MIPS/BFD: Handle branches in PLT compression selection
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
460 asection *sstubs;
461 asection *sgot;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1583 char *name;
1584 bfd_boolean res;
1585
1586 if (ELF_ST_IS_MICROMIPS (h->root.other))
1587 value |= 1;
1588
1589 /* Create a new symbol. */
1590 name = concat (prefix, h->root.root.root.string, NULL);
1591 bh = NULL;
1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1593 BSF_LOCAL, s, value, NULL,
1594 TRUE, FALSE, &bh);
1595 free (name);
1596 if (! res)
1597 return FALSE;
1598
1599 /* Make it a local function. */
1600 elfh = (struct elf_link_hash_entry *) bh;
1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1602 elfh->size = size;
1603 elfh->forced_local = 1;
1604 return TRUE;
1605 }
1606
1607 /* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1609 to read. */
1610
1611 static bfd_boolean
1612 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1614 const char *prefix)
1615 {
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
1618 char *name;
1619 asection *s;
1620 bfd_vma value;
1621 bfd_boolean res;
1622
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1628
1629 /* Create a new symbol. */
1630 name = concat (prefix, h->root.root.root.string, NULL);
1631 bh = NULL;
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1634 TRUE, FALSE, &bh);
1635 free (name);
1636 if (! res)
1637 return FALSE;
1638
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1645 return TRUE;
1646 }
1647
1648 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1650
1651 static bfd_boolean
1652 section_allows_mips16_refs_p (asection *section)
1653 {
1654 const char *name;
1655
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1661 }
1662
1663 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1666
1667 static unsigned long
1668 mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
1670 const Elf_Internal_Rela *relocs,
1671 const Elf_Internal_Rela *relend)
1672 {
1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1674 const Elf_Internal_Rela *rel;
1675
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1681
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1686
1687 return 0;
1688 }
1689
1690 /* Check the mips16 stubs for a particular symbol, and see if we can
1691 discard them. */
1692
1693 static void
1694 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
1696 {
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1701 {
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1704 }
1705
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1708 {
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
1712 h->fn_stub->size = 0;
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
1716 h->fn_stub->output_section = bfd_abs_section_ptr;
1717 }
1718
1719 if (h->call_stub != NULL
1720 && ELF_ST_IS_MIPS16 (h->root.other))
1721 {
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
1725 h->call_stub->size = 0;
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
1729 h->call_stub->output_section = bfd_abs_section_ptr;
1730 }
1731
1732 if (h->call_fp_stub != NULL
1733 && ELF_ST_IS_MIPS16 (h->root.other))
1734 {
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
1738 h->call_fp_stub->size = 0;
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1743 }
1744 }
1745
1746 /* Hashtable callbacks for mips_elf_la25_stubs. */
1747
1748 static hashval_t
1749 mips_elf_la25_stub_hash (const void *entry_)
1750 {
1751 const struct mips_elf_la25_stub *entry;
1752
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1756 }
1757
1758 static int
1759 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760 {
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1762
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1769 }
1770
1771 /* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1773 success. */
1774
1775 bfd_boolean
1776 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1778 asection *))
1779 {
1780 struct mips_elf_link_hash_table *htab;
1781
1782 htab = mips_elf_hash_table (info);
1783 if (htab == NULL)
1784 return FALSE;
1785
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1790 return FALSE;
1791
1792 return TRUE;
1793 }
1794
1795 /* Return true if H is a locally-defined PIC function, in the sense
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
1800
1801 static bfd_boolean
1802 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803 {
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812 }
1813
1814 /* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817 static bfd_vma
1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820 {
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832 }
1833
1834 /* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838 static bfd_boolean
1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841 {
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
1848 if (htab == NULL)
1849 return FALSE;
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
1858 mips_elf_get_la25_target (stub, &input_section);
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879 }
1880
1881 /* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885 static bfd_boolean
1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888 {
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
1893 if (htab == NULL)
1894 return FALSE;
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916 }
1917
1918 /* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921 static bfd_boolean
1922 mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924 {
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1965
1966 h->la25_stub = stub;
1967 return (use_trampoline_p
1968 ? mips_elf_add_la25_trampoline (stub, info)
1969 : mips_elf_add_la25_intro (stub, info));
1970 }
1971
1972 /* A mips_elf_link_hash_traverse callback that is called before sizing
1973 sections. DATA points to a mips_htab_traverse_info structure. */
1974
1975 static bfd_boolean
1976 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1977 {
1978 struct mips_htab_traverse_info *hti;
1979
1980 hti = (struct mips_htab_traverse_info *) data;
1981 if (!bfd_link_relocatable (hti->info))
1982 mips_elf_check_mips16_stubs (hti->info, h);
1983
1984 if (mips_elf_local_pic_function_p (h))
1985 {
1986 /* PR 12845: If H is in a section that has been garbage
1987 collected it will have its output section set to *ABS*. */
1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1989 return TRUE;
1990
1991 /* H is a function that might need $25 to be valid on entry.
1992 If we're creating a non-PIC relocatable object, mark H as
1993 being PIC. If we're creating a non-relocatable object with
1994 non-PIC branches and jumps to H, make sure that H has an la25
1995 stub. */
1996 if (bfd_link_relocatable (hti->info))
1997 {
1998 if (!PIC_OBJECT_P (hti->output_bfd))
1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2000 }
2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2002 {
2003 hti->error = TRUE;
2004 return FALSE;
2005 }
2006 }
2007 return TRUE;
2008 }
2009 \f
2010 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2011 Most mips16 instructions are 16 bits, but these instructions
2012 are 32 bits.
2013
2014 The format of these instructions is:
2015
2016 +--------------+--------------------------------+
2017 | JALX | X| Imm 20:16 | Imm 25:21 |
2018 +--------------+--------------------------------+
2019 | Immediate 15:0 |
2020 +-----------------------------------------------+
2021
2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2023 Note that the immediate value in the first word is swapped.
2024
2025 When producing a relocatable object file, R_MIPS16_26 is
2026 handled mostly like R_MIPS_26. In particular, the addend is
2027 stored as a straight 26-bit value in a 32-bit instruction.
2028 (gas makes life simpler for itself by never adjusting a
2029 R_MIPS16_26 reloc to be against a section, so the addend is
2030 always zero). However, the 32 bit instruction is stored as 2
2031 16-bit values, rather than a single 32-bit value. In a
2032 big-endian file, the result is the same; in a little-endian
2033 file, the two 16-bit halves of the 32 bit value are swapped.
2034 This is so that a disassembler can recognize the jal
2035 instruction.
2036
2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2038 instruction stored as two 16-bit values. The addend A is the
2039 contents of the targ26 field. The calculation is the same as
2040 R_MIPS_26. When storing the calculated value, reorder the
2041 immediate value as shown above, and don't forget to store the
2042 value as two 16-bit values.
2043
2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2045 defined as
2046
2047 big-endian:
2048 +--------+----------------------+
2049 | | |
2050 | | targ26-16 |
2051 |31 26|25 0|
2052 +--------+----------------------+
2053
2054 little-endian:
2055 +----------+------+-------------+
2056 | | | |
2057 | sub1 | | sub2 |
2058 |0 9|10 15|16 31|
2059 +----------+--------------------+
2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2061 ((sub1 << 16) | sub2)).
2062
2063 When producing a relocatable object file, the calculation is
2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2065 When producing a fully linked file, the calculation is
2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2068
2069 The table below lists the other MIPS16 instruction relocations.
2070 Each one is calculated in the same way as the non-MIPS16 relocation
2071 given on the right, but using the extended MIPS16 layout of 16-bit
2072 immediate fields:
2073
2074 R_MIPS16_GPREL R_MIPS_GPREL16
2075 R_MIPS16_GOT16 R_MIPS_GOT16
2076 R_MIPS16_CALL16 R_MIPS_CALL16
2077 R_MIPS16_HI16 R_MIPS_HI16
2078 R_MIPS16_LO16 R_MIPS_LO16
2079
2080 A typical instruction will have a format like this:
2081
2082 +--------------+--------------------------------+
2083 | EXTEND | Imm 10:5 | Imm 15:11 |
2084 +--------------+--------------------------------+
2085 | Major | rx | ry | Imm 4:0 |
2086 +--------------+--------------------------------+
2087
2088 EXTEND is the five bit value 11110. Major is the instruction
2089 opcode.
2090
2091 All we need to do here is shuffle the bits appropriately.
2092 As above, the two 16-bit halves must be swapped on a
2093 little-endian system.
2094
2095 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2096 relocatable field is shifted by 1 rather than 2 and the same bit
2097 shuffling is done as with the relocations above. */
2098
2099 static inline bfd_boolean
2100 mips16_reloc_p (int r_type)
2101 {
2102 switch (r_type)
2103 {
2104 case R_MIPS16_26:
2105 case R_MIPS16_GPREL:
2106 case R_MIPS16_GOT16:
2107 case R_MIPS16_CALL16:
2108 case R_MIPS16_HI16:
2109 case R_MIPS16_LO16:
2110 case R_MIPS16_TLS_GD:
2111 case R_MIPS16_TLS_LDM:
2112 case R_MIPS16_TLS_DTPREL_HI16:
2113 case R_MIPS16_TLS_DTPREL_LO16:
2114 case R_MIPS16_TLS_GOTTPREL:
2115 case R_MIPS16_TLS_TPREL_HI16:
2116 case R_MIPS16_TLS_TPREL_LO16:
2117 case R_MIPS16_PC16_S1:
2118 return TRUE;
2119
2120 default:
2121 return FALSE;
2122 }
2123 }
2124
2125 /* Check if a microMIPS reloc. */
2126
2127 static inline bfd_boolean
2128 micromips_reloc_p (unsigned int r_type)
2129 {
2130 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2131 }
2132
2133 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2134 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2135 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2136
2137 static inline bfd_boolean
2138 micromips_reloc_shuffle_p (unsigned int r_type)
2139 {
2140 return (micromips_reloc_p (r_type)
2141 && r_type != R_MICROMIPS_PC7_S1
2142 && r_type != R_MICROMIPS_PC10_S1);
2143 }
2144
2145 static inline bfd_boolean
2146 got16_reloc_p (int r_type)
2147 {
2148 return (r_type == R_MIPS_GOT16
2149 || r_type == R_MIPS16_GOT16
2150 || r_type == R_MICROMIPS_GOT16);
2151 }
2152
2153 static inline bfd_boolean
2154 call16_reloc_p (int r_type)
2155 {
2156 return (r_type == R_MIPS_CALL16
2157 || r_type == R_MIPS16_CALL16
2158 || r_type == R_MICROMIPS_CALL16);
2159 }
2160
2161 static inline bfd_boolean
2162 got_disp_reloc_p (unsigned int r_type)
2163 {
2164 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2165 }
2166
2167 static inline bfd_boolean
2168 got_page_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2171 }
2172
2173 static inline bfd_boolean
2174 got_lo16_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2177 }
2178
2179 static inline bfd_boolean
2180 call_hi16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_lo16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2189 }
2190
2191 static inline bfd_boolean
2192 hi16_reloc_p (int r_type)
2193 {
2194 return (r_type == R_MIPS_HI16
2195 || r_type == R_MIPS16_HI16
2196 || r_type == R_MICROMIPS_HI16
2197 || r_type == R_MIPS_PCHI16);
2198 }
2199
2200 static inline bfd_boolean
2201 lo16_reloc_p (int r_type)
2202 {
2203 return (r_type == R_MIPS_LO16
2204 || r_type == R_MIPS16_LO16
2205 || r_type == R_MICROMIPS_LO16
2206 || r_type == R_MIPS_PCLO16);
2207 }
2208
2209 static inline bfd_boolean
2210 mips16_call_reloc_p (int r_type)
2211 {
2212 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2213 }
2214
2215 static inline bfd_boolean
2216 jal_reloc_p (int r_type)
2217 {
2218 return (r_type == R_MIPS_26
2219 || r_type == R_MIPS16_26
2220 || r_type == R_MICROMIPS_26_S1);
2221 }
2222
2223 static inline bfd_boolean
2224 b_reloc_p (int r_type)
2225 {
2226 return (r_type == R_MIPS_PC26_S2
2227 || r_type == R_MIPS_PC21_S2
2228 || r_type == R_MIPS_PC16
2229 || r_type == R_MIPS_GNU_REL16_S2
2230 || r_type == R_MIPS16_PC16_S1
2231 || r_type == R_MICROMIPS_PC16_S1
2232 || r_type == R_MICROMIPS_PC10_S1
2233 || r_type == R_MICROMIPS_PC7_S1);
2234 }
2235
2236 static inline bfd_boolean
2237 aligned_pcrel_reloc_p (int r_type)
2238 {
2239 return (r_type == R_MIPS_PC18_S3
2240 || r_type == R_MIPS_PC19_S2);
2241 }
2242
2243 static inline bfd_boolean
2244 branch_reloc_p (int r_type)
2245 {
2246 return (r_type == R_MIPS_26
2247 || r_type == R_MIPS_PC26_S2
2248 || r_type == R_MIPS_PC21_S2
2249 || r_type == R_MIPS_PC16
2250 || r_type == R_MIPS_GNU_REL16_S2);
2251 }
2252
2253 static inline bfd_boolean
2254 mips16_branch_reloc_p (int r_type)
2255 {
2256 return (r_type == R_MIPS16_26
2257 || r_type == R_MIPS16_PC16_S1);
2258 }
2259
2260 static inline bfd_boolean
2261 micromips_branch_reloc_p (int r_type)
2262 {
2263 return (r_type == R_MICROMIPS_26_S1
2264 || r_type == R_MICROMIPS_PC16_S1
2265 || r_type == R_MICROMIPS_PC10_S1
2266 || r_type == R_MICROMIPS_PC7_S1);
2267 }
2268
2269 static inline bfd_boolean
2270 tls_gd_reloc_p (unsigned int r_type)
2271 {
2272 return (r_type == R_MIPS_TLS_GD
2273 || r_type == R_MIPS16_TLS_GD
2274 || r_type == R_MICROMIPS_TLS_GD);
2275 }
2276
2277 static inline bfd_boolean
2278 tls_ldm_reloc_p (unsigned int r_type)
2279 {
2280 return (r_type == R_MIPS_TLS_LDM
2281 || r_type == R_MIPS16_TLS_LDM
2282 || r_type == R_MICROMIPS_TLS_LDM);
2283 }
2284
2285 static inline bfd_boolean
2286 tls_gottprel_reloc_p (unsigned int r_type)
2287 {
2288 return (r_type == R_MIPS_TLS_GOTTPREL
2289 || r_type == R_MIPS16_TLS_GOTTPREL
2290 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2291 }
2292
2293 void
2294 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2295 bfd_boolean jal_shuffle, bfd_byte *data)
2296 {
2297 bfd_vma first, second, val;
2298
2299 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2300 return;
2301
2302 /* Pick up the first and second halfwords of the instruction. */
2303 first = bfd_get_16 (abfd, data);
2304 second = bfd_get_16 (abfd, data + 2);
2305 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2306 val = first << 16 | second;
2307 else if (r_type != R_MIPS16_26)
2308 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2309 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2310 else
2311 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2312 | ((first & 0x1f) << 21) | second);
2313 bfd_put_32 (abfd, val, data);
2314 }
2315
2316 void
2317 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2318 bfd_boolean jal_shuffle, bfd_byte *data)
2319 {
2320 bfd_vma first, second, val;
2321
2322 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2323 return;
2324
2325 val = bfd_get_32 (abfd, data);
2326 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2327 {
2328 second = val & 0xffff;
2329 first = val >> 16;
2330 }
2331 else if (r_type != R_MIPS16_26)
2332 {
2333 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2334 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2335 }
2336 else
2337 {
2338 second = val & 0xffff;
2339 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2340 | ((val >> 21) & 0x1f);
2341 }
2342 bfd_put_16 (abfd, second, data + 2);
2343 bfd_put_16 (abfd, first, data);
2344 }
2345
2346 bfd_reloc_status_type
2347 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2348 arelent *reloc_entry, asection *input_section,
2349 bfd_boolean relocatable, void *data, bfd_vma gp)
2350 {
2351 bfd_vma relocation;
2352 bfd_signed_vma val;
2353 bfd_reloc_status_type status;
2354
2355 if (bfd_is_com_section (symbol->section))
2356 relocation = 0;
2357 else
2358 relocation = symbol->value;
2359
2360 relocation += symbol->section->output_section->vma;
2361 relocation += symbol->section->output_offset;
2362
2363 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2364 return bfd_reloc_outofrange;
2365
2366 /* Set val to the offset into the section or symbol. */
2367 val = reloc_entry->addend;
2368
2369 _bfd_mips_elf_sign_extend (val, 16);
2370
2371 /* Adjust val for the final section location and GP value. If we
2372 are producing relocatable output, we don't want to do this for
2373 an external symbol. */
2374 if (! relocatable
2375 || (symbol->flags & BSF_SECTION_SYM) != 0)
2376 val += relocation - gp;
2377
2378 if (reloc_entry->howto->partial_inplace)
2379 {
2380 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2381 (bfd_byte *) data
2382 + reloc_entry->address);
2383 if (status != bfd_reloc_ok)
2384 return status;
2385 }
2386 else
2387 reloc_entry->addend = val;
2388
2389 if (relocatable)
2390 reloc_entry->address += input_section->output_offset;
2391
2392 return bfd_reloc_ok;
2393 }
2394
2395 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2396 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2397 that contains the relocation field and DATA points to the start of
2398 INPUT_SECTION. */
2399
2400 struct mips_hi16
2401 {
2402 struct mips_hi16 *next;
2403 bfd_byte *data;
2404 asection *input_section;
2405 arelent rel;
2406 };
2407
2408 /* FIXME: This should not be a static variable. */
2409
2410 static struct mips_hi16 *mips_hi16_list;
2411
2412 /* A howto special_function for REL *HI16 relocations. We can only
2413 calculate the correct value once we've seen the partnering
2414 *LO16 relocation, so just save the information for later.
2415
2416 The ABI requires that the *LO16 immediately follow the *HI16.
2417 However, as a GNU extension, we permit an arbitrary number of
2418 *HI16s to be associated with a single *LO16. This significantly
2419 simplies the relocation handling in gcc. */
2420
2421 bfd_reloc_status_type
2422 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2423 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2424 asection *input_section, bfd *output_bfd,
2425 char **error_message ATTRIBUTE_UNUSED)
2426 {
2427 struct mips_hi16 *n;
2428
2429 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2430 return bfd_reloc_outofrange;
2431
2432 n = bfd_malloc (sizeof *n);
2433 if (n == NULL)
2434 return bfd_reloc_outofrange;
2435
2436 n->next = mips_hi16_list;
2437 n->data = data;
2438 n->input_section = input_section;
2439 n->rel = *reloc_entry;
2440 mips_hi16_list = n;
2441
2442 if (output_bfd != NULL)
2443 reloc_entry->address += input_section->output_offset;
2444
2445 return bfd_reloc_ok;
2446 }
2447
2448 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2449 like any other 16-bit relocation when applied to global symbols, but is
2450 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2451
2452 bfd_reloc_status_type
2453 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2454 void *data, asection *input_section,
2455 bfd *output_bfd, char **error_message)
2456 {
2457 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2458 || bfd_is_und_section (bfd_get_section (symbol))
2459 || bfd_is_com_section (bfd_get_section (symbol)))
2460 /* The relocation is against a global symbol. */
2461 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2462 input_section, output_bfd,
2463 error_message);
2464
2465 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2466 input_section, output_bfd, error_message);
2467 }
2468
2469 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2470 is a straightforward 16 bit inplace relocation, but we must deal with
2471 any partnering high-part relocations as well. */
2472
2473 bfd_reloc_status_type
2474 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2475 void *data, asection *input_section,
2476 bfd *output_bfd, char **error_message)
2477 {
2478 bfd_vma vallo;
2479 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2480
2481 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2482 return bfd_reloc_outofrange;
2483
2484 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2485 location);
2486 vallo = bfd_get_32 (abfd, location);
2487 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2488 location);
2489
2490 while (mips_hi16_list != NULL)
2491 {
2492 bfd_reloc_status_type ret;
2493 struct mips_hi16 *hi;
2494
2495 hi = mips_hi16_list;
2496
2497 /* R_MIPS*_GOT16 relocations are something of a special case. We
2498 want to install the addend in the same way as for a R_MIPS*_HI16
2499 relocation (with a rightshift of 16). However, since GOT16
2500 relocations can also be used with global symbols, their howto
2501 has a rightshift of 0. */
2502 if (hi->rel.howto->type == R_MIPS_GOT16)
2503 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2504 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2505 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2506 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2507 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2508
2509 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2510 carry or borrow will induce a change of +1 or -1 in the high part. */
2511 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2512
2513 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2514 hi->input_section, output_bfd,
2515 error_message);
2516 if (ret != bfd_reloc_ok)
2517 return ret;
2518
2519 mips_hi16_list = hi->next;
2520 free (hi);
2521 }
2522
2523 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2524 input_section, output_bfd,
2525 error_message);
2526 }
2527
2528 /* A generic howto special_function. This calculates and installs the
2529 relocation itself, thus avoiding the oft-discussed problems in
2530 bfd_perform_relocation and bfd_install_relocation. */
2531
2532 bfd_reloc_status_type
2533 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2534 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2535 asection *input_section, bfd *output_bfd,
2536 char **error_message ATTRIBUTE_UNUSED)
2537 {
2538 bfd_signed_vma val;
2539 bfd_reloc_status_type status;
2540 bfd_boolean relocatable;
2541
2542 relocatable = (output_bfd != NULL);
2543
2544 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2545 return bfd_reloc_outofrange;
2546
2547 /* Build up the field adjustment in VAL. */
2548 val = 0;
2549 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2550 {
2551 /* Either we're calculating the final field value or we have a
2552 relocation against a section symbol. Add in the section's
2553 offset or address. */
2554 val += symbol->section->output_section->vma;
2555 val += symbol->section->output_offset;
2556 }
2557
2558 if (!relocatable)
2559 {
2560 /* We're calculating the final field value. Add in the symbol's value
2561 and, if pc-relative, subtract the address of the field itself. */
2562 val += symbol->value;
2563 if (reloc_entry->howto->pc_relative)
2564 {
2565 val -= input_section->output_section->vma;
2566 val -= input_section->output_offset;
2567 val -= reloc_entry->address;
2568 }
2569 }
2570
2571 /* VAL is now the final adjustment. If we're keeping this relocation
2572 in the output file, and if the relocation uses a separate addend,
2573 we just need to add VAL to that addend. Otherwise we need to add
2574 VAL to the relocation field itself. */
2575 if (relocatable && !reloc_entry->howto->partial_inplace)
2576 reloc_entry->addend += val;
2577 else
2578 {
2579 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2580
2581 /* Add in the separate addend, if any. */
2582 val += reloc_entry->addend;
2583
2584 /* Add VAL to the relocation field. */
2585 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2586 location);
2587 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2588 location);
2589 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2590 location);
2591
2592 if (status != bfd_reloc_ok)
2593 return status;
2594 }
2595
2596 if (relocatable)
2597 reloc_entry->address += input_section->output_offset;
2598
2599 return bfd_reloc_ok;
2600 }
2601 \f
2602 /* Swap an entry in a .gptab section. Note that these routines rely
2603 on the equivalence of the two elements of the union. */
2604
2605 static void
2606 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2607 Elf32_gptab *in)
2608 {
2609 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2610 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2611 }
2612
2613 static void
2614 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2615 Elf32_External_gptab *ex)
2616 {
2617 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2618 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2619 }
2620
2621 static void
2622 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2623 Elf32_External_compact_rel *ex)
2624 {
2625 H_PUT_32 (abfd, in->id1, ex->id1);
2626 H_PUT_32 (abfd, in->num, ex->num);
2627 H_PUT_32 (abfd, in->id2, ex->id2);
2628 H_PUT_32 (abfd, in->offset, ex->offset);
2629 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2630 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2631 }
2632
2633 static void
2634 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2635 Elf32_External_crinfo *ex)
2636 {
2637 unsigned long l;
2638
2639 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2640 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2641 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2642 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2643 H_PUT_32 (abfd, l, ex->info);
2644 H_PUT_32 (abfd, in->konst, ex->konst);
2645 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2646 }
2647 \f
2648 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2649 routines swap this structure in and out. They are used outside of
2650 BFD, so they are globally visible. */
2651
2652 void
2653 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2654 Elf32_RegInfo *in)
2655 {
2656 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2657 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2658 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2659 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2660 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2661 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2662 }
2663
2664 void
2665 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2666 Elf32_External_RegInfo *ex)
2667 {
2668 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2669 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2670 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2671 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2672 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2673 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2674 }
2675
2676 /* In the 64 bit ABI, the .MIPS.options section holds register
2677 information in an Elf64_Reginfo structure. These routines swap
2678 them in and out. They are globally visible because they are used
2679 outside of BFD. These routines are here so that gas can call them
2680 without worrying about whether the 64 bit ABI has been included. */
2681
2682 void
2683 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2684 Elf64_Internal_RegInfo *in)
2685 {
2686 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2687 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2688 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2689 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2690 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2691 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2692 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2693 }
2694
2695 void
2696 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2697 Elf64_External_RegInfo *ex)
2698 {
2699 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2700 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2701 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2702 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2703 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2704 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2705 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2706 }
2707
2708 /* Swap in an options header. */
2709
2710 void
2711 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2712 Elf_Internal_Options *in)
2713 {
2714 in->kind = H_GET_8 (abfd, ex->kind);
2715 in->size = H_GET_8 (abfd, ex->size);
2716 in->section = H_GET_16 (abfd, ex->section);
2717 in->info = H_GET_32 (abfd, ex->info);
2718 }
2719
2720 /* Swap out an options header. */
2721
2722 void
2723 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2724 Elf_External_Options *ex)
2725 {
2726 H_PUT_8 (abfd, in->kind, ex->kind);
2727 H_PUT_8 (abfd, in->size, ex->size);
2728 H_PUT_16 (abfd, in->section, ex->section);
2729 H_PUT_32 (abfd, in->info, ex->info);
2730 }
2731
2732 /* Swap in an abiflags structure. */
2733
2734 void
2735 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2736 const Elf_External_ABIFlags_v0 *ex,
2737 Elf_Internal_ABIFlags_v0 *in)
2738 {
2739 in->version = H_GET_16 (abfd, ex->version);
2740 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2741 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2742 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2743 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2744 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2745 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2746 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2747 in->ases = H_GET_32 (abfd, ex->ases);
2748 in->flags1 = H_GET_32 (abfd, ex->flags1);
2749 in->flags2 = H_GET_32 (abfd, ex->flags2);
2750 }
2751
2752 /* Swap out an abiflags structure. */
2753
2754 void
2755 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2756 const Elf_Internal_ABIFlags_v0 *in,
2757 Elf_External_ABIFlags_v0 *ex)
2758 {
2759 H_PUT_16 (abfd, in->version, ex->version);
2760 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2761 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2762 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2763 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2764 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2765 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2766 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2767 H_PUT_32 (abfd, in->ases, ex->ases);
2768 H_PUT_32 (abfd, in->flags1, ex->flags1);
2769 H_PUT_32 (abfd, in->flags2, ex->flags2);
2770 }
2771 \f
2772 /* This function is called via qsort() to sort the dynamic relocation
2773 entries by increasing r_symndx value. */
2774
2775 static int
2776 sort_dynamic_relocs (const void *arg1, const void *arg2)
2777 {
2778 Elf_Internal_Rela int_reloc1;
2779 Elf_Internal_Rela int_reloc2;
2780 int diff;
2781
2782 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2783 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2784
2785 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2786 if (diff != 0)
2787 return diff;
2788
2789 if (int_reloc1.r_offset < int_reloc2.r_offset)
2790 return -1;
2791 if (int_reloc1.r_offset > int_reloc2.r_offset)
2792 return 1;
2793 return 0;
2794 }
2795
2796 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2797
2798 static int
2799 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2800 const void *arg2 ATTRIBUTE_UNUSED)
2801 {
2802 #ifdef BFD64
2803 Elf_Internal_Rela int_reloc1[3];
2804 Elf_Internal_Rela int_reloc2[3];
2805
2806 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2807 (reldyn_sorting_bfd, arg1, int_reloc1);
2808 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2809 (reldyn_sorting_bfd, arg2, int_reloc2);
2810
2811 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2812 return -1;
2813 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2814 return 1;
2815
2816 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2817 return -1;
2818 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2819 return 1;
2820 return 0;
2821 #else
2822 abort ();
2823 #endif
2824 }
2825
2826
2827 /* This routine is used to write out ECOFF debugging external symbol
2828 information. It is called via mips_elf_link_hash_traverse. The
2829 ECOFF external symbol information must match the ELF external
2830 symbol information. Unfortunately, at this point we don't know
2831 whether a symbol is required by reloc information, so the two
2832 tables may wind up being different. We must sort out the external
2833 symbol information before we can set the final size of the .mdebug
2834 section, and we must set the size of the .mdebug section before we
2835 can relocate any sections, and we can't know which symbols are
2836 required by relocation until we relocate the sections.
2837 Fortunately, it is relatively unlikely that any symbol will be
2838 stripped but required by a reloc. In particular, it can not happen
2839 when generating a final executable. */
2840
2841 static bfd_boolean
2842 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2843 {
2844 struct extsym_info *einfo = data;
2845 bfd_boolean strip;
2846 asection *sec, *output_section;
2847
2848 if (h->root.indx == -2)
2849 strip = FALSE;
2850 else if ((h->root.def_dynamic
2851 || h->root.ref_dynamic
2852 || h->root.type == bfd_link_hash_new)
2853 && !h->root.def_regular
2854 && !h->root.ref_regular)
2855 strip = TRUE;
2856 else if (einfo->info->strip == strip_all
2857 || (einfo->info->strip == strip_some
2858 && bfd_hash_lookup (einfo->info->keep_hash,
2859 h->root.root.root.string,
2860 FALSE, FALSE) == NULL))
2861 strip = TRUE;
2862 else
2863 strip = FALSE;
2864
2865 if (strip)
2866 return TRUE;
2867
2868 if (h->esym.ifd == -2)
2869 {
2870 h->esym.jmptbl = 0;
2871 h->esym.cobol_main = 0;
2872 h->esym.weakext = 0;
2873 h->esym.reserved = 0;
2874 h->esym.ifd = ifdNil;
2875 h->esym.asym.value = 0;
2876 h->esym.asym.st = stGlobal;
2877
2878 if (h->root.root.type == bfd_link_hash_undefined
2879 || h->root.root.type == bfd_link_hash_undefweak)
2880 {
2881 const char *name;
2882
2883 /* Use undefined class. Also, set class and type for some
2884 special symbols. */
2885 name = h->root.root.root.string;
2886 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2887 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2888 {
2889 h->esym.asym.sc = scData;
2890 h->esym.asym.st = stLabel;
2891 h->esym.asym.value = 0;
2892 }
2893 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2894 {
2895 h->esym.asym.sc = scAbs;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value =
2898 mips_elf_hash_table (einfo->info)->procedure_count;
2899 }
2900 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2901 {
2902 h->esym.asym.sc = scAbs;
2903 h->esym.asym.st = stLabel;
2904 h->esym.asym.value = elf_gp (einfo->abfd);
2905 }
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
2972 else
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2978
2979 if (hd->needs_lazy_stub)
2980 {
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
3005 einfo->failed = TRUE;
3006 return FALSE;
3007 }
3008
3009 return TRUE;
3010 }
3011
3012 /* A comparison routine used to sort .gptab entries. */
3013
3014 static int
3015 gptab_compare (const void *p1, const void *p2)
3016 {
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021 }
3022 \f
3023 /* Functions to manage the got entry hash table. */
3024
3025 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028 static INLINE hashval_t
3029 mips_elf_hash_bfd_vma (bfd_vma addr)
3030 {
3031 #ifdef BFD64
3032 return addr + (addr >> 32);
3033 #else
3034 return addr;
3035 #endif
3036 }
3037
3038 static hashval_t
3039 mips_elf_got_entry_hash (const void *entry_)
3040 {
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
3043 return (entry->symndx
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
3050 }
3051
3052 static int
3053 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3054 {
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
3058 return (e1->symndx == e2->symndx
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
3065 }
3066
3067 static hashval_t
3068 mips_got_page_ref_hash (const void *ref_)
3069 {
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077 }
3078
3079 static int
3080 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081 {
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091 }
3092
3093 static hashval_t
3094 mips_got_page_entry_hash (const void *entry_)
3095 {
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
3099 return entry->sec->id;
3100 }
3101
3102 static int
3103 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104 {
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
3109 return entry1->sec == entry2->sec;
3110 }
3111 \f
3112 /* Create and return a new mips_got_info structure. */
3113
3114 static struct mips_got_info *
3115 mips_elf_create_got_info (bfd *abfd)
3116 {
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
3131 return NULL;
3132
3133 return g;
3134 }
3135
3136 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139 static struct mips_got_info *
3140 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141 {
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3149 tdata->got = mips_elf_create_got_info (abfd);
3150 return tdata->got;
3151 }
3152
3153 /* Record that ABFD should use output GOT G. */
3154
3155 static void
3156 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157 {
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
3170 }
3171 tdata->got = g;
3172 }
3173
3174 /* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
3177
3178 static asection *
3179 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3180 {
3181 const char *dname;
3182 asection *sreloc;
3183 bfd *dynobj;
3184
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3187 sreloc = bfd_get_linker_section (dynobj, dname);
3188 if (sreloc == NULL && create_p)
3189 {
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
3197 if (sreloc == NULL
3198 || ! bfd_set_section_alignment (dynobj, sreloc,
3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3200 return NULL;
3201 }
3202 return sreloc;
3203 }
3204
3205 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207 static int
3208 mips_elf_reloc_tls_type (unsigned int r_type)
3209 {
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
3219 return GOT_TLS_NONE;
3220 }
3221
3222 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224 static int
3225 mips_tls_got_entries (unsigned int type)
3226 {
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
3236 case GOT_TLS_NONE:
3237 return 0;
3238 }
3239 abort ();
3240 }
3241
3242 /* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246 static int
3247 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249 {
3250 int indx = 0;
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
3254 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3255 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3256 indx = h->dynindx;
3257
3258 if ((bfd_link_pic (info) || indx != 0)
3259 && (h == NULL
3260 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3261 || h->root.type != bfd_link_hash_undefweak))
3262 need_relocs = TRUE;
3263
3264 if (!need_relocs)
3265 return 0;
3266
3267 switch (tls_type)
3268 {
3269 case GOT_TLS_GD:
3270 return indx != 0 ? 2 : 1;
3271
3272 case GOT_TLS_IE:
3273 return 1;
3274
3275 case GOT_TLS_LDM:
3276 return bfd_link_pic (info) ? 1 : 0;
3277
3278 default:
3279 return 0;
3280 }
3281 }
3282
3283 /* Add the number of GOT entries and TLS relocations required by ENTRY
3284 to G. */
3285
3286 static void
3287 mips_elf_count_got_entry (struct bfd_link_info *info,
3288 struct mips_got_info *g,
3289 struct mips_got_entry *entry)
3290 {
3291 if (entry->tls_type)
3292 {
3293 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3294 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3295 entry->symndx < 0
3296 ? &entry->d.h->root : NULL);
3297 }
3298 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3299 g->local_gotno += 1;
3300 else
3301 g->global_gotno += 1;
3302 }
3303
3304 /* Output a simple dynamic relocation into SRELOC. */
3305
3306 static void
3307 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3308 asection *sreloc,
3309 unsigned long reloc_index,
3310 unsigned long indx,
3311 int r_type,
3312 bfd_vma offset)
3313 {
3314 Elf_Internal_Rela rel[3];
3315
3316 memset (rel, 0, sizeof (rel));
3317
3318 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3319 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3320
3321 if (ABI_64_P (output_bfd))
3322 {
3323 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3324 (output_bfd, &rel[0],
3325 (sreloc->contents
3326 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3327 }
3328 else
3329 bfd_elf32_swap_reloc_out
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf32_External_Rel)));
3333 }
3334
3335 /* Initialize a set of TLS GOT entries for one symbol. */
3336
3337 static void
3338 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3339 struct mips_got_entry *entry,
3340 struct mips_elf_link_hash_entry *h,
3341 bfd_vma value)
3342 {
3343 struct mips_elf_link_hash_table *htab;
3344 int indx;
3345 asection *sreloc, *sgot;
3346 bfd_vma got_offset, got_offset2;
3347 bfd_boolean need_relocs = FALSE;
3348
3349 htab = mips_elf_hash_table (info);
3350 if (htab == NULL)
3351 return;
3352
3353 sgot = htab->sgot;
3354
3355 indx = 0;
3356 if (h != NULL)
3357 {
3358 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3359
3360 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3361 &h->root)
3362 && (!bfd_link_pic (info)
3363 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3364 indx = h->root.dynindx;
3365 }
3366
3367 if (entry->tls_initialized)
3368 return;
3369
3370 if ((bfd_link_pic (info) || indx != 0)
3371 && (h == NULL
3372 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3373 || h->root.type != bfd_link_hash_undefweak))
3374 need_relocs = TRUE;
3375
3376 /* MINUS_ONE means the symbol is not defined in this object. It may not
3377 be defined at all; assume that the value doesn't matter in that
3378 case. Otherwise complain if we would use the value. */
3379 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3380 || h->root.root.type == bfd_link_hash_undefweak);
3381
3382 /* Emit necessary relocations. */
3383 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3384 got_offset = entry->gotidx;
3385
3386 switch (entry->tls_type)
3387 {
3388 case GOT_TLS_GD:
3389 /* General Dynamic. */
3390 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3391
3392 if (need_relocs)
3393 {
3394 mips_elf_output_dynamic_relocation
3395 (abfd, sreloc, sreloc->reloc_count++, indx,
3396 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3397 sgot->output_offset + sgot->output_section->vma + got_offset);
3398
3399 if (indx)
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset2);
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3406 sgot->contents + got_offset2);
3407 }
3408 else
3409 {
3410 MIPS_ELF_PUT_WORD (abfd, 1,
3411 sgot->contents + got_offset);
3412 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3413 sgot->contents + got_offset2);
3414 }
3415 break;
3416
3417 case GOT_TLS_IE:
3418 /* Initial Exec model. */
3419 if (need_relocs)
3420 {
3421 if (indx == 0)
3422 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3423 sgot->contents + got_offset);
3424 else
3425 MIPS_ELF_PUT_WORD (abfd, 0,
3426 sgot->contents + got_offset);
3427
3428 mips_elf_output_dynamic_relocation
3429 (abfd, sreloc, sreloc->reloc_count++, indx,
3430 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3431 sgot->output_offset + sgot->output_section->vma + got_offset);
3432 }
3433 else
3434 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3435 sgot->contents + got_offset);
3436 break;
3437
3438 case GOT_TLS_LDM:
3439 /* The initial offset is zero, and the LD offsets will include the
3440 bias by DTP_OFFSET. */
3441 MIPS_ELF_PUT_WORD (abfd, 0,
3442 sgot->contents + got_offset
3443 + MIPS_ELF_GOT_SIZE (abfd));
3444
3445 if (!bfd_link_pic (info))
3446 MIPS_ELF_PUT_WORD (abfd, 1,
3447 sgot->contents + got_offset);
3448 else
3449 mips_elf_output_dynamic_relocation
3450 (abfd, sreloc, sreloc->reloc_count++, indx,
3451 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3452 sgot->output_offset + sgot->output_section->vma + got_offset);
3453 break;
3454
3455 default:
3456 abort ();
3457 }
3458
3459 entry->tls_initialized = TRUE;
3460 }
3461
3462 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3463 for global symbol H. .got.plt comes before the GOT, so the offset
3464 will be negative. */
3465
3466 static bfd_vma
3467 mips_elf_gotplt_index (struct bfd_link_info *info,
3468 struct elf_link_hash_entry *h)
3469 {
3470 bfd_vma got_address, got_value;
3471 struct mips_elf_link_hash_table *htab;
3472
3473 htab = mips_elf_hash_table (info);
3474 BFD_ASSERT (htab != NULL);
3475
3476 BFD_ASSERT (h->plt.plist != NULL);
3477 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3478
3479 /* Calculate the address of the associated .got.plt entry. */
3480 got_address = (htab->sgotplt->output_section->vma
3481 + htab->sgotplt->output_offset
3482 + (h->plt.plist->gotplt_index
3483 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3484
3485 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3486 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3487 + htab->root.hgot->root.u.def.section->output_offset
3488 + htab->root.hgot->root.u.def.value);
3489
3490 return got_address - got_value;
3491 }
3492
3493 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3494 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3495 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3496 offset can be found. */
3497
3498 static bfd_vma
3499 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3500 bfd_vma value, unsigned long r_symndx,
3501 struct mips_elf_link_hash_entry *h, int r_type)
3502 {
3503 struct mips_elf_link_hash_table *htab;
3504 struct mips_got_entry *entry;
3505
3506 htab = mips_elf_hash_table (info);
3507 BFD_ASSERT (htab != NULL);
3508
3509 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3510 r_symndx, h, r_type);
3511 if (!entry)
3512 return MINUS_ONE;
3513
3514 if (entry->tls_type)
3515 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3516 return entry->gotidx;
3517 }
3518
3519 /* Return the GOT index of global symbol H in the primary GOT. */
3520
3521 static bfd_vma
3522 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3523 struct elf_link_hash_entry *h)
3524 {
3525 struct mips_elf_link_hash_table *htab;
3526 long global_got_dynindx;
3527 struct mips_got_info *g;
3528 bfd_vma got_index;
3529
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3532
3533 global_got_dynindx = 0;
3534 if (htab->global_gotsym != NULL)
3535 global_got_dynindx = htab->global_gotsym->dynindx;
3536
3537 /* Once we determine the global GOT entry with the lowest dynamic
3538 symbol table index, we must put all dynamic symbols with greater
3539 indices into the primary GOT. That makes it easy to calculate the
3540 GOT offset. */
3541 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3542 g = mips_elf_bfd_got (obfd, FALSE);
3543 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3544 * MIPS_ELF_GOT_SIZE (obfd));
3545 BFD_ASSERT (got_index < htab->sgot->size);
3546
3547 return got_index;
3548 }
3549
3550 /* Return the GOT index for the global symbol indicated by H, which is
3551 referenced by a relocation of type R_TYPE in IBFD. */
3552
3553 static bfd_vma
3554 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3555 struct elf_link_hash_entry *h, int r_type)
3556 {
3557 struct mips_elf_link_hash_table *htab;
3558 struct mips_got_info *g;
3559 struct mips_got_entry lookup, *entry;
3560 bfd_vma gotidx;
3561
3562 htab = mips_elf_hash_table (info);
3563 BFD_ASSERT (htab != NULL);
3564
3565 g = mips_elf_bfd_got (ibfd, FALSE);
3566 BFD_ASSERT (g);
3567
3568 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3569 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3570 return mips_elf_primary_global_got_index (obfd, info, h);
3571
3572 lookup.abfd = ibfd;
3573 lookup.symndx = -1;
3574 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3575 entry = htab_find (g->got_entries, &lookup);
3576 BFD_ASSERT (entry);
3577
3578 gotidx = entry->gotidx;
3579 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3580
3581 if (lookup.tls_type)
3582 {
3583 bfd_vma value = MINUS_ONE;
3584
3585 if ((h->root.type == bfd_link_hash_defined
3586 || h->root.type == bfd_link_hash_defweak)
3587 && h->root.u.def.section->output_section)
3588 value = (h->root.u.def.value
3589 + h->root.u.def.section->output_offset
3590 + h->root.u.def.section->output_section->vma);
3591
3592 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3593 }
3594 return gotidx;
3595 }
3596
3597 /* Find a GOT page entry that points to within 32KB of VALUE. These
3598 entries are supposed to be placed at small offsets in the GOT, i.e.,
3599 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3600 entry could be created. If OFFSETP is nonnull, use it to return the
3601 offset of the GOT entry from VALUE. */
3602
3603 static bfd_vma
3604 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3605 bfd_vma value, bfd_vma *offsetp)
3606 {
3607 bfd_vma page, got_index;
3608 struct mips_got_entry *entry;
3609
3610 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3612 NULL, R_MIPS_GOT_PAGE);
3613
3614 if (!entry)
3615 return MINUS_ONE;
3616
3617 got_index = entry->gotidx;
3618
3619 if (offsetp)
3620 *offsetp = value - entry->d.address;
3621
3622 return got_index;
3623 }
3624
3625 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3626 EXTERNAL is true if the relocation was originally against a global
3627 symbol that binds locally. */
3628
3629 static bfd_vma
3630 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3631 bfd_vma value, bfd_boolean external)
3632 {
3633 struct mips_got_entry *entry;
3634
3635 /* GOT16 relocations against local symbols are followed by a LO16
3636 relocation; those against global symbols are not. Thus if the
3637 symbol was originally local, the GOT16 relocation should load the
3638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3639 if (! external)
3640 value = mips_elf_high (value) << 16;
3641
3642 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3643 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3644 same in all cases. */
3645 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3646 NULL, R_MIPS_GOT16);
3647 if (entry)
3648 return entry->gotidx;
3649 else
3650 return MINUS_ONE;
3651 }
3652
3653 /* Returns the offset for the entry at the INDEXth position
3654 in the GOT. */
3655
3656 static bfd_vma
3657 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3658 bfd *input_bfd, bfd_vma got_index)
3659 {
3660 struct mips_elf_link_hash_table *htab;
3661 asection *sgot;
3662 bfd_vma gp;
3663
3664 htab = mips_elf_hash_table (info);
3665 BFD_ASSERT (htab != NULL);
3666
3667 sgot = htab->sgot;
3668 gp = _bfd_get_gp_value (output_bfd)
3669 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3670
3671 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3672 }
3673
3674 /* Create and return a local GOT entry for VALUE, which was calculated
3675 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3676 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3677 instead. */
3678
3679 static struct mips_got_entry *
3680 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3681 bfd *ibfd, bfd_vma value,
3682 unsigned long r_symndx,
3683 struct mips_elf_link_hash_entry *h,
3684 int r_type)
3685 {
3686 struct mips_got_entry lookup, *entry;
3687 void **loc;
3688 struct mips_got_info *g;
3689 struct mips_elf_link_hash_table *htab;
3690 bfd_vma gotidx;
3691
3692 htab = mips_elf_hash_table (info);
3693 BFD_ASSERT (htab != NULL);
3694
3695 g = mips_elf_bfd_got (ibfd, FALSE);
3696 if (g == NULL)
3697 {
3698 g = mips_elf_bfd_got (abfd, FALSE);
3699 BFD_ASSERT (g != NULL);
3700 }
3701
3702 /* This function shouldn't be called for symbols that live in the global
3703 area of the GOT. */
3704 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3705
3706 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3707 if (lookup.tls_type)
3708 {
3709 lookup.abfd = ibfd;
3710 if (tls_ldm_reloc_p (r_type))
3711 {
3712 lookup.symndx = 0;
3713 lookup.d.addend = 0;
3714 }
3715 else if (h == NULL)
3716 {
3717 lookup.symndx = r_symndx;
3718 lookup.d.addend = 0;
3719 }
3720 else
3721 {
3722 lookup.symndx = -1;
3723 lookup.d.h = h;
3724 }
3725
3726 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3727 BFD_ASSERT (entry);
3728
3729 gotidx = entry->gotidx;
3730 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3731
3732 return entry;
3733 }
3734
3735 lookup.abfd = NULL;
3736 lookup.symndx = -1;
3737 lookup.d.address = value;
3738 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3739 if (!loc)
3740 return NULL;
3741
3742 entry = (struct mips_got_entry *) *loc;
3743 if (entry)
3744 return entry;
3745
3746 if (g->assigned_low_gotno > g->assigned_high_gotno)
3747 {
3748 /* We didn't allocate enough space in the GOT. */
3749 (*_bfd_error_handler)
3750 (_("not enough GOT space for local GOT entries"));
3751 bfd_set_error (bfd_error_bad_value);
3752 return NULL;
3753 }
3754
3755 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3756 if (!entry)
3757 return NULL;
3758
3759 if (got16_reloc_p (r_type)
3760 || call16_reloc_p (r_type)
3761 || got_page_reloc_p (r_type)
3762 || got_disp_reloc_p (r_type))
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3764 else
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3766
3767 *entry = lookup;
3768 *loc = entry;
3769
3770 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3771
3772 /* These GOT entries need a dynamic relocation on VxWorks. */
3773 if (htab->is_vxworks)
3774 {
3775 Elf_Internal_Rela outrel;
3776 asection *s;
3777 bfd_byte *rloc;
3778 bfd_vma got_address;
3779
3780 s = mips_elf_rel_dyn_section (info, FALSE);
3781 got_address = (htab->sgot->output_section->vma
3782 + htab->sgot->output_offset
3783 + entry->gotidx);
3784
3785 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3786 outrel.r_offset = got_address;
3787 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3788 outrel.r_addend = value;
3789 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3790 }
3791
3792 return entry;
3793 }
3794
3795 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3796 The number might be exact or a worst-case estimate, depending on how
3797 much information is available to elf_backend_omit_section_dynsym at
3798 the current linking stage. */
3799
3800 static bfd_size_type
3801 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3802 {
3803 bfd_size_type count;
3804
3805 count = 0;
3806 if (bfd_link_pic (info)
3807 || elf_hash_table (info)->is_relocatable_executable)
3808 {
3809 asection *p;
3810 const struct elf_backend_data *bed;
3811
3812 bed = get_elf_backend_data (output_bfd);
3813 for (p = output_bfd->sections; p ; p = p->next)
3814 if ((p->flags & SEC_EXCLUDE) == 0
3815 && (p->flags & SEC_ALLOC) != 0
3816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3817 ++count;
3818 }
3819 return count;
3820 }
3821
3822 /* Sort the dynamic symbol table so that symbols that need GOT entries
3823 appear towards the end. */
3824
3825 static bfd_boolean
3826 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3827 {
3828 struct mips_elf_link_hash_table *htab;
3829 struct mips_elf_hash_sort_data hsd;
3830 struct mips_got_info *g;
3831
3832 if (elf_hash_table (info)->dynsymcount == 0)
3833 return TRUE;
3834
3835 htab = mips_elf_hash_table (info);
3836 BFD_ASSERT (htab != NULL);
3837
3838 g = htab->got_info;
3839 if (g == NULL)
3840 return TRUE;
3841
3842 hsd.low = NULL;
3843 hsd.max_unref_got_dynindx
3844 = hsd.min_got_dynindx
3845 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3846 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3847 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3848 elf_hash_table (info)),
3849 mips_elf_sort_hash_table_f,
3850 &hsd);
3851
3852 /* There should have been enough room in the symbol table to
3853 accommodate both the GOT and non-GOT symbols. */
3854 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3855 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3856 == elf_hash_table (info)->dynsymcount);
3857 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3858 == g->global_gotno);
3859
3860 /* Now we know which dynamic symbol has the lowest dynamic symbol
3861 table index in the GOT. */
3862 htab->global_gotsym = hsd.low;
3863
3864 return TRUE;
3865 }
3866
3867 /* If H needs a GOT entry, assign it the highest available dynamic
3868 index. Otherwise, assign it the lowest available dynamic
3869 index. */
3870
3871 static bfd_boolean
3872 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3873 {
3874 struct mips_elf_hash_sort_data *hsd = data;
3875
3876 /* Symbols without dynamic symbol table entries aren't interesting
3877 at all. */
3878 if (h->root.dynindx == -1)
3879 return TRUE;
3880
3881 switch (h->global_got_area)
3882 {
3883 case GGA_NONE:
3884 h->root.dynindx = hsd->max_non_got_dynindx++;
3885 break;
3886
3887 case GGA_NORMAL:
3888 h->root.dynindx = --hsd->min_got_dynindx;
3889 hsd->low = (struct elf_link_hash_entry *) h;
3890 break;
3891
3892 case GGA_RELOC_ONLY:
3893 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3894 hsd->low = (struct elf_link_hash_entry *) h;
3895 h->root.dynindx = hsd->max_unref_got_dynindx++;
3896 break;
3897 }
3898
3899 return TRUE;
3900 }
3901
3902 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3903 (which is owned by the caller and shouldn't be added to the
3904 hash table directly). */
3905
3906 static bfd_boolean
3907 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3908 struct mips_got_entry *lookup)
3909 {
3910 struct mips_elf_link_hash_table *htab;
3911 struct mips_got_entry *entry;
3912 struct mips_got_info *g;
3913 void **loc, **bfd_loc;
3914
3915 /* Make sure there's a slot for this entry in the master GOT. */
3916 htab = mips_elf_hash_table (info);
3917 g = htab->got_info;
3918 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3919 if (!loc)
3920 return FALSE;
3921
3922 /* Populate the entry if it isn't already. */
3923 entry = (struct mips_got_entry *) *loc;
3924 if (!entry)
3925 {
3926 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3927 if (!entry)
3928 return FALSE;
3929
3930 lookup->tls_initialized = FALSE;
3931 lookup->gotidx = -1;
3932 *entry = *lookup;
3933 *loc = entry;
3934 }
3935
3936 /* Reuse the same GOT entry for the BFD's GOT. */
3937 g = mips_elf_bfd_got (abfd, TRUE);
3938 if (!g)
3939 return FALSE;
3940
3941 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3942 if (!bfd_loc)
3943 return FALSE;
3944
3945 if (!*bfd_loc)
3946 *bfd_loc = entry;
3947 return TRUE;
3948 }
3949
3950 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3951 entry for it. FOR_CALL is true if the caller is only interested in
3952 using the GOT entry for calls. */
3953
3954 static bfd_boolean
3955 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3956 bfd *abfd, struct bfd_link_info *info,
3957 bfd_boolean for_call, int r_type)
3958 {
3959 struct mips_elf_link_hash_table *htab;
3960 struct mips_elf_link_hash_entry *hmips;
3961 struct mips_got_entry entry;
3962 unsigned char tls_type;
3963
3964 htab = mips_elf_hash_table (info);
3965 BFD_ASSERT (htab != NULL);
3966
3967 hmips = (struct mips_elf_link_hash_entry *) h;
3968 if (!for_call)
3969 hmips->got_only_for_calls = FALSE;
3970
3971 /* A global symbol in the GOT must also be in the dynamic symbol
3972 table. */
3973 if (h->dynindx == -1)
3974 {
3975 switch (ELF_ST_VISIBILITY (h->other))
3976 {
3977 case STV_INTERNAL:
3978 case STV_HIDDEN:
3979 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3980 break;
3981 }
3982 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3983 return FALSE;
3984 }
3985
3986 tls_type = mips_elf_reloc_tls_type (r_type);
3987 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3988 hmips->global_got_area = GGA_NORMAL;
3989
3990 entry.abfd = abfd;
3991 entry.symndx = -1;
3992 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3993 entry.tls_type = tls_type;
3994 return mips_elf_record_got_entry (info, abfd, &entry);
3995 }
3996
3997 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3998 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3999
4000 static bfd_boolean
4001 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4002 struct bfd_link_info *info, int r_type)
4003 {
4004 struct mips_elf_link_hash_table *htab;
4005 struct mips_got_info *g;
4006 struct mips_got_entry entry;
4007
4008 htab = mips_elf_hash_table (info);
4009 BFD_ASSERT (htab != NULL);
4010
4011 g = htab->got_info;
4012 BFD_ASSERT (g != NULL);
4013
4014 entry.abfd = abfd;
4015 entry.symndx = symndx;
4016 entry.d.addend = addend;
4017 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4018 return mips_elf_record_got_entry (info, abfd, &entry);
4019 }
4020
4021 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4022 H is the symbol's hash table entry, or null if SYMNDX is local
4023 to ABFD. */
4024
4025 static bfd_boolean
4026 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4027 long symndx, struct elf_link_hash_entry *h,
4028 bfd_signed_vma addend)
4029 {
4030 struct mips_elf_link_hash_table *htab;
4031 struct mips_got_info *g1, *g2;
4032 struct mips_got_page_ref lookup, *entry;
4033 void **loc, **bfd_loc;
4034
4035 htab = mips_elf_hash_table (info);
4036 BFD_ASSERT (htab != NULL);
4037
4038 g1 = htab->got_info;
4039 BFD_ASSERT (g1 != NULL);
4040
4041 if (h)
4042 {
4043 lookup.symndx = -1;
4044 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4045 }
4046 else
4047 {
4048 lookup.symndx = symndx;
4049 lookup.u.abfd = abfd;
4050 }
4051 lookup.addend = addend;
4052 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4053 if (loc == NULL)
4054 return FALSE;
4055
4056 entry = (struct mips_got_page_ref *) *loc;
4057 if (!entry)
4058 {
4059 entry = bfd_alloc (abfd, sizeof (*entry));
4060 if (!entry)
4061 return FALSE;
4062
4063 *entry = lookup;
4064 *loc = entry;
4065 }
4066
4067 /* Add the same entry to the BFD's GOT. */
4068 g2 = mips_elf_bfd_got (abfd, TRUE);
4069 if (!g2)
4070 return FALSE;
4071
4072 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4073 if (!bfd_loc)
4074 return FALSE;
4075
4076 if (!*bfd_loc)
4077 *bfd_loc = entry;
4078
4079 return TRUE;
4080 }
4081
4082 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4083
4084 static void
4085 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4086 unsigned int n)
4087 {
4088 asection *s;
4089 struct mips_elf_link_hash_table *htab;
4090
4091 htab = mips_elf_hash_table (info);
4092 BFD_ASSERT (htab != NULL);
4093
4094 s = mips_elf_rel_dyn_section (info, FALSE);
4095 BFD_ASSERT (s != NULL);
4096
4097 if (htab->is_vxworks)
4098 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4099 else
4100 {
4101 if (s->size == 0)
4102 {
4103 /* Make room for a null element. */
4104 s->size += MIPS_ELF_REL_SIZE (abfd);
4105 ++s->reloc_count;
4106 }
4107 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4108 }
4109 }
4110 \f
4111 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4112 mips_elf_traverse_got_arg structure. Count the number of GOT
4113 entries and TLS relocs. Set DATA->value to true if we need
4114 to resolve indirect or warning symbols and then recreate the GOT. */
4115
4116 static int
4117 mips_elf_check_recreate_got (void **entryp, void *data)
4118 {
4119 struct mips_got_entry *entry;
4120 struct mips_elf_traverse_got_arg *arg;
4121
4122 entry = (struct mips_got_entry *) *entryp;
4123 arg = (struct mips_elf_traverse_got_arg *) data;
4124 if (entry->abfd != NULL && entry->symndx == -1)
4125 {
4126 struct mips_elf_link_hash_entry *h;
4127
4128 h = entry->d.h;
4129 if (h->root.root.type == bfd_link_hash_indirect
4130 || h->root.root.type == bfd_link_hash_warning)
4131 {
4132 arg->value = TRUE;
4133 return 0;
4134 }
4135 }
4136 mips_elf_count_got_entry (arg->info, arg->g, entry);
4137 return 1;
4138 }
4139
4140 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4141 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4142 converting entries for indirect and warning symbols into entries
4143 for the target symbol. Set DATA->g to null on error. */
4144
4145 static int
4146 mips_elf_recreate_got (void **entryp, void *data)
4147 {
4148 struct mips_got_entry new_entry, *entry;
4149 struct mips_elf_traverse_got_arg *arg;
4150 void **slot;
4151
4152 entry = (struct mips_got_entry *) *entryp;
4153 arg = (struct mips_elf_traverse_got_arg *) data;
4154 if (entry->abfd != NULL
4155 && entry->symndx == -1
4156 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4157 || entry->d.h->root.root.type == bfd_link_hash_warning))
4158 {
4159 struct mips_elf_link_hash_entry *h;
4160
4161 new_entry = *entry;
4162 entry = &new_entry;
4163 h = entry->d.h;
4164 do
4165 {
4166 BFD_ASSERT (h->global_got_area == GGA_NONE);
4167 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4168 }
4169 while (h->root.root.type == bfd_link_hash_indirect
4170 || h->root.root.type == bfd_link_hash_warning);
4171 entry->d.h = h;
4172 }
4173 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4174 if (slot == NULL)
4175 {
4176 arg->g = NULL;
4177 return 0;
4178 }
4179 if (*slot == NULL)
4180 {
4181 if (entry == &new_entry)
4182 {
4183 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4184 if (!entry)
4185 {
4186 arg->g = NULL;
4187 return 0;
4188 }
4189 *entry = new_entry;
4190 }
4191 *slot = entry;
4192 mips_elf_count_got_entry (arg->info, arg->g, entry);
4193 }
4194 return 1;
4195 }
4196
4197 /* Return the maximum number of GOT page entries required for RANGE. */
4198
4199 static bfd_vma
4200 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4201 {
4202 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4203 }
4204
4205 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4206
4207 static bfd_boolean
4208 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4209 asection *sec, bfd_signed_vma addend)
4210 {
4211 struct mips_got_info *g = arg->g;
4212 struct mips_got_page_entry lookup, *entry;
4213 struct mips_got_page_range **range_ptr, *range;
4214 bfd_vma old_pages, new_pages;
4215 void **loc;
4216
4217 /* Find the mips_got_page_entry hash table entry for this section. */
4218 lookup.sec = sec;
4219 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4220 if (loc == NULL)
4221 return FALSE;
4222
4223 /* Create a mips_got_page_entry if this is the first time we've
4224 seen the section. */
4225 entry = (struct mips_got_page_entry *) *loc;
4226 if (!entry)
4227 {
4228 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4229 if (!entry)
4230 return FALSE;
4231
4232 entry->sec = sec;
4233 *loc = entry;
4234 }
4235
4236 /* Skip over ranges whose maximum extent cannot share a page entry
4237 with ADDEND. */
4238 range_ptr = &entry->ranges;
4239 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4240 range_ptr = &(*range_ptr)->next;
4241
4242 /* If we scanned to the end of the list, or found a range whose
4243 minimum extent cannot share a page entry with ADDEND, create
4244 a new singleton range. */
4245 range = *range_ptr;
4246 if (!range || addend < range->min_addend - 0xffff)
4247 {
4248 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4249 if (!range)
4250 return FALSE;
4251
4252 range->next = *range_ptr;
4253 range->min_addend = addend;
4254 range->max_addend = addend;
4255
4256 *range_ptr = range;
4257 entry->num_pages++;
4258 g->page_gotno++;
4259 return TRUE;
4260 }
4261
4262 /* Remember how many pages the old range contributed. */
4263 old_pages = mips_elf_pages_for_range (range);
4264
4265 /* Update the ranges. */
4266 if (addend < range->min_addend)
4267 range->min_addend = addend;
4268 else if (addend > range->max_addend)
4269 {
4270 if (range->next && addend >= range->next->min_addend - 0xffff)
4271 {
4272 old_pages += mips_elf_pages_for_range (range->next);
4273 range->max_addend = range->next->max_addend;
4274 range->next = range->next->next;
4275 }
4276 else
4277 range->max_addend = addend;
4278 }
4279
4280 /* Record any change in the total estimate. */
4281 new_pages = mips_elf_pages_for_range (range);
4282 if (old_pages != new_pages)
4283 {
4284 entry->num_pages += new_pages - old_pages;
4285 g->page_gotno += new_pages - old_pages;
4286 }
4287
4288 return TRUE;
4289 }
4290
4291 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4292 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4293 whether the page reference described by *REFP needs a GOT page entry,
4294 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4295
4296 static bfd_boolean
4297 mips_elf_resolve_got_page_ref (void **refp, void *data)
4298 {
4299 struct mips_got_page_ref *ref;
4300 struct mips_elf_traverse_got_arg *arg;
4301 struct mips_elf_link_hash_table *htab;
4302 asection *sec;
4303 bfd_vma addend;
4304
4305 ref = (struct mips_got_page_ref *) *refp;
4306 arg = (struct mips_elf_traverse_got_arg *) data;
4307 htab = mips_elf_hash_table (arg->info);
4308
4309 if (ref->symndx < 0)
4310 {
4311 struct mips_elf_link_hash_entry *h;
4312
4313 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4314 h = ref->u.h;
4315 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4316 return 1;
4317
4318 /* Ignore undefined symbols; we'll issue an error later if
4319 appropriate. */
4320 if (!((h->root.root.type == bfd_link_hash_defined
4321 || h->root.root.type == bfd_link_hash_defweak)
4322 && h->root.root.u.def.section))
4323 return 1;
4324
4325 sec = h->root.root.u.def.section;
4326 addend = h->root.root.u.def.value + ref->addend;
4327 }
4328 else
4329 {
4330 Elf_Internal_Sym *isym;
4331
4332 /* Read in the symbol. */
4333 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4334 ref->symndx);
4335 if (isym == NULL)
4336 {
4337 arg->g = NULL;
4338 return 0;
4339 }
4340
4341 /* Get the associated input section. */
4342 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4343 if (sec == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* If this is a mergable section, work out the section and offset
4350 of the merged data. For section symbols, the addend specifies
4351 of the offset _of_ the first byte in the data, otherwise it
4352 specifies the offset _from_ the first byte. */
4353 if (sec->flags & SEC_MERGE)
4354 {
4355 void *secinfo;
4356
4357 secinfo = elf_section_data (sec)->sec_info;
4358 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4359 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4360 isym->st_value + ref->addend);
4361 else
4362 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4363 isym->st_value) + ref->addend;
4364 }
4365 else
4366 addend = isym->st_value + ref->addend;
4367 }
4368 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4369 {
4370 arg->g = NULL;
4371 return 0;
4372 }
4373 return 1;
4374 }
4375
4376 /* If any entries in G->got_entries are for indirect or warning symbols,
4377 replace them with entries for the target symbol. Convert g->got_page_refs
4378 into got_page_entry structures and estimate the number of page entries
4379 that they require. */
4380
4381 static bfd_boolean
4382 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4383 struct mips_got_info *g)
4384 {
4385 struct mips_elf_traverse_got_arg tga;
4386 struct mips_got_info oldg;
4387
4388 oldg = *g;
4389
4390 tga.info = info;
4391 tga.g = g;
4392 tga.value = FALSE;
4393 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4394 if (tga.value)
4395 {
4396 *g = oldg;
4397 g->got_entries = htab_create (htab_size (oldg.got_entries),
4398 mips_elf_got_entry_hash,
4399 mips_elf_got_entry_eq, NULL);
4400 if (!g->got_entries)
4401 return FALSE;
4402
4403 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4404 if (!tga.g)
4405 return FALSE;
4406
4407 htab_delete (oldg.got_entries);
4408 }
4409
4410 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4411 mips_got_page_entry_eq, NULL);
4412 if (g->got_page_entries == NULL)
4413 return FALSE;
4414
4415 tga.info = info;
4416 tga.g = g;
4417 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4418
4419 return TRUE;
4420 }
4421
4422 /* Return true if a GOT entry for H should live in the local rather than
4423 global GOT area. */
4424
4425 static bfd_boolean
4426 mips_use_local_got_p (struct bfd_link_info *info,
4427 struct mips_elf_link_hash_entry *h)
4428 {
4429 /* Symbols that aren't in the dynamic symbol table must live in the
4430 local GOT. This includes symbols that are completely undefined
4431 and which therefore don't bind locally. We'll report undefined
4432 symbols later if appropriate. */
4433 if (h->root.dynindx == -1)
4434 return TRUE;
4435
4436 /* Symbols that bind locally can (and in the case of forced-local
4437 symbols, must) live in the local GOT. */
4438 if (h->got_only_for_calls
4439 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4440 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4441 return TRUE;
4442
4443 /* If this is an executable that must provide a definition of the symbol,
4444 either though PLTs or copy relocations, then that address should go in
4445 the local rather than global GOT. */
4446 if (bfd_link_executable (info) && h->has_static_relocs)
4447 return TRUE;
4448
4449 return FALSE;
4450 }
4451
4452 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4453 link_info structure. Decide whether the hash entry needs an entry in
4454 the global part of the primary GOT, setting global_got_area accordingly.
4455 Count the number of global symbols that are in the primary GOT only
4456 because they have relocations against them (reloc_only_gotno). */
4457
4458 static int
4459 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4460 {
4461 struct bfd_link_info *info;
4462 struct mips_elf_link_hash_table *htab;
4463 struct mips_got_info *g;
4464
4465 info = (struct bfd_link_info *) data;
4466 htab = mips_elf_hash_table (info);
4467 g = htab->got_info;
4468 if (h->global_got_area != GGA_NONE)
4469 {
4470 /* Make a final decision about whether the symbol belongs in the
4471 local or global GOT. */
4472 if (mips_use_local_got_p (info, h))
4473 /* The symbol belongs in the local GOT. We no longer need this
4474 entry if it was only used for relocations; those relocations
4475 will be against the null or section symbol instead of H. */
4476 h->global_got_area = GGA_NONE;
4477 else if (htab->is_vxworks
4478 && h->got_only_for_calls
4479 && h->root.plt.plist->mips_offset != MINUS_ONE)
4480 /* On VxWorks, calls can refer directly to the .got.plt entry;
4481 they don't need entries in the regular GOT. .got.plt entries
4482 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4483 h->global_got_area = GGA_NONE;
4484 else if (h->global_got_area == GGA_RELOC_ONLY)
4485 {
4486 g->reloc_only_gotno++;
4487 g->global_gotno++;
4488 }
4489 }
4490 return 1;
4491 }
4492 \f
4493 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4494 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4495
4496 static int
4497 mips_elf_add_got_entry (void **entryp, void *data)
4498 {
4499 struct mips_got_entry *entry;
4500 struct mips_elf_traverse_got_arg *arg;
4501 void **slot;
4502
4503 entry = (struct mips_got_entry *) *entryp;
4504 arg = (struct mips_elf_traverse_got_arg *) data;
4505 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4506 if (!slot)
4507 {
4508 arg->g = NULL;
4509 return 0;
4510 }
4511 if (!*slot)
4512 {
4513 *slot = entry;
4514 mips_elf_count_got_entry (arg->info, arg->g, entry);
4515 }
4516 return 1;
4517 }
4518
4519 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4520 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4521
4522 static int
4523 mips_elf_add_got_page_entry (void **entryp, void *data)
4524 {
4525 struct mips_got_page_entry *entry;
4526 struct mips_elf_traverse_got_arg *arg;
4527 void **slot;
4528
4529 entry = (struct mips_got_page_entry *) *entryp;
4530 arg = (struct mips_elf_traverse_got_arg *) data;
4531 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4532 if (!slot)
4533 {
4534 arg->g = NULL;
4535 return 0;
4536 }
4537 if (!*slot)
4538 {
4539 *slot = entry;
4540 arg->g->page_gotno += entry->num_pages;
4541 }
4542 return 1;
4543 }
4544
4545 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4546 this would lead to overflow, 1 if they were merged successfully,
4547 and 0 if a merge failed due to lack of memory. (These values are chosen
4548 so that nonnegative return values can be returned by a htab_traverse
4549 callback.) */
4550
4551 static int
4552 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4553 struct mips_got_info *to,
4554 struct mips_elf_got_per_bfd_arg *arg)
4555 {
4556 struct mips_elf_traverse_got_arg tga;
4557 unsigned int estimate;
4558
4559 /* Work out how many page entries we would need for the combined GOT. */
4560 estimate = arg->max_pages;
4561 if (estimate >= from->page_gotno + to->page_gotno)
4562 estimate = from->page_gotno + to->page_gotno;
4563
4564 /* And conservatively estimate how many local and TLS entries
4565 would be needed. */
4566 estimate += from->local_gotno + to->local_gotno;
4567 estimate += from->tls_gotno + to->tls_gotno;
4568
4569 /* If we're merging with the primary got, any TLS relocations will
4570 come after the full set of global entries. Otherwise estimate those
4571 conservatively as well. */
4572 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4573 estimate += arg->global_count;
4574 else
4575 estimate += from->global_gotno + to->global_gotno;
4576
4577 /* Bail out if the combined GOT might be too big. */
4578 if (estimate > arg->max_count)
4579 return -1;
4580
4581 /* Transfer the bfd's got information from FROM to TO. */
4582 tga.info = arg->info;
4583 tga.g = to;
4584 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4585 if (!tga.g)
4586 return 0;
4587
4588 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4589 if (!tga.g)
4590 return 0;
4591
4592 mips_elf_replace_bfd_got (abfd, to);
4593 return 1;
4594 }
4595
4596 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4597 as possible of the primary got, since it doesn't require explicit
4598 dynamic relocations, but don't use bfds that would reference global
4599 symbols out of the addressable range. Failing the primary got,
4600 attempt to merge with the current got, or finish the current got
4601 and then make make the new got current. */
4602
4603 static bfd_boolean
4604 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4605 struct mips_elf_got_per_bfd_arg *arg)
4606 {
4607 unsigned int estimate;
4608 int result;
4609
4610 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4611 return FALSE;
4612
4613 /* Work out the number of page, local and TLS entries. */
4614 estimate = arg->max_pages;
4615 if (estimate > g->page_gotno)
4616 estimate = g->page_gotno;
4617 estimate += g->local_gotno + g->tls_gotno;
4618
4619 /* We place TLS GOT entries after both locals and globals. The globals
4620 for the primary GOT may overflow the normal GOT size limit, so be
4621 sure not to merge a GOT which requires TLS with the primary GOT in that
4622 case. This doesn't affect non-primary GOTs. */
4623 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4624
4625 if (estimate <= arg->max_count)
4626 {
4627 /* If we don't have a primary GOT, use it as
4628 a starting point for the primary GOT. */
4629 if (!arg->primary)
4630 {
4631 arg->primary = g;
4632 return TRUE;
4633 }
4634
4635 /* Try merging with the primary GOT. */
4636 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4637 if (result >= 0)
4638 return result;
4639 }
4640
4641 /* If we can merge with the last-created got, do it. */
4642 if (arg->current)
4643 {
4644 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4645 if (result >= 0)
4646 return result;
4647 }
4648
4649 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4650 fits; if it turns out that it doesn't, we'll get relocation
4651 overflows anyway. */
4652 g->next = arg->current;
4653 arg->current = g;
4654
4655 return TRUE;
4656 }
4657
4658 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4659 to GOTIDX, duplicating the entry if it has already been assigned
4660 an index in a different GOT. */
4661
4662 static bfd_boolean
4663 mips_elf_set_gotidx (void **entryp, long gotidx)
4664 {
4665 struct mips_got_entry *entry;
4666
4667 entry = (struct mips_got_entry *) *entryp;
4668 if (entry->gotidx > 0)
4669 {
4670 struct mips_got_entry *new_entry;
4671
4672 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4673 if (!new_entry)
4674 return FALSE;
4675
4676 *new_entry = *entry;
4677 *entryp = new_entry;
4678 entry = new_entry;
4679 }
4680 entry->gotidx = gotidx;
4681 return TRUE;
4682 }
4683
4684 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4685 mips_elf_traverse_got_arg in which DATA->value is the size of one
4686 GOT entry. Set DATA->g to null on failure. */
4687
4688 static int
4689 mips_elf_initialize_tls_index (void **entryp, void *data)
4690 {
4691 struct mips_got_entry *entry;
4692 struct mips_elf_traverse_got_arg *arg;
4693
4694 /* We're only interested in TLS symbols. */
4695 entry = (struct mips_got_entry *) *entryp;
4696 if (entry->tls_type == GOT_TLS_NONE)
4697 return 1;
4698
4699 arg = (struct mips_elf_traverse_got_arg *) data;
4700 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4701 {
4702 arg->g = NULL;
4703 return 0;
4704 }
4705
4706 /* Account for the entries we've just allocated. */
4707 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4708 return 1;
4709 }
4710
4711 /* A htab_traverse callback for GOT entries, where DATA points to a
4712 mips_elf_traverse_got_arg. Set the global_got_area of each global
4713 symbol to DATA->value. */
4714
4715 static int
4716 mips_elf_set_global_got_area (void **entryp, void *data)
4717 {
4718 struct mips_got_entry *entry;
4719 struct mips_elf_traverse_got_arg *arg;
4720
4721 entry = (struct mips_got_entry *) *entryp;
4722 arg = (struct mips_elf_traverse_got_arg *) data;
4723 if (entry->abfd != NULL
4724 && entry->symndx == -1
4725 && entry->d.h->global_got_area != GGA_NONE)
4726 entry->d.h->global_got_area = arg->value;
4727 return 1;
4728 }
4729
4730 /* A htab_traverse callback for secondary GOT entries, where DATA points
4731 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4732 and record the number of relocations they require. DATA->value is
4733 the size of one GOT entry. Set DATA->g to null on failure. */
4734
4735 static int
4736 mips_elf_set_global_gotidx (void **entryp, void *data)
4737 {
4738 struct mips_got_entry *entry;
4739 struct mips_elf_traverse_got_arg *arg;
4740
4741 entry = (struct mips_got_entry *) *entryp;
4742 arg = (struct mips_elf_traverse_got_arg *) data;
4743 if (entry->abfd != NULL
4744 && entry->symndx == -1
4745 && entry->d.h->global_got_area != GGA_NONE)
4746 {
4747 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4748 {
4749 arg->g = NULL;
4750 return 0;
4751 }
4752 arg->g->assigned_low_gotno += 1;
4753
4754 if (bfd_link_pic (arg->info)
4755 || (elf_hash_table (arg->info)->dynamic_sections_created
4756 && entry->d.h->root.def_dynamic
4757 && !entry->d.h->root.def_regular))
4758 arg->g->relocs += 1;
4759 }
4760
4761 return 1;
4762 }
4763
4764 /* A htab_traverse callback for GOT entries for which DATA is the
4765 bfd_link_info. Forbid any global symbols from having traditional
4766 lazy-binding stubs. */
4767
4768 static int
4769 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4770 {
4771 struct bfd_link_info *info;
4772 struct mips_elf_link_hash_table *htab;
4773 struct mips_got_entry *entry;
4774
4775 entry = (struct mips_got_entry *) *entryp;
4776 info = (struct bfd_link_info *) data;
4777 htab = mips_elf_hash_table (info);
4778 BFD_ASSERT (htab != NULL);
4779
4780 if (entry->abfd != NULL
4781 && entry->symndx == -1
4782 && entry->d.h->needs_lazy_stub)
4783 {
4784 entry->d.h->needs_lazy_stub = FALSE;
4785 htab->lazy_stub_count--;
4786 }
4787
4788 return 1;
4789 }
4790
4791 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4792 the primary GOT. */
4793 static bfd_vma
4794 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4795 {
4796 if (!g->next)
4797 return 0;
4798
4799 g = mips_elf_bfd_got (ibfd, FALSE);
4800 if (! g)
4801 return 0;
4802
4803 BFD_ASSERT (g->next);
4804
4805 g = g->next;
4806
4807 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4808 * MIPS_ELF_GOT_SIZE (abfd);
4809 }
4810
4811 /* Turn a single GOT that is too big for 16-bit addressing into
4812 a sequence of GOTs, each one 16-bit addressable. */
4813
4814 static bfd_boolean
4815 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4816 asection *got, bfd_size_type pages)
4817 {
4818 struct mips_elf_link_hash_table *htab;
4819 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4820 struct mips_elf_traverse_got_arg tga;
4821 struct mips_got_info *g, *gg;
4822 unsigned int assign, needed_relocs;
4823 bfd *dynobj, *ibfd;
4824
4825 dynobj = elf_hash_table (info)->dynobj;
4826 htab = mips_elf_hash_table (info);
4827 BFD_ASSERT (htab != NULL);
4828
4829 g = htab->got_info;
4830
4831 got_per_bfd_arg.obfd = abfd;
4832 got_per_bfd_arg.info = info;
4833 got_per_bfd_arg.current = NULL;
4834 got_per_bfd_arg.primary = NULL;
4835 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4836 / MIPS_ELF_GOT_SIZE (abfd))
4837 - htab->reserved_gotno);
4838 got_per_bfd_arg.max_pages = pages;
4839 /* The number of globals that will be included in the primary GOT.
4840 See the calls to mips_elf_set_global_got_area below for more
4841 information. */
4842 got_per_bfd_arg.global_count = g->global_gotno;
4843
4844 /* Try to merge the GOTs of input bfds together, as long as they
4845 don't seem to exceed the maximum GOT size, choosing one of them
4846 to be the primary GOT. */
4847 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4848 {
4849 gg = mips_elf_bfd_got (ibfd, FALSE);
4850 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4851 return FALSE;
4852 }
4853
4854 /* If we do not find any suitable primary GOT, create an empty one. */
4855 if (got_per_bfd_arg.primary == NULL)
4856 g->next = mips_elf_create_got_info (abfd);
4857 else
4858 g->next = got_per_bfd_arg.primary;
4859 g->next->next = got_per_bfd_arg.current;
4860
4861 /* GG is now the master GOT, and G is the primary GOT. */
4862 gg = g;
4863 g = g->next;
4864
4865 /* Map the output bfd to the primary got. That's what we're going
4866 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4867 didn't mark in check_relocs, and we want a quick way to find it.
4868 We can't just use gg->next because we're going to reverse the
4869 list. */
4870 mips_elf_replace_bfd_got (abfd, g);
4871
4872 /* Every symbol that is referenced in a dynamic relocation must be
4873 present in the primary GOT, so arrange for them to appear after
4874 those that are actually referenced. */
4875 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4876 g->global_gotno = gg->global_gotno;
4877
4878 tga.info = info;
4879 tga.value = GGA_RELOC_ONLY;
4880 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4881 tga.value = GGA_NORMAL;
4882 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4883
4884 /* Now go through the GOTs assigning them offset ranges.
4885 [assigned_low_gotno, local_gotno[ will be set to the range of local
4886 entries in each GOT. We can then compute the end of a GOT by
4887 adding local_gotno to global_gotno. We reverse the list and make
4888 it circular since then we'll be able to quickly compute the
4889 beginning of a GOT, by computing the end of its predecessor. To
4890 avoid special cases for the primary GOT, while still preserving
4891 assertions that are valid for both single- and multi-got links,
4892 we arrange for the main got struct to have the right number of
4893 global entries, but set its local_gotno such that the initial
4894 offset of the primary GOT is zero. Remember that the primary GOT
4895 will become the last item in the circular linked list, so it
4896 points back to the master GOT. */
4897 gg->local_gotno = -g->global_gotno;
4898 gg->global_gotno = g->global_gotno;
4899 gg->tls_gotno = 0;
4900 assign = 0;
4901 gg->next = gg;
4902
4903 do
4904 {
4905 struct mips_got_info *gn;
4906
4907 assign += htab->reserved_gotno;
4908 g->assigned_low_gotno = assign;
4909 g->local_gotno += assign;
4910 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4911 g->assigned_high_gotno = g->local_gotno - 1;
4912 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4913
4914 /* Take g out of the direct list, and push it onto the reversed
4915 list that gg points to. g->next is guaranteed to be nonnull after
4916 this operation, as required by mips_elf_initialize_tls_index. */
4917 gn = g->next;
4918 g->next = gg->next;
4919 gg->next = g;
4920
4921 /* Set up any TLS entries. We always place the TLS entries after
4922 all non-TLS entries. */
4923 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4924 tga.g = g;
4925 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4926 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4927 if (!tga.g)
4928 return FALSE;
4929 BFD_ASSERT (g->tls_assigned_gotno == assign);
4930
4931 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4932 g = gn;
4933
4934 /* Forbid global symbols in every non-primary GOT from having
4935 lazy-binding stubs. */
4936 if (g)
4937 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4938 }
4939 while (g);
4940
4941 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4942
4943 needed_relocs = 0;
4944 for (g = gg->next; g && g->next != gg; g = g->next)
4945 {
4946 unsigned int save_assign;
4947
4948 /* Assign offsets to global GOT entries and count how many
4949 relocations they need. */
4950 save_assign = g->assigned_low_gotno;
4951 g->assigned_low_gotno = g->local_gotno;
4952 tga.info = info;
4953 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4954 tga.g = g;
4955 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4956 if (!tga.g)
4957 return FALSE;
4958 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4959 g->assigned_low_gotno = save_assign;
4960
4961 if (bfd_link_pic (info))
4962 {
4963 g->relocs += g->local_gotno - g->assigned_low_gotno;
4964 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4965 + g->next->global_gotno
4966 + g->next->tls_gotno
4967 + htab->reserved_gotno);
4968 }
4969 needed_relocs += g->relocs;
4970 }
4971 needed_relocs += g->relocs;
4972
4973 if (needed_relocs)
4974 mips_elf_allocate_dynamic_relocations (dynobj, info,
4975 needed_relocs);
4976
4977 return TRUE;
4978 }
4979
4980 \f
4981 /* Returns the first relocation of type r_type found, beginning with
4982 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4983
4984 static const Elf_Internal_Rela *
4985 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4986 const Elf_Internal_Rela *relocation,
4987 const Elf_Internal_Rela *relend)
4988 {
4989 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4990
4991 while (relocation < relend)
4992 {
4993 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4994 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4995 return relocation;
4996
4997 ++relocation;
4998 }
4999
5000 /* We didn't find it. */
5001 return NULL;
5002 }
5003
5004 /* Return whether an input relocation is against a local symbol. */
5005
5006 static bfd_boolean
5007 mips_elf_local_relocation_p (bfd *input_bfd,
5008 const Elf_Internal_Rela *relocation,
5009 asection **local_sections)
5010 {
5011 unsigned long r_symndx;
5012 Elf_Internal_Shdr *symtab_hdr;
5013 size_t extsymoff;
5014
5015 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5016 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5017 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5018
5019 if (r_symndx < extsymoff)
5020 return TRUE;
5021 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5022 return TRUE;
5023
5024 return FALSE;
5025 }
5026 \f
5027 /* Sign-extend VALUE, which has the indicated number of BITS. */
5028
5029 bfd_vma
5030 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5031 {
5032 if (value & ((bfd_vma) 1 << (bits - 1)))
5033 /* VALUE is negative. */
5034 value |= ((bfd_vma) - 1) << bits;
5035
5036 return value;
5037 }
5038
5039 /* Return non-zero if the indicated VALUE has overflowed the maximum
5040 range expressible by a signed number with the indicated number of
5041 BITS. */
5042
5043 static bfd_boolean
5044 mips_elf_overflow_p (bfd_vma value, int bits)
5045 {
5046 bfd_signed_vma svalue = (bfd_signed_vma) value;
5047
5048 if (svalue > (1 << (bits - 1)) - 1)
5049 /* The value is too big. */
5050 return TRUE;
5051 else if (svalue < -(1 << (bits - 1)))
5052 /* The value is too small. */
5053 return TRUE;
5054
5055 /* All is well. */
5056 return FALSE;
5057 }
5058
5059 /* Calculate the %high function. */
5060
5061 static bfd_vma
5062 mips_elf_high (bfd_vma value)
5063 {
5064 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5065 }
5066
5067 /* Calculate the %higher function. */
5068
5069 static bfd_vma
5070 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5071 {
5072 #ifdef BFD64
5073 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5074 #else
5075 abort ();
5076 return MINUS_ONE;
5077 #endif
5078 }
5079
5080 /* Calculate the %highest function. */
5081
5082 static bfd_vma
5083 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5084 {
5085 #ifdef BFD64
5086 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5087 #else
5088 abort ();
5089 return MINUS_ONE;
5090 #endif
5091 }
5092 \f
5093 /* Create the .compact_rel section. */
5094
5095 static bfd_boolean
5096 mips_elf_create_compact_rel_section
5097 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5098 {
5099 flagword flags;
5100 register asection *s;
5101
5102 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5103 {
5104 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5105 | SEC_READONLY);
5106
5107 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5108 if (s == NULL
5109 || ! bfd_set_section_alignment (abfd, s,
5110 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5111 return FALSE;
5112
5113 s->size = sizeof (Elf32_External_compact_rel);
5114 }
5115
5116 return TRUE;
5117 }
5118
5119 /* Create the .got section to hold the global offset table. */
5120
5121 static bfd_boolean
5122 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5123 {
5124 flagword flags;
5125 register asection *s;
5126 struct elf_link_hash_entry *h;
5127 struct bfd_link_hash_entry *bh;
5128 struct mips_elf_link_hash_table *htab;
5129
5130 htab = mips_elf_hash_table (info);
5131 BFD_ASSERT (htab != NULL);
5132
5133 /* This function may be called more than once. */
5134 if (htab->sgot)
5135 return TRUE;
5136
5137 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5138 | SEC_LINKER_CREATED);
5139
5140 /* We have to use an alignment of 2**4 here because this is hardcoded
5141 in the function stub generation and in the linker script. */
5142 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5143 if (s == NULL
5144 || ! bfd_set_section_alignment (abfd, s, 4))
5145 return FALSE;
5146 htab->sgot = s;
5147
5148 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5149 linker script because we don't want to define the symbol if we
5150 are not creating a global offset table. */
5151 bh = NULL;
5152 if (! (_bfd_generic_link_add_one_symbol
5153 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5154 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5155 return FALSE;
5156
5157 h = (struct elf_link_hash_entry *) bh;
5158 h->non_elf = 0;
5159 h->def_regular = 1;
5160 h->type = STT_OBJECT;
5161 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5162 elf_hash_table (info)->hgot = h;
5163
5164 if (bfd_link_pic (info)
5165 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5166 return FALSE;
5167
5168 htab->got_info = mips_elf_create_got_info (abfd);
5169 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5170 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5171
5172 /* We also need a .got.plt section when generating PLTs. */
5173 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5174 SEC_ALLOC | SEC_LOAD
5175 | SEC_HAS_CONTENTS
5176 | SEC_IN_MEMORY
5177 | SEC_LINKER_CREATED);
5178 if (s == NULL)
5179 return FALSE;
5180 htab->sgotplt = s;
5181
5182 return TRUE;
5183 }
5184 \f
5185 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5186 __GOTT_INDEX__ symbols. These symbols are only special for
5187 shared objects; they are not used in executables. */
5188
5189 static bfd_boolean
5190 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5191 {
5192 return (mips_elf_hash_table (info)->is_vxworks
5193 && bfd_link_pic (info)
5194 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5195 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5196 }
5197
5198 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5199 require an la25 stub. See also mips_elf_local_pic_function_p,
5200 which determines whether the destination function ever requires a
5201 stub. */
5202
5203 static bfd_boolean
5204 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5205 bfd_boolean target_is_16_bit_code_p)
5206 {
5207 /* We specifically ignore branches and jumps from EF_PIC objects,
5208 where the onus is on the compiler or programmer to perform any
5209 necessary initialization of $25. Sometimes such initialization
5210 is unnecessary; for example, -mno-shared functions do not use
5211 the incoming value of $25, and may therefore be called directly. */
5212 if (PIC_OBJECT_P (input_bfd))
5213 return FALSE;
5214
5215 switch (r_type)
5216 {
5217 case R_MIPS_26:
5218 case R_MIPS_PC16:
5219 case R_MIPS_PC21_S2:
5220 case R_MIPS_PC26_S2:
5221 case R_MICROMIPS_26_S1:
5222 case R_MICROMIPS_PC7_S1:
5223 case R_MICROMIPS_PC10_S1:
5224 case R_MICROMIPS_PC16_S1:
5225 case R_MICROMIPS_PC23_S2:
5226 return TRUE;
5227
5228 case R_MIPS16_26:
5229 return !target_is_16_bit_code_p;
5230
5231 default:
5232 return FALSE;
5233 }
5234 }
5235 \f
5236 /* Calculate the value produced by the RELOCATION (which comes from
5237 the INPUT_BFD). The ADDEND is the addend to use for this
5238 RELOCATION; RELOCATION->R_ADDEND is ignored.
5239
5240 The result of the relocation calculation is stored in VALUEP.
5241 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5242 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5243
5244 This function returns bfd_reloc_continue if the caller need take no
5245 further action regarding this relocation, bfd_reloc_notsupported if
5246 something goes dramatically wrong, bfd_reloc_overflow if an
5247 overflow occurs, and bfd_reloc_ok to indicate success. */
5248
5249 static bfd_reloc_status_type
5250 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5251 asection *input_section,
5252 struct bfd_link_info *info,
5253 const Elf_Internal_Rela *relocation,
5254 bfd_vma addend, reloc_howto_type *howto,
5255 Elf_Internal_Sym *local_syms,
5256 asection **local_sections, bfd_vma *valuep,
5257 const char **namep,
5258 bfd_boolean *cross_mode_jump_p,
5259 bfd_boolean save_addend)
5260 {
5261 /* The eventual value we will return. */
5262 bfd_vma value;
5263 /* The address of the symbol against which the relocation is
5264 occurring. */
5265 bfd_vma symbol = 0;
5266 /* The final GP value to be used for the relocatable, executable, or
5267 shared object file being produced. */
5268 bfd_vma gp;
5269 /* The place (section offset or address) of the storage unit being
5270 relocated. */
5271 bfd_vma p;
5272 /* The value of GP used to create the relocatable object. */
5273 bfd_vma gp0;
5274 /* The offset into the global offset table at which the address of
5275 the relocation entry symbol, adjusted by the addend, resides
5276 during execution. */
5277 bfd_vma g = MINUS_ONE;
5278 /* The section in which the symbol referenced by the relocation is
5279 located. */
5280 asection *sec = NULL;
5281 struct mips_elf_link_hash_entry *h = NULL;
5282 /* TRUE if the symbol referred to by this relocation is a local
5283 symbol. */
5284 bfd_boolean local_p, was_local_p;
5285 /* TRUE if the symbol referred to by this relocation is a section
5286 symbol. */
5287 bfd_boolean section_p = FALSE;
5288 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5289 bfd_boolean gp_disp_p = FALSE;
5290 /* TRUE if the symbol referred to by this relocation is
5291 "__gnu_local_gp". */
5292 bfd_boolean gnu_local_gp_p = FALSE;
5293 Elf_Internal_Shdr *symtab_hdr;
5294 size_t extsymoff;
5295 unsigned long r_symndx;
5296 int r_type;
5297 /* TRUE if overflow occurred during the calculation of the
5298 relocation value. */
5299 bfd_boolean overflowed_p;
5300 /* TRUE if this relocation refers to a MIPS16 function. */
5301 bfd_boolean target_is_16_bit_code_p = FALSE;
5302 bfd_boolean target_is_micromips_code_p = FALSE;
5303 struct mips_elf_link_hash_table *htab;
5304 bfd *dynobj;
5305
5306 dynobj = elf_hash_table (info)->dynobj;
5307 htab = mips_elf_hash_table (info);
5308 BFD_ASSERT (htab != NULL);
5309
5310 /* Parse the relocation. */
5311 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5312 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5313 p = (input_section->output_section->vma
5314 + input_section->output_offset
5315 + relocation->r_offset);
5316
5317 /* Assume that there will be no overflow. */
5318 overflowed_p = FALSE;
5319
5320 /* Figure out whether or not the symbol is local, and get the offset
5321 used in the array of hash table entries. */
5322 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5323 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5324 local_sections);
5325 was_local_p = local_p;
5326 if (! elf_bad_symtab (input_bfd))
5327 extsymoff = symtab_hdr->sh_info;
5328 else
5329 {
5330 /* The symbol table does not follow the rule that local symbols
5331 must come before globals. */
5332 extsymoff = 0;
5333 }
5334
5335 /* Figure out the value of the symbol. */
5336 if (local_p)
5337 {
5338 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5339 Elf_Internal_Sym *sym;
5340
5341 sym = local_syms + r_symndx;
5342 sec = local_sections[r_symndx];
5343
5344 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5345
5346 symbol = sec->output_section->vma + sec->output_offset;
5347 if (!section_p || (sec->flags & SEC_MERGE))
5348 symbol += sym->st_value;
5349 if ((sec->flags & SEC_MERGE) && section_p)
5350 {
5351 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5352 addend -= symbol;
5353 addend += sec->output_section->vma + sec->output_offset;
5354 }
5355
5356 /* MIPS16/microMIPS text labels should be treated as odd. */
5357 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5358 ++symbol;
5359
5360 /* Record the name of this symbol, for our caller. */
5361 *namep = bfd_elf_string_from_elf_section (input_bfd,
5362 symtab_hdr->sh_link,
5363 sym->st_name);
5364 if (*namep == NULL || **namep == '\0')
5365 *namep = bfd_section_name (input_bfd, sec);
5366
5367 /* For relocations against a section symbol and ones against no
5368 symbol (absolute relocations) infer the ISA mode from the addend. */
5369 if (section_p || r_symndx == STN_UNDEF)
5370 {
5371 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5372 target_is_micromips_code_p = (addend & 1) && micromips_p;
5373 }
5374 /* For relocations against an absolute symbol infer the ISA mode
5375 from the value of the symbol plus addend. */
5376 else if (bfd_is_abs_section (sec))
5377 {
5378 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5379 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5380 }
5381 /* Otherwise just use the regular symbol annotation available. */
5382 else
5383 {
5384 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5385 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5386 }
5387 }
5388 else
5389 {
5390 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5391
5392 /* For global symbols we look up the symbol in the hash-table. */
5393 h = ((struct mips_elf_link_hash_entry *)
5394 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5395 /* Find the real hash-table entry for this symbol. */
5396 while (h->root.root.type == bfd_link_hash_indirect
5397 || h->root.root.type == bfd_link_hash_warning)
5398 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5399
5400 /* Record the name of this symbol, for our caller. */
5401 *namep = h->root.root.root.string;
5402
5403 /* See if this is the special _gp_disp symbol. Note that such a
5404 symbol must always be a global symbol. */
5405 if (strcmp (*namep, "_gp_disp") == 0
5406 && ! NEWABI_P (input_bfd))
5407 {
5408 /* Relocations against _gp_disp are permitted only with
5409 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5410 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5411 return bfd_reloc_notsupported;
5412
5413 gp_disp_p = TRUE;
5414 }
5415 /* See if this is the special _gp symbol. Note that such a
5416 symbol must always be a global symbol. */
5417 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5418 gnu_local_gp_p = TRUE;
5419
5420
5421 /* If this symbol is defined, calculate its address. Note that
5422 _gp_disp is a magic symbol, always implicitly defined by the
5423 linker, so it's inappropriate to check to see whether or not
5424 its defined. */
5425 else if ((h->root.root.type == bfd_link_hash_defined
5426 || h->root.root.type == bfd_link_hash_defweak)
5427 && h->root.root.u.def.section)
5428 {
5429 sec = h->root.root.u.def.section;
5430 if (sec->output_section)
5431 symbol = (h->root.root.u.def.value
5432 + sec->output_section->vma
5433 + sec->output_offset);
5434 else
5435 symbol = h->root.root.u.def.value;
5436 }
5437 else if (h->root.root.type == bfd_link_hash_undefweak)
5438 /* We allow relocations against undefined weak symbols, giving
5439 it the value zero, so that you can undefined weak functions
5440 and check to see if they exist by looking at their
5441 addresses. */
5442 symbol = 0;
5443 else if (info->unresolved_syms_in_objects == RM_IGNORE
5444 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5445 symbol = 0;
5446 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5447 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5448 {
5449 /* If this is a dynamic link, we should have created a
5450 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5451 in in _bfd_mips_elf_create_dynamic_sections.
5452 Otherwise, we should define the symbol with a value of 0.
5453 FIXME: It should probably get into the symbol table
5454 somehow as well. */
5455 BFD_ASSERT (! bfd_link_pic (info));
5456 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5457 symbol = 0;
5458 }
5459 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5460 {
5461 /* This is an optional symbol - an Irix specific extension to the
5462 ELF spec. Ignore it for now.
5463 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5464 than simply ignoring them, but we do not handle this for now.
5465 For information see the "64-bit ELF Object File Specification"
5466 which is available from here:
5467 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5468 symbol = 0;
5469 }
5470 else
5471 {
5472 (*info->callbacks->undefined_symbol)
5473 (info, h->root.root.root.string, input_bfd,
5474 input_section, relocation->r_offset,
5475 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5476 || ELF_ST_VISIBILITY (h->root.other));
5477 return bfd_reloc_undefined;
5478 }
5479
5480 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5481 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5482 }
5483
5484 /* If this is a reference to a 16-bit function with a stub, we need
5485 to redirect the relocation to the stub unless:
5486
5487 (a) the relocation is for a MIPS16 JAL;
5488
5489 (b) the relocation is for a MIPS16 PIC call, and there are no
5490 non-MIPS16 uses of the GOT slot; or
5491
5492 (c) the section allows direct references to MIPS16 functions. */
5493 if (r_type != R_MIPS16_26
5494 && !bfd_link_relocatable (info)
5495 && ((h != NULL
5496 && h->fn_stub != NULL
5497 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5498 || (local_p
5499 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5500 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5501 && !section_allows_mips16_refs_p (input_section))
5502 {
5503 /* This is a 32- or 64-bit call to a 16-bit function. We should
5504 have already noticed that we were going to need the
5505 stub. */
5506 if (local_p)
5507 {
5508 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5509 value = 0;
5510 }
5511 else
5512 {
5513 BFD_ASSERT (h->need_fn_stub);
5514 if (h->la25_stub)
5515 {
5516 /* If a LA25 header for the stub itself exists, point to the
5517 prepended LUI/ADDIU sequence. */
5518 sec = h->la25_stub->stub_section;
5519 value = h->la25_stub->offset;
5520 }
5521 else
5522 {
5523 sec = h->fn_stub;
5524 value = 0;
5525 }
5526 }
5527
5528 symbol = sec->output_section->vma + sec->output_offset + value;
5529 /* The target is 16-bit, but the stub isn't. */
5530 target_is_16_bit_code_p = FALSE;
5531 }
5532 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5533 to a standard MIPS function, we need to redirect the call to the stub.
5534 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5535 indirect calls should use an indirect stub instead. */
5536 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5537 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5538 || (local_p
5539 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5540 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5541 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5542 {
5543 if (local_p)
5544 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5545 else
5546 {
5547 /* If both call_stub and call_fp_stub are defined, we can figure
5548 out which one to use by checking which one appears in the input
5549 file. */
5550 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5551 {
5552 asection *o;
5553
5554 sec = NULL;
5555 for (o = input_bfd->sections; o != NULL; o = o->next)
5556 {
5557 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5558 {
5559 sec = h->call_fp_stub;
5560 break;
5561 }
5562 }
5563 if (sec == NULL)
5564 sec = h->call_stub;
5565 }
5566 else if (h->call_stub != NULL)
5567 sec = h->call_stub;
5568 else
5569 sec = h->call_fp_stub;
5570 }
5571
5572 BFD_ASSERT (sec->size > 0);
5573 symbol = sec->output_section->vma + sec->output_offset;
5574 }
5575 /* If this is a direct call to a PIC function, redirect to the
5576 non-PIC stub. */
5577 else if (h != NULL && h->la25_stub
5578 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5579 target_is_16_bit_code_p))
5580 symbol = (h->la25_stub->stub_section->output_section->vma
5581 + h->la25_stub->stub_section->output_offset
5582 + h->la25_stub->offset);
5583 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5584 entry is used if a standard PLT entry has also been made. In this
5585 case the symbol will have been set by mips_elf_set_plt_sym_value
5586 to point to the standard PLT entry, so redirect to the compressed
5587 one. */
5588 else if ((mips16_branch_reloc_p (r_type)
5589 || micromips_branch_reloc_p (r_type))
5590 && !bfd_link_relocatable (info)
5591 && h != NULL
5592 && h->use_plt_entry
5593 && h->root.plt.plist->comp_offset != MINUS_ONE
5594 && h->root.plt.plist->mips_offset != MINUS_ONE)
5595 {
5596 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5597
5598 sec = htab->splt;
5599 symbol = (sec->output_section->vma
5600 + sec->output_offset
5601 + htab->plt_header_size
5602 + htab->plt_mips_offset
5603 + h->root.plt.plist->comp_offset
5604 + 1);
5605
5606 target_is_16_bit_code_p = !micromips_p;
5607 target_is_micromips_code_p = micromips_p;
5608 }
5609
5610 /* Make sure MIPS16 and microMIPS are not used together. */
5611 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5612 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5613 {
5614 (*_bfd_error_handler)
5615 (_("MIPS16 and microMIPS functions cannot call each other"));
5616 return bfd_reloc_notsupported;
5617 }
5618
5619 /* Calls from 16-bit code to 32-bit code and vice versa require the
5620 mode change. However, we can ignore calls to undefined weak symbols,
5621 which should never be executed at runtime. This exception is important
5622 because the assembly writer may have "known" that any definition of the
5623 symbol would be 16-bit code, and that direct jumps were therefore
5624 acceptable. */
5625 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5626 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5627 && ((mips16_branch_reloc_p (r_type)
5628 && !target_is_16_bit_code_p)
5629 || (micromips_branch_reloc_p (r_type)
5630 && !target_is_micromips_code_p)
5631 || ((branch_reloc_p (r_type)
5632 || r_type == R_MIPS_JALR)
5633 && (target_is_16_bit_code_p
5634 || target_is_micromips_code_p))));
5635
5636 local_p = (h == NULL || mips_use_local_got_p (info, h));
5637
5638 gp0 = _bfd_get_gp_value (input_bfd);
5639 gp = _bfd_get_gp_value (abfd);
5640 if (htab->got_info)
5641 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5642
5643 if (gnu_local_gp_p)
5644 symbol = gp;
5645
5646 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5647 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5648 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5649 if (got_page_reloc_p (r_type) && !local_p)
5650 {
5651 r_type = (micromips_reloc_p (r_type)
5652 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5653 addend = 0;
5654 }
5655
5656 /* If we haven't already determined the GOT offset, and we're going
5657 to need it, get it now. */
5658 switch (r_type)
5659 {
5660 case R_MIPS16_CALL16:
5661 case R_MIPS16_GOT16:
5662 case R_MIPS_CALL16:
5663 case R_MIPS_GOT16:
5664 case R_MIPS_GOT_DISP:
5665 case R_MIPS_GOT_HI16:
5666 case R_MIPS_CALL_HI16:
5667 case R_MIPS_GOT_LO16:
5668 case R_MIPS_CALL_LO16:
5669 case R_MICROMIPS_CALL16:
5670 case R_MICROMIPS_GOT16:
5671 case R_MICROMIPS_GOT_DISP:
5672 case R_MICROMIPS_GOT_HI16:
5673 case R_MICROMIPS_CALL_HI16:
5674 case R_MICROMIPS_GOT_LO16:
5675 case R_MICROMIPS_CALL_LO16:
5676 case R_MIPS_TLS_GD:
5677 case R_MIPS_TLS_GOTTPREL:
5678 case R_MIPS_TLS_LDM:
5679 case R_MIPS16_TLS_GD:
5680 case R_MIPS16_TLS_GOTTPREL:
5681 case R_MIPS16_TLS_LDM:
5682 case R_MICROMIPS_TLS_GD:
5683 case R_MICROMIPS_TLS_GOTTPREL:
5684 case R_MICROMIPS_TLS_LDM:
5685 /* Find the index into the GOT where this value is located. */
5686 if (tls_ldm_reloc_p (r_type))
5687 {
5688 g = mips_elf_local_got_index (abfd, input_bfd, info,
5689 0, 0, NULL, r_type);
5690 if (g == MINUS_ONE)
5691 return bfd_reloc_outofrange;
5692 }
5693 else if (!local_p)
5694 {
5695 /* On VxWorks, CALL relocations should refer to the .got.plt
5696 entry, which is initialized to point at the PLT stub. */
5697 if (htab->is_vxworks
5698 && (call_hi16_reloc_p (r_type)
5699 || call_lo16_reloc_p (r_type)
5700 || call16_reloc_p (r_type)))
5701 {
5702 BFD_ASSERT (addend == 0);
5703 BFD_ASSERT (h->root.needs_plt);
5704 g = mips_elf_gotplt_index (info, &h->root);
5705 }
5706 else
5707 {
5708 BFD_ASSERT (addend == 0);
5709 g = mips_elf_global_got_index (abfd, info, input_bfd,
5710 &h->root, r_type);
5711 if (!TLS_RELOC_P (r_type)
5712 && !elf_hash_table (info)->dynamic_sections_created)
5713 /* This is a static link. We must initialize the GOT entry. */
5714 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5715 }
5716 }
5717 else if (!htab->is_vxworks
5718 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5719 /* The calculation below does not involve "g". */
5720 break;
5721 else
5722 {
5723 g = mips_elf_local_got_index (abfd, input_bfd, info,
5724 symbol + addend, r_symndx, h, r_type);
5725 if (g == MINUS_ONE)
5726 return bfd_reloc_outofrange;
5727 }
5728
5729 /* Convert GOT indices to actual offsets. */
5730 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5731 break;
5732 }
5733
5734 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5735 symbols are resolved by the loader. Add them to .rela.dyn. */
5736 if (h != NULL && is_gott_symbol (info, &h->root))
5737 {
5738 Elf_Internal_Rela outrel;
5739 bfd_byte *loc;
5740 asection *s;
5741
5742 s = mips_elf_rel_dyn_section (info, FALSE);
5743 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5744
5745 outrel.r_offset = (input_section->output_section->vma
5746 + input_section->output_offset
5747 + relocation->r_offset);
5748 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5749 outrel.r_addend = addend;
5750 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5751
5752 /* If we've written this relocation for a readonly section,
5753 we need to set DF_TEXTREL again, so that we do not delete the
5754 DT_TEXTREL tag. */
5755 if (MIPS_ELF_READONLY_SECTION (input_section))
5756 info->flags |= DF_TEXTREL;
5757
5758 *valuep = 0;
5759 return bfd_reloc_ok;
5760 }
5761
5762 /* Figure out what kind of relocation is being performed. */
5763 switch (r_type)
5764 {
5765 case R_MIPS_NONE:
5766 return bfd_reloc_continue;
5767
5768 case R_MIPS_16:
5769 if (howto->partial_inplace)
5770 addend = _bfd_mips_elf_sign_extend (addend, 16);
5771 value = symbol + addend;
5772 overflowed_p = mips_elf_overflow_p (value, 16);
5773 break;
5774
5775 case R_MIPS_32:
5776 case R_MIPS_REL32:
5777 case R_MIPS_64:
5778 if ((bfd_link_pic (info)
5779 || (htab->root.dynamic_sections_created
5780 && h != NULL
5781 && h->root.def_dynamic
5782 && !h->root.def_regular
5783 && !h->has_static_relocs))
5784 && r_symndx != STN_UNDEF
5785 && (h == NULL
5786 || h->root.root.type != bfd_link_hash_undefweak
5787 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5788 && (input_section->flags & SEC_ALLOC) != 0)
5789 {
5790 /* If we're creating a shared library, then we can't know
5791 where the symbol will end up. So, we create a relocation
5792 record in the output, and leave the job up to the dynamic
5793 linker. We must do the same for executable references to
5794 shared library symbols, unless we've decided to use copy
5795 relocs or PLTs instead. */
5796 value = addend;
5797 if (!mips_elf_create_dynamic_relocation (abfd,
5798 info,
5799 relocation,
5800 h,
5801 sec,
5802 symbol,
5803 &value,
5804 input_section))
5805 return bfd_reloc_undefined;
5806 }
5807 else
5808 {
5809 if (r_type != R_MIPS_REL32)
5810 value = symbol + addend;
5811 else
5812 value = addend;
5813 }
5814 value &= howto->dst_mask;
5815 break;
5816
5817 case R_MIPS_PC32:
5818 value = symbol + addend - p;
5819 value &= howto->dst_mask;
5820 break;
5821
5822 case R_MIPS16_26:
5823 /* The calculation for R_MIPS16_26 is just the same as for an
5824 R_MIPS_26. It's only the storage of the relocated field into
5825 the output file that's different. That's handled in
5826 mips_elf_perform_relocation. So, we just fall through to the
5827 R_MIPS_26 case here. */
5828 case R_MIPS_26:
5829 case R_MICROMIPS_26_S1:
5830 {
5831 unsigned int shift;
5832
5833 /* Shift is 2, unusually, for microMIPS JALX. */
5834 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5835
5836 if (howto->partial_inplace && !section_p)
5837 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5838 else
5839 value = addend;
5840 value += symbol;
5841
5842 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5843 be the correct ISA mode selector except for weak undefined
5844 symbols. */
5845 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5846 && (*cross_mode_jump_p
5847 ? (value & 3) != (r_type == R_MIPS_26)
5848 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5849 return bfd_reloc_outofrange;
5850
5851 value >>= shift;
5852 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5853 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5854 value &= howto->dst_mask;
5855 }
5856 break;
5857
5858 case R_MIPS_TLS_DTPREL_HI16:
5859 case R_MIPS16_TLS_DTPREL_HI16:
5860 case R_MICROMIPS_TLS_DTPREL_HI16:
5861 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5862 & howto->dst_mask);
5863 break;
5864
5865 case R_MIPS_TLS_DTPREL_LO16:
5866 case R_MIPS_TLS_DTPREL32:
5867 case R_MIPS_TLS_DTPREL64:
5868 case R_MIPS16_TLS_DTPREL_LO16:
5869 case R_MICROMIPS_TLS_DTPREL_LO16:
5870 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5871 break;
5872
5873 case R_MIPS_TLS_TPREL_HI16:
5874 case R_MIPS16_TLS_TPREL_HI16:
5875 case R_MICROMIPS_TLS_TPREL_HI16:
5876 value = (mips_elf_high (addend + symbol - tprel_base (info))
5877 & howto->dst_mask);
5878 break;
5879
5880 case R_MIPS_TLS_TPREL_LO16:
5881 case R_MIPS_TLS_TPREL32:
5882 case R_MIPS_TLS_TPREL64:
5883 case R_MIPS16_TLS_TPREL_LO16:
5884 case R_MICROMIPS_TLS_TPREL_LO16:
5885 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5886 break;
5887
5888 case R_MIPS_HI16:
5889 case R_MIPS16_HI16:
5890 case R_MICROMIPS_HI16:
5891 if (!gp_disp_p)
5892 {
5893 value = mips_elf_high (addend + symbol);
5894 value &= howto->dst_mask;
5895 }
5896 else
5897 {
5898 /* For MIPS16 ABI code we generate this sequence
5899 0: li $v0,%hi(_gp_disp)
5900 4: addiupc $v1,%lo(_gp_disp)
5901 8: sll $v0,16
5902 12: addu $v0,$v1
5903 14: move $gp,$v0
5904 So the offsets of hi and lo relocs are the same, but the
5905 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5906 ADDIUPC clears the low two bits of the instruction address,
5907 so the base is ($t9 + 4) & ~3. */
5908 if (r_type == R_MIPS16_HI16)
5909 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5910 /* The microMIPS .cpload sequence uses the same assembly
5911 instructions as the traditional psABI version, but the
5912 incoming $t9 has the low bit set. */
5913 else if (r_type == R_MICROMIPS_HI16)
5914 value = mips_elf_high (addend + gp - p - 1);
5915 else
5916 value = mips_elf_high (addend + gp - p);
5917 overflowed_p = mips_elf_overflow_p (value, 16);
5918 }
5919 break;
5920
5921 case R_MIPS_LO16:
5922 case R_MIPS16_LO16:
5923 case R_MICROMIPS_LO16:
5924 case R_MICROMIPS_HI0_LO16:
5925 if (!gp_disp_p)
5926 value = (symbol + addend) & howto->dst_mask;
5927 else
5928 {
5929 /* See the comment for R_MIPS16_HI16 above for the reason
5930 for this conditional. */
5931 if (r_type == R_MIPS16_LO16)
5932 value = addend + gp - (p & ~(bfd_vma) 0x3);
5933 else if (r_type == R_MICROMIPS_LO16
5934 || r_type == R_MICROMIPS_HI0_LO16)
5935 value = addend + gp - p + 3;
5936 else
5937 value = addend + gp - p + 4;
5938 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5939 for overflow. But, on, say, IRIX5, relocations against
5940 _gp_disp are normally generated from the .cpload
5941 pseudo-op. It generates code that normally looks like
5942 this:
5943
5944 lui $gp,%hi(_gp_disp)
5945 addiu $gp,$gp,%lo(_gp_disp)
5946 addu $gp,$gp,$t9
5947
5948 Here $t9 holds the address of the function being called,
5949 as required by the MIPS ELF ABI. The R_MIPS_LO16
5950 relocation can easily overflow in this situation, but the
5951 R_MIPS_HI16 relocation will handle the overflow.
5952 Therefore, we consider this a bug in the MIPS ABI, and do
5953 not check for overflow here. */
5954 }
5955 break;
5956
5957 case R_MIPS_LITERAL:
5958 case R_MICROMIPS_LITERAL:
5959 /* Because we don't merge literal sections, we can handle this
5960 just like R_MIPS_GPREL16. In the long run, we should merge
5961 shared literals, and then we will need to additional work
5962 here. */
5963
5964 /* Fall through. */
5965
5966 case R_MIPS16_GPREL:
5967 /* The R_MIPS16_GPREL performs the same calculation as
5968 R_MIPS_GPREL16, but stores the relocated bits in a different
5969 order. We don't need to do anything special here; the
5970 differences are handled in mips_elf_perform_relocation. */
5971 case R_MIPS_GPREL16:
5972 case R_MICROMIPS_GPREL7_S2:
5973 case R_MICROMIPS_GPREL16:
5974 /* Only sign-extend the addend if it was extracted from the
5975 instruction. If the addend was separate, leave it alone,
5976 otherwise we may lose significant bits. */
5977 if (howto->partial_inplace)
5978 addend = _bfd_mips_elf_sign_extend (addend, 16);
5979 value = symbol + addend - gp;
5980 /* If the symbol was local, any earlier relocatable links will
5981 have adjusted its addend with the gp offset, so compensate
5982 for that now. Don't do it for symbols forced local in this
5983 link, though, since they won't have had the gp offset applied
5984 to them before. */
5985 if (was_local_p)
5986 value += gp0;
5987 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5988 overflowed_p = mips_elf_overflow_p (value, 16);
5989 break;
5990
5991 case R_MIPS16_GOT16:
5992 case R_MIPS16_CALL16:
5993 case R_MIPS_GOT16:
5994 case R_MIPS_CALL16:
5995 case R_MICROMIPS_GOT16:
5996 case R_MICROMIPS_CALL16:
5997 /* VxWorks does not have separate local and global semantics for
5998 R_MIPS*_GOT16; every relocation evaluates to "G". */
5999 if (!htab->is_vxworks && local_p)
6000 {
6001 value = mips_elf_got16_entry (abfd, input_bfd, info,
6002 symbol + addend, !was_local_p);
6003 if (value == MINUS_ONE)
6004 return bfd_reloc_outofrange;
6005 value
6006 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6007 overflowed_p = mips_elf_overflow_p (value, 16);
6008 break;
6009 }
6010
6011 /* Fall through. */
6012
6013 case R_MIPS_TLS_GD:
6014 case R_MIPS_TLS_GOTTPREL:
6015 case R_MIPS_TLS_LDM:
6016 case R_MIPS_GOT_DISP:
6017 case R_MIPS16_TLS_GD:
6018 case R_MIPS16_TLS_GOTTPREL:
6019 case R_MIPS16_TLS_LDM:
6020 case R_MICROMIPS_TLS_GD:
6021 case R_MICROMIPS_TLS_GOTTPREL:
6022 case R_MICROMIPS_TLS_LDM:
6023 case R_MICROMIPS_GOT_DISP:
6024 value = g;
6025 overflowed_p = mips_elf_overflow_p (value, 16);
6026 break;
6027
6028 case R_MIPS_GPREL32:
6029 value = (addend + symbol + gp0 - gp);
6030 if (!save_addend)
6031 value &= howto->dst_mask;
6032 break;
6033
6034 case R_MIPS_PC16:
6035 case R_MIPS_GNU_REL16_S2:
6036 if (howto->partial_inplace)
6037 addend = _bfd_mips_elf_sign_extend (addend, 18);
6038
6039 /* No need to exclude weak undefined symbols here as they resolve
6040 to 0 and never set `*cross_mode_jump_p', so this alignment check
6041 will never trigger for them. */
6042 if (*cross_mode_jump_p
6043 ? ((symbol + addend) & 3) != 1
6044 : ((symbol + addend) & 3) != 0)
6045 return bfd_reloc_outofrange;
6046
6047 value = symbol + addend - p;
6048 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6049 overflowed_p = mips_elf_overflow_p (value, 18);
6050 value >>= howto->rightshift;
6051 value &= howto->dst_mask;
6052 break;
6053
6054 case R_MIPS16_PC16_S1:
6055 if (howto->partial_inplace)
6056 addend = _bfd_mips_elf_sign_extend (addend, 17);
6057
6058 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6059 && (*cross_mode_jump_p
6060 ? ((symbol + addend) & 3) != 0
6061 : ((symbol + addend) & 1) == 0))
6062 return bfd_reloc_outofrange;
6063
6064 value = symbol + addend - p;
6065 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6066 overflowed_p = mips_elf_overflow_p (value, 17);
6067 value >>= howto->rightshift;
6068 value &= howto->dst_mask;
6069 break;
6070
6071 case R_MIPS_PC21_S2:
6072 if (howto->partial_inplace)
6073 addend = _bfd_mips_elf_sign_extend (addend, 23);
6074
6075 if ((symbol + addend) & 3)
6076 return bfd_reloc_outofrange;
6077
6078 value = symbol + addend - p;
6079 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6080 overflowed_p = mips_elf_overflow_p (value, 23);
6081 value >>= howto->rightshift;
6082 value &= howto->dst_mask;
6083 break;
6084
6085 case R_MIPS_PC26_S2:
6086 if (howto->partial_inplace)
6087 addend = _bfd_mips_elf_sign_extend (addend, 28);
6088
6089 if ((symbol + addend) & 3)
6090 return bfd_reloc_outofrange;
6091
6092 value = symbol + addend - p;
6093 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6094 overflowed_p = mips_elf_overflow_p (value, 28);
6095 value >>= howto->rightshift;
6096 value &= howto->dst_mask;
6097 break;
6098
6099 case R_MIPS_PC18_S3:
6100 if (howto->partial_inplace)
6101 addend = _bfd_mips_elf_sign_extend (addend, 21);
6102
6103 if ((symbol + addend) & 7)
6104 return bfd_reloc_outofrange;
6105
6106 value = symbol + addend - ((p | 7) ^ 7);
6107 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6108 overflowed_p = mips_elf_overflow_p (value, 21);
6109 value >>= howto->rightshift;
6110 value &= howto->dst_mask;
6111 break;
6112
6113 case R_MIPS_PC19_S2:
6114 if (howto->partial_inplace)
6115 addend = _bfd_mips_elf_sign_extend (addend, 21);
6116
6117 if ((symbol + addend) & 3)
6118 return bfd_reloc_outofrange;
6119
6120 value = symbol + addend - p;
6121 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6122 overflowed_p = mips_elf_overflow_p (value, 21);
6123 value >>= howto->rightshift;
6124 value &= howto->dst_mask;
6125 break;
6126
6127 case R_MIPS_PCHI16:
6128 value = mips_elf_high (symbol + addend - p);
6129 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6130 overflowed_p = mips_elf_overflow_p (value, 16);
6131 value &= howto->dst_mask;
6132 break;
6133
6134 case R_MIPS_PCLO16:
6135 if (howto->partial_inplace)
6136 addend = _bfd_mips_elf_sign_extend (addend, 16);
6137 value = symbol + addend - p;
6138 value &= howto->dst_mask;
6139 break;
6140
6141 case R_MICROMIPS_PC7_S1:
6142 if (howto->partial_inplace)
6143 addend = _bfd_mips_elf_sign_extend (addend, 8);
6144
6145 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6146 && (*cross_mode_jump_p
6147 ? ((symbol + addend + 2) & 3) != 0
6148 : ((symbol + addend + 2) & 1) == 0))
6149 return bfd_reloc_outofrange;
6150
6151 value = symbol + addend - p;
6152 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6153 overflowed_p = mips_elf_overflow_p (value, 8);
6154 value >>= howto->rightshift;
6155 value &= howto->dst_mask;
6156 break;
6157
6158 case R_MICROMIPS_PC10_S1:
6159 if (howto->partial_inplace)
6160 addend = _bfd_mips_elf_sign_extend (addend, 11);
6161
6162 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6163 && (*cross_mode_jump_p
6164 ? ((symbol + addend + 2) & 3) != 0
6165 : ((symbol + addend + 2) & 1) == 0))
6166 return bfd_reloc_outofrange;
6167
6168 value = symbol + addend - p;
6169 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6170 overflowed_p = mips_elf_overflow_p (value, 11);
6171 value >>= howto->rightshift;
6172 value &= howto->dst_mask;
6173 break;
6174
6175 case R_MICROMIPS_PC16_S1:
6176 if (howto->partial_inplace)
6177 addend = _bfd_mips_elf_sign_extend (addend, 17);
6178
6179 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6180 && (*cross_mode_jump_p
6181 ? ((symbol + addend) & 3) != 0
6182 : ((symbol + addend) & 1) == 0))
6183 return bfd_reloc_outofrange;
6184
6185 value = symbol + addend - p;
6186 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6187 overflowed_p = mips_elf_overflow_p (value, 17);
6188 value >>= howto->rightshift;
6189 value &= howto->dst_mask;
6190 break;
6191
6192 case R_MICROMIPS_PC23_S2:
6193 if (howto->partial_inplace)
6194 addend = _bfd_mips_elf_sign_extend (addend, 25);
6195 value = symbol + addend - ((p | 3) ^ 3);
6196 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6197 overflowed_p = mips_elf_overflow_p (value, 25);
6198 value >>= howto->rightshift;
6199 value &= howto->dst_mask;
6200 break;
6201
6202 case R_MIPS_GOT_HI16:
6203 case R_MIPS_CALL_HI16:
6204 case R_MICROMIPS_GOT_HI16:
6205 case R_MICROMIPS_CALL_HI16:
6206 /* We're allowed to handle these two relocations identically.
6207 The dynamic linker is allowed to handle the CALL relocations
6208 differently by creating a lazy evaluation stub. */
6209 value = g;
6210 value = mips_elf_high (value);
6211 value &= howto->dst_mask;
6212 break;
6213
6214 case R_MIPS_GOT_LO16:
6215 case R_MIPS_CALL_LO16:
6216 case R_MICROMIPS_GOT_LO16:
6217 case R_MICROMIPS_CALL_LO16:
6218 value = g & howto->dst_mask;
6219 break;
6220
6221 case R_MIPS_GOT_PAGE:
6222 case R_MICROMIPS_GOT_PAGE:
6223 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6224 if (value == MINUS_ONE)
6225 return bfd_reloc_outofrange;
6226 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6227 overflowed_p = mips_elf_overflow_p (value, 16);
6228 break;
6229
6230 case R_MIPS_GOT_OFST:
6231 case R_MICROMIPS_GOT_OFST:
6232 if (local_p)
6233 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6234 else
6235 value = addend;
6236 overflowed_p = mips_elf_overflow_p (value, 16);
6237 break;
6238
6239 case R_MIPS_SUB:
6240 case R_MICROMIPS_SUB:
6241 value = symbol - addend;
6242 value &= howto->dst_mask;
6243 break;
6244
6245 case R_MIPS_HIGHER:
6246 case R_MICROMIPS_HIGHER:
6247 value = mips_elf_higher (addend + symbol);
6248 value &= howto->dst_mask;
6249 break;
6250
6251 case R_MIPS_HIGHEST:
6252 case R_MICROMIPS_HIGHEST:
6253 value = mips_elf_highest (addend + symbol);
6254 value &= howto->dst_mask;
6255 break;
6256
6257 case R_MIPS_SCN_DISP:
6258 case R_MICROMIPS_SCN_DISP:
6259 value = symbol + addend - sec->output_offset;
6260 value &= howto->dst_mask;
6261 break;
6262
6263 case R_MIPS_JALR:
6264 case R_MICROMIPS_JALR:
6265 /* This relocation is only a hint. In some cases, we optimize
6266 it into a bal instruction. But we don't try to optimize
6267 when the symbol does not resolve locally. */
6268 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6269 return bfd_reloc_continue;
6270 value = symbol + addend;
6271 break;
6272
6273 case R_MIPS_PJUMP:
6274 case R_MIPS_GNU_VTINHERIT:
6275 case R_MIPS_GNU_VTENTRY:
6276 /* We don't do anything with these at present. */
6277 return bfd_reloc_continue;
6278
6279 default:
6280 /* An unrecognized relocation type. */
6281 return bfd_reloc_notsupported;
6282 }
6283
6284 /* Store the VALUE for our caller. */
6285 *valuep = value;
6286 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6287 }
6288
6289 /* Obtain the field relocated by RELOCATION. */
6290
6291 static bfd_vma
6292 mips_elf_obtain_contents (reloc_howto_type *howto,
6293 const Elf_Internal_Rela *relocation,
6294 bfd *input_bfd, bfd_byte *contents)
6295 {
6296 bfd_vma x = 0;
6297 bfd_byte *location = contents + relocation->r_offset;
6298 unsigned int size = bfd_get_reloc_size (howto);
6299
6300 /* Obtain the bytes. */
6301 if (size != 0)
6302 x = bfd_get (8 * size, input_bfd, location);
6303
6304 return x;
6305 }
6306
6307 /* It has been determined that the result of the RELOCATION is the
6308 VALUE. Use HOWTO to place VALUE into the output file at the
6309 appropriate position. The SECTION is the section to which the
6310 relocation applies.
6311 CROSS_MODE_JUMP_P is true if the relocation field
6312 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6313
6314 Returns FALSE if anything goes wrong. */
6315
6316 static bfd_boolean
6317 mips_elf_perform_relocation (struct bfd_link_info *info,
6318 reloc_howto_type *howto,
6319 const Elf_Internal_Rela *relocation,
6320 bfd_vma value, bfd *input_bfd,
6321 asection *input_section, bfd_byte *contents,
6322 bfd_boolean cross_mode_jump_p)
6323 {
6324 bfd_vma x;
6325 bfd_byte *location;
6326 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6327 unsigned int size;
6328
6329 /* Figure out where the relocation is occurring. */
6330 location = contents + relocation->r_offset;
6331
6332 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6333
6334 /* Obtain the current value. */
6335 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6336
6337 /* Clear the field we are setting. */
6338 x &= ~howto->dst_mask;
6339
6340 /* Set the field. */
6341 x |= (value & howto->dst_mask);
6342
6343 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6344 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6345 {
6346 bfd_vma opcode = x >> 26;
6347
6348 if (r_type == R_MIPS16_26 ? opcode == 0x7
6349 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6350 : opcode == 0x1d)
6351 {
6352 info->callbacks->einfo
6353 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6354 input_bfd, input_section, relocation->r_offset);
6355 return TRUE;
6356 }
6357 }
6358 if (cross_mode_jump_p && jal_reloc_p (r_type))
6359 {
6360 bfd_boolean ok;
6361 bfd_vma opcode = x >> 26;
6362 bfd_vma jalx_opcode;
6363
6364 /* Check to see if the opcode is already JAL or JALX. */
6365 if (r_type == R_MIPS16_26)
6366 {
6367 ok = ((opcode == 0x6) || (opcode == 0x7));
6368 jalx_opcode = 0x7;
6369 }
6370 else if (r_type == R_MICROMIPS_26_S1)
6371 {
6372 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6373 jalx_opcode = 0x3c;
6374 }
6375 else
6376 {
6377 ok = ((opcode == 0x3) || (opcode == 0x1d));
6378 jalx_opcode = 0x1d;
6379 }
6380
6381 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6382 convert J or JALS to JALX. */
6383 if (!ok)
6384 {
6385 info->callbacks->einfo
6386 (_("%X%H: Unsupported jump between ISA modes; "
6387 "consider recompiling with interlinking enabled\n"),
6388 input_bfd, input_section, relocation->r_offset);
6389 return TRUE;
6390 }
6391
6392 /* Make this the JALX opcode. */
6393 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6394 }
6395 else if (cross_mode_jump_p && b_reloc_p (r_type))
6396 {
6397 bfd_boolean ok = FALSE;
6398 bfd_vma opcode = x >> 16;
6399 bfd_vma jalx_opcode = 0;
6400 bfd_vma addr;
6401 bfd_vma dest;
6402
6403 if (r_type == R_MICROMIPS_PC16_S1)
6404 {
6405 ok = opcode == 0x4060;
6406 jalx_opcode = 0x3c;
6407 value <<= 1;
6408 }
6409 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6410 {
6411 ok = opcode == 0x411;
6412 jalx_opcode = 0x1d;
6413 value <<= 2;
6414 }
6415
6416 if (bfd_link_pic (info) || !ok)
6417 {
6418 info->callbacks->einfo
6419 (_("%X%H: Unsupported branch between ISA modes\n"),
6420 input_bfd, input_section, relocation->r_offset);
6421 return TRUE;
6422 }
6423
6424 addr = (input_section->output_section->vma
6425 + input_section->output_offset
6426 + relocation->r_offset
6427 + 4);
6428 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6429
6430 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6431 {
6432 info->callbacks->einfo
6433 (_("%X%H: Cannot convert branch between ISA modes "
6434 "to JALX: relocation out of range\n"),
6435 input_bfd, input_section, relocation->r_offset);
6436 return TRUE;
6437 }
6438
6439 /* Make this the JALX opcode. */
6440 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6441 }
6442
6443 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6444 range. */
6445 if (!bfd_link_relocatable (info)
6446 && !cross_mode_jump_p
6447 && ((JAL_TO_BAL_P (input_bfd)
6448 && r_type == R_MIPS_26
6449 && (x >> 26) == 0x3) /* jal addr */
6450 || (JALR_TO_BAL_P (input_bfd)
6451 && r_type == R_MIPS_JALR
6452 && x == 0x0320f809) /* jalr t9 */
6453 || (JR_TO_B_P (input_bfd)
6454 && r_type == R_MIPS_JALR
6455 && x == 0x03200008))) /* jr t9 */
6456 {
6457 bfd_vma addr;
6458 bfd_vma dest;
6459 bfd_signed_vma off;
6460
6461 addr = (input_section->output_section->vma
6462 + input_section->output_offset
6463 + relocation->r_offset
6464 + 4);
6465 if (r_type == R_MIPS_26)
6466 dest = (value << 2) | ((addr >> 28) << 28);
6467 else
6468 dest = value;
6469 off = dest - addr;
6470 if (off <= 0x1ffff && off >= -0x20000)
6471 {
6472 if (x == 0x03200008) /* jr t9 */
6473 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6474 else
6475 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6476 }
6477 }
6478
6479 /* Put the value into the output. */
6480 size = bfd_get_reloc_size (howto);
6481 if (size != 0)
6482 bfd_put (8 * size, input_bfd, x, location);
6483
6484 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6485 location);
6486
6487 return TRUE;
6488 }
6489 \f
6490 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6491 is the original relocation, which is now being transformed into a
6492 dynamic relocation. The ADDENDP is adjusted if necessary; the
6493 caller should store the result in place of the original addend. */
6494
6495 static bfd_boolean
6496 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6497 struct bfd_link_info *info,
6498 const Elf_Internal_Rela *rel,
6499 struct mips_elf_link_hash_entry *h,
6500 asection *sec, bfd_vma symbol,
6501 bfd_vma *addendp, asection *input_section)
6502 {
6503 Elf_Internal_Rela outrel[3];
6504 asection *sreloc;
6505 bfd *dynobj;
6506 int r_type;
6507 long indx;
6508 bfd_boolean defined_p;
6509 struct mips_elf_link_hash_table *htab;
6510
6511 htab = mips_elf_hash_table (info);
6512 BFD_ASSERT (htab != NULL);
6513
6514 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6515 dynobj = elf_hash_table (info)->dynobj;
6516 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6517 BFD_ASSERT (sreloc != NULL);
6518 BFD_ASSERT (sreloc->contents != NULL);
6519 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6520 < sreloc->size);
6521
6522 outrel[0].r_offset =
6523 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6524 if (ABI_64_P (output_bfd))
6525 {
6526 outrel[1].r_offset =
6527 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6528 outrel[2].r_offset =
6529 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6530 }
6531
6532 if (outrel[0].r_offset == MINUS_ONE)
6533 /* The relocation field has been deleted. */
6534 return TRUE;
6535
6536 if (outrel[0].r_offset == MINUS_TWO)
6537 {
6538 /* The relocation field has been converted into a relative value of
6539 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6540 the field to be fully relocated, so add in the symbol's value. */
6541 *addendp += symbol;
6542 return TRUE;
6543 }
6544
6545 /* We must now calculate the dynamic symbol table index to use
6546 in the relocation. */
6547 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6548 {
6549 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6550 indx = h->root.dynindx;
6551 if (SGI_COMPAT (output_bfd))
6552 defined_p = h->root.def_regular;
6553 else
6554 /* ??? glibc's ld.so just adds the final GOT entry to the
6555 relocation field. It therefore treats relocs against
6556 defined symbols in the same way as relocs against
6557 undefined symbols. */
6558 defined_p = FALSE;
6559 }
6560 else
6561 {
6562 if (sec != NULL && bfd_is_abs_section (sec))
6563 indx = 0;
6564 else if (sec == NULL || sec->owner == NULL)
6565 {
6566 bfd_set_error (bfd_error_bad_value);
6567 return FALSE;
6568 }
6569 else
6570 {
6571 indx = elf_section_data (sec->output_section)->dynindx;
6572 if (indx == 0)
6573 {
6574 asection *osec = htab->root.text_index_section;
6575 indx = elf_section_data (osec)->dynindx;
6576 }
6577 if (indx == 0)
6578 abort ();
6579 }
6580
6581 /* Instead of generating a relocation using the section
6582 symbol, we may as well make it a fully relative
6583 relocation. We want to avoid generating relocations to
6584 local symbols because we used to generate them
6585 incorrectly, without adding the original symbol value,
6586 which is mandated by the ABI for section symbols. In
6587 order to give dynamic loaders and applications time to
6588 phase out the incorrect use, we refrain from emitting
6589 section-relative relocations. It's not like they're
6590 useful, after all. This should be a bit more efficient
6591 as well. */
6592 /* ??? Although this behavior is compatible with glibc's ld.so,
6593 the ABI says that relocations against STN_UNDEF should have
6594 a symbol value of 0. Irix rld honors this, so relocations
6595 against STN_UNDEF have no effect. */
6596 if (!SGI_COMPAT (output_bfd))
6597 indx = 0;
6598 defined_p = TRUE;
6599 }
6600
6601 /* If the relocation was previously an absolute relocation and
6602 this symbol will not be referred to by the relocation, we must
6603 adjust it by the value we give it in the dynamic symbol table.
6604 Otherwise leave the job up to the dynamic linker. */
6605 if (defined_p && r_type != R_MIPS_REL32)
6606 *addendp += symbol;
6607
6608 if (htab->is_vxworks)
6609 /* VxWorks uses non-relative relocations for this. */
6610 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6611 else
6612 /* The relocation is always an REL32 relocation because we don't
6613 know where the shared library will wind up at load-time. */
6614 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6615 R_MIPS_REL32);
6616
6617 /* For strict adherence to the ABI specification, we should
6618 generate a R_MIPS_64 relocation record by itself before the
6619 _REL32/_64 record as well, such that the addend is read in as
6620 a 64-bit value (REL32 is a 32-bit relocation, after all).
6621 However, since none of the existing ELF64 MIPS dynamic
6622 loaders seems to care, we don't waste space with these
6623 artificial relocations. If this turns out to not be true,
6624 mips_elf_allocate_dynamic_relocation() should be tweaked so
6625 as to make room for a pair of dynamic relocations per
6626 invocation if ABI_64_P, and here we should generate an
6627 additional relocation record with R_MIPS_64 by itself for a
6628 NULL symbol before this relocation record. */
6629 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6630 ABI_64_P (output_bfd)
6631 ? R_MIPS_64
6632 : R_MIPS_NONE);
6633 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6634
6635 /* Adjust the output offset of the relocation to reference the
6636 correct location in the output file. */
6637 outrel[0].r_offset += (input_section->output_section->vma
6638 + input_section->output_offset);
6639 outrel[1].r_offset += (input_section->output_section->vma
6640 + input_section->output_offset);
6641 outrel[2].r_offset += (input_section->output_section->vma
6642 + input_section->output_offset);
6643
6644 /* Put the relocation back out. We have to use the special
6645 relocation outputter in the 64-bit case since the 64-bit
6646 relocation format is non-standard. */
6647 if (ABI_64_P (output_bfd))
6648 {
6649 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6650 (output_bfd, &outrel[0],
6651 (sreloc->contents
6652 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6653 }
6654 else if (htab->is_vxworks)
6655 {
6656 /* VxWorks uses RELA rather than REL dynamic relocations. */
6657 outrel[0].r_addend = *addendp;
6658 bfd_elf32_swap_reloca_out
6659 (output_bfd, &outrel[0],
6660 (sreloc->contents
6661 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6662 }
6663 else
6664 bfd_elf32_swap_reloc_out
6665 (output_bfd, &outrel[0],
6666 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6667
6668 /* We've now added another relocation. */
6669 ++sreloc->reloc_count;
6670
6671 /* Make sure the output section is writable. The dynamic linker
6672 will be writing to it. */
6673 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6674 |= SHF_WRITE;
6675
6676 /* On IRIX5, make an entry of compact relocation info. */
6677 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6678 {
6679 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6680 bfd_byte *cr;
6681
6682 if (scpt)
6683 {
6684 Elf32_crinfo cptrel;
6685
6686 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6687 cptrel.vaddr = (rel->r_offset
6688 + input_section->output_section->vma
6689 + input_section->output_offset);
6690 if (r_type == R_MIPS_REL32)
6691 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6692 else
6693 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6694 mips_elf_set_cr_dist2to (cptrel, 0);
6695 cptrel.konst = *addendp;
6696
6697 cr = (scpt->contents
6698 + sizeof (Elf32_External_compact_rel));
6699 mips_elf_set_cr_relvaddr (cptrel, 0);
6700 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6701 ((Elf32_External_crinfo *) cr
6702 + scpt->reloc_count));
6703 ++scpt->reloc_count;
6704 }
6705 }
6706
6707 /* If we've written this relocation for a readonly section,
6708 we need to set DF_TEXTREL again, so that we do not delete the
6709 DT_TEXTREL tag. */
6710 if (MIPS_ELF_READONLY_SECTION (input_section))
6711 info->flags |= DF_TEXTREL;
6712
6713 return TRUE;
6714 }
6715 \f
6716 /* Return the MACH for a MIPS e_flags value. */
6717
6718 unsigned long
6719 _bfd_elf_mips_mach (flagword flags)
6720 {
6721 switch (flags & EF_MIPS_MACH)
6722 {
6723 case E_MIPS_MACH_3900:
6724 return bfd_mach_mips3900;
6725
6726 case E_MIPS_MACH_4010:
6727 return bfd_mach_mips4010;
6728
6729 case E_MIPS_MACH_4100:
6730 return bfd_mach_mips4100;
6731
6732 case E_MIPS_MACH_4111:
6733 return bfd_mach_mips4111;
6734
6735 case E_MIPS_MACH_4120:
6736 return bfd_mach_mips4120;
6737
6738 case E_MIPS_MACH_4650:
6739 return bfd_mach_mips4650;
6740
6741 case E_MIPS_MACH_5400:
6742 return bfd_mach_mips5400;
6743
6744 case E_MIPS_MACH_5500:
6745 return bfd_mach_mips5500;
6746
6747 case E_MIPS_MACH_5900:
6748 return bfd_mach_mips5900;
6749
6750 case E_MIPS_MACH_9000:
6751 return bfd_mach_mips9000;
6752
6753 case E_MIPS_MACH_SB1:
6754 return bfd_mach_mips_sb1;
6755
6756 case E_MIPS_MACH_LS2E:
6757 return bfd_mach_mips_loongson_2e;
6758
6759 case E_MIPS_MACH_LS2F:
6760 return bfd_mach_mips_loongson_2f;
6761
6762 case E_MIPS_MACH_LS3A:
6763 return bfd_mach_mips_loongson_3a;
6764
6765 case E_MIPS_MACH_OCTEON3:
6766 return bfd_mach_mips_octeon3;
6767
6768 case E_MIPS_MACH_OCTEON2:
6769 return bfd_mach_mips_octeon2;
6770
6771 case E_MIPS_MACH_OCTEON:
6772 return bfd_mach_mips_octeon;
6773
6774 case E_MIPS_MACH_XLR:
6775 return bfd_mach_mips_xlr;
6776
6777 default:
6778 switch (flags & EF_MIPS_ARCH)
6779 {
6780 default:
6781 case E_MIPS_ARCH_1:
6782 return bfd_mach_mips3000;
6783
6784 case E_MIPS_ARCH_2:
6785 return bfd_mach_mips6000;
6786
6787 case E_MIPS_ARCH_3:
6788 return bfd_mach_mips4000;
6789
6790 case E_MIPS_ARCH_4:
6791 return bfd_mach_mips8000;
6792
6793 case E_MIPS_ARCH_5:
6794 return bfd_mach_mips5;
6795
6796 case E_MIPS_ARCH_32:
6797 return bfd_mach_mipsisa32;
6798
6799 case E_MIPS_ARCH_64:
6800 return bfd_mach_mipsisa64;
6801
6802 case E_MIPS_ARCH_32R2:
6803 return bfd_mach_mipsisa32r2;
6804
6805 case E_MIPS_ARCH_64R2:
6806 return bfd_mach_mipsisa64r2;
6807
6808 case E_MIPS_ARCH_32R6:
6809 return bfd_mach_mipsisa32r6;
6810
6811 case E_MIPS_ARCH_64R6:
6812 return bfd_mach_mipsisa64r6;
6813 }
6814 }
6815
6816 return 0;
6817 }
6818
6819 /* Return printable name for ABI. */
6820
6821 static INLINE char *
6822 elf_mips_abi_name (bfd *abfd)
6823 {
6824 flagword flags;
6825
6826 flags = elf_elfheader (abfd)->e_flags;
6827 switch (flags & EF_MIPS_ABI)
6828 {
6829 case 0:
6830 if (ABI_N32_P (abfd))
6831 return "N32";
6832 else if (ABI_64_P (abfd))
6833 return "64";
6834 else
6835 return "none";
6836 case E_MIPS_ABI_O32:
6837 return "O32";
6838 case E_MIPS_ABI_O64:
6839 return "O64";
6840 case E_MIPS_ABI_EABI32:
6841 return "EABI32";
6842 case E_MIPS_ABI_EABI64:
6843 return "EABI64";
6844 default:
6845 return "unknown abi";
6846 }
6847 }
6848 \f
6849 /* MIPS ELF uses two common sections. One is the usual one, and the
6850 other is for small objects. All the small objects are kept
6851 together, and then referenced via the gp pointer, which yields
6852 faster assembler code. This is what we use for the small common
6853 section. This approach is copied from ecoff.c. */
6854 static asection mips_elf_scom_section;
6855 static asymbol mips_elf_scom_symbol;
6856 static asymbol *mips_elf_scom_symbol_ptr;
6857
6858 /* MIPS ELF also uses an acommon section, which represents an
6859 allocated common symbol which may be overridden by a
6860 definition in a shared library. */
6861 static asection mips_elf_acom_section;
6862 static asymbol mips_elf_acom_symbol;
6863 static asymbol *mips_elf_acom_symbol_ptr;
6864
6865 /* This is used for both the 32-bit and the 64-bit ABI. */
6866
6867 void
6868 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6869 {
6870 elf_symbol_type *elfsym;
6871
6872 /* Handle the special MIPS section numbers that a symbol may use. */
6873 elfsym = (elf_symbol_type *) asym;
6874 switch (elfsym->internal_elf_sym.st_shndx)
6875 {
6876 case SHN_MIPS_ACOMMON:
6877 /* This section is used in a dynamically linked executable file.
6878 It is an allocated common section. The dynamic linker can
6879 either resolve these symbols to something in a shared
6880 library, or it can just leave them here. For our purposes,
6881 we can consider these symbols to be in a new section. */
6882 if (mips_elf_acom_section.name == NULL)
6883 {
6884 /* Initialize the acommon section. */
6885 mips_elf_acom_section.name = ".acommon";
6886 mips_elf_acom_section.flags = SEC_ALLOC;
6887 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6888 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6889 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6890 mips_elf_acom_symbol.name = ".acommon";
6891 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6892 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6893 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6894 }
6895 asym->section = &mips_elf_acom_section;
6896 break;
6897
6898 case SHN_COMMON:
6899 /* Common symbols less than the GP size are automatically
6900 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6901 if (asym->value > elf_gp_size (abfd)
6902 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6903 || IRIX_COMPAT (abfd) == ict_irix6)
6904 break;
6905 /* Fall through. */
6906 case SHN_MIPS_SCOMMON:
6907 if (mips_elf_scom_section.name == NULL)
6908 {
6909 /* Initialize the small common section. */
6910 mips_elf_scom_section.name = ".scommon";
6911 mips_elf_scom_section.flags = SEC_IS_COMMON;
6912 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6913 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6914 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6915 mips_elf_scom_symbol.name = ".scommon";
6916 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6917 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6918 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6919 }
6920 asym->section = &mips_elf_scom_section;
6921 asym->value = elfsym->internal_elf_sym.st_size;
6922 break;
6923
6924 case SHN_MIPS_SUNDEFINED:
6925 asym->section = bfd_und_section_ptr;
6926 break;
6927
6928 case SHN_MIPS_TEXT:
6929 {
6930 asection *section = bfd_get_section_by_name (abfd, ".text");
6931
6932 if (section != NULL)
6933 {
6934 asym->section = section;
6935 /* MIPS_TEXT is a bit special, the address is not an offset
6936 to the base of the .text section. So substract the section
6937 base address to make it an offset. */
6938 asym->value -= section->vma;
6939 }
6940 }
6941 break;
6942
6943 case SHN_MIPS_DATA:
6944 {
6945 asection *section = bfd_get_section_by_name (abfd, ".data");
6946
6947 if (section != NULL)
6948 {
6949 asym->section = section;
6950 /* MIPS_DATA is a bit special, the address is not an offset
6951 to the base of the .data section. So substract the section
6952 base address to make it an offset. */
6953 asym->value -= section->vma;
6954 }
6955 }
6956 break;
6957 }
6958
6959 /* If this is an odd-valued function symbol, assume it's a MIPS16
6960 or microMIPS one. */
6961 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6962 && (asym->value & 1) != 0)
6963 {
6964 asym->value--;
6965 if (MICROMIPS_P (abfd))
6966 elfsym->internal_elf_sym.st_other
6967 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6968 else
6969 elfsym->internal_elf_sym.st_other
6970 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6971 }
6972 }
6973 \f
6974 /* Implement elf_backend_eh_frame_address_size. This differs from
6975 the default in the way it handles EABI64.
6976
6977 EABI64 was originally specified as an LP64 ABI, and that is what
6978 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6979 historically accepted the combination of -mabi=eabi and -mlong32,
6980 and this ILP32 variation has become semi-official over time.
6981 Both forms use elf32 and have pointer-sized FDE addresses.
6982
6983 If an EABI object was generated by GCC 4.0 or above, it will have
6984 an empty .gcc_compiled_longXX section, where XX is the size of longs
6985 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6986 have no special marking to distinguish them from LP64 objects.
6987
6988 We don't want users of the official LP64 ABI to be punished for the
6989 existence of the ILP32 variant, but at the same time, we don't want
6990 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6991 We therefore take the following approach:
6992
6993 - If ABFD contains a .gcc_compiled_longXX section, use it to
6994 determine the pointer size.
6995
6996 - Otherwise check the type of the first relocation. Assume that
6997 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6998
6999 - Otherwise punt.
7000
7001 The second check is enough to detect LP64 objects generated by pre-4.0
7002 compilers because, in the kind of output generated by those compilers,
7003 the first relocation will be associated with either a CIE personality
7004 routine or an FDE start address. Furthermore, the compilers never
7005 used a special (non-pointer) encoding for this ABI.
7006
7007 Checking the relocation type should also be safe because there is no
7008 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7009 did so. */
7010
7011 unsigned int
7012 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7013 {
7014 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7015 return 8;
7016 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7017 {
7018 bfd_boolean long32_p, long64_p;
7019
7020 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7021 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7022 if (long32_p && long64_p)
7023 return 0;
7024 if (long32_p)
7025 return 4;
7026 if (long64_p)
7027 return 8;
7028
7029 if (sec->reloc_count > 0
7030 && elf_section_data (sec)->relocs != NULL
7031 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7032 == R_MIPS_64))
7033 return 8;
7034
7035 return 0;
7036 }
7037 return 4;
7038 }
7039 \f
7040 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7041 relocations against two unnamed section symbols to resolve to the
7042 same address. For example, if we have code like:
7043
7044 lw $4,%got_disp(.data)($gp)
7045 lw $25,%got_disp(.text)($gp)
7046 jalr $25
7047
7048 then the linker will resolve both relocations to .data and the program
7049 will jump there rather than to .text.
7050
7051 We can work around this problem by giving names to local section symbols.
7052 This is also what the MIPSpro tools do. */
7053
7054 bfd_boolean
7055 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7056 {
7057 return SGI_COMPAT (abfd);
7058 }
7059 \f
7060 /* Work over a section just before writing it out. This routine is
7061 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7062 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7063 a better way. */
7064
7065 bfd_boolean
7066 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7067 {
7068 if (hdr->sh_type == SHT_MIPS_REGINFO
7069 && hdr->sh_size > 0)
7070 {
7071 bfd_byte buf[4];
7072
7073 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7074 BFD_ASSERT (hdr->contents == NULL);
7075
7076 if (bfd_seek (abfd,
7077 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7078 SEEK_SET) != 0)
7079 return FALSE;
7080 H_PUT_32 (abfd, elf_gp (abfd), buf);
7081 if (bfd_bwrite (buf, 4, abfd) != 4)
7082 return FALSE;
7083 }
7084
7085 if (hdr->sh_type == SHT_MIPS_OPTIONS
7086 && hdr->bfd_section != NULL
7087 && mips_elf_section_data (hdr->bfd_section) != NULL
7088 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7089 {
7090 bfd_byte *contents, *l, *lend;
7091
7092 /* We stored the section contents in the tdata field in the
7093 set_section_contents routine. We save the section contents
7094 so that we don't have to read them again.
7095 At this point we know that elf_gp is set, so we can look
7096 through the section contents to see if there is an
7097 ODK_REGINFO structure. */
7098
7099 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7100 l = contents;
7101 lend = contents + hdr->sh_size;
7102 while (l + sizeof (Elf_External_Options) <= lend)
7103 {
7104 Elf_Internal_Options intopt;
7105
7106 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7107 &intopt);
7108 if (intopt.size < sizeof (Elf_External_Options))
7109 {
7110 (*_bfd_error_handler)
7111 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7112 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7113 break;
7114 }
7115 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7116 {
7117 bfd_byte buf[8];
7118
7119 if (bfd_seek (abfd,
7120 (hdr->sh_offset
7121 + (l - contents)
7122 + sizeof (Elf_External_Options)
7123 + (sizeof (Elf64_External_RegInfo) - 8)),
7124 SEEK_SET) != 0)
7125 return FALSE;
7126 H_PUT_64 (abfd, elf_gp (abfd), buf);
7127 if (bfd_bwrite (buf, 8, abfd) != 8)
7128 return FALSE;
7129 }
7130 else if (intopt.kind == ODK_REGINFO)
7131 {
7132 bfd_byte buf[4];
7133
7134 if (bfd_seek (abfd,
7135 (hdr->sh_offset
7136 + (l - contents)
7137 + sizeof (Elf_External_Options)
7138 + (sizeof (Elf32_External_RegInfo) - 4)),
7139 SEEK_SET) != 0)
7140 return FALSE;
7141 H_PUT_32 (abfd, elf_gp (abfd), buf);
7142 if (bfd_bwrite (buf, 4, abfd) != 4)
7143 return FALSE;
7144 }
7145 l += intopt.size;
7146 }
7147 }
7148
7149 if (hdr->bfd_section != NULL)
7150 {
7151 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7152
7153 /* .sbss is not handled specially here because the GNU/Linux
7154 prelinker can convert .sbss from NOBITS to PROGBITS and
7155 changing it back to NOBITS breaks the binary. The entry in
7156 _bfd_mips_elf_special_sections will ensure the correct flags
7157 are set on .sbss if BFD creates it without reading it from an
7158 input file, and without special handling here the flags set
7159 on it in an input file will be followed. */
7160 if (strcmp (name, ".sdata") == 0
7161 || strcmp (name, ".lit8") == 0
7162 || strcmp (name, ".lit4") == 0)
7163 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7164 else if (strcmp (name, ".srdata") == 0)
7165 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7166 else if (strcmp (name, ".compact_rel") == 0)
7167 hdr->sh_flags = 0;
7168 else if (strcmp (name, ".rtproc") == 0)
7169 {
7170 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7171 {
7172 unsigned int adjust;
7173
7174 adjust = hdr->sh_size % hdr->sh_addralign;
7175 if (adjust != 0)
7176 hdr->sh_size += hdr->sh_addralign - adjust;
7177 }
7178 }
7179 }
7180
7181 return TRUE;
7182 }
7183
7184 /* Handle a MIPS specific section when reading an object file. This
7185 is called when elfcode.h finds a section with an unknown type.
7186 This routine supports both the 32-bit and 64-bit ELF ABI.
7187
7188 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7189 how to. */
7190
7191 bfd_boolean
7192 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7193 Elf_Internal_Shdr *hdr,
7194 const char *name,
7195 int shindex)
7196 {
7197 flagword flags = 0;
7198
7199 /* There ought to be a place to keep ELF backend specific flags, but
7200 at the moment there isn't one. We just keep track of the
7201 sections by their name, instead. Fortunately, the ABI gives
7202 suggested names for all the MIPS specific sections, so we will
7203 probably get away with this. */
7204 switch (hdr->sh_type)
7205 {
7206 case SHT_MIPS_LIBLIST:
7207 if (strcmp (name, ".liblist") != 0)
7208 return FALSE;
7209 break;
7210 case SHT_MIPS_MSYM:
7211 if (strcmp (name, ".msym") != 0)
7212 return FALSE;
7213 break;
7214 case SHT_MIPS_CONFLICT:
7215 if (strcmp (name, ".conflict") != 0)
7216 return FALSE;
7217 break;
7218 case SHT_MIPS_GPTAB:
7219 if (! CONST_STRNEQ (name, ".gptab."))
7220 return FALSE;
7221 break;
7222 case SHT_MIPS_UCODE:
7223 if (strcmp (name, ".ucode") != 0)
7224 return FALSE;
7225 break;
7226 case SHT_MIPS_DEBUG:
7227 if (strcmp (name, ".mdebug") != 0)
7228 return FALSE;
7229 flags = SEC_DEBUGGING;
7230 break;
7231 case SHT_MIPS_REGINFO:
7232 if (strcmp (name, ".reginfo") != 0
7233 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7234 return FALSE;
7235 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7236 break;
7237 case SHT_MIPS_IFACE:
7238 if (strcmp (name, ".MIPS.interfaces") != 0)
7239 return FALSE;
7240 break;
7241 case SHT_MIPS_CONTENT:
7242 if (! CONST_STRNEQ (name, ".MIPS.content"))
7243 return FALSE;
7244 break;
7245 case SHT_MIPS_OPTIONS:
7246 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7247 return FALSE;
7248 break;
7249 case SHT_MIPS_ABIFLAGS:
7250 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7251 return FALSE;
7252 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7253 break;
7254 case SHT_MIPS_DWARF:
7255 if (! CONST_STRNEQ (name, ".debug_")
7256 && ! CONST_STRNEQ (name, ".zdebug_"))
7257 return FALSE;
7258 break;
7259 case SHT_MIPS_SYMBOL_LIB:
7260 if (strcmp (name, ".MIPS.symlib") != 0)
7261 return FALSE;
7262 break;
7263 case SHT_MIPS_EVENTS:
7264 if (! CONST_STRNEQ (name, ".MIPS.events")
7265 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7266 return FALSE;
7267 break;
7268 default:
7269 break;
7270 }
7271
7272 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7273 return FALSE;
7274
7275 if (flags)
7276 {
7277 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7278 (bfd_get_section_flags (abfd,
7279 hdr->bfd_section)
7280 | flags)))
7281 return FALSE;
7282 }
7283
7284 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7285 {
7286 Elf_External_ABIFlags_v0 ext;
7287
7288 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7289 &ext, 0, sizeof ext))
7290 return FALSE;
7291 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7292 &mips_elf_tdata (abfd)->abiflags);
7293 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7294 return FALSE;
7295 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7296 }
7297
7298 /* FIXME: We should record sh_info for a .gptab section. */
7299
7300 /* For a .reginfo section, set the gp value in the tdata information
7301 from the contents of this section. We need the gp value while
7302 processing relocs, so we just get it now. The .reginfo section
7303 is not used in the 64-bit MIPS ELF ABI. */
7304 if (hdr->sh_type == SHT_MIPS_REGINFO)
7305 {
7306 Elf32_External_RegInfo ext;
7307 Elf32_RegInfo s;
7308
7309 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7310 &ext, 0, sizeof ext))
7311 return FALSE;
7312 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7313 elf_gp (abfd) = s.ri_gp_value;
7314 }
7315
7316 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7317 set the gp value based on what we find. We may see both
7318 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7319 they should agree. */
7320 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7321 {
7322 bfd_byte *contents, *l, *lend;
7323
7324 contents = bfd_malloc (hdr->sh_size);
7325 if (contents == NULL)
7326 return FALSE;
7327 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7328 0, hdr->sh_size))
7329 {
7330 free (contents);
7331 return FALSE;
7332 }
7333 l = contents;
7334 lend = contents + hdr->sh_size;
7335 while (l + sizeof (Elf_External_Options) <= lend)
7336 {
7337 Elf_Internal_Options intopt;
7338
7339 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7340 &intopt);
7341 if (intopt.size < sizeof (Elf_External_Options))
7342 {
7343 (*_bfd_error_handler)
7344 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7345 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7346 break;
7347 }
7348 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7349 {
7350 Elf64_Internal_RegInfo intreg;
7351
7352 bfd_mips_elf64_swap_reginfo_in
7353 (abfd,
7354 ((Elf64_External_RegInfo *)
7355 (l + sizeof (Elf_External_Options))),
7356 &intreg);
7357 elf_gp (abfd) = intreg.ri_gp_value;
7358 }
7359 else if (intopt.kind == ODK_REGINFO)
7360 {
7361 Elf32_RegInfo intreg;
7362
7363 bfd_mips_elf32_swap_reginfo_in
7364 (abfd,
7365 ((Elf32_External_RegInfo *)
7366 (l + sizeof (Elf_External_Options))),
7367 &intreg);
7368 elf_gp (abfd) = intreg.ri_gp_value;
7369 }
7370 l += intopt.size;
7371 }
7372 free (contents);
7373 }
7374
7375 return TRUE;
7376 }
7377
7378 /* Set the correct type for a MIPS ELF section. We do this by the
7379 section name, which is a hack, but ought to work. This routine is
7380 used by both the 32-bit and the 64-bit ABI. */
7381
7382 bfd_boolean
7383 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7384 {
7385 const char *name = bfd_get_section_name (abfd, sec);
7386
7387 if (strcmp (name, ".liblist") == 0)
7388 {
7389 hdr->sh_type = SHT_MIPS_LIBLIST;
7390 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7391 /* The sh_link field is set in final_write_processing. */
7392 }
7393 else if (strcmp (name, ".conflict") == 0)
7394 hdr->sh_type = SHT_MIPS_CONFLICT;
7395 else if (CONST_STRNEQ (name, ".gptab."))
7396 {
7397 hdr->sh_type = SHT_MIPS_GPTAB;
7398 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7399 /* The sh_info field is set in final_write_processing. */
7400 }
7401 else if (strcmp (name, ".ucode") == 0)
7402 hdr->sh_type = SHT_MIPS_UCODE;
7403 else if (strcmp (name, ".mdebug") == 0)
7404 {
7405 hdr->sh_type = SHT_MIPS_DEBUG;
7406 /* In a shared object on IRIX 5.3, the .mdebug section has an
7407 entsize of 0. FIXME: Does this matter? */
7408 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7409 hdr->sh_entsize = 0;
7410 else
7411 hdr->sh_entsize = 1;
7412 }
7413 else if (strcmp (name, ".reginfo") == 0)
7414 {
7415 hdr->sh_type = SHT_MIPS_REGINFO;
7416 /* In a shared object on IRIX 5.3, the .reginfo section has an
7417 entsize of 0x18. FIXME: Does this matter? */
7418 if (SGI_COMPAT (abfd))
7419 {
7420 if ((abfd->flags & DYNAMIC) != 0)
7421 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7422 else
7423 hdr->sh_entsize = 1;
7424 }
7425 else
7426 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7427 }
7428 else if (SGI_COMPAT (abfd)
7429 && (strcmp (name, ".hash") == 0
7430 || strcmp (name, ".dynamic") == 0
7431 || strcmp (name, ".dynstr") == 0))
7432 {
7433 if (SGI_COMPAT (abfd))
7434 hdr->sh_entsize = 0;
7435 #if 0
7436 /* This isn't how the IRIX6 linker behaves. */
7437 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7438 #endif
7439 }
7440 else if (strcmp (name, ".got") == 0
7441 || strcmp (name, ".srdata") == 0
7442 || strcmp (name, ".sdata") == 0
7443 || strcmp (name, ".sbss") == 0
7444 || strcmp (name, ".lit4") == 0
7445 || strcmp (name, ".lit8") == 0)
7446 hdr->sh_flags |= SHF_MIPS_GPREL;
7447 else if (strcmp (name, ".MIPS.interfaces") == 0)
7448 {
7449 hdr->sh_type = SHT_MIPS_IFACE;
7450 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7451 }
7452 else if (CONST_STRNEQ (name, ".MIPS.content"))
7453 {
7454 hdr->sh_type = SHT_MIPS_CONTENT;
7455 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7456 /* The sh_info field is set in final_write_processing. */
7457 }
7458 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7459 {
7460 hdr->sh_type = SHT_MIPS_OPTIONS;
7461 hdr->sh_entsize = 1;
7462 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7463 }
7464 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7465 {
7466 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7467 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7468 }
7469 else if (CONST_STRNEQ (name, ".debug_")
7470 || CONST_STRNEQ (name, ".zdebug_"))
7471 {
7472 hdr->sh_type = SHT_MIPS_DWARF;
7473
7474 /* Irix facilities such as libexc expect a single .debug_frame
7475 per executable, the system ones have NOSTRIP set and the linker
7476 doesn't merge sections with different flags so ... */
7477 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7478 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7479 }
7480 else if (strcmp (name, ".MIPS.symlib") == 0)
7481 {
7482 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7483 /* The sh_link and sh_info fields are set in
7484 final_write_processing. */
7485 }
7486 else if (CONST_STRNEQ (name, ".MIPS.events")
7487 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7488 {
7489 hdr->sh_type = SHT_MIPS_EVENTS;
7490 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7491 /* The sh_link field is set in final_write_processing. */
7492 }
7493 else if (strcmp (name, ".msym") == 0)
7494 {
7495 hdr->sh_type = SHT_MIPS_MSYM;
7496 hdr->sh_flags |= SHF_ALLOC;
7497 hdr->sh_entsize = 8;
7498 }
7499
7500 /* The generic elf_fake_sections will set up REL_HDR using the default
7501 kind of relocations. We used to set up a second header for the
7502 non-default kind of relocations here, but only NewABI would use
7503 these, and the IRIX ld doesn't like resulting empty RELA sections.
7504 Thus we create those header only on demand now. */
7505
7506 return TRUE;
7507 }
7508
7509 /* Given a BFD section, try to locate the corresponding ELF section
7510 index. This is used by both the 32-bit and the 64-bit ABI.
7511 Actually, it's not clear to me that the 64-bit ABI supports these,
7512 but for non-PIC objects we will certainly want support for at least
7513 the .scommon section. */
7514
7515 bfd_boolean
7516 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7517 asection *sec, int *retval)
7518 {
7519 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7520 {
7521 *retval = SHN_MIPS_SCOMMON;
7522 return TRUE;
7523 }
7524 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7525 {
7526 *retval = SHN_MIPS_ACOMMON;
7527 return TRUE;
7528 }
7529 return FALSE;
7530 }
7531 \f
7532 /* Hook called by the linker routine which adds symbols from an object
7533 file. We must handle the special MIPS section numbers here. */
7534
7535 bfd_boolean
7536 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7537 Elf_Internal_Sym *sym, const char **namep,
7538 flagword *flagsp ATTRIBUTE_UNUSED,
7539 asection **secp, bfd_vma *valp)
7540 {
7541 if (SGI_COMPAT (abfd)
7542 && (abfd->flags & DYNAMIC) != 0
7543 && strcmp (*namep, "_rld_new_interface") == 0)
7544 {
7545 /* Skip IRIX5 rld entry name. */
7546 *namep = NULL;
7547 return TRUE;
7548 }
7549
7550 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7551 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7552 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7553 a magic symbol resolved by the linker, we ignore this bogus definition
7554 of _gp_disp. New ABI objects do not suffer from this problem so this
7555 is not done for them. */
7556 if (!NEWABI_P(abfd)
7557 && (sym->st_shndx == SHN_ABS)
7558 && (strcmp (*namep, "_gp_disp") == 0))
7559 {
7560 *namep = NULL;
7561 return TRUE;
7562 }
7563
7564 switch (sym->st_shndx)
7565 {
7566 case SHN_COMMON:
7567 /* Common symbols less than the GP size are automatically
7568 treated as SHN_MIPS_SCOMMON symbols. */
7569 if (sym->st_size > elf_gp_size (abfd)
7570 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7571 || IRIX_COMPAT (abfd) == ict_irix6)
7572 break;
7573 /* Fall through. */
7574 case SHN_MIPS_SCOMMON:
7575 *secp = bfd_make_section_old_way (abfd, ".scommon");
7576 (*secp)->flags |= SEC_IS_COMMON;
7577 *valp = sym->st_size;
7578 break;
7579
7580 case SHN_MIPS_TEXT:
7581 /* This section is used in a shared object. */
7582 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7583 {
7584 asymbol *elf_text_symbol;
7585 asection *elf_text_section;
7586 bfd_size_type amt = sizeof (asection);
7587
7588 elf_text_section = bfd_zalloc (abfd, amt);
7589 if (elf_text_section == NULL)
7590 return FALSE;
7591
7592 amt = sizeof (asymbol);
7593 elf_text_symbol = bfd_zalloc (abfd, amt);
7594 if (elf_text_symbol == NULL)
7595 return FALSE;
7596
7597 /* Initialize the section. */
7598
7599 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7600 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7601
7602 elf_text_section->symbol = elf_text_symbol;
7603 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7604
7605 elf_text_section->name = ".text";
7606 elf_text_section->flags = SEC_NO_FLAGS;
7607 elf_text_section->output_section = NULL;
7608 elf_text_section->owner = abfd;
7609 elf_text_symbol->name = ".text";
7610 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7611 elf_text_symbol->section = elf_text_section;
7612 }
7613 /* This code used to do *secp = bfd_und_section_ptr if
7614 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7615 so I took it out. */
7616 *secp = mips_elf_tdata (abfd)->elf_text_section;
7617 break;
7618
7619 case SHN_MIPS_ACOMMON:
7620 /* Fall through. XXX Can we treat this as allocated data? */
7621 case SHN_MIPS_DATA:
7622 /* This section is used in a shared object. */
7623 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7624 {
7625 asymbol *elf_data_symbol;
7626 asection *elf_data_section;
7627 bfd_size_type amt = sizeof (asection);
7628
7629 elf_data_section = bfd_zalloc (abfd, amt);
7630 if (elf_data_section == NULL)
7631 return FALSE;
7632
7633 amt = sizeof (asymbol);
7634 elf_data_symbol = bfd_zalloc (abfd, amt);
7635 if (elf_data_symbol == NULL)
7636 return FALSE;
7637
7638 /* Initialize the section. */
7639
7640 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7641 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7642
7643 elf_data_section->symbol = elf_data_symbol;
7644 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7645
7646 elf_data_section->name = ".data";
7647 elf_data_section->flags = SEC_NO_FLAGS;
7648 elf_data_section->output_section = NULL;
7649 elf_data_section->owner = abfd;
7650 elf_data_symbol->name = ".data";
7651 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7652 elf_data_symbol->section = elf_data_section;
7653 }
7654 /* This code used to do *secp = bfd_und_section_ptr if
7655 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7656 so I took it out. */
7657 *secp = mips_elf_tdata (abfd)->elf_data_section;
7658 break;
7659
7660 case SHN_MIPS_SUNDEFINED:
7661 *secp = bfd_und_section_ptr;
7662 break;
7663 }
7664
7665 if (SGI_COMPAT (abfd)
7666 && ! bfd_link_pic (info)
7667 && info->output_bfd->xvec == abfd->xvec
7668 && strcmp (*namep, "__rld_obj_head") == 0)
7669 {
7670 struct elf_link_hash_entry *h;
7671 struct bfd_link_hash_entry *bh;
7672
7673 /* Mark __rld_obj_head as dynamic. */
7674 bh = NULL;
7675 if (! (_bfd_generic_link_add_one_symbol
7676 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7677 get_elf_backend_data (abfd)->collect, &bh)))
7678 return FALSE;
7679
7680 h = (struct elf_link_hash_entry *) bh;
7681 h->non_elf = 0;
7682 h->def_regular = 1;
7683 h->type = STT_OBJECT;
7684
7685 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7686 return FALSE;
7687
7688 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7689 mips_elf_hash_table (info)->rld_symbol = h;
7690 }
7691
7692 /* If this is a mips16 text symbol, add 1 to the value to make it
7693 odd. This will cause something like .word SYM to come up with
7694 the right value when it is loaded into the PC. */
7695 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7696 ++*valp;
7697
7698 return TRUE;
7699 }
7700
7701 /* This hook function is called before the linker writes out a global
7702 symbol. We mark symbols as small common if appropriate. This is
7703 also where we undo the increment of the value for a mips16 symbol. */
7704
7705 int
7706 _bfd_mips_elf_link_output_symbol_hook
7707 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7708 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7709 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7710 {
7711 /* If we see a common symbol, which implies a relocatable link, then
7712 if a symbol was small common in an input file, mark it as small
7713 common in the output file. */
7714 if (sym->st_shndx == SHN_COMMON
7715 && strcmp (input_sec->name, ".scommon") == 0)
7716 sym->st_shndx = SHN_MIPS_SCOMMON;
7717
7718 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7719 sym->st_value &= ~1;
7720
7721 return 1;
7722 }
7723 \f
7724 /* Functions for the dynamic linker. */
7725
7726 /* Create dynamic sections when linking against a dynamic object. */
7727
7728 bfd_boolean
7729 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7730 {
7731 struct elf_link_hash_entry *h;
7732 struct bfd_link_hash_entry *bh;
7733 flagword flags;
7734 register asection *s;
7735 const char * const *namep;
7736 struct mips_elf_link_hash_table *htab;
7737
7738 htab = mips_elf_hash_table (info);
7739 BFD_ASSERT (htab != NULL);
7740
7741 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7742 | SEC_LINKER_CREATED | SEC_READONLY);
7743
7744 /* The psABI requires a read-only .dynamic section, but the VxWorks
7745 EABI doesn't. */
7746 if (!htab->is_vxworks)
7747 {
7748 s = bfd_get_linker_section (abfd, ".dynamic");
7749 if (s != NULL)
7750 {
7751 if (! bfd_set_section_flags (abfd, s, flags))
7752 return FALSE;
7753 }
7754 }
7755
7756 /* We need to create .got section. */
7757 if (!mips_elf_create_got_section (abfd, info))
7758 return FALSE;
7759
7760 if (! mips_elf_rel_dyn_section (info, TRUE))
7761 return FALSE;
7762
7763 /* Create .stub section. */
7764 s = bfd_make_section_anyway_with_flags (abfd,
7765 MIPS_ELF_STUB_SECTION_NAME (abfd),
7766 flags | SEC_CODE);
7767 if (s == NULL
7768 || ! bfd_set_section_alignment (abfd, s,
7769 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7770 return FALSE;
7771 htab->sstubs = s;
7772
7773 if (!mips_elf_hash_table (info)->use_rld_obj_head
7774 && bfd_link_executable (info)
7775 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7776 {
7777 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7778 flags &~ (flagword) SEC_READONLY);
7779 if (s == NULL
7780 || ! bfd_set_section_alignment (abfd, s,
7781 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7782 return FALSE;
7783 }
7784
7785 /* On IRIX5, we adjust add some additional symbols and change the
7786 alignments of several sections. There is no ABI documentation
7787 indicating that this is necessary on IRIX6, nor any evidence that
7788 the linker takes such action. */
7789 if (IRIX_COMPAT (abfd) == ict_irix5)
7790 {
7791 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7792 {
7793 bh = NULL;
7794 if (! (_bfd_generic_link_add_one_symbol
7795 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7796 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7797 return FALSE;
7798
7799 h = (struct elf_link_hash_entry *) bh;
7800 h->non_elf = 0;
7801 h->def_regular = 1;
7802 h->type = STT_SECTION;
7803
7804 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7805 return FALSE;
7806 }
7807
7808 /* We need to create a .compact_rel section. */
7809 if (SGI_COMPAT (abfd))
7810 {
7811 if (!mips_elf_create_compact_rel_section (abfd, info))
7812 return FALSE;
7813 }
7814
7815 /* Change alignments of some sections. */
7816 s = bfd_get_linker_section (abfd, ".hash");
7817 if (s != NULL)
7818 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7819
7820 s = bfd_get_linker_section (abfd, ".dynsym");
7821 if (s != NULL)
7822 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7823
7824 s = bfd_get_linker_section (abfd, ".dynstr");
7825 if (s != NULL)
7826 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7827
7828 /* ??? */
7829 s = bfd_get_section_by_name (abfd, ".reginfo");
7830 if (s != NULL)
7831 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7832
7833 s = bfd_get_linker_section (abfd, ".dynamic");
7834 if (s != NULL)
7835 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7836 }
7837
7838 if (bfd_link_executable (info))
7839 {
7840 const char *name;
7841
7842 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7843 bh = NULL;
7844 if (!(_bfd_generic_link_add_one_symbol
7845 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7846 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7847 return FALSE;
7848
7849 h = (struct elf_link_hash_entry *) bh;
7850 h->non_elf = 0;
7851 h->def_regular = 1;
7852 h->type = STT_SECTION;
7853
7854 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7855 return FALSE;
7856
7857 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7858 {
7859 /* __rld_map is a four byte word located in the .data section
7860 and is filled in by the rtld to contain a pointer to
7861 the _r_debug structure. Its symbol value will be set in
7862 _bfd_mips_elf_finish_dynamic_symbol. */
7863 s = bfd_get_linker_section (abfd, ".rld_map");
7864 BFD_ASSERT (s != NULL);
7865
7866 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7867 bh = NULL;
7868 if (!(_bfd_generic_link_add_one_symbol
7869 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7870 get_elf_backend_data (abfd)->collect, &bh)))
7871 return FALSE;
7872
7873 h = (struct elf_link_hash_entry *) bh;
7874 h->non_elf = 0;
7875 h->def_regular = 1;
7876 h->type = STT_OBJECT;
7877
7878 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7879 return FALSE;
7880 mips_elf_hash_table (info)->rld_symbol = h;
7881 }
7882 }
7883
7884 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7885 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7886 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7887 return FALSE;
7888
7889 /* Cache the sections created above. */
7890 htab->splt = bfd_get_linker_section (abfd, ".plt");
7891 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7892 if (htab->is_vxworks)
7893 {
7894 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7895 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7896 }
7897 else
7898 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7899 if (!htab->sdynbss
7900 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7901 || !htab->srelplt
7902 || !htab->splt)
7903 abort ();
7904
7905 /* Do the usual VxWorks handling. */
7906 if (htab->is_vxworks
7907 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7908 return FALSE;
7909
7910 return TRUE;
7911 }
7912 \f
7913 /* Return true if relocation REL against section SEC is a REL rather than
7914 RELA relocation. RELOCS is the first relocation in the section and
7915 ABFD is the bfd that contains SEC. */
7916
7917 static bfd_boolean
7918 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7919 const Elf_Internal_Rela *relocs,
7920 const Elf_Internal_Rela *rel)
7921 {
7922 Elf_Internal_Shdr *rel_hdr;
7923 const struct elf_backend_data *bed;
7924
7925 /* To determine which flavor of relocation this is, we depend on the
7926 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7927 rel_hdr = elf_section_data (sec)->rel.hdr;
7928 if (rel_hdr == NULL)
7929 return FALSE;
7930 bed = get_elf_backend_data (abfd);
7931 return ((size_t) (rel - relocs)
7932 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7933 }
7934
7935 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7936 HOWTO is the relocation's howto and CONTENTS points to the contents
7937 of the section that REL is against. */
7938
7939 static bfd_vma
7940 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7941 reloc_howto_type *howto, bfd_byte *contents)
7942 {
7943 bfd_byte *location;
7944 unsigned int r_type;
7945 bfd_vma addend;
7946 bfd_vma bytes;
7947
7948 r_type = ELF_R_TYPE (abfd, rel->r_info);
7949 location = contents + rel->r_offset;
7950
7951 /* Get the addend, which is stored in the input file. */
7952 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7953 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7954 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7955
7956 addend = bytes & howto->src_mask;
7957
7958 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7959 accordingly. */
7960 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7961 addend <<= 1;
7962
7963 return addend;
7964 }
7965
7966 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7967 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7968 and update *ADDEND with the final addend. Return true on success
7969 or false if the LO16 could not be found. RELEND is the exclusive
7970 upper bound on the relocations for REL's section. */
7971
7972 static bfd_boolean
7973 mips_elf_add_lo16_rel_addend (bfd *abfd,
7974 const Elf_Internal_Rela *rel,
7975 const Elf_Internal_Rela *relend,
7976 bfd_byte *contents, bfd_vma *addend)
7977 {
7978 unsigned int r_type, lo16_type;
7979 const Elf_Internal_Rela *lo16_relocation;
7980 reloc_howto_type *lo16_howto;
7981 bfd_vma l;
7982
7983 r_type = ELF_R_TYPE (abfd, rel->r_info);
7984 if (mips16_reloc_p (r_type))
7985 lo16_type = R_MIPS16_LO16;
7986 else if (micromips_reloc_p (r_type))
7987 lo16_type = R_MICROMIPS_LO16;
7988 else if (r_type == R_MIPS_PCHI16)
7989 lo16_type = R_MIPS_PCLO16;
7990 else
7991 lo16_type = R_MIPS_LO16;
7992
7993 /* The combined value is the sum of the HI16 addend, left-shifted by
7994 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7995 code does a `lui' of the HI16 value, and then an `addiu' of the
7996 LO16 value.)
7997
7998 Scan ahead to find a matching LO16 relocation.
7999
8000 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8001 be immediately following. However, for the IRIX6 ABI, the next
8002 relocation may be a composed relocation consisting of several
8003 relocations for the same address. In that case, the R_MIPS_LO16
8004 relocation may occur as one of these. We permit a similar
8005 extension in general, as that is useful for GCC.
8006
8007 In some cases GCC dead code elimination removes the LO16 but keeps
8008 the corresponding HI16. This is strictly speaking a violation of
8009 the ABI but not immediately harmful. */
8010 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8011 if (lo16_relocation == NULL)
8012 return FALSE;
8013
8014 /* Obtain the addend kept there. */
8015 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8016 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8017
8018 l <<= lo16_howto->rightshift;
8019 l = _bfd_mips_elf_sign_extend (l, 16);
8020
8021 *addend <<= 16;
8022 *addend += l;
8023 return TRUE;
8024 }
8025
8026 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8027 store the contents in *CONTENTS on success. Assume that *CONTENTS
8028 already holds the contents if it is nonull on entry. */
8029
8030 static bfd_boolean
8031 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8032 {
8033 if (*contents)
8034 return TRUE;
8035
8036 /* Get cached copy if it exists. */
8037 if (elf_section_data (sec)->this_hdr.contents != NULL)
8038 {
8039 *contents = elf_section_data (sec)->this_hdr.contents;
8040 return TRUE;
8041 }
8042
8043 return bfd_malloc_and_get_section (abfd, sec, contents);
8044 }
8045
8046 /* Make a new PLT record to keep internal data. */
8047
8048 static struct plt_entry *
8049 mips_elf_make_plt_record (bfd *abfd)
8050 {
8051 struct plt_entry *entry;
8052
8053 entry = bfd_zalloc (abfd, sizeof (*entry));
8054 if (entry == NULL)
8055 return NULL;
8056
8057 entry->stub_offset = MINUS_ONE;
8058 entry->mips_offset = MINUS_ONE;
8059 entry->comp_offset = MINUS_ONE;
8060 entry->gotplt_index = MINUS_ONE;
8061 return entry;
8062 }
8063
8064 /* Look through the relocs for a section during the first phase, and
8065 allocate space in the global offset table and record the need for
8066 standard MIPS and compressed procedure linkage table entries. */
8067
8068 bfd_boolean
8069 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8070 asection *sec, const Elf_Internal_Rela *relocs)
8071 {
8072 const char *name;
8073 bfd *dynobj;
8074 Elf_Internal_Shdr *symtab_hdr;
8075 struct elf_link_hash_entry **sym_hashes;
8076 size_t extsymoff;
8077 const Elf_Internal_Rela *rel;
8078 const Elf_Internal_Rela *rel_end;
8079 asection *sreloc;
8080 const struct elf_backend_data *bed;
8081 struct mips_elf_link_hash_table *htab;
8082 bfd_byte *contents;
8083 bfd_vma addend;
8084 reloc_howto_type *howto;
8085
8086 if (bfd_link_relocatable (info))
8087 return TRUE;
8088
8089 htab = mips_elf_hash_table (info);
8090 BFD_ASSERT (htab != NULL);
8091
8092 dynobj = elf_hash_table (info)->dynobj;
8093 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8094 sym_hashes = elf_sym_hashes (abfd);
8095 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8096
8097 bed = get_elf_backend_data (abfd);
8098 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8099
8100 /* Check for the mips16 stub sections. */
8101
8102 name = bfd_get_section_name (abfd, sec);
8103 if (FN_STUB_P (name))
8104 {
8105 unsigned long r_symndx;
8106
8107 /* Look at the relocation information to figure out which symbol
8108 this is for. */
8109
8110 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8111 if (r_symndx == 0)
8112 {
8113 (*_bfd_error_handler)
8114 (_("%B: Warning: cannot determine the target function for"
8115 " stub section `%s'"),
8116 abfd, name);
8117 bfd_set_error (bfd_error_bad_value);
8118 return FALSE;
8119 }
8120
8121 if (r_symndx < extsymoff
8122 || sym_hashes[r_symndx - extsymoff] == NULL)
8123 {
8124 asection *o;
8125
8126 /* This stub is for a local symbol. This stub will only be
8127 needed if there is some relocation in this BFD, other
8128 than a 16 bit function call, which refers to this symbol. */
8129 for (o = abfd->sections; o != NULL; o = o->next)
8130 {
8131 Elf_Internal_Rela *sec_relocs;
8132 const Elf_Internal_Rela *r, *rend;
8133
8134 /* We can ignore stub sections when looking for relocs. */
8135 if ((o->flags & SEC_RELOC) == 0
8136 || o->reloc_count == 0
8137 || section_allows_mips16_refs_p (o))
8138 continue;
8139
8140 sec_relocs
8141 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8142 info->keep_memory);
8143 if (sec_relocs == NULL)
8144 return FALSE;
8145
8146 rend = sec_relocs + o->reloc_count;
8147 for (r = sec_relocs; r < rend; r++)
8148 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8149 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8150 break;
8151
8152 if (elf_section_data (o)->relocs != sec_relocs)
8153 free (sec_relocs);
8154
8155 if (r < rend)
8156 break;
8157 }
8158
8159 if (o == NULL)
8160 {
8161 /* There is no non-call reloc for this stub, so we do
8162 not need it. Since this function is called before
8163 the linker maps input sections to output sections, we
8164 can easily discard it by setting the SEC_EXCLUDE
8165 flag. */
8166 sec->flags |= SEC_EXCLUDE;
8167 return TRUE;
8168 }
8169
8170 /* Record this stub in an array of local symbol stubs for
8171 this BFD. */
8172 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8173 {
8174 unsigned long symcount;
8175 asection **n;
8176 bfd_size_type amt;
8177
8178 if (elf_bad_symtab (abfd))
8179 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8180 else
8181 symcount = symtab_hdr->sh_info;
8182 amt = symcount * sizeof (asection *);
8183 n = bfd_zalloc (abfd, amt);
8184 if (n == NULL)
8185 return FALSE;
8186 mips_elf_tdata (abfd)->local_stubs = n;
8187 }
8188
8189 sec->flags |= SEC_KEEP;
8190 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8191
8192 /* We don't need to set mips16_stubs_seen in this case.
8193 That flag is used to see whether we need to look through
8194 the global symbol table for stubs. We don't need to set
8195 it here, because we just have a local stub. */
8196 }
8197 else
8198 {
8199 struct mips_elf_link_hash_entry *h;
8200
8201 h = ((struct mips_elf_link_hash_entry *)
8202 sym_hashes[r_symndx - extsymoff]);
8203
8204 while (h->root.root.type == bfd_link_hash_indirect
8205 || h->root.root.type == bfd_link_hash_warning)
8206 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8207
8208 /* H is the symbol this stub is for. */
8209
8210 /* If we already have an appropriate stub for this function, we
8211 don't need another one, so we can discard this one. Since
8212 this function is called before the linker maps input sections
8213 to output sections, we can easily discard it by setting the
8214 SEC_EXCLUDE flag. */
8215 if (h->fn_stub != NULL)
8216 {
8217 sec->flags |= SEC_EXCLUDE;
8218 return TRUE;
8219 }
8220
8221 sec->flags |= SEC_KEEP;
8222 h->fn_stub = sec;
8223 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8224 }
8225 }
8226 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8227 {
8228 unsigned long r_symndx;
8229 struct mips_elf_link_hash_entry *h;
8230 asection **loc;
8231
8232 /* Look at the relocation information to figure out which symbol
8233 this is for. */
8234
8235 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8236 if (r_symndx == 0)
8237 {
8238 (*_bfd_error_handler)
8239 (_("%B: Warning: cannot determine the target function for"
8240 " stub section `%s'"),
8241 abfd, name);
8242 bfd_set_error (bfd_error_bad_value);
8243 return FALSE;
8244 }
8245
8246 if (r_symndx < extsymoff
8247 || sym_hashes[r_symndx - extsymoff] == NULL)
8248 {
8249 asection *o;
8250
8251 /* This stub is for a local symbol. This stub will only be
8252 needed if there is some relocation (R_MIPS16_26) in this BFD
8253 that refers to this symbol. */
8254 for (o = abfd->sections; o != NULL; o = o->next)
8255 {
8256 Elf_Internal_Rela *sec_relocs;
8257 const Elf_Internal_Rela *r, *rend;
8258
8259 /* We can ignore stub sections when looking for relocs. */
8260 if ((o->flags & SEC_RELOC) == 0
8261 || o->reloc_count == 0
8262 || section_allows_mips16_refs_p (o))
8263 continue;
8264
8265 sec_relocs
8266 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8267 info->keep_memory);
8268 if (sec_relocs == NULL)
8269 return FALSE;
8270
8271 rend = sec_relocs + o->reloc_count;
8272 for (r = sec_relocs; r < rend; r++)
8273 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8274 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8275 break;
8276
8277 if (elf_section_data (o)->relocs != sec_relocs)
8278 free (sec_relocs);
8279
8280 if (r < rend)
8281 break;
8282 }
8283
8284 if (o == NULL)
8285 {
8286 /* There is no non-call reloc for this stub, so we do
8287 not need it. Since this function is called before
8288 the linker maps input sections to output sections, we
8289 can easily discard it by setting the SEC_EXCLUDE
8290 flag. */
8291 sec->flags |= SEC_EXCLUDE;
8292 return TRUE;
8293 }
8294
8295 /* Record this stub in an array of local symbol call_stubs for
8296 this BFD. */
8297 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8298 {
8299 unsigned long symcount;
8300 asection **n;
8301 bfd_size_type amt;
8302
8303 if (elf_bad_symtab (abfd))
8304 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8305 else
8306 symcount = symtab_hdr->sh_info;
8307 amt = symcount * sizeof (asection *);
8308 n = bfd_zalloc (abfd, amt);
8309 if (n == NULL)
8310 return FALSE;
8311 mips_elf_tdata (abfd)->local_call_stubs = n;
8312 }
8313
8314 sec->flags |= SEC_KEEP;
8315 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8316
8317 /* We don't need to set mips16_stubs_seen in this case.
8318 That flag is used to see whether we need to look through
8319 the global symbol table for stubs. We don't need to set
8320 it here, because we just have a local stub. */
8321 }
8322 else
8323 {
8324 h = ((struct mips_elf_link_hash_entry *)
8325 sym_hashes[r_symndx - extsymoff]);
8326
8327 /* H is the symbol this stub is for. */
8328
8329 if (CALL_FP_STUB_P (name))
8330 loc = &h->call_fp_stub;
8331 else
8332 loc = &h->call_stub;
8333
8334 /* If we already have an appropriate stub for this function, we
8335 don't need another one, so we can discard this one. Since
8336 this function is called before the linker maps input sections
8337 to output sections, we can easily discard it by setting the
8338 SEC_EXCLUDE flag. */
8339 if (*loc != NULL)
8340 {
8341 sec->flags |= SEC_EXCLUDE;
8342 return TRUE;
8343 }
8344
8345 sec->flags |= SEC_KEEP;
8346 *loc = sec;
8347 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8348 }
8349 }
8350
8351 sreloc = NULL;
8352 contents = NULL;
8353 for (rel = relocs; rel < rel_end; ++rel)
8354 {
8355 unsigned long r_symndx;
8356 unsigned int r_type;
8357 struct elf_link_hash_entry *h;
8358 bfd_boolean can_make_dynamic_p;
8359 bfd_boolean call_reloc_p;
8360 bfd_boolean constrain_symbol_p;
8361
8362 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8363 r_type = ELF_R_TYPE (abfd, rel->r_info);
8364
8365 if (r_symndx < extsymoff)
8366 h = NULL;
8367 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8368 {
8369 (*_bfd_error_handler)
8370 (_("%B: Malformed reloc detected for section %s"),
8371 abfd, name);
8372 bfd_set_error (bfd_error_bad_value);
8373 return FALSE;
8374 }
8375 else
8376 {
8377 h = sym_hashes[r_symndx - extsymoff];
8378 if (h != NULL)
8379 {
8380 while (h->root.type == bfd_link_hash_indirect
8381 || h->root.type == bfd_link_hash_warning)
8382 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8383
8384 /* PR15323, ref flags aren't set for references in the
8385 same object. */
8386 h->root.non_ir_ref = 1;
8387 }
8388 }
8389
8390 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8391 relocation into a dynamic one. */
8392 can_make_dynamic_p = FALSE;
8393
8394 /* Set CALL_RELOC_P to true if the relocation is for a call,
8395 and if pointer equality therefore doesn't matter. */
8396 call_reloc_p = FALSE;
8397
8398 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8399 into account when deciding how to define the symbol.
8400 Relocations in nonallocatable sections such as .pdr and
8401 .debug* should have no effect. */
8402 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8403
8404 switch (r_type)
8405 {
8406 case R_MIPS_CALL16:
8407 case R_MIPS_CALL_HI16:
8408 case R_MIPS_CALL_LO16:
8409 case R_MIPS16_CALL16:
8410 case R_MICROMIPS_CALL16:
8411 case R_MICROMIPS_CALL_HI16:
8412 case R_MICROMIPS_CALL_LO16:
8413 call_reloc_p = TRUE;
8414 /* Fall through. */
8415
8416 case R_MIPS_GOT16:
8417 case R_MIPS_GOT_HI16:
8418 case R_MIPS_GOT_LO16:
8419 case R_MIPS_GOT_PAGE:
8420 case R_MIPS_GOT_OFST:
8421 case R_MIPS_GOT_DISP:
8422 case R_MIPS_TLS_GOTTPREL:
8423 case R_MIPS_TLS_GD:
8424 case R_MIPS_TLS_LDM:
8425 case R_MIPS16_GOT16:
8426 case R_MIPS16_TLS_GOTTPREL:
8427 case R_MIPS16_TLS_GD:
8428 case R_MIPS16_TLS_LDM:
8429 case R_MICROMIPS_GOT16:
8430 case R_MICROMIPS_GOT_HI16:
8431 case R_MICROMIPS_GOT_LO16:
8432 case R_MICROMIPS_GOT_PAGE:
8433 case R_MICROMIPS_GOT_OFST:
8434 case R_MICROMIPS_GOT_DISP:
8435 case R_MICROMIPS_TLS_GOTTPREL:
8436 case R_MICROMIPS_TLS_GD:
8437 case R_MICROMIPS_TLS_LDM:
8438 if (dynobj == NULL)
8439 elf_hash_table (info)->dynobj = dynobj = abfd;
8440 if (!mips_elf_create_got_section (dynobj, info))
8441 return FALSE;
8442 if (htab->is_vxworks && !bfd_link_pic (info))
8443 {
8444 (*_bfd_error_handler)
8445 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8446 abfd, (unsigned long) rel->r_offset);
8447 bfd_set_error (bfd_error_bad_value);
8448 return FALSE;
8449 }
8450 can_make_dynamic_p = TRUE;
8451 break;
8452
8453 case R_MIPS_NONE:
8454 case R_MIPS_JALR:
8455 case R_MICROMIPS_JALR:
8456 /* These relocations have empty fields and are purely there to
8457 provide link information. The symbol value doesn't matter. */
8458 constrain_symbol_p = FALSE;
8459 break;
8460
8461 case R_MIPS_GPREL16:
8462 case R_MIPS_GPREL32:
8463 case R_MIPS16_GPREL:
8464 case R_MICROMIPS_GPREL16:
8465 /* GP-relative relocations always resolve to a definition in a
8466 regular input file, ignoring the one-definition rule. This is
8467 important for the GP setup sequence in NewABI code, which
8468 always resolves to a local function even if other relocations
8469 against the symbol wouldn't. */
8470 constrain_symbol_p = FALSE;
8471 break;
8472
8473 case R_MIPS_32:
8474 case R_MIPS_REL32:
8475 case R_MIPS_64:
8476 /* In VxWorks executables, references to external symbols
8477 must be handled using copy relocs or PLT entries; it is not
8478 possible to convert this relocation into a dynamic one.
8479
8480 For executables that use PLTs and copy-relocs, we have a
8481 choice between converting the relocation into a dynamic
8482 one or using copy relocations or PLT entries. It is
8483 usually better to do the former, unless the relocation is
8484 against a read-only section. */
8485 if ((bfd_link_pic (info)
8486 || (h != NULL
8487 && !htab->is_vxworks
8488 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8489 && !(!info->nocopyreloc
8490 && !PIC_OBJECT_P (abfd)
8491 && MIPS_ELF_READONLY_SECTION (sec))))
8492 && (sec->flags & SEC_ALLOC) != 0)
8493 {
8494 can_make_dynamic_p = TRUE;
8495 if (dynobj == NULL)
8496 elf_hash_table (info)->dynobj = dynobj = abfd;
8497 }
8498 break;
8499
8500 case R_MIPS_26:
8501 case R_MIPS_PC16:
8502 case R_MIPS_PC21_S2:
8503 case R_MIPS_PC26_S2:
8504 case R_MIPS16_26:
8505 case R_MIPS16_PC16_S1:
8506 case R_MICROMIPS_26_S1:
8507 case R_MICROMIPS_PC7_S1:
8508 case R_MICROMIPS_PC10_S1:
8509 case R_MICROMIPS_PC16_S1:
8510 case R_MICROMIPS_PC23_S2:
8511 call_reloc_p = TRUE;
8512 break;
8513 }
8514
8515 if (h)
8516 {
8517 if (constrain_symbol_p)
8518 {
8519 if (!can_make_dynamic_p)
8520 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8521
8522 if (!call_reloc_p)
8523 h->pointer_equality_needed = 1;
8524
8525 /* We must not create a stub for a symbol that has
8526 relocations related to taking the function's address.
8527 This doesn't apply to VxWorks, where CALL relocs refer
8528 to a .got.plt entry instead of a normal .got entry. */
8529 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8530 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8531 }
8532
8533 /* Relocations against the special VxWorks __GOTT_BASE__ and
8534 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8535 room for them in .rela.dyn. */
8536 if (is_gott_symbol (info, h))
8537 {
8538 if (sreloc == NULL)
8539 {
8540 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8541 if (sreloc == NULL)
8542 return FALSE;
8543 }
8544 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8545 if (MIPS_ELF_READONLY_SECTION (sec))
8546 /* We tell the dynamic linker that there are
8547 relocations against the text segment. */
8548 info->flags |= DF_TEXTREL;
8549 }
8550 }
8551 else if (call_lo16_reloc_p (r_type)
8552 || got_lo16_reloc_p (r_type)
8553 || got_disp_reloc_p (r_type)
8554 || (got16_reloc_p (r_type) && htab->is_vxworks))
8555 {
8556 /* We may need a local GOT entry for this relocation. We
8557 don't count R_MIPS_GOT_PAGE because we can estimate the
8558 maximum number of pages needed by looking at the size of
8559 the segment. Similar comments apply to R_MIPS*_GOT16 and
8560 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8561 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8562 R_MIPS_CALL_HI16 because these are always followed by an
8563 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8564 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8565 rel->r_addend, info, r_type))
8566 return FALSE;
8567 }
8568
8569 if (h != NULL
8570 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8571 ELF_ST_IS_MIPS16 (h->other)))
8572 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8573
8574 switch (r_type)
8575 {
8576 case R_MIPS_CALL16:
8577 case R_MIPS16_CALL16:
8578 case R_MICROMIPS_CALL16:
8579 if (h == NULL)
8580 {
8581 (*_bfd_error_handler)
8582 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8583 abfd, (unsigned long) rel->r_offset);
8584 bfd_set_error (bfd_error_bad_value);
8585 return FALSE;
8586 }
8587 /* Fall through. */
8588
8589 case R_MIPS_CALL_HI16:
8590 case R_MIPS_CALL_LO16:
8591 case R_MICROMIPS_CALL_HI16:
8592 case R_MICROMIPS_CALL_LO16:
8593 if (h != NULL)
8594 {
8595 /* Make sure there is room in the regular GOT to hold the
8596 function's address. We may eliminate it in favour of
8597 a .got.plt entry later; see mips_elf_count_got_symbols. */
8598 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8599 r_type))
8600 return FALSE;
8601
8602 /* We need a stub, not a plt entry for the undefined
8603 function. But we record it as if it needs plt. See
8604 _bfd_elf_adjust_dynamic_symbol. */
8605 h->needs_plt = 1;
8606 h->type = STT_FUNC;
8607 }
8608 break;
8609
8610 case R_MIPS_GOT_PAGE:
8611 case R_MICROMIPS_GOT_PAGE:
8612 case R_MIPS16_GOT16:
8613 case R_MIPS_GOT16:
8614 case R_MIPS_GOT_HI16:
8615 case R_MIPS_GOT_LO16:
8616 case R_MICROMIPS_GOT16:
8617 case R_MICROMIPS_GOT_HI16:
8618 case R_MICROMIPS_GOT_LO16:
8619 if (!h || got_page_reloc_p (r_type))
8620 {
8621 /* This relocation needs (or may need, if h != NULL) a
8622 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8623 know for sure until we know whether the symbol is
8624 preemptible. */
8625 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8626 {
8627 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8628 return FALSE;
8629 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8630 addend = mips_elf_read_rel_addend (abfd, rel,
8631 howto, contents);
8632 if (got16_reloc_p (r_type))
8633 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8634 contents, &addend);
8635 else
8636 addend <<= howto->rightshift;
8637 }
8638 else
8639 addend = rel->r_addend;
8640 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8641 h, addend))
8642 return FALSE;
8643
8644 if (h)
8645 {
8646 struct mips_elf_link_hash_entry *hmips =
8647 (struct mips_elf_link_hash_entry *) h;
8648
8649 /* This symbol is definitely not overridable. */
8650 if (hmips->root.def_regular
8651 && ! (bfd_link_pic (info) && ! info->symbolic
8652 && ! hmips->root.forced_local))
8653 h = NULL;
8654 }
8655 }
8656 /* If this is a global, overridable symbol, GOT_PAGE will
8657 decay to GOT_DISP, so we'll need a GOT entry for it. */
8658 /* Fall through. */
8659
8660 case R_MIPS_GOT_DISP:
8661 case R_MICROMIPS_GOT_DISP:
8662 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8663 FALSE, r_type))
8664 return FALSE;
8665 break;
8666
8667 case R_MIPS_TLS_GOTTPREL:
8668 case R_MIPS16_TLS_GOTTPREL:
8669 case R_MICROMIPS_TLS_GOTTPREL:
8670 if (bfd_link_pic (info))
8671 info->flags |= DF_STATIC_TLS;
8672 /* Fall through */
8673
8674 case R_MIPS_TLS_LDM:
8675 case R_MIPS16_TLS_LDM:
8676 case R_MICROMIPS_TLS_LDM:
8677 if (tls_ldm_reloc_p (r_type))
8678 {
8679 r_symndx = STN_UNDEF;
8680 h = NULL;
8681 }
8682 /* Fall through */
8683
8684 case R_MIPS_TLS_GD:
8685 case R_MIPS16_TLS_GD:
8686 case R_MICROMIPS_TLS_GD:
8687 /* This symbol requires a global offset table entry, or two
8688 for TLS GD relocations. */
8689 if (h != NULL)
8690 {
8691 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8692 FALSE, r_type))
8693 return FALSE;
8694 }
8695 else
8696 {
8697 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8698 rel->r_addend,
8699 info, r_type))
8700 return FALSE;
8701 }
8702 break;
8703
8704 case R_MIPS_32:
8705 case R_MIPS_REL32:
8706 case R_MIPS_64:
8707 /* In VxWorks executables, references to external symbols
8708 are handled using copy relocs or PLT stubs, so there's
8709 no need to add a .rela.dyn entry for this relocation. */
8710 if (can_make_dynamic_p)
8711 {
8712 if (sreloc == NULL)
8713 {
8714 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8715 if (sreloc == NULL)
8716 return FALSE;
8717 }
8718 if (bfd_link_pic (info) && h == NULL)
8719 {
8720 /* When creating a shared object, we must copy these
8721 reloc types into the output file as R_MIPS_REL32
8722 relocs. Make room for this reloc in .rel(a).dyn. */
8723 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8724 if (MIPS_ELF_READONLY_SECTION (sec))
8725 /* We tell the dynamic linker that there are
8726 relocations against the text segment. */
8727 info->flags |= DF_TEXTREL;
8728 }
8729 else
8730 {
8731 struct mips_elf_link_hash_entry *hmips;
8732
8733 /* For a shared object, we must copy this relocation
8734 unless the symbol turns out to be undefined and
8735 weak with non-default visibility, in which case
8736 it will be left as zero.
8737
8738 We could elide R_MIPS_REL32 for locally binding symbols
8739 in shared libraries, but do not yet do so.
8740
8741 For an executable, we only need to copy this
8742 reloc if the symbol is defined in a dynamic
8743 object. */
8744 hmips = (struct mips_elf_link_hash_entry *) h;
8745 ++hmips->possibly_dynamic_relocs;
8746 if (MIPS_ELF_READONLY_SECTION (sec))
8747 /* We need it to tell the dynamic linker if there
8748 are relocations against the text segment. */
8749 hmips->readonly_reloc = TRUE;
8750 }
8751 }
8752
8753 if (SGI_COMPAT (abfd))
8754 mips_elf_hash_table (info)->compact_rel_size +=
8755 sizeof (Elf32_External_crinfo);
8756 break;
8757
8758 case R_MIPS_26:
8759 case R_MIPS_GPREL16:
8760 case R_MIPS_LITERAL:
8761 case R_MIPS_GPREL32:
8762 case R_MICROMIPS_26_S1:
8763 case R_MICROMIPS_GPREL16:
8764 case R_MICROMIPS_LITERAL:
8765 case R_MICROMIPS_GPREL7_S2:
8766 if (SGI_COMPAT (abfd))
8767 mips_elf_hash_table (info)->compact_rel_size +=
8768 sizeof (Elf32_External_crinfo);
8769 break;
8770
8771 /* This relocation describes the C++ object vtable hierarchy.
8772 Reconstruct it for later use during GC. */
8773 case R_MIPS_GNU_VTINHERIT:
8774 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8775 return FALSE;
8776 break;
8777
8778 /* This relocation describes which C++ vtable entries are actually
8779 used. Record for later use during GC. */
8780 case R_MIPS_GNU_VTENTRY:
8781 BFD_ASSERT (h != NULL);
8782 if (h != NULL
8783 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8784 return FALSE;
8785 break;
8786
8787 default:
8788 break;
8789 }
8790
8791 /* Record the need for a PLT entry. At this point we don't know
8792 yet if we are going to create a PLT in the first place, but
8793 we only record whether the relocation requires a standard MIPS
8794 or a compressed code entry anyway. If we don't make a PLT after
8795 all, then we'll just ignore these arrangements. Likewise if
8796 a PLT entry is not created because the symbol is satisfied
8797 locally. */
8798 if (h != NULL
8799 && (branch_reloc_p (r_type)
8800 || mips16_branch_reloc_p (r_type)
8801 || micromips_branch_reloc_p (r_type))
8802 && !SYMBOL_CALLS_LOCAL (info, h))
8803 {
8804 if (h->plt.plist == NULL)
8805 h->plt.plist = mips_elf_make_plt_record (abfd);
8806 if (h->plt.plist == NULL)
8807 return FALSE;
8808
8809 if (branch_reloc_p (r_type))
8810 h->plt.plist->need_mips = TRUE;
8811 else
8812 h->plt.plist->need_comp = TRUE;
8813 }
8814
8815 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8816 if there is one. We only need to handle global symbols here;
8817 we decide whether to keep or delete stubs for local symbols
8818 when processing the stub's relocations. */
8819 if (h != NULL
8820 && !mips16_call_reloc_p (r_type)
8821 && !section_allows_mips16_refs_p (sec))
8822 {
8823 struct mips_elf_link_hash_entry *mh;
8824
8825 mh = (struct mips_elf_link_hash_entry *) h;
8826 mh->need_fn_stub = TRUE;
8827 }
8828
8829 /* Refuse some position-dependent relocations when creating a
8830 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8831 not PIC, but we can create dynamic relocations and the result
8832 will be fine. Also do not refuse R_MIPS_LO16, which can be
8833 combined with R_MIPS_GOT16. */
8834 if (bfd_link_pic (info))
8835 {
8836 switch (r_type)
8837 {
8838 case R_MIPS16_HI16:
8839 case R_MIPS_HI16:
8840 case R_MIPS_HIGHER:
8841 case R_MIPS_HIGHEST:
8842 case R_MICROMIPS_HI16:
8843 case R_MICROMIPS_HIGHER:
8844 case R_MICROMIPS_HIGHEST:
8845 /* Don't refuse a high part relocation if it's against
8846 no symbol (e.g. part of a compound relocation). */
8847 if (r_symndx == STN_UNDEF)
8848 break;
8849
8850 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8851 and has a special meaning. */
8852 if (!NEWABI_P (abfd) && h != NULL
8853 && strcmp (h->root.root.string, "_gp_disp") == 0)
8854 break;
8855
8856 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8857 if (is_gott_symbol (info, h))
8858 break;
8859
8860 /* FALLTHROUGH */
8861
8862 case R_MIPS16_26:
8863 case R_MIPS_26:
8864 case R_MICROMIPS_26_S1:
8865 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8866 (*_bfd_error_handler)
8867 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8868 abfd, howto->name,
8869 (h) ? h->root.root.string : "a local symbol");
8870 bfd_set_error (bfd_error_bad_value);
8871 return FALSE;
8872 default:
8873 break;
8874 }
8875 }
8876 }
8877
8878 return TRUE;
8879 }
8880 \f
8881 bfd_boolean
8882 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8883 struct bfd_link_info *link_info,
8884 bfd_boolean *again)
8885 {
8886 Elf_Internal_Rela *internal_relocs;
8887 Elf_Internal_Rela *irel, *irelend;
8888 Elf_Internal_Shdr *symtab_hdr;
8889 bfd_byte *contents = NULL;
8890 size_t extsymoff;
8891 bfd_boolean changed_contents = FALSE;
8892 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8893 Elf_Internal_Sym *isymbuf = NULL;
8894
8895 /* We are not currently changing any sizes, so only one pass. */
8896 *again = FALSE;
8897
8898 if (bfd_link_relocatable (link_info))
8899 return TRUE;
8900
8901 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8902 link_info->keep_memory);
8903 if (internal_relocs == NULL)
8904 return TRUE;
8905
8906 irelend = internal_relocs + sec->reloc_count
8907 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8908 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8909 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8910
8911 for (irel = internal_relocs; irel < irelend; irel++)
8912 {
8913 bfd_vma symval;
8914 bfd_signed_vma sym_offset;
8915 unsigned int r_type;
8916 unsigned long r_symndx;
8917 asection *sym_sec;
8918 unsigned long instruction;
8919
8920 /* Turn jalr into bgezal, and jr into beq, if they're marked
8921 with a JALR relocation, that indicate where they jump to.
8922 This saves some pipeline bubbles. */
8923 r_type = ELF_R_TYPE (abfd, irel->r_info);
8924 if (r_type != R_MIPS_JALR)
8925 continue;
8926
8927 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8928 /* Compute the address of the jump target. */
8929 if (r_symndx >= extsymoff)
8930 {
8931 struct mips_elf_link_hash_entry *h
8932 = ((struct mips_elf_link_hash_entry *)
8933 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8934
8935 while (h->root.root.type == bfd_link_hash_indirect
8936 || h->root.root.type == bfd_link_hash_warning)
8937 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8938
8939 /* If a symbol is undefined, or if it may be overridden,
8940 skip it. */
8941 if (! ((h->root.root.type == bfd_link_hash_defined
8942 || h->root.root.type == bfd_link_hash_defweak)
8943 && h->root.root.u.def.section)
8944 || (bfd_link_pic (link_info) && ! link_info->symbolic
8945 && !h->root.forced_local))
8946 continue;
8947
8948 sym_sec = h->root.root.u.def.section;
8949 if (sym_sec->output_section)
8950 symval = (h->root.root.u.def.value
8951 + sym_sec->output_section->vma
8952 + sym_sec->output_offset);
8953 else
8954 symval = h->root.root.u.def.value;
8955 }
8956 else
8957 {
8958 Elf_Internal_Sym *isym;
8959
8960 /* Read this BFD's symbols if we haven't done so already. */
8961 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8962 {
8963 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8964 if (isymbuf == NULL)
8965 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8966 symtab_hdr->sh_info, 0,
8967 NULL, NULL, NULL);
8968 if (isymbuf == NULL)
8969 goto relax_return;
8970 }
8971
8972 isym = isymbuf + r_symndx;
8973 if (isym->st_shndx == SHN_UNDEF)
8974 continue;
8975 else if (isym->st_shndx == SHN_ABS)
8976 sym_sec = bfd_abs_section_ptr;
8977 else if (isym->st_shndx == SHN_COMMON)
8978 sym_sec = bfd_com_section_ptr;
8979 else
8980 sym_sec
8981 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8982 symval = isym->st_value
8983 + sym_sec->output_section->vma
8984 + sym_sec->output_offset;
8985 }
8986
8987 /* Compute branch offset, from delay slot of the jump to the
8988 branch target. */
8989 sym_offset = (symval + irel->r_addend)
8990 - (sec_start + irel->r_offset + 4);
8991
8992 /* Branch offset must be properly aligned. */
8993 if ((sym_offset & 3) != 0)
8994 continue;
8995
8996 sym_offset >>= 2;
8997
8998 /* Check that it's in range. */
8999 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
9000 continue;
9001
9002 /* Get the section contents if we haven't done so already. */
9003 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9004 goto relax_return;
9005
9006 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9007
9008 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9009 if ((instruction & 0xfc1fffff) == 0x0000f809)
9010 instruction = 0x04110000;
9011 /* If it was jr <reg>, turn it into b <target>. */
9012 else if ((instruction & 0xfc1fffff) == 0x00000008)
9013 instruction = 0x10000000;
9014 else
9015 continue;
9016
9017 instruction |= (sym_offset & 0xffff);
9018 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9019 changed_contents = TRUE;
9020 }
9021
9022 if (contents != NULL
9023 && elf_section_data (sec)->this_hdr.contents != contents)
9024 {
9025 if (!changed_contents && !link_info->keep_memory)
9026 free (contents);
9027 else
9028 {
9029 /* Cache the section contents for elf_link_input_bfd. */
9030 elf_section_data (sec)->this_hdr.contents = contents;
9031 }
9032 }
9033 return TRUE;
9034
9035 relax_return:
9036 if (contents != NULL
9037 && elf_section_data (sec)->this_hdr.contents != contents)
9038 free (contents);
9039 return FALSE;
9040 }
9041 \f
9042 /* Allocate space for global sym dynamic relocs. */
9043
9044 static bfd_boolean
9045 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9046 {
9047 struct bfd_link_info *info = inf;
9048 bfd *dynobj;
9049 struct mips_elf_link_hash_entry *hmips;
9050 struct mips_elf_link_hash_table *htab;
9051
9052 htab = mips_elf_hash_table (info);
9053 BFD_ASSERT (htab != NULL);
9054
9055 dynobj = elf_hash_table (info)->dynobj;
9056 hmips = (struct mips_elf_link_hash_entry *) h;
9057
9058 /* VxWorks executables are handled elsewhere; we only need to
9059 allocate relocations in shared objects. */
9060 if (htab->is_vxworks && !bfd_link_pic (info))
9061 return TRUE;
9062
9063 /* Ignore indirect symbols. All relocations against such symbols
9064 will be redirected to the target symbol. */
9065 if (h->root.type == bfd_link_hash_indirect)
9066 return TRUE;
9067
9068 /* If this symbol is defined in a dynamic object, or we are creating
9069 a shared library, we will need to copy any R_MIPS_32 or
9070 R_MIPS_REL32 relocs against it into the output file. */
9071 if (! bfd_link_relocatable (info)
9072 && hmips->possibly_dynamic_relocs != 0
9073 && (h->root.type == bfd_link_hash_defweak
9074 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9075 || bfd_link_pic (info)))
9076 {
9077 bfd_boolean do_copy = TRUE;
9078
9079 if (h->root.type == bfd_link_hash_undefweak)
9080 {
9081 /* Do not copy relocations for undefined weak symbols with
9082 non-default visibility. */
9083 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9084 do_copy = FALSE;
9085
9086 /* Make sure undefined weak symbols are output as a dynamic
9087 symbol in PIEs. */
9088 else if (h->dynindx == -1 && !h->forced_local)
9089 {
9090 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9091 return FALSE;
9092 }
9093 }
9094
9095 if (do_copy)
9096 {
9097 /* Even though we don't directly need a GOT entry for this symbol,
9098 the SVR4 psABI requires it to have a dynamic symbol table
9099 index greater that DT_MIPS_GOTSYM if there are dynamic
9100 relocations against it.
9101
9102 VxWorks does not enforce the same mapping between the GOT
9103 and the symbol table, so the same requirement does not
9104 apply there. */
9105 if (!htab->is_vxworks)
9106 {
9107 if (hmips->global_got_area > GGA_RELOC_ONLY)
9108 hmips->global_got_area = GGA_RELOC_ONLY;
9109 hmips->got_only_for_calls = FALSE;
9110 }
9111
9112 mips_elf_allocate_dynamic_relocations
9113 (dynobj, info, hmips->possibly_dynamic_relocs);
9114 if (hmips->readonly_reloc)
9115 /* We tell the dynamic linker that there are relocations
9116 against the text segment. */
9117 info->flags |= DF_TEXTREL;
9118 }
9119 }
9120
9121 return TRUE;
9122 }
9123
9124 /* Adjust a symbol defined by a dynamic object and referenced by a
9125 regular object. The current definition is in some section of the
9126 dynamic object, but we're not including those sections. We have to
9127 change the definition to something the rest of the link can
9128 understand. */
9129
9130 bfd_boolean
9131 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9132 struct elf_link_hash_entry *h)
9133 {
9134 bfd *dynobj;
9135 struct mips_elf_link_hash_entry *hmips;
9136 struct mips_elf_link_hash_table *htab;
9137
9138 htab = mips_elf_hash_table (info);
9139 BFD_ASSERT (htab != NULL);
9140
9141 dynobj = elf_hash_table (info)->dynobj;
9142 hmips = (struct mips_elf_link_hash_entry *) h;
9143
9144 /* Make sure we know what is going on here. */
9145 BFD_ASSERT (dynobj != NULL
9146 && (h->needs_plt
9147 || h->u.weakdef != NULL
9148 || (h->def_dynamic
9149 && h->ref_regular
9150 && !h->def_regular)));
9151
9152 hmips = (struct mips_elf_link_hash_entry *) h;
9153
9154 /* If there are call relocations against an externally-defined symbol,
9155 see whether we can create a MIPS lazy-binding stub for it. We can
9156 only do this if all references to the function are through call
9157 relocations, and in that case, the traditional lazy-binding stubs
9158 are much more efficient than PLT entries.
9159
9160 Traditional stubs are only available on SVR4 psABI-based systems;
9161 VxWorks always uses PLTs instead. */
9162 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9163 {
9164 if (! elf_hash_table (info)->dynamic_sections_created)
9165 return TRUE;
9166
9167 /* If this symbol is not defined in a regular file, then set
9168 the symbol to the stub location. This is required to make
9169 function pointers compare as equal between the normal
9170 executable and the shared library. */
9171 if (!h->def_regular)
9172 {
9173 hmips->needs_lazy_stub = TRUE;
9174 htab->lazy_stub_count++;
9175 return TRUE;
9176 }
9177 }
9178 /* As above, VxWorks requires PLT entries for externally-defined
9179 functions that are only accessed through call relocations.
9180
9181 Both VxWorks and non-VxWorks targets also need PLT entries if there
9182 are static-only relocations against an externally-defined function.
9183 This can technically occur for shared libraries if there are
9184 branches to the symbol, although it is unlikely that this will be
9185 used in practice due to the short ranges involved. It can occur
9186 for any relative or absolute relocation in executables; in that
9187 case, the PLT entry becomes the function's canonical address. */
9188 else if (((h->needs_plt && !hmips->no_fn_stub)
9189 || (h->type == STT_FUNC && hmips->has_static_relocs))
9190 && htab->use_plts_and_copy_relocs
9191 && !SYMBOL_CALLS_LOCAL (info, h)
9192 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9193 && h->root.type == bfd_link_hash_undefweak))
9194 {
9195 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9196 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9197
9198 /* If this is the first symbol to need a PLT entry, then make some
9199 basic setup. Also work out PLT entry sizes. We'll need them
9200 for PLT offset calculations. */
9201 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9202 {
9203 BFD_ASSERT (htab->sgotplt->size == 0);
9204 BFD_ASSERT (htab->plt_got_index == 0);
9205
9206 /* If we're using the PLT additions to the psABI, each PLT
9207 entry is 16 bytes and the PLT0 entry is 32 bytes.
9208 Encourage better cache usage by aligning. We do this
9209 lazily to avoid pessimizing traditional objects. */
9210 if (!htab->is_vxworks
9211 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9212 return FALSE;
9213
9214 /* Make sure that .got.plt is word-aligned. We do this lazily
9215 for the same reason as above. */
9216 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9217 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9218 return FALSE;
9219
9220 /* On non-VxWorks targets, the first two entries in .got.plt
9221 are reserved. */
9222 if (!htab->is_vxworks)
9223 htab->plt_got_index
9224 += (get_elf_backend_data (dynobj)->got_header_size
9225 / MIPS_ELF_GOT_SIZE (dynobj));
9226
9227 /* On VxWorks, also allocate room for the header's
9228 .rela.plt.unloaded entries. */
9229 if (htab->is_vxworks && !bfd_link_pic (info))
9230 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9231
9232 /* Now work out the sizes of individual PLT entries. */
9233 if (htab->is_vxworks && bfd_link_pic (info))
9234 htab->plt_mips_entry_size
9235 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9236 else if (htab->is_vxworks)
9237 htab->plt_mips_entry_size
9238 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9239 else if (newabi_p)
9240 htab->plt_mips_entry_size
9241 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9242 else if (!micromips_p)
9243 {
9244 htab->plt_mips_entry_size
9245 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9246 htab->plt_comp_entry_size
9247 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9248 }
9249 else if (htab->insn32)
9250 {
9251 htab->plt_mips_entry_size
9252 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9253 htab->plt_comp_entry_size
9254 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9255 }
9256 else
9257 {
9258 htab->plt_mips_entry_size
9259 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9260 htab->plt_comp_entry_size
9261 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9262 }
9263 }
9264
9265 if (h->plt.plist == NULL)
9266 h->plt.plist = mips_elf_make_plt_record (dynobj);
9267 if (h->plt.plist == NULL)
9268 return FALSE;
9269
9270 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9271 n32 or n64, so always use a standard entry there.
9272
9273 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9274 all MIPS16 calls will go via that stub, and there is no benefit
9275 to having a MIPS16 entry. And in the case of call_stub a
9276 standard entry actually has to be used as the stub ends with a J
9277 instruction. */
9278 if (newabi_p
9279 || htab->is_vxworks
9280 || hmips->call_stub
9281 || hmips->call_fp_stub)
9282 {
9283 h->plt.plist->need_mips = TRUE;
9284 h->plt.plist->need_comp = FALSE;
9285 }
9286
9287 /* Otherwise, if there are no direct calls to the function, we
9288 have a free choice of whether to use standard or compressed
9289 entries. Prefer microMIPS entries if the object is known to
9290 contain microMIPS code, so that it becomes possible to create
9291 pure microMIPS binaries. Prefer standard entries otherwise,
9292 because MIPS16 ones are no smaller and are usually slower. */
9293 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9294 {
9295 if (micromips_p)
9296 h->plt.plist->need_comp = TRUE;
9297 else
9298 h->plt.plist->need_mips = TRUE;
9299 }
9300
9301 if (h->plt.plist->need_mips)
9302 {
9303 h->plt.plist->mips_offset = htab->plt_mips_offset;
9304 htab->plt_mips_offset += htab->plt_mips_entry_size;
9305 }
9306 if (h->plt.plist->need_comp)
9307 {
9308 h->plt.plist->comp_offset = htab->plt_comp_offset;
9309 htab->plt_comp_offset += htab->plt_comp_entry_size;
9310 }
9311
9312 /* Reserve the corresponding .got.plt entry now too. */
9313 h->plt.plist->gotplt_index = htab->plt_got_index++;
9314
9315 /* If the output file has no definition of the symbol, set the
9316 symbol's value to the address of the stub. */
9317 if (!bfd_link_pic (info) && !h->def_regular)
9318 hmips->use_plt_entry = TRUE;
9319
9320 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9321 htab->srelplt->size += (htab->is_vxworks
9322 ? MIPS_ELF_RELA_SIZE (dynobj)
9323 : MIPS_ELF_REL_SIZE (dynobj));
9324
9325 /* Make room for the .rela.plt.unloaded relocations. */
9326 if (htab->is_vxworks && !bfd_link_pic (info))
9327 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9328
9329 /* All relocations against this symbol that could have been made
9330 dynamic will now refer to the PLT entry instead. */
9331 hmips->possibly_dynamic_relocs = 0;
9332
9333 return TRUE;
9334 }
9335
9336 /* If this is a weak symbol, and there is a real definition, the
9337 processor independent code will have arranged for us to see the
9338 real definition first, and we can just use the same value. */
9339 if (h->u.weakdef != NULL)
9340 {
9341 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9342 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9343 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9344 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9345 return TRUE;
9346 }
9347
9348 /* Otherwise, there is nothing further to do for symbols defined
9349 in regular objects. */
9350 if (h->def_regular)
9351 return TRUE;
9352
9353 /* There's also nothing more to do if we'll convert all relocations
9354 against this symbol into dynamic relocations. */
9355 if (!hmips->has_static_relocs)
9356 return TRUE;
9357
9358 /* We're now relying on copy relocations. Complain if we have
9359 some that we can't convert. */
9360 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9361 {
9362 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9363 "dynamic symbol %s"),
9364 h->root.root.string);
9365 bfd_set_error (bfd_error_bad_value);
9366 return FALSE;
9367 }
9368
9369 /* We must allocate the symbol in our .dynbss section, which will
9370 become part of the .bss section of the executable. There will be
9371 an entry for this symbol in the .dynsym section. The dynamic
9372 object will contain position independent code, so all references
9373 from the dynamic object to this symbol will go through the global
9374 offset table. The dynamic linker will use the .dynsym entry to
9375 determine the address it must put in the global offset table, so
9376 both the dynamic object and the regular object will refer to the
9377 same memory location for the variable. */
9378
9379 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9380 {
9381 if (htab->is_vxworks)
9382 htab->srelbss->size += sizeof (Elf32_External_Rela);
9383 else
9384 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9385 h->needs_copy = 1;
9386 }
9387
9388 /* All relocations against this symbol that could have been made
9389 dynamic will now refer to the local copy instead. */
9390 hmips->possibly_dynamic_relocs = 0;
9391
9392 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9393 }
9394 \f
9395 /* This function is called after all the input files have been read,
9396 and the input sections have been assigned to output sections. We
9397 check for any mips16 stub sections that we can discard. */
9398
9399 bfd_boolean
9400 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9401 struct bfd_link_info *info)
9402 {
9403 asection *sect;
9404 struct mips_elf_link_hash_table *htab;
9405 struct mips_htab_traverse_info hti;
9406
9407 htab = mips_elf_hash_table (info);
9408 BFD_ASSERT (htab != NULL);
9409
9410 /* The .reginfo section has a fixed size. */
9411 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9412 if (sect != NULL)
9413 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9414
9415 /* The .MIPS.abiflags section has a fixed size. */
9416 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9417 if (sect != NULL)
9418 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9419
9420 hti.info = info;
9421 hti.output_bfd = output_bfd;
9422 hti.error = FALSE;
9423 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9424 mips_elf_check_symbols, &hti);
9425 if (hti.error)
9426 return FALSE;
9427
9428 return TRUE;
9429 }
9430
9431 /* If the link uses a GOT, lay it out and work out its size. */
9432
9433 static bfd_boolean
9434 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9435 {
9436 bfd *dynobj;
9437 asection *s;
9438 struct mips_got_info *g;
9439 bfd_size_type loadable_size = 0;
9440 bfd_size_type page_gotno;
9441 bfd *ibfd;
9442 struct mips_elf_traverse_got_arg tga;
9443 struct mips_elf_link_hash_table *htab;
9444
9445 htab = mips_elf_hash_table (info);
9446 BFD_ASSERT (htab != NULL);
9447
9448 s = htab->sgot;
9449 if (s == NULL)
9450 return TRUE;
9451
9452 dynobj = elf_hash_table (info)->dynobj;
9453 g = htab->got_info;
9454
9455 /* Allocate room for the reserved entries. VxWorks always reserves
9456 3 entries; other objects only reserve 2 entries. */
9457 BFD_ASSERT (g->assigned_low_gotno == 0);
9458 if (htab->is_vxworks)
9459 htab->reserved_gotno = 3;
9460 else
9461 htab->reserved_gotno = 2;
9462 g->local_gotno += htab->reserved_gotno;
9463 g->assigned_low_gotno = htab->reserved_gotno;
9464
9465 /* Decide which symbols need to go in the global part of the GOT and
9466 count the number of reloc-only GOT symbols. */
9467 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9468
9469 if (!mips_elf_resolve_final_got_entries (info, g))
9470 return FALSE;
9471
9472 /* Calculate the total loadable size of the output. That
9473 will give us the maximum number of GOT_PAGE entries
9474 required. */
9475 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9476 {
9477 asection *subsection;
9478
9479 for (subsection = ibfd->sections;
9480 subsection;
9481 subsection = subsection->next)
9482 {
9483 if ((subsection->flags & SEC_ALLOC) == 0)
9484 continue;
9485 loadable_size += ((subsection->size + 0xf)
9486 &~ (bfd_size_type) 0xf);
9487 }
9488 }
9489
9490 if (htab->is_vxworks)
9491 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9492 relocations against local symbols evaluate to "G", and the EABI does
9493 not include R_MIPS_GOT_PAGE. */
9494 page_gotno = 0;
9495 else
9496 /* Assume there are two loadable segments consisting of contiguous
9497 sections. Is 5 enough? */
9498 page_gotno = (loadable_size >> 16) + 5;
9499
9500 /* Choose the smaller of the two page estimates; both are intended to be
9501 conservative. */
9502 if (page_gotno > g->page_gotno)
9503 page_gotno = g->page_gotno;
9504
9505 g->local_gotno += page_gotno;
9506 g->assigned_high_gotno = g->local_gotno - 1;
9507
9508 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9509 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9510 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9511
9512 /* VxWorks does not support multiple GOTs. It initializes $gp to
9513 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9514 dynamic loader. */
9515 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9516 {
9517 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9518 return FALSE;
9519 }
9520 else
9521 {
9522 /* Record that all bfds use G. This also has the effect of freeing
9523 the per-bfd GOTs, which we no longer need. */
9524 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9525 if (mips_elf_bfd_got (ibfd, FALSE))
9526 mips_elf_replace_bfd_got (ibfd, g);
9527 mips_elf_replace_bfd_got (output_bfd, g);
9528
9529 /* Set up TLS entries. */
9530 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9531 tga.info = info;
9532 tga.g = g;
9533 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9534 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9535 if (!tga.g)
9536 return FALSE;
9537 BFD_ASSERT (g->tls_assigned_gotno
9538 == g->global_gotno + g->local_gotno + g->tls_gotno);
9539
9540 /* Each VxWorks GOT entry needs an explicit relocation. */
9541 if (htab->is_vxworks && bfd_link_pic (info))
9542 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9543
9544 /* Allocate room for the TLS relocations. */
9545 if (g->relocs)
9546 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9547 }
9548
9549 return TRUE;
9550 }
9551
9552 /* Estimate the size of the .MIPS.stubs section. */
9553
9554 static void
9555 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9556 {
9557 struct mips_elf_link_hash_table *htab;
9558 bfd_size_type dynsymcount;
9559
9560 htab = mips_elf_hash_table (info);
9561 BFD_ASSERT (htab != NULL);
9562
9563 if (htab->lazy_stub_count == 0)
9564 return;
9565
9566 /* IRIX rld assumes that a function stub isn't at the end of the .text
9567 section, so add a dummy entry to the end. */
9568 htab->lazy_stub_count++;
9569
9570 /* Get a worst-case estimate of the number of dynamic symbols needed.
9571 At this point, dynsymcount does not account for section symbols
9572 and count_section_dynsyms may overestimate the number that will
9573 be needed. */
9574 dynsymcount = (elf_hash_table (info)->dynsymcount
9575 + count_section_dynsyms (output_bfd, info));
9576
9577 /* Determine the size of one stub entry. There's no disadvantage
9578 from using microMIPS code here, so for the sake of pure-microMIPS
9579 binaries we prefer it whenever there's any microMIPS code in
9580 output produced at all. This has a benefit of stubs being
9581 shorter by 4 bytes each too, unless in the insn32 mode. */
9582 if (!MICROMIPS_P (output_bfd))
9583 htab->function_stub_size = (dynsymcount > 0x10000
9584 ? MIPS_FUNCTION_STUB_BIG_SIZE
9585 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9586 else if (htab->insn32)
9587 htab->function_stub_size = (dynsymcount > 0x10000
9588 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9589 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9590 else
9591 htab->function_stub_size = (dynsymcount > 0x10000
9592 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9593 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9594
9595 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9596 }
9597
9598 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9599 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9600 stub, allocate an entry in the stubs section. */
9601
9602 static bfd_boolean
9603 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9604 {
9605 struct mips_htab_traverse_info *hti = data;
9606 struct mips_elf_link_hash_table *htab;
9607 struct bfd_link_info *info;
9608 bfd *output_bfd;
9609
9610 info = hti->info;
9611 output_bfd = hti->output_bfd;
9612 htab = mips_elf_hash_table (info);
9613 BFD_ASSERT (htab != NULL);
9614
9615 if (h->needs_lazy_stub)
9616 {
9617 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9618 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9619 bfd_vma isa_bit = micromips_p;
9620
9621 BFD_ASSERT (htab->root.dynobj != NULL);
9622 if (h->root.plt.plist == NULL)
9623 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9624 if (h->root.plt.plist == NULL)
9625 {
9626 hti->error = TRUE;
9627 return FALSE;
9628 }
9629 h->root.root.u.def.section = htab->sstubs;
9630 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9631 h->root.plt.plist->stub_offset = htab->sstubs->size;
9632 h->root.other = other;
9633 htab->sstubs->size += htab->function_stub_size;
9634 }
9635 return TRUE;
9636 }
9637
9638 /* Allocate offsets in the stubs section to each symbol that needs one.
9639 Set the final size of the .MIPS.stub section. */
9640
9641 static bfd_boolean
9642 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9643 {
9644 bfd *output_bfd = info->output_bfd;
9645 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9646 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9647 bfd_vma isa_bit = micromips_p;
9648 struct mips_elf_link_hash_table *htab;
9649 struct mips_htab_traverse_info hti;
9650 struct elf_link_hash_entry *h;
9651 bfd *dynobj;
9652
9653 htab = mips_elf_hash_table (info);
9654 BFD_ASSERT (htab != NULL);
9655
9656 if (htab->lazy_stub_count == 0)
9657 return TRUE;
9658
9659 htab->sstubs->size = 0;
9660 hti.info = info;
9661 hti.output_bfd = output_bfd;
9662 hti.error = FALSE;
9663 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9664 if (hti.error)
9665 return FALSE;
9666 htab->sstubs->size += htab->function_stub_size;
9667 BFD_ASSERT (htab->sstubs->size
9668 == htab->lazy_stub_count * htab->function_stub_size);
9669
9670 dynobj = elf_hash_table (info)->dynobj;
9671 BFD_ASSERT (dynobj != NULL);
9672 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9673 if (h == NULL)
9674 return FALSE;
9675 h->root.u.def.value = isa_bit;
9676 h->other = other;
9677 h->type = STT_FUNC;
9678
9679 return TRUE;
9680 }
9681
9682 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9683 bfd_link_info. If H uses the address of a PLT entry as the value
9684 of the symbol, then set the entry in the symbol table now. Prefer
9685 a standard MIPS PLT entry. */
9686
9687 static bfd_boolean
9688 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9689 {
9690 struct bfd_link_info *info = data;
9691 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9692 struct mips_elf_link_hash_table *htab;
9693 unsigned int other;
9694 bfd_vma isa_bit;
9695 bfd_vma val;
9696
9697 htab = mips_elf_hash_table (info);
9698 BFD_ASSERT (htab != NULL);
9699
9700 if (h->use_plt_entry)
9701 {
9702 BFD_ASSERT (h->root.plt.plist != NULL);
9703 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9704 || h->root.plt.plist->comp_offset != MINUS_ONE);
9705
9706 val = htab->plt_header_size;
9707 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9708 {
9709 isa_bit = 0;
9710 val += h->root.plt.plist->mips_offset;
9711 other = 0;
9712 }
9713 else
9714 {
9715 isa_bit = 1;
9716 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9717 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9718 }
9719 val += isa_bit;
9720 /* For VxWorks, point at the PLT load stub rather than the lazy
9721 resolution stub; this stub will become the canonical function
9722 address. */
9723 if (htab->is_vxworks)
9724 val += 8;
9725
9726 h->root.root.u.def.section = htab->splt;
9727 h->root.root.u.def.value = val;
9728 h->root.other = other;
9729 }
9730
9731 return TRUE;
9732 }
9733
9734 /* Set the sizes of the dynamic sections. */
9735
9736 bfd_boolean
9737 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9738 struct bfd_link_info *info)
9739 {
9740 bfd *dynobj;
9741 asection *s, *sreldyn;
9742 bfd_boolean reltext;
9743 struct mips_elf_link_hash_table *htab;
9744
9745 htab = mips_elf_hash_table (info);
9746 BFD_ASSERT (htab != NULL);
9747 dynobj = elf_hash_table (info)->dynobj;
9748 BFD_ASSERT (dynobj != NULL);
9749
9750 if (elf_hash_table (info)->dynamic_sections_created)
9751 {
9752 /* Set the contents of the .interp section to the interpreter. */
9753 if (bfd_link_executable (info) && !info->nointerp)
9754 {
9755 s = bfd_get_linker_section (dynobj, ".interp");
9756 BFD_ASSERT (s != NULL);
9757 s->size
9758 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9759 s->contents
9760 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9761 }
9762
9763 /* Figure out the size of the PLT header if we know that we
9764 are using it. For the sake of cache alignment always use
9765 a standard header whenever any standard entries are present
9766 even if microMIPS entries are present as well. This also
9767 lets the microMIPS header rely on the value of $v0 only set
9768 by microMIPS entries, for a small size reduction.
9769
9770 Set symbol table entry values for symbols that use the
9771 address of their PLT entry now that we can calculate it.
9772
9773 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9774 haven't already in _bfd_elf_create_dynamic_sections. */
9775 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9776 {
9777 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9778 && !htab->plt_mips_offset);
9779 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9780 bfd_vma isa_bit = micromips_p;
9781 struct elf_link_hash_entry *h;
9782 bfd_vma size;
9783
9784 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9785 BFD_ASSERT (htab->sgotplt->size == 0);
9786 BFD_ASSERT (htab->splt->size == 0);
9787
9788 if (htab->is_vxworks && bfd_link_pic (info))
9789 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9790 else if (htab->is_vxworks)
9791 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9792 else if (ABI_64_P (output_bfd))
9793 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9794 else if (ABI_N32_P (output_bfd))
9795 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9796 else if (!micromips_p)
9797 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9798 else if (htab->insn32)
9799 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9800 else
9801 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9802
9803 htab->plt_header_is_comp = micromips_p;
9804 htab->plt_header_size = size;
9805 htab->splt->size = (size
9806 + htab->plt_mips_offset
9807 + htab->plt_comp_offset);
9808 htab->sgotplt->size = (htab->plt_got_index
9809 * MIPS_ELF_GOT_SIZE (dynobj));
9810
9811 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9812
9813 if (htab->root.hplt == NULL)
9814 {
9815 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9816 "_PROCEDURE_LINKAGE_TABLE_");
9817 htab->root.hplt = h;
9818 if (h == NULL)
9819 return FALSE;
9820 }
9821
9822 h = htab->root.hplt;
9823 h->root.u.def.value = isa_bit;
9824 h->other = other;
9825 h->type = STT_FUNC;
9826 }
9827 }
9828
9829 /* Allocate space for global sym dynamic relocs. */
9830 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9831
9832 mips_elf_estimate_stub_size (output_bfd, info);
9833
9834 if (!mips_elf_lay_out_got (output_bfd, info))
9835 return FALSE;
9836
9837 mips_elf_lay_out_lazy_stubs (info);
9838
9839 /* The check_relocs and adjust_dynamic_symbol entry points have
9840 determined the sizes of the various dynamic sections. Allocate
9841 memory for them. */
9842 reltext = FALSE;
9843 for (s = dynobj->sections; s != NULL; s = s->next)
9844 {
9845 const char *name;
9846
9847 /* It's OK to base decisions on the section name, because none
9848 of the dynobj section names depend upon the input files. */
9849 name = bfd_get_section_name (dynobj, s);
9850
9851 if ((s->flags & SEC_LINKER_CREATED) == 0)
9852 continue;
9853
9854 if (CONST_STRNEQ (name, ".rel"))
9855 {
9856 if (s->size != 0)
9857 {
9858 const char *outname;
9859 asection *target;
9860
9861 /* If this relocation section applies to a read only
9862 section, then we probably need a DT_TEXTREL entry.
9863 If the relocation section is .rel(a).dyn, we always
9864 assert a DT_TEXTREL entry rather than testing whether
9865 there exists a relocation to a read only section or
9866 not. */
9867 outname = bfd_get_section_name (output_bfd,
9868 s->output_section);
9869 target = bfd_get_section_by_name (output_bfd, outname + 4);
9870 if ((target != NULL
9871 && (target->flags & SEC_READONLY) != 0
9872 && (target->flags & SEC_ALLOC) != 0)
9873 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9874 reltext = TRUE;
9875
9876 /* We use the reloc_count field as a counter if we need
9877 to copy relocs into the output file. */
9878 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9879 s->reloc_count = 0;
9880
9881 /* If combreloc is enabled, elf_link_sort_relocs() will
9882 sort relocations, but in a different way than we do,
9883 and before we're done creating relocations. Also, it
9884 will move them around between input sections'
9885 relocation's contents, so our sorting would be
9886 broken, so don't let it run. */
9887 info->combreloc = 0;
9888 }
9889 }
9890 else if (bfd_link_executable (info)
9891 && ! mips_elf_hash_table (info)->use_rld_obj_head
9892 && CONST_STRNEQ (name, ".rld_map"))
9893 {
9894 /* We add a room for __rld_map. It will be filled in by the
9895 rtld to contain a pointer to the _r_debug structure. */
9896 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9897 }
9898 else if (SGI_COMPAT (output_bfd)
9899 && CONST_STRNEQ (name, ".compact_rel"))
9900 s->size += mips_elf_hash_table (info)->compact_rel_size;
9901 else if (s == htab->splt)
9902 {
9903 /* If the last PLT entry has a branch delay slot, allocate
9904 room for an extra nop to fill the delay slot. This is
9905 for CPUs without load interlocking. */
9906 if (! LOAD_INTERLOCKS_P (output_bfd)
9907 && ! htab->is_vxworks && s->size > 0)
9908 s->size += 4;
9909 }
9910 else if (! CONST_STRNEQ (name, ".init")
9911 && s != htab->sgot
9912 && s != htab->sgotplt
9913 && s != htab->sstubs
9914 && s != htab->sdynbss)
9915 {
9916 /* It's not one of our sections, so don't allocate space. */
9917 continue;
9918 }
9919
9920 if (s->size == 0)
9921 {
9922 s->flags |= SEC_EXCLUDE;
9923 continue;
9924 }
9925
9926 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9927 continue;
9928
9929 /* Allocate memory for the section contents. */
9930 s->contents = bfd_zalloc (dynobj, s->size);
9931 if (s->contents == NULL)
9932 {
9933 bfd_set_error (bfd_error_no_memory);
9934 return FALSE;
9935 }
9936 }
9937
9938 if (elf_hash_table (info)->dynamic_sections_created)
9939 {
9940 /* Add some entries to the .dynamic section. We fill in the
9941 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9942 must add the entries now so that we get the correct size for
9943 the .dynamic section. */
9944
9945 /* SGI object has the equivalence of DT_DEBUG in the
9946 DT_MIPS_RLD_MAP entry. This must come first because glibc
9947 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9948 may only look at the first one they see. */
9949 if (!bfd_link_pic (info)
9950 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9951 return FALSE;
9952
9953 if (bfd_link_executable (info)
9954 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9955 return FALSE;
9956
9957 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9958 used by the debugger. */
9959 if (bfd_link_executable (info)
9960 && !SGI_COMPAT (output_bfd)
9961 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9962 return FALSE;
9963
9964 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9965 info->flags |= DF_TEXTREL;
9966
9967 if ((info->flags & DF_TEXTREL) != 0)
9968 {
9969 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9970 return FALSE;
9971
9972 /* Clear the DF_TEXTREL flag. It will be set again if we
9973 write out an actual text relocation; we may not, because
9974 at this point we do not know whether e.g. any .eh_frame
9975 absolute relocations have been converted to PC-relative. */
9976 info->flags &= ~DF_TEXTREL;
9977 }
9978
9979 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9980 return FALSE;
9981
9982 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9983 if (htab->is_vxworks)
9984 {
9985 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9986 use any of the DT_MIPS_* tags. */
9987 if (sreldyn && sreldyn->size > 0)
9988 {
9989 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9990 return FALSE;
9991
9992 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9993 return FALSE;
9994
9995 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9996 return FALSE;
9997 }
9998 }
9999 else
10000 {
10001 if (sreldyn && sreldyn->size > 0)
10002 {
10003 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10004 return FALSE;
10005
10006 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10007 return FALSE;
10008
10009 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10010 return FALSE;
10011 }
10012
10013 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10014 return FALSE;
10015
10016 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10017 return FALSE;
10018
10019 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10020 return FALSE;
10021
10022 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10023 return FALSE;
10024
10025 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10026 return FALSE;
10027
10028 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10029 return FALSE;
10030
10031 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10032 return FALSE;
10033
10034 if (IRIX_COMPAT (dynobj) == ict_irix5
10035 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10036 return FALSE;
10037
10038 if (IRIX_COMPAT (dynobj) == ict_irix6
10039 && (bfd_get_section_by_name
10040 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10041 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10042 return FALSE;
10043 }
10044 if (htab->splt->size > 0)
10045 {
10046 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10047 return FALSE;
10048
10049 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10050 return FALSE;
10051
10052 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10053 return FALSE;
10054
10055 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10056 return FALSE;
10057 }
10058 if (htab->is_vxworks
10059 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10060 return FALSE;
10061 }
10062
10063 return TRUE;
10064 }
10065 \f
10066 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10067 Adjust its R_ADDEND field so that it is correct for the output file.
10068 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10069 and sections respectively; both use symbol indexes. */
10070
10071 static void
10072 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10073 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10074 asection **local_sections, Elf_Internal_Rela *rel)
10075 {
10076 unsigned int r_type, r_symndx;
10077 Elf_Internal_Sym *sym;
10078 asection *sec;
10079
10080 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10081 {
10082 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10083 if (gprel16_reloc_p (r_type)
10084 || r_type == R_MIPS_GPREL32
10085 || literal_reloc_p (r_type))
10086 {
10087 rel->r_addend += _bfd_get_gp_value (input_bfd);
10088 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10089 }
10090
10091 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10092 sym = local_syms + r_symndx;
10093
10094 /* Adjust REL's addend to account for section merging. */
10095 if (!bfd_link_relocatable (info))
10096 {
10097 sec = local_sections[r_symndx];
10098 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10099 }
10100
10101 /* This would normally be done by the rela_normal code in elflink.c. */
10102 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10103 rel->r_addend += local_sections[r_symndx]->output_offset;
10104 }
10105 }
10106
10107 /* Handle relocations against symbols from removed linkonce sections,
10108 or sections discarded by a linker script. We use this wrapper around
10109 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10110 on 64-bit ELF targets. In this case for any relocation handled, which
10111 always be the first in a triplet, the remaining two have to be processed
10112 together with the first, even if they are R_MIPS_NONE. It is the symbol
10113 index referred by the first reloc that applies to all the three and the
10114 remaining two never refer to an object symbol. And it is the final
10115 relocation (the last non-null one) that determines the output field of
10116 the whole relocation so retrieve the corresponding howto structure for
10117 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10118
10119 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10120 and therefore requires to be pasted in a loop. It also defines a block
10121 and does not protect any of its arguments, hence the extra brackets. */
10122
10123 static void
10124 mips_reloc_against_discarded_section (bfd *output_bfd,
10125 struct bfd_link_info *info,
10126 bfd *input_bfd, asection *input_section,
10127 Elf_Internal_Rela **rel,
10128 const Elf_Internal_Rela **relend,
10129 bfd_boolean rel_reloc,
10130 reloc_howto_type *howto,
10131 bfd_byte *contents)
10132 {
10133 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10134 int count = bed->s->int_rels_per_ext_rel;
10135 unsigned int r_type;
10136 int i;
10137
10138 for (i = count - 1; i > 0; i--)
10139 {
10140 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10141 if (r_type != R_MIPS_NONE)
10142 {
10143 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10144 break;
10145 }
10146 }
10147 do
10148 {
10149 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10150 (*rel), count, (*relend),
10151 howto, i, contents);
10152 }
10153 while (0);
10154 }
10155
10156 /* Relocate a MIPS ELF section. */
10157
10158 bfd_boolean
10159 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10160 bfd *input_bfd, asection *input_section,
10161 bfd_byte *contents, Elf_Internal_Rela *relocs,
10162 Elf_Internal_Sym *local_syms,
10163 asection **local_sections)
10164 {
10165 Elf_Internal_Rela *rel;
10166 const Elf_Internal_Rela *relend;
10167 bfd_vma addend = 0;
10168 bfd_boolean use_saved_addend_p = FALSE;
10169 const struct elf_backend_data *bed;
10170
10171 bed = get_elf_backend_data (output_bfd);
10172 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10173 for (rel = relocs; rel < relend; ++rel)
10174 {
10175 const char *name;
10176 bfd_vma value = 0;
10177 reloc_howto_type *howto;
10178 bfd_boolean cross_mode_jump_p = FALSE;
10179 /* TRUE if the relocation is a RELA relocation, rather than a
10180 REL relocation. */
10181 bfd_boolean rela_relocation_p = TRUE;
10182 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10183 const char *msg;
10184 unsigned long r_symndx;
10185 asection *sec;
10186 Elf_Internal_Shdr *symtab_hdr;
10187 struct elf_link_hash_entry *h;
10188 bfd_boolean rel_reloc;
10189
10190 rel_reloc = (NEWABI_P (input_bfd)
10191 && mips_elf_rel_relocation_p (input_bfd, input_section,
10192 relocs, rel));
10193 /* Find the relocation howto for this relocation. */
10194 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10195
10196 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10197 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10198 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10199 {
10200 sec = local_sections[r_symndx];
10201 h = NULL;
10202 }
10203 else
10204 {
10205 unsigned long extsymoff;
10206
10207 extsymoff = 0;
10208 if (!elf_bad_symtab (input_bfd))
10209 extsymoff = symtab_hdr->sh_info;
10210 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10211 while (h->root.type == bfd_link_hash_indirect
10212 || h->root.type == bfd_link_hash_warning)
10213 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10214
10215 sec = NULL;
10216 if (h->root.type == bfd_link_hash_defined
10217 || h->root.type == bfd_link_hash_defweak)
10218 sec = h->root.u.def.section;
10219 }
10220
10221 if (sec != NULL && discarded_section (sec))
10222 {
10223 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10224 input_section, &rel, &relend,
10225 rel_reloc, howto, contents);
10226 continue;
10227 }
10228
10229 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10230 {
10231 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10232 64-bit code, but make sure all their addresses are in the
10233 lowermost or uppermost 32-bit section of the 64-bit address
10234 space. Thus, when they use an R_MIPS_64 they mean what is
10235 usually meant by R_MIPS_32, with the exception that the
10236 stored value is sign-extended to 64 bits. */
10237 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10238
10239 /* On big-endian systems, we need to lie about the position
10240 of the reloc. */
10241 if (bfd_big_endian (input_bfd))
10242 rel->r_offset += 4;
10243 }
10244
10245 if (!use_saved_addend_p)
10246 {
10247 /* If these relocations were originally of the REL variety,
10248 we must pull the addend out of the field that will be
10249 relocated. Otherwise, we simply use the contents of the
10250 RELA relocation. */
10251 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10252 relocs, rel))
10253 {
10254 rela_relocation_p = FALSE;
10255 addend = mips_elf_read_rel_addend (input_bfd, rel,
10256 howto, contents);
10257 if (hi16_reloc_p (r_type)
10258 || (got16_reloc_p (r_type)
10259 && mips_elf_local_relocation_p (input_bfd, rel,
10260 local_sections)))
10261 {
10262 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10263 contents, &addend))
10264 {
10265 if (h)
10266 name = h->root.root.string;
10267 else
10268 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10269 local_syms + r_symndx,
10270 sec);
10271 (*_bfd_error_handler)
10272 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10273 input_bfd, input_section, name, howto->name,
10274 rel->r_offset);
10275 }
10276 }
10277 else
10278 addend <<= howto->rightshift;
10279 }
10280 else
10281 addend = rel->r_addend;
10282 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10283 local_syms, local_sections, rel);
10284 }
10285
10286 if (bfd_link_relocatable (info))
10287 {
10288 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10289 && bfd_big_endian (input_bfd))
10290 rel->r_offset -= 4;
10291
10292 if (!rela_relocation_p && rel->r_addend)
10293 {
10294 addend += rel->r_addend;
10295 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10296 addend = mips_elf_high (addend);
10297 else if (r_type == R_MIPS_HIGHER)
10298 addend = mips_elf_higher (addend);
10299 else if (r_type == R_MIPS_HIGHEST)
10300 addend = mips_elf_highest (addend);
10301 else
10302 addend >>= howto->rightshift;
10303
10304 /* We use the source mask, rather than the destination
10305 mask because the place to which we are writing will be
10306 source of the addend in the final link. */
10307 addend &= howto->src_mask;
10308
10309 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10310 /* See the comment above about using R_MIPS_64 in the 32-bit
10311 ABI. Here, we need to update the addend. It would be
10312 possible to get away with just using the R_MIPS_32 reloc
10313 but for endianness. */
10314 {
10315 bfd_vma sign_bits;
10316 bfd_vma low_bits;
10317 bfd_vma high_bits;
10318
10319 if (addend & ((bfd_vma) 1 << 31))
10320 #ifdef BFD64
10321 sign_bits = ((bfd_vma) 1 << 32) - 1;
10322 #else
10323 sign_bits = -1;
10324 #endif
10325 else
10326 sign_bits = 0;
10327
10328 /* If we don't know that we have a 64-bit type,
10329 do two separate stores. */
10330 if (bfd_big_endian (input_bfd))
10331 {
10332 /* Store the sign-bits (which are most significant)
10333 first. */
10334 low_bits = sign_bits;
10335 high_bits = addend;
10336 }
10337 else
10338 {
10339 low_bits = addend;
10340 high_bits = sign_bits;
10341 }
10342 bfd_put_32 (input_bfd, low_bits,
10343 contents + rel->r_offset);
10344 bfd_put_32 (input_bfd, high_bits,
10345 contents + rel->r_offset + 4);
10346 continue;
10347 }
10348
10349 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10350 input_bfd, input_section,
10351 contents, FALSE))
10352 return FALSE;
10353 }
10354
10355 /* Go on to the next relocation. */
10356 continue;
10357 }
10358
10359 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10360 relocations for the same offset. In that case we are
10361 supposed to treat the output of each relocation as the addend
10362 for the next. */
10363 if (rel + 1 < relend
10364 && rel->r_offset == rel[1].r_offset
10365 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10366 use_saved_addend_p = TRUE;
10367 else
10368 use_saved_addend_p = FALSE;
10369
10370 /* Figure out what value we are supposed to relocate. */
10371 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10372 input_section, info, rel,
10373 addend, howto, local_syms,
10374 local_sections, &value,
10375 &name, &cross_mode_jump_p,
10376 use_saved_addend_p))
10377 {
10378 case bfd_reloc_continue:
10379 /* There's nothing to do. */
10380 continue;
10381
10382 case bfd_reloc_undefined:
10383 /* mips_elf_calculate_relocation already called the
10384 undefined_symbol callback. There's no real point in
10385 trying to perform the relocation at this point, so we
10386 just skip ahead to the next relocation. */
10387 continue;
10388
10389 case bfd_reloc_notsupported:
10390 msg = _("internal error: unsupported relocation error");
10391 info->callbacks->warning
10392 (info, msg, name, input_bfd, input_section, rel->r_offset);
10393 return FALSE;
10394
10395 case bfd_reloc_overflow:
10396 if (use_saved_addend_p)
10397 /* Ignore overflow until we reach the last relocation for
10398 a given location. */
10399 ;
10400 else
10401 {
10402 struct mips_elf_link_hash_table *htab;
10403
10404 htab = mips_elf_hash_table (info);
10405 BFD_ASSERT (htab != NULL);
10406 BFD_ASSERT (name != NULL);
10407 if (!htab->small_data_overflow_reported
10408 && (gprel16_reloc_p (howto->type)
10409 || literal_reloc_p (howto->type)))
10410 {
10411 msg = _("small-data section exceeds 64KB;"
10412 " lower small-data size limit (see option -G)");
10413
10414 htab->small_data_overflow_reported = TRUE;
10415 (*info->callbacks->einfo) ("%P: %s\n", msg);
10416 }
10417 (*info->callbacks->reloc_overflow)
10418 (info, NULL, name, howto->name, (bfd_vma) 0,
10419 input_bfd, input_section, rel->r_offset);
10420 }
10421 break;
10422
10423 case bfd_reloc_ok:
10424 break;
10425
10426 case bfd_reloc_outofrange:
10427 msg = NULL;
10428 if (jal_reloc_p (howto->type))
10429 msg = (cross_mode_jump_p
10430 ? _("Cannot convert a jump to JALX "
10431 "for a non-word-aligned address")
10432 : (howto->type == R_MIPS16_26
10433 ? _("Jump to a non-word-aligned address")
10434 : _("Jump to a non-instruction-aligned address")));
10435 else if (b_reloc_p (howto->type))
10436 msg = (cross_mode_jump_p
10437 ? _("Cannot convert a branch to JALX "
10438 "for a non-word-aligned address")
10439 : _("Branch to a non-instruction-aligned address"));
10440 else if (aligned_pcrel_reloc_p (howto->type))
10441 msg = _("PC-relative load from unaligned address");
10442 if (msg)
10443 {
10444 info->callbacks->einfo
10445 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10446 break;
10447 }
10448 /* Fall through. */
10449
10450 default:
10451 abort ();
10452 break;
10453 }
10454
10455 /* If we've got another relocation for the address, keep going
10456 until we reach the last one. */
10457 if (use_saved_addend_p)
10458 {
10459 addend = value;
10460 continue;
10461 }
10462
10463 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10464 /* See the comment above about using R_MIPS_64 in the 32-bit
10465 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10466 that calculated the right value. Now, however, we
10467 sign-extend the 32-bit result to 64-bits, and store it as a
10468 64-bit value. We are especially generous here in that we
10469 go to extreme lengths to support this usage on systems with
10470 only a 32-bit VMA. */
10471 {
10472 bfd_vma sign_bits;
10473 bfd_vma low_bits;
10474 bfd_vma high_bits;
10475
10476 if (value & ((bfd_vma) 1 << 31))
10477 #ifdef BFD64
10478 sign_bits = ((bfd_vma) 1 << 32) - 1;
10479 #else
10480 sign_bits = -1;
10481 #endif
10482 else
10483 sign_bits = 0;
10484
10485 /* If we don't know that we have a 64-bit type,
10486 do two separate stores. */
10487 if (bfd_big_endian (input_bfd))
10488 {
10489 /* Undo what we did above. */
10490 rel->r_offset -= 4;
10491 /* Store the sign-bits (which are most significant)
10492 first. */
10493 low_bits = sign_bits;
10494 high_bits = value;
10495 }
10496 else
10497 {
10498 low_bits = value;
10499 high_bits = sign_bits;
10500 }
10501 bfd_put_32 (input_bfd, low_bits,
10502 contents + rel->r_offset);
10503 bfd_put_32 (input_bfd, high_bits,
10504 contents + rel->r_offset + 4);
10505 continue;
10506 }
10507
10508 /* Actually perform the relocation. */
10509 if (! mips_elf_perform_relocation (info, howto, rel, value,
10510 input_bfd, input_section,
10511 contents, cross_mode_jump_p))
10512 return FALSE;
10513 }
10514
10515 return TRUE;
10516 }
10517 \f
10518 /* A function that iterates over each entry in la25_stubs and fills
10519 in the code for each one. DATA points to a mips_htab_traverse_info. */
10520
10521 static int
10522 mips_elf_create_la25_stub (void **slot, void *data)
10523 {
10524 struct mips_htab_traverse_info *hti;
10525 struct mips_elf_link_hash_table *htab;
10526 struct mips_elf_la25_stub *stub;
10527 asection *s;
10528 bfd_byte *loc;
10529 bfd_vma offset, target, target_high, target_low;
10530
10531 stub = (struct mips_elf_la25_stub *) *slot;
10532 hti = (struct mips_htab_traverse_info *) data;
10533 htab = mips_elf_hash_table (hti->info);
10534 BFD_ASSERT (htab != NULL);
10535
10536 /* Create the section contents, if we haven't already. */
10537 s = stub->stub_section;
10538 loc = s->contents;
10539 if (loc == NULL)
10540 {
10541 loc = bfd_malloc (s->size);
10542 if (loc == NULL)
10543 {
10544 hti->error = TRUE;
10545 return FALSE;
10546 }
10547 s->contents = loc;
10548 }
10549
10550 /* Work out where in the section this stub should go. */
10551 offset = stub->offset;
10552
10553 /* Work out the target address. */
10554 target = mips_elf_get_la25_target (stub, &s);
10555 target += s->output_section->vma + s->output_offset;
10556
10557 target_high = ((target + 0x8000) >> 16) & 0xffff;
10558 target_low = (target & 0xffff);
10559
10560 if (stub->stub_section != htab->strampoline)
10561 {
10562 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10563 of the section and write the two instructions at the end. */
10564 memset (loc, 0, offset);
10565 loc += offset;
10566 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10567 {
10568 bfd_put_micromips_32 (hti->output_bfd,
10569 LA25_LUI_MICROMIPS (target_high),
10570 loc);
10571 bfd_put_micromips_32 (hti->output_bfd,
10572 LA25_ADDIU_MICROMIPS (target_low),
10573 loc + 4);
10574 }
10575 else
10576 {
10577 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10578 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10579 }
10580 }
10581 else
10582 {
10583 /* This is trampoline. */
10584 loc += offset;
10585 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10586 {
10587 bfd_put_micromips_32 (hti->output_bfd,
10588 LA25_LUI_MICROMIPS (target_high), loc);
10589 bfd_put_micromips_32 (hti->output_bfd,
10590 LA25_J_MICROMIPS (target), loc + 4);
10591 bfd_put_micromips_32 (hti->output_bfd,
10592 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10593 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10594 }
10595 else
10596 {
10597 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10598 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10599 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10600 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10601 }
10602 }
10603 return TRUE;
10604 }
10605
10606 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10607 adjust it appropriately now. */
10608
10609 static void
10610 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10611 const char *name, Elf_Internal_Sym *sym)
10612 {
10613 /* The linker script takes care of providing names and values for
10614 these, but we must place them into the right sections. */
10615 static const char* const text_section_symbols[] = {
10616 "_ftext",
10617 "_etext",
10618 "__dso_displacement",
10619 "__elf_header",
10620 "__program_header_table",
10621 NULL
10622 };
10623
10624 static const char* const data_section_symbols[] = {
10625 "_fdata",
10626 "_edata",
10627 "_end",
10628 "_fbss",
10629 NULL
10630 };
10631
10632 const char* const *p;
10633 int i;
10634
10635 for (i = 0; i < 2; ++i)
10636 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10637 *p;
10638 ++p)
10639 if (strcmp (*p, name) == 0)
10640 {
10641 /* All of these symbols are given type STT_SECTION by the
10642 IRIX6 linker. */
10643 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10644 sym->st_other = STO_PROTECTED;
10645
10646 /* The IRIX linker puts these symbols in special sections. */
10647 if (i == 0)
10648 sym->st_shndx = SHN_MIPS_TEXT;
10649 else
10650 sym->st_shndx = SHN_MIPS_DATA;
10651
10652 break;
10653 }
10654 }
10655
10656 /* Finish up dynamic symbol handling. We set the contents of various
10657 dynamic sections here. */
10658
10659 bfd_boolean
10660 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10661 struct bfd_link_info *info,
10662 struct elf_link_hash_entry *h,
10663 Elf_Internal_Sym *sym)
10664 {
10665 bfd *dynobj;
10666 asection *sgot;
10667 struct mips_got_info *g, *gg;
10668 const char *name;
10669 int idx;
10670 struct mips_elf_link_hash_table *htab;
10671 struct mips_elf_link_hash_entry *hmips;
10672
10673 htab = mips_elf_hash_table (info);
10674 BFD_ASSERT (htab != NULL);
10675 dynobj = elf_hash_table (info)->dynobj;
10676 hmips = (struct mips_elf_link_hash_entry *) h;
10677
10678 BFD_ASSERT (!htab->is_vxworks);
10679
10680 if (h->plt.plist != NULL
10681 && (h->plt.plist->mips_offset != MINUS_ONE
10682 || h->plt.plist->comp_offset != MINUS_ONE))
10683 {
10684 /* We've decided to create a PLT entry for this symbol. */
10685 bfd_byte *loc;
10686 bfd_vma header_address, got_address;
10687 bfd_vma got_address_high, got_address_low, load;
10688 bfd_vma got_index;
10689 bfd_vma isa_bit;
10690
10691 got_index = h->plt.plist->gotplt_index;
10692
10693 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10694 BFD_ASSERT (h->dynindx != -1);
10695 BFD_ASSERT (htab->splt != NULL);
10696 BFD_ASSERT (got_index != MINUS_ONE);
10697 BFD_ASSERT (!h->def_regular);
10698
10699 /* Calculate the address of the PLT header. */
10700 isa_bit = htab->plt_header_is_comp;
10701 header_address = (htab->splt->output_section->vma
10702 + htab->splt->output_offset + isa_bit);
10703
10704 /* Calculate the address of the .got.plt entry. */
10705 got_address = (htab->sgotplt->output_section->vma
10706 + htab->sgotplt->output_offset
10707 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10708
10709 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10710 got_address_low = got_address & 0xffff;
10711
10712 /* Initially point the .got.plt entry at the PLT header. */
10713 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10714 if (ABI_64_P (output_bfd))
10715 bfd_put_64 (output_bfd, header_address, loc);
10716 else
10717 bfd_put_32 (output_bfd, header_address, loc);
10718
10719 /* Now handle the PLT itself. First the standard entry (the order
10720 does not matter, we just have to pick one). */
10721 if (h->plt.plist->mips_offset != MINUS_ONE)
10722 {
10723 const bfd_vma *plt_entry;
10724 bfd_vma plt_offset;
10725
10726 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10727
10728 BFD_ASSERT (plt_offset <= htab->splt->size);
10729
10730 /* Find out where the .plt entry should go. */
10731 loc = htab->splt->contents + plt_offset;
10732
10733 /* Pick the load opcode. */
10734 load = MIPS_ELF_LOAD_WORD (output_bfd);
10735
10736 /* Fill in the PLT entry itself. */
10737
10738 if (MIPSR6_P (output_bfd))
10739 plt_entry = mipsr6_exec_plt_entry;
10740 else
10741 plt_entry = mips_exec_plt_entry;
10742 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10743 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10744 loc + 4);
10745
10746 if (! LOAD_INTERLOCKS_P (output_bfd))
10747 {
10748 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10749 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10750 }
10751 else
10752 {
10753 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10754 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10755 loc + 12);
10756 }
10757 }
10758
10759 /* Now the compressed entry. They come after any standard ones. */
10760 if (h->plt.plist->comp_offset != MINUS_ONE)
10761 {
10762 bfd_vma plt_offset;
10763
10764 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10765 + h->plt.plist->comp_offset);
10766
10767 BFD_ASSERT (plt_offset <= htab->splt->size);
10768
10769 /* Find out where the .plt entry should go. */
10770 loc = htab->splt->contents + plt_offset;
10771
10772 /* Fill in the PLT entry itself. */
10773 if (!MICROMIPS_P (output_bfd))
10774 {
10775 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10776
10777 bfd_put_16 (output_bfd, plt_entry[0], loc);
10778 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10779 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10780 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10781 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10782 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10783 bfd_put_32 (output_bfd, got_address, loc + 12);
10784 }
10785 else if (htab->insn32)
10786 {
10787 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10788
10789 bfd_put_16 (output_bfd, plt_entry[0], loc);
10790 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10791 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10792 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10793 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10794 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10795 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10796 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10797 }
10798 else
10799 {
10800 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10801 bfd_signed_vma gotpc_offset;
10802 bfd_vma loc_address;
10803
10804 BFD_ASSERT (got_address % 4 == 0);
10805
10806 loc_address = (htab->splt->output_section->vma
10807 + htab->splt->output_offset + plt_offset);
10808 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10809
10810 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10811 if (gotpc_offset + 0x1000000 >= 0x2000000)
10812 {
10813 (*_bfd_error_handler)
10814 (_("%B: `%A' offset of %ld from `%A' "
10815 "beyond the range of ADDIUPC"),
10816 output_bfd,
10817 htab->sgotplt->output_section,
10818 htab->splt->output_section,
10819 (long) gotpc_offset);
10820 bfd_set_error (bfd_error_no_error);
10821 return FALSE;
10822 }
10823 bfd_put_16 (output_bfd,
10824 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10825 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10826 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10827 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10828 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10829 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10830 }
10831 }
10832
10833 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10834 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10835 got_index - 2, h->dynindx,
10836 R_MIPS_JUMP_SLOT, got_address);
10837
10838 /* We distinguish between PLT entries and lazy-binding stubs by
10839 giving the former an st_other value of STO_MIPS_PLT. Set the
10840 flag and leave the value if there are any relocations in the
10841 binary where pointer equality matters. */
10842 sym->st_shndx = SHN_UNDEF;
10843 if (h->pointer_equality_needed)
10844 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10845 else
10846 {
10847 sym->st_value = 0;
10848 sym->st_other = 0;
10849 }
10850 }
10851
10852 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10853 {
10854 /* We've decided to create a lazy-binding stub. */
10855 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10856 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10857 bfd_vma stub_size = htab->function_stub_size;
10858 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10859 bfd_vma isa_bit = micromips_p;
10860 bfd_vma stub_big_size;
10861
10862 if (!micromips_p)
10863 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10864 else if (htab->insn32)
10865 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10866 else
10867 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10868
10869 /* This symbol has a stub. Set it up. */
10870
10871 BFD_ASSERT (h->dynindx != -1);
10872
10873 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10874
10875 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10876 sign extension at runtime in the stub, resulting in a negative
10877 index value. */
10878 if (h->dynindx & ~0x7fffffff)
10879 return FALSE;
10880
10881 /* Fill the stub. */
10882 if (micromips_p)
10883 {
10884 idx = 0;
10885 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10886 stub + idx);
10887 idx += 4;
10888 if (htab->insn32)
10889 {
10890 bfd_put_micromips_32 (output_bfd,
10891 STUB_MOVE32_MICROMIPS, stub + idx);
10892 idx += 4;
10893 }
10894 else
10895 {
10896 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10897 idx += 2;
10898 }
10899 if (stub_size == stub_big_size)
10900 {
10901 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10902
10903 bfd_put_micromips_32 (output_bfd,
10904 STUB_LUI_MICROMIPS (dynindx_hi),
10905 stub + idx);
10906 idx += 4;
10907 }
10908 if (htab->insn32)
10909 {
10910 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10911 stub + idx);
10912 idx += 4;
10913 }
10914 else
10915 {
10916 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10917 idx += 2;
10918 }
10919
10920 /* If a large stub is not required and sign extension is not a
10921 problem, then use legacy code in the stub. */
10922 if (stub_size == stub_big_size)
10923 bfd_put_micromips_32 (output_bfd,
10924 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10925 stub + idx);
10926 else if (h->dynindx & ~0x7fff)
10927 bfd_put_micromips_32 (output_bfd,
10928 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10929 stub + idx);
10930 else
10931 bfd_put_micromips_32 (output_bfd,
10932 STUB_LI16S_MICROMIPS (output_bfd,
10933 h->dynindx),
10934 stub + idx);
10935 }
10936 else
10937 {
10938 idx = 0;
10939 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10940 idx += 4;
10941 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10942 idx += 4;
10943 if (stub_size == stub_big_size)
10944 {
10945 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10946 stub + idx);
10947 idx += 4;
10948 }
10949 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10950 idx += 4;
10951
10952 /* If a large stub is not required and sign extension is not a
10953 problem, then use legacy code in the stub. */
10954 if (stub_size == stub_big_size)
10955 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10956 stub + idx);
10957 else if (h->dynindx & ~0x7fff)
10958 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10959 stub + idx);
10960 else
10961 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10962 stub + idx);
10963 }
10964
10965 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10966 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10967 stub, stub_size);
10968
10969 /* Mark the symbol as undefined. stub_offset != -1 occurs
10970 only for the referenced symbol. */
10971 sym->st_shndx = SHN_UNDEF;
10972
10973 /* The run-time linker uses the st_value field of the symbol
10974 to reset the global offset table entry for this external
10975 to its stub address when unlinking a shared object. */
10976 sym->st_value = (htab->sstubs->output_section->vma
10977 + htab->sstubs->output_offset
10978 + h->plt.plist->stub_offset
10979 + isa_bit);
10980 sym->st_other = other;
10981 }
10982
10983 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10984 refer to the stub, since only the stub uses the standard calling
10985 conventions. */
10986 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10987 {
10988 BFD_ASSERT (hmips->need_fn_stub);
10989 sym->st_value = (hmips->fn_stub->output_section->vma
10990 + hmips->fn_stub->output_offset);
10991 sym->st_size = hmips->fn_stub->size;
10992 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10993 }
10994
10995 BFD_ASSERT (h->dynindx != -1
10996 || h->forced_local);
10997
10998 sgot = htab->sgot;
10999 g = htab->got_info;
11000 BFD_ASSERT (g != NULL);
11001
11002 /* Run through the global symbol table, creating GOT entries for all
11003 the symbols that need them. */
11004 if (hmips->global_got_area != GGA_NONE)
11005 {
11006 bfd_vma offset;
11007 bfd_vma value;
11008
11009 value = sym->st_value;
11010 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11011 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11012 }
11013
11014 if (hmips->global_got_area != GGA_NONE && g->next)
11015 {
11016 struct mips_got_entry e, *p;
11017 bfd_vma entry;
11018 bfd_vma offset;
11019
11020 gg = g;
11021
11022 e.abfd = output_bfd;
11023 e.symndx = -1;
11024 e.d.h = hmips;
11025 e.tls_type = GOT_TLS_NONE;
11026
11027 for (g = g->next; g->next != gg; g = g->next)
11028 {
11029 if (g->got_entries
11030 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11031 &e)))
11032 {
11033 offset = p->gotidx;
11034 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
11035 if (bfd_link_pic (info)
11036 || (elf_hash_table (info)->dynamic_sections_created
11037 && p->d.h != NULL
11038 && p->d.h->root.def_dynamic
11039 && !p->d.h->root.def_regular))
11040 {
11041 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11042 the various compatibility problems, it's easier to mock
11043 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11044 mips_elf_create_dynamic_relocation to calculate the
11045 appropriate addend. */
11046 Elf_Internal_Rela rel[3];
11047
11048 memset (rel, 0, sizeof (rel));
11049 if (ABI_64_P (output_bfd))
11050 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11051 else
11052 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11053 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11054
11055 entry = 0;
11056 if (! (mips_elf_create_dynamic_relocation
11057 (output_bfd, info, rel,
11058 e.d.h, NULL, sym->st_value, &entry, sgot)))
11059 return FALSE;
11060 }
11061 else
11062 entry = sym->st_value;
11063 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11064 }
11065 }
11066 }
11067
11068 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11069 name = h->root.root.string;
11070 if (h == elf_hash_table (info)->hdynamic
11071 || h == elf_hash_table (info)->hgot)
11072 sym->st_shndx = SHN_ABS;
11073 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11074 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11075 {
11076 sym->st_shndx = SHN_ABS;
11077 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11078 sym->st_value = 1;
11079 }
11080 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
11081 {
11082 sym->st_shndx = SHN_ABS;
11083 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11084 sym->st_value = elf_gp (output_bfd);
11085 }
11086 else if (SGI_COMPAT (output_bfd))
11087 {
11088 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11089 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11090 {
11091 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11092 sym->st_other = STO_PROTECTED;
11093 sym->st_value = 0;
11094 sym->st_shndx = SHN_MIPS_DATA;
11095 }
11096 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11097 {
11098 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11099 sym->st_other = STO_PROTECTED;
11100 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11101 sym->st_shndx = SHN_ABS;
11102 }
11103 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11104 {
11105 if (h->type == STT_FUNC)
11106 sym->st_shndx = SHN_MIPS_TEXT;
11107 else if (h->type == STT_OBJECT)
11108 sym->st_shndx = SHN_MIPS_DATA;
11109 }
11110 }
11111
11112 /* Emit a copy reloc, if needed. */
11113 if (h->needs_copy)
11114 {
11115 asection *s;
11116 bfd_vma symval;
11117
11118 BFD_ASSERT (h->dynindx != -1);
11119 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11120
11121 s = mips_elf_rel_dyn_section (info, FALSE);
11122 symval = (h->root.u.def.section->output_section->vma
11123 + h->root.u.def.section->output_offset
11124 + h->root.u.def.value);
11125 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11126 h->dynindx, R_MIPS_COPY, symval);
11127 }
11128
11129 /* Handle the IRIX6-specific symbols. */
11130 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11131 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11132
11133 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11134 to treat compressed symbols like any other. */
11135 if (ELF_ST_IS_MIPS16 (sym->st_other))
11136 {
11137 BFD_ASSERT (sym->st_value & 1);
11138 sym->st_other -= STO_MIPS16;
11139 }
11140 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11141 {
11142 BFD_ASSERT (sym->st_value & 1);
11143 sym->st_other -= STO_MICROMIPS;
11144 }
11145
11146 return TRUE;
11147 }
11148
11149 /* Likewise, for VxWorks. */
11150
11151 bfd_boolean
11152 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11153 struct bfd_link_info *info,
11154 struct elf_link_hash_entry *h,
11155 Elf_Internal_Sym *sym)
11156 {
11157 bfd *dynobj;
11158 asection *sgot;
11159 struct mips_got_info *g;
11160 struct mips_elf_link_hash_table *htab;
11161 struct mips_elf_link_hash_entry *hmips;
11162
11163 htab = mips_elf_hash_table (info);
11164 BFD_ASSERT (htab != NULL);
11165 dynobj = elf_hash_table (info)->dynobj;
11166 hmips = (struct mips_elf_link_hash_entry *) h;
11167
11168 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11169 {
11170 bfd_byte *loc;
11171 bfd_vma plt_address, got_address, got_offset, branch_offset;
11172 Elf_Internal_Rela rel;
11173 static const bfd_vma *plt_entry;
11174 bfd_vma gotplt_index;
11175 bfd_vma plt_offset;
11176
11177 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11178 gotplt_index = h->plt.plist->gotplt_index;
11179
11180 BFD_ASSERT (h->dynindx != -1);
11181 BFD_ASSERT (htab->splt != NULL);
11182 BFD_ASSERT (gotplt_index != MINUS_ONE);
11183 BFD_ASSERT (plt_offset <= htab->splt->size);
11184
11185 /* Calculate the address of the .plt entry. */
11186 plt_address = (htab->splt->output_section->vma
11187 + htab->splt->output_offset
11188 + plt_offset);
11189
11190 /* Calculate the address of the .got.plt entry. */
11191 got_address = (htab->sgotplt->output_section->vma
11192 + htab->sgotplt->output_offset
11193 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11194
11195 /* Calculate the offset of the .got.plt entry from
11196 _GLOBAL_OFFSET_TABLE_. */
11197 got_offset = mips_elf_gotplt_index (info, h);
11198
11199 /* Calculate the offset for the branch at the start of the PLT
11200 entry. The branch jumps to the beginning of .plt. */
11201 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11202
11203 /* Fill in the initial value of the .got.plt entry. */
11204 bfd_put_32 (output_bfd, plt_address,
11205 (htab->sgotplt->contents
11206 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11207
11208 /* Find out where the .plt entry should go. */
11209 loc = htab->splt->contents + plt_offset;
11210
11211 if (bfd_link_pic (info))
11212 {
11213 plt_entry = mips_vxworks_shared_plt_entry;
11214 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11215 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11216 }
11217 else
11218 {
11219 bfd_vma got_address_high, got_address_low;
11220
11221 plt_entry = mips_vxworks_exec_plt_entry;
11222 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11223 got_address_low = got_address & 0xffff;
11224
11225 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11226 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11227 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11228 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11229 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11230 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11231 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11232 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11233
11234 loc = (htab->srelplt2->contents
11235 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11236
11237 /* Emit a relocation for the .got.plt entry. */
11238 rel.r_offset = got_address;
11239 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11240 rel.r_addend = plt_offset;
11241 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11242
11243 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11244 loc += sizeof (Elf32_External_Rela);
11245 rel.r_offset = plt_address + 8;
11246 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11247 rel.r_addend = got_offset;
11248 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11249
11250 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11251 loc += sizeof (Elf32_External_Rela);
11252 rel.r_offset += 4;
11253 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11254 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11255 }
11256
11257 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11258 loc = (htab->srelplt->contents
11259 + gotplt_index * sizeof (Elf32_External_Rela));
11260 rel.r_offset = got_address;
11261 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11262 rel.r_addend = 0;
11263 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11264
11265 if (!h->def_regular)
11266 sym->st_shndx = SHN_UNDEF;
11267 }
11268
11269 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11270
11271 sgot = htab->sgot;
11272 g = htab->got_info;
11273 BFD_ASSERT (g != NULL);
11274
11275 /* See if this symbol has an entry in the GOT. */
11276 if (hmips->global_got_area != GGA_NONE)
11277 {
11278 bfd_vma offset;
11279 Elf_Internal_Rela outrel;
11280 bfd_byte *loc;
11281 asection *s;
11282
11283 /* Install the symbol value in the GOT. */
11284 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11285 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11286
11287 /* Add a dynamic relocation for it. */
11288 s = mips_elf_rel_dyn_section (info, FALSE);
11289 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11290 outrel.r_offset = (sgot->output_section->vma
11291 + sgot->output_offset
11292 + offset);
11293 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11294 outrel.r_addend = 0;
11295 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11296 }
11297
11298 /* Emit a copy reloc, if needed. */
11299 if (h->needs_copy)
11300 {
11301 Elf_Internal_Rela rel;
11302
11303 BFD_ASSERT (h->dynindx != -1);
11304
11305 rel.r_offset = (h->root.u.def.section->output_section->vma
11306 + h->root.u.def.section->output_offset
11307 + h->root.u.def.value);
11308 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11309 rel.r_addend = 0;
11310 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11311 htab->srelbss->contents
11312 + (htab->srelbss->reloc_count
11313 * sizeof (Elf32_External_Rela)));
11314 ++htab->srelbss->reloc_count;
11315 }
11316
11317 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11318 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11319 sym->st_value &= ~1;
11320
11321 return TRUE;
11322 }
11323
11324 /* Write out a plt0 entry to the beginning of .plt. */
11325
11326 static bfd_boolean
11327 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11328 {
11329 bfd_byte *loc;
11330 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11331 static const bfd_vma *plt_entry;
11332 struct mips_elf_link_hash_table *htab;
11333
11334 htab = mips_elf_hash_table (info);
11335 BFD_ASSERT (htab != NULL);
11336
11337 if (ABI_64_P (output_bfd))
11338 plt_entry = mips_n64_exec_plt0_entry;
11339 else if (ABI_N32_P (output_bfd))
11340 plt_entry = mips_n32_exec_plt0_entry;
11341 else if (!htab->plt_header_is_comp)
11342 plt_entry = mips_o32_exec_plt0_entry;
11343 else if (htab->insn32)
11344 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11345 else
11346 plt_entry = micromips_o32_exec_plt0_entry;
11347
11348 /* Calculate the value of .got.plt. */
11349 gotplt_value = (htab->sgotplt->output_section->vma
11350 + htab->sgotplt->output_offset);
11351 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11352 gotplt_value_low = gotplt_value & 0xffff;
11353
11354 /* The PLT sequence is not safe for N64 if .got.plt's address can
11355 not be loaded in two instructions. */
11356 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11357 || ~(gotplt_value | 0x7fffffff) == 0);
11358
11359 /* Install the PLT header. */
11360 loc = htab->splt->contents;
11361 if (plt_entry == micromips_o32_exec_plt0_entry)
11362 {
11363 bfd_vma gotpc_offset;
11364 bfd_vma loc_address;
11365 size_t i;
11366
11367 BFD_ASSERT (gotplt_value % 4 == 0);
11368
11369 loc_address = (htab->splt->output_section->vma
11370 + htab->splt->output_offset);
11371 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11372
11373 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11374 if (gotpc_offset + 0x1000000 >= 0x2000000)
11375 {
11376 (*_bfd_error_handler)
11377 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11378 output_bfd,
11379 htab->sgotplt->output_section,
11380 htab->splt->output_section,
11381 (long) gotpc_offset);
11382 bfd_set_error (bfd_error_no_error);
11383 return FALSE;
11384 }
11385 bfd_put_16 (output_bfd,
11386 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11387 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11388 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11389 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11390 }
11391 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11392 {
11393 size_t i;
11394
11395 bfd_put_16 (output_bfd, plt_entry[0], loc);
11396 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11397 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11398 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11399 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11400 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11401 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11402 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11403 }
11404 else
11405 {
11406 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11407 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11408 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11409 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11410 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11411 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11412 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11413 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11414 }
11415
11416 return TRUE;
11417 }
11418
11419 /* Install the PLT header for a VxWorks executable and finalize the
11420 contents of .rela.plt.unloaded. */
11421
11422 static void
11423 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11424 {
11425 Elf_Internal_Rela rela;
11426 bfd_byte *loc;
11427 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11428 static const bfd_vma *plt_entry;
11429 struct mips_elf_link_hash_table *htab;
11430
11431 htab = mips_elf_hash_table (info);
11432 BFD_ASSERT (htab != NULL);
11433
11434 plt_entry = mips_vxworks_exec_plt0_entry;
11435
11436 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11437 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11438 + htab->root.hgot->root.u.def.section->output_offset
11439 + htab->root.hgot->root.u.def.value);
11440
11441 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11442 got_value_low = got_value & 0xffff;
11443
11444 /* Calculate the address of the PLT header. */
11445 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11446
11447 /* Install the PLT header. */
11448 loc = htab->splt->contents;
11449 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11450 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11451 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11452 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11453 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11454 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11455
11456 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11457 loc = htab->srelplt2->contents;
11458 rela.r_offset = plt_address;
11459 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11460 rela.r_addend = 0;
11461 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11462 loc += sizeof (Elf32_External_Rela);
11463
11464 /* Output the relocation for the following addiu of
11465 %lo(_GLOBAL_OFFSET_TABLE_). */
11466 rela.r_offset += 4;
11467 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11468 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11469 loc += sizeof (Elf32_External_Rela);
11470
11471 /* Fix up the remaining relocations. They may have the wrong
11472 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11473 in which symbols were output. */
11474 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11475 {
11476 Elf_Internal_Rela rel;
11477
11478 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11479 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11480 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11481 loc += sizeof (Elf32_External_Rela);
11482
11483 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11484 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11485 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11486 loc += sizeof (Elf32_External_Rela);
11487
11488 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11489 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11490 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11491 loc += sizeof (Elf32_External_Rela);
11492 }
11493 }
11494
11495 /* Install the PLT header for a VxWorks shared library. */
11496
11497 static void
11498 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11499 {
11500 unsigned int i;
11501 struct mips_elf_link_hash_table *htab;
11502
11503 htab = mips_elf_hash_table (info);
11504 BFD_ASSERT (htab != NULL);
11505
11506 /* We just need to copy the entry byte-by-byte. */
11507 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11508 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11509 htab->splt->contents + i * 4);
11510 }
11511
11512 /* Finish up the dynamic sections. */
11513
11514 bfd_boolean
11515 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11516 struct bfd_link_info *info)
11517 {
11518 bfd *dynobj;
11519 asection *sdyn;
11520 asection *sgot;
11521 struct mips_got_info *gg, *g;
11522 struct mips_elf_link_hash_table *htab;
11523
11524 htab = mips_elf_hash_table (info);
11525 BFD_ASSERT (htab != NULL);
11526
11527 dynobj = elf_hash_table (info)->dynobj;
11528
11529 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11530
11531 sgot = htab->sgot;
11532 gg = htab->got_info;
11533
11534 if (elf_hash_table (info)->dynamic_sections_created)
11535 {
11536 bfd_byte *b;
11537 int dyn_to_skip = 0, dyn_skipped = 0;
11538
11539 BFD_ASSERT (sdyn != NULL);
11540 BFD_ASSERT (gg != NULL);
11541
11542 g = mips_elf_bfd_got (output_bfd, FALSE);
11543 BFD_ASSERT (g != NULL);
11544
11545 for (b = sdyn->contents;
11546 b < sdyn->contents + sdyn->size;
11547 b += MIPS_ELF_DYN_SIZE (dynobj))
11548 {
11549 Elf_Internal_Dyn dyn;
11550 const char *name;
11551 size_t elemsize;
11552 asection *s;
11553 bfd_boolean swap_out_p;
11554
11555 /* Read in the current dynamic entry. */
11556 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11557
11558 /* Assume that we're going to modify it and write it out. */
11559 swap_out_p = TRUE;
11560
11561 switch (dyn.d_tag)
11562 {
11563 case DT_RELENT:
11564 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11565 break;
11566
11567 case DT_RELAENT:
11568 BFD_ASSERT (htab->is_vxworks);
11569 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11570 break;
11571
11572 case DT_STRSZ:
11573 /* Rewrite DT_STRSZ. */
11574 dyn.d_un.d_val =
11575 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11576 break;
11577
11578 case DT_PLTGOT:
11579 s = htab->sgot;
11580 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11581 break;
11582
11583 case DT_MIPS_PLTGOT:
11584 s = htab->sgotplt;
11585 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11586 break;
11587
11588 case DT_MIPS_RLD_VERSION:
11589 dyn.d_un.d_val = 1; /* XXX */
11590 break;
11591
11592 case DT_MIPS_FLAGS:
11593 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11594 break;
11595
11596 case DT_MIPS_TIME_STAMP:
11597 {
11598 time_t t;
11599 time (&t);
11600 dyn.d_un.d_val = t;
11601 }
11602 break;
11603
11604 case DT_MIPS_ICHECKSUM:
11605 /* XXX FIXME: */
11606 swap_out_p = FALSE;
11607 break;
11608
11609 case DT_MIPS_IVERSION:
11610 /* XXX FIXME: */
11611 swap_out_p = FALSE;
11612 break;
11613
11614 case DT_MIPS_BASE_ADDRESS:
11615 s = output_bfd->sections;
11616 BFD_ASSERT (s != NULL);
11617 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11618 break;
11619
11620 case DT_MIPS_LOCAL_GOTNO:
11621 dyn.d_un.d_val = g->local_gotno;
11622 break;
11623
11624 case DT_MIPS_UNREFEXTNO:
11625 /* The index into the dynamic symbol table which is the
11626 entry of the first external symbol that is not
11627 referenced within the same object. */
11628 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11629 break;
11630
11631 case DT_MIPS_GOTSYM:
11632 if (htab->global_gotsym)
11633 {
11634 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11635 break;
11636 }
11637 /* In case if we don't have global got symbols we default
11638 to setting DT_MIPS_GOTSYM to the same value as
11639 DT_MIPS_SYMTABNO, so we just fall through. */
11640
11641 case DT_MIPS_SYMTABNO:
11642 name = ".dynsym";
11643 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11644 s = bfd_get_linker_section (dynobj, name);
11645
11646 if (s != NULL)
11647 dyn.d_un.d_val = s->size / elemsize;
11648 else
11649 dyn.d_un.d_val = 0;
11650 break;
11651
11652 case DT_MIPS_HIPAGENO:
11653 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11654 break;
11655
11656 case DT_MIPS_RLD_MAP:
11657 {
11658 struct elf_link_hash_entry *h;
11659 h = mips_elf_hash_table (info)->rld_symbol;
11660 if (!h)
11661 {
11662 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11663 swap_out_p = FALSE;
11664 break;
11665 }
11666 s = h->root.u.def.section;
11667
11668 /* The MIPS_RLD_MAP tag stores the absolute address of the
11669 debug pointer. */
11670 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11671 + h->root.u.def.value);
11672 }
11673 break;
11674
11675 case DT_MIPS_RLD_MAP_REL:
11676 {
11677 struct elf_link_hash_entry *h;
11678 bfd_vma dt_addr, rld_addr;
11679 h = mips_elf_hash_table (info)->rld_symbol;
11680 if (!h)
11681 {
11682 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11683 swap_out_p = FALSE;
11684 break;
11685 }
11686 s = h->root.u.def.section;
11687
11688 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11689 pointer, relative to the address of the tag. */
11690 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11691 + (b - sdyn->contents));
11692 rld_addr = (s->output_section->vma + s->output_offset
11693 + h->root.u.def.value);
11694 dyn.d_un.d_ptr = rld_addr - dt_addr;
11695 }
11696 break;
11697
11698 case DT_MIPS_OPTIONS:
11699 s = (bfd_get_section_by_name
11700 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11701 dyn.d_un.d_ptr = s->vma;
11702 break;
11703
11704 case DT_RELASZ:
11705 BFD_ASSERT (htab->is_vxworks);
11706 /* The count does not include the JUMP_SLOT relocations. */
11707 if (htab->srelplt)
11708 dyn.d_un.d_val -= htab->srelplt->size;
11709 break;
11710
11711 case DT_PLTREL:
11712 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11713 if (htab->is_vxworks)
11714 dyn.d_un.d_val = DT_RELA;
11715 else
11716 dyn.d_un.d_val = DT_REL;
11717 break;
11718
11719 case DT_PLTRELSZ:
11720 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11721 dyn.d_un.d_val = htab->srelplt->size;
11722 break;
11723
11724 case DT_JMPREL:
11725 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11726 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11727 + htab->srelplt->output_offset);
11728 break;
11729
11730 case DT_TEXTREL:
11731 /* If we didn't need any text relocations after all, delete
11732 the dynamic tag. */
11733 if (!(info->flags & DF_TEXTREL))
11734 {
11735 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11736 swap_out_p = FALSE;
11737 }
11738 break;
11739
11740 case DT_FLAGS:
11741 /* If we didn't need any text relocations after all, clear
11742 DF_TEXTREL from DT_FLAGS. */
11743 if (!(info->flags & DF_TEXTREL))
11744 dyn.d_un.d_val &= ~DF_TEXTREL;
11745 else
11746 swap_out_p = FALSE;
11747 break;
11748
11749 default:
11750 swap_out_p = FALSE;
11751 if (htab->is_vxworks
11752 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11753 swap_out_p = TRUE;
11754 break;
11755 }
11756
11757 if (swap_out_p || dyn_skipped)
11758 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11759 (dynobj, &dyn, b - dyn_skipped);
11760
11761 if (dyn_to_skip)
11762 {
11763 dyn_skipped += dyn_to_skip;
11764 dyn_to_skip = 0;
11765 }
11766 }
11767
11768 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11769 if (dyn_skipped > 0)
11770 memset (b - dyn_skipped, 0, dyn_skipped);
11771 }
11772
11773 if (sgot != NULL && sgot->size > 0
11774 && !bfd_is_abs_section (sgot->output_section))
11775 {
11776 if (htab->is_vxworks)
11777 {
11778 /* The first entry of the global offset table points to the
11779 ".dynamic" section. The second is initialized by the
11780 loader and contains the shared library identifier.
11781 The third is also initialized by the loader and points
11782 to the lazy resolution stub. */
11783 MIPS_ELF_PUT_WORD (output_bfd,
11784 sdyn->output_offset + sdyn->output_section->vma,
11785 sgot->contents);
11786 MIPS_ELF_PUT_WORD (output_bfd, 0,
11787 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11788 MIPS_ELF_PUT_WORD (output_bfd, 0,
11789 sgot->contents
11790 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11791 }
11792 else
11793 {
11794 /* The first entry of the global offset table will be filled at
11795 runtime. The second entry will be used by some runtime loaders.
11796 This isn't the case of IRIX rld. */
11797 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11798 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11799 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11800 }
11801
11802 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11803 = MIPS_ELF_GOT_SIZE (output_bfd);
11804 }
11805
11806 /* Generate dynamic relocations for the non-primary gots. */
11807 if (gg != NULL && gg->next)
11808 {
11809 Elf_Internal_Rela rel[3];
11810 bfd_vma addend = 0;
11811
11812 memset (rel, 0, sizeof (rel));
11813 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11814
11815 for (g = gg->next; g->next != gg; g = g->next)
11816 {
11817 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11818 + g->next->tls_gotno;
11819
11820 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11821 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11822 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11823 sgot->contents
11824 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11825
11826 if (! bfd_link_pic (info))
11827 continue;
11828
11829 for (; got_index < g->local_gotno; got_index++)
11830 {
11831 if (got_index >= g->assigned_low_gotno
11832 && got_index <= g->assigned_high_gotno)
11833 continue;
11834
11835 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11836 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11837 if (!(mips_elf_create_dynamic_relocation
11838 (output_bfd, info, rel, NULL,
11839 bfd_abs_section_ptr,
11840 0, &addend, sgot)))
11841 return FALSE;
11842 BFD_ASSERT (addend == 0);
11843 }
11844 }
11845 }
11846
11847 /* The generation of dynamic relocations for the non-primary gots
11848 adds more dynamic relocations. We cannot count them until
11849 here. */
11850
11851 if (elf_hash_table (info)->dynamic_sections_created)
11852 {
11853 bfd_byte *b;
11854 bfd_boolean swap_out_p;
11855
11856 BFD_ASSERT (sdyn != NULL);
11857
11858 for (b = sdyn->contents;
11859 b < sdyn->contents + sdyn->size;
11860 b += MIPS_ELF_DYN_SIZE (dynobj))
11861 {
11862 Elf_Internal_Dyn dyn;
11863 asection *s;
11864
11865 /* Read in the current dynamic entry. */
11866 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11867
11868 /* Assume that we're going to modify it and write it out. */
11869 swap_out_p = TRUE;
11870
11871 switch (dyn.d_tag)
11872 {
11873 case DT_RELSZ:
11874 /* Reduce DT_RELSZ to account for any relocations we
11875 decided not to make. This is for the n64 irix rld,
11876 which doesn't seem to apply any relocations if there
11877 are trailing null entries. */
11878 s = mips_elf_rel_dyn_section (info, FALSE);
11879 dyn.d_un.d_val = (s->reloc_count
11880 * (ABI_64_P (output_bfd)
11881 ? sizeof (Elf64_Mips_External_Rel)
11882 : sizeof (Elf32_External_Rel)));
11883 /* Adjust the section size too. Tools like the prelinker
11884 can reasonably expect the values to the same. */
11885 elf_section_data (s->output_section)->this_hdr.sh_size
11886 = dyn.d_un.d_val;
11887 break;
11888
11889 default:
11890 swap_out_p = FALSE;
11891 break;
11892 }
11893
11894 if (swap_out_p)
11895 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11896 (dynobj, &dyn, b);
11897 }
11898 }
11899
11900 {
11901 asection *s;
11902 Elf32_compact_rel cpt;
11903
11904 if (SGI_COMPAT (output_bfd))
11905 {
11906 /* Write .compact_rel section out. */
11907 s = bfd_get_linker_section (dynobj, ".compact_rel");
11908 if (s != NULL)
11909 {
11910 cpt.id1 = 1;
11911 cpt.num = s->reloc_count;
11912 cpt.id2 = 2;
11913 cpt.offset = (s->output_section->filepos
11914 + sizeof (Elf32_External_compact_rel));
11915 cpt.reserved0 = 0;
11916 cpt.reserved1 = 0;
11917 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11918 ((Elf32_External_compact_rel *)
11919 s->contents));
11920
11921 /* Clean up a dummy stub function entry in .text. */
11922 if (htab->sstubs != NULL)
11923 {
11924 file_ptr dummy_offset;
11925
11926 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11927 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11928 memset (htab->sstubs->contents + dummy_offset, 0,
11929 htab->function_stub_size);
11930 }
11931 }
11932 }
11933
11934 /* The psABI says that the dynamic relocations must be sorted in
11935 increasing order of r_symndx. The VxWorks EABI doesn't require
11936 this, and because the code below handles REL rather than RELA
11937 relocations, using it for VxWorks would be outright harmful. */
11938 if (!htab->is_vxworks)
11939 {
11940 s = mips_elf_rel_dyn_section (info, FALSE);
11941 if (s != NULL
11942 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11943 {
11944 reldyn_sorting_bfd = output_bfd;
11945
11946 if (ABI_64_P (output_bfd))
11947 qsort ((Elf64_External_Rel *) s->contents + 1,
11948 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11949 sort_dynamic_relocs_64);
11950 else
11951 qsort ((Elf32_External_Rel *) s->contents + 1,
11952 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11953 sort_dynamic_relocs);
11954 }
11955 }
11956 }
11957
11958 if (htab->splt && htab->splt->size > 0)
11959 {
11960 if (htab->is_vxworks)
11961 {
11962 if (bfd_link_pic (info))
11963 mips_vxworks_finish_shared_plt (output_bfd, info);
11964 else
11965 mips_vxworks_finish_exec_plt (output_bfd, info);
11966 }
11967 else
11968 {
11969 BFD_ASSERT (!bfd_link_pic (info));
11970 if (!mips_finish_exec_plt (output_bfd, info))
11971 return FALSE;
11972 }
11973 }
11974 return TRUE;
11975 }
11976
11977
11978 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11979
11980 static void
11981 mips_set_isa_flags (bfd *abfd)
11982 {
11983 flagword val;
11984
11985 switch (bfd_get_mach (abfd))
11986 {
11987 default:
11988 case bfd_mach_mips3000:
11989 val = E_MIPS_ARCH_1;
11990 break;
11991
11992 case bfd_mach_mips3900:
11993 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11994 break;
11995
11996 case bfd_mach_mips6000:
11997 val = E_MIPS_ARCH_2;
11998 break;
11999
12000 case bfd_mach_mips4000:
12001 case bfd_mach_mips4300:
12002 case bfd_mach_mips4400:
12003 case bfd_mach_mips4600:
12004 val = E_MIPS_ARCH_3;
12005 break;
12006
12007 case bfd_mach_mips4010:
12008 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12009 break;
12010
12011 case bfd_mach_mips4100:
12012 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12013 break;
12014
12015 case bfd_mach_mips4111:
12016 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12017 break;
12018
12019 case bfd_mach_mips4120:
12020 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12021 break;
12022
12023 case bfd_mach_mips4650:
12024 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12025 break;
12026
12027 case bfd_mach_mips5400:
12028 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12029 break;
12030
12031 case bfd_mach_mips5500:
12032 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12033 break;
12034
12035 case bfd_mach_mips5900:
12036 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12037 break;
12038
12039 case bfd_mach_mips9000:
12040 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12041 break;
12042
12043 case bfd_mach_mips5000:
12044 case bfd_mach_mips7000:
12045 case bfd_mach_mips8000:
12046 case bfd_mach_mips10000:
12047 case bfd_mach_mips12000:
12048 case bfd_mach_mips14000:
12049 case bfd_mach_mips16000:
12050 val = E_MIPS_ARCH_4;
12051 break;
12052
12053 case bfd_mach_mips5:
12054 val = E_MIPS_ARCH_5;
12055 break;
12056
12057 case bfd_mach_mips_loongson_2e:
12058 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12059 break;
12060
12061 case bfd_mach_mips_loongson_2f:
12062 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12063 break;
12064
12065 case bfd_mach_mips_sb1:
12066 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12067 break;
12068
12069 case bfd_mach_mips_loongson_3a:
12070 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
12071 break;
12072
12073 case bfd_mach_mips_octeon:
12074 case bfd_mach_mips_octeonp:
12075 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12076 break;
12077
12078 case bfd_mach_mips_octeon3:
12079 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12080 break;
12081
12082 case bfd_mach_mips_xlr:
12083 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12084 break;
12085
12086 case bfd_mach_mips_octeon2:
12087 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12088 break;
12089
12090 case bfd_mach_mipsisa32:
12091 val = E_MIPS_ARCH_32;
12092 break;
12093
12094 case bfd_mach_mipsisa64:
12095 val = E_MIPS_ARCH_64;
12096 break;
12097
12098 case bfd_mach_mipsisa32r2:
12099 case bfd_mach_mipsisa32r3:
12100 case bfd_mach_mipsisa32r5:
12101 val = E_MIPS_ARCH_32R2;
12102 break;
12103
12104 case bfd_mach_mipsisa64r2:
12105 case bfd_mach_mipsisa64r3:
12106 case bfd_mach_mipsisa64r5:
12107 val = E_MIPS_ARCH_64R2;
12108 break;
12109
12110 case bfd_mach_mipsisa32r6:
12111 val = E_MIPS_ARCH_32R6;
12112 break;
12113
12114 case bfd_mach_mipsisa64r6:
12115 val = E_MIPS_ARCH_64R6;
12116 break;
12117 }
12118 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12119 elf_elfheader (abfd)->e_flags |= val;
12120
12121 }
12122
12123
12124 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12125 Don't do so for code sections. We want to keep ordering of HI16/LO16
12126 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12127 relocs to be sorted. */
12128
12129 bfd_boolean
12130 _bfd_mips_elf_sort_relocs_p (asection *sec)
12131 {
12132 return (sec->flags & SEC_CODE) == 0;
12133 }
12134
12135
12136 /* The final processing done just before writing out a MIPS ELF object
12137 file. This gets the MIPS architecture right based on the machine
12138 number. This is used by both the 32-bit and the 64-bit ABI. */
12139
12140 void
12141 _bfd_mips_elf_final_write_processing (bfd *abfd,
12142 bfd_boolean linker ATTRIBUTE_UNUSED)
12143 {
12144 unsigned int i;
12145 Elf_Internal_Shdr **hdrpp;
12146 const char *name;
12147 asection *sec;
12148
12149 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12150 is nonzero. This is for compatibility with old objects, which used
12151 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12152 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12153 mips_set_isa_flags (abfd);
12154
12155 /* Set the sh_info field for .gptab sections and other appropriate
12156 info for each special section. */
12157 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12158 i < elf_numsections (abfd);
12159 i++, hdrpp++)
12160 {
12161 switch ((*hdrpp)->sh_type)
12162 {
12163 case SHT_MIPS_MSYM:
12164 case SHT_MIPS_LIBLIST:
12165 sec = bfd_get_section_by_name (abfd, ".dynstr");
12166 if (sec != NULL)
12167 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12168 break;
12169
12170 case SHT_MIPS_GPTAB:
12171 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12172 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12173 BFD_ASSERT (name != NULL
12174 && CONST_STRNEQ (name, ".gptab."));
12175 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12176 BFD_ASSERT (sec != NULL);
12177 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12178 break;
12179
12180 case SHT_MIPS_CONTENT:
12181 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12182 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12183 BFD_ASSERT (name != NULL
12184 && CONST_STRNEQ (name, ".MIPS.content"));
12185 sec = bfd_get_section_by_name (abfd,
12186 name + sizeof ".MIPS.content" - 1);
12187 BFD_ASSERT (sec != NULL);
12188 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12189 break;
12190
12191 case SHT_MIPS_SYMBOL_LIB:
12192 sec = bfd_get_section_by_name (abfd, ".dynsym");
12193 if (sec != NULL)
12194 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12195 sec = bfd_get_section_by_name (abfd, ".liblist");
12196 if (sec != NULL)
12197 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12198 break;
12199
12200 case SHT_MIPS_EVENTS:
12201 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12202 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12203 BFD_ASSERT (name != NULL);
12204 if (CONST_STRNEQ (name, ".MIPS.events"))
12205 sec = bfd_get_section_by_name (abfd,
12206 name + sizeof ".MIPS.events" - 1);
12207 else
12208 {
12209 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12210 sec = bfd_get_section_by_name (abfd,
12211 (name
12212 + sizeof ".MIPS.post_rel" - 1));
12213 }
12214 BFD_ASSERT (sec != NULL);
12215 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12216 break;
12217
12218 }
12219 }
12220 }
12221 \f
12222 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12223 segments. */
12224
12225 int
12226 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12227 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12228 {
12229 asection *s;
12230 int ret = 0;
12231
12232 /* See if we need a PT_MIPS_REGINFO segment. */
12233 s = bfd_get_section_by_name (abfd, ".reginfo");
12234 if (s && (s->flags & SEC_LOAD))
12235 ++ret;
12236
12237 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12238 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12239 ++ret;
12240
12241 /* See if we need a PT_MIPS_OPTIONS segment. */
12242 if (IRIX_COMPAT (abfd) == ict_irix6
12243 && bfd_get_section_by_name (abfd,
12244 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12245 ++ret;
12246
12247 /* See if we need a PT_MIPS_RTPROC segment. */
12248 if (IRIX_COMPAT (abfd) == ict_irix5
12249 && bfd_get_section_by_name (abfd, ".dynamic")
12250 && bfd_get_section_by_name (abfd, ".mdebug"))
12251 ++ret;
12252
12253 /* Allocate a PT_NULL header in dynamic objects. See
12254 _bfd_mips_elf_modify_segment_map for details. */
12255 if (!SGI_COMPAT (abfd)
12256 && bfd_get_section_by_name (abfd, ".dynamic"))
12257 ++ret;
12258
12259 return ret;
12260 }
12261
12262 /* Modify the segment map for an IRIX5 executable. */
12263
12264 bfd_boolean
12265 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12266 struct bfd_link_info *info)
12267 {
12268 asection *s;
12269 struct elf_segment_map *m, **pm;
12270 bfd_size_type amt;
12271
12272 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12273 segment. */
12274 s = bfd_get_section_by_name (abfd, ".reginfo");
12275 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12276 {
12277 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12278 if (m->p_type == PT_MIPS_REGINFO)
12279 break;
12280 if (m == NULL)
12281 {
12282 amt = sizeof *m;
12283 m = bfd_zalloc (abfd, amt);
12284 if (m == NULL)
12285 return FALSE;
12286
12287 m->p_type = PT_MIPS_REGINFO;
12288 m->count = 1;
12289 m->sections[0] = s;
12290
12291 /* We want to put it after the PHDR and INTERP segments. */
12292 pm = &elf_seg_map (abfd);
12293 while (*pm != NULL
12294 && ((*pm)->p_type == PT_PHDR
12295 || (*pm)->p_type == PT_INTERP))
12296 pm = &(*pm)->next;
12297
12298 m->next = *pm;
12299 *pm = m;
12300 }
12301 }
12302
12303 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12304 segment. */
12305 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12306 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12307 {
12308 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12309 if (m->p_type == PT_MIPS_ABIFLAGS)
12310 break;
12311 if (m == NULL)
12312 {
12313 amt = sizeof *m;
12314 m = bfd_zalloc (abfd, amt);
12315 if (m == NULL)
12316 return FALSE;
12317
12318 m->p_type = PT_MIPS_ABIFLAGS;
12319 m->count = 1;
12320 m->sections[0] = s;
12321
12322 /* We want to put it after the PHDR and INTERP segments. */
12323 pm = &elf_seg_map (abfd);
12324 while (*pm != NULL
12325 && ((*pm)->p_type == PT_PHDR
12326 || (*pm)->p_type == PT_INTERP))
12327 pm = &(*pm)->next;
12328
12329 m->next = *pm;
12330 *pm = m;
12331 }
12332 }
12333
12334 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12335 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12336 PT_MIPS_OPTIONS segment immediately following the program header
12337 table. */
12338 if (NEWABI_P (abfd)
12339 /* On non-IRIX6 new abi, we'll have already created a segment
12340 for this section, so don't create another. I'm not sure this
12341 is not also the case for IRIX 6, but I can't test it right
12342 now. */
12343 && IRIX_COMPAT (abfd) == ict_irix6)
12344 {
12345 for (s = abfd->sections; s; s = s->next)
12346 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12347 break;
12348
12349 if (s)
12350 {
12351 struct elf_segment_map *options_segment;
12352
12353 pm = &elf_seg_map (abfd);
12354 while (*pm != NULL
12355 && ((*pm)->p_type == PT_PHDR
12356 || (*pm)->p_type == PT_INTERP))
12357 pm = &(*pm)->next;
12358
12359 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12360 {
12361 amt = sizeof (struct elf_segment_map);
12362 options_segment = bfd_zalloc (abfd, amt);
12363 options_segment->next = *pm;
12364 options_segment->p_type = PT_MIPS_OPTIONS;
12365 options_segment->p_flags = PF_R;
12366 options_segment->p_flags_valid = TRUE;
12367 options_segment->count = 1;
12368 options_segment->sections[0] = s;
12369 *pm = options_segment;
12370 }
12371 }
12372 }
12373 else
12374 {
12375 if (IRIX_COMPAT (abfd) == ict_irix5)
12376 {
12377 /* If there are .dynamic and .mdebug sections, we make a room
12378 for the RTPROC header. FIXME: Rewrite without section names. */
12379 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12380 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12381 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12382 {
12383 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12384 if (m->p_type == PT_MIPS_RTPROC)
12385 break;
12386 if (m == NULL)
12387 {
12388 amt = sizeof *m;
12389 m = bfd_zalloc (abfd, amt);
12390 if (m == NULL)
12391 return FALSE;
12392
12393 m->p_type = PT_MIPS_RTPROC;
12394
12395 s = bfd_get_section_by_name (abfd, ".rtproc");
12396 if (s == NULL)
12397 {
12398 m->count = 0;
12399 m->p_flags = 0;
12400 m->p_flags_valid = 1;
12401 }
12402 else
12403 {
12404 m->count = 1;
12405 m->sections[0] = s;
12406 }
12407
12408 /* We want to put it after the DYNAMIC segment. */
12409 pm = &elf_seg_map (abfd);
12410 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12411 pm = &(*pm)->next;
12412 if (*pm != NULL)
12413 pm = &(*pm)->next;
12414
12415 m->next = *pm;
12416 *pm = m;
12417 }
12418 }
12419 }
12420 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12421 .dynstr, .dynsym, and .hash sections, and everything in
12422 between. */
12423 for (pm = &elf_seg_map (abfd); *pm != NULL;
12424 pm = &(*pm)->next)
12425 if ((*pm)->p_type == PT_DYNAMIC)
12426 break;
12427 m = *pm;
12428 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12429 glibc's dynamic linker has traditionally derived the number of
12430 tags from the p_filesz field, and sometimes allocates stack
12431 arrays of that size. An overly-big PT_DYNAMIC segment can
12432 be actively harmful in such cases. Making PT_DYNAMIC contain
12433 other sections can also make life hard for the prelinker,
12434 which might move one of the other sections to a different
12435 PT_LOAD segment. */
12436 if (SGI_COMPAT (abfd)
12437 && m != NULL
12438 && m->count == 1
12439 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12440 {
12441 static const char *sec_names[] =
12442 {
12443 ".dynamic", ".dynstr", ".dynsym", ".hash"
12444 };
12445 bfd_vma low, high;
12446 unsigned int i, c;
12447 struct elf_segment_map *n;
12448
12449 low = ~(bfd_vma) 0;
12450 high = 0;
12451 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12452 {
12453 s = bfd_get_section_by_name (abfd, sec_names[i]);
12454 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12455 {
12456 bfd_size_type sz;
12457
12458 if (low > s->vma)
12459 low = s->vma;
12460 sz = s->size;
12461 if (high < s->vma + sz)
12462 high = s->vma + sz;
12463 }
12464 }
12465
12466 c = 0;
12467 for (s = abfd->sections; s != NULL; s = s->next)
12468 if ((s->flags & SEC_LOAD) != 0
12469 && s->vma >= low
12470 && s->vma + s->size <= high)
12471 ++c;
12472
12473 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12474 n = bfd_zalloc (abfd, amt);
12475 if (n == NULL)
12476 return FALSE;
12477 *n = *m;
12478 n->count = c;
12479
12480 i = 0;
12481 for (s = abfd->sections; s != NULL; s = s->next)
12482 {
12483 if ((s->flags & SEC_LOAD) != 0
12484 && s->vma >= low
12485 && s->vma + s->size <= high)
12486 {
12487 n->sections[i] = s;
12488 ++i;
12489 }
12490 }
12491
12492 *pm = n;
12493 }
12494 }
12495
12496 /* Allocate a spare program header in dynamic objects so that tools
12497 like the prelinker can add an extra PT_LOAD entry.
12498
12499 If the prelinker needs to make room for a new PT_LOAD entry, its
12500 standard procedure is to move the first (read-only) sections into
12501 the new (writable) segment. However, the MIPS ABI requires
12502 .dynamic to be in a read-only segment, and the section will often
12503 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12504
12505 Although the prelinker could in principle move .dynamic to a
12506 writable segment, it seems better to allocate a spare program
12507 header instead, and avoid the need to move any sections.
12508 There is a long tradition of allocating spare dynamic tags,
12509 so allocating a spare program header seems like a natural
12510 extension.
12511
12512 If INFO is NULL, we may be copying an already prelinked binary
12513 with objcopy or strip, so do not add this header. */
12514 if (info != NULL
12515 && !SGI_COMPAT (abfd)
12516 && bfd_get_section_by_name (abfd, ".dynamic"))
12517 {
12518 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12519 if ((*pm)->p_type == PT_NULL)
12520 break;
12521 if (*pm == NULL)
12522 {
12523 m = bfd_zalloc (abfd, sizeof (*m));
12524 if (m == NULL)
12525 return FALSE;
12526
12527 m->p_type = PT_NULL;
12528 *pm = m;
12529 }
12530 }
12531
12532 return TRUE;
12533 }
12534 \f
12535 /* Return the section that should be marked against GC for a given
12536 relocation. */
12537
12538 asection *
12539 _bfd_mips_elf_gc_mark_hook (asection *sec,
12540 struct bfd_link_info *info,
12541 Elf_Internal_Rela *rel,
12542 struct elf_link_hash_entry *h,
12543 Elf_Internal_Sym *sym)
12544 {
12545 /* ??? Do mips16 stub sections need to be handled special? */
12546
12547 if (h != NULL)
12548 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12549 {
12550 case R_MIPS_GNU_VTINHERIT:
12551 case R_MIPS_GNU_VTENTRY:
12552 return NULL;
12553 }
12554
12555 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12556 }
12557
12558 /* Update the got entry reference counts for the section being removed. */
12559
12560 bfd_boolean
12561 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12562 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12563 asection *sec ATTRIBUTE_UNUSED,
12564 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12565 {
12566 #if 0
12567 Elf_Internal_Shdr *symtab_hdr;
12568 struct elf_link_hash_entry **sym_hashes;
12569 bfd_signed_vma *local_got_refcounts;
12570 const Elf_Internal_Rela *rel, *relend;
12571 unsigned long r_symndx;
12572 struct elf_link_hash_entry *h;
12573
12574 if (bfd_link_relocatable (info))
12575 return TRUE;
12576
12577 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12578 sym_hashes = elf_sym_hashes (abfd);
12579 local_got_refcounts = elf_local_got_refcounts (abfd);
12580
12581 relend = relocs + sec->reloc_count;
12582 for (rel = relocs; rel < relend; rel++)
12583 switch (ELF_R_TYPE (abfd, rel->r_info))
12584 {
12585 case R_MIPS16_GOT16:
12586 case R_MIPS16_CALL16:
12587 case R_MIPS_GOT16:
12588 case R_MIPS_CALL16:
12589 case R_MIPS_CALL_HI16:
12590 case R_MIPS_CALL_LO16:
12591 case R_MIPS_GOT_HI16:
12592 case R_MIPS_GOT_LO16:
12593 case R_MIPS_GOT_DISP:
12594 case R_MIPS_GOT_PAGE:
12595 case R_MIPS_GOT_OFST:
12596 case R_MICROMIPS_GOT16:
12597 case R_MICROMIPS_CALL16:
12598 case R_MICROMIPS_CALL_HI16:
12599 case R_MICROMIPS_CALL_LO16:
12600 case R_MICROMIPS_GOT_HI16:
12601 case R_MICROMIPS_GOT_LO16:
12602 case R_MICROMIPS_GOT_DISP:
12603 case R_MICROMIPS_GOT_PAGE:
12604 case R_MICROMIPS_GOT_OFST:
12605 /* ??? It would seem that the existing MIPS code does no sort
12606 of reference counting or whatnot on its GOT and PLT entries,
12607 so it is not possible to garbage collect them at this time. */
12608 break;
12609
12610 default:
12611 break;
12612 }
12613 #endif
12614
12615 return TRUE;
12616 }
12617
12618 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12619
12620 bfd_boolean
12621 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12622 elf_gc_mark_hook_fn gc_mark_hook)
12623 {
12624 bfd *sub;
12625
12626 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12627
12628 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12629 {
12630 asection *o;
12631
12632 if (! is_mips_elf (sub))
12633 continue;
12634
12635 for (o = sub->sections; o != NULL; o = o->next)
12636 if (!o->gc_mark
12637 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12638 (bfd_get_section_name (sub, o)))
12639 {
12640 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12641 return FALSE;
12642 }
12643 }
12644
12645 return TRUE;
12646 }
12647 \f
12648 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12649 hiding the old indirect symbol. Process additional relocation
12650 information. Also called for weakdefs, in which case we just let
12651 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12652
12653 void
12654 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12655 struct elf_link_hash_entry *dir,
12656 struct elf_link_hash_entry *ind)
12657 {
12658 struct mips_elf_link_hash_entry *dirmips, *indmips;
12659
12660 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12661
12662 dirmips = (struct mips_elf_link_hash_entry *) dir;
12663 indmips = (struct mips_elf_link_hash_entry *) ind;
12664 /* Any absolute non-dynamic relocations against an indirect or weak
12665 definition will be against the target symbol. */
12666 if (indmips->has_static_relocs)
12667 dirmips->has_static_relocs = TRUE;
12668
12669 if (ind->root.type != bfd_link_hash_indirect)
12670 return;
12671
12672 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12673 if (indmips->readonly_reloc)
12674 dirmips->readonly_reloc = TRUE;
12675 if (indmips->no_fn_stub)
12676 dirmips->no_fn_stub = TRUE;
12677 if (indmips->fn_stub)
12678 {
12679 dirmips->fn_stub = indmips->fn_stub;
12680 indmips->fn_stub = NULL;
12681 }
12682 if (indmips->need_fn_stub)
12683 {
12684 dirmips->need_fn_stub = TRUE;
12685 indmips->need_fn_stub = FALSE;
12686 }
12687 if (indmips->call_stub)
12688 {
12689 dirmips->call_stub = indmips->call_stub;
12690 indmips->call_stub = NULL;
12691 }
12692 if (indmips->call_fp_stub)
12693 {
12694 dirmips->call_fp_stub = indmips->call_fp_stub;
12695 indmips->call_fp_stub = NULL;
12696 }
12697 if (indmips->global_got_area < dirmips->global_got_area)
12698 dirmips->global_got_area = indmips->global_got_area;
12699 if (indmips->global_got_area < GGA_NONE)
12700 indmips->global_got_area = GGA_NONE;
12701 if (indmips->has_nonpic_branches)
12702 dirmips->has_nonpic_branches = TRUE;
12703 }
12704 \f
12705 #define PDR_SIZE 32
12706
12707 bfd_boolean
12708 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12709 struct bfd_link_info *info)
12710 {
12711 asection *o;
12712 bfd_boolean ret = FALSE;
12713 unsigned char *tdata;
12714 size_t i, skip;
12715
12716 o = bfd_get_section_by_name (abfd, ".pdr");
12717 if (! o)
12718 return FALSE;
12719 if (o->size == 0)
12720 return FALSE;
12721 if (o->size % PDR_SIZE != 0)
12722 return FALSE;
12723 if (o->output_section != NULL
12724 && bfd_is_abs_section (o->output_section))
12725 return FALSE;
12726
12727 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12728 if (! tdata)
12729 return FALSE;
12730
12731 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12732 info->keep_memory);
12733 if (!cookie->rels)
12734 {
12735 free (tdata);
12736 return FALSE;
12737 }
12738
12739 cookie->rel = cookie->rels;
12740 cookie->relend = cookie->rels + o->reloc_count;
12741
12742 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12743 {
12744 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12745 {
12746 tdata[i] = 1;
12747 skip ++;
12748 }
12749 }
12750
12751 if (skip != 0)
12752 {
12753 mips_elf_section_data (o)->u.tdata = tdata;
12754 if (o->rawsize == 0)
12755 o->rawsize = o->size;
12756 o->size -= skip * PDR_SIZE;
12757 ret = TRUE;
12758 }
12759 else
12760 free (tdata);
12761
12762 if (! info->keep_memory)
12763 free (cookie->rels);
12764
12765 return ret;
12766 }
12767
12768 bfd_boolean
12769 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12770 {
12771 if (strcmp (sec->name, ".pdr") == 0)
12772 return TRUE;
12773 return FALSE;
12774 }
12775
12776 bfd_boolean
12777 _bfd_mips_elf_write_section (bfd *output_bfd,
12778 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12779 asection *sec, bfd_byte *contents)
12780 {
12781 bfd_byte *to, *from, *end;
12782 int i;
12783
12784 if (strcmp (sec->name, ".pdr") != 0)
12785 return FALSE;
12786
12787 if (mips_elf_section_data (sec)->u.tdata == NULL)
12788 return FALSE;
12789
12790 to = contents;
12791 end = contents + sec->size;
12792 for (from = contents, i = 0;
12793 from < end;
12794 from += PDR_SIZE, i++)
12795 {
12796 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12797 continue;
12798 if (to != from)
12799 memcpy (to, from, PDR_SIZE);
12800 to += PDR_SIZE;
12801 }
12802 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12803 sec->output_offset, sec->size);
12804 return TRUE;
12805 }
12806 \f
12807 /* microMIPS code retains local labels for linker relaxation. Omit them
12808 from output by default for clarity. */
12809
12810 bfd_boolean
12811 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12812 {
12813 return _bfd_elf_is_local_label_name (abfd, sym->name);
12814 }
12815
12816 /* MIPS ELF uses a special find_nearest_line routine in order the
12817 handle the ECOFF debugging information. */
12818
12819 struct mips_elf_find_line
12820 {
12821 struct ecoff_debug_info d;
12822 struct ecoff_find_line i;
12823 };
12824
12825 bfd_boolean
12826 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12827 asection *section, bfd_vma offset,
12828 const char **filename_ptr,
12829 const char **functionname_ptr,
12830 unsigned int *line_ptr,
12831 unsigned int *discriminator_ptr)
12832 {
12833 asection *msec;
12834
12835 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12836 filename_ptr, functionname_ptr,
12837 line_ptr, discriminator_ptr,
12838 dwarf_debug_sections,
12839 ABI_64_P (abfd) ? 8 : 0,
12840 &elf_tdata (abfd)->dwarf2_find_line_info))
12841 return TRUE;
12842
12843 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12844 filename_ptr, functionname_ptr,
12845 line_ptr))
12846 return TRUE;
12847
12848 msec = bfd_get_section_by_name (abfd, ".mdebug");
12849 if (msec != NULL)
12850 {
12851 flagword origflags;
12852 struct mips_elf_find_line *fi;
12853 const struct ecoff_debug_swap * const swap =
12854 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12855
12856 /* If we are called during a link, mips_elf_final_link may have
12857 cleared the SEC_HAS_CONTENTS field. We force it back on here
12858 if appropriate (which it normally will be). */
12859 origflags = msec->flags;
12860 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12861 msec->flags |= SEC_HAS_CONTENTS;
12862
12863 fi = mips_elf_tdata (abfd)->find_line_info;
12864 if (fi == NULL)
12865 {
12866 bfd_size_type external_fdr_size;
12867 char *fraw_src;
12868 char *fraw_end;
12869 struct fdr *fdr_ptr;
12870 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12871
12872 fi = bfd_zalloc (abfd, amt);
12873 if (fi == NULL)
12874 {
12875 msec->flags = origflags;
12876 return FALSE;
12877 }
12878
12879 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12880 {
12881 msec->flags = origflags;
12882 return FALSE;
12883 }
12884
12885 /* Swap in the FDR information. */
12886 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12887 fi->d.fdr = bfd_alloc (abfd, amt);
12888 if (fi->d.fdr == NULL)
12889 {
12890 msec->flags = origflags;
12891 return FALSE;
12892 }
12893 external_fdr_size = swap->external_fdr_size;
12894 fdr_ptr = fi->d.fdr;
12895 fraw_src = (char *) fi->d.external_fdr;
12896 fraw_end = (fraw_src
12897 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12898 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12899 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12900
12901 mips_elf_tdata (abfd)->find_line_info = fi;
12902
12903 /* Note that we don't bother to ever free this information.
12904 find_nearest_line is either called all the time, as in
12905 objdump -l, so the information should be saved, or it is
12906 rarely called, as in ld error messages, so the memory
12907 wasted is unimportant. Still, it would probably be a
12908 good idea for free_cached_info to throw it away. */
12909 }
12910
12911 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12912 &fi->i, filename_ptr, functionname_ptr,
12913 line_ptr))
12914 {
12915 msec->flags = origflags;
12916 return TRUE;
12917 }
12918
12919 msec->flags = origflags;
12920 }
12921
12922 /* Fall back on the generic ELF find_nearest_line routine. */
12923
12924 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12925 filename_ptr, functionname_ptr,
12926 line_ptr, discriminator_ptr);
12927 }
12928
12929 bfd_boolean
12930 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12931 const char **filename_ptr,
12932 const char **functionname_ptr,
12933 unsigned int *line_ptr)
12934 {
12935 bfd_boolean found;
12936 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12937 functionname_ptr, line_ptr,
12938 & elf_tdata (abfd)->dwarf2_find_line_info);
12939 return found;
12940 }
12941
12942 \f
12943 /* When are writing out the .options or .MIPS.options section,
12944 remember the bytes we are writing out, so that we can install the
12945 GP value in the section_processing routine. */
12946
12947 bfd_boolean
12948 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12949 const void *location,
12950 file_ptr offset, bfd_size_type count)
12951 {
12952 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12953 {
12954 bfd_byte *c;
12955
12956 if (elf_section_data (section) == NULL)
12957 {
12958 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12959 section->used_by_bfd = bfd_zalloc (abfd, amt);
12960 if (elf_section_data (section) == NULL)
12961 return FALSE;
12962 }
12963 c = mips_elf_section_data (section)->u.tdata;
12964 if (c == NULL)
12965 {
12966 c = bfd_zalloc (abfd, section->size);
12967 if (c == NULL)
12968 return FALSE;
12969 mips_elf_section_data (section)->u.tdata = c;
12970 }
12971
12972 memcpy (c + offset, location, count);
12973 }
12974
12975 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12976 count);
12977 }
12978
12979 /* This is almost identical to bfd_generic_get_... except that some
12980 MIPS relocations need to be handled specially. Sigh. */
12981
12982 bfd_byte *
12983 _bfd_elf_mips_get_relocated_section_contents
12984 (bfd *abfd,
12985 struct bfd_link_info *link_info,
12986 struct bfd_link_order *link_order,
12987 bfd_byte *data,
12988 bfd_boolean relocatable,
12989 asymbol **symbols)
12990 {
12991 /* Get enough memory to hold the stuff */
12992 bfd *input_bfd = link_order->u.indirect.section->owner;
12993 asection *input_section = link_order->u.indirect.section;
12994 bfd_size_type sz;
12995
12996 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12997 arelent **reloc_vector = NULL;
12998 long reloc_count;
12999
13000 if (reloc_size < 0)
13001 goto error_return;
13002
13003 reloc_vector = bfd_malloc (reloc_size);
13004 if (reloc_vector == NULL && reloc_size != 0)
13005 goto error_return;
13006
13007 /* read in the section */
13008 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13009 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13010 goto error_return;
13011
13012 reloc_count = bfd_canonicalize_reloc (input_bfd,
13013 input_section,
13014 reloc_vector,
13015 symbols);
13016 if (reloc_count < 0)
13017 goto error_return;
13018
13019 if (reloc_count > 0)
13020 {
13021 arelent **parent;
13022 /* for mips */
13023 int gp_found;
13024 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13025
13026 {
13027 struct bfd_hash_entry *h;
13028 struct bfd_link_hash_entry *lh;
13029 /* Skip all this stuff if we aren't mixing formats. */
13030 if (abfd && input_bfd
13031 && abfd->xvec == input_bfd->xvec)
13032 lh = 0;
13033 else
13034 {
13035 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13036 lh = (struct bfd_link_hash_entry *) h;
13037 }
13038 lookup:
13039 if (lh)
13040 {
13041 switch (lh->type)
13042 {
13043 case bfd_link_hash_undefined:
13044 case bfd_link_hash_undefweak:
13045 case bfd_link_hash_common:
13046 gp_found = 0;
13047 break;
13048 case bfd_link_hash_defined:
13049 case bfd_link_hash_defweak:
13050 gp_found = 1;
13051 gp = lh->u.def.value;
13052 break;
13053 case bfd_link_hash_indirect:
13054 case bfd_link_hash_warning:
13055 lh = lh->u.i.link;
13056 /* @@FIXME ignoring warning for now */
13057 goto lookup;
13058 case bfd_link_hash_new:
13059 default:
13060 abort ();
13061 }
13062 }
13063 else
13064 gp_found = 0;
13065 }
13066 /* end mips */
13067 for (parent = reloc_vector; *parent != NULL; parent++)
13068 {
13069 char *error_message = NULL;
13070 bfd_reloc_status_type r;
13071
13072 /* Specific to MIPS: Deal with relocation types that require
13073 knowing the gp of the output bfd. */
13074 asymbol *sym = *(*parent)->sym_ptr_ptr;
13075
13076 /* If we've managed to find the gp and have a special
13077 function for the relocation then go ahead, else default
13078 to the generic handling. */
13079 if (gp_found
13080 && (*parent)->howto->special_function
13081 == _bfd_mips_elf32_gprel16_reloc)
13082 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13083 input_section, relocatable,
13084 data, gp);
13085 else
13086 r = bfd_perform_relocation (input_bfd, *parent, data,
13087 input_section,
13088 relocatable ? abfd : NULL,
13089 &error_message);
13090
13091 if (relocatable)
13092 {
13093 asection *os = input_section->output_section;
13094
13095 /* A partial link, so keep the relocs */
13096 os->orelocation[os->reloc_count] = *parent;
13097 os->reloc_count++;
13098 }
13099
13100 if (r != bfd_reloc_ok)
13101 {
13102 switch (r)
13103 {
13104 case bfd_reloc_undefined:
13105 (*link_info->callbacks->undefined_symbol)
13106 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13107 input_bfd, input_section, (*parent)->address, TRUE);
13108 break;
13109 case bfd_reloc_dangerous:
13110 BFD_ASSERT (error_message != NULL);
13111 (*link_info->callbacks->reloc_dangerous)
13112 (link_info, error_message,
13113 input_bfd, input_section, (*parent)->address);
13114 break;
13115 case bfd_reloc_overflow:
13116 (*link_info->callbacks->reloc_overflow)
13117 (link_info, NULL,
13118 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13119 (*parent)->howto->name, (*parent)->addend,
13120 input_bfd, input_section, (*parent)->address);
13121 break;
13122 case bfd_reloc_outofrange:
13123 default:
13124 abort ();
13125 break;
13126 }
13127
13128 }
13129 }
13130 }
13131 if (reloc_vector != NULL)
13132 free (reloc_vector);
13133 return data;
13134
13135 error_return:
13136 if (reloc_vector != NULL)
13137 free (reloc_vector);
13138 return NULL;
13139 }
13140 \f
13141 static bfd_boolean
13142 mips_elf_relax_delete_bytes (bfd *abfd,
13143 asection *sec, bfd_vma addr, int count)
13144 {
13145 Elf_Internal_Shdr *symtab_hdr;
13146 unsigned int sec_shndx;
13147 bfd_byte *contents;
13148 Elf_Internal_Rela *irel, *irelend;
13149 Elf_Internal_Sym *isym;
13150 Elf_Internal_Sym *isymend;
13151 struct elf_link_hash_entry **sym_hashes;
13152 struct elf_link_hash_entry **end_hashes;
13153 struct elf_link_hash_entry **start_hashes;
13154 unsigned int symcount;
13155
13156 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13157 contents = elf_section_data (sec)->this_hdr.contents;
13158
13159 irel = elf_section_data (sec)->relocs;
13160 irelend = irel + sec->reloc_count;
13161
13162 /* Actually delete the bytes. */
13163 memmove (contents + addr, contents + addr + count,
13164 (size_t) (sec->size - addr - count));
13165 sec->size -= count;
13166
13167 /* Adjust all the relocs. */
13168 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13169 {
13170 /* Get the new reloc address. */
13171 if (irel->r_offset > addr)
13172 irel->r_offset -= count;
13173 }
13174
13175 BFD_ASSERT (addr % 2 == 0);
13176 BFD_ASSERT (count % 2 == 0);
13177
13178 /* Adjust the local symbols defined in this section. */
13179 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13180 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13181 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13182 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13183 isym->st_value -= count;
13184
13185 /* Now adjust the global symbols defined in this section. */
13186 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13187 - symtab_hdr->sh_info);
13188 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13189 end_hashes = sym_hashes + symcount;
13190
13191 for (; sym_hashes < end_hashes; sym_hashes++)
13192 {
13193 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13194
13195 if ((sym_hash->root.type == bfd_link_hash_defined
13196 || sym_hash->root.type == bfd_link_hash_defweak)
13197 && sym_hash->root.u.def.section == sec)
13198 {
13199 bfd_vma value = sym_hash->root.u.def.value;
13200
13201 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13202 value &= MINUS_TWO;
13203 if (value > addr)
13204 sym_hash->root.u.def.value -= count;
13205 }
13206 }
13207
13208 return TRUE;
13209 }
13210
13211
13212 /* Opcodes needed for microMIPS relaxation as found in
13213 opcodes/micromips-opc.c. */
13214
13215 struct opcode_descriptor {
13216 unsigned long match;
13217 unsigned long mask;
13218 };
13219
13220 /* The $ra register aka $31. */
13221
13222 #define RA 31
13223
13224 /* 32-bit instruction format register fields. */
13225
13226 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13227 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13228
13229 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13230
13231 #define OP16_VALID_REG(r) \
13232 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13233
13234
13235 /* 32-bit and 16-bit branches. */
13236
13237 static const struct opcode_descriptor b_insns_32[] = {
13238 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13239 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13240 { 0, 0 } /* End marker for find_match(). */
13241 };
13242
13243 static const struct opcode_descriptor bc_insn_32 =
13244 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13245
13246 static const struct opcode_descriptor bz_insn_32 =
13247 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13248
13249 static const struct opcode_descriptor bzal_insn_32 =
13250 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13251
13252 static const struct opcode_descriptor beq_insn_32 =
13253 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13254
13255 static const struct opcode_descriptor b_insn_16 =
13256 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13257
13258 static const struct opcode_descriptor bz_insn_16 =
13259 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13260
13261
13262 /* 32-bit and 16-bit branch EQ and NE zero. */
13263
13264 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13265 eq and second the ne. This convention is used when replacing a
13266 32-bit BEQ/BNE with the 16-bit version. */
13267
13268 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13269
13270 static const struct opcode_descriptor bz_rs_insns_32[] = {
13271 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13272 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13273 { 0, 0 } /* End marker for find_match(). */
13274 };
13275
13276 static const struct opcode_descriptor bz_rt_insns_32[] = {
13277 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13278 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13279 { 0, 0 } /* End marker for find_match(). */
13280 };
13281
13282 static const struct opcode_descriptor bzc_insns_32[] = {
13283 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13284 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13285 { 0, 0 } /* End marker for find_match(). */
13286 };
13287
13288 static const struct opcode_descriptor bz_insns_16[] = {
13289 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13290 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13291 { 0, 0 } /* End marker for find_match(). */
13292 };
13293
13294 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13295
13296 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13297 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13298
13299
13300 /* 32-bit instructions with a delay slot. */
13301
13302 static const struct opcode_descriptor jal_insn_32_bd16 =
13303 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13304
13305 static const struct opcode_descriptor jal_insn_32_bd32 =
13306 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13307
13308 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13309 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13310
13311 static const struct opcode_descriptor j_insn_32 =
13312 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13313
13314 static const struct opcode_descriptor jalr_insn_32 =
13315 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13316
13317 /* This table can be compacted, because no opcode replacement is made. */
13318
13319 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13320 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13321
13322 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13323 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13324
13325 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13326 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13327 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13328 { 0, 0 } /* End marker for find_match(). */
13329 };
13330
13331 /* This table can be compacted, because no opcode replacement is made. */
13332
13333 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13334 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13335
13336 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13337 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13338 { 0, 0 } /* End marker for find_match(). */
13339 };
13340
13341
13342 /* 16-bit instructions with a delay slot. */
13343
13344 static const struct opcode_descriptor jalr_insn_16_bd16 =
13345 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13346
13347 static const struct opcode_descriptor jalr_insn_16_bd32 =
13348 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13349
13350 static const struct opcode_descriptor jr_insn_16 =
13351 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13352
13353 #define JR16_REG(opcode) ((opcode) & 0x1f)
13354
13355 /* This table can be compacted, because no opcode replacement is made. */
13356
13357 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13358 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13359
13360 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13361 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13362 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13363 { 0, 0 } /* End marker for find_match(). */
13364 };
13365
13366
13367 /* LUI instruction. */
13368
13369 static const struct opcode_descriptor lui_insn =
13370 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13371
13372
13373 /* ADDIU instruction. */
13374
13375 static const struct opcode_descriptor addiu_insn =
13376 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13377
13378 static const struct opcode_descriptor addiupc_insn =
13379 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13380
13381 #define ADDIUPC_REG_FIELD(r) \
13382 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13383
13384
13385 /* Relaxable instructions in a JAL delay slot: MOVE. */
13386
13387 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13388 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13389 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13390 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13391
13392 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13393 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13394
13395 static const struct opcode_descriptor move_insns_32[] = {
13396 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13397 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13398 { 0, 0 } /* End marker for find_match(). */
13399 };
13400
13401 static const struct opcode_descriptor move_insn_16 =
13402 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13403
13404
13405 /* NOP instructions. */
13406
13407 static const struct opcode_descriptor nop_insn_32 =
13408 { /* "nop", "", */ 0x00000000, 0xffffffff };
13409
13410 static const struct opcode_descriptor nop_insn_16 =
13411 { /* "nop", "", */ 0x0c00, 0xffff };
13412
13413
13414 /* Instruction match support. */
13415
13416 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13417
13418 static int
13419 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13420 {
13421 unsigned long indx;
13422
13423 for (indx = 0; insn[indx].mask != 0; indx++)
13424 if (MATCH (opcode, insn[indx]))
13425 return indx;
13426
13427 return -1;
13428 }
13429
13430
13431 /* Branch and delay slot decoding support. */
13432
13433 /* If PTR points to what *might* be a 16-bit branch or jump, then
13434 return the minimum length of its delay slot, otherwise return 0.
13435 Non-zero results are not definitive as we might be checking against
13436 the second half of another instruction. */
13437
13438 static int
13439 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13440 {
13441 unsigned long opcode;
13442 int bdsize;
13443
13444 opcode = bfd_get_16 (abfd, ptr);
13445 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13446 /* 16-bit branch/jump with a 32-bit delay slot. */
13447 bdsize = 4;
13448 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13449 || find_match (opcode, ds_insns_16_bd16) >= 0)
13450 /* 16-bit branch/jump with a 16-bit delay slot. */
13451 bdsize = 2;
13452 else
13453 /* No delay slot. */
13454 bdsize = 0;
13455
13456 return bdsize;
13457 }
13458
13459 /* If PTR points to what *might* be a 32-bit branch or jump, then
13460 return the minimum length of its delay slot, otherwise return 0.
13461 Non-zero results are not definitive as we might be checking against
13462 the second half of another instruction. */
13463
13464 static int
13465 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13466 {
13467 unsigned long opcode;
13468 int bdsize;
13469
13470 opcode = bfd_get_micromips_32 (abfd, ptr);
13471 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13472 /* 32-bit branch/jump with a 32-bit delay slot. */
13473 bdsize = 4;
13474 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13475 /* 32-bit branch/jump with a 16-bit delay slot. */
13476 bdsize = 2;
13477 else
13478 /* No delay slot. */
13479 bdsize = 0;
13480
13481 return bdsize;
13482 }
13483
13484 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13485 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13486
13487 static bfd_boolean
13488 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13489 {
13490 unsigned long opcode;
13491
13492 opcode = bfd_get_16 (abfd, ptr);
13493 if (MATCH (opcode, b_insn_16)
13494 /* B16 */
13495 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13496 /* JR16 */
13497 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13498 /* BEQZ16, BNEZ16 */
13499 || (MATCH (opcode, jalr_insn_16_bd32)
13500 /* JALR16 */
13501 && reg != JR16_REG (opcode) && reg != RA))
13502 return TRUE;
13503
13504 return FALSE;
13505 }
13506
13507 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13508 then return TRUE, otherwise FALSE. */
13509
13510 static bfd_boolean
13511 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13512 {
13513 unsigned long opcode;
13514
13515 opcode = bfd_get_micromips_32 (abfd, ptr);
13516 if (MATCH (opcode, j_insn_32)
13517 /* J */
13518 || MATCH (opcode, bc_insn_32)
13519 /* BC1F, BC1T, BC2F, BC2T */
13520 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13521 /* JAL, JALX */
13522 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13523 /* BGEZ, BGTZ, BLEZ, BLTZ */
13524 || (MATCH (opcode, bzal_insn_32)
13525 /* BGEZAL, BLTZAL */
13526 && reg != OP32_SREG (opcode) && reg != RA)
13527 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13528 /* JALR, JALR.HB, BEQ, BNE */
13529 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13530 return TRUE;
13531
13532 return FALSE;
13533 }
13534
13535 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13536 IRELEND) at OFFSET indicate that there must be a compact branch there,
13537 then return TRUE, otherwise FALSE. */
13538
13539 static bfd_boolean
13540 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13541 const Elf_Internal_Rela *internal_relocs,
13542 const Elf_Internal_Rela *irelend)
13543 {
13544 const Elf_Internal_Rela *irel;
13545 unsigned long opcode;
13546
13547 opcode = bfd_get_micromips_32 (abfd, ptr);
13548 if (find_match (opcode, bzc_insns_32) < 0)
13549 return FALSE;
13550
13551 for (irel = internal_relocs; irel < irelend; irel++)
13552 if (irel->r_offset == offset
13553 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13554 return TRUE;
13555
13556 return FALSE;
13557 }
13558
13559 /* Bitsize checking. */
13560 #define IS_BITSIZE(val, N) \
13561 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13562 - (1ULL << ((N) - 1))) == (val))
13563
13564 \f
13565 bfd_boolean
13566 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13567 struct bfd_link_info *link_info,
13568 bfd_boolean *again)
13569 {
13570 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13571 Elf_Internal_Shdr *symtab_hdr;
13572 Elf_Internal_Rela *internal_relocs;
13573 Elf_Internal_Rela *irel, *irelend;
13574 bfd_byte *contents = NULL;
13575 Elf_Internal_Sym *isymbuf = NULL;
13576
13577 /* Assume nothing changes. */
13578 *again = FALSE;
13579
13580 /* We don't have to do anything for a relocatable link, if
13581 this section does not have relocs, or if this is not a
13582 code section. */
13583
13584 if (bfd_link_relocatable (link_info)
13585 || (sec->flags & SEC_RELOC) == 0
13586 || sec->reloc_count == 0
13587 || (sec->flags & SEC_CODE) == 0)
13588 return TRUE;
13589
13590 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13591
13592 /* Get a copy of the native relocations. */
13593 internal_relocs = (_bfd_elf_link_read_relocs
13594 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13595 link_info->keep_memory));
13596 if (internal_relocs == NULL)
13597 goto error_return;
13598
13599 /* Walk through them looking for relaxing opportunities. */
13600 irelend = internal_relocs + sec->reloc_count;
13601 for (irel = internal_relocs; irel < irelend; irel++)
13602 {
13603 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13604 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13605 bfd_boolean target_is_micromips_code_p;
13606 unsigned long opcode;
13607 bfd_vma symval;
13608 bfd_vma pcrval;
13609 bfd_byte *ptr;
13610 int fndopc;
13611
13612 /* The number of bytes to delete for relaxation and from where
13613 to delete these bytes starting at irel->r_offset. */
13614 int delcnt = 0;
13615 int deloff = 0;
13616
13617 /* If this isn't something that can be relaxed, then ignore
13618 this reloc. */
13619 if (r_type != R_MICROMIPS_HI16
13620 && r_type != R_MICROMIPS_PC16_S1
13621 && r_type != R_MICROMIPS_26_S1)
13622 continue;
13623
13624 /* Get the section contents if we haven't done so already. */
13625 if (contents == NULL)
13626 {
13627 /* Get cached copy if it exists. */
13628 if (elf_section_data (sec)->this_hdr.contents != NULL)
13629 contents = elf_section_data (sec)->this_hdr.contents;
13630 /* Go get them off disk. */
13631 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13632 goto error_return;
13633 }
13634 ptr = contents + irel->r_offset;
13635
13636 /* Read this BFD's local symbols if we haven't done so already. */
13637 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13638 {
13639 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13640 if (isymbuf == NULL)
13641 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13642 symtab_hdr->sh_info, 0,
13643 NULL, NULL, NULL);
13644 if (isymbuf == NULL)
13645 goto error_return;
13646 }
13647
13648 /* Get the value of the symbol referred to by the reloc. */
13649 if (r_symndx < symtab_hdr->sh_info)
13650 {
13651 /* A local symbol. */
13652 Elf_Internal_Sym *isym;
13653 asection *sym_sec;
13654
13655 isym = isymbuf + r_symndx;
13656 if (isym->st_shndx == SHN_UNDEF)
13657 sym_sec = bfd_und_section_ptr;
13658 else if (isym->st_shndx == SHN_ABS)
13659 sym_sec = bfd_abs_section_ptr;
13660 else if (isym->st_shndx == SHN_COMMON)
13661 sym_sec = bfd_com_section_ptr;
13662 else
13663 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13664 symval = (isym->st_value
13665 + sym_sec->output_section->vma
13666 + sym_sec->output_offset);
13667 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13668 }
13669 else
13670 {
13671 unsigned long indx;
13672 struct elf_link_hash_entry *h;
13673
13674 /* An external symbol. */
13675 indx = r_symndx - symtab_hdr->sh_info;
13676 h = elf_sym_hashes (abfd)[indx];
13677 BFD_ASSERT (h != NULL);
13678
13679 if (h->root.type != bfd_link_hash_defined
13680 && h->root.type != bfd_link_hash_defweak)
13681 /* This appears to be a reference to an undefined
13682 symbol. Just ignore it -- it will be caught by the
13683 regular reloc processing. */
13684 continue;
13685
13686 symval = (h->root.u.def.value
13687 + h->root.u.def.section->output_section->vma
13688 + h->root.u.def.section->output_offset);
13689 target_is_micromips_code_p = (!h->needs_plt
13690 && ELF_ST_IS_MICROMIPS (h->other));
13691 }
13692
13693
13694 /* For simplicity of coding, we are going to modify the
13695 section contents, the section relocs, and the BFD symbol
13696 table. We must tell the rest of the code not to free up this
13697 information. It would be possible to instead create a table
13698 of changes which have to be made, as is done in coff-mips.c;
13699 that would be more work, but would require less memory when
13700 the linker is run. */
13701
13702 /* Only 32-bit instructions relaxed. */
13703 if (irel->r_offset + 4 > sec->size)
13704 continue;
13705
13706 opcode = bfd_get_micromips_32 (abfd, ptr);
13707
13708 /* This is the pc-relative distance from the instruction the
13709 relocation is applied to, to the symbol referred. */
13710 pcrval = (symval
13711 - (sec->output_section->vma + sec->output_offset)
13712 - irel->r_offset);
13713
13714 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13715 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13716 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13717
13718 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13719
13720 where pcrval has first to be adjusted to apply against the LO16
13721 location (we make the adjustment later on, when we have figured
13722 out the offset). */
13723 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13724 {
13725 bfd_boolean bzc = FALSE;
13726 unsigned long nextopc;
13727 unsigned long reg;
13728 bfd_vma offset;
13729
13730 /* Give up if the previous reloc was a HI16 against this symbol
13731 too. */
13732 if (irel > internal_relocs
13733 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13734 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13735 continue;
13736
13737 /* Or if the next reloc is not a LO16 against this symbol. */
13738 if (irel + 1 >= irelend
13739 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13740 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13741 continue;
13742
13743 /* Or if the second next reloc is a LO16 against this symbol too. */
13744 if (irel + 2 >= irelend
13745 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13746 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13747 continue;
13748
13749 /* See if the LUI instruction *might* be in a branch delay slot.
13750 We check whether what looks like a 16-bit branch or jump is
13751 actually an immediate argument to a compact branch, and let
13752 it through if so. */
13753 if (irel->r_offset >= 2
13754 && check_br16_dslot (abfd, ptr - 2)
13755 && !(irel->r_offset >= 4
13756 && (bzc = check_relocated_bzc (abfd,
13757 ptr - 4, irel->r_offset - 4,
13758 internal_relocs, irelend))))
13759 continue;
13760 if (irel->r_offset >= 4
13761 && !bzc
13762 && check_br32_dslot (abfd, ptr - 4))
13763 continue;
13764
13765 reg = OP32_SREG (opcode);
13766
13767 /* We only relax adjacent instructions or ones separated with
13768 a branch or jump that has a delay slot. The branch or jump
13769 must not fiddle with the register used to hold the address.
13770 Subtract 4 for the LUI itself. */
13771 offset = irel[1].r_offset - irel[0].r_offset;
13772 switch (offset - 4)
13773 {
13774 case 0:
13775 break;
13776 case 2:
13777 if (check_br16 (abfd, ptr + 4, reg))
13778 break;
13779 continue;
13780 case 4:
13781 if (check_br32 (abfd, ptr + 4, reg))
13782 break;
13783 continue;
13784 default:
13785 continue;
13786 }
13787
13788 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13789
13790 /* Give up unless the same register is used with both
13791 relocations. */
13792 if (OP32_SREG (nextopc) != reg)
13793 continue;
13794
13795 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13796 and rounding up to take masking of the two LSBs into account. */
13797 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13798
13799 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13800 if (IS_BITSIZE (symval, 16))
13801 {
13802 /* Fix the relocation's type. */
13803 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13804
13805 /* Instructions using R_MICROMIPS_LO16 have the base or
13806 source register in bits 20:16. This register becomes $0
13807 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13808 nextopc &= ~0x001f0000;
13809 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13810 contents + irel[1].r_offset);
13811 }
13812
13813 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13814 We add 4 to take LUI deletion into account while checking
13815 the PC-relative distance. */
13816 else if (symval % 4 == 0
13817 && IS_BITSIZE (pcrval + 4, 25)
13818 && MATCH (nextopc, addiu_insn)
13819 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13820 && OP16_VALID_REG (OP32_TREG (nextopc)))
13821 {
13822 /* Fix the relocation's type. */
13823 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13824
13825 /* Replace ADDIU with the ADDIUPC version. */
13826 nextopc = (addiupc_insn.match
13827 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13828
13829 bfd_put_micromips_32 (abfd, nextopc,
13830 contents + irel[1].r_offset);
13831 }
13832
13833 /* Can't do anything, give up, sigh... */
13834 else
13835 continue;
13836
13837 /* Fix the relocation's type. */
13838 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13839
13840 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13841 delcnt = 4;
13842 deloff = 0;
13843 }
13844
13845 /* Compact branch relaxation -- due to the multitude of macros
13846 employed by the compiler/assembler, compact branches are not
13847 always generated. Obviously, this can/will be fixed elsewhere,
13848 but there is no drawback in double checking it here. */
13849 else if (r_type == R_MICROMIPS_PC16_S1
13850 && irel->r_offset + 5 < sec->size
13851 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13852 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13853 && ((!insn32
13854 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13855 nop_insn_16) ? 2 : 0))
13856 || (irel->r_offset + 7 < sec->size
13857 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13858 ptr + 4),
13859 nop_insn_32) ? 4 : 0))))
13860 {
13861 unsigned long reg;
13862
13863 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13864
13865 /* Replace BEQZ/BNEZ with the compact version. */
13866 opcode = (bzc_insns_32[fndopc].match
13867 | BZC32_REG_FIELD (reg)
13868 | (opcode & 0xffff)); /* Addend value. */
13869
13870 bfd_put_micromips_32 (abfd, opcode, ptr);
13871
13872 /* Delete the delay slot NOP: two or four bytes from
13873 irel->offset + 4; delcnt has already been set above. */
13874 deloff = 4;
13875 }
13876
13877 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13878 to check the distance from the next instruction, so subtract 2. */
13879 else if (!insn32
13880 && r_type == R_MICROMIPS_PC16_S1
13881 && IS_BITSIZE (pcrval - 2, 11)
13882 && find_match (opcode, b_insns_32) >= 0)
13883 {
13884 /* Fix the relocation's type. */
13885 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13886
13887 /* Replace the 32-bit opcode with a 16-bit opcode. */
13888 bfd_put_16 (abfd,
13889 (b_insn_16.match
13890 | (opcode & 0x3ff)), /* Addend value. */
13891 ptr);
13892
13893 /* Delete 2 bytes from irel->r_offset + 2. */
13894 delcnt = 2;
13895 deloff = 2;
13896 }
13897
13898 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13899 to check the distance from the next instruction, so subtract 2. */
13900 else if (!insn32
13901 && r_type == R_MICROMIPS_PC16_S1
13902 && IS_BITSIZE (pcrval - 2, 8)
13903 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13904 && OP16_VALID_REG (OP32_SREG (opcode)))
13905 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13906 && OP16_VALID_REG (OP32_TREG (opcode)))))
13907 {
13908 unsigned long reg;
13909
13910 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13911
13912 /* Fix the relocation's type. */
13913 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13914
13915 /* Replace the 32-bit opcode with a 16-bit opcode. */
13916 bfd_put_16 (abfd,
13917 (bz_insns_16[fndopc].match
13918 | BZ16_REG_FIELD (reg)
13919 | (opcode & 0x7f)), /* Addend value. */
13920 ptr);
13921
13922 /* Delete 2 bytes from irel->r_offset + 2. */
13923 delcnt = 2;
13924 deloff = 2;
13925 }
13926
13927 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13928 else if (!insn32
13929 && r_type == R_MICROMIPS_26_S1
13930 && target_is_micromips_code_p
13931 && irel->r_offset + 7 < sec->size
13932 && MATCH (opcode, jal_insn_32_bd32))
13933 {
13934 unsigned long n32opc;
13935 bfd_boolean relaxed = FALSE;
13936
13937 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13938
13939 if (MATCH (n32opc, nop_insn_32))
13940 {
13941 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13942 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13943
13944 relaxed = TRUE;
13945 }
13946 else if (find_match (n32opc, move_insns_32) >= 0)
13947 {
13948 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13949 bfd_put_16 (abfd,
13950 (move_insn_16.match
13951 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13952 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13953 ptr + 4);
13954
13955 relaxed = TRUE;
13956 }
13957 /* Other 32-bit instructions relaxable to 16-bit
13958 instructions will be handled here later. */
13959
13960 if (relaxed)
13961 {
13962 /* JAL with 32-bit delay slot that is changed to a JALS
13963 with 16-bit delay slot. */
13964 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13965
13966 /* Delete 2 bytes from irel->r_offset + 6. */
13967 delcnt = 2;
13968 deloff = 6;
13969 }
13970 }
13971
13972 if (delcnt != 0)
13973 {
13974 /* Note that we've changed the relocs, section contents, etc. */
13975 elf_section_data (sec)->relocs = internal_relocs;
13976 elf_section_data (sec)->this_hdr.contents = contents;
13977 symtab_hdr->contents = (unsigned char *) isymbuf;
13978
13979 /* Delete bytes depending on the delcnt and deloff. */
13980 if (!mips_elf_relax_delete_bytes (abfd, sec,
13981 irel->r_offset + deloff, delcnt))
13982 goto error_return;
13983
13984 /* That will change things, so we should relax again.
13985 Note that this is not required, and it may be slow. */
13986 *again = TRUE;
13987 }
13988 }
13989
13990 if (isymbuf != NULL
13991 && symtab_hdr->contents != (unsigned char *) isymbuf)
13992 {
13993 if (! link_info->keep_memory)
13994 free (isymbuf);
13995 else
13996 {
13997 /* Cache the symbols for elf_link_input_bfd. */
13998 symtab_hdr->contents = (unsigned char *) isymbuf;
13999 }
14000 }
14001
14002 if (contents != NULL
14003 && elf_section_data (sec)->this_hdr.contents != contents)
14004 {
14005 if (! link_info->keep_memory)
14006 free (contents);
14007 else
14008 {
14009 /* Cache the section contents for elf_link_input_bfd. */
14010 elf_section_data (sec)->this_hdr.contents = contents;
14011 }
14012 }
14013
14014 if (internal_relocs != NULL
14015 && elf_section_data (sec)->relocs != internal_relocs)
14016 free (internal_relocs);
14017
14018 return TRUE;
14019
14020 error_return:
14021 if (isymbuf != NULL
14022 && symtab_hdr->contents != (unsigned char *) isymbuf)
14023 free (isymbuf);
14024 if (contents != NULL
14025 && elf_section_data (sec)->this_hdr.contents != contents)
14026 free (contents);
14027 if (internal_relocs != NULL
14028 && elf_section_data (sec)->relocs != internal_relocs)
14029 free (internal_relocs);
14030
14031 return FALSE;
14032 }
14033 \f
14034 /* Create a MIPS ELF linker hash table. */
14035
14036 struct bfd_link_hash_table *
14037 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14038 {
14039 struct mips_elf_link_hash_table *ret;
14040 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14041
14042 ret = bfd_zmalloc (amt);
14043 if (ret == NULL)
14044 return NULL;
14045
14046 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14047 mips_elf_link_hash_newfunc,
14048 sizeof (struct mips_elf_link_hash_entry),
14049 MIPS_ELF_DATA))
14050 {
14051 free (ret);
14052 return NULL;
14053 }
14054 ret->root.init_plt_refcount.plist = NULL;
14055 ret->root.init_plt_offset.plist = NULL;
14056
14057 return &ret->root.root;
14058 }
14059
14060 /* Likewise, but indicate that the target is VxWorks. */
14061
14062 struct bfd_link_hash_table *
14063 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14064 {
14065 struct bfd_link_hash_table *ret;
14066
14067 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14068 if (ret)
14069 {
14070 struct mips_elf_link_hash_table *htab;
14071
14072 htab = (struct mips_elf_link_hash_table *) ret;
14073 htab->use_plts_and_copy_relocs = TRUE;
14074 htab->is_vxworks = TRUE;
14075 }
14076 return ret;
14077 }
14078
14079 /* A function that the linker calls if we are allowed to use PLTs
14080 and copy relocs. */
14081
14082 void
14083 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14084 {
14085 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14086 }
14087
14088 /* A function that the linker calls to select between all or only
14089 32-bit microMIPS instructions. */
14090
14091 void
14092 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
14093 {
14094 mips_elf_hash_table (info)->insn32 = on;
14095 }
14096 \f
14097 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14098
14099 struct mips_mach_extension
14100 {
14101 unsigned long extension, base;
14102 };
14103
14104
14105 /* An array describing how BFD machines relate to one another. The entries
14106 are ordered topologically with MIPS I extensions listed last. */
14107
14108 static const struct mips_mach_extension mips_mach_extensions[] =
14109 {
14110 /* MIPS64r2 extensions. */
14111 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14112 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14113 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14114 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14115 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14116
14117 /* MIPS64 extensions. */
14118 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14119 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14120 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14121
14122 /* MIPS V extensions. */
14123 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14124
14125 /* R10000 extensions. */
14126 { bfd_mach_mips12000, bfd_mach_mips10000 },
14127 { bfd_mach_mips14000, bfd_mach_mips10000 },
14128 { bfd_mach_mips16000, bfd_mach_mips10000 },
14129
14130 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14131 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14132 better to allow vr5400 and vr5500 code to be merged anyway, since
14133 many libraries will just use the core ISA. Perhaps we could add
14134 some sort of ASE flag if this ever proves a problem. */
14135 { bfd_mach_mips5500, bfd_mach_mips5400 },
14136 { bfd_mach_mips5400, bfd_mach_mips5000 },
14137
14138 /* MIPS IV extensions. */
14139 { bfd_mach_mips5, bfd_mach_mips8000 },
14140 { bfd_mach_mips10000, bfd_mach_mips8000 },
14141 { bfd_mach_mips5000, bfd_mach_mips8000 },
14142 { bfd_mach_mips7000, bfd_mach_mips8000 },
14143 { bfd_mach_mips9000, bfd_mach_mips8000 },
14144
14145 /* VR4100 extensions. */
14146 { bfd_mach_mips4120, bfd_mach_mips4100 },
14147 { bfd_mach_mips4111, bfd_mach_mips4100 },
14148
14149 /* MIPS III extensions. */
14150 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14151 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14152 { bfd_mach_mips8000, bfd_mach_mips4000 },
14153 { bfd_mach_mips4650, bfd_mach_mips4000 },
14154 { bfd_mach_mips4600, bfd_mach_mips4000 },
14155 { bfd_mach_mips4400, bfd_mach_mips4000 },
14156 { bfd_mach_mips4300, bfd_mach_mips4000 },
14157 { bfd_mach_mips4100, bfd_mach_mips4000 },
14158 { bfd_mach_mips4010, bfd_mach_mips4000 },
14159 { bfd_mach_mips5900, bfd_mach_mips4000 },
14160
14161 /* MIPS32 extensions. */
14162 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14163
14164 /* MIPS II extensions. */
14165 { bfd_mach_mips4000, bfd_mach_mips6000 },
14166 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14167
14168 /* MIPS I extensions. */
14169 { bfd_mach_mips6000, bfd_mach_mips3000 },
14170 { bfd_mach_mips3900, bfd_mach_mips3000 }
14171 };
14172
14173 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14174
14175 static bfd_boolean
14176 mips_mach_extends_p (unsigned long base, unsigned long extension)
14177 {
14178 size_t i;
14179
14180 if (extension == base)
14181 return TRUE;
14182
14183 if (base == bfd_mach_mipsisa32
14184 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14185 return TRUE;
14186
14187 if (base == bfd_mach_mipsisa32r2
14188 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14189 return TRUE;
14190
14191 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14192 if (extension == mips_mach_extensions[i].extension)
14193 {
14194 extension = mips_mach_extensions[i].base;
14195 if (extension == base)
14196 return TRUE;
14197 }
14198
14199 return FALSE;
14200 }
14201
14202 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14203
14204 static unsigned long
14205 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14206 {
14207 switch (isa_ext)
14208 {
14209 case AFL_EXT_3900: return bfd_mach_mips3900;
14210 case AFL_EXT_4010: return bfd_mach_mips4010;
14211 case AFL_EXT_4100: return bfd_mach_mips4100;
14212 case AFL_EXT_4111: return bfd_mach_mips4111;
14213 case AFL_EXT_4120: return bfd_mach_mips4120;
14214 case AFL_EXT_4650: return bfd_mach_mips4650;
14215 case AFL_EXT_5400: return bfd_mach_mips5400;
14216 case AFL_EXT_5500: return bfd_mach_mips5500;
14217 case AFL_EXT_5900: return bfd_mach_mips5900;
14218 case AFL_EXT_10000: return bfd_mach_mips10000;
14219 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14220 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14221 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14222 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14223 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14224 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14225 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14226 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14227 default: return bfd_mach_mips3000;
14228 }
14229 }
14230
14231 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14232
14233 unsigned int
14234 bfd_mips_isa_ext (bfd *abfd)
14235 {
14236 switch (bfd_get_mach (abfd))
14237 {
14238 case bfd_mach_mips3900: return AFL_EXT_3900;
14239 case bfd_mach_mips4010: return AFL_EXT_4010;
14240 case bfd_mach_mips4100: return AFL_EXT_4100;
14241 case bfd_mach_mips4111: return AFL_EXT_4111;
14242 case bfd_mach_mips4120: return AFL_EXT_4120;
14243 case bfd_mach_mips4650: return AFL_EXT_4650;
14244 case bfd_mach_mips5400: return AFL_EXT_5400;
14245 case bfd_mach_mips5500: return AFL_EXT_5500;
14246 case bfd_mach_mips5900: return AFL_EXT_5900;
14247 case bfd_mach_mips10000: return AFL_EXT_10000;
14248 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14249 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14250 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14251 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14252 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14253 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14254 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14255 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14256 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14257 default: return 0;
14258 }
14259 }
14260
14261 /* Encode ISA level and revision as a single value. */
14262 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14263
14264 /* Decode a single value into level and revision. */
14265 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14266 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14267
14268 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14269
14270 static void
14271 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14272 {
14273 int new_isa = 0;
14274 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14275 {
14276 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14277 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14278 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14279 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14280 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14281 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14282 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14283 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14284 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14285 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14286 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14287 default:
14288 (*_bfd_error_handler)
14289 (_("%B: Unknown architecture %s"),
14290 abfd, bfd_printable_name (abfd));
14291 }
14292
14293 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14294 {
14295 abiflags->isa_level = ISA_LEVEL (new_isa);
14296 abiflags->isa_rev = ISA_REV (new_isa);
14297 }
14298
14299 /* Update the isa_ext if ABFD describes a further extension. */
14300 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14301 bfd_get_mach (abfd)))
14302 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14303 }
14304
14305 /* Return true if the given ELF header flags describe a 32-bit binary. */
14306
14307 static bfd_boolean
14308 mips_32bit_flags_p (flagword flags)
14309 {
14310 return ((flags & EF_MIPS_32BITMODE) != 0
14311 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14312 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14313 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14314 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14315 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14316 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14317 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14318 }
14319
14320 /* Infer the content of the ABI flags based on the elf header. */
14321
14322 static void
14323 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14324 {
14325 obj_attribute *in_attr;
14326
14327 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14328 update_mips_abiflags_isa (abfd, abiflags);
14329
14330 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14331 abiflags->gpr_size = AFL_REG_32;
14332 else
14333 abiflags->gpr_size = AFL_REG_64;
14334
14335 abiflags->cpr1_size = AFL_REG_NONE;
14336
14337 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14338 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14339
14340 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14341 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14342 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14343 && abiflags->gpr_size == AFL_REG_32))
14344 abiflags->cpr1_size = AFL_REG_32;
14345 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14346 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14347 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14348 abiflags->cpr1_size = AFL_REG_64;
14349
14350 abiflags->cpr2_size = AFL_REG_NONE;
14351
14352 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14353 abiflags->ases |= AFL_ASE_MDMX;
14354 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14355 abiflags->ases |= AFL_ASE_MIPS16;
14356 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14357 abiflags->ases |= AFL_ASE_MICROMIPS;
14358
14359 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14360 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14361 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14362 && abiflags->isa_level >= 32
14363 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14364 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14365 }
14366
14367 /* We need to use a special link routine to handle the .reginfo and
14368 the .mdebug sections. We need to merge all instances of these
14369 sections together, not write them all out sequentially. */
14370
14371 bfd_boolean
14372 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14373 {
14374 asection *o;
14375 struct bfd_link_order *p;
14376 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14377 asection *rtproc_sec, *abiflags_sec;
14378 Elf32_RegInfo reginfo;
14379 struct ecoff_debug_info debug;
14380 struct mips_htab_traverse_info hti;
14381 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14382 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14383 HDRR *symhdr = &debug.symbolic_header;
14384 void *mdebug_handle = NULL;
14385 asection *s;
14386 EXTR esym;
14387 unsigned int i;
14388 bfd_size_type amt;
14389 struct mips_elf_link_hash_table *htab;
14390
14391 static const char * const secname[] =
14392 {
14393 ".text", ".init", ".fini", ".data",
14394 ".rodata", ".sdata", ".sbss", ".bss"
14395 };
14396 static const int sc[] =
14397 {
14398 scText, scInit, scFini, scData,
14399 scRData, scSData, scSBss, scBss
14400 };
14401
14402 /* Sort the dynamic symbols so that those with GOT entries come after
14403 those without. */
14404 htab = mips_elf_hash_table (info);
14405 BFD_ASSERT (htab != NULL);
14406
14407 if (!mips_elf_sort_hash_table (abfd, info))
14408 return FALSE;
14409
14410 /* Create any scheduled LA25 stubs. */
14411 hti.info = info;
14412 hti.output_bfd = abfd;
14413 hti.error = FALSE;
14414 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14415 if (hti.error)
14416 return FALSE;
14417
14418 /* Get a value for the GP register. */
14419 if (elf_gp (abfd) == 0)
14420 {
14421 struct bfd_link_hash_entry *h;
14422
14423 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14424 if (h != NULL && h->type == bfd_link_hash_defined)
14425 elf_gp (abfd) = (h->u.def.value
14426 + h->u.def.section->output_section->vma
14427 + h->u.def.section->output_offset);
14428 else if (htab->is_vxworks
14429 && (h = bfd_link_hash_lookup (info->hash,
14430 "_GLOBAL_OFFSET_TABLE_",
14431 FALSE, FALSE, TRUE))
14432 && h->type == bfd_link_hash_defined)
14433 elf_gp (abfd) = (h->u.def.section->output_section->vma
14434 + h->u.def.section->output_offset
14435 + h->u.def.value);
14436 else if (bfd_link_relocatable (info))
14437 {
14438 bfd_vma lo = MINUS_ONE;
14439
14440 /* Find the GP-relative section with the lowest offset. */
14441 for (o = abfd->sections; o != NULL; o = o->next)
14442 if (o->vma < lo
14443 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14444 lo = o->vma;
14445
14446 /* And calculate GP relative to that. */
14447 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14448 }
14449 else
14450 {
14451 /* If the relocate_section function needs to do a reloc
14452 involving the GP value, it should make a reloc_dangerous
14453 callback to warn that GP is not defined. */
14454 }
14455 }
14456
14457 /* Go through the sections and collect the .reginfo and .mdebug
14458 information. */
14459 abiflags_sec = NULL;
14460 reginfo_sec = NULL;
14461 mdebug_sec = NULL;
14462 gptab_data_sec = NULL;
14463 gptab_bss_sec = NULL;
14464 for (o = abfd->sections; o != NULL; o = o->next)
14465 {
14466 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14467 {
14468 /* We have found the .MIPS.abiflags section in the output file.
14469 Look through all the link_orders comprising it and remove them.
14470 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14471 for (p = o->map_head.link_order; p != NULL; p = p->next)
14472 {
14473 asection *input_section;
14474
14475 if (p->type != bfd_indirect_link_order)
14476 {
14477 if (p->type == bfd_data_link_order)
14478 continue;
14479 abort ();
14480 }
14481
14482 input_section = p->u.indirect.section;
14483
14484 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14485 elf_link_input_bfd ignores this section. */
14486 input_section->flags &= ~SEC_HAS_CONTENTS;
14487 }
14488
14489 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14490 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14491
14492 /* Skip this section later on (I don't think this currently
14493 matters, but someday it might). */
14494 o->map_head.link_order = NULL;
14495
14496 abiflags_sec = o;
14497 }
14498
14499 if (strcmp (o->name, ".reginfo") == 0)
14500 {
14501 memset (&reginfo, 0, sizeof reginfo);
14502
14503 /* We have found the .reginfo section in the output file.
14504 Look through all the link_orders comprising it and merge
14505 the information together. */
14506 for (p = o->map_head.link_order; p != NULL; p = p->next)
14507 {
14508 asection *input_section;
14509 bfd *input_bfd;
14510 Elf32_External_RegInfo ext;
14511 Elf32_RegInfo sub;
14512
14513 if (p->type != bfd_indirect_link_order)
14514 {
14515 if (p->type == bfd_data_link_order)
14516 continue;
14517 abort ();
14518 }
14519
14520 input_section = p->u.indirect.section;
14521 input_bfd = input_section->owner;
14522
14523 if (! bfd_get_section_contents (input_bfd, input_section,
14524 &ext, 0, sizeof ext))
14525 return FALSE;
14526
14527 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14528
14529 reginfo.ri_gprmask |= sub.ri_gprmask;
14530 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14531 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14532 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14533 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14534
14535 /* ri_gp_value is set by the function
14536 mips_elf32_section_processing when the section is
14537 finally written out. */
14538
14539 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14540 elf_link_input_bfd ignores this section. */
14541 input_section->flags &= ~SEC_HAS_CONTENTS;
14542 }
14543
14544 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14545 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14546
14547 /* Skip this section later on (I don't think this currently
14548 matters, but someday it might). */
14549 o->map_head.link_order = NULL;
14550
14551 reginfo_sec = o;
14552 }
14553
14554 if (strcmp (o->name, ".mdebug") == 0)
14555 {
14556 struct extsym_info einfo;
14557 bfd_vma last;
14558
14559 /* We have found the .mdebug section in the output file.
14560 Look through all the link_orders comprising it and merge
14561 the information together. */
14562 symhdr->magic = swap->sym_magic;
14563 /* FIXME: What should the version stamp be? */
14564 symhdr->vstamp = 0;
14565 symhdr->ilineMax = 0;
14566 symhdr->cbLine = 0;
14567 symhdr->idnMax = 0;
14568 symhdr->ipdMax = 0;
14569 symhdr->isymMax = 0;
14570 symhdr->ioptMax = 0;
14571 symhdr->iauxMax = 0;
14572 symhdr->issMax = 0;
14573 symhdr->issExtMax = 0;
14574 symhdr->ifdMax = 0;
14575 symhdr->crfd = 0;
14576 symhdr->iextMax = 0;
14577
14578 /* We accumulate the debugging information itself in the
14579 debug_info structure. */
14580 debug.line = NULL;
14581 debug.external_dnr = NULL;
14582 debug.external_pdr = NULL;
14583 debug.external_sym = NULL;
14584 debug.external_opt = NULL;
14585 debug.external_aux = NULL;
14586 debug.ss = NULL;
14587 debug.ssext = debug.ssext_end = NULL;
14588 debug.external_fdr = NULL;
14589 debug.external_rfd = NULL;
14590 debug.external_ext = debug.external_ext_end = NULL;
14591
14592 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14593 if (mdebug_handle == NULL)
14594 return FALSE;
14595
14596 esym.jmptbl = 0;
14597 esym.cobol_main = 0;
14598 esym.weakext = 0;
14599 esym.reserved = 0;
14600 esym.ifd = ifdNil;
14601 esym.asym.iss = issNil;
14602 esym.asym.st = stLocal;
14603 esym.asym.reserved = 0;
14604 esym.asym.index = indexNil;
14605 last = 0;
14606 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14607 {
14608 esym.asym.sc = sc[i];
14609 s = bfd_get_section_by_name (abfd, secname[i]);
14610 if (s != NULL)
14611 {
14612 esym.asym.value = s->vma;
14613 last = s->vma + s->size;
14614 }
14615 else
14616 esym.asym.value = last;
14617 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14618 secname[i], &esym))
14619 return FALSE;
14620 }
14621
14622 for (p = o->map_head.link_order; p != NULL; p = p->next)
14623 {
14624 asection *input_section;
14625 bfd *input_bfd;
14626 const struct ecoff_debug_swap *input_swap;
14627 struct ecoff_debug_info input_debug;
14628 char *eraw_src;
14629 char *eraw_end;
14630
14631 if (p->type != bfd_indirect_link_order)
14632 {
14633 if (p->type == bfd_data_link_order)
14634 continue;
14635 abort ();
14636 }
14637
14638 input_section = p->u.indirect.section;
14639 input_bfd = input_section->owner;
14640
14641 if (!is_mips_elf (input_bfd))
14642 {
14643 /* I don't know what a non MIPS ELF bfd would be
14644 doing with a .mdebug section, but I don't really
14645 want to deal with it. */
14646 continue;
14647 }
14648
14649 input_swap = (get_elf_backend_data (input_bfd)
14650 ->elf_backend_ecoff_debug_swap);
14651
14652 BFD_ASSERT (p->size == input_section->size);
14653
14654 /* The ECOFF linking code expects that we have already
14655 read in the debugging information and set up an
14656 ecoff_debug_info structure, so we do that now. */
14657 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14658 &input_debug))
14659 return FALSE;
14660
14661 if (! (bfd_ecoff_debug_accumulate
14662 (mdebug_handle, abfd, &debug, swap, input_bfd,
14663 &input_debug, input_swap, info)))
14664 return FALSE;
14665
14666 /* Loop through the external symbols. For each one with
14667 interesting information, try to find the symbol in
14668 the linker global hash table and save the information
14669 for the output external symbols. */
14670 eraw_src = input_debug.external_ext;
14671 eraw_end = (eraw_src
14672 + (input_debug.symbolic_header.iextMax
14673 * input_swap->external_ext_size));
14674 for (;
14675 eraw_src < eraw_end;
14676 eraw_src += input_swap->external_ext_size)
14677 {
14678 EXTR ext;
14679 const char *name;
14680 struct mips_elf_link_hash_entry *h;
14681
14682 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14683 if (ext.asym.sc == scNil
14684 || ext.asym.sc == scUndefined
14685 || ext.asym.sc == scSUndefined)
14686 continue;
14687
14688 name = input_debug.ssext + ext.asym.iss;
14689 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14690 name, FALSE, FALSE, TRUE);
14691 if (h == NULL || h->esym.ifd != -2)
14692 continue;
14693
14694 if (ext.ifd != -1)
14695 {
14696 BFD_ASSERT (ext.ifd
14697 < input_debug.symbolic_header.ifdMax);
14698 ext.ifd = input_debug.ifdmap[ext.ifd];
14699 }
14700
14701 h->esym = ext;
14702 }
14703
14704 /* Free up the information we just read. */
14705 free (input_debug.line);
14706 free (input_debug.external_dnr);
14707 free (input_debug.external_pdr);
14708 free (input_debug.external_sym);
14709 free (input_debug.external_opt);
14710 free (input_debug.external_aux);
14711 free (input_debug.ss);
14712 free (input_debug.ssext);
14713 free (input_debug.external_fdr);
14714 free (input_debug.external_rfd);
14715 free (input_debug.external_ext);
14716
14717 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14718 elf_link_input_bfd ignores this section. */
14719 input_section->flags &= ~SEC_HAS_CONTENTS;
14720 }
14721
14722 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14723 {
14724 /* Create .rtproc section. */
14725 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14726 if (rtproc_sec == NULL)
14727 {
14728 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14729 | SEC_LINKER_CREATED | SEC_READONLY);
14730
14731 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14732 ".rtproc",
14733 flags);
14734 if (rtproc_sec == NULL
14735 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14736 return FALSE;
14737 }
14738
14739 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14740 info, rtproc_sec,
14741 &debug))
14742 return FALSE;
14743 }
14744
14745 /* Build the external symbol information. */
14746 einfo.abfd = abfd;
14747 einfo.info = info;
14748 einfo.debug = &debug;
14749 einfo.swap = swap;
14750 einfo.failed = FALSE;
14751 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14752 mips_elf_output_extsym, &einfo);
14753 if (einfo.failed)
14754 return FALSE;
14755
14756 /* Set the size of the .mdebug section. */
14757 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14758
14759 /* Skip this section later on (I don't think this currently
14760 matters, but someday it might). */
14761 o->map_head.link_order = NULL;
14762
14763 mdebug_sec = o;
14764 }
14765
14766 if (CONST_STRNEQ (o->name, ".gptab."))
14767 {
14768 const char *subname;
14769 unsigned int c;
14770 Elf32_gptab *tab;
14771 Elf32_External_gptab *ext_tab;
14772 unsigned int j;
14773
14774 /* The .gptab.sdata and .gptab.sbss sections hold
14775 information describing how the small data area would
14776 change depending upon the -G switch. These sections
14777 not used in executables files. */
14778 if (! bfd_link_relocatable (info))
14779 {
14780 for (p = o->map_head.link_order; p != NULL; p = p->next)
14781 {
14782 asection *input_section;
14783
14784 if (p->type != bfd_indirect_link_order)
14785 {
14786 if (p->type == bfd_data_link_order)
14787 continue;
14788 abort ();
14789 }
14790
14791 input_section = p->u.indirect.section;
14792
14793 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14794 elf_link_input_bfd ignores this section. */
14795 input_section->flags &= ~SEC_HAS_CONTENTS;
14796 }
14797
14798 /* Skip this section later on (I don't think this
14799 currently matters, but someday it might). */
14800 o->map_head.link_order = NULL;
14801
14802 /* Really remove the section. */
14803 bfd_section_list_remove (abfd, o);
14804 --abfd->section_count;
14805
14806 continue;
14807 }
14808
14809 /* There is one gptab for initialized data, and one for
14810 uninitialized data. */
14811 if (strcmp (o->name, ".gptab.sdata") == 0)
14812 gptab_data_sec = o;
14813 else if (strcmp (o->name, ".gptab.sbss") == 0)
14814 gptab_bss_sec = o;
14815 else
14816 {
14817 (*_bfd_error_handler)
14818 (_("%s: illegal section name `%s'"),
14819 bfd_get_filename (abfd), o->name);
14820 bfd_set_error (bfd_error_nonrepresentable_section);
14821 return FALSE;
14822 }
14823
14824 /* The linker script always combines .gptab.data and
14825 .gptab.sdata into .gptab.sdata, and likewise for
14826 .gptab.bss and .gptab.sbss. It is possible that there is
14827 no .sdata or .sbss section in the output file, in which
14828 case we must change the name of the output section. */
14829 subname = o->name + sizeof ".gptab" - 1;
14830 if (bfd_get_section_by_name (abfd, subname) == NULL)
14831 {
14832 if (o == gptab_data_sec)
14833 o->name = ".gptab.data";
14834 else
14835 o->name = ".gptab.bss";
14836 subname = o->name + sizeof ".gptab" - 1;
14837 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14838 }
14839
14840 /* Set up the first entry. */
14841 c = 1;
14842 amt = c * sizeof (Elf32_gptab);
14843 tab = bfd_malloc (amt);
14844 if (tab == NULL)
14845 return FALSE;
14846 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14847 tab[0].gt_header.gt_unused = 0;
14848
14849 /* Combine the input sections. */
14850 for (p = o->map_head.link_order; p != NULL; p = p->next)
14851 {
14852 asection *input_section;
14853 bfd *input_bfd;
14854 bfd_size_type size;
14855 unsigned long last;
14856 bfd_size_type gpentry;
14857
14858 if (p->type != bfd_indirect_link_order)
14859 {
14860 if (p->type == bfd_data_link_order)
14861 continue;
14862 abort ();
14863 }
14864
14865 input_section = p->u.indirect.section;
14866 input_bfd = input_section->owner;
14867
14868 /* Combine the gptab entries for this input section one
14869 by one. We know that the input gptab entries are
14870 sorted by ascending -G value. */
14871 size = input_section->size;
14872 last = 0;
14873 for (gpentry = sizeof (Elf32_External_gptab);
14874 gpentry < size;
14875 gpentry += sizeof (Elf32_External_gptab))
14876 {
14877 Elf32_External_gptab ext_gptab;
14878 Elf32_gptab int_gptab;
14879 unsigned long val;
14880 unsigned long add;
14881 bfd_boolean exact;
14882 unsigned int look;
14883
14884 if (! (bfd_get_section_contents
14885 (input_bfd, input_section, &ext_gptab, gpentry,
14886 sizeof (Elf32_External_gptab))))
14887 {
14888 free (tab);
14889 return FALSE;
14890 }
14891
14892 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14893 &int_gptab);
14894 val = int_gptab.gt_entry.gt_g_value;
14895 add = int_gptab.gt_entry.gt_bytes - last;
14896
14897 exact = FALSE;
14898 for (look = 1; look < c; look++)
14899 {
14900 if (tab[look].gt_entry.gt_g_value >= val)
14901 tab[look].gt_entry.gt_bytes += add;
14902
14903 if (tab[look].gt_entry.gt_g_value == val)
14904 exact = TRUE;
14905 }
14906
14907 if (! exact)
14908 {
14909 Elf32_gptab *new_tab;
14910 unsigned int max;
14911
14912 /* We need a new table entry. */
14913 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14914 new_tab = bfd_realloc (tab, amt);
14915 if (new_tab == NULL)
14916 {
14917 free (tab);
14918 return FALSE;
14919 }
14920 tab = new_tab;
14921 tab[c].gt_entry.gt_g_value = val;
14922 tab[c].gt_entry.gt_bytes = add;
14923
14924 /* Merge in the size for the next smallest -G
14925 value, since that will be implied by this new
14926 value. */
14927 max = 0;
14928 for (look = 1; look < c; look++)
14929 {
14930 if (tab[look].gt_entry.gt_g_value < val
14931 && (max == 0
14932 || (tab[look].gt_entry.gt_g_value
14933 > tab[max].gt_entry.gt_g_value)))
14934 max = look;
14935 }
14936 if (max != 0)
14937 tab[c].gt_entry.gt_bytes +=
14938 tab[max].gt_entry.gt_bytes;
14939
14940 ++c;
14941 }
14942
14943 last = int_gptab.gt_entry.gt_bytes;
14944 }
14945
14946 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14947 elf_link_input_bfd ignores this section. */
14948 input_section->flags &= ~SEC_HAS_CONTENTS;
14949 }
14950
14951 /* The table must be sorted by -G value. */
14952 if (c > 2)
14953 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14954
14955 /* Swap out the table. */
14956 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14957 ext_tab = bfd_alloc (abfd, amt);
14958 if (ext_tab == NULL)
14959 {
14960 free (tab);
14961 return FALSE;
14962 }
14963
14964 for (j = 0; j < c; j++)
14965 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14966 free (tab);
14967
14968 o->size = c * sizeof (Elf32_External_gptab);
14969 o->contents = (bfd_byte *) ext_tab;
14970
14971 /* Skip this section later on (I don't think this currently
14972 matters, but someday it might). */
14973 o->map_head.link_order = NULL;
14974 }
14975 }
14976
14977 /* Invoke the regular ELF backend linker to do all the work. */
14978 if (!bfd_elf_final_link (abfd, info))
14979 return FALSE;
14980
14981 /* Now write out the computed sections. */
14982
14983 if (abiflags_sec != NULL)
14984 {
14985 Elf_External_ABIFlags_v0 ext;
14986 Elf_Internal_ABIFlags_v0 *abiflags;
14987
14988 abiflags = &mips_elf_tdata (abfd)->abiflags;
14989
14990 /* Set up the abiflags if no valid input sections were found. */
14991 if (!mips_elf_tdata (abfd)->abiflags_valid)
14992 {
14993 infer_mips_abiflags (abfd, abiflags);
14994 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14995 }
14996 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14997 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14998 return FALSE;
14999 }
15000
15001 if (reginfo_sec != NULL)
15002 {
15003 Elf32_External_RegInfo ext;
15004
15005 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15006 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15007 return FALSE;
15008 }
15009
15010 if (mdebug_sec != NULL)
15011 {
15012 BFD_ASSERT (abfd->output_has_begun);
15013 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15014 swap, info,
15015 mdebug_sec->filepos))
15016 return FALSE;
15017
15018 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15019 }
15020
15021 if (gptab_data_sec != NULL)
15022 {
15023 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15024 gptab_data_sec->contents,
15025 0, gptab_data_sec->size))
15026 return FALSE;
15027 }
15028
15029 if (gptab_bss_sec != NULL)
15030 {
15031 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15032 gptab_bss_sec->contents,
15033 0, gptab_bss_sec->size))
15034 return FALSE;
15035 }
15036
15037 if (SGI_COMPAT (abfd))
15038 {
15039 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15040 if (rtproc_sec != NULL)
15041 {
15042 if (! bfd_set_section_contents (abfd, rtproc_sec,
15043 rtproc_sec->contents,
15044 0, rtproc_sec->size))
15045 return FALSE;
15046 }
15047 }
15048
15049 return TRUE;
15050 }
15051 \f
15052 /* Merge object file header flags from IBFD into OBFD. Raise an error
15053 if there are conflicting settings. */
15054
15055 static bfd_boolean
15056 mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd)
15057 {
15058 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15059 flagword old_flags;
15060 flagword new_flags;
15061 bfd_boolean ok;
15062
15063 new_flags = elf_elfheader (ibfd)->e_flags;
15064 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15065 old_flags = elf_elfheader (obfd)->e_flags;
15066
15067 /* Check flag compatibility. */
15068
15069 new_flags &= ~EF_MIPS_NOREORDER;
15070 old_flags &= ~EF_MIPS_NOREORDER;
15071
15072 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15073 doesn't seem to matter. */
15074 new_flags &= ~EF_MIPS_XGOT;
15075 old_flags &= ~EF_MIPS_XGOT;
15076
15077 /* MIPSpro generates ucode info in n64 objects. Again, we should
15078 just be able to ignore this. */
15079 new_flags &= ~EF_MIPS_UCODE;
15080 old_flags &= ~EF_MIPS_UCODE;
15081
15082 /* DSOs should only be linked with CPIC code. */
15083 if ((ibfd->flags & DYNAMIC) != 0)
15084 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15085
15086 if (new_flags == old_flags)
15087 return TRUE;
15088
15089 ok = TRUE;
15090
15091 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15092 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15093 {
15094 (*_bfd_error_handler)
15095 (_("%B: warning: linking abicalls files with non-abicalls files"),
15096 ibfd);
15097 ok = TRUE;
15098 }
15099
15100 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15101 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15102 if (! (new_flags & EF_MIPS_PIC))
15103 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15104
15105 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15106 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15107
15108 /* Compare the ISAs. */
15109 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15110 {
15111 (*_bfd_error_handler)
15112 (_("%B: linking 32-bit code with 64-bit code"),
15113 ibfd);
15114 ok = FALSE;
15115 }
15116 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15117 {
15118 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15119 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15120 {
15121 /* Copy the architecture info from IBFD to OBFD. Also copy
15122 the 32-bit flag (if set) so that we continue to recognise
15123 OBFD as a 32-bit binary. */
15124 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15125 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15126 elf_elfheader (obfd)->e_flags
15127 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15128
15129 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15130 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15131
15132 /* Copy across the ABI flags if OBFD doesn't use them
15133 and if that was what caused us to treat IBFD as 32-bit. */
15134 if ((old_flags & EF_MIPS_ABI) == 0
15135 && mips_32bit_flags_p (new_flags)
15136 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15137 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15138 }
15139 else
15140 {
15141 /* The ISAs aren't compatible. */
15142 (*_bfd_error_handler)
15143 (_("%B: linking %s module with previous %s modules"),
15144 ibfd,
15145 bfd_printable_name (ibfd),
15146 bfd_printable_name (obfd));
15147 ok = FALSE;
15148 }
15149 }
15150
15151 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15152 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15153
15154 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15155 does set EI_CLASS differently from any 32-bit ABI. */
15156 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15157 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15158 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15159 {
15160 /* Only error if both are set (to different values). */
15161 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15162 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15163 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15164 {
15165 (*_bfd_error_handler)
15166 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15167 ibfd,
15168 elf_mips_abi_name (ibfd),
15169 elf_mips_abi_name (obfd));
15170 ok = FALSE;
15171 }
15172 new_flags &= ~EF_MIPS_ABI;
15173 old_flags &= ~EF_MIPS_ABI;
15174 }
15175
15176 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15177 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15178 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15179 {
15180 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15181 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15182 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15183 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15184 int micro_mis = old_m16 && new_micro;
15185 int m16_mis = old_micro && new_m16;
15186
15187 if (m16_mis || micro_mis)
15188 {
15189 (*_bfd_error_handler)
15190 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15191 ibfd,
15192 m16_mis ? "MIPS16" : "microMIPS",
15193 m16_mis ? "microMIPS" : "MIPS16");
15194 ok = FALSE;
15195 }
15196
15197 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15198
15199 new_flags &= ~ EF_MIPS_ARCH_ASE;
15200 old_flags &= ~ EF_MIPS_ARCH_ASE;
15201 }
15202
15203 /* Compare NaN encodings. */
15204 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15205 {
15206 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15207 ibfd,
15208 (new_flags & EF_MIPS_NAN2008
15209 ? "-mnan=2008" : "-mnan=legacy"),
15210 (old_flags & EF_MIPS_NAN2008
15211 ? "-mnan=2008" : "-mnan=legacy"));
15212 ok = FALSE;
15213 new_flags &= ~EF_MIPS_NAN2008;
15214 old_flags &= ~EF_MIPS_NAN2008;
15215 }
15216
15217 /* Compare FP64 state. */
15218 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15219 {
15220 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15221 ibfd,
15222 (new_flags & EF_MIPS_FP64
15223 ? "-mfp64" : "-mfp32"),
15224 (old_flags & EF_MIPS_FP64
15225 ? "-mfp64" : "-mfp32"));
15226 ok = FALSE;
15227 new_flags &= ~EF_MIPS_FP64;
15228 old_flags &= ~EF_MIPS_FP64;
15229 }
15230
15231 /* Warn about any other mismatches */
15232 if (new_flags != old_flags)
15233 {
15234 (*_bfd_error_handler)
15235 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15236 "(0x%lx)"),
15237 ibfd, (unsigned long) new_flags,
15238 (unsigned long) old_flags);
15239 ok = FALSE;
15240 }
15241
15242 return ok;
15243 }
15244
15245 /* Merge object attributes from IBFD into OBFD. Raise an error if
15246 there are conflicting attributes. */
15247 static bfd_boolean
15248 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
15249 {
15250 obj_attribute *in_attr;
15251 obj_attribute *out_attr;
15252 bfd *abi_fp_bfd;
15253 bfd *abi_msa_bfd;
15254
15255 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15256 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15257 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15258 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15259
15260 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15261 if (!abi_msa_bfd
15262 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15263 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15264
15265 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15266 {
15267 /* This is the first object. Copy the attributes. */
15268 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15269
15270 /* Use the Tag_null value to indicate the attributes have been
15271 initialized. */
15272 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15273
15274 return TRUE;
15275 }
15276
15277 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15278 non-conflicting ones. */
15279 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15280 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15281 {
15282 int out_fp, in_fp;
15283
15284 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15285 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15286 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15287 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15288 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15289 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15290 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15291 || in_fp == Val_GNU_MIPS_ABI_FP_64
15292 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15293 {
15294 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15295 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15296 }
15297 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15298 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15299 || out_fp == Val_GNU_MIPS_ABI_FP_64
15300 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15301 /* Keep the current setting. */;
15302 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15303 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15304 {
15305 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15306 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15307 }
15308 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15309 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15310 /* Keep the current setting. */;
15311 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15312 {
15313 const char *out_string, *in_string;
15314
15315 out_string = _bfd_mips_fp_abi_string (out_fp);
15316 in_string = _bfd_mips_fp_abi_string (in_fp);
15317 /* First warn about cases involving unrecognised ABIs. */
15318 if (!out_string && !in_string)
15319 _bfd_error_handler
15320 (_("Warning: %B uses unknown floating point ABI %d "
15321 "(set by %B), %B uses unknown floating point ABI %d"),
15322 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15323 else if (!out_string)
15324 _bfd_error_handler
15325 (_("Warning: %B uses unknown floating point ABI %d "
15326 "(set by %B), %B uses %s"),
15327 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15328 else if (!in_string)
15329 _bfd_error_handler
15330 (_("Warning: %B uses %s (set by %B), "
15331 "%B uses unknown floating point ABI %d"),
15332 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15333 else
15334 {
15335 /* If one of the bfds is soft-float, the other must be
15336 hard-float. The exact choice of hard-float ABI isn't
15337 really relevant to the error message. */
15338 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15339 out_string = "-mhard-float";
15340 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15341 in_string = "-mhard-float";
15342 _bfd_error_handler
15343 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15344 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15345 }
15346 }
15347 }
15348
15349 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15350 non-conflicting ones. */
15351 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15352 {
15353 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15354 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15355 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15356 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15357 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15358 {
15359 case Val_GNU_MIPS_ABI_MSA_128:
15360 _bfd_error_handler
15361 (_("Warning: %B uses %s (set by %B), "
15362 "%B uses unknown MSA ABI %d"),
15363 obfd, abi_msa_bfd, ibfd,
15364 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15365 break;
15366
15367 default:
15368 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15369 {
15370 case Val_GNU_MIPS_ABI_MSA_128:
15371 _bfd_error_handler
15372 (_("Warning: %B uses unknown MSA ABI %d "
15373 "(set by %B), %B uses %s"),
15374 obfd, abi_msa_bfd, ibfd,
15375 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15376 break;
15377
15378 default:
15379 _bfd_error_handler
15380 (_("Warning: %B uses unknown MSA ABI %d "
15381 "(set by %B), %B uses unknown MSA ABI %d"),
15382 obfd, abi_msa_bfd, ibfd,
15383 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15384 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15385 break;
15386 }
15387 }
15388 }
15389
15390 /* Merge Tag_compatibility attributes and any common GNU ones. */
15391 return _bfd_elf_merge_object_attributes (ibfd, obfd);
15392 }
15393
15394 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15395 there are conflicting settings. */
15396
15397 static bfd_boolean
15398 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15399 {
15400 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15401 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15402 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15403
15404 /* Update the output abiflags fp_abi using the computed fp_abi. */
15405 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15406
15407 #define max(a, b) ((a) > (b) ? (a) : (b))
15408 /* Merge abiflags. */
15409 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15410 in_tdata->abiflags.isa_level);
15411 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15412 in_tdata->abiflags.isa_rev);
15413 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15414 in_tdata->abiflags.gpr_size);
15415 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15416 in_tdata->abiflags.cpr1_size);
15417 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15418 in_tdata->abiflags.cpr2_size);
15419 #undef max
15420 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15421 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15422
15423 return TRUE;
15424 }
15425
15426 /* Merge backend specific data from an object file to the output
15427 object file when linking. */
15428
15429 bfd_boolean
15430 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15431 {
15432 struct mips_elf_obj_tdata *out_tdata;
15433 struct mips_elf_obj_tdata *in_tdata;
15434 bfd_boolean null_input_bfd = TRUE;
15435 asection *sec;
15436 bfd_boolean ok;
15437
15438 /* Check if we have the same endianness. */
15439 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15440 {
15441 (*_bfd_error_handler)
15442 (_("%B: endianness incompatible with that of the selected emulation"),
15443 ibfd);
15444 return FALSE;
15445 }
15446
15447 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15448 return TRUE;
15449
15450 in_tdata = mips_elf_tdata (ibfd);
15451 out_tdata = mips_elf_tdata (obfd);
15452
15453 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15454 {
15455 (*_bfd_error_handler)
15456 (_("%B: ABI is incompatible with that of the selected emulation"),
15457 ibfd);
15458 return FALSE;
15459 }
15460
15461 /* Check to see if the input BFD actually contains any sections. If not,
15462 then it has no attributes, and its flags may not have been initialized
15463 either, but it cannot actually cause any incompatibility. */
15464 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15465 {
15466 /* Ignore synthetic sections and empty .text, .data and .bss sections
15467 which are automatically generated by gas. Also ignore fake
15468 (s)common sections, since merely defining a common symbol does
15469 not affect compatibility. */
15470 if ((sec->flags & SEC_IS_COMMON) == 0
15471 && strcmp (sec->name, ".reginfo")
15472 && strcmp (sec->name, ".mdebug")
15473 && (sec->size != 0
15474 || (strcmp (sec->name, ".text")
15475 && strcmp (sec->name, ".data")
15476 && strcmp (sec->name, ".bss"))))
15477 {
15478 null_input_bfd = FALSE;
15479 break;
15480 }
15481 }
15482 if (null_input_bfd)
15483 return TRUE;
15484
15485 /* Populate abiflags using existing information. */
15486 if (in_tdata->abiflags_valid)
15487 {
15488 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15489 Elf_Internal_ABIFlags_v0 in_abiflags;
15490 Elf_Internal_ABIFlags_v0 abiflags;
15491
15492 /* Set up the FP ABI attribute from the abiflags if it is not already
15493 set. */
15494 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15495 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15496
15497 infer_mips_abiflags (ibfd, &abiflags);
15498 in_abiflags = in_tdata->abiflags;
15499
15500 /* It is not possible to infer the correct ISA revision
15501 for R3 or R5 so drop down to R2 for the checks. */
15502 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15503 in_abiflags.isa_rev = 2;
15504
15505 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15506 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15507 (*_bfd_error_handler)
15508 (_("%B: warning: Inconsistent ISA between e_flags and "
15509 ".MIPS.abiflags"), ibfd);
15510 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15511 && in_abiflags.fp_abi != abiflags.fp_abi)
15512 (*_bfd_error_handler)
15513 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15514 ".MIPS.abiflags"), ibfd);
15515 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15516 (*_bfd_error_handler)
15517 (_("%B: warning: Inconsistent ASEs between e_flags and "
15518 ".MIPS.abiflags"), ibfd);
15519 /* The isa_ext is allowed to be an extension of what can be inferred
15520 from e_flags. */
15521 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15522 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15523 (*_bfd_error_handler)
15524 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15525 ".MIPS.abiflags"), ibfd);
15526 if (in_abiflags.flags2 != 0)
15527 (*_bfd_error_handler)
15528 (_("%B: warning: Unexpected flag in the flags2 field of "
15529 ".MIPS.abiflags (0x%lx)"), ibfd,
15530 (unsigned long) in_abiflags.flags2);
15531 }
15532 else
15533 {
15534 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15535 in_tdata->abiflags_valid = TRUE;
15536 }
15537
15538 if (!out_tdata->abiflags_valid)
15539 {
15540 /* Copy input abiflags if output abiflags are not already valid. */
15541 out_tdata->abiflags = in_tdata->abiflags;
15542 out_tdata->abiflags_valid = TRUE;
15543 }
15544
15545 if (! elf_flags_init (obfd))
15546 {
15547 elf_flags_init (obfd) = TRUE;
15548 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15549 elf_elfheader (obfd)->e_ident[EI_CLASS]
15550 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15551
15552 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15553 && (bfd_get_arch_info (obfd)->the_default
15554 || mips_mach_extends_p (bfd_get_mach (obfd),
15555 bfd_get_mach (ibfd))))
15556 {
15557 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15558 bfd_get_mach (ibfd)))
15559 return FALSE;
15560
15561 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15562 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15563 }
15564
15565 ok = TRUE;
15566 }
15567 else
15568 ok = mips_elf_merge_obj_e_flags (ibfd, obfd);
15569
15570 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok;
15571
15572 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15573
15574 if (!ok)
15575 {
15576 bfd_set_error (bfd_error_bad_value);
15577 return FALSE;
15578 }
15579
15580 return TRUE;
15581 }
15582
15583 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15584
15585 bfd_boolean
15586 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15587 {
15588 BFD_ASSERT (!elf_flags_init (abfd)
15589 || elf_elfheader (abfd)->e_flags == flags);
15590
15591 elf_elfheader (abfd)->e_flags = flags;
15592 elf_flags_init (abfd) = TRUE;
15593 return TRUE;
15594 }
15595
15596 char *
15597 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15598 {
15599 switch (dtag)
15600 {
15601 default: return "";
15602 case DT_MIPS_RLD_VERSION:
15603 return "MIPS_RLD_VERSION";
15604 case DT_MIPS_TIME_STAMP:
15605 return "MIPS_TIME_STAMP";
15606 case DT_MIPS_ICHECKSUM:
15607 return "MIPS_ICHECKSUM";
15608 case DT_MIPS_IVERSION:
15609 return "MIPS_IVERSION";
15610 case DT_MIPS_FLAGS:
15611 return "MIPS_FLAGS";
15612 case DT_MIPS_BASE_ADDRESS:
15613 return "MIPS_BASE_ADDRESS";
15614 case DT_MIPS_MSYM:
15615 return "MIPS_MSYM";
15616 case DT_MIPS_CONFLICT:
15617 return "MIPS_CONFLICT";
15618 case DT_MIPS_LIBLIST:
15619 return "MIPS_LIBLIST";
15620 case DT_MIPS_LOCAL_GOTNO:
15621 return "MIPS_LOCAL_GOTNO";
15622 case DT_MIPS_CONFLICTNO:
15623 return "MIPS_CONFLICTNO";
15624 case DT_MIPS_LIBLISTNO:
15625 return "MIPS_LIBLISTNO";
15626 case DT_MIPS_SYMTABNO:
15627 return "MIPS_SYMTABNO";
15628 case DT_MIPS_UNREFEXTNO:
15629 return "MIPS_UNREFEXTNO";
15630 case DT_MIPS_GOTSYM:
15631 return "MIPS_GOTSYM";
15632 case DT_MIPS_HIPAGENO:
15633 return "MIPS_HIPAGENO";
15634 case DT_MIPS_RLD_MAP:
15635 return "MIPS_RLD_MAP";
15636 case DT_MIPS_RLD_MAP_REL:
15637 return "MIPS_RLD_MAP_REL";
15638 case DT_MIPS_DELTA_CLASS:
15639 return "MIPS_DELTA_CLASS";
15640 case DT_MIPS_DELTA_CLASS_NO:
15641 return "MIPS_DELTA_CLASS_NO";
15642 case DT_MIPS_DELTA_INSTANCE:
15643 return "MIPS_DELTA_INSTANCE";
15644 case DT_MIPS_DELTA_INSTANCE_NO:
15645 return "MIPS_DELTA_INSTANCE_NO";
15646 case DT_MIPS_DELTA_RELOC:
15647 return "MIPS_DELTA_RELOC";
15648 case DT_MIPS_DELTA_RELOC_NO:
15649 return "MIPS_DELTA_RELOC_NO";
15650 case DT_MIPS_DELTA_SYM:
15651 return "MIPS_DELTA_SYM";
15652 case DT_MIPS_DELTA_SYM_NO:
15653 return "MIPS_DELTA_SYM_NO";
15654 case DT_MIPS_DELTA_CLASSSYM:
15655 return "MIPS_DELTA_CLASSSYM";
15656 case DT_MIPS_DELTA_CLASSSYM_NO:
15657 return "MIPS_DELTA_CLASSSYM_NO";
15658 case DT_MIPS_CXX_FLAGS:
15659 return "MIPS_CXX_FLAGS";
15660 case DT_MIPS_PIXIE_INIT:
15661 return "MIPS_PIXIE_INIT";
15662 case DT_MIPS_SYMBOL_LIB:
15663 return "MIPS_SYMBOL_LIB";
15664 case DT_MIPS_LOCALPAGE_GOTIDX:
15665 return "MIPS_LOCALPAGE_GOTIDX";
15666 case DT_MIPS_LOCAL_GOTIDX:
15667 return "MIPS_LOCAL_GOTIDX";
15668 case DT_MIPS_HIDDEN_GOTIDX:
15669 return "MIPS_HIDDEN_GOTIDX";
15670 case DT_MIPS_PROTECTED_GOTIDX:
15671 return "MIPS_PROTECTED_GOT_IDX";
15672 case DT_MIPS_OPTIONS:
15673 return "MIPS_OPTIONS";
15674 case DT_MIPS_INTERFACE:
15675 return "MIPS_INTERFACE";
15676 case DT_MIPS_DYNSTR_ALIGN:
15677 return "DT_MIPS_DYNSTR_ALIGN";
15678 case DT_MIPS_INTERFACE_SIZE:
15679 return "DT_MIPS_INTERFACE_SIZE";
15680 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15681 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15682 case DT_MIPS_PERF_SUFFIX:
15683 return "DT_MIPS_PERF_SUFFIX";
15684 case DT_MIPS_COMPACT_SIZE:
15685 return "DT_MIPS_COMPACT_SIZE";
15686 case DT_MIPS_GP_VALUE:
15687 return "DT_MIPS_GP_VALUE";
15688 case DT_MIPS_AUX_DYNAMIC:
15689 return "DT_MIPS_AUX_DYNAMIC";
15690 case DT_MIPS_PLTGOT:
15691 return "DT_MIPS_PLTGOT";
15692 case DT_MIPS_RWPLT:
15693 return "DT_MIPS_RWPLT";
15694 }
15695 }
15696
15697 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15698 not known. */
15699
15700 const char *
15701 _bfd_mips_fp_abi_string (int fp)
15702 {
15703 switch (fp)
15704 {
15705 /* These strings aren't translated because they're simply
15706 option lists. */
15707 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15708 return "-mdouble-float";
15709
15710 case Val_GNU_MIPS_ABI_FP_SINGLE:
15711 return "-msingle-float";
15712
15713 case Val_GNU_MIPS_ABI_FP_SOFT:
15714 return "-msoft-float";
15715
15716 case Val_GNU_MIPS_ABI_FP_OLD_64:
15717 return _("-mips32r2 -mfp64 (12 callee-saved)");
15718
15719 case Val_GNU_MIPS_ABI_FP_XX:
15720 return "-mfpxx";
15721
15722 case Val_GNU_MIPS_ABI_FP_64:
15723 return "-mgp32 -mfp64";
15724
15725 case Val_GNU_MIPS_ABI_FP_64A:
15726 return "-mgp32 -mfp64 -mno-odd-spreg";
15727
15728 default:
15729 return 0;
15730 }
15731 }
15732
15733 static void
15734 print_mips_ases (FILE *file, unsigned int mask)
15735 {
15736 if (mask & AFL_ASE_DSP)
15737 fputs ("\n\tDSP ASE", file);
15738 if (mask & AFL_ASE_DSPR2)
15739 fputs ("\n\tDSP R2 ASE", file);
15740 if (mask & AFL_ASE_DSPR3)
15741 fputs ("\n\tDSP R3 ASE", file);
15742 if (mask & AFL_ASE_EVA)
15743 fputs ("\n\tEnhanced VA Scheme", file);
15744 if (mask & AFL_ASE_MCU)
15745 fputs ("\n\tMCU (MicroController) ASE", file);
15746 if (mask & AFL_ASE_MDMX)
15747 fputs ("\n\tMDMX ASE", file);
15748 if (mask & AFL_ASE_MIPS3D)
15749 fputs ("\n\tMIPS-3D ASE", file);
15750 if (mask & AFL_ASE_MT)
15751 fputs ("\n\tMT ASE", file);
15752 if (mask & AFL_ASE_SMARTMIPS)
15753 fputs ("\n\tSmartMIPS ASE", file);
15754 if (mask & AFL_ASE_VIRT)
15755 fputs ("\n\tVZ ASE", file);
15756 if (mask & AFL_ASE_MSA)
15757 fputs ("\n\tMSA ASE", file);
15758 if (mask & AFL_ASE_MIPS16)
15759 fputs ("\n\tMIPS16 ASE", file);
15760 if (mask & AFL_ASE_MICROMIPS)
15761 fputs ("\n\tMICROMIPS ASE", file);
15762 if (mask & AFL_ASE_XPA)
15763 fputs ("\n\tXPA ASE", file);
15764 if (mask == 0)
15765 fprintf (file, "\n\t%s", _("None"));
15766 else if ((mask & ~AFL_ASE_MASK) != 0)
15767 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15768 }
15769
15770 static void
15771 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15772 {
15773 switch (isa_ext)
15774 {
15775 case 0:
15776 fputs (_("None"), file);
15777 break;
15778 case AFL_EXT_XLR:
15779 fputs ("RMI XLR", file);
15780 break;
15781 case AFL_EXT_OCTEON3:
15782 fputs ("Cavium Networks Octeon3", file);
15783 break;
15784 case AFL_EXT_OCTEON2:
15785 fputs ("Cavium Networks Octeon2", file);
15786 break;
15787 case AFL_EXT_OCTEONP:
15788 fputs ("Cavium Networks OcteonP", file);
15789 break;
15790 case AFL_EXT_LOONGSON_3A:
15791 fputs ("Loongson 3A", file);
15792 break;
15793 case AFL_EXT_OCTEON:
15794 fputs ("Cavium Networks Octeon", file);
15795 break;
15796 case AFL_EXT_5900:
15797 fputs ("Toshiba R5900", file);
15798 break;
15799 case AFL_EXT_4650:
15800 fputs ("MIPS R4650", file);
15801 break;
15802 case AFL_EXT_4010:
15803 fputs ("LSI R4010", file);
15804 break;
15805 case AFL_EXT_4100:
15806 fputs ("NEC VR4100", file);
15807 break;
15808 case AFL_EXT_3900:
15809 fputs ("Toshiba R3900", file);
15810 break;
15811 case AFL_EXT_10000:
15812 fputs ("MIPS R10000", file);
15813 break;
15814 case AFL_EXT_SB1:
15815 fputs ("Broadcom SB-1", file);
15816 break;
15817 case AFL_EXT_4111:
15818 fputs ("NEC VR4111/VR4181", file);
15819 break;
15820 case AFL_EXT_4120:
15821 fputs ("NEC VR4120", file);
15822 break;
15823 case AFL_EXT_5400:
15824 fputs ("NEC VR5400", file);
15825 break;
15826 case AFL_EXT_5500:
15827 fputs ("NEC VR5500", file);
15828 break;
15829 case AFL_EXT_LOONGSON_2E:
15830 fputs ("ST Microelectronics Loongson 2E", file);
15831 break;
15832 case AFL_EXT_LOONGSON_2F:
15833 fputs ("ST Microelectronics Loongson 2F", file);
15834 break;
15835 default:
15836 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15837 break;
15838 }
15839 }
15840
15841 static void
15842 print_mips_fp_abi_value (FILE *file, int val)
15843 {
15844 switch (val)
15845 {
15846 case Val_GNU_MIPS_ABI_FP_ANY:
15847 fprintf (file, _("Hard or soft float\n"));
15848 break;
15849 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15850 fprintf (file, _("Hard float (double precision)\n"));
15851 break;
15852 case Val_GNU_MIPS_ABI_FP_SINGLE:
15853 fprintf (file, _("Hard float (single precision)\n"));
15854 break;
15855 case Val_GNU_MIPS_ABI_FP_SOFT:
15856 fprintf (file, _("Soft float\n"));
15857 break;
15858 case Val_GNU_MIPS_ABI_FP_OLD_64:
15859 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15860 break;
15861 case Val_GNU_MIPS_ABI_FP_XX:
15862 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15863 break;
15864 case Val_GNU_MIPS_ABI_FP_64:
15865 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15866 break;
15867 case Val_GNU_MIPS_ABI_FP_64A:
15868 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15869 break;
15870 default:
15871 fprintf (file, "??? (%d)\n", val);
15872 break;
15873 }
15874 }
15875
15876 static int
15877 get_mips_reg_size (int reg_size)
15878 {
15879 return (reg_size == AFL_REG_NONE) ? 0
15880 : (reg_size == AFL_REG_32) ? 32
15881 : (reg_size == AFL_REG_64) ? 64
15882 : (reg_size == AFL_REG_128) ? 128
15883 : -1;
15884 }
15885
15886 bfd_boolean
15887 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15888 {
15889 FILE *file = ptr;
15890
15891 BFD_ASSERT (abfd != NULL && ptr != NULL);
15892
15893 /* Print normal ELF private data. */
15894 _bfd_elf_print_private_bfd_data (abfd, ptr);
15895
15896 /* xgettext:c-format */
15897 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15898
15899 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15900 fprintf (file, _(" [abi=O32]"));
15901 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15902 fprintf (file, _(" [abi=O64]"));
15903 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15904 fprintf (file, _(" [abi=EABI32]"));
15905 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15906 fprintf (file, _(" [abi=EABI64]"));
15907 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15908 fprintf (file, _(" [abi unknown]"));
15909 else if (ABI_N32_P (abfd))
15910 fprintf (file, _(" [abi=N32]"));
15911 else if (ABI_64_P (abfd))
15912 fprintf (file, _(" [abi=64]"));
15913 else
15914 fprintf (file, _(" [no abi set]"));
15915
15916 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15917 fprintf (file, " [mips1]");
15918 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15919 fprintf (file, " [mips2]");
15920 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15921 fprintf (file, " [mips3]");
15922 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15923 fprintf (file, " [mips4]");
15924 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15925 fprintf (file, " [mips5]");
15926 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15927 fprintf (file, " [mips32]");
15928 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15929 fprintf (file, " [mips64]");
15930 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15931 fprintf (file, " [mips32r2]");
15932 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15933 fprintf (file, " [mips64r2]");
15934 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15935 fprintf (file, " [mips32r6]");
15936 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15937 fprintf (file, " [mips64r6]");
15938 else
15939 fprintf (file, _(" [unknown ISA]"));
15940
15941 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15942 fprintf (file, " [mdmx]");
15943
15944 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15945 fprintf (file, " [mips16]");
15946
15947 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15948 fprintf (file, " [micromips]");
15949
15950 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15951 fprintf (file, " [nan2008]");
15952
15953 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15954 fprintf (file, " [old fp64]");
15955
15956 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15957 fprintf (file, " [32bitmode]");
15958 else
15959 fprintf (file, _(" [not 32bitmode]"));
15960
15961 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15962 fprintf (file, " [noreorder]");
15963
15964 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15965 fprintf (file, " [PIC]");
15966
15967 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15968 fprintf (file, " [CPIC]");
15969
15970 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15971 fprintf (file, " [XGOT]");
15972
15973 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15974 fprintf (file, " [UCODE]");
15975
15976 fputc ('\n', file);
15977
15978 if (mips_elf_tdata (abfd)->abiflags_valid)
15979 {
15980 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15981 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15982 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15983 if (abiflags->isa_rev > 1)
15984 fprintf (file, "r%d", abiflags->isa_rev);
15985 fprintf (file, "\nGPR size: %d",
15986 get_mips_reg_size (abiflags->gpr_size));
15987 fprintf (file, "\nCPR1 size: %d",
15988 get_mips_reg_size (abiflags->cpr1_size));
15989 fprintf (file, "\nCPR2 size: %d",
15990 get_mips_reg_size (abiflags->cpr2_size));
15991 fputs ("\nFP ABI: ", file);
15992 print_mips_fp_abi_value (file, abiflags->fp_abi);
15993 fputs ("ISA Extension: ", file);
15994 print_mips_isa_ext (file, abiflags->isa_ext);
15995 fputs ("\nASEs:", file);
15996 print_mips_ases (file, abiflags->ases);
15997 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15998 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15999 fputc ('\n', file);
16000 }
16001
16002 return TRUE;
16003 }
16004
16005 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16006 {
16007 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16008 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16009 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16010 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16011 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16012 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16013 { NULL, 0, 0, 0, 0 }
16014 };
16015
16016 /* Merge non visibility st_other attributes. Ensure that the
16017 STO_OPTIONAL flag is copied into h->other, even if this is not a
16018 definiton of the symbol. */
16019 void
16020 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16021 const Elf_Internal_Sym *isym,
16022 bfd_boolean definition,
16023 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16024 {
16025 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16026 {
16027 unsigned char other;
16028
16029 other = (definition ? isym->st_other : h->other);
16030 other &= ~ELF_ST_VISIBILITY (-1);
16031 h->other = other | ELF_ST_VISIBILITY (h->other);
16032 }
16033
16034 if (!definition
16035 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16036 h->other |= STO_OPTIONAL;
16037 }
16038
16039 /* Decide whether an undefined symbol is special and can be ignored.
16040 This is the case for OPTIONAL symbols on IRIX. */
16041 bfd_boolean
16042 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16043 {
16044 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16045 }
16046
16047 bfd_boolean
16048 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16049 {
16050 return (sym->st_shndx == SHN_COMMON
16051 || sym->st_shndx == SHN_MIPS_ACOMMON
16052 || sym->st_shndx == SHN_MIPS_SCOMMON);
16053 }
16054
16055 /* Return address for Ith PLT stub in section PLT, for relocation REL
16056 or (bfd_vma) -1 if it should not be included. */
16057
16058 bfd_vma
16059 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16060 const arelent *rel ATTRIBUTE_UNUSED)
16061 {
16062 return (plt->vma
16063 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16064 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16065 }
16066
16067 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16068 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16069 and .got.plt and also the slots may be of a different size each we walk
16070 the PLT manually fetching instructions and matching them against known
16071 patterns. To make things easier standard MIPS slots, if any, always come
16072 first. As we don't create proper ELF symbols we use the UDATA.I member
16073 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16074 with the ST_OTHER member of the ELF symbol. */
16075
16076 long
16077 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16078 long symcount ATTRIBUTE_UNUSED,
16079 asymbol **syms ATTRIBUTE_UNUSED,
16080 long dynsymcount, asymbol **dynsyms,
16081 asymbol **ret)
16082 {
16083 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16084 static const char microsuffix[] = "@micromipsplt";
16085 static const char m16suffix[] = "@mips16plt";
16086 static const char mipssuffix[] = "@plt";
16087
16088 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16089 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16090 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16091 Elf_Internal_Shdr *hdr;
16092 bfd_byte *plt_data;
16093 bfd_vma plt_offset;
16094 unsigned int other;
16095 bfd_vma entry_size;
16096 bfd_vma plt0_size;
16097 asection *relplt;
16098 bfd_vma opcode;
16099 asection *plt;
16100 asymbol *send;
16101 size_t size;
16102 char *names;
16103 long counti;
16104 arelent *p;
16105 asymbol *s;
16106 char *nend;
16107 long count;
16108 long pi;
16109 long i;
16110 long n;
16111
16112 *ret = NULL;
16113
16114 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16115 return 0;
16116
16117 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16118 if (relplt == NULL)
16119 return 0;
16120
16121 hdr = &elf_section_data (relplt)->this_hdr;
16122 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16123 return 0;
16124
16125 plt = bfd_get_section_by_name (abfd, ".plt");
16126 if (plt == NULL)
16127 return 0;
16128
16129 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16130 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16131 return -1;
16132 p = relplt->relocation;
16133
16134 /* Calculating the exact amount of space required for symbols would
16135 require two passes over the PLT, so just pessimise assuming two
16136 PLT slots per relocation. */
16137 count = relplt->size / hdr->sh_entsize;
16138 counti = count * bed->s->int_rels_per_ext_rel;
16139 size = 2 * count * sizeof (asymbol);
16140 size += count * (sizeof (mipssuffix) +
16141 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16142 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16143 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16144
16145 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16146 size += sizeof (asymbol) + sizeof (pltname);
16147
16148 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16149 return -1;
16150
16151 if (plt->size < 16)
16152 return -1;
16153
16154 s = *ret = bfd_malloc (size);
16155 if (s == NULL)
16156 return -1;
16157 send = s + 2 * count + 1;
16158
16159 names = (char *) send;
16160 nend = (char *) s + size;
16161 n = 0;
16162
16163 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16164 if (opcode == 0x3302fffe)
16165 {
16166 if (!micromips_p)
16167 return -1;
16168 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16169 other = STO_MICROMIPS;
16170 }
16171 else if (opcode == 0x0398c1d0)
16172 {
16173 if (!micromips_p)
16174 return -1;
16175 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16176 other = STO_MICROMIPS;
16177 }
16178 else
16179 {
16180 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16181 other = 0;
16182 }
16183
16184 s->the_bfd = abfd;
16185 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16186 s->section = plt;
16187 s->value = 0;
16188 s->name = names;
16189 s->udata.i = other;
16190 memcpy (names, pltname, sizeof (pltname));
16191 names += sizeof (pltname);
16192 ++s, ++n;
16193
16194 pi = 0;
16195 for (plt_offset = plt0_size;
16196 plt_offset + 8 <= plt->size && s < send;
16197 plt_offset += entry_size)
16198 {
16199 bfd_vma gotplt_addr;
16200 const char *suffix;
16201 bfd_vma gotplt_hi;
16202 bfd_vma gotplt_lo;
16203 size_t suffixlen;
16204
16205 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16206
16207 /* Check if the second word matches the expected MIPS16 instruction. */
16208 if (opcode == 0x651aeb00)
16209 {
16210 if (micromips_p)
16211 return -1;
16212 /* Truncated table??? */
16213 if (plt_offset + 16 > plt->size)
16214 break;
16215 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16216 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16217 suffixlen = sizeof (m16suffix);
16218 suffix = m16suffix;
16219 other = STO_MIPS16;
16220 }
16221 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16222 else if (opcode == 0xff220000)
16223 {
16224 if (!micromips_p)
16225 return -1;
16226 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16227 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16228 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16229 gotplt_lo <<= 2;
16230 gotplt_addr = gotplt_hi + gotplt_lo;
16231 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16232 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16233 suffixlen = sizeof (microsuffix);
16234 suffix = microsuffix;
16235 other = STO_MICROMIPS;
16236 }
16237 /* Likewise the expected microMIPS instruction (insn32 mode). */
16238 else if ((opcode & 0xffff0000) == 0xff2f0000)
16239 {
16240 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16241 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16242 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16243 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16244 gotplt_addr = gotplt_hi + gotplt_lo;
16245 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16246 suffixlen = sizeof (microsuffix);
16247 suffix = microsuffix;
16248 other = STO_MICROMIPS;
16249 }
16250 /* Otherwise assume standard MIPS code. */
16251 else
16252 {
16253 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16254 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16255 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16256 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16257 gotplt_addr = gotplt_hi + gotplt_lo;
16258 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16259 suffixlen = sizeof (mipssuffix);
16260 suffix = mipssuffix;
16261 other = 0;
16262 }
16263 /* Truncated table??? */
16264 if (plt_offset + entry_size > plt->size)
16265 break;
16266
16267 for (i = 0;
16268 i < count && p[pi].address != gotplt_addr;
16269 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16270
16271 if (i < count)
16272 {
16273 size_t namelen;
16274 size_t len;
16275
16276 *s = **p[pi].sym_ptr_ptr;
16277 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16278 we are defining a symbol, ensure one of them is set. */
16279 if ((s->flags & BSF_LOCAL) == 0)
16280 s->flags |= BSF_GLOBAL;
16281 s->flags |= BSF_SYNTHETIC;
16282 s->section = plt;
16283 s->value = plt_offset;
16284 s->name = names;
16285 s->udata.i = other;
16286
16287 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16288 namelen = len + suffixlen;
16289 if (names + namelen > nend)
16290 break;
16291
16292 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16293 names += len;
16294 memcpy (names, suffix, suffixlen);
16295 names += suffixlen;
16296
16297 ++s, ++n;
16298 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16299 }
16300 }
16301
16302 free (plt_data);
16303
16304 return n;
16305 }
16306
16307 void
16308 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16309 {
16310 struct mips_elf_link_hash_table *htab;
16311 Elf_Internal_Ehdr *i_ehdrp;
16312
16313 i_ehdrp = elf_elfheader (abfd);
16314 if (link_info)
16315 {
16316 htab = mips_elf_hash_table (link_info);
16317 BFD_ASSERT (htab != NULL);
16318
16319 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16320 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16321 }
16322
16323 _bfd_elf_post_process_headers (abfd, link_info);
16324
16325 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16326 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16327 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16328
16329 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16330 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16331 }
16332
16333 int
16334 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16335 {
16336 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16337 }
16338
16339 /* Return the opcode for can't unwind. */
16340
16341 int
16342 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16343 {
16344 return COMPACT_EH_CANT_UNWIND_OPCODE;
16345 }
This page took 0.460691 seconds and 5 git commands to generate.