamic object and the regular object will refer to the
9203 same memory location for the variable. */
9204
9205 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9206 {
9207 if (htab->is_vxworks)
9208 htab->srelbss->size += sizeof (Elf32_External_Rela);
9209 else
9210 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9211 h->needs_copy = 1;
9212 }
9213
9214 /* All relocations against this symbol that could have been made
9215 dynamic will now refer to the local copy instead. */
9216 hmips->possibly_dynamic_relocs = 0;
9217
9218 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9219 }
9220 \f
9221 /* This function is called after all the input files have been read,
9222 and the input sections have been assigned to output sections. We
9223 check for any mips16 stub sections that we can discard. */
9224
9225 bfd_boolean
9226 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9227 struct bfd_link_info *info)
9228 {
9229 asection *sect;
9230 struct mips_elf_link_hash_table *htab;
9231 struct mips_htab_traverse_info hti;
9232
9233 htab = mips_elf_hash_table (info);
9234 BFD_ASSERT (htab != NULL);
9235
9236 /* The .reginfo section has a fixed size. */
9237 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9238 if (sect != NULL)
9239 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9240
9241 /* The .MIPS.abiflags section has a fixed size. */
9242 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9243 if (sect != NULL)
9244 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9245
9246 hti.info = info;
9247 hti.output_bfd = output_bfd;
9248 hti.error = FALSE;
9249 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9250 mips_elf_check_symbols, &hti);
9251 if (hti.error)
9252 return FALSE;
9253
9254 return TRUE;
9255 }
9256
9257 /* If the link uses a GOT, lay it out and work out its size. */
9258
9259 static bfd_boolean
9260 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9261 {
9262 bfd *dynobj;
9263 asection *s;
9264 struct mips_got_info *g;
9265 bfd_size_type loadable_size = 0;
9266 bfd_size_type page_gotno;
9267 bfd *ibfd;
9268 struct mips_elf_traverse_got_arg tga;
9269 struct mips_elf_link_hash_table *htab;
9270
9271 htab = mips_elf_hash_table (info);
9272 BFD_ASSERT (htab != NULL);
9273
9274 s = htab->sgot;
9275 if (s == NULL)
9276 return TRUE;
9277
9278 dynobj = elf_hash_table (info)->dynobj;
9279 g = htab->got_info;
9280
9281 /* Allocate room for the reserved entries. VxWorks always reserves
9282 3 entries; other objects only reserve 2 entries. */
9283 BFD_ASSERT (g->assigned_low_gotno == 0);
9284 if (htab->is_vxworks)
9285 htab->reserved_gotno = 3;
9286 else
9287 htab->reserved_gotno = 2;
9288 g->local_gotno += htab->reserved_gotno;
9289 g->assigned_low_gotno = htab->reserved_gotno;
9290
9291 /* Decide which symbols need to go in the global part of the GOT and
9292 count the number of reloc-only GOT symbols. */
9293 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9294
9295 if (!mips_elf_resolve_final_got_entries (info, g))
9296 return FALSE;
9297
9298 /* Calculate the total loadable size of the output. That
9299 will give us the maximum number of GOT_PAGE entries
9300 required. */
9301 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9302 {
9303 asection *subsection;
9304
9305 for (subsection = ibfd->sections;
9306 subsection;
9307 subsection = subsection->next)
9308 {
9309 if ((subsection->flags & SEC_ALLOC) == 0)
9310 continue;
9311 loadable_size += ((subsection->size + 0xf)
9312 &~ (bfd_size_type) 0xf);
9313 }
9314 }
9315
9316 if (htab->is_vxworks)
9317 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9318 relocations against local symbols evaluate to "G", and the EABI does
9319 not include R_MIPS_GOT_PAGE. */
9320 page_gotno = 0;
9321 else
9322 /* Assume there are two loadable segments consisting of contiguous
9323 sections. Is 5 enough? */
9324 page_gotno = (loadable_size >> 16) + 5;
9325
9326 /* Choose the smaller of the two page estimates; both are intended to be
9327 conservative. */
9328 if (page_gotno > g->page_gotno)
9329 page_gotno = g->page_gotno;
9330
9331 g->local_gotno += page_gotno;
9332 g->assigned_high_gotno = g->local_gotno - 1;
9333
9334 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9335 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9336 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9337
9338 /* VxWorks does not support multiple GOTs. It initializes $gp to
9339 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9340 dynamic loader. */
9341 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9342 {
9343 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9344 return FALSE;
9345 }
9346 else
9347 {
9348 /* Record that all bfds use G. This also has the effect of freeing
9349 the per-bfd GOTs, which we no longer need. */
9350 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9351 if (mips_elf_bfd_got (ibfd, FALSE))
9352 mips_elf_replace_bfd_got (ibfd, g);
9353 mips_elf_replace_bfd_got (output_bfd, g);
9354
9355 /* Set up TLS entries. */
9356 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9357 tga.info = info;
9358 tga.g = g;
9359 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9360 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9361 if (!tga.g)
9362 return FALSE;
9363 BFD_ASSERT (g->tls_assigned_gotno
9364 == g->global_gotno + g->local_gotno + g->tls_gotno);
9365
9366 /* Each VxWorks GOT entry needs an explicit relocation. */
9367 if (htab->is_vxworks && info->shared)
9368 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9369
9370 /* Allocate room for the TLS relocations. */
9371 if (g->relocs)
9372 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9373 }
9374
9375 return TRUE;
9376 }
9377
9378 /* Estimate the size of the .MIPS.stubs section. */
9379
9380 static void
9381 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9382 {
9383 struct mips_elf_link_hash_table *htab;
9384 bfd_size_type dynsymcount;
9385
9386 htab = mips_elf_hash_table (info);
9387 BFD_ASSERT (htab != NULL);
9388
9389 if (htab->lazy_stub_count == 0)
9390 return;
9391
9392 /* IRIX rld assumes that a function stub isn't at the end of the .text
9393 section, so add a dummy entry to the end. */
9394 htab->lazy_stub_count++;
9395
9396 /* Get a worst-case estimate of the number of dynamic symbols needed.
9397 At this point, dynsymcount does not account for section symbols
9398 and count_section_dynsyms may overestimate the number that will
9399 be needed. */
9400 dynsymcount = (elf_hash_table (info)->dynsymcount
9401 + count_section_dynsyms (output_bfd, info));
9402
9403 /* Determine the size of one stub entry. There's no disadvantage
9404 from using microMIPS code here, so for the sake of pure-microMIPS
9405 binaries we prefer it whenever there's any microMIPS code in
9406 output produced at all. This has a benefit of stubs being
9407 shorter by 4 bytes each too, unless in the insn32 mode. */
9408 if (!MICROMIPS_P (output_bfd))
9409 htab->function_stub_size = (dynsymcount > 0x10000
9410 ? MIPS_FUNCTION_STUB_BIG_SIZE
9411 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9412 else if (htab->insn32)
9413 htab->function_stub_size = (dynsymcount > 0x10000
9414 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9415 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9416 else
9417 htab->function_stub_size = (dynsymcount > 0x10000
9418 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9419 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9420
9421 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9422 }
9423
9424 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9425 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9426 stub, allocate an entry in the stubs section. */
9427
9428 static bfd_boolean
9429 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9430 {
9431 struct mips_htab_traverse_info *hti = data;
9432 struct mips_elf_link_hash_table *htab;
9433 struct bfd_link_info *info;
9434 bfd *output_bfd;
9435
9436 info = hti->info;
9437 output_bfd = hti->output_bfd;
9438 htab = mips_elf_hash_table (info);
9439 BFD_ASSERT (htab != NULL);
9440
9441 if (h->needs_lazy_stub)
9442 {
9443 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9444 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9445 bfd_vma isa_bit = micromips_p;
9446
9447 BFD_ASSERT (htab->root.dynobj != NULL);
9448 if (h->root.plt.plist == NULL)
9449 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9450 if (h->root.plt.plist == NULL)
9451 {
9452 hti->error = TRUE;
9453 return FALSE;
9454 }
9455 h->root.root.u.def.section = htab->sstubs;
9456 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9457 h->root.plt.plist->stub_offset = htab->sstubs->size;
9458 h->root.other = other;
9459 htab->sstubs->size += htab->function_stub_size;
9460 }
9461 return TRUE;
9462 }
9463
9464 /* Allocate offsets in the stubs section to each symbol that needs one.
9465 Set the final size of the .MIPS.stub section. */
9466
9467 static bfd_boolean
9468 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9469 {
9470 bfd *output_bfd = info->output_bfd;
9471 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9472 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9473 bfd_vma isa_bit = micromips_p;
9474 struct mips_elf_link_hash_table *htab;
9475 struct mips_htab_traverse_info hti;
9476 struct elf_link_hash_entry *h;
9477 bfd *dynobj;
9478
9479 htab = mips_elf_hash_table (info);
9480 BFD_ASSERT (htab != NULL);
9481
9482 if (htab->lazy_stub_count == 0)
9483 return TRUE;
9484
9485 htab->sstubs->size = 0;
9486 hti.info = info;
9487 hti.output_bfd = output_bfd;
9488 hti.error = FALSE;
9489 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9490 if (hti.error)
9491 return FALSE;
9492 htab->sstubs->size += htab->function_stub_size;
9493 BFD_ASSERT (htab->sstubs->size
9494 == htab->lazy_stub_count * htab->function_stub_size);
9495
9496 dynobj = elf_hash_table (info)->dynobj;
9497 BFD_ASSERT (dynobj != NULL);
9498 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9499 if (h == NULL)
9500 return FALSE;
9501 h->root.u.def.value = isa_bit;
9502 h->other = other;
9503 h->type = STT_FUNC;
9504
9505 return TRUE;
9506 }
9507
9508 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9509 bfd_link_info. If H uses the address of a PLT entry as the value
9510 of the symbol, then set the entry in the symbol table now. Prefer
9511 a standard MIPS PLT entry. */
9512
9513 static bfd_boolean
9514 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9515 {
9516 struct bfd_link_info *info = data;
9517 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9518 struct mips_elf_link_hash_table *htab;
9519 unsigned int other;
9520 bfd_vma isa_bit;
9521 bfd_vma val;
9522
9523 htab = mips_elf_hash_table (info);
9524 BFD_ASSERT (htab != NULL);
9525
9526 if (h->use_plt_entry)
9527 {
9528 BFD_ASSERT (h->root.plt.plist != NULL);
9529 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9530 || h->root.plt.plist->comp_offset != MINUS_ONE);
9531
9532 val = htab->plt_header_size;
9533 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9534 {
9535 isa_bit = 0;
9536 val += h->root.plt.plist->mips_offset;
9537 other = 0;
9538 }
9539 else
9540 {
9541 isa_bit = 1;
9542 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9543 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9544 }
9545 val += isa_bit;
9546 /* For VxWorks, point at the PLT load stub rather than the lazy
9547 resolution stub; this stub will become the canonical function
9548 address. */
9549 if (htab->is_vxworks)
9550 val += 8;
9551
9552 h->root.root.u.def.section = htab->splt;
9553 h->root.root.u.def.value = val;
9554 h->root.other = other;
9555 }
9556
9557 return TRUE;
9558 }
9559
9560 /* Set the sizes of the dynamic sections. */
9561
9562 bfd_boolean
9563 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9564 struct bfd_link_info *info)
9565 {
9566 bfd *dynobj;
9567 asection *s, *sreldyn;
9568 bfd_boolean reltext;
9569 struct mips_elf_link_hash_table *htab;
9570
9571 htab = mips_elf_hash_table (info);
9572 BFD_ASSERT (htab != NULL);
9573 dynobj = elf_hash_table (info)->dynobj;
9574 BFD_ASSERT (dynobj != NULL);
9575
9576 if (elf_hash_table (info)->dynamic_sections_created)
9577 {
9578 /* Set the contents of the .interp section to the interpreter. */
9579 if (info->executable)
9580 {
9581 s = bfd_get_linker_section (dynobj, ".interp");
9582 BFD_ASSERT (s != NULL);
9583 s->size
9584 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9585 s->contents
9586 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9587 }
9588
9589 /* Figure out the size of the PLT header if we know that we
9590 are using it. For the sake of cache alignment always use
9591 a standard header whenever any standard entries are present
9592 even if microMIPS entries are present as well. This also
9593 lets the microMIPS header rely on the value of $v0 only set
9594 by microMIPS entries, for a small size reduction.
9595
9596 Set symbol table entry values for symbols that use the
9597 address of their PLT entry now that we can calculate it.
9598
9599 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9600 haven't already in _bfd_elf_create_dynamic_sections. */
9601 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9602 {
9603 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9604 && !htab->plt_mips_offset);
9605 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9606 bfd_vma isa_bit = micromips_p;
9607 struct elf_link_hash_entry *h;
9608 bfd_vma size;
9609
9610 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9611 BFD_ASSERT (htab->sgotplt->size == 0);
9612 BFD_ASSERT (htab->splt->size == 0);
9613
9614 if (htab->is_vxworks && info->shared)
9615 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9616 else if (htab->is_vxworks)
9617 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9618 else if (ABI_64_P (output_bfd))
9619 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9620 else if (ABI_N32_P (output_bfd))
9621 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9622 else if (!micromips_p)
9623 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9624 else if (htab->insn32)
9625 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9626 else
9627 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9628
9629 htab->plt_header_is_comp = micromips_p;
9630 htab->plt_header_size = size;
9631 htab->splt->size = (size
9632 + htab->plt_mips_offset
9633 + htab->plt_comp_offset);
9634 htab->sgotplt->size = (htab->plt_got_index
9635 * MIPS_ELF_GOT_SIZE (dynobj));
9636
9637 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9638
9639 if (htab->root.hplt == NULL)
9640 {
9641 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9642 "_PROCEDURE_LINKAGE_TABLE_");
9643 htab->root.hplt = h;
9644 if (h == NULL)
9645 return FALSE;
9646 }
9647
9648 h = htab->root.hplt;
9649 h->root.u.def.value = isa_bit;
9650 h->other = other;
9651 h->type = STT_FUNC;
9652 }
9653 }
9654
9655 /* Allocate space for global sym dynamic relocs. */
9656 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9657
9658 mips_elf_estimate_stub_size (output_bfd, info);
9659
9660 if (!mips_elf_lay_out_got (output_bfd, info))
9661 return FALSE;
9662
9663 mips_elf_lay_out_lazy_stubs (info);
9664
9665 /* The check_relocs and adjust_dynamic_symbol entry points have
9666 determined the sizes of the various dynamic sections. Allocate
9667 memory for them. */
9668 reltext = FALSE;
9669 for (s = dynobj->sections; s != NULL; s = s->next)
9670 {
9671 const char *name;
9672
9673 /* It's OK to base decisions on the section name, because none
9674 of the dynobj section names depend upon the input files. */
9675 name = bfd_get_section_name (dynobj, s);
9676
9677 if ((s->flags & SEC_LINKER_CREATED) == 0)
9678 continue;
9679
9680 if (CONST_STRNEQ (name, ".rel"))
9681 {
9682 if (s->size != 0)
9683 {
9684 const char *outname;
9685 asection *target;
9686
9687 /* If this relocation section applies to a read only
9688 section, then we probably need a DT_TEXTREL entry.
9689 If the relocation section is .rel(a).dyn, we always
9690 assert a DT_TEXTREL entry rather than testing whether
9691 there exists a relocation to a read only section or
9692 not. */
9693 outname = bfd_get_section_name (output_bfd,
9694 s->output_section);
9695 target = bfd_get_section_by_name (output_bfd, outname + 4);
9696 if ((target != NULL
9697 && (target->flags & SEC_READONLY) != 0
9698 && (target->flags & SEC_ALLOC) != 0)
9699 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9700 reltext = TRUE;
9701
9702 /* We use the reloc_count field as a counter if we need
9703 to copy relocs into the output file. */
9704 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9705 s->reloc_count = 0;
9706
9707 /* If combreloc is enabled, elf_link_sort_relocs() will
9708 sort relocations, but in a different way than we do,
9709 and before we're done creating relocations. Also, it
9710 will move them around between input sections'
9711 relocation's contents, so our sorting would be
9712 broken, so don't let it run. */
9713 info->combreloc = 0;
9714 }
9715 }
9716 else if (info->executable
9717 && ! mips_elf_hash_table (info)->use_rld_obj_head
9718 && CONST_STRNEQ (name, ".rld_map"))
9719 {
9720 /* We add a room for __rld_map. It will be filled in by the
9721 rtld to contain a pointer to the _r_debug structure. */
9722 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9723 }
9724 else if (SGI_COMPAT (output_bfd)
9725 && CONST_STRNEQ (name, ".compact_rel"))
9726 s->size += mips_elf_hash_table (info)->compact_rel_size;
9727 else if (s == htab->splt)
9728 {
9729 /* If the last PLT entry has a branch delay slot, allocate
9730 room for an extra nop to fill the delay slot. This is
9731 for CPUs without load interlocking. */
9732 if (! LOAD_INTERLOCKS_P (output_bfd)
9733 && ! htab->is_vxworks && s->size > 0)
9734 s->size += 4;
9735 }
9736 else if (! CONST_STRNEQ (name, ".init")
9737 && s != htab->sgot
9738 && s != htab->sgotplt
9739 && s != htab->sstubs
9740 && s != htab->sdynbss)
9741 {
9742 /* It's not one of our sections, so don't allocate space. */
9743 continue;
9744 }
9745
9746 if (s->size == 0)
9747 {
9748 s->flags |= SEC_EXCLUDE;
9749 continue;
9750 }
9751
9752 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9753 continue;
9754
9755 /* Allocate memory for the section contents. */
9756 s->contents = bfd_zalloc (dynobj, s->size);
9757 if (s->contents == NULL)
9758 {
9759 bfd_set_error (bfd_error_no_memory);
9760 return FALSE;
9761 }
9762 }
9763
9764 if (elf_hash_table (info)->dynamic_sections_created)
9765 {
9766 /* Add some entries to the .dynamic section. We fill in the
9767 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9768 must add the entries now so that we get the correct size for
9769 the .dynamic section. */
9770
9771 /* SGI object has the equivalence of DT_DEBUG in the
9772 DT_MIPS_RLD_MAP entry. This must come first because glibc
9773 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9774 may only look at the first one they see. */
9775 if (!info->shared
9776 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9777 return FALSE;
9778
9779 if (info->executable
9780 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9781 return FALSE;
9782
9783 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9784 used by the debugger. */
9785 if (info->executable
9786 && !SGI_COMPAT (output_bfd)
9787 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9788 return FALSE;
9789
9790 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9791 info->flags |= DF_TEXTREL;
9792
9793 if ((info->flags & DF_TEXTREL) != 0)
9794 {
9795 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9796 return FALSE;
9797
9798 /* Clear the DF_TEXTREL flag. It will be set again if we
9799 write out an actual text relocation; we may not, because
9800 at this point we do not know whether e.g. any .eh_frame
9801 absolute relocations have been converted to PC-relative. */
9802 info->flags &= ~DF_TEXTREL;
9803 }
9804
9805 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9806 return FALSE;
9807
9808 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9809 if (htab->is_vxworks)
9810 {
9811 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9812 use any of the DT_MIPS_* tags. */
9813 if (sreldyn && sreldyn->size > 0)
9814 {
9815 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9816 return FALSE;
9817
9818 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9819 return FALSE;
9820
9821 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9822 return FALSE;
9823 }
9824 }
9825 else
9826 {
9827 if (sreldyn && sreldyn->size > 0)
9828 {
9829 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9830 return FALSE;
9831
9832 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9833 return FALSE;
9834
9835 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9836 return FALSE;
9837 }
9838
9839 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9840 return FALSE;
9841
9842 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9843 return FALSE;
9844
9845 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9846 return FALSE;
9847
9848 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9849 return FALSE;
9850
9851 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9852 return FALSE;
9853
9854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9855 return FALSE;
9856
9857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9858 return FALSE;
9859
9860 if (IRIX_COMPAT (dynobj) == ict_irix5
9861 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9862 return FALSE;
9863
9864 if (IRIX_COMPAT (dynobj) == ict_irix6
9865 && (bfd_get_section_by_name
9866 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9867 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9868 return FALSE;
9869 }
9870 if (htab->splt->size > 0)
9871 {
9872 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9873 return FALSE;
9874
9875 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9876 return FALSE;
9877
9878 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9879 return FALSE;
9880
9881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9882 return FALSE;
9883 }
9884 if (htab->is_vxworks
9885 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9886 return FALSE;
9887 }
9888
9889 return TRUE;
9890 }
9891 \f
9892 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9893 Adjust its R_ADDEND field so that it is correct for the output file.
9894 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9895 and sections respectively; both use symbol indexes. */
9896
9897 static void
9898 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9899 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9900 asection **local_sections, Elf_Internal_Rela *rel)
9901 {
9902 unsigned int r_type, r_symndx;
9903 Elf_Internal_Sym *sym;
9904 asection *sec;
9905
9906 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9907 {
9908 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9909 if (gprel16_reloc_p (r_type)
9910 || r_type == R_MIPS_GPREL32
9911 || literal_reloc_p (r_type))
9912 {
9913 rel->r_addend += _bfd_get_gp_value (input_bfd);
9914 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9915 }
9916
9917 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9918 sym = local_syms + r_symndx;
9919
9920 /* Adjust REL's addend to account for section merging. */
9921 if (!info->relocatable)
9922 {
9923 sec = local_sections[r_symndx];
9924 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9925 }
9926
9927 /* This would normally be done by the rela_normal code in elflink.c. */
9928 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9929 rel->r_addend += local_sections[r_symndx]->output_offset;
9930 }
9931 }
9932
9933 /* Handle relocations against symbols from removed linkonce sections,
9934 or sections discarded by a linker script. We use this wrapper around
9935 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9936 on 64-bit ELF targets. In this case for any relocation handled, which
9937 always be the first in a triplet, the remaining two have to be processed
9938 together with the first, even if they are R_MIPS_NONE. It is the symbol
9939 index referred by the first reloc that applies to all the three and the
9940 remaining two never refer to an object symbol. And it is the final
9941 relocation (the last non-null one) that determines the output field of
9942 the whole relocation so retrieve the corresponding howto structure for
9943 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9944
9945 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9946 and therefore requires to be pasted in a loop. It also defines a block
9947 and does not protect any of its arguments, hence the extra brackets. */
9948
9949 static void
9950 mips_reloc_against_discarded_section (bfd *output_bfd,
9951 struct bfd_link_info *info,
9952 bfd *input_bfd, asection *input_section,
9953 Elf_Internal_Rela **rel,
9954 const Elf_Internal_Rela **relend,
9955 bfd_boolean rel_reloc,
9956 reloc_howto_type *howto,
9957 bfd_byte *contents)
9958 {
9959 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9960 int count = bed->s->int_rels_per_ext_rel;
9961 unsigned int r_type;
9962 int i;
9963
9964 for (i = count - 1; i > 0; i--)
9965 {
9966 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9967 if (r_type != R_MIPS_NONE)
9968 {
9969 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9970 break;
9971 }
9972 }
9973 do
9974 {
9975 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9976 (*rel), count, (*relend),
9977 howto, i, contents);
9978 }
9979 while (0);
9980 }
9981
9982 /* Relocate a MIPS ELF section. */
9983
9984 bfd_boolean
9985 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9986 bfd *input_bfd, asection *input_section,
9987 bfd_byte *contents, Elf_Internal_Rela *relocs,
9988 Elf_Internal_Sym *local_syms,
9989 asection **local_sections)
9990 {
9991 Elf_Internal_Rela *rel;
9992 const Elf_Internal_Rela *relend;
9993 bfd_vma addend = 0;
9994 bfd_boolean use_saved_addend_p = FALSE;
9995 const struct elf_backend_data *bed;
9996
9997 bed = get_elf_backend_data (output_bfd);
9998 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9999 for (rel = relocs; rel < relend; ++rel)
10000 {
10001 const char *name;
10002 bfd_vma value = 0;
10003 reloc_howto_type *howto;
10004 bfd_boolean cross_mode_jump_p = FALSE;
10005 /* TRUE if the relocation is a RELA relocation, rather than a
10006 REL relocation. */
10007 bfd_boolean rela_relocation_p = TRUE;
10008 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10009 const char *msg;
10010 unsigned long r_symndx;
10011 asection *sec;
10012 Elf_Internal_Shdr *symtab_hdr;
10013 struct elf_link_hash_entry *h;
10014 bfd_boolean rel_reloc;
10015
10016 rel_reloc = (NEWABI_P (input_bfd)
10017 && mips_elf_rel_relocation_p (input_bfd, input_section,
10018 relocs, rel));
10019 /* Find the relocation howto for this relocation. */
10020 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10021
10022 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10023 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10024 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10025 {
10026 sec = local_sections[r_symndx];
10027 h = NULL;
10028 }
10029 else
10030 {
10031 unsigned long extsymoff;
10032
10033 extsymoff = 0;
10034 if (!elf_bad_symtab (input_bfd))
10035 extsymoff = symtab_hdr->sh_info;
10036 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10037 while (h->root.type == bfd_link_hash_indirect
10038 || h->root.type == bfd_link_hash_warning)
10039 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10040
10041 sec = NULL;
10042 if (h->root.type == bfd_link_hash_defined
10043 || h->root.type == bfd_link_hash_defweak)
10044 sec = h->root.u.def.section;
10045 }
10046
10047 if (sec != NULL && discarded_section (sec))
10048 {
10049 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10050 input_section, &rel, &relend,
10051 rel_reloc, howto, contents);
10052 continue;
10053 }
10054
10055 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10056 {
10057 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10058 64-bit code, but make sure all their addresses are in the
10059 lowermost or uppermost 32-bit section of the 64-bit address
10060 space. Thus, when they use an R_MIPS_64 they mean what is
10061 usually meant by R_MIPS_32, with the exception that the
10062 stored value is sign-extended to 64 bits. */
10063 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10064
10065 /* On big-endian systems, we need to lie about the position
10066 of the reloc. */
10067 if (bfd_big_endian (input_bfd))
10068 rel->r_offset += 4;
10069 }
10070
10071 if (!use_saved_addend_p)
10072 {
10073 /* If these relocations were originally of the REL variety,
10074 we must pull the addend out of the field that will be
10075 relocated. Otherwise, we simply use the contents of the
10076 RELA relocation. */
10077 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10078 relocs, rel))
10079 {
10080 rela_relocation_p = FALSE;
10081 addend = mips_elf_read_rel_addend (input_bfd, rel,
10082 howto, contents);
10083 if (hi16_reloc_p (r_type)
10084 || (got16_reloc_p (r_type)
10085 && mips_elf_local_relocation_p (input_bfd, rel,
10086 local_sections)))
10087 {
10088 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10089 contents, &addend))
10090 {
10091 if (h)
10092 name = h->root.root.string;
10093 else
10094 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10095 local_syms + r_symndx,
10096 sec);
10097 (*_bfd_error_handler)
10098 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10099 input_bfd, input_section, name, howto->name,
10100 rel->r_offset);
10101 }
10102 }
10103 else
10104 addend <<= howto->rightshift;
10105 }
10106 else
10107 addend = rel->r_addend;
10108 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10109 local_syms, local_sections, rel);
10110 }
10111
10112 if (info->relocatable)
10113 {
10114 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10115 && bfd_big_endian (input_bfd))
10116 rel->r_offset -= 4;
10117
10118 if (!rela_relocation_p && rel->r_addend)
10119 {
10120 addend += rel->r_addend;
10121 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10122 addend = mips_elf_high (addend);
10123 else if (r_type == R_MIPS_HIGHER)
10124 addend = mips_elf_higher (addend);
10125 else if (r_type == R_MIPS_HIGHEST)
10126 addend = mips_elf_highest (addend);
10127 else
10128 addend >>= howto->rightshift;
10129
10130 /* We use the source mask, rather than the destination
10131 mask because the place to which we are writing will be
10132 source of the addend in the final link. */
10133 addend &= howto->src_mask;
10134
10135 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10136 /* See the comment above about using R_MIPS_64 in the 32-bit
10137 ABI. Here, we need to update the addend. It would be
10138 possible to get away with just using the R_MIPS_32 reloc
10139 but for endianness. */
10140 {
10141 bfd_vma sign_bits;
10142 bfd_vma low_bits;
10143 bfd_vma high_bits;
10144
10145 if (addend & ((bfd_vma) 1 << 31))
10146 #ifdef BFD64
10147 sign_bits = ((bfd_vma) 1 << 32) - 1;
10148 #else
10149 sign_bits = -1;
10150 #endif
10151 else
10152 sign_bits = 0;
10153
10154 /* If we don't know that we have a 64-bit type,
10155 do two separate stores. */
10156 if (bfd_big_endian (input_bfd))
10157 {
10158 /* Store the sign-bits (which are most significant)
10159 first. */
10160 low_bits = sign_bits;
10161 high_bits = addend;
10162 }
10163 else
10164 {
10165 low_bits = addend;
10166 high_bits = sign_bits;
10167 }
10168 bfd_put_32 (input_bfd, low_bits,
10169 contents + rel->r_offset);
10170 bfd_put_32 (input_bfd, high_bits,
10171 contents + rel->r_offset + 4);
10172 continue;
10173 }
10174
10175 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10176 input_bfd, input_section,
10177 contents, FALSE))
10178 return FALSE;
10179 }
10180
10181 /* Go on to the next relocation. */
10182 continue;
10183 }
10184
10185 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10186 relocations for the same offset. In that case we are
10187 supposed to treat the output of each relocation as the addend
10188 for the next. */
10189 if (rel + 1 < relend
10190 && rel->r_offset == rel[1].r_offset
10191 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10192 use_saved_addend_p = TRUE;
10193 else
10194 use_saved_addend_p = FALSE;
10195
10196 /* Figure out what value we are supposed to relocate. */
10197 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10198 input_section, info, rel,
10199 addend, howto, local_syms,
10200 local_sections, &value,
10201 &name, &cross_mode_jump_p,
10202 use_saved_addend_p))
10203 {
10204 case bfd_reloc_continue:
10205 /* There's nothing to do. */
10206 continue;
10207
10208 case bfd_reloc_undefined:
10209 /* mips_elf_calculate_relocation already called the
10210 undefined_symbol callback. There's no real point in
10211 trying to perform the relocation at this point, so we
10212 just skip ahead to the next relocation. */
10213 continue;
10214
10215 case bfd_reloc_notsupported:
10216 msg = _("internal error: unsupported relocation error");
10217 info->callbacks->warning
10218 (info, msg, name, input_bfd, input_section, rel->r_offset);
10219 return FALSE;
10220
10221 case bfd_reloc_overflow:
10222 if (use_saved_addend_p)
10223 /* Ignore overflow until we reach the last relocation for
10224 a given location. */
10225 ;
10226 else
10227 {
10228 struct mips_elf_link_hash_table *htab;
10229
10230 htab = mips_elf_hash_table (info);
10231 BFD_ASSERT (htab != NULL);
10232 BFD_ASSERT (name != NULL);
10233 if (!htab->small_data_overflow_reported
10234 && (gprel16_reloc_p (howto->type)
10235 || literal_reloc_p (howto->type)))
10236 {
10237 msg = _("small-data section exceeds 64KB;"
10238 " lower small-data size limit (see option -G)");
10239
10240 htab->small_data_overflow_reported = TRUE;
10241 (*info->callbacks->einfo) ("%P: %s\n", msg);
10242 }
10243 if (! ((*info->callbacks->reloc_overflow)
10244 (info, NULL, name, howto->name, (bfd_vma) 0,
10245 input_bfd, input_section, rel->r_offset)))
10246 return FALSE;
10247 }
10248 break;
10249
10250 case bfd_reloc_ok:
10251 break;
10252
10253 case bfd_reloc_outofrange:
10254 if (jal_reloc_p (howto->type))
10255 {
10256 msg = _("JALX to a non-word-aligned address");
10257 info->callbacks->warning
10258 (info, msg, name, input_bfd, input_section, rel->r_offset);
10259 return FALSE;
10260 }
10261 if (aligned_pcrel_reloc_p (howto->type))
10262 {
10263 msg = _("PC-relative load from unaligned address");
10264 info->callbacks->warning
10265 (info, msg, name, input_bfd, input_section, rel->r_offset);
10266 return FALSE;
10267 }
10268 /* Fall through. */
10269
10270 default:
10271 abort ();
10272 break;
10273 }
10274
10275 /* If we've got another relocation for the address, keep going
10276 until we reach the last one. */
10277 if (use_saved_addend_p)
10278 {
10279 addend = value;
10280 continue;
10281 }
10282
10283 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10284 /* See the comment above about using R_MIPS_64 in the 32-bit
10285 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10286 that calculated the right value. Now, however, we
10287 sign-extend the 32-bit result to 64-bits, and store it as a
10288 64-bit value. We are especially generous here in that we
10289 go to extreme lengths to support this usage on systems with
10290 only a 32-bit VMA. */
10291 {
10292 bfd_vma sign_bits;
10293 bfd_vma low_bits;
10294 bfd_vma high_bits;
10295
10296 if (value & ((bfd_vma) 1 << 31))
10297 #ifdef BFD64
10298 sign_bits = ((bfd_vma) 1 << 32) - 1;
10299 #else
10300 sign_bits = -1;
10301 #endif
10302 else
10303 sign_bits = 0;
10304
10305 /* If we don't know that we have a 64-bit type,
10306 do two separate stores. */
10307 if (bfd_big_endian (input_bfd))
10308 {
10309 /* Undo what we did above. */
10310 rel->r_offset -= 4;
10311 /* Store the sign-bits (which are most significant)
10312 first. */
10313 low_bits = sign_bits;
10314 high_bits = value;
10315 }
10316 else
10317 {
10318 low_bits = value;
10319 high_bits = sign_bits;
10320 }
10321 bfd_put_32 (input_bfd, low_bits,
10322 contents + rel->r_offset);
10323 bfd_put_32 (input_bfd, high_bits,
10324 contents + rel->r_offset + 4);
10325 continue;
10326 }
10327
10328 /* Actually perform the relocation. */
10329 if (! mips_elf_perform_relocation (info, howto, rel, value,
10330 input_bfd, input_section,
10331 contents, cross_mode_jump_p))
10332 return FALSE;
10333 }
10334
10335 return TRUE;
10336 }
10337 \f
10338 /* A function that iterates over each entry in la25_stubs and fills
10339 in the code for each one. DATA points to a mips_htab_traverse_info. */
10340
10341 static int
10342 mips_elf_create_la25_stub (void **slot, void *data)
10343 {
10344 struct mips_htab_traverse_info *hti;
10345 struct mips_elf_link_hash_table *htab;
10346 struct mips_elf_la25_stub *stub;
10347 asection *s;
10348 bfd_byte *loc;
10349 bfd_vma offset, target, target_high, target_low;
10350
10351 stub = (struct mips_elf_la25_stub *) *slot;
10352 hti = (struct mips_htab_traverse_info *) data;
10353 htab = mips_elf_hash_table (hti->info);
10354 BFD_ASSERT (htab != NULL);
10355
10356 /* Create the section contents, if we haven't already. */
10357 s = stub->stub_section;
10358 loc = s->contents;
10359 if (loc == NULL)
10360 {
10361 loc = bfd_malloc (s->size);
10362 if (loc == NULL)
10363 {
10364 hti->error = TRUE;
10365 return FALSE;
10366 }
10367 s->contents = loc;
10368 }
10369
10370 /* Work out where in the section this stub should go. */
10371 offset = stub->offset;
10372
10373 /* Work out the target address. */
10374 target = mips_elf_get_la25_target (stub, &s);
10375 target += s->output_section->vma + s->output_offset;
10376
10377 target_high = ((target + 0x8000) >> 16) & 0xffff;
10378 target_low = (target & 0xffff);
10379
10380 if (stub->stub_section != htab->strampoline)
10381 {
10382 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10383 of the section and write the two instructions at the end. */
10384 memset (loc, 0, offset);
10385 loc += offset;
10386 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10387 {
10388 bfd_put_micromips_32 (hti->output_bfd,
10389 LA25_LUI_MICROMIPS (target_high),
10390 loc);
10391 bfd_put_micromips_32 (hti->output_bfd,
10392 LA25_ADDIU_MICROMIPS (target_low),
10393 loc + 4);
10394 }
10395 else
10396 {
10397 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10398 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10399 }
10400 }
10401 else
10402 {
10403 /* This is trampoline. */
10404 loc += offset;
10405 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10406 {
10407 bfd_put_micromips_32 (hti->output_bfd,
10408 LA25_LUI_MICROMIPS (target_high), loc);
10409 bfd_put_micromips_32 (hti->output_bfd,
10410 LA25_J_MICROMIPS (target), loc + 4);
10411 bfd_put_micromips_32 (hti->output_bfd,
10412 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10413 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10414 }
10415 else
10416 {
10417 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10418 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10419 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10420 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10421 }
10422 }
10423 return TRUE;
10424 }
10425
10426 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10427 adjust it appropriately now. */
10428
10429 static void
10430 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10431 const char *name, Elf_Internal_Sym *sym)
10432 {
10433 /* The linker script takes care of providing names and values for
10434 these, but we must place them into the right sections. */
10435 static const char* const text_section_symbols[] = {
10436 "_ftext",
10437 "_etext",
10438 "__dso_displacement",
10439 "__elf_header",
10440 "__program_header_table",
10441 NULL
10442 };
10443
10444 static const char* const data_section_symbols[] = {
10445 "_fdata",
10446 "_edata",
10447 "_end",
10448 "_fbss",
10449 NULL
10450 };
10451
10452 const char* const *p;
10453 int i;
10454
10455 for (i = 0; i < 2; ++i)
10456 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10457 *p;
10458 ++p)
10459 if (strcmp (*p, name) == 0)
10460 {
10461 /* All of these symbols are given type STT_SECTION by the
10462 IRIX6 linker. */
10463 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10464 sym->st_other = STO_PROTECTED;
10465
10466 /* The IRIX linker puts these symbols in special sections. */
10467 if (i == 0)
10468 sym->st_shndx = SHN_MIPS_TEXT;
10469 else
10470 sym->st_shndx = SHN_MIPS_DATA;
10471
10472 break;
10473 }
10474 }
10475
10476 /* Finish up dynamic symbol handling. We set the contents of various
10477 dynamic sections here. */
10478
10479 bfd_boolean
10480 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10481 struct bfd_link_info *info,
10482 struct elf_link_hash_entry *h,
10483 Elf_Internal_Sym *sym)
10484 {
10485 bfd *dynobj;
10486 asection *sgot;
10487 struct mips_got_info *g, *gg;
10488 const char *name;
10489 int idx;
10490 struct mips_elf_link_hash_table *htab;
10491 struct mips_elf_link_hash_entry *hmips;
10492
10493 htab = mips_elf_hash_table (info);
10494 BFD_ASSERT (htab != NULL);
10495 dynobj = elf_hash_table (info)->dynobj;
10496 hmips = (struct mips_elf_link_hash_entry *) h;
10497
10498 BFD_ASSERT (!htab->is_vxworks);
10499
10500 if (h->plt.plist != NULL
10501 && (h->plt.plist->mips_offset != MINUS_ONE
10502 || h->plt.plist->comp_offset != MINUS_ONE))
10503 {
10504 /* We've decided to create a PLT entry for this symbol. */
10505 bfd_byte *loc;
10506 bfd_vma header_address, got_address;
10507 bfd_vma got_address_high, got_address_low, load;
10508 bfd_vma got_index;
10509 bfd_vma isa_bit;
10510
10511 got_index = h->plt.plist->gotplt_index;
10512
10513 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10514 BFD_ASSERT (h->dynindx != -1);
10515 BFD_ASSERT (htab->splt != NULL);
10516 BFD_ASSERT (got_index != MINUS_ONE);
10517 BFD_ASSERT (!h->def_regular);
10518
10519 /* Calculate the address of the PLT header. */
10520 isa_bit = htab->plt_header_is_comp;
10521 header_address = (htab->splt->output_section->vma
10522 + htab->splt->output_offset + isa_bit);
10523
10524 /* Calculate the address of the .got.plt entry. */
10525 got_address = (htab->sgotplt->output_section->vma
10526 + htab->sgotplt->output_offset
10527 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10528
10529 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10530 got_address_low = got_address & 0xffff;
10531
10532 /* Initially point the .got.plt entry at the PLT header. */
10533 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10534 if (ABI_64_P (output_bfd))
10535 bfd_put_64 (output_bfd, header_address, loc);
10536 else
10537 bfd_put_32 (output_bfd, header_address, loc);
10538
10539 /* Now handle the PLT itself. First the standard entry (the order
10540 does not matter, we just have to pick one). */
10541 if (h->plt.plist->mips_offset != MINUS_ONE)
10542 {
10543 const bfd_vma *plt_entry;
10544 bfd_vma plt_offset;
10545
10546 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10547
10548 BFD_ASSERT (plt_offset <= htab->splt->size);
10549
10550 /* Find out where the .plt entry should go. */
10551 loc = htab->splt->contents + plt_offset;
10552
10553 /* Pick the load opcode. */
10554 load = MIPS_ELF_LOAD_WORD (output_bfd);
10555
10556 /* Fill in the PLT entry itself. */
10557
10558 if (MIPSR6_P (output_bfd))
10559 plt_entry = mipsr6_exec_plt_entry;
10560 else
10561 plt_entry = mips_exec_plt_entry;
10562 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10563 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10564 loc + 4);
10565
10566 if (! LOAD_INTERLOCKS_P (output_bfd))
10567 {
10568 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10569 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10570 }
10571 else
10572 {
10573 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10574 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10575 loc + 12);
10576 }
10577 }
10578
10579 /* Now the compressed entry. They come after any standard ones. */
10580 if (h->plt.plist->comp_offset != MINUS_ONE)
10581 {
10582 bfd_vma plt_offset;
10583
10584 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10585 + h->plt.plist->comp_offset);
10586
10587 BFD_ASSERT (plt_offset <= htab->splt->size);
10588
10589 /* Find out where the .plt entry should go. */
10590 loc = htab->splt->contents + plt_offset;
10591
10592 /* Fill in the PLT entry itself. */
10593 if (!MICROMIPS_P (output_bfd))
10594 {
10595 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10596
10597 bfd_put_16 (output_bfd, plt_entry[0], loc);
10598 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10599 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10600 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10601 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10602 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10603 bfd_put_32 (output_bfd, got_address, loc + 12);
10604 }
10605 else if (htab->insn32)
10606 {
10607 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10608
10609 bfd_put_16 (output_bfd, plt_entry[0], loc);
10610 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10611 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10612 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10613 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10614 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10615 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10616 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10617 }
10618 else
10619 {
10620 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10621 bfd_signed_vma gotpc_offset;
10622 bfd_vma loc_address;
10623
10624 BFD_ASSERT (got_address % 4 == 0);
10625
10626 loc_address = (htab->splt->output_section->vma
10627 + htab->splt->output_offset + plt_offset);
10628 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10629
10630 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10631 if (gotpc_offset + 0x1000000 >= 0x2000000)
10632 {
10633 (*_bfd_error_handler)
10634 (_("%B: `%A' offset of %ld from `%A' "
10635 "beyond the range of ADDIUPC"),
10636 output_bfd,
10637 htab->sgotplt->output_section,
10638 htab->splt->output_section,
10639 (long) gotpc_offset);
10640 bfd_set_error (bfd_error_no_error);
10641 return FALSE;
10642 }
10643 bfd_put_16 (output_bfd,
10644 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10645 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10646 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10647 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10648 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10649 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10650 }
10651 }
10652
10653 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10654 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10655 got_index - 2, h->dynindx,
10656 R_MIPS_JUMP_SLOT, got_address);
10657
10658 /* We distinguish between PLT entries and lazy-binding stubs by
10659 giving the former an st_other value of STO_MIPS_PLT. Set the
10660 flag and leave the value if there are any relocations in the
10661 binary where pointer equality matters. */
10662 sym->st_shndx = SHN_UNDEF;
10663 if (h->pointer_equality_needed)
10664 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10665 else
10666 {
10667 sym->st_value = 0;
10668 sym->st_other = 0;
10669 }
10670 }
10671
10672 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10673 {
10674 /* We've decided to create a lazy-binding stub. */
10675 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10676 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10677 bfd_vma stub_size = htab->function_stub_size;
10678 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10679 bfd_vma isa_bit = micromips_p;
10680 bfd_vma stub_big_size;
10681
10682 if (!micromips_p)
10683 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10684 else if (htab->insn32)
10685 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10686 else
10687 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10688
10689 /* This symbol has a stub. Set it up. */
10690
10691 BFD_ASSERT (h->dynindx != -1);
10692
10693 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10694
10695 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10696 sign extension at runtime in the stub, resulting in a negative
10697 index value. */
10698 if (h->dynindx & ~0x7fffffff)
10699 return FALSE;
10700
10701 /* Fill the stub. */
10702 if (micromips_p)
10703 {
10704 idx = 0;
10705 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10706 stub + idx);
10707 idx += 4;
10708 if (htab->insn32)
10709 {
10710 bfd_put_micromips_32 (output_bfd,
10711 STUB_MOVE32_MICROMIPS, stub + idx);
10712 idx += 4;
10713 }
10714 else
10715 {
10716 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10717 idx += 2;
10718 }
10719 if (stub_size == stub_big_size)
10720 {
10721 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10722
10723 bfd_put_micromips_32 (output_bfd,
10724 STUB_LUI_MICROMIPS (dynindx_hi),
10725 stub + idx);
10726 idx += 4;
10727 }
10728 if (htab->insn32)
10729 {
10730 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10731 stub + idx);
10732 idx += 4;
10733 }
10734 else
10735 {
10736 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10737 idx += 2;
10738 }
10739
10740 /* If a large stub is not required and sign extension is not a
10741 problem, then use legacy code in the stub. */
10742 if (stub_size == stub_big_size)
10743 bfd_put_micromips_32 (output_bfd,
10744 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10745 stub + idx);
10746 else if (h->dynindx & ~0x7fff)
10747 bfd_put_micromips_32 (output_bfd,
10748 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10749 stub + idx);
10750 else
10751 bfd_put_micromips_32 (output_bfd,
10752 STUB_LI16S_MICROMIPS (output_bfd,
10753 h->dynindx),
10754 stub + idx);
10755 }
10756 else
10757 {
10758 idx = 0;
10759 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10760 idx += 4;
10761 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10762 idx += 4;
10763 if (stub_size == stub_big_size)
10764 {
10765 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10766 stub + idx);
10767 idx += 4;
10768 }
10769 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10770 idx += 4;
10771
10772 /* If a large stub is not required and sign extension is not a
10773 problem, then use legacy code in the stub. */
10774 if (stub_size == stub_big_size)
10775 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10776 stub + idx);
10777 else if (h->dynindx & ~0x7fff)
10778 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10779 stub + idx);
10780 else
10781 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10782 stub + idx);
10783 }
10784
10785 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10786 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10787 stub, stub_size);
10788
10789 /* Mark the symbol as undefined. stub_offset != -1 occurs
10790 only for the referenced symbol. */
10791 sym->st_shndx = SHN_UNDEF;
10792
10793 /* The run-time linker uses the st_value field of the symbol
10794 to reset the global offset table entry for this external
10795 to its stub address when unlinking a shared object. */
10796 sym->st_value = (htab->sstubs->output_section->vma
10797 + htab->sstubs->output_offset
10798 + h->plt.plist->stub_offset
10799 + isa_bit);
10800 sym->st_other = other;
10801 }
10802
10803 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10804 refer to the stub, since only the stub uses the standard calling
10805 conventions. */
10806 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10807 {
10808 BFD_ASSERT (hmips->need_fn_stub);
10809 sym->st_value = (hmips->fn_stub->output_section->vma
10810 + hmips->fn_stub->output_offset);
10811 sym->st_size = hmips->fn_stub->size;
10812 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10813 }
10814
10815 BFD_ASSERT (h->dynindx != -1
10816 || h->forced_local);
10817
10818 sgot = htab->sgot;
10819 g = htab->got_info;
10820 BFD_ASSERT (g != NULL);
10821
10822 /* Run through the global symbol table, creating GOT entries for all
10823 the symbols that need them. */
10824 if (hmips->global_got_area != GGA_NONE)
10825 {
10826 bfd_vma offset;
10827 bfd_vma value;
10828
10829 value = sym->st_value;
10830 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10831 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10832 }
10833
10834 if (hmips->global_got_area != GGA_NONE && g->next)
10835 {
10836 struct mips_got_entry e, *p;
10837 bfd_vma entry;
10838 bfd_vma offset;
10839
10840 gg = g;
10841
10842 e.abfd = output_bfd;
10843 e.symndx = -1;
10844 e.d.h = hmips;
10845 e.tls_type = GOT_TLS_NONE;
10846
10847 for (g = g->next; g->next != gg; g = g->next)
10848 {
10849 if (g->got_entries
10850 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10851 &e)))
10852 {
10853 offset = p->gotidx;
10854 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10855 if (info->shared
10856 || (elf_hash_table (info)->dynamic_sections_created
10857 && p->d.h != NULL
10858 && p->d.h->root.def_dynamic
10859 && !p->d.h->root.def_regular))
10860 {
10861 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10862 the various compatibility problems, it's easier to mock
10863 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10864 mips_elf_create_dynamic_relocation to calculate the
10865 appropriate addend. */
10866 Elf_Internal_Rela rel[3];
10867
10868 memset (rel, 0, sizeof (rel));
10869 if (ABI_64_P (output_bfd))
10870 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10871 else
10872 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10873 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10874
10875 entry = 0;
10876 if (! (mips_elf_create_dynamic_relocation
10877 (output_bfd, info, rel,
10878 e.d.h, NULL, sym->st_value, &entry, sgot)))
10879 return FALSE;
10880 }
10881 else
10882 entry = sym->st_value;
10883 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10884 }
10885 }
10886 }
10887
10888 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10889 name = h->root.root.string;
10890 if (h == elf_hash_table (info)->hdynamic
10891 || h == elf_hash_table (info)->hgot)
10892 sym->st_shndx = SHN_ABS;
10893 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10894 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10895 {
10896 sym->st_shndx = SHN_ABS;
10897 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10898 sym->st_value = 1;
10899 }
10900 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10901 {
10902 sym->st_shndx = SHN_ABS;
10903 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10904 sym->st_value = elf_gp (output_bfd);
10905 }
10906 else if (SGI_COMPAT (output_bfd))
10907 {
10908 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10909 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10910 {
10911 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10912 sym->st_other = STO_PROTECTED;
10913 sym->st_value = 0;
10914 sym->st_shndx = SHN_MIPS_DATA;
10915 }
10916 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10917 {
10918 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10919 sym->st_other = STO_PROTECTED;
10920 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10921 sym->st_shndx = SHN_ABS;
10922 }
10923 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10924 {
10925 if (h->type == STT_FUNC)
10926 sym->st_shndx = SHN_MIPS_TEXT;
10927 else if (h->type == STT_OBJECT)
10928 sym->st_shndx = SHN_MIPS_DATA;
10929 }
10930 }
10931
10932 /* Emit a copy reloc, if needed. */
10933 if (h->needs_copy)
10934 {
10935 asection *s;
10936 bfd_vma symval;
10937
10938 BFD_ASSERT (h->dynindx != -1);
10939 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10940
10941 s = mips_elf_rel_dyn_section (info, FALSE);
10942 symval = (h->root.u.def.section->output_section->vma
10943 + h->root.u.def.section->output_offset
10944 + h->root.u.def.value);
10945 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10946 h->dynindx, R_MIPS_COPY, symval);
10947 }
10948
10949 /* Handle the IRIX6-specific symbols. */
10950 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10951 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10952
10953 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10954 to treat compressed symbols like any other. */
10955 if (ELF_ST_IS_MIPS16 (sym->st_other))
10956 {
10957 BFD_ASSERT (sym->st_value & 1);
10958 sym->st_other -= STO_MIPS16;
10959 }
10960 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10961 {
10962 BFD_ASSERT (sym->st_value & 1);
10963 sym->st_other -= STO_MICROMIPS;
10964 }
10965
10966 return TRUE;
10967 }
10968
10969 /* Likewise, for VxWorks. */
10970
10971 bfd_boolean
10972 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10973 struct bfd_link_info *info,
10974 struct elf_link_hash_entry *h,
10975 Elf_Internal_Sym *sym)
10976 {
10977 bfd *dynobj;
10978 asection *sgot;
10979 struct mips_got_info *g;
10980 struct mips_elf_link_hash_table *htab;
10981 struct mips_elf_link_hash_entry *hmips;
10982
10983 htab = mips_elf_hash_table (info);
10984 BFD_ASSERT (htab != NULL);
10985 dynobj = elf_hash_table (info)->dynobj;
10986 hmips = (struct mips_elf_link_hash_entry *) h;
10987
10988 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10989 {
10990 bfd_byte *loc;
10991 bfd_vma plt_address, got_address, got_offset, branch_offset;
10992 Elf_Internal_Rela rel;
10993 static const bfd_vma *plt_entry;
10994 bfd_vma gotplt_index;
10995 bfd_vma plt_offset;
10996
10997 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10998 gotplt_index = h->plt.plist->gotplt_index;
10999
11000 BFD_ASSERT (h->dynindx != -1);
11001 BFD_ASSERT (htab->splt != NULL);
11002 BFD_ASSERT (gotplt_index != MINUS_ONE);
11003 BFD_ASSERT (plt_offset <= htab->splt->size);
11004
11005 /* Calculate the address of the .plt entry. */
11006 plt_address = (htab->splt->output_section->vma
11007 + htab->splt->output_offset
11008 + plt_offset);
11009
11010 /* Calculate the address of the .got.plt entry. */
11011 got_address = (htab->sgotplt->output_section->vma
11012 + htab->sgotplt->output_offset
11013 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11014
11015 /* Calculate the offset of the .got.plt entry from
11016 _GLOBAL_OFFSET_TABLE_. */
11017 got_offset = mips_elf_gotplt_index (info, h);
11018
11019 /* Calculate the offset for the branch at the start of the PLT
11020 entry. The branch jumps to the beginning of .plt. */
11021 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11022
11023 /* Fill in the initial value of the .got.plt entry. */
11024 bfd_put_32 (output_bfd, plt_address,
11025 (htab->sgotplt->contents
11026 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11027
11028 /* Find out where the .plt entry should go. */
11029 loc = htab->splt->contents + plt_offset;
11030
11031 if (info->shared)
11032 {
11033 plt_entry = mips_vxworks_shared_plt_entry;
11034 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11035 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11036 }
11037 else
11038 {
11039 bfd_vma got_address_high, got_address_low;
11040
11041 plt_entry = mips_vxworks_exec_plt_entry;
11042 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11043 got_address_low = got_address & 0xffff;
11044
11045 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11046 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11047 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11048 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11049 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11050 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11051 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11052 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11053
11054 loc = (htab->srelplt2->contents
11055 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11056
11057 /* Emit a relocation for the .got.plt entry. */
11058 rel.r_offset = got_address;
11059 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11060 rel.r_addend = plt_offset;
11061 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11062
11063 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11064 loc += sizeof (Elf32_External_Rela);
11065 rel.r_offset = plt_address + 8;
11066 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11067 rel.r_addend = got_offset;
11068 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11069
11070 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11071 loc += sizeof (Elf32_External_Rela);
11072 rel.r_offset += 4;
11073 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11074 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11075 }
11076
11077 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11078 loc = (htab->srelplt->contents
11079 + gotplt_index * sizeof (Elf32_External_Rela));
11080 rel.r_offset = got_address;
11081 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11082 rel.r_addend = 0;
11083 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11084
11085 if (!h->def_regular)
11086 sym->st_shndx = SHN_UNDEF;
11087 }
11088
11089 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11090
11091 sgot = htab->sgot;
11092 g = htab->got_info;
11093 BFD_ASSERT (g != NULL);
11094
11095 /* See if this symbol has an entry in the GOT. */
11096 if (hmips->global_got_area != GGA_NONE)
11097 {
11098 bfd_vma offset;
11099 Elf_Internal_Rela outrel;
11100 bfd_byte *loc;
11101 asection *s;
11102
11103 /* Install the symbol value in the GOT. */
11104 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11105 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11106
11107 /* Add a dynamic relocation for it. */
11108 s = mips_elf_rel_dyn_section (info, FALSE);
11109 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11110 outrel.r_offset = (sgot->output_section->vma
11111 + sgot->output_offset
11112 + offset);
11113 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11114 outrel.r_addend = 0;
11115 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11116 }
11117
11118 /* Emit a copy reloc, if needed. */
11119 if (h->needs_copy)
11120 {
11121 Elf_Internal_Rela rel;
11122
11123 BFD_ASSERT (h->dynindx != -1);
11124
11125 rel.r_offset = (h->root.u.def.section->output_section->vma
11126 + h->root.u.def.section->output_offset
11127 + h->root.u.def.value);
11128 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11129 rel.r_addend = 0;
11130 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11131 htab->srelbss->contents
11132 + (htab->srelbss->reloc_count
11133 * sizeof (Elf32_External_Rela)));
11134 ++htab->srelbss->reloc_count;
11135 }
11136
11137 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11138 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11139 sym->st_value &= ~1;
11140
11141 return TRUE;
11142 }
11143
11144 /* Write out a plt0 entry to the beginning of .plt. */
11145
11146 static bfd_boolean
11147 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11148 {
11149 bfd_byte *loc;
11150 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11151 static const bfd_vma *plt_entry;
11152 struct mips_elf_link_hash_table *htab;
11153
11154 htab = mips_elf_hash_table (info);
11155 BFD_ASSERT (htab != NULL);
11156
11157 if (ABI_64_P (output_bfd))
11158 plt_entry = mips_n64_exec_plt0_entry;
11159 else if (ABI_N32_P (output_bfd))
11160 plt_entry = mips_n32_exec_plt0_entry;
11161 else if (!htab->plt_header_is_comp)
11162 plt_entry = mips_o32_exec_plt0_entry;
11163 else if (htab->insn32)
11164 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11165 else
11166 plt_entry = micromips_o32_exec_plt0_entry;
11167
11168 /* Calculate the value of .got.plt. */
11169 gotplt_value = (htab->sgotplt->output_section->vma
11170 + htab->sgotplt->output_offset);
11171 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11172 gotplt_value_low = gotplt_value & 0xffff;
11173
11174 /* The PLT sequence is not safe for N64 if .got.plt's address can
11175 not be loaded in two instructions. */
11176 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11177 || ~(gotplt_value | 0x7fffffff) == 0);
11178
11179 /* Install the PLT header. */
11180 loc = htab->splt->contents;
11181 if (plt_entry == micromips_o32_exec_plt0_entry)
11182 {
11183 bfd_vma gotpc_offset;
11184 bfd_vma loc_address;
11185 size_t i;
11186
11187 BFD_ASSERT (gotplt_value % 4 == 0);
11188
11189 loc_address = (htab->splt->output_section->vma
11190 + htab->splt->output_offset);
11191 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11192
11193 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11194 if (gotpc_offset + 0x1000000 >= 0x2000000)
11195 {
11196 (*_bfd_error_handler)
11197 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11198 output_bfd,
11199 htab->sgotplt->output_section,
11200 htab->splt->output_section,
11201 (long) gotpc_offset);
11202 bfd_set_error (bfd_error_no_error);
11203 return FALSE;
11204 }
11205 bfd_put_16 (output_bfd,
11206 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11207 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11208 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11209 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11210 }
11211 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11212 {
11213 size_t i;
11214
11215 bfd_put_16 (output_bfd, plt_entry[0], loc);
11216 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11217 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11218 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11219 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11220 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11221 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11222 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11223 }
11224 else
11225 {
11226 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11227 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11228 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11229 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11230 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11231 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11232 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11233 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11234 }
11235
11236 return TRUE;
11237 }
11238
11239 /* Install the PLT header for a VxWorks executable and finalize the
11240 contents of .rela.plt.unloaded. */
11241
11242 static void
11243 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11244 {
11245 Elf_Internal_Rela rela;
11246 bfd_byte *loc;
11247 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11248 static const bfd_vma *plt_entry;
11249 struct mips_elf_link_hash_table *htab;
11250
11251 htab = mips_elf_hash_table (info);
11252 BFD_ASSERT (htab != NULL);
11253
11254 plt_entry = mips_vxworks_exec_plt0_entry;
11255
11256 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11257 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11258 + htab->root.hgot->root.u.def.section->output_offset
11259 + htab->root.hgot->root.u.def.value);
11260
11261 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11262 got_value_low = got_value & 0xffff;
11263
11264 /* Calculate the address of the PLT header. */
11265 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11266
11267 /* Install the PLT header. */
11268 loc = htab->splt->contents;
11269 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11270 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11271 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11272 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11273 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11274 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11275
11276 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11277 loc = htab->srelplt2->contents;
11278 rela.r_offset = plt_address;
11279 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11280 rela.r_addend = 0;
11281 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11282 loc += sizeof (Elf32_External_Rela);
11283
11284 /* Output the relocation for the following addiu of
11285 %lo(_GLOBAL_OFFSET_TABLE_). */
11286 rela.r_offset += 4;
11287 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11288 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11289 loc += sizeof (Elf32_External_Rela);
11290
11291 /* Fix up the remaining relocations. They may have the wrong
11292 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11293 in which symbols were output. */
11294 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11295 {
11296 Elf_Internal_Rela rel;
11297
11298 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11299 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11300 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11301 loc += sizeof (Elf32_External_Rela);
11302
11303 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11304 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11305 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11306 loc += sizeof (Elf32_External_Rela);
11307
11308 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11309 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11310 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11311 loc += sizeof (Elf32_External_Rela);
11312 }
11313 }
11314
11315 /* Install the PLT header for a VxWorks shared library. */
11316
11317 static void
11318 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11319 {
11320 unsigned int i;
11321 struct mips_elf_link_hash_table *htab;
11322
11323 htab = mips_elf_hash_table (info);
11324 BFD_ASSERT (htab != NULL);
11325
11326 /* We just need to copy the entry byte-by-byte. */
11327 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11328 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11329 htab->splt->contents + i * 4);
11330 }
11331
11332 /* Finish up the dynamic sections. */
11333
11334 bfd_boolean
11335 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11336 struct bfd_link_info *info)
11337 {
11338 bfd *dynobj;
11339 asection *sdyn;
11340 asection *sgot;
11341 struct mips_got_info *gg, *g;
11342 struct mips_elf_link_hash_table *htab;
11343
11344 htab = mips_elf_hash_table (info);
11345 BFD_ASSERT (htab != NULL);
11346
11347 dynobj = elf_hash_table (info)->dynobj;
11348
11349 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11350
11351 sgot = htab->sgot;
11352 gg = htab->got_info;
11353
11354 if (elf_hash_table (info)->dynamic_sections_created)
11355 {
11356 bfd_byte *b;
11357 int dyn_to_skip = 0, dyn_skipped = 0;
11358
11359 BFD_ASSERT (sdyn != NULL);
11360 BFD_ASSERT (gg != NULL);
11361
11362 g = mips_elf_bfd_got (output_bfd, FALSE);
11363 BFD_ASSERT (g != NULL);
11364
11365 for (b = sdyn->contents;
11366 b < sdyn->contents + sdyn->size;
11367 b += MIPS_ELF_DYN_SIZE (dynobj))
11368 {
11369 Elf_Internal_Dyn dyn;
11370 const char *name;
11371 size_t elemsize;
11372 asection *s;
11373 bfd_boolean swap_out_p;
11374
11375 /* Read in the current dynamic entry. */
11376 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11377
11378 /* Assume that we're going to modify it and write it out. */
11379 swap_out_p = TRUE;
11380
11381 switch (dyn.d_tag)
11382 {
11383 case DT_RELENT:
11384 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11385 break;
11386
11387 case DT_RELAENT:
11388 BFD_ASSERT (htab->is_vxworks);
11389 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11390 break;
11391
11392 case DT_STRSZ:
11393 /* Rewrite DT_STRSZ. */
11394 dyn.d_un.d_val =
11395 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11396 break;
11397
11398 case DT_PLTGOT:
11399 s = htab->sgot;
11400 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11401 break;
11402
11403 case DT_MIPS_PLTGOT:
11404 s = htab->sgotplt;
11405 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11406 break;
11407
11408 case DT_MIPS_RLD_VERSION:
11409 dyn.d_un.d_val = 1; /* XXX */
11410 break;
11411
11412 case DT_MIPS_FLAGS:
11413 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11414 break;
11415
11416 case DT_MIPS_TIME_STAMP:
11417 {
11418 time_t t;
11419 time (&t);
11420 dyn.d_un.d_val = t;
11421 }
11422 break;
11423
11424 case DT_MIPS_ICHECKSUM:
11425 /* XXX FIXME: */
11426 swap_out_p = FALSE;
11427 break;
11428
11429 case DT_MIPS_IVERSION:
11430 /* XXX FIXME: */
11431 swap_out_p = FALSE;
11432 break;
11433
11434 case DT_MIPS_BASE_ADDRESS:
11435 s = output_bfd->sections;
11436 BFD_ASSERT (s != NULL);
11437 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11438 break;
11439
11440 case DT_MIPS_LOCAL_GOTNO:
11441 dyn.d_un.d_val = g->local_gotno;
11442 break;
11443
11444 case DT_MIPS_UNREFEXTNO:
11445 /* The index into the dynamic symbol table which is the
11446 entry of the first external symbol that is not
11447 referenced within the same object. */
11448 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11449 break;
11450
11451 case DT_MIPS_GOTSYM:
11452 if (htab->global_gotsym)
11453 {
11454 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11455 break;
11456 }
11457 /* In case if we don't have global got symbols we default
11458 to setting DT_MIPS_GOTSYM to the same value as
11459 DT_MIPS_SYMTABNO, so we just fall through. */
11460
11461 case DT_MIPS_SYMTABNO:
11462 name = ".dynsym";
11463 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11464 s = bfd_get_section_by_name (output_bfd, name);
11465
11466 if (s != NULL)
11467 dyn.d_un.d_val = s->size / elemsize;
11468 else
11469 dyn.d_un.d_val = 0;
11470 break;
11471
11472 case DT_MIPS_HIPAGENO:
11473 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11474 break;
11475
11476 case DT_MIPS_RLD_MAP:
11477 {
11478 struct elf_link_hash_entry *h;
11479 h = mips_elf_hash_table (info)->rld_symbol;
11480 if (!h)
11481 {
11482 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11483 swap_out_p = FALSE;
11484 break;
11485 }
11486 s = h->root.u.def.section;
11487
11488 /* The MIPS_RLD_MAP tag stores the absolute address of the
11489 debug pointer. */
11490 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11491 + h->root.u.def.value);
11492 }
11493 break;
11494
11495 case DT_MIPS_RLD_MAP_REL:
11496 {
11497 struct elf_link_hash_entry *h;
11498 bfd_vma dt_addr, rld_addr;
11499 h = mips_elf_hash_table (info)->rld_symbol;
11500 if (!h)
11501 {
11502 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11503 swap_out_p = FALSE;
11504 break;
11505 }
11506 s = h->root.u.def.section;
11507
11508 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11509 pointer, relative to the address of the tag. */
11510 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11511 + (b - sdyn->contents));
11512 rld_addr = (s->output_section->vma + s->output_offset
11513 + h->root.u.def.value);
11514 dyn.d_un.d_ptr = rld_addr - dt_addr;
11515 }
11516 break;
11517
11518 case DT_MIPS_OPTIONS:
11519 s = (bfd_get_section_by_name
11520 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11521 dyn.d_un.d_ptr = s->vma;
11522 break;
11523
11524 case DT_RELASZ:
11525 BFD_ASSERT (htab->is_vxworks);
11526 /* The count does not include the JUMP_SLOT relocations. */
11527 if (htab->srelplt)
11528 dyn.d_un.d_val -= htab->srelplt->size;
11529 break;
11530
11531 case DT_PLTREL:
11532 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11533 if (htab->is_vxworks)
11534 dyn.d_un.d_val = DT_RELA;
11535 else
11536 dyn.d_un.d_val = DT_REL;
11537 break;
11538
11539 case DT_PLTRELSZ:
11540 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11541 dyn.d_un.d_val = htab->srelplt->size;
11542 break;
11543
11544 case DT_JMPREL:
11545 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11546 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11547 + htab->srelplt->output_offset);
11548 break;
11549
11550 case DT_TEXTREL:
11551 /* If we didn't need any text relocations after all, delete
11552 the dynamic tag. */
11553 if (!(info->flags & DF_TEXTREL))
11554 {
11555 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11556 swap_out_p = FALSE;
11557 }
11558 break;
11559
11560 case DT_FLAGS:
11561 /* If we didn't need any text relocations after all, clear
11562 DF_TEXTREL from DT_FLAGS. */
11563 if (!(info->flags & DF_TEXTREL))
11564 dyn.d_un.d_val &= ~DF_TEXTREL;
11565 else
11566 swap_out_p = FALSE;
11567 break;
11568
11569 default:
11570 swap_out_p = FALSE;
11571 if (htab->is_vxworks
11572 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11573 swap_out_p = TRUE;
11574 break;
11575 }
11576
11577 if (swap_out_p || dyn_skipped)
11578 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11579 (dynobj, &dyn, b - dyn_skipped);
11580
11581 if (dyn_to_skip)
11582 {
11583 dyn_skipped += dyn_to_skip;
11584 dyn_to_skip = 0;
11585 }
11586 }
11587
11588 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11589 if (dyn_skipped > 0)
11590 memset (b - dyn_skipped, 0, dyn_skipped);
11591 }
11592
11593 if (sgot != NULL && sgot->size > 0
11594 && !bfd_is_abs_section (sgot->output_section))
11595 {
11596 if (htab->is_vxworks)
11597 {
11598 /* The first entry of the global offset table points to the
11599 ".dynamic" section. The second is initialized by the
11600 loader and contains the shared library identifier.
11601 The third is also initialized by the loader and points
11602 to the lazy resolution stub. */
11603 MIPS_ELF_PUT_WORD (output_bfd,
11604 sdyn->output_offset + sdyn->output_section->vma,
11605 sgot->contents);
11606 MIPS_ELF_PUT_WORD (output_bfd, 0,
11607 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11608 MIPS_ELF_PUT_WORD (output_bfd, 0,
11609 sgot->contents
11610 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11611 }
11612 else
11613 {
11614 /* The first entry of the global offset table will be filled at
11615 runtime. The second entry will be used by some runtime loaders.
11616 This isn't the case of IRIX rld. */
11617 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11618 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11619 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11620 }
11621
11622 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11623 = MIPS_ELF_GOT_SIZE (output_bfd);
11624 }
11625
11626 /* Generate dynamic relocations for the non-primary gots. */
11627 if (gg != NULL && gg->next)
11628 {
11629 Elf_Internal_Rela rel[3];
11630 bfd_vma addend = 0;
11631
11632 memset (rel, 0, sizeof (rel));
11633 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11634
11635 for (g = gg->next; g->next != gg; g = g->next)
11636 {
11637 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11638 + g->next->tls_gotno;
11639
11640 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11641 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11642 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11643 sgot->contents
11644 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11645
11646 if (! info->shared)
11647 continue;
11648
11649 for (; got_index < g->local_gotno; got_index++)
11650 {
11651 if (got_index >= g->assigned_low_gotno
11652 && got_index <= g->assigned_high_gotno)
11653 continue;
11654
11655 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11656 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11657 if (!(mips_elf_create_dynamic_relocation
11658 (output_bfd, info, rel, NULL,
11659 bfd_abs_section_ptr,
11660 0, &addend, sgot)))
11661 return FALSE;
11662 BFD_ASSERT (addend == 0);
11663 }
11664 }
11665 }
11666
11667 /* The generation of dynamic relocations for the non-primary gots
11668 adds more dynamic relocations. We cannot count them until
11669 here. */
11670
11671 if (elf_hash_table (info)->dynamic_sections_created)
11672 {
11673 bfd_byte *b;
11674 bfd_boolean swap_out_p;
11675
11676 BFD_ASSERT (sdyn != NULL);
11677
11678 for (b = sdyn->contents;
11679 b < sdyn->contents + sdyn->size;
11680 b += MIPS_ELF_DYN_SIZE (dynobj))
11681 {
11682 Elf_Internal_Dyn dyn;
11683 asection *s;
11684
11685 /* Read in the current dynamic entry. */
11686 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11687
11688 /* Assume that we're going to modify it and write it out. */
11689 swap_out_p = TRUE;
11690
11691 switch (dyn.d_tag)
11692 {
11693 case DT_RELSZ:
11694 /* Reduce DT_RELSZ to account for any relocations we
11695 decided not to make. This is for the n64 irix rld,
11696 which doesn't seem to apply any relocations if there
11697 are trailing null entries. */
11698 s = mips_elf_rel_dyn_section (info, FALSE);
11699 dyn.d_un.d_val = (s->reloc_count
11700 * (ABI_64_P (output_bfd)
11701 ? sizeof (Elf64_Mips_External_Rel)
11702 : sizeof (Elf32_External_Rel)));
11703 /* Adjust the section size too. Tools like the prelinker
11704 can reasonably expect the values to the same. */
11705 elf_section_data (s->output_section)->this_hdr.sh_size
11706 = dyn.d_un.d_val;
11707 break;
11708
11709 default:
11710 swap_out_p = FALSE;
11711 break;
11712 }
11713
11714 if (swap_out_p)
11715 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11716 (dynobj, &dyn, b);
11717 }
11718 }
11719
11720 {
11721 asection *s;
11722 Elf32_compact_rel cpt;
11723
11724 if (SGI_COMPAT (output_bfd))
11725 {
11726 /* Write .compact_rel section out. */
11727 s = bfd_get_linker_section (dynobj, ".compact_rel");
11728 if (s != NULL)
11729 {
11730 cpt.id1 = 1;
11731 cpt.num = s->reloc_count;
11732 cpt.id2 = 2;
11733 cpt.offset = (s->output_section->filepos
11734 + sizeof (Elf32_External_compact_rel));
11735 cpt.reserved0 = 0;
11736 cpt.reserved1 = 0;
11737 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11738 ((Elf32_External_compact_rel *)
11739 s->contents));
11740
11741 /* Clean up a dummy stub function entry in .text. */
11742 if (htab->sstubs != NULL)
11743 {
11744 file_ptr dummy_offset;
11745
11746 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11747 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11748 memset (htab->sstubs->contents + dummy_offset, 0,
11749 htab->function_stub_size);
11750 }
11751 }
11752 }
11753
11754 /* The psABI says that the dynamic relocations must be sorted in
11755 increasing order of r_symndx. The VxWorks EABI doesn't require
11756 this, and because the code below handles REL rather than RELA
11757 relocations, using it for VxWorks would be outright harmful. */
11758 if (!htab->is_vxworks)
11759 {
11760 s = mips_elf_rel_dyn_section (info, FALSE);
11761 if (s != NULL
11762 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11763 {
11764 reldyn_sorting_bfd = output_bfd;
11765
11766 if (ABI_64_P (output_bfd))
11767 qsort ((Elf64_External_Rel *) s->contents + 1,
11768 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11769 sort_dynamic_relocs_64);
11770 else
11771 qsort ((Elf32_External_Rel *) s->contents + 1,
11772 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11773 sort_dynamic_relocs);
11774 }
11775 }
11776 }
11777
11778 if (htab->splt && htab->splt->size > 0)
11779 {
11780 if (htab->is_vxworks)
11781 {
11782 if (info->shared)
11783 mips_vxworks_finish_shared_plt (output_bfd, info);
11784 else
11785 mips_vxworks_finish_exec_plt (output_bfd, info);
11786 }
11787 else
11788 {
11789 BFD_ASSERT (!info->shared);
11790 if (!mips_finish_exec_plt (output_bfd, info))
11791 return FALSE;
11792 }
11793 }
11794 return TRUE;
11795 }
11796
11797
11798 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11799
11800 static void
11801 mips_set_isa_flags (bfd *abfd)
11802 {
11803 flagword val;
11804
11805 switch (bfd_get_mach (abfd))
11806 {
11807 default:
11808 case bfd_mach_mips3000:
11809 val = E_MIPS_ARCH_1;
11810 break;
11811
11812 case bfd_mach_mips3900:
11813 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11814 break;
11815
11816 case bfd_mach_mips6000:
11817 val = E_MIPS_ARCH_2;
11818 break;
11819
11820 case bfd_mach_mips4000:
11821 case bfd_mach_mips4300:
11822 case bfd_mach_mips4400:
11823 case bfd_mach_mips4600:
11824 val = E_MIPS_ARCH_3;
11825 break;
11826
11827 case bfd_mach_mips4010:
11828 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11829 break;
11830
11831 case bfd_mach_mips4100:
11832 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11833 break;
11834
11835 case bfd_mach_mips4111:
11836 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11837 break;
11838
11839 case bfd_mach_mips4120:
11840 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11841 break;
11842
11843 case bfd_mach_mips4650:
11844 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11845 break;
11846
11847 case bfd_mach_mips5400:
11848 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11849 break;
11850
11851 case bfd_mach_mips5500:
11852 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11853 break;
11854
11855 case bfd_mach_mips5900:
11856 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11857 break;
11858
11859 case bfd_mach_mips9000:
11860 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11861 break;
11862
11863 case bfd_mach_mips5000:
11864 case bfd_mach_mips7000:
11865 case bfd_mach_mips8000:
11866 case bfd_mach_mips10000:
11867 case bfd_mach_mips12000:
11868 case bfd_mach_mips14000:
11869 case bfd_mach_mips16000:
11870 val = E_MIPS_ARCH_4;
11871 break;
11872
11873 case bfd_mach_mips5:
11874 val = E_MIPS_ARCH_5;
11875 break;
11876
11877 case bfd_mach_mips_loongson_2e:
11878 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11879 break;
11880
11881 case bfd_mach_mips_loongson_2f:
11882 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11883 break;
11884
11885 case bfd_mach_mips_sb1:
11886 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11887 break;
11888
11889 case bfd_mach_mips_loongson_3a:
11890 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11891 break;
11892
11893 case bfd_mach_mips_octeon:
11894 case bfd_mach_mips_octeonp:
11895 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11896 break;
11897
11898 case bfd_mach_mips_octeon3:
11899 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11900 break;
11901
11902 case bfd_mach_mips_xlr:
11903 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11904 break;
11905
11906 case bfd_mach_mips_octeon2:
11907 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11908 break;
11909
11910 case bfd_mach_mipsisa32:
11911 val = E_MIPS_ARCH_32;
11912 break;
11913
11914 case bfd_mach_mipsisa64:
11915 val = E_MIPS_ARCH_64;
11916 break;
11917
11918 case bfd_mach_mipsisa32r2:
11919 case bfd_mach_mipsisa32r3:
11920 case bfd_mach_mipsisa32r5:
11921 val = E_MIPS_ARCH_32R2;
11922 break;
11923
11924 case bfd_mach_mipsisa64r2:
11925 case bfd_mach_mipsisa64r3:
11926 case bfd_mach_mipsisa64r5:
11927 val = E_MIPS_ARCH_64R2;
11928 break;
11929
11930 case bfd_mach_mipsisa32r6:
11931 val = E_MIPS_ARCH_32R6;
11932 break;
11933
11934 case bfd_mach_mipsisa64r6:
11935 val = E_MIPS_ARCH_64R6;
11936 break;
11937 }
11938 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11939 elf_elfheader (abfd)->e_flags |= val;
11940
11941 }
11942
11943
11944 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11945 Don't do so for code sections. We want to keep ordering of HI16/LO16
11946 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
11947 relocs to be sorted. */
11948
11949 bfd_boolean
11950 _bfd_mips_elf_sort_relocs_p (asection *sec)
11951 {
11952 return (sec->flags & SEC_CODE) == 0;
11953 }
11954
11955
11956 /* The final processing done just before writing out a MIPS ELF object
11957 file. This gets the MIPS architecture right based on the machine
11958 number. This is used by both the 32-bit and the 64-bit ABI. */
11959
11960 void
11961 _bfd_mips_elf_final_write_processing (bfd *abfd,
11962 bfd_boolean linker ATTRIBUTE_UNUSED)
11963 {
11964 unsigned int i;
11965 Elf_Internal_Shdr **hdrpp;
11966 const char *name;
11967 asection *sec;
11968
11969 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11970 is nonzero. This is for compatibility with old objects, which used
11971 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11972 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11973 mips_set_isa_flags (abfd);
11974
11975 /* Set the sh_info field for .gptab sections and other appropriate
11976 info for each special section. */
11977 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11978 i < elf_numsections (abfd);
11979 i++, hdrpp++)
11980 {
11981 switch ((*hdrpp)->sh_type)
11982 {
11983 case SHT_MIPS_MSYM:
11984 case SHT_MIPS_LIBLIST:
11985 sec = bfd_get_section_by_name (abfd, ".dynstr");
11986 if (sec != NULL)
11987 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11988 break;
11989
11990 case SHT_MIPS_GPTAB:
11991 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11992 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11993 BFD_ASSERT (name != NULL
11994 && CONST_STRNEQ (name, ".gptab."));
11995 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11996 BFD_ASSERT (sec != NULL);
11997 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11998 break;
11999
12000 case SHT_MIPS_CONTENT:
12001 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12002 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12003 BFD_ASSERT (name != NULL
12004 && CONST_STRNEQ (name, ".MIPS.content"));
12005 sec = bfd_get_section_by_name (abfd,
12006 name + sizeof ".MIPS.content" - 1);
12007 BFD_ASSERT (sec != NULL);
12008 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12009 break;
12010
12011 case SHT_MIPS_SYMBOL_LIB:
12012 sec = bfd_get_section_by_name (abfd, ".dynsym");
12013 if (sec != NULL)
12014 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12015 sec = bfd_get_section_by_name (abfd, ".liblist");
12016 if (sec != NULL)
12017 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12018 break;
12019
12020 case SHT_MIPS_EVENTS:
12021 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12022 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12023 BFD_ASSERT (name != NULL);
12024 if (CONST_STRNEQ (name, ".MIPS.events"))
12025 sec = bfd_get_section_by_name (abfd,
12026 name + sizeof ".MIPS.events" - 1);
12027 else
12028 {
12029 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12030 sec = bfd_get_section_by_name (abfd,
12031 (name
12032 + sizeof ".MIPS.post_rel" - 1));
12033 }
12034 BFD_ASSERT (sec != NULL);
12035 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12036 break;
12037
12038 }
12039 }
12040 }
12041 \f
12042 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12043 segments. */
12044
12045 int
12046 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12047 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12048 {
12049 asection *s;
12050 int ret = 0;
12051
12052 /* See if we need a PT_MIPS_REGINFO segment. */
12053 s = bfd_get_section_by_name (abfd, ".reginfo");
12054 if (s && (s->flags & SEC_LOAD))
12055 ++ret;
12056
12057 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12058 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12059 ++ret;
12060
12061 /* See if we need a PT_MIPS_OPTIONS segment. */
12062 if (IRIX_COMPAT (abfd) == ict_irix6
12063 && bfd_get_section_by_name (abfd,
12064 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12065 ++ret;
12066
12067 /* See if we need a PT_MIPS_RTPROC segment. */
12068 if (IRIX_COMPAT (abfd) == ict_irix5
12069 && bfd_get_section_by_name (abfd, ".dynamic")
12070 && bfd_get_section_by_name (abfd, ".mdebug"))
12071 ++ret;
12072
12073 /* Allocate a PT_NULL header in dynamic objects. See
12074 _bfd_mips_elf_modify_segment_map for details. */
12075 if (!SGI_COMPAT (abfd)
12076 && bfd_get_section_by_name (abfd, ".dynamic"))
12077 ++ret;
12078
12079 return ret;
12080 }
12081
12082 /* Modify the segment map for an IRIX5 executable. */
12083
12084 bfd_boolean
12085 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12086 struct bfd_link_info *info)
12087 {
12088 asection *s;
12089 struct elf_segment_map *m, **pm;
12090 bfd_size_type amt;
12091
12092 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12093 segment. */
12094 s = bfd_get_section_by_name (abfd, ".reginfo");
12095 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12096 {
12097 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12098 if (m->p_type == PT_MIPS_REGINFO)
12099 break;
12100 if (m == NULL)
12101 {
12102 amt = sizeof *m;
12103 m = bfd_zalloc (abfd, amt);
12104 if (m == NULL)
12105 return FALSE;
12106
12107 m->p_type = PT_MIPS_REGINFO;
12108 m->count = 1;
12109 m->sections[0] = s;
12110
12111 /* We want to put it after the PHDR and INTERP segments. */
12112 pm = &elf_seg_map (abfd);
12113 while (*pm != NULL
12114 && ((*pm)->p_type == PT_PHDR
12115 || (*pm)->p_type == PT_INTERP))
12116 pm = &(*pm)->next;
12117
12118 m->next = *pm;
12119 *pm = m;
12120 }
12121 }
12122
12123 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12124 segment. */
12125 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12126 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12127 {
12128 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12129 if (m->p_type == PT_MIPS_ABIFLAGS)
12130 break;
12131 if (m == NULL)
12132 {
12133 amt = sizeof *m;
12134 m = bfd_zalloc (abfd, amt);
12135 if (m == NULL)
12136 return FALSE;
12137
12138 m->p_type = PT_MIPS_ABIFLAGS;
12139 m->count = 1;
12140 m->sections[0] = s;
12141
12142 /* We want to put it after the PHDR and INTERP segments. */
12143 pm = &elf_seg_map (abfd);
12144 while (*pm != NULL
12145 && ((*pm)->p_type == PT_PHDR
12146 || (*pm)->p_type == PT_INTERP))
12147 pm = &(*pm)->next;
12148
12149 m->next = *pm;
12150 *pm = m;
12151 }
12152 }
12153
12154 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12155 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12156 PT_MIPS_OPTIONS segment immediately following the program header
12157 table. */
12158 if (NEWABI_P (abfd)
12159 /* On non-IRIX6 new abi, we'll have already created a segment
12160 for this section, so don't create another. I'm not sure this
12161 is not also the case for IRIX 6, but I can't test it right
12162 now. */
12163 && IRIX_COMPAT (abfd) == ict_irix6)
12164 {
12165 for (s = abfd->sections; s; s = s->next)
12166 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12167 break;
12168
12169 if (s)
12170 {
12171 struct elf_segment_map *options_segment;
12172
12173 pm = &elf_seg_map (abfd);
12174 while (*pm != NULL
12175 && ((*pm)->p_type == PT_PHDR
12176 || (*pm)->p_type == PT_INTERP))
12177 pm = &(*pm)->next;
12178
12179 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12180 {
12181 amt = sizeof (struct elf_segment_map);
12182 options_segment = bfd_zalloc (abfd, amt);
12183 options_segment->next = *pm;
12184 options_segment->p_type = PT_MIPS_OPTIONS;
12185 options_segment->p_flags = PF_R;
12186 options_segment->p_flags_valid = TRUE;
12187 options_segment->count = 1;
12188 options_segment->sections[0] = s;
12189 *pm = options_segment;
12190 }
12191 }
12192 }
12193 else
12194 {
12195 if (IRIX_COMPAT (abfd) == ict_irix5)
12196 {
12197 /* If there are .dynamic and .mdebug sections, we make a room
12198 for the RTPROC header. FIXME: Rewrite without section names. */
12199 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12200 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12201 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12202 {
12203 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12204 if (m->p_type == PT_MIPS_RTPROC)
12205 break;
12206 if (m == NULL)
12207 {
12208 amt = sizeof *m;
12209 m = bfd_zalloc (abfd, amt);
12210 if (m == NULL)
12211 return FALSE;
12212
12213 m->p_type = PT_MIPS_RTPROC;
12214
12215 s = bfd_get_section_by_name (abfd, ".rtproc");
12216 if (s == NULL)
12217 {
12218 m->count = 0;
12219 m->p_flags = 0;
12220 m->p_flags_valid = 1;
12221 }
12222 else
12223 {
12224 m->count = 1;
12225 m->sections[0] = s;
12226 }
12227
12228 /* We want to put it after the DYNAMIC segment. */
12229 pm = &elf_seg_map (abfd);
12230 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12231 pm = &(*pm)->next;
12232 if (*pm != NULL)
12233 pm = &(*pm)->next;
12234
12235 m->next = *pm;
12236 *pm = m;
12237 }
12238 }
12239 }
12240 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12241 .dynstr, .dynsym, and .hash sections, and everything in
12242 between. */
12243 for (pm = &elf_seg_map (abfd); *pm != NULL;
12244 pm = &(*pm)->next)
12245 if ((*pm)->p_type == PT_DYNAMIC)
12246 break;
12247 m = *pm;
12248 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12249 glibc's dynamic linker has traditionally derived the number of
12250 tags from the p_filesz field, and sometimes allocates stack
12251 arrays of that size. An overly-big PT_DYNAMIC segment can
12252 be actively harmful in such cases. Making PT_DYNAMIC contain
12253 other sections can also make life hard for the prelinker,
12254 which might move one of the other sections to a different
12255 PT_LOAD segment. */
12256 if (SGI_COMPAT (abfd)
12257 && m != NULL
12258 && m->count == 1
12259 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12260 {
12261 static const char *sec_names[] =
12262 {
12263 ".dynamic", ".dynstr", ".dynsym", ".hash"
12264 };
12265 bfd_vma low, high;
12266 unsigned int i, c;
12267 struct elf_segment_map *n;
12268
12269 low = ~(bfd_vma) 0;
12270 high = 0;
12271 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12272 {
12273 s = bfd_get_section_by_name (abfd, sec_names[i]);
12274 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12275 {
12276 bfd_size_type sz;
12277
12278 if (low > s->vma)
12279 low = s->vma;
12280 sz = s->size;
12281 if (high < s->vma + sz)
12282 high = s->vma + sz;
12283 }
12284 }
12285
12286 c = 0;
12287 for (s = abfd->sections; s != NULL; s = s->next)
12288 if ((s->flags & SEC_LOAD) != 0
12289 && s->vma >= low
12290 && s->vma + s->size <= high)
12291 ++c;
12292
12293 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12294 n = bfd_zalloc (abfd, amt);
12295 if (n == NULL)
12296 return FALSE;
12297 *n = *m;
12298 n->count = c;
12299
12300 i = 0;
12301 for (s = abfd->sections; s != NULL; s = s->next)
12302 {
12303 if ((s->flags & SEC_LOAD) != 0
12304 && s->vma >= low
12305 && s->vma + s->size <= high)
12306 {
12307 n->sections[i] = s;
12308 ++i;
12309 }
12310 }
12311
12312 *pm = n;
12313 }
12314 }
12315
12316 /* Allocate a spare program header in dynamic objects so that tools
12317 like the prelinker can add an extra PT_LOAD entry.
12318
12319 If the prelinker needs to make room for a new PT_LOAD entry, its
12320 standard procedure is to move the first (read-only) sections into
12321 the new (writable) segment. However, the MIPS ABI requires
12322 .dynamic to be in a read-only segment, and the section will often
12323 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12324
12325 Although the prelinker could in principle move .dynamic to a
12326 writable segment, it seems better to allocate a spare program
12327 header instead, and avoid the need to move any sections.
12328 There is a long tradition of allocating spare dynamic tags,
12329 so allocating a spare program header seems like a natural
12330 extension.
12331
12332 If INFO is NULL, we may be copying an already prelinked binary
12333 with objcopy or strip, so do not add this header. */
12334 if (info != NULL
12335 && !SGI_COMPAT (abfd)
12336 && bfd_get_section_by_name (abfd, ".dynamic"))
12337 {
12338 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12339 if ((*pm)->p_type == PT_NULL)
12340 break;
12341 if (*pm == NULL)
12342 {
12343 m = bfd_zalloc (abfd, sizeof (*m));
12344 if (m == NULL)
12345 return FALSE;
12346
12347 m->p_type = PT_NULL;
12348 *pm = m;
12349 }
12350 }
12351
12352 return TRUE;
12353 }
12354 \f
12355 /* Return the section that should be marked against GC for a given
12356 relocation. */
12357
12358 asection *
12359 _bfd_mips_elf_gc_mark_hook (asection *sec,
12360 struct bfd_link_info *info,
12361 Elf_Internal_Rela *rel,
12362 struct elf_link_hash_entry *h,
12363 Elf_Internal_Sym *sym)
12364 {
12365 /* ??? Do mips16 stub sections need to be handled special? */
12366
12367 if (h != NULL)
12368 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12369 {
12370 case R_MIPS_GNU_VTINHERIT:
12371 case R_MIPS_GNU_VTENTRY:
12372 return NULL;
12373 }
12374
12375 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12376 }
12377
12378 /* Update the got entry reference counts for the section being removed. */
12379
12380 bfd_boolean
12381 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12382 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12383 asection *sec ATTRIBUTE_UNUSED,
12384 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12385 {
12386 #if 0
12387 Elf_Internal_Shdr *symtab_hdr;
12388 struct elf_link_hash_entry **sym_hashes;
12389 bfd_signed_vma *local_got_refcounts;
12390 const Elf_Internal_Rela *rel, *relend;
12391 unsigned long r_symndx;
12392 struct elf_link_hash_entry *h;
12393
12394 if (info->relocatable)
12395 return TRUE;
12396
12397 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12398 sym_hashes = elf_sym_hashes (abfd);
12399 local_got_refcounts = elf_local_got_refcounts (abfd);
12400
12401 relend = relocs + sec->reloc_count;
12402 for (rel = relocs; rel < relend; rel++)
12403 switch (ELF_R_TYPE (abfd, rel->r_info))
12404 {
12405 case R_MIPS16_GOT16:
12406 case R_MIPS16_CALL16:
12407 case R_MIPS_GOT16:
12408 case R_MIPS_CALL16:
12409 case R_MIPS_CALL_HI16:
12410 case R_MIPS_CALL_LO16:
12411 case R_MIPS_GOT_HI16:
12412 case R_MIPS_GOT_LO16:
12413 case R_MIPS_GOT_DISP:
12414 case R_MIPS_GOT_PAGE:
12415 case R_MIPS_GOT_OFST:
12416 case R_MICROMIPS_GOT16:
12417 case R_MICROMIPS_CALL16:
12418 case R_MICROMIPS_CALL_HI16:
12419 case R_MICROMIPS_CALL_LO16:
12420 case R_MICROMIPS_GOT_HI16:
12421 case R_MICROMIPS_GOT_LO16:
12422 case R_MICROMIPS_GOT_DISP:
12423 case R_MICROMIPS_GOT_PAGE:
12424 case R_MICROMIPS_GOT_OFST:
12425 /* ??? It would seem that the existing MIPS code does no sort
12426 of reference counting or whatnot on its GOT and PLT entries,
12427 so it is not possible to garbage collect them at this time. */
12428 break;
12429
12430 default:
12431 break;
12432 }
12433 #endif
12434
12435 return TRUE;
12436 }
12437
12438 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12439
12440 bfd_boolean
12441 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12442 elf_gc_mark_hook_fn gc_mark_hook)
12443 {
12444 bfd *sub;
12445
12446 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12447
12448 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12449 {
12450 asection *o;
12451
12452 if (! is_mips_elf (sub))
12453 continue;
12454
12455 for (o = sub->sections; o != NULL; o = o->next)
12456 if (!o->gc_mark
12457 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12458 (bfd_get_section_name (sub, o)))
12459 {
12460 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12461 return FALSE;
12462 }
12463 }
12464
12465 return TRUE;
12466 }
12467 \f
12468 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12469 hiding the old indirect symbol. Process additional relocation
12470 information. Also called for weakdefs, in which case we just let
12471 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12472
12473 void
12474 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12475 struct elf_link_hash_entry *dir,
12476 struct elf_link_hash_entry *ind)
12477 {
12478 struct mips_elf_link_hash_entry *dirmips, *indmips;
12479
12480 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12481
12482 dirmips = (struct mips_elf_link_hash_entry *) dir;
12483 indmips = (struct mips_elf_link_hash_entry *) ind;
12484 /* Any absolute non-dynamic relocations against an indirect or weak
12485 definition will be against the target symbol. */
12486 if (indmips->has_static_relocs)
12487 dirmips->has_static_relocs = TRUE;
12488
12489 if (ind->root.type != bfd_link_hash_indirect)
12490 return;
12491
12492 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12493 if (indmips->readonly_reloc)
12494 dirmips->readonly_reloc = TRUE;
12495 if (indmips->no_fn_stub)
12496 dirmips->no_fn_stub = TRUE;
12497 if (indmips->fn_stub)
12498 {
12499 dirmips->fn_stub = indmips->fn_stub;
12500 indmips->fn_stub = NULL;
12501 }
12502 if (indmips->need_fn_stub)
12503 {
12504 dirmips->need_fn_stub = TRUE;
12505 indmips->need_fn_stub = FALSE;
12506 }
12507 if (indmips->call_stub)
12508 {
12509 dirmips->call_stub = indmips->call_stub;
12510 indmips->call_stub = NULL;
12511 }
12512 if (indmips->call_fp_stub)
12513 {
12514 dirmips->call_fp_stub = indmips->call_fp_stub;
12515 indmips->call_fp_stub = NULL;
12516 }
12517 if (indmips->global_got_area < dirmips->global_got_area)
12518 dirmips->global_got_area = indmips->global_got_area;
12519 if (indmips->global_got_area < GGA_NONE)
12520 indmips->global_got_area = GGA_NONE;
12521 if (indmips->has_nonpic_branches)
12522 dirmips->has_nonpic_branches = TRUE;
12523 }
12524 \f
12525 #define PDR_SIZE 32
12526
12527 bfd_boolean
12528 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12529 struct bfd_link_info *info)
12530 {
12531 asection *o;
12532 bfd_boolean ret = FALSE;
12533 unsigned char *tdata;
12534 size_t i, skip;
12535
12536 o = bfd_get_section_by_name (abfd, ".pdr");
12537 if (! o)
12538 return FALSE;
12539 if (o->size == 0)
12540 return FALSE;
12541 if (o->size % PDR_SIZE != 0)
12542 return FALSE;
12543 if (o->output_section != NULL
12544 && bfd_is_abs_section (o->output_section))
12545 return FALSE;
12546
12547 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12548 if (! tdata)
12549 return FALSE;
12550
12551 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12552 info->keep_memory);
12553 if (!cookie->rels)
12554 {
12555 free (tdata);
12556 return FALSE;
12557 }
12558
12559 cookie->rel = cookie->rels;
12560 cookie->relend = cookie->rels + o->reloc_count;
12561
12562 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12563 {
12564 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12565 {
12566 tdata[i] = 1;
12567 skip ++;
12568 }
12569 }
12570
12571 if (skip != 0)
12572 {
12573 mips_elf_section_data (o)->u.tdata = tdata;
12574 if (o->rawsize == 0)
12575 o->rawsize = o->size;
12576 o->size -= skip * PDR_SIZE;
12577 ret = TRUE;
12578 }
12579 else
12580 free (tdata);
12581
12582 if (! info->keep_memory)
12583 free (cookie->rels);
12584
12585 return ret;
12586 }
12587
12588 bfd_boolean
12589 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12590 {
12591 if (strcmp (sec->name, ".pdr") == 0)
12592 return TRUE;
12593 return FALSE;
12594 }
12595
12596 bfd_boolean
12597 _bfd_mips_elf_write_section (bfd *output_bfd,
12598 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12599 asection *sec, bfd_byte *contents)
12600 {
12601 bfd_byte *to, *from, *end;
12602 int i;
12603
12604 if (strcmp (sec->name, ".pdr") != 0)
12605 return FALSE;
12606
12607 if (mips_elf_section_data (sec)->u.tdata == NULL)
12608 return FALSE;
12609
12610 to = contents;
12611 end = contents + sec->size;
12612 for (from = contents, i = 0;
12613 from < end;
12614 from += PDR_SIZE, i++)
12615 {
12616 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12617 continue;
12618 if (to != from)
12619 memcpy (to, from, PDR_SIZE);
12620 to += PDR_SIZE;
12621 }
12622 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12623 sec->output_offset, sec->size);
12624 return TRUE;
12625 }
12626 \f
12627 /* microMIPS code retains local labels for linker relaxation. Omit them
12628 from output by default for clarity. */
12629
12630 bfd_boolean
12631 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12632 {
12633 return _bfd_elf_is_local_label_name (abfd, sym->name);
12634 }
12635
12636 /* MIPS ELF uses a special find_nearest_line routine in order the
12637 handle the ECOFF debugging information. */
12638
12639 struct mips_elf_find_line
12640 {
12641 struct ecoff_debug_info d;
12642 struct ecoff_find_line i;
12643 };
12644
12645 bfd_boolean
12646 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12647 asection *section, bfd_vma offset,
12648 const char **filename_ptr,
12649 const char **functionname_ptr,
12650 unsigned int *line_ptr,
12651 unsigned int *discriminator_ptr)
12652 {
12653 asection *msec;
12654
12655 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12656 filename_ptr, functionname_ptr,
12657 line_ptr, discriminator_ptr,
12658 dwarf_debug_sections,
12659 ABI_64_P (abfd) ? 8 : 0,
12660 &elf_tdata (abfd)->dwarf2_find_line_info))
12661 return TRUE;
12662
12663 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12664 filename_ptr, functionname_ptr,
12665 line_ptr))
12666 return TRUE;
12667
12668 msec = bfd_get_section_by_name (abfd, ".mdebug");
12669 if (msec != NULL)
12670 {
12671 flagword origflags;
12672 struct mips_elf_find_line *fi;
12673 const struct ecoff_debug_swap * const swap =
12674 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12675
12676 /* If we are called during a link, mips_elf_final_link may have
12677 cleared the SEC_HAS_CONTENTS field. We force it back on here
12678 if appropriate (which it normally will be). */
12679 origflags = msec->flags;
12680 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12681 msec->flags |= SEC_HAS_CONTENTS;
12682
12683 fi = mips_elf_tdata (abfd)->find_line_info;
12684 if (fi == NULL)
12685 {
12686 bfd_size_type external_fdr_size;
12687 char *fraw_src;
12688 char *fraw_end;
12689 struct fdr *fdr_ptr;
12690 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12691
12692 fi = bfd_zalloc (abfd, amt);
12693 if (fi == NULL)
12694 {
12695 msec->flags = origflags;
12696 return FALSE;
12697 }
12698
12699 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12700 {
12701 msec->flags = origflags;
12702 return FALSE;
12703 }
12704
12705 /* Swap in the FDR information. */
12706 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12707 fi->d.fdr = bfd_alloc (abfd, amt);
12708 if (fi->d.fdr == NULL)
12709 {
12710 msec->flags = origflags;
12711 return FALSE;
12712 }
12713 external_fdr_size = swap->external_fdr_size;
12714 fdr_ptr = fi->d.fdr;
12715 fraw_src = (char *) fi->d.external_fdr;
12716 fraw_end = (fraw_src
12717 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12718 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12719 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12720
12721 mips_elf_tdata (abfd)->find_line_info = fi;
12722
12723 /* Note that we don't bother to ever free this information.
12724 find_nearest_line is either called all the time, as in
12725 objdump -l, so the information should be saved, or it is
12726 rarely called, as in ld error messages, so the memory
12727 wasted is unimportant. Still, it would probably be a
12728 good idea for free_cached_info to throw it away. */
12729 }
12730
12731 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12732 &fi->i, filename_ptr, functionname_ptr,
12733 line_ptr))
12734 {
12735 msec->flags = origflags;
12736 return TRUE;
12737 }
12738
12739 msec->flags = origflags;
12740 }
12741
12742 /* Fall back on the generic ELF find_nearest_line routine. */
12743
12744 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12745 filename_ptr, functionname_ptr,
12746 line_ptr, discriminator_ptr);
12747 }
12748
12749 bfd_boolean
12750 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12751 const char **filename_ptr,
12752 const char **functionname_ptr,
12753 unsigned int *line_ptr)
12754 {
12755 bfd_boolean found;
12756 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12757 functionname_ptr, line_ptr,
12758 & elf_tdata (abfd)->dwarf2_find_line_info);
12759 return found;
12760 }
12761
12762 \f
12763 /* When are writing out the .options or .MIPS.options section,
12764 remember the bytes we are writing out, so that we can install the
12765 GP value in the section_processing routine. */
12766
12767 bfd_boolean
12768 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12769 const void *location,
12770 file_ptr offset, bfd_size_type count)
12771 {
12772 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12773 {
12774 bfd_byte *c;
12775
12776 if (elf_section_data (section) == NULL)
12777 {
12778 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12779 section->used_by_bfd = bfd_zalloc (abfd, amt);
12780 if (elf_section_data (section) == NULL)
12781 return FALSE;
12782 }
12783 c = mips_elf_section_data (section)->u.tdata;
12784 if (c == NULL)
12785 {
12786 c = bfd_zalloc (abfd, section->size);
12787 if (c == NULL)
12788 return FALSE;
12789 mips_elf_section_data (section)->u.tdata = c;
12790 }
12791
12792 memcpy (c + offset, location, count);
12793 }
12794
12795 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12796 count);
12797 }
12798
12799 /* This is almost identical to bfd_generic_get_... except that some
12800 MIPS relocations need to be handled specially. Sigh. */
12801
12802 bfd_byte *
12803 _bfd_elf_mips_get_relocated_section_contents
12804 (bfd *abfd,
12805 struct bfd_link_info *link_info,
12806 struct bfd_link_order *link_order,
12807 bfd_byte *data,
12808 bfd_boolean relocatable,
12809 asymbol **symbols)
12810 {
12811 /* Get enough memory to hold the stuff */
12812 bfd *input_bfd = link_order->u.indirect.section->owner;
12813 asection *input_section = link_order->u.indirect.section;
12814 bfd_size_type sz;
12815
12816 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12817 arelent **reloc_vector = NULL;
12818 long reloc_count;
12819
12820 if (reloc_size < 0)
12821 goto error_return;
12822
12823 reloc_vector = bfd_malloc (reloc_size);
12824 if (reloc_vector == NULL && reloc_size != 0)
12825 goto error_return;
12826
12827 /* read in the section */
12828 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12829 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12830 goto error_return;
12831
12832 reloc_count = bfd_canonicalize_reloc (input_bfd,
12833 input_section,
12834 reloc_vector,
12835 symbols);
12836 if (reloc_count < 0)
12837 goto error_return;
12838
12839 if (reloc_count > 0)
12840 {
12841 arelent **parent;
12842 /* for mips */
12843 int gp_found;
12844 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12845
12846 {
12847 struct bfd_hash_entry *h;
12848 struct bfd_link_hash_entry *lh;
12849 /* Skip all this stuff if we aren't mixing formats. */
12850 if (abfd && input_bfd
12851 && abfd->xvec == input_bfd->xvec)
12852 lh = 0;
12853 else
12854 {
12855 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12856 lh = (struct bfd_link_hash_entry *) h;
12857 }
12858 lookup:
12859 if (lh)
12860 {
12861 switch (lh->type)
12862 {
12863 case bfd_link_hash_undefined:
12864 case bfd_link_hash_undefweak:
12865 case bfd_link_hash_common:
12866 gp_found = 0;
12867 break;
12868 case bfd_link_hash_defined:
12869 case bfd_link_hash_defweak:
12870 gp_found = 1;
12871 gp = lh->u.def.value;
12872 break;
12873 case bfd_link_hash_indirect:
12874 case bfd_link_hash_warning:
12875 lh = lh->u.i.link;
12876 /* @@FIXME ignoring warning for now */
12877 goto lookup;
12878 case bfd_link_hash_new:
12879 default:
12880 abort ();
12881 }
12882 }
12883 else
12884 gp_found = 0;
12885 }
12886 /* end mips */
12887 for (parent = reloc_vector; *parent != NULL; parent++)
12888 {
12889 char *error_message = NULL;
12890 bfd_reloc_status_type r;
12891
12892 /* Specific to MIPS: Deal with relocation types that require
12893 knowing the gp of the output bfd. */
12894 asymbol *sym = *(*parent)->sym_ptr_ptr;
12895
12896 /* If we've managed to find the gp and have a special
12897 function for the relocation then go ahead, else default
12898 to the generic handling. */
12899 if (gp_found
12900 && (*parent)->howto->special_function
12901 == _bfd_mips_elf32_gprel16_reloc)
12902 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12903 input_section, relocatable,
12904 data, gp);
12905 else
12906 r = bfd_perform_relocation (input_bfd, *parent, data,
12907 input_section,
12908 relocatable ? abfd : NULL,
12909 &error_message);
12910
12911 if (relocatable)
12912 {
12913 asection *os = input_section->output_section;
12914
12915 /* A partial link, so keep the relocs */
12916 os->orelocation[os->reloc_count] = *parent;
12917 os->reloc_count++;
12918 }
12919
12920 if (r != bfd_reloc_ok)
12921 {
12922 switch (r)
12923 {
12924 case bfd_reloc_undefined:
12925 if (!((*link_info->callbacks->undefined_symbol)
12926 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12927 input_bfd, input_section, (*parent)->address, TRUE)))
12928 goto error_return;
12929 break;
12930 case bfd_reloc_dangerous:
12931 BFD_ASSERT (error_message != NULL);
12932 if (!((*link_info->callbacks->reloc_dangerous)
12933 (link_info, error_message, input_bfd, input_section,
12934 (*parent)->address)))
12935 goto error_return;
12936 break;
12937 case bfd_reloc_overflow:
12938 if (!((*link_info->callbacks->reloc_overflow)
12939 (link_info, NULL,
12940 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12941 (*parent)->howto->name, (*parent)->addend,
12942 input_bfd, input_section, (*parent)->address)))
12943 goto error_return;
12944 break;
12945 case bfd_reloc_outofrange:
12946 default:
12947 abort ();
12948 break;
12949 }
12950
12951 }
12952 }
12953 }
12954 if (reloc_vector != NULL)
12955 free (reloc_vector);
12956 return data;
12957
12958 error_return:
12959 if (reloc_vector != NULL)
12960 free (reloc_vector);
12961 return NULL;
12962 }
12963 \f
12964 static bfd_boolean
12965 mips_elf_relax_delete_bytes (bfd *abfd,
12966 asection *sec, bfd_vma addr, int count)
12967 {
12968 Elf_Internal_Shdr *symtab_hdr;
12969 unsigned int sec_shndx;
12970 bfd_byte *contents;
12971 Elf_Internal_Rela *irel, *irelend;
12972 Elf_Internal_Sym *isym;
12973 Elf_Internal_Sym *isymend;
12974 struct elf_link_hash_entry **sym_hashes;
12975 struct elf_link_hash_entry **end_hashes;
12976 struct elf_link_hash_entry **start_hashes;
12977 unsigned int symcount;
12978
12979 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12980 contents = elf_section_data (sec)->this_hdr.contents;
12981
12982 irel = elf_section_data (sec)->relocs;
12983 irelend = irel + sec->reloc_count;
12984
12985 /* Actually delete the bytes. */
12986 memmove (contents + addr, contents + addr + count,
12987 (size_t) (sec->size - addr - count));
12988 sec->size -= count;
12989
12990 /* Adjust all the relocs. */
12991 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12992 {
12993 /* Get the new reloc address. */
12994 if (irel->r_offset > addr)
12995 irel->r_offset -= count;
12996 }
12997
12998 BFD_ASSERT (addr % 2 == 0);
12999 BFD_ASSERT (count % 2 == 0);
13000
13001 /* Adjust the local symbols defined in this section. */
13002 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13003 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13004 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13005 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13006 isym->st_value -= count;
13007
13008 /* Now adjust the global symbols defined in this section. */
13009 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13010 - symtab_hdr->sh_info);
13011 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13012 end_hashes = sym_hashes + symcount;
13013
13014 for (; sym_hashes < end_hashes; sym_hashes++)
13015 {
13016 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13017
13018 if ((sym_hash->root.type == bfd_link_hash_defined
13019 || sym_hash->root.type == bfd_link_hash_defweak)
13020 && sym_hash->root.u.def.section == sec)
13021 {
13022 bfd_vma value = sym_hash->root.u.def.value;
13023
13024 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13025 value &= MINUS_TWO;
13026 if (value > addr)
13027 sym_hash->root.u.def.value -= count;
13028 }
13029 }
13030
13031 return TRUE;
13032 }
13033
13034
13035 /* Opcodes needed for microMIPS relaxation as found in
13036 opcodes/micromips-opc.c. */
13037
13038 struct opcode_descriptor {
13039 unsigned long match;
13040 unsigned long mask;
13041 };
13042
13043 /* The $ra register aka $31. */
13044
13045 #define RA 31
13046
13047 /* 32-bit instruction format register fields. */
13048
13049 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13050 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13051
13052 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13053
13054 #define OP16_VALID_REG(r) \
13055 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13056
13057
13058 /* 32-bit and 16-bit branches. */
13059
13060 static const struct opcode_descriptor b_insns_32[] = {
13061 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13062 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13063 { 0, 0 } /* End marker for find_match(). */
13064 };
13065
13066 static const struct opcode_descriptor bc_insn_32 =
13067 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13068
13069 static const struct opcode_descriptor bz_insn_32 =
13070 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13071
13072 static const struct opcode_descriptor bzal_insn_32 =
13073 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13074
13075 static const struct opcode_descriptor beq_insn_32 =
13076 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13077
13078 static const struct opcode_descriptor b_insn_16 =
13079 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13080
13081 static const struct opcode_descriptor bz_insn_16 =
13082 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13083
13084
13085 /* 32-bit and 16-bit branch EQ and NE zero. */
13086
13087 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13088 eq and second the ne. This convention is used when replacing a
13089 32-bit BEQ/BNE with the 16-bit version. */
13090
13091 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13092
13093 static const struct opcode_descriptor bz_rs_insns_32[] = {
13094 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13095 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13096 { 0, 0 } /* End marker for find_match(). */
13097 };
13098
13099 static const struct opcode_descriptor bz_rt_insns_32[] = {
13100 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13101 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13102 { 0, 0 } /* End marker for find_match(). */
13103 };
13104
13105 static const struct opcode_descriptor bzc_insns_32[] = {
13106 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13107 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13108 { 0, 0 } /* End marker for find_match(). */
13109 };
13110
13111 static const struct opcode_descriptor bz_insns_16[] = {
13112 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13113 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13114 { 0, 0 } /* End marker for find_match(). */
13115 };
13116
13117 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13118
13119 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
13120 #define BZ16_REG_FIELD(r) \
13121 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
13122
13123
13124 /* 32-bit instructions with a delay slot. */
13125
13126 static const struct opcode_descriptor jal_insn_32_bd16 =
13127 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13128
13129 static const struct opcode_descriptor jal_insn_32_bd32 =
13130 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13131
13132 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13133 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13134
13135 static const struct opcode_descriptor j_insn_32 =
13136 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13137
13138 static const struct opcode_descriptor jalr_insn_32 =
13139 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13140
13141 /* This table can be compacted, because no opcode replacement is made. */
13142
13143 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13144 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13145
13146 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13147 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13148
13149 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13150 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13151 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13152 { 0, 0 } /* End marker for find_match(). */
13153 };
13154
13155 /* This table can be compacted, because no opcode replacement is made. */
13156
13157 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13158 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13159
13160 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13161 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13162 { 0, 0 } /* End marker for find_match(). */
13163 };
13164
13165
13166 /* 16-bit instructions with a delay slot. */
13167
13168 static const struct opcode_descriptor jalr_insn_16_bd16 =
13169 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13170
13171 static const struct opcode_descriptor jalr_insn_16_bd32 =
13172 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13173
13174 static const struct opcode_descriptor jr_insn_16 =
13175 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13176
13177 #define JR16_REG(opcode) ((opcode) & 0x1f)
13178
13179 /* This table can be compacted, because no opcode replacement is made. */
13180
13181 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13182 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13183
13184 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13185 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13186 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13187 { 0, 0 } /* End marker for find_match(). */
13188 };
13189
13190
13191 /* LUI instruction. */
13192
13193 static const struct opcode_descriptor lui_insn =
13194 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13195
13196
13197 /* ADDIU instruction. */
13198
13199 static const struct opcode_descriptor addiu_insn =
13200 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13201
13202 static const struct opcode_descriptor addiupc_insn =
13203 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13204
13205 #define ADDIUPC_REG_FIELD(r) \
13206 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13207
13208
13209 /* Relaxable instructions in a JAL delay slot: MOVE. */
13210
13211 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13212 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13213 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13214 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13215
13216 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13217 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13218
13219 static const struct opcode_descriptor move_insns_32[] = {
13220 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13221 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13222 { 0, 0 } /* End marker for find_match(). */
13223 };
13224
13225 static const struct opcode_descriptor move_insn_16 =
13226 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13227
13228
13229 /* NOP instructions. */
13230
13231 static const struct opcode_descriptor nop_insn_32 =
13232 { /* "nop", "", */ 0x00000000, 0xffffffff };
13233
13234 static const struct opcode_descriptor nop_insn_16 =
13235 { /* "nop", "", */ 0x0c00, 0xffff };
13236
13237
13238 /* Instruction match support. */
13239
13240 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13241
13242 static int
13243 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13244 {
13245 unsigned long indx;
13246
13247 for (indx = 0; insn[indx].mask != 0; indx++)
13248 if (MATCH (opcode, insn[indx]))
13249 return indx;
13250
13251 return -1;
13252 }
13253
13254
13255 /* Branch and delay slot decoding support. */
13256
13257 /* If PTR points to what *might* be a 16-bit branch or jump, then
13258 return the minimum length of its delay slot, otherwise return 0.
13259 Non-zero results are not definitive as we might be checking against
13260 the second half of another instruction. */
13261
13262 static int
13263 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13264 {
13265 unsigned long opcode;
13266 int bdsize;
13267
13268 opcode = bfd_get_16 (abfd, ptr);
13269 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13270 /* 16-bit branch/jump with a 32-bit delay slot. */
13271 bdsize = 4;
13272 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13273 || find_match (opcode, ds_insns_16_bd16) >= 0)
13274 /* 16-bit branch/jump with a 16-bit delay slot. */
13275 bdsize = 2;
13276 else
13277 /* No delay slot. */
13278 bdsize = 0;
13279
13280 return bdsize;
13281 }
13282
13283 /* If PTR points to what *might* be a 32-bit branch or jump, then
13284 return the minimum length of its delay slot, otherwise return 0.
13285 Non-zero results are not definitive as we might be checking against
13286 the second half of another instruction. */
13287
13288 static int
13289 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13290 {
13291 unsigned long opcode;
13292 int bdsize;
13293
13294 opcode = bfd_get_micromips_32 (abfd, ptr);
13295 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13296 /* 32-bit branch/jump with a 32-bit delay slot. */
13297 bdsize = 4;
13298 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13299 /* 32-bit branch/jump with a 16-bit delay slot. */
13300 bdsize = 2;
13301 else
13302 /* No delay slot. */
13303 bdsize = 0;
13304
13305 return bdsize;
13306 }
13307
13308 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13309 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13310
13311 static bfd_boolean
13312 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13313 {
13314 unsigned long opcode;
13315
13316 opcode = bfd_get_16 (abfd, ptr);
13317 if (MATCH (opcode, b_insn_16)
13318 /* B16 */
13319 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13320 /* JR16 */
13321 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13322 /* BEQZ16, BNEZ16 */
13323 || (MATCH (opcode, jalr_insn_16_bd32)
13324 /* JALR16 */
13325 && reg != JR16_REG (opcode) && reg != RA))
13326 return TRUE;
13327
13328 return FALSE;
13329 }
13330
13331 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13332 then return TRUE, otherwise FALSE. */
13333
13334 static bfd_boolean
13335 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13336 {
13337 unsigned long opcode;
13338
13339 opcode = bfd_get_micromips_32 (abfd, ptr);
13340 if (MATCH (opcode, j_insn_32)
13341 /* J */
13342 || MATCH (opcode, bc_insn_32)
13343 /* BC1F, BC1T, BC2F, BC2T */
13344 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13345 /* JAL, JALX */
13346 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13347 /* BGEZ, BGTZ, BLEZ, BLTZ */
13348 || (MATCH (opcode, bzal_insn_32)
13349 /* BGEZAL, BLTZAL */
13350 && reg != OP32_SREG (opcode) && reg != RA)
13351 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13352 /* JALR, JALR.HB, BEQ, BNE */
13353 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13354 return TRUE;
13355
13356 return FALSE;
13357 }
13358
13359 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13360 IRELEND) at OFFSET indicate that there must be a compact branch there,
13361 then return TRUE, otherwise FALSE. */
13362
13363 static bfd_boolean
13364 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13365 const Elf_Internal_Rela *internal_relocs,
13366 const Elf_Internal_Rela *irelend)
13367 {
13368 const Elf_Internal_Rela *irel;
13369 unsigned long opcode;
13370
13371 opcode = bfd_get_micromips_32 (abfd, ptr);
13372 if (find_match (opcode, bzc_insns_32) < 0)
13373 return FALSE;
13374
13375 for (irel = internal_relocs; irel < irelend; irel++)
13376 if (irel->r_offset == offset
13377 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13378 return TRUE;
13379
13380 return FALSE;
13381 }
13382
13383 /* Bitsize checking. */
13384 #define IS_BITSIZE(val, N) \
13385 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13386 - (1ULL << ((N) - 1))) == (val))
13387
13388 \f
13389 bfd_boolean
13390 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13391 struct bfd_link_info *link_info,
13392 bfd_boolean *again)
13393 {
13394 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13395 Elf_Internal_Shdr *symtab_hdr;
13396 Elf_Internal_Rela *internal_relocs;
13397 Elf_Internal_Rela *irel, *irelend;
13398 bfd_byte *contents = NULL;
13399 Elf_Internal_Sym *isymbuf = NULL;
13400
13401 /* Assume nothing changes. */
13402 *again = FALSE;
13403
13404 /* We don't have to do anything for a relocatable link, if
13405 this section does not have relocs, or if this is not a
13406 code section. */
13407
13408 if (link_info->relocatable
13409 || (sec->flags & SEC_RELOC) == 0
13410 || sec->reloc_count == 0
13411 || (sec->flags & SEC_CODE) == 0)
13412 return TRUE;
13413
13414 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13415
13416 /* Get a copy of the native relocations. */
13417 internal_relocs = (_bfd_elf_link_read_relocs
13418 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13419 link_info->keep_memory));
13420 if (internal_relocs == NULL)
13421 goto error_return;
13422
13423 /* Walk through them looking for relaxing opportunities. */
13424 irelend = internal_relocs + sec->reloc_count;
13425 for (irel = internal_relocs; irel < irelend; irel++)
13426 {
13427 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13428 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13429 bfd_boolean target_is_micromips_code_p;
13430 unsigned long opcode;
13431 bfd_vma symval;
13432 bfd_vma pcrval;
13433 bfd_byte *ptr;
13434 int fndopc;
13435
13436 /* The number of bytes to delete for relaxation and from where
13437 to delete these bytes starting at irel->r_offset. */
13438 int delcnt = 0;
13439 int deloff = 0;
13440
13441 /* If this isn't something that can be relaxed, then ignore
13442 this reloc. */
13443 if (r_type != R_MICROMIPS_HI16
13444 && r_type != R_MICROMIPS_PC16_S1
13445 && r_type != R_MICROMIPS_26_S1)
13446 continue;
13447
13448 /* Get the section contents if we haven't done so already. */
13449 if (contents == NULL)
13450 {
13451 /* Get cached copy if it exists. */
13452 if (elf_section_data (sec)->this_hdr.contents != NULL)
13453 contents = elf_section_data (sec)->this_hdr.contents;
13454 /* Go get them off disk. */
13455 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13456 goto error_return;
13457 }
13458 ptr = contents + irel->r_offset;
13459
13460 /* Read this BFD's local symbols if we haven't done so already. */
13461 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13462 {
13463 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13464 if (isymbuf == NULL)
13465 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13466 symtab_hdr->sh_info, 0,
13467 NULL, NULL, NULL);
13468 if (isymbuf == NULL)
13469 goto error_return;
13470 }
13471
13472 /* Get the value of the symbol referred to by the reloc. */
13473 if (r_symndx < symtab_hdr->sh_info)
13474 {
13475 /* A local symbol. */
13476 Elf_Internal_Sym *isym;
13477 asection *sym_sec;
13478
13479 isym = isymbuf + r_symndx;
13480 if (isym->st_shndx == SHN_UNDEF)
13481 sym_sec = bfd_und_section_ptr;
13482 else if (isym->st_shndx == SHN_ABS)
13483 sym_sec = bfd_abs_section_ptr;
13484 else if (isym->st_shndx == SHN_COMMON)
13485 sym_sec = bfd_com_section_ptr;
13486 else
13487 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13488 symval = (isym->st_value
13489 + sym_sec->output_section->vma
13490 + sym_sec->output_offset);
13491 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13492 }
13493 else
13494 {
13495 unsigned long indx;
13496 struct elf_link_hash_entry *h;
13497
13498 /* An external symbol. */
13499 indx = r_symndx - symtab_hdr->sh_info;
13500 h = elf_sym_hashes (abfd)[indx];
13501 BFD_ASSERT (h != NULL);
13502
13503 if (h->root.type != bfd_link_hash_defined
13504 && h->root.type != bfd_link_hash_defweak)
13505 /* This appears to be a reference to an undefined
13506 symbol. Just ignore it -- it will be caught by the
13507 regular reloc processing. */
13508 continue;
13509
13510 symval = (h->root.u.def.value
13511 + h->root.u.def.section->output_section->vma
13512 + h->root.u.def.section->output_offset);
13513 target_is_micromips_code_p = (!h->needs_plt
13514 && ELF_ST_IS_MICROMIPS (h->other));
13515 }
13516
13517
13518 /* For simplicity of coding, we are going to modify the
13519 section contents, the section relocs, and the BFD symbol
13520 table. We must tell the rest of the code not to free up this
13521 information. It would be possible to instead create a table
13522 of changes which have to be made, as is done in coff-mips.c;
13523 that would be more work, but would require less memory when
13524 the linker is run. */
13525
13526 /* Only 32-bit instructions relaxed. */
13527 if (irel->r_offset + 4 > sec->size)
13528 continue;
13529
13530 opcode = bfd_get_micromips_32 (abfd, ptr);
13531
13532 /* This is the pc-relative distance from the instruction the
13533 relocation is applied to, to the symbol referred. */
13534 pcrval = (symval
13535 - (sec->output_section->vma + sec->output_offset)
13536 - irel->r_offset);
13537
13538 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13539 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13540 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13541
13542 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13543
13544 where pcrval has first to be adjusted to apply against the LO16
13545 location (we make the adjustment later on, when we have figured
13546 out the offset). */
13547 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13548 {
13549 bfd_boolean bzc = FALSE;
13550 unsigned long nextopc;
13551 unsigned long reg;
13552 bfd_vma offset;
13553
13554 /* Give up if the previous reloc was a HI16 against this symbol
13555 too. */
13556 if (irel > internal_relocs
13557 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13558 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13559 continue;
13560
13561 /* Or if the next reloc is not a LO16 against this symbol. */
13562 if (irel + 1 >= irelend
13563 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13564 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13565 continue;
13566
13567 /* Or if the second next reloc is a LO16 against this symbol too. */
13568 if (irel + 2 >= irelend
13569 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13570 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13571 continue;
13572
13573 /* See if the LUI instruction *might* be in a branch delay slot.
13574 We check whether what looks like a 16-bit branch or jump is
13575 actually an immediate argument to a compact branch, and let
13576 it through if so. */
13577 if (irel->r_offset >= 2
13578 && check_br16_dslot (abfd, ptr - 2)
13579 && !(irel->r_offset >= 4
13580 && (bzc = check_relocated_bzc (abfd,
13581 ptr - 4, irel->r_offset - 4,
13582 internal_relocs, irelend))))
13583 continue;
13584 if (irel->r_offset >= 4
13585 && !bzc
13586 && check_br32_dslot (abfd, ptr - 4))
13587 continue;
13588
13589 reg = OP32_SREG (opcode);
13590
13591 /* We only relax adjacent instructions or ones separated with
13592 a branch or jump that has a delay slot. The branch or jump
13593 must not fiddle with the register used to hold the address.
13594 Subtract 4 for the LUI itself. */
13595 offset = irel[1].r_offset - irel[0].r_offset;
13596 switch (offset - 4)
13597 {
13598 case 0:
13599 break;
13600 case 2:
13601 if (check_br16 (abfd, ptr + 4, reg))
13602 break;
13603 continue;
13604 case 4:
13605 if (check_br32 (abfd, ptr + 4, reg))
13606 break;
13607 continue;
13608 default:
13609 continue;
13610 }
13611
13612 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13613
13614 /* Give up unless the same register is used with both
13615 relocations. */
13616 if (OP32_SREG (nextopc) != reg)
13617 continue;
13618
13619 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13620 and rounding up to take masking of the two LSBs into account. */
13621 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13622
13623 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13624 if (IS_BITSIZE (symval, 16))
13625 {
13626 /* Fix the relocation's type. */
13627 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13628
13629 /* Instructions using R_MICROMIPS_LO16 have the base or
13630 source register in bits 20:16. This register becomes $0
13631 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13632 nextopc &= ~0x001f0000;
13633 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13634 contents + irel[1].r_offset);
13635 }
13636
13637 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13638 We add 4 to take LUI deletion into account while checking
13639 the PC-relative distance. */
13640 else if (symval % 4 == 0
13641 && IS_BITSIZE (pcrval + 4, 25)
13642 && MATCH (nextopc, addiu_insn)
13643 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13644 && OP16_VALID_REG (OP32_TREG (nextopc)))
13645 {
13646 /* Fix the relocation's type. */
13647 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13648
13649 /* Replace ADDIU with the ADDIUPC version. */
13650 nextopc = (addiupc_insn.match
13651 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13652
13653 bfd_put_micromips_32 (abfd, nextopc,
13654 contents + irel[1].r_offset);
13655 }
13656
13657 /* Can't do anything, give up, sigh... */
13658 else
13659 continue;
13660
13661 /* Fix the relocation's type. */
13662 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13663
13664 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13665 delcnt = 4;
13666 deloff = 0;
13667 }
13668
13669 /* Compact branch relaxation -- due to the multitude of macros
13670 employed by the compiler/assembler, compact branches are not
13671 always generated. Obviously, this can/will be fixed elsewhere,
13672 but there is no drawback in double checking it here. */
13673 else if (r_type == R_MICROMIPS_PC16_S1
13674 && irel->r_offset + 5 < sec->size
13675 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13676 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13677 && ((!insn32
13678 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13679 nop_insn_16) ? 2 : 0))
13680 || (irel->r_offset + 7 < sec->size
13681 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13682 ptr + 4),
13683 nop_insn_32) ? 4 : 0))))
13684 {
13685 unsigned long reg;
13686
13687 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13688
13689 /* Replace BEQZ/BNEZ with the compact version. */
13690 opcode = (bzc_insns_32[fndopc].match
13691 | BZC32_REG_FIELD (reg)
13692 | (opcode & 0xffff)); /* Addend value. */
13693
13694 bfd_put_micromips_32 (abfd, opcode, ptr);
13695
13696 /* Delete the delay slot NOP: two or four bytes from
13697 irel->offset + 4; delcnt has already been set above. */
13698 deloff = 4;
13699 }
13700
13701 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13702 to check the distance from the next instruction, so subtract 2. */
13703 else if (!insn32
13704 && r_type == R_MICROMIPS_PC16_S1
13705 && IS_BITSIZE (pcrval - 2, 11)
13706 && find_match (opcode, b_insns_32) >= 0)
13707 {
13708 /* Fix the relocation's type. */
13709 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13710
13711 /* Replace the 32-bit opcode with a 16-bit opcode. */
13712 bfd_put_16 (abfd,
13713 (b_insn_16.match
13714 | (opcode & 0x3ff)), /* Addend value. */
13715 ptr);
13716
13717 /* Delete 2 bytes from irel->r_offset + 2. */
13718 delcnt = 2;
13719 deloff = 2;
13720 }
13721
13722 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13723 to check the distance from the next instruction, so subtract 2. */
13724 else if (!insn32
13725 && r_type == R_MICROMIPS_PC16_S1
13726 && IS_BITSIZE (pcrval - 2, 8)
13727 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13728 && OP16_VALID_REG (OP32_SREG (opcode)))
13729 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13730 && OP16_VALID_REG (OP32_TREG (opcode)))))
13731 {
13732 unsigned long reg;
13733
13734 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13735
13736 /* Fix the relocation's type. */
13737 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13738
13739 /* Replace the 32-bit opcode with a 16-bit opcode. */
13740 bfd_put_16 (abfd,
13741 (bz_insns_16[fndopc].match
13742 | BZ16_REG_FIELD (reg)
13743 | (opcode & 0x7f)), /* Addend value. */
13744 ptr);
13745
13746 /* Delete 2 bytes from irel->r_offset + 2. */
13747 delcnt = 2;
13748 deloff = 2;
13749 }
13750
13751 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13752 else if (!insn32
13753 && r_type == R_MICROMIPS_26_S1
13754 && target_is_micromips_code_p
13755 && irel->r_offset + 7 < sec->size
13756 && MATCH (opcode, jal_insn_32_bd32))
13757 {
13758 unsigned long n32opc;
13759 bfd_boolean relaxed = FALSE;
13760
13761 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13762
13763 if (MATCH (n32opc, nop_insn_32))
13764 {
13765 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13766 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13767
13768 relaxed = TRUE;
13769 }
13770 else if (find_match (n32opc, move_insns_32) >= 0)
13771 {
13772 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13773 bfd_put_16 (abfd,
13774 (move_insn_16.match
13775 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13776 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13777 ptr + 4);
13778
13779 relaxed = TRUE;
13780 }
13781 /* Other 32-bit instructions relaxable to 16-bit
13782 instructions will be handled here later. */
13783
13784 if (relaxed)
13785 {
13786 /* JAL with 32-bit delay slot that is changed to a JALS
13787 with 16-bit delay slot. */
13788 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13789
13790 /* Delete 2 bytes from irel->r_offset + 6. */
13791 delcnt = 2;
13792 deloff = 6;
13793 }
13794 }
13795
13796 if (delcnt != 0)
13797 {
13798 /* Note that we've changed the relocs, section contents, etc. */
13799 elf_section_data (sec)->relocs = internal_relocs;
13800 elf_section_data (sec)->this_hdr.contents = contents;
13801 symtab_hdr->contents = (unsigned char *) isymbuf;
13802
13803 /* Delete bytes depending on the delcnt and deloff. */
13804 if (!mips_elf_relax_delete_bytes (abfd, sec,
13805 irel->r_offset + deloff, delcnt))
13806 goto error_return;
13807
13808 /* That will change things, so we should relax again.
13809 Note that this is not required, and it may be slow. */
13810 *again = TRUE;
13811 }
13812 }
13813
13814 if (isymbuf != NULL
13815 && symtab_hdr->contents != (unsigned char *) isymbuf)
13816 {
13817 if (! link_info->keep_memory)
13818 free (isymbuf);
13819 else
13820 {
13821 /* Cache the symbols for elf_link_input_bfd. */
13822 symtab_hdr->contents = (unsigned char *) isymbuf;
13823 }
13824 }
13825
13826 if (contents != NULL
13827 && elf_section_data (sec)->this_hdr.contents != contents)
13828 {
13829 if (! link_info->keep_memory)
13830 free (contents);
13831 else
13832 {
13833 /* Cache the section contents for elf_link_input_bfd. */
13834 elf_section_data (sec)->this_hdr.contents = contents;
13835 }
13836 }
13837
13838 if (internal_relocs != NULL
13839 && elf_section_data (sec)->relocs != internal_relocs)
13840 free (internal_relocs);
13841
13842 return TRUE;
13843
13844 error_return:
13845 if (isymbuf != NULL
13846 && symtab_hdr->contents != (unsigned char *) isymbuf)
13847 free (isymbuf);
13848 if (contents != NULL
13849 && elf_section_data (sec)->this_hdr.contents != contents)
13850 free (contents);
13851 if (internal_relocs != NULL
13852 && elf_section_data (sec)->relocs != internal_relocs)
13853 free (internal_relocs);
13854
13855 return FALSE;
13856 }
13857 \f
13858 /* Create a MIPS ELF linker hash table. */
13859
13860 struct bfd_link_hash_table *
13861 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13862 {
13863 struct mips_elf_link_hash_table *ret;
13864 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13865
13866 ret = bfd_zmalloc (amt);
13867 if (ret == NULL)
13868 return NULL;
13869
13870 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13871 mips_elf_link_hash_newfunc,
13872 sizeof (struct mips_elf_link_hash_entry),
13873 MIPS_ELF_DATA))
13874 {
13875 free (ret);
13876 return NULL;
13877 }
13878 ret->root.init_plt_refcount.plist = NULL;
13879 ret->root.init_plt_offset.plist = NULL;
13880
13881 return &ret->root.root;
13882 }
13883
13884 /* Likewise, but indicate that the target is VxWorks. */
13885
13886 struct bfd_link_hash_table *
13887 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13888 {
13889 struct bfd_link_hash_table *ret;
13890
13891 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13892 if (ret)
13893 {
13894 struct mips_elf_link_hash_table *htab;
13895
13896 htab = (struct mips_elf_link_hash_table *) ret;
13897 htab->use_plts_and_copy_relocs = TRUE;
13898 htab->is_vxworks = TRUE;
13899 }
13900 return ret;
13901 }
13902
13903 /* A function that the linker calls if we are allowed to use PLTs
13904 and copy relocs. */
13905
13906 void
13907 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13908 {
13909 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13910 }
13911
13912 /* A function that the linker calls to select between all or only
13913 32-bit microMIPS instructions. */
13914
13915 void
13916 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13917 {
13918 mips_elf_hash_table (info)->insn32 = on;
13919 }
13920 \f
13921 /* Return the .MIPS.abiflags value representing each ISA Extension. */
13922
13923 unsigned int
13924 bfd_mips_isa_ext (bfd *abfd)
13925 {
13926 switch (bfd_get_mach (abfd))
13927 {
13928 case bfd_mach_mips3900:
13929 return AFL_EXT_3900;
13930 case bfd_mach_mips4010:
13931 return AFL_EXT_4010;
13932 case bfd_mach_mips4100:
13933 return AFL_EXT_4100;
13934 case bfd_mach_mips4111:
13935 return AFL_EXT_4111;
13936 case bfd_mach_mips4120:
13937 return AFL_EXT_4120;
13938 case bfd_mach_mips4650:
13939 return AFL_EXT_4650;
13940 case bfd_mach_mips5400:
13941 return AFL_EXT_5400;
13942 case bfd_mach_mips5500:
13943 return AFL_EXT_5500;
13944 case bfd_mach_mips5900:
13945 return AFL_EXT_5900;
13946 case bfd_mach_mips10000:
13947 return AFL_EXT_10000;
13948 case bfd_mach_mips_loongson_2e:
13949 return AFL_EXT_LOONGSON_2E;
13950 case bfd_mach_mips_loongson_2f:
13951 return AFL_EXT_LOONGSON_2F;
13952 case bfd_mach_mips_loongson_3a:
13953 return AFL_EXT_LOONGSON_3A;
13954 case bfd_mach_mips_sb1:
13955 return AFL_EXT_SB1;
13956 case bfd_mach_mips_octeon:
13957 return AFL_EXT_OCTEON;
13958 case bfd_mach_mips_octeonp:
13959 return AFL_EXT_OCTEONP;
13960 case bfd_mach_mips_octeon3:
13961 return AFL_EXT_OCTEON3;
13962 case bfd_mach_mips_octeon2:
13963 return AFL_EXT_OCTEON2;
13964 case bfd_mach_mips_xlr:
13965 return AFL_EXT_XLR;
13966 }
13967 return 0;
13968 }
13969
13970 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
13971
13972 static void
13973 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
13974 {
13975 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
13976 {
13977 case E_MIPS_ARCH_1:
13978 abiflags->isa_level = 1;
13979 abiflags->isa_rev = 0;
13980 break;
13981 case E_MIPS_ARCH_2:
13982 abiflags->isa_level = 2;
13983 abiflags->isa_rev = 0;
13984 break;
13985 case E_MIPS_ARCH_3:
13986 abiflags->isa_level = 3;
13987 abiflags->isa_rev = 0;
13988 break;
13989 case E_MIPS_ARCH_4:
13990 abiflags->isa_level = 4;
13991 abiflags->isa_rev = 0;
13992 break;
13993 case E_MIPS_ARCH_5:
13994 abiflags->isa_level = 5;
13995 abiflags->isa_rev = 0;
13996 break;
13997 case E_MIPS_ARCH_32:
13998 abiflags->isa_level = 32;
13999 abiflags->isa_rev = 1;
14000 break;
14001 case E_MIPS_ARCH_32R2:
14002 abiflags->isa_level = 32;
14003 /* Handle MIPS32r3 and MIPS32r5 which do not have a header flag. */
14004 if (abiflags->isa_rev < 2)
14005 abiflags->isa_rev = 2;
14006 break;
14007 case E_MIPS_ARCH_32R6:
14008 abiflags->isa_level = 32;
14009 abiflags->isa_rev = 6;
14010 break;
14011 case E_MIPS_ARCH_64:
14012 abiflags->isa_level = 64;
14013 abiflags->isa_rev = 1;
14014 break;
14015 case E_MIPS_ARCH_64R2:
14016 /* Handle MIPS64r3 and MIPS64r5 which do not have a header flag. */
14017 abiflags->isa_level = 64;
14018 if (abiflags->isa_rev < 2)
14019 abiflags->isa_rev = 2;
14020 break;
14021 case E_MIPS_ARCH_64R6:
14022 abiflags->isa_level = 64;
14023 abiflags->isa_rev = 6;
14024 break;
14025 default:
14026 (*_bfd_error_handler)
14027 (_("%B: Unknown architecture %s"),
14028 abfd, bfd_printable_name (abfd));
14029 }
14030
14031 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14032 }
14033
14034 /* Return true if the given ELF header flags describe a 32-bit binary. */
14035
14036 static bfd_boolean
14037 mips_32bit_flags_p (flagword flags)
14038 {
14039 return ((flags & EF_MIPS_32BITMODE) != 0
14040 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14041 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14042 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14043 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14044 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14045 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14046 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14047 }
14048
14049 /* Infer the content of the ABI flags based on the elf header. */
14050
14051 static void
14052 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14053 {
14054 obj_attribute *in_attr;
14055
14056 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14057 update_mips_abiflags_isa (abfd, abiflags);
14058
14059 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14060 abiflags->gpr_size = AFL_REG_32;
14061 else
14062 abiflags->gpr_size = AFL_REG_64;
14063
14064 abiflags->cpr1_size = AFL_REG_NONE;
14065
14066 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14067 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14068
14069 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14070 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14071 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14072 && abiflags->gpr_size == AFL_REG_32))
14073 abiflags->cpr1_size = AFL_REG_32;
14074 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14075 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14076 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14077 abiflags->cpr1_size = AFL_REG_64;
14078
14079 abiflags->cpr2_size = AFL_REG_NONE;
14080
14081 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14082 abiflags->ases |= AFL_ASE_MDMX;
14083 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14084 abiflags->ases |= AFL_ASE_MIPS16;
14085 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14086 abiflags->ases |= AFL_ASE_MICROMIPS;
14087
14088 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14089 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14090 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14091 && abiflags->isa_level >= 32
14092 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14093 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14094 }
14095
14096 /* We need to use a special link routine to handle the .reginfo and
14097 the .mdebug sections. We need to merge all instances of these
14098 sections together, not write them all out sequentially. */
14099
14100 bfd_boolean
14101 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14102 {
14103 asection *o;
14104 struct bfd_link_order *p;
14105 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14106 asection *rtproc_sec, *abiflags_sec;
14107 Elf32_RegInfo reginfo;
14108 struct ecoff_debug_info debug;
14109 struct mips_htab_traverse_info hti;
14110 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14111 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14112 HDRR *symhdr = &debug.symbolic_header;
14113 void *mdebug_handle = NULL;
14114 asection *s;
14115 EXTR esym;
14116 unsigned int i;
14117 bfd_size_type amt;
14118 struct mips_elf_link_hash_table *htab;
14119
14120 static const char * const secname[] =
14121 {
14122 ".text", ".init", ".fini", ".data",
14123 ".rodata", ".sdata", ".sbss", ".bss"
14124 };
14125 static const int sc[] =
14126 {
14127 scText, scInit, scFini, scData,
14128 scRData, scSData, scSBss, scBss
14129 };
14130
14131 /* Sort the dynamic symbols so that those with GOT entries come after
14132 those without. */
14133 htab = mips_elf_hash_table (info);
14134 BFD_ASSERT (htab != NULL);
14135
14136 if (!mips_elf_sort_hash_table (abfd, info))
14137 return FALSE;
14138
14139 /* Create any scheduled LA25 stubs. */
14140 hti.info = info;
14141 hti.output_bfd = abfd;
14142 hti.error = FALSE;
14143 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14144 if (hti.error)
14145 return FALSE;
14146
14147 /* Get a value for the GP register. */
14148 if (elf_gp (abfd) == 0)
14149 {
14150 struct bfd_link_hash_entry *h;
14151
14152 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14153 if (h != NULL && h->type == bfd_link_hash_defined)
14154 elf_gp (abfd) = (h->u.def.value
14155 + h->u.def.section->output_section->vma
14156 + h->u.def.section->output_offset);
14157 else if (htab->is_vxworks
14158 && (h = bfd_link_hash_lookup (info->hash,
14159 "_GLOBAL_OFFSET_TABLE_",
14160 FALSE, FALSE, TRUE))
14161 && h->type == bfd_link_hash_defined)
14162 elf_gp (abfd) = (h->u.def.section->output_section->vma
14163 + h->u.def.section->output_offset
14164 + h->u.def.value);
14165 else if (info->relocatable)
14166 {
14167 bfd_vma lo = MINUS_ONE;
14168
14169 /* Find the GP-relative section with the lowest offset. */
14170 for (o = abfd->sections; o != NULL; o = o->next)
14171 if (o->vma < lo
14172 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14173 lo = o->vma;
14174
14175 /* And calculate GP relative to that. */
14176 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14177 }
14178 else
14179 {
14180 /* If the relocate_section function needs to do a reloc
14181 involving the GP value, it should make a reloc_dangerous
14182 callback to warn that GP is not defined. */
14183 }
14184 }
14185
14186 /* Go through the sections and collect the .reginfo and .mdebug
14187 information. */
14188 abiflags_sec = NULL;
14189 reginfo_sec = NULL;
14190 mdebug_sec = NULL;
14191 gptab_data_sec = NULL;
14192 gptab_bss_sec = NULL;
14193 for (o = abfd->sections; o != NULL; o = o->next)
14194 {
14195 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14196 {
14197 /* We have found the .MIPS.abiflags section in the output file.
14198 Look through all the link_orders comprising it and remove them.
14199 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14200 for (p = o->map_head.link_order; p != NULL; p = p->next)
14201 {
14202 asection *input_section;
14203
14204 if (p->type != bfd_indirect_link_order)
14205 {
14206 if (p->type == bfd_data_link_order)
14207 continue;
14208 abort ();
14209 }
14210
14211 input_section = p->u.indirect.section;
14212
14213 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14214 elf_link_input_bfd ignores this section. */
14215 input_section->flags &= ~SEC_HAS_CONTENTS;
14216 }
14217
14218 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14219 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14220
14221 /* Skip this section later on (I don't think this currently
14222 matters, but someday it might). */
14223 o->map_head.link_order = NULL;
14224
14225 abiflags_sec = o;
14226 }
14227
14228 if (strcmp (o->name, ".reginfo") == 0)
14229 {
14230 memset (&reginfo, 0, sizeof reginfo);
14231
14232 /* We have found the .reginfo section in the output file.
14233 Look through all the link_orders comprising it and merge
14234 the information together. */
14235 for (p = o->map_head.link_order; p != NULL; p = p->next)
14236 {
14237 asection *input_section;
14238 bfd *input_bfd;
14239 Elf32_External_RegInfo ext;
14240 Elf32_RegInfo sub;
14241
14242 if (p->type != bfd_indirect_link_order)
14243 {
14244 if (p->type == bfd_data_link_order)
14245 continue;
14246 abort ();
14247 }
14248
14249 input_section = p->u.indirect.section;
14250 input_bfd = input_section->owner;
14251
14252 if (! bfd_get_section_contents (input_bfd, input_section,
14253 &ext, 0, sizeof ext))
14254 return FALSE;
14255
14256 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14257
14258 reginfo.ri_gprmask |= sub.ri_gprmask;
14259 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14260 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14261 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14262 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14263
14264 /* ri_gp_value is set by the function
14265 mips_elf32_section_processing when the section is
14266 finally written out. */
14267
14268 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14269 elf_link_input_bfd ignores this section. */
14270 input_section->flags &= ~SEC_HAS_CONTENTS;
14271 }
14272
14273 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14274 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14275
14276 /* Skip this section later on (I don't think this currently
14277 matters, but someday it might). */
14278 o->map_head.link_order = NULL;
14279
14280 reginfo_sec = o;
14281 }
14282
14283 if (strcmp (o->name, ".mdebug") == 0)
14284 {
14285 struct extsym_info einfo;
14286 bfd_vma last;
14287
14288 /* We have found the .mdebug section in the output file.
14289 Look through all the link_orders comprising it and merge
14290 the information together. */
14291 symhdr->magic = swap->sym_magic;
14292 /* FIXME: What should the version stamp be? */
14293 symhdr->vstamp = 0;
14294 symhdr->ilineMax = 0;
14295 symhdr->cbLine = 0;
14296 symhdr->idnMax = 0;
14297 symhdr->ipdMax = 0;
14298 symhdr->isymMax = 0;
14299 symhdr->ioptMax = 0;
14300 symhdr->iauxMax = 0;
14301 symhdr->issMax = 0;
14302 symhdr->issExtMax = 0;
14303 symhdr->ifdMax = 0;
14304 symhdr->crfd = 0;
14305 symhdr->iextMax = 0;
14306
14307 /* We accumulate the debugging information itself in the
14308 debug_info structure. */
14309 debug.line = NULL;
14310 debug.external_dnr = NULL;
14311 debug.external_pdr = NULL;
14312 debug.external_sym = NULL;
14313 debug.external_opt = NULL;
14314 debug.external_aux = NULL;
14315 debug.ss = NULL;
14316 debug.ssext = debug.ssext_end = NULL;
14317 debug.external_fdr = NULL;
14318 debug.external_rfd = NULL;
14319 debug.external_ext = debug.external_ext_end = NULL;
14320
14321 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14322 if (mdebug_handle == NULL)
14323 return FALSE;
14324
14325 esym.jmptbl = 0;
14326 esym.cobol_main = 0;
14327 esym.weakext = 0;
14328 esym.reserved = 0;
14329 esym.ifd = ifdNil;
14330 esym.asym.iss = issNil;
14331 esym.asym.st = stLocal;
14332 esym.asym.reserved = 0;
14333 esym.asym.index = indexNil;
14334 last = 0;
14335 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14336 {
14337 esym.asym.sc = sc[i];
14338 s = bfd_get_section_by_name (abfd, secname[i]);
14339 if (s != NULL)
14340 {
14341 esym.asym.value = s->vma;
14342 last = s->vma + s->size;
14343 }
14344 else
14345 esym.asym.value = last;
14346 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14347 secname[i], &esym))
14348 return FALSE;
14349 }
14350
14351 for (p = o->map_head.link_order; p != NULL; p = p->next)
14352 {
14353 asection *input_section;
14354 bfd *input_bfd;
14355 const struct ecoff_debug_swap *input_swap;
14356 struct ecoff_debug_info input_debug;
14357 char *eraw_src;
14358 char *eraw_end;
14359
14360 if (p->type != bfd_indirect_link_order)
14361 {
14362 if (p->type == bfd_data_link_order)
14363 continue;
14364 abort ();
14365 }
14366
14367 input_section = p->u.indirect.section;
14368 input_bfd = input_section->owner;
14369
14370 if (!is_mips_elf (input_bfd))
14371 {
14372 /* I don't know what a non MIPS ELF bfd would be
14373 doing with a .mdebug section, but I don't really
14374 want to deal with it. */
14375 continue;
14376 }
14377
14378 input_swap = (get_elf_backend_data (input_bfd)
14379 ->elf_backend_ecoff_debug_swap);
14380
14381 BFD_ASSERT (p->size == input_section->size);
14382
14383 /* The ECOFF linking code expects that we have already
14384 read in the debugging information and set up an
14385 ecoff_debug_info structure, so we do that now. */
14386 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14387 &input_debug))
14388 return FALSE;
14389
14390 if (! (bfd_ecoff_debug_accumulate
14391 (mdebug_handle, abfd, &debug, swap, input_bfd,
14392 &input_debug, input_swap, info)))
14393 return FALSE;
14394
14395 /* Loop through the external symbols. For each one with
14396 interesting information, try to find the symbol in
14397 the linker global hash table and save the information
14398 for the output external symbols. */
14399 eraw_src = input_debug.external_ext;
14400 eraw_end = (eraw_src
14401 + (input_debug.symbolic_header.iextMax
14402 * input_swap->external_ext_size));
14403 for (;
14404 eraw_src < eraw_end;
14405 eraw_src += input_swap->external_ext_size)
14406 {
14407 EXTR ext;
14408 const char *name;
14409 struct mips_elf_link_hash_entry *h;
14410
14411 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14412 if (ext.asym.sc == scNil
14413 || ext.asym.sc == scUndefined
14414 || ext.asym.sc == scSUndefined)
14415 continue;
14416
14417 name = input_debug.ssext + ext.asym.iss;
14418 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14419 name, FALSE, FALSE, TRUE);
14420 if (h == NULL || h->esym.ifd != -2)
14421 continue;
14422
14423 if (ext.ifd != -1)
14424 {
14425 BFD_ASSERT (ext.ifd
14426 < input_debug.symbolic_header.ifdMax);
14427 ext.ifd = input_debug.ifdmap[ext.ifd];
14428 }
14429
14430 h->esym = ext;
14431 }
14432
14433 /* Free up the information we just read. */
14434 free (input_debug.line);
14435 free (input_debug.external_dnr);
14436 free (input_debug.external_pdr);
14437 free (input_debug.external_sym);
14438 free (input_debug.external_opt);
14439 free (input_debug.external_aux);
14440 free (input_debug.ss);
14441 free (input_debug.ssext);
14442 free (input_debug.external_fdr);
14443 free (input_debug.external_rfd);
14444 free (input_debug.external_ext);
14445
14446 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14447 elf_link_input_bfd ignores this section. */
14448 input_section->flags &= ~SEC_HAS_CONTENTS;
14449 }
14450
14451 if (SGI_COMPAT (abfd) && info->shared)
14452 {
14453 /* Create .rtproc section. */
14454 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14455 if (rtproc_sec == NULL)
14456 {
14457 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14458 | SEC_LINKER_CREATED | SEC_READONLY);
14459
14460 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14461 ".rtproc",
14462 flags);
14463 if (rtproc_sec == NULL
14464 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14465 return FALSE;
14466 }
14467
14468 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14469 info, rtproc_sec,
14470 &debug))
14471 return FALSE;
14472 }
14473
14474 /* Build the external symbol information. */
14475 einfo.abfd = abfd;
14476 einfo.info = info;
14477 einfo.debug = &debug;
14478 einfo.swap = swap;
14479 einfo.failed = FALSE;
14480 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14481 mips_elf_output_extsym, &einfo);
14482 if (einfo.failed)
14483 return FALSE;
14484
14485 /* Set the size of the .mdebug section. */
14486 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14487
14488 /* Skip this section later on (I don't think this currently
14489 matters, but someday it might). */
14490 o->map_head.link_order = NULL;
14491
14492 mdebug_sec = o;
14493 }
14494
14495 if (CONST_STRNEQ (o->name, ".gptab."))
14496 {
14497 const char *subname;
14498 unsigned int c;
14499 Elf32_gptab *tab;
14500 Elf32_External_gptab *ext_tab;
14501 unsigned int j;
14502
14503 /* The .gptab.sdata and .gptab.sbss sections hold
14504 information describing how the small data area would
14505 change depending upon the -G switch. These sections
14506 not used in executables files. */
14507 if (! info->relocatable)
14508 {
14509 for (p = o->map_head.link_order; p != NULL; p = p->next)
14510 {
14511 asection *input_section;
14512
14513 if (p->type != bfd_indirect_link_order)
14514 {
14515 if (p->type == bfd_data_link_order)
14516 continue;
14517 abort ();
14518 }
14519
14520 input_section = p->u.indirect.section;
14521
14522 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14523 elf_link_input_bfd ignores this section. */
14524 input_section->flags &= ~SEC_HAS_CONTENTS;
14525 }
14526
14527 /* Skip this section later on (I don't think this
14528 currently matters, but someday it might). */
14529 o->map_head.link_order = NULL;
14530
14531 /* Really remove the section. */
14532 bfd_section_list_remove (abfd, o);
14533 --abfd->section_count;
14534
14535 continue;
14536 }
14537
14538 /* There is one gptab for initialized data, and one for
14539 uninitialized data. */
14540 if (strcmp (o->name, ".gptab.sdata") == 0)
14541 gptab_data_sec = o;
14542 else if (strcmp (o->name, ".gptab.sbss") == 0)
14543 gptab_bss_sec = o;
14544 else
14545 {
14546 (*_bfd_error_handler)
14547 (_("%s: illegal section name `%s'"),
14548 bfd_get_filename (abfd), o->name);
14549 bfd_set_error (bfd_error_nonrepresentable_section);
14550 return FALSE;
14551 }
14552
14553 /* The linker script always combines .gptab.data and
14554 .gptab.sdata into .gptab.sdata, and likewise for
14555 .gptab.bss and .gptab.sbss. It is possible that there is
14556 no .sdata or .sbss section in the output file, in which
14557 case we must change the name of the output section. */
14558 subname = o->name + sizeof ".gptab" - 1;
14559 if (bfd_get_section_by_name (abfd, subname) == NULL)
14560 {
14561 if (o == gptab_data_sec)
14562 o->name = ".gptab.data";
14563 else
14564 o->name = ".gptab.bss";
14565 subname = o->name + sizeof ".gptab" - 1;
14566 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14567 }
14568
14569 /* Set up the first entry. */
14570 c = 1;
14571 amt = c * sizeof (Elf32_gptab);
14572 tab = bfd_malloc (amt);
14573 if (tab == NULL)
14574 return FALSE;
14575 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14576 tab[0].gt_header.gt_unused = 0;
14577
14578 /* Combine the input sections. */
14579 for (p = o->map_head.link_order; p != NULL; p = p->next)
14580 {
14581 asection *input_section;
14582 bfd *input_bfd;
14583 bfd_size_type size;
14584 unsigned long last;
14585 bfd_size_type gpentry;
14586
14587 if (p->type != bfd_indirect_link_order)
14588 {
14589 if (p->type == bfd_data_link_order)
14590 continue;
14591 abort ();
14592 }
14593
14594 input_section = p->u.indirect.section;
14595 input_bfd = input_section->owner;
14596
14597 /* Combine the gptab entries for this input section one
14598 by one. We know that the input gptab entries are
14599 sorted by ascending -G value. */
14600 size = input_section->size;
14601 last = 0;
14602 for (gpentry = sizeof (Elf32_External_gptab);
14603 gpentry < size;
14604 gpentry += sizeof (Elf32_External_gptab))
14605 {
14606 Elf32_External_gptab ext_gptab;
14607 Elf32_gptab int_gptab;
14608 unsigned long val;
14609 unsigned long add;
14610 bfd_boolean exact;
14611 unsigned int look;
14612
14613 if (! (bfd_get_section_contents
14614 (input_bfd, input_section, &ext_gptab, gpentry,
14615 sizeof (Elf32_External_gptab))))
14616 {
14617 free (tab);
14618 return FALSE;
14619 }
14620
14621 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14622 &int_gptab);
14623 val = int_gptab.gt_entry.gt_g_value;
14624 add = int_gptab.gt_entry.gt_bytes - last;
14625
14626 exact = FALSE;
14627 for (look = 1; look < c; look++)
14628 {
14629 if (tab[look].gt_entry.gt_g_value >= val)
14630 tab[look].gt_entry.gt_bytes += add;
14631
14632 if (tab[look].gt_entry.gt_g_value == val)
14633 exact = TRUE;
14634 }
14635
14636 if (! exact)
14637 {
14638 Elf32_gptab *new_tab;
14639 unsigned int max;
14640
14641 /* We need a new table entry. */
14642 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14643 new_tab = bfd_realloc (tab, amt);
14644 if (new_tab == NULL)
14645 {
14646 free (tab);
14647 return FALSE;
14648 }
14649 tab = new_tab;
14650 tab[c].gt_entry.gt_g_value = val;
14651 tab[c].gt_entry.gt_bytes = add;
14652
14653 /* Merge in the size for the next smallest -G
14654 value, since that will be implied by this new
14655 value. */
14656 max = 0;
14657 for (look = 1; look < c; look++)
14658 {
14659 if (tab[look].gt_entry.gt_g_value < val
14660 && (max == 0
14661 || (tab[look].gt_entry.gt_g_value
14662 > tab[max].gt_entry.gt_g_value)))
14663 max = look;
14664 }
14665 if (max != 0)
14666 tab[c].gt_entry.gt_bytes +=
14667 tab[max].gt_entry.gt_bytes;
14668
14669 ++c;
14670 }
14671
14672 last = int_gptab.gt_entry.gt_bytes;
14673 }
14674
14675 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14676 elf_link_input_bfd ignores this section. */
14677 input_section->flags &= ~SEC_HAS_CONTENTS;
14678 }
14679
14680 /* The table must be sorted by -G value. */
14681 if (c > 2)
14682 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14683
14684 /* Swap out the table. */
14685 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14686 ext_tab = bfd_alloc (abfd, amt);
14687 if (ext_tab == NULL)
14688 {
14689 free (tab);
14690 return FALSE;
14691 }
14692
14693 for (j = 0; j < c; j++)
14694 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14695 free (tab);
14696
14697 o->size = c * sizeof (Elf32_External_gptab);
14698 o->contents = (bfd_byte *) ext_tab;
14699
14700 /* Skip this section later on (I don't think this currently
14701 matters, but someday it might). */
14702 o->map_head.link_order = NULL;
14703 }
14704 }
14705
14706 /* Invoke the regular ELF backend linker to do all the work. */
14707 if (!bfd_elf_final_link (abfd, info))
14708 return FALSE;
14709
14710 /* Now write out the computed sections. */
14711
14712 if (abiflags_sec != NULL)
14713 {
14714 Elf_External_ABIFlags_v0 ext;
14715 Elf_Internal_ABIFlags_v0 *abiflags;
14716
14717 abiflags = &mips_elf_tdata (abfd)->abiflags;
14718
14719 /* Set up the abiflags if no valid input sections were found. */
14720 if (!mips_elf_tdata (abfd)->abiflags_valid)
14721 {
14722 infer_mips_abiflags (abfd, abiflags);
14723 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14724 }
14725 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14726 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14727 return FALSE;
14728 }
14729
14730 if (reginfo_sec != NULL)
14731 {
14732 Elf32_External_RegInfo ext;
14733
14734 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14735 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14736 return FALSE;
14737 }
14738
14739 if (mdebug_sec != NULL)
14740 {
14741 BFD_ASSERT (abfd->output_has_begun);
14742 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14743 swap, info,
14744 mdebug_sec->filepos))
14745 return FALSE;
14746
14747 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14748 }
14749
14750 if (gptab_data_sec != NULL)
14751 {
14752 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14753 gptab_data_sec->contents,
14754 0, gptab_data_sec->size))
14755 return FALSE;
14756 }
14757
14758 if (gptab_bss_sec != NULL)
14759 {
14760 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14761 gptab_bss_sec->contents,
14762 0, gptab_bss_sec->size))
14763 return FALSE;
14764 }
14765
14766 if (SGI_COMPAT (abfd))
14767 {
14768 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14769 if (rtproc_sec != NULL)
14770 {
14771 if (! bfd_set_section_contents (abfd, rtproc_sec,
14772 rtproc_sec->contents,
14773 0, rtproc_sec->size))
14774 return FALSE;
14775 }
14776 }
14777
14778 return TRUE;
14779 }
14780 \f
14781 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14782
14783 struct mips_mach_extension
14784 {
14785 unsigned long extension, base;
14786 };
14787
14788
14789 /* An array describing how BFD machines relate to one another. The entries
14790 are ordered topologically with MIPS I extensions listed last. */
14791
14792 static const struct mips_mach_extension mips_mach_extensions[] =
14793 {
14794 /* MIPS64r2 extensions. */
14795 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14796 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14797 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14798 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14799 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14800
14801 /* MIPS64 extensions. */
14802 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14803 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14804 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14805
14806 /* MIPS V extensions. */
14807 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14808
14809 /* R10000 extensions. */
14810 { bfd_mach_mips12000, bfd_mach_mips10000 },
14811 { bfd_mach_mips14000, bfd_mach_mips10000 },
14812 { bfd_mach_mips16000, bfd_mach_mips10000 },
14813
14814 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14815 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14816 better to allow vr5400 and vr5500 code to be merged anyway, since
14817 many libraries will just use the core ISA. Perhaps we could add
14818 some sort of ASE flag if this ever proves a problem. */
14819 { bfd_mach_mips5500, bfd_mach_mips5400 },
14820 { bfd_mach_mips5400, bfd_mach_mips5000 },
14821
14822 /* MIPS IV extensions. */
14823 { bfd_mach_mips5, bfd_mach_mips8000 },
14824 { bfd_mach_mips10000, bfd_mach_mips8000 },
14825 { bfd_mach_mips5000, bfd_mach_mips8000 },
14826 { bfd_mach_mips7000, bfd_mach_mips8000 },
14827 { bfd_mach_mips9000, bfd_mach_mips8000 },
14828
14829 /* VR4100 extensions. */
14830 { bfd_mach_mips4120, bfd_mach_mips4100 },
14831 { bfd_mach_mips4111, bfd_mach_mips4100 },
14832
14833 /* MIPS III extensions. */
14834 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14835 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14836 { bfd_mach_mips8000, bfd_mach_mips4000 },
14837 { bfd_mach_mips4650, bfd_mach_mips4000 },
14838 { bfd_mach_mips4600, bfd_mach_mips4000 },
14839 { bfd_mach_mips4400, bfd_mach_mips4000 },
14840 { bfd_mach_mips4300, bfd_mach_mips4000 },
14841 { bfd_mach_mips4100, bfd_mach_mips4000 },
14842 { bfd_mach_mips4010, bfd_mach_mips4000 },
14843 { bfd_mach_mips5900, bfd_mach_mips4000 },
14844
14845 /* MIPS32 extensions. */
14846 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14847
14848 /* MIPS II extensions. */
14849 { bfd_mach_mips4000, bfd_mach_mips6000 },
14850 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14851
14852 /* MIPS I extensions. */
14853 { bfd_mach_mips6000, bfd_mach_mips3000 },
14854 { bfd_mach_mips3900, bfd_mach_mips3000 }
14855 };
14856
14857
14858 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14859
14860 static bfd_boolean
14861 mips_mach_extends_p (unsigned long base, unsigned long extension)
14862 {
14863 size_t i;
14864
14865 if (extension == base)
14866 return TRUE;
14867
14868 if (base == bfd_mach_mipsisa32
14869 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14870 return TRUE;
14871
14872 if (base == bfd_mach_mipsisa32r2
14873 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14874 return TRUE;
14875
14876 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14877 if (extension == mips_mach_extensions[i].extension)
14878 {
14879 extension = mips_mach_extensions[i].base;
14880 if (extension == base)
14881 return TRUE;
14882 }
14883
14884 return FALSE;
14885 }
14886
14887
14888 /* Merge object attributes from IBFD into OBFD. Raise an error if
14889 there are conflicting attributes. */
14890 static bfd_boolean
14891 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14892 {
14893 obj_attribute *in_attr;
14894 obj_attribute *out_attr;
14895 bfd *abi_fp_bfd;
14896 bfd *abi_msa_bfd;
14897
14898 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14899 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14900 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14901 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14902
14903 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14904 if (!abi_msa_bfd
14905 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14906 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14907
14908 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14909 {
14910 /* This is the first object. Copy the attributes. */
14911 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14912
14913 /* Use the Tag_null value to indicate the attributes have been
14914 initialized. */
14915 elf_known_obj_attributes_proc (obfd)[0].i = 1;
14916
14917 return TRUE;
14918 }
14919
14920 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14921 non-conflicting ones. */
14922 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14923 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14924 {
14925 int out_fp, in_fp;
14926
14927 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
14928 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14929 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14930 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
14931 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
14932 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
14933 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14934 || in_fp == Val_GNU_MIPS_ABI_FP_64
14935 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
14936 {
14937 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14938 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14939 }
14940 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
14941 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14942 || out_fp == Val_GNU_MIPS_ABI_FP_64
14943 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
14944 /* Keep the current setting. */;
14945 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
14946 && in_fp == Val_GNU_MIPS_ABI_FP_64)
14947 {
14948 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14949 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14950 }
14951 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
14952 && out_fp == Val_GNU_MIPS_ABI_FP_64)
14953 /* Keep the current setting. */;
14954 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
14955 {
14956 const char *out_string, *in_string;
14957
14958 out_string = _bfd_mips_fp_abi_string (out_fp);
14959 in_string = _bfd_mips_fp_abi_string (in_fp);
14960 /* First warn about cases involving unrecognised ABIs. */
14961 if (!out_string && !in_string)
14962 _bfd_error_handler
14963 (_("Warning: %B uses unknown floating point ABI %d "
14964 "(set by %B), %B uses unknown floating point ABI %d"),
14965 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
14966 else if (!out_string)
14967 _bfd_error_handler
14968 (_("Warning: %B uses unknown floating point ABI %d "
14969 "(set by %B), %B uses %s"),
14970 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
14971 else if (!in_string)
14972 _bfd_error_handler
14973 (_("Warning: %B uses %s (set by %B), "
14974 "%B uses unknown floating point ABI %d"),
14975 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
14976 else
14977 {
14978 /* If one of the bfds is soft-float, the other must be
14979 hard-float. The exact choice of hard-float ABI isn't
14980 really relevant to the error message. */
14981 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14982 out_string = "-mhard-float";
14983 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14984 in_string = "-mhard-float";
14985 _bfd_error_handler
14986 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14987 obfd, abi_fp_bfd, ibfd, out_string, in_string);
14988 }
14989 }
14990 }
14991
14992 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14993 non-conflicting ones. */
14994 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14995 {
14996 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14997 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
14998 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
14999 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15000 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15001 {
15002 case Val_GNU_MIPS_ABI_MSA_128:
15003 _bfd_error_handler
15004 (_("Warning: %B uses %s (set by %B), "
15005 "%B uses unknown MSA ABI %d"),
15006 obfd, abi_msa_bfd, ibfd,
15007 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15008 break;
15009
15010 default:
15011 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15012 {
15013 case Val_GNU_MIPS_ABI_MSA_128:
15014 _bfd_error_handler
15015 (_("Warning: %B uses unknown MSA ABI %d "
15016 "(set by %B), %B uses %s"),
15017 obfd, abi_msa_bfd, ibfd,
15018 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15019 break;
15020
15021 default:
15022 _bfd_error_handler
15023 (_("Warning: %B uses unknown MSA ABI %d "
15024 "(set by %B), %B uses unknown MSA ABI %d"),
15025 obfd, abi_msa_bfd, ibfd,
15026 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15027 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15028 break;
15029 }
15030 }
15031 }
15032
15033 /* Merge Tag_compatibility attributes and any common GNU ones. */
15034 _bfd_elf_merge_object_attributes (ibfd, obfd);
15035
15036 return TRUE;
15037 }
15038
15039 /* Merge backend specific data from an object file to the output
15040 object file when linking. */
15041
15042 bfd_boolean
15043 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15044 {
15045 flagword old_flags;
15046 flagword new_flags;
15047 bfd_boolean ok;
15048 bfd_boolean null_input_bfd = TRUE;
15049 asection *sec;
15050 obj_attribute *out_attr;
15051
15052 /* Check if we have the same endianness. */
15053 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15054 {
15055 (*_bfd_error_handler)
15056 (_("%B: endianness incompatible with that of the selected emulation"),
15057 ibfd);
15058 return FALSE;
15059 }
15060
15061 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15062 return TRUE;
15063
15064 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15065 {
15066 (*_bfd_error_handler)
15067 (_("%B: ABI is incompatible with that of the selected emulation"),
15068 ibfd);
15069 return FALSE;
15070 }
15071
15072 /* Set up the FP ABI attribute from the abiflags if it is not already
15073 set. */
15074 if (mips_elf_tdata (ibfd)->abiflags_valid)
15075 {
15076 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15077 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15078 in_attr[Tag_GNU_MIPS_ABI_FP].i =
15079 mips_elf_tdata (ibfd)->abiflags.fp_abi;
15080 }
15081
15082 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
15083 return FALSE;
15084
15085 /* Check to see if the input BFD actually contains any sections.
15086 If not, its flags may not have been initialised either, but it cannot
15087 actually cause any incompatibility. */
15088 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15089 {
15090 /* Ignore synthetic sections and empty .text, .data and .bss sections
15091 which are automatically generated by gas. Also ignore fake
15092 (s)common sections, since merely defining a common symbol does
15093 not affect compatibility. */
15094 if ((sec->flags & SEC_IS_COMMON) == 0
15095 && strcmp (sec->name, ".reginfo")
15096 && strcmp (sec->name, ".mdebug")
15097 && (sec->size != 0
15098 || (strcmp (sec->name, ".text")
15099 && strcmp (sec->name, ".data")
15100 && strcmp (sec->name, ".bss"))))
15101 {
15102 null_input_bfd = FALSE;
15103 break;
15104 }
15105 }
15106 if (null_input_bfd)
15107 return TRUE;
15108
15109 /* Populate abiflags using existing information. */
15110 if (!mips_elf_tdata (ibfd)->abiflags_valid)
15111 {
15112 infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags);
15113 mips_elf_tdata (ibfd)->abiflags_valid = TRUE;
15114 }
15115 else
15116 {
15117 Elf_Internal_ABIFlags_v0 abiflags;
15118 Elf_Internal_ABIFlags_v0 in_abiflags;
15119 infer_mips_abiflags (ibfd, &abiflags);
15120 in_abiflags = mips_elf_tdata (ibfd)->abiflags;
15121
15122 /* It is not possible to infer the correct ISA revision
15123 for R3 or R5 so drop down to R2 for the checks. */
15124 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15125 in_abiflags.isa_rev = 2;
15126
15127 if (in_abiflags.isa_level != abiflags.isa_level
15128 || in_abiflags.isa_rev != abiflags.isa_rev
15129 || in_abiflags.isa_ext != abiflags.isa_ext)
15130 (*_bfd_error_handler)
15131 (_("%B: warning: Inconsistent ISA between e_flags and "
15132 ".MIPS.abiflags"), ibfd);
15133 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15134 && in_abiflags.fp_abi != abiflags.fp_abi)
15135 (*_bfd_error_handler)
15136 (_("%B: warning: Inconsistent FP ABI between e_flags and "
15137 ".MIPS.abiflags"), ibfd);
15138 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15139 (*_bfd_error_handler)
15140 (_("%B: warning: Inconsistent ASEs between e_flags and "
15141 ".MIPS.abiflags"), ibfd);
15142 if (in_abiflags.isa_ext != abiflags.isa_ext)
15143 (*_bfd_error_handler)
15144 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15145 ".MIPS.abiflags"), ibfd);
15146 if (in_abiflags.flags2 != 0)
15147 (*_bfd_error_handler)
15148 (_("%B: warning: Unexpected flag in the flags2 field of "
15149 ".MIPS.abiflags (0x%lx)"), ibfd,
15150 (unsigned long) in_abiflags.flags2);
15151 }
15152
15153 if (!mips_elf_tdata (obfd)->abiflags_valid)
15154 {
15155 /* Copy input abiflags if output abiflags are not already valid. */
15156 mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags;
15157 mips_elf_tdata (obfd)->abiflags_valid = TRUE;
15158 }
15159
15160 if (! elf_flags_init (obfd))
15161 {
15162 elf_flags_init (obfd) = TRUE;
15163 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15164 elf_elfheader (obfd)->e_ident[EI_CLASS]
15165 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15166
15167 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15168 && (bfd_get_arch_info (obfd)->the_default
15169 || mips_mach_extends_p (bfd_get_mach (obfd),
15170 bfd_get_mach (ibfd))))
15171 {
15172 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15173 bfd_get_mach (ibfd)))
15174 return FALSE;
15175
15176 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15177 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15178 }
15179
15180 return TRUE;
15181 }
15182
15183 /* Update the output abiflags fp_abi using the computed fp_abi. */
15184 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15185 mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15186
15187 #define max(a,b) ((a) > (b) ? (a) : (b))
15188 /* Merge abiflags. */
15189 mips_elf_tdata (obfd)->abiflags.isa_rev
15190 = max (mips_elf_tdata (obfd)->abiflags.isa_rev,
15191 mips_elf_tdata (ibfd)->abiflags.isa_rev);
15192 mips_elf_tdata (obfd)->abiflags.gpr_size
15193 = max (mips_elf_tdata (obfd)->abiflags.gpr_size,
15194 mips_elf_tdata (ibfd)->abiflags.gpr_size);
15195 mips_elf_tdata (obfd)->abiflags.cpr1_size
15196 = max (mips_elf_tdata (obfd)->abiflags.cpr1_size,
15197 mips_elf_tdata (ibfd)->abiflags.cpr1_size);
15198 mips_elf_tdata (obfd)->abiflags.cpr2_size
15199 = max (mips_elf_tdata (obfd)->abiflags.cpr2_size,
15200 mips_elf_tdata (ibfd)->abiflags.cpr2_size);
15201 #undef max
15202 mips_elf_tdata (obfd)->abiflags.ases
15203 |= mips_elf_tdata (ibfd)->abiflags.ases;
15204 mips_elf_tdata (obfd)->abiflags.flags1
15205 |= mips_elf_tdata (ibfd)->abiflags.flags1;
15206
15207 new_flags = elf_elfheader (ibfd)->e_flags;
15208 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15209 old_flags = elf_elfheader (obfd)->e_flags;
15210
15211 /* Check flag compatibility. */
15212
15213 new_flags &= ~EF_MIPS_NOREORDER;
15214 old_flags &= ~EF_MIPS_NOREORDER;
15215
15216 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15217 doesn't seem to matter. */
15218 new_flags &= ~EF_MIPS_XGOT;
15219 old_flags &= ~EF_MIPS_XGOT;
15220
15221 /* MIPSpro generates ucode info in n64 objects. Again, we should
15222 just be able to ignore this. */
15223 new_flags &= ~EF_MIPS_UCODE;
15224 old_flags &= ~EF_MIPS_UCODE;
15225
15226 /* DSOs should only be linked with CPIC code. */
15227 if ((ibfd->flags & DYNAMIC) != 0)
15228 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15229
15230 if (new_flags == old_flags)
15231 return TRUE;
15232
15233 ok = TRUE;
15234
15235 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15236 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15237 {
15238 (*_bfd_error_handler)
15239 (_("%B: warning: linking abicalls files with non-abicalls files"),
15240 ibfd);
15241 ok = TRUE;
15242 }
15243
15244 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15245 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15246 if (! (new_flags & EF_MIPS_PIC))
15247 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15248
15249 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15250 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15251
15252 /* Compare the ISAs. */
15253 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15254 {
15255 (*_bfd_error_handler)
15256 (_("%B: linking 32-bit code with 64-bit code"),
15257 ibfd);
15258 ok = FALSE;
15259 }
15260 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15261 {
15262 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15263 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15264 {
15265 /* Copy the architecture info from IBFD to OBFD. Also copy
15266 the 32-bit flag (if set) so that we continue to recognise
15267 OBFD as a 32-bit binary. */
15268 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15269 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15270 elf_elfheader (obfd)->e_flags
15271 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15272
15273 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15274 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15275
15276 /* Copy across the ABI flags if OBFD doesn't use them
15277 and if that was what caused us to treat IBFD as 32-bit. */
15278 if ((old_flags & EF_MIPS_ABI) == 0
15279 && mips_32bit_flags_p (new_flags)
15280 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15281 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15282 }
15283 else
15284 {
15285 /* The ISAs aren't compatible. */
15286 (*_bfd_error_handler)
15287 (_("%B: linking %s module with previous %s modules"),
15288 ibfd,
15289 bfd_printable_name (ibfd),
15290 bfd_printable_name (obfd));
15291 ok = FALSE;
15292 }
15293 }
15294
15295 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15296 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15297
15298 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15299 does set EI_CLASS differently from any 32-bit ABI. */
15300 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15301 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15302 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15303 {
15304 /* Only error if both are set (to different values). */
15305 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15306 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15307 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15308 {
15309 (*_bfd_error_handler)
15310 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15311 ibfd,
15312 elf_mips_abi_name (ibfd),
15313 elf_mips_abi_name (obfd));
15314 ok = FALSE;
15315 }
15316 new_flags &= ~EF_MIPS_ABI;
15317 old_flags &= ~EF_MIPS_ABI;
15318 }
15319
15320 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15321 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15322 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15323 {
15324 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15325 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15326 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15327 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15328 int micro_mis = old_m16 && new_micro;
15329 int m16_mis = old_micro && new_m16;
15330
15331 if (m16_mis || micro_mis)
15332 {
15333 (*_bfd_error_handler)
15334 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15335 ibfd,
15336 m16_mis ? "MIPS16" : "microMIPS",
15337 m16_mis ? "microMIPS" : "MIPS16");
15338 ok = FALSE;
15339 }
15340
15341 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15342
15343 new_flags &= ~ EF_MIPS_ARCH_ASE;
15344 old_flags &= ~ EF_MIPS_ARCH_ASE;
15345 }
15346
15347 /* Compare NaN encodings. */
15348 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15349 {
15350 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15351 ibfd,
15352 (new_flags & EF_MIPS_NAN2008
15353 ? "-mnan=2008" : "-mnan=legacy"),
15354 (old_flags & EF_MIPS_NAN2008
15355 ? "-mnan=2008" : "-mnan=legacy"));
15356 ok = FALSE;
15357 new_flags &= ~EF_MIPS_NAN2008;
15358 old_flags &= ~EF_MIPS_NAN2008;
15359 }
15360
15361 /* Compare FP64 state. */
15362 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15363 {
15364 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15365 ibfd,
15366 (new_flags & EF_MIPS_FP64
15367 ? "-mfp64" : "-mfp32"),
15368 (old_flags & EF_MIPS_FP64
15369 ? "-mfp64" : "-mfp32"));
15370 ok = FALSE;
15371 new_flags &= ~EF_MIPS_FP64;
15372 old_flags &= ~EF_MIPS_FP64;
15373 }
15374
15375 /* Warn about any other mismatches */
15376 if (new_flags != old_flags)
15377 {
15378 (*_bfd_error_handler)
15379 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
15380 ibfd, (unsigned long) new_flags,
15381 (unsigned long) old_flags);
15382 ok = FALSE;
15383 }
15384
15385 if (! ok)
15386 {
15387 bfd_set_error (bfd_error_bad_value);
15388 return FALSE;
15389 }
15390
15391 return TRUE;
15392 }
15393
15394 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15395
15396 bfd_boolean
15397 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15398 {
15399 BFD_ASSERT (!elf_flags_init (abfd)
15400 || elf_elfheader (abfd)->e_flags == flags);
15401
15402 elf_elfheader (abfd)->e_flags = flags;
15403 elf_flags_init (abfd) = TRUE;
15404 return TRUE;
15405 }
15406
15407 char *
15408 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15409 {
15410 switch (dtag)
15411 {
15412 default: return "";
15413 case DT_MIPS_RLD_VERSION:
15414 return "MIPS_RLD_VERSION";
15415 case DT_MIPS_TIME_STAMP:
15416 return "MIPS_TIME_STAMP";
15417 case DT_MIPS_ICHECKSUM:
15418 return "MIPS_ICHECKSUM";
15419 case DT_MIPS_IVERSION:
15420 return "MIPS_IVERSION";
15421 case DT_MIPS_FLAGS:
15422 return "MIPS_FLAGS";
15423 case DT_MIPS_BASE_ADDRESS:
15424 return "MIPS_BASE_ADDRESS";
15425 case DT_MIPS_MSYM:
15426 return "MIPS_MSYM";
15427 case DT_MIPS_CONFLICT:
15428 return "MIPS_CONFLICT";
15429 case DT_MIPS_LIBLIST:
15430 return "MIPS_LIBLIST";
15431 case DT_MIPS_LOCAL_GOTNO:
15432 return "MIPS_LOCAL_GOTNO";
15433 case DT_MIPS_CONFLICTNO:
15434 return "MIPS_CONFLICTNO";
15435 case DT_MIPS_LIBLISTNO:
15436 return "MIPS_LIBLISTNO";
15437 case DT_MIPS_SYMTABNO:
15438 return "MIPS_SYMTABNO";
15439 case DT_MIPS_UNREFEXTNO:
15440 return "MIPS_UNREFEXTNO";
15441 case DT_MIPS_GOTSYM:
15442 return "MIPS_GOTSYM";
15443 case DT_MIPS_HIPAGENO:
15444 return "MIPS_HIPAGENO";
15445 case DT_MIPS_RLD_MAP:
15446 return "MIPS_RLD_MAP";
15447 case DT_MIPS_RLD_MAP_REL:
15448 return "MIPS_RLD_MAP_REL";
15449 case DT_MIPS_DELTA_CLASS:
15450 return "MIPS_DELTA_CLASS";
15451 case DT_MIPS_DELTA_CLASS_NO:
15452 return "MIPS_DELTA_CLASS_NO";
15453 case DT_MIPS_DELTA_INSTANCE:
15454 return "MIPS_DELTA_INSTANCE";
15455 case DT_MIPS_DELTA_INSTANCE_NO:
15456 return "MIPS_DELTA_INSTANCE_NO";
15457 case DT_MIPS_DELTA_RELOC:
15458 return "MIPS_DELTA_RELOC";
15459 case DT_MIPS_DELTA_RELOC_NO:
15460 return "MIPS_DELTA_RELOC_NO";
15461 case DT_MIPS_DELTA_SYM:
15462 return "MIPS_DELTA_SYM";
15463 case DT_MIPS_DELTA_SYM_NO:
15464 return "MIPS_DELTA_SYM_NO";
15465 case DT_MIPS_DELTA_CLASSSYM:
15466 return "MIPS_DELTA_CLASSSYM";
15467 case DT_MIPS_DELTA_CLASSSYM_NO:
15468 return "MIPS_DELTA_CLASSSYM_NO";
15469 case DT_MIPS_CXX_FLAGS:
15470 return "MIPS_CXX_FLAGS";
15471 case DT_MIPS_PIXIE_INIT:
15472 return "MIPS_PIXIE_INIT";
15473 case DT_MIPS_SYMBOL_LIB:
15474 return "MIPS_SYMBOL_LIB";
15475 case DT_MIPS_LOCALPAGE_GOTIDX:
15476 return "MIPS_LOCALPAGE_GOTIDX";
15477 case DT_MIPS_LOCAL_GOTIDX:
15478 return "MIPS_LOCAL_GOTIDX";
15479 case DT_MIPS_HIDDEN_GOTIDX:
15480 return "MIPS_HIDDEN_GOTIDX";
15481 case DT_MIPS_PROTECTED_GOTIDX:
15482 return "MIPS_PROTECTED_GOT_IDX";
15483 case DT_MIPS_OPTIONS:
15484 return "MIPS_OPTIONS";
15485 case DT_MIPS_INTERFACE:
15486 return "MIPS_INTERFACE";
15487 case DT_MIPS_DYNSTR_ALIGN:
15488 return "DT_MIPS_DYNSTR_ALIGN";
15489 case DT_MIPS_INTERFACE_SIZE:
15490 return "DT_MIPS_INTERFACE_SIZE";
15491 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15492 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15493 case DT_MIPS_PERF_SUFFIX:
15494 return "DT_MIPS_PERF_SUFFIX";
15495 case DT_MIPS_COMPACT_SIZE:
15496 return "DT_MIPS_COMPACT_SIZE";
15497 case DT_MIPS_GP_VALUE:
15498 return "DT_MIPS_GP_VALUE";
15499 case DT_MIPS_AUX_DYNAMIC:
15500 return "DT_MIPS_AUX_DYNAMIC";
15501 case DT_MIPS_PLTGOT:
15502 return "DT_MIPS_PLTGOT";
15503 case DT_MIPS_RWPLT:
15504 return "DT_MIPS_RWPLT";
15505 }
15506 }
15507
15508 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15509 not known. */
15510
15511 const char *
15512 _bfd_mips_fp_abi_string (int fp)
15513 {
15514 switch (fp)
15515 {
15516 /* These strings aren't translated because they're simply
15517 option lists. */
15518 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15519 return "-mdouble-float";
15520
15521 case Val_GNU_MIPS_ABI_FP_SINGLE:
15522 return "-msingle-float";
15523
15524 case Val_GNU_MIPS_ABI_FP_SOFT:
15525 return "-msoft-float";
15526
15527 case Val_GNU_MIPS_ABI_FP_OLD_64:
15528 return _("-mips32r2 -mfp64 (12 callee-saved)");
15529
15530 case Val_GNU_MIPS_ABI_FP_XX:
15531 return "-mfpxx";
15532
15533 case Val_GNU_MIPS_ABI_FP_64:
15534 return "-mgp32 -mfp64";
15535
15536 case Val_GNU_MIPS_ABI_FP_64A:
15537 return "-mgp32 -mfp64 -mno-odd-spreg";
15538
15539 default:
15540 return 0;
15541 }
15542 }
15543
15544 static void
15545 print_mips_ases (FILE *file, unsigned int mask)
15546 {
15547 if (mask & AFL_ASE_DSP)
15548 fputs ("\n\tDSP ASE", file);
15549 if (mask & AFL_ASE_DSPR2)
15550 fputs ("\n\tDSP R2 ASE", file);
15551 if (mask & AFL_ASE_EVA)
15552 fputs ("\n\tEnhanced VA Scheme", file);
15553 if (mask & AFL_ASE_MCU)
15554 fputs ("\n\tMCU (MicroController) ASE", file);
15555 if (mask & AFL_ASE_MDMX)
15556 fputs ("\n\tMDMX ASE", file);
15557 if (mask & AFL_ASE_MIPS3D)
15558 fputs ("\n\tMIPS-3D ASE", file);
15559 if (mask & AFL_ASE_MT)
15560 fputs ("\n\tMT ASE", file);
15561 if (mask & AFL_ASE_SMARTMIPS)
15562 fputs ("\n\tSmartMIPS ASE", file);
15563 if (mask & AFL_ASE_VIRT)
15564 fputs ("\n\tVZ ASE", file);
15565 if (mask & AFL_ASE_MSA)
15566 fputs ("\n\tMSA ASE", file);
15567 if (mask & AFL_ASE_MIPS16)
15568 fputs ("\n\tMIPS16 ASE", file);
15569 if (mask & AFL_ASE_MICROMIPS)
15570 fputs ("\n\tMICROMIPS ASE", file);
15571 if (mask & AFL_ASE_XPA)
15572 fputs ("\n\tXPA ASE", file);
15573 if (mask == 0)
15574 fprintf (file, "\n\t%s", _("None"));
15575 else if ((mask & ~AFL_ASE_MASK) != 0)
15576 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15577 }
15578
15579 static void
15580 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15581 {
15582 switch (isa_ext)
15583 {
15584 case 0:
15585 fputs (_("None"), file);
15586 break;
15587 case AFL_EXT_XLR:
15588 fputs ("RMI XLR", file);
15589 break;
15590 case AFL_EXT_OCTEON3:
15591 fputs ("Cavium Networks Octeon3", file);
15592 break;
15593 case AFL_EXT_OCTEON2:
15594 fputs ("Cavium Networks Octeon2", file);
15595 break;
15596 case AFL_EXT_OCTEONP:
15597 fputs ("Cavium Networks OcteonP", file);
15598 break;
15599 case AFL_EXT_LOONGSON_3A:
15600 fputs ("Loongson 3A", file);
15601 break;
15602 case AFL_EXT_OCTEON:
15603 fputs ("Cavium Networks Octeon", file);
15604 break;
15605 case AFL_EXT_5900:
15606 fputs ("Toshiba R5900", file);
15607 break;
15608 case AFL_EXT_4650:
15609 fputs ("MIPS R4650", file);
15610 break;
15611 case AFL_EXT_4010:
15612 fputs ("LSI R4010", file);
15613 break;
15614 case AFL_EXT_4100:
15615 fputs ("NEC VR4100", file);
15616 break;
15617 case AFL_EXT_3900:
15618 fputs ("Toshiba R3900", file);
15619 break;
15620 case AFL_EXT_10000:
15621 fputs ("MIPS R10000", file);
15622 break;
15623 case AFL_EXT_SB1:
15624 fputs ("Broadcom SB-1", file);
15625 break;
15626 case AFL_EXT_4111:
15627 fputs ("NEC VR4111/VR4181", file);
15628 break;
15629 case AFL_EXT_4120:
15630 fputs ("NEC VR4120", file);
15631 break;
15632 case AFL_EXT_5400:
15633 fputs ("NEC VR5400", file);
15634 break;
15635 case AFL_EXT_5500:
15636 fputs ("NEC VR5500", file);
15637 break;
15638 case AFL_EXT_LOONGSON_2E:
15639 fputs ("ST Microelectronics Loongson 2E", file);
15640 break;
15641 case AFL_EXT_LOONGSON_2F:
15642 fputs ("ST Microelectronics Loongson 2F", file);
15643 break;
15644 default:
15645 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15646 break;
15647 }
15648 }
15649
15650 static void
15651 print_mips_fp_abi_value (FILE *file, int val)
15652 {
15653 switch (val)
15654 {
15655 case Val_GNU_MIPS_ABI_FP_ANY:
15656 fprintf (file, _("Hard or soft float\n"));
15657 break;
15658 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15659 fprintf (file, _("Hard float (double precision)\n"));
15660 break;
15661 case Val_GNU_MIPS_ABI_FP_SINGLE:
15662 fprintf (file, _("Hard float (single precision)\n"));
15663 break;
15664 case Val_GNU_MIPS_ABI_FP_SOFT:
15665 fprintf (file, _("Soft float\n"));
15666 break;
15667 case Val_GNU_MIPS_ABI_FP_OLD_64:
15668 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15669 break;
15670 case Val_GNU_MIPS_ABI_FP_XX:
15671 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15672 break;
15673 case Val_GNU_MIPS_ABI_FP_64:
15674 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15675 break;
15676 case Val_GNU_MIPS_ABI_FP_64A:
15677 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15678 break;
15679 default:
15680 fprintf (file, "??? (%d)\n", val);
15681 break;
15682 }
15683 }
15684
15685 static int
15686 get_mips_reg_size (int reg_size)
15687 {
15688 return (reg_size == AFL_REG_NONE) ? 0
15689 : (reg_size == AFL_REG_32) ? 32
15690 : (reg_size == AFL_REG_64) ? 64
15691 : (reg_size == AFL_REG_128) ? 128
15692 : -1;
15693 }
15694
15695 bfd_boolean
15696 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15697 {
15698 FILE *file = ptr;
15699
15700 BFD_ASSERT (abfd != NULL && ptr != NULL);
15701
15702 /* Print normal ELF private data. */
15703 _bfd_elf_print_private_bfd_data (abfd, ptr);
15704
15705 /* xgettext:c-format */
15706 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15707
15708 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15709 fprintf (file, _(" [abi=O32]"));
15710 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15711 fprintf (file, _(" [abi=O64]"));
15712 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15713 fprintf (file, _(" [abi=EABI32]"));
15714 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15715 fprintf (file, _(" [abi=EABI64]"));
15716 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15717 fprintf (file, _(" [abi unknown]"));
15718 else if (ABI_N32_P (abfd))
15719 fprintf (file, _(" [abi=N32]"));
15720 else if (ABI_64_P (abfd))
15721 fprintf (file, _(" [abi=64]"));
15722 else
15723 fprintf (file, _(" [no abi set]"));
15724
15725 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15726 fprintf (file, " [mips1]");
15727 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15728 fprintf (file, " [mips2]");
15729 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15730 fprintf (file, " [mips3]");
15731 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15732 fprintf (file, " [mips4]");
15733 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15734 fprintf (file, " [mips5]");
15735 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15736 fprintf (file, " [mips32]");
15737 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15738 fprintf (file, " [mips64]");
15739 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15740 fprintf (file, " [mips32r2]");
15741 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15742 fprintf (file, " [mips64r2]");
15743 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15744 fprintf (file, " [mips32r6]");
15745 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15746 fprintf (file, " [mips64r6]");
15747 else
15748 fprintf (file, _(" [unknown ISA]"));
15749
15750 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15751 fprintf (file, " [mdmx]");
15752
15753 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15754 fprintf (file, " [mips16]");
15755
15756 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15757 fprintf (file, " [micromips]");
15758
15759 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15760 fprintf (file, " [nan2008]");
15761
15762 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15763 fprintf (file, " [old fp64]");
15764
15765 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15766 fprintf (file, " [32bitmode]");
15767 else
15768 fprintf (file, _(" [not 32bitmode]"));
15769
15770 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15771 fprintf (file, " [noreorder]");
15772
15773 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15774 fprintf (file, " [PIC]");
15775
15776 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15777 fprintf (file, " [CPIC]");
15778
15779 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15780 fprintf (file, " [XGOT]");
15781
15782 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15783 fprintf (file, " [UCODE]");
15784
15785 fputc ('\n', file);
15786
15787 if (mips_elf_tdata (abfd)->abiflags_valid)
15788 {
15789 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15790 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15791 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15792 if (abiflags->isa_rev > 1)
15793 fprintf (file, "r%d", abiflags->isa_rev);
15794 fprintf (file, "\nGPR size: %d",
15795 get_mips_reg_size (abiflags->gpr_size));
15796 fprintf (file, "\nCPR1 size: %d",
15797 get_mips_reg_size (abiflags->cpr1_size));
15798 fprintf (file, "\nCPR2 size: %d",
15799 get_mips_reg_size (abiflags->cpr2_size));
15800 fputs ("\nFP ABI: ", file);
15801 print_mips_fp_abi_value (file, abiflags->fp_abi);
15802 fputs ("ISA Extension: ", file);
15803 print_mips_isa_ext (file, abiflags->isa_ext);
15804 fputs ("\nASEs:", file);
15805 print_mips_ases (file, abiflags->ases);
15806 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15807 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15808 fputc ('\n', file);
15809 }
15810
15811 return TRUE;
15812 }
15813
15814 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15815 {
15816 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15817 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15818 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15819 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15820 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15821 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15822 { NULL, 0, 0, 0, 0 }
15823 };
15824
15825 /* Merge non visibility st_other attributes. Ensure that the
15826 STO_OPTIONAL flag is copied into h->other, even if this is not a
15827 definiton of the symbol. */
15828 void
15829 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15830 const Elf_Internal_Sym *isym,
15831 bfd_boolean definition,
15832 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15833 {
15834 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15835 {
15836 unsigned char other;
15837
15838 other = (definition ? isym->st_other : h->other);
15839 other &= ~ELF_ST_VISIBILITY (-1);
15840 h->other = other | ELF_ST_VISIBILITY (h->other);
15841 }
15842
15843 if (!definition
15844 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15845 h->other |= STO_OPTIONAL;
15846 }
15847
15848 /* Decide whether an undefined symbol is special and can be ignored.
15849 This is the case for OPTIONAL symbols on IRIX. */
15850 bfd_boolean
15851 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15852 {
15853 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15854 }
15855
15856 bfd_boolean
15857 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15858 {
15859 return (sym->st_shndx == SHN_COMMON
15860 || sym->st_shndx == SHN_MIPS_ACOMMON
15861 || sym->st_shndx == SHN_MIPS_SCOMMON);
15862 }
15863
15864 /* Return address for Ith PLT stub in section PLT, for relocation REL
15865 or (bfd_vma) -1 if it should not be included. */
15866
15867 bfd_vma
15868 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15869 const arelent *rel ATTRIBUTE_UNUSED)
15870 {
15871 return (plt->vma
15872 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15873 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15874 }
15875
15876 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15877 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15878 and .got.plt and also the slots may be of a different size each we walk
15879 the PLT manually fetching instructions and matching them against known
15880 patterns. To make things easier standard MIPS slots, if any, always come
15881 first. As we don't create proper ELF symbols we use the UDATA.I member
15882 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15883 with the ST_OTHER member of the ELF symbol. */
15884
15885 long
15886 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15887 long symcount ATTRIBUTE_UNUSED,
15888 asymbol **syms ATTRIBUTE_UNUSED,
15889 long dynsymcount, asymbol **dynsyms,
15890 asymbol **ret)
15891 {
15892 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15893 static const char microsuffix[] = "@micromipsplt";
15894 static const char m16suffix[] = "@mips16plt";
15895 static const char mipssuffix[] = "@plt";
15896
15897 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15898 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15899 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15900 Elf_Internal_Shdr *hdr;
15901 bfd_byte *plt_data;
15902 bfd_vma plt_offset;
15903 unsigned int other;
15904 bfd_vma entry_size;
15905 bfd_vma plt0_size;
15906 asection *relplt;
15907 bfd_vma opcode;
15908 asection *plt;
15909 asymbol *send;
15910 size_t size;
15911 char *names;
15912 long counti;
15913 arelent *p;
15914 asymbol *s;
15915 char *nend;
15916 long count;
15917 long pi;
15918 long i;
15919 long n;
15920
15921 *ret = NULL;
15922
15923 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15924 return 0;
15925
15926 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15927 if (relplt == NULL)
15928 return 0;
15929
15930 hdr = &elf_section_data (relplt)->this_hdr;
15931 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15932 return 0;
15933
15934 plt = bfd_get_section_by_name (abfd, ".plt");
15935 if (plt == NULL)
15936 return 0;
15937
15938 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15939 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15940 return -1;
15941 p = relplt->relocation;
15942
15943 /* Calculating the exact amount of space required for symbols would
15944 require two passes over the PLT, so just pessimise assuming two
15945 PLT slots per relocation. */
15946 count = relplt->size / hdr->sh_entsize;
15947 counti = count * bed->s->int_rels_per_ext_rel;
15948 size = 2 * count * sizeof (asymbol);
15949 size += count * (sizeof (mipssuffix) +
15950 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15951 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15952 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15953
15954 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15955 size += sizeof (asymbol) + sizeof (pltname);
15956
15957 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15958 return -1;
15959
15960 if (plt->size < 16)
15961 return -1;
15962
15963 s = *ret = bfd_malloc (size);
15964 if (s == NULL)
15965 return -1;
15966 send = s + 2 * count + 1;
15967
15968 names = (char *) send;
15969 nend = (char *) s + size;
15970 n = 0;
15971
15972 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15973 if (opcode == 0x3302fffe)
15974 {
15975 if (!micromips_p)
15976 return -1;
15977 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15978 other = STO_MICROMIPS;
15979 }
15980 else if (opcode == 0x0398c1d0)
15981 {
15982 if (!micromips_p)
15983 return -1;
15984 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15985 other = STO_MICROMIPS;
15986 }
15987 else
15988 {
15989 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15990 other = 0;
15991 }
15992
15993 s->the_bfd = abfd;
15994 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15995 s->section = plt;
15996 s->value = 0;
15997 s->name = names;
15998 s->udata.i = other;
15999 memcpy (names, pltname, sizeof (pltname));
16000 names += sizeof (pltname);
16001 ++s, ++n;
16002
16003 pi = 0;
16004 for (plt_offset = plt0_size;
16005 plt_offset + 8 <= plt->size && s < send;
16006 plt_offset += entry_size)
16007 {
16008 bfd_vma gotplt_addr;
16009 const char *suffix;
16010 bfd_vma gotplt_hi;
16011 bfd_vma gotplt_lo;
16012 size_t suffixlen;
16013
16014 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16015
16016 /* Check if the second word matches the expected MIPS16 instruction. */
16017 if (opcode == 0x651aeb00)
16018 {
16019 if (micromips_p)
16020 return -1;
16021 /* Truncated table??? */
16022 if (plt_offset + 16 > plt->size)
16023 break;
16024 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16025 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16026 suffixlen = sizeof (m16suffix);
16027 suffix = m16suffix;
16028 other = STO_MIPS16;
16029 }
16030 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16031 else if (opcode == 0xff220000)
16032 {
16033 if (!micromips_p)
16034 return -1;
16035 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16036 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16037 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16038 gotplt_lo <<= 2;
16039 gotplt_addr = gotplt_hi + gotplt_lo;
16040 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16041 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16042 suffixlen = sizeof (microsuffix);
16043 suffix = microsuffix;
16044 other = STO_MICROMIPS;
16045 }
16046 /* Likewise the expected microMIPS instruction (insn32 mode). */
16047 else if ((opcode & 0xffff0000) == 0xff2f0000)
16048 {
16049 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16050 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16051 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16052 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16053 gotplt_addr = gotplt_hi + gotplt_lo;
16054 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16055 suffixlen = sizeof (microsuffix);
16056 suffix = microsuffix;
16057 other = STO_MICROMIPS;
16058 }
16059 /* Otherwise assume standard MIPS code. */
16060 else
16061 {
16062 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16063 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16064 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16065 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16066 gotplt_addr = gotplt_hi + gotplt_lo;
16067 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16068 suffixlen = sizeof (mipssuffix);
16069 suffix = mipssuffix;
16070 other = 0;
16071 }
16072 /* Truncated table??? */
16073 if (plt_offset + entry_size > plt->size)
16074 break;
16075
16076 for (i = 0;
16077 i < count && p[pi].address != gotplt_addr;
16078 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16079
16080 if (i < count)
16081 {
16082 size_t namelen;
16083 size_t len;
16084
16085 *s = **p[pi].sym_ptr_ptr;
16086 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16087 we are defining a symbol, ensure one of them is set. */
16088 if ((s->flags & BSF_LOCAL) == 0)
16089 s->flags |= BSF_GLOBAL;
16090 s->flags |= BSF_SYNTHETIC;
16091 s->section = plt;
16092 s->value = plt_offset;
16093 s->name = names;
16094 s->udata.i = other;
16095
16096 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16097 namelen = len + suffixlen;
16098 if (names + namelen > nend)
16099 break;
16100
16101 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16102 names += len;
16103 memcpy (names, suffix, suffixlen);
16104 names += suffixlen;
16105
16106 ++s, ++n;
16107 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16108 }
16109 }
16110
16111 free (plt_data);
16112
16113 return n;
16114 }
16115
16116 void
16117 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16118 {
16119 struct mips_elf_link_hash_table *htab;
16120 Elf_Internal_Ehdr *i_ehdrp;
16121
16122 i_ehdrp = elf_elfheader (abfd);
16123 if (link_info)
16124 {
16125 htab = mips_elf_hash_table (link_info);
16126 BFD_ASSERT (htab != NULL);
16127
16128 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16129 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16130 }
16131
16132 _bfd_elf_post_process_headers (abfd, link_info);
16133
16134 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16135 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16136 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16137 }
16138
16139 int
16140 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16141 {
16142 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16143 }
16144
16145 /* Return the opcode for can't unwind. */
16146
16147 int
16148 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16149 {
16150 return COMPACT_EH_CANT_UNWIND_OPCODE;
16151 }
This page took 0.358436 seconds and 5 git commands to generate.